
HAL Id: tel-00659738
https://theses.hal.science/tel-00659738v2

Submitted on 12 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical relational learning : Structure learning for
Markov logic networks

Quang-Thang Dinh

To cite this version:
Quang-Thang Dinh. Statistical relational learning : Structure learning for Markov logic networks.
Other [cs.OH]. Université d’Orléans, 2011. English. �NNT : 2011ORLE2047�. �tel-00659738v2�

https://theses.hal.science/tel-00659738v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ D’ORLÉANS

ÉCOLE DOCTORALE SCIENCES ET TECHNOLOGIES

Laboratoire d’Informatique Fondamentale d’Orléans

THÈSE
présentée par :

Quang-Thang DINH

soutenue le : 28 novembre 2011

pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/ Spécialité : Informatique

Apprentissage Statistique Relationnel :
Apprentissage de Structures

de Réseaux de Markov Logiques

THÈSE dirigée par :

Christel Vrain Professeur, Université d’Orléans
Matthieu Exbrayat Maître de Conférences, Université d’Orléans

RAPPORTEURS :

Céline Rouveirol Professeur, Université Paris 13, France
Lorenza Saitta Professeur, Université Piémont Oriental, Italie

JURY :

Matthieu Exbrayat Maître de Conférences, Université d’Orléans
Patrick Gallinari Professeur, Université Pierre et Marie Curie
Philippe Leray Professeur, Université de Nantes, Président du jury
Céline Rouveirol Professeur, Université Paris 13
Lorenza Saitta Professeur, Université Piémont Oriental
Christel Vrain Professeur, Université d’Orléans

Acknowledgments

First and foremost, I would like to thank my advisor, Christel VRAIN, for her guidance,
encouragement and support during the past three years. She gave me a very good chance
to start my research career at LIFO laboratory, University of Orléans, France. I would like
to thank equally my co-advisor, Matthieu EXBRAYAT, for having given me great support
during all these years. They created a mentoring environment that support my growth
as a researcher here and mastered a difficult task of giving me advise and direction, while
allowing me freedom and time to persue and develop my ideas. Our weekly discussions
have formed the main contributions of this dissertation. I deeply appreciate their great
patience with my poor English in the first two years and with my French accent since the
beginning of the thirst year.

I would like to thank the other members of the committee of this dissertation, who
brought a remarkable support for my work: Céline Rouveirol and Lorenza Saitta for having
accepted the heavy task of reviewing and Patrick Gallinari and Philippe Leray for their
participation in the committee.

I also want to thank all the members of the Constraint and Learning (CA) team and
all my colleagues at LIFO who have daily shared with me my work in Machine Learning.
They also have gradually brought me into the French research community in particular
and into the French social life in general.

This thesis would not have been possible without the tremendous support of my family:
my parents who helped me understanding the meaning of life, my sweet wife who has
always been of great support during these years of hard work and shared with me all
my difficult moments, my four-year-old boy who brought me a lot of motivations and my
younger sister who always believed in me. I dedicate this dissertation to them.

Finally, I would like to thank the Région Centre, France for having funded this work.

Quang-Thang DINH
The University of Orléans
November 2011

Contents

1 Introduction 7
1.1 Dissertation Contributions . 8
1.2 Dissertation Organization . 10

2 Statistical Relational Learning 11
2.1 Probabilistic Graphical Models . 12

2.1.1 Bayesian Networks . 12
2.1.2 Markov Networks . 13

2.2 First-Order Logic . 14
2.3 Inductive Logic Programming . 16
2.4 Statistical Relational Learning . 19

2.4.1 Probabilistic Relational Models . 20
2.4.2 Bayesian Logic Programs . 21
2.4.3 Relational Markov Networks . 22
2.4.4 Markov Logic Networks . 23

2.5 Summary . 24

3 Markov Logic Networks and Alchemy 25
3.1 Markov Logic Network . 25

3.1.1 Weight Learning . 27
3.1.2 Structure Learning . 31
3.1.3 Inference . 35

3.2 Alchemy . 37
3.2.1 Input files . 38
3.2.2 Inference . 38
3.2.3 Weight Learning . 39
3.2.4 Structure Learning . 39

3.3 Summary . 39

4 Learning MLN Structure Based on Propositionalization 41
4.1 Introduction . 42
4.2 The HGSM and HDSM Algorithms . 43

4.2.1 Definitions . 44
4.2.2 Propositionalization Method . 45
4.2.3 Structure of HGSM . 51
4.2.4 Evaluating HGSM . 56
4.2.5 Structure of HDSM . 62
4.2.6 Evaluating HDSM . 64

4.3 The DMSP Algorithm . 67
4.3.1 Definitions . 69
4.3.2 Propositionalization Method . 69
4.3.3 Structure of DMSP . 75

iv Contents

4.3.4 Evaluating DMSP . 77
4.4 Related Works . 80
4.5 Summary . 81

5 Learning MLN Structure Based on Graph of Predicates 85
5.1 Introduction . 86
5.2 The GSLP Algorithm . 87

5.2.1 Graph of Predicates in GSLP . 87
5.2.2 Structure of GSLP . 89
5.2.3 Experiments . 95

5.3 The Modified-GSLP Algorithm . 98
5.3.1 Graph of Predicates in M-GSLP 100
5.3.2 Structure of M-GSLP . 100
5.3.3 Experiments . 105
5.3.4 Complexity of the M-GSLP Algorithm 106

5.4 The DSLP Algorithm . 110
5.4.1 Graph of Predicates in DSLP . 111
5.4.2 Structure of DSLP . 111
5.4.3 Experiments . 114

5.5 Related Works . 116
5.6 Summary . 117

6 Conclusion and Future Work 119
6.1 Contributions of this Dissertation . 119
6.2 Directions for Future Work . 121

A Evaluation Metrics 127
A.1 Classifier Performance . 127
A.2 ROC and PR Curves . 127
A.3 Area Under the Curve . 128

B Experimental Comparison to ILP 129
B.1 Systems and Datasets . 129
B.2 Methodology . 130
B.3 Results . 131

C Clauses Learned by Discriminative Systems 139

Bibliography 143

List of Figures

1 L’entrée et la sortie d’un système d’apprentissage de la structure d’un MLN 3

1.1 Input and output of a MLN structure learner 8

2.1 Example of a Bayesian network . 13
2.2 Example of a graph structure of a MLN 14
2.3 An instantiation of the relational schema for a simple movie domain . . . 21
2.4 An example of a BLP . 22

3.1 Example of a ground MN . 27

4.1 Propositionalization . 43
4.2 Example of chains in the variabilization process of HGSM 47
4.3 Example of adding new variable in HGSM 49
4.4 Example of g-chains in DMSP . 72
4.5 Example of g-links in DMSP . 73
4.6 Example of the variabilization in DMSP 73
4.7 Example of the variabilization processes in DMSP and HDSM 76

5.1 Example of graph of predicates in GSLP 89
5.2 Example of graph of predicates in M-GSLP 100
5.3 Example of graph of predicates in DSLP 111

B.1 Results for the predicate WorkedUnder in IMDB 133
B.2 Results for the predicate AdvisedBy in UW-CSE 134
B.3 Results for the predicate SameAuthor in CORA 135
B.4 Results for the predicate SameBib in CORA 136
B.5 Results for the predicate SameTitle in CORA 137
B.6 Results for the predicate SameVenue in CORA 138

List of Tables

3.1 example.mln: An .mln input file in Alchemy 38

4.1 Example of several rows in a boolean table of HGSM 52
4.2 Details of the IMDB, UW-CSE and CORA datasets 58
4.3 CLL, AUC-PR measures . 59
4.4 Number of clauses and runtimes (minutes) 60
4.5 CLL, AUC-PR measures . 66
4.6 Runtimes(hour) . 67
4.7 CLL, AUC-PR measures . 79
4.8 Runtimes(hours) . 80
4.9 A synthetic view of the different steps and components in HGSM, HDSM

and DMSP . 83

5.1 A path of four edges . 94
5.2 CLL, AUC-PR measures . 96
5.3 Runtimes (hours) . 97
5.4 Average measures for predicates in Uw-cse dataset 98
5.5 Details of datasets . 105
5.6 CLL, AUC-PR measures (generative) . 107
5.7 Runtimes (hours) (generative) . 108
5.8 CLL and AUC values in a test-fold for every predicate in UW-CSE 108
5.9 CLL, AUC-PR measures (discriminative) 108
5.10 CLL, AUC-PR measures (discriminative) 115
5.11 Runtimes(hours) . 115
5.12 CLL, AUC-PR and RT (runtime in hour) results 116
5.13 A synthetic view of the different steps and components in GSLP, MGSLP

and DSLP . 118

A.1 Common machine learning evaluation metrics 127

Introduction

L’apprentissage relationnel (Relational Learning) et l’apprentissage statistique (Sta-
tistical Learning) sont deux sous-problèmes traditionnels de l’apprentissage automa-
tique (Machine Learning - ML). Les représentations logiques sont souvent utilisées dans
l’apprentissage relationnel. Par exemple, la logique du premier ordre (First Order Logic -
FOL) a été largement étudiée par le biais de la programmation logique inductive (Induc-
tive Logic Programming - ILP). L’apprentissage relationnel vise à traiter la complexité
des données relationnelles, qu’elles soient séquentielles, graphiques, multi-relationnelles,
ou autres. L’apprentissage statistique permet quant à lui de prendre en compte la notion
d’incertitude. Cependant, beaucoup de cas réels comportent des données à la fois com-
plexes et incertaines. L’union de l’apprentissage relationnel et de l’apprentissage statis-
tique est devenue un aspect important de l’Intelligence Artificielle.

L’apprentissage statistique relationnel (Statistical Relational Learning - SRL)
[Getoor & Taskar 2007] consiste à combiner le pouvoir descriptif de l’apprentissage
relationnel à la souplesse de l’apprentissage statistique. Diverses approches ont
été proposées au cours des quinze dernières années, tels que PRISM (PRogram-
ming In Statistical Modeling) [Sato & Kameya 1997], MACCENT (MAximum ENTropy
modelling with Clausal Constraints) [Dehaspe 1997], les modèles relationnels proba-
bilistes (Probabilistic Relational Models - PRMs) [Friedman et al. 1999], les programmes
logiques bayésiens (Bayesian Logic Programs - BLPs) [Kersting & De Raedt 2007],
les réseaux relationnels de dépendances (Relational Dependency Networks - RDNs)
[Neville & Jensen 2004], les modèles relationnels de Markov (Relational Markov Models -
RMMs) [Anderson et al. 2002] et les réseaux logiques de Markov (Markov Logic Networks
- MLNs) [Richardson & Domingos 2006].

Les réseaux logiques de Markov (MLNs) [Richardson & Domingos 2006] constituent
l’une des approches les plus récentes de l’apprentissage relationnel statistique et reposent
sur la combinaison de la logique du premier ordre avec les réseaux de Markov. Un réseau
de Markov (Markov Network - MN) [Pearl 1988] est un graphe, dont les nœuds représen-
tent des variables aléatoires et dont les arêtes expriment les dépendances conditionnelles
entre ces variables. Chaque clique du graphe correspond ainsi à un ensemble de variables
conditionnellement dépendantes. On associe à chaque clique un poids. Un tel réseau per-
met ensuite d’inférer la valeur d’une ou plusieurs variables. Un réseau logique de Markov
est constitué d’un ensemble de clauses logiques pondérées. La syntaxe des formules suit la
syntaxe standard de la logique du premier ordre et les poids sont des nombres réels. Ces
clauses sont constituées d’atomes, lesquels peuvent être vus comme des prototypes pour la
construction de réseaux de Markov. En effet, si l’on dispose d’un ensemble de constantes,
on peut produire, en instantiant les clauses, un ensemble d’atomes clos qui constitueront
les nœuds d’un réseau de Markov. Les nœuds issus d’une même instanciation de clause
seront liés, et les cliques ainsi produites seront affectées du poids de la clause dont elles
dérivent. Les MLNs sont capables de représenter des lois de probabilités sur un nombre
fini d’objets. De plus, beaucoup de représentations en apprentissage relationnel statistique
peuvent être considérées comme des cas particuliers de logique du premier ordre associée à
des modèles graphiques probabilistes et peuvent être transformés pour entrer dans le cadre
formel des réseaux logiques de Markov. Pour ces raisons, nous avons retenu les réseaux

logiques de Markov comme modèle étudié dans le cadre de cette thèse.
Les deux tâches principales effectuées par un réseau logique de Markov sont l’inférence

et l’apprentissage. Il existe deux types d’inférence : la recherche de l’état le plus probable
d’un monde, étant donnée la valeur d’une partie des objets qui le composent (évidences)
et le calcul de probabilités marginales ou conditionnelles arbitraires. L’apprentissage d’un
réseau logique de Markov peut être décomposé en deux phases, consistant à apprendre
respectivement la structure (i.e. les clauses en logique du premier ordre) et les paramètres
(i.e. le poids des clauses) de ce réseau.

L’apprentissage automatique de la structure d’un MLN à partir d’un jeu de don-
nées constitue une tâche importante car il permet de découvrir une structure décrivant
de nouvelles connaissances dans le domaine, sur laquelle on peut inférer afin de prédire
des événements futurs. Cet apprentissage automatique devient incontournable quand les
données sont trop grandes pour la lecture humaine et quand l’utilisateur manque de con-
naissance experte. Cependant, il reste un défi lié à la dimension de l’espace de recherche
et au besoin, dans les systèmes actuels, d’apprendre les poids des formules afin d’évaluer
celles-ci, processus qui exige beaucoup de temps de calcul.

Contributions de cette thèse
Ce mémoire de thèse porte sur le problème de l’apprentissage de la structure d’un

réseau logique de Markov à partir d’un jeu de données relationnelles. Étant donné un
ensemble de prédicats et les types de leurs arguments dans un domaine, et un jeu de
données relationnelles contenant des atomes clos vrais ou faux, un ensemble de clauses
pondérées va être découvert par un système d’apprentissage de la structure d’un réseau
logique de Markov. La figure 1.1 montre un exemple des entrée et sortie d’un tel système.

Les contributions de cette thèse sont des méthodes pour l’apprentissage de la structure
d’un réseau logique de Markov tant génératif que discriminant. Ces méthodes peuvent
être divisées en deux classes : les méthodes reposant sur la notion de propositionnalisation
et les méthodes reposant sur une notion introduite dans la thèse et appelée Graphe des
Prédicats.

Apprentissage de la structure par propositionnalisation

La propositionnalisation est une technique populaire en programmation logique induc-
tive. Il s’agit d’un processus permettant de produire des attributs utiles, habituellement
sous la forme de tableaux attributs-valeurs, à partir des représentations relationnelles, et
d’utiliser ensuite des algorithmes standards en logique propositionnelle pour apprendre
des motifs dans ces tableaux. L’idée de base dans nos méthodes consiste à effectuer une
propositionnalisation pour transformer les informations relationnelles liant les atomes clos
du jeu de données en tableaux booléens dont chaque colonne correspond à un littéral.
Ces tableaux booléens sont alors utilisés pour trouver des littéraux dépendants, à partir
desquels les clauses candidates seront créées. La technique de propositionnalisation util-
isée dans nos méthodes consiste en deux étapes : la création d’un ensemble de littéraux à
partir du jeu de données, en partant d’un prédicat donné du domaine, puis le remplissage
de ces tableaux booléens.

Nous avons d’abord développé l’algorithme HGSM (Heuristic Generative Structure for
MLNs) [Dinh et al. 2010b] en implémentant une première technique de propositionnalisa-

Figure 1: L’entrée et la sortie d’un système d’apprentissage de la structure d’un MLN

tion dans laquelle, pour chaque prédicat, le jeu de données est séparé en groupes distincts
d’atomes connectés. Une méthode heuristique de variabilisation est alors appliquée sur
ces groupes d’atomes connectés, du plus grand au plus petit, afin de construire un en-
semble de littéraux avec seulement des variables. HGSM transpose ensuite l’information
contenue dans le jeu de données aux tableaux booléens. Une technique de recherche
des variables dépendantes dans un réseau de Markov (Grow-Shrink Markov Network)
[Bromberg et al. 2006] est appliquée dans chaque tableau afin de trouver les littéraux
(comportant seulement des variables) dépendants. Des clauses candidates sont créées à
partir de cet ensemble de littéraux dépendants et sont enfin évaluées, l’une après l’autre,
pour apprendre le réseau logique de Markov final.

Nous avons ensuite adapté l’approche utilisée dans HGSM à l’apprentissage discrimi-
nant de réseaux logiques de Markov. Cette nouvelle approche, intitulée HDSM (Heuristic
Discriminative Structure learning for MLNs) [Dinh et al. 2010c], se focalise sur la capac-
ité prédictive du réseau pour un prédicat de requête, au lieu de chercher une capacité de
prédiction satisfaisante pour tous les prédicats du domaine. HDSM utilise une mesure
discriminant pour choisir les clauses.

Nous avons également développé une approche appelée DMSP (Discriminative MLN
Structure learning based on Propositionalization) [Dinh et al. 2010a] pour effectuer
l’apprentissage discriminant de la structure d’un réseau logique de Markov, en mettant en
œuvre une seconde technique de propositionnalisation pour la construction de l’ensemble
de littéraux. Cette deuxième technique repose sur l’idée de variabiliser des groupes de
chemins d’atomes connectés dans le jeu de données et permet de créer un ensemble de
littéraux beaucoup plus compact, et ceci beaucoup plus rapidement. Nous montrons que
cet ensemble de littéraux est le plus petit ensemble capable de décrire les relations liées

au prédicat de requête dans le jeu de données. DMSP utilise le test d’indépendance du
χ2 afin de générer plus de clauses candidates que HDSM.

Apprentissage de la structure à partir des Graphes des Prédicats

L’idée de base de cette autre famille de méthodes est de coder les informations du
jeu de données dans un graphe dont on pourra extraire des clauses candidates. Nous
introduisons la définition de Graphe des Prédicats (GoP), qui modélise les liens entre
deux prédicats du domaine ainsi que la mesure de couverture classique en programmation
logique inductive. A chaque lien entre deux prédicats est associé une formule. Un Graphe
des Prédicats, dont chaque nœud correspond à un prédicat ou à sa négation et chaque arête
à un lien possible entre deux prédicats, souligne les associations binaires entre les prédicats.
Nous avons ensuite développé l’algorithme GSLP (Generative Structure Learning based on
graph of Predicates) [Dinh et al. 2011a] pour l’apprentissage génératif de la structure d’un
MLN. GSLP suit une stratégie descendant pour limiter la recherche des clauses candidates
contenues dans le Graphe des Prédicats, ce qui est beaucoup plus rapide qu’une recherche
exhaustive dans l’espace de clauses.

Lors des expérimentations menées pour évaluer GSLP, nous avons détecté plusieurs
limites concernant la mesure pour choisir des clauses, la stratégie visant à réduire le
nombre d’arêtes du Graphe des Prédicats et les méthodes pour construire un ensemble de
clauses candidates et pour apprendre le MLN final. Ces problèmes ont été résolus dans la
version modifiée de GSLP, intitulée M-GSLP (Modified-GSLP) [Dinh et al. 2011b].

Nous avons enfin développé le système DSLP pour la tâche d’apprentissage discrim-
inant de la structure d’un MLN. Dans DSLP, nous avons défini une nouvelle séman-
tique du Graphe des Prédicats afin d’adapter celui-ci à la tâche d’apprentissage dis-
criminant et d’accélérer le processus de recherche des clauses de Horn. Les résultats
de l’expérimentation montrent que DSLP dépasse les systèmes de l’état de l’art pour
l’apprentissage discriminant de la structure d’un MLN, sur les jeux de données classiques.

Organisation de la thèse

Ce mémoire est organisé comme suit :

• Le chapitre 2 rappelle tout d’abord des notions de base sur l’apprentissage statis-
tique relationnel contenant les deux modèles graphiques probabilistes (les réseaux
Bayésiens et les réseaux de Markov) et des connaissances de base de la logique
du premier ordre. Il présente ensuite un bref aperçu de méthodes de Program-
mation Logique Inductive. Enfin, ce chapitre introduit les principaux modèles
d’apprentissage statistique relationnel.

• Le chapitre 3 est consacré aux réseaux logiques de Markov. Il commence par
la définition et la représentation d’un réseau logique de Markov, puis donne un
aperçu des deux tâches principales des réseaux logiques de Markov: l’inférence et
l’apprentissage.

• Le chapitre 4 présente nos méthodes reposant sur la propositionnalisation que nous
avons proposé pour apprendre la structure d’un réseau logique de Markov.

• Le chapitre 5 présente nos méthodes reposant sur les Graphes des Prédicats pour
apprendre la structure d’un réseau logique de Markov.

• Le chapitre 6 conclut cette thèse par un résumé de ses contributions et l’évocation
de ses perspectives.

Les contributions du chapitre 4 ont été publiées dans [Dinh et al. 2010b,
Dinh et al. 2010a, Dinh et al. 2010c], et celles du chapitre 5 dans [Dinh et al. 2011a,
Dinh et al. 2011b].

Chapter 1

Introduction

Contents
1.1 Dissertation Contributions . 8
1.2 Dissertation Organization . 10

Relational Learning and Statistical Learning are two traditional subfields of Machine
Learning (ML). Relational learning is often based on logical representations. For instance,
Machine Learning First-Order Logic (FOL) has been widely studied by the mean of In-
ductive Logic Programming (ILP). Relational Learning tends to handle complexity of
relational data such as sequences, graphs, multi-relational data, etc. Statistical Learn-
ing is based on statistical representation and thus allows to handle uncertainty. However,
many real-world applications require to deal with both uncertainty and complexity of data.
Combining relational learning and statistical learning has become an important goal of
Artificial Intelligence (AI).

Statistical Relational Learning (SRL) seeks to combine the power of both statis-
tical learning and relational learning.A large number of statistical relational learning
approaches have been proposed, including PRISM [Sato & Kameya 1997], MACCENT
[Dehaspe 1997], Probabilistic Relational Models [Friedman et al. 1999], Relational Markov
Models [Anderson et al. 2002], Relational Dependency Networks [Neville & Jensen 2004],
Markov Logic Networks [Richardson & Domingos 2006], Bayesian Logic Programs
[Kersting & De Raedt 2007], and others.

Markov Logic Networks are a kind of statistical relational model that generalizes
both full FOL and Markov networks (MN). A MLN consists of a set of weighted
clauses in which the syntax of formulas follows the standard syntax of first-order
logic and weights are real numbers. A MLN can be viewed as a template to con-
struct Markov networks of various sizes. Given a set of constants in a particular do-
main, a MLN can be grounded into a Markov network that can then be used to in-
fer probabilities for a set of query literals given the truth values of a set of evidence
literals. MLNs are able to represent probability distributions over a set of objects
[Richardson & Domingos 2004, Richardson & Domingos 2006]. Moreover, many represen-
tations in SRL, that can be viewed as special cases of first-order logic and probabilistic
graphical models, can be mapped into MLNs [Richardson & Domingos 2004]. For these
reasons, we have chosen MLNs as the model on which we focused the research presented
in this dissertation.

The two main tasks related to MLNs are inference and learning. There exists two
basic types of inference: finding the most likely state of the world consistent with some
evidence, and computing arbitrary marginal or conditional probabilities. Learning a MLN
can be decomposed into structure learning and weight learning. Structure learning leads

8 Chapter 1. Introduction

Figure 1.1: Input and output of a MLN structure learner

to finding a set of weighted first-order formulas from data. Parameter learning leads to
estimating the weight associated with each formula of a given structure.

Learning MLN structure from data is an important task as it allows us to discover
a structure describing novel knowledge inside the domain, from which one can perform
inference in order to predict future events. It becomes more and more necessary when data
is too large for human perusal and the user lacks expert knowledge about it. However, this
remains challenging, due to the very large search space and to the need for current MLN
learners to repeatedly learn the weights of formulas in order to evaluate these latters, a
process which is computationally expensive.

1.1 Dissertation Contributions

This dissertation focuses on addressing the question of how to efficiently learn a MLN
structure from relational databases. Given a description about predicate symbols and
their types of arguments in a domain and a relational database containing true/false
ground atoms of these predicates, a set of relevant weighted clauses are discovered by
a MLN structure learner. Figure 1.1 shows an example of input and output of a MLN
structure learner.

Contributions of this dissertation are approaches for both generative and discrimina-
tive MLN structure learning, which can be divided into two classes: approaches based on
propositionalization and approaches based on Graphs of Predicates.

MLN structure learning based on propositionalization

Propositionalization is a popular technique in ILP. It is the process of generating a num-

1.1. Dissertation Contributions 9

ber of useful attributes, mostly in form of attribute-value tables, starting from relational
representations and then using traditional propositional algorithms for learning and min-
ing [Alphonse & Rouveirol 1999, Alphonse & Rouveirol 2000, De Raedt 2008]. The basic
idea in our methods is to perform propositionalization in which information expressed
by shared ground atoms (by their constants) in the dataset is transformed into boolean
tables, each column of which corresponds to a variable literal. These boolean tables are
then used to find dependent variable literals from which to create candidate clauses. The
propositionalization technique used in our methods includes two steps: it first creates a
set of variable literals from the dataset corresponding to a given predicate and then fills
the boolean tables.

We first developed the Heuristic Generative Structure for MLNs (HGSM) algorithm
[Dinh et al. 2010b], implementing a first propositionalization technique in which, corre-
sponding to each predicate, the training dataset is separated into groups of connected
ground atoms starting from a true ground atom of the current predicate. A heuristic
variabilization method is applied on these groups of connected ground atoms, from the
largest to the shortest, in order to build a set of variable literals. HGSM then trans-
forms the information in the dataset into boolean tables, each of which corresponds to
a variable literal of the target predicate, from which to apply the GSMN (Grow-Shrink
Markov Network) algorithm [Bromberg et al. 2006] to find the set of variable literals that
are dependent to the current variable literal. Candidate clauses are created from this set
of dependent variable literals and are then considered in turn to learn the final MLN.

We then adapted this approach to form the discriminative MLN structure learning
system HDSM (Heuristic Discriminative Structure learning for MLNs) [Dinh et al. 2010c].
Instead of searching for a MLN that predicts well the truth value of the atoms of any
predicate, HDSM only learns for a single query predicate. HDSM also uses a discriminative
measure to choose clauses instead of the generative one in HGSM in order to make the
system more suitable for the task of discriminative learning.

Next, we developed the DMSP (Discriminative MLN Structure learning based on
Propositionalization) algorithm [Dinh et al. 2010a] for the task of learning discrimina-
tively a MLN structure, implementing a second propositionalization technique. The
difference with the first technique lies in the way to build a set of variable literals.
This second technique can create much faster a set of variable literals that is more
compact than the first one, based on the idea to variabilize groups of similar paths of
shared ground atoms in the database. By this way, the set of variable literals is found
much faster and we also prove that it is the smallest set to describe relations related
to the query predicate in the database. DMSP then uses the χ2-test of dependence in-
stead of Grow-Shrink in order to generate a little more candidate clauses than HDSM does.

MLN structure learning based on Graphs of Predicates

The basic idea behind this second approach is to encode information in the training
database into a graph from which to search for candidate clauses. We propose the definition
of a Graph of Predicates (GoP), which is inspired from links between predicates in a
domain and the coverage measure in ILP. For each link between two predicates, we define
a corresponding formula. A Graph of Predicates, each node of which corresponds to
a predicate or its negation and each edge corresponds to a possible link between two

10 Chapter 1. Introduction

predicates, highlights the binary associations of predicates that share constants in terms
of the number of true instantiations in the database (of the corresponding formulas). We
then developed the Generative Structure Learning based on graph of Predicates (GSLP)
algorithm [Dinh et al. 2011a] to learn generatively a MLN structure from a relational
database. GSLP relies on a top-down strategy to narrow the search for candidate clauses
within the Graph of Predicates, which is much faster than an exhaustive search in the
space of clauses.

During the experiments to evaluate GSLP, we notice several limitations related to the
measure used to choose clauses, the strategy to reduce the number of edges in the Graph
of Predicates and the methods to build a set of candidate clauses and to learn the final
MLN. These limitations have been overcome in the Modified-GSLP (M-GSLP) system
[Dinh et al. 2011b].

We finally propose the DSLP (Discriminative Structure Learning based on Graph of
Predicates) system for the task of discriminative MLN structure learning. In this system,
we define a new semantic of Graph of Predicates in order to adapt it to the task of discrim-
inative learning and accelerate the process of finding Horn clauses. Experiment results
show that DSLP dominates the state-of-the-art discriminative MLN structure learners on
the standard datasets.

1.2 Dissertation Organization

This dissertation is organized as follows:

• Chapter 2 first presents some backgrounds of Statistical Relational Learning, includ-
ing two probabilistic graphical models (Bayesian networks and Markov networks)
and several notions of first order logic. It then gives a brief overview of methods in
Inductive Logic Programming. Finally this chapter gives an introduction of several
models in statistical relational learning.

• Chapter 3 concentrates on Markov Logic Networks. It begins by the definition and
representation of MLN, then brings an overview of the two main tasks for MLNs:
inference and learning.

• Chapter 4 presents methods for MLN structure learning based on the proposition-
alization in ILP.

• Chapter 5 presents methods for MLN structure learning based on Graphs of Predi-
cates.

• Chapter 6 concludes this dissertation with a summary of its contributions and di-
rections for future work.

The contributions of Chapter 4 have been published in [Dinh et al. 2010b,
Dinh et al. 2010a, Dinh et al. 2010c], and the ones of Chapter 5 in [Dinh et al. 2011a,
Dinh et al. 2011b].

Chapter 2

Statistical Relational Learning

Résumé: Dans ce chapitre, nous présentons des connaissances de base en apprentissage
statistique relationnel. Nous décrivons principalement deux modèles graphiques prob-
abilistes et des notions de la logique du premier ordre. Un bref aperçu des méthodes
en PLI (Programmation Logique Inductive) est donné. Enfin, nous décrivons briève-
ment plusieurs modèles de l’apprentissage statistique relationnel, en nous intéressant dans
un premier temps aux modèles graphiques probabilistes orientés tels que les modèles
probabilistes relationnels (Probabilistic Relational Models) [Friedman et al. 1999] et les
programmes logiques bayésiens (Bayesian Logic Programs) [Kersting & De Raedt 2007]
puis aux modèles fondés sur des graphes non-orientés tels que les réseaux relationnels
de Markov (Relational Markov Networks) [Taskar et al. 2007] et les réseaux logiques de
Markov (Markov Logic Networks) [Richardson & Domingos 2006]. Il faut noter que, ici,
nous nous limitons aux modèles les plus populaires en apprentissage statistique relation-
nel. Il existe beaucoup d’autres modèles comme les réseaux relationnels de dépendance
(Relational Dependency Networks) [Neville & Jensen 2004], les modèles relationnels de
Markov (Relational Markov Models) [Anderson et al. 2002], MACCENT (Maximum En-
tropy Modelling with Clausal Constraints) [Dehaspe 1997], PRISM (Programming in Sta-
tistical Modelling) [Sato & Kameya 1997], etc. Nous recommandons au lecteur à la publi-
cation [Getoor & Taskar 2007] pour des lectures plus approfondies sur les différents mod-
èles d’apprentissage statistique relationnel.

Contents
2.1 Probabilistic Graphical Models . 12

2.1.1 Bayesian Networks . 12
2.1.2 Markov Networks . 13

2.2 First-Order Logic . 14
2.3 Inductive Logic Programming . 16
2.4 Statistical Relational Learning . 19

2.4.1 Probabilistic Relational Models . 20
2.4.2 Bayesian Logic Programs . 21
2.4.3 Relational Markov Networks . 22
2.4.4 Markov Logic Networks . 23

2.5 Summary . 24

This chapter presents basic notions and several approaches of Statistical Relational
Learning (SRL). It begins with a description of two popular probabilistic graphical models
to handle uncertainty in Statistical Learning called Bayesian Networks (BNs) and Markov

12 Chapter 2. Statistical Relational Learning

Networks (MNs). Before depicting an introduction to Inductive Logic Programming (ILP)
(or Relational Learning), we recall several definitions of First-Order Logic (FOL) as this
later is commonly used to represent knowledge in ILP. Next, the principles as well as
several approaches of SRL are presented. Finally, we conclude with a summary of this
chapter.

2.1 Probabilistic Graphical Models

In this section, we present basic notions of Probabilistic Graphical Models (PGMs)
[Pearl 1988, Bishop 2006, Jordan et al. 1999]. As pointed out in [Jordan et al. 1999],
PGMs are an integration of probability theory and graph theory. They have become
extremely popular tools to deal with uncertainty through the use of probability theory,
and effective approaches to cope with complexity through the use of graph theory. PGMs
are graphs in which nodes represent random variables and edges represent probabilistic
relationships between these variables. The graph captures the way in which the joint distri-
bution over the whole set of random variables can be decomposed into a product of factors
each depending only on a subset of variables. The two most common types of probabilistic
graphical models are Bayesian Networks (BNs) and Markov Networks (MNs). BNs are di-
rected graphical models. MNs are undirected graphical models. In the following the key as-
pects of these two PGMs, needed to understand the SRL setting, are discussed. Further de-
tails of these two models can be found in [Bishop 2006, Jordan et al. 1999, Edwards 2000].

2.1.1 Bayesian Networks

A Bayesian Network (BN) is represented by a directed acyclic graph (DAG). The nodes of
this DAG are the random variables in the domain and the edges correspond, intuitively,
to the direct influence of one node on another. One way to view this graph is as a data
structure that provides the skeleton for representing the joint distribution compactly in a
factorized way.

Let G be a BN graph over the variables X = X1, . . . , Xn. Each random variable
Xi in the network has an associated conditional probability distribution (CPD) or local
probabilistic model. The CPD for Xi, given its parents in the graph (denoted by Pa(Xi)),
is P (Xi|Pa(Xi)). It captures the conditional probability of the random variable, given
its parents in the graph. CPDs can be described in a variety of ways in which the most
common is the representation of a table which contains a row for each possible set of values
for the parents of the node, describing the probability of different values for Xi. These
are often referred to as table CPDs. We illustrate here by an example.

Example 1 Suppose that there are two boolean events A and B which could cause a boolean
event C. Also, suppose that the event B has a direct effect on the event A. Then the
dependency structure among these three events can be modeled by a Bayesian network
shown in Figure 2.1. Beside each event (variable or node in the Bayesian network) is the
corresponding CPD table. At the root, we have the probabilities of B being respectively
true (T) or false (F). For the other non-root nodes, the conditional probabilities of the
corresponding variable given its parents are reported. These are the tables of conditional
probabilities of A given B and conditional probabilities of C given A and B.

2.1. Probabilistic Graphical Models 13

Figure 2.1: Example of a Bayesian network

Formally, a BN is a pair (G, θG) where θG is the set of CPDs associated with the nodes
of G. It defines a distribution PB factorizing over G:

PB(X) =

n∏
i=1

P (Xi|Pa(Xi)). (2.1)

Example 2 The BN in Figure 2.1 describes the following factorization:

P(A, B, C) = P(B)P(A|B)P(C|A,B).

2.1.2 Markov Networks

A Markov Network (MN) (also known as Markov Random Field (MRF)) is a model for the
joint distribution of a set of variables X = (X1, X2, . . . , Xn) [Pearl 1988]. It is composed
of an undirected graph G and a set of potential functions φk. The graph has a node for
each variable, and the model has a potential function φk for each clique in the graph. A
clique is defined as a subset of the nodes in the graph such that there exists a link between
all pairs of nodes in the subset. A potential function is a non-negative real-valued function
of the state of the corresponding clique. The joint distribution represented by a MN is
given by:

P (X = x) =
1

Z

∏
k

φk(x{k}) (2.2)

where xk is the state of the k-th clique (i.e., the state of the variables that appear in that
clique). Z, known as the partition function, is given by:

Z =
∑
x∈X

∏
k

φk(x{k}) (2.3)

Example 3 The graphical structure in Figure 2.2 over four variables X = {A, B, C,
D} contains four maximal cliques {A, B}, {B, C}, {C, D} and {D, A}. Suppose that

14 Chapter 2. Statistical Relational Learning

Figure 2.2: Example of a graph structure of a MLN

φ1(A,B), φ2(B,C) and φ3(C,A) and φ4(D,A) are four potential functions corresponding
respectively to these maximal cliques and x = (a, b, c, d) ∈ X. We have:

P (A = a,B = b, C = c,D = d) =
1

Z
φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

where Z =
∑

(a1,b1,c1,d1)∈X φ1(a1, b1)φ2(b1, c1)φ3(c1, d1)φ4(d1, a1). We can consider only
functions of the maximal cliques, without loss of generality, as all other cliques, by defini-
tion, are subsets of the maximal cliques.

Markov networks are often conveniently represented as log-linear models, with each
clique potential replaced by an exponentiated weighted sum of features of the state,
φk(x{k}) = exp(wkfk(x)), leading to:

P (X = x) =
1

Z
exp

(∑
k

wkfk(x)

)
(2.4)

A feature may be any real-valued function of the state. This dissertation will focus on
binary features fk(x) ∈ {0, 1}. In the most direct translation from the potential-function
form (Equation 2.2), there is one feature corresponding to each possible state x{k} of each
clique, with its weight being log φk(x{k}). This representation is exponential in the size of
the cliques.

In Markov networks, the notion of Markov blanket defined below is often used.

Definition 4 In a Markov network, the Markov blanket (MB) of a node is simply a set
of its neighbors in the graph.

2.2 First-Order Logic

We present in this section basic definitions in first-order logic which are used throughout
this dissertation.

A first-order knowledge base (KB) is a set of formulas in first-order logic (FOL)
[Genesereth & Nilsson 1987]. Formulas are constructed using four types of symbols: con-
stants, variables, functions, and predicates. Constant symbols represent objects in the
domain of interest. Variable symbols range over the objects in the domain. Function sym-
bols represent mappings from tuples of objects to objects. Predicate symbols represent
relations among objects in the domain. A term is any expression representing an object
in the domain. It can be a constant, a variable, or a function applied to a tuple of terms.

2.2. First-Order Logic 15

An atomic formula or atom is a predicate symbol applied to a tuple of terms. A ground
term is a term containing no variables. A ground atom or ground predicate is an atomic
formula all of whose arguments are ground terms. Formulas are inductively constructed
from atomic formulas using logical connectives and quantifiers. A positive literal is an
atomic formula; a negative literal is the negation of an atomic formula. A ground literal
(resp. variable literal) contains no variable (resp. only variables).

Example 5 Consider a domain of two predicate symbols Smoke and Cancer with a vari-
able X ranges over two constants {a, b}. Smoke(X) and Cancer(X) are two positive literals
while Smoke(a), Smoke(b), Cancer(a) and Cancer(b) are four ground atoms.

A KB in clausal form (conjunctive normal form (CNF)) is a conjunction of clauses,
a clause being a disjunction of literals. A ground clauses contains all ground atoms. A
definite clause or Horn clause is a clause with exactly one positive literal (the head, with
the negative literals constituting the body). The length of a clause c, denoted by len(c),
is the number of literals in c. Two ground literals (resp. variable literals) are said to be
connected if they share at least one ground constant (one variable). A clause (resp. a
ground clause) is connected when there is an ordering of its literals L1, . . . , Lp, such that
for each Lj , j = 2, . . . , p, there exists a variable (a constant) occurring both in Lj and in
Li, with i < j. A variabilization of a ground clause e, denoted by var(e), is obtained by
assigning a new variable to each constant and replacing all its occurrences accordingly. An
interpretation specifies which objects, functions and relations in the domain are represented
by which symbols. A Herbrand base (HB) is the set of all ground atoms constructed with
the predicate, constant, and available function symbols. A possible world or Herbrand
interpretation is an assignment of truth value to all possible ground atoms, which is a
subset of the Herbrand base. A database is a partial specification of a world, each atom
in it being either true, false or (implicitly) unknown.

Example 6 Consider a connected formula Smoke(X) =⇒ Cancer(X) in which X is a
variable, Smoke and Cancer are two predicate symbols, Smoke(X) and Cancer(X) are two
variable literals. With two constants a and b, by assigning variable X to one of these two
constants in all possible manner, a possible world (Herbrand interpretation) is:

{Smoke(a), ¬Smoke(a), Smoke(b), ¬Smoke(b), Cancer(a), ¬Cancer(a), Cancer(b),
¬Cancer(b)}.

A formula is satisfiable if and only if there exists at least one world in which it is
true. The basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F, i.e., if F is true in all worlds where KB is true (denoted by
KB |= F).

Inference in first-order logic is only semi-decidable. Because of this, KBs are often con-
structed using a restricted subset of FOL where inference and learning is more tractable.
Considering only Horn clauses is the most widely-used restriction. The field of inductive
logic programming (ILP) [Lavrac & Dzeroski 1994] deals exactly with this problem.

16 Chapter 2. Statistical Relational Learning

2.3 Inductive Logic Programming

Inductive Logic Programming (ILP) is an area within Machine Learning that studies algo-
rithms for learning sets of first-order clauses [Lavrac & Dzeroski 1994]. Usually, the task
consists in discriminatively learning rules for a particular target predicate given back-
ground knowledge. This background knowledge may consist either of general clauses, or,
more commonly, of a list of the true/false ground atoms of all predicates in the domain
except the target predicate. The negative and positive examples are provided by the true
and false ground atoms of the target predicate. The form that learned rules can take is
frequently restricted to definite clauses [Richards & Mooney 1995]. Based on the setting
of learning, methods of ILP can be classified into learning from entailment, learning from
interpretation or learning from proofs. Based on the way clauses are searched, methods of
ILP can be classified into top-down, bottom-up or hybrid approaches. Details of learning
from entailment and learning from interpretation are presented in [De Raedt 2008]. In the
following, we briefly describe methods of ILP according to the way clauses are searched.

• Top-Down approaches: The top-down ILP algorithms (e.g. [Quinlan 1990,
De Raedt & Dehaspe 1997]) search the hypothesis space by considering, at each it-
eration, all valid refinements of a current set of candidate hypotheses. These candi-
dates are then evaluated based on how well they cover positive examples and reject
negative ones. A set of well-performing candidates is greedily selected, and the pro-
cess continues with the next iteration. In addition to classification accuracy, several
other heuristics for scoring, or evaluating, candidates have been used.

For example, FOIL [Quinlan 1990], CLAUDIEN [De Raedt & Dehaspe 1997] and
ALEPH [Srinivasan 2003] are three top-down ILP system in which ALEPH (A Learn-
ing Engine for Proposing Hypotheses) is a very popular one. ALEPH is based on
an earlier ILP system called PROGOL [Muggleton 1995]; it preserves all abilities
of PROGOL but incorporates additional search strategies and some extra options.
It takes as input background knowledge in the form of either intensional or exten-
sional facts, a list of modes declaring how literals can be chained together, and a
designation of one literal as the “head” predicate to be learned, as well as lists of
positive and negative examples of the head literal. ALEPH sequentially generates
clauses covering some positive examples by picking a random example, considered
as a seed. This example is used to create the bottom clause, i.e. the most specific
clause (relative to a given background knowledge) that covers this example. This
bottom clause is created by chaining through atoms until no more facts about the
seed example can be added or a specified limit is reached. The bottom clause de-
termines the possible search space for clauses. Aleph heuristically searches through
the space of possible clauses until the “best” clause is found or time runs out. When
enough clauses are learned to cover (almost) all the positive training examples, the
set of learned clauses compose the learned theory.

To sum up, top-down ILP techniques use data only to evaluate candidate hypotheses
but not to suggest ways of forming new candidates.

• Bottom-Up approaches: Bottom-up ILP algorithms start with the most specific
hypothesis and proceed to generalize it until no further generalizations are possible

2.3. Inductive Logic Programming 17

without covering some negative examples [Lavrac & Dzeroski 1994]. For example,
the initial hypothesis may be a set of rules where the body of each rule is simply a
conjunction of the true ground atoms in the background knowledge, and the head
is one of the positive examples. One way of generalizing this initial set of clauses
is via the technique of least general generalization (LGG) [Plotkin 1970]. GOLEM
[Muggleton & Feng 1992] is an example of a bottom-up ILP algorithm that uses
LGG.

To sum up, bottom-up ILP algorithms take stronger guidance from examples, which
is also used to propose clause candidates. This is in contrast with top-down algo-
rithms, which use data only to evaluate candidate clauses.

• Hybrid approaches: Hybrid approaches [Zelle et al. 1994, Muggleton 1995] aim at
exploiting the strength of both top-down and bottom-up techniques while avoiding
their weaknesses. Because bottom-up techniques generalize from single examples,
they are very sensitive to outliers and noise in the training data; however, because
many bottom-up techniques employ LGGs, they are better-suited to handle func-
tions. Similarly, top-down techniques can make a better use of general background
knowledge to evaluate their hypotheses, but the greedy search through the hypoth-
esis space can lead to long training times. Relational path-finding, developed by
[Richards & Mooney 1992], is a hybrid approach to clausal discovery. It views the
relational domain as a graph G in which constants are nodes and two constants are
connected by an edge if they appear together in a true ground atom. Intuitively,
relational path-finding forms definite clauses in which the head is a particular true
ground atom, and the body consists of ground atoms that define a path in the re-
lational graph G. The resulting clause is a disjunction of these ground atoms (in a
corresponding path) with constants replaced by variables. This is the bottom-up
part of the process. Hill-climbing search, which proceeds in a top-down fashion, is
used to further improve the clauses by possibly adding unary predicates.

Often, coverage is used to measure how important a clause is in ILP, which measures
the number of true examples in data covered by the clause.

Propositionalization is a popular technique in ILP which has been, as far as we
know, first introduced in LINUS [Lavrac & Dzeroski 1994]. Propositionalization aims at
converting a relational problem into an attribute-value one [Alphonse & Rouveirol 1999,
Knobbe et al. 2001, De Raedt 2008, Kuželka & Železný 2008]. It is the process of generat-
ing a number of useful attributes or features starting from relational representations and
then applying traditional attribute-value algorithms to solve the problem. Approaches
for constructing automatically the new set of attributes or features can be divided into
two trends [Krogel et al. 2003, Lesbegueries et al. 2009]: approaches based on logic and
approaches inspired from databases.

• Logic-based approaches: The first trend in propositionalization approaches fol-
lows the ILP tradition which is logic-based. This trend includes the first represen-
tative LINUS [Lavrac & Dzeroski 1994] and its descendants, the latest being RSD
[Lavrac et al. 2002] and HiFi [Kuželka & Železný 2008].

LINUS: In order to transform first-order into propositional form and vice versa, some re-
strictions on the hypothesis language and background knowledge are taken into

18 Chapter 2. Statistical Relational Learning

account in LINUS. The hypothesis language of LINUS is restricted to database
clauses with non-recursive predicate definitions and non-recursive types where
the body variables are a subset of the head variables. Background knowledge
has the form of deductive database clauses, and may thus contain recursive
clauses with typed variables. The background knowledge consists of two types
of predicate definitions; utility functions and utility predicates. Utility func-
tions are predicates which compute a unique output value for given input val-
ues. When occurring in an induced clause, the output arguments are bound to
constants. Utility predicates are boolean functions with only input arguments.
Training examples in LINUS are ground facts which may contain structured,
but non-recursive terms. The basic principle of the transformation from first-
order into propositional form is that all body literals which may possibly ap-
pear in a hypothesis clause are determined, thereby taking into account variable
types. Each of these body literals corresponds to a boolean attribute in the
propositional formalism. For each given example, its argument values are sub-
stituted for the variables of the body literal. Since all variables in the body
literals are required to occur also as head variables in a hypothesis clause,
the substitution yields a ground fact. If it is a true fact, the corresponding
propositional attribute value of the example is true, and false otherwise. The
learning results generated by the propositional learning algorithms are then
re-transformed in the obvious way.

RSD: (Relational Subgroup Discovery): This method has been originally designed
as a system for relational subgroup discovery. To propositionalize data, RSD
conducts the following three steps.

1. Identify all first-order literal conjunctions which form a feature, and at
the same time comply to user-defined constraints (mode-language). Such
features do not contain any constants and the task can be completed inde-
pendently of the input data.

2. Extend the feature set by variable instantiations. Some features are copied
several times with some variables substituted by constants detected by
inspecting the input data. During this process, some irrelevant features
are detected and eliminated.

3. Detect irrelevant features and generate propositionalized representations
of the input data using the generated feature set.

To identify features, RSD accepts declarations very similar to those used by
Aleph and Progol, including variable types, modes, setting a recall parameter
etc. RSD produces the exhaustive set of features satisfying the mode and
setting declarations. When an appropriate set of features has been generated,
RSD can use it to produce a single relational table representing the original
data. At the final step of feature construction, the system exports an attribute
representation of the input data based on the truth values of respective features.

HiFi: This method is based on constructing first-order features with a hierarchical
structure. Unlike RSD and LINUS, HiFi simultaneously constructs features and
determines for which examples they are true (or computes their extensions). All

2.4. Statistical Relational Learning 19

features produced by HiFi are the smallest in their semantic equivalence class
[Kuželka & Železný 2008]. Specifically, the core algorithm accepts a learning
example and a feature template. It then produces all features complying to
the template and subsuming the example. These features are obtained by
combinatorial composition of sub-features, which act as the primitive building
blocks. The advantage of this assembly approach is that subsumption of the
given example can already be checked for individual sub-features; if it is refuted
for a given sub-feature, this sub-feature is not used in the subsequent feature
composition.

• Database-inspired approaches: The second trend in propositionalization ap-
proaches are inspired from databases and appeared later beginning with two
systems Polka [Knobbe et al. 2001] and RELAGGS (RELational AGGregationS
[Krogel & Wrobel 2001]. The method in RELAGGS is very similar to the one in
Polka developed independently by a different research group. A difference between
them concerns efficiency of the implementation.

Those systems build attributes which summarize information stored in non-target
tables by applying usual database aggregate functions such as count, min, max, etc.
Besides the focus on aggregation functions, RELAGGS concentrates on the exploita-
tion of relational database schema information, especially foreign key relationships
as well as the use of optimization techniques such as indexes, which are usually
applied for relational databases.

Predicate logic and relational databases and their query languages. A relation (table)
as a collection of tuples largely corresponds to ground facts of a logical predicate,
and an attribute (column) of a relation to an argument of a predicate. A relational
database can be represented as a graph with its relations as nodes and foreign
key relationships as edges, conventionally by arrows pointing from the foreign key
attribute in the dependent table to the corresponding primary key attribute in the
independent table. The main idea in RELAGGS is to summarize non-target relations
with respect to the target relation. In order to relate non-target relation tuples to the
individuals, RELAGGS propagates the identifiers of the individuals to the non-target
tables via foreign key relationships. This can be accomplished by join operations
that use indexes on primary and foreign key attributes. These joins as views on
the database are materialized in order to allow for fast aggregation. Aggregation
functions are applied to single columns and to pairs of columns of single tables.

Most of these techniques, either based on logic or inspired from database, transform
relational representations to an approximation in form of attribute-value ones. A disad-
vantage is that the approximation is incomplete and that some information might get lost
in the propositionalization process. However, it allows to apply the whole set of traditional
learning algorithms, as for instance decision trees, support vector machines and so on.

2.4 Statistical Relational Learning

Statistical Relational Learning (SRL) [Getoor & Taskar 2007] combines ideas from Re-
lational Learning and Probabilistic Graphical Models to develop learning models and al-

20 Chapter 2. Statistical Relational Learning

gorithms capable of representing complex relationships among entities in uncertain do-
mains. Popular SRL models include, among others, Probabilistic Relational Models
[Friedman et al. 1999] and Bayesian Logic Programs [Kersting & De Raedt 2007], which
can be seen as the extensions of Bayesian Networks and Relational Markov Networks
[Taskar et al. 2007] and Markov Logic Networks [Richardson & Domingos 2006], which
are the extensions of Markov Networks. In the following sections, we describe briefly
these models.

2.4.1 Probabilistic Relational Models

Probabilistic relational models (PRMs) [Friedman et al. 1999] extend the standard
attribute-based Bayesian network representation to incorporate a much richer relational
structure. A PRM specifies a template for a probability distribution over a database. The
template describes the relational schema for the domain, and the probabilistic dependen-
cies between attributes in the domain. A PRM, together with a particular database of
objects and relations, defines a probability distribution over the attributes of the objects
and the relations.

A relational schema for a relational model describes a set of classes, X = X1, . . . , Xn.
Each class is associated with a set of descriptive attributes and a set of reference slots.
There is a direct mapping between the notion of classes and the tables in a relational
database: descriptive attributes correspond to standard table attributes, and reference
slots correspond to foreign keys (key attributes of another table). The set of descriptive
attributes of a class X is denoted by A(X). Attribute A of class X is denoted by X.A,
and its domain of values is denoted by V(X.A).

The set of reference slots of a class X is denoted by R(X). X.ρ is used to denote the
reference slot ρ of X. Each reference slot ρ is typed: the domain type of Dom [ρ] = X and
the range type Range [ρ] = Y , where Y is some class in X . A slot ρ denotes a function
from Dom [ρ] = X to Range [ρ] = Y .

An instantiation I specifies the set of objects in each class X and the values for each
attribute and each reference slots of each object. Figure 2.3 shows an instantiation of a
simple movie schema. In this schema, the Actor class might have the descriptive attributes
Gender with domain male, female. We might have a class Role with the reference slots
Actor whose range is the class Actor and Movie whose range is the class Movie.

A relational skeleton σr, specifies the set of objects in all classes, as well as all the
relationships that hold between them. In other words, it specifies the values for all of the
reference slots.

A probabilistic relational model (PRM) Π for a relational schema (S) is defined as
follows: for each class X ∈ X and each descriptive attribute A ∈ A(X), we have a set of
parents Pa(X.A) and a CPD that represents PΠ(X.A|Pa(X.A)).

Given a relational skeleton σr, a PRM Π specifies a distribution over a set of instan-
tiations I consistent with σr.

P (I|σr,Π) =
∏

x∈σr(X)

∏
A∈A(x)

P (x.A|Pa(x.A)) (2.5)

where σr(X) are the objects of each class as specified by the relational skeleton σr.

2.4. Statistical Relational Learning 21

Figure 2.3: An instantiation of the relational schema for a simple movie domain

For this definition to specify coherent probability distribution over instantiations,
it must be ensured that the probabilistic dependencies are acyclic, so that a random
variable does not depend, directly or indirectly, on its own value. As pointed out in
[Tasker et al. 2002], the need to avoid cycles in PRMs causes significant representational
and computational difficulties.

Given a PRM and a set of objects, inference is performed by constructing the corre-
sponding BN and applying standard inference techniques to it. Inference in PRMs is done
by creating the complete ground network, which limits their scalability. PRMs require
specifying a complete conditional model for each attribute of each class, which in large
complex domains can be quite burdensome.

2.4.2 Bayesian Logic Programs

Bayesian Logic Programs (BLPs) [Kersting & De Raedt 2007] tightly integrate definite
logic programs with Bayesian networks. A Bayesian logic program B consists of a (fi-
nite) set of Bayesian clauses. A Bayesian (definite) clause c is an expression of the form
A|A1, . . . , An where n ≥ 0, A,A1, . . . , An are Bayesian atoms and all Bayesian atoms are
(implicitly) universally quantified. When n = 0, c is called a Bayesian fact and expressed
as A. For each Bayesian clause c there is exactly one conditional probability distribution
CPD(c), and for each Bayesian predicate p of l-arity, denoted by p/l, there is exactly
one combining rule cr(p/l). In this context, a combining rule is a function that maps
finite sets of conditional probability distributions P (A|Ai1, . . . , Ain1)|i = 1, . . . ,m onto
one (combined) conditional probability distribution P (A|B1, . . . , Bk) with {B1, . . . , Bk} ⊆
∪mi=1{Ai1, . . . , Ain1}.

Example 7 We reuse in Figure 2.4 an example of a BLP blood type presented in
[Kersting & De Raedt 2007]. It is a genetic model of the inheritance of a single gene
that determines a person X’s blood type bt(X). Each person X has two copies of the chro-
mosome containing this gene, one, mc(Y), inherited from her mother m(Y, X), and one,
pc(Z), inherited from her father f(Z, X). This figure encodes blood type example for a par-
ticular family, in which Dorothy’s blood type is influenced by the genetic information of
her parents Ann and Brian. The set of possible states of bt(dorothy) is S(bt(dorothy)) =

22 Chapter 2. Statistical Relational Learning

Figure 2.4: An example of a BLP

{a, b, ab, 0}; the set of possible states of pc(dorothy) and mc(dorothy) are S(pc(dorothy))
= S(mc(dorothy)) = {a, b, 0}. The same holds for ann and brian. For each Bayesian
predicate, the identity is the combining rule. The conditional probability distributions as-
sociated with the Bayesian clauses bt(X) | mc(X), pc(X) and mc(X) | m(Y, X), mc(X),
pc(Y) are represented as tables. The other distributions are correspondingly defined. The
Bayesian predicates m/2 and f/2 have as possible states {true, false}.

Intuitively, each Bayesian logic program B represents a (possibly infinite) Bayesian
network, where nodes are the atoms in the least Herbrand (LH) model of B, which is a
set of all ground atoms f ∈ HB(B) such that B logically entails f, i.e., B |= f . These
declarative semantics can be formalized using the annotated dependency graph. The
dependency graph DG(B) is the directed graph whose nodes correspond to the ground
atoms in the least Herbrand model LH(B). It encodes the direct influence relation over
the random variables in LH(B): there is an edge from a node x to a node y if and only if
there exists a clause c ∈ B and a substitution θ, s.t. y = head(cθ), x ∈ body(c¸) and for
all ground atoms z ∈ cθ : z ∈ LH(B).

Let B be a Bayesian logic program. If i) LH(B) 6= ∅, ii) DG(B) is acyclic, and iii)
each node in DG(B) is influenced by a finite set of random variables, then B specifies a
unique probability distribution PB over LH(B):

P (LH(B)) =
∏

x∈LH(B)

P (x|Pa(x)), (2.6)

where the parent relation Pa is according to the dependency graph.

2.4.3 Relational Markov Networks

Relational Markov networks (RMNs) [Taskar et al. 2007] compactly define a Markov net-
work over a relational data set. It has been first proposed for an entire collection of related

2.4. Statistical Relational Learning 23

entities in a collection of hypertext documents.
Consider hypertext as a simple example of a relational domain. A relational domain is

defined by a schema, which describes entities, their attributes, and the relations between
them. Formally, a schema specifies of a set of entity types E = {E1, . . . , En}. Each type
E is associated with three sets of attributes: content attributes E.X, label attributes E.Y

and reference attributes E.R. For simplicity, label and content attributes are restricted
to take categorical values. Reference attributes include a special unique key attribute
E.K that identifies each entity. Other reference attributes E.R refer to entities of a
single type E′ = Range(E.R) and take values in Domain(E′.K). An instantiation I of
a schema E specifies the set of entities I(E) of each entity type E ∈ E and the values
of all attributes for all of the entities. For example, an instantiation of the hypertext
schema is a collection of web-pages, specifying their labels, the words they contain, and
the links between them. Notations I.X, I.Y , and I.R are used respectively to denote
the content, label, and reference attributes in the instantiation I; I.x, I.y, and I.r are
used respectively to denote the values of those attributes. I.r is called an instantiation
skeleton or instantiation graph. It specifies the set of entities (nodes) and their reference
attributes (edges). A hypertext instantiation graph specifies a set of web-pages and links
between them, but not their words or labels.

A relational Markov network specifies a conditional distribution over all of the labels
of all of the entities in an instantiation given the relational structure and the content
attributes. Roughly speaking, it specifies the cliques and potentials between attributes
of related entities at a template level, so a single model provides a coherent distribution
for any collection of instances from the schema. To specify which cliques should be con-
structed in an instantiation, the notion of a relational clique template is used. A relational
clique template specifies tuples of variables in the instantiation by using a relational query
language.

A relational clique template C = (F,W,S) consists of three components:
• F = {Fi} - a set of entity variables, where an entity variable Fi is of type E(Fi).
•W(F.R) - a Boolean formula using conditions of the form Fi.Rj = Fk.Rl.
• F.S ⊂ F.X ∪ F.Y - a selected subset of content and label attributes in F.

A relational Markov network M = (C,Φ) specifies a set of clique templates C and
corresponding potentials Φ = {φC}C∈C to define a conditional distribution:

P (I.y|I.x, I.r) = 1

Z(I.x, I.r)
∏
C∈C

∏
c∈C(I)

φC(I.xc, I.yc) (2.7)

where Z(I.x, I.r) is the normalizing partition function:

Z(I.x, I.r) =
∑
I.y′

∏
C∈C

∏
c∈C(I)

φC(I.xc, I.y′
c).

2.4.4 Markov Logic Networks

Markov Logic Networks (MLNs) [Richardson & Domingos 2006] are a recently developed
SRL model that generalizes both full first-order logic and Markov Networks. A Markov
Network (MN) is a graph, where each vertex corresponds to a random variable. Each
edge indicates that two variables are conditionally dependent. Each clique of this graph

24 Chapter 2. Statistical Relational Learning

is associated with a weight, which is a real number. A Markov Logic Network consists of
a set of pairs (Fi,wi), where Fi is a formula in First Order Logic, to which a weight wi is
associated. The higher wi, the more likely a grounding of Fi to be true. Given a MLN
and a set of constants C = {c1, c2, . . . c|C|}, a MN can be generated. The nodes (vertices)
of this latter correspond to all ground predicates that can be generated by grounding any
formula Fi with constants of C.

In [Saitta & Vrain 2008], the authors provide a running example to perform the
comparison between Markov Logic Networks and Bayesian Logic Programs. In
[Domingos & Richardson 2007] the authors show that MLNs can be a unifying framework
for SRL because many representations used in SRL, such as PRM, BLP, etc, can be easily
mapped into MLN. We present MLNs in more details in Chapter 3 of this dissertation.

2.5 Summary

In this chapter, some backgrounds of SRL, including two probabilistic graphical mod-
els and several notions of first order logic have been presented. Then a brief overview
of methods in Inductive Logic Programming is given. Finally, we describe briefly sev-
eral models of statistical relational learning, including both models based on the directed
probabilistic graphical model such as Probabilistic Relational Models, Bayesian Logic
Programs and models based on the undirected probabilistic graphical model such as Re-
lational Markov Networks and Markov Logic Networks. It must be noted that, here
we just present several popular models of SRL. There exists a lot of other models such
as Relational Dependency Networks (RDNs) [Neville & Jensen 2004], Relational Markov
Models (RMMs) [Anderson et al. 2002], Maximum Entropy Modelling with Clausal Con-
straints (MACCENT) [Dehaspe 1997], Programming in Statistical Modelling (PRISM)
[Sato & Kameya 1997], etc. We refer the reader to [Getoor & Taskar 2007] for further
reading about SRL models.

Among SRL models, many representations, that can be viewed as special cases of
first-order logic and probabilistic graphical models, are able to be mapped into MLNs
[Richardson & Domingos 2004]. For these reasons, we have chosen MLNs as the model on
which we conduct our research in the framework of this dissertation. In the next chapter,
we will detail MLNs and their principal tasks as well as solutions for each task.

Chapter 3

Markov Logic Networks and
Alchemy

Résumé: Ce chapitre présente plus en détail les réseaux logiques de Markov. Les deux
tâches principales sur les réseaux logiques de Markov sont l’apprentissage et l’inférence.
L’inférence peut être réalisée de deux manières: effectuer une inférence MAP (maxi-
mum a posteriori) ou une inférence probabiliste conditionnelle. L’apprentissage peut
être séparé en l’apprentissage des poids (paramètres du réseau logique de Markov) et
l’apprentissage de la structure, auxquels les deux modèles (génératif et discriminant) peu-
vent être appliqués. Ce chapitre donne ensuite un aperçu de ces tâches. En particulier,
pour l’apprentissage de la structure, il décrit les méthodes proposées à ce jour. Pour
l’inférence et l’apprentissage des paramètres, il présente un aperçu des méthodes mises
en œuvre dans Alchemy [Kok et al. 2009], un open source pour des réseaux logiques de
Markov.

Contents
3.1 Markov Logic Network . 25

3.1.1 Weight Learning . 27

3.1.2 Structure Learning . 31

3.1.3 Inference . 35

3.2 Alchemy . 37

3.2.1 Input files . 38

3.2.2 Inference . 38

3.2.3 Weight Learning . 39

3.2.4 Structure Learning . 39

3.3 Summary . 39

In this Chapter, we present Markov Logic Networks in details, related to their two
main tasks: learning and inference.

3.1 Markov Logic Network

In first-order logic, a first-order knowledge base KB can be seen as a set of hard constraints
on the set of possible worlds. A formula is false if there exists a world that violates it.
Some systems allow a limited violation of constraints but this is more in the sense of
some tolerance to noise. The basic idea in MLNs is to soften these constraints so that

26 Chapter 3. Markov Logic Networks and Alchemy

when a world violates one formula in the KB, this formula becomes less probable, but not
impossible. The fewer formulas a world violates, the more probable it is. Each formula
has an associated weight that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the formula and
one that does not, other things being equal.

Definition 8 [Richardson & Domingos 2006] A Markov logic network L is a set of pairs
(Fi, wi), where Fi is a formula in first-order logic and wi is a real number. Together with a
finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C (Equations
2.2 and 2.4) as follows:

1. ML,C contains one node for each possible grounding of each predicate appearing in
L. The value of the node is 1 (true) if the ground predicate is true, and 0 (false)
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L. The
value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of
the feature is the weight wi associated with Fi in L. To be more precise, each formula
is first translated in its clausal form. When a formula decomposes into more than
one clause, its weight is divided equally among the clauses.

The syntax of the formulas in an MLN is the standard syntax of first-order logic
[Genesereth & Nilsson 1987]. Free (unquantified) variables are treated as universally
quantified at the outermost level of the formula. In this dissertation, we focus on MLNs
whose formulas are function-free clauses, and assume domain closure (i.e., the only objects
in the domain are those representable using the constant symbols in C), thereby ensuring
that the generated Markov networks are finite.

A MLN can be viewed as a template for constructing Markov networks. For different
sets of constants, a MLN can construct Markov networks of different sizes, all of which
sharing regularities in structure and parameters as defined by the MLN. From Definition
8 and Equation 2.4, the probability distribution over a possible world x specified by the
Markov network ML,C is given by:

P (X = x|ML,C) =
1

Z
exp

∑
i∈F

∑
j∈Gi

wigj(x)

 (3.1)

where Z is the normalization constant, F is the set of all first-order formulas in the MLN L,
Gi and wi are respectively the set of groundings and weight of the i-th first-order formula,
and gj(x) = 1 if the j-th ground formula is true and gj(x) = 0 otherwise.

Example 9 To illustrate this, we use an example from [Domingos et al. 2008a]. Let us
consider a domain of three predicates Friends(person, person), Smoke(person) and Can-
cer(person). Here is a possible MLN composed of two formulas in this domain:

1.5 ∀x Smoke(x) =⇒ Cancer(x)

1.1 ∀x, y Friends(x, y) =⇒ (Smoke(x)⇐⇒ Smoke(x))

3.1. Markov Logic Network 27

Figure 3.1: Example of a ground MN

Let us consider also a set of two constants of type person: Anna and Bob (respectively A
and B for short). By replacing variables x and y by one of these two constants in all possible
ways, we have Smoke(A), Smoke(B), Cancer(A), Cancer(B), Friends(A, A), Friends(A,
B), Friends(B, A), Friends(B, B) as nodes of the Markov network. By replacing variable
x in the first formula by the constant A, Smoke(A) =⇒ Cancer(A) is an instantiation
(grounding). There exists an edge between these two nodes, Smoke(A) and Cancer(A), and
they form a clique in the instantiated MN. The corresponding feature is:

f1(Smoke(A), Cancer(A)) =

{
1 if¬Smoke(A) ∨ Cancer(A)

0 otherwise

Similarly, considering all the instantiations of the two formulas, we obtain the correspond-
ing ground MN shown in Figure 3.1.

The two main tasks concerning MLNs are learning and inference. Inference is con-
ducted either to find the most probable state of the world y given some evidence x, where
x is a set of literals, or to calculate the probability of query q given evidence x based on
equation 3.1. Learning can be divided into structure learning and parameter (weight)
learning; both generative and discriminative models can be applied to them. Structure
learning consists in finding a set of weighted formulas from data while parameter learning
focuses on computing weights for a given set of formulas. We detail these tasks in the
following subsections.

3.1.1 Weight Learning

Given a set of formulas and a relational database, weight learning consists in finding
formula weights that maximize either the likelihood or pseudo-likelihood measure for gen-
erative learning or either the conditional likelihood or max-margin measures for discrimi-
native learning. In the following, we present the mathematical formulas of these measure
as well as some methods for solving this problem.

3.1.1.1 Generative Weight Learning

Generative approaches try to induce a global organization of the world and thus, in the case
of a statistical approach, optimize the joint probability distribution of all the variables.

28 Chapter 3. Markov Logic Networks and Alchemy

Concerning MLNs, given a database, which is a vector of n possible ground atoms in a
domain or x = (x1, . . . , xl, . . . , xn), where xl is the truth value of the l-th ground atom
(xl = 1 if the atom is true, and xl = 0 otherwise), weights can be generatively learned by
maximizing the likelihood of a relational database (Equation 3.1):

P (X = x|ML,C) =
1

Z
exp

∑
i∈F

∑
j∈Gi

wigj(x)

 =
1

Z
exp

(∑
i∈F

wini(x)

)

where ni(x) is the number of true instantiations of Fi in x. It must be noted that database
is a set of entirely ground atoms in the domain, which is always difficult to collect. In
fact, we often have only a set of gathered incomplete training examples. A closed-world
assumption is therefore used so that all ground atoms not expressed in the set of training
examples are considered to be false in database1 in order to have such a database. The
derivative of the log-likelihood with respect to its weight is:

δ

δwi
logPw(X = x) = ni(x)−

∑
x′

Pw(X = x′)ni(x
′) (3.2)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X = x′) computed
using the current weight vector w = (w1, . . . , wi, . . .). In other words, the i-th component
of the gradient is simply the difference between the number of true groundings of the ith
formula in data and its expectation according to the current model.

In the worst case, counting the number of true groundings (ni(x)) of a formula in
a database is intractable [Richardson & Domingos 2006, Domingos & Lowd 2009]. Com-
puting the expected number of true groundings is also intractable, thus requiring inference
over the model. The pseudo-log-likelihood of data is widely used instead of the likelihood
[Besag 1975]. The pseudo-log-likelihood (PLL) of x given weights w is:

logP ∗
w(X = x) =

n∑
l=1

logPw(Xl = xl|MBx(Xl)) (3.3)

where MBx(Xl) is the state of the Markov blanket (MB) of the ground atom Xl. The
gradient of the pseudo-log-likelihood is:

δ

δwi
logP ∗

w(X = x) =
n∑

l=1

[ni(x) − Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])

− Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])] (3.4)

where ni(x[Xl=0]) is the number of true groundings of the i-th formula when we forced
Xl = 0 and leaved the remaining data unchanged, and similarly for ni(x[Xl=1]). Computing
this expression does not require inference over the model, and is therefore much faster.

Both likelihood and pseudo-likelihood are convex functions therefore MLN weights
might be learned using methods based on convex optimization such as iterative scaling
[Della Pietra et al. 1997] or a quasi-Newton optimization method like the L-BFGS algo-
rithm [Liu et al. 1989]. In fact, it has been shown that L-BFGS combined with the pseudo-
likelihood yields efficient learning of MLN weights even in domain with millions of ground

1This assumption can be removed by using the expectation maximization algorithm to learn from the
resulting incomplete data [Dempster et al. 1977].

3.1. Markov Logic Network 29

atoms [Richardson & Domingos 2006]. However, the pseudo-likelihood parameters may
lead to poor results when long chains of reference are required [Domingos & Lowd 2009].

3.1.1.2 Discriminative Weight Learning

In discriminative learning, a weight vector w is discriminatively learned by maximizing
the conditional log-likelihood (CLL) or the max-margin of a set of query atoms Y given
a set of evidence atoms X. We first present the CLL and its optimization methods then
the ones related to the max-margin.

The CLL of Y given X is defined by:

P (Y = y|X = x) =
1

Zx
exp

(∑
i

wini(x, y)

)
(3.5)

where Zx normalizes over all possible worlds consistent with the evidence x, and ni(x, y)

is the number of true groundings of the i-th formula in data.
The negative CLL is a convex function in case the truth values of all predicates

are known in training data. It may no longer be convex when there is missing data
[Poon & Domingos 2008, Domingos & Lowd 2009]. All methods that we present in this
section are based on convex optimization hence complete data is required by using
the closed-world assumption. Concerning missing data, we recommend the reader to
[Poon & Domingos 2008] for further reading.

[Singla & Domingos 2005] proposed methods for both two classes of optimization algo-
rithms; first-order and second-order. First-order methods pick a search direction based on
the gradient function. Second-order methods derive a search direction by approximating
the function as a quadratic surface. While this approximation may not hold globally, it
can be good enough in local regions to greatly speed up convergence. Since most of the
optimization literature assumes that the objective function is to be minimized, they min-
imize the negative conditional log likelihood. In an MLN, the derivative of the negative
CLL with respect to a weight is the difference of the expected number of true groundings
of the corresponding clause and their actual number according to data:

δ

δwi
(− logPw(Y = y|X = x)) = −ni(x, y) +

∑
y′

Pw(Y = y′|X = x)ni(x, y
′)

= Ew,y[ni(x, y)]− ni(x, y) (3.6)

where y is the state of the non-evidence atoms in data, x is the state of the evidence, and
the expectation Ew,y is over the non-evidence atoms Y .

Computing the expected counts Ew,y[ni(x, y)] is intractable. However, these can be
approximated by the counts ni(x, y

∗
w) in the MAP state y∗w(x), which is the most probable

state of y given x (the MAP inference is presented in detail in Subsection 3.1.3.1). Thus,
computing the gradient needs only MAP inference to find y∗w(x) which is much faster than
full conditional inference for computing Ew,y[ni(x, y)]. This approach was successfully used
in [Collins 2002] for a special case of MNs where the query nodes form a linear chain. In this
case the MAP state can be found using the Viterbi algorithm [Rabiner 1990] and the voted
perceptron algorithm in [Collins 2002] follows this approach. To generalize this method
to arbitrary MLNs, it is necessary to replace the Viterbi algorithm with a general-purpose

30 Chapter 3. Markov Logic Networks and Alchemy

algorithm for MAP inference in MLNs. From Equation 3.5, we can see that since y∗w(x)

is the state that maximizes the sum of the weights of the satisfied ground clauses, it can
be found using a MAX-SAT solver. The authors in [Singla & Domingos 2005] generalized
the voted-perceptron algorithm to arbitrary MLNs by replacing the Viterbi algorithm with
the MaxWalkSAT solver [Kautz et al. 1996]. Given an MLN and set of evidence atoms,
the KB to be passed to MaxWalkSAT is formed by constructing all groundings of clauses
in the MLN involving query atoms, replacing the evidence atoms in those groundings by
their truth values, and simplifying.

However, unlike the Viterbi algorithm, MaxWalkSAT is not guaranteed to reach the
global MAP state. This can potentially lead to errors in the weight estimates produced.
The quality of the estimates can be improved by running a Gibbs sampler starting at
the state returned by MaxWalkSAT, and averaging counts over the samples. If the
Pw(x|y) distribution has more than one mode, doing multiple runs of MaxWalkSAT fol-
lowed by Gibbs sampling can be helpful. This approach is followed in the algorithm in
[Singla & Domingos 2005] which is essentially gradient descent.

In [Lowd & Domingos 2007] was proposed another approach for discriminative weight
learning of MLNs. In this work the conjugated gradient [Shewchuk 1994] is used. Gradient
descent can be sped up by performing a line search to find the optimum along the chosen
descent direction instead of taking a small step of constant size at each iteration. This can
be inefficient on ill-conditioned problems, since line searches along successive directions
tend to partly undo the effect of each other: each line search makes the gradient along its
direction zero, but the next line search will generally make it non-zero again. This can be
solved by imposing at each step the condition that the gradient along previous directions
remain zero. The directions chosen in this way are called conjugate, and the method con-
jugated gradient. In [Lowd & Domingos 2007] the authors used the Polak-Ribiere method
(see in [Nocedal & Wright 1999] for details) for choosing conjugate gradients since it has
generally been found to be the best-performing one.

Conjugated gradient methods are among the most efficient ones, on a par with quasi-
Newton ones. Unfortunately, applying them to MLNs is difficult because line searches re-
quire computing the objective function, and therefore the partition function Z, which is in-
tractable [Lowd & Domingos 2007]. Fortunately, the Hessian can be used instead of a line
search to choose a step size. This method is known as scaled conjugate gradient (SCG), and
was proposed in [Moller 1993] for training neural networks. In [Lowd & Domingos 2007], a
step size was chosen by using the Hessian similar to a diagonal Newton method. Conjugate
gradient methods are often more effective with a pre-conditioner, a linear transformation
that attempts to reduce the condition number of the problem [Sha & Pereira 2003]. Good
pre-conditioners approximate the inverse Hessian. In [Lowd & Domingos 2007], the au-
thors used the inverse diagonal Hessian as pre-conditioner and called the SCG algorithm
Preconditioned SCG (PSCG). PSCG was shown to outperform the voted perceptron al-
gorithm of [Singla & Domingos 2005] on two real-world domains both for CLL and AUC
measures. For the same learning time, PSCG learned much more accurate models.

Instead of finding a weight vector w that optimizes the conditional log-likelihood P (y|x)
of the query atoms y given the evidence x, [Huynh & Mooney 2008] propose an alternative
approach to learn a weight vector w that maximizes the ratio:

p(y|x,w)
p(ŷ|x,w)

3.1. Markov Logic Network 31

between the probability of the correct truth assignment y and the closest competing in-
correct truth assignment ŷ = argmaxȳ∈Y \y P (ȳ|x). Applying equation 3.5 and taking the
log, this problem is translated to maximizing the margin:

γ(x, y;w) = wTn(x, y)− wTn(x, (̂y))

= wTn(x, y)− max
ȳ∈Y \y

wTn(x, ȳ) (3.7)

To train the proposed model, they design a new approximation algorithm for loss-
augmented inference in MLNs based on Linear Programming (LP). Concerning this
method, we recommend the paper of [Huynh & Mooney 2008] for further reading.

3.1.2 Structure Learning

The structure of a MLN is a set of formulas or clauses to which are attached weights. In
principle, this structure can be learned or revised using any inductive logic programming
(ILP) technique [Richardson & Domingos 2006]. However, the results obtained by this
method were not “good” enough due to the lack of ability to deal with uncertainty in
ILP [Richardson & Domingos 2006]. Therefore, finding new methods for MLN structure
learning has been necessary. In the following, we present methods for MLN structure
learning up to date in both generative and discriminative models.

3.1.2.1 Generative Structure Learning

The first generative algorithm is presented in [Richardson & Domingos 2006], where the
authors used the CLAUDIEN system [De Raedt & Dehaspe 1997] in a first step to learn
the clauses of MLNs and then learned the weights in a second step with a fixed structure.
CLAUDIEN, unlike most other ILP systems which learn only Horn clauses, is able to
learn arbitrary first-order clauses, making it well suited to MLNs. The PLL measure
function is used to evaluate the quality of the learned MLN. They are also able to direct
CLAUDIEN to search for refinements of the MLN structure by constructing a particular
language bias. However, the results obtained by this method were not better than learning
the weights for a hand-coded KB. This is due to the fact that CLAUDIEN searches clauses
using typical ILP coverage evaluation measures [Richardson & Domingos 2006] which are
not effective in the case of MLN, which represents a probability distribution. A method,
which can integrate both searching clauses and suitable evaluation measures for MLNs, is
hence necessary.

The PLL measure used in [Richardson & Domingos 2006] is potentially more adopted
than the ones coming from ILP, but the authors in [Kok & Domingos 2005] shown that
the log-likelihood measure gives undue weight to the largest arity predicates, resulting in
poor modeling of the reminder. They defined, instead, the weighted pseudo-log-likelihood
(WPLL):

logP ∗
w(X = x) =

∑
r∈R

cr

gr∑
k=1

logPw(Xr,k = xr,k|MBx(Xr,k)) (3.8)

where R is the set of predicates, gr is the number of groundings of first-order predicate
r, xr,k is the truth value (0 or 1) of the k-th grounding of r. The choice of predicate

32 Chapter 3. Markov Logic Networks and Alchemy

weights cr depends on the user’s goals. In this dissertation we set cr = 1/gr, as in
[Kok & Domingos 2005], which has the effect of balancing the impact of clauses whatever
their length.

Using this WPLL measure, several methods have been proposed for gener-
ative MLN structure learning. Those are MSL [Kok & Domingos 2005], BUSL
[Mihalkova & Mooney 2007], ILS [Biba et al. 2008b], LHL [Kok & Domingos 2009], LSM
[Kok & Domingos 2010] and MBN [Khosravi et al. 2010]. Note that structure learning is a
difficult problem due to the exponential search space, hence there exist just a few methods
up to date, and these methods are designed directly for MLNs without using any system
in ILP. All these methods compose of two components: searching clauses and selecting
clauses. We next describe them focusing on techniques using in these two components.

• MSL (Markov Logic Structure Learner) [Kok & Domingos 2005] involves the L-
BFGS algorithm for learning weights, uses the WPLL measure for choosing clauses
and searches clauses in the space of ground atoms in dataset using two strategies:
beam search and shortest first search. New clauses are constructed by applying
operations on a given clause to add, remove or replace literals from it. The first
approach adds clauses to the MLN one at a time, using beam search to find the
best clause to add: starting with the unit clauses it applies addition and deletion
operators to each clause, keeps the b best ones, applies the operators to those, and
repeats until no new clause improves the WPLL measure. The chosen clause is
the one with the highest WPLL found in any iteration of the search. The second
approach adds k clauses at a time to the MLN. In contrast to beam search, which
adds the best clause of any length found, this approach adds all “good” clauses of
length l before considering any clause of length l + 1.

• BUSL (Bottom-up Structure Learner) [Mihalkova & Mooney 2007] is a bottom-
up method that use data to guide the search of clauses. In more details, it uses a
propositional Markov Network learning method to construct structure networks that
guide the construction of candidate clauses. The structure of BUSL is composed of
three main phases: Propositionalization, Building clauses and Putting clauses into
the MLN.

In the propositionalization phase, BUSL creates a boolean table MP for each pred-
icate P in the domain. The boolean table contains a column corresponding to a
TNode and a row corresponding to a ground atom of P. A TNode is a data structure
that contains conjunctions of one or more literals of variables. Intuitively, TNodes
are constructed by looking for groups of constant sharing true ground atoms in form
of relational path-finding [Richards & Mooney 1992] and variablizing them. Thus,
TNodes could also be viewed as portions of clauses that have true groundings in
data. Each entry MP[r][c] is a boolean value that indicates whether data contains
a true grounding of the TNode corresponding to column c with at least one of the
constants of the ground atom corresponding to row r.

When building clauses, BUSL applies the Grow Shrink Markov Network (GSMN)
algorithm [Bromberg et al. 2006] on MP to find every clique of the network, from
which it builds candidate clauses. Candidates are evaluated using the WPLL mea-
sure

3.1. Markov Logic Network 33

Candidate clauses are then considered in turn to put into the MLN in order of de-
creasing WPLL. Candidates that do not increase the overall WPLL of the learned
structure are discarded. Weights are learned by the mean of the the L-BFGS algo-
rithm.

• ILS (Iterated Local Search) [Biba et al. 2008b] is based on the iterated local search
(ILS) [Hoos & Stutzle 2004] meta-heuristic that explores the space of structures
through a biased sampling of the set of local optima. An intuitive key idea in
ILS is the use of two types of search steps alternatively (one to reach local optima as
efficiently as possible, and the other to effectively escape local optima) to perform a
walk in the space of local optima w.r.t. the given evaluation function. The algorithm
focuses the search not on the full space of solutions but on a smaller subspace defined
by the solutions that are locally optimal according to the optimization engine. In
more details, it starts by randomly choosing a unit clause CLC in the search space.
Then it performs a greedy local search to efficiently reach a local optimum CLS . At
this point, a perturbation method is applied leading to the neighbor CL′

C of CLS

and then a greedy local search is applied to CL′
C to reach another local optimum

CL′
S . The algorithm has to decide whether the search must continue from the pre-

vious local optimum CLC or from the last found local optimum CL′
S . ILS uses the

L-BFGS to learn the weights and the WPLL measure as the evaluation function.

• LHL (Learning via Hypergraph Lifting) performs through two steps; building a
lifted-graph then creating candidate clauses over this lifted-graph.

In LHL, a training database is viewed as a hyper-graph with constants as nodes
and true ground atoms as hyper-edges. Each hyper-edge is labeled with a predicate
symbol. Nodes (constants) are linked by a hyper-edge if they appear as arguments in
the atom. A path of hyper-edges can be variabilized to form a first-order clause. To
avoid tracing the exponential number of paths in the hyper-graph, LHL first jointly
clusters the nodes into higher-level concepts stored into a lifted-graph, whose each
node is a set of constants and each edge corresponds to a predicate. The lifted-graph
has fewer nodes and hyper-edges and therefore fewer paths than the hyper-graph.

LHL next uses relational path-finding [Richards & Mooney 1992] over the lifted-
graph to find paths then variabilizes them in order to create clauses. Each clause
is evaluated using the WPLL measure and the L-BFGS algorithm to learn weights.
Evaluated clauses are iterated from shortest to longest. For each clause, LHL com-
pares its measure (i.e. WPLL) against those of its sub-clauses (considered separately)
that have already been retained. If the clause is better than all of its sub-clauses, it
is retained; otherwise, it is discarded. Finally, the retained clauses are added to the
final MLN. LHL provides an option to choose either to add one clause at a time or
all clauses at a time.

• LSM (Learning using Structural Motifs) [Kok & Domingos 2010] is a further de-
velopment of LHL which is based on the lifted-graph, truncated hitting time
[Sarkar et al. 2008] and random walks [Lovasz 1996] to identify densely connected
objects in database, group them with their associated relations into a motif, and
then constrain the search for clauses to occur within motifs.

34 Chapter 3. Markov Logic Networks and Alchemy

A structural motif is a set of literals, which defines a set of clauses that can be
created by forming disjunctions over the negation/non-negation of one or more of
the literals. Thus, it defines a subspace within the space of all clauses. LSM discovers
subspaces where literals are densely connected and groups them into a motif. To do
so, LSM also views a database as a hyper-graph, then groups nodes that are densely
connected by many paths and the hyper-edges connecting them into a motif. Then
it compresses the motif by clustering nodes into high-level concepts, reducing the
search space of clauses in the motif. Next it quickly estimates whether the motif
appears often enough in data to be retained. Finally, LSM runs relational path-
finding on each motif to find candidate rules and retains the good ones in an MLN.

LSM differs from LHL in the following ways: first, LHL finds a single clustering of
nodes while in LSM a node can belong to several clusters. Second, LSM uses longer
paths instead of length-2 paths in LHL, and thus more information, to find various
clusterings of nodes. Third, spurious edges present in the initial ground hyper-graph
of LHL are retained in the lifted one, but these edges are ignored by LSM.

LSM creates candidate clauses from each path in a similar way as LHL with some
modifications. At the beginning, LSM counts the true groundings of all possible unit
and binary clauses to find those that are always true or always false in data. It then
removes every candidate clause that contains unit/binary sub-clauses that are always
true as they are always satisfied. If a candidate clause c contains unit/binary sub-
clauses that are always false, and if the clause c’ formed by removing the unit/binary
sub-clauses is also a candidate clause, then c is removed because it is a duplicate
of c’. LSM also detects whether a binary predicate R is symmetric by evaluating
whether R(x, y), R(y, x) is always true. LSM then removes clauses that are identical
modulo the order of variables in symmetric binary predicates. At the end LSM
adds all clauses to the MLN, finds their optimal weights, and removes those whose
weights are less than a given threshold θwt. LHL also use L-BFGS to learn weights
and WPLL to evaluate clauses. Before evaluating the WPLLs of candidate clauses
against the whole data, it evaluates them against the ground hyper-graphs that
give rise to the motifs where the candidate clauses are found. Since such ground
hypergraphs contain fewer atoms, it is faster to evaluate against them to quickly
prune bad candidates.

LHL adds clauses into the final MLN in the same way as LHL.

• MBN (Moralized Bayes Net) [Khosravi et al. 2010] first learns a parametrized
Bayes net (BN) [Poole 2003] then applies a standard moralization technique
[Domingos et al. 2008a] to the BN to produce a MLN.

A parametrized Bayes net structure [Poole 2003] consists of a directed acyclic graph
(DAG) whose nodes are parametrized random variables, a population for each first-
order variable and an assignment of a range to each functor. A population is a set
of individuals, corresponding to a domain or type in logic. A parametrized random
variable is of the form f(t1, . . . , tk) where f is a functor (either a function symbol or
a predicate symbol) and each ti is a first-order variable or a constant. Each functor
has a set of values (constants) called the range of the functor.

MBN first learns the structure of a parametrized BN. The algorithm upgrades a

3.1. Markov Logic Network 35

single table BN learner, which can be chosen by the user, by decomposing the learn-
ing problem for the entire database into learning problems for smaller tables. The
basic idea is to apply the BN learner repeatedly to tables and join tables from
database, and combine the resulting graphs into a single graphical model for the en-
tire database. As the computational cost of the merge step is negligible, the run-time
of this learn-and-join algorithm is essentially determined by the cost of applying the
BN learner to each (join) table separately. Thus MBN leverages the scalability of
single-table BN learning to achieve scalability for MLN structure learning.

Bayes net DAGs can be converted into MLN structures through the standard moral-
ization method [Domingos et al. 2008a] connecting all spouses that share a common
child, and making all edges in the resulting graph undirected. In the moralized BN,
a child forms a clique with its parents. For each assignment of values to a child and
its parents, a formula is added to the MLN.

3.1.2.2 Discriminative Structure Learning

In many learning problems, there is a specific target predicate that must be inferred
given evidence data; discriminative learning is then preferred. Concerning discriminative
structure learning, to the best of our knowledge, there exists only two systems; the one
developed by [Huynh & Mooney 2008] and the Iterated Local Search - Discriminative
Structure Learning (ILS-DSL) developed by [Biba et al. 2008a].

• The method of [Huynh & Mooney 2008] is the first approach to construct MLNs
that discriminatively learns both structure and parameters to optimize predictive ac-
curacy for a query predicate given evidence specified by a set of defined background
predicates. It uses a variant of an existing ILP system (ALEPH [Srinivasan 2007]) to
construct a large number of potential clauses and then effectively learns their param-
eters by altering existing discriminative MLN weight-learning methods in Alchemy
[Kok et al. 2009] to use exact inference and L1-regularization [Lee et al. 2007].

• ILS-DSL (Iterated Local Search - Discriminative Structure Learning)
[Biba et al. 2008a] learns discriminatively first-order clauses and their weights. This
algorithm shares the same structure with the ILS approach for generative MLN struc-
ture learning. It also learns the parameters by maximum pseudo-likelihood using
the L-BFGS algorithm but scores the candidate structures using the CLL measure.

3.1.3 Inference

This subsection presents two basic types of inference: finding the most likely state of the
world consistent with some evidence, and computing arbitrary conditional probabilities.

It must be noticed that, in this dissertation, we concentrates on the development of
algorithms for MLN structure learning in both generative and discriminative models. Our
algorithms are implemented over the Alchemy package [Kok et al. 2009] which involve
several built-in tools for weight learning and inference. Inference methods that we present
in this section do not form an exhaustive because there has been a lot of work conducted
on this problem in the past two years. We limit to the methods implemented in Alchemy
(detail in Section 3.2). Some of them are used in our approaches.

36 Chapter 3. Markov Logic Networks and Alchemy

3.1.3.1 MAP Inference

A basic inference task consists in finding the most probable state of the world y given
some evidence x, where x is a set of literals. This is known as the MAP (Maximum A
Posteriori) inference in the Markov network literature. In the context of Markov logic,
this is formally defined as follows [Domingos & Lowd 2009]:

argmax
y

P (y|x) = argmax
y

1

Zx
exp

(∑
i

wini(x, y)

)
= argmax

y

∑
i

wini(x, y) (3.9)

where n(x, y) is the number of true instantiations of Fi in x ∪ y. The first equality is
due to Equation 3.1, which defines the probability of a possible world. The normalization
constant is written as Zx to reflect the fact that we are only normalizing over possible
worlds consistent with x. In the second equality, Zx is removed since, being constant, it
does not affect the argmax operation. The exponentiation can also be removed because it
is a monotonic function. Therefore, the MAP problem in Markov logic reduces to finding
the truth assignment that maximizes the sum of weights of satisfied clauses.

This problem can be solved using any weighted satisfiability solver. It is NP-hard in
general, but there exist both exact and approximate effective solvers. The most commonly
used approximate solver is MaxWalkSAT [Richardson & Domingos 2006], a weighted vari-
ant of the WalkSAT local-search satisfiability solver, which can solve hard problems with
hundreds of thousands of variables in minutes [Kautz et al. 1996].

3.1.3.2 Marginal and Conditional Probabilities

Another inference task consists in computing the probability that a formula F1 holds,
given a MLN and a set of constants, and possibly other formulas F2 as evidence. If C is a
finite set of constants including the constants that appear in F1 or F2, and L is an MLN,
then:

P (F1|F2,ML,C) =
P (F1 ∧ F2,ML,C)

P (F2|ML,C)

=

∑
x∈XF1

∩XF2
P (X = x|ML,C)∑

x∈XF2
P (X = x|ML,C)

(3.10)

where XFi is the set of worlds where Fi holds, ML,C is the MN defined by L and C,
and P (X = x|ML,C) is given by Equation 3.1.

Computing Equation 3.10 directly has been shown intractable for large domains
[Richardson & Domingos 2006]. Although, it can be approximated using an MCMC
(Markov Chain Monte Carlo) algorithm [Gilks & Spiegelhalter 1999] that rejects all
moves to states where F2 does not hold, and counts the number of samples in
which F1 holds. However, this is still likely to be too slow for arbitrary formulas
[Richardson & Domingos 2006].

There are several methods for inference in MLN that restrict the problem by consider-
ing the typical case where the evidence F2 is a conjunction of ground atoms. The authors in

3.2. Alchemy 37

[Richardson & Domingos 2006] proposed an algorithm that works in two phases. The first
phase returns the minimal set M of the ground MN required to compute P (F1|F2, L, C).
The second phase performs inference on this network, with the nodes in F2 being set to
their values in F2. A possible method is Gibbs sampling, but any other inference method
may be used. The basic Gibbs step consists of sampling one ground atom given its Markov
blanket. In MN, a Markov blanket of a node is simply the set of its neighbors in the graph.
The probability of a ground atom Xl when its Markov blanket Bl is in state bl is given by:

P (Xl = xl) =
exp(

∑
fi∈Fl

wifi(Xl = xl, Bl = bl))

exp(
∑

fi∈Fl
wifi(Xl = 0, Bl = bl)) + exp(

∑
fi∈Fl

wifi(Xl = 1, Bl = bl))

(3.11)
where Fl is the set of ground formulas that Xl appears in, and fi(Xl = xl, Bl = bl) is the
value (0 or 1) of the feature corresponding to the i-th ground formula when Xl = xl and
Bl = bl. The estimated probability of a conjunction of ground literals is simply the fraction
of samples in which the ground literals are true, once the Markov chain has converged.

One of the problems that arise in real-world applications, is that an inference method
must be able to handle probabilistic and deterministic dependencies that might hold in
the domain. MCMC methods are suitable to handle probabilistic dependencies but give
poor results when deterministic or near deterministic dependencies characterize a certain
domain. On the other side, logical methods, like satisfiability testing cannot be applied
to probabilistic dependencies. One approach to deal with both kinds of dependencies is
that of [Poon & Domingos 2006], called MC-SAT, where the authors use the SampleSAT
[Wei et al. 2004] in a MCMC algorithm to uniformly sample from the set of satisfying
solutions.

Experimental results in [Poon & Domingos 2006] show that MC-SAT greatly outper-
forms Gibbs sampling. They then developed Lazy-MC-SAT [Poon et al. 2008], a lazy
version of MC-SAT. Lazy-MC-SAT was shown to greatly reduce memory requirements for
the inference task.

It is also possible to carry out lifted first-order probabilistic inference (akin to resolu-
tion) in Markov logic [Braz et al. 2005]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than proposition-
alizing the entire domain. Several lifted inference methods based on belief propagation
[Bishop 2006] can be found in [Singla & Domingos 2008, Kersting et al. 2009].

3.2 Alchemy

Alchemy [Kok et al. 2009] is an open source software package for MLNs written in C++. It
includes implementations for all the major existing algorithms for structure learning, gen-
erative weight learning, discriminative weight learning, and inference. Full documentation
on Alchemy is available at http://alchemy.cs.washington.edu. The syntax and options
of algorithms are available in the user’s guide; information about the internal workings of
Alchemy is in the developer’s guide; and a tutorial (including MLN and database files)
is available that covers much of the functionalities of Alchemy through examples. Our
proposed algorithms are implemented using the API functions of Alchemy.

http://alchemy.cs.washington.edu

38 Chapter 3. Markov Logic Networks and Alchemy

//predicate declarations
Friends(person, person)
Smokes(person)
Cancer(person)
// If you smoke, you get cancer
1.5 Smokes(x) => Cancer(x)
// Friends have similar smoking habits
1.1 Friends(x, y) => (Smokes(x) <=> Smokes(y))

Table 3.1: example.mln: An .mln input file in Alchemy

3.2.1 Input files

In Alchemy, predicates and functions are declared and first-order formulas are specified in
.mln files. The first appearance of a predicate or function in a .mln file is taken to be its
declaration. A variable in a formula must begin with a lowercase character, and a constant
with an uppercase one in a formula. A formula can be preceded by a weight or terminated
by a period, but not both. A period means that a formula is “hard” (i.e., worlds that
violate it should have zero probability). Types and constants are also declared in .mln
files. Comments can be included with // and /* */ as in C++ or Java. Blank lines are
ignored. Table 3.1 contains a .mln input file example, named example.mln, for the MLN
presented in Example 9. The MLN begins by declaring the predicates Friends, Smokes,
and Cancer, each taking one or two arguments of type person followed by two formulas
and their weights.

Ground atoms are defined in .db (database) files. Ground atoms preceded by “!” (e.g.,
!Friends(Anna,Bob)) are false, by “?” are unknown, and by neither are true.

Alchemy supports also several others notation and declarations. We refer the reader
to the on-line manual at url http://alchemy.cs.washington.edu/ for more information
on Alchemy syntax and other features.

3.2.2 Inference

The infer executable is used to perform inference. For example, the command:
infer -i smoking.mln -e example.db -r inference.out -q Smokes -ms

performs inference for the query predicate Smokes given the MLN in smoking.mln and
data in example.db, in which:

-i specifies the input .mln file,
-e specifies the evidence .db file,
-r specifies the output file, which contains the inference results,
-q specifies the query predicates.
-ms specifies to use the MC-SAT algorithm
The output is stored in the file inference.out containing the list of query ground atoms

and its probabilities like this:
Smokes(Chris) 0.238926
Smokes(Daniel) 0.141286
The command infer without any parameters is used to view all arguments for inference.

http://alchemy.cs.washington.edu/

3.3. Summary 39

3.2.3 Weight Learning

Weight learning can be achieved by using the learnwts command. This latter supports
both generative and discriminative weight learning. For example, the command:

learnwts -d -i example.mln -o learnWeightOut.mln -t example.db -ne Smokes
learns discriminatively weights for the MLN in example.mln, for the query predicate
Smokes given database in example.db. The parameters:

-d specifies discriminative learning; for generative learning, use -g instead,
-i and -o specify the input and output .mln files
-t specifies the .db file
-ne specifies the non-evidence predicates, those that will be unknown and inferred at

inference time.
After weight learning, the output .mln file contains the weights of the original formulas

as well as those of their derived clauses because each formula is converted to conjunctive
normal form (CNF), and a weight is learned for each of its clauses.

One can view all the options by using the command learnwts without any parameters.

3.2.4 Structure Learning

Structure learning can be done by using the command learnstruct. For example, the
command:

learnstruct -i example.mln -o example-out.mln -t example.db
learns a structure given the initial MLN in example.mln and the database in example.db.
The learned MLN is stored in example-out.mln. The parameters -i, -o, -t specify respec-
tively the input .mln file, output .mln file and database file.

One can use the command learnstruct without any parameters to view all its options.

3.3 Summary

Inference and learning are two principle tasks for MLNs. Inference can be achieved by
performing a MAP inference or a conditional probabilistic inference. Learning can be
separated into parameter (weight) learning and structure learning and both generative
model and discriminative model can be applied to them. We bring in this chapter an
overview of these tasks for MLNs. In particular, for structure learning, we draw a portrait
of proposed methods up to date and for the remaining, we presented an overview of
methods implemented in Alchemy.

In the next two chapters, we present the methods we proposed for MLN structure
learning.

Chapter 4

Learning MLN Structure Based on
Propositionalization

Résumé: Nous présentons dans ce chapitre trois méthodes pour apprendre la struc-
ture d’un réseau logique de Markov: l’algorithme HGSM pour l’apprentissage génératif
et HDSM et DMSP pour l’apprentissage discriminant. L’idée de base dans ces méthodes
est d’effectuer une propositionnalisation dans laquelle des informations relationnelles ex-
primées par les atomes du jeu de données sont transformées en des tableaux booléens,
dont chaque colonne correspond à un littéral avec seulement des variables. Un algorithme
d’apprentissage automatique est appliqué sur ces tableaux booléens afin de trouver des
relations entre les littéraux, à partir desquelles des clauses candidates sont ensuite créées
pour apprendre le réseau logique de Markov final.

Notre première technique de propositionnalisation est mise en œuvre dans l’algorithme
génératif HGSM. Pour chaque prédicat à apprendre, le jeu de données est divisé en groupes
disjoints d’atomes connectés à partir d’un atome vrai de ce prédicat. Une méthode heuris-
tique de variabilisation est appliquée sur ces groupes d’atomes connectés, du plus grand
au plus petit, afin de construire un ensemble de littéraux avec seulement des variables.
Les informations relationnelles entre atomes dans le jeu de données sont utilisées pour
remplir les tableaux booléens. L’algorithme GSMN (Grow-Shrink Markov Network) est
ensuite appliqué pour chaque tableau booléen afin de trouver une couverture de Markov
(Markov blanket) du littéral correspondant. Les clauses candidates sont ensuite créées à
partir de cette couverture de Markov. L’intérêt des clauses est évalué à l’aide de la mesure
de pseudo log vraisemblance pondérée (WPLL).

L’approche appliquée dans HGSM est adaptée à l’apprentissage discriminant dans le
système HDSM. Au lieu de considérer tous les prédicats du domaine, HDSM n’apprend que
pour un seul prédicat de requête. HDSM utilise une mesure discriminante, la log vraisem-
blance conditionnelle (CLL), pour choisir les clauses au lieu de la WPLL qui constitue une
mesure générative, Les résultats des expérimentations montrent que HDSM donne des
résultats meilleurs que les systèmes de l’état de l’art pour l’apprentissage discriminant de
la structure d’un réseau logique de Markov, sur les jeux de données classiquement utilisés.

Une deuxième technique de propositionnalisation est implémentée dans l’algorithme
DMSP pour l’apprentissage discriminant de la structure d’un réseau logique de Markov.
La différence avec la première technique réside dans la façon de construire un ensemble
de littéraux avec seulement des variables. Cette deuxième technique permet de créer
un ensemble de littéraux beaucoup plus rapidement et de manière plus compacte que la
première. Elle repose sur l’idée que beaucoup de chemins entre atomes clos peuvent être
décrits par un seul chemin entre littéraux avec seulement des variables. L’algorithme, par
conséquent, variabilise d’abord un chemin de littéraux, qui est ensuite utilisé comme filtre
pour ignorer beaucoup d’autres chemins. De cette manière, l’ensemble des littéraux est

42 Chapter 4. Learning MLN Structure Based on Propositionalization

engendré beaucoup plus rapidement et nous avons également prouvé qu’il est le plus petit
ensemble, capable de décrire toutes les relations liées au prédicat de requête dans le jeu de
données. DMSP utilise le test d’indépendance du χ2 au lieu de l’approche Grow-Shrink
afin de générer un peu plus de clauses candidates.

Nous terminons ce chapitre en discutant en détail les différences entre notre méthode
et BUSL, un algorithme d’apprentissage génératif de structure d’un réseau logique de
Markov, qui utilise aussi une technique de propositionnalisation pour créer un ensemble
de clauses candidates.

Contents
4.1 Introduction . 42
4.2 The HGSM and HDSM Algorithms 43

4.2.1 Definitions . 44
4.2.2 Propositionalization Method . 45
4.2.3 Structure of HGSM . 51
4.2.4 Evaluating HGSM . 56
4.2.5 Structure of HDSM . 62
4.2.6 Evaluating HDSM . 64

4.3 The DMSP Algorithm . 67
4.3.1 Definitions . 69
4.3.2 Propositionalization Method . 69
4.3.3 Structure of DMSP . 75
4.3.4 Evaluating DMSP . 77

4.4 Related Works . 80
4.5 Summary . 81

4.1 Introduction

In this chapter, we develop several algorithms for learning the structure of MLNs from
relational databases which store data in form of ground atoms. Our algorithms combine
ideas from Propositionalization in ILP and the Markov blanket in Markov networks.

We recall that the Markov blanket of a node in a Markov network is simply the set of
its neighbors in the graph [Domingos et al. 2008a]. A MLN can be viewed as a template to
construct Markov networks. Given different sets of constants, it will produce different MNs
of ground atoms with varying sizes, but all of them contain regularities in structure and
parameters, given by the MLN. For example, given a clause in a MLN, all its instantiations
have the same weight, and a set of ground atoms occurring in an instantiation form a clique
in the graph which is similar to the clique formed by the variable literals of this clause.
This means that if two ground atoms occur in an instantiation of a clause, then they are
dependent and further in the template graph (corresponding to the MLN), if two variable
literals Li and Lj occur in a clause, then they are dependent and by construction, Li is
in the Markov blanket of Lj (i.e. Li is a neighbor of Lj), and vice versa. In other words,

4.2. The HGSM and HDSM Algorithms 43

Figure 4.1: Propositionalization

any two variable literals participating together in a clause are dependent to each other
and they must be connected by an edge in the graph of variable literals participating in
the clauses of this MLN.

In our methods, candidate clauses are generated from sets of dependent variable literals.
However, the problem of finding such a set of variable literals is a difficult task since the
dataset is only a set of ground atoms without any predefined template. In addition, most
of efficient statistical independence testing methods such as the Pearson’s conditional
independence χ2-test [Agresti 2002] and G-test of independence [McDonald 2009] require
data to be arranged into a contingency table [Agresti 2002], which is very different from
a set of ground atoms. We propose in this chapter two propositional methods in order to
transform information in the training database into an approximative representation in
form of boolean tables, from which statistical methods for testing of independence can be
applied.

Basically, a boolean table in our propositionalization methods holds information about
relational ground atoms: each column corresponds to a variable literal, each row corre-
sponds to a ground atom of the considered predicate. The boolean values on each row r
express information on other ground atoms connected to the corresponding ground atom
of r. These propositionalization methods can be briefly described as in Figure 4.1. Start-
ing from data, a set of variable literals is created by a heuristic variabilization technique.
This set of variable literals is then used to transform information about relational ground
atoms in database into an approximative representation of boolean tables.

In this chapter, we present the first propositionalization technique developed in
the HGSM [Dinh et al. 2010b] and HDSM [Dinh et al. 2010c] algorithms in Section
4.2. The second propositionalization technique developed in the DMSP algorithm
[Dinh et al. 2010a] is exposed in Section 4.3. Related works are discussed in Section 4.4.
Finally, Section 4.5 is the summary of this chapter.

4.2 The HGSM and HDSM Algorithms

We have as inputs a training database DB composed of true/false ground atoms and ini-
tial knowledge in form of a MLN (which can be emply). We are looking for a set of
weighted clauses for all predicates in the domain for the task of generative MLN structure
learning, or a set of weighted clauses that correctly discriminates between true and false
ground atoms of a given query predicate QP for the task of discriminative MLN struc-

44 Chapter 4. Learning MLN Structure Based on Propositionalization

ture learning. We present in this section an algorithm for Heuristic Generative Structure
learning for MLNs, called HGSM [Dinh et al. 2010b] and an algorithm for Heuristic Dis-
criminative Structure learning for MLNs, called HDSM [Dinh et al. 2010c]. As these two
methods exploit a similar method of propositionalization, in the following, we first intro-
duce some definitions supported to facilitate our presentation then describe in details how
propositionalization is implemented before explaining step by step each algorithm.

4.2.1 Definitions

Definition 10 Let g and s be two ground literals. A link of g and s, denoted by link(g,s),
is a list composed of the name of the predicates of g and s followed by the positions of the
shared constants. It is written by link(g, s) = {G S g0 s0 | g1 s1 | . . . } where G and S are
respectively two predicate symbols of g and s and two constants respectively at positions
gi ∈ [0, arity(g)− 1] and si ∈ [0, arity(s)− 1] are the same.
If there is no shared constant between g and s then link(g,s) is empty.

Definition 11 A g-chain of ground literals starting from a ground literal g1 is a list of
ground literals 〈g1, ..., gk, ...〉 such that ∀i > 1, link(gi−1, gi) is not empty and every shared
constant is not shared by gj−1, gj , 1 < j < i. It is denoted by: g-chain(g1) = 〈g1, ..., gk, ...〉.
The length of a g-chain is the number of ground atoms in it.

Definition 12 A group of ground atoms SGA ∈ DB is connected to a ground atom
a ∈ DB if a ∈ SGA and ∀b ∈ SGA, b 6= a there exists at least a g-chain of ground atoms
in SGA starting from a and containing b.
If SGA is connected to the ground atom a then SGA is called a connected group starting
from a.
The width of a connected group being the number of ground atoms in it.

Similarly, we define a link of two variable literals as a list composed of the name of
the predicates followed by the positions of the shared variables, a v-chain as a chain of
variable literals.

Example 13 Let G = {P(a, b), Q(b, a), R(b, c), S(b), S(c)} be a set of ground atoms.
P(a, b) and Q(b, a) are connected by the two shared constants a and b. The constant a
occurs respectively at position 0 of the ground atom P(a, b) and at position 1 of the ground
atom Q(b, a). Similarly, the constant b occurs respectively at position 1 of the ground
atom P(a, b) and at position 0 of the ground atom Q(b, a). We have:

link(P(a, b), Q(b, a)) = {P Q 0 1 | 1 0}

A possible g-chain gc1 starting from the ground atom P(a, b) is:

gc1 ≡ g-chain(P(a, b)) = 〈P(a, b), R(b, c), S(c)〉.

Note that there might be a lot of g-chains starting from a ground atom, we use here the
symbol “≡” to denote that gc1 is exactly the g-chain 〈P(a, b), R(b, c), S(c)〉.

On the other hand, 〈P(a, b), R(b, c), S(b)〉 is not a g-chain because the shared constant
b between the two ground atoms R(b, c) and S(b) is already used for the two ground atoms
P(a, b) and R(b, c).

It is easy to verify that G is a connected group starting from P(a, b).

4.2. The HGSM and HDSM Algorithms 45

The definition of g-chain ensures that its variabilization produces a connected clause. A
v-chain can also form a connected clause. The notion of g-chain is related to the relational
path-finding [Richards & Mooney 1992] and relational cliché [Silverstein & Pazzani 1991],
which have been used in the Inductive Logic Programming [Lavrac & Dzeroski 1994].

Definition 14 A template clause is a disjunction of positive variable literals.

Definition 15 A template graph is a graph, each node of which corresponds to a variable
literal.

4.2.2 Propositionalization Method

In our approach, propositionalization is applied on for every predicate in the domain in case
of generative learning and on only the query predicate in case of discriminative learning.
For the sake of simplicity, we use “the target predicate” for both cases (it means the
query predicate for discriminative learning and the considering predicate in each iteration
for generative learning). As it is briefly described in Figure 4.1, propositionalization is
performed through two consecutive steps. At the first step, a set of variable literals is
created starting from the dataset. This set of variable literals is then used in the second
step to form boolean tables and fill values to them. The process of generating variable
literals and then building boolean tables produces an approximative representation of
relational ground atoms in the database. The size and quality of the boolean tables affect
the performance of the algorithms. The size of boolean tables depends on the number of
generated variable literals. We want to find a set of variable literals as small as possible
but large enough to encode relational information of the database.

Section 4.2.2.1 explains the first step in this propositionalization method.

4.2.2.1 Creating a Set of Variable Literals

Let us consider a target predicate QP. The task is to build a set of variable literals linked
to QP. Finding this set is difficult since the database is only a set of ground atoms without
any given template of literal. Our idea is to split data into distinct groups, each of them
is a connected group starting from some true ground atom of QP in the database. To save
time, while searching for such a connected group, a bread-first-search strategy is applied
so that the algorithm stops whenever no ground atom can be added into the group. Each
connected group is then variabilized to generate variable literals. Because there might be a
lot of connected groups hence a lot of generated variable literals, a heuritic variabilization
technique is used in order to generate a number of variable literals as small as possible. In
more details, this heuritic variabilization technique is iterated for each connected group,
from the largest to the smallest. For each connected group (or for each iteration), it
tries to describe relational information between ground atoms by reusing as much former
generated variable literals as possible, thereby it can, more or less, avoid generating new
variable literals.

Algorithm 1 outlines the steps to create a set of variable literals. It takes a training
database DB and a target predicate QP as inputs and then returns a set SL of variable
literals. For each true ground atom tga of QP in DB (line 2), the connected group of
ground atoms in DB starting from tga is built by a function called MakeGroup (line

46 Chapter 4. Learning MLN Structure Based on Propositionalization

5). Let us emphasize that, here, we have a single and unique connected group starting
from tga, which is far different from the above definition of a g-chain starting from tga.
Intuitively, the connected group starting from tga contains all ground atoms, each of which
is in some g-chain starting from tga. With the support of the bread-first-search strategy,
this connected group is found much faster than finding every g-chain, which needs involve
a deep-first-search procedure. From these connected groups, the set SL is then built so
that for each connected group, there exists a variabilization of it with all variable literals
belonging to SL. It must also be noted that the function MakeGroup will stop whenever
all the ground atoms connected to the ground atom tga (via one or more intermediate
another ground atoms) are already in the group, therefore it does not take so much time
even when the dataset is large (O(n2) where n is the number of true ground atoms in the
database).

Algorithm 1: Generate a set of variable literals(DB, QP)
Input : DB: a training database;

QP: a target predicate;
Output: SL: a set of variable literals;

// Initialization

index = −1; mI the number of true ground atoms of QP;1

// Separate set of connected ground atoms

for each true ground atom tga of QP do2

if tga is not considered then3

index = index+ 1;4

Groups[index] ←− MakeGroup(tga);5

end6

end7

// Variabilizing

Sort Groups by decreasing length;8

SL ←− Variabilize(Groups[0]);9

SL ←− CaptureLiteral(Groups[i]), 1 ≤ i ≤ mI ;10

Return(SL);11

Regarding this variabilization problem, we use a simple variabilization strategy to vari-
abilize each connected group ensuring that different constants in the connected group are
replaced by different variables. However, instead of variablizing separately each group as
the traditional simple variabilization strategy does, variable literals are reused as much as
possible and extended throughout the connected groups, from the largest to the smallest,
therefore reducing the number of new variable literals. A heuristic technique is used to
check whether a new variable literal needs to be generated for a link between ground atoms
in a connected group or not.

We illustrate this variabilization technique by an example below before explaining it
in detail.

Example 16 In order to illustrate our approach, let us consider a training database con-
sisting of 13 ground atoms as follows:

4.2. The HGSM and HDSM Algorithms 47

Figure 4.2: Example of chains in the variabilization process of HGSM

student(Bart), student(Betty), professor(Ada), professor(Alan), advisedBy(Bart, Ada),
advisedBy(Betty, Alan), advisedBy(Bob, Alan), publication(T1, Bart), publication(T1,

Ada), publication(T2, Ada), publication(T2, Bart), publication(T3, Betty),
publication(T4, Alan).

Let QP={advisedBy}. Figure 4.2 illustrates the different steps in the variable process
presented in Algorithm 1.

Let us start from the true ground atom advisedBy(Bart, Ada). The widest connected
group that can be built starting from this ground atom contains 7 atoms as:

{advisedBy(Bart, Ada), stu(Bart), publication(T1, Bart), publication(T2, Bart),
professor(Ada), publication(T1, Ada), publication(T2, Ada)},

in which, for example advisedBy(Bart, Ada) and publication(T1, Bart) are linked by the
constant Bart.

The algorithm then variabilizes this connected group by assigning each constant a vari-
able, so that two different constants are assigned different variables, to get the following
set of literals:

SL={advisedBy(A, B), student(A), publication(C,A), publication(D, A), professor(B),
publication(C, B), publication(D, B)}.

Let us consider now the true ground atom advisedBy(Betty, Alan), then we get a
smaller connected group of six ground atoms:

{advisedBy(Betty, Alan), student(Betty), professor(Alan), advisedBy(Bob, Alan),
publication(T3, Betty), publication(T4, Alan)}.

The above set SL of variable literals is not sufficient to capture the relation among the two
ground atoms {advisedBy(Betty, Alan), advisedBy(Bob, Alan)}, and one more variable
literal advisedBy(E, B) is added to the set SL.

48 Chapter 4. Learning MLN Structure Based on Propositionalization

Let us describe this heuristic variabilization technique here in more details. Given
a set, Groups, of connected groups in decreasing order of the width, the variabilization
technique is performed as follows:

1. Variabilizing the first (also the widest) connected group: a simple variabilization
method is used to assign each constant a variable so that two different constants are
assigned different variables.

2. Variabilizing smaller connected groups:

(a) The starting ground atom is variabilized by the same variable literal for ev-
ery connected group. For example both ground atoms advisedBy(Bart, Ada)
and advisedBy(Betty, Alan) in Figure 4.2 are assigned to the same variable lit-
eral advisedBy(A, B). The two variables A and B are then reused respectively
for the two constants Betty and Alan for the connected group starting from
advisedBy(Betty, Alan).

(b) A scanning process is performed to try to reuse variable literals as well as to
capture additional variable literals. During the scanning, the algorithm follows
precisely two principles:

• Check for the existing links: This happens when there are several
similar links which have occurred in some previous considered connected
group. In this case, the algorithm tries to assign constants to the first vari-
ables it can find. For instances, consider the link between advisedby(Betty,
Alan) and publication(T3, Betty), it now has to find variable for the con-
stant T3 because Betty and Alan are already assigned to A and B. In this
case, it reuses the variable C for the constant T3 as C is formerly used for
the constant T1 in the link(advisedBy(Bart, Ada), publication(T1, Bart)),
which is equal to the link(advisedby(Betty, Alan), publication(T3, Betty)).
Similarly, it reuses variable D for the constant T4 in the link between ad-
visedby(Betty, Alan) and publication(T4, Alan). Here, the variable C is
found firstly for this link, but it is already used for the constant T3, the
algorithm has to turn to other variable, hence D is chosen. When the algo-
rithm can not find any variabe, it creates a new one. For example, we as-
sume that the dataset in our example contains one more true ground atom
publication(T5, Alan) as illustrated in Figure 4.3. The relation between
the two ground atoms advisedBy(Betty, Alan) and publication(T5, Alan)
is similar to the relation between the two ground atoms advisedBy(Betty,
Alan) and publication(T4, Alan), both of them sharing the constant Alan
at the same position. The set SL is sufficient to variabilize the relations
among the three ground atoms advBy(Betty, Alan), publication(T3, Betty),
publication(T4, Alan) (respectively by advisedBy(A, B), publication(C, A)
and publication(D, B)) but it is not sufficient to variabilize relations among
the four ground atoms advisedBy(Betty, Alan), publication(T3, Betty), pub-
lication(T4, Alan) and publication(T5, Alan). In this case, a new variable
literal publication(F, B) is used to variabilize the ground atom publica-
tion(T5, Alan).

4.2. The HGSM and HDSM Algorithms 49

Figure 4.3: Example of adding new variable in HGSM

• Check for a new link: This happens when there is a new link between two
ground atoms in the considering connected group, or in other words, when
a link between two ground atoms is never considered before to variabilize.
For example, the relation between the two ground atoms advisedBy(Betty,
Alan) and advisedBy(Bob, Alan) is a new one. Because the ground atom
advisedBy(Betty, Alan) is already variabilized by the variable literal ad-
visedBy(A, B) and the two variables C and D are already used for other
relations in the set SL, a new variable E is introduced to form a new
variable literal advisedBy(E, B) in order to variabilize the true ground
atom advisedBy(Bob, Alan). This guarantees the link between the two
ground atoms advisedBy(Betty, Alan) and advisedBy(Bob, Alan) by the
shared variable B between the two variable literals advisedBy(A, B) and
advisedBy(E, B).

Example 17 Repeating this scanning process until the last true ground atom of the given
predicate advisedBy, Algorithm 1 produces the set of eight variable literals as follows:

SL={advisedBy(A, B), student(A), publication(C, A), publication(D, A), professor(B),
publication(C, B), publication(D, B), advisedBy(E, B)}.

One can realize that more than one variable literal of the target predicate advisedBy
are generated. They are advisedBy(A, B) and advisedBy(E, B). The second step of propo-
sitionalization will build a boolean table corresponding to each one of them.

4.2.2.2 Building a Boolean Table

The next step in our approach of propositionalization transforms information from the
relational database into boolean tables corresponding to every target predicate QP. We
remind that there might be more than one generated variable literals of the target pred-
icate, and thus create a boolean table corresponding to each such variable literal. This

50 Chapter 4. Learning MLN Structure Based on Propositionalization

boolean table, called BT, needs to catch information related to the target predicate as
much as possible. It is organized as follows: each column corresponds to a variable literal;
each row corresponds to a true/false ground atom of the query predicate. Let us assume
that data concerning a given ground atom qr of QP is stored in row r. Let us also assume
that column c corresponds to a given variable literal vlc. BT[r][c] = true means that
starting from qr we can reach a literal that is variabilized as vlc. In other words, there
exists at least a v-chain vc ∈ SL containing the variable literal vlc, a g-chain gcr starting
from the ground atom qr, and a variabilization of gcr such that vc ⊆ var(gcr).

Let us consider a connected clause C = A1∨A2∨· · ·∨Ak, where the number of variable
literals in C is k. Since the clause is connected, from any variable literal Ai, 1 ≤ i ≤ k

we can reach some other variable literal Aj , 1 ≤ j ≤ k, j 6= i with at most k links. For
instance, considering the clause P (x)∨!Q(x, y)∨R(y, z), R(y,z) can be reached from P(x)
through two links: link(P(x), Q(x,y)) by the argument x and link(Q(x,y), R(y,z)) by the
argument y. This implies that to find information related to the target variable literal
LQP of the target predicate QP, we only need to consider the subset of variable literals
appearing in the set SVC of v-chains starting from LQP , which is much smaller than the
complete set SL, especially when the database is large, therefore the size of boolean table
is reduced. We continue Example 17 to illustrate this remark.

Example 18 Les us consider now the variable literal advisedBy(E, B) with k = 2. Every
v-chain of 2 variable literals starting from advisedBy(E, B) contains the variable literal
such that one of its variables is E or B. Therefore, the set of variable literals in the set of
v-chains starting from advisedBy(E, B) with k = 2 is:

SVC={ advisedBy(E, B), advisedBy(A, B), professor(B), publication(C, B),
publication(D, B)}.

In this case, the set SVC has only 5 elements while SL has 8 elements.

Each column of BT corresponds to a variable literal in the set SVC. Each row of BT
corresponds to a ground atom of QP. Values on each row of BT are next, heuristically
filled. We remains that the value at row r (corresponding to the ground atom qr) column
c (corresponding to the variable literal vlc ∈ SV C) is true if there exist at least a v-
chain vc ∈ SL containing the variable literal vlc, a g-chain gcr starting from the ground
atom qr, and a variabilization of gcr such that vc ⊆ var(gcr). Checking this property
by considering all g-chains starting from qr is too expensive because it has to involve an
exhaustive search in the database. We overcome this obstacle by inversely, heuristically
finding v-chains in SL, each v-chain is then used to guide the search in database. Given
a v-chain, the search in the database can be performed much faster because it already
knows the order of predicates and positions of shared constants between two consecutive
predicates in that v-chain; the search space is only a part of the whole database. In
addition, the set SL was built as small as possible, we can expect that there are not so
many v-chains in SL starting from a target variable literal LQP . Algorithm 2 describes
steps for building a boolean table starting from a target variable literal LQP .

Example 19 Let us continue Example 16 by starting from the variable literal ad-
visedBy(A, B). From this variable literal, the algorithm can reach any element in the
set:

4.2. The HGSM and HDSM Algorithms 51

Algorithm 2: Build a Boolean Table (DB, SL, LQP)
Input : DB: a training database;

SL: a set of variable literals;
LQP : a target variable literal

Output: BT: a boolean table

// Initialize

Initialization BT = ∅;1

// Find a set of v-chains starting from LQP

SV C ←− Find every v-chain(LQP) in SL;2

// Fill values of the boolean table BT

for each true/false ground atom qga of QP do3

fillchar(OneRowOfTable, 0);4

for each g-chain gc = g-chain(qga) do5

if ∃ a v-chain vc ∈ SV C s.t. vc ⊆ var(gc) then6

OneRowOfTable[L] = 1 for each variable literal L in vc;7

end8

end9

BT ←− Append OneRowOfTable;10

end11

Return(BT);12

{student(A), publication(C, A), publication(D, A), professor(B), publication(C, B),
publication(D, B), advisedBy(E, B)}.

In this case, it is the whole set SL, but as mentioned above, this set could be much smaller
when the database is large. In the boolean table BT, each column corresponds to an element
in this set and each row corresponds to a true/false ground atom of the target predicate ad-
visedBy. Table 4.1 shows several rows of this table in our example starting from the target
variable literal advisedBy(A, B). Let us consider, for example, the row corresponding to the
false ground atom advisedBy(Betty, Bob). There exists a g-chain starting from this ground
atom: {advisedBy(Betty, Bob), student(Betty)} that satisfies the v-chain {advisedBy(A,
B), student(A)}, and a g-chain {advisedBy(Betty, Bob), publication(T3, Betty)} that
satisfies the two v-chains {advisedBy(A, B), publication(C, A)} and {advisedBy(A, B),
publication(D, A)}. The values at columns corresponding to variable literals student(A),
publication(C, A), publication(D, A) are thus set to true. The others are set to false.

4.2.3 Structure of HGSM

We describe in this section our algorithm HGSM for generative MLN Structure learn-
ing [Dinh et al. 2010b]. The idea is to apply a process of propositionalization for every
predicate in the domain. It means that, as described in Section 4.3.4, for every target
predicate, a set SL of variable literals is first generated then a boolean table is created for
each corresponding target variable literal. This boolean table is next used to find depen-
dent relations between variable literals from which to form template clauses. Candidate
clauses are created from template clauses. This process is repeated by every target predi-

52 Chapter 4. Learning MLN Structure Based on Propositionalization

advisedB
y

student
publication

publication
professor

publication
publication

advisedB
y

G
round

atom
s

(A
,B

)
(A

)
(C

,A
)

(D
,A

)
(B

)
(C

,B
)

(D
,B

)
(E

,B
)

advisedB
y(B

art,A
da)

1
1

1
1

1
1

1
0

advisedB
y(B

etty,A
lan)

1
1

1
1

1
1

1
1

advisedB
y(B

ob,A
lan)

1
0

0
0

1
1

1
1

advisedB
y(B

etty,B
ob)

0
1

1
1

0
0

0
0

advisedB
y(A

lan,B
art)

0
0

1
1

0
1

1
0

.
.

.
...

...
...

...
...

...
...

...

T
able

4.1:
E

xam
ple

of
severalrow

s
in

a
boolean

table
of

H
G

SM

4.2. The HGSM and HDSM Algorithms 53

cate thus giving a set of candidate clauses for all predicates in the domain. These clauses
are used to learn the final MLN.

Algorithm 3 sketches out the global structure of HGSM. The algorithm tries to find
existing clauses considering predicates in the domain in turn (line 4). For a given predicate
QP, it correspondingly builds a set SL of variable literals (line 5), then it forms template
clauses from several subsets of SL (line 6 - 11), each of them containing at least an
occurrence of the target predicate QP . To build the set SL of variable literals, HGSM
constructs the largest possible set of connected ground atoms in the database starting
from any true ground atom of QP, then heuristically variabilizes them. For each literal
LQP ∈ SL (line 6), HGSM generates a set of template clauses from which it extracts a
set of relevant candidate clauses to add into the final MLN. A template clause is built
from the variable literal LQP and its neighbors (i.e. its dependent variable literals in the
Markov Blanket). Once every predicate has been considered, we get a set STC of template
clauses. From each template clause, HGSM generates all possible candidate clauses by
flipping the sign of literals and then keeps the best one according to a given measure (i.e.
WPLL). Having considered every template clause, we get a set composed of the “most
interesting clauses”, a subset of which will form the final MLN (line 13).

Algorithm 3: HGSM(DB, MLN, maxLength)
Input : DB: a training database;

MLN: an initial (empty) Markov Logic Network;
maxLength: a positive integer;

Output: MLN: A final learned Markov Logic Network;

// Initialization

A set of template clauses STC = ∅;1

A set of possible variable literal SL = ∅;2

A boolean table BT is empty;3

// Creating template clauses

for each predicate QP do4

SL←− Generate heuristically a set of possible variable literals(DB, QP);5

for each variable literal LQP ∈ SL do6

BT ←− Build a boolean table(DB, SL, LQP);7

MB(LQP)←− Find the Markov blanket (BT , LQP);8

TC ←− Create template clauses(LQP , MB(LQP), maxLength);9

STC = STC ∪ TC;10

end11

end12

// Learn the final Markov Logic Network

Create the final MLN (DB, MLN , STC, modeClause);13

Return(MLN);14

We must emphasize that our approach is, at a first glance, somewhat similar to the prin-
ciple underlying BUSL [Mihalkova & Mooney 2007]. In fact, HGSM differs from BUSL
deeply in all steps of propositionalization and learning the final MLN. We discuss these
differences in Section 4.4.

54 Chapter 4. Learning MLN Structure Based on Propositionalization

We next detail how a set of template clauses is composed in Subsection 4.2.3.1. In
Subsection 4.2.3.2 we present how the set STC of template clauses can be used to learn
the final MLN.

4.2.3.1 Building a Set of Template Clauses

A set of template clauses is built using the set SL of variable literals and the set of
boolean tables. Let us remind that, in a MLN, if two variable literals occur in a same
clause then they are conditionally dependent to each other and this dependency relation
is described by an edge in the template graph that corresponds to this MLN. Clauses can
then be searched within this template graph in order to reduce the search-space. As a
consequence, we aim at finding all possible incident edges or, in other words, we are looking
for the Markov blanket of each target variable literal LQP . This problem can be managed
using two broad classes of algorithms for learning the structure of undirected graphical
models: score-based and independence-based [Bromberg et al. 2006, Spirtes et al. 2001].
Score-based approaches conduct a search in the space of structures (of size exponential
in the number of variables in the domain) in an attempt to discover a model structure
that maximizes a score. They are more robust for smaller datasets because of the smaller
space of structures. Independence-based algorithms are based on the fact that a graphical
model implies that a set of conditional independences exist in the distribution of the
domain, and hence in the dataset provided as input to the algorithm. They work by
conducting a set of conditional independence tests on data, successively restricting the
number of possible structures consistent with the results of those tests to a single one (if
possible), and inferring that structure as the only possible one. It has the advantage of
requiring no search and of performing well with large datasets [Spirtes et al. 2001]. For
these reasons, we propose, as in [Mihalkova & Mooney 2007], to use the independence-
based Grow-Shrink Markov Network algorithm (GSMN) [Bromberg et al. 2006].

Originally, GSMN is used to learn the structure of a Markov network. Given as input a
dataset and a set of variables V, GSMN returns the sets of nodes (variables) BX adjacent
to each variable X ∈ V , which completely determine the structure of the Markov network.
To find the set BX for a variable X ∈ V , it carries out successively three phases: a grow
phase, a shrink phase and a collaboration phase. In the grow phase, it attempts to add
each variable Y to the current set of hypothesized neighbors of X, contained in a set S. At
the end of the grow phase, some of the variables in S, called false positive, might not be
true neighbors of X in the underlying Markov Network, thus it uses the shrink phase to
remove each false positive Y ′ by testing for independence with X conditioned on S \ {Y ′}.
If Y ′ is found independent of X, it cannot be a true neighbor and GSMN removes it from S.
After the neighbors of each X has been produced in BX , GSMN executes a collaboration
phase. During this phase, the algorithm adds X to BY for every node Y that is in BX ,
because in undirected graphs, X is adjacent to Y if and only if Y is adjacent to X. To
determine whether two variables are conditionally independent or not, GSMN uses the
Pearson’s conditional independence chi-square (χ2) test (see in [Agresti 2002] for details
of its computation).

In HGSM, we can consider the boolean table BT and the set of variable literals cor-
responding to columns of BT (which is always a subset of SL connected to the target
variable literal) respectively as inputs for the GSMN algorithm. However, instead of find-

4.2. The HGSM and HDSM Algorithms 55

Algorithm 4: Create template clauses (LQP , MB(LQP), maxLength)
Input : LQP : a target variable literal;

MB(LQP): the Markov blanket of LQP ;
maxLength: a positive integer;

Output: TC: a set of template clauses

// Initialize

Initialization TC = ∅;1

// Generate template clauses

for j = 2 to maxLength do2

for each subset S ⊆MB(LQP) of (j − 1)-elements do3

c = CreateTempClause(LQP , S);4

TC ←− c if c is a connected clause;5

end6

end7

Return(TC);8

ing the Markov blankets for every variable of the input set, we apply GSMN to find only
the Markov blanket MB(LQP) of the target variable literal LQP because the boolean ta-
ble BT is designed to contain mostly information related to ground atoms of the target
predicate. Every other target variable literals (and further every other target predicate)
will be considered in turn thus at each step it is sufficient to find only and uniquely the
Markov blanket of LQP .

Example 20 By applying the GSMN algorithm on the boolean table given in Example 19
we get the Markov blanket of the target variable literal advisedBy(A, B):

MB(advisedBy(A, B)) = {student(A), professor(B), advisedBy(E, B)}.

Having got the Markov blanket MB(LQP), our algorithm composes a set TC of tem-
plate clauses. We recall that a template clause is simply a disjunction of positive literals.
A set of template clauses is created from the target variable literal LQP and its neighbors,
i.e. the variable literals forming its Markov blanket MB(LQP). Each template clause is
built from LQP and a subset S ⊆ 2MB(LQP) such that S ∪ LQP is a connected clause.
Algorithm 4 illustrates the steps for this task.

Example 21 We finish this subsection by illustrating the set of template clauses created
from the target variable literal advisedBy(A, B) and its neighbors in Example 20. Among
template clauses, we found:

advisedBy(A,B) ∨ student(A),
advisedBy(A,B) ∨ professor(B),

advisedBy(A,B) ∨ advisedBy(E,B),
advisedBy(A,B) ∨ student(A) ∨ professor(B),

. . .

56 Chapter 4. Learning MLN Structure Based on Propositionalization

4.2.3.2 Learning the Final MLN

Clauses are created from each template clause by flipping the sign of its variable literals.
HGSM can be restricted to consider only Horn clauses. Clauses created from the same
template clause are evaluated in turn. To evaluate a clause c, we learn the weights, then
compute the measure (i.e. WPLL) of the temporary MLN consisting of the unit MLN
(a clause is simply a variable literal) plus c. We define the gain of c as the difference
between the measure of this temporary MLN and the one of the unit MLN and the weight
of c is its weight in the temporary MLN. If this gain is positive and the weight is greater
than a given threshold minWeight, c becomes an available candidate clause. Because
every available candidate clause created from a template clause composes similar cliques
in the network, for each connected template clause, HGSM keeps only the clause with the
maximum measure as a candidate clause.

Candidate clauses are sorted by decreasing gain and our algorithm adds them in turn
in this order to the current MLN. The weights of the resulting MLN are learned and this
latter is scored using the chosen measure (i.e. WPLL). Each clause that improves the
measure is kept in the current MLN, otherwise it is discarded.

Finally, as adding a clause into the MLN might drop down the weight of clauses added
before, once all clauses have been considered, HGSM tries to prune some clauses of the
MLN. This pruning is based on their weight: a clause with the weight less than the
minWeight is discarded from the MLN if its removal also increases the measure.

This process is given in Algorithm 5. In [Richardson & Domingos 2006,
Kok & Domingos 2005], the authors showed that it is useful to start learning genera-
tively a MLN structure by adding all unit clauses (clauses of a single variable literal). We
therefore provide them as the first step in process of learning the final MLN (line 2-4).
For each template clause Tc ∈ STC (line 5), HGSM generates a set Clauses of clauses by
flipping the sign of its variable literals. Depending on the goal (or on time constraints),
HGSM can restrict the search to Horn clauses or consider all arbitrary clauses (2n pos-
sible clauses). For each clause ci ∈ Clauses (line 7), HGSM first learns weights for a
MLN composed of all unit clauses plus ci (line 8), and then computes the WPLL of this
MLN (line 9). Because every clause created from a template clause composes the same
clique in the network, HGSM chooses only one clause in Clauses that leads to the best
WPLL and adds it into the set CanClauses of candidate clauses (line 11). As proposed in
[Richardson & Domingos 2006, Kok & Domingos 2005], we eliminate several clauses from
CanClauses by keeping only clauses that improve the WPLL measures and have a weight
greater than a given threshold; this allows time saving during the next steps (line 13). A
set of best candidate clauses is stored into BestClauses, which is used to learn the final
MLN.

4.2.4 Evaluating HGSM

HGSM has been implemented on top of the Alchemy package [Kok et al. 2009]. We used
the APIs implementation of L-BFGS to learn weights. We performed experiments to
answer the following questions:

1. Does HGSM outperform BUSL?

4.2. The HGSM and HDSM Algorithms 57

Algorithm 5: Create the final MLN (DB, MLN, STC, modeClause)
Input : DB: a training database;

MLN: an initial Markov Logic Network;
STC: a set of template clauses;
modeClause: an integer for choosing Horn or arbitrary clauses;

Output: MLN: the final Markov Logic Network;

// Initialization

A set of candidate clause CanClauses = ∅;1

// Add unit clauses into the final MLN

Add Unit Clauses Into the MLN;2

LearnWeightsWPLL(MLN, DB);3

BestScore = measureWPLL(MLN, DB);4

// Evaluate candidate clauses

for each template clause Tc ∈ STC do5

Clauses = CreateClauses(Tc, modeClause);6

for each clause ci ∈ Clauses do7

LearnWeightsWPLL(ci, MLN, DB);8

ci.gain = measureWPLL(ci, MLN, DB);9

end10

CanClauses = CanClauses ∪ c where c.gain = maxci∈Clauses{ci.gain};11

end12

// Add candidate clauses into the final MLN

Choose BestClauses from CanClauses;13

for each clause c ∈ BestClauses do14

LearnWeightsWPLL(c, MLN, DB);15

NewScore = measureWPLL(c, MLN, DB);16

if NewScore > BestScore then17

Add clause c into MLN;18

BestScore = NewScore;19

end20

end21

Prune Clauses out of the MLN (MLN, DB);22

Return(MLN);23

58 Chapter 4. Learning MLN Structure Based on Propositionalization

Datasets IMDB UW-CSE CORA
Types 4 9 5
Constants 316 1323 3079
Predicates 10 15 10
True atoms 1540 2673 70367

Table 4.2: Details of the IMDB, UW-CSE and CORA datasets

2. Does HGSM perform better than the state-of-the-art generative systems for MLN
structure learning?

3. How does HGSM perform considering only Horn clauses?

4.2.4.1 Systems, Datasets and Methodology

To answer question 1, we directly compare HGSM to BUSL. To answer question 2, we
compare HGSM to the state-of-the-art generative system ILS (Iterated Local Search)
[Biba et al. 2008b]. Finally, for question 3, we introduce HGSM-H, a restricted version of
HGSM that limits ti Horn clauses.

We used three publicly-available datasets: IMDB, UW-CSE and CORA1, which have
been used to evaluate most of the former algorithms, such as MSL [Kok & Domingos 2005],
BUSL [Mihalkova & Mooney 2007], ILS [Biba et al. 2008b] and others. Each dataset is
splitted into mega-examples, where each megaexample contains a connected group of facts.
Mega-examples are independent of each other.

• IMDB: This dataset, created by Mihalkova and Mooney (2007) from the IMDB.com
database, describes a movie domain. It contains predicates describing movies, actors,
directors, and their relationships (e.g, Actor(person), WorkedUnder(person, movie),
etc.). The genres of each director is based on the genres of the movies he or she
directed. The Gender predicate is only used to state the gender of actors.

• UW-CSE: This dataset, prepared by Richardson and Domingos (2006), describes
an academic department. It lists facts about people in an academic department
(i.e. Student, Professor) and their relationships (i.e. AdvisedBy, Publication) and
is divided into five independent folds based on five areas of computer science.

• CORA: This dataset is a collection of citations to computer science papers, created
by Andrew McCallum, and later processed by Singla and Domingos (2006) into
five independent folds for the task of predicting which citations refer to the same
paper, given the words in their author, title and venue fields. Predicates include:
SameCitation(cit1, cit2), TitleHasWord(title, word), etc.

Details of these datasets are reported in Table 4.2.
We performed experiments through a 5-fold cross-validation. For each system on each

test fold, we performed inference over each test ground atom to compute its probability
of being true, using all other ground atoms as evidence. The log of this probability is the

1These datasets are publicly-available at the URL http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu

4.2. The HGSM and HDSM Algorithms 59

Datasets
Measure Systems IMDB UW-CSE CORA

BUSL -0.240±0.017 -0.358±0.019 -0.341±0.014
CLL ILS -0.210±0.021 -0.180±0.015 -0.131±0.011

HGSM-H -0.201±0.021 -0.138±0.017 -0.108±0.013
HGSM -0.183±0.028 -0.103±0.020 -0.087±0.016

Datasets
Measure Systems IMDB UW-CSE CORA

BUSL 0.470±0.07 0.291±0.02 0.435±0.01
AUC-PR ILS 0.400±0.06 0.257±0.02 0.501±0.02

HGSM-H 0.531±0.06 0.292±0.02 0.701±0.01
HGSM 0.692±0.07 0.311±0.01 0.762± 0.02

Table 4.3: CLL, AUC-PR measures

conditional log-likelihood (CLL) of the test ground atom. To evaluate the performance
of each system, we measured the average CLL of the test atoms and the area under
the precision-recall curve (AUC-PR). The advantage of CLL is that it directly measures
the quality of the probability estimates produced. The advantage of AUC is that it is
insensitive to a large number of true negatives (i.e., ground atoms that are false and
predicted to be false). The precision-recall curve for a predicate is computed by varying
the threshold CLL above which a ground atom is predicted to be true. We used the
package provided in [Davis & Goadrich 2006] to compute the AUC-PR measure.

Concerning parameter setting, we used the same settings for ILS and BUSL as in
[Biba et al. 2008b] and [Mihalkova & Mooney 2007] respectively. In order to limit the
search space for all systems, we set the maximum number of variable literals per clause to
5, as in [Biba et al. 2008b].

Having learned the MLN, we performed inference for every predicate on the test
folds for all datasets, using the recent build-in inference algorithm Lazy-MC-SAT
[Poon & Domingos 2006] in Alchemy [Kok et al. 2009]. Lazy-MC-SAT produces proba-
bilities for every grounding of the query predicate on the test fold.

For each testing dataset, we ran each system on a Dual-core AMD 2.4 GHz CPU -
4GB RAM machine.

4.2.4.2 Results

Table 4.3 reports the CLL and AUC-PR measures for all approaches on all datasets.
These are the average of CLLs and AUC-PRs over all test folds. It must be noted that,
while we used the same parameter settings, our results do slightly differ from the ones in
[Biba et al. 2008b]. This comes from the fact that we conducted inference using Lazy-MC-
SAT instead of MC-SAT. Table 4.4 gives the average number of candidate clauses (NOC),
the finally number of learned clauses (FC) and the training time (in minutes) (TT) over
all train folds.

First, let us compare HGSM respectively to BUSL and ILS. HGSM outperforms BUSL

60 Chapter 4. Learning MLN Structure Based on Propositionalization

D
atasets

→
IM

D
B

U
W

-C
SE

C
O

R
A

System
s

N
O

C
FC

T
T

N
O

C
FC

T
T

N
O

C
FC

T
T

B
U

SL
337

17.60
24.12

362.00
37.00

360.85
188.60

17.75
3412.08

ILS
983

15.40
19.38

3104.20
23.40

191.84
1755.00

18.25
1730.08

H
G

SM
-H

346
13.20

19.41
570.20

23.20
281.43

114.60
17.00

1963.74
H

G
SM

551
15.40

23.87
1520.00

23.60
521.40

143.40
20.25

3849.52

T
able

4.4:
N

um
ber

of
clauses

and
runtim

es
(m

inutes)

4.2. The HGSM and HDSM Algorithms 61

and ILS in terms of both CLL and AUC-PR. Concerning the CLL measure, HGSM-A
increases it approximately 23% for IMDB, 71% for UW-CSE, 74% for CORA compared
to BUSL and respectively 12%, 42% and 33% compared to ILS. Concerning the AUC-PR
measure, HGSM-A increases it approximately 47% for IMDB, 6% for UW-CSE, 75% for
CORA compared to BUSL and respectively 73%, 21% and 52% compared to ILS. We
would like to emphasize that HGSM dominates them not only on average values, but
also for each test fold of each dataset. However, HGSM is slower than BUSL while ILS
appears to be the fastest system. We can answer to question 1 that HGSM performs better
than BUSL in the sense of CLL and AUC-PR. Based on these results, we believe in the
domination of our method compared to the state-of-the-art generative structure learning
algorithms for MLNs, especially for the task of classification. This answers question 2.
Since CLL determines the quality of the probability predictions output by the algorithm,
HGSM outperforms ILS and BUSL in the sense of the ability to predict correctly the
query predicates given evidence. Since AUC-PR is insensitive to the large number of true
negatives (i.e., ground atoms are false and predicted to be false), HGSM enhances the
ability to predict the few positives in data.

Last, let us compare all systems together. HGSM is the best system in terms of CLL
and AUC-PR, and ILS is the best one in terms of runtime. However, in theory, all of these
algorithms involve the L-BFGS algorithm to set weights for clauses, hence the times all
depend on the performance of this weight learning algorithm. In practice, as revealed in
[Shavlik & Natarajan 2009], the presence of a challenging clause like AdvisedBy(s, p) ∧
AdvisedBy(s, q)→ SamePerson(p, q) for the UW-CSE dataset will have a great impact
on optimization as well as on inference. Runtime therefore depends mostly on the number
of candidate clauses and on the occurrence of literals together in each clause. From
practice we also verify that the time used to find candidate clauses is much less than the
time used to learn and to infer. From Table 4.4 we can see that, although BUSL and
HGSM evaluate fewer candidates than ILS, they are both slower than ILS. This is due
to the fact that BUSL and HGSM change the MLN completely at each step, calculating
the WPLL measure becoming thus very expensive. In ILS this does not happen because
at each step L-BFGS is initialized with the current weights (and zero weight for a new
clause) and converges in a few iterations [Biba et al. 2008a]. Regarding HGSM and BUSL,
for the CORA dataset, despite HGSM evaluates fewer candidate clauses than BUSL, it
gives better CLL and AUC-PR values but unfortunately runs slower. This implies that
the set of candidate clauses created by HGSM is better than the one created by BUSL,
furthermore our method to create candidate clauses is better than the one in BUSL. This
issue also urges us to apply a method like it is done in ILS to accelerate HGSM. It is very
interesting that HGSM considering only Horn clauses (HGSM-H) takes much less time
than it does with arbitrary clauses while it also outperforms both ILS and BUSL in terms
of both CLL and AUC-PR measures. HGSM-H gets only a little loss in the sense of CLL
and AUC-PR compared to HGSM with arbitrary clauses. From the logic point of view,
a Horn-clause MLN might integrate easier in further processing than a MLN based on
arbitrary-clauses. These results give us belief in restricting our system to solve with Horn
clauses in a more acceptable runtime. This answers question 3.

62 Chapter 4. Learning MLN Structure Based on Propositionalization

4.2.5 Structure of HDSM

The HGSM algorithm presented in the previous section is designed for a generative learning
purpose which attempts to learn a set of clauses, that can then be used to predict the truth
value of all predicates given an arbitrary set of evidence. This kind of learning is useful
when it is not known ahead of time how the model will be used, so that the learned model
needs to capture as many aspects of a domain as possible. However, in many learning
problems, there is a specific target predicate to learn, the values of its ground atoms being
unknown at test-time, assuming that values of the remaining predicates in the domain
will be given. In this case, discriminative learning is more appropriate. More detailed
studies of the relative advantages of these two frameworks of learning are available in
[Liang & Jordan 2008].

Most traditional ILP methods focus on discriminative learning [Dzeroski 2007]; how-
ever, they do not address the issue of uncertainty. Several discriminative meth-
ods have been developed for parameter learning in MLNs [Singla & Domingos 2005,
Lowd & Domingos 2007]; however, they do not address structure learning. To the best
of our knowledge, there only exists two systems for discriminative MLN structure learn-
ing that integrate both a clause searching step and a weight learning step. The first one
uses ALEPH [Srinivasan 2007] system to learn a large set of potential clauses, then learns
the weights and prunes useless clauses [Huynh & Mooney 2008]. The second method,
called ILS-DSL (Iterated Local Search - Discriminative Structure Learning), chooses the
structure by maximizing CLL and sets the parameters using L-BFGS to maximize PLL
[Biba et al. 2008a]. These systems were described in more details in Chapter 3 of this
dissertation.

Due to the lack of algorithms for discriminative MLN structure learning, this research
direction needs to be further investigated. In this section, we present an adaptation of the
techniques implemented in HGSM for the task of discriminative MLN structure learning.
We call this version HDSM [Dinh et al. 2010c], which stands for Heuristic Discriminative
Structure learning for MLNs.

4.2.5.1 Structure of HDSM

We apply basically the structure of HGSM to the task of learning MLN structure for a spe-
cific query predicate in the domain. However, the generative measure (i.e. WPLL) used in
HGSM to choose clauses is not really effective, compared to a discriminative measure such
as CLL, when we want to find clauses that maximize the score of only a specific predicate
assuming that the remainders are known. We therefore use a discriminative measure (i.e.
CLL) to choose clauses in this discriminative version. Besides, in [Biba et al. 2008a], the
authors have shown that using the generative weight learning algorithm L-BFGS for dis-
criminative MLN structure learning can lead to acceptable results in terms of runtime and
of the CLL and AUC-PR measures, compared to a discriminative weight learning method
such as P-SCG [Lowd & Domingos 2007]. We decided to keep using L-BFGS to learn the
weights in order to take these advantages.

We have as input a training database DB composed of true/false ground atoms and
a query predicate QP (several query predicates can be given). A set of clauses (i.e. an
initial MLN) defining some background knowledge may also be given. We aim at learning

4.2. The HGSM and HDSM Algorithms 63

a MLN that correctly discriminates between true and false groundings of QP. We describe
in this subsection the structure of HDSM.

Algorithm 6: HDSM(DB, MLN, QP, maxLength)
Input : DB: a training database;

MLN: an initial (empty) Markov Logic Network;
QP: a query predicate;
maxLength: a positive Integer;

Output: MLN: a final learned Markov Logic Network

// Initialization

A set of template clauses STC = ∅;1

A set of possible variable literal SL = ∅;2

// Creating template clauses

SL←− Generate heuristically a set of possible variable literals(DB, QP);3

for each variable literal LQP ∈ SL do4

BT ←− Build a boolean table(DB, SL, LQP);5

MB(LQP)←− Find the Markov blanket (BT , LQP);6

TC ←− Create template clauses(LQP , MB(LQP), maxLength);7

STC = STC ∪ TC;8

end9

// Learn the final Markov Logic Network

Learn the final MLN (DB, MLN , STC, modeClause);10

Return(MLN);11

We sketch the global structure of HDSM in Algorithm 6. HDSM tries to find existing
clauses containing query predicate QP by building a set SL of variable literals, from which
to generate a set of template clauses, each of them containing at least one occurrence of
QP. To build the set SL of variable literals, HDSM constructs the largest possible set of
connected ground atoms corresponding to every true ground atom of QP, then heuristically
variabilizes them (line 2). For each literal LQP ∈ SL, HDSM generates a set of template
clauses from which it extracts a set of relevant candidate clauses (line 3-8). A template
clause is built from the variable literal LQP and its neighbors. As in HGSM, we have to
transform the information in the database into a boolean table (line 4) corresponding to
each LQP ∈ SL in order to be able to apply GSMN [Bromberg et al. 2006] to find the
Markov blanket of LQP (line 5). Once every variable literals of the query predicate have
been considered we get a set of template clauses STC. Candidate clauses are created from
this set and provided to learn the final MLN (line 9).

We emphasize that HDSM does perform in the same manner as HGSM but for only a
query predicate. To be more suitable to discriminative learning, it uses the discriminative
measure (i.e. CLL) instead of the generative one (i.e. WPLL) to choose clauses. Com-
puting this discriminative measure, however, takes more time as it requires in addition an
inference step to compute the empirical expectation.

64 Chapter 4. Learning MLN Structure Based on Propositionalization

4.2.6 Evaluating HDSM

HDSM is implemented over the Alchemy package [Kok et al. 2009]. We performed exper-
iments to answer the following questions:

1. How does HDSM carry out with Horn clauses instead of arbitrary clauses?

2. Is HDSM better than the state-of-the-art algorithms for discriminative MLN struc-
ture learning?

3. Is HDSM better than HGSM for the task of discriminative learning?

4. Between two propositionalization methods respectively implemented in BUSL and
HDSM, which one is the more suitable for the task of discriminative MLN structure
learning?

While the first three questions are intended to evaluate how HDSM performs compared
to both state-of-the-art generative and discriminative systems, the last question is focused
on comparing to the BUSL algorithm. In the previous section, we have mentioned that
HGSM (and now also HDSM) relies on similar principles to the one underlying BUSL
but deeply differs in all three steps; performing a propositionalization, building candidate
clauses and learning the final MLN, and we shown in the experiments that HGSM produces
better results (for both CLL and AUC-PR) than BUSL does on the three standard datasets
we used. We, however, were not able to show which step affects mostly the performance of
HGSM compared to BUSL because of the setting for all predicates and the implemented
codes of these two generative systems. In this experiment, we want to take the advantage
of discriminative learning for only a single query predicate in order to figure out which
method of propositionnalization (in BUSL or in HDSM (HGSM)) fits better for the task
of MLN structure learning.

4.2.6.1 Systems, Datasets and Methodology

To answer question 1, we ran HDSM twice to perform respectively with Horn clauses
(HDSM-H) and with arbitrary clauses (HDSM-A). To answer question 2, we compared
HDSM to the state-of-the-art discriminative system ISL-DSL [Biba et al. 2008a]. To an-
swer question 3 we compared directly HDSM to HGSM [Dinh et al. 2010b]. To answer
question 4, we implemented HDSM using L-BFGS to set weights and the WPLL measure
to choose clauses (HDSM-W). Moreover, HDSM-W creates template clauses from cliques
and considers, as in BUSL, all possible clauses from a template clause. We configured
BUSL to run only for single predicates. In this case, BUSL and HDSM-W are different
only in the step of building boolean tables, hence we can compare the interest of the
boolean tables created by them.

We also used the three datasets IMDB, UW-CSE and CORA and performed a 5-
fold cross-validation, as described in Subsection 4.2.4.1. For IMDB, we predicted the
probability of pairs of person occurring in the relation WorkedUnder. For UW-CSE we
have chosen the discriminative task of predicting who is the advisor of who. For CORA, we
learned four discriminative MLNs, respectively according to the four predicates: sameBib,
sameTitle, sameAuthor, sameVenue. These predicates have often been used in previous

4.2. The HGSM and HDSM Algorithms 65

studies of MLN discriminative learning [Singla & Domingos 2005, Biba et al. 2008a]. Both
CLL and AUC-PR are also used as evaluation measures as described in Subsection 4.2.4.1.

Parameters for ILS-DSL and ILS were respectively set as in [Biba et al. 2008a],
[Biba et al. 2008a]. We set the maximum number of literals per clause to 5 for all the
systems as in [Biba et al. 2008a]. We performed inference on the learned MLN using the
Lazy-MC-SAT algorithm. We ran our tests on a Dual-core AMD 2.4 GHz CPU - 4GB
RAM machine.

4.2.6.2 Results

Table 4.5 presents the average CLL and AUC-PR measures for the learning predicates
over test folds for all the algorithms estimating on the three datasets. It must be noted
that, while we used the same parameter setting, our results do slightly differ from the
ones in [Biba et al. 2008a]. This comes from the fact that we performed inference using
Lazy-MC-SAT instead of MC-SAT, and that in the training process, ILS-DSL used only
one of the training folds to compute the CLL measure[Biba et al. 2008a]. Table 4.6 gives
the average runtime over all train folds for IMDB and UW-CSE, and over four learning
predicates for CORA.

First, we consider HDSM respectively with Horn clauses (HDSM-H) and with arbitrary
clauses (HDSM-A). We can see that HDSM-A performs only better than HDSM-H for some
predicates in terms of both CLL and AUC-PR. HDSM-A is even worse than HDSM-H for
the predicate advisedBy (UW-CSE). This sounds a bit strange as HDSM-A and HDSM-H
share the same set of template clauses and HDSM-A considers more clauses than HDSM-
H does. We can explain this issue as follows: in our method, for each template clause
the algorithm keeps at most one candidate clause (the one with the highest score), thus
the one kept by HDSM-A has a score greater than or equal to the score of the one kept
by HDSM-H. The set of candidate clauses of HDSM-A is hence different from the one of
HDSM-H. The order of template clauses and the order of candidate clauses affect the final
learned MLN. When candidate clauses are considered in turn, the set of candidate clauses
of HDSM-A is not always better than the one of HDSM-H because the algorithm has to
learn the weights again for each considered candidate clause, and it may affect the weights
of clauses added before into the MLN. It is interesting that HDSM performs much faster
with Horn clauses than with arbitrary clauses while it gets a little loss in the CLL and
AUC-PR measures. This is the answer to question 1.

Second, we compare HDSM to ILS-DSL. Both versions of HDSM perform better than
ILS-DSL in terms of both CLL and AUC-PR. Since CLL determines the quality of the
probability predictions output by the algorithms, in our experiments, our algorithm out-
performs this state-of-the-art discriminative algorithm in the sense of its ability to predict
correctly the query predicates given evidence. Since AUC-PR is useful to predict the few
positives in data, we can conclude that HDSM enhances the ability of predicting the few
positives in data. Question 2 is answered.

Third, we compare HDSM to HGSM. HDSM produces really better values in both CLL
and AUC-PR for all predicates for all datasets. We believe that our method, designed for
classification, behaves better in such tasks than generative structure learning algorithms
for MLNs.

Concerning runtimes, ILS-DSL is the fastest system, then are HDSM-H, BUSL and

66 Chapter 4. Learning MLN Structure Based on Propositionalization

A
lgorithm

s
→

H
G

SM
B

U
SL

H
D

SM
-W

D
atasets

P
redicates

C
LL

A
U

C
-P

R
C

LL
A

U
C

-P
R

C
LL

A
U

C
-P

R
IM

D
B

W
orkedU

nder
-0.035±

0.006
0.315

-0.225±
0.011

0.129
-0.035±

0.007
0.315

U
W

-C
SE

A
dvisedB

y
-0.029±

0.005
0.229

-0.044±
0.006

0.204
-0.029±

0.008
0.215

Sam
eB

ib
-0.150±

0.005
0.390

-0.325±
0.009

0.229
-0.154±

0.011
0.394

C
O

R
A

Sam
eT

itle
-0.121±

0.009
0.415

-0.284±
0.009

0.418
-0.127±

0.006
0.411

Sam
eA

uthor
-0.169±

0.007
0.415

-0.356±
0.008

0.347
-0.176±

0.007
0.410

Sam
eV

enue
-0.121±

0.006
0.357

-0.383±
0.010

0.276
-0.121±

0.007
0.327

A
lgorithm

s
→

ILS-D
SL

H
D

SM
-H

H
D

SM
-A

D
atasets

P
redicates

C
LL

A
U

C
-P

R
C

LL
A

U
C

-P
R

C
LL

A
U

C
-P

R
IM

D
B

W
orkedU

nder
-0.029±

0.007
0.311

-0.028±
0.006

0.323
-0.028±

0.008
0.325

U
W

-C
SE

A
dvisedB

y
-0.028±

0.006
0.194

-0.023±
0.004

0.231
-0.025±

0.010
0.230

Sam
eB

ib
-0.141±

0.009
0.461

-0.140±
0.008

0.480
-0.140±

0.011
0.480

C
O

R
A

Sam
eT

itle
-0.134±

0.010
0.427

-0.110±
0.007

0.502
-0.108±

0.010
0.498

Sam
eA

uthor
-0.188±

0.008
0.560

-0.155±
0.008

0.581
-0.146±

0.009
0.594

Sam
eV

enue
-0.132±

0.009
0.297

-0.115±
0.009

0.338
-0.115±

0.011
0.342

T
able

4.5:
C

LL,A
U

C
-P

R
m

easures

4.3. The DMSP Algorithm 67

Algorithms → HGSM ILS-DSL HDSM-H HDSM-A HDSM-W BUSL
IMDB 0.42 0.49 0.56 1.09 0.42 0.38
UW-CSE 8.62 4.30 7.00 9.30 8.56 8.05
CORA 39.46 30.41 33.71 50.15 38.24 34.52

Table 4.6: Runtimes(hour)

HDSM-A. The runtime (of each system) includes the time to find candidate clauses, the
time to learn weights for each candidate clause and the time to choose clauses for the
final MLN. In practice we verify that the time spent to find candidate clauses is much
less important than the time spent to learn weights and the time to compute CLL when
performing inference. To set weights for clauses, all systems involve the L-BFGS algorithm,
and thus the runtime depends on the performance of this weight learning algorithm. BUSL
and HGSM change the MLN completely at each step, thus calculating WPLL (required
to learn weights by L-BFGS) becomes very expensive. In ILS-DSL, this does not happen
because at each step L-BFGS is initialized with the current weights (and zero weight for
a new clause) and it converges in a few iterations [Biba et al. 2008b], [Biba et al. 2008a].
ILS-DSL also uses some tactics to ignore a candidate clause whenever it consumes time
more than a given threshold for inferring [Biba et al. 2008a]. We plan to accelerate our
systems to a more reasonable time as it has been done in ILS-DSL, especially by finding
an efficient solution to filter candidate clauses. It is very interesting that HDSM-H takes
much less time than HDSM does while it gets only a little loss in the sense of CLL and
AUC-PR. We also would like to notice that the MLN produced by HDSM-H might be an
advantage, from the logical point of view, since a set of Horn clauses can be more easily
interpreted.

4.3 The DMSP Algorithm

We have developed in the previous section the HGSM algorithm for generative MLN struc-
ture learning and the HDSM algorithm for discriminative MLN structure learning. Both
are implemented on the same structure including three steps: performing a proposition-
alization to transform information in the relational database into boolean tables, creating
template clauses from every query variable literal and its Markov blanket using the GSMN
algorithm (Grow-Shrink Markov Network algorithm) [Bromberg et al. 2006], and finally
learning the final MLN by considering candidate clauses in turn. Our experiments show
that they give better results than the state-of-the-art approaches for MLN structure learn-
ing while considering less candidate clauses. Especially, the proposed propositionalization
method is more suitable for the task of MLN structure learning than the one implemented
in BUSL.

Beside these satisfying results, however, HGSM and HDSM spend too much time to
produce the final MLN, even if they consider less candidate clauses than ILS or BUSL. It
must be noted that time-consumption and performance are affected during all the three
steps in our methods:

• Performing propositionalization: This step includes two tasks: first forming a

68 Chapter 4. Learning MLN Structure Based on Propositionalization

set of variable literals starting from the query predicate and then encoding informa-
tion in the dataset into boolean tables, each boolean table corresponding to a target
variable literal, each column of which corresponding to a variable literal. The task
of forming a set of variable literals is based on the idea of separating the dataset in
distinct connected groups starting from true ground atoms of the query predicate in
the dataset. A heuristic variabilization technique is used in order to generate a set
of variable literals such that we can always describe links between ground atoms in
a connected group by using only elements in this generated set of variable literals.
It means that for every g-chain gc = g-chain(qga) starting from a true ground atom
qga of the query predicate, there always exists a v-chain, vc, of variable literals and
a variable replacement such that var(gc) ⊆ vc. During the variabilization process,
two criteria are checked repeatedly to decide whether a new variable literal needs to
be generated. This process, nevertheless, is iterated many times when the dataset is
composed of a lot of distinct connected groups. When there are a lot of new variable
literals that need to be created, this checking operation, more or less, leads to an
exhaustive search in the dataset. In addition, a large number of variable literals
increases time-consumption in the two next steps.

• Creating template clauses: Having got a boolean table corresponding to each
target variable literal, the GSMN algorithm is applied in order to find the Markov
blanket of this target variable literal. We recall that a variable Y is in the MB of
a target variable X if X and Y are conditionally dependent to each other. Because
a real-world dataset is always incomplete and our propositionalization method is a
kind of reduction which causes information loss, both of these factors affect results of
the GSMN. The set of template clauses hence could miss some good ones containing
good candidate clauses.

• Learning the final MLN: Candidate clauses are considered in turn to determine if
they are added into the final MLN. A candidate is added if it causes an improvement
of the measure. It is obvious that, in this method, we have to apply the weight
learning process as many times as the number of candidate clauses and the larger a
MLN is (in number of clauses) the more time is required for weight learning. Adding
a clause also influences the weights of all preceding clauses in the MLN. Therefore the
order of clauses added into the MLN is very important to produce the final MLN.
Concerning the step of learning the final MLN, we use a built-in state-of-the-art
weight learning algorithm in Alchemy (i.e. the L-BFGS). This algorithm also takes
times when there is a long inference in the set of clauses and when variable literals
have many grounding atoms. This explains why our methods are slower than the
others while considering less candidate clauses.

Improving the performance of a weight learning algorithm or designing a new one is
a quite different task that is out of the scope of this dissertation. In this Subsection,
we will concentrate on a new method for discriminative MLN structure learning. We
develop a new propositionalization technique, modify the way to create candidate clauses
and change the order of candidate clauses to learn the final MLN while keeping the same
structure of HDSM. We call this new method DMSP [Dinh et al. 2010a], which stands for
Discriminative MLN Structure learning based on Propositionalization. As the structure of

4.3. The DMSP Algorithm 69

DMSP is similar to the one of HDSM, we next introduce several definitions in Subsection
4.3.1 to facilitate our representation then focus on presenting the specific aspects of DMSP.

4.3.1 Definitions

Definition 22 A link of a g-chain gc = 〈g1, ..., gk, ...〉 is an ordered list of links
link(gi, gi+1), i ≥ 1, denoted by:

g − link(gc) = 〈link(g1, g2)/.../link(gi, gi+1)/...〉.

Definition 23 A g-link gc = 〈g1, ..., gk〉 is said to be a prefix of a g-link gs = 〈s1, ..., sn〉,
k ≤ n if link(gi, gi+1) is equal to link(si, si+1), ∀i, 0 ≤ i < k.

We also define a v-link as a link of a v-chain. We can see that if there exists a
variabilization vc of a g-chain gc = 〈g1, ..., gk〉 such that var(gc) = vc = 〈v1, ..., vk〉 then
g-link(gc) is equal to v-link(vc).

Example 24 The g-link of the g-chain gc1 = 〈P(a, b), R(b, c), S(c)〉 is: g-link(gc1) =
〈{P R 1 0 } / {R S 0 0}〉.

Obviously, we can see that the g-link of a g-chain:

gc2 ≡ g-chain(P(a, b)) = 〈P(a, b), R(b, c)〉

is g-link(gc2) = 〈{P R 1 0 }〉, which is a prefix of the g-link of gc1.

4.3.2 Propositionalization Method

The two main tasks in our first propositionalization method are the task of generating
a set of variable literals corresponding to the query predicate and the task of building
a boolean table corresponding to each query variable literal. The number of generated
variable literals affects the size of the boolean tables, therefore the performance of the
algorithm. In this section, we focus on a new technique to generate the set of variable
literals while using the same definition and strategies to create boolean tables as HDSM.

The problem is to generate a set SL of variable literals given a dataset DB and a
query predicate QP such that for each g-chain, g-chain(e) in DB, of a true ground atom
e of QP in DB, there exists a variablilization such that var(g-chain(e)) ⊆ SL. Our
first propositionalization method separates DB into distinct connected groups of ground
atoms from which to variabilize heuristically. The idea underlying in this second method
is to variabilize by detecting regularities of ground atoms, based on the observation that
relational data usually contains regularities. As a consequence, it is reasonable to expect
that many g-chains (starting from several ground atoms) are similar, and could thus be
variabilized by a single v-chain vc (i.e. v-link(vc) similarly to every g-link of some g-chain).
In this case, only a set of variable literals appearing in vc has to be stored into the set
SL. Moreover, if a g-link of a g-chain(e) is a prefix of another one which has already been
processed, there exists at least a v-chain vc, with its variable literals in SL, such that
g-link(g-chain(e)) is a prefix of vc. This g-chain(e) is thus no longer to be considered for
variabilizing. The task is now to variabilize such sets of similar g-chains to get a set of
v-chains from which to achieve a set SL of variable literals.

70 Chapter 4. Learning MLN Structure Based on Propositionalization

Let us recall that a g-chain is also a connected clause, hence each g-chain(e) starting
from e could be variabilized to produce a candidate clause. Unfortunately, there are a
lot of candidate clauses like that, and learning the final MLN would be very complex.
The set of v-chains achieved by variabilizing sets of similar g-chains could also be used
as the set of candidate clauses, but this set remains very large and a v-chain may not
be a good candidate, mainly if its variable literals are not statistically dependent. In
order to generate less candidate clauses, we aim at using the variabilization process to
create a minimum set SL of variable literals. During the process of variabilization when
forming v-chains, we try to reuse as many variables and variable literals as possible that
have been previously introduced in order to reduce the number of variable literals, and
thus to reduce the search space and time-consumption for the next steps. It is noted
that this method variabilizes g-chains that are completely different from the first one that
variabilizes distinct connected groups of ground atoms.

Algorithm 7: Generating a set of variable literals (DB, QP)
Input : DB: a training database;

QP: a query predicates;
Output: SL: a set of variable literals;

// Initialization

A maximum number of used variables maxV ar = 0 ;1

Every constant is not variabilized mapV ar[ci] = 0, 1 ≤ i ≤ mc, where mc is the2

number of constants in DB;
A set of g-links SOGL = ∅ ;3

// variabilization

for each true ground atom tga of QP do4

for every g-chain(tga) do5

if CheckLinkOf(g-chain(tga), SOGL) then6

SOGL←− g-link(g-chain(tga)) ;7

SL←− variabilize(g-chain(tga),maxV ar,mapV ar) ;8

end9

end10

end11

Return(SL);12

Algorithm 7 sketches our idea to build the set SL of variable literals given the learning
dataset DB and the query predicate QP. The algorithm considers each true ground atom
tga of the query predicate QP (line 4) and finds every g-chain(tga) (line 5). Function
CheckLinkOf(g-chain(tga)) (line 6) performs two operations. It first creates a g-link gl
= g-link(g-chain(tga)) then checks whether gl is already in the set SOGL containing all
already built g-links (which is really the set of v-links after variabilizing). Variabilization
will occur only if gl does not appear in the set SOGL (line 8). By using the set SOGL of
g-links instead of g-chains we can reduce the needed memory bacause there are a lot of
g-chains sharing a similar g-link. By checking whether gl is in SOGL, we can remove a
lot of g-chains (with g-link was already kept) and thus accelerate the process of finding g-
chains. Regarding the variabilization problem, we use the simple variabilization strategy to

4.3. The DMSP Algorithm 71

variabilize each g-chain(tga) ensuring that different constants in this g-chain are replaced
by different variables. In more details, to variabilize a g-chain(tga), the algorithm uses the
same variable literal for the starting true ground atom tga, and for the remaining ones a
new variable is only assigned to the constants that have not previously been assigned a
variable. Algorithm 8 describes gradually this step.

Algorithm 8: Variabilizing(g-chain(tga), maxVar, mapVar)
Input : g − chain(tga) = 〈g1(t11, ..., t1m1

), ..., gk(t
k
1, ..., t

k
mk

)〉 is a g-chain starting
from the true ground atom tga, where timj

is the constant at position mj

of the ground atom gi;
maxVar: the maximum number of variables used;
mapVar: A list that maps constants to variables where mapVar[c] = -v
implies that a constant c is replaced by a variable -v;

Output: SL: a set of variable literals;

// variabilize the first ground atom

for (i = 1; i ≤ m1; i++) do1

if (∃j, 1 ≤ j < i such that t1i == t1j) then2

mapV ar[t1i] = mapV ar[t1j];3

else4

maxV ar ++ ;5

mapV ar[t1i] = −maxV ar;6

end7

end8

// variabilize the remainders

for (i = 2; i ≤ k; i++) do9

for (j = 1; j ≤ mi; j ++) do10

if (mapV ar[tij] == 0) then11

maxV ar ++;12

mapV ar[tij] = −maxV ar;13

end14

end15

end16

// Replace constants by variables

θ =< t11/mapV ar[t11], ..., t
i
j/mapV ar[tij], ..., t

k
mk

/mapV ar[tkmk
] >;17

v − chain = g − chaink(tga)θ;18

Return(v-chain, maxVar, mapVar);19

We detail how to variabilize a g-chain in particular and illustrate step by step the
process of generating literals through Example 25 below:

Example 25 Let DB be a database composed of 15 ground atoms as follows:

advisedBy(Bart, Ada), student(Bart), professor(Ada), publication(T1,Bart),
publication(T2, Bart), publication(T1, Ada), publication(T2, Ada), advisedBy(Betty,
Alan), advisedBy(Bob, Alan), student(Betty), professor(Alan), publication(T3,Betty),

publication(T4, Bob), publication(T4, Alan), publication(T5, Alan).

72 Chapter 4. Learning MLN Structure Based on Propositionalization

Figure 4.4: Example of g-chains in DMSP

Let QP={advisedBy}, maxLength = 4. Figure 4.4 shows all possible g-chains of true
ground atoms advisedBy(Bart, Ada), advisedBy(Betty, Alan) and advisedBy(Bob, Alan).
Figure 4.5 exhibits all g-links of the corresponding g-chains shown in Figure 4.4 and Figure
4.6 gives the variable literals according to the process of variabilization. Corresponding to
every g-chain, function CheckLinkOf (line 6 in Algorithm 7) creates a g-link. At the begin-
ning, the g-link {advisedBy student 1 1} corresponding to the g-chain {advisedBy(Bart,
Ada) student(Bart)} is created. It is the first g-chain, therefore the g-link is added into a
set SOGL of g-links and the g-chain {advisedBy(Bart, Ada) student(Bart)} is variabilized
to get the set of variable literals SL = {advisedBy(A, B), student(A)}, where A and B are
variables respectively for the two constants Bart and Ada.

The algorithm next takes into account the g-chain:

{advisedBy(Bart, Ada), publication(T1, Bart), publication(T1, Ada), professor(Ada)}

and creates a g-link:

gl=〈{advisedBy publication 1 2} / {publication publication 1 1} / {publication professor
2 1}〉.

Because gl is not in the set SOGL, gl is added into SOGL and the g-chain is variabilized
to get the set of variable literals:

4.3. The DMSP Algorithm 73

Figure 4.5: Example of g-links in DMSP

Figure 4.6: Example of the variabilization in DMSP

74 Chapter 4. Learning MLN Structure Based on Propositionalization

SL={advisedBy(A, B), student(A), publication(C, A), publication(C, B), professor(B)}.

Considering then the g-chain:

{advisedBy(Bart, Ada) publication(T2, Bart) publication(T2, Ada) professor(Ada)},

the algorithm also creates the g-link:

gl1=〈{advisedBy publication 1 2} / {publication publication 1 1} / {publication
professor 2 1}〉,

but gl1 is already present in the set of g-links (gl1 and gl are identical), therefore variabiliz-
ing for g-chain is not useful. The three stars sign (***) displayed in Figure 4.6 means that
there is no new variabilization for the corresponding g-chain. As we can see from Figure
4.6, this situation occurs quite frequently in this example database. It must be noticed that,
in the case of the g-chain:

{advisedBy(Betty, Alan) publication(T3, Betty)},

the corresponding g-link:

〈{advisedBy publication 1 2}〉

is included as a prefix of a g-link and thus the algorithm also does not variabilize this
g-chain.

Let us consider now the g-chain:

{advisedBy(Betty, Alan) advisedBy(Bob, Alan) publication(T4,Bob) publication(T4,
Alan)}.

The algorithm creates the g-link:

gl2=〈{advisedBy advisedByBy 2 2} / {advisedBy publication 1 2} / {publication
publication 1 1 }〉.

This g-link is then variabilized because gl2 has not yet occurred in the set of g-links. At the
beginning of the variabilization step, the variable literal advisedBy(A, B) is reused to map
the starting ground atom advisedBy(Betty, Alan) (as we mentioned before, the algorithm
uses the same variable literal for all starting true ground atoms of the query predicate),
hence two constants Betty and Alan are respectively mapped to two variables A and B. The
two constants Bob and T4 are new constants to be considered, thus they are respectively
assigned to two new variables E and F. After this process, three new variable literals were
created. They are advisedBy(E, B), publication(F, E) and publication(F, B).

Having repeated this process until the last true ground atom of the query predicate
advisedBy, algorithm 7 produces a set of 11 variable literals as follows:

SL={advisedBy(A, B), student(A), publication(C, A), publication(C, B), professor(B),
publication(D, B), publication(D, A), advisedBy(E, B), publication(F, E),

publication(F, B), student(E)}.

We end this subsection by introducing the following lemma and an example to compare
to our first method.

4.3. The DMSP Algorithm 75

Lemma 26 The set SL of variable literals created by Algorithm 7 is the minimum set
such that for each ground atom e of the query predicate QP, for each g-chain(e), there
always exists at least a variabilization: var(g-chain(e)) ⊆ SL.

Proof Assume that the set SL of variable literals created by Algorithm 7 is not the
minimum set. This means that there is a variable literal vl ∈ SL such that: for each true
ground atom e, for each g-chaink(e), there always exists at least a variabilization var(g-
chain(e)) ⊆ SL\vl. Following the process of variabilization in Algorithm 7, there exists at
least some g-chain(e) such that it is variabilized and vl ∈ var(g-chain(e)). The positions
of variable literals appearing in var(g-chain(e)) are fixed. Besides, different variables in
var(g-chain(e)) map to different constants in g-chain(e), therefore vl can not be replaced
by the other element in the set SL, so that we cannot remove the variable literal vl from
the set SL. Hence, the set SL is the minimum set. �

In many situations the method in HDSM creates much more variable literals than this
one. We illustrate this remark by the following example.

Example 27 Let us consider a database of four ground atoms as follows:

advisedBy(Bob, Alan), advisedBy(Betty, Alan), publication(T1, Betty), publication(T2,
Betty), publication(T3, Betty).

Let advisedBy be the query predicate. Figure 4.7 shows the two methods of variabiliza-
tion implemented in DMSP and HDSM respectively. While the method in HDSM creates
5 variable literals:

SLHDSM ={advisedBy(A, B), advisedBy(C, B), publication(D, C), publication(E, C),
publication(F, C)},

the method in DMSP only produces 3 variable literals:

SLDMSP ={advisedBy(A, B), advisedBy(C, B), publication(D, C)}.

The different sets of generated variable literals lead to different boolean tables hence
to different results of the next steps of our approaches. For example, a boolean table
corresponding to the variable literal advisedBy(A, B) in HDSM has 5 columns and the
one in DMSP has 3 columns (in this case, they both use all variable literals). As the set
of variable literals created by this method is smaller than the one in HDSM, the boolean
tables are created faster also.

4.3.3 Structure of DMSP

We have as input a database DB defining positive or negative examples, a query predicate
QP and an initial MLN (that can be empty). DMSP aims at learning a MLN that correctly
discriminates between true and false groundings of the query predicate QP. As mentioned
above, DMSP implements this new propositionalization method, modifies the way to create
candidate clauses and changes the order of candidate clauses to learn the final MLN while
using a structure similar to the one in HDSM (see in Subsection 4.2.5.1). In the following,
we concentrate on explaining the way to generate candidate clauses and to learn the final
MLN in DMSP.

76 Chapter 4. Learning MLN Structure Based on Propositionalization

Figure 4.7: Example of the variabilization processes in DMSP and HDSM

4.3. The DMSP Algorithm 77

4.3.3.1 Creating Candidate Clauses

Candidate clauses are created from template clauses in both these two methods by flipping
the signs of variable literals. In HDSM, template clauses are created from every query
variable literal LQP and its corresponding Markov blanket MB(LQP). The Markov blan-
ket of each corresponding query variable literal is found by applying the GSMN algorithm
on the corresponding boolean table (created in the step of performing propositionaliza-
tion). If a variable literal Y is in MB(LQP), the GSMN guarantees that the query variable
literals LQP is also in MB(Y). Generating candidate clauses this way therefore might miss
some good clauses because a real-world is often incomplete and our propositionalization
method is a kind of reduction that affects the quality of boolean tables, and then the result
of GSMN. We proposed in DMSP to use only the χ2-test in order to find only a set of
dependent variable literals for each query variable literal LQP , from which more template
clauses are generated.

4.3.3.2 Learning the Final MLN

DMSP also considers candidate clauses in turn to determine if they are added into the
final MLN. However, instead of using the decreasing order of gain as in HDSM, DMSP
uses two criteria: first an increasing number of literals per clause and then a decreasing
CLL. DMSP also uses in addition an operation to replace clauses.

In details, candidate clauses are sorted by increasing number of literals. Candidate
clauses having the same number of literals are sorted by decreasing CLL. DMSP then
considers candidate clauses in turn. For each candidate clause c, it learns the weights for
a MLN composed of the initial MLN plus the clauses kept at the previous iterations and c.
If the CLL of the MLN improves, c is kept. If c is not accepted and if there exists a clause
pc in the current structure such that there exists a variable renaming θ, pcθ ⊆ c, DMSP
checks if replacing pc by c improves the CLL. If it does, pc is replaced by c. Finally, as
adding a clause into a MLN might drop down the weight of clauses added before, once all
the clauses have been considered, DMSP tries to prune some clauses of the MLN, as was
done in [Kok & Domingos 2005].

4.3.4 Evaluating DMSP

4.3.4.1 Systems, Datasets and Methodology

DMSP is implemented over the Alchemy package [Kok et al. 2009]. We conducted
experiments to compare DMSP to the state-of-the-art discriminative systems HDSM
[Dinh et al. 2010a] and the state-of-the-art generative systems ILS [Biba et al. 2008b], and
to BUSL [Kok & Domingos 2005] to find out whether boolean tables respectively created
by BUSL or DMSP are better.

In order to compare to BUSL, we implemented a version of DMSP, called DMSP-W,
that does only differ from BUSL in the step of building boolean tables. This means that
DMSP-W also involves the L-BFGS algorithm to set weights, using the WPLL measure
to choose clauses and the GSMN algorithm to find neighbors for each query variable
literal, creating template clauses from every clique and considering all possible clauses of
a template clause. This allows to assess directly the quality of the boolean tables created
by BUSL and our method respectively.

78 Chapter 4. Learning MLN Structure Based on Propositionalization

We also used the three datasets IMDB, UW-CSE and CORA and the same settings
that were used to evaluate HDSM (Section 4.2.6.1).

4.3.4.2 Results

Table 4.7 presents the average CLL and AUC-PR measures for the learning predicates over
the different test folds, obtained for all the considered algorithms on the three datasets.
Table 4.8 reports the average runtimes over train folds for the datasets IMDB and UW-
CSE, over four learning predicates for the dataset CORA.

First, comparing DMSP to HDSM, we can notice that DMSP performs better both in
terms of CLL and AUC-PR for all predicates and for all datasets. Since CLL measures
the quality of the probability predictions output by the algorithm, our algorithm outper-
forms this state-of-the-art discriminative algorithm from the point of view of predicting
correctly the query predicates given evidences. Since AUC-PR is useful to predict the few
positives in data, we can conclude that DMSP enhances the ability of predicting the few
positives in data. The better results of DMSP also shows that these techniques applied in
DMSP are more suitable for the task of discriminative MLN structure learning than the
ones implemented in HDSM, especially the new propositionalization method affects a big
improvement of runtime.

Second, let us consider now DMSP and ILS. DMSP gets better values in both CLL
and AUC-PR measures for all predicates and all datasets. This is the interest of DMSP
compared to the state-of-the-art generative structure learning for MLNs.

Third, we compare DMSP-W to BUSL. DMSP-W highly improves CLL values and
always gets better AUC-PR values. Because the main difference between DMSP-W and
BUSL lies in the boolean tables, we can conclude that the boolean tables created by DMSP
seem more suitable for the task of discriminative MLN structure learning than the ones
created by BUSL.

Let us finally consider the algorithms all together. For all three datasets, DMSP
obtains the best CLL and AUC-PR values. It must be noted that this result holds not
only on average but also on every test fold of all datasets. The differences between DMSP
and HDSM cause the much better results, not only in CLL and AUC-PR measure, but
also in runtimes. Indeed, DMSP improves runtime approximately 60% on IMDB, 38% on
UW-CSE and 38% on CORA. However, as a counterpart, DMSP still runs really slower
than ILS. The runtime (of each system) includes the time to find candidate clauses, the
time to learn weights for each candidate clause and the time to choose clauses for the final
MLN. In practice we notice that the time spent to find candidate clauses is much less
important than the time to learn weights and the time spent by inference to compute the
measure (i.e. CLL). To set weights for clauses, all the systems use the L-BFGS algorithm,
and thus the runtime depends on the performance of this weight learning algorithm. BUSL
and DMSP change completely the MLN at each step, thus learning weights with L-BFGS
is very expensive. This problem is not encountered in ILS because at each step L-BFGS
is initialized with the current weights (and with a weight equal to 0 for a new clause) and
it converges within a few iterations [Biba et al. 2008b].

4.3. The DMSP Algorithm 79

C
L
L

A
lg

or
it

hm
s

D
at

as
et

s
P

re
di

ca
te

s
D

M
SP

D
M

SP
-W

H
D

SM
IL

S
B

U
SL

IM
D

B
W

or
ke

dU
nd

er
-0

.0
22
±

0.
00

7
-0

.0
32
±

0.
00

9
-0

.0
28
±

0.
00

8
-0

.0
36
±

0.
00

6
-0

.2
25
±

0.
01

1
U

W
-C

SE
A

dv
is

ed
B

y
-0

.0
16
±

0.
00

6
-0

.0
27
±

0.
00

8
-0

.0
25
±

0.
01

0
-0

.0
31
±

0.
00

5
-0

.0
44
±

0.
00

6

C
O

R
A

Sa
m

eB
ib

-0
.1

36
±

0.
00

6
-0

.1
51
±

0.
00

9
-0

.1
40
±

0.
01

1
-0

.1
73
±

0.
00

5
-0

.3
25
±

0.
00

9
Sa

m
eT

it
le

-0
.0

85
±

0.
00

9
-0

.1
21
±

0.
00

7
-0

.1
08
±

0.
01

0
-0

.1
44
±

0.
00

9
-0

.2
84
±

0.
00

9
Sa

m
eA

ut
ho

r
-0

.1
32
±

0.
00

8
-0

.1
70
±

0.
00

6
-0

.1
46
±

0.
00

9
-0

.2
34
±

0.
00

7
-0

.3
56
±

0.
00

8
Sa

m
eV

en
ue

-0
.1

09
±

0.
00

7
-0

.1
21
±

0.
00

7
-0

.1
15
±

0.
01

1
-0

.1
45
±

0.
00

6
-0

.3
83
±

0.
01

0

A
U

C
-P

R
A

lg
or

it
hm

s
D

at
as

et
s

P
re

di
ca

te
s

D
M

SP
D

M
SP

-W
H

D
SM

IL
S

B
U

SL
IM

D
B

W
or

ke
dU

nd
er

0.
38

2
0.

31
5

0.
32

5
0.

31
2

0.
12

9
U

W
-C

SE
A

dv
is

ed
B

y
0.

26
4

0.
21

6
0.

23
0

0.
18

7
0.

20
4

C
O

R
A

Sa
m

eB
ib

0.
54

0
0.

40
0

0.
48

0
0.

34
6

0.
22

9
Sa

m
eT

it
le

0.
62

4
0.

42
1

0.
49

8
0.

41
5

0.
41

8
Sa

m
eA

ut
ho

r
0.

61
9

0.
41

0
0.

59
4

0.
36

9
0.

34
7

Sa
m

eV
en

ue
0.

47
5

0.
32

8
0.

34
2

0.
42

7
0.

27
6

T
ab

le
4.

7:
C

LL
,A

U
C

-P
R

m
ea

su
re

s

80 Chapter 4. Learning MLN Structure Based on Propositionalization

Datasets DMSP DMSP-W HDSM ILS BUSL
IMDB 0.40 0.40 1.09 0.34 0.38
UW-CSE 5.76 6.74 9.30 2.28 8.05
CORA 31.05 33.37 50.15 28.83 34.52

Table 4.8: Runtimes(hours)

4.4 Related Works

Our methods presented in this chapter (HGSM, HDSM and DMSP) share a similar
framework in which the algorithms start from the training database to generate can-
didate clauses. This transformation is data driven in order to limit the search space
to generate candidate clauses. Concerning Inductive Logic Programming, these meth-
ods are related to bottom ILP algorithms [Lavrac & Dzeroski 1994], such as GOLEM
[Muggleton & Feng 1990] and LOGAN-H [Arias et al. 2007], which also use training data
to propose candidate clauses. This is in contrast with top-down ILP algorithms, which use
training data to evaluate candidate clauses only. Our methods are also related to hybrid
top-down/bottom-up ILP algorithms, such as CHILLIN [Zelle et al. 1994] and the method
in PROGOL [Muggleton 1995], which aim at exploiting the strengths of both top-down
and bottom-up techniques while avoiding their weaknesses (see in Section 2.3).

Concerning SRL, our methods are related to the growing amount of research on learn-
ing statistical relational models [Getoor & Taskar 2007]. Regarding particularly MLN
structure learning, however, in contrast to the top-down strategy followed by most exist-
ing learners, our methods perform in a more bottom-up way. As far as we know, there are
only the BUSL algorithm [Mihalkova & Mooney 2007] and more recently the LHL algo-
rithm [Kok & Domingos 2009] that are also implemented in a bottom-up strategy. LHL
lifts the training database into a lifted-graph, each node corresponding to a set of constants
and each edge corresponding to a predicate, from which to find paths in the graph in order
to generate candidate clauses. The outline of our method, at a first glance, is similar to
BUSL. Nevertheless, they differ deeply in all three steps: the way propositionalization is
performed, the way to build the set of candidate clauses and the way to put clauses into
the final MLN:

• Propositionalization: The boolean tables respectively constructed by BUSL,
HGSM and DMSP are different in the meaning of columns, hence in the mean-
ing of values of entries. Each column in the boolean table MP of BUSL corresponds
to a TNode which can be either a single variable literal or a conjunction of several
variable literals, while each column in the boolean table BT of HGSM and DMSP
only corresponds to a single variable literal. For instance, starting from the ground
atom student(a), knowing advisedBy(b, a) and then publication(t, b), BUSL would
produce three TNodes t1 = {student(A)}, t2 = {advisedBy(B, A)} and t3 = {ad-
visedBy(C, A), publication(D, C)}, while HGSM and DMSP would produce three
separated variable literals l1 = {student(A)}, l2 = advisedBy(B, A) and l3 = publi-
cation(T, B). The number of TNodes in BUSL can be very large, depending on the
number of atoms allowed per TNode, the size of the database and the links existing
between ground atoms. On the contrary, HGSM and DMSP produce just a set of

4.5. Summary 81

variable literals, that is sufficient to reflect all possible links between ground atoms.
For the r-th ground atom of the target predicate, MP[r][t] = true if and only if the
conjunction of the set of variable literals in t is true, while BT[r][l] = true if there
exists at least a linked-path of ground atoms starting from the r-th true ground atom
and containing a true ground atom of l. These differences influence the performance
when applying the GSMN algorithm or the χ2-test.

• Building candidate clauses: BUSL uses the GSMN algorithm to determine edges
amongst TNodes and composes candidate clauses from cliques of TNodes. HGSM
uses just the Markov blanket of the considered variable literal and DMSP uses just
the χ2-test in order to get a little more clauses. Moreover, candidate clauses in BUSL
must contain all the literals appearing in a TNode, meaning that, concerning our
example, both advisedBy(C, A) and publication(D, C) of TNode t3 occur together
in the clause. This might not be flexible enough as it might occur that a relevant
clause contains only one of these two literals.

• Adding clauses into the final MLN: For each clique, BUSL creates all possible
candidate clauses, then removes duplicated clauses and finally considers them one-
by-one to put into the MLN. HGSM just keeps at most one clause per template clause
in the set of candidate clauses. We can also notice a difference in the order clauses
are taken into account. BUSL and HGSM use a decreasing order to sort clauses while
DMSP uses two criteria: first an increasing number of literals per clause and then a
decreasing measure (i.e. CLL). The different orders lead to different structures.

4.5 Summary

We present in this chapter three methods for MLN structure learning: the HGSM algo-
rithm for generative MLN structure learning, HDSM and DMSP algorithms for discrim-
inative MLN structure learning. The basic idea of these methods is to perform a propo-
sitionalization in which information in the training dataset is transformed into boolean
tables, each column of which corresponds to a variable literal. A machine learning al-
gorithm is applied on these boolean tables in order to find relational variable literals.
Candidate clauses are then created from such sets of relational variable literals. The final
MLN is learned from the set of candidate clauses. Because these methods use the training
database to guide and limit the search for candidate clauses, they perform in a bottom-up
manner.

Our first technique of propositionalization is implemented in the HGSM algorithm:
the training dataset is separated into groups of connected ground atoms starting from a
true ground atom of the target predicate. A heuristic variabilization method is applied
on these groups of connected ground atoms, from the largest to the shortest one, in order
to build a set of variable literals. HGSM then transforms the information in the dataset
into boolean tables, each one corresponding to a variable literal of the target predicate,
from which GSMN (Grow-Shrink Markov Network) is applied to find a set of dependent
variable literals of this variable literal. Template clauses are created from every MB and
the corresponding target variable literal. Candidate clauses, generated from template
clauses, are considered in turn to add into the final MLN. L-BFGS algorithm is used to

82 Chapter 4. Learning MLN Structure Based on Propositionalization

set the weights and the WPLL measure to choose clauses.
The approach applied in HGSM is then adapted to discriminative MLN structure learn-

ing system HDSM. Instead of considering all predicates in the domain, HDSM only learns
for a single query predicate. HDSM uses the discriminative CLL measure to choose clauses
instead of the generative WPLL measure, in order to make the system more adapted to the
task of discriminative learning. The experimental results show that HDSM gives better
results than the state-of-the art discriminative systems for MLN structure learning.

Our second technique of propositionalization is implemented in the DMSP algorithm
for the task of learning discriminatively the MLN structure. The difference with the first
technique is the way to build a set of variable literals. This second technique can create a
set of variable literals much faster and more compactly than the first one based on the idea
that a lot of g-chains can be described by only a single v-chain. The algorithm, therefore,
first variabilizes a g-chain to generate a corresponding v-chain, which is then used as a
filter to ignore a lot of other g-chains. By this way, the set of variable literals is found
much faster and we also prove that it is the smallest set to describe relations related to the
query predicate in the database. DMSP relies only on the χ2-test of dependence instead
of the GSMN algorithm in order to generate a little more candidate clauses.

The different steps and components implemented in HGSM, HDSM and DMSP are
resumed in Table 4.9.

We end this chapter by giving the related works in ILP as well as in SRL. In particular,
we discuss in details the differences between our method and BUSL, a generative MLN
learning algorithm using also a propositionalization technique to find a set of candidate
clauses to learn the final MLN.

4.5. Summary 83

H
G

S
M

H
D

S
M

D
M

S
P

O
pt

im
iz

at
io

n
al

go
ri

th
m

G
en

er
at

iv
e:

W
P

LL
,L

-B
FG

S
D

is
cr

im
in

at
iv

e:
C

LL
,L

-B
FG

S
P

ro
po

si
ti

on
na

liz
at

io
n

F
ir

st
m

et
ho

d
Se

co
nd

m
et

ho
d

C
re

at
in

g
G

ro
w

-S
hr

in
k

M
ar

ko
v

N
et

w
or

k
(G

SM
N

)
χ
2
-t

es
t

te
m

pl
at

e
cl

au
se

s
M

ar
ko

v
bl

an
ke

t
D

ep
en

de
nt

lit
er

al
s

Le
ar

ni
ng

C
an

di
da

te
cl

au
se

s:
fli

p
th

e
si

gn
of

lit
er

al
s

fo
r

ea
ch

te
m

pl
at

e
cl

au
se

th
e

fin
al

M
LN

-
Le

ar
n

w
ei

gh
ts

fo
r

ea
ch

ca
nd

id
at

e
cl

au
se

-
C

ho
os

e
th

e
cl

au
se

w
it

h
th

e
be

st
sc

or
e

So
rt

ca
nd

id
at

e
cl

au
se

s
in

de
sc

en
di

ng
or

de
r

of
ga

in
,

So
rt

ca
nd

id
at

e
cl

au
se

s
by

de
cr

ea
si

ng
nu

m
be

r
th

en
te

st
an

d
ad

d
th

em
in

to
th

e
fin

al
M

LN
of

lit
er

al
s

th
en

by
de

cr
ea

si
ng

ga
in

R
ep

la
ce

su
b-

cl
au

se
s

P
ru

nn
in

g:
a

cl
au

se
is

re
m

ov
ed

fr
om

th
e

M
LN

if
it

s
w

ei
gh

t
is

le
ss

th
an

m
in

W
ei

gh
t

T
ab

le
4.

9:
A

sy
nt

he
ti

c
vi

ew
of

th
e

di
ffe

re
nt

st
ep

s
an

d
co

m
po

ne
nt

s
in

H
G

SM
,H

D
SM

an
d

D
M

SP

Chapter 5

Learning MLN Structure Based on
Graph of Predicates

Résumé: Dans ce chapitre nous introduisons la notion de Graphe des Prédicats pour
synthétiser les informations contenues dans le jeu de données en vue de l’apprentissage de
la structure d’un réseau logique de Markov. Les clauses candidates sont ensuite extraites
de ce graphe. Nous proposons tout d’abord la définition d’un Graphe des Prédicats, dont
chaque nœud correspond à un prédicat ou à sa négation, et chaque arête correspond
à un lien possible entre deux prédicats. Selon le but de l’apprentissage (génératif ou
discriminant), des étiquettes différentes sont associées aux arêtes. Dans ce Graphe des
Prédicats, une arête e est considérée comme une clause binaire bc et chaque arête incidente
à e est considérée comme une bonne direction pour prolonger cette clause. Par conséquent,
chaque chemin initié par une arête dans le graphe des prédicats est étendu progressivement
pour engendrer des clauses candidates plus longues et potentiellement meilleures. En
d’autres termes, nos méthodes utilisent une stratégie descendante pour limiter la recherche
des clauses candidates dans le graphe des prédicats, ce qui est beaucoup plus rapide qu’une
recherche exhaustive dans l’espace de clauses.

Nous avons mis en oeuvre les Graphes de Prédicats dans le cadre d’un premier sys-
tème appelé GSLP (Generative Structure Learning based on graph of Predicate) pour
l’apprentissage génératif de la structure d’un réseau logique de Markov. Lors des ex-
périmentations menées pour évaluer GSLP, nous avons détecté plusieurs limites, qui ont
été corrigées dans le système M-GSLP (Modified-GSLP). Nous avons enfin développé le
système DSLP pour l’apprentissage discriminant de la structure d’un réseau logique de
Markov. Les résultats d’expérimentation montrent que nos systèmes produisent des ré-
sultats meilleurs que les algorithmes de l’état-de-l’art, sur les jeux de données classiques.

Contents
5.1 Introduction . 86
5.2 The GSLP Algorithm . 87

5.2.1 Graph of Predicates in GSLP . 87
5.2.2 Structure of GSLP . 89
5.2.3 Experiments . 95

5.3 The Modified-GSLP Algorithm . 98
5.3.1 Graph of Predicates in M-GSLP . 100
5.3.2 Structure of M-GSLP . 100
5.3.3 Experiments . 105
5.3.4 Complexity of the M-GSLP Algorithm 106

86 Chapter 5. Learning MLN Structure Based on Graph of Predicates

5.4 The DSLP Algorithm . 110

5.4.1 Graph of Predicates in DSLP . 111

5.4.2 Structure of DSLP . 111

5.4.3 Experiments . 114

5.5 Related Works . 116

5.6 Summary . 117

5.1 Introduction

In Chapter 3 we described several recent Markov Logic Network structure learners:
MSL (MLNs Structure Learning) [Kok & Domingos 2005], BUSL (Bottom-Up Structure
Learning) [Mihalkova & Mooney 2007], ILS (Iterated Local Search) [Biba et al. 2008b],
LHL (Learning via Hypergraph Lifting) [Kok & Domingos 2009], LSM (Learning us-
ing Structural Motifs) [Kok & Domingos 2010] and MBN (Moralized Bayes Net)
[Khosravi et al. 2010] for generative MLN structure learning and the method of Huynh
and Mooney [Huynh & Mooney 2008] and ILS-DSL (Iterated Local Search for Discrim-
inative Structure Learning) [Biba et al. 2008a] for discriminative MLN structure learn-
ing. In Chapter 4 we presented our bottom-up, generate-and-test methods based on
propositionalization in Inductive Logic Programming [De Raedt et al. 2008], which are
HGSM (Heuristic Generative Structure learning for MLNs) [Dinh et al. 2010b] for gen-
erative learning and HDSM (Heuristic Discriminative Structure learning for MLNs)
[Dinh et al. 2010c] and DMSP (Discriminative MLN Structure learning based on Propo-
sitionalization) [Dinh et al. 2010a] for discriminative learning. In order to find candidate
clauses, most of these methods, more or less, reach the limitation of searching space.
Indeed, MSL, ILS, ILS-DSL and the method of [Huynh & Mooney 2008] explore in an
intensive way the space of clauses, generating a lot of useless candidate clauses. Using a
smaller space, methods such as BUSL, LHL, HGSM and DMSP search for paths of ground
atoms in the database. Despite this smaller space, searching is still computationally ex-
pensive when the database is large and there exists a lot of shared constants between
ground atoms.

In this chapter, we present a technique to represent compactly relational information
between shared ground atoms in the database, from which to perform an efficient search
of candidate clauses. Our idea comes from two observations; the basic concept of coverage
in Inductive Logic Programming (ILP) [De Raedt et al. 2008] and associations between
predicates in the domain:

• Coverage in ILP [De Raedt et al. 2008]: The concept of coverage is used to
measure how important a clause is in ILP, by which the more useful a connected
clause A1 ∨ ... ∨ An is, the larger the number of true instantiations in the database
it covers. We consider this concept from two points of view as follows:

– Relevant candidate clauses are mostly the ones that are frequent enough in
terms of true instantiations. Besides, if a connected formula is frequent, then
its connected sub-formulas are also at least as frequent as it (similar remarks

5.2. The GSLP Algorithm 87

serve as the basis of many well known strategies for frequent pattern mining).
Inversely, we can find first a frequent enough binary clause from which to expand
to longer clauses in terms of increasing true instantiations.

– It seems useless to consider connected clauses that do not correspond to any
instantiation in the database.

• Associations between predicates: associations between predicates constitute
a smaller model space than clauses and can thus be searched more efficiently
[Kersting & De Raedt 2007].

From these observations, we propose to construct a data structure that can store infor-
mation of both associations between predicates and frequencies of binary formulas, from
which to search for longer formulas. We thus propose first the definition of a Graph of
Predicates (GoP), which highlights the binary associations of predicates that share con-
stants in terms of frequency. We then propose an top-down, generate-and-test algorithm
to generate gradually candidate clauses starting from binary ones (i.e. formed of two
connected atoms). This means that 3-atom clauses can then be formed on the basis of
the frequent binary ones, 4-atom clauses on the basis of frequent 3-atom ones, and so on.
Having got the graph of predicates, we now transform the problem into finding such a set
of binary connected clauses Ai ∨Aj , from which the set of candidate clauses is gradually
extended.

Based on these ideas, a method for generative MLN structure learning is presented
in Subsection 5.2. During the experiment process, we realized that some points need to
be investigated further, therefore we have applied several modifications to this generative
method, that are described in Subsection 5.3. This idea is also developed for the task
of learning discriminatively a MLN structure. We depict this discriminative version in
Subsection 5.4.

5.2 The GSLP Algorithm

The first approach presented in this chapter called GSLP [Dinh et al. 2011a], which stands
for Generative Structure Learning based on graph of Predicates, an algorithm to learn
generatively the MLN structure from a training dataset DB and a background MLN (which
can be empty). The algorithm first constructs a graph of predicates from which to generate
and choose a set of candidate clauses.

5.2.1 Graph of Predicates in GSLP

Let us consider, in a domain D, a set P of m predicates {p1, ..., pm} and a database DB
consisting of true/false ground atoms of these m predicates.

Definition 28 A template atom of a predicate p is an expression p(type1, ... , typen),
where argument typei, 1 ≤ i ≤ n indicates the type of the i-th argument.

Definition 29 A link between two template atoms pi(ai1 , ..., aiq) and pj(aj1 , ..., ajk) is an
ordered list of pairs of positions u and v such that the types of arguments at position u

88 Chapter 5. Learning MLN Structure Based on Graph of Predicates

in pi and v in pj are identical. It is denoted by link(pi(ai1 , ..., aiq), pj(aj1 , ..., ajk)) = 〈u
v|...〉, where aiu = ajv , 1 ≤ u ≤ q, 1 ≤ v ≤ k.

The link between two predicates pi and pj, denoted by link(pi, pj), is the set of all
possible links between their template atoms pi(ai1 , ..., aiq) and pj(aj1 , ..., ajk).

When two template atoms do not share any type, there exists no link between them.

We emphasize that this definition is related to but more general than the Definition 10
(Subsection 4.2.1) of link between two ground atoms. A link between two ground atoms
depends on the shared constants between them, and might not exist if they do not any
shared constant. A link between two template atoms depends only the native types of
arguments in the domain.

Definition 30 A formula corresponding to a link(pi(ai1 , ..., aiq), pj(aj1 , ..., ajk)) = 〈si1
sj1| ...|sic sjc|〉 is a disjunction of literals pi(Vi1 , ..., Viq) ∨ pj(Vj1 , ..., Vjk)) where Vt, t =

i1, ..., iq, j1, ..., jk, are distinct variables except Visid
= Vjsjd

, 1 ≤ d ≤ c.

The definitions of link and formula corresponding to a link are naturally extended
to negation. For example, link(pi(ai1 , ..., aiq), !pj(aj1 , . . . , ajk)) is identical to the link
between pi(ai1 , ..., aiq) and pj(aj1 , ..., ajk): link(pi, !pj) ≡ link(pi, pj).

Example 31 We consider a domain consisting of two predicates AdvisedBy and Professor
respectively with two template atoms AdvisedBy(person, person) and Professor(person).
The argument (type) person appears at position 0 of Professor(person) and at positions
0 and 1 of AdvisedBy(person, person). Several possible links exist between them, as for
instance 〈0 0〉 and 〈0 1〉, and a possible formula corresponding to the latter one is Profes-
sor(A) ∨ AdvisedBy(B, A).

We also have link(AdvisedBy, AdvisedBy)= {〈0 0〉, 〈0 1〉, 〈1 0〉, 〈1 1〉, 〈0 0 | 1 0〉, 〈0
0 | 1 1〉, 〈0 1 | 1 0〉, 〈0 1 | 1 1〉}.

It must be noticed that several links are not considered here. For example, the link 〈0
0 | 1 1〉 leads to a formula composed of two similar literals. The link 〈1 0 | 0 1〉 is similar
to the link 〈0 1 | 1 0〉 because they are corresponded by similar formulas up to a variable
renaming. The link 〈1 1 | 0 0〉 is also similar to the link 〈0 0 | 1 1〉. The same remark
can be done for link(Professor, Professor) = 〈0 0〉, link(Professor, !Professor) = 〈0
0〉, etc.

Definition 32 Let DB be a database, P the set of m predicates {p1, ..., pm} occurring in
DB, and D the domain (set of constants). The undirected graph of predicates {p1, ..., pm}
(GoP) is a pair G=(V, E) composed of a set V of nodes (or vertices) together with a set
E of edges, where:

i. A node vi ∈ V corresponds to a predicate pi or its negation, |V | = 2× |P|

ii. If there exists a link link(pi, pj) between two template atoms of predicates pi and pj,
then there exists an edge between the corresponding nodes vi and vj, that is associated
with two labels: link-label, which is the link itself and num-label, which is the number
of true instantiations in the DB of the binary formula corresponding to this link.

iii. Each node vi ∈ V is associated with a weight, which is defined by: vi.weight =

k ∗
∑q

p=1 tip
q , where q is the number of edges incident to vi, tip is the num-label of the

p-th edge and k is a real adjustment coefficient.

5.2. The GSLP Algorithm 89

Figure 5.1: Example of graph of predicates in GSLP

Example 33 Figure 5.1 illustrates a GoP for the domain in Example 31. A possible link
between predicates Professor and AdvisedBy is link(Professor, AdvisedBy) = 〈0 1〉. If we
suppose that we have 2 true instantiations (in the database) of the formula corresponding
to this link, then we find an edge between Professor and AdvisedBy with link-label = 〈0 1〉
and num-label = 2. Inversely, we have link(AdvisedBy, Professor)= 〈1 0〉. When k = 1.0,
the weight of node AdvisedBy is AdvisedBy.weight = 1.0 × (23 + 24)/7 ' 6.714, if 23
and 24 are respectively the number of true instantiations of the formulas corresponding to
the links 〈0 0〉 and 〈1 1〉 (and if the others do not have any instantiation in the database).

5.2.2 Structure of GSLP

Given as input a training dataset DB consisting of ground atoms of predicates in the
domain, a background MLN (which is also an empty MLN) and an integer number
maxLength, describing the maximum length of clauses, we present here the GSLP al-
gorithm to learn generatively the Markov Logic Network structure. Algorithm 9 sketches
the main steps of GSLP.

In a MLN, a weight associated with a formula reflects how strong a constraint
is: the higher the weight, the greater the difference in log probability between a
world that satisfies the formula and one that does not, other things being equal
[Richardson & Domingos 2004, Richardson & Domingos 2006]. The weights of unit
clauses, composed of a single atom, roughly speaking, capture the marginal distribu-
tion of predicates, allowing longer clauses to focus on modeling predicate dependencies
[Richardson & Domingos 2006, Domingos et al. 2008a]. For this reason, adding all unit
clauses into the MLN is usually useful (line 3). This is also the first step of our algorithm
and we call this first MLN the unit MLN.

Next, GSLP creates a graph of predicates with all possible edges. This graph, however,
still contains a lot of edges. GSLP therefore eliminates some “less important” edges in order
to reduce the search space for clauses. Clauses are then generated by finding paths in the

90 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Algorithm 9: GSLP(DB, MLN, maxLength)
Input : DB: a training database;

MLN: an initial (empty) Markov Logic Network;
maxLength: a positive integer

Output: MLN: a final learned Markov Logic Network

// Initialize

A set of candidate clauses CC = ∅;1

A set of paths SP = ∅;2

// Learn unit clauses

Add all unit clauses into the MLN and learn weights(DB, MLN);3

// Create graph of predicates

Create graph G = (V, E) with all possible edges;4

Reduce edges of graph G = (V, E) ;5

// Generate candidate clauses and learn the MLN

for length=2 to maxLength do6

CC ←− CreateCandidateClauses(DB, G, CC, SP, length); // Alg. 107

AddCandidateClausesIntoMLNAndPrune(CC, MLN);8

end9

Return(MLN);10

reduced graph afterward valiabilizing them. A criterion of evaluation is used to describe
how important a clause is. Based on this criterion of evaluation, GSLP decides which
clause will be used to learn the final MLN as well as which edge is eliminated.

In the following, we describe how a clause is evaluated in Subsection 5.2.2.1, how edges
of the graph are eliminated in Subsection 5.2.2.2, how a set of candidate clauses is found
in Subsection 5.2.2.3 and how the final MLN is learned in Subsection 5.2.2.4.

5.2.2.1 Evaluating clauses

Before describing the algorithm, it is important to explain how a clause c is evaluated.
Because in a MLN, the importance of a clause is reflected by its weight, choosing clauses
according to the number of true instantiations they cover might not be always efficient. In
addition, counting this number also takes much time when the database is large and liter-
als have many groundings. Instead, we choose clauses based on their weight (c.weight) and
gain (c.gain). These two values are computed according to a temporary MLN composed
of the unit MLN plus c. The weights of this temporary MLN are then learned in order to
compute the performance measure (i.e. WPLL). The weight of c is its weight in this tem-
porary MLN. The gain of c is defined as: c.gain = newMea− unitMea, where newMea

and unitMea are respectively the measures of performance of the temporary MLN and of
the unit MLN. This reflects essentially the improvement of the measure implied by adding
c into the unit MLN. Although it requires more times than counting the number of true
instantiations, it is more suitable as it reflects how the score is improved when adding
it into the unit MLN. The current weight-learners in Alchemy [Kok et al. 2009] can also
learn weights for such a temporary MLN within an acceptable time. We consider c as a

5.2. The GSLP Algorithm 91

candidate clause when c.gain is greater than a given threshold minGain and |c.weight| is
greater than a given threshold minWeight where | | denotes the absolute value. Because
a negative-weighted clause is acceptable in a MLN, we use the absolute value of the weight
of a clause in order to be able to choose both positive and negative weighted clauses. This
differs from the evaluation for a clause implemented in HGSM.

5.2.2.2 Reducing the Number of Edges in the Graph of Predicates

GSLP first creates the graph of predicates with all possible edges (line 4). For each
predicate, the algorithm creates two nodes (corresponding to the predicate itself and its
negation), hence the graph has only 2×|P| nodes, where |P| is the number of predicates in
the domain. The number of edges incident to a node depends on the number of arguments
(of the corresponding predicate) and the relation amongst types of arguments of predicates
in the domain, but is usually not too large. The search space of paths in this graph is then
much smaller than the whole search space of paths of ground atoms, especially when the
database consists of a large number of predicates and there exists a lot of shared constants
amongst ground atoms in the database.

Every edge e of GoP is created corresponding to a possible link between two nodes.
We can see that e has a binary clause corresponding to its link. However, this graph with
all possible links between predicates might contain some edges whose num-labels are not
frequent in the database (possibly equal to zero). A binary clause Ai∨Aj corresponding to
such a link will not have a vital role in the formula A1∨...∨An because its appearance does
not raise much higher the number of true instantiations. A set of links ei,j = link(vi, vj),
such that ei,j .num-label is less than the minimum of vi.weight and vj .weight, is therefore
eliminated (line 5). This criteria guarantees that the algorithm only considers frequent
edges compared to the weights of their endpoints (the weight of nodes in the graph). This
process of reduction therefore leads to a more efficient search because the number of edges
of the GoP is remarkably reduced. The algorithm henceforth works completely on this
reduced GoP and we keep calling it the GoP instead of the reduced GoP for the sake of
simplicity.

5.2.2.3 Building a Set of Candidate Clauses

A clause is then generated from a path in the GoP. We would like to emphasize that,
although the number of edges in the graph is remarkably reduced, the search for all paths
(within a given length) in this GoP is still ineffective because it might also reach paths,
the gain of which is not good (i.e. is not greater than a given threshold minGain) w.r.t.
the database. In order to focus on the search for good paths, our algorithm lengthens
successively every binary clause to generate longer ones such that every clause that get
extended is good enough (i.e. its gain is greater than minGain and its absolute weight is
greater than a given threshold minWeight) (line 6-9). By this way, the search space for
longer clauses is reduced depending on the number of shorter candidate clauses discovered
in the previous step. At each step corresponding to the length of clauses (line 6), the
algorithm generates a set CC of same length-atoms candidate clauses (line 7), which is
provided to add into the final MLN and to generate clauses in the next step (line 8). We
next present in more details the way to generate clauses and discuss some advantages of

92 Chapter 5. Learning MLN Structure Based on Graph of Predicates

using such a set CC. Adding clauses from CC into the final MLN is depicted in Subsection
5.2.2.4.

Let us describe now the process of generating candidate clauses which is performed by
function CreateCandidateClauses(DB, G, CC, SP, length) in Algorithm 9. Algorithm 10
contains a pseudo-code of this process. GSLP extends gradually clauses, each step corre-
sponding to a given length; it involves this function in order to generate a set of length-atom
candidate clauses by adding one more atom to each clause in the given set CC of (length-
1)-atom clauses.

Initially, a set SCC of candidate clauses and a set SPG of the corresponding paths are
empty. In case length = 2, meaning that the algorithm has to find the set SCC of 2-atom
good clauses, it considers all edges in the GoP, for each of them, its corresponding formula
is evaluated (line 3-10). If this clause is good (regarding to its gain and its weight), it is
stored into the set SCC as a candidate clause and the corresponding path (consisting only
of this edge) is stored into the set SPG. For longer clauses, we extend from every path
p1, ..., pk (corresponding to some candidate clause) to get a longer path p1, ..., pk, pk+1 by
finding an edge connecting to at least one node in the set {p1, ..., pk} (line 11-25). This
process is repeated if we want to extend more than one edge from a given path. The longer
path is then also variabilized to create a longer clause c1. This clause c1 is then evaluated
to decide whether it becomes a candidate clause or not. It is considered as a candidate
clause only if its gain is greater than minGain and its absolute weight is greater than
minWeight. If the clause is considered as a candidate one then it and the corresponding
path p1, . . . pk+1 are respectively stored into the set SCC and SPG for the next length +
1 generation.

It must be noted that a longer clause c1 can also be extended directly from a shorter
clause c. However, there exists more than one path in the GoP corresponding to c;
from each of them we can reach a lot of longer paths, each of them corresponding to
a longer candidate clause. Therefore, extending from such corresponding paths of c is
time-consuming and not every longer path corresponds to a good candidate clause. To
overcome this issue, we keep the path corresponding to such a clause c, stored into a set
SP of paths. By this way, the algorithm only needs to consider every path in SP to
create longer clauses. Further, in Algorithm 10, we use cooperatively two sets holding
information for longer discovered clauses; a set SCC of candidate clauses and a set SPG

of paths in the GoP, which have a role as “catches” to filter clauses. Because a longer path
can be extended from more than one shorter path and several paths lead to a same clause
through the vriabilization process, this technique guarantees that corresponding to each
shorter candidate clause, every path is considered exactly once for extending and a longer
clause is evaluated exactly once also. Besides, we can also accelerate greedily the “speed”
of that system by setting an option to extend the top best candidate clauses instead of the
whole set of clauses in CC (i.e. the ones with the best gains), the search space therefore
is narrowed remarkably.

Let us consider now the process of variabilization. Most approaches often variabilize a
path of ground atoms by simply replacing constants by variables. We emphasize that, here,
we produce clauses from paths in the graph of predicates, i.e. a list of edges containing
only information of predicates and positions of shared arguments. There exists a lot of
clauses corresponding to this path, thus building all possible clauses is not reasonable: the
more clauses generated, the more time spent to evaluate them and to learn the final MLN.

5.2. The GSLP Algorithm 93

Algorithm 10: CreateCandidateClauses(DB, G, CC, SP, length)
Input : DB: a training database;

G(V, E): a graph of predicates;
CC: a set of (length-1)-atom clauses;
SP: a set of paths corresponding to clauses in CC;
length: a positive integer;

Output: CC: a set of new length-atom candidate clauses;
SP: a set of paths corresponding to clauses in CC;

// Initialize

A set of candidate clauses SCC = ∅;1

A set of paths SPG = ∅;2

// Create and evaluate new candidate clauses

if length==2 then3

foreach edge eij ∈ E do4

Evaluate(cij), cij is the binary clause corresponding to eij ;5

if (cij .gain > minGain) and (|cij .weight| > minWeight) then6

SCC ←− cij ;7

SPG←− the path of only eij ;8

end9

end10

else11

foreach path pc ∈ SP do // corresponding to a clause c ∈ CC12

SPC ←− SearchForPathInGraph(pc,G);13

foreach path p ∈ SPC, p /∈ SPG do14

tc←− V ariabilize(p);15

if tc /∈ SCC then16

Evaluate(tc);17

if (tc.gain > 0) and (|tc.weight| > minWeight) then18

SCC ←− tc ;19

SPG←− p;20

end21

end22

end23

end24

end25

// Return values

CC ←− SCC;26

SP ←− SPG;27

Return(CC, SP);28

94 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Algorithm 11: Variabilize(G, p)
Input : G = (V, E): a graph of predicate;

p = 〈e1.link-label, . . . , en.link-label〉, ei = (viq , vik) ∈ E, 1 ≤ i ≤ n;
Output: c: a clause is variabilized from the path p;

Initilization: check[i] = false, 1 ≤ i ≤ n ; // ei is not variabilized1

counter[v]←− number of times that v appears in p, ∀v ∈ V ;2

c←− variabilize some ei ∈ p s.t. counter[vq] = max1≤j≤n counter[vj], vq ∈ ei;3

while ∃ei ∈ p, !check[i] do4

if ∃ an endpoint viq ∈ ei s.t. the corresponding predicate of viq is already5

variabilized then
c←− variabilize ei starting from viq ;6

check[i] = true ; // ei has been variabilized7

end8

end9

Return(c);10

e1 advisedBy 〈0 0|1 0〉 !advisedBy
e2 professor 〈0 0〉 !advisedBy
e3 publication 〈1 0〉 student
e4 student 〈0 0〉 !advisedBy

Table 5.1: A path of four edges

We variabilize heuristically a path to generate only one connected clause. First, in order
to reduce the number of distinct variables in the clause, we handle the predicates in the
order of descending frequency in the path. For each predicate, we perform variabilization
for shared variables first, and then for unshared ones. An argument of a predicate is
variabilized by a new variable if its position does not appear in the link of any edge in the
path. This process is outlined in Algorithm 11.

Example 34 We variabilize a path p composed of four links {e1, e2, e3, e4} as in Ta-
ble 5.1. Following Algorithm 11, we have: counter[advisedBy] = 2, counter[!advisedBy]
= 3, counter[professor] = 1 and counter[student] = 2. The algorithm decides to start
from !advisedBy as it is the most frequent predicate in p (3 times). The node !advisedBy is
an endpoint of edge e1, hence the algorithm variabilizes this edge to generate two variable
literals !advisedBy(A, B) and advisedBy(A, A). During the first iteration, the algorithm
determines e2 and e4, that both have !advisedBy as an endpoint, to next variabilize to gen-
erate the variable literals professor(A) and student(A). Finally, it variabilizes e3 starting
from student (which was already variabilized in the previous iteration) to generate a vari-
able literal publication(C, A). At this time, the clause advisedBy(A,A) ∨ !advisedBy(A,
B) ∨ professor(A) ∨ student(A) ∨ publication(C, A) is returned as a variabilized clause
from the path p = {e1, e2, e3, e4}.

From a path p1, ..., pk corresponding to some clause ck, we find a path p1, ..., pk, pk+1,
then variabilize it to create a clause ck+1. If ck is a sub-clause of ck+1, ck is ignored.

5.2. The GSLP Algorithm 95

5.2.2.4 Learning the Final MLN

At each step, having a set of similar-length candidate clauses, our algorithm puts them
into the MLN in turn. This process is depicted in Algorithm 12. Before considering clauses
in turn, the set CC of similar-length candidate clauses is sorted in an descending order
of the gain of clauses. For each candidate clause c (line 2), the algorithm has to check
whether there exists some clause ci in the current MLN which is a sub-clause of c (the
length of ci is always less than the one of c) (line 3). If it is a sub-clause, the algorithm
involves a replacing operation to replace ci by c if this replacement causes an increase of
the measure (line 4). Otherwise it involves an adding-operation to add c into the MLN
if this addition causes an increase of the measure (line 6). The algorithm learns weights
for the candidate MLN consisting of either the current learned MLN and c for adding or
the current learned MLN (without ci) and c for replacing. The measure is then computed
for the candidate MLN. If there is an improvement of this measure, the candidate MLN
becomes the current learned MLN. As adding clauses into the MLN can influence the
weight of formerly added clauses, once all candidate clauses have been considered, we try
to prune some clauses from the MLN. A clause with a weight smaller than minWeight will
be removed from the MLN if this results in an increase of the measure. We can choose
to prune a single clause or several each time. Although this pruning-step takes times, the
more clauses to be eliminated, the faster the algorithm selects longer clauses, as the total
number of clauses in the MLn after this step is reduced.

Algorithm 12: AddCandidateClausesIntoMLNAndPrune(CC, MLN)
Input : CC: a set of candidate clauses;

MLN: current Markov Logic Network;
Output: MLN: current learned Markov Logic Network at this step;

Sort CC in an decreasing order of the gain of clauses;1

foreach clause c ∈ CC do2

if ∃ci ∈MLN such that ci is a sub-clause of c then3

ReplaceClause(ci, c, MLN) ; // Try to replace ci by c4

else5

AddClause(c, MLN) ; // Try to add c into the MLN6

end7

end8

Prune(MLN);9

Return(MLN);10

In comparison with the method to learn the final MLN in HGSM (Subsection 4.2.3.2)
this method differs in the order clauses are learned (each time considering clauses of the
same length in turn, from the smallest to the greatest, instead of whole clauses of all
length) and in performing the replacement operation in addition.

5.2.3 Experiments

We conducted experiments to evaluate the performance of GSLP compared to the recent
approaches for generative MLN structure learning.

96 Chapter 5. Learning MLN Structure Based on Graph of Predicates

CLL
Systems IMDB UW-CSE CORA
GSLP -0.160 ± 0.03 -0.053± 0.06 -0.059 ± 0.05
HGSM -0.183 ± 0.03 -0.103± 0.04 -0.087 ± 0.05
LSM -0.191 ± 0.02 -0.068± 0.07 -0.065 ± 0.02

AUC-PR
Systems IMDB UW-CSE CORA
GSLP 0.789 ± 0.06 0.502± 0.07 0.886 ± 0.07
HGSM 0.692 ± 0.07 0.311± 0.02 0.762 ± 0.06
LSM 0.714 ± 0.06 0.426± 0.07 0.803 ± 0.08

Table 5.2: CLL, AUC-PR measures

5.2.3.1 Systems, Datasets and Methodology

GSLP is implemented on top of the Alchemy package [Kok et al. 2009]. We compared it
to LSM (Learning using Structural Motifs) [Kok & Domingos 2010] and HGSM (Heuris-
tic Generative Structure learning for MLNs) [Dinh et al. 2010b], the two state-of-the-art
methods for generative MLN structure learning.

We also used the three datasets IMDB, UW-CSE, CORA, and the same methodology
to evaluate HGSM as the one described in Subsection 4.2.4.1.

Parameters for LSM and HGSM were respectively set as they were provided in
[Kok & Domingos 2010] and in [Dinh et al. 2010b]. We set the maximum number of lit-
erals per clause to 5 for all systems (maxLength = 5). In order to limit the search space
in GSLP, we set the coefficient of adjustment k = 1 for all tests and each time add one
predicate to a path. We limit the number of similar predicates in each clause to 3 in order
to use the weight learning algorithm in a reasonable time. We used minGain = 0 for all
tests and minWeight = 0.01 for the two datasets IMDB and UW-CSE and minWeight
= 0.001 for CORA as they were set in previous studies. For each test set, we ran each
system on a Dual-core AMD 2.4 GHz CPU - 4GB RAM machine.

5.2.3.2 Results

We report the CLL, AUC-PR measures in Table 5.2 and runtimes in Table 5.3 for all
approaches on all datasets. These are the average of CLLs, AUC-PRs and runtimes over
all test folds. It must be noticed that, while we used the same parameter setting, our results
do slightly differ once again from the ones in [Kok & Domingos 2010]. This comes from
the difference in the way weights are learned for the final MLN. We only learned once and
then performed inference on this MLN for every predicate. LSM relearned the weights
for each predicate to obtain the best possible results, and thereby performed inference
in a discriminative MLN for each predicate [Kok & Domingos 2010]. In particular, for
the CORA database, we learned for clauses with at most 5 predicates instead of 4 in
[Kok & Domingos 2010].

Comparing GSLP to HGSM and LSM, GSLP outperforms them in terms of both CLL
and AUC-PR. The improvement is not only on average values over test folds but also on

5.2. The GSLP Algorithm 97

IMDB UW-CSE CORA
GSLP 1.59 4.62 7.82
HGSM 3.06 8.68 64.15
LSM 1.23 2.88 6.05

Table 5.3: Runtimes (hours)

average values over predicates in each test fold. Since the CLL determines the quality of
the probability predictions output by the algorithms, GSLP improves the ability to predict
correctly the query predicates given evidence. Since AUC-PR is insensitive to the large
number of true negatives, GSLP enhances the ability to predict a few positives in the data.
GSLP also runs much faster than HGSM, especially for the Cora dataset. Although, it
performs a bit slower than LSM. LSM is based on a synthetic view of each dataset which is
called a lifted hyper-graph. These lifted hyper-graphs are all computed only once during
the preprocessing step and then directly used during the cross-validation phase, which is
thus much faster. GSLP is much faster than HGSM as it considers only good edges (edges
with a num-label greater than the threshold) and creates only one clause for each path.
It therefore explores a much smaller search space than HGSM does.

We report in Table 5.4 the average CLL, AUC-PR values for all predicates in the UW-
CSE dataset for the two algorithms GSLP and LSM. GSLP does not perform better than
LSM for every predicate. There are several predicates for that LSM gives better results
than GSLP. LSM performs impressively with predicates like SameCourse, SamePerson,
SameProject, the ground atoms of which are true if and only if their two arguments are
alike.

During the process of evaluation, beside these satisfying results, we have identified
some points which might be investigated further:

• Tuning the adjustment coefficient k has a clear impact on the resulting MLN. The
smaller k, the more edges considered, the larger the number of clauses in the MLN,
and finally, the better its WPLL. Nevertheless, while WPLL remains computable,
CLL, which requires inference, becomes intractable on current MLN softwares when
the number of clauses becomes too large. The balance between performance (in
terms of WPLL), tractability and time consumption will be an interesting point to
study.

• Generative learning produces a globally satisfying structure, but it appears that
the resulting prediction is much better for some predicates than for some others.
Understanding this variability and reducing it constitutes an exciting challenge.

• Among candidate clauses, there frequently exist some that only differ on their vari-
abilization. For instance, P (X,Y)∨Q(X,Y) and P (X,Y)∨Q(Y,X) compose evenly
from two predicates P and Q having different positions of variables X and Y. An
early detection and avoidance of such similar clauses should not affect the accuracy
of the MLN, and would improve runtimes.

98 Chapter 5. Learning MLN Structure Based on Graph of Predicates

GSLP LSM
Predicates CLL AUC-PR CLL AUC-PR
AdvisedBy -0.015 0.228 -0.020 0.010
CourseLevel -0.311 0.801 -0.321 0.581
HasPosition -0.057 0.821 -0.057 0.568
InPhase -0.092 0.449 -0.160 0.170
Professor -0.069 0.965 -0.084 1.000
ProjectMember -0.001 0.001 -0.001 0.0005
Publication -0.078 0.234 -0.130 0.037
SameCourse -0.009 0.921 -0.002 1.000
SamePerson -0.010 0.922 -0.002 1.000
SameProject -0.005 0.952 -0.001 1.000
Student -0.066 0.987 -0.141 0.961
Ta -0.008 0.025 -0.008 0.002
TempAdvisedBy -0.008 0.019 -0.008 0.006
YearsInProgram -0.004 0.187 -0.008 0.051
TaughtBy -0.059 0.014 -0.078 0.004
Average -0.053 0.502 -0.068 0.426

Table 5.4: Average measures for predicates in Uw-cse dataset

5.3 The Modified-GSLP Algorithm

As mentioned in the previous section, besides the satisfying experiment results, we identi-
fied also some limitations of GSLP. In this section, we first explain these limitations in more
details and then propose modifications to overcome these restrictions. We name this new
version of our algorithm M-GSLP [Dinh et al. 2011b], which stands for Modified-GSLP.

We overcame some limitations related to the measure used to score and choose clauses,
the way to reduce the number of edges of GoP, to build a set of candidate clauses and to
learn the final MLN as follows:

• Choosing clauses: GSLP evaluates a clause c by its weight and gain. If c.gain is
greater than a given threshold minGain and the absolute value of c.weight is greater
than a given threshold minWeight then c is considered as a candidate clause. The
set of some clauses with the same length is then sorted in the decreasing order of
gain. Clauses will be considered in turn for addition into the final MLN. According
to this order, it can happen that chosen clauses are the small weighted ones because
the algorithm takes into account the gain rather than the weight. In other words,
it causes an imbalance between the gain and weight while we do not know which
one is the most important; the weight reflects how important a clause is in a MLN,
the gain reflects its importance in terms of the measure (of a MLN given database).
To balance these two coefficients, we propose to use the product of them: c.mf =

|c.weight| × c.gain where | | denotes the absolute value, in order to estimate the
interest of c. Besides, in the process of choosing clauses, GSLP considers every good
clause at each iteration step, and this can lead to an explosion of the number of
candidate clauses at some step. This issue also relates to the way to build a set of

5.3. The Modified-GSLP Algorithm 99

candidate clauses. We present modifications to handle this problem in Subsection
5.3.2.1.

• Reducing the number of edges in the graph: GSLP considers only frequent
enough edges in terms of the number of true instantiations in the database of its
corresponding formula. In other words, it removes any edge, the num-label of which
is less than the minimum of the weights of its two endpoints. We remind that the
weight of a node vi in the GoP in GSLP is the product of the average value of num-
labels (of its incident edges) and an adjustment coefficient k: vi.weight = k∗

∑q
p=1 tip
q

where q is the number of incident edges to vi, tip is the num-label of the p-th edge
(see Definition 32). In some situations, this method does not treat fairly all edges.
For example, when among the edges connecting two nodes a and b, if there is an
edge having a num-label much greater than the other ones, the algorithm tends to
consider only this single edge and to remove all the others. Despite the fact that we
have used the coefficient k to control the number of chosen edges, choosing value for
this coefficient itself raises difficulty. In other words, it is difficult to find some value
of k which is homogeneous for all pairs of nodes in the graph. We define another
semantic of the num-label of edges in order to overpass this difficulty, as presented
in Subsection 5.3.1.

• Building a set of candidate clauses: GSLP extends gradually clauses starting
from binary ones. If a clause c has a weight greater than minWeight and a gain
greater than minGain, it is considered as a candidate clause and, simultaneously, it
is regarded as an input to generate longer clauses. However, by this method, there
are a lot of clauses generated from c and not all of them (despite their acceptable
weight and gain) are better than c. This means that a clause c1 (with acceptable
weight and gain) can be extended from c but adding it into the final MLN does
not lead to a better global measure than c. In addition, the higher the number of
such clauses c1, the more time needed to evaluate. Although we used an option to
choose several best candidate clauses, how to choose an effective number is also a
hard issue. We propose to consider only one such clause c1, which is better than c,
as the input for the next extension and a clause is regarded as a candidate clause
only when it reaches the limited length or we can not extend it to any better, longer
clause. We present this modification in Subsection 5.3.2.1.

• Learning the final MLN: GSLP considers a set of similar-length clauses in turn to
learn the final MLN at each step in relation to the length of clauses. This operation,
however, requires to learn weights many times and the MLN learned at each iteration
contains a set of clauses which are hard for inference to compute the CLL, or lead to
poor weight learning results (see Subsection 5.2.3.2). We change the approach by first
finding a set of clauses of any length, from which to learn the final MLN. Two criteria,
sub-clause and clauses of same predicates, are used in order to eliminate several less
important clauses hence accelerate the speed of the algorithm as well as to be able to
overcome the limitation of current built-in tools in Alchemy [Kok et al. 2009]. This
modification is described in Subsection 5.3.2.2.

100 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Figure 5.2: Example of graph of predicates in M-GSLP

5.3.1 Graph of Predicates in M-GSLP

We define a new semantic of the label num-label and eliminate the weight label for nodes
in the GoP implemented in GSLP as follows.

Definition 35 Let DB be a database, P be a set of m predicates {p1, ..., pm} occurring in
DB, and D the domain (set of constants). The undirected graph of predicates {p1, ..., pm}
(GoP) is a pair G=(V, E) composed of a set V of nodes (or vertices) together with a set
E of edges, where:

i. A node vi ∈ V corresponds to a predicate pi or its negation, |V | = 2× |P|

ii. If there exists a link between two template atoms of predicates pi (or !pi) and pj
(or !pj), then there exists an edge between the corresponding nodes vi and vj, that
is associated with two labels: link-label which is the link itself (e.g. <0 0>) and
num-label which is the measure of the binary formula corresponding to
this link.

Figure 5.2 illustrates a graph of predicates for the domain in Example 31. It differs
from the graph in Figure 5.1 in the meaning of the num-label of an edge and of the nodes
without weights. The num-label of an edge is now the measure of its formula corresponding
to its link-label, which is the product of the gain and of the absolute value of weight of
the formula.

5.3.2 Structure of M-GSLP

We present here the M-GSLP algorithm [Dinh et al. 2011b] for generative MLN structure
learning, a modified version of GSLP (described in Section 5.2.2). Algorithm 13 exposes
the main steps of M-GSLP.

5.3. The Modified-GSLP Algorithm 101

Algorithm 13: M-GSLP(DB, MLN, maxLength)
Input : DB: a training database;

MLN: an initial (empty) Markov Logic Network;
maxLength: a positive integer;

Output: MLN: the final learned Markov Logic Network;

// Initialize

A set of candidate clauses SAC = ∅;1

A set of candidate clauses in each iteration CC = ∅;2

A set SP = ∅ of paths corresponding to clauses in the set CC;3

// Learn unit clauses

Add all unit clauses to MLN and learn weights;4

// Create graph of predicates

Create graph G of predicates ;5

Reduce Edges of Graph (G, CC, SP) ;6

// Generate a set of candidate clauses

for length=2 to maxLength do7

SAC ←− CreateCandidateClauses(DB,G,CC, SP, length, SAC);8

end9

// Learn the final MLN

Eliminate several candidate clauses(SAC) ;10

Add candidate clauses into the MLN(SAC, MLN);11

Prune clauses out of the MLN;12

// Return values

Return(MLN);13

102 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Basically, M-GSLP differs from GSLP first in the definition of GoP hence in the reduced
GoP, then in the manner of building a set of candidate clauses and learning the final MLN.

Each edge of the graph corresponds to a binary clause bc corresponding to its link-label.
This clause bc is evaluated only when its number of true instantiations in the database
is greater than a given threshold noti (number of true instantiations). This guarantees
that the algorithm only spends time to evaluate good edges in terms of number of true
instantiations in the database to create the GoP. Such an edge corresponding to the
clause bc is then eliminated if the number of true instantiations of bc is less than noti or
the measure of frequency of bc is less than or equal to a given threshold mft (measure of
frequency). The number of edges of the GoP is thus remarkably reduced, leading to a
more efficient search (line 5-6). Compared to the reduced GoP in GSLP (in Subsection
9), this reduced GoP is more compact consisting of more useful edges in terms of both the
measure and the number of instantiations in the database. Based on this measure, the
algorithm also chooses more fairly edges than the one in GSLP.

Next, the algorithm generates a set of candidate clauses based on this reduced GoP
(line 7-9). As in GSLP, the idea is to lengthen successively every binary clause to generate
longer ones. The difference is that M-GSLP considers greedily an extended clause if it leads
to an improvement of measure in comparison to the clause to be extended. Once a clause
reaches a given length or does not lead to any longer and better clause (i.e. associated with
an improved WPLL), it is considered as a candidate clause. This is reasonable because
from a clause c, we always want to find a clause which is longer and better than c, therefore
there is no need to take into account any clause which is less than or even equal to c. This
modification speeds up the process of building candidate clauses, which is exposed in more
details in Subsection 5.3.2.1.

Having got a set SAC of candidate clauses, the algorithm next eliminates some clauses
(line 10) before adding them into the MLN in turn (line 11). Finally, it prunes some
clauses out of the final MLN (line 12). We present these steps in Subsection 5.3.2.2.

5.3.2.1 Building a Set of Candidate Clauses

Algorithm 14 generates at each step a set of 1-atom longer candidate clauses. The algo-
rithm uses the same variabilization method as in GSLP (Algorithm 11). Let SP be the
set of paths having the same length and CC be the set of candidate clauses. Initially, SP
and CC respectively contain all 1-length paths and binary clauses (in case of length = 2):
each pair of spi ∈ SP and cci ∈ CC corresponds to an edge ei of the reduced graph, where
spi is the path consisting of only the single link-label of ei and cci is the binary clause
corresponding to this spi. For longer paths, we extend every k-length path pk = p1, ..., pk
in SP to get a longer (k+1)-length path pk1 = p1, ..., pk, pk+1 by finding some edge pk+1

connected to at least one node in pk. It must be noted that by indexing the nodes of
the graph we can find quickly the set of (k+1)-length paths, since for a node p in pk we
only have to look for every edge pk+1 connecting p to its higher indexed node. In our
algorithm, each path is variabilized to form only one clause. Assume that ck and ck+1 are
respectively two variabilized clauses of paths pk and pk1. The clause ck+1 is evaluated to
check whether ck+1.mf is greater than ck.mf . If it is true, the path pk1 is stored into
the set SPG, ck+1 is stored into the set SCC for the next iteration, otherwise it is no
longer considered. If there does not exist any clause ck+1 extended from the path of ck

5.3. The Modified-GSLP Algorithm 103

such that ck+1.mf > ck.mf , the clause ck becomes a candidate clause stored into the set
SAC. At the last iteration, all maxLength-atom clauses in the set SCC are added into the
set SAC because as each of them reaches the maximum number of atoms, it thus becomes
a candidate clause.

5.3.2.2 Creating the Final MLN

Weights are learned using the standard L-BFGS algorithm maximizing the PLL. For infer-
ence, we use the MC-SAT algorithm [Richardson & Domingos 2006] as in previous studies.
However, the PLL parameters may lead to poor results when long chains of inference are
required [Domingos et al. 2008b]. To overcome this issue, we sort candidate clauses in
SAC in the decreasing order of measure of frequency and then we eliminate some of them
using two criteria as follows:

• Sub-clause: remove every clause SAC[j] when there exists a clause SAC[i], i < j

such that SAC[i] and SAC[j] have a sub-clause relation. In case len(SAC[i] <
len(SAC[j]) and there exists a sub-clause c of SAC[j] and a variable replacement θ

such that cθ ≡ SAC[i], we have a sub-clause relation between SAC[i] and SAC[j].
Note that all candidate clauses in SAC are already sorted in the descending order of
measure of frequency therefore if i < j then the measure of frequency of SAC[i] is
always greater than or equal to the one of SAC[j], we eliminate SAC[j] in case they
have a sub-clause relation.

Example 36 Les us consider the two clauses below:

c1 = advisedBy(A, B) ∨ !inPhase(A, C)
c2 = !hasPosition(A, B) ∨ advisedBy(C, A) ∨ !inPhase(C, D).

The clause c3 = advisedBy(C, A) ∨ !inPhase(C, D) is a sub-clause of c2. By a
variable replacement θ = 〈C|A,A|B,D|C〉, we have c3θ ≡ c1. In this case, c1 and
c2 have a sub-clause relation.

• Clauses of same predicates: We heuristically keep only one (with the maxi-
mum measure) of clauses composed of the same set of predicates. For example,
we choose only one of the 2 clauses (student(A) ∨ advisedBy(A,B), student(A) ∨
advisedBy(B,A)) consisting of the two predicates student and advisedBy.

Clauses in SAC are added into the MLN in turn. A candidate clause is put into the
MLN as long as it leads to an improvement of the performance measure (i.e. WPLL) of
the MLN learned before. As adding clauses into the MLN can influence the weight of
formerly added clauses, once all candidate clauses have been considered, we try to prune
some of the clauses from the MLN. We use a zero-mean on each weight in order to remove
clauses whose weights are less than a given threshold mw, as long as their elimination
causes an increase of the performance measure. This step is iterated until no clause can
be removed any more.

104 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Algorithm 14: CreateCandidateClauses(DB, G, CC, SP, length, SAC)
Input : DB: a training database;

G(V, E): a graph of predicates;
CC: a set of (length-1)-atom clauses;
SP: a set of paths corresponding to clauses in CC;
length: a positive integer;

Output: CC: a set of new length-atom candidate clauses;
SP: a set of paths corresponding to clauses in CC;
SAC: a set of candidate clauses for all length;

// Initialize

A set of candidate clauses SCC = ∅;1

A set of paths SPG = ∅;2

if length==2 then3

foreach edge eij ∈ E do4

SCC ←− cij , cij is the formula corresponding to eij ;5

SPG←− the path of only eij ;6

end7

else8

foreach path pc ∈ SP corresponding to a clause c ∈ CC do9

SPC ←− SearchForPathInGraph(pc,G);10

cHasALongerCandidate = false;11

foreach path p ∈ SPC, p /∈ SPG do12

tc←− V ariabilize(p);13

if tc /∈ SCC then14

Evaluate(tc);15

if tc.mf > c.mf then16

SCC ←− tc;17

SPG←− p;18

cHasALongerCandidate = true;19

end20

end21

end22

if cHasALongerCandidate == false then // c is a candidate23

SAC ←− c;24

end25

end26

end27

CC ←− SCC, SP ←− SPG;28

if length == maxLength then29

// put all maxLength-atom clauses of SCC into SAC

SAC ←− SCC;30

end31

Return(CC, SP, SAC);32

5.3. The Modified-GSLP Algorithm 105

Datasets ML1 ML2 MT1 MT2
Types 9 9 11 11
Constants 234 634 696 1122
Predicates 10 10 13 13
True atoms 3485 27134 5868 9058

Table 5.5: Details of datasets

5.3.3 Experiments

M-GSLP is also implemented over the Alchemy package [Kok et al. 2009]. We performed
experiments to estimate the performance of M-GSLP following three questions:

1 How does M-GSLP compare to the state of the art generative systems for MLN
structure learning?

2 How does M-GSLP improve compared to GSLP [Dinh et al. 2011a]?

3 Can we compare M-GSLP to a state of the art discriminative structure learning
system for specific predicates?

5.3.3.1 Systems, Datasets and Methodology

To answer question 1, we choose three state-of-the-art generative systems: LSM
[Kok & Domingos 2010], HGSM [Dinh et al. 2010b] and MBN [Khosravi et al. 2010]. For
question 2, we compare directly M-GSLP to GSLP. For question 3, we choose the state-
of-the-art Discriminative MLN Structure learning based on Propositionalization (DMSP)
(described in Section 4.3).

We used the three datasets IMDB, UW-CSE and CORA presented in Subsection 4.2.4.1
because they have been used to evaluate LSM, HGSM as well as DMSP. For each domain,
we performed a 5-fold cross-validation as in previous studies. Unfortunately, this approach
is not feasible for the current setting of MBN [Khosravi et al. 2010]. To be able to com-
pare to MBN, we used in addition two subsample datasets (ML1, ML2) of the MovieLens
database and two subsample datasets (MT1, MT2) of the Mutagenesis database. Movie-
Lens is available at the UC Irvine machine learning repository and Mutagenesis is widely
used in ILP research. MovieLens contains two entity tables and one relationship table.
The table User has 3 descriptive attributes age, gender and occupation. The table Item
represents information about the movies. Mutagenesis has two entity tables: Atom with 3
descriptive attributes and Mole with 5 descriptive attributes. For each of these subsample
datasets, we used each system to learn the MLN on 2/3 randomly selected atoms and
tested it on the remaining 1/3, as presented in [Khosravi et al. 2010]. Details of these
datasets are reported in Table 5.5.

To evaluate the performance of the systems, we used the same methodology for eval-
uating HDSM and GSLP (see in Subsection 4.2.4.1).

Parameters for LSM, HGSM and DMSP were respectively set as in the papers of
[Kok & Domingos 2010], [Dinh et al. 2010b] and [Dinh et al. 2010a]. We learned clauses
composed of 5 literals at most for all systems and limit the number of similar predicates

106 Chapter 5. Learning MLN Structure Based on Graph of Predicates

per clause to 3 in order to learn the weights in a reasonable time. We set nti = 0, mft =
0, mw = 0.001 and penalty = 0.001 for all domains. These parameters are chosen just to
estimate the performance of GSLP, we did not optimize them for any dataset yet. For each
test set, we ran each system on a Dual-core AMD 2.4 GHz CPU - 4GB RAM machine.

5.3.3.2 Results

Table 5.6 reports the average values of CLLs and AUC-PRs, and Table 5.7 reports the
runtime on each dataset. Higher numbers indicate better performance and NA indicates
that the system was not able to return a MLN, because of either crashing or timing out
after 3 days running. For MBN, we used the values published in [Khosravi et al. 2010].

For the largest dataset CORA, M-GSLP gives an increase of 16.9% on CLL and 10.5%
on AUC-PR compared to LSM and 37.9% on CLL and 16.4% on AUC-PR compared to
HGSM. It dominates MBN on CLL in the range of 20-30%. Improvement does not only
occur on average values over test folds but also on most of average values over predicates in
each test fold. M-GSLP runs much faster than HGSM, especially for CORA, but performs
a bit slower than LSM. We can answer to question 1 that GSLP performs better, on these
datasets, than the state-of-the art systems in terms of both CLL and AUC-PR.

Comparing M-GSLP to GSLP, M-GSLP gives better results than GSLP does for all
datasets on both CLL and AUC-PR measures, except on the AUC-PR of the UW-CSE
dataset where they are equal. M-GSLP not only produces better results than GSLP, but
it also runs much faster, with 72.95% on IMDB, 33.98% on UW-CSE, 14.07% on CORA,
39.19% on Movilens2, 46.45% on MUTAGENESIS1 and 32.19% on MUTAGENESIS2.
These improvements come from the modifications that we have done so far for M-GSLP.
This answers question 2.

However, at the predicate level, LSM and GSLP sometimes achieve better results than
M-GSLP. We provide the average CLLs, AUC-PRs for each predicate in a test-fold of the
UW-CSE dataset in Table 5.8.

Comparing M-GSLP to DMSP, we used DMSP to learn discriminatively a MLN
structure for predicates WorkedUnder (in the IMDB), Advisor (in the UW-CSE) and
SameBib, SameTitle, SameAuthor, SameVenue (in the CORA). These predicates have
been often used in previous studies for MLN discriminative learning [Dinh et al. 2010a],
[Biba et al. 2008a]. Table 5.9 exposes the average CLL, AUC-PR values on those pred-
icates over all test folds for each dataset. The results show that GSLP produces much
better AUC-PRs than DMSP did while it looses a little CLLs. Indeed, it is worse 5% on
CLL on predicate SameTitle while the AUC-PR is increased 18.32%. The improvement
of AUC-PR reaches a maximum of 37.78% on predicate SameAuthor while the CLL is
equal. GSLP gives better results than DMSP in terms of both CLL (1.87%) and AUC-PR
(16.96%) on predicate SameVenue. We can conclude on question 2 that GSLP is com-
petitive for the discriminative approach in terms of CLL and dominates it in terms of
AUC-PR.

5.3.4 Complexity of the M-GSLP Algorithm

We consider a domain of m predicates P = {p1, ..., pm}. Without loss of generality, we
assume that:

5.3. The Modified-GSLP Algorithm 107

C
LL

Sy
st

em
s

D
at

as
et

s
M

-G
SL

P
G

SL
P

LS
M

H
G

SM
IM

D
B

-0
.0

99
±

0.
03

-0
.1

60
±

0.
03

-0
.1

91
±

0.
02

-0
.1

83
±

0.
03

U
W

-C
SE

-0
.0

52
±

0.
06

-0
.0

58
±

0.
06

-0
.0

68
±

0.
07

-0
.1

03
±

0.
04

C
O

R
A

-0
.0

54
±

0.
05

-0
.0

59
±

0.
05

-0
.0

65
±

0.
02

-0
.0

87
±

0.
05

M
B

N
M

L1
-0

.7
64

-0
.8

24
-0

.9
33

-1
.0

10
-0

.9
9

M
L2

-0
.9

15
-0

.9
47

-0
.9

85
N

A
-1

.1
5

M
T

1
-1

.6
89

-1
.8

01
-1

.8
55

-2
.0

31
-2

.4
4

M
T

2
-1

.7
54

-1
.8

63
N

A
N

A
-2

.3
6

A
U

C
-P

R

Sy
st

em
s

D
at

as
et

s
M

-G
SL

P
G

SL
P

LS
M

H
G

SM
IM

D
B

0.
79

0±
0.

06
0.

78
9±

0.
06

0.
71

4±
0.

06
0.

69
2±

0.
07

U
W

-C
SE

0.
50

2±
0.

07
0.

50
2±

0.
07

0.
42

6±
0.

07
0.

31
1±

0.
02

C
O

R
A

0.
88

7±
0.

07
0.

83
6±

0.
07

0.
80

3±
0.

08
0.

76
2±

0.
06

M
B

N
M

L1
0.

70
1

0.
68

3
0.

68
3

0.
61

1
0.

64
M

L2
0.

67
7

0.
66

2
0.

65
8

N
A

0.
62

M
T

1
0.

76
6

0.
72

4
0.

71
3

0.
69

2
0.

69
M

T
2

0.
74

3
0.

61
5

N
A

N
A

0.
73

T
ab

le
5.

6:
C

LL
,A

U
C

-P
R

m
ea

su
re

s
(g

en
er

at
iv

e)

108 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Datasets M-GSLP GSLP LSM HGSM
IMDB 0.43 1.59 1.23 3.06
UW-CSE 3.05 4.62 2.88 8.68
CORA 6.72 7.82 6.05 64.15
MOVILENS1 0.44 0.44 0.46 4.02
MOVILENS2 3.18 5.23 2.97 NA
MUTAGENESIS1 1.13 2.11 1.25 4.37
MUTAGENESIS2 8.28 12.21 NA NA

Table 5.7: Runtimes (hours) (generative)

M-GSLP GSLP LSM
Predicates CLL AUC6PR CLL AUC-PR CLL AUC-PR
AdvisedBy -0.016 0.042 -0.015 0.228 -0.025 0.056
CourseLevel -0.317 0.500 -0.311 0.601 -0.332 0.537
HasPosition -0.063 0.250 -0.057 0.321 -0.059 0.469
InPhase -0.091 0.405 -0.092 0.349 -0.220 0.309
Professor -0.0003 1.000 -0.069 0.965 -0.002 1.000
ProjectMember -0.071 0.0003 -0.001 0.001 -0.001 0.0003
Publication -0.071 0.040 -0.078 0.234 -0.107 0.035
SameCourse -0.0001 1.000 -0.009 0.921 -0.002 1.000
SamePerson -0.00007 1.000 -0.010 0.922 -0.002 1.000
SameProject -0.00008 1.000 -0.005 0.952 -0.001 1.000
Student -0.00002 1.000 -0.066 0.987 -0.051 0.993
Ta -0.004 0.001 -0.008 0.025 -0.003 0.0009
TempAdvisedBy -0.009 0.024 -0.008 0.019 -0.009 0.003
YearsInProgram -0.109 0.119 -0.004 0.187 -0.135 0.080
TaughtBy -0.008 0.010 -0.059 0.014 -0.009 0.006
Average -0.051 0.426 -0.053 0.502 -0.064 0.486

Table 5.8: CLL and AUC values in a test-fold for every predicate in UW-CSE

Algorithms → DMSP M-GSLP
Datasets Predicates CLL AUC-PR CLL AUC-PR
IMDB WorkedUnder -0.022 0.382 -0.023 0.394
UW-CSE AdvisedBy -0.016 0.264 -0.016 0.356

CORA

SameBib -0.136 0.540 -0.139 0.669
SameTitle -0.085 0.624 -0.090 0.764

SameAuthor -0.132 0.619 -0.132 0.995
SameVenue -0.109 0.475 -0.107 0.572

Table 5.9: CLL, AUC-PR measures (discriminative)

5.3. The Modified-GSLP Algorithm 109

• Every predicate pi, 1 ≤ i ≤ m of arity-n and its corresponding template atom is
pi(ai1 , . . . , ain).

• h(.) is a function of the average complexity of the weight learning algorithm.

We present here an analysis of time-complexity of M-GSLP to generate a set of candi-
date clauses in the worst case. This worst case occurs when we cannot eliminate any edge
of the graph and every path in the graph corresponds to a good clause.

Lemma 37 The maximum number of clauses to be evaluated by M-GSLP to generate a
set of candidate clauses in the worst case is:

maxLength∑
l=2

((2m
2

)
×
(
n2 +

∑n
k=2

(
n2

k

))
l

)
, (5.1)

where maxLength is the maximum number of literals in a clause.

Proof The number of nodes in the graph of predicates is 2m. From a node pi to a node pj ,
1 ≤ i, j ≤ 2m there are at most n2 edges in which each edge has the link-label composed of
only a single-shared argument (i.e. considering only one position in pi and one position in
pj at which the arguments respectively of pi and pj are identical). Every edge of k-shared
arguments, 1 ≤ k ≤ n connecting pi and pj is a k-combination of the set of edges of
single-shared argument, thus the number of edges of k-shared arguments is

(
n2

k

)
. The total

number of edges connecting pi to pj is:

n2 +

n∑
k=2

(
n2

k

)
(5.2)

In the worst case, each node in the graph is connected to all the other one, thus the
maximum number of pairs of nodes in this graph is

(
2m
2

)
, then the maximum number of

edges in the graph is:

mne =

(
2m

2

)
×

(
n2 +

n∑
k=2

(
n2

k

))
(5.3)

A length-edge path in the graph is essentially a length-combination of the set of these
mne edges. The number of paths of a length ranging from 2 to maxLength is:

maxLength∑
l=2

(
mne

l

)
=

maxLength∑
l=2

((2m
2

)
×
(
n2 +

∑n
k=2

(
n2

k

))
l

)
(5.4)

�

In the worst case, the clause variabilized from any longer extended path is new and
better than the one to be extended. In other words, any path in the GoP with a length
of 2 to maxLength is variabilized to generate a good, new clause. This clause is then
evaluated to compute its weight and gain, therefore the weight learner is called once for
each path (of length 2 to maxLength). With h(.) the function of average time complexity

110 Chapter 5. Learning MLN Structure Based on Graph of Predicates

of the weight learning algorithm, the average time for M-GSLP to get a set of candidate
clauses in the worst case is:

h(.)×
maxLength∑

l=2

((2m
2

)
×
(
n2 +

∑n
k=2

(
n2

k

))
l

)
.

However, as far as we know, none of the real-world databases contains every template
atom having n arity of a same type. Besides, it hardly happens that and any longer
clause is always better than the shorter one in term of the measure (of a MLN given this
database). The time-complexity of M-GSLP, therefore, never reaches this upper bound.
M-GSLP is usually much less complex for a real-world database.

5.4 The DSLP Algorithm

We presented in the previous section the M-GSLP algorithm, a modified version of GSLP
described in section 5.2. The experiments shown that M-GSLP produces better results
than the state-of-the-art approaches for generative MLN structure learning for the bench-
mark databases we used. This approach also takes advantage in dealing with complex
domains of many predicates and associations amongst them.

Concerning discriminative learning, however, M-GSLP produced a little worse results
than DMSP [Dinh et al. 2010a] that was introduced in Section 4.3. One reason is that M-
GSLP is designed for a generative learning purpose which searches clauses for all predicates
in the domain instead of for a precise predicate. Although DMSP achieved better CLL and
AUC-PR values than M-GSLP did, it has to search in the space of ground atoms linked
by shared constants in the database, like almost other methods for discriminative MLN
structure learning do, such as HDSM [Dinh et al. 2010c] and ILS-DSL [Biba et al. 2008a],
therefore a lot of time is consumed for searching. An algorithm which can produce good
results in an faster manner remains necessary for the time being.

A strong advantage of M-GSLP is that it can handle a complex domain with many
predicates and associations between them. By using a GoP holding information of fre-
quency for every binary association between predicates, it can search for candidate clauses
in an effective manner. We want to apply this technique in a discriminative learning pur-
pose in order to use this advantage to overcome the limitation of current discriminative
structure learners for MLNs.

Naturally, we can use M-GSLP to learn a discriminative MLN structure for some
precise predicate. However, the experimental results in the previous section shown that
M-GSLP only dominates DMSP in terms of runtime but did not exceed it in terms of
measures (i.e. CLL and AUC-PR). One reason is that M-GSLP uses all generative tools
(i.e. WPLL for measuring and L-BFGS for weight learning) which are not totally suitable
for a discriminative purpose. A solution is that we should limit to discriminative tools
instead of using the generative ones. Unfortunately, we can not apply a discriminative
weight learning algorithm in order to create the graph of predicates as in Subsection 5.3.1
because it does not produce any result for clauses that do not contain the query predicate.
In other words, for every edge of non-query predicate we can not calculate the measure of
the clause corresponding to its link by using a discriminative weight learning algorithm.
We propose another definition for the num-label of edge in the GoP in order to make it

5.4. The DSLP Algorithm 111

Figure 5.3: Example of graph of predicates in DSLP

applicable in our discriminative structure learning algorithm, called DSLP (Discriminative
Structure Learning based on graph of Predicates for MLNs). We present this definition in
Subsection 5.4.1 and the structure of DSLP in Subsection 5.4.2.

5.4.1 Graph of Predicates in DSLP

Definition 38 Let DB be a database, P be a set of m predicates {p1, ..., pm} occurring in
DB, and D the domain (set of constants). The undirected graph of predicates {p1, ..., pm}
(GoP) is a pair G=(V, E) composed of a set V of nodes (or vertices) together with a set
E of edges, where:

i. A node vi ∈ V corresponds to a predicate pi or its negation, |V | = 2× |P|

ii. If there exists a link between two template atoms of predicates pi (or !pi) and pj (or
!pj), then there exists an edge eij between the corresponding nodes vi and vj, and this
edge is associated with two labels: link-label which is the link itself, and num-label
which is the proportion of the number numTrue of true instantiations
to the total number numTotal of instantiations in the database of the
formula corresponding to this link. We have eij .num-label = numTrue

numTotal .

Figure 5.3 illustrates a graph of predicates for the domain in Example 31. It differs
from the GoP in Figure 5.1 in the meaning of the num-label of an edge and the nodes
without weights. It differs from the graph in Figure 5.2 in the meaning of the num-label
of an edge.

5.4.2 Structure of DSLP

Given as inputs a training dataset DB consisting of ground atoms of predicates in the
domain, a background MLN (which can be empty), a query predicate QP and a positive
integer maxLength, specifying the maximum length of clauses, we aim at learning a MLN

112 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Algorithm 15: DSLP(DB, MLN, QP, maxLength)
Input : DB: a training database;

MLN: an initial (empty) Markov Logic Network;
QP: a query predicate;
maxLength: a positive integer;

Output: MLN: the final learned Markov Logic Network;

// Initialize

A set of candidate clauses CC = ∅;1

A set of paths SP = ∅;2

// Add unit clauses

Add all unit clauses to MLN and learn weights;3

// Creating graph of predicates

Create graph of predicates G = (V, E);4

Reduce Edges of Graph G = (V, E);5

// Generating candidate clauses

for length=2 to maxLength do6

CC ←− CreateCandidateClauses(QP,DB,G, SP);7

end8

// Learning the final MLN

Select Candidate Clauses (CC) ;9

Add Candidate Clauses into the MLN (QP, CC, MLN) ;10

Prune Clauses out of the MLN (QP, MLN) ;11

Return(MLN);12

that correctly discriminates between true and false groundings of the query predicate QP.
We present here an algorithm for discriminative MLN structure learning, called DSLP
(Discriminative Structure Learning based on graph of Predicates for MLN). Algorithm 15
exposes the main steps of the DSLP.

Fundamentally, we apply the structure of M-GSLP for this discriminative method,
DSLP. In order to implement in a discriminative purpose, in which the system learns a
MLN structure for the specific predicate QP, some adaptations from M-GSLP are per-
formed. Concerning the measure to choose clauses, we propose to use the Conditional-
log-likelihood (CLL) of the query predicate given the remaining predicates as evidence
in order to measure directly the accuracy of the probability of the query predicate, as
was done in [Richardson & Domingos 2006, Biba et al. 2008a] and in the others. Several
modifications in the manner to evaluate a clause and in the process of reducing graph
and building candidate clauses are also carried out compared to the ones in M-GSLP. We
describe these modifications in the following subsections.

5.4.2.1 Evaluating Clauses

Evaluation of a clause c is also based on its weight and gain (similarly to M-GSLP in
Subsection 5.3.2). The difference is that a discriminative learner is used here instead

5.4. The DSLP Algorithm 113

of a generative one to learn the weights for a temporary MLN composed of the unit
MLN plus c and then compute the measure of this temporary MLN given the training
database (corresponding to the query predicate QP). The measure of frequency of c is
given by: c.mf = |c.weight| × c.gain, where c.weight is the weight of c in the temporary
MLN and c.gain is the improvement of measure when c is added into the unit MLN
(c.gain = newMea−unitMea, where newMea, unitMea respectively are the discriminative
measures (i.e. the CLL of the query predicate QP) of the temporary MLN and of the unit
MLN given the training database.

5.4.2.2 Reducing Edges in the GoP

As mentioned above for GSLP and M-GSLP, the graph may contain several useless edges
in term of frequency. We remove such less frequent edges by regarding all edges having a
num-label greater than a given threshold nlt. Due to the definition of num-label, we can
choose edges in the graph more “smoothly” than what was proposed in GSLP, because
the decision for choosing or eliminating an edge depends directly on the ratio between the
number of true instantiations and the total number of instantiations of its corresponding
formula. However, for edges connecting at least one node of the query predicate, although
its num-labels are less than nlt, there still exists some edges for which the measure of the
corresponding formula is good enough (i.e is better than a given threshold). Therefore,
we compute the measure for every edge connected to at least a query predicate, whose
num-label is less than nlt, and also keep the good ones. This causes an increase of the
number of edges in the GoP hence spreads out the search space, but for a discriminative
task, it remains entirely acceptable and feasible.

5.4.2.3 Building a Set of Candidate Clauses

DSLP also searches for a set of any-length candidate clauses, then checks them in turn
for addition into the final MLN. It performs in the same manner as M-GSLP but uses a
discriminative measure (i.e. the CLL). However, as the MLN of arbitrary clauses might
be difficult to exploit for another system, we provide an option to limit the search to
Horn clauses. With the participation of both the predicate and it negation in the graph
of predicates, searching for Horn clauses can be done very efficiently in DSLP. We next
focus on this process more thoroughly.

Let us recall that a Horn clause is a disjunction of variable literals with at most a
positive one. In DSLP, each Horn clause is variabilized from a corresponding path of edges
in the GoP, two endpoints of an edge corresponding to a predicate or its negation, therefore
this path also has to contain at most a negation (of some predicate in the domain). This
limitation drops down the search space in the GoP. Indeed, we can now consider the GoP
as a two-side graph G = (V +, V −, E); one side V + for all positive predicates and the
other one V − for all negations. A path is composed from only one node H ∈ V + (as the
head of a Horn clause) and several nodes B1, ..., Bm, Bi ∈ V −, 1 ≤ i ≤ m (as the body
of a Horn clause). The range-restriction for this Horn clause H : −B1, ..., Bm claims that
every variable in the head H has to appear in the body. In the heuristic variabilization
method of DSLP, a variable in the head occurs somewhere in the body if and only if its
corresponding position (in the corresponding template atom of H) participates in some

114 Chapter 5. Learning MLN Structure Based on Graph of Predicates

incident edge of H in the path. Let us assume that the template atom of the node H is
H(h1, ..., hh) and the set of incident edges of H participating in the corresponding path
of the clause H : −B1, ..., Bm is {e1, ..., ep}. The range-restricted condition for this Horn
clause requires ∀i, 1 ≤ i ≤ h,∃j, 1 ≤ j ≤ p such that i ⊂ ej .link − label. It means that
every position i has to appear in the link-label of some edge ej in the path. This leads to
a more efficient search because we can start from such shortest paths to extend them to
the longer ones by adding only negative atoms.

Example 39 Let us assume AdvisedBy as the query predicate. We do not start from a
path AdvisedBy 0 0 !Professor because its variabilized clause, AdvisedBy(X, Y) v !Pro-
fessor(X), is not satisfying the range-restricted condition. A possible starting path is Ad-
visedBy 0 0 !Professor, AdvisedBy 1 0 !Professor corresponding to the clause AdvisedBy(X,
Y) v !Professor(X) v !Professor(Y). From this path we only need to add negative predicates
in order to generate a longer Horn clauses.

5.4.3 Experiments

Like all our systems, DSLP is also implemented over the Alchemy package
[Kok et al. 2009]. We conducted experiments to answer the following questions:

1. How does DSLP perform compared to the state-of-the-art methods for discriminative
MLN structure learning?

2. How does DSLP perform for Horn clauses?

3. How does DSLP perform with various weight learning algorithms?

5.4.3.1 Systems, Datasets and Methodology

To answer question 1, we compared DSLP to DMSP [Dinh et al. 2010a] using the weight
learning L-BFG algorithm. To answer question 2, we ran DSLP twice respectively for
Horn clauses (DSLP-H) and for arbitrary clauses (DSLP-A). For question 3, we ran DSLP
three times respectively with three weight learning algorithm: L-BFGS, that maximizes
the PLL measure for generative weight learning, P-SCG, that maximizes the CLL measure
and M3LN, that maximizes the max-margin for discriminative weight learning. Details
of these weight learning algorithms were presented in chapter 3 of this dissertation. We
notice that, although L-BFGS maximizing the PLL measure is for generative learning, the
authors in [Biba et al. 2008a] and [Dinh et al. 2010a] shown that using them can also lead
to good results for the task of discriminative MLN structure learning. We therefore chose
them for this experiment.

The three datasets IMDB, UW-CSE and CORA were also used in a 5-fold cross-
validation in this experiment. We also learned for the predicates: WorkedUnder in IMDB,
AdvisedBy in UW-CSE and SameBib, SameTitle, SameAuthor, SameVenue in CORA.
Parameters for DMSP are set as in [Dinh et al. 2010a]. We used all the default parame-
ters for P-SCG as in [Lowd & Domingos 2007] and M3LN [Huynh & Mooney 2009]. We
learned clauses composed of at most 5 literals for all systems and also limit the number
of similar predicates per clause to 3 in order to learn the weight and to perform inference
in a reasonable time. We set parameters of DSLP to: nti = 0, mft = 0 for all tests. We
conducted these experiments on a Dual-core AMD 2.4 GHz CPU - 16GB RAM machine.

5.4. The DSLP Algorithm 115

Algorithms → DMSP DSLP-H DSLP-A
Datasets Predicates CLL AUC-PR CLL AUC-PR CLL AUC-PR

IMDB WorkedUnder -0.022 0.382 -0.023 0.391 -0.022 0.394
UW-CSE AdvisedBy -0.016 0.264 -0.014 0.297 -0.013 0.389

CORA

SameBib -0.136 0.540 -0.137 0.631 -0.122 0.680
SameTitle -0.085 0.624 -0.086 0.617 -0.086 0.658

SameAuthor -0.132 0.619 -0.124 0.887 -0.115 0.905
SameVenue -0.109 0.475 -0.101 0.523 -0.097 0.571

Table 5.10: CLL, AUC-PR measures (discriminative)

Datasets DMSP DSLP-H DSLP-A
IMDB 0.40 0.23 0.19
UW-CSE 5.76 2.15 2.47
CORA 31.05 9.12 9.56

Table 5.11: Runtimes(hours)

5.4.3.2 Results

Table 5.10 reports the average CLL and AUC-PR values and Table 5.11 shows the average
runtimes of all systems over test folds for all datasets. Concerning the CLL and AUC-PR
measures, DSLP-A gives better values than DMSP except for the CLL value of predicate
SameBib on the CORA dataset. The improvement of AUC-PR is a little better than the
one of CLL. Indeed, for the predicate WorkedUnder (IMDB), DSLP-A and DMSP are
equal on CLL but DSLP-A increases: 3.14% on AUC-PR, for the predicate AdvisedBy
(UW-CSE), DSLP-A augments 18.75% on CLL and 47.35% on AUC-PR. For the CORA
dataset, although DSLP-A decreases 1.18% on CLL, it still increases 5.45% on AUC-PR.
DSLP-A augments 10.29%, 12.88%, 11.01% on CLL and 25.93%, 46.2%, 16.81% on AUC-
PR respectively for the three predicates SameBib, SameAuthor and SameVenue. These
values also show that DSLP only takes a little advantage compared to DMSP by means of
the CLL and AUC-PR measures. However, from the point of view of runtime, DSLP does
perform strikingly. It improves 52.5% for the predicate WorkedUnder (IMDB), 57.12%
for the predicate AdvisedBy (UW-CSE) and approximately 69.21% for each predicate of
the CORA dataset. We answer question 1 that DSLP dominates the state-of-the-art
discriminative MLN structure learning system in the sense of runtime and achieves mostly
better values by means of CLL and AUC-PR measures.

By restricting DSLP to Horn clauses, DSLP-H gives a little worse values on CLL and
AUC-PR measure than DSLP-A does, while it is competitive to DMSP on these two
measures. This loss comes from the fact that the space of Horn clauses is much narrower
than the space of arbitrary clauses, therefore DSLP-A can find a set of more suitable
clauses. However, for the predicate WorkedUnder (IMDB), DSLP-H spends more time
than DSLP-A does to produce the final MLN. We can explain this situation by the fact
that, in our method, the number of considered candidate clauses at each iteration depends
on the number of candidate clauses at the previous one, therefore DSLP-H has to extend

116 Chapter 5. Learning MLN Structure Based on Graph of Predicates

Datasets → UW-CSE IMDB
Systems CLL AUC-PR RT CLL AUC-PR RT
DSLPL−BFGS -0.013 0.389 2.47 -0.022 0.394 0.19
DSLPP−SCG -0.094 0.451 4.38 -0.016 0.437 0.31
DSLPM3LN -0.211 0.317 4.51 -0.027 0.363 0.26

Table 5.12: CLL, AUC-PR and RT (runtime in hour) results

many clauses at each iteration. The set of clauses in the final MLN of DSLP-H also justifies
this remark, as it contains a lot of long Horn clauses (exactly 5-literal Horn clauses). For
the medium and large datasets (UW-CSE and CORA), DSLP-H performed faster than
DSLP-A. We can answer to question 2 that, in contrast to the fact that the whole space
of Horn clauses is smaller than the one of arbitrary clauses, DSLP tends to consider more
Horn candidate clauses at each iteration than it does with arbitrary clauses, more time
is therefore consumed to evaluate all candidate clauses. An investigation to reduce the
number of considered Horn clauses at each step would be an interesting point in our future
work.

Table 5.12 reports the average CLL, AUC and runtime in hour (RT) of DSLP over
test folds, performed with three different weight learning algorithms; L-BFGS, P-SCG
and M3LN. DSLP with P-SCG gives the best CLL and AUC-PR results while DSLP with
L-BFGS is the fastest version. The CLL and AUC-PR values of DSLP with L-BFGS are
also acceptable compared to the ones with P-SCG despite a little loss. DSLP with M3LN
produces more modest results because the M3LN was designed to maximize the F1 score
rather than CLL and AUC-PR (see in [Huynh & Mooney 2009] for detail). Based on these
results we recommend to use DSLP with L-BFGS when we are looking for a balance over
all the three factors (i.e. CLL, AUC-PR and runtime), otherwise to use DSLP with P-SCG
to favor CLL and AUC-PR.

5.5 Related Works

The idea to encode information in database into a graph has been deployed largely in SRL
[Getoor & Taskar 2007] including both the directed graph model and undirected graph
model. Methods based on the directed graph model are, among others, the Relational
Dependency Networks, the Probabilistic Relational Models and the Bayesian Logic Pro-
grams. Methods based on the undirected graph model are, among others, the Markov Logic
Networks, the Relational Markov Networks. Amongst them, our Graph of Predicates is
related to the class dependency directed graph in PRM, each node of which corresponds
to an attribute of some class (each class can be viewed as a table in a relational database).

Concerning MLN structure learning, LHL [Kok & Domingos 2009] and LSM
[Kok & Domingos 2010] also lift the database to an undirected graph, called the “lifted-
graph”, from which to search for paths in the lifted-graph in order to create candidate
clauses. However, this graph is very different from the graph of predicates of our methods.
In the lifted-graph, each node corresponds to a set of constants and each edge corresponds
to a predicate. This graph is this built directly from links between ground atoms in the

5.6. Summary 117

database, while in the graph of predicates, is built directly, quickly from information on
the types of arguments of the predicates. The size (number of nodes and edges) of the
liftedgraph depends mostly on the database while it is “fixed and bounded” in our method.
A path in the lifted-graph, based on relational-path-finding [Richards & Mooney 1992] or
relational-cliché [Silverstein & Pazzani 1991], is really a list of shared-argument ground
atoms built directly from the database and variabilized to form a clause. Our path is
a list of links that contains only information about predicates and positions of shared-
arguments. A heuristic variabilization technique must then be used to form a clause.
Starting from binary clauses, GSLP extends a clause by considering the predicates (nega-
tive or positive) occurring in it and searching the graph for possible extensions (note that
a predicate or its negation may not have the same possible extensions); therefore, it tends
to add good links to a good clause to get better ones. LHL extends clauses by searching
for all paths in the lifted-graph and then discards those having few true instantiations.
LSM finds paths in each identified motif in the same manner as LHL does. This, more or
less, still leads to a whole graph-search and counting the number of true instantiations is
time-consuming when the database is large and literals have many groundings. For each
path, LHL and LSM add all possible clauses with the signs of up to n literals flipped and
compare their score against all possible sub-clauses. Representing also the negation of the
predicates in the graph allows GSLP to handle in the same way negative or positive literals
in a clause, and to extend clauses either by a positive or a negative literal depending on
the corresponding gain.

5.6 Summary

The basic idea behind methods for MLN structure learning presented in this chapter is
to encode information from the training database into a graph from which to search for
candidate clauses. We present first the definition of a graph of predicates (GoP), each node
of which corresponds to a predicate or its negation, and each edge of which corresponds to a
possible link between two predicates (or a formula corresponding to this link). Depending
on the purpose of learning (generative or discriminative), different labels are associated to
the edges. Using this graph of predicates, an edge e is viewed as a binary clause bc and
every edge incident to e is viewed as a good direction to lengthen bc, therefore every edge
in the graph of predicates is extended gradually to produce longer and better candidate
clauses. In other words, our methods do perform in a top-down strategy to narrow the
search for candidate clauses within the graph of predicates, which is much faster than an
exhaustive search in the space of clauses. The set of candidate clauses is finally considered
in turn to learn the final MLN.

Based on this idea, we developed first the GSLP system for generative MLN structure
learning. During the experiment process, we noticed several limiting points in GSLP,
which have been overcome in the M-GSLP system. We also developed the DSLP system
for the task of discriminative MLN structure learning. The experimental results showed
that our systems can yield better results than the state-of-the-art algorithms for MLN
structure learning. Table 5.13 resumes the different steps and components between these
systems.

118 Chapter 5. Learning MLN Structure Based on Graph of Predicates

G
S
L
P

M
od

ifi
ed

G
S
L
P

(M
G

S
L
P

)
D

S
L
P

M
easure

(m
s)

W
P

LL
C

LL
E

valuation
a

clause
c

c.gain
=

m
s(tem

porary
M

LN
)

-
m

s(unit
M

LN
)

-
penalty

×
|c|

c.w
eight,c.gain

c.m
f
=
|c.w

eig
h
t|×

c.g
a
in

G
raph

of
predicates

link-label
A

link
betw

een
tw

o
tem

plate
atom

s
num

-label
]

of
true

instantiations
c.m

f
=
|c.p

oid
s|×

c.g
a
in

]
o
f
tr
u
e
in

s
ta

n
tia

tio
n
s

]
o
f
in

s
ta

n
tia

tio
n
s

node.w
eight

k
tim

es
the

average
of

its
num

-labels
N

O
R

eduction
e(v

i ,v
j).num

-label
e.m

f
≥

th
resh

old
1

and
its

(e.num
-label>

nlt)
(pruning

edges)
<

m
in(v

i .w
eig

h
t,

v
j .w

eig
h
t)

num
ber

of
instantiations

≥
th
resh

old
2

or
((e.num

-label<
nlt)

and
(c.m

f
>

m
t))

C
reating

clauses
(c.w

eig
h
t

>
th
resh

old
w
e
ig
h
t)

and
(c.gain

>
0)

c
k
+
1 .m

f
>

c
k .m

f

Learning
of

the
finalM

LN
O

rder
D

ecreasing
gain

D
ecreasing

m
easure

P
re-elim

ination
N

O
sub-clauses,clauses

com
posed

of
sam

e
predicates

C
andidate

clauses
clauses

of
sim

ilar
length

allclauses

T
able

5.13:
A

synthetic
view

of
the

different
steps

and
com

ponents
in

G
SLP,M

G
SLP

and
D

SLP

Chapter 6

Conclusion and Future Work

Contents
6.1 Contributions of this Dissertation 119

6.2 Directions for Future Work . 121

Markov Logic Networks are a recent powerful SRL model that combines full first-order
logic and Markov networks. MLNs attach weights to first-order clauses and view these
as templates for the features of Markov networks. One main task concerning MLN is
structure learning, i.e., learning a set of first-order clauses together with their weights
from data. In this dissertation, we propose several methods to achieve this task.

6.1 Contributions of this Dissertation

The contributions of this dissertation consist of algorithms for MLN structure learning,
which can be grouped into two classes: methods based on propositionalization in ILP and
methods based on a Graph of Predicates.

MLN structure learning based on propositionalization

The basic idea in our methods is to build candidate clauses from sets of dependent
variable literals, from which to learn the final MLN. In order to find such sets of dependent
variable literals, we propose the use of propositionalization which transforms relational
information expressed by shared ground atoms (by constants) in the database into boolean
tables. These tables are then provided as contingency tables for test of dependent literals.
Propositionalization is performed through two steps: building a set of variable literals
corresponding to a target predicate and creating a boolean table corresponding to each
target variable literal (of the target predicate).

We began by developing a first propositionalization technique, the basic idea of which
is to divide the dataset into distinct groups, and then to use a variabilization technique
to heuristically variabilize these groups in turn, from the largest to the smallest one.
During the process of variabilization, variable literals are reused as much as possible,
hence reducing the number of generated variable literals. Being given a set of variable
literals, a boolean table is created for each target variable literal. Each table has a column
corresponding to a variable literal, a row corresponding to a ground atom of the considering
query predicate. Values in a row of a table express the relational information of ground
atoms linked to the ground atom corresponding to this row. A heuristic process is used
to fill values in such a table.

120 Chapter 6. Conclusion and Future Work

Based on this propositionnalization method, two algorithms for MLN structure learn-
ing have been developed: HGSM for generative learning and HDSM for discriminative
learning. HGSM learns a set of weighted clauses for all predicates in the domain using the
generative measure WPLL to choose clauses and the L-BFGS algorithm to learn weights.
HDSM is based on a structure similar to HGSM but learns a set of weighted clauses for
only a query predicate, using the CLL measure to choose clauses. Experiments show
that both methods outperform the state-of-the-art structure learner for MLNs for all the
datasets that we used.

We then developed the DMSP algorithm for MLN discriminative structure learning.
In comparison to HDSM, DMSP brings three main differences. First, DMSP proposes a
new propositionalization technique that differs from the first one in the process of creating
variable literals. It is based on the idea that a lot of paths of connected ground atoms
can be described by a single set of variable literals. The algorithm, therefore, variabilizes
firstly a path to generate a corresponding set of variable literals, and this path is then
used as a filter to ignore a lot of other paths. By this way, the set of variable literals
is found much faster and we also prove that it is the smallest set to describe relations
related to the query predicate in the database. Second, DMSP modifies the process of
creating candidate clauses in order to generate a little more candidates. Finally, DMSP
changes the order of candidate clauses to learn the final MLN.

MLN structure learning based on Graph of Predicates (GoP)

The basic idea under this second class consists in encoding information in the training
database into a graph from which to search for candidate clauses. We introduce the
new definition of Graph of Predicates, that is inspired from links between predicates in a
domain and the coverage measure in ILP. For each link between two predicates, we define
a formula corresponding to it. A Graph of Predicates, each node of which corresponds to
a predicate or its negation and each edge of which corresponds to a possible link between
two predicates, highlights the binary associations of predicates that share constants in
term of the number of true instantiations in the database (of the corresponding formulas).

We implemented this idea in the GSLP algorithm to learn generatively a MLN struc-
ture from a relational database. GSLP performs a top-down strategy to narrow the search
for candidate clauses within the Graph of Predicates, which is much faster than an ex-
haustive search in the space of clauses. During the experiment to evaluate GSLP, we
realized several limitations related to the measure for choosing clauses, the strategy to
reduce edges of Graph of Predicates and the methods to build a set of candidate clauses
and to learn the final MLN. These limitations have been overcome in the Modified-GSLP
(M-GSLP) learner.

We also developed the DSLP system for the task of discriminative MLN structure
learning. In DSLP, we defined a new semantic of Graph of Predicates in order to adapt
to the task of discriminative learning and accelerate the process of finding Horn clauses.
Experiment results show that DSLP dominates the state-of-the-art discriminative MLN
structure learners for several benchmark datasets.

6.2. Directions for Future Work 121

6.2 Directions for Future Work

Directions for future work include the following:

• Firstly, all our methods used the closed world assumption that considers a ground
atom as false when it is not in the dataset. We would like to apply the open world
assumption in our algorithms in order to be able to consider only two separate sets
of true and false examples, as real-world data is often collected.

• Concerning evaluation, the experimental results on several benchmark datasets show
that our systems outperform the state-of-the-art learners for MLN structure learning.
Our discriminative systems give also better results than ALEPH [Srinivasan 2003],
the popular ILP system (experimental comparisons are reported in Appendix B).
Especially, methods based on the Graph of Predicates have been more efficient when
dealing with the largest of our datasets, CORA. We would like to apply them to
larger and more complex domains with many relations such as the Web or medical
domains in order to test their scalability and their ability to learn complex rules.
We would also like to compare our learners to other systems in ILP, as well as other
probabilistic, non-MLN approaches.

• Regarding propositionalization, our method implemented in DMSP is shown more
suitable than the others for the task of MLN structure learning. We would like to
apply it back to traditional ILP in order to exploit and evaluate this method in
comparison to traditional ILP propositionalization methods. Moreover, in DMSP,
creating variable literals and building tables are two separate processes. However,
during the process of variable literal creation, the algorithm has to travel on a lot
of g-chains which can be used in the latter process. An integration of these two
processes to reuse all considered g-chains would be an interesting point to improve
DMSP.

• In connection with variabilization techniques, in DMSP, a v-chain is created and
then considered as a filter to ignore a lot of g-chains. However, as stated earlier, the
algorithm has to search, more or less, in the space of ground atoms. We circumvented
with this difficulty by limiting the number of literals per clause but this solution
prevent us to catch longer relations. This difficulty is also solved by using Graph of
Predicates. Unfortunately, while getting faster and longer clauses, our variabilization
technique creates only one clause for each path, and thus might miss out several
good clauses. We continue investigating on this problem, especially on the method
to variabilize paths from the Graph of Predicates.

• Concerning performance, our generative methods rely on the L-BFGS algorithm to
learn weights, which maximizes the PLL measure. This measure, however, does
only capture dependencies between an atom and its Markov blanket. We plan to
integrate the use of likelihood in order to deal with larger dependencies in the Markov
networks. Besides, our methods are based on a generate-and-test strategy, which
consumes time to evaluate clauses. A solution to discard clauses before evaluation
would be useful. In addition, inference for evaluating CLL is based on MC-SAT
or Lazy-MC-SAT. We plan to use new recent inference methods, as for instance

122 Chapter 6. Conclusion and Future Work

lifted inference [Milch et al. 2008, Singla & Domingos 2008] and belief propagation
[Kersting et al. 2009, Nath & Domingos 2010] in order to save time for inferring.

• From the point of view of experiment, M-GSLP was shown to outperform the state
of the art MLN structure learners on several benchmark datasets. Nevertheless, from
the point of view of theory, only the complexity in the worst case was presented.
This is the upper bound and M-GSLP hardly reaches this complexity for real-world
datasets. Therefore, using this evaluation in the worst case to compare to other
systems can not reflect exactly the performance of M-GSLP. We would like to analyze
M-GSLP in an average case to be able to compare to other systems more theoretically
and more thoroughly.

• Related to evaluation methodology, in our method, the discriminative CLL measure
and the AUC-PR were used. These measures, as far as we know, have also been used
in all the other methods for MLN generative structure learning. However, the CLL
is obviously more suitable for the task of MLN discriminative structure learning. It
would be useful to investigate an evaluation methodology more adapted to generative
learning relying on a generative measures instead of the discriminative ones.

• Finally, lifted inference often exploits interchangeability or symmetry in the domain
in order to reason as much as possible at a high-level. In our point of view, the high-
level structure of Graph of Predicates could be useful when exploited by a technique
of lifted inference. We would like to construct an inference algorithm combining
techniques of lifted inference together with the Graph of Predicates.

Conclusion et Perspectives

Les réseaux logiques de Markov (MLNs), qui constituent l’une des approches les plus
récentes de l’apprentissage statistique relationnel (SRL), reposent sur la combinaison de la
logique du premier ordre avec les réseaux de Markov. Un réseau logique de Markov contient
un ensemble de clauses pondérées du premier ordre servant de modèle pour construire
des réseaux de Markov. L’une des tâches principales concernant les réseaux logiques de
Markov est l’apprentissage de la structure, c’est-à-dire l’apprentissage d’un ensemble de
clauses avec leurs poids à partir d’un jeu de données. Dans cette thèse, nous avons proposé
plusieurs méthodes pour ce problème.

Contributions de cette thèse

Les contributions de ce mémoire sont des méthodes pour l’apprentissage de la structure
d’un réseau logique de Markov tant générative que discriminant. Ces méthodes peuvent
être divisées en deux classes : les méthodes reposant sur la propositionnalisation et celles
reposant sur les Graphes des Prédicats.

Méthodes reposant sur la propositionnalization

L’idée de base de nos méthodes est de construire des clauses candidates pour ap-
prendre le réseau logique de Markov final à partir d’ensembles de littéraux dépendants.
Afin de trouver de tels ensembles de littéraux dépendants, nous proposons l’utilisation
de la propositionnalisation, qui transforme l’information relationnelle représentée par des
atomes clos dans la base de données en tableaux booléens, lesquels sont ensuite fournis
comme tableaux de contingences à des algorithmes de test de dépendance conditionnelle.
La propositionnalisation est réalisée en deux étapes: la construction d’un ensemble de
littéraux dépendant liés à chaque prédicat à apprendre et la création d’un tableau booléen
correspondant à chaque littéral.

Nous avons commencé par le développement d’une première technique de proposition-
nalisation. L’idée de base est ici de diviser le jeu de données en groupes distincts d’atomes
connectés, puis d’utiliser une technique de variabilisation heuristique de ces groupes, les
traitant les uns après les autres, du plus grand au plus petit. Pendant le processus de
variabilisation, les littéraux sont réutilisés autant que possible, afin de réduire la taille de
l’ensemble de littéraux générés. Ayant obtenu l’ensemble de littéraux, un tableau booléen
est ensuite créé correspondant à chaque littéral du prédicat à apprendre. Chaque colonne
correspond à un littéral, une ligne correspondant à un atome clos du prédicat cible. Les
valeurs dans chaque ligne du tableau expriment des atomes clos connectés à l’atome clos
de la ligne. Une technique heuristique est utilisée pour remplir les valeurs dans un tel
tableau.

Deux algorithmes d’apprentissage de la structure d’un réseau logique de Markov re-
posant sur cette approche ont été développés : HGSM pour l’apprentissage génératif
et HDSM pour l’apprentissage discriminant. HGSM cherche un ensemble de clauses
pondérées pour tous les prédicats du domaine en utilisant la mesure générative WPLL,

pour choisir les clauses, et l’algorithme L-BFGS pour apprendre les poids. HDSM a la
même structure que HGSM, mais cherche un ensemble de clauses pondérées pour seule-
ment un prédicat cible, en utilisant la mesure discriminante CLL pour choisir les clauses.
Les expérimentations montrent que ces deux méthodes dépassent les autres systèmes de
l’état de l’art pour l’apprentissage de la structure d’un réseau logique de Markov, sur les
jeux de données classiques que nous avons utilisés.

Nous avons ensuite développé l’algorithme DMSP pour l’apprentissage discriminant
de la structure d’un réseau logique de Markov. En comparaison avec HDSM, DMSP a
principalement trois différences. Tout d’abord, DMSP repose sur une seconde technique
de propositionnalisation, qui diffère de la première dans la manière de créer l’ensemble de
littéraux. Cette deuxième technique repose sur l’idée que beaucoup de chemins d’atomes
connectés peuvent être décrits par un seul ensemble de littéraux avec seulement des
variables. L’algorithme, par conséquent, variabilise d’abord un chemin pour générer un
ensemble de littéraux avec seulement des variables, utilisé ensuite comme un filtre pour
ignorer beaucoup d’autres chemins. De cette manière, l’ensemble des littéraux est trouvé
beaucoup plus rapidement et nous avons également prouvé qu’il est le plus petit ensemble
capable de décrire les relations issues du prédicat à apprendre dans le jeu de données
sous certaines conditions. DMSP modifie le processus pour créer des clauses candidates
afin d’en générer un peu plus. Enfin, DMSP change l’ordre des clauses candidates pour
apprendre le réseau logique de Markov final.

Méthodes reposant sur des Graphes des Prédicates

L’idée de base est ici de coder les informations du jeu de données dans un graphe de
prédicats, à partir duquel, la recherche des clauses est effectuée. Nous introduisons la
définition de Graphe des Prédicats, inspirée des liens entre les prédicats et de la notion de
couverture en programmation logique inductive. Un Graphe des Prédicats, dont chaque
nœud correspond à un prédicat ou à sa négation et chaque arête correspond à un lien
possible entre les deux prédicats, souligne les associations binaires entre les prédicats en
terme de nombre d’instanciations vraies (de la formule correspondante) du jeu de données.

Nous avons ensuite développé l’algorithme GSLP pour l’apprentissage génératif de la
structure d’un MLN. GSLP utilise une stratégie descendante pour limiter la recherche des
clauses candidates dans le Graphe des Prédicats, ce qui est beaucoup plus rapide qu’une
recherche exhaustive dans l’espace de clauses. Lors des expérimentations menées pour
évaluer GSLP, nous avons détecté plusieurs limites concernant le choix des clauses, la
réduction du nombre d’arêtes du Graphe des Prédicats et la construction de l’ensemble
de clauses candidates. Ces problèmes ont été résolus dans une version modifiée de GSLP,
intitulée M-GSLP.

Nous avons également développé le système DSLP pour la tâche d’apprentissage
discriminant de la structure d’un réseau logique de Markov. Dans DSLP, nous avons
défini une nouvelle sémantique du Graphe des Prédicats afin de l’adapter à la tâche
d’apprentissage discriminant et d’accélérer le processus de recherche des clauses de Horn.
Les résultats de l’expérimentation montrent que DSLP dépasse les systèmes de l’état de
l’art pour l’apprentissage discriminant de la structure d’un réseau logique de Markov, sur
les jeux de données classiques.

Perspectives
De nombreux problèmes restent ouverts et feront l’objet de nos recherches à venir.

• D’abord, toutes nos méthodes ont utilisé l’hypothèse du monde fermé qui considère
un atome clos comme faux s’il n’est pas dans le jeu de données. Nous souhaitons
appliquer l’hypothèse du monde ouvert dans notre algorithme afin de pouvoir con-
sidérer deux ensembles séparés d’exemples vrais et faux, plus représentatif de jeux
de données réels.

• En ce qui concerne l’évaluation, les résultats des expérimentations montrent que
nos systèmes dépassent les systèmes de l’état de l’art pour apprendre la structure
d’un réseau logique de Markov. Nos systèmes discriminants donnent également des
résultats meilleurs qu’ALEPH [Srinivasan 2003], système populaire en ILP (les com-
paraisons sont données dans l’annexe B). Les méthodes reposant sur les Graphes
des Prédicats sont avantageuses pour des jeux de données de grande taille, comme
CORA. Nous souhaitons les appliquer dans des domaines plus grands et plus com-
plexes avec de nombreuses relations tels que le Web ou le domaine médical, afin
de tester leur capacité à apprendre des clauses complexes. Nous souhaitons égale-
ment comparer nos systèmes avec d’autres systèmes d’ILP ainsi que des approches
probabilistes autres que les réseaux logiques de Markov.

• Au niveau de la propositionnalisation, la méthode mise en œuvre dans DMSP s’est
montrée plus adaptée que les autres à l’apprentissage de la structure d’un réseau
logique de Markov. Nous souhaitons l’appliquer à l’ILP classique afin d’exploiter et
d’évaluer cette méthode par rapport aux méthodes traditionnelles de proposition-
nalisation. De plus, dans DMSP, la construction d’un ensemble de littéraux et la
création des tableaux sont deux processus séparés. Cependant, durant le processus
de construction des littéraux, l’algorithme doit parcourir beaucoup de g-chaînes qui
peuvent être utilisées dans le second processus. Une intégration de ces deux proces-
sus pour réutiliser toutes les g-chaînes parcourues pourrait améliorer la performance
de DMSP.

• En liaison avec les techniques de variabilisation dans DMSP, une v-chaîne est créée
puis considérée comme filtre pour ignorer plusieurs g-chaînes. Toutefois, comme in-
diqué précédemment, l’algorithme peut parcourir une zone assez vaste de l’espace
des atomes clos. Nous avons contourné cette difficulté en limitant le nombre de
littéraux par clause, mais ce n’est plus applicable idée si nous voulons extraire des
relations plus longues. Cette difficulté est également résolue en utilisant le Graphe
des Prédicats. Malheureusement, bien que des clauses plus longues soient trou-
vées plus rapidement, notre technique de variabilisation crée seulement une clause
par chemin, et pourrait ainsi manquer plusieurs bonnes clauses. Nous continuons
d’étudier ce problème et notamment la méthode de variabilisation dans le Graphe
des Prédicats.

• En ce qui concerne la performance, nos méthodes génératives utilisent l’algorithme L-
BFGS pour apprendre les poids, par maximisation de la mesure PLL. Cette mesure,
cependant, ne tient compte que des dépendances entre un atome et sa couverture de

Markov. Nous envisageons d’intégrer l’utilisation de la vraisemblance (likelihood)
afin de pouvoir traiter des dépendances plus larges dans les réseaux de Markov. Nos
méthodes sont basées sur la stratégie générer-et-tester, qui nécessite beaucoup de
temps pour évaluer les clauses. Il faudrait des outils pour exclure les clauses avant
de les évaluer. De plus, nous prévoyons d’utiliser d’autres méthodes d’inférence
récentes au lieu de MC-SAT ou Lazy-MC-SAT, par exemple, inférence liftée (lifted
inference) [Milch et al. 2008, Singla & Domingos 2008] ou la propagation de croyance
(belief propagation) [Kersting et al. 2009, Nath & Domingos 2010] afin d’accélérer
l’inférence.

• Du point de vue de l’expérimentation, M-GSLP surpasse les systèmes de l’état de
l’art pour apprendre la structure d’un réseau logique de Markov, sur les jeux de don-
nées classiques. Néanmoins, du point de vue de la théorie, la seule complexité au pire
a été présentée. Il s’agit d’une borne supérieure que M-GSLP n’atteint sans doute
jamais pour des jeux de données réels. Par conséquent, ce outére de comparaison ne
reflète pas exactement de la performance de M-GSLP. Nous souhaitons analyser la
complexité en moyenne de nos méthodes, notamment de M-GSLP, pour pouvoir les
comparer avec d’autres systèmes plus théoriquement et plus profondément.

• Pour l’évaluation, dans notre méthode, comme dans toutes les autres méthodes
génératives d’apprentissage de la structure d’un réseau logique de Markov, la mesure
discriminante CLL et AUC-PR ont été utilisés. Ces mesures, évidemment, sont plus
appropriées pour la tâche d’apprentissage discriminant de la structure de réseau
logique de Markov. Il serait utile d’envisager une méthodologie d’évaluation généra-
tive reposant sur une mesure générative.

• Enfin, l’inférence liftée (lifted inference) exploite souvent l’interchangeabilité ou la
symétrie dans un domaine afin de raisonner autant que possible à haut niveau. De
notre point de vue, la structure de haut niveau du Graphe des Prédicats pourrait être
utile pour une technique d’inférence liftée. Nous souhaitons construire un algorithme
d’inférence combinant ces deux techniques.

Appendix A

Evaluation Metrics

This appendix surveys the metrics of Receiver Operating Characteristic (ROC) curves and
Precision-Recall (PR) curves.

A.1 Classifier Performance

We begin by considering binary classification problems using only two classes true and
false. A discrete (binary) classifier labels examples as either positive or negative. The
decision made by the classifier can be represented in a confusion matrix or contingency ta-
ble. The confusion matrix has four categories: True positives (TP) are examples correctly
labeled as positives. False positives (FP) refer to negative examples incorrectly labeled
as positive. True negatives (TN) correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive examples incorrectly labeled as negative.

Figure A.1(a) shows a confusion matrix. Given the confusion matrix, metrics are
defined as shown in Figure A.1(b). Accuracy is the percentage of classifications that are
correct. The True Positive Rate (TPR) measures the fraction of positive examples that
are correctly labeled. The False Positive Rate (FPR) measures the fraction of negative
examples that are misclassified as positive. Recall is the same as TPR, whereas Precision
measures the fraction of examples classified as positive that are truly positive.

A.2 ROC and PR Curves

The confusion matrix can be used to construct a point in either ROC space or PR space.
In ROC space, one plots the False Positive Rate (FPR) on the x-axis and the True Positive

actual positive actual negative
predicted positive TP FP
predicted negative FN TN

(a) Confusion Matrix

Recall = TP
TP+FN

Precision = TP
TP+FP

True Positive Rate = TP
TP+FN

False Positive Rate = FP
FP+TN

Accuracy = TP+TN
TP+FP+TN+FN

(b) Definitions of metrics

Table A.1: Common machine learning evaluation metrics

128 Appendix A. Evaluation Metrics

Rate (TPR) on the y-axis. In PR space, one plots Recall on the x-axis and Precision on
the y-axis (or inverse).

Some probabilistic classifiers, such as Naive Bayes classifiers or neural networks, give
probabilities (degrees) of examples, where the bigger the probability, the more likely the
example to be true. Such a probabilistic classifier can be used with a threshold to produce
a binary classifier: if an output of the classifier is above the threshold, the classifier decides
true, otherwise false. Each threshold value produces a point in ROC space or PR space.
Conceptually, we can vary a threshold from −∞ to +∞ and trace a curve through ROC
space or PR space. Computationally, this is a poor way of generating a ROC curve or PR
curve. We refer the reader to [Fawcett 2003] for a more efficient and careful computational
method.

Precision-Recall curves have been cited as an alternative to ROC curves for tasks with a
large skew in the class distribution [Bockhorst & Craven 2005, Singla & Domingos 2005,
Kok & Domingos 2005, Davis & Goadrich 2006], which captures the effect of the large
number of negative examples on the performance of algorithm. An important difference
between ROC space and PR space is the visual representation of the curves. The ideal in
ROC space is to be in the upper-left-hand corner while the ideal in PR space is to be in
the upper-right-hand corner.

A.3 Area Under the Curve

A ROC curve or a PR-curve describes the performance of a classifier in a two-dimensional
space. To be more intuitive, we may want to reduce ROC performance to a single scalar
to compare classifiers. Often, the Area Under the Curve (AUC) over either ROC or PR
space [Bradley 1997] is used for this purpose.

The area under the ROC curve, AUC-ROC (respectively AUC-PR), can be calculated
by using the trapezoidal areas created between each ROC point (respectively each precision
point). Since the AUC-ROC or AUC-PR is a portion of the area of the unit square, their
values will always be between 0 and 1.

By including the intermediate interpolated PR points, [Davis & Goadrich 2006] can
use the composite trapezoidal method to approximate the area under the PR curve (AUC-
PR). The AUC-PR value for a random classifier is equal to TP+FN

TP+FP+TN+FN , as this is the
expected precision for classifying a random sample of examples as positive. We use a tool
provided in [Davis & Goadrich 2006] to compute AUC-PR values in our experiments.

Appendix B

Experimental Comparison to ILP

Contents
B.1 Systems and Datasets . 129

B.2 Methodology . 130

B.3 Results . 131

We have presented so far our methods for MLN structure learning in which each system
improves the performance compared to the previous developed ones. However, for most
of methods, we have just evaluated on the CLL and AUC-PR measures and compared to
other MLN learners. It is necessary to see how our methods perform in comparison to at
least one non-MLN system. In this chapter, we thus present an experimental comparison
between our methods and an ILP system.

B.1 Systems and Datasets

Concerning comparisons between MLN methods and ILP methods, as far as we know,
there exists:

• The work of [Richardson & Domingos 2006] in which they compare a MLN structure
learning algorithm to the CLAUDIEN [De Raedt & Dehaspe 1997] system.

• The work of [Huynh & Mooney 2008] in which they compare an Aleph-based method
for discriminative MLN structure learning against ALEPH and BUSL. This method
uses ALEPH to learn a set of initial clauses and then learns a discriminative MLN
from this set using the L1-regulation.

These experiment results show that generative MLN structure learners outperformed
CLAUDIEN. However, for discriminative MLN structure learning, the result in
[Huynh & Mooney 2008] is not completely convincing because their discriminative MLN
learner is an ALEPH-based system. In other words, the system in [Huynh & Mooney 2008]
performs refinement of clauses output by ALEPH, hence it obviously improves the perfor-
mance of ALEPH. In this chapter, we conduct experiments to compare our discriminative
MLN structure learners against ALEPH.

We used the classical ALEPH command induce which scores a clause based only on
its coverage of currently uncovered positive examples. Besides, Aleph also has a wide
variety of learning parameters, amongst which we used some major ones as follows:

130 Appendix B. Experimental Comparison to ILP

• Search strategy: Aleph provides several search strategies including the breadth-
first search, depth-first search, iterative beam search, iterative deepening, and heuris-
tic methods requiring an evaluation function. We used the default breadth-first
search.

• Evaluation function: We used the default evaluation function in Aleph is the
coverage, which is defined as the number of positive examples covered by the clause
minus the number of negations.

• Clause length: This parameter defines the size of a particular clause. We lim-
ited this length to 5, which is similar to the maximum number of literals, given as
parameters of our discriminative systems.

• Minimum accuracy: This is used to put a lower bound on the accuracy of the
clauses learned by Aleph. The accuracy of a clause has the same meaning as preci-
sion. We set this parameter to 0.5.

• Minimum positive: The minimum number of positive examples covered by an
acceptable clause was set to 1.

For the other parameters, we used the default values in ALEPH.
In order to find out how ALEPH performs against our discriminative systems, we

reused the three dataset IMDB, UW-CSE and CORA (described in Subsection 4.2.4.1)
for the following reasons:

• They have been used to evaluate all our discriminative systems for learning both
Horn and arbitrary clauses. IMDB is a small dataset, UW-CSE is medium and
CORA is a quite large dataset.

• CORA contains both true and false ground atoms which is suitable for ALEPH to
find a set of Horn clauses that covers the most number of positive examples and
the least number of negative examples. Four predicates SameAuthor, SameTitle,
SameVenue and SameBib (with an increasing number of true ground atoms) are
learned separately; the number of true ground atoms in the dataset of SameBib is
the biggest (approximately 50000 examples).

• The closed-world assumption is used for IMDB and UW-CSE. ALEPH learns clauses
for the predicates WorkedUnder (IMDB) and AdvisedBy (UW-CSE).

It must be noticed that the above configuration of ALEPH comes from the fact that we
first performed ALEPH 5 times with different configurations for the predicate SameBib
(CORA) on only one fold, then chose the one that gives the best accuracy. We compare
the results obtained by ALEPH to only the Horn-clause versions of HDSM, DMSP and
DSLP.

B.2 Methodology

A 5-fold cross-validation is used to evaluate HDSM, DMSP and DSLP for all these datasets
and the average CLL and AUC-PR values over test folds are reported for each predicate

B.3. Results 131

(see results in Subsections 4.2.6.2, 4.3.4.2 and 5.4.3.2). Note that we applied our discrimi-
native learners to perform with both Horn clauses and arbitrary clauses. Because ALEPH
only looks for Horn clauses, we take only results of Horn clause versions for comparisons.
Unfortunately, it is not easy to compute AUC-PR values as well as to plot PR-curves
for ALEPH because the output of ALEPH is just the numbers of true positives, false
positives, true negatives and false negatives, without any probability information for each
true/false ground atom. To plot PR curves for ALEPH and to compute AUC-PR values,
in our knowledge, there exists the method based on the use of bagging for ILP investi-
gated by [Breiman 1996], and then the method based on ensembles with different seeds
[Dutra et al. 2002], which has been shown much better than the former. The idea under-
lying these methods is to use different classifiers to learn and to combine their results by a
voting threshold. ALEPH, performing with different seeds, will give different results; that
can be viewed as results of different classifiers. The number of classifiers is recommended
to be greater than 25 and [Dutra et al. 2002] used 100 in their experiments. They then
had to use a turning phase to find out the best threshold for voting and the best value of
parameter minacc for ALEPH. These learned parameters (minacc and voting threshold)
were then used for evaluating on the test fold. These methods, thereby, have to create
many theories (hence launch ALEPH many times). For example, in the experiments using
“different seeds” of [Dutra et al. 2002], for a fold, they have to create 6000 theories for
turning and 300 for evaluating. Applying this method to compute a PR curve for ALEPH
on IMDB, UW-VSE and CORA requires a lot of times because of the fact that it takes
approximately a half day each time on CORA or approximately 15 minutes each time on
IMDB. For the time being, we therefore only run ALEPH 5 times for each fold of cross-
validation, each time with different seeds (by changing the order of training examples) so
that ALEPH can generates a new theory. Result of each run will be used to plot a point
in the space of precision recall. We compare relatively these points to PR curves of our
methods.

B.3 Results

For each predicate and for each test fold we plot the PR curves generated respectively
by HDSM, DMSP and DSLP. Concerning ALEPH, for each fold (learning on 4 parts and
testing on the remain), we draw 5 points, each point corresponds to a pair of precision,
recall output by ALEPH. Figures B.1, B.2, B.3, B.4, B.5 and B.6 shows respectively the
PR-curves output by HDSM, DMSP and DSLP and PR-points output by ALEPH for the
query predicates on all 5 test folds. We can see that all the PR points from ALEPH lie
entirely under every curve and ALEPH often gives the same PR points for several different
seeds. The PR points from ALEPH distribute near the value corresponding to precision =
1 because ALEPH tries to find a set of clauses that covers most of positive ground atoms
and few of negative ones. These results mean that the performance of ALEPH in terms
of precision-recall is not better than the performance of our discriminative MLN structure
learners. It must be noticed that two propositionalization methods were respectively
implemented for HDSM and DMSP. All the PR-curves from DMSP are over the ones from
HDSM. It means that our propositionalization method in DMSP is much better than the
first one in HDSM. We will further investigate in the properties of this method.

132 Appendix B. Experimental Comparison to ILP

Concerning the number of learned clauses, ALEPH always brings more clauses than
the others. For example, for the predicate SameBib on the first test fold, ALEPH returned
68 clauses while DSLP gave 10 clauses and DMSP generated 8 clauses. Detail of these
clauses can be found in Appendix C of this dissertation. One reason for that is because
ALEPH always tries to generate new clauses in order to cover more positive clauses while
we try to prune some clauses at the last step of our methods in order to improve the
measure (i.e. the CLL measure).

B.3. Results 133

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure B.1: Results for the predicate WorkedUnder in IMDB

134 Appendix B. Experimental Comparison to ILP

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure B.2: Results for the predicate AdvisedBy in UW-CSE

B.3. Results 135

Figure B.3: Results for the predicate SameAuthor in CORA

136 Appendix B. Experimental Comparison to ILP

Figure B.4: Results for the predicate SameBib in CORA

B.3. Results 137

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure B.5: Results for the predicate SameTitle in CORA

138 Appendix B. Experimental Comparison to ILP

Figure B.6: Results for the predicate SameVenue in CORA

Appendix C

Clauses Learned by Discriminative
Systems

Clauses learned by discriminative systems ALEPH, DSLP, DMSP, HDSM for the
predicate SameBib (CORA dataset) on one fold.

ALEPH
samebib(A,B) :- author(B,C), title(B,D).
samebib(A,B) :- title(B,C), title(A,C).
samebib(A,B) :- title(B,C), title(D,C), author(D,E).
samebib(A,B) :- author(B,C), venue(B,D).
samebib(A,B) :- author(B,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(D,C), title(D,E), venue(D,F).
samebib(A,B) :- author(A,C), venue(A,D), venue(E,D), title(E,F).
samebib(A,B) :- title(B,C), title(A,C).
samebib(A,B) :- title(A,C), title(D,C), author(D,E), venue(A,F).
samebib(A,B) :- author(A,C), author(D,C), title(D,E), haswordauthor(C,F).
samebib(A,B) :- author(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- title(B,C), title(A,C), title(D,C), venue(D,E).
samebib(A,B) :- venue(B,C), haswordvenue(C,D), haswordtitle(E,D), venue(A,C).
samebib(A,B) :- author(B,C), venue(B,D), haswordvenue(D,E), haswordtitle(F,E).
samebib(A,B) :- author(B,C), haswordauthor(C,D), haswordtitle(E,D).
samebib(A,B) :- author(A,C), venue(A,D), haswordvenue(D,E), haswordtitle(F,E).
samebib(A,B) :- title(B,C), title(A,C), venue(A,D).
samebib(A,B) :- venue(B,C), venue(A,C), haswordvenue(C,D), haswordtitle(E,D).
samebib(A,B) :- author(A,C), title(B,D), title(A,D).
samebib(A,B) :- venue(B,C), venue(A,C), haswordvenue(C,D), haswordtitle(E,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D).
samebib(A,B) :- author(B,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- venue(B,C), venue(A,C), haswordvenue(C,D), haswordtitle(E,D).
samebib(A,B) :- title(B,C), title(A,C), haswordtitle(C,D), haswordauthor(E,D).
samebib(A,B) :- venue(B,C), venue(A,C), haswordvenue(C,D), haswordtitle(E,D).
samebib(A,B) :- venue(B,C), venue(A,C), haswordvenue(C,D), haswordtitle(E,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), haswordtitle(C,D), haswordauthor(E,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).

140 Appendix C. Clauses Learned by Discriminative Systems

samebib(A,B) :- author(A,C), haswordauthor(C,D), haswordtitle(E,D), haswordv-
enue(F,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), haswordtitle(C,D), haswordauthor(E,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), haswordtitle(C,D), haswordauthor(E,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).
samebib(A,B) :- author(B,C), author(A,C), title(B,D), title(A,D).
samebib(A,B) :- author(B,C), author(A,D), title(B,E), title(A,E).
samebib(A,B) :- title(B,C), title(A,C), venue(B,D), venue(A,D).

DSLP
SameBib(a1,a1) :- Author(a1,a2), Author(a1,a3)
SameBib(a1,a1) :- Title(a1,a2), Title(a1,a3)
SameBib(a1,a1) :- Venue(a1,a2), Venue(a1,a3)
SameBib(a1,a3) :- Title(a1,a2), Title(a3,a4), Venue(a1,a5)
SameBib(a3,a1) :- Author(a1,a2), Venue(a3,a4)
SameBib(a1,a4) :- Author(a1,a2), Title(a1,a3), Title(a4,a5)
SameBib(a1,a3) :- Author(a1,a2), Title(a3,a4), Venue(a1,a5)

141

SameBib(a1,a3) :- Author(a1,a2), Author(a3,a4), Title(a3,a5)
SameBib(a1,a3) :- Title(a1,a2), Venue(a3,a4)
SameBib(a3,a1) :- Title(a1,a2), Venue(a1,a5), Venue(a3,a4)

DMSP
SameBib(a1,a1) :- Author(a1,a2), Title(a1,a3)
SameBib(a1,a1) :- Venue(a1,a2), Venue(a1,a3)
SameBib(a1,a1) :- Author(a1,a2), Author(a1,a3)
SameBib(a1,a3) :- Title(a1,a2), Title(a3,a4)
SameBib(a1,a3) :- Author(a1,a2), Title(a3,a4), Venue(a1,a5)
SameBib(a1,a4) :- Author(a1,a2), Venue(a1,a3), Venue(a4,a5)
SameBib(a3,a1) :- Title(a1,a2), Venue(a1,a5), Venue(a3,a4)
SameBib(a1,a3) :- Author(a1,a2), Author(a3,a4), Title(a3,a5)

HDSM
SameBib(a1,a1) :- Venue(a1,a2)
SameAuthor(a1,a1) :- HasWordAuthor(a1,a2)
SameAuthor(a2,a3) :- Author(a1,a2), SameAuthor(a3,a2)
SameTitle(a2,a3) :- Title(a1,a2), SameTitle(a3,a2)

Bibliography

[Agresti 2002] A. Agresti. Categorical data analysis. Wiley Series in Probability and
Statistics. Wiley-Interscience, 2nd édition, 2002.

[Alphonse & Rouveirol 1999] Érick Alphonse and Céline Rouveirol. Selective Proposition-
alization for Relational Learning. In PKDD, pages 271–276, 1999.

[Alphonse & Rouveirol 2000] Érick Alphonse and Céline Rouveirol. Lazy Propositionali-
sation for Relational Learning. In ECAI, pages 256–260, 2000.

[Anderson et al. 2002] Corin R. Anderson, Pedro Domingos and Daniel S. Weld. Re-
lational Markov Models and their Application to Adaptive Web Navigation. In
Proceedings of the eighth ACM SIGKDD international conference on knowledge
discovery and data mining, pages 143–152, New York, NY, USA, 2002. ACM.

[Arias et al. 2007] Marta Arias, Roni Khardon and Jérôme Maloberti. Learning Horn
Expressions with LOGAN-H. J. Mach. Learn. Res., vol. 8, pages 549–587, December
2007.

[Besag 1975] Julian Besag. Statistical Analysis of Non-Lattice Data. Journal of the Royal
Statistical Society. Series D (The Statistician), vol. 24, no. 3, pages 179–195, 1975.

[Biba et al. 2008a] Marenglen Biba, Stefano Ferilli and Floriana Esposito. Discriminative
Structure Learning of Markov Logic Networks. In ILP ’08: Proceedings of the 18th
international conference on Inductive Logic Programming, pages 59–76, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Biba et al. 2008b] Marenglen Biba, Stefano Ferilli and Floriana Esposito. Structure
Learning of Markov Logic Networks through Iterated Local Search. In Proceeding of
the 2008 conference on ECAI 2008, pages 361–365, Amsterdam, The Netherlands,
2008. IOS Press.

[Bishop 2006] Christopher M. Bishop. Pattern recognition and machine learning (infor-
mation science and statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[Bockhorst & Craven 2005] Joseph Bockhorst and Mark Craven. Markov networks for
detecting overlapping elements in sequence data. In Neural Information Processing
Systems 17 (NIPS. MIT Press, 2005.

[Bradley 1997] Andrew P. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, vol. 30, pages
1145–1159, 1997.

[Braz et al. 2005] Rodrigo De Salvo Braz, Eyal Amir and Dan Roth. Lifted first-order
probabilistic inference. In In Proceedings of IJCAI-05, 19th International Joint
Conference on Artificial Intelligence, pages 1319–1325. Morgan Kaufmann, 2005.

144 Bibliography

[Breiman 1996] Leo Breiman. Bagging Predictors. In Machine Learning, pages 123–140,
1996.

[Bromberg et al. 2006] Facundo Bromberg, Alicia Carriquiry, Vasant Honavar, Giora
Slutzki and Leigh Tesfatsion. Efficient Markov Network Structure Discovery using
Independence Tests. In In SIAM International Conference on Data Mining, 2006.

[Collins 2002] Michael Collins. Discriminative training methods for hidden Markov mod-
els: theory and experiments with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing - Vol-
ume 10, EMNLP ’02, pages 1–8, Stroudsburg, PA, USA, 2002. Association for
Computational Linguistics.

[Davis & Goadrich 2006] Jesse Davis and Mark Goadrich. The Relationship between
Precision-Recall and ROC Curves. In ICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, pages 233–240, New York, NY, USA, 2006.
ACM.

[De Raedt & Dehaspe 1997] Luc De Raedt and Luc Dehaspe. Clausal Discovery. Machine
Learning, vol. 26, no. 2-3, pages 99–146, 1997.

[De Raedt et al. 2008] Luc De Raedt, Paolo Frasconi, Kristian Kersting and Stephen Mug-
gleton, editeurs. Probabilistic inductive logic programming - theory and applica-
tions, volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

[De Raedt 2008] Luc De Raedt. Logical and relational learning. Springer, Secaucus, NJ,
USA, 2008.

[Dehaspe 1997] Luc Dehaspe. Maximum Entropy Modeling with Clausal Constraints.
pages 109–124, 1997.

[Della Pietra et al. 1997] Stephen Della Pietra, Vincent Della Pietra and John Lafferty.
Inducing Features of Random Fields. IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 4, pages 380–393, 1997.

[Dempster et al. 1977] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pages 1–38, 1977.

[Dinh et al. 2010a] Quang-Thang Dinh, Matthieu Exbrayat and Christel Vrain. Discrim-
inative Markov Logic Network Structure Learning Based on Propositionalization
and χ2-test. In ADMA (1), pages 24–35, 2010.

[Dinh et al. 2010b] Quang-Thang Dinh, Matthieu Exbrayat and Christel Vrain. Gener-
ative Structure Learning for Markov Logic Networks. In Proceeding of the 2010
conference on STAIRS 2010: Proceedings of the Fifth Starting AI Researchers’
Symposium, pages 63–75, Amsterdam, The Netherlands, The Netherlands, 2010.
IOS Press.

Bibliography 145

[Dinh et al. 2010c] Quang-Thang Dinh, Matthieu Exbrayat and Christel Vrain. Heuris-
tic Method for Discriminative Structure Learning of Markov Logic Networks. In
ICMLA, pages 163–168, 2010.

[Dinh et al. 2011a] Quang-Thang Dinh, Matthieu Exbrayat and Christel Vrain. Appren-
tissage génératif de la structure de réseaux logiques de Markov à partir d’un graphe
des prédicats. In EGC, pages 413–424, 2011.

[Dinh et al. 2011b] Quang-Thang Dinh, Matthieu Exbrayat and Christel Vrain. Genera-
tive Structure Learning for Markov Logic Networks Based on Graph of Predicates.
In IJCAI, pages 1249–1254, 2011.

[Domingos & Lowd 2009] Pedro Domingos and Daniel Lowd. Markov logic: An interface
layer for artificial intelligence. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2009.

[Domingos & Richardson 2007] Pedro Domingos and Matthew Richardson. Markov logic:
A unifying framework for statistical relational learning, pages chapter 12, 339–371.
In Introduction to Statistical Relational Learning, 2007.

[Domingos et al. 2008a] Pedro Domingos, Stanley Kok, Daniel Lowd, Hoifung Poon,
Matthew Richardson and Parag Singla. Markov Logic. In Probabilistic Inductive
Logic Programming, pages 92–117, 2008.

[Domingos et al. 2008b] Pedro Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon,
Matthew Richardson and Parag Singla. Uncertainty Reasoning for the Seman-
tic Web I. chapitre Just Add Weights: Markov Logic for the Semantic Web, pages
1–25. Springer-Verlag, Berlin, Heidelberg, 2008.

[Dutra et al. 2002] Ines De Castro Dutra, Vitor Santos Costa and Jude Shavlik. An Em-
pirical Evaluation of Bagging in Inductive Logic Programming. In In Proceedings
of the Twelfth International Conference on Inductive Logic Programming, pages
48–65. Springer-Verlag, 2002.

[Dzeroski 2007] Saso Dzeroski. Inductive logic programming in a nutshell, chapitre 2. In
the book: Introduction to Statistical Relational Learning. The MIT Press, 2007.

[Edwards 2000] David Edwards. Introduction to graphical modelling. Springer, June
2000.

[Fawcett 2003] Tom Fawcett. ROC graphs: Notes and practical considerations for data
mining researchers. Rapport technique HPL-2003-4, HP Laboratories, Palo Alto,
CA, USA, January 2003.

[Friedman et al. 1999] Nir Friedman, Lise Getoor, Daphne Koller and Avi Pfeffer. Learn-
ing Probabilistic Relational Models. pages 1300–1309, 1999.

[Genesereth & Nilsson 1987] Michael Genesereth and Nils Nilsson. Logical foundations of
artificial intelligence. Morgan Kaufmann, San Mateo, CA, 1987.

146 Bibliography

[Getoor & Taskar 2007] Lise Getoor and Ben Taskar. Introduction to statistical relational
learning (adaptive computation and machine learning). The MIT Press, November
2007.

[Gilks & Spiegelhalter 1999] W.R. Gilks and DJ Spiegelhalter. Markov chain monte carlo
in practice. Chapman and Hall/CRC, 1999.

[Hoos & Stutzle 2004] Holger H. Hoos and Thomas Stutzle. Stochastic local search: Foun-
dations & application. Morgan Kaufmann, 1 édition, September 2004.

[Huynh & Mooney 2008] Tuyen N. Huynh and Raymond J. Mooney. Discriminative
Structure and Parameter Learning for Markov Logic Networks. In ICML ’08: Pro-
ceedings of the 25th international conference on Machine learning, pages 416–423,
New York, NY, USA, 2008. ACM.

[Huynh & Mooney 2009] Tuyen N. Huynh and Raymond J. Mooney. Max-Margin Weight
Learning for Markov Logic Networks. In ECML PKDD ’09: Proceedings of the
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 564–579, Berlin, Heidelberg, 2009. Springer-Verlag.

[Jordan et al. 1999] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola and
Lawrence K. Saul. An Introduction to Variational Methods for Graphical Mod-
els. Mach. Learn., vol. 37, pages 183–233, November 1999.

[Kautz et al. 1996] H. Kautz, B. Selman and Y. Jiang. A general stochastic approach to
solving problems with hard and soft constraints, 1996.

[Kersting & De Raedt 2007] Kristian Kersting and Luc De Raedt. Bayesian logic pro-
gramming: Theory and tool. In Introduction to Statistical Relational Learning,
2007.

[Kersting et al. 2009] Kristian Kersting, Babak Ahmadi and Sriraam Natarajan. Counting
belief propagation. In Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, UAI ’09, pages 277–284, Arlington, Virginia, United States,
2009. AUAI Press.

[Khosravi et al. 2010] Hassan Khosravi, Oliver Schulte, Tong Man, Xiaoyuan Xu and Ba-
hareh Bina. Structure Learning for Markov Logic Networks with Many Descriptive
Attributes. In Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), 2010.

[Knobbe et al. 2001] Arno J. Knobbe, Marc De Haas and Arno Siebes. Propositionalisa-
tion and Aggregates. In In Proceeding of the 5th PKDD, pages 277–288. Springer-
Verlag, 2001.

[Kok & Domingos 2005] Stanley Kok and Pedro Domingos. Learning the Structure of
Markov Logic Networks. In ICML ’05: Proceedings of the 22nd international con-
ference on Machine learning, pages 441–448, New York, NY, USA, 2005. ACM.

Bibliography 147

[Kok & Domingos 2009] Stanley Kok and Pedro Domingos. Learning Markov Logic Net-
work Structure via Hypergraph Lifting. In ICML ’09: Proceedings of the 26th
Annual International Conference on Machine Learning, pages 505–512, New York,
NY, USA, 2009. ACM.

[Kok & Domingos 2010] Stanley Kok and Pedro Domingos. Learning Markov Logic Net-
works Using Structural Motifs. In Johannes Fürnkranz and Thorsten Joachims,
editeurs, Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 551–558, Haifa, Israel, June 2010. Omnipress.

[Kok et al. 2009] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd,
J. Wang and P. Domingos. The Alchemy system for statistical relational AI. Rap-
port technique, University of Washington., 2009.

[Krogel & Wrobel 2001] Mark-A. Krogel and Stefan Wrobel. Transformation-Based
Learning Using Multirelational Aggregation. In Proceedings of the 11th Inter-
national Conference on Inductive Logic Programming, ILP ’01, pages 142–155,
London, UK, 2001. Springer-Verlag.

[Krogel et al. 2003] Mark-A. Krogel, Simon Rawles, Filip Zelezny, Peter Flach, Nada
Lavrac; and Stefan Wrobel. Comparative evaluation of approaches to proposition-
alization. In Tamas Horvath and Akihiro Yamamoto, editeurs, Proceedings of the
13th International Conference on Inductive Logic Programming (ILP 2003), pages
194–217, Heidelberg, 2003. Springer.

[Kuželka & Železný 2008] Ondřej Kuželka and Filip Železný. HiFi: Tractable Proposi-
tionalization through Hierarchical Feature Construction. In Filip Železný and Nada
Lavrač, editeurs, Late Breaking Papers, the 18th International Conference on In-
ductive Logic Programming, 2008.

[Lavrac & Dzeroski 1994] Nada Lavrac and Saso Dzeroski. Inductive logic programming:
Techniques and applications. Ellis Horwood, New York, 1994.

[Lavrac et al. 2002] Nada Lavrac, Filip Zelezny and Peter Flach. RSD: Relational sub-
group discovery through first-order feature construction. In In 12th International
Conference on Inductive Logic Programming, pages 149–165. Springer, 2002.

[Lee et al. 2007] Su I. Lee, Varun Ganapathi and Daphne Koller. Efficient Structure
Learning of Markov Networks using L1-Regularization. In B. Schölkopf, J. Platt
and T. Hoffman, editeurs, Advances in Neural Information Processing Systems 19,
pages 817–824. MIT Press, Cambridge, MA, 2007.

[Lesbegueries et al. 2009] Julien Lesbegueries, Nicolas Lachiche and A Braud. A proposi-
tionalisation that preserves more continuous attribute domains. 2009.

[Liang & Jordan 2008] Percy Liang and Michael I. Jordan. An asymptotic analysis of
generative, discriminative, and pseudolikelihood estimators. In Proceedings of the
25th international conference on Machine learning, ICML ’08, pages 584–591, New
York, NY, USA, 2008. ACM.

148 Bibliography

[Liu et al. 1989] Dong C. Liu, Jorge Nocedal and Dong C. On the Limited Memory BFGS
Method for Large Scale Optimization. Mathematical Programming, vol. 45, pages
503–528, 1989.

[Lovasz 1996] Laszlo Lovasz. Random walks on graphs: A survey. Combinatorics, vol. 2,
pages 353–398, 1996.

[Lowd & Domingos 2007] Daniel Lowd and Pedro Domingos. Efficient Weight Learning
for Markov Logic Networks. In PKDD 2007: Proceedings of the 11th European
conference on Principles and Practice of Knowledge Discovery in Databases, pages
200–211, Berlin, Heidelberg, 2007. Springer-Verlag.

[McDonald 2009] John H. McDonald. Handbook of biological statistics. Sparky House
Publishing, Baltimore, Maryland, USA, second édition, 2009.

[Mihalkova & Mooney 2007] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up
Learning of Markov Logic Network Structure. In ICML ’07: Proceedings of the
24th international conference on Machine learning, pages 625–632, New York, NY,
USA, 2007. ACM.

[Milch et al. 2008] Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes
and Leslie P. Kaelbling. Lifted probabilistic inference with counting formulas. In
AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence,
pages 1062–1068. AAAI Press, 2008.

[Moller 1993] M. Moller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, vol. 6, no. 4, pages 525–533, 1993.

[Muggleton & Feng 1990] Stephen Muggleton and Cao Feng. Efficient Induction Of Logic
Programs. In New Generation Computing. Academic Press, 1990.

[Muggleton & Feng 1992] Stephen Muggleton and C. Feng. Efficient Induction in Logic
Programs. In Stephen Muggleton, editeur, Inductive Logic Programming, pages
281–298. Academic Press, 1992.

[Muggleton 1995] Stephen Muggleton. Inverse entailment and progol. New Generation
Computing, vol. 13, pages 245–286, 1995. 10.1007/BF03037227.

[Nath & Domingos 2010] Aniruddh Nath and Pedro Domingos. Efficient Belief Propaga-
tion for Utility Maximization and Repeated Inference. In AAAI, 2010.

[Neville & Jensen 2004] Jennifer Neville and David Jensen. Dependency Networks for
Relational Data. In ICDM ’04: Proceedings of the Fourth IEEE International
Conference on Data Mining, pages 170–177, Washington, DC, USA, 2004. IEEE
Computer Society.

[Nocedal & Wright 1999] Jorge Nocedal and Stephen J. Wright. Numerical optimization.
Springer, August 1999.

[Pearl 1988] Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plau-
sible inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

Bibliography 149

[Plotkin 1970] Gordon D. Plotkin. A Note on Inductive Generalization. Machine Intelli-
gence, vol. 5, pages 153–163, 1970.

[Poole 2003] David Poole. First-order probabilistic inference. In Proceedings of the 18th
international joint conference on Artificial intelligence, pages 985–991, San Fran-
cisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[Poon & Domingos 2006] Hoifung Poon and Pedro Domingos. Sound and Efficient Infer-
ence with Probabilistic and Deterministic Dependencies. In AAAI’06: Proceedings
of the 21st national conference on Artificial intelligence, pages 458–463. AAAI
Press, 2006.

[Poon & Domingos 2008] Hoifung Poon and Pedro Domingos. Joint unsupervised corefer-
ence resolution with Markov logic. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’08, pages 650–659, Strouds-
burg, PA, USA, 2008. Association for Computational Linguistics.

[Poon et al. 2008] Hoifung Poon, Pedro Domingos and Marc Sumner. A general method
for reducing the complexity of relational inference and its application to MCMC.
In Proceedings of the 23rd national conference on Artificial intelligence - Volume
2, pages 1075–1080. AAAI Press, 2008.

[Quinlan 1990] J. R. Quinlan. Learning Logical Definitions from Relations. Mach. Learn.,
vol. 5, pages 239–266, September 1990.

[Rabiner 1990] Lawrence R. Rabiner. Readings in speech recognition. pages 267–296, San
Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[Richards & Mooney 1992] B. L. Richards and R. J. Mooney. Learning Relations by
Pathfinding. In Proc. of AAAI-92, pages 50–55, San Jose, CA, 1992.

[Richards & Mooney 1995] Bradley L. Richards and Raymond J. Mooney. Automated Re-
finement of First-Order Horn-Clause Domain Theories. Machine Learning, vol. 19,
pages 95–131, May 1995.

[Richardson & Domingos 2004] Matthew Richardson and Pedro Domingos. Markov Logic:
A Unifying Framework for Statistical Relational Learning. In In Proceedings of the
ICML-2004 Workshop on SRL and its Connections to Other Fields, pages 49–54,
2004.

[Richardson & Domingos 2006] Matthew Richardson and Pedro Domingos. Markov Logic
Networks. Mach. Learn., vol. 62, no. 1-2, pages 107–136, 2006.

[Saitta & Vrain 2008] Lorenza Saitta and Christel Vrain. A Comparison between Two
Statistical Relational Models. In Proceedings of the 18th international conference
on Inductive Logic Programming, ILP ’08, pages 244–260, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Sarkar et al. 2008] Purnamrita Sarkar, Andrew W. Moore and Amit Prakash. Fast incre-
mental proximity search in large graphs. In Proceedings of the 25th international

150 Bibliography

conference on Machine learning, ICML ’08, pages 896–903, New York, NY, USA,
2008. ACM.

[Sato & Kameya 1997] Taisuke Sato and Yoshitaka Kameya. PRISM: A Language for
Symbolic-statistical Modeling. In In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI’97, pages 1330–1335, 1997.

[Sha & Pereira 2003] Fei Sha and Fernando Pereira. Shallow Parsing with Conditional
Random Fields. In NAACL ’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human
Language Technology, pages 134–141, Morristown, NJ, USA, 2003. Association for
Computational Linguistics.

[Shavlik & Natarajan 2009] Jude Shavlik and Sriraam Natarajan. Speeding up Inference
in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting
Grounded Network. In IJCAI’09: Proceedings of the 21st international jont con-
ference on Artifical intelligence, pages 1951–1956, San Francisco, CA, USA, 2009.
Morgan Kaufmann Publishers Inc.

[Shewchuk 1994] Jonathan R. Shewchuk. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Rapport technique, Pittsburgh, PA, USA,
1994.

[Silverstein & Pazzani 1991] Glenn Silverstein and Michael J. Pazzani. Relational Clichés:
Constraining Induction During Relational Learning. In ML, pages 203–207, 1991.

[Singla & Domingos 2005] Parag Singla and Pedro Domingos. Discriminative Training of
Markov Logic Networks. In In Proc. of the Natl. Conf. on Artificial Intelligence,
2005.

[Singla & Domingos 2008] Parag Singla and Pedro Domingos. Lifted first-order belief
propagation. In Proceedings of the 23rd national conference on Artificial intel-
ligence - Volume 2, pages 1094–1099. AAAI Press, 2008.

[Spirtes et al. 2001] Peter Spirtes, Clark Glymour and Richard Scheines. Causation, pre-
diction, and search, second edition (adaptive computation and machine learning).
The MIT Press, 2 édition, January 2001.

[Srinivasan 2003] Ashwin Srinivasan. The Aleph Manual.
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph, 2003.

[Srinivasan 2007] Ashwin Srinivasan. The Aleph Manual. Rapport technique,
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/aleph, 2007.

[Taskar et al. 2007] Ben Taskar, Pieter Abbeel, Ming-Fai Wong and Daphne Koller. Re-
lational Markov Networks. In L. Getoor and B. Taskar, editeurs, Introduction to
Statistical Relational Learning. MIT Press, 2007.

[Tasker et al. 2002] Ben Tasker, Abbeel Pieter and Daphne Koller. Discriminative Proba-
bilistic Models for Relational Data. In Proceedings of the 18th Annual Conference

Bibliography 151

on Uncertainty in Artificial Intelligence (UAI-02), pages 485–49, San Francisco,
CA, 2002. Morgan Kaufmann.

[Wei et al. 2004] Wei Wei, Jordan Erenrich and Bart Selman. Towards efficient sampling:
exploiting random walk strategies. In Proceedings of the 19th national conference
on Artifical intelligence, AAAI’04, pages 670–676. AAAI Press, 2004.

[Zelle et al. 1994] John M. Zelle, Raymond J. Mooney and Joshua B. Konvisser. Com-
bining top-down and bottom-up techniques in inductive logic programming. In in
Proceedings of the Eleventh International Conference on Machine Learning ML-94,
Morgan-Kaufmann, pages 343–351. Morgan Kaufmann, 1994.

Quang-Thang DINH

Apprentissage Statistique Relationnel :
Apprentissage de Structures de Réseaux de Markov Logiques

Résumé :
Un réseau logique de Markov est formé de clauses en logique du premier ordre auxquelles sont
associés des poids. Cette thèse propose plusieurs méthodes pour l’apprentissage de la structure
de réseaux logiques de Markov (MLN) à partir de données relationnelles. Ces méthodes sont de
deux types, un premier groupe reposant sur les techniques de propositionnalisation et un second
groupe reposant sur la notion de Graphe des Prédicats. L’idée sous-jacente aux méthodes à base
de propositionnalisation consiste à construire un jeu de clauses candidates à partir de jeux de
littéraux dépendants. Pour trouver de tels jeux, nous utilisons une méthode de propositionnal-
isation afin de reporter les informations relationnelles dans des tableaux booléens, qui serviront
comme tables de contingence pour des test de dépendance. Nous avons proposé deux méthodes
de propositionnalisation, pour lesquelles trois algorithmes ont été développés, qui couvrent les
problèmes d’appprentissage génératif et discriminant. Nous avons ensuite défini le concept de
Graphe des Prédicats qui synthétise les relations binaires entre les prédicats d’un domaine. Des
clauses candidates peuvent être rapidement et facilement produites en suivant des chemins dans
le graphe puis en les variabilisant. Nous avons développé deux algorithmes reposant sur les
Graphes des Prédicats, qui couvrent les problèmes d’appprentissage génératif et discriminant.
Mots clés : Réseaux Logiques de Markov, Apprentissage de Structure, Propositionnalisation,
Apprentissage Statistique Relationnel.

Statistical Relational Learning:
Structure Learning for Markov Logic Networks

Abstract:
A Markov Logic Network is composed of a set of weighted first-order logic formulas. In this dis-
sertation we propose several methods to learn a MLN structure from a relational dataset. These
methods are of two kinds: methods based on propositionalization and methods based on Graph
of Predicates. The methods based on propositionalization are based on the idea of building a
set of candidate clauses from sets of dependent variable literals. In order to find such sets of
dependent variable literals, we use a propositionalization technique to transform relational infor-
mation in the dataset into boolean tables, that are then provided as contingency tables for tests
of dependence. Two propositionalization methods are proposed, from which three learners have
been developed, that handle both generative and discriminative learning. We then introduce the
concept of Graph of Predicates, which synthethises the binary relations between the predicates
of a domain. Candidate clauses can be quickly and easily generated by simply finding paths in
the graph and then variabilizing them. Based on this Graph, two learners have been developed,
that handle both generative and discriminative learning.
Keywords: Markov Logic Networks, Structure Learning, Propositionalization, Statistical Rela-
tional Learning.

Laboratoire d’Informatique Fondamentale d’Orléans
Bat. 3IA, Université d’Orléans

Rue Léonard de Vinci, B.P. 6759
F-45067 ORLEANS Cedex 2

	Introduction
	Dissertation Contributions
	Dissertation Organization

	Statistical Relational Learning
	Probabilistic Graphical Models
	Bayesian Networks
	Markov Networks

	First-Order Logic
	Inductive Logic Programming
	Statistical Relational Learning
	Probabilistic Relational Models
	Bayesian Logic Programs
	Relational Markov Networks
	Markov Logic Networks

	Summary

	Markov Logic Networks and Alchemy
	Markov Logic Network
	Weight Learning
	Structure Learning
	Inference

	Alchemy
	Input files
	Inference
	Weight Learning
	Structure Learning

	Summary

	Learning MLN Structure Based on Propositionalization
	Introduction
	The HGSM and HDSM Algorithms
	Definitions
	Propositionalization Method
	Structure of HGSM
	Evaluating HGSM
	Structure of HDSM
	Evaluating HDSM

	The DMSP Algorithm
	Definitions
	Propositionalization Method
	Structure of DMSP
	Evaluating DMSP

	Related Works
	Summary

	Learning MLN Structure Based on Graph of Predicates
	Introduction
	The GSLP Algorithm
	Graph of Predicates in GSLP
	Structure of GSLP
	Experiments

	The Modified-GSLP Algorithm
	Graph of Predicates in M-GSLP
	Structure of M-GSLP
	Experiments
	Complexity of the M-GSLP Algorithm

	The DSLP Algorithm
	Graph of Predicates in DSLP
	Structure of DSLP
	Experiments

	Related Works
	Summary

	Conclusion and Future Work
	Contributions of this Dissertation
	Directions for Future Work

	Evaluation Metrics
	Classifier Performance
	ROC and PR Curves
	Area Under the Curve

	Experimental Comparison to ILP
	Systems and Datasets
	Methodology
	Results

	Clauses Learned by Discriminative Systems
	Bibliography

