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Abstract

Multi-scale modeling of damage and acoustic emission in rocks

Accurate modeling of failure of geomaterials is the key to the success of a diverse range of engineering

challenges including the topic of CO2 sequestration, nuclear waste disposal and hydrocarbon production plus

civil engineering projects for tunnels or excavations. The aim of this thesis is to develop macroscopic damage

evolution laws based on explicit descriptions of fracture at the micro-scale level which can be successfully

employed to describe long term damage behavior of geologic storage sites. The approach taken is based on

homogenization through asymptotic developments combined with micro-crack propagation energy analysis

which leads to an explicit quantification of the acoustic emission (AE) energy associated with damage.

Proposed damage models are capable of modeling the degradation of elastic moduli due to the micro-crack

evolution. This representation allows the modeling of wave propagation in a medium with evolving damage.

Two types of damage models will be considered: time independent and time dependent. Time indepen-

dent damage models capable of describing progressive micro-cracking propagation (i.e. quasi-brittle type

damage law) are considered. In the case of time-dependent damage models, the evolution of the micro-crack

length during propagation is described through a sub-critical criterion and mixed mode propagation by

branching. Using the time dependent damage model including rotational micro-cracks, simulations will be

made at three levels: laboratory, tunnel and reservoir scales.

Keywords: micro-cracks, asymptotic homogenization, damage, geomaterials, quasi-brittle behaviour, sub-

critic, time effects, micro-cracks’ kinking, rocks, acoustic emissions

Résumé

Modélisation multi-échelle de l’endommagement et de l’émission acoustique dans les roches

La modélisation de la rupture des géo-matériaux constitue un important défi pour les applications telles

que la séquestration du CO2, le stockage de déchets nucléaires, la production des hydrocarbures ainsi que

les projets de génie civil concernant les tunnels ou les excavations.

L’objectif de cette thèse est de développer des lois d’évolution macroscopiques d’endommagement à

partir des descriptions explicites de la rupture à l’échelle microscopique en vue de la modélisation du

comportement d’endommagement à long terme des sites de stockage géologique.

L’approche adoptée est basée sur l’homogénéisation par développements asymptotiques et la description

énergétique de la propagation des micro-fissures, qui permettent l’obtention des lois d’endommagement et

conduisent à une quantification explicite de l’énergie de l’émission acoustique associée à la rupture. Les

modèles obtenus sont capables de prédire la dégradation des modules d’élasticité en raison de l’évolution

des micro-fissures. Cette représentation permet de modéliser la propagation des ondes dans un milieu à

endommagement évolutif.

Deux types de modèles d’endommagement seront proposés: indépendants de temps et dépendants

de temps. Les modèles dépendants de temps décrivent l’évolution progressive quasi-fragile de la micro-

fissuration. Dans les modèles dépendants de temps, l’évolution des micro-fissures est décrite à travers un

critère sous-critique et la propagation mixte, par branchement. En utilisant le modèle dépendant de temps,

des simulations seront faites à trois niveaux: du laboratoire, du tunnel et du réservoir.

Mots clés: micro-fissures, homogénéisation asymptotique, endommagement, géo-matériaux, comporte-

ment quasi-fragile, sous-critique, effets de temps, branchement des micro-fissures, roches, emission acous-

tique
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2 Notations
E - Young modulus
ν - Poisson’s ratio
x - macroscopic system of coordinates
y - microscopic system of coordinates
ε - material’s internal length represented by the size of a periodicity cell (elementary cell);
equivalent to the size between centers of two neighboring micro-cracks
σε - stress tensor of the initial heterogeneous body (before homogenization)
uε - displacement field of the initial heterogeneous body (before homogenization)
ex - small strain tensor with respect to the macroscopic variable.
Y = [0, 1]× [0, 1] - unit cell (microscopic level)
2a - length of a micro-crack in the elementary cell
θ - orientation of a micro-crack in the elementary cell
d - length of a crack in the unit cell; it varies between 0 (for virgin material) and
1/[max(| cos(θ)|; | sin(θ)|)] (for a micro-crack that completely cross the cell)
d∗ - normalized damage variable (projection of d on the sides of the unit cell). In case of
vertical and horizontal micro-cracks, d = d∗

θ0 - initial micro-crack orientation in the unit (and elementary) cell
d0 - initial micro-crack length in the unit cell
N - unit normal vector to the crack
T - unit tangent vector to the crack
[ · ] - jump across the crack faces
ξ(y) - characteristic functions representing elementary deformation modes of the unit cell
〈·〉 - mean value operator
λ and µ - Lamé constants
Cijkl - effective elastic coefficients
Gε - energy release rate at the crack tip
Gf - critical fracture energy
Gc - maximum of Gf
τs - shear stress (used in this thesis only in the case of wing-type micro-cracks)
µf - friction coefficient (used in this thesis only in the case of wing-type micro-cracks)
φ - angle made by the inclined crack with the horizontal axis (in the case of wing-type
micro-cracks)
φP - diameter of a pore in the elementary cell
aP - diameter of a pore in the unit cell
Iε - the central part of the vertical equivalent crack, which replace the sliding crack.
cf - size of the fracture process zone around a crack tip
dε - a squared plane crack side length in a 3D unit volume
Yd - damage energy release rate (in this thesis only in the 3D case)
τ0 - characteristic time (see [126])
KI,II - stress intensity factors at the tips of a straight micro-crack
K∗I,II - stress intensity factors at the tips of the kinks
K0 - limit value of the mode I stress intensity factor
n - Charles’ law exponent
εeq - energy release rate in the case of linear coefficients
dl - length of a kink
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φmax - kinking angle between the existing crack and the incrementally propagated crack.
λ′ - mode mixity factor used for computing φmax
F (φmax) - 2× 2 Leblond matrix of 20 - degree polynomials
dθ - increment of the orientation of a micro-crack
TC - (Trajectory Corrector) - parameter used in the kinked-crack damage model which
giva a correct trajectory of the equivalent micro-crack
AE - acoustic emissions
vPh - horizontal P-wave velocity
vPh0 - horizontal P-wave velocity at the beggining of the simulation
vPv - vertical P-wave velocity
vPv0 - vertical P-wave velocity at the beggining of the simulation
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3 General introduction

3.1 Objectives

Accurate modeling of inelasticity and failure of geomaterials is the key to the success of a
diverse range of engineering challenges including the topic of CO2 sequestration, nuclear
waste disposal and hydrocarbon production plus civil engineering projects for tunnels
or excavations. However, the geomaterials are notoriously difficult to model due to the
complexity of the micro-structure, heterogeneities and anisotropy at all scales. Particular
characteristics of geomaterials are their pressure sensitive properties, non-linearity and
localized deformation phenomena, which can occur across the scales, e.g., grain-scale
cracking to lithospheric faults. Localization of damage, in particular, can be critical factor
in determining the success or failure of an engineering project. For example, localized
failure will lead to large changes in strength and permeability that could cause borehole
failure and leakage from hydrocarbon or CO2 reservoirs.

Another key aspect in project development in civil engineering (tunnels, foundations,
. . . ), geological storage of radioactive waste or CO2 and oil production field is monitoring
of the actual processes in play. Such monitoring generally requires the use of geophys-
ical techniques such as seismic/acoustic imaging. Such monitoring is however only of
real benefit if it can be linked back to the modeling and thus engineering development
plan. Therefore links are required between the geophysical monitoring techniques and the
geomechanical simulations.

Two main areas of application are of interest in this work, subsurface reservoir en-
gineering (hydrocarbon production and CO2 sequestration) and underground geologic
storage of nuclear waste. In geological storage of CO2, storage reservoirs are formations
of porous rocks in the deep subsurface with an overlying impermeable barrier (cap-rock
seal). A critical issue is to understand how the seal rock responds to CO2 injection into
the reservoir and so to prevent catastrophic failures, which could result in costly dam-
age to well-bores/facilities and dangerous large-scale leakage of carbon dioxide in the
atmosphere. It should be noted that similar challenges exist in the domain of oil and
gas production. Nuclear waste requires sophisticated treatment followed by a long-term
management strategy involving storage. The basic concept of the long term management
of geologic waste disposal, is to locate a large, stable geologic formation and use mining
technology to drill a shaft 500-1000 meters below the surface where rooms or vaults can
be excavated for disposal of high-level radioactive waste. Perpetual management and
monitoring of these sites is required for safety reasons. Even very low container leak-
age and radionuclide migration rates must be taken into account. Therefore interest in
understanding the excavation-induced disturbance to the rock mass around tunnels has
increased. This thesis concentrates on the development of modeling of damage evolution
and its links to monitoring techniques involving elastic (seismic and ultrasonic) waves.
This integration of geophysics and geomechanics approach targets two key research areas:

• microscopic and macroscopic processes governing rock behavior and the evolution
of the constitutive properties;
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• the connection between "geomechanical" and "geophysical" properties of rocks and
associated phenomena plus their modeling.

More specifically, the objective of this thesis is to develop macroscopic damage evolu-
tion laws based on explicit descriptions of the micro-scale level which can be successfully
employed to describe long term damage behavior of geologic storage sites. One element
of major importance in this work is the change-of-scale procedure, in other words: ho-
mogenization. The approach taken is based on asymptotic developments of displacement
and stress fields combined with micro-crack propagation energy analysis which leads to
an explicit quantification of the acoustic emission (AE) energy associated with damage.
Proposed damage models will be capable of modeling the degradation of elastic moduli
due to the micro-crack evolution. This representation will allow the modeling of wave
propagation in a medium with evolving damage starting from fracture events. This will
allow comparison with AE laboratory tests or with micro-seismic (reservoir or tunnel
scale) data and also seismic or ultrasonic velocity imaging. Future extensions of the mod-
els could be made to include hydro-mechanic effects. The consequence will be that on a
rational basis, an intelligent in-situ alert system using AE (or micro-seismicity) could be
developed, since AE are able to give an alert sign when fracture phenomena are activated
leading to a change in permeability and therefore to a possible leakage of stored CO2 or
radioactive waste.

In the following we present an overview of the main issues connected to the thesis
objectives. Section 3.2 gives a wider description of the modeling approach taken and
Section 3.3 introduces the context and motivation of choosing this specific modeling ap-
proach. The scientific background is presented in Sections 3.4 - 3.6. Section 3.4 makes a
short review of the possible approaches to address the challenges discussed and highlights
that the only way is to consider a damage mechanics framework. Section 3.5 introduce
the damage mechanics modeling principles in two parts: in the beginning fracture me-
chanics is introduced and then the difference between damage and fracture mechanics is
underlined. We choose the category of models which connects microscopic analysis with
macroscopic behavior. Therefore, we construct our model independent of the external
factors, by the use of a homogenization technique through asymptotic developments. In
Section 3.6 an overview of the homogenization techniques is given, and asymptotic de-
velopments techniques were best suited to the post challenge in terms of viability and
simplicity. This chapter finishes with the structure of the thesis (Section 3.7).

3.2 Modeling approach taken

Continuum damage mechanics (CDM) framework has been considered to be the best
choice in geomechanical modeling of elastic properties and failure. The degradation of
elastic moduli occurs through a damage variable for which evolution laws are postulated.
From the point of view of the construction procedure, one can classify the damage mod-
els in: macroscopic models (usually phenomenologically based) and micro-mechanical
approaches. In recent years, considerable efforts have been made to establish a link be-
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tween micro-structural fracture phenomena and the corresponding macroscopic behaviors
(see for instance Nemat-Nasser and Hori ([112]) for a review). The majority of the works
devoted to this subject treat the case of non-evolving cracks or the micro-mechanical anal-
ysis for stationary cracks supplemented by phenomenological assumptions on the evolving
damage.

In this thesis, we consider a procedure to obtain micro-mechanical damage models
for solids, in which the damage evolution laws are completely deduced from a micro-
structural analysis. This procedure was initially developed by Dascalu and co-workers
([36], [37], [38], [39], [17],[56]). Two directions have been followed: development of time-
independent ([36], [37], [38], [17]) and of time-dependent damage models ([38], [39], [56]).
The basic upscaling procedure is a combination of periodic homogenization based on
asymptotic developments (e.g., Bakhvalov and Panasenko ([7])) and energy analysis of
fracture. This rigorous mathematical method has been previously employed, for elastic
bodies with non-propagating micro-cracks, for instance in Leguillon and Sanchez-Palencia
([96]) or in Terada and Kikuchi ([139]). The purpose is to deduce damage evolution laws
completely given by homogenization, without supplementary phenomenological assump-
tion. The key is given by microscopic energy analysis, performed on a finite-size cell,
which leads, through homogenization, to a macroscopic evolution equation for damage.
In this equation a micro-crack length appears as a damage variable and the cell size as a
material length parameter. This parameter is introduced through the damage evolution
law, as a consequence of the microscopic balance energy and a Griffith type propagation
criterion for micro-cracks.

In the case of time independent damage models, Dascalu et al. ([36], [37], [17]),
only considered brittle-type damage and the macroscopic implementation only permit-
ted four discrete micro-crack orientations, which, once chosen, were maintained during
whole simulation (no micro-crack rotation was allowed). In this thesis several develop-
ment directions of this approach will be followed. At the microscopic level, in the case
of straight micro-cracks, more orientations will be considered and a spatial interpolation
procedure will make possible a full description of any distribution of micro-cracks giving
the length and inclination angle with respect to x-axis. Wing-type micro-cracks will also
be considered. A new time independent damage model capable of describing progressive
micro-cracking propagation will be deduced (quasi-brittle type damage law) adding real-
ism to the model since experimental observations indicate that rocks show a more gradual
fracture behavior. An extension to three-dimensions will be also given.

The second type of damage models considered in this thesis corresponds to a time-
dependent class. The evolution of the micro-crack length during propagation is described
through a sub-critical criterion, that is a criterion considering crack propagation for energy
lower than the critical limit of fracture. First step in the development of such models is
the implementation of a simplified time-dependent damage model in which the stiffness of
the solid is governed by linear coefficients that depend on the elastic properties of the solid
matrix and on micro-cracks lengths. Second step is to replace the linear coefficients with
the homogenized ones previously computed for a straight crack. The propagation occurs
in the fixed direction given by the orientation of the crack. This model was previously
developed by Dascalu ([38]), but only the macroscopic local level was taken into account.
Global macroscopic implementation is the contribution of this thesis. The third step
was the consideration of rotating micro-cracks time-dependent damage models, initially
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developed by François and Dascalu ([56]) the main objective was the development of a
complex two-scale time-dependent damage model capable to take into account both a
crack propagation and its change of orientation. The orientation of the crack growth is
governed by the maximum energy release rate at the crack tips and the introduction of an
equivalent straight crack. The passage from micro-scale to macro-scale is done through
an asymptotic homogenization approach. Extensions to the model are given in this thesis.
Initially, stress intensity factors (SIF) for straight micro-cracks were computed with the
help of path-independent integral method in [56]. In this thesis displacement correlation
method is used for computation of SIFs and comparison between the two methods was
made. At the macroscopic local level we agreed with the criteria for the equivalent crack
from [56] in the case of opened micro-cracks, but, in the case of compressive micro-cracks,
previous criteria was not enough. We give a new way of replacing the kinked crack with
an equivalent straight one. All the consideration of rotating micro-cracks damage model
were made at the level of en elementary cell (macroscopic local level). Global macroscopic
implementation is entirely our contribution.

For both time-independent and time-dependent class of damage models the energy
analysis is performed on a periodicity cell of finite-size containing a micro-crack. Different
crack orientations are allowed through a numerical procedure developed for comparison
and choice between elementary homogenized solutions, corresponding to different trajec-
tories. The homogenized coefficients (and in the case of time-dependent rotating micro-
cracks damage models also the stress intensity factors) are computed for every micro-crack
orientation and length and an incremental computational scheme is considered in which,
at every step, the damage law corresponding to different trajectories is solved. There are
two possible choices in solving geomechanical problems: either the most important crack
length is chosen and its orientation is maintained during all subsequent steps, or, like
in the case of micro-crack rotation, at each step, a kinking angle is computed, but since
homogenization procedure is developed in the case of straight micro-cracks, the kinked
crack is replaced with an equivalent straight one.

The models are currently formulated for quite general crack-face conditions, includ-
ing frictionless contact. At the macroscopic level, the switch between the homogenized
behaviors corresponding to crack opening or closure is carried out numerically. Different
local micro-crack orientations provided by the damage law lead to induced anisotropy and
heterogeneity in the global response of the specimen. The model also allows for different
fracture energies, in tension and compression.

This model allows future extensions to include the effect of fluid/gas pressure using
hydraulic fracture approach (Garagash and Detournay [62], Zhang et al. ([153])), a uni-
lateral hydro-mechanical damage model being obtained which can be used to give even
more realistically solution for further simulations.

3.3 Context and motivation

This thesis is motivated by the need to understand damage evolution around subsurface
geologic disposal sites. In the following we provide the context of this work in terms of
the CO2 sequestration and nuclear waste disposal challenges.
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3.3.1 Carbon capture and storage

There are two major reasons for the CO2 to be captured and stored: climate change and
enhanced oil recovery.

On one hand, climate changes have been observed in direct correlation with the in-
dustrialization from the last century. Nowadays this gas represents about 385 parts per
million (ppm) which is ≈ 0.3% of the atmosphere. Approximately one third of all CO2

emissions is due to human activity and comes from fossil fuels used for generating elec-
tricity. A variety of other industrial processes also emit large amounts of carbon emission,
for example oil refineries, cement works and iron and steel production. These emissions
could be reduced substantially without major changes to the basic process, by capturing
and storing the carbon dioxide.

On the other hand, CO2 injection become very important in the last decades in the oil
industry. In the same manner as water injection, CO2 is injected back into he reservoir,
usually to increase pressure and thereby stimulate production. Water or liquefied carbon
dioxide is injected, in the first phase, to support pressure of the reservoir (also known as
voidage replacement) and, in the second phase, to sweep or displace oil from the reservoir,
and push it towards a well. Normally only 30 % of the oil in a reservoir can be extracted,
but water or carbon dioxide injection increases that percentage (known as the recovery
factor) and maintains the production rate of a reservoir over a longer period of time.

Once captured, in order to avoid reaching the atmosphere, CO2 can be stored securely
in geological reservoirs in the same way as oil and gas have been stored for millions of
years. Many reservoirs, suitable for storage, have been identified under the earth’s surface
and in the oceans. 1 In the following, two case studies will be given: Weyburn field in
Saskatchewan, Canada and Sleipner field in the North Sea.

Weyburn Carbon Dioxide Sequestration Project ([144])

Weyburn oil field in Saskatchewan, Canada, was discovered about fifty years ago.
Since September 2000, CO2 has been transported from the Dakota Gasification Plant in
North Dakota through a 320 km pipeline and injected into this field. The impact of the
CO2 injection was major since it is estimated that by 2035, 155 million gross barrels of
incremental oil will be recovered.

In October 2005, CO2 injection began also at the adjacent Midale oilfield, and an
additional 45 - 60 millions barrels of oil are expected to be recovered during 30 years.

Concerning both Weyburn and Midale commercial oilfields a significant monitoring
project is in place. This project is the largest, full - scale, in-the-field scientific study ever
conducted in involving carbon dioxide storage. The goal of this project is to enhance the
knowledge and understanding of the underground sequestration of CO2 associated with
EOR (Enhanced Oil Recovery) and the objectives can be classified in 5 themes:

• Geologic integrity - selection of suitable sites for CO2 geologic storage in terms of
seal integrity.

1When describing CO2 in geological formations and oceans, the term storage is used. Sequestration
refers only to the terrestrial storage of CO2.

25



• Wellbore integrity - development of a list of remediation activities that could be
applied; tests for establishing pressure and mobile fluids to look for CO2 migration
out of zone.

• Storage monitoring methods - characterization of the accuracy of monitoring tech-
nologies for quantitatively predicting the location and volume-in-place of CO2 and
determine from the four-dimensional (4-D) seismic program interpretation results if
multi-year programs are appropriate for ongoing monitoring and verification.

• Risk assessment and storage mechanisms - all relevant storage and leakage mecha-
nisms should be modeled and studied, with risk levels determined for various oper-
ations scenarios.

• Data validation and management.

This thesis has implications for all of these 5 themes.

Sleipner Carbon Dioxide Sequestration Project ([132])

Whilst C02 injection has been carried out for many years to enhanced oil production,
the Sleipner CO2 sequestration project was the first example of underground geologic
storage of CO2 for climate change reasons.

Sleipner field is one of the largest natural gas producers in the North Sea. The natural
gas produced from this field contains about 9 % CO2, but the required export specifi-
cations imply that it needs to be reduced to a maximum of 2.5 %. This equates to an
extraction of nearly 1 million tonnes CO2 / year. In order not to let CO2 in the at-
mosphere, Statoil adopted a saline aquifer storage strategy for the Sleipner West field.
Natural gas production from the field started in 1996, with CO2 injected, following a four
stage compression system, into the Utsira aquifer formation, which is a 200 - 250 meters
thick massive sandstone formation located at a depth of 800 - 1000 meters beneath the
seabed.

The reduction of CO2 level from 9 % to about 2.5 % is achieved by stripping the
CO2 from the gas stream using large absorption towers and amine scrubbing technology.
Then, by flash regeneration, was separated out, the CO2 is transported to the Sleipner A
platform for injection into the Utsira aquifer. The presence and movement of the carbon
dioxide in the Utsira formation is monitored by examination of 3D seismic data.

3.3.2 Radioactive waste disposal

The term "radioactive waste" defines a waste product containing radioactive material.
Usually it is the product of a nuclear process such as nuclear fission, but also industries
which are not directly connected to the nuclear power industry may produce radioactive
waste.

Radioactivity diminishes over time, so in principle the waste needs to be isolated for
a period of time until it no longer poses a hazard. But "time" notion covers a very big
interval, from hours to years for some common medical or industrial radioactive wastes, or
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thousands of years for high-level wastes from nuclear power plants and nuclear weapons
reprocessing.

As a general rule, short-lived waste (mainly non-fuel materials from reactors) is buried
in shallow repositories, while long-lived waste (from fuel and fuel-reprocessing) is deposited
in deep underground facilities.

Nuclear waste requires sophisticated treatment and management to successfully isolate
it from interacting with the biosphere. This usually necessitates treatment, followed by
a long-term management strategy involving storage, disposal or transformation of the
waste into a non-toxic form. The basic concept of the long term management of geologic
waste disposal, is to locate a large, stable geologic formation and use mining technology
to drill a shaft 500-1000 meters below the surface where rooms or vaults can be excavated
for disposal of high-level radioactive waste. The goal is to permanently isolate nuclear
waste from the human environment. Various organizations examine the feasibility of deep
geological disposal of radioactive waste and stability of tunnels which would be created
to store such waste materials. Perpetual management and monitoring of these sites is
required for safety reasons. Because some radioactive species have half-lives (the time
it takes for any radionuclide to lose half of its radioactivity) longer than one million
years, even very low container leakage and radionuclide migration rates must be taken
into account. Therefore interest in understanding the excavation-induced disturbance to
the rock mass around tunnels has increased. This has involved significant research efforts
in modeling, monitoring and in-situ testing.

3.3.3 Monitoring geomechanical processes

Monitoring of subsurface processes, such as CO2 sequestration, fluid extraction (e.g., oil
and gas production) or tunnel drilling, requires remote sensing techniques. The most
used of these remote techniques is "seismic imaging", a geophysical technique involving
measurements of elastic wave propagation through the imaged body, but also acoustic
emission and micro-seismic monitoring (i.e., the listening for small earthquakes that occur
due to deformation and associated cracking of the rocks) are equally used. This can
be carried out at any scale - from the scale of a laboratory sample to the scale of the
earth. The modeling approach presented in this thesis considers the evolution of elastic
properties and thus provides a means to link geomehanical modeling to seismic monitoring.
Consequently, for context, the basics of seismic monitoring are outlined in the following.

Elastic waves (a term which includes sound, ultrasonic and seismic waves) are "me-
chanical disturbances that propagate through a material" ([55]) and can be used to assess,
in a non-destructive fashion, the evolution of elastic properties, e.g., as a result of defor-
mation. The term elastic is used here since the waves propagate without causing any
permanent deformation. We usually denote by "acoustic waves" or "sound waves" the
elastic waves in air and water. These terms are often used about elastic waves in rocks
too.

Fjaer et al. ([55]) describe the propagation of waves and gave also the mathematical
deduction of the propagation velocity. The waves propagate from point to point with a
velocity defined by the elastic properties of the medium and the density. Therefore if
damage occurs that results in changes in the elastic properties, this will effect the elastic-
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wave propagation velocity, which might be measurable. The velocities can be anisotropic
due to fabric or the evolution of anisotropic damage. Elastic waves can be used for
monitoring damage with passive (waves propagating from acoustic emissions or micro-
seismic sources due to the development of damage) or active sources. "Passive" refers
to the use of the waves propagating from acoustic emissions or micro-seismic sources
due to the development of damage. "Active" source methods use explosions to produce
waves that propagate through the rock mass and so to characterize the properties of the
medium through which the wave pass (e.g., Hall and Kendall ([72])). Passive source data,
associated with hydrocarbon production, can be used in a similar way, but in addition
the characteristics of the "event" that produced the waves can be analyzed (e.g., Teanby
et al. ([137])). Both passive and active methods are of significant interest but the former
is becoming increasingly attractive due to the desire to monitor injection/production
processes continuously.

Elastic wave and acoustic-emission/micro-seismic assessment and monitoring of dam-
age can be performed at all scales and in the following a few examples at laboratory,
tunnel excavation and reservoir scales are provided.

• laboratory scale - In laboratory rock mechanics acoustic emissions and irreversible
changes in ultrasonic velocities with loading are commonly measured. These effects
are linked to damage evolution. An advanced example is given by Charalampidou et
al. ([29]) in a study of the development of compaction bands in triaxial compression
on a sandstone. In this work acoustic emission recordings allowed mapping of ac-
tive deformation sites during loading (see Figure 3.1), characterization of the event
mechanisms was also carried out. Furthermore, in this work ultrasonic tomography
was used to characterize the localized deformation zones (after testing) as zones of
localized damage (zones of reduced elastic wave propagation velocity, Figure 3.2).

Another suggestive example of monitoring at laboratory scale can be found in
Nguyen ([113]). A two notched Tuff of Naple specimen was solicited under uni-
axial compression loading. Between the two notched a damage localization zone
occurs which is pointed out with the help of P-wave velocity measurements.

Figure 3.3 shows the evolutions of 6 P-waves normalized velocities. The velocities
along three trajectories, denoted by "group 2" (5-7 ; 8-6 ; 9-6) pass through a zone
between the two notched of the specimen, meanwhile, the other three waves, denoted
by "group 1" (9-12, 9-10, 11-10), do not pass the mentioned zone. It is observed
that at the beginning all the 6 velocities diminish just a little at the beginning of
the test. After about 300 seconds, the curves separate in two groups: wave velocity
measured for the trajectory of group 1 rapidly decrease, meanwhile group 2 velocity
diminish much slowly. The decrease of wave velocity for group two, which pass the
zone between the two notches, clearly indicate an increase in a density of micro-
cracks in that zone, in other words, localized damage is present. In the last phase of
the test, which corresponds also to the softening process occurring, important drops
in velocity measured four group 1, meanwhile, in group 2 velocities remain almost
constant.

One reason leading to the choice of this example is that it is perfect to show both
localized strain and localized damage (which) is indicated by ultrasonic velocity
reduction. Figure 3.3 showed the evolution of six P-waves, among which three

28



Figure 3.1: (a) Stress deviator and number of AE events as functions of time for seven
time steps. In red, the events that nucleated at the last time increment are represented,
in green - the events of the previous time increment and the history of all previous events
is shown in yellow; (b)-(d) show maps of AE event locations for the same time step,
represented in the three 2D orthogonal projections. (image from [29]).

Figure 3.2: Velocity profile of zero-offset measurements (a) and velocity field using UT
(b); (image from [29]). The smallest velocity values are in the most damaged zone

trajectories decreased rapidly clearly indicating an increase in a density of micro-
cracks. Figure 3.4 shows maximum shear strain maps corresponding to the times
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Figure 3.3: P-waves propagation velocity evolution. On the right part of the figure
position of the captors and waves trajectories used to measure velocity. On the left part,
normalized velocities measured for different couples of captors-emitters (image from [113])

.

1-7 represented with red circles on the global stress-strain curve of previous figure.
Strain localization process is more pronounced between times 4-7 (Photos: 4-5, 5-6,
6-7) and perfectly match the decrease in ultrasonic velocities.

• tunnel excavation level - Acoustic emissions and ultrasonic wave propagation can
provide complementary methods of assessing damage around tunnel excavations in
the so-called excavation-disturbed zone investigation (EDZ). The near-field EDZ,
less than one tunnel radius from the tunnel perimeter, may be expected to include
significant brittle deformation, meanwhile, the far-field EDZ may expect to be dom-
inated by the effects caused by redistribution of the stress field.

Using AE and ultrasonic techniques to study these tunnels, Falls & Young ([50])
were able to examine the nature of the EDZ around tunnels in granitic material at
approximately 420 m depth. The studies have been undertaken at both the Atomic
Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and
at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Labo-
ratory (HRL). AE monitoring during excavation showed that some activity occurred
in the sidewall regions, but the spatial density of AE hypocenters increased toward
the regions in the floor and roof of the tunnel where breakout notches formed. This
sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE mon-
itoring in the floor of the tunnel showed that small numbers of AE continued to
occur in the notch region in the floor of the tunnel over 2 years after excavation was
completed.

Meglis et al. ([103]) used detailed ultrasonic velocity measurements within at 1-m
deep shell around the tunnel at URL to determine the variation of velocity in situ,
and from this to infer the relative distribution of excavation induced crack damage.
Ultrasonic measurements were used because at the frequency of 1MHz waves are
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Figure 3.4: Six maximum shear strain maps obtained with DIC corresponding to the times
1-7 represented with red circles on the global stress-strain curve in Figure 3.3 (images from
[113])

.

highly sensitive to cracks in order of a few mm, approximately the grain size of
the rock. Compressional (P) wave velocity reflects both the degree of micro-crack
damage and any preferred orientation of crack planes within the imaged region. The
conclusion was that the micro-crack damage is more concentrated in the material
immediately adjacent to the tunnel, although in the sidewall region it extends more
deeply into the rock.

• reservoir level - Damage is one of the causes of changes in seismic properties around
producing hydrocarbon reservoirs (including aspects of seismic anisotropy and travel-
time). These changes, have been observed in many locations around the world. For
instance in the Valhall field in the Norwegian North Sea observations have been
made of seismic anisotropy and travel-time differences due to velocity changes (see
Barkved et al. ([9]), Hall ([73]),Van Gestel et al. ([142])). These changes are associ-
ated with subsidence and compaction caused by hydrocarbon production and fluid
injection which is also observed in other places around the world e.g. Wilmington,
Lost Hills and Belridge in California (see Fielding et al. ([54])), Lake Maracaibo in
Venezuela etc.

Exploitation of both seismic anisotropy and micro-seismic data is thus of significant
interest in reservoir surveillance during production of hydrocarbons or sequestration
of CO2. Temporal changes of a reservoir properties during its production (such as
saturation and pressure), mainly based on changes in seismic reflection amplitudes,
can be identified and even characterized using seismic imaging, since high-resolution
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3D images of the subsurface can be provided.
Hall ([73]) presented a methodology for 7D warping which has the potential to
address the full 3D time-lapse deformation including lateral or shear deformation
and anisotropy development.The methodology is presented with reference to time-
lapse seismic analysis of heterogeneous 3D vector displacements associated with
compaction and subsidence.
[9] and [142] summarize the acquisition, processing and automated work-flow es-
tablished to produce time-lapse analysis displays and maps within weeks after final
shot of a LoFS ("life of field seismic project") survey taking place at Valhall Field,
Norway. The LoFS system, which is the world’s largest permanently installed seis-
mic array, is designed to monitor the production and water injection at Valhall.
The integration of the data from the LoFS is explained. Barkved et al. ([9]) draw
the attention to the fact that understanding the overburden deformation in detail
is driven, on one hand, by the potential impact on drilling stability and long term
well integrity (previously mentioned by [93]) but, on the other hand, also by the
potential of using these observations to indirectly define the reservoir dynamic and
static properties in better detail.
The use of the LoFS data to reduce the risk of drilling a crestal well to provide
pressure support for existing producers in the area or to predict the pressures regimes
encountered when drilling a horizontal well, is mentioned ([142]). Strong time-lapse
seismic responses from subsequent LoFS surveys were observed in the toe of the well.
They were related to depletion from nearby wells and were used to guide pressure
estimation along the well. When the first significant pressure drop was confirmed,
drilling was stopped. Further drilling would most likely have resulted in possible
loss of the well.
In addition to seismic imaging, micro-seismic data are being increasingly used to
monitor subsurface operations; these data can indicate the areas of active deforma-
tion and also information on changing stress fields. (Hall ([74]) provides an overview
and references for these different geomechanical effects on seismic data).

In summary, damage is the principal mechanism leading to the degradation of elas-
tic properties and seismic/acoustic emission associated with deformation from laboratory
to reservoir scale. Both hydrocarbon reservoir engineering and nuclear waste disposal
have significant risk associated with the damage induced by fluid production or tunnel
excavation, respectively. Therefore perpetual management and monitoring is considered
for safety reasons and monitoring techniques improved very much in the last decades.
However, to have an intelligent in-situ alert system using seismic/ultrasonic imaging and
acoustic emissions (or micro-seismicity), damage models capable of modeling the degrada-
tion of elastic moduli due to micro-crack evolution and quantification of associated acous-
tic emission energy should be available. The models proposed in this thesis will allow the
modeling of wave propagation in an evolving damaged medium and acoustic/micro-seismic
events, therefore a comparison with acoustic emissions in laboratory tests or micro-seismic
databases (from monitoring at large scales - i.e fluid injection/extraction in the oil reser-
voir, tunnel excavation . . . ) will be possible.
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3.4 Geomechanical modeling of elastic properties and their evo-
lution

As outlined in the previous section, exploitation of both seismic anisotropy and micro-
seismic data has been shown to be very successful for monitoring geomechanical evolution
from a laboratory scale to subsurface reservoirs. However, to fully exploit such obser-
vations requires simulation models that can be used to predict, and match, the changes
(take, for instance, the example of an oil reservoir where the CO2 injection process needs
to be accurately simulated in order to avoid mechanical changes/failures that may be
costly).

Commonly used geomechanical constitutive models (e.g., elasto-plasticity approaches)
do not generally account for rock property evolution and thus cannot be used to predict
any changes in the measurable elastic properties. Anisotropy and evolving elastic proper-
ties are often neglected due to the difficulty and uncertainty in their parametrization and
also in their experimental characterization. However, several approaches were dedicated
to this subject but they are incomplete or too simplified. For instance, Pietruszczak et
al. ([122]) considered a constitutive model including intrinsic anisotropy due to sedimen-
tary fabrics, but does not evolve with loading. Gajo et al. ([60]) provided a model that
considers anisotropy and elastic property evolution through elasto-plastic coupling.

A better alternative is the use of continuum damage mechanics (CDM). More detail
is given on CDM in Section 3.5.2. Various models have been proposed that provide pre-
dictions of the evolution of elastic properties as a result of micro-crack evolution, but
often the models describe just isotropic damage evolution if the effects of evolving elastic
properties and anisotropy are considered, the descriptive models are not well developed
(approaches are generally phenomenological or highly idealized and do not explicitly de-
scribe the micro-structure and its evolution). For example, Conil et al ([33]) presented
a poro-plastic damage model for clay rocks, which includes damage-induced evolution of
anisotropic elastic properties (decoupled from the plasticity), but the microstructure is
not considered. More recently multi-scale approaches have been proposed in which the
grain-scale stress-strain problem is solved explicitly at the appropriate scale using either
DEM or FEM approaches, for each integration point in the model (e.g. Espinosa et
al. ([49])), then, it is incorporated back into the full-scale FEM model. In those cases,
the macroscopic constitutive model is just replaced by a numerical representation of the
underlying grain-scale mechanics ([58], [115]).

In the approach to damage modeling that will be adopted in this thesis, micro-scale
evolution of damage (micro-cracking) is explicitly modeled, as previously explained in the
"modeling approach" section (4). A direct output from this model is the degradation of
elastic properties and the development of elastic anisotropy. Furthermore, the evolution
of the micro-crack damage is based on an energy dissipation approach such that the
energy release with damage evolution, which may be related to acoustic emission energy
of micro-seismic events, is another direct product.
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3.5 Introduction to fracture and damage mechanics

In this section, a short introduction of fracture and damage mechanics principles is given.
First are introduced concepts as "fracture energy", "energy release rate","elementary
modes of rupture". Then, the passage to damage mechanics is made, the two keywords
being "macroscopic damage models" and "micro-mechanical approaches".

3.5.1 Brittle fracture mechanics

The base of modern mechanics of brittle failure was put at the beginning of XX th century
(e.g., [67]). Considering the propagation of a preexisting crack in a glass, in 1920, Griffith
affirmed that a crack in a brittle material propagates when the elastic energy released with
the increase of the crack is bigger than the necessary energy to create a new surface. This
concept is based on the first law of thermodynamics and on the stress analysis, initially
developed by Inglis ([86]). Griffith theory has two major benefits: allows the estimation of
the resistance of a brittle solid and gives a relation between material resistance to fracture
and the length of the preexisting defect in solid.

The notion of "energy release rate" (G), which corresponds to the total energy released
on unit crack length propagation, was introduced. G depends on the material, on the
loading conditions and on the initial crack length. The propagation criterion was then
given by the following formulation:

G < Gc - no propagation, (1)
G = Gc - propagation possible. (2)

where Gc is a critical value of G which corresponds to the the stress level needed for
fracture propagation.

In 1957, Irwin introduced three fundamental "modes" of cracking (Figure 3.5) which
have since played a very important role in the analysis of crack propagation mechanisms
. In terms of movement of crack surfaces, the crack modes are classified in the following
manner:

• mode I (opening): crack surfaces open in two opposite directions perpendicular to
the crack plane. The propagation occurs in the plane of the crack.

• mode II (translational sliding): crack surfaces move in the same plane but perpen-
dicular to the crack front. Shearing direction is parallel to the crack propagation
plane.

• mode III (rotational sliding): crack surfaces moves in shear in the same plane and
with a parallel direction to the crack front and perpendicular to the propagation
direction.

A crack is considered to be propagating in mixed mode if more than one of the fundamental
modes are present simultaneously.
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Figure 3.5: The three main modes of crack propagation [89]
.

About the same period, Irwin ([89]) made another great contribution to the under-
standing of crack propagation by proposing the concept of the "stress intensity factor"
(K). He affirmed that a crack propagates if the singular stress distribution characterized
by a critical "strength" K in the vicinity of the crack is reached. Material parameters that
control crack propagation are "fracture toughness" (Kc) or critical energy value (Gc).

Energy based as well as stress intensity approach became fundamental in linear elastic
fracture mechanics (LEFM).

3.5.2 Modeling principles of damage mechanics

Several sources of heterogeneities can be found at the microscopic scale (cracks, pores,
grain boundaries, . . . ) serving as stress concentrators and leading to the formation of
micro-cracks, the consequence being that the macroscopic mechanical behavior is af-
fected. However it is impossible to consider a large number of cracks in the construction
of a constitutive model. A more efficient method is to determine a mechanically equiva-
lent homogeneous material at the macro-scale, having relatively similar properties to the
heterogeneous medium.

Damage mechanics studies the evolution of a large number of small cracks by adopting
an overall point of view, through a macroscopic continuous damage variable. Kachanov
[90] introduced for the first time a continuous damage variable in the fracture framework,
motivated by the results of a metal creep test in unidimensional loading conditions. In
the 70’s continuum damage mechanics theory developed very much and it was very useful
in the thermodynamics case of irreversible process to show the progressive degradation of
a material.

In general terms, Lemaitre et Chaboche ([97], [27]) defined damage as "progressive
deterioration of material cohesion under the action of monotonic or repeated solicitations
leading to the fracture of representative volume". In other words, damage corresponds to
the appearance and evolution of new surfaces of non-adherence (e.g. micro-cracks at the
small scale) and implies a loss in material resistance.

From the point of view of the construction procedure, one can classify the dam-
age models in: macroscopic models and micro-mechanical approaches. The behavior of
macroscopic models is described with the help of phenomenological ore highly idealized as-
sumptions (see for instance Carol et al. ([26]), Chaboche ([28]), Dragon and Mroz ([46]),
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Voyiadjis and Park ([143]) . . . ). In recent years, research focused on the development
of macroscopic modeling starting from considerations of micro-mechanical analysis of a
cracked medium through homogenization procedures. In that way, the micro-mechanical
arguments, may lead to a better understanding of the phenomena observed at the macro-
scopic level (see the works of Dormieux and Kondo ([41, 45, 43, 44]), Andrieux et al.
([3]), Dartois et al. ([35]), Lene ([98]), Nemat-Nasser and Horii ([110]), Zhu et al. ([154]),
Dascalu et co-workers ([36], [37], [38], [39], [17],[56]) . . . ).

However, this solution is not simple and one of the problems encountered when we
trying to analyze the behavior of structures based on small specimens at laboratory level,
is the scale effect (more precisely the microscopic size effect on the structure resistance).
Mechanical performances of the real structures are not necessarily identical to those of
laboratory specimens, therefore, the passage to structure scale needs to take into account
scale effects. Another challenge it may appear is related to non-uniqueness of the so-
lution and mesh-dependence, therefore solutions to overcome this problem need to be
searched (one solution can be, for instance, time-dependence to be taken into account in
the modeling approach).

In this thesis, an approach starting at the micro-scale is considered. Extensions on
the previous models of Dascalu et al. ([36], [37], [38], [39], [17],[56]) will be developed,
therefore an approach starting at the micro-scale is considered. Macroscopic behavior will
be described using damage laws completely deduced from the micro-structure analysis
without any kind of phenomenological assumptions or idealizations of the model.

3.6 Introduction to homogenization methods

An approach by homogenization is used in the present work, the behavior of the macro-
scopic structure being deduced from the properties of the material at the micro-scale (one
example is the description of a filtration process in a porous rigid solid through a two-scale
analytical approach found in [6]). Given L the macroscopic characteristic dimension, and
l a characteristic length of heterogeneities, the homogenization method is possible if and
only if l

L
<< 1. The choice of the representative elementary volume (REV) length is

the subject of various discussions, (see for instance Dormieux [45]); the REV needs to be
small with respect to the macroscopic structure, but it also needs to be able to consider
enough heterogeneities.

Most analytical or semi-analytical homogenization methods are based on the computa-
tion of the homogenized (effective) coefficients using various methods shortly summarized
below:

• based on averaging theory. This is the simplest homogenization method and con-
sists of the computation of global properties of a heterogeneous material using the
averaging technique on each composant weighted by its volume. This method is
used and/or enriched by different researchers, such as Eshelby ([48]) or Mori and
Tanaka ([107]).
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• "self-consistent" method developed by Hill ([76]) or Christensen and Lo ([31]). In
this case, global properties of the material are obtained by analytical solving of a
boundary value problem on a micro-structure composed of a first phase of consti-
tuting the matrix and a second phase of a spherical or ellipsoidal inclusion. This
homogenization technique works very well in the case of linear problems, but much
more difficult in non-linear cases, even if interesting results were obtained by Guery
([69]) using an elasto-plastic damage model on Callovo-Oxfordian argilites, or, in
more general works of Dormieux and Kondo ([41, 45, 43, 44]);

• asymptotic developments based method of displacement and stress fields with re-
spect to a natural material length defined as the ratio between heterogeneities length
and macroscopic characteristic length (Benssousan et al. [13], Sanchez-Palencia
[127], Bakhvalov and Panasenko [7]).

Besides analytical homogenization methods, one can find also numerical improvements
(Guedes and Kikuchi [68], Terada and Kikuchi [138], Ghosh et al. [64]). The weak point
of a purely numerical homogenization technique is the computational time. Indeed, in
this process, for each time increment, in each macroscopic integration (Gauss) point, a
full computation on the micro-structure is necessary.

An upscaling procedure which is a combination of periodic homogenization based on
asymptotic developments and energy analysis of fracture, previously developed by Dascalu
et co-workers will be enriched in this thesis.

3.7 Structure of thesis

The structure of this thesis, involving this introductory chapter, four main chapters and
conclusions, is briefly presented below:

• Chapter 4 - the multi-scale damage modeling method is briefly shown and previ-
ously made development are underlined. This thesis enriches results found in ([36],
[37], [17]), in the case of time-independent damage models, and found in ([38], [39],
[56]), for the time-dependent damage models. Key words/phrases of this chapter
will be: "homogenization by asymptotic developments", "locally periodical distri-
bution of micro-cracks", "change of scale procedure", "elementary cell", "unit cell",
"homogenized coefficients", "energy analysis and deduction of damage evolution
laws".

• Chapter 5 - dedicated to time independent extensions. Dascalu et al. ([36], [37], [17])
considered only brittle-type damage law and the macroscopic implementation per-
mitted four discrete micro-crack orientations, which, once chosen, were maintained
during whole simulation (no micro-crack rotation was allowed). In the beginning of
the chapter, the numerical method for computing the effective elasticity of a micro-
fractured medium is presented. At the microscopic level, in the case of straight
micro-cracks, more orientations will be considered and a spatial interpolation pro-
cedure (which will be given in the next chapter when rotation of micro-cracks is
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considered) will make possible a full description of any distribution of micro-cracks
giving the length and inclination angle with respect to x-axis. Our first extension will
be the introduction of a wing-type micro-crack mechanism. Second developement is
given by the introduction of a damage evolution law for micro-cracks emerging from
pores. Previously deduced brittle-type damage law was used to characterize macro-
scopic behavior of a body containing a periodic distribution of wing-type micro-
cracks or of "pore-type" micro-cracks. Third development presented in our thesis is
given by quasi-brittle type damage laws in both two- and three-dimensional space.
In the 2D case, a distribution of periodic (square) cells containing vertical micro-
cracks have been considered and, in 3D, plane squared micro-cracks in periodic vol-
umes were taken. Key words/phrases of this chapter will be: "brittle/quasi-brittle
type damage law", "wing-crack", "size effect", "fracture process zone", "snap-back",
"stable/unstable micro-crack propagation".

• Chapter 6 - dedicated to time-dependent damage laws. An alternative solution to
avoid the snap-back problems encountered at the macroscopic local level (which
induce difficulties also at the global level) using time independent damage models
was to consider a time-dependent model. Moreover, time-dependency solves mesh
dependency previously encountered and provides a model able to predict phenomena
like creep and relaxation associated with damage.

The evolution of the micro-crack length during propagation is described through a
sub-critical criterion governed by Charles’ law. First, a simplified damage model
using linear effective coefficients was deduced mostly for theoretical purposes (com-
parisons between analytical and numerical results for a simple problem in order
for the law to be correctly implemented). Once the method was verified using the
simple linear coefficients model, developments were made with a model considering
propagating micro-cracks with a single, fixed orientation. Homogenized coefficients
previously computed in the frame of the up-scaling procedure were used instead of
linear coefficients and intrinsic anisotropy due to preference of the orientation was
naturally captured. This model was previously developed by Dascalu and François
([38]), but only the macroscopic local level was taken into account. Global macro-
scopic implementation is the contribution of this thesis.

Propagation in a fixed direction is not enough to simulate real processes, therefore,
a more complex damage law considering rotating micro-cracks was deduced. This
model was partially developed by François and Dascalu ([56]). Their main objec-
tive was the development of a complex two-scale time-dependent damage model
capable to take into account both a crack propagation and its orientation. Propa-
gation and trajectory of micro-cracks were controlled by the stress intensity factors,
therefore, before introducing the damage law, a short section is dedicated to KI,II

for straight micro-cracks. A path-independent integral method was used for the
computation of SIF in [56]. In this thesis displacement correlation method is con-
sidered and comparison between the two methods is made. At the macroscopic
local level we adopted the criteria for the equivalent crack from [56] in the case of
opened micro-cracks, but, in the case of compressive micro-cracks, previous criteria
was not enough. We give a new way of replacing the kinked crack with an equiva-
lent straight one. Previously, all the consideration of rotating micro-cracks damage
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model were made at the level of en elementary cell (macroscopic local level). Global
macroscopic implementation is entirely our contribution. Key words/phrases of
this chapter: "time-dependency", "Charles’ law", "kinked cracks", "SIF", "rotating
micro-cracks", "equivalent straight micro-cracks", "TC (trajectory corrector).

• Chapter 7 - Using the time dependent damage model including rotational micro-
cracks, simulations were made at three levels: laboratory, tunnel and reservoir
scales. A specific two notched geometry is used in a uniaxial compression labo-
ratory test in the first part of the chapter with results being compared to ones
obtained experimentally in [113]. Next, a simple simulation of a tunnel excavation
was made, with the influence of the initial micro-crack orientation on fracture zone
orientations being discussed. At the reservoir scale, oil production/CO2 injection
processes were represented through the simulation of an overburden of a reservoir
under displacement imposed subsidence conditions, the specificity of this numeri-
cal application being given by the modeling of micro-seismic events and changes
in seismic properties including anisotropy. Key words/phrases: "laboratory tests",
"tunnel/reservoir scale", "nuclear waste disposal", "CO2 sequestration", "overbur-
den", "compaction/subsidence", "wave propagation", "acoustic events", "P-wave
anisotropy".

The thesis finishes with a conclusions section, where we underline that our objective
was achieved: a two-scale damage model where the macroscopic behavior is totally de-
scribed by the micro-scopic analysis (macroscopic time dependent damage law is fully
deduced on the base of homogenized coefficients and stress intensity factors computed at
the micro-scopic level). This damage model takes into account all the possibilities consid-
ering micro-cracks evolving both in length and in orientation the consequence being the
possibility of modeling micro-seismic events so linking "geophysics" and "geomechanics".
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4 Multiscale modeling of damage
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In continuum damage models, micro-cracking is represented as a degradation of elastic
moduli through damage variables. In general, this has been achieved by supplementing
the micro-mechanical analysis for stationary cracks by phenomenological assumptions on
the evolution of damage. In recent years, many researchers have made considerable efforts
to establish a link between micro-structural fracture phenomena and the corresponding
macroscopic behaviors (see for instance Nemat-Nasser and Hori ([112]) for a review). Even
if contributions to this topic are quite extensive, the majority of the works treat the case of
non-evolving cracks, or the micro-mechanical analysis for stationary cracks supplemented
by phenomenological assumptions on the evolving damage. Of course, there are exceptions
and among the researchers which take into account micro-crack evolution one can cite:
Andrieux et al. ([3]), Prat and Bazant ([123]), Caiazzo and Constanzo ([21]) or Pénse et
al. ([121]).

Consideration of a large number of cracks in the material increases modeling difficulty.
One alternative is to determine of a mechanically equivalent homogeneous material at the
macro-scale, having relatively similar properties to the heterogeneous medium. Increase
of efficiency in the construction of a constitutive model is given by approximation of the
initial distribution of micro-cracks with a periodic one, for which the distance between
two adjacent micro-cracks plays the role of an internal length.

Dascalu and co-workers ([36], [37], [38], [39], [17],[56]) proposed a new procedure to ob-
tain micro-mechanical damage models using an upscaling procedure - a combination of pe-
riodic homogenization based on asymptotic developments (e.g., Bakhvalov and Panasenko
([7])) and micro-fracture energy analysis. Damage evolution laws are completely deduced
from microstructural analysis by homogenization, without any kind of phenomenological
assumption. The key to this approach is microscopic energy analysis, performed on a
finite-size cell, which leads, through homogenization, to a macroscopic evolution equa-
tion for damage. In this equation a normalized micro-crack length appears as a damage
variable and the cell size as a material length parameter.

The model of Dascalu et al. ([36], [37], [38], [39], [17],[56]) was formulated for quite
general crack-face conditions, including frictionless contact. At the macroscopic level,
the switch between the homogenized behaviors corresponding to crack opening or clo-
sure was carried out numerically. The model also allowed for different fracture energies
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in tension and compression and damage irreversibility was assured by looking only for
growing length solutions. The model could also describe failure initiation when the initial
state is an undamaged one. Only time independent damage models were developed. A
brittle-type damage law was considered, therefore, under progressive loading, a material
directly passed from the undamaged (virgin) to completely damaged state. Macroscopic
implementation was incomplete since only four discrete micro-crack orientation were taken
(straight cracks orientated at 0◦, 45◦, 90◦ and 135◦ with respect to x-axis) and the tra-
jectory of crack propagation was chosen in the first step and maintained during whole
simulation.

In this thesis the following extensions of the previous models will be considered:

• any distribution of micro-cracks will be fully described by length and orientation;
this will be achieved in two steps:

– more micro-crack orientations will be considered;

– all the discrete orientations will be spatially interpolated.

• time independent damage model class will be enriched by taking a quasi-brittle type
damage law leading to progressive micro-cracking propagation (adding realism to
the model since experimental observations indicate that rocks show a more gradual
fracture behaviour);

• an extension to three-dimensional damage models will be also given;

• a new class of damage models will be developed: time-dependent models which help
to regularize some of the limitations occuring with the time independent class (e.g.
mesh dependency, macro-scopic snap-back . . . ). We will pass from an energy-based
to a stress intensity factor - based propagation criterion. A time dependent damage
model which allows rotation of micro-cracks will be set following the developments
from [56].

4.1 The model problem

Consider a two-dimensional isotropic elastic medium containing a locally periodic distri-
bution of micro-cracks. Each crack is straight with a length 2a and an orientation of
angle θ with respect to the x1 direction (abscissa of the referential system considered at
the macro-scale). The length 2a and the orientation θ are assumed to vary smoothly
everywhere in the elastic body. The length ε represents the size of the periodicity cell as
well as the distance between two neighboring micro-cracks (Fig. 4.1).

Let B be the whole body, which consists of a bounded domain of <2, containing N
micro-cracks Cn, n = 1, . . . ,N . The solid part is defined as Bs = B\C, where C = ∪Nn=1Cn.

In the solid part Bs, we have the equilibrium equation

∂σε
ij

∂xj
= 0, (3)
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Figure 4.1: (a) Fissured medium with locally periodic microstructure. (b) Elementary
cell containing one crack. (2a = length of the micro-crack; ε = distance between two
neighboring micro-cracks; θ = orientation of the micro-crack with respect to the x1 axis.)
(image from [56])

and the constitutive relations for the linear elasticity

σε
ij = aijklexkl(u

ε), (4)

where uε and σε are the displacement and the stress fields. exij is the small strain tensor
defined by

exij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5)

and aijkl are the elastic coefficients of the solid part, which can be generally anisotropic;
for an isotropic medium aijkl are given by

aijkl = λδijδkl + µ(δikδjl + δilδjk), (6)

with λ and µ the Lamé coefficients.
On the crack faces we consider two possible conditions:

- traction free opening,

σεN = 0 , [uε ·N] > 0; (7)

- contact without friction,

[σεN] = 0 , N · σεN < 0 , T · σεN = 0 , [uε ·N] = 0. (8)

Here N is the unit normal vector, T is the unit tangent vector to the crack and [ · ]
denotes the jump across the crack faces.
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Figure 4.2: Rescaling of the unit cell to the microstructural period of the material.

4.2 Homogenization by asymptotic developments

We define a square unit cell with sides of length 1 denoted by Y = [0, 1]× [0, 1]. The unit
cell Y contains a crack CY of length d given by

d =
2a

ε
.

The damage variable d introduced here may vary between 0 (for virgin material) and
1/[max(| cos(θ)|; | sin(θ)|)] (for a micro-crack that completely crosses the cell). The solid
part of the unit cell is Ys = Y \CY .

From this unit cell containing a single micro-crack, through rescaling by a small pa-
rameter ε, the locally periodic microstructure can be constructed (Fig. 4.2). In this
way εY is the natural microscopic length scale. The homogenization method requires a
separation of scales. This imposes that the microscopic length y must be much smaller
than the macroscopic length x. The introduction of the two scales implies, for the total
derivative with respect to x,

d

dxi
=

∂

∂xi
+

1

ε

∂

∂yi
.

Following the homogenization method by asymptotic developments (e.g. Leguillon D.
and Sanchez-Palencia E. ([96]); Bakhvalov N. and Panasenko G., ([7])) the expansions of
uε and σε can be given in the form

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + . . . , (9)

σε(x, t) =
1

ε
σ(−1)(x,y, t) + σ(0)(x,y, t) + εσ(1)(x,y, t) + . . . , (10)

where u(i)(x,y, t),σ(i)(x,y, t), x ∈ Bs, y ∈ Y are smooth functions and Y -periodic in y
(See Fig. 4.3).

Substituting the expansion (9) and (10) into (3), we get for different orders of ε,

∂σ
(−1)
ij

∂yj
= 0,

∂σ
(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj
= 0,

∂σ
(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj
= 0. (11)
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Figure 4.3: Homogenization by asymptotic development

From those relations we can deduce

σ
(−1)
ij = aijkleykl(u

(0)),

σ
(0)
ij = aijkl(exkl(u

(0)) + eykl(u
(1))), (12)

σ
(1)
ij = aijkl(exkl(u

(1)) + eykl(u
(2))),

and the boundary conditions

σ
(−1)
ij Nj = 0, σ

(0)
ij Nj = 0, σ

(1)
ij Nj = 0, on CY . (13)

Bringing together 9 - 13, if the order of ε is 0, we get the boundary-value problem, for
u(0)

∂

∂yj

(
aijkleykl(u

(0))
)

= 0, in Ys (14)(
aijkleykl(u

(0))
)
Nj = 0, on CY. (15)

Moreover, u(0) = u(0)(x, t) is independent of y, such that it represents the macroscopic
displacement field.

The first approximation boundary-value problem is given to the first order in ε,

∂

∂yj

(
aijkleykl(u

(1))
)

= 0, in Ys, (16)

aijkleykl(u
(1))Nj = −aijklexkl(u(0))Nj, on CY. (17)

In each regime (opening (+) or contacting (-) of the micro-crack) the first order per-
turbation, u(1), can be given in the form

u
(1)
± (x,y, t) = ξpq± (y)expq(u

(0))(x, t), (18)

where ξ(y) are the characteristic functions representing elementary deformation modes
of the unit cell ([7], [96]).
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The difference between the microscopic states of contact and opening are obtained
from the orientation of the force vector, deduced from the force-type source term of Eq.
(17), with respect to the crack line. In the space of macroscopic deformations, these
two states induce a separation of the space R of deformations ex11, ex12, ex22 into two
subregions R± defined by

R± =
{
ex| Niaijklexkl(u

(0))Nj ≷ 0
}
. (19)

The relations (16)-(17) are equivalent to the cell problem

∂

∂yj
(aijkleykl(ξ

pq
± )) = 0, in Ys, (20)

aijkheykh(ξ
pq
± )Nj = −aijpqNj, on CY, (21)

for every p and q and with periodicity conditions on the cell boundary.
In the following the mean value operator is employed; this is defined by

〈·〉 =
1

|Y |

∫
Ys

· dy, (22)

where |Y | is the measure of Y .
By applying the mean value operator, we get

∂

∂xj
〈σ(0)

ij 〉 = 0 (23)

and

Σ
(0)
ij ≡ 〈σ

(0)
ij 〉 = Cijklexkl(u

(0)), (24)

where

C±ijkl(d, θ) =
1

|Y |

∫
Ys

(aijkl + aijmneymn(ξkl± )) dy (25)

are the effective homogenized coefficients. The effective coefficients are symmetric in i, j,
k and l (see [17] for proof).
Putting together the Eqs. (23) and (24), the homogenized or averaged equation of equi-
librium is given as

∂

∂xj

(
Cijklexkl(u

(0))
)

= 0. (26)

4.3 Energy analysis

In this subsection the damage law based on the micromechanical energy balance in an
elementary volume containing one evolving micro-crack is deduced. Initially the trajectory
of the propagation is considered to be regular and known. For a symmetric propagation
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of the crack with respect to its center, the micro-crack evolution is completely described
by the variation of its length.
In the following we will analyze the energy balance during crack evolution for general
boundary conditions on the crack lips. We consider the general relation:

[σ(0)N] = 0. (27)

The derivation of damage law follows the two propositions given below.

Proposition 1: Under the continuity conditions (27), the energy balance during
the evolution of the micro-crack, has the following form,

d

dt

∫
Ys

1

2
aijkleykl(u

(1))eyij(u
(1))dy + Gyḋ =

∫
CY

aijkleykl(u
(1))Nj[u̇

(1)
i ]dsy, (28)

with

Gy = lim
r→0

∫
ΓYr

e · b(u(1))n dsy, (29)

where

bij(u
(1)) = U(u(1))δij − σik(u

(1))
∂u

(1)
k

∂yj
,

U(u(1)) =
1

2
aijkleykl(u

(1))eyij(u
(1)), (30)

σik(u
(1)) = aiklmeylm(u(1)).

ΓYr represents a circle of an infinitesimal radius, r, surrounding the crack tip.
Proposition 2: With [σ

(0)
ij Nj] = 0 on the crack lips CY of evolving length d(t) and

fixed orientation θ, we have
1

2
ḋ
dCijkl
dd

exkl(u
(0))exij(u

(0)) + Gyḋ+
d

dt

∫
CY

1

2
σ

(0)
ij Nj[u

(1)
i ]dsy −

∫
CY

σ
(0)
ij Nj[u̇

(1)
i ]dsy = 0.(31)

Proposition 1 and Proposition 2 are two intermediate key results fundamental in the
deduction process of the damage evolution law.

4.4 Damage evolution law

Starting with relation (31) and using the properties of the homogenized solution plus
the relation between the energy release rate at different scales, the damage law can be
deduced.
First, the integrals in (31) can be expressed in terms of the characteristic functions ξpqi ,

d

dt

∫
CY

1

2
σ

(0)
ij Nj[u

(1)
i ]dsy =

ḋ
d

dd

(
1

2

∫
CY

aijkl (δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsy

)
exmn(u(0))expq(u

(0)) +∫
CY

aijkl (δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsyexmn(u(0))expq(u̇

(0)), (32)
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and ∫
CY

σ
(0)
ij Nj[u̇

(1)
i ]dsy =∫

CY

aijkl (δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsy exmn(u(0))expq(u̇

(0)) +∫
CY

aijkl (δmkδnl + eykl(ξ
mn))Nj[ξ̇i

pq
]dsyexmn(u(0))expq(u

(0)). (33)

Substituting these relations into (31), we obtain

ḋ

(
1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)) + Gy+

d

dd

(
1

2

∫
CY

aijkl(δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsy

)
exmn(u(0))expq(u

(0)))−∫
CY

aijkl (δmkδnl + eykl(ξ
mn))Nj

[
dξi

pq

dd

]
dsyexmn(u(0))expq(u

(0))

)
= 0. (34)

For crack evolution a Griffith-type energy criterion is considered, such that propagation
occurs only when the energy release rate at the crack tip Gε reaches the critical energy
threshold Gf ,

Gε = Gf . (35)

Gf may be a function of the crack length and velocity.
The energy release rate is given as:

Gε = lim
r→0

∫
Γr

e · b(uε)n ds, (36)

where Γr is a circle of an infinitesimal radius surrounding the crack tip, e is the unit
vector in the propagation direction and

bij(u
ε) =

1

2
amnklexkl(u

ε)exmn(uε)δij − σε
jku

ε
k,i (37)

is the Eshelby configurational stress tensor.
Thus, it can be shown that Gy can be expressed with Gε and, if a propagation criterion

(35) is used in the relation giving the energy balance, a damage law is obtained under the
form

ḋ

(
1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)) +
Gf
ε

+ Imnpqexmn(u(0))expq(u
(0))

)
= 0, (38)

where

Imnpq =
d

dd

(
1

2

∫
CY

aijkl(δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsy

)
−∫

CY

aijkl (δmkδnl + eykl(ξ
mn))Nj

[
dξi

pq

dd

]
dsy, (39)

and Gf represents the critical fracture energy which can be given by a constitutive func-
tion.
Remarks:
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• In the relation (38), we used the symmetry property of integrals Iijkl in i and j, k
and l, but also the symmetry with respect to pair (i, j) and (k, l). This property is
valid under the same hypothesis as that of the symmetry of Cijkl and can be proven
in a similar manner (see [17]).

• Equation (38) is totally expressed in terms of the homogenized solution u(0). The
effective coefficients (25) and the integrals (39) can be a priori computed using the
solution on the unit cell for different length and orientations of the crack.

• In this thesis the case of frictionless unilateral contact and opening conditions on
micro-cracks are taken into account. This implies that integrals Iijkl are vanishing.

In (38), we used the relation between the energy release rate with respect to each scale
([17]),

Gε = ε Gy. (40)

This relation allows the introduction of the microstructural length parameter ε in the
damage law.

To summarize, the problem to be solved can be defined in terms of the "homogenized
equilibrium equation" (Eq. 26) and "the damage law" plus the "irreversibility condition"
as given below:

• Homogenized equilibrium equation:

∂

∂xj
(Cijklexkl(u

(0))) = 0, (41)

• The damage law (under Kuhn - Tucker loading - unloading form):

dd

dt
≥ 0, −1

2

dCijkl(d)

dd
exkl(u

(0))exij(u
(0)) ≤ Gf

ε
,(

1

2

dCijkl(d)

dd
exkl(u

(0))exij(u
(0)) +

Gf

ε

)
ḋ = 0. (42)

In the equation (42) dd
dt
≥ 0 expresses the irreversibility condition.

4.5 Summary

In this chapter, the starting point for the developments of this thesis have been introduced.
This starting point is the previous development by Dascalu and co-workers ([36], [37],
[17]) in the framework of time-independence. The theory on which these developments
are based was shortly outlined. Section 4.1 introduced the model problem and Section 4.2
described the change-of-scale procedure through asymptotic developments of displacement
and stress fields. Energy analysis at the level of a periodicity cell was shortly presented
in Section 4.3 and the general damage law under Kuhn - Tucker loading-unloading form
was given in Section 4.4.

49



Before the developments to be presented in this thesis, the model of Dascalu et al., only
cosidered time independent damage models with brittle-type damage and the macroscopic
implementation only permitted four discrete micro-crack orientations, which, once chosen,
was maintained during whole simulation (no micro-crack rotation was allowed). In this
thesis several development directions of this approach were followed. At the microscopic
level, in the case of straight micro-cracks, more orientations will be used and wing-type
mechanics (in particular) and kinked-type micro-cracks (in general) will be considered.
A new time independent damage model capable of describing progressive micro-cracking
propagation will be deduced (quasi-brittle type damage law) and an extension to three-
dimensions will be also given.

Finally, time-dependence concept will be introduced both to overcome some limitation
arising in the case of the time independent damage models (mesh independency, snap-
back behavior, . . . ) but also for the capacity of this models to describe time effects due to
damage (for instance creep or relaxation). We will pass from an energy-based to a stress
intensity factor - based propagation criterion. A time dependent damage model which
allows rotation of micro-cracks will be set.
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5 Time independent damage models
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The present chapter is dedicated to time independent damage models in which the
classical criteria of crack propagation, such as the Griffith criterion [67] is used. The
chapter begins with the implementation of the microscopic level (characteristic functions
and homogenized coefficients), detailed in Section 5.1. Brittle type of crack propagation
will be considered in the case of wing-type micro-cracks in Section 5.2. Quasi-brittle type
of crack propagation in two- and three-dimensional spaces will be considered (Sections
5.5 and 5.6).

In all the 2D models further developed in this chapter, vertical cracks are taken, mean-
while, for the 3D extension, square, horizontal plane cracks are considered. We consider
an isotropic elastic material with the Young’s modulus E = 2 GPa. Poisson’s ratio ν =
0.3 in general, but in the case of wing-type or "pore-type" cracks, to add more realism,
ν = 0.1. The critical threshold of the fracture energy Gcr = 100 J/m2 and the length of
the elementary cell ε = 1e-5 m.
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5.1 Numerical implementation of the micro-structure

The aim of this thesis is to implement two-scales damage models in the Finite Element
software FEAP ([136]). We start at the microscopic level by computing the characteristic
function and the homogenized coefficients. In some cases, microstructure was implemented
also in the Matlab code, therefore results could be compared.

Computation of the characteristic functions ξij

The first step in the development of any damage model, at the microscopic scale,
the characteristic functions ξij are computed by solving the elementary boundary-value
problems (20) and (21) presented in the theoretical part. Iso-parametric 3-node-triangles
were used and ξij were computed in traction and in compression. The periodicity condition
was implemented and, in the case of compression, several algorithms (Penalty method,
Augmented Penalty method based on Uzawa algorithm) have been tried, the best being
considered Lagrange Multipliers Method.

Fig. 5.1 shows the schematic representation of the basic deformation modes of a unit
cell containing one vertical micro-cracks, under tension conditions. The purpose is to
check the crack opening and the effect of periodicity on the unit cell. The periodicity
is clear in figure 5.1 b) which corresponds to ξ12. In the 5.1 a), corresponding to ξ11,
or 5.1 c), corresponding to ξ22, the periodicity condition is less evident due to equal
but opposite forces applied on the crack lips. This aspect combined with the periodicity
conditions leads to zero displacement on the exterior boundaries.

Figure 5.1: Schematic view of the basic deformation modes which corresponds to the
characteristic functions: a) ξ11 , b) ξ12 and c) ξ22

Homogenized coefficients - interpolation for a fixed orientation

The analytical form of C±ijkl(d, θ) is given, in the previous section, by Eq. 25. d is
the damage variable, θ is the orientation of the micro-crack. The couple (d, θ) and ±
establish the state of the crack (open or close).

Any damage model implies that the effective tensor is known at each moment. In
other words it is necessary to have the values of the effective coefficients for each length
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d and each orientation θ. This goal has been achieved in the following manner:
Step 1: - 13 orientation have been chosen in the interval of [0◦, 180◦] (θ = 15◦, 30◦, 45◦,
. . . );
Step 2: - 11 discrete micro-crack lengths have been taken into account for each orientation
([0.0; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95]);
Step 3: - 2 micro-crack states have been considered (tension and compression).
Step 4: - for each orientation of the micro-crack, interpolation on interval [O, 1] of the
computed values of homogenized coefficients in each particular d has been made.

There is a fifth step (surface interpolation on interval [0◦, 180◦]) to be taken, but it will
be detailed in the next chapter, when kinking micro-crack concept will be introduced.

It must be reminded that the homogenized coefficients are computed for each of the
3 elementary deformation modes. Given the symmetry in indexes ([17]) only 6 values are
necessary to be computed: C1111, C1211, C2211 (from the problem ξ11), C1212 (from ξ12)
and, respectively C2122, C2222 (from ξ22). Step 1 - 3 imply the creation of a large database
of effective coefficients (6 (coefficients) x 13 (orientations) x 11 (micro-crack lengths) x
2 (micro - crack states)). This goal was achieved using Finite Element program FEAP
developed at Berkeley University ([136]) and the results were verified also with COMSOL
code ([32]).

Figure 5.2 presents the interpolation procedure of C1111 in a case of a vertical crack for
all d between 0 (virgin cell) and 1 (completely crossed cell by micro-crack). The blue line
corresponds to a 9 degree polynomial which interpolate the best all the discrete values (red
disks). Several tests have been made to obtain a good interpolation for each micro-crack.
Two aspects needed to be considered in order to define the best interpolation scheme

• The interpolation should give the minimum fitting error (e.g. defined by least square
fitting);

• Derivatives should be smooth and decrease continuously.

If one of the two conditions is not respected, numerical errors are introduced into the
subsequent modeling.

Figure 5.2: Exemplification of the interpolation procedure in the case of Cp
1111(d, 90◦).

In Figure 5.3 the effective response (Cijkl(d, 0)) of a tensile case is given. The homog-
enized coefficients are represented as functions of the damage variable d. The presence of
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the micro-cracks leads to induced anisotropy, the resulting effective elastic response being
orthotropic. We note the non-linear dependence of the homogenized coefficients on the
damage variable d. With an horizontal crack line, the loss of rigidity with the damage
variable increases is maximum when the unit cell is loaded in the vertical direction (22),
i.e. perpendicular to the crack (coefficients C2222 and C1122) while the rigidity is much
less affected when loaded in the horizontal direction (11), i.e. parallel to the crack (co-
efficient C1111 ). This is characteristic of the damage-induced anisotropy observed at the
macroscopic scale.
For d = 1 corresponding to a unit cell completely crossed by the micro-crack, the residual
value of C2222 and C1122 is not zero because the micro-crack tips are assumed to remain
in contact, even for fully damaged state. It produces a residual rigidity of the unit cell.

  1

Y Tension conditions 

Figure 5.3: Homogenized coefficients for horizontal crack orientation for elastic parameters
E = 2 GPa a and ν = 0.3 in tension case

In the end of this part, Figure 5.4 presents an example of the polynomial expressions
of each of the 12 coefficients (6 in tensile mode and 6 in compressive mode) Cijkl(d, θ)
obtained by linear interpolation between the polynomial curves for the interpolation. The
isotropic matrix is characterized by the Young modulus E = 2GPa and the Poisson ratio
ν = 0.3. The presence of micro-cracks induces anisotropy in the effective behavior.

The micro-structure is completely described by the characteristic functions and by the
homogenized coefficients. The next step of the modeling is to use Cijkl in the elementary
cell (of length ε) tests in order to characterize the local macroscopic behaviour, and, in
the end, global macroscopic simulations are run.
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a)

b)

Figure 5.4: Evolution of the homogenized coefficients with respect to the normalized
damage variable d∗ and the crack orientation θ: a) Opening conditions of the crack lips
and b) Contact conditions of the crack lips.
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5.2 Damage law for wing - type cracks

In this section we develop a new two-scale damage model for the wing-type micro-
mechanisms of compression fracture. This damage model is obtained by extending the
two-scale homogenization by asymptotic developments method described in Chapter 4.
The new approach is illustrated in the case of brittle damage for a uniaxial splitting test.
The X-FEM method is used for the numerical modeling of the macro-crack initiation and
growth.

At the local level the size dependency of the critical energy (i.e. the energy of dam-
age initiation) on the elementary cell length ε is underlined by proving the Hall-Petch rule.

The outline of the section is as follows: Subsection 5.2.2 is dedicated to the theory of
our model and it has four subsections:
1) the presentation of the problem statement;
2) the homogenization approach;
3) the homogenized elastic coefficients;
4) the damage law.
Subsection 5.2.5 starts with a small introduction about the tests we run meanwhile sub-
subsection 5.2.6 presents the microscopic approach and 5.2.7 the macroscopic study. The
section finishes with discussions.

5.2.1 Background

Bobet ([19]) classified the type of cracks which can occur during tests (Figure 5.5). First,
tensile crack (usually mode I) appears at the tip of the notch and propagates on a curvi-
linear trajectory. These cracks propagates in a stable manner and tends to align to
the maximum principal compressive stress. In the literature, different names were given
to them: "Tensile Fractures" - Lajtai ([94]); "Branch Cracks" - Brace and Bombolakis
([20]); "Primary Cracks" - Ingraffea and Heuze ([87]); "Primary Forward Tensile Cracks
(PFTCs)" par Huang et al. ([82]); "wing cracks" - Shen et al. ( [129]), Li et al. ([100]),
Bobet ([19]).

After an additional loading, new cracks, generally called "Secondary Cracks" appear.
They are often described as shear cracks (or shear zones). They start at the end of the
notch and can have two possible directions:
(1) coplanar to the preexisting crack, or
(2) on the same inclination as the wing but in opposite direction.
In literature they are cited as: "Inclined, Normal Shear Fractures and Shear Zone" -
Lajtai ([94]; "Secondary Cracks" - Ingraffea and Heuze ([87]), Li et al. ([100]); "Forward
and Backward Shear Belts (FSBs and BSBs)" - Huang et al. ([82]).

Several models have been developed to describe the mechanism leading to the wing-
crack propagation in the quasi-static case. The first characterization of this mechanism
is found in the work of Brace and Bombolakis ([20]). Since then, many researchers stud-
ied and modeled them (Hoek and Bienawski ([78]), Horii and Nemat-Nasser ([80], [79]),
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Figure 5.5: Classification of the commonly observed crack in a rock specimen with pre-
existing notch ([19]).

Fanella and Krajcinovic ([51]), . . . ). The experiments showed that the cracks start at
the tips of a pre-existing flaw and propagate as the load increases, with the tendency of
alignment with the direction of the principal compressive stress, making a "wing".

Other researchers investigate the wing-type crack and the brittle failure in solids using
the continuum theory (also called interaction field theory, IFT) for short- and long-term
behavior of hard rock under compression. One of these approaches was made by Miura
et al. ([106]) who considered the mechanisms of crack growth of IFT and a uniform stress
state in order to give a simple way of predicting the creep failure of rocks in compression.
Since a uniform stress state is assumed, the continuum theory (IFT) is reduced to an
evolution problem of two interacting cracks.

Recently, the previous models were extended to take into account dynamic effects.
Nemat-Nasser and Deng ([111]) considered an array of interacting and dynamically grow-
ing wing crack to estimate the rate-dependent dynamic damage evolution in brittle solid.
The effect of strain rate is included through the dependence of dynamic stress intensity
factor (SIF) on the speed of the crack growth. Huang et al.([83], [84]) proposed an ap-
proach that combines damage theory with dynamic growth of the wing cracks, in order
to model the dynamic fracture process of rock specimens subjected to high strain rate
uniaxial compressive loading. Their model assumed dilute pre-existing crack distributions
with no interaction, but Paliwal et al. ([119]) tried to overcome this inconvenience and
developed a methodology based on a complex variable approach to obtain an approximate
local effective stress field as a manifestation of micro-crack interactions.

Our model, which will be presented in the following, focuses on a single wing-type
crack and, by the use of the homogenization through asymptotic developments method
previously presented, starting from the micro-scale study, we model the macroscopic be-
havior.
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5.2.2 Damage model

In Chapter 4 the two-scale homogenization through asymptotic developments method for
straight micro-cracks has been described. In this section we consider a particular case of a
2D isotropic elastic medium containing wing type micro-cracks. As before, the distribution
is assumed to be locally periodic and each micro-crack (composed by a main inclined crack
with two branches) is considered in one periodicity cell of length ε (Fig. 5.6). The length
ε also represents the distance between centers of two neighbor micro-cracks.

Figure 5.6: Fissured medium with locally periodic micro-structure containing wing-type
micro-cracks.

Starting from the initial model of Brace et al. ([20]), many researchers proposed models
for the wing-type crack. These models have in common the fact that the extension of
the branches is controlled by the shear of the initial inclined crack. We adopt here the
model of Fanella and Krajcinovic ([51]) and we implement their idea in our framework of
homogenization through asymptotic developments. In the model we assume a the sliding
crack of length 2a (Fig. 5.7). Using a Coulomb type criterion, the shear stress denoted
by τs reduced by the presence of the friction, is given by ([51]):

τs = (σε11 − σε22)
sin(2φ)

2
− µf (σε11 cos2(φ) + σε22 sin2(φ)), (43)

where µf is the friction coefficient, φ is the angle made by the inclined crack with the
horizontal axis and σε is the stress field (Eq. 3).

The shear on the crack induces a traction zone at the crack tips, the consequence
being the appearance of branches (wings) that progressively align to the maximum loading
direction.

Following Fanella and Krajcinovic ([51]) we replace the sliding crack and the branches
by an equivalent vertical crack. On the central part of the equivalent crack Iε, of length
2aα sinφ, we apply a concentrated pressure P (ex(u

ε)) on the normal direction (Fig. 5.7
(b)). The value of the pressure P (ex(u

ε)) is given by the relation below:

P (ex(u
ε)) =

{
2
∫ aα sinφ

0
τs
α

cotφdx, ex22(uε) 6= 0,
0, ex22(uε) = 0.

(44)

We considered µf = 0.3, φ = 45 degrees and α = 0.25. The correction factor α was
introduced by the authors of [51] in order to recover the correct stress intensity factor for
wing cracks as obtained in the numerical study of Horii and Nemat-Nasser ([80]).
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Figure 5.7: Micro-crack model under compression: a) sliding crack model; b) Vertical
equivalent model.

Let B denote the initial heterogeneous medium represented by a bounded two-dimensional
domain with a smooth external boundary, C the union of all the micro-cracks inside B,
Bs the solid part of B. Let remind that the central part of the vertical equivalent crack,
which replace the sliding cracks, is denoted Iε.

Like in Section 4, in Bs we have the equilibrium equations and the elasticity law (Eq.
3).

On the central part of the crack Iε the concentrated pressure P (ex(u
ε)) is acting, due

to the replacement of the original sliding crack. The rest of the crack boundaries are
traction-free:

σεN = 0 on C - Iε (45)
σεN = P (ex(u

ε)) on Iε (46)

We denote by N the normal unit vector on the crack faces.

5.2.3 Homogenization by asymptotic developments

Similar to the case of straight micro-cracks, we assume that we can reproduce the locally
periodic microstructure of the body through a unit cell Y = [0, 1] × [0, 1], by rescaling
with the small parameter ε. In this way the period of the material is εY , as in Fig. 5.8.
The two distinct scales are represented by the variables x and y = x

ε
defined previously.

In the unit cell Y , we denote the lips of the two cracks by CY , the central part which
replace the sliding crack by I and the solid part by Ys. We introduce the normalized
damage parameter dε

ε
representing the scaled distance between the two crack tips in the

cell.
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Figure 5.8: Material period and the unit cell.

Following the method of asymptotic homogenization and using the expansion of uε
and σε (Eq. 9 - 10) into Eq. 3 and the boundary conditions (45), we obtain the boundary
value problems for the different orders of ε, formulated on the unit cell Y .

As for the case of straight micro-cracks, we prove that u(0) = u(0)(x, t) being a trully
macroscopic displacement field.

For a given ex(u
(0)) corresponding to a compression loading (ex22(u(0)) < 0), the

boundary-value problem for the first microscopic correction u(1) is deduced as:

∂

∂yj
(aijkleykl(u

(1))) = 0 in Ys, (47)

aijkl(eykl(u
(1)) + exkl(u

(0)))nj = 0 on CY±−I±, (48)

aijkl(eykl(u
(1)) + exkl(u

(0)))nj = −P (ex(u
(0)))ni on I±. (49)

where ± denote the values on the two faces of the micro-cracks.
The microscopic correction u(1) has a linear dependence of the macroscopic deforma-

tions expq(u(0)) :

u(1) = ξ11ex11(u(0)) + 2ξ12ex12(u(0))− ξ22ex22(u(0)). (50)

The characteristic functions ξpq(y, d, a) are elementary solutions of (47-49), for a given
length of the crack and for particular macroscopic deformations having the only non-
vanishing component ex11 = 1 or ex12 = 1 or ex22 = −1, respectively. As before, ξ22(y, d, a)
corresponds to a compressive macroscopic deformation applied to the unit cell through
the internal boundary conditions (49).

By applying the mean value operator to the boundary value problem corresponding
to the 1st-order of ε, we can deduce the homogenized equilibrium equation (Eq. 23) and
the effective elastic law (Eq. 24) where Cijkl(d, a) are the effective homogenized coeffi-
cients. The general formula is given by Eq. (25), except for the homogenized coefficients
corresponding to ξ22 given by: C1122 =< a1122 − a1111ey11(ξ22) − a1122ey22(ξ22) > and
C2222 =< a2222 − a1111ey11(ξ22)− a1122ey22(ξ22) > .
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5.2.4 The damage law

In the previous section (4), the damage law was deduced in the form:

ḋ(
1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)) +
Gc
ε

+

Imnpqexmn(u(0))expq(u
(0))) = 0 (51)

where

Imnpq =
d

dd

(
1

2

∫
CY

aijkl(δmkδnl + eykl(ξ
mn))Nj[ξ

pq
i ]dsy

)
−∫

CY

aijkl (δmkδnl + eykl(ξ
mn))Nj

[
dξi

pq

dd

]
dsy (52)

Usually, the integrals Imnpq(d) are computed on the entire crack lips ([37]), but in our
specific case, are computed only on the central part, I. The non null integrals entering
the damage laws are given by

I22pq(ξ
22) =

d

dd
(
1

2

∫
I

P 22nj[ξ
pq
i ]dSy). (53)

where

P 22 = 2

∫ aα sinφ

0

µ+ 0.3(λ+ µ)

α
cotφdx. (54)

In the previous formula λ = νE
(1+ν)(1−2ν)

and µ = E
2(1+ν)

, with E = Young modulus and ν
= Poisson ratio.

5.2.5 Numerical implementation - size effects

In this section we give numerical results we obtained using the homogenization by asymp-
totic developments technique on the special case of wing-type cracks. Elastic isotropic
material described by Young’s modulus E = 2GPa and Poisson’s ratio ν = 0.1 was used.

Starting from the elementary deformation modes, we compute the homogenized co-
efficients which are functions of the damage parameter, d. For the computation of Cijkl
and Iijkl we used the finite element program FEAP, developed by the Berkeley Univer-
sity [136]. For the homogenized coefficients we used triangular finite elements with three
Gauss points for the displacements. The modeling of the wing-type micro-cracks demands
the computation of Cij11, in tension, for ξ11, and those corresponding to the ξ22 (Cij22) in
compression. For these coefficients we used Lagrange Multipliers method for the contact
between the crack faces.

In Fig. 5.9 we represent the homogenized coefficients and I2222. Nonlinear depen-
dence of the homogenized coefficients on the damage variable d is observed as well as the
anisotropy in the effective response, induced by the presence of the micro-crack.
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I2222

Figure 5.9: Left)Homogenized coefficients; Right) The integral I2222 of the jumps over the
crack faces

5.2.6 Local macroscopic behavior

Using the numerical implementation previously done for the standard crack model, some
elementary damage tests have been simulated. The most significant result at the local
macroscopic level is the size dependence of the damage yield stress on the microscopic
cell size ε shown in Fig.5.10 (a). For each value of ε, the uniaxial tests were controlled
through the applied deformation ex22. We note that for smaller cell sizes we have higher
thresholds of damage initiation.

In Fig. 5.10 (b), the critical macroscopic stress Σ22 is represented for different micro-
scopic lengths ε which shows the linear dependence of the damage yield stress on ε−

1
2 .

This prove a size effect of the Hall-Petch type.

Figure 5.10: a) Size effect - dependency of the critical stress Σ22 on the macro-parameter
ε; b) The Hall-Petch relation
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5.2.7 Global macroscopic behavior

At the macroscopic global level an axial splitting test was performed. Axial splitting
failure begins when a primary crack undergoes sliding, creating wing-type cracks at the
tips of the primary crack. The failure occurs when a series of cracks extend and finally
link together and split the material.
The geometry and the material parameters are shown in Fig. 5.11. A vertical displacement
u2 is applied uniformly on the top boundary, while the bottom boundary is fixed on the
y-direction. We considered a specimen with the height of 0.1 m and the width half of the
height (0.05 m). The computation were made on a uniform mesh with 9 x 21 elements,
and the cell size ε = 1e − 3 m. The material parameters were kept from the micro-scale
analysis (Young’s modulus = 2 GPa and Poisson’s ratio = 0.1).

Figure 5.11: Geometry and material parameters used in the axial splitting test

In the test we run at the macroscopic level, usually we have difficulties when the
damage parameter d is close to 1 because the assumption of the periodicity may not
be verified anymore. In order to avoid that, we have used the extended finite element
technique (XFEM) to introduce a displacement discontinuity. In that way the standard
finite element approximation is enriched by Heaviside type discontinuities in the direction
of the micro-crack found in the integration point of the element: (see Fig. 5.12)

uh(x) =
∑
i∈EI

uiNi(x) +
∑
j∈EJ

ajNj(x)H(x) (55)

where the first term is the standard interpolation with EI the set of all the nodes of
the mesh, while the second term represents the discontinuous enrichments with EJ ⊂ EI
the set of nodes that belong to elements in which discontinuities are introduced (see Fig.
5.12). Here H(x) is a generalized Heaviside function, taking the value +1 on one side and
-1 on the other side of the line of discontinuity.
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Figure 5.12: Enriched nodes progressively introduced in damaged elements through the
XFEM technique

The modeled experiment consists in progressive compressing uniaxial loading in the y-
direction. In Figure 5.13 we represent the horizontal global stress over the specimen vs. the
applied displacement. We denote by (a) - (d) initiation and growth of the macro-fracture
until failure. In the model a symmetrical propagation with respect to the horizontal axis
is assumed. From a certain critical value, we observe the rapid propagation of the crack.

Figure 5.13: Axial splitting test. Horizontal global stress over the specimen vs. the
applied displacement, with points corresponding to initiation (a) and growth (b,c,d) of
the splitting macro-crack.
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5.2.8 Summary and discussions

A micro-mechanical damage model deduced with homogenization by asymptotic develop-
ments technique in the case of the wing-type cracks was developed. Micro-cracks equiva-
lence procedure is the one given by Fanella and Krajcinovich, but used in the homogeniza-
tion framework. At the microscopic level the critical energy (i.e. the energy of damage
initiation) is underlined by proving the Hall-Petch relation, connecting the size depen-
dency and the yield stress. At the macroscopic level a uniaxial test in compression was
performed to show the fracture of a specimen starting from a wing type crack which is
growing and propagating along the stress direction.
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5.3 Damage law for microcrack emerging from pores

5.3.1 Introduction

Experimental observations show that, in brittle specimens under uniaxial compression,
macroscopic cracks nucleate and grow in the direction parallel to that of the axial loading.
At the origin of such macroscopic crack formation are small-scale heterogenities, like wing
cracks or pore-like flaws. Under compression loading, such micro-heterogeneities lead to
tensile micro-crack formation, growth and coalescence to macroscopic cracks.

Since the origin of this particular type of failure is a micromechanical one, the proper
way to describe these phenomena is a multiscale approach. In this section, we study
the macroscopic compression-induced splitting failure in brittle materials based on a two-
scale damage model that accounts for micro-crack nucleation and growth from pre-existing
small-size pores, like grain boundary cavities.

Previously, Dascalu and co-workers ([37], [38], [39], [56]) proposed a damage model for
straight micro-cracks based on a change of scale linking the microscopic energy dissipated
by the micro-fracture and the macroscopic energy release rate. A material length char-
acterizing the size of the micro-structure was present in the deduced damage equations,
therefore the model was able to describe size effects.

In this section we propose a model which considers the complex case of small-scale
geometry with cracks propagating from pores and evolving symmetrically with respect
to them in the direction of the loading. The damage evolution laws are deduced based
on the method developed in [37], [38], [39], [56] and taking into account the porous
microstructure ([5], [102]). The pore size is considered as a parameter of the model and
the damage variable is defined as the normalized length of the flaw composed by the pore
and the two symmetric micro-cracks connected with it (Fig.5.14).

We illustrate the capacity of the deduced damage model to predict axial splitting
failure by the numerical simulation of an axial compression test. Extended finite elements
(XFEM) are used for the numerical treatment of the nucleation and growth of macro-
cracks, as the result of micro-fracture evolution. The influence of the porosity and the
micro-structural size of the material on the macroscopic response will also be emphasized.

5.3.2 The model problem

Consider a two-dimensional isotropic elastic medium containing a large number of small
pores and micro-cracks developed from pores. The distribution is assumed to be locally
periodic, so that one can locally find a periodicity cell, of length ε, containing one pore
with two symmetric cracks (see Fig.5.14). The length ε, also representing the mutual
distance between centers of neighbor pores, is a characteristic size of the micro-structure.
The two cracks are assumed to be straight and of total length dε − φP , where φP is the
diameter of the pore.

We consider the initial heterogeneous porous medium represented by a bounded two-
dimensional domain B with a smooth external boundary. In the solid part we have the
equilibrium equations

∂σεij
∂xj

= 0, σεij = aijklexkl(u
ε), (56)
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Figure 5.14: Fissured porous medium with locally periodic microstructure.

where uε and σε are the displacement and the stress fields, aijkl are the elasticity co-
efficients and where we denoted the strain tensor exij(uε) = 1

2
(
∂uεi
∂xj

+
∂uεj
∂xi

) with respect
to x coordinates. We assume that the boundaries of the cracks and of the pores are
traction-free :

σεN = 0 (57)

where N is the unit normal vector.

5.4 Homogenization by asymptotic developments

Local periodicity is assumed, that is around each point one can find a small neighborhood
in which the microstructure is periodically distributed, with periods of size ε (see Fig.5.14).
Such a distribution can be reproduced from the unit cell Y = [0, 1] × [0, 1] by rescaling
with the small parameter ε so that the period of the material is εY , as in Fig. 5.15.
The parameter ε, which is assumed to be small enough with respect to the characteristic
dimensions of the whole body, is the microscopic length scale. This condition allow us
to distinguish between microscopic and macroscopic variations. The two distinct scales
are represented by the variables x, which are referred to as macroscopic variables and the
variables y = x/ε, referred to as microscopic variables.

In the unit cell Y , we denote the union of the two cracks by CY , the pore boundary by
CP and the solid part by Ys. We introduce the damage parameter d = dε/ε, representing
the scaled distance between the two crack tips in the cell, and the scaled diameter of the
pore aP = φP/ε. For a given pore diameter aP , the time evolution of the damage variable
d describes the symmetric micro-crack propagation. This evolution will make the object
of the next section, here we consider only a spatial distribution d = d(x) of "frozen"
micro-crack lengths, at a given instant of time t.

According to the method of asymptotic homogenization (e.g. [13],[96]), we look for
expansion of uε and σε in the form given by (58) and (59):

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + ε3u(3)(x,y, t) + . . . (58)

σε(x, t) =
1

ε
σ(−1)(x,y, t) + σ(0)(x,y, t) + εσ(1)(x,y, t) . . . (59)
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Figure 5.15: Material period and the unit cell.

where u(i)(x,y, t),σ(i)(x,y, t), x ∈ Bs, y ∈ Y are smooth functions and Y -periodic in y.
Substituting the expansions into the eq. (56) and the boundary conditions (57) we

obtain boundary value problems for the different orders of ε, formulated on the unit cell
Y . It can be shown (e.g. [96]) that the function u(0) = u(0)(x, t) is independent of y
variable, representing the macroscopic displacement field.

For given ex(u
(0)) in the case of open traction-free cracks, we deduce the following

boundary-value problem for the displacement field u(1):

∂

∂yj

(
aijkleykl(u

(1))
)

= 0, in Ys (60)

aijkleykl(u
(1))Nj = −aijklexkl(u(0))Nj, on CY± ∪ CP (61)

and with periodicity conditions on the external boundary of the cell. In the last relation
CY± denote the two faces of the micro-cracks.

The microscopic correction u(1) has a linear dependence of the macroscopic deforma-
tions expq(u(0)) :

u(1) = ξ11ex11(u(0)) + 2ξ12ex12(u(0))− ξ22ex22(u(0)) (62)

The characteristic functions ξpq(y, d, aP ) are elementary solutions of (60-61), for a
given length of the crack, for a given size of the pore and for particular macroscopic
deformations having the only non-vanishing component ex11 = 1 or ex12 = 1 or ex22 =
−1, respectively. Remark that ξ22(y, d, aP ) corresponds to a compressive macroscopic
deformation applied to the unit cell through the internal boundary conditions (61).

Consider the mean value operator 〈·〉 = 1
|Y |

∫
Ys
· dy, where |Y | is the measure of Y . By

applying the mean value operator to the boundary value problem corresponding to the
1st-order of ε, we can deduce (e.g. [96]) the homogenized equilibrium equation

∂

∂xj
Σ

(0)
ij = 0 (63)

where Σ
(0)
ij = 〈σ(0)

ij 〉 = 〈aijkl(exkl(u(0)) + eykl(u
(1)))〉 is the macroscopic stress.
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The effective elastic law is obtained as

Σ
(0)
ij = Cijkl(d, aP )exkl(u

(0)), (64)

where Cijkl(d, aP ) are the homogenized coefficients given generally by the formula

Cijkl(d, aP ) =
1

|Y |

∫
Ys

(aijkl + aijmneymn(ξkl)) dy (65)

except for the coefficients calculated computed with ξ22 which are given by : C1122 =<
a1122−a1111ey11(ξ22)−a1122ey22(ξ22) > and C2222 =< a2222−a1111ey11(ξ22)−a1122ey22(ξ22) >
.

These formulae allow for the computation of the homogenized coefficients as functions
of the damage variable.

5.4.1 The damage law

For the modeling of the evolution of damage we adopt a quasi-static description, in which
the previous equilibrium problem should be completed with damage evolution equations.
In this section we remind the main steps to be followed in obtaining the damage equation
through the homogenization of the microscopic balance of energy for propagating micro-
cracks. For the details of the procedure the reader is reffered to [37], [38].

For the initial heterogeneous problem, the fracture energy release rate during crack
extension can be expressed as

Gε = lim
Dε→O

∫
∂Dε

e · b(uε)n ds (66)

where Dε is a disk of infinitesimal radius, surrounding the crack tip O, with n the outward
normal to the disk Dε, e is the unit vector in the propagation direction (see Fig. 5.15) and
bij(u

ε) = 1
2
amnklexkl(u

ε)exmn(uε)δij − σεjkuεk,i is the Eshelby configurational stress tensor.
The propagation of each micro-crack in the elastic body is governed by the following

laws:

Gε ≤ Gf ; ḋε ≥ 0 ; ḋε(Gε − Gf ) = 0 (67)

where a superimposed dot denotes time derivative and Gf is the critical fracture energy of
the material. These relations should be completed with the reduced dissipation inequality:

Df ≡ Gεḋε ≥ 0 (68)

Assuming the symmetric extension of micro-cracks, from (60)-(61) and the periodicity
conditions we deduce ([37], [38]) for ḋ 6= 0, the global balance of energy on the unit cell :

Gε
ε

= −1

2

dCijkl(d, aP )

dd
exkl(u

(0))exij(u
(0)) (69)

where the right member Yd ≡ −1
2

dCijkl(d,aP )

dd
exkl(u

(0))exij(u
(0)) is the damage energy release

rate. We note that this relation is entirely deduced from microstructural assumptions,
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without any assumptions on the scaling of energy. This scaling with ε is naturally ap-
pearing in the derivation of the damage equation (69). For evolving damage, the previous
relation shows that the microstructural length ε makes the link between the surface en-
ergy dissipated during micro-crack propagation and damage energy dissipated per unit
volume. This energy scaling property will assure the presence of the internal length ε in
the damage law.

Using (69) from the micro-crack evolution laws (67) we deduce the damage laws :

Yd ≤
Gf
ε

; ḋ ≥ 0 ; ḋ(Yd −
Gf
ε

) = 0 (70)

Dd ≡ Ydḋ ≥ 0 (71)

These relations are coupled with the equilibrium equation (63). For brittle damage,
Gf is a constant. Generally, it may depend on the crack length d and its velocity ḋ. The
last relation in (70) represents the damage criterion.

5.4.2 Numerical implementation - size effects

In this section we give numerical results for the case of cracks emerging from pores. We
consider that the elastic matrix is isotropic, of Young’s modulus E = 2 GPa and Poisson’s
ratio ν = 0.1. The normalized pore diameter is taken aP = 0.2. The fracture energy was
taken Gf = 20J/m2.

In section 5.4 formulae for the computation of the homogenized coefficients starting
from the elementary deformation modes were deduced. For the numerical implementa-
tion of the effective coefficients we used the finite element program FEAP, developed
by Berkeley University ([136]). Triangular finite elements with three Gauss points for
the displacements were used. Computation technique has two steps: first, one needs to
compute finite element solutions for the characteristic functions on unit cells containing
micro-cracks of different lengths; then polynomial interpolation to construct the functions
Cijkl(d, aP ) of the variable d is used.

In Fig. 5.16 we represented the homogenized coefficients vs. the damage variable d.
We note that the presence of micro-cracks induces an anisotropic effective response and
that the homogenized coefficients depend nonlinearly on the damage variable.

Since the damage evolution law was obtained from a brittle micro-fracture criterion,
our model predicts brittle damage. For an increasing vertical compressive loading, starting
from an undamaged state d = aP , the macroscopic stress do not induce damage until it
reaches a critical value Σ22 for which the complete failure of the cell occurs in a brittle way.
In Fig. 5.17, we plotted the critical failure stress as a function of the micro-structural size
ε. The two curves correspond to two different normalized pore sizes aP = 0.2 and aP = 0.3.
The fracture energy is taken Gf = 20J/m2 while the elasticity coefficients are the same
as in the previous section. We remark that the failure compressive stress increases for
smaller inter-distances between pores, for proportional pore sizes, and for smaller pore
diameters when the mutual distance between centers is fixed. These results clearly shows
the influence of the micro-structural parameters: the distance between centers of two
neighbor pores ε and the pore size aP · ε on the effective elasto-damage response.
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Figure 5.16: Homogenized coefficients vs. damage variable d.

(m)

Figure 5.17: Size effects: critical failure stress Σ22 vs. microscopic size ε, for pore diame-
ters 0.2 · ε and 0.3 · ε
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Figure 5.18: Axial splitting test for a porous material specimen.

5.4.3 Axial splitting test

In this section we use the damage model described previously to simulate the axial split-
ting failure under compression loading. An initial micro-heterogeneity is assumed by
considering a macroscopic point in which d > aP . Under compressive loading, micro-
cracks propagate and coalesce forming a macroscopic crack that nucleate and grows in
the specimen. We show that our model is able to describe this multi-scale failure process.
The geometry and the parameters of the specimen are shown in Fig. 5.18. A vertical
displacement u2 is applied uniformily on the top boundary, while the bottom boundary is
fixed on the y-direction. We considered a specimen with the height of 0.1 m and the width
0.05 m. For the initiation of damage we considered a central element with pre-existing
micro-cracks of normalized length d = 0.4 and positioned in the center of the specimen.
The computations were made on a uniform mesh with 9 x 21 elements (see Fig. 5.11),
with one Gauss point per element. The microscopic size was taken as ε = 6e − 4 m.
The other material parameters were kept the same as before (E = 2GPa and ν = 0.1,
Gf = 20J/m2).
For the finite element solution, at a given time/load step, the damage equation is solved
in every integration point. When the damage variable d is close to 1, the micro-cracks
are coalescing and the periodicity assumption may not be valid anymore. In order to
avoid this situation, as in the previous section for the case of wing-type micro-cracks, in
elements with d ≥ 0.9 we introduced a macroscopic discontinuity. To do this, we used the
extended finite element technique (XFEM).

Under progressive increase of the displacement applied at the top of the specimen,
we first have an overall elastic deformation, then the micro-crack in the central element
grows and leads to the nucleation of a macro-cracks. Further, the micro-cracks in neighbor
elements on the vertical direction grow at d close to 1 and induce the propagation of a
macro-crack. This process is continued up to the total splitting of the specimen. In Fig.
5.19 we represent the global stresses over the specimen vs. the applied displacement. The
points corresponding to the nucleation (a) and growth (b,c,d) of the splitting macro-crack.
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Figure 5.19: Axial splitting test. Global stresses over the specimen vs. the applied dis-
placement, with points corresponding to initiation (a) and growth (b,c,d) of the splitting
macro-crack.

The propagation is unstable in the sense that, once started, its evolution can not stopped
even for very small loading steps.

This result clearly show the ability of the two-scale model to describe axial splitting
failure under compression loadings.

5.4.4 Conclusions

We constructed a two-scale damage model, for locally periodic distribution of micro-
cracks and pores, using asymptotic developements homogenization. An elementary period
consisted of a pore and two aligned cracks that develope symmetrically from the pore. An
energy-based criterion has been considered for micro-cracks and the macroscopic damage
equations have been deduced exclusively through the change of scale procedure, without
supplementary assumptions at the macroscopic level. The influence of micro-structural
parameters, like the mutual distance between centers of neighbor pores and the pore size,
on the local macroscopic response has been emphasized. The brittle failure nucleation and
growth under axial compression has been simulated with the proposed two-scale model, by
using progressive XFEM enrichments for the numerical treatment of evolving macroscopic
discontinuities.
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5.5 2D quasi-brittle damage model

The previous model is adequate for truly brittle materials, however experimental obser-
vations indicate that rocks show a more gradual fracture behavior, i.e. a quasi-brittle
response.

In this section we describe an alternative two-scale damage model, in which as the
crack grows the resistance of the material increases until a maximum value is achieved.
Such a behavior arises due to the development of the fracture process zone (FPZ) ahead
of the crack tip. The Fracture Process Zone (Figure 5.20) is defined as a damaged zone
around a defect tip, where we can find micro- and meso-cracks (cracks transversing several
grains and, eventually, connecting several micro-cracks). The size of the FPZ is given by
the distance between the defect tip and the most far micro-crack from this tip.

Figure 5.20: Process Zone in Granite of Barre ([109]).

The maximum value of Gf is reached when this process zone is fully developed.
The curve describing the increase in Gf with d is often referred as the R-curve (resis-

tance curve) (see Fig. 5.21). We denote by cf the value of the crack extension at which the
R-curve reaches the plateau and by Gc the maximum G at the plateau level. To specify
a particular material we have to give particular values for those parameters.

5.5.1 Local macroscopic behavior

The material used in the following numerical computations is the one considered in the
previous section: Young’s modulus E = 2 GPa, Poisson’s ratio ν = 0.3 and the cell length
ε = 1e-5 m. The initial part of the R-curve we took in the damage law is Gf (d) = Gc2d

cf

where Gc = 100 J
m2 .
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Figure 5.21: Typical R-curve

At the macroscopic scale, for a fully developed damage zone, d, the damage parameter,
should be equal to 1. We achieve this goal by the use of a full load-unload phase in the
macroscopic strain control. The consequence of the complete phase of load-unload is a
snap-back behavior. We load until a critical value for the damage parameter is obtained
(in our case 0.74) and then we continue with the unloading procedure that will have as
effect the development of the fracture zone until the maximum damage state is achieved.
In this way, we realize a path-following procedure (represented in Fig. 5.22) for the
stress-strain curve.

Contrary to the brittle-type damage models where we pass directly from a initial
non-damaged state (d = 0) to a fully damaged one, in the quasi-brittle case, progres-
sive development of the fracture process zone implicate continuously decreasing values of
stiffness until the maximum d is reached.

Figure 5.22 presents the strain-stress curve for 3 different values of the parameter cf .
As we can see the initiation point of the fracture is increasing with the decreasing of the
critical length cf . In conclusion, we have the latest initialization for the minimum of the
critical length. This fact can be explained by the increase Gf (d) = Gcr2d

cf
, which leads to

bigger Gf (d) for smaller d with smaller cf .
With the quasi-brittle model it is also possible to describe the generally identified 3

stages of fracture: (I) initiation; (II) stable propagation; (III) unstable propagation to
the maximum damage state. The two phases of the propagation are identified using a
stability criterion.

dG

dd
≤ dR

dd
, (72)

where R(d) = 2Gcr2dε
cf

.
During snap-back, the micro-fracture propagation is unstable until the maximum level

of damage is reached.
It can be clearly seen in Figure 5.23 the two phases of the propagation: blue when

the crack appears and starts to propagate in a stable manner and red on the part with
snap-back where we observe the unsable propagation up to a maximum level of damage.
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Figure 5.22: Stress-strain curves for the quasi-brittle case: initialization phase for different
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Figure 5.23: Instability for the quasi-brittle case with snap-back (blue for stable propa-
gation, red for unstable propagation)

5.5.2 Summary and discussions

In this section, an alternative two-scale damage model, in which as the crack grows the
resistance of the material increases until a maximum value is achieved is considered. The
notion of Fracture Process Zone is introduced and the size of FPZ enters into the quasi-
brittle type damage law through the variable cf . At the macroscopic local level size effect
and instability notions were presented. It was shown that initiation point of the fracture
is increasing with the decreasing of the critical length cf (latest initialization occurs for
the minimum of the critical length).

Snap-back behavior appears for the first time as a consequence of a complete load-
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unload phase in order to have a fully developed damage zone where d, the damage pa-
rameter, should be equal to 1.

Using a stability criterion, it was proved that quasi-brittle type damage model was
able to show the two phases of the propagation: stable and unstable. Moreover, a direct
link was made between snap-back behavior and instability of the crack propagation.

At the macroscopic global level the snap-back behavior leads very difficult, even im-
possible, a full simulation. In the next section, a 3D extension of the quasi-brittle damage
law is proposed. Also there we get the same difficulties connected to snap-back. One way
to pass this impediment is to develop time dependent damage models which are capable
to regularize the problem. Those models will be addressed in the next Chapter.
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5.6 3D extension for the quasi-brittle damage models

In the previous subsection a quasi-brittle type damage law was deduced in the 2D case
and exemples were given at macroscopic local level. The present section’s aim is at
constructing a three-dimensional time independent formulation of a damage model. In
order to have clear modeling aspects, several points need to be respected:

• Notion of "3D cracks" is to be given, then, generalities on 3D micro-cracks distribu-
tions are to be outlined. The objective is to proove that local periodicity assumption,
usually made for the homogenization of heterogenous materials, does not alter the
overall behaviour;

• Application of the homogenization procedure in three-dimentional case is to be
described (formulation of the initial problem involving an heterogeneuous medium,
up-scaling procedure and energy analysis, deduction of damage evolution laws);

• Numerical application at the macroscopic local level tu be run, first in the case of a
brittle and last in the case of the quasi-brittle type damage law.

5.6.1 Aspects on the 3D extention

In this subsection a locally periodic distribution of plane micro-cracks is considered, peri-
odicity assumption being usually made for the homogenization of heterogenous materials.
Some authors also considered the homogenization for randomly inhomogeneouous mate-
rials, as more realistic representations of physical microstructures. For instance, Gambin
and Telega [61] considered such a method for the study of the effective properties of elastic
solids with random distributions of microcracks. Their analysis led to complicated devel-
opments which they estimated as difficult to use for real problems and they concluded by
mentioning the periodic case as a possible issue.

5.6.2 Initial 3D problem

Consider a three-dimensional isotropic elastic medium containing a large number of small
cracks. A (locally) periodic distribution of micro-cracks is assumed, so as one can locally
find a periodicity cell, of length ε, containing one squared plane crack (see Fig. 5.24). The
length ε, also representing the mutual distance between centers of neighbor micro-cracks,
characterizes the size of the microstructure. At every instant of time, the sides of the
squared plane cracks are assumed to be of length dε(t).

Penny-shaped cracks are usually considered in order to deduce the effective behavior.
Within a particular upscaling procedure, Grechka et al. [66], Sevostianov and Kachanov
[128] showed the equivalence between penny-shaped cracks and the irregular shape ones
(including also a squared crack) in what concern the effective elasticity of fracture rocks.
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Such a result is expected for different homogenization approaches.
The symmetry of the propagation is a standard assumption at the micro-scale. We sup-
pose that the squared crack will extend symmetrically in its own plane. This extension
allows for a simple description of the crack front evolution and for a proper comparison
with the 2D case.

For a finite value of ε, which is small with respect to the dimension of the macrostruc-
ture, we consider asymptotic developments of the mechanical fields with respect to ε. The
mathematical formulation of the asymptotic homogenization method involves a suite of
periodic structures, indexed over ε, and evaluates the limit, as ε→ 0, of the corresponding
solutions of the mechanical problems. It is not our purpose to perform this analysis here,
the interested reader being referred to [38].

Let B denote the initial heterogeneous medium represented by a bounded three-
dimensional domain with a smooth external boundary and C the union of all the mi-
crocracks inside B. In the solid part Bs = B\C, we have in Bs the equilibrium equations
3, like in Section 4.

We assume that the cracks are open and traction-free : σεN = 0, where N is the unit
normal vector to the crack faces, as in Fig. 5.24.

For the description of the evolution of damage, the previous equilibrium problem
should be completed with damage equations. In subsection 5.6.4, we obtain general
damage laws as the result of homogenization of the microscopic balance of energy for
propagating micro-cracks.

For the initial problem, the fracture energy release rate (e.g. [57]) during crack exten-
sion can be expressed as

Gε = lim
r→0

∫
Γr

e · b(uε)n ds, (73)

where Γr is the union of four cylinders of infinitesimal radius r, surrounding the four
crack fronts, e is the unit vector in the propagation direction (see Fig. 5.24), n defines
the outward normal to cylinders Γr and bij(uε) is the Eshelby configurational stress tensor.

The energy-release rate Gε depends on the crack length dε(t). The crack propagation
is described by the following laws:

Gε ≤ Gf ; ḋε ≥ 0 ; ḋε(Gε − Gf ) = 0. (74)

where Gf is the critical fracture energy of the material. Gf may depend on the crack
length or the crack velocity [57].

5.6.3 Asymptotic homogenization for bodies with cracks

The locally periodic microstructure is reproduced from the unit cell Y = [0, 1]×[0, 1]×[0, 1]
by scaling with the small parameter ε so that the period of the material is εY , as in
Fig.5.24. The two distinct scales are represented by the macroscopic variables x and the
microscopic variables y = x/ε. In the unit cell Y we denote the crack by CY and solid
part by Ys = Y \CY . The size of CY is d = dε/ε. According to the method of asymptotic
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Figure 5.24: Scaling of the local microstructural period to the unit cell.

homogenization (e.g. [96]) and folowing the same path as previously presented in Section
4, we deduce the formula for the effective coefficients Cijkl(d, 0) as well as

∂

∂xj
Σij = 0.

5.6.4 Energy analysis and damage laws

We present in this subsection the homogenization of micro-fracture equations that leads to
a general 3D damage model. The particular cases of brittle and quasi-brittle damage will
be considered in the next section. To our knowledge, this 3D analysis is here presented
for the first time. The micro-mechanical energy analysis on the unit cell is of fundamental
importance for our objective: in fact, writing the balance of energy of the unit cell, for
evolving microcracks, allows for the obtention of the damage evolution laws without any
phenomenological assumption on the macroscopic behavior.

As noted previously, we assume that the micro-cracks are extending symmetrically, in
their own plane, so as to remain squared. For such a symmetric propagation, the motion
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of the points belonging to the crack front, with respect to the center of the crack, is
completely described by the variation of its length.

We saw in the previous chapter that, at the order 0, the traction-free condition gives:

σ
(0)
ij Nj = 0. (75)

By multiplication of the equation

∂

∂yj

(
aijklexkl(u

(0))
)

= 0.

with u̇(1)
i , integrating over Ys and use of the periodicity of u(1) one obtains∫
CY

aijklexkl(u
(0))Nj[[u̇

(1)
i ]]dsy =

∫
Ys

aijklexkl(u
(0))eyij(u̇

(1))dy. (76)

where we denoted by [[ · ]] the jump across the crack faces. On the other hand, the second
equation in (11) can be written as

∂

∂yj

(
aijklexkl(u

(0)) + aijkleykl(u
(1))
)

= 0.

Multiplication of this equation by u(1)
i , integration on Ys and use of the continuity condi-

tion (75) lead to∫
CY

σ
(0)
ij Nj[[u

(1)
i ]]dsy =

∫
Ys

(aijklexkl(u
(0)) + aijkleykl(u

(1)))eyij(u
(1))dy. (77)

From (27) we get zero value for the integral on the right. We also have the equality∫
Ys

aijkleykl(u
(1))dy = (Cijkl − aijkl)exkl(u(0)). (78)

Indeed, taking into account the linear dependence of u(1) of the macroscopic deformations
(see section 5.6.3), for the right member of (78) we have :∫

Ys

aijkleykl(u
(1))dy =

∫
Ys

aijkleykl(ξ
mn(y))dy exmn(u(0)).

and by using the expression (25) under the form:

Cijmn = aijmn +

∫
Ys

aijkleykl(ξ
mn(y))dy.

we get (78).
Proposition 1. During the crack propagation, the following energy balance relation

holds:

d

dt

∫
Ys

1

2
aijkleykl(u

(1))eyij(u
(1))dy +

ḋ

2
Gy =

∫
CY

aijkleykl(u
(1))Nj[[u̇

(1)
i ]]dsy, (79)

with

Gy = lim
r→0

∫
ΓYr

e · b(u(1))n dsy. (80)
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where ΓYr is the union of the four cylinders of infinitesimal radius r, surrounding the
crack fronts, e is the unit vector in the propagation direction (see Fig. 5.24), n defines
the outward normal to the cylinder ΓYr and b(u(1)) is the Eshelby configurational stress
tensor constructed with the first displacement corrector:

bij(u
(1)) = U(u(1))δij − σik(u(1))u

(1)
k,j,

U(u(1)) =
1

2
aijkleykl(u

(1))eyij(u
(1)), (81)

σik(u
(1)) = aiklmeylm(u(1)).

Proof: Let Yr ⊂ Y the domain in the unit cell defined by Yr = Y \{CY +
r ∪CY −r ∪ΓYr},

where CY +
r and CY −r are subdomains of the upper and, respectively, lower crack faces

interior to the four cylinders. At the limit :

lim
r→0

Yr = Ys

Multiplication of (16) by u̇(1)
i and integration on Yr give∫

Yr

d

dt

(
1

2
aijkleykl(u

(1))eyij(u
(1))

)
dy −

∫
Yr

∂

∂yj

(
aijkleykl(u

(1))u̇
(1)
i

)
dy = 0. (82)

By using a transport theorem (see [141], eq. (81.4)) for the first integral we get∫
Yr

d

dt

(
1

2
aijkleykl(u

(1))eyij(u
(1))

)
dy =

d

dt

∫
Yr

1

2
aijkleykl(u

(1))eyij(u
(1))dy +∫

ΓYr

1

2
aijkleykl(u

(1))eyij(u
(1))

ḋ

2
npepdsy.

Integrating by parts in the second integral of (82) and using the periodicity of u(1) on
the external boundary and (75) we obtain∫

Yr

∂

∂yj

(
aijkleykl(u

(1))u̇
(1)
i

)
dy =

∫
CY +

r

aijkleykl(u
(1))N+

j [[u̇
(1)
i ]]dsy −∫

ΓYr

aijkleykl(u
(1))nju̇

(1)
i dsy.

In this way (82) becomes

d

dt

∫
Yr

1

2
aijkleykl(u

(1))eyij(u
(1))dy +∫

ΓYr

(
1

2
aijkleykl(u

(1))eyij(u
(1))

ḋ

2
npep + aijkleykl(u

(1))nju̇
(1)
i

)
dsy −∫

CY +
r

aijkleykl(u
(1))N+

j [[u̇
(1)
i ]]dsy = 0.

Considering the contributions of the four crack fronts, at the limit, for r → 0, we
obtain

d

dt

∫
Ys

1

2
aijkleykl(u

(1))eyij(u
(1))dy +

ḋ

2
Gy −

∫
CY

aijkleykl(u
(1))Nj[[u̇

(1)
i ]]dsy = 0.
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which proves the relation (79).

This allows us to formulate the following :
Proposition 2. For an evolving squared crack CY of length d(t), in the unit cell, we

have:

1

2
ḋ
dCijkl
dd

exkl(u
(0))exij(u

(0)) +
ḋ

2
Gy = 0.

(83)

Proof. By addition of (76) and (79) and reordering the terms we arrive at:∫
CY

(
aijklexkl(u

(0)) + aijkleykl(u
(1))
)
Nj[[u̇

(1)
i ]] dsy −

ḋ

2
Gy =

d

dt

∫
Ys

1

2
aijkleykl(u

(1))eyij(u
(1))dy +

∫
Ys

aijklexkl(u
(0))eykl(u̇

(1)) dy.

Using the above-mentioned transport formula and the fact that u(0) does not depend on
the variable y, the second integral in the right member of the previous relation reads∫

Ys

aijklexkl(u
(0))eykl(u̇

(1)) dy =

d

dt

∫
Ys

aijklexkl(u
(0))eyij(u

(1)) dy −
∫
Ys

aijklexkl(u̇
(0))eyij(u

(1)) dy,

so that ∫
CY

(
aijklexkl(u

(0)) + aijkleykl(u
(1))
)
Nj[[u̇

(1)
i ]] dsy −

ḋ

2
Gy

−1

2

d

dt

∫
Ys

aijkl
(
exkl(u

(0)) + eykl(u
(1))
)
eyij(u

(1))dy

=
1

2

d

dt

∫
Ys

aijklexkl(u
(0))eyij(u

(1))dy −
∫
Ys

aijklexkl(u̇
(0))eyij(u

(1)) dy.

This equation can be further modified by making use of (77) for the last integral in the
left-hand side. We get∫

CY

(
aijklexkl(u

(0)) + aijkleykl(u
(1))
)
Nj[[u̇

(1)
i ]] dsy −

ḋ

2
Gy −

1

2

d

dt

∫
CY

(
aijklexkl(u

(0)) + aijkleykl(u
(1))
)
Nj[[u

(1)
i ]] dsy =

1

2
ḋ
dCijkl
dd

exkl(u
(0))exij(u

(0)). (84)

Taking into account the traction free condition (75), the integrals on the left side of the
equality become zero, so eq. (84) proves the theorem.

Starting from (83) we construct a damage law, using the properties of the homogenized
solution and a scaling relation for the energy release rate. Indeed we can prove the relation
:

Gε = ε2 Gy. (85)
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For that we use the expression (73) of the initial energy-release rate and the two-scale
development (9) of uε(x, t). The first terms in the developments of exkl(uε) and σεjk are:

exkl(u
ε) = exkl(u

(0)) + eykl(u
(1)),

σεjk = ajkmn(exmn(u(0)) + eymn(u(1))).

Therefore, the relation (73) becomes:

Gε = lim
r→0

∫
Γr

ei

(
1

2
amnkl

(
exkl(u

(0)) + eykl(u
(1))
) (
exmn(u(0)) + eymn(u(1))

)
δij−

aikmn
(
exmn(u(0)) + eymn(u(1))

)
(
∂u

(0)
k

∂xj
+
∂u

(1)
k

∂yj
)

)
njds. (86)

By change of variables in the integral (86) with ds = ε2dsy and taking into account
the singularity of u(1) at crack tips (e.g. [57]) we get:

Gε = ε2 lim
r→0

∫
ΓYr

ei

(
1

2
amnkleykl(u

(1))eymn(u(1))δij − aikmneymn(u(1))
∂u

(1)
k

∂yj

)
njdsy,

which proves that Gε = ε2 Gy.
Denoting by Yd the damage energy release rate

Yd = −1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)),

and using the proved scaling relation and theorem, we obtain

Gε = 2ε2Yd.

With this, the fracture relations stated previously become

Yd ≤
Gf
2ε2

; ḋ ≥ 0 ; ḋ(Yd −
Gf
2ε2

) = 0. (87)

The macroscopic damage relations (87), obtained in Kuhn-Tucker form, are entirely
expressed in terms of the homogenized solution u(0). We remark that the homogenized
coefficients, appearing in the expression of the damage energy release rate, can be a priori
computed as functions of the damage variable, from the unit cell solutions.

5.6.5 Brittle and quasi-brittle damage - size effects

In this section we consider two particular criteria for micro-cracks - corresponding to brittle
and quasi-brittle fracture - and we investigate the corresponding homogenized damage
response in a macroscopic point. In these examples, the micro-cracks are considered to be
embedded in an elastic isotropic matrix, with Young’s modulus E = 2 GPa and Poisson’s
ratio ν= 0.3.
The damage response is computed for a macroscopic deformation driven loading. The
main steps for the numerical computations are:
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• Solve the elastic problem for the characteristic functions ξpq(y) , for different nor-
malized crack lengths d.

• Compute the homogenized coefficients Cijkl(d) for different lengths d and perform
polynomial interpolation.

• Solve of damage equation of the specific model for the unknown d and for prescribed
macroscopic deformation.

• Compute the macroscopic stress Σij for given macroscopic deformation

To compute the characteristic functions we used the FEM software Comsol Multi-
physics [32]. The periodicity conditions are satisfied using Lagrange Multipliers method.
Tetrahedral elements meshes are used and ξpq(y) are computed for 24 different lengths
of the crack. The functions Cijkl(d) are then obtained by interpolation with 15-degree
polynomials.

In Fig. 5.25, we present the homogenized coefficients as functions of the damage
variable d. We remark the high nonlinearity of the functions Cijkl(d), very different from
the linear approximations usually assumed for phenomenological damage models. We also
note the induced anisotropy, due to the presence of micro-cracks in the isotropic elastic
matrix.
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Figure 5.25: Effective coefficients vs. damage variable.

85



Brittle damage

Our first example concerns the brittle damage behavior. In previous papers [37], [38],
we showed that a 2D brittle damage model is obtained through homogenization when a
Griffith fracture criterion is assumed for micro-cracks. The critical fracture energy was
considered to be a constant, i.e. Gf = Gcr.

In the present case, the damage laws (87) become:

Yd ≤
Gcr
2ε2

; ḋ ≥ 0 ; ḋ(Yd −
Gcr
2ε2

) = 0. (88)

We consider the material parameters : Young’s modulus E = 2 GPa, Poisson’s ratio
ν= 0.3 and the critical fracture energy Gcr = 20 J/m2.

For an initially undamaged material, the response predicted by the damage model
is an elastic one up to a threshold of damage initiation, when complete failure (d = 1)
instantaneously occurs. In order to investigate the size effect in the homogenized behavior,
we analyze the dependence of the damage yield stress on the microscopic length ε under
uniaxial deformation loading. For each value of ε, the test are driven by the applied
deformation ex33.
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Figure 5.26: Size effects on brittle damage response: the critical stress vs. microstructural
length ε and, respectively, ε−1.

The damage yield stress as function of the microscopic length ε is plotted in Fig.
5.26. We remark the linear dependence of the damage yield stress on ε−1. In the 2D
case presented in [37], we obtained a ε−

1
2 dependence for the damage yield stress. The

difference is the result of the 3D geometry of micro-cracks. We note that for smaller cell
sizes we have higher thresholds of damage initiation.

Quasi-brittle damage

The second example concerns a more gradual failure behavior: the quasi-brittle dam-
age. To model the quasi-brittle effects, we adopt the point of view of [12], [11] and
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consider the equivalent crack in an elastic matrix but which propagation is controlled by
a resistance curve. We consider the critical fracture energy given by :

Gf (dε) = Gcr
(dε)2

c2
f

, (89)

where cf could be related to the size of the process zone.
A 2D version of the previous assumption has been adopted in [38], for a two-dimensional
quasibrittle damage model. In the present 3D case, the damage laws (87) become:

Yd ≤
Gcrd2

2c2
f

; ḋ ≥ 0 ; ḋ(Yd −
Gcrd2

2c2
f

) = 0. (90)

We note that the process zone characteristic length cf is now naturally captured by the
damage equations, becoming the material length of the homogenized model.

The model predicts progressive evolution of damage. For a loading controlled by the
one-dimensional macroscopic deformation ex33, the elasto-damage response is presented
in Fig 5.27. The same material parameters as before have been used for the numerical
computations. The three curves, for stress and damage, correspond to different values of
the material length cf , showing micro-structural size effects for the homogenized response.
We also note the snap-back behavior that occurs for values of d close to 1. Using the
numerical solution, it can be shown that this regime corresponds to unstable propagation
of micro-cracks.

Figure 5.27: Quasi-brittle homogenized response in stress and damage. Influence of the
microstructural length.
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5.6.6 Summary and discussions

The 3D micro-mechanical elasto-damageable model presented in this subsection is an
extension of the 2D one and it was built on the same principles as that one. A locally pe-
riodic distributions of squared horizontal micro-cracks was considered. At the microscopic
level, an energy-based propagation criterion was considered and the macroscopic damage
equations were deduced exclusively through the change of scale procedure. It has been
shown that the new damage evolution equations naturally capture microscopic lengths.
The presence of such a length in the macroscopic damage law leads to size effects. The
predicted size-dependent response of the deduced two-scale model has been illustrated in
the particular cases of brittle and, respectively, quasi-brittle materials.

Nevertheless it is more reliable for having overall good responses than the previous
so it can be applied for the real cases. The two models are able to describe size effects
in both brittle and the quasi-brittle cases. We analyzed the dependence of the damage
yield stress on the microscopic length ε under uniaxial deformation loading. We remark
in the 3D case the linear dependence of the damage yield stress on ε−1 meanwhile in the
2D case we obtained a ε−

1
2 dependence. The difference is the result of the 3D geometry

of micro-cracks.
Further improvements of the model, like unilateral contact on the crack faces, arbitrary
micro-crack orientations, are necessary in order to reproduce complex damage situations.

5.7 Conclusions

This chapter was dedicated to time independent damage models. The chapter begun with
the implementation of the microscopic level (characteristic functions and homogenized
coefficients). Brittle type of crack propagation was used in the case of wing-type micro-
cracks. Quasi-brittle type of crack propagation in two- and three-dimensional spaces was
also considered.

Unfortunately, one of the limitations of previously developed damage models, is the
difficulty in characterizing global behavior, mainly due to snap-back. Also, even if sim-
ulations are not presented in this thesis, in our work, mesh dependency occurred. This
undesirable effect was due to the fact that chosen criteria of crack propagation ignores
the time effect on the fracture behavior, or the evolution of damage in many materials,
such as glasses, rocks, ceramics or ceramic composites, is time-dependent.
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6.1 Introduction

The previous chapter was dedicated to time independent damage models for which a clas-
sical criteria of crack propagation (the Griffith criterion [67]) was used. Both brittle and
quasi-brittle type of crack propagation in two- or three-dimensional space were considered.
Difficulties in describing global macroscopic behavior have been observed in the case of
quasi-brittle type damage models. To overcome effects like snapback, mesh dependency,
. . . , a new class is considered: time-dependent damage models. In this class, the chosen
propagation criteria does not ignore the time-effects on the fracture behavior, therefore it
is more appropriate to describe the damage evolution in various materials such as glasses,
rocks, ceramics or ceramic composites. The use of time-dependent damage models was
imperative not only because the inconveniencies of the previously considered time inde-
pendent damage models are overcome, but also due to their capability of describing time
effects for damage like: creep and relaxation.

An important source of time-dependency is the subcritical propagation of microcracks.
The classical criteria of crack propagation (i.e. Griffith [67]), ignore the time effect on the
fracture behavior. On the contrary, a subcritical criterion, that is a criterion considering
crack propagation for energy lower than the critical limit of fracture, takes into account
time effects ([2],[4]). Phenomenological models of time-dependent damage have been
proposed in the literature (e.g. [130]).

The main objective of this chapter is the development of a two-scale time-dependent
damage model capable to take into account both a crack extension and its change of
orientation. Theoretical developments and numerical applications of a time-dependent
damage law which is deduced from considerations at the micro-scale with non-planar
growth of micro-cracks will be given. The evolution of the micro-crack length during
propagation is described through a sub-critical criterion, that is a criterion considering
crack propagation for energy lower than the critical limit of fracture, meanwhile the
orientation of the crack growth is governed by the maximum energy release rate at the
crack tips and the introduction of an equivalent straight crack. The passage from micro-
scale to macro-scale is done through an asymptotic homogenization approach.
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A first contribution to this model is found in [56]. A development is given in this
thesis and to accomplish this, several steps have been done:

• Stress intensity factors (SIF) for straight micro-cracks were computed using dis-
placement correlation method. In [56] SIF have been computed with the help of
path-independent integral method. When comparison between the two methods
was made, a question on the computation of SIF values for higher normalized micro-
crack lengths > 0.9 arised.

• At the macroscopic local level we adopted the previous criteria for the equivalent
crack, in the case of the micro-crack development in Mode I or mixed mode. But
for the case of pure Mode II, previous criteria suffered modification.

• Global macroscopic implementation of the model was performed in three steps:

– Implementation of a simplified time-dependent damage model in which the
stiffness of the solid is governed by linear coefficients that depend on the elastic
properties of the solid matrix and on micro-cracks lengths.

– Implementation of a time-dependent damage model in which linear coefficients
were replaced by homogenized coefficients previously computed for a straight
crack and the propagation occurs in the fixed direction given by the orientation
of the crack.

– Macroscopic simulations with the complex time-dependent damage model in-
cluding kinking micro-cracks.

The chapter is organized as follows: first, extensions of the mathematical formulation
for the general model, including the modification of macroscopic equilibrium equations
and the sub-critical propagation of cracks, is presented. Then implementation of the three
time-dependent damage models previously named will be given in three subsections. In
each subsection, in general, the next structure will be followed:

• Particular extension to general damage model, when necessary: the mathematics
behind the computations.

• Behavior of a body at local macroscopic scale: Numerical examples.

• Damage behavior at the global macroscopic scale: Numerical examples.

In the case of the damage model for kinking micro-cracks, two subsections will be very
important: the first one is dedicated to the surface interpolation for different orientations
of homogenized coefficients and the other addresses the computation of the stress intensity
factors that are needed to quantify the sub-critical growth of cracks at the tips. The
chapter will finish with a short summary where advantages and disadvantages as well as
the differences between models will be underlined.

One-dimensional example of a bar, under tensile solicitation will be considered in
the case of the first two damage models. Simplified model will use the 1D geometry on
theoretic purpose - to compare analytically and numerically obtained uniform solutions,
therefore to prove the correctness of the implementation. For the propagation in a fixed
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direction, the same test will be considered, but a study on the localization zone will be
made.

For a better comparison of the three time-dependent damage models presented in this
chapter, at the global macroscopic level the same 2D test in uniaxial tension loading
conditions will be simulated. The geometry and boundary conditions are shown in the
upper left part of Figure 6.1 (length L = 10 cm and width L/2 structure submitted to
a displacement controlled loading). Each simulation will be run for a regular mesh of
1275 elements (mesh b) in Figure 6.1). In the case of the time dependent damage models
which includes kinked micro-cracks, mesh independency is proven with the help of this
2D tension test. For the model with fixed direction of the propagation, will be sufficient
to consider mesh independency at the 1D level.

  

a) 1108 elements

c) 5050 elementsb) 1275 elements

10 cm

5 cm

UL UL

Material parameters
E = 2e9 Pa
 ν = 0.3 

UL = 0.1 mm

Geometry and boundary conditions

Figure 6.1: Geometry, boundary conditions and the three meshes used in a uniaxial 2D
tension simulation.

One of the aspects of major importance treated in the case of time dependency is the
unloading process. In the research work we considered two types of unloading: (a) elastic
- classical mechanism described by the constance of damage with the decrease of the strain
and (b) unloading with the same damage evolution law - damage still propagates under
the same criteria as in loading. All the results presented in this thesis are obtained with
the second type of unloading.
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6.2 Mathematical formulation of the time-dependent model in
general form

The main result of Chapter 4 is the general formulation of the damage evolution law (Eq.
42). We remind that Gf represents the critical fracture energy and it can be given by a
constitutive function depending on the critical energy threshold Gc and on the damage
parameter d.

In this chapter, time - dependence is achieved by the use of a sub-critical propagation
criterion for micro-cracks. In this class of damage models, rate of crack propagation may
be expressed with respect to stress intensity factor at the crack tips, under tensile mode,
using a power law [30] or an exponential law [145]. The first one will be used in this
thesis.

Consider the mode I growth described by a law of the type of that proposed by Charles
([30],[126]):

d(2a)

dt
=
cf
τ0

(
KI

K0

)n. (91)

K0 is a limit value of the mode I stress intensity factor KI and Salganik et al. ([126])
was followed by introducing the size of the process zone cf and the characteristic time τ0.
For simplicity the sub-critical exponent, n, was taken 2. Later tests have been done with
bigger values for this exponent. Using the relation between the stress intensity factor and
the energy-release rate we obtain the critical fracture energy:

Gf =
εGcτ0

cf

dd

dt
; Gc =

K0
2

E ′
; E ′ =

E

1− ν2
in plane strain conditions. (92)

We assume that K0, τ0 and cf are constant parameters of the sub-critical propagation
law, independent on the size ε. In this case, the damage law (Eq. 42) becomes:

dd

dt
(
1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)) +
K0

2τ0

cfE ′
dd

dt
) = 0. (93)

6.3 Simplified model - linear coefficients

6.3.1 Introduction

In this subsection we introduce the time dependent concepts with the help of a simplified
model using linear coefficients. The advantage is that this model is easy to understand
and to follow, so we easily compute analytically the consistent tangent and the integration
in time of the damage propagation. Moreover we will start with the 1D model that was
solved both analytically and numerically to verify that results corresponded.
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In the considered simplified damage model, linear coefficients Cijkl(d, θ) = (1− d)aijkl
allow us to reduce the general time-dependent damage evolution law (93) to the following
expression:

dd

dt
=

cfE
′

K0
2τ0

(
1

2
)aijklexkl(u

(0))exij(u
(0)). (94)

This model is used primarily for development of the method as the linear model cannot
fully represent damage evolution due to its limitations. It cannot distinguish the state of
the crack (opened or closed) and it does not give the orientation of the crack. Moreover,
the homogenization part is incomplete (the damage evolution law is deduced using the
homogenization by asymptotic developments technique, but the effective coefficients are
replaced by linear polynomial of damage variable) and, in consequence, information on
the microstructure is lost.

6.3.2 Numerical implementation

Linear coefficients simplifies very much the time dependent damage model and no infor-
mation on the micro-crack orientation is available. The direct consequence is the absence
of the intrinsic anisotropy in the effective behavior. So, there is no interest in presenting
the local macroscopic behavior. Concerning the macroscopic global behavior, it will be
presented in two steps:

• One simple 1D problem is formulated and solved both analytically and numerically
using Finite Element Method. Global stress - time curves will be compared and the
perfect match of the results will prove the correctness of the numerical implemen-
tation.

• 2D uniaxial displacement test controlled in tension will be performed.

Discussion on the damage and strain localization will take place for the 1D simulation. For
a better understanding of the method, a numerical algorithm precedes the simulations.

Numerical integration scheme

Fig. 6.2 presents the numerical algorithm used to implement simplified time-dependent
damage model using linear coefficients. At each time step n + 1 we have as input the
current deformation tensor en+1

x . With the help of this tensor we deduce the formula for
the energy release rate, denoted εeq:

εeq = −1

2
aijkle

n+1
xij e

n+1
xkl (95)

It can be noted that it does not depend on the damage parameter d. The damage vari-
able is then updated using the time dependent damage law given by Eq. 94. Having the
current deformation tensor en+1

x and the current value of the damage dn+1 the last step
to be done is updating the stress tensor Σn+1.
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Figure 6.2: Incremental iterative procedure for the time-dependent damage model with
linear coefficients

Algorithm for analytical computation of the consistent tangent

To run macroscopic simulations, at every time step, the consistent tangent matrix
need to be known. ∂∆Σ

∂∆ε
is computed analytically. Figure 6.3 shows the main terms

entering the computation: on the right, energy release rate, followed by the derivative
of the actual ERR with respect to actual strain; damage derivative with respect to ERR
(easily computed starting from Eq. 94) is the third term and the homogenized coefficients
correspond to the last term which enters directly in the computation of the consistent
tangent matrix.

Figure 6.3: Analytical method of computation of the consistent tangent matrix for the
time-dependent damage model with linear coefficients
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6.3.3 Global macroscopic behavior

1D damage problem

We consider an one-dimensional medium having an elasto-damage behavior, in small
deformations. The behavior is that of a solid body occupying the interval [0, L]. The end
x = 0 of the solid is fixed and the displacement applied at the other end is a positive
increasing function of time uL(t). We denote by t the time, Σ the stress and εL the
uniform strain. The real case of a bar of length L fixed at one side with a progressive load
at the other is a good example. The complete description of the 1D problem is given by
the following system:

σ = (1− d)EεL, εL =
uL(t)

L
,

dσ

dx
= 0,

dd

dt
=

cfE ′

K0
2τ0

(
1

2

)
Eε2

L. (96)

E is the elastic modulus for the undamaged material and d is the damage variable.
The problem can be solved analytically, a complete description of the solving process in

the case of time-dependent damage models been found in [22]. A constant strain loading
is considered, therefore

εL(t) = βt, β > 0.

Damage at the time t is then given by the formula:

d(t) = 1 +
β2

3

Ecf
2Gcτ0

(t3 − t30)

where t0 is a value of an initial time.
Same problem was solved using the finite element code FEAP ([136]). Two Gauss

points "truss" elements with cross section 1 were considered. Comparison between an-
alytical and numerical methods have been made and obtained results matched perfectly
(Figure 6.4).

In both numerical and analytical simulations, the following parameters have been
considered: cf = 8e−4 m, τ0 = 1e8 1

s
, G0 = 100 J

m
, UL = 0.1 m and E = 2 GPa.

This simple 1D simulation allows the study of strain and damage evolution. Figure
6.5 shows damage (left) and strain (right) profile along the bar in the last part of the
simulation. We consider 6 time steps. A virgin material was initially taken. At the time
step t1 we see the appearance of the localization process. This process is more visible at
the time steps t5 and t6. In the right part of Figure 6.5 the strain profile is shown. The
loading - unloading phase, which is in direct connection with the localization phenomena,
occurs. It can be seen that on the right part of the bar the elements have high values of
damage which continue to increase with the decrease in strain, meanwhile, in the rest of
the bar, the damage and strain increase continuously.
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Figure 6.4: Analytic and numeric examples of stress-time curves

Figure 6.5: Damage and strain profiles along the bar at six time steps from the end of
the simulation. Localization phenomena is in progress
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2D - uniaxial tension test

After the proof of the correctness of the macroscopic implementation, which has been
achieved by the comparison between analytical and numerical solutions for the 1D prob-
lem, the 2D simulations are run with the following parameters:

• Parameters used in Charles’ law: K0 = 2.5e5Pa(m
1
2 ), v0 = 3e− 4m/s, n = 2.

• Material parameters: Young modulus E = 2GPa, Poisson’s coefficient ν = 0.3.

• Deformation speed dε
dt

= 1e-4 s−1 and applied displacement in the x - direction UL
= 0.001 m.

Here we denoted v0 = cf
τ0

as a referential velocity of crack propagation.

Figure 6.6: Global stress vs time curve from a simulation run with the regular mesh with
1275 elements. With red circles, the four chosen time steps are marked.

In Figure 6.7 localization mechanism is presented through a series of evolution maps
at four time steps: on the left, damage distribution; on the right corresponding horizontal
(direction of the solicitation) strain along the loading. A damage band begins to form
at the time step t1 = 11828 s and evolves until the complete failure of the specimen
(t4 = 14559 s). A diffused damaged zone in the central part of the specimen is observed.
Central part of this zone shows progressive formation of a localization band which starts
right after the pick stress value is reached. The damage parameter inside the band reaches
its maximum. The formation of this band is clearly visible on the distribution of the
horizontal strain.

Figure 6.8 shows localization mechanism through a series of five profiles. The last
profile is realized at the time t1. The elements taken into account are found in the vicinity
of the bottom (or top, due to symmetry - the red band from the geometry shown in Figure
6.8) boundary. At step 2 the tendency of the localization appears, but it is more visible
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Damage localization 1275 Horizontal strain localization

t1 = 11828 s

t2 = 12998 s

t3 = 14087 s

t4 = 14559 s

Figure 6.7: Strain evolution for four time steps. On the right of the figure horizontal
strain localization perfectly follows damage localization is shown.

at the last steps. In the right part of the figure the Strain profile is shown. Central parts
of the damage and strain profiles show increasing values of damage simultaneously with
the decrease in strain values. In the rest of the profiles, the damage and strain increase
continuously proving the development of localization bands.

6.3.4 Summary

In this section time-dependency concepts are introduced for the first time with the help
of a simplified model using linear coefficients. The advantage is that this model was easy
to understand and to follow. 1D simulation was run at the beginning and numerical and
analytical results have been compared. Then, a 2D simulation was run proving the same
tendency of damage and strain localization as observed at the one-dimensional test.

This model is used primarily for development of the method as the linear model
cannot fully represent damage evolution due to its limitations (no distinction between
opened an closed cracks, no information about the orientation, no information on the
microstructure). Nevertheless, its contribution to the development of time-dependent
damage modeling is really important. Its simplicity can be seen as a default, as previously
said, but also as an advantage since it allows, on one hand, verification of the numerically
obtained results with the analytical ones, and on the other hand, progress, since the
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Figure 6.8: Appearance of the localization of the damage and strain bands during the
loading.

second model, described by the propagation of the crack in a fixed direction, can be easily
deduced, based on the simplified one.
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6.4 Homogenized coefficients - propagation in a fixed direction

6.4.1 Introduction

In the following sections, time dependent damage models are deduced using homogenized
(effective) coefficients. The starting point is the introduction of a criterion of the damage
propagation in one fixed direction. Then micro-crack trajectory at each moment in time
will be considered, since damage propagation in a fixed direction is not conform to the
reality.

6.4.2 Numerical implementation

Correctness and efficiency of the method will be tested by giving some examples at the
local and, respectively, global level. For a better understanding of the method, a numerical
algorithm precedes the simulations.

Numerical iteration scheme

A simple procedure to follow in solving the simulations using this time-dependent
damage model is illustrated in Fig. 6.9.
At each time step, n + 1, the current deformation tensor en+1

x is known. In the first
step damage variable is updated using trapezoidal rule which allows computation of the
propagation increment ∆dn+1. The obtained value ∆dn+1 is added to the previous micro-
crack length leading to the real damage value at the current time step (dn+1). Having the
current deformation tensor en+1

x and the current value of the damage dn+1 the last step
to be done is to update the stress tensor Σn+1.

Algorithm for analytical computation of the consistent tangent

To compute the consistent tangent matrix we start from the small strain tensor at the
current state. As mentioned in the first part of this section, using trapezoidal rule, the
damage parameter at the current time step is deduced. Having ex(n+ 1) and dn+1 we are
able to compute the actual value of the energy release rate at the current (ERR). Knowing
the value of ERR, all the other terms entering in the computation of the consistent tangent
matrix (shown in Figure 6.10) are easily deduced.

6.4.3 Local macroscopic behavior

In this subsection we show only one theoretical example. Maximum of details on the
development at the macroscopic local level on the time-dependent damage model with
propagation in a fixed direction (tests on influence of the strain rate or elementary cell
size on the damage, dependence on the environmental conditions, or relaxation tests) can
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Compute             (using Trapeziodal rule)

   Update damage: 

   Compute 

   Compute Consistent Tangent Matrix

Figure 6.9: Incremental iterative procedure for the Time dependent damage model

Figure 6.10: Analytical method for computing Consistent Tangent

be found in [117].

The 1D response, in tension, predicted by the elasto-damageable model is represented
in Fig. 6.11. The material parameters are captured in the figure. It can be seen that the
micro-crack evolution leads to material softening in the macroscopic response.

The effective coefficients used in the damage model corresponds to a horizontal crack.
The crack propagates in this fixed direction until the complete failure d = 1.

6.4.4 Global macroscopic behavior

Our contribution is the modeling of the macroscopic part of the damage model. As for
the previous damage model, one-dimensional test will be presented first, and then, a
2D simulation. The same type of test (displacement controlled tension) as used in the
previous section is considered.
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Figure 6.11: 1D response sub-critical homogenized response in tension (image from [38]).

1D damage problem

Figure 6.12: Geometry and boundary conditions for the 1D problem.

As in the case of the simplified damage model previously developed, this simple 1D
simulation allows the study of the strain and damage evolution. Figure 6.13 shows damage
(left) and strain (right) profile along the bar at 8 time steps. At the beginning of the test,
a distribution of vertical micro-cracks of normalized length d = 0.01 is considered. Time
t1 corresponds to the appearance of the localization process. The process accelerates from
time t4 up to time t8 which coincide with the complete failure of the bar.

In the right part of Figure 6.13 the strain profile is shown. The loading - unloading
process which is in a direct link with the localization phenomena is presented. As in
the 1D simulation realized with the simplified damage model presented in the previous
section, it can be seen that damage increases continuously along the bar, meanwhile strain
values decrease in the right part and increase continuously in the left of the bar.

The question which arises now is: Which parameters influence the localization zone?.
In order to answer to this question, several simulations have been run and the influence
of three parameters was studied. First, a mesh dependency test was run. Four regular
meshes have been taken containing 100, 200, 400 and, respectively, 600 elements. Figure
6.14 fully answer to our question: no, the length of the localization band does not depend
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Figure 6.13: Damage and strain profiles along the bar at eight time steps. t1 corresponds
to the beginning of the localization phenomena and t8 is the end of the simulation when
complete failure occurs.

on the chosen mesh. Indeed, in the top part of the figure, with red is represented the
localization zone at the last step of the simulation, right before complete failure. The
length of the zone is ≈ 0.12 m. Bottom part of the figure presents the damage distribution
along the bar at the last time step. No visible differences between the four distributions
are encountered.

After proving mesh independence, influence of the initial crack normalized length and
of the referential velocity v0 is shown in Figures 6.15 - 6.16. As for the previous picture, the
same structure is employed: at the top, with red, localization zone is depicted, meanwhile
damage distribution is at the bottom. It is clear that bigger initial micro-crack length,
bigger the localization zone, since, for d0 = 0.01 the zone size is ≈ 0.12m and for d0 = 0.3
is ≈ 0.21m which give an important difference of about 10 % of the bar. Also the damage
distribution shows the increase in this length since at the last time step, the damage along
all the bar is bigger for significant d0.

Six values for v0 were considered in the test with a significant difference between the
biggest and smallest value, in order to assure the pertinence of the results. A very slight
decrease in the size of the localization zone with the decrease of the velocity v0 it can be
observed. For the first 3 values, 1e-1 m/s, 1e-2 m/s, 1e-3 m/s the time influence almost
vanishes and the obtained length is constant ≈ 0.125 m. For really small values (e.g.
1e-10 m/s,) a small decrease can be seen, the localized zone being of ≈ 0.0105 m. This
very small variation compared with the change in v0, do not allow us to conclude that a
real influence of v0 exists. They are probably due to numerical effects.

2D tension test

As in the section 6.3 the test that will be presented at the macroscopic global level
is a 2D tensile displacement controlled test. We remind that geometry and boundary
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Figure 6.14: Mesh independence.

conditions for this test are given on the upper left part of Figure 6.1. Same parameters
as for section 6.3 will be used.

As in the 1D simulation, a result given by the rate dependent model is the localization
of the damage, and by consequence, the localization of the deformation (Figure 6.18).
All the macroscopic tests were run assuming a locally periodic distribution of vertical
cracks. It is well known that, in tension, the cracks tends to alligne perpendicular to the
direction of the main loading. In this case, since horizontal displacement is imposed, all
the cracks will tend to 90◦, proving the pertinence of our choice concerning micro-crack
initial orientation.

In the top of the Figure 6.18 the damage and strain distribution are shown for four
different time steps represented with red dots on the global horizontal stress - time curve
presented in Figure 6.17. It is very clear that a damage band is forming at the time step
t1 = 15465 s and evolves until the complete failure of the specimen (t4 = 15651 s). The
global curve, as well as the numerical values of t1 - t4, presents a rapid propagation up to
the complete failure. This rapid behavior was also found in the previous case where the
time dependent damage law was based on linear coefficients.

As in the simplified model, we observe a diffused damaged zone (normalized damage
variable d ≈ 0.7) in the central part of the specimen. In the interior of this zone we observe
progressive formation of a localization band which starts right after the peak stress value
is reached. The normalized damage value inside the band reaches its maximum (d = 1).
The formation of this band is clearly visible on the distribution of the horizontal strain. In
the band zone strain increases with the damage, (red colored middle band), meanwhile,
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Loading zone
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Strain distribution right before failure

Figure 6.15: Influence of the initial micro-crack length d0 on the localization zone.

in the rest of the specimen, the strain decrease (to be observed a change in the blue
color spectrum: dark blue seen on the strain map at the last time step from figure 6.18
corresponds to the absolute minim from all the loading process).
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 Localization zone size right before failure

v0 = 1e-1 m/s

v0 = 1e-2 m/s

v0 = 1e-3 m/s

v0 = 1e-5 m/s

v0 = 1e-7 m/s

v0 = 1e-10 m/s

Damage distribution right before failure

v0 = 1e-1 m/s

v0 = 1e-2 m/s
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v0 = 1e-5 m/s

v0 = 1e-7 m/s

v0 = 1e-10 m/s

Loading zone

Unloading zone

Figure 6.16: Very small influence of specific velocity v0 on the localization zone.

Figure 6.17: Damage evolution (left) and changes in the micro-craks orientation for four
time steps.
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Damage localization 1275 Horizontal strain localization

t1 = 15465 s

t2 = 15502 s

t3 = 15519 s

t4 = 15651 s

Figure 6.18: Damage and horizontal strain evolution for four time steps. On the right of
the figure, horizontal strain localization follows perfectly damage localization.
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6.5 Time-dependent damage model with kinking micro-cracks

6.5.1 Introduction

In the previous two time-dependent damage models only criteria for crack extension were
introduced. In this section, for the first time, criteria for the evolution of the crack
orientations will be used. In the existing damage models the change of orientation of
micro-cracks is generally not taken into account. In our model, the crack evolution will
be realistically controlled, at the same time, by the speed and by the orientation of the
propagation.

A first contribution to the development of this time-dependent damage model is found
in [56]. We continued this work on three levels:

• Microscopic level: in [56], Stress Intensity Factors (SIF) have been computed using
path-independent integrals method. In this thesis SIF will be deduced using dis-
placement correlation method (6.5.3). A comparison between the two methods will
be done. It will be seen that this comparison will lead to a question on the influence
of periodicity on the computation of SIF for high values of the normalized crack
length.

• Macroscopic local level: the case of micro-cracks under compressive conditions have
been developed. The criterion in [56] shows rapid, unrealistic micro-cracks rotations.
Some elements of remedy to this problem are proposed in our work.

• Macroscopic global level: implementation in Finite Element code FEAP ([136])
fully represents our contribution. The macroscopic implementation of the previous
two time-dependent damage models naturally leaded to the full development of the
two-scale time-dependent including micro-cracks kinking damage model that will be
presented in this subsection.

In order to give a full description of this model, another two small parts need to be
added. Because of the micro-cracks kinking mechanism, first, a discussion on the surface
interpolation for the homogenized coefficients is necessary. Then, a full description of
the stress intensity factors for straight micro-cracks will be given. In the simulations, it
is necessary for SIF to be known for every crack length and orientation, therefore, the
same interpolation process as for the homogenized coefficients (an interpolation for a fixed
orientation followed by a surface interpolation for all the 13 considered orientations in the
interval [0◦, 180◦]) will be given.

108



6.5.2 Homogenized coefficients - interpolation for different orientations

Theoretical aspects which lead to the computation of the homogenized coefficients have
been presented in Chapter 4. The analytical form of Cijkl(d, θ) was given through Eq. 25,
where d is the damage variable and θ is the orientation of the micro-crack. The couple
(d, θ) completely characterizes the state of damage at a given macroscopic point. In the
previous chapter, interpolation method was discussed in the case of a fixed trajectory
of the propagation. Until this moment this procedure was sufficient since all damage
models, either time-dependent or time-independent, concerned the crack propagation in a
fixed direction chosen from the beginning of the computations. In the following, a criteria
for the orientation of the propagation will be proposed, which requires Cijkl(d, θ) to be
known at any value of the rotation angle on interval [0◦, 180◦]. This goal is achieved using
a surface linear interpolation (Eq. 97).

Figure 6.19: Linear spatial interpolation of the effective coefficients.

In Figure 6.19 the interpolation with respect to the rotation angle θ, based on the
interpolation in d is performed. We have the polynomial for each discreet orientation
15◦, 30◦, . . . and we obtain by linear interpolation the values of the coefficients in each
angle α between two consecutive values of θ. The formula for obtaining the values of
Cijkl(d, α) is deduced as the following

Cijkl(d, α) = Cijkl(d, θ) +
Cijkl(d, θ + 15◦)− Cijkl(d, θ)

15
(α− θ). (97)

Remark: The same procedure of interpolation is valid also for the Stress Intensity
Factors.
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6.5.3 Stress intensity factors for straight micro-cracks

Asymptotic near-tip stress fields

Linear elasticity leads to stress singularities at a sharp crack tip and Williams ([146])
has shown that the asymptotic behavior of stresses, strains and displacements in the
vicinity of a crack tip is the same for every crack problem. In particular, the stresses
distribution is given universally by

σij =
1√
2πr

(KIf
I
ij(ϕ) +KIIf

II
ij (ϕ) +KIIIf

III
ij (ϕ)) (98)

with plane polar coordinates r and ϕ centered at the crack tip. The universals dimen-
sionless functions fij depend only on the angular coordinate ϕ. Gdoutos (1993) [63] gave
explicitly the form of those functions which led to explicit formula for the stresses and
displacements near the tip of a crack given below:
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√
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where G = E
2(1+ν)

is the shear modulus and k = {
3−ν
1+ν

for plane stress,
(3− 4ν) for plane strain.

It is obviously that at the crack tip, the stresses are governed by a 1/
√
r singularity.

The constants KI , KII and KIII are called stress intensity factors and they represents
measures for the intensity of the increase of stresses near the crack tip.

Homogenization by asymptotic developments - computation of SIF

All the multi-scale damage models we present in this thesis start by considering a
two-dimensional isotropic elastic medium containing a locally periodic distribution of
micro-cracks of length 2a and orientation θ with respect to the x1 direction (abscissa
of the referential system considered at the macro-scale). Therefore, in the macroscopic
problem KI,II(u

ε) must be determined. The upscaling procedure (d = 2a/ε, y = x/ε
and y′ = x′/ε, dsy = dS/ε and uε ' u(0)(x) + εu(1)(x,y), u(0) being independent of the
microscopic variable y) enables us to express KI and KII in the macroscopic problem:

KI(u
ε) =

√
εKI(u

(1)) (104)
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KII(u
ε) =

√
εKII(u

(1)) (105)

But, for any macroscopic field [ex11 ex22 ex12], the resulting stress intensity factors
are determined by the superposition of the stress intensity factors of the elementary
deformation modes (ξ11

± , ξ22
± , ξ12

± ), as a consequence of (18):

KI,II(u
(1)) = ±(ex11KI,II(ξ

11
± ) + ex22KI,II(ξ

22
± ) + ex12KI,II(ξ

12
± )), in R± (106)

The distinction between stress intensity factors for opening and closure of micro-cracks
is given by the orientation of the force-type vector in the right member of Eq. (17) with
respect to crack line (see relation 19).
In conclusion, to obtain the stress intensity factors in the macroscopic problem, KI,II of
the elementary deformation modes it is necessary to be determined. In the next lines we
will present the methods to achieve this goal.

If a single mode of crack loading (exclusively mode I or exclusively mode II) is taken
into account, the non-null stress intensity factor can be deduced from the energy release
rate at the crack tips Gε (in a plane strain configuration):

Gε =
1− ν2

E
[K2

I +K2
II ] (107)

under the condition that KI or KII is null.
Based on micro-mechanical energy balance on a periodicity cell with evolving micro-

cracks and assuming a straight micro-crack trajectory and a traction-free opening (Eq. 7)
or frictionless contact of the crack lips (Eq. 8), [37] deduced the following energy balance
equation entirely expressed in terms of the homogenized solution u(0), that enables to
determine the energy release rate Gε for the locally periodic structure:

dd

dt

(
1

2

∂Cijkl(d, θ)

∂d
exkl(u

(0))exij(u
(0)) +

Gε

ε

)
= 0 (108)

The first term in the parenthesis is the negative of the damage energy release rate. For
evolving damage, the previous relation shows that the microstructural length ε makes the
link between the surface energy dissipated during micro-crack propagation and damage
energy dissipated per unit volume.

However, if mixed modes of crack loading are considered, individual stress intensity
factor modes cannot be determined from the energy-release rate and a different technique
must be used. Such techniques generally include local computations at the crack tips or
use of path-independent integrals that can be computed in term of far-field quantities.
Both methods were taken into account and in the next lines we will make a parallel be-
tween them.

The first method uses information from a small distance away from the crack tip
where the stress field is singular. It is known as displacement correlation method. The
idea behind it is to extract stress intensity factors from the results of a finite element
simulation of a cracked body and to match the asymptotic fields.
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Figure 6.20: Describe of the displacement correlation method

We denote by r the distance between the crack tip and the neighborhood node (Figure
6.20). Equations 103 become:

u1(r, π) = −
√

r

2π

4KII

E ′
, (109)

u2(r, π) =

√
r

2π

4KI

E ′
. (110)

where E ′ = E
1−ν2 for the plane strain case.

u1 and u2 represents the tangential and, respectively, normal displacement of the node
near the crack tip, with respect to the crack system of coordinates. Since in any Finite
Element simulation the displacement field is given with respect to x-coordinates, a formula
to connect the two displacement fields is necessary to be given. Taking into account the
crack orientation given by the angle θ (Figure 6.20), u1 and u2 become:

u1(r, π) = cos θux + sin θuy, (111)
u2(r, π) = − sin θux + cos θuy (112)

The minus of this method is that in order to have good results special finite elements
are needed for the computation of KI and KII . Moreover, since the formula involves the
distance between two nodes, a mesh dependency must be taken into account. To overcome
the two minuses of this method several simulations have been run with different type of
meshes and the final results were considered those which, from a certain mesh length, do
not change drastically the values.

On the other hand, it is true that the use of far-field quantities is very convenient since
it can be carried out within a standard finite element code. Starting from the procedure
proposed by [91], the expression of stress intensity factors with respect to the L-, M- and
[H]-integrals has been given in [56].

KI and KII were computed for a large number of lengths d and orientations θ of cracks
and for the three modes of deformations (ξ11

± , ξ22
± and ξ12

± ) in both states of opening (+)
or contact (-) of the crack lips. On the same manner as for the homogenized coefficients
we obtain by interpolation the polynomial expressions of KI(d

∗, θ) and KII(d
∗, θ).

The results given by the two methods were compared. One example is given in Figure
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Figure 6.21: Mesh dependency test

Orientation = 90°

Figure 6.22: Mesh dependency: left - in compression; right - in tension

6.23. Although the computed values are not too far from each other, a question arises:
’What happens for big values of crack length? The values of the stress intensity factors
should still increase since we deal with periodicity? Or they should decrease since less
energy for the propagation of the crack is necessary?’. Unfortunately we do not have an
answer at this moment, so we decided to interpolate using the computed values up to
normalized damage variable d∗ = 0.9 and bigger values will come from the interpolation
polynomial.
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Figure 6.23: Comparison between the two method for computing stress intensity factors

In the end of this section, the results of the evolution of stress intensity factors as
a function of normalized damage variable d? for different micro-crack orientations θ are
presented in Figures 6.24 and 6.25. In the second case, for cracks in contact, KI = 0 for
any loading mode of the unit cell. KII is antisymmetric either with respect to θ = 90 (i.e.
KII(d

∗, 15) = −KII(d
∗, 165), KII(d

∗, 30) = −KII(d
∗, 150); . . . ) for ξ11 and ξ22, either

with respect to θ = 45 (i.e. KII(d
∗, 15) = −KII(d

∗, 75), KII(d
∗, 30) = −KII(d

∗, 150); . . . )
for the shear mode. The computations have been performed with the finite element code
[32] and displacement correlation method has been used.

Figure 6.24: Evolution of the stress intensity factors KI and KII with respect to the
damage variable d and the crack orientation θ for elementary modes of deformation:
Opening conditions of the crack lips (R+ domain).
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Figure 6.25: Evolution of the stress intensity factors KII with respect to the damage
variable d and the crack orientation θ for elementary modes of deformation: Contact
conditions of the crack lips (R− domain).
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6.5.4 Mathematical formulation of the time-dependent model in particular
case of rotating micro-cracks

Like in the previous time-dependent damage models, the evolution of the micro-crack
length during propagation is described through a subcritical criterion also adapted from
the Charles’ law.

dl

dt
= v0

(
K?
I

K0

)n
(113)

Nevertheless, in this case, this criterion is used to describe the propagation of the
kinked crack (Fig. 6.26 left), dl being the length of the branch and the corresponding
stress intensity factor being indicated by the star upper index. K0 is a particular stress
intensity factor for which the velocity of the crack propagation is equal to v0. K0, v0 and
n are material parameters. K?

I is the stress intensity factor for the tensile mode of rupture
(Mode I) and depends on the stress state, on the internal length ε and on the geometry
of the micro-cracks.
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Figure 6.26: Left) Kinked crack. The out-of-plane crack growth propagates in the direc-
tion that maximize the energy release rate. Right) The kinked crack (solid line) with its
equivalent replacement crack (dashed line) (images from [56])

The crack is assumed to propagate in the direction that maximizes the energy release
rate. This criterion produces a kinking angle between the existing crack and the incre-
mentally propagated crack (Fig. 6.26 left). This kinking angle can be expressed with the
following function [131]:

φmax = sgn(KII)[0.70966λ′3 − 0.097725sin2(3.9174λ′)

−13.1588tanh(0.15199λ′)] (114)

where sgn is the signum function and λ′ is a mode mixity factor that combines the stress
intensity factors of mode I, KI , and mode II, KII , of the straight crack :

λ′ =
|KII |

KI + |KII |
(115)

At the level of the crack tips, the propagation of the kinked crack is governed in length
and orientation by Eqs. (113) and (114), respectively.
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In Section 6.5.3 stress intensity factors KI and KII for a straight micro-crack, as func-
tions of the macroscopic deformations were determined using the displacement correlation
method and comparison was made with the SIF determined with the path-independent
integral procedure completely described in [56].

6.5.5 Stress intensity factors for kinked cracks

In what follows, we will express the intensity factors for kinks with those which were
deduced for straight cracks (6.5.3).

In order to apply the subcritical criterion for the growth of micro-crack (Eq. 113), we
consider the direction of crack propagation that maximize the energy release rate. This
assumption implies that the crack produces a kinking angle as expressed by Eq. (114).
Therefore, the mode I stress intensity factor included in the subcritical criterion is not
the stress intensity factor of the straight crack KI but K?

I corresponding to the kinked
crack.
If we assume that for short time intervals, the length of the crack propagation dl is small
compared to the crack length (dl << 2a), then the relationship proposed by [95] can be
used to expressed K?

I and K?
II (for the branches which appears) with respect to KI and

KII (for the existing straight crack):

K?
i = Fi,j(φmax)Kj. (116)

Here i and j take the values I and II and Fi,j(φmax) is a 2× 2 matrix depending on the
kinking angle φmax. The main advantage of this expression is that it is universal, with
respect to the geometry and the loading. The functions FI,I , FI,II , FII,I and FII,II are
given with respect to the kinking angle through polynomials of order 20 by [95].

Many authors (e.g. Nemat-Nasser and Horii, 1982) have shown that the determina-
tion of the kinking angle through the maximum energy release rate gives essentially the
same results than the condition of local symmetry which requires that the mode II stress
intensity factor vanishes at the tip of the kinked extension. Therefore, we can neglect the
mode II intensity factor (K?

II = 0).

6.5.6 Equivalent crack

After each determination of the direction (φmax, Eq. 114) and of the length (dl, Eq. 113)
of the out-of plane crack extension, the replacement of new formed kinked crack by an
equivalent straight crack is necessary in order to compute the whole trajectory of the crack
tips. If the obtained kinked crack would be kept, the determination of the subsequent
crack extension would be imposible since the above theory using Ki is valid only in the
case of smooth cracks.

There are several possible ways to to replace the kinked crack by an equivalent straight
crack. For instance, [131] proposed to find, at each time step, a straight crack that is
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thermodynamically equivalent to the kinked crack. [10] and [56] introduced an equivalent
straight crack by joining the tips of the real branched crack. We adopted the criteria
described by [56] for construction of the equivalent crack. A series of tests, at the macro-
scopic local level, both in tension and compression loading conditions have been run.
We observed that in the case of the propagation of micro-cracks in pure mode II, micro-
crack’s rotating is too accelerate which diminuates the propagation. In order to overcome
this inconvenience, some adjustments to the previous criteria are proposed in this thesis
by the introduction of a parameter whose function should be to decrease micro-crack’s
rotation speed which would help in the increase of propagation. We will denote this pa-
rameter "Trajectory Corrector (TC)" and it will be introduced in the determination of
the equivalent crack in the manner described in the following.

Geometrical relationships in a triangle are used to determine the equivalent crack.
Chosen triangle is described by the lengths: where an and an+1 are the half of the length
of the straight crack at step n and n+1 and dl is the length of a branch (Fig. 6.26 Right).
Law of Sines leads to:

tan(dθ) =
sin(φmax)

an
dl

+ cos(φmax)
(117)

and for the updated crack length:

an+1 =
sin(φmax)

sin(dθ)
dl (118)

Assuming small time increments, equating dθ ' tan(dθ) ' sin(dθ) that result from
Eqs (117) and (118) and using the up-scaling relation, the two last expressions can be
transformed, at the limit, into differential equations:

dd

dt
=

2

ε
cos(φmax)

dl

dt
(119)

If Mode I is active in the crack propagation, then

dθ

dt
=

2

εd
sin(φmax)

dl

dt
(120)

else
dθ

dt
=

2

εd
sin(φmax)

dl

dt

1

TC
(121)

The three last equations show that the geometry of the equivalent micro-crack, in terms
of length and orientation, depends on the propagation rate dl

dt
and the orientation φmax of

the kinked crack. These quantities are computed with respect to the stress intensity factor
KI and KII of the equivalent straight micro-cracks, as shown previously. They depend on
the macroscopic damage variables d and θ and on the macroscopic deformation ex. This
establishes the homogenized damage model, based on mixed micro-crack propagation, in
an implicit form. We remark the presence of the microstructural length parameter ε in
the damage equations (119 - 121).

We introduce the factor TC in order to try to give a solution for the rapid acceleration
of crack rotation under compressive conditions. Without this factor, our time-dependent
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damage model predicts an evolution of micro-crack rotation to accentuate compared to
the experimentally observed behaviour. The problem is not completely solved by the use
of TC and more investigations are necessary. Nevertheless, in the following test we try to
determine this parameter in the case of uniaxial compressive macroscopic local level test.
Constant strain rate loading conditions in vertical direction are imposed.

The purpose of the first test is to find TC in the case of a micro-crack initially oriented
at 45◦ and having an initial normalized length of 0.2. The criteria we use for the choice
of TC is that the micro-crack crosses completely the unit cell and align to the vertical
direction. The first value which satisfy this criteria is chosen.

Figure 6.27 shows the results of five uniaxial compressive tests with different values of
TC. A vertical constant strain rate ėx22 = 1e−8s−1 is imposed. It is observed that, for TC
smaller than 8 the criteria is not satisfied, the cell not being crossed by the micro-crack.
Figure 6.27 a) corresponds to the case when the criteria described by [56] for construction
of the equivalent crack is used.

Figure 6.27: Influence of TC on a micro-crack behaviour under constant strain rate loading
conditions (ėx22 = 1e − 8s−1): matching procedure in the case of a micro-crack having
θ0 = 45◦ and d∗0 = 0.2.

In figure 6.28 influence of initial micro-crack length is presented, the conclusion that
can be drawn is that the Trajectory Corrector’s value decrease with the increase of the
initial length. The same vertical constant strain rate as for the previous tests is imposed
(ėx22 = 1e− 8s−1).

Figure 6.28: Influence of initial orientation on matching TC value: bigger the initial
normalized length, smaller TC is observed.

Previous tests considered micro-crack orientation of 45◦ with respect to the x-axis. The
new series of tests concentrates on the influence of the initial orientation on the micro-
crack behaviour. Tests have been run also in the case of micro-cracks initially oriented
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at 5◦, 15◦, 30◦, 60◦ and 75◦ with respect to the x-axis. An increase of TC with the
orientation, which is more severe when initial micro-crack tends to verticality, has been
observed. Then tests which considered micro-crack orientation in the interval [90◦, 180◦]
were run. As expected, symmetry with the interval [0◦, 90◦] was encountered. Figure 6.29
presents the six groups of micro-crack orientation denoted from a) to f). For each group,
initial micro-crack orientation and matched TC is given.

Figure 6.29: Influence of initial orientation on matching TC value. For initial orientation
from the interval [0◦,90◦], increase in orientation value leads to increase in TC. Symme-
try was observed for initial orientation from second quandrant with respect to the first
quadrant.

One question arose: How the imposed strain rate affects the calibration procedure?
Three values were considered: ėx22 = 1e − 7s−1, ėx22 = 1e − 8s−1 and ėx22 = 1e − 9s−1.
Figure 6.30 shows the evolution of the normalized length and orientation of the micro-
crack along the tests. It has been observed that the value of TC does not change with
the strain rate (TC = 8 in all the three tests).

Final step in the matching procedure should be a linear interpolation between TC
corresponding to consecutive values of θ0 leading to a unique value of this parameter for
each orientation angle in the interval [0◦,180◦].

To summarize, the geomechanical problem to be solved can be defined in terms of the
"homogenized equilibrium equation" (Eq. 26) and "the damage law" as given below:

∂

∂xj
(Σij(d, θ,u

(0))) = 0,

where

Σij(d, θ,u
(0))) = Cijkl(d, θ)exkl(u

(0)),

dd

dt
=

2

ε
cos(φmax)v0

(
K?
I

K0

)n
120



Figure 6.30: No influence of the applied strain rate on the matched TC.

dθ

dt
=

2

εd
sin(φmax)v0

(
K?
I

K0

)n
1

TC

where TC = 1 in tension case.
K?
I,II at the tips of the branch can be found using Leblong polynomials:

K?
i = Fi,j(φmax)Kj.

where

KI,II = ±
√

(ε)(ex11KI,II(ξ
11
± ) + ex22KI,II(ξ

22
± ) + ex12KI,II(ξ

12
± )).

and

φmax = sgn(KII)[0.70966λ′
3 − 0.097725sin2(3.9174λ′)− 13.1588tanh(0.15199λ′)]

where sgn is the signum function and λ′ is a mode mixity factor that combines the stress
intensity factors of mode I, KI , and mode II, KII , of the straight crack :

λ′ =
|KII |

KI + |KII |
.

6.5.7 Numerical integration scheme

In order to study the macroscopic response, we analyze the problem by the governing
equations (113) and (114) at crack tip level, the differential equations (119) and (120 -
121)) linking the micro-crack level to the macroscopic one and the homogenized law (24)
at macroscopic level. A simple procedure to follow is ilustrated in Figure 6.31

At each time step n + 1 the input quantities are given by the previous crack lenght
dn and orientation θn and the current deformation tensor ex(n + 1). The first step to be
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made is to check the crack state. According to the state ( tension (+) or compression (-)
) the stress intensity factors KI , II(dn, θn, state) are called.
The second step is the determination of the direction (φmax, Eq. 114) of the propagation.
Using φmax andKI , II(dn, θn, state) we compute the stress intensity factors at the branches’
tips K∗I,II(n+ 1) .
The third main step is to compute the length of the branches dl so, implicit, of the
propagation rate dl/dt which will be used to update the damage and orientation of the
micro-crack at the current step (dn+1, θn+1).

 

 Incremental iterative procedure

dn, ɵn, εn+1 

TensionCheck crack 
opening

Compression

KI,II(dn, ɵn,+)KI,II(dn, ɵn,)

Compute ɸmax

Compute consistent tangent matrix 

Compute Σn+1

Compute dl, Δdn+1, Δɵn+1

Compute K*I,II

Update dn+1, ɵn+1

Update homogenized coefficients C(dn+1, ɵn+1) 

Figure 6.31: Numerical integration: Incremental iterative procedure

The time-dependent behavior of materials can be underlined through different lab-
oratory tests (e.g. quasi-static loading tests, creep or relaxation tests). The response
of materials observed during quasi-static compression tests is generally affected by the
axial strain rate ėx. Higher is the strain rate (i.e. faster is the loading) and higher is
the strength. When ėx is sufficiently low, the micro-cracking has enough time to develop
inducing a decrease of the material strength. Under the condition of creep tests (i.e.
keeping a constant stress level), the failure is no more governed by the maximal stress
that the material may sustain but rather by the time needed for the micro-cracks to prop-
agate under subcritical conditions. Also, upon a relaxation test, obtained by keeping a
constant strain level, the micro-crack may propagate until failure of the material, even if
the loading is not evolving in time. The higher the strain level, the faster the failure.
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According to the considered tests, the loading is stress- and/or strain- controlled in
the vertical and/or horizontal directions. Plane-strain condition is considered in the third
direction.

Material parameters are the following: E = 2GPa, ν = 0.3, K0 = 0.6MPa.m
1
2 ,

v0 = 1e − 3m
s
. Charles’ law exponent is n = 4 and the length of the elementary cell

ε = 1e − 4m. For the computations, initial normalized length d∗0 = 0.1 and orientation
θ = 45◦ were considered.

Algorithm for consistent tangent

Analitical computation of the consistent tangent for the time-dependent damage model
including kinking micro-cracks is not a simple task. Figure 6.32 tries to give some indica-
tions to simplify this process. Three levels are considered. Level 0 contains only the terms
which enter directly in the formulation of the consistent tangent. Since current normalized
length and orientation for a micro-crack are known, the homogenized coefficients and their
derivatives with respect to d and θ can be directly employed in the computation of the
consistent tangent matrix. The rest of the terms belonging to Level 0, ( ∂∆d

∂∆εk
and ∂∆θ

∂∆εk
),

require separate computations which are briefly schematized at Level 1. Eq. 113-116 and
119-120 give the ingredients which allow computation of their values.

The most difficult to compute is ∂K?
I

∂∆εk
which is a key term in the computation of the

consistent tangent. Therefore, Level 2 is entirely dedicated to the necessary terms in
deduction process which starts from Eq. 116 by connecting K?

I,II (stress intensity factors
at the tips of the branches) with KI,II (SIF at the tips of the previous straight crack)
using the polynomials of Leblond Fij(φmax) ([95]).

6.5.8 Local macroscopic behavior

Loading at constant strain rate.

At the local macroscopic level, the first simulation is a uniaxial tension loading test.
A constant vertical strain rate is imposed and the horizontal direction is free of stress.
Influence of the strain rate, of the exponent present in Charles’ law and of the internal
length of the material, ε, is presented in Figures 6.33 to 6.35. Figure 6.33 shows that the
developed model is able to reproduce the effect of strain rate on the obtained failure stress.
Under low strain rate, the effect of time becomes predominant and the failure appears for
a lower strain level than in the case of faster loading. Figure 6.34 presents the evolution
of the micro-cracks in the unit cell. Initial micro-crack has a normalized damage length
of 0.1 and it is orientated at 45◦ with respect to the horizontal axis. At the beginning
of the loading, under weak strain level, the damage variable d and the orientation of the
crack θ remain almost constant. As a consequence, the gradient of the stress-strain curve
does not change during the first part of the loading. Then, when the strain level becomes
sufficiently high, the combined effect of highK?

I and time makes that the damage increases
in the material. As the damage increases, the equivalent crack is rotating and we observe
a rapid change in the gradient. At the end of the loading, the equivalent cracks tends to
be perpendicular to the direction of the principal tensile strain. Nevertheless, the final
crack is not perpendicular to the applied tensile stress. This fact can be explained by
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Level 0: Consistent Tangent Matrix

Level 1: Terms which enters directly in the formula of Consistent Tangent Matrix

Level 2: Terms used for computation of Level 1 terms

Figure 6.32: Consistent Tangent Matrix for Kinked cracks model

the anisotropic response of the material induced by the oriented crack, which leads to a
shearing of the periodic cells, therefore, the principal strain rotates with respect to the
principal stress.

Figure 6.35 shows the effect of two main parameters, the subcritical exponent and the
microstructural length, on the response of the material under a tension test at constant
strain rate. When the stress intensity factorK?

I is lower than the referential stress intensity
factor K0, an increase of the sub-critical exponent decreases the rate of crack propagation
and postpones the failure of the material, as observed in Figure 6.35a. For a same loading
level, KI and KII increases with the internal length ε (Eqs. 104-105), inducing a faster
failure of the structure (Figure 6.35b). In others words, the finer is the micro-structure,
the more resistant is the material.

Remark: if in these tests Charles’ law exponent would have been chosen n = 2, then the
internal length ε would have vanished, therefore no size effect would have been encountered.

Figures 6.37 - 6.38 present the results of biaxial tests at constant strain rate in tension
and in compression. Figure 6.37 shows the evolution of vertical stress with respect to
the applied vertical strain. The vertical and horizontal strains are both in tension. A
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Figure 6.33: Axial tension tests at various constant strain rate ėx22. The strength increases
when the strain rate increases.

Figure 6.34: Axial tension test at a constant strain rate ėx22 = 1.10−8s−1. Evolution of
the micro-crack in the periodic cell.

constant ratio between both strains is kept all along the test. ėx11 induces a rotation
of the equivalent crack toward the vertical direction while ėx22 would tends to orient it
toward the horizontal one. The final tendency of the crack orientation is given by the
most powerful strain rate. If no horizontal strain is imposed (ėx11 = 0) the amount of
crack rotation is maximum (cell number 5). If, on the contrary, ėx11 = ėx22 induces that
the micro-crack propagates without rotation.

Figure 6.38 shows, for the first time, that TC factor works well in the replacement of
a kinked crack by an equivalent straight one. The evolution of vertical stress with respect
to the applied vertical strain along a compressive biaxial test at constant strain rate is
shown. A constant ratio between both strains is kept all along the test. In the end of the
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Figure 6.35: Axial tension test at a constant strain rate ėx22 = 1.10−7s−1. Effect of the
variation of the sub-critical exponent: (a) - damage and (b) - stress - strain curves.

Figure 6.36: Axial tension test at a constant strain rate ėx22 = 1.10−7s−1. Effect of the
variation of the internal length: (a) - damage and (b) - stress - strain curves.

test coalescence of micro-cracks is reached. In the limit case, when ex11 = ex22, the initial
crack being oriented at 45◦ with respect to both loading directions, KI = KII = 0 under
the initial configuration and the micro-cracks do not propagate. As for the tension test,
the damage increase induces degradation of the material rigidity but the softening zone
is very small. Bigger the influence of the horizontal strain, lower the softening zone.
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Figure 6.37: Biaxial test at constant strain rate (ėx22 = 1.10−8s−1), ex22 and ex11 in tension
with a constant ratio between both strain (ėx22 ≥ ėx11).

Figure 6.38: Biaxial test at constant strain rate (ėx22 = 1.10−8s−1), ex22 and ex11 in
compression with a constant ratio between both strain and |ex22| ≥ |ex11|.
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Relaxation tests.

Applying a constant axial strain, the relaxation test aims at investigating the time-
dependent response of material. Under a constant loading, the sub-critical micro-crack
growth produces a progressive decrease of the rigidity as long as the damage state in-
creases. As a consequence, the stresses are gradually relaxing upon failure. Under a
biaxial combined tensile/compressive constant strain field (ex22 = −0.0035 (compression)
and ex11 = 0.0035 (tension)), Figure 6.39 shows the evolution of horizontal and vertical
stresses with time. In parallel, the evolution with time of the ratio between horizontal and
vertical stress is shown. As long as the crack propagate, the direction of the equivalent
crack tends toward vertical. As a consequence, the crack lips being under opening condi-
tion, the horizontal rigidity becomes much lower than vertical one. So, the ratio between
horizontal and vertical stresses evolves in accordance with the relative lost of horizontal
rigidity with respect to vertical one.

Figure 6.39: Relaxation test under biaxial conditions. ex22 = −0.0035 (compression) and
ex11 = 0.0035 (tension). Evolution with time of the horizontal and vertical stresses (a)
and of the ratio of anisotropy, defined as the absolute value of the stress ratio (b).

Creep tests.

Figure 6.40 shows the creep strain predicted by the model under a biaxial com-
bined tensile/compressive constant stress field (Σ22 = −50MPa (compression) and Σ11 =
50MPa (tension)). After an instantaneous strain response corresponding to the short-
term behavior of the material, the time effect makes damage variable increase and micro-
cracks rotate. During the first part of the test, the damage evolution is slow. However,
the rate of damage is amplifying with time. Indeed, under constant stress field, as long as
the damage increases, the strain field increases which enhances the stress intensity factor
at the crack tips. Consequently, the higher the damage, the higher the strain and the
higher the rate of propagation of micro-cracks. The same comments as for the relaxation
case can be done about the anisotropic response of the material.
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Figure 6.40: Creep test under biaxial conditions. Evolution of the horizontal and vertical
strain with time.
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6.5.9 Global macroscopic behavior

In the following results obtained from the same type of test (applied tensile displacement)
as in the previous sections, will be presented. We remind that the previous sections were
dedicated to rate dependent damage models based either on linear coefficients or on the
propagation in a fixed direction. The geometry and boundary conditions are shown in the
upper left part of Figure 6.1. Two topics are approached: first a discussion on the results
obtained using a 1275 elements regular mesh is done and second, mesh independency is
proven also with this rate-dependent damage model.

In this section a complex damage model is developed in which not only a criteria for
the damage propagation is given, but also an orientation criteria is introduced. If the
simplified damage models did not take into account the microscopic information, this
is not the case anymore. On the contrary, the microscopic mechanism from which the
damage law is deduced is the most important part of this model. Therefore, new variables
must be introduced (initial orientation θ0, microscopic length ε, Charles’ law exponent
n). In order to keep the comparison between the three damage models developed in
this chapter, we considered Charles’ law exponent n = 2 which will make the internal
parameter to vanish. Test with bigger values of n have been done, but the behavior was
the same. It is true that a quantifying equivalence cannot be made, since for bigger values
of the Charles law exponent the internal parameter does not dissapear and, as we could
see in subsection dedicated to the local behavior, size dependence appears.

In the next macroscopic simulations (see Chapter 7) higher values can be taken in order
to add realism to simulations. Microscopic length (ε = 0.1 mm) has a very small value
because the procedure of the separation of scales is valid if and only if the microscopic
variable is small compared to the macroscopic variable. In the test a small specimen 100
mm x 50 mm is considered. Initially we considered a distribution of small vertical cracks.
Since the length of the micro-cracks was small (normalized initial damage d0 = 0.01
equivalent to 1% of a unit cell), the initial orientation θ0 do not have too much importance.
However, since the chosen simulations requests, initial orientation is vertical (90◦).

Figures 6.41 - 6.42 show the evolution of the micro-cracks in terms of length, orientation
and strains for four time steps which are represented by red disks on the global horizontal
stress vs time curve (Fig. 6.41). The first remark is that the rotation of the micro-cracks
induce a delay in damage propagation if the response from the actual test and those from
the previous tests run with the simplified damage models are compared. In this case,
the specimen is completely crossed by the macroscopic fracture after around 16500 s,
meanwhile in previous cases, the same phenomena was taking place at about 15000 s.

Figures 6.42 shows all the details of the specimen evolution during the loading process.
Upper part of the figure presents damage and orientation evolution and the lower part
add the strain maps. The full process of breaking is considered, from the time t1 = 15955
s when the localization zone appears, to t4 = 16487 s when the macroscopic fracture is
fully developed. Orientation evolution maps (upper, right part of the figure) offer precious
information on the damage mechanism, such as:

• in the damaged zone, the micro-cracks rotation is minimum (green color on the
rotations maps has a range of 88◦ - 92◦), which proves that our model correctly
predict the evolution of the damage. Since the direction of the load is horizontal, the
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Figure 6.41: Damage evolution (left) and changes in the micro-craks orientation for four
time steps.

most important response is given by the vertical cracks (which have the maximum
opening in this boundary conditions);

• micro-cracks rotations are symmetrical to the vertical damaged zone. On the upper
left part of each orientation representation (blue zone) the micro-craks turn clock-
wise and on the right part (red zone) micro-cracks turn anticlock-wise (geometrical)
with the same amount. In the bottom part, situation is similar but reversed.

Another important aspect is that contrary to simplified models previously presented in
this thesis, the damaged zone has more than one element per line and strain localization
precisely follows the damage localization. Localization process is even more visible in
the bottom part of Figure 6.42 since the horizontal and shear strain maps are presented.
Indeed, at the last time step t4 = 16487 s, we got the maximum value of the horizontal
strain along the damaged zone, and the minimum value in the rest of the specimen (the
darkest blue represents the minimum value and it is obviously that outside the damaged
zone, horizontal strain decrease from t1, where a lighter blue is observed, to t4).
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t2 = 16229 s

Damage evolution Rotation of the micro-cracks

t3 = 16369 s

t4 = 16487 s

t1 = 15955 s

 

Horizontal strain evolution Shear strain evolution

t2 = 16229 s

t3 = 16369 s

t4 = 16487 s

t1 = 15955 s

Figure 6.42: Strain evolution for four time steps. On the left of the figure horizontal strain
localization perfectly following damage localization in Figure is shown. On the right part
of the figure shear strain is presented. 132



Mesh independency

As for the previous damage models, the second discussion is on the mesh independency
of the model. We have run tests with all the three meshes shown in Figure 6.1 containing
1108, 1275, and, respectively, 5050 elements. The computation were run with 4 Gauss
points/element.
The corresponding global horizontal stress - time curves are over-posed, as can be seen in
Figure 6.43.

Figure 6.43: Global horizontal stress vs time curves obtained with the time dependent
rotating micro-cracks damage law. In red, the global curve from a simulation test with
1108 elements. Blue correspond to the test using a mesh of 1275 elements previously fully
presented. Finally, green color represents results from the test with 5050 elements mesh.
The superposing of these three curves proves mesh independency.

For a complete proof of mesh independency, Figure 6.44 shows a comparison between
damage distributions maps (up) and horizontal strain distribution (down) for tests run
with the three considered meshes. It is obvious that at approximately the same time, the
specimen is at the same stage of degradation of the elastic properties. No distinction can
be made between the three sets of results, the size and shape of the localized zone are
identical.
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Damage localization zone showing mesh independency
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Strain localization zone showing mesh independency

1108 elements 5050 elements1275 elements

t2 = 16210 s

t3 = 16404 s

t4 = 16488 s

t1 = 15951 s

t2 = 16229 s

t3 =16369 s

t4 = 16487 s
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t2 = 16226 s
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Figure 6.44: Comparison of the damage distributions maps (up) and horizontal strain
distribution (down) for tests run with the three considered meshes.
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6.6 Summary

The main objective of this chapter was the full development of a complex time-dependent
damage model capable to take into account not only the propagation of the crack but also
the evolution of the orientation. To achieve this goal several steps have been followed:
first, extensions to the mathematical formulation of the general model, including the mod-
ification of macroscopic equilibrium equations and the sub-critical propagation of cracks,
was presented. Then implementation of the three time-dependent damage models have
been be given. In the case of rotational micro-cracks damage model two subsubsections
were underlined: first one, dedicated to the surface interpolation for different orientations
of homogenized coefficients and the other addressed to the calculation of the stress inten-
sity factors that are needed to quantify the sub-critical growth of cracks at the tips. A
comparison of the three time-dependent damage models can be made due to the fact that
at the global macroscopic level the same 2D test in uniaxial tension loading conditions
has been run. The geometry, boundary conditions, meshes and parameters were given in
the introduction of this chapter.

For each damage model two aspects were followed: - localization phenomena and
capability of the model to prove mesh independency. In the case of the damage model
with micro-crack propagation under a fixed orientation it was proved that the initial crack
length plays a very important role, an increase in d0 from 0.01 to 0.3 provoke almost
doubling the size of the localization zone. The velocity entering Charles’ law has also a
influence, but it is small, almost insignificant, a change of 15% occurring in the size of the
localization zone.

Here we give only the conclusion of the comparison of the three time dependent damage
models. Figure 6.45 shows the global stress - time curves for the three tests run with a
regular mesh of 1275 elements. It can be seen that the natural anisotropy, induced by
the introduction of the micro-crack orientation in the damage models, is playing a very
important role on the macroscopic response: blue and green curves corresponding to the
propagation in a fixed direction model and, respectively, rotational micro-crack damage
models shows a delay in the damage process and a sharpening in the softening zone.
Moreover, if the two time-dependent damage models presents similitudes in the damage
profiles (a diffuse zone with normalized damage value d ≈ 0.7 and a localized center
band), the complex damage model give more realistic results: there is only one damaged
zone fully developed and the horizontal strain maps show a perfect concordance between
the localization zones.

In the future 3D extensions of all this time-dependent damage models should be made.
We already started using the simplified damage model with linear coefficients and with
the propagation in one fixed direction model. In the case of this model as in the case of
the time-independent quasi-brittle damage model in 3D (5.6), one squared plane crack
was taken (see Fig. 5.24). In 2D the simulations required vertical crack, so in 3D ver-
tical plane cracks will be considered. The most difficult to adapt will be the rotational
micro-cracks damage models, since it deals with all the three fracture modes and surface
interpolation it is not enough (double surface interpolation or volume interpolation will
be needed for homogenized coefficients and for the stress intensity factors).

In the following we present the first results of a 3D simulation of the same uniaxial
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Figure 6.45: Comparison between time-dependent damage models: red - linear coeffi-
cients, blue - propagation in one fixed direction, green - rotational micro-cracks damage
model.

displacement controller in tension test. The new geometry keep the 2D parameters but
add a depth of 15 cm. A 4500 hexaedral elements with 8 Gauss points mesh is used
for the computations. Figure 6.46 shows damage and strain in the solicitation direction
evolution during the loading process. On three stages we observed the beginning of the
localization process in the central zone of the specimen, just like in the 2D case.

Figure 6.46: Damage and strain evolution in the case of time-dependent damage model
using linear coefficients, without rotation of cracks.
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7 Macroscopic simulations - examples
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7.1 Introduction

Using the time dependent damage model including rotational micro-cracks, three types of
simulations, corresponding to three scales (laboratory, tunnel and reservoir scales), will
be presented in this chapter. Specific aspects of the homogenization procedure will be
given in each test.

A specific two notched geometry is used in a uniaxial compression laboratory test in
the first part of the chapter. For this test the main objective is to begin a procedure
for calibration of the damage model through the study of the influence of different pa-
rameters entering the evolution law. Simulation results are compared to ones obtained
experimentally in [113]. Next, a simple simulation of a tunnel excavation will be made,
with the influence of the initial micro-crack orientation on fracture zone orientations being
discussed.

At the reservoir scale, oil production/CO2 injection processes will be represented
through the simulation of an overburden of a reservoir under displacement imposed sub-
sidence conditions. The specificity of this numerical application is the modeling of micro-
seismic events and changes in seismic properties including anisotropy.
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7.2 Laboratory level tests on notched specimen

In this section, simulations at the laboratory scale are carried out. The main objective
is to explore some of the parameters of the time-dependent rotating micro-crack damage
model by comparison with experiment results.

The same material model as used in the preceding chapters (E = 2 GPa and ν =
0.3) is considered, to maintain continuity with the previous examples. This, however,
means that the comparisons with experimental data are qualitative. Both tension and
compression tests will be simulated.

The "matching" procedure will consider:

• verification of the choice of initial orientation of micro-crack distribution;

• for a fixed orientation (best orientation "fitting" experimental results), influence of
Trajectory Corrector parameter will be studied;

• after establishing good values for orientation and TC, influence of Charles’ law v0

will be considered;

• in the end of the simulation, mesh independence will be proved.

7.2.1 Background

Nguyen ([113]) carried out an experimental study on the Neapolitan Tuff (a soft rock; E
= 2.1 GPa, ν = 0.25) using a particular geometry involving two large, offset, rounded
notches (called "Meuwissen-type" by [113]); see Figure 7.1. The reason this geometry
was chosen is that the shape favors shear strain localization under uniaxial compression.
Figure 7.2 shows typical global stress-strain responses for these tests for different angular
offsets between the notches.

The test denoted Tf-tm-45-03 (for a specimen with the angle between notches of
45◦) was run under compressive conditions with imposed axial displacement velocity of
0.5 mm/min (equivalent to a nominal deformation velocity of 5e−4/min. Nucleation and
growth of discontinuities in kinematic fields (displacement, strain) on the specimen surface
were characterized using Digital Image Correlation.

The maximum shear strain is defined as:

εmax =

√(
εx − εy

2

)2

+ ε2
xy, (122)

where are the εx, εy and εxy strain components.
Figure 7.3 shows maximum shear strain maps corresponding to the times 1-7 repre-

sented with red circles on the global stress-strain curve. Strain localization appears early
and developes to fracture later in the test between the two notches (Photos: 4-5, 5-6, 6-7).
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Figure 7.1: Meuwissen-type for Neapolitan Tuff specimen configurations (image from
[113].

Figure 7.2: Axial stress vs. axial strain curves for three tests:Tf-tm-35-02 (angle between
notches 35◦), Tf-tm-45-03 (angle between notches 45◦) and Tf-tm-55-01 (angle between
notches 55◦) (image from [113]).

7.2.2 Modeling concepts

One of the objectives is to see if the model developed in the preceding chapters can
simulate damage and strain localization, micro-crack evolution and coalescence leading
to macroscopic fracture. A second objective represents also the first step of parametrical
matching procedure of our time dependent rotating micro-crack damage model.

In simulations, 2D representations of the Meuwissen-type geometry of dimensions 5 cm
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Figure 7.3: Six maximum shear strain maps obtained with DIC corresponding to the
times 1-7 represented with red circles on the global stress-strain curve (images from [113])

.

x 10 cm are taken. The angle between notches is 45◦ and each notch is described by a half
circle of radius of 5 mm situated at a distance of 5 mm from the vertical edge. Parameters
used in Charles’ law are n = 2, K0 = 2.5e5Pa

√
(m). We consider a compressive vertical

displacement and in all cases a distribution of micro-cracks with the normalized length
0.1 and initial orientation θ0 = 135◦. A study of the influence of v0 and of Trajectory
Corrector is made.

We need to mention that this is the first macroscopic test with compressive loading
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run in this thesis. In the previous chapter where the time dependent damage models were
developed, in the case of kinked cracks damage model, for the compression case a new
parameter called "Trajectory Corrector (TC)" was introduced. The reason was that if
the crack is in compressive state , therefore it propagates in pure Mode II, it turns too
fast and it does not have the time to fully propagate.

7.2.3 Compressive loading tests - results and discussions

To verify the choice of model parameters, experimentally observed behavior in a test
should be matching our modeling. Two steps have been done:

• verification of the choice of the initial orientation of micro-cracks: simulations have
been run for eight discrete values between [0◦ − 180◦] with an increment of 22.5◦.
Figure 7.4 shows the damage evolution maps at an advanced time of the computa-
tions.

In all the cases, four damage localization zones can be found, two at each side of each
notch. Two zones tend to the exterior top and, respectively, bottom boundaries and
two form between the two notches. In the last part of the tests, those two interior
zones unify somewhere at the center of the specimen. In the case of vertical or
horizontal micro-cracks, the damaged zones have completely opposite directions,
meanwhile for the group 67.5◦ - 157.5◦, interior damaged zones tend to be parallel
instead of unifying. Only the group of 45◦ - 135◦ showed that the interior damage
localization zones advance through the same point, somewhere in the middle of
the geometry. It will be later shown that strain localization is in direct link with
damage localization having approximately the same path (in Figure 7.8), therefore
preliminary numerically obtained results from simulation with θ0 = 135◦ might be
compared, up to a certain point, to experimental ones (see Figure 7.3).

• verification of the choice of TC: for an initial micro-crack orientation of 135◦, a test
has been run without the use of the "trajectory corrector" factor TC (equivalent to
TC = 1). The behavior seen at the local macroscopic scale (see Section 6.5) was also
discovered at the global scale: micro-cracks turned too fast before having time to
propagate. Figure 7.5 shows damage, orientation and strain maps at the end of the
simulation. On the left part it can be seen that damage increased from the initial
value d∗0 = 0.1 to d∗ ≈ 0.177, which is insignificant, meanwhile the micro-cracks
changed their orientation drastically, the angle θ decreasing from 135◦ to 60◦ in a
very short time.

Simulations have been carried out for several different values of TC. Figure 7.6
shows the global vertical stress vs time curves from four simulations with different
TC. There are two key aspects of this figure:
- the bigger TC, the faster the micro-crack propagation and coalescence, which leads
to a lower stress peak;
- the bigger TC implies more pronounced softening in the global stress vs time
curves.
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Figure 7.4: Influence of θ0 on localization zone: four group of symmetries with respect to
the vertical axis. Only the group 45◦ - 135◦ product results comparable to experimental
ones

Figure 7.7 (top) shows damage and damage-orientations maps at the same time T1.
As expected, the bigger TC, the smaller the micro-crack rotation (only ≈ 5◦ for TC
= 110, compared to ≈ 25◦ for TC = 20), but at the same time, the propagation is
more advanced, for this time. more advanced stage of the propagation. Nevertheless
it should be noticed that the four localization zones appear, no matter the value of
TC, which indicates that the geometry of the strain (and damage) localisation is
largely independent of TC and depends mostly on the initial micro-crack orientation.

Figure 7.7 (bottom) shows damage and damage-orientations maps at the end of
each simulation. Two conclusions can be drawn here:

– even if the four damage localization zones appear in each simulation, the angle
between external and internal damaged zones varies with TC. In the figure,
the angle of the external zone is measured from the center of the notch with
respect to x-axis. The bigger TC, the bigger the inclination of the external
band and the smaller the angle between the internal and external zones. If we
look at Photos 1-2, 2-3 and 3-4 from Figure 7.3 showing experimental strain
localization zones obtained by [113], this angle is around 90◦. There can be
found a resemblance between numerical results obtained with TC = 110 and
experiments.

– one observation is that smaller TC implies a bigger width of the localization
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Figure 7.5: TC=1; maps from the last step of the computations: from left to right, nor-
malized damage, orientation and volumetric, respectively maximum shear strain. Increase
in the damage is insignificant, meanwhile a big change in orientation angle is seen. Strain
localization process begins quite early.

Figure 7.6: TC influence on the localization zones: - vertical stress vs. time curves for
four values of TC. Black circles indicates the four time steps corresponding to the end of
the simulation.
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zones as can be seen from Figures 7.7 when looking the localization zones
between the two notches. It is not an absolute statement since we have no
experimental comparison to make. However, it is needed to be further investi-
gated, either with the same test, either using other geometries and boundary
conditions.

All the observations of the simulation on Meuwissen-type geometries run to the conclu-
sion that the parameters which provide the best match to the experimental observations
are θ0 = 135◦ and TC = 110. Figures 7.9 and 7.8 provide more complete results for the
simulation using these parameters.

Figure 7.8 shows maps for the damage and orientations of the micro-cracks, on the
top part, and strain maps on the bottom part, for five time steps, marked with red circles
on the blue curve from Figure 7.9 representing global vertical stress vs time.

Figure 7.9 shows global vertical stress vs time corresponding to our simulation. Five
time steps are marked with red circles on the blue curve. t1 is taken in a zone where begins
the separation of the global curve from the linear trend (green line). The next three time
steps are before the peak, the fourth one being the closest to peak. t5 represents the
post-peak behavior. It can be seen that before peak, the band of intense localised shear
strain is only about a third of its final length.

Concerning the micro-crack orientations, it can be seen that in the localization zone,
the micro-cracks tend to rotate towards the vertical direction, i.e. the angle is decreasing,
which corresponds to the behavior of cracks in experiments.

It is well known that in a compression tests, cracks tends to align parallel to the
maximum solicitation direction. Our simulation is a uniaxial compression test vertically
loaded, therefore the micro-cracks tend to rotate towards the vertical direction, which is
totally the case of our results.

The reason for choosing this special geometry was to be able to observe experimentally
localization of shear strain in a uniaxial compression tests. The bottom part of Figure
7.8 shows that our model is also able to simulate the strain localization, which coincides
with the localized damage zones. Volumetric strain values maps give another indication
of the correctness of our results since, around the notches the values start to decrease in
time due to the compressive state as the damage propagates.

In the previous chapter, when the time dependent damage models were introduced,
discussion on mesh independence and on the independence of the localization zone’s width
with respect to the speed v0 entering Charles’ law took place. For the time dependent
damage model which considers propagation in one fixed direction it was shown that strain
localization zone does not depend on the mesh, meanwhile, very small variation of the
localization zone with v0 was encountered. In the case of kinked-cracks model, only mesh
independence was proved.

To prove mesh independence three irregular meshes have been considered (827, 1778
and 2589 elements). Figure 7.10 shows on the left the global curves of the simulations
which are over-posed. On the right of the figure, damage maps at the time t = 6.78e4s
are shown which prove that the size of the damaged zone does not change with mesh.

Figure 7.11 (a) shows the global stress vs time curves which indicates that smaller
values of v0 produce delay in the damage propagation. In figure 7.11 (b) damage and
maximum shear strain maps are presented for four values of v0 showing that there are no
visible effects on the localization band width with the variation of velocity.
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Figure 7.7: TC influence on the localization zones: (top) - damage and orientation maps
at the same time, T1. Bigger TC, more significant damage localization process; (bottom)
- damage and orientation maps at times, T1 - T4. TC influences the angle between the
damage localization zones.
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parameter. Localization process is presented in terms of band development (increase in
length of the micro-cracks belonging to the localization zone) and trajectory (to the center
of the specimen).
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Figure 7.9: Vertical stress vs time global curve. Five time steps are marked with red
circles and the linear trend is evidentiated by the green line.
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Figure 7.10: Mesh independence - tests on Meuwissen-type geometry
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7.2.4 Tensile loading tests - results and discussions

In this section several tests in tensile loading condition are described. Two objective are
followed: the influence of the size of the notches and the influnce of initial micro-crack
orientation on damage and strain localization processes. New geometry considered is also
5 cm x 10 cm Meuwissen-type shape, but each notch is described by a half circle of radius
of 2 mm situated at a distance of 2 mm from the vertical edge. Vertical projection of
the distance between the center of the two notches remains unchanged compared to the
previous geometry. Short comparison between results obtained from simulations run with
both geometries is given.

Parameters used in Charles’ law are the same as in compressive loading case previously
described. We consider a tensile vertical displacement applied on the top of the geometry.
At the initial phase, micro-cracks are horizontally aligned and their normalized length is
0.1.

In the following figures, damage localization phenomena is captured. Figure 7.12 shows
the global axial stress vs. time curve. With red circles, five time steps are designed. t1
corresponds to the moment when the stress reaches its peak. t5 is the time when the
damage localization zone is fully developed. Corresponding to t1 - t5, five pairs of results
are presented. On the left of each pair, damage map is shown. Four main zones of damage
localization (two for each notch) appear as for the case of compression test previously
presented in this section. Apart of the main zones, another two thiner bands develope.
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Figure 7.12: Damage localization phenomena captured at five time steps. t1 - t5 are
represented with red circles on the global vertical stress vs. time curve.
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Figure 7.13: Evolution of six micro-cracks lengths and orientations during three time
steps. 150



Figures 7.13 - 7.14 present the change in micro-cracks orientation during the simula-
tion. Figure 7.13 shows the orientation of six specific micro-cracks at three time steps
(among the five shown in figure 7.12). Two micro-cracks have been chosen from a zone
of the specimen where the kinking mechanism is the most pronounced (right part of each
specimen). It can be seen that there are not signifiant changes in micro-cracks lengths
(normalized damage parameter increases from 0.1 to 0.127). The rest of micro-cracks is
chosen from the damage localization zones (two corresponding to the top notch, one at
the intersection between interior localization zones and one from the thiner band which
starts from the bottom notch). Rotation of those micro-cracks is slower, but the increase
in their lengths is important.

Figure 7.13 showed only the final orientation of each micro-crack which was obtained
by the unification between the branches tips. Figure 7.14 will show the full micro-crack
kinking process for several micro-cracks covering the geometry. With red color, the initial
horizontal micro-crack is represented. The trajectory of the branches along the simulation
process is drawn with black.

Figure 7.14: Kinking process fully represented for ten micro-cracks: initial micro-crack
normalized length is 0.1.

Figure 7.15 shows maximum shear strain maps for the five time steps marked with red
circles on the blue curve from Figure 7.12 representing global vertical stress vs time. It
is proven that our model is also able to simulate the strain localization, which coincides
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with the six localized damage zones.

Figure 7.15: Maximum shear strain maps for five time steps along the simulation.

Figure 7.16 show a comparison between the previously obtained results and the new
results from simulation run using micro-crack distribution with normalized lenght 0.3.
On the left part of the figure, damage maps are presented. It can be seen that the
size of the localization zone tends to increase with the increas in the initial micro-crack
length. Moreover, exterior localization zones tend to unify with the thiner zones. On the
right part of the figure, orientation maps are shown. The main conclusion is that the
maximum inclination angle decrease with the increase of the initial length. If in the case
of the previous simulations, θ increases from 0◦ to 35◦, when initial micro-crack length is
0.3, the rotation angle decrease with about 6◦.

Figure 7.16:

As for the previous simulations Figure 7.17 shows the full micro-crack kinking process
for several micro-cracks covering the geometry. With red color, the initial horizontal
micro-crack is represented. The trajectory of the branches along the simulation process
is drawn with black. The decrease in rotational angle, with respect to previous tests is
obvious.

One objective of this section is to see what is the influence of the size of the notches
on the damage localization process. Figure 7.18 presents damage and micro-crack ori-
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t = 149520 s

Figure 7.17: Kinking process fully represented for ten micro-cracks: initial micro-crack
normalized length is 0.3.

entation maps obtained from simulations with two types of notches: with a radius of 5
mm (previously used in the case of compresion tests) and with a radius of 2 mm (used
in tension tests presented in this section). Both 0.1 and 0.3 were considered as initial
normalized lenght of the distribution of micro-cracks. In both cases, the geometry con-
taining large notches has a bigger effect on the damage localization zone. The central part
presents damage concentration zones, in the rest of those geometries, damage increase is
insignificant. The minus of large notches is that the size of the localization zone in the
vicinity of each notch is bigger.

7.2.5 Summary

A case study in which comparisons may be made with real experimental data for a relativly
simple example was carried out. The main objective was to explore some of the parameters
of the time-dependent including rotating micro-cracks damage model. This goal was
achieved in several steps: first, the choice of initial orientation of micro-crack distribution
was studied, then influence of TC and v0 on the localization zone was shown. Furthermore,
we have been able to show that the model is capable of reproducing, albet qualtitatively,
the exprimental results, including strain localisation phenomena. In the end, some aspects
of the model at the macro-scale, such as mesh independence, was verified.

In the case of tension tests, influence of the notch radius on the damage localization
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d0 = 0.1      t = 174183 s

d0 = 0.3       t = 149520 s

Figure 7.18:

zone was studied. New geometry containing smaller notches was considered and sev-
eral tests were run with different initial damage parameter. Localization phenomena was
studied from the perspective of evolution of micro-cracks in terms of length and propaga-
tion trajectory. Micro-cracks kinking mechanism was presented in arbitrary parts of the
specimens.
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7.3 Simulation of a tunnel gallery

7.3.1 Background

In the previous section we considered a laboratory-scale simulation of damage evolution.
In the next two sections of this chapter we move to a larger-scale, to model real engineering
problems. The first example of is a 2D simulation of a tunnel gallery excavation e.g. for
radioactive waste disposal. Plane strain assumptions are considered in the third direction.

Aside from the simulation of the tunnel gallery excavation this section also explore the
influence of length and orientation of the initial distribution of micro-cracks. Moreover,
localization phenomena are investigated.

However, this is the first attempt to apply our time-dependent damage models in
simulation of real engineering problems. More elaborated analysis of tunnel excavation
can be found, for instance, in the work of Callari et al. ([23], [24]) where shallow tunnels
in saturated soils were investigated.

Figure 7.19: Geometry and boundary conditions for the problem of the gallery excavation:
(a) full geometry used in the simplified model; (b) 1

2
of the geometry plus additional

symmetry conditions.

Digging underground galleries leads to the damage of the rocks around the excavated
area. In-situ observations show that damage localizes in the form of inclined parallel
plans symmetrical with respect to the horizontal plane crossing the gallery at the middle
and having V-shaped paths pointing to the origin of the macro-fracture. These V-shaped
markings are called "chevrons".

Through this first simulation our purpose is to numerically reproduce this behavior.
We consider a structure already excavated with the length L = 40 m and width l = 21
m (figure 7.19), where the gallery has a diameter of 1 m. We consider a non-structured
mesh that is more refined around the front of the gallery, with 1129 4-nodes quadrilateral
elements and 4 Gauss points used for computations (figure 7.20).

In our first attempt, to this geometry we apply displacement boundary conditions:

• displacements on exterior boundaries in order to solicit the structure in vertical
compression and to block displacements in the horizontal direction.
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b) ½ geometry coarse mesh = 1129 elements (total) & 144 elements (middle)

a) full geometry coarse mesh = 1869 elements (total) & 288 elements (middle)

Figure 7.20: Meshes used in simulations: full geometry (top) and 1
2
geometry (bottom).

• to simulate the support of the gallery, the displacements of interior boundaries of
the excavation are blocked in both directions.

It is necessary to be mentioned that this is not the usual procedure. More realistic
procedure, as, for instance, release of stress BC at the cavity boundaries, can be found
for instance in [23].
The parameters taken into account in the simulation are the following:

• Parameters for the Charles law: K0 = 4.47e5Pa m
1
2 , v0 = 1e− 3 m/s, n = 2.

• Elastic parameters: Young modulus = 2 GPa, Poisson ratio ν = 0.3.

• Loading velocity: 1e-7 m/s.

7.3.2 Simulation of a tunnel gallery using rotational micro-cracks time de-
pendent damage model

In this part we show the results of the simulation using an enriched damage model which
takes into account micro-structural informations as well as the micro-cracks orientations
or different behavior in tensile/compressive conditions (see section 6.5).
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Figure 7.21 represents the distribution of the damage variable d corresponding to the
same time step, on the full geometry (a) and on the half-geometry (b). In consequence
simulations can be carried out more efficiently using the half-geometry without any loss
of information or bias. In this example, micro-cracks initially were horizontal and their
normalized length was 0.05. We see damage is more concentrated on the gallery ends and
the appearance of orientated damaged zones. The obtained solution resembles the in-situ
observations (see for instance the work of Bernier et. al ([14], [15])) and thus seems to be
appropriate for simulating the real case.

  

a) Damage map for full geometry (coarse mesh) 

b) Damage map for ½ geometry (coarse mesh) 

Figure 7.21: Damage distribution over the full geometry (a) and comparison with half-
geometry (b).

In the following, a comparison between results obtained starting from different ini-
tial micro-cracks orientations or lengths will be presented to investigate how this might
influence the final damage distribution.

Influence of the initial orientation of micro-cracks on the size and shape of
the damaged zone

The behavior of a micro-crack under a given load depends on its initial length and
orientation. In the following, a study of this influence will be done. Four families of micro-
cracks with different inclinations with respect to abscissa of the micro-scopic coordinate
system: (0◦,15◦,30◦, 45◦) were considered. (Figure 7.22). The influence of these four
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families of micro-cracks is studied in the particular problem of the gallery excavation. The
simulation parameters are the same as above, plus internal length of the micro-structure
ε = 1e-4 m.

Figure 7.22: Family of micro-cracks into the specimen: from left to right 0◦,15◦,30◦,45◦.

Figure 7.23 presents damage localization from the numerical tests run with the different
initial orientations for the micro-cracks. For a full understanding of the results, the
discussion must be done simultaneously with Figure 7.24. Four time steps have been
selected to show the appearance and propagation of the damaged zone. Here we focus
on the central part of the geometry (≈ 25 % of the full figure). The damage localization
phenomena are clear, but, an interesting results is that the orientation of the damaged
zone is dictated by the initial orientation of the micro-cracks. In the bottom part of
Figure 7.24 the approximate angle of each damage localization zone is indicated. It is
obvious that there is a strong dependence on the initial orientation of micro-cracks. If
at the beginning of the test we consider a family of micro-cracks oriented at 45◦, the
most damaged elements are in an inclined zone which makes an angle of 130◦ with the
abscissa of the macro-scopic coordinates system. Meanwhile, the decrease in the initial
micro-crack orientation induces a decrease in the angle of the damaged zone.

Another important aspect presented by the two figures is that the increase of the
initial micro-crack orientation induces also the activation of damage propagation outside
the localized damage zone. For θ0 = 0◦ and θ0 = 15◦ the localization phenomena is very
strong (left half of both figures), but, for θ0 = 0◦ we observe another important damage
zone in front of the tunnel, which increases more slowly than the main one.

Compared to the extremely localized damage (and orientation) observed for low ini-
tial micro-crack orientations, simulations with θ0 = 30◦ and 45◦ show a decrease in the
localization mechanism at the same time as the activation of the damage propagation
outside the damaged zone. This complex aspect is fully explained in Figure 7.24 by the
range of values of the actual configuration of micro-crack orientations, which shows that
the damage mechanism has two distinct phases:

• first the rotation of each micro-crack is more important than the damage propaga-
tion;

• the second phase, involves an increase in the propagation at the same time as a slow
rotation.
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Distribution of the family of micro-cracks – evolution in time; d0 = 0.05

45°30°15°0°

115° 125° 135°130°

Ɵ0 = 0° Ɵ0 = 15° Ɵ0 = 30° Ɵ0 = 45°

Distribution of the family of micro-cracks – evolution in time; d0 = 0.05Damage evolution map

t = 5593 s

t = 5753 s

t = 5889 s

t = 6009 st = 6167 s

t = 6004 s

t = 5806 s

t = 5545 st = 5875 s

t = 6033 s

t = 6157 s

t = 6348 st = 8526 s

t = 7983 s

t = 7629 s

t = 7116 s

Figure 7.23: Damage evolution map for several tests. Influence of the initial orientation
of a family of micro-cracks.

The value θ reached in the localization mechanism depends on the initial orientation
and, as will be shown later, also on the initial length of micro-cracks. For the family
of horizontal micro-cracks, θ is situated in a range of [0◦ , 38.5◦], but for the family of
inclined micro-cracks this range decreases 5◦ [45◦ , 51◦] (right part of Figure 7.24).

Figure 7.25 shows the evolution of the maximum shear strain in time. The same time
steps were taken into account as for the evolution of d and θ. All sets of maps show
that the localization of the deformation process occurs. The high values of the shear
strain inside the localized damage zone indicates that, even even if we have just mode I
micro-cracking at the small scale, the model produces a shear-localisation phenomenon.

Figure 7.26 shows the pertinence of the numerically obtained results with respect to
those obtained in real laboratory tests. One tomographic image of a horizontal CT slice
extracted from the 3D images of a specimen is presented (all the details of the experiment
are found in [99]). Two open cracks can be seen on the specimen edges. The interesting
part from this image is that if we zoom the bottom part of the specimen, the macro-crack
found there is formed not from continuous micro-cracks coalescing, but from families of
"en-echelon cracks", which are defined as offset, parallel micro-cracks oriented obliquely
to the band that they form as an ensemble.

In Figure 7.27 results from the numerical simulation of a gallery excavation, at an
advanced time step (last step presented in Figure 7.23, where initial micro-cracks were
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Distribution of the family of micro-cracks – evolution in time; d0 = 0.05
45°30°15°

115° 125° 135°130°

45°30°15°0°Ɵ0 = 0° Ɵ0 = 15° Ɵ0 = 30° Ɵ0 = 45°

114°110° 122° 130°
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t = 6157 s

t = 6348 s t = 6167 s

t = 6004 s

t = 5806 s

t = 5545 s t = 5593 s

t = 5753 s

t = 5889 s

t = 6009 s

Figure 7.24: Orientation of the micro-cracks evolution map for several tests. Influence of
the initial orientation of a family of micro-cracks

horizontal of normalized length d = 0.05), is presented. The obtained damaged zone
has an angle of 110◦, but the families which compose the damaged zone (shown in white
rectangles) contain micro-cracks at approximately 37◦.

Comparison of the damage evolution inside and outside the localization
zone

Figure 7.28 presents the evolution of the normalized damage parameter d∗ as well as
the orientation parameter θ for a series of five elements far from the gallery to focus on the
localization mechanism, three of them from within the localized damaged zone, the fourth
exactly at the border and the fifth outside. In figure 7.28 (a) the damage distribution is
considered and in (b) with black dots the five elements are localized. Figure 7.28 presents
the evolution of the damage parameter (c) and the orientation parameter (d). Up to about
6000 s represents the pre-localization stage: damage in all elements is slowly increasing
and the rotation of micro-cracks is almost inexistent. Between 6000 s and 8000 s, the
micro-cracks rapidly change orientations which directly implies a rapid increase in the
propagation of the damage until the maximum value is obtained. It is obviously that
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Maximum shear strain evolution map
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Figure 7.25: Evolution maps for shear strain for the four initial orientation of micro-cracks

Figure 7.26: Examples of macro-cracks from experiments ([99]).

at the beginning of the localization mechanism, only two elements were a part of this
zone (977 and 985). Later, (between 8000 s and 9000 s) the size of the zone increased
with loading including also element 993. Normalized damage variable increased up to the
maximum value (d∗ = 1) and micro-cracks final orientation angle is about 37◦. Elements
932 and 1001, which lie outside the localization zone, did not change much, although there
is a slight change in orientation for the element from the border.

Influence of the initial length of micro-cracks, for a fixed orientation, on
the size and shape of the damaged zone
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Figure 7.27: Examples of macro-cracks from numerical test. One macro-crack is formed
of series of micro-cracks.

  

110°

Elements:
932, 977, 985, 993, 1001

1001 932

993 985 977

a)

b) d)

c)

Figure 7.28: Evolution of the orientation inside the localized damaged zone: a) damage
distribution at an advanced time step; b) identification of the elements - with red, damage
localization zone and with black dots, the five elements considered; c) and d) micro-cracks
evolution in time - normalized length and rotation angle.

In the following, the influence of the initial damage parameter is presented in Figure
7.29. The orientation of the damaged zone decreases with the increase of the initial
length of the micro-cracks. This aspect can be fully explained by comparison between the
maximum angle of the micro-cracks inside the localized damaged zone. For d0 = 0.05 we
reach θdamagedzone = 38.6◦, but for d0 = 0.1 the rotational angle cannot pass θDamageZone =
28.8◦, as well as for d0 = 0.3 where θDamageZone = 14.2◦. By increasing the initial length
of the micro-cracks, the model is too constrained and we reduce the time during which
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Damage evolution startign from different initial crack length: initial orientation 0°

d0 = 0.3d0 = 0.05 d0 = 0.1

115°110° 105° 97°

Change of the orientation of the micro-cracks: initial orientation 0°

d0 = 0.3d0 = 0.05 d0 = 0.1

115°110° 105° 97°

Figure 7.29: Change of the orientation of the micro-cracks: dependence of the initial
damage

the cracks can rotate. Therefore the micro-cracks develop without reaching the maximum
rotation and, since there is a direct connection between the angle of the damaged zone and
the angle of the micro-cracks inside (as previously presented with the help of Figures 7.23
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and 7.24), the direction of the damaged zone is also influenced. In conclusion, in order
not to influence the response of the simulation, small initial micro-cracks are needed.
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7.3.3 Summary

In this section a simple 2D simulation of a tunnel excavation whose final destination is
radioactive waste disposal was presented. The first objective was to present the ability
of the model to simulate real-scale problems and phenomena The second objective was
to study the influence of length and orientation of the initial distribution of micro-cracks
on the localization zone. Simulation was carried out with the time dependent including
rotating micro-cracks damage model and the following conclusions can be presented:

• orientation of the damaged zone is dictated by the initial orientation of micro-crack
distribution - smaller values of θ0 leads to small angle of the damaged zone and by
initial micro-cracks length - smaller d∗0 implies bigger angle of the orientation;

• final orientation of micro-cracks included in the damaged zone is first influenced by
the initial orientation of micro-cracks and, second, for a fixed initial orientation of
the distribution, is influenced by the initial length of the distribution.

Simulations with the time-dependent rotating micro-crack model provides localization
sructures that reflect in-situ observations around excavated tunnels. To demonstrate the
need for the rotating microcracks to simulate real examples such as this, simulations
were also caried out using a simplified damage model where the damage evolution law is
deduced, through the homogenization by asymptotic developments technique, but with
the homogenized coefficients replaced by a linear model of normalized damage variable
d∗. In this case anisotropy is not considered and the information of the microstructure
is lost. Moreover it does not make the difference between the opening/closing states of
micro-cracks.

The results from one such simulation are presented in Figure 7.30 with the evolution
of the normalized damage variable d∗ and corresponding vertical strain during the loading
for different time steps. We observe that, for a smaller time step (t = 2105 s), damage
and strain are concentrated around the gallery front. Meanwhile, during the loading,
the damage evolves along the tunnel. No oriented band which can be interpreted as
"chevron"-type fracture occurs. This suggests that such a simple model can not be used
to simulate the real situation. Therefore a modelling approach that can account for crack
orientation and rotation is needed. Moreover distiction between the state of the crack
(opened or closed) is obligatory.
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Damage evolution map Vertical strain evolution map

Figure 7.30: Evolution of the normalized damage variable d∗ (left) and corresponding
vertical strain (right) during the loading process.
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7.4 Simulations of an overburden surrounding a subsurface geo-
logic reservoir

7.4.1 Background

The probably best-known example of rock mechanical effects on reservoir scale behavior
is reservoir compaction and associated surface subsidence. This phenomenon can have
consequences on production of fluids (e.g., hydrocarbons or water) or injection of CO2 for
storage, by changing permeabilities in a reservoir or by damaging the overburden with
possible leakage from the reservoir or causing issues for well-bore stability.

When oil or gas is produced from a subsurface reservoir, fluid pressure will generally
decline. Reduced pore pressure in the reservoir rock will increase the effective stress and
thereby cause the rock itself to shrink, and thus the reservoir will compact. Reservoir
compaction may then in turn cause subsidence at the surface as sketched in Figure 7.31.

Figure 7.31: Compaction and subsidence (image from [55])

In a similar way, injection of CO2 into a subsurfae geologic reservoir can increase pore
pressure and so cause expansion that might damage the overburden seal. Since often CO2

is injected into depleted hydrocarbon reservoirs the process of production, and associated
damage, can have implications for subsequent CO2 injection.

7.4.2 Modeling

In the following, we will present the results of a first simulation at the scale of an oil
reservoir using time dependent damage model with rotational micro-cracks. The aim is to
model the deformation and damage evolution in the overburden of a subsurface reservoir
associated with fluid injection or extraction. In addition we wish to model the evolution
in seismic properties and micro-seismic emissions associated with the deformation that
might be indicators of damage processes measurable through geophysical techniques.

Figure 7.32 shows the overburden geometry and boundary conditions as well as the
mesh and an overview of the parameters used in a simulation of the oil production that
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Material parameters
E = 2e9 Pa
 ν = 0.3 

Model 
parameters
UL = 1 m
Ɛ = 1e-4 mm
d0 = 0.1
Ɵ0 = 90°

Charle's law 
parameters:
n = 2
v0 = 3e-4 m/s
K0=2.5e5 Pa*m½

Figure 7.32: Geometry and boundary conditions of an overburden surrounding a subsur-
face geologic reservoir

might preceed CO2 injection. We considered the overburden represented by a rectangle of
1 km long and 200 m width. Those measurements are realistic and they were taken with
respect to the observation from [92] in the case of Valhall oil field in the North Sea. In
the Valhall case, data indicates that most of the deformation occurs close to the reservoir
within the first 100-200 m TVD (acronym for "true vertical depth" in the oil and gas
domain) of the top of the reservoir.

Boundary conditions imposed are the following:

• A fixed corner has been considered in order to avoid the rigid body movements
(right bottom corner);

• On a length of 300 m at the base of the model, representing the top of the (non-
producing part of the) reservoir, the displacement is blocked in the vertical direction;

• Displacement is blocked in the horizontal direction for both lateral sides;

• A displacement of 1 m is imposed on the rest of 700 meters of the bottom bound-
ary; imposed displacement is used in order to simulate depletion of the underlying
reservoir.

As in the previous simulations, the parameters taken into account in the simulation
are the following:

• Parameters for the Charles law: K0 = 2.5e5Pa m
1
2 , v0 = 3e− 4 m/s, n = 2.
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• Elastic parameters: Young modulus E = 2 GPa, Poisson ratio ν = 0.3.

In the simulation, a locally periodical distribution of vertical micro-cracks (θ0 = 90◦)
of initial normalized length 0.1 is considered. Due to the nature of sub-surfaces stress
generally being most compressional in the vertical direction, any existing open cracks are
likely to be vertical.

7.4.3 Results - damage evolution

Figure 7.33 shows the first stress invariant (its values are the same regardless of the
orientation of the coordinate system chosen) obtained from the simulation. Its formula is
given by:

Σinvariant = Σx + Σy, (123)

where Σx and Σy represents stresses in horizontal and vertical direction.
With black dots, 4 different time steps are denoted, t1 being the time close to the

peak and t4 at the end of our simulation. These will be analysed in more details in the
following.

Figure 7.33: Global volumetric stress vs time curve obtained during the loading.

Figure 7.34 represents the damage evolution maps at four time steps.
It can be seen that damage initiates and propagates in the zone around the transition

from fixed to free elements on the lower edge where the stress concentration is the highest.
The zoomed images show that most damaged zone is exactly at the level of the bottom
boundary and, then, is decreasing progressively with the advancement at the interior. It
is very clear that in the majority of the overburden the micro-cracks did not evolved too
much, neither in terms of length, nor in term of changing orientations, as it can be seen
in the bottom part of Figure 7.34. Green color represents an orientation of 90◦ which
coincides with the initial orientation of micro-cracks distribution and the changes are
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insignificant elsewhere except the damaged zone. In this zone (100 m × 100 m) blue color
represents micro-cracks which turned clock-wise for about 50◦ degrees and increased their
normalized length from the initial one of 0.1 to ≈ 0.85.

 

t1 = 200000 s

t2 = 241859 s

t3 = 253081 s

t4 = 263039 s

 

t1 = 200000 s

t2 = 241859 s

t3 = 253081 s

t4 = 263039 s

Figure 7.34: Length and orientation evolution maps of micro-cracks during the loading
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In Figure 7.35 the evolution of six micro-cracks is followed. Among the chosen cracks,
those corresponding to elements 21 and 61 had the bigges change in rotational angle with
respect to x-axis. The reason is given by their localization right in the center of the most
solicited zone in the entire geometry. On the right part, elements 23 and 63 were chosen
from the zone where we have the influence of blocking vertical direction displacement and,
on the left part, the set of elements, 19 and 59, from the "flexible" part of the overburden.
It can be observed that the first mentioned set of micro-cracks (from the moving part of
the overburden) are the least affected in both length and orientation changes. It can be
seen that they turned anti-clock wise at about 12 degrees, but their length increase very
little. On the "more fixed" part, the crack turned in the same way, but both length and
orientation were more pronounced. With a blue thin line we followed the trajectory of
each crack during the loading process. In the most solicited part, very clear wing-type
cracks formed. Half of the evolution process is dedicated to the rotation of the cracks.
In the end, the rotation is slowed, the orientation angle θ tends to a stable value and the
crack propagates in that direction.

 

45 m

30 m

30 m

45 m

..

..

Figure 7.35: Evolution of micro-crack orientation for six elements in the neighborhood of
the damaged zone

Figure 7.36 show on the one hand that the volumetric and maximum shear strain
zones coincide with the damaged paths, but, the more important is that the cracking
mechanism is identified. It is clear from the maps of maximum shear zone that shear
strain localisation mechanisms occurs, but the micro-cracking remains mode I (details will
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be given with respect to Figure 7.37). Strain values are given accordingly to continuum
mechanics convention, so negative values found in the representation of volumetric strain
corresponds to a more deformed zone due to damage evolution.

 

Strain evolution maps: left – volumetric strain & right – maximum shear strain

t1 = 200000 s

t3 = 241859 s

t5 = 253081 s

t8 = 263039 s

Figure 7.36: Volumetric strain (left) and maximum shear strain (right) evolutions maps.

Our time dependent damage model including rotating micro-cracks are able to dis-
tinguish between closed and opened cracks. Figure 7.37 clearly show the evolution of
cracks states under the loading. Two zones are identified: a zone of closing cracks (light
yellow) and one where cracks opens with the loading (light cyan). At the beginning of the
simulations all micro-cracks were considered opened, but during the deformation of the
overburden under the imposed displacement, on the left part, far from the most stressed
zone, the cracks start to close and the consequence was a decrease in the damage prop-
agation increments as well as a stabilization of the orientation. On the contrary, on the
stressed zone, propagation and rotation of the cracks was accelerated and the opening
mechanism start to be more and more visible. In the future, in order to have a better
characterization of the geomechanical properties of the overburden, we should take into
account partially closed cracks.
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Evolution of cracks: opening and closing stages
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Figure 7.37: Evolution of the state of the cracks distribution: a zone of closing cracks
(light yellow) and one where cracks opens with the loading (light cyan). With red, opened
cracks are represented, meanwhile the white color describes closed micro-cracks. In the
area which is neither blue nor yellow, micro-crack state do not change (opened cracks stay
open, and closed ones stay closed).
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7.4.4 Results - seismic property evolution and micro-seismic prediction

Seismic velocity changes and anisotropy evolution due to damage

Damage is one of the causes of changes in seismic properties around producing hydro-
carbon reservoirs (including aspects of seismic anisotropy and time shifts) and of micro-
seismic emissions, therefore exploitation of both is of significant interest in monitoring
reservoir behavior during production of hydrocarbons or sequestration of CO2. The model
proposed in this thesis is capable of modeling the degradation of elastic moduli due to
the micro-crack evolution and an explicit quantification of the acoustic emission energy
associated with damage therefore our model has the potential to make a bridge between
monitoring and modeling.

Orientations of the micro-cracks induce anisotropy such that the physical properties
of the featured medium vary with the direction in which they are measured. Seismic
anisotropy is, therefore, the variation in seismic velocity with direction. A major ad-
vantage of characterizing seismic anisotropy is its link to production processes in the
oil domain since preferential orientation of the micro-cracks distributions can produce
anisotropy in rock permeability.

In the case of an homogeneous elastic isotropic material, propagation velocities of
waves are constant and depend on material characteristics. In reality most sedimentary
rocks are anisotropic (the rock stiffness is directional dependent). As mentioned before,
the orientation of micro-cracks induces an effective elastic anisotropy in a medium so
the elastic properties at a point vary with direction. Therefore wave propagation will be
slower perpendicular to the fracturing than parallel.

A general description of seismic wave propagation velocities in anisotropic media can be
provided by our model. However, for simplicity, just the anisotropy of the P-waves will be
considered based on the difference of velocities of vertically and horizontally propagating
overly sample P-waves:

vPh =

(
C11

ρ

) 1
2

, vPv =

(
C22

ρ

) 1
2

, (124)

where Cij is the elastic tensor for an anisotropic medium using Voigt notation (C11

reprezenting horizontal homogenized coefficient and C22 being the vertical one) and ρ
is the density of the medium.

Thomsen ([140]) simplified the description of anisotropy considering transversely isotropic
rocks with weak anisotropy. His description is relevant for oilfield rocks and the data avail-
able in field situations, and has become widely applied. Thomsen introduced a new set of
parameters: εTh, γTh and δTh. εTh can be interpreted as the P-wave anisotropy and γTh
as the S-wave anisotropy. In the 2D case only εTh make sense and its modified formula
reduces to:

ε2D
Th =

C22 − C11

2C11

(125)

Figure 7.38 shows normalized P-wave velocity evolution for the overburden model.
We denoted by vPh0 and vPv0 horizontal and vertical P-wave velocity at the beginning
of simulation. Our case of vertical micro-cracks confirm this since velocity of horizontal
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P-wave (i.e. perpendicular to micro-cracks) increases up to a value bigger than in the
case of vertical P-wave. Dark blue represents the lowest value of the velocities and it
corresponds to areas of closed micro-cracks. The propagation of these cracks is quasi-
inexistent, therefore little variation in the velocity is seen. Lighter blue represents the
areas with opened cracks which are still evolving with time. Naturally, it is more visible
for horizontal P-wave and the magnitude of changes is about 10 %. As expected, the
highest values of the normalized P-wave velocities are in the damaged zone (changes of
about 50 %).

Bottom part of Figure 7.38 shows the velocities of P-waves for six elements: 21 and 61
located in the heart of the damaged zone, elements 23 and 63 on the right part, from the
zone where we have the influence of the bottom boundary condition of blocking vertical
direction displacement and 19 and 59 from the "moving" part of the overburden. Blue
corresponds to horizontal P-wave velocity and, red, to vertical P-wave velocity. The most
solicited part of the model shows the biggest increase in normalized P-wave velocities.
In this region the two curves tend to the same values since the micro-cracks orientation
changed from 90◦ to 45◦ orientation which acts as a symmetry center for the two P-waves.
Elements 23 and 63 shows a less important increase in P-wave velocities. Again, elements
from the flexible part of the overburden show the least important activity (as in the
previous cases where evolution of damage and orientation was presented).

Figure 7.39 show the evolution of the P-wave anisotropy. It can be seen that the most
significant variations are localized around the most damaged area and away from this the
anisotropy variations are quite small. In the bottom of the figure, the same particular
discussion on six elements is presented. Minima or maxima of the anisotropy evolution
correspond to the peak in the stress curve. It is clear that the most important evolution
is found in the most damaged elements (21 and 61). Therefore, whilst our model allows
the prediction of seismic anisotropy that may be compared to data measurements, but, in
this specific case, it is not expected that seismic anisotropy measurements would help to
detect the deformation. At least not if just comparing vertical and horizontal velocities -
one would have to perhaps analyse the full anisotropy of the system and find the principal
directions of the anisotropy and thus the maximum differences.

Acoustic emissions

In our simulation we can make an assumption that micro-seismic emissions are related
to the fracture energy, which is defined by:

Gf =
K∗I

2 +K∗II
2

E ′
(126)

where K∗I and K∗II are the stress intensity factors at the branches tips and depends on the
crack orientation and length. Using this definition, for any time step we can determine
the locations and magnitude of micro-seismic emissions or calculate cumulative events
over the duration of a simulation, either locally in the model or globally.

Figure 7.40 shows the global micro-seismic emmision energy for all the time steps in
the overburden simulation. A double-scale graph first stress invariant and acoustic events
is presented which highlights that the maximum microseismic activity coincides with the
peak of the volumetric stress. The five fracture energy evolution maps from the bottom of
the figure indicate that this activity is mostly concentrated around the hinge zone at the
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Seismic waves normalized velocity maps: left – horizontal Pwave & right – vertical Pwave 
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Figure 7.38: Normalized P-waves velocity: horizontal and vertical normalized velocity
maps for four time steps (top); evolution of horizontal and vertical normalized velocity
for six elements in the neighborhood of the damaged zone (bottom).

transition from fixed to free elements at the bottom of the model. Emissions elsewhere
are of insignificant ampitude.
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Weak anisotropy maps
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Figure 7.39: Weak Anisotropy of P-waves: (top) Anisotropy maps at four time steps. The
most active evolution is in correspondence to the crack opening zone from Figure 7.37;
(bottom) Evolution of the anisotropy for six elements in the vicinity of the damage zone
- depends on the crack changes in length and orientation.
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Fracture energy maps
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Figure 7.40: Monitoring of Acoustic Emission events: (top) We describe an event as the
sum of overall damage increments from one time steps to another. It can be seen that
the maximum AE event is right immediately the peak values of the first stress invariant
(red curve); (bottom) Fracture energy maps in correlation with the AE events: the third
representation in the middle of the image prove that the maximum energy release due to
fracture also occurs after peak.
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7.4.5 Summary

The aim of this section was at presenting results of a first simulation at the scale of an oil
reservoir using time dependent damage model with rotating micro-cracks. Several points
were followed. First, damage evolution (damage, orientation, deformation, micro-cracks
opening/closing state) in the overburden of a subsurface reservoir associated with fluid
injection or extraction was presented.

A locally periodic distribution of vertical micro-cracks of normalized length 0.1 has
been considered at the beginning of the simulation. It was shown that damage initiates
and propagates in the zone around the transition from fixed to free elements on the lower
edge where the stress concentration is the highest. In the major part of the overburden
the micro-cracks did not evolved too much, neither in terms of length, nor in term of
changing orientations. In the damage localization zone micro-cracks turned clock-wise for
about 50◦ degrees and increased their normalized length from the initial one to ≈ 0.85.

Evolution of the state of the distribution of micro-cracks was also presented. Three
major zones have been identified: a zone of closing cracks, a zone of opening of the
previously closed crack and a zone where no change occurs in the micro-crack state.

In the second part, evolution in seismic properties and micro-seismic emissions associ-
ated with damage was modeled. Our results indicate that predicted changes in velocities
are easily detectable compared to the anisotropy changes, which exists, but are less evi-
dent.

This simulation represents just an attempt to model real-scale simulations, but it
was clear that our model is able to output the degradation of elastic properties and the
development of elastic anisotropy. Furthermore, since the evolution of the micro-crack
damage is based on an energy dissipation approach such that the energy release with
damage evolution, acoustic emission energy of micro-seismic events can also be modeled.
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8 Conclusions and perspectives

8.1 General conclusions

The key phrase of the Introduction is: Links are required between the geophysical moni-
toring techniques and the geomechanical simulations! Indeed, to assure the success of a
project development, no matter if in civil engineering domain (tunnels, foundations . . . ),
in geological storage of radioactive waste or CO2 or oil production field, two aspects are
equally important:

• modeling of inelasticity and failure in geomaterials;

• monitoring of the actual process in play.

This thesis project was concentrated on the development of modeling of damage evo-
lution and its links to monitoring techniques involving elastic waves. This integration of
geophysics and geomechanics approaches targeted two key researches:

• microscopic and macroscopic processes governing rock behavior and the evolution
of the constitutive properties;

• the connection between "geomechanical" and "geophysical" properties of rocks and
associated phenomena plus their modeling.

The objective of this thesis was the development of macroscopic damage evolution laws
based only on an explicit description of the micro-scale level which can be successfully
employed to describe long term damage behavior of storage places. Homogenization
(change-of-scale procedure) was the key aspect of the considered approach. Asymptotic
developments of displacement and stress fields combined with micro-crack propagation
energy analysis were considered.

A summary was given at the end of each chapter in order to underline the most
significant results, therefore in this part the main contributions to the chosen topic brought
by this thesis are described:

• Chapter 4 - represent a short review of the multi-scale damage modeling method.
The starting basis to attain the objective of this thesis are the results given in [17]
(only straight micro-cracks with four possible orientations were considered and only
brittle type damage model was developed).

• Chapter 5 - was dedicated to the first extensions made in the framework of time in-
dependent damage models. First, microscopic level was enriched by the description
of wing type micro-cracking mechanism. A damage evolution law for micro-cracks
emerging from pores was also given. In both cases, brittle type damage law was used
to characterize macroscopic behavior. However, since experimental observations in-
dicate that rocks show a more gradual fracture behavior, quasi-brittle type-damage
models were implemented, at the beginning in 2D and then extended at the 3D case.
Notions such "Fracture Process Zone", "R-curve", "instability of the crack propa-
gation", "snap-back behavior" appeared for the first time. Difficulties at the global
level were encountered, therefore, a new class of damage models was conceived.
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• Chapter 6 - quintessence of this thesis, was dedicated to time-dependent damage
laws. It was one way of solving the snap-back problem we encountered using time
independent damage models and to enlarge the field of applications of the model
to time-dependent effects. Based on Charles’ law propagation criterion, three mod-
els have been developed. Implementation process went from simple to complex
modeling situations. At the beginning, linear coefficients have been used. The
damage model which resulted was mostly for theoretical purposes (verification of
the correctness of the implementation, for instance). The disadvantage was that
the information from the micro-structure was partially lost and intrinsic anisotropy
completely absent. Therefore, a second model, less constraining, was needed. A
fixed direction for the micro-cracks propagation criterion was considered. Homoge-
nized coefficients previously computed in the frame of the up-scaling procedure were
used instead of linear coefficients and intrinsic anisotropy due to preference of the
orientation was naturally captured.

We did not forget that the aim of the thesis is to simulate real processes, therefore
propagation in a fixed direction was not enough. It was the time for a criterion
regarding crack propagation direction to be introduced. Propagation and trajectory
of micro-cracks were controlled by the stress intensity factors, so, before introduc-
ing the damage law, a short section is dedicated to KI,II . From energy-based we
passed to stress intensity factors based damage models. Moreover kinked crack were
considered, but since the homogenization techniques was developed in the case of
straight micro-cracks, after each time step, the obtained kinked crack was replaced
with a straight one following specific rules.

• Chapter 7 - Time depending damage model including kinked micro-cracks simula-
tions were made at three levels: laboratory, tunnel and reservoir scales. Different
aspects of this modeling were underlined at each level. At the laboratory scale, a
specific two notched geometry loaded in a uniaxial compression was given in the first
part of the Chapter in order to give a "qualitative calibration" (test results being
compared, from qualitative and not quantitative point of view, to the ones exper-
imentally obtained in [113]. Then, a simple simulation of a tunnel excavation was
made, influence of the initial micro-cracks orientation on fracture zones orientations
being discussed. At the reservoir scale, oil production/CO2 injection process was
represented through the simulation of an overburden surrounding a reservoir under
displacement imposed conditions, the specificity of this numerical application being
given by the modeling of micro-sismic events.

Our objective was attended: a two-scale damage model where the macroscopic behav-
ior is totally described by the micro-scopic analysis (macroscopic time dependent damage
law is fully deduced on the base of homogenized coefficients and stress intensity factors
computed at the microscopic level) and which consider all the possibilities considering
micro-cracks evolving both in length and in orientation (between [0◦, 180◦]) the conse-
quence being the possibility of modeling micro-sismic events so linking "geophysics" and
"geomechanics".
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8.2 Perspectives

The thesis objective was to establish links between "geomechanics" and "geophysics" and
it was attended. Developed damage models were able to describe degradation of elastic
properties and the development of elastic anisotropy. Furthermore, acoustic emission
energy of micro-seismic events can be considered since it is linked with the energy release
with damage evolution and the evolution of the micro-crack damage is based on an energy
dissipation approach.

But it was only a starting point. Future work is necessary to assess the accuracy of
the modeling. Several directions can be considered:

• At the level of the unit cell, several improuvments can be done: consideration of
other types of micro-cracks (por-type, curvilinear micro- cracks . . . ), integration
of frictional compressive conditions for the type of micro-cracks already discussed
(straight, wing-type, kinked micro-cracks), inclusion of fluid effects . . . .

• Considering the crack propagation, the time independent damage models can be
improved. It is true that we encountered difficulties for the quasi-brittle type damage
models, but, there are possible solutions to be investigated without chosing a new
class of damage models (for instance other formulations for resistence curves should
be considered, in order to start from a certain minimum threshold and not from
zero as used).

• The 3D case it was just begun. Only one crack orientation was discussed. All
the topics for the two 2D case discussed in this thesis should be implemented in
3D (opening/closing conditions, energy-based and/or stress intensity factors based
crack propagation criterion . . . ).

• Implementation of the dynamics equations and damage evolution and comparison
with quasi-static results.

• Further investigation in the compressive case of the kinking crack damage model
should be done. We observed that the crack turns too fast the consequence being
incapability of micro-cracks to propagate to failure. One solution was given, but
the problem needs to be further investigated.

• Application of approach to model experimental results. For that, developments of
effects of fluid pressure and saturation variations (including effects of gas replacing
liquid) are necessary.

• Addition of intrinsic anisotropy (in matrix elastic properties and damage evolution
parameters). The model is able to have a fully anisotropic background medium,
thus in the future, intrinsic anisotropy (due, for example, to crystal alignments) can
be considered.

• Modeling of medium containing fracture and sliding faults. The investigation of
models of production/injection in order to assess the associated issues should con-
tinue, either using simple models like those already presented, as well as more elab-
orate models such as a fluid pressurised fault propagating into the overburden.
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Moreover, partially closed cracks should be taken into account. Last but not least,
modeling of a reservoir rock, not only the seal rupture, and linking to monitoring
data is necessary.
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9 Résumé français / French Summary

9.1 Introduction générale

L’objectif de cette thèse est de développer des lois d’évolution macroscopiques d’endom-
magement à partir des descriptions explicites de la rupture à l’échelle microscopique en
vue de la modélisation du comportement des roches.

L’approche adoptée est basée sur l’homogénéisation par développements asympto-
tiques et sur la description énergétique de la propagation des microfissures, qui perme-
ttent l’obtention des lois d’endommagement et conduisent à une quantification explicite
de l’énergie dissipée lors de la micro-fissuration. Les modèles obtenus sont capables de
prédire la dégradation des modules d’élasticité en raison de l’évolution des microfissures.
Cette représentation permet de modéliser la propagation des ondes dans un milieu à
endommagement évolutif.

Deux types de modèles d’endommagement seront proposés: indépendants de temps
et dépendants de temps. Les modèles indépendants de temps décrivent l’évolution pro-
gressive quasi-fragile de la micro-fissuration. Dans les modèles dépendants de temps,
l’évolution des microfissures est décrite à travers un critère sous-critique et la propagation
mixte, par branchement. En utilisant le modèle dépendant de temps, des simulations
seront faites à trois niveaux: du laboratoire, du tunnel et du réservoir.

La structure de la thèse est la suivante:

• Chapitre 4 - présente le cadre de la modélisation double-échelle ainsi que les développe-
ments précedents.

• Chapitre 5 - est dédié aux développements concernant les modèles indépendants
de temps. Nous introduisons d’abord le modèle d’endommagement pour les mi-
crofissures branchées (de type "wing"), ensuite nous décrivons les microfissures se
propagéant à partir des micro-pores, et, finalement nous développons des modèles
d’endommagement quasi-fragiles en 2D et 3D.

• Chapitre 6 - introduit les modèles d’endommagement dépendant du temps. Trois
modèles basés sur une loi de propagation de type Charles sont développés. Dans un
premièr temps nous allons modéliser la propagation des microfissures en utilisant
des coefficients linéairs. Ensuite, nous allons considérer que les microfissures se
propagent dans une direction fixe a priori définie. Dans le cadre de ce modèle, des
coefficients homogénéisés seront utilisés. Le troisième modèle prend en compte non
seulement la vitesse de propagation des microfissures, mais aussi la direction de
la propagation. La propagation des microfissures et la trajectoire seront controlés
par les facteurs d’intensité des contraintes (SIF). Des microfissures branchées seront
considérées.

• Chapitre 7 est dédié aux simulations sur trois niveaux (laboratoire, gallerie soutér-
raine et réservoir) en utilisant le modèle d’endommagement avec des microfissures
branchées. La spécificité du test simulé à l’échelle du réservoir est la modélisation
des événements micro-sismiques et des changements dans les propriétes sismiques
en incluant aussi l’anisotropie.
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La thèse finit avec une section dédiée aux conclusions et aux perspectives.

9.2 Cadre de modélisation double-échelle

Dascalu et collaborateurs ([36], [37], [38], [39], [17], [56]) ont proposé une nouvelle procé-
dure pour obtenir des modèles micro-mécaniques d’endommagement en utilisant le change-
ment d’échelle - une combination entre l’homogénéisation périodique basée sur des développe-
ments asymptotiques (e.g., Bakhvalov et Panasenko ([7])) et l’analyse de l’énergie due à
la micro-fissuration. Les lois d’évolution d’endommagement sont complètement déduites
par l’homogénéisation à partir d’une description énergétique sur une cellule de périodic-
ité de taille finie, sans utiliser aucune hypothèse phenomenologique. Dans les équations
macroscopiques d’évolution de l’endommagement, la longueur normalisée des microfissures
apparît comme variable d’endommagement et la taille de la cellule comme paramètre de
longueur interne du matériau. La présence de cette longueur interne dans la loi résultante
d’endommagement conduit, de façon naturelle, à la prédiction des effets de taille.

Nous considérons que le milieu est élastique isotrope contenant une distribution lo-
calement périodique de microfissures. Chaque fissure est considérée droite, de longueur
2a et d’angle d’orientation θ par rapport à la direction x1 (abscisse du système considéré
à l’échelle macroscopique). La longueur 2a et l’orientation θ peuvent être différents en
différents points macroscopiques. La variable d’endommagement d, qui peut varier entre
0 (pour le matériau sain) et 1/[max(| cos(θ)|; | sin(θ)|)] (pour une cellule complètement
traversée par la microfissure), est définie comme le rapport entre la longueur de la fissure
2a et la distance entre les centres des microfissures voisines ε:

d =
2a

ε
. (127)

La variable ε représente aussi la taille d’une cellule de périodicité (Fig. 9.1).

Figure 9.1: Milieu fissuré avec une microstructure locale périodique.
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9.2.1 Le problème initial

Dans la partie solide Bs = B\C, ou B est le corps et C l’ensemble de toutes les microfissures
dans B, les équations d’équilibre sont

∂σεij
∂xj

= 0, dans Bs (128)

et les relations constitutives de l’élasticité linéaire anisotrope sont:

σε
ij = aijklexkl(u

ε), (129)

oú aijkl est le tenseur d’élasticité, σεij est le tenseur des contraintes et uε le champs de
déplacement à partir duquel le tenseur des déformations est calculé par rapport aux
variables xi :

exij(u
ε) =

1

2

(
∂uεi
∂xεj

+
∂uεj
∂xεi

)
. (130)

On suppose que les bords de la fissure sont soit libres de contrainte si la fissure est ouverte
soit en contact unilatéral sans frottement si la fissure est fermée. Ces deux solutions sont
exprimées par les deux jeux de formules

σεN = 0 ; [uε ·N] > 0 (131)

[σεN] = 0 ; N · σεN < 0 ; T · σεN = 0 ; [uε ·N] = 0 (132)

oú N est le vecteur normal unitaire, T le vecteur tangent unitaire à la fissure et [ · ] le saut
à travers les lèvres de la fissures. On suppose que chaque microfissure est caractérisée en
totalité par une des deux conditions (131) et (132). Le fait que chaque microfissure soit
complètement ouverte ou fermée est une hypothèse raisonnble pour de petites longueurs de
fissures. Le passage d’un état à l’autre sera décrit ultérieurement, au niveau des solutions
homogénéisées.

9.2.2 Changement d’échelle et coefficients effectifs

La microstructure locale périodique est construite à partir d’une cellule unitaire Y con-
tenant une microfissure (fig. 9.2). La fissure fait un angle θ par rapport à l’axe y1. La
cellule unitaire subit une transformation homothétique de paramètre ε pour obtenir la
période physique du matériau εY (Fig. 9.2).

On suppose que cette longueur est assez petite par rapport aux dimensions du milieu,
de sorte qu’on puisse distinguer deux variables d’espace physique, macro et microscopique.
Dans ce cadre, les deux échelles distinctes sont représentées par les variables x (variables
macroscopiques) et y = x/ε (variables microscopiques) ([127],[96]).
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Figure 9.2: Procédure de changement d’échelle

La cellule unitaire Y contient la fissure CY et Ys = Y \CY est la partie solide. Suivant
la méthode d’homogénéisation basée sur le développement asymptotiques (e.g. [13],[127]),
on cherche l’expansion de uε sous la forme :

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + . . . , (133)

Il peut être prouvé que u(0) = u(0)(x, t) est indépendant de y, représentant un vrai champ
de déplacement macroscopique.

On peut aussi démontrer que le correcteur de premier ordre u(1) peut s’exprimer:

u
(1)
± = ξpq± expq(u

(0)) (134)

oú ξpq± sont les fonctions caractéristiques représentant des modes de déformation élémen-
taires de la cellule unitaire. A partir des fonctions caractéristiques, les coefficients ho-
mogénéisés Cijkl, dépendent de l’état d’endommagement du matériau (i.e. d et θ) et des
propriétés mécaniques de la matrice solide, peuvent être calculés. La présence de microfis-
sures induit une anisotropie dans le comportement effectif. Nous avons déterminé pour
chaque régime: C1111, C2222, C1122, C1212, C1112, C2212. Pour des différentes valeurs de d
et θ, chaque de ces 12 coefficients (6 en traction et 6 en compression) est obtenu par in-
terpolation polynomiale. Ces coefficients, obtenus pour une matrice isotrope caractérisée
par le module de Young E = 2GPa et Poisson ratio ν = 0.3, sont présentés dans Fig. 9.3.

9.2.3 Modèles d’endommagement

En suivant les développements des travaux récents: [37], [38], [39], [56], nous obtenons des
modèles d’endommagement à partir d’une formulation énergétique de la micro-fissuration.
Ces modèles dépendent de la loi de propagation considérée (fragile, quasi-fragile, sous-
critique) et des conditions sur les lèvres des microfissures (contact sans frottement).

Dans le cas d’un milieu contenant des microfissures non-frottantes, le problème macro-
scopique obtenu est le suivant:

188



a)

b)

Figure 9.3: Evolution des coefficients homogénéises par rapport à la variable
d’endommagement d et à l’orientation de la microfissure θ: (en haut) En traction; (en
bas) En compression.

• equation d’équilibre homogénéisée
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∂

∂xj
(Cijklexkl(u

(0))) = 0, (135)

• Lois d’endommagement (de type Kuhn - Tucker)

dd

dt
≥ 0, −1

2

dCijkl(d)

dd
exkl(u

(0))exij(u
(0)) ≤ Gf

ε
,(

1

2

dCijkl(d)

dd
exkl(u

(0))exij(u
(0)) +

Gf

ε

)
ḋ = 0. (136)

dans l’equation (136) Gf représente l’énergie critique de rupture, qui peut être donnée
par une fonction constitutive.

Nous allons décrire, dans ce qui suit, des cas plus complexes, en prenant en compte le
changement d’orientation des microfissures.
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9.3 Modèles indépendants du temps

Ce chapitre est dédié aux modèls d’endommagement indépendents du temps. Nous avons
etudié deux lois de fissuration: fragile et quasi-fragile pour des microfissures droites et des
processus de microfissuration en mode mixte (de type wing).

9.3.1 Le comportement fragile

Si dans l’equation d’évolution de l’endommagement,(
1

2

dCijkl(d)

dd
exkl(u

(0))exij(u
(0)) +

Gε

ε

)
ḋ = 0, (137)

nous considérons Gε = Gcr, nous nous trouvons dans le cas d’un endommagement fragile.
Ce cas a été étudié par Dascalu et al. [37].

Dans la première étape, nous calculons les fonctions caractéristiques qui représentent
les modes élémentaires de déformation de la cellule unitaire ([37]). Ces fonctions car-
actéristiques ont été calculées, dans le cas de traction et de compression, en utilisant le
logiciel FEAP ([136]) avec des éléments iso-paramétriques triangulaires á trois noeuds et
une condition de périodicité implémenté par la méthode des Multiplicateurs de Lagrange.

Pour les simulations numériques nous avons utilisé un matériau élastique isotrope:
module de Young E = 2 GPa et Poisson’s ratio ν = 0.3. L’énergie critique pour la
rupture Gcr est considérée égale à 100 J

m2 et la longueur de la cellule élémentaire ε = 1e-5
m.

Figure 9.4 montre des modes élémentaires de déformation d’une cellule unitaire con-
tenant une microfissure verticale.

Figure 9.4: Modes élémentaires de déformation de la cellule periodique.

9.3.2 Le comportement quasi-fragile

Le modèle antérieur est convenable pour des matériaux fragiles, mais les observations
expérimentales indiquent que les roches présentent un endommagement graduel, i.e. une
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réponse quasi-fragile.
Dans cette partie nous décrivons un modèle alterntif dans lequel la résistance du

matériau augmente avec la propagation de la fissure. Ce genre de comportement apparaît
comme une conséquence du développement d’une zone de micro-fissuration aux extrémités
de la fissure.

La courbe qui décrit la variation de G avec d, est définie dans la littérature comme R-
curve (courbe de résistance) qui présente un modèle équivalent pour la description d’une
zone de micro-fissuration de taille cf autour des éxtremitées.

La courbe de résistance qu’on considère dans la loi d’évolution de l’endommagement
est Gε(d) = Gcr2d

cf
. Les paramètres de matériau sont les mêmes: E = 2GPa, ν = 0.3, Gcr

= 100 J
m2 et la taille de la cellule ε = 1e-5 m.

Dans le cas fragile on passe directement d’une phase initiale non endommgée à une
phase complètement endommgée. Dans le cas quasi-fragile on a des valeurs de rigidité
qui décroissent de façon continue dues au développement progressif de la zone de micro-
fissuration, si bien que l’on obtient un d mximum. Pour une zone de micro-fissuration
complètement développée, d, le paramètre d’endommagement, doit être égal à 1. On arrive
à cette valeur dés qu’on utilise une phase charge - décharge complète dans le contròle de
la déformation macroscopique. La conséquence de ce cycle complet de charge - décharge
est un comportement de snap-back. On charge jusqu’un plateu critique ou une valeur
maximale de d est obtenue et après on continue avec la procédure de décharge qui a
pour effet de développer la zone de micro-fissuration jusqu’a ce qu’un niveau maximum
d’endommagement soit atteint. On peut observer ce comportement sur (Fig. 9.5).

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

1

2

3

4

5

6
x 10

7
G(d)=G

cr
*2*d/cf

S 1
1
(P

a
)

e
x11

cf=5e4 m

cf=1e3 m

    cf=1e4 m

Figure 9.5: La courbe contrainte - déformation pour le cas quasi-fragile: l’initiation de
l’endommagement pour différent cf

Dans la Figure 9.5 nous présentons les courbes contrainte - déformation pour 3 valeurs
différentes du paramètre cf . On peut voir que le moment d’initiation de la fissure aug-
mente si cf décroît. Cette situation s’explique par l’augmentation du gradient de Gε(d),
qui conduit à une valeur plus grande de G pour un d plus petit et pour une valeur petite
de cf .
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Dans un processus de rupture, en général on peut identifier trois étapes: (I) initiation;
(II) la propagation stable; (III) la propagation instable vers la rupture complète. Avec
notre modèle, après l’initiation, nous pouvons retrouver les deux phases de la propagation
en utilisant un critère de stabilité (Eq. 72):

On peut voir clairement dans la Figure 9.6 les deux étapes de propagation: bleu quand
la fissure apparaît et commence à se propager de manière satble et sur la partie snap-back
(rouge) on observe la propagation instable jusqu’au niveau maxime de l’endommagement.

ex22

Figure 9.6: Instabilité pour le cas quasi-fragil avec snap-back (bleu pour propagation
stable, rouge pour instable)

Extensions de ce modèle ont été faites pour le cas 3D (Section 5.6).

9.3.3 Fissures de type wing

Dans cette section nous présentons une procédure alternative qui nous donne un meilleur
modèle pour le cas de fracture en compression dans les roches. Nous considérons un
modèle représentant une fissure inclinée avec des branches ("wings") pour lequel nous
avons construit un modèle équivalent. Le modèle de la micro-fissure inclinée, montré
dans Fig. 9.7, consiste d’un défaut initial de longueur 2a et de 2 branches verticales (dans
la direction du chargement principal σ11). Le modèle équivalent a une force concentrée
P , qui se projette selon la composante normale par rapport à une fissure verticale. On
admet l’hypothèse que la longueur de contact ne varie pas en fonction de cisaillement.

Sur la base d’un critère de type Mohr-Coulomb, la contrainte de cisaillement τs ap-
pliquée sur les surfaces inclinés du modèle présenté dans la Figure 9.7 est réduite par la
présence du frottement (µ), et on peut l’évaluer en utilisant la relation suivante:

τs = (σ11 − σ22)
sin(2φ)

2
− µ(σ11 cos2(φ) + σ22 sin2(φ)). (138)

oú φ est l’angle de la fissure inclinée initiale. La force appliquée dans ce modèle équivalent
prend en compte la contrainte de cisaillement décrite ci-dessus.
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Figure 9.7: Le modèle de micro-fissuration sous compression: (gauche) la fissure glissante;
(droite) le modèle équivlent

Le cisaillement induit des zones de traction en tête de la fissure. Ceci a pour effet la
propagation en Mode I. Pour l’implémentation numérique on a utilisé µ = 0.3, φ = 45◦

et les constantes de matériau E = 2e9 GPa et ν = 0.1.
Dans le cas de compression (avec une fissure droite oú de type wing), la loi de

développement de l’endommagement a une nouvelle formule qui inclut aussi des inté-
grales de saut à travers les lèvres de la fissure. En traction ces intégrales sont nules à
cause de la symmétrie des mouvements: un point situé sur la lèvre gauche bouge d’une
distance equivlente que le point correspondant sur la lèvre droite, mais dans la direction
opposée.

En utilisant l’implémentation numérique pour le modèle initial (les cas: fragil et quasi-
fragil), quelques tests de base ont été simulé pour vérifier les résultats du modèle avec
des microfissures de type "wing". Le plus important est montré dans la Figure 9.8 oú,
comme on obsèrve avec une fissure droite, l’énergie critique (i.e. l’énergie nécessaire pour
l’initiation de l’endommagement) est soulignée par la relation Hall-Petch entre l’effet
d’échelle et la contrainte maximale ("yield").

9.3.4 Conclusions partielles

Ce chapitre a été dédié aux modèles indépendant du temps. Des lois de propagations
fragile ont été utilisés dans le cas de microfissures de type "wing" ou pour les microfis-
sures se propageant a partir des pores. Des lois d’endommagement quasi-fragiles ont été
dévéloppés en 2D et en 3D. Dans ces cas, le phénomen de "snap-back" est apparu. Des
effets d’échelle ont été présentés dans tous les modèles discutés.
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Figure 9.8: ) Effet d’échelle - dépendence de la contrainte critique Σ22 du paramètre ε;
b) L’effet Hall-Petch
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9.4 Modèles dépendants du temps

Nous présentons dans cette partie le modèle d’endommagement obtenu par homogénéisa-
tion à partir d’une loi de propagation sous-critique des microfissures. Ce modèle va être
employé pour la description de l’endommagement à des échelles courtes ou longues de
temps, par un choix approprié des paramètres du modèle (temps caractéristique). Dans
cette première section nous considérons le cas de la propagation en mode I, décrite par
une loi de type Charles [30],[126]:

dl

dt
=
cf
τ0

(
KI

K0

)n (139)

oú l = 2a est la longueur des fissures et K0 est une valeur limite pour le facteur d’intensité
des contraintes KI . Nous suivons Salganik et l. [126] pour l’introduction de la longueur
d’une zone d’élaboration de l’endommagement cf et pour le temps caractéristique τ0 dans
la loi de Charles. On considère l’exposant sous-critique égal 2. En utilisant la relation
entre les SIF et le taux de restitution d’énergie on obtient, pour l’energie critique de la
rupture:

Gf = (
εGcτ0

cf
)ḋ; Gc =

K0
2

E ′
; E ′ =

E

1− ν2
(140)

En employant la méthode d’homogénéisation basée sur des développements asymptotiques
(voir [37], [38], [39], [56]) nous obtenons la loi d’endommagement sous la forme:

dd

dt
(
1

2

dCijkl
dd

exkl(u
(0))exij(u

(0)) +
K0

2τ0

cfE ′
dd

dt
) = 0. (141)

9.4.1 Modèle d’endommagement enrichi: branchement des microfissures

La rupture au niveau microscopique est, en général, une rupture en mode mixte. Le
modèle décrit précédemment est limité car il ne faut pas seulement prendre en compte
la longueur de la fissure, mais aussi l’orientation de la propagation. Nous présentons
dans ce qui suit une extension du modèle, basée sur la propagation des microfissures en
mode mixte. Les détails de cette modélisation se trouvent dans [56]. On suppose que
l’évolution des fissures se fait par branchement (tangente discontinue) et que les branches
se propagent en mode I, toujours d’après la loi de type Chrles :

dl

dt
= v0

(
K?
I

K0

)n
(142)

Dans cette formule on introduit v0 = cf
τ0

une vitesse de référence, n est le coefficient sous-
critique et K?

I représente le facteur d’intensité des contrainte en mode I. Ce critère est
utilisé pour décrire la propagation de la fissure branchée. K0 est une valeur particulière
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du facteur d’intensité des contraintes pour laquelle la vitesse de propagation de la fissure
est v0. K0, v0 et n sont les paramètres de matériau. K?

I depend de l’état de contrainte,
de la longueur interne ε et de la geometrie de la micro-fissure.
On suppose que la fissure se propage dans la direction qui maximise le taux de restitu-
tion d’énergie. Ce critère prédit un angle de branchement entre la fissure initiale et le
branchement incrémental. Cet angle est exprimé en utilisant les equations 114 - 115 (voir
[131]). Au niveau de pointes de la fissure, la propagation de la fissure branchée est régie
par les equations (113) et 114). Nous avons donc besoin de déterminer KI et KII pour la
fissure droite et K?

I pour la fissure branchée.

Coefficients d’intensité des contraintes

I) Fissures droites

L’élasticité linéaire conduit à des points singuliers en contrainte en pointe de fissure
([146]). La distribution de contraintes est donnée par Eq. 98 ou les coordonnés polaires
r et ϕ sont centrées sur la pointe de fissure. Il est evident qu’en pointe de fissure, la con-
trainte est gouvernée par une singularité 1/

√
r. Les coefficients d’intensité des contraintes

KI , KII et KIII représentent une mesure de l’intensité de la contrainte à proximité de
la pointe de fissure. Les modèles multi-échelles d’endommagement présentés, partent de
l’hypothèse d’un milieu isotrope élastique contenant une distribution locale périodique
des microfissures de longueur 2a et d’orientation θ par rapport à la diréction x1 (abscisse
du système de coordonné macroscopique). Dans le problème macroscopique, nous de-
vons exprimer les termes KI,II(u

ε). La procédure de changement d’échelle nous permet
d’exprimer KI et KII dans le problème macroscopique:

KI(u
ε) =

√
εKI(u

(1)) (143)

KII(u
ε) =

√
εKII(u

(1)) (144)

Cependant pour tout champ macroscopique [ex11 ex22 ex12], les SIF résultants sont déter-
minés par superposition des SIF des modes élémentaires de déformation:

KI,II(u
(1)) = ±(ex11KI,II(ξ

11
± ) + ex22KI,II(ξ

22
± ) + ex12KI,II(ξ

12
± )), in R± (145)

La distinction entre les SIF pour l’ouverture et la fermeture des microfissures est donnée
par l’orientation d’un vecteur de type "force" dans le membre de droite par rapport à
l’axe de la fissure [36].

En conclusion, pour obtenir les SIF dans le problème macroscopique, il est nécessire
de définir les SIF KI,II des modes de déformation élémentaire.

Si l’on considère un mode de rupture simple (KI oú KII est nul), le SIF non nul peut être
déduit du taux de restitution d’énergie en pointe de fissure Gε (en déformation plane):
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Gε =
1− ν2

E
[K2

I +K2
II ] (146)

En se basant sur l’équilibre énergétique d’une cellule périodique comportant des microfis-
sures évolutives, à trajectoires rectilignes, et sans frottement entre les lèvres de la fissure,
l’expression, de l’équilibre énergétique, suivante est déduite [37], et exprimée en terme de
solution omogénéisée u(0) permetatnt de déterminer le taux de restitution d’énergie Gε
pour une structure locale périodique.

dd

dt

(
1

2

∂Cijkl(d, θ)

∂d
exkl(u

(0))exij(u
(0)) +

Gε

ε

)
= 0 (147)

Le premier terme entre paraenthèses est l’opposé du taux de restitution d’énergie d’endom-
magement. Pour un endommagement évolutif, la relation précédente montre que le
paramètre de la micro-structure ε établit le lien entre l’énergie de surface dissipée pendant
la propagation des microfissures, et l’énergie par unité de volume Gε.

Dans le cas oú un mode de rupture mixte est considéré, les SIF de chaque mode ne
peuvent pas être déterminés à partir du taux de restitution d’énergie, un autre procédé
doit être utilisé. Nous utilisons une méthode basée sur des calculs numérique à l’échelle
locale en pointe de fissure, méthode de corrélation en déplacements, utilisant des informa-
tions à faible distance de la pointe de fissure oú la contrainte est singulière. Le principe
est d’extraire les SIF d’une analyse par éléments finis d’un solide fissuré.

Puisque les contraintes et les déplacements au voisinage de la pointe sont complètement
déterminés, on peut les superposer à la solution asymptotique pour calculer les coefficients
d’intensité des contraintes. Si la faible distance est mesurée entre la pointe de la fissure
et le noeud voisin, les champs de déplacement devient:

u1(r, π) = −
√

r

2π

4KII

E ′
, (148)

u2(r, π) =

√
r

2π

4KI

E ′
. (149)

avec E ′ = E
1−ν2 en déformation plane. u1 et u2 représentent les déplacements normal et

tangentiel du noeud à proximité de la pointe de la fissure dans le système de coordonnées
de la fissure. Dans un calcul d’ éléments finis, le champs de déplacement est obtenue
par rapport au système de coordonnées global, une formule de passage prenant en con-
sidération l’orientation de la fissure θ est alors nécessaire pour connecter les champs de
déplacement u1 et u2 :

u1(r, π) = cos θux + sin θuyu2(r, π) = − sin θux + cos θuy (150)

Une étude sur la dépendance du maillge a été réalisée.
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Les coefficients KI et KII sont calculés pour un grand nombre des longueurs d et
d’orientations θ de la fissure et pour les trois modes de déformation (ξ11

± , ξ22
± et ξ12

± ) dans
les deux régimes (ouverture (+) ou fermeture (-)). Ensuite, on obtient par interpolation
des expressions polynomiales pour KI(d

?, θ) et KII(d
?, θ). L’évolution de ces coefficients

en fonction de la variable d’endommagement normalisée d?, pour différentes orientations
θ, est présentée dans les figures 6.24 et 6.25. Dans le deuxième cas, pour les fissures en
contact, KI = 0 pour tous les modes de chargement de la cellule unitaire. Les calculs ont
été faits en utilisant le code d’éléments finis [32].

II) Fissures branchées

Après avoir calculé les coefficients d’intensité pour des microfissures droites, nous allons
exprimer les coefficients des fissures branchées en fonction de ceux pour les fissures droites.

La trajectoire des branches est régie par le critère sous-critique (Eq. 113) et celui de
la direction de propagation qui maximise le taux de restitution d’énergie. Cette condition
implique que la fissure ne se propage pas dans son plan, mais à un angle de branchement
donné par l’Eq. (114). Les coefficients KI et KII correspondent à la fissure droite initiale,
tandis que K?

I est celui de la fissure branchée. Pour des petits incréments de propagation,
quand la longueur de la nouvelle fissure dl est petite par rapport a la longueur de la fissure
initiale (dl << a), nous pouvons employer la relation proposée par [95] pour exprimer K?

α

par rapport a Kβ

K?
α = Fα,β(φmax)Kβ (151)

oú α et β prends les valeurs I et II et Fαβ(φmax) est une matrice 2 × 2 dépendante de
l’angle φmax. L’avantage principal de cette expression est son universalité par rapport à
la géométrie ou le chargement. Les paramètres géométriques et mécaniques sont inclus
dans Kβ. FI,I , FI,II , FII,I et FII,II sont de polynomes de degrés 20 dépendants de l’angle
de branchement [95].

Plusieurs auteurs (e.g. Nemat-Nasser and Horii, 1982) ont montré que la détermination
de l’angle de branchement en utilisant le maximum du taux de restitution d’énergie donne
les mêmes résultats que le critère de symmétrie locale, c’est à dire K?

II = 0.

La fissure équivalente

La détermination de la direction φmax, par l’equation (114) et de la longueur dl, à
partir d’ Eq. (113), permet d’effectuer un incrément de propagation. Pour aller plus loin,
en utilisant le même algorithme, nous avons besoin d’une (nouvelle) fissure initiale droite.

Après chaque incrément du temps, la fissure avec ses branchements sera remplacée par une
fissure droite équivlente. Il existe différentes possibilités de définir la fissure équivlente, par
exemple celle proposée par [131] qui porte sur une équivalence thermodynmique (énergé-
tique). [10] introduit une fissure droite équivalente qui relie les pointes des branchements.
Nous adoptons la dernière solution (Fig. 9.9).

L’orientation et la longueur de la fissure équivalente est déterminée à chaque pas de
temps (Figure 9.9). La géométrie de la fissure équivalente, en termes de longueur et
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n

θ
n+1
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Figure 9.9: Construction de la fissure équivalente

orientation, dépends du taux de propagation dl
dt

et de l’orientation φmax de la fissure
branchée. Ces quantités sont calculées en fonction des coefficients d’intensité KI et KII ,
comme il a été montré antérieurement. Ils dépendent des variables d’endommagement
macroscopique d et θ et de la déformation macroscopique ex. La combinaison de ces
relations établit le modèle complet d’endommagement, basé sur la propagation en mode
mixte des fissures. On remrque la présence de la longueur microscopique ε dans les
équations d’endommagement (119-120).

Schéma d’intégration numérique

Pour le modèle d’endommagement présenté dans la section précédente, nous donnons
ici quelques détails sur l’algorithme d’intégration numérique.
Le schéma d’intégration dans un point de Gauss du maillage EF au niveau macro est
donné dans la Fig. 9.10. Au pas de temps n + 1, nous avons en entrée les quantités
correspondant à la fissure antérieure: dn et θn ainsi que le tenseur de déformation courent
εn+1.
Après la vérification du régime de la nouvelle fissure - fermeture (-) ou ouverture (+) -
on calcule les facteurs d’intensité correspondant KI,II(dn, θn).
Ensuite, on détermine la direction de branchement (φmax) par l’équation (114). En utilisnt
φmax et KI,II(dn, θn) on calcule le coefficient d’intensité de la fissure branchée K?

I,n+1.
Finalement, on calcule l’incrément des branches dl et la nouvelle longueur et orientation
de la fissure au pas de temps courrent (dn+1, θn+1).
Cette solution pour l’endommagement nous permet d’actualiser les coefficients effectifs,
de calculer les contraintes et la matrice tangente cohérente.

Résultats numériques: comportement local

Chargement à vitesse de déformation constante

Les figures 6.33 a 6.35 montrent la réponse d’un matériau soumis a une traction uni-
axiale. Les paramètres du matériau sont les suivants: E = 2GPa, ν = 0.3, K0 =
0.6MPa.m

1
2 , v0 = 10−3m/s. L’exposant sous-critique, dans la loi de Charles, est n = 4

et la taille de la cellule élémentaire ε = 1e− 4. L’endommagement initial est d0 = 0.1 et
l’orientation initiale θ = 45◦.
La figure 6.33 présente l’effet du taux de déformation sur la réponse du matériau pour un
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 Incremental iterative procedure

dn, ɵn, εn+1 

TensionCheck crack 
opening

Compression

KI,II(dn, ɵn,+)KI,II(dn, ɵn,)

Compute ɸmax

Compute consistent tangent matrix 

Compute Σn+1

Compute dl, Δdn+1, Δɵn+1

Compute K*I,II

Update dn+1, ɵn+1

Update homogenized coefficients C(dn+1, ɵn+1) 

Figure 9.10: Schéma d’intégration numérique du comportement homogénéisé.

essai de traction uniaxiale en déformation ex22 imposée. L’effet de la vitesse de déformation
sur la résistance du matériau est clairement visible. Ainsi, plus la sollicitation est rapide,
plus le matériau est résistant.
La figure 6.34 illustre la réponse du matériau soumis à une traction uniaxiale avec une
fissure initiale orientée à 45◦ par rapport à la direction de chargement. Un taux de dé-
formation verticale constante de 1.10−8s−1 est imposé, tandis que la contrainte horizontle
et de cisaillement sont nulles. Au début du chargement, à fible niveau de déformation, le
facteur d’intensité en mode I aux extrémités des fissures est faible. Par conséquent, le taux
de propagation sous-critique de la fissure est quasi-nul. La variable d’endommagement et
l’orientation de la fissure restent constantes. La rigidité est peu modifiée dans la première
partie du test de traction et le comportement est linéaire. Ensuite, quand le niveau de dé-
formation devient suffisamment élevé, le facteur díntensité élevé induit une augmentation
de l’endommagement du matériau au cours du temps. La fissure se propage avec un angle
de branchement, ce qui induit une rotation de la fissure équivalente accompagnée d’une
perte de rigidité du matériau. On observe une tendance d’orientation vers la direction
horizontale, mais la déformation de cisaillement contre-balance cette tendance au cours de
la propagation. L’orientation horizontale peut être atteinte en imposant des déformations
(et non des contraintes) de cisaillement nulles aux cellules de périodicité.
Dans la figure 6.35 ), l’effet de l’exposant sous-critique est montré. Quand le facteur
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d’intensité K?
I est plus petit que le facteur de référence K0, l’augmentation de l’exposant

implique la décroissance du taux de propagation des fissures et retarde l’endommagement
du matériau.

Le comportement du matériau dépend de l’espacement entre les fissures, ε, qui est un
paramètre du matériau. Cet effet d’échelle est mis en évidence dans la figure 6.35 b). La
résistance du matériau augmente lorsque l’espacement entre les microfissures diminue.

Les deux figures qui suivent, 6.37 et 6.38, présentent des résultats de simulation des
testes biaxiaux à taux de déformation imposée constant.

La figure 6.37 montre les courbes contraint-déformation lors d’un essai biaxial en
traction, à vitesse de chargement constante. Un rapport constant entre les déformations
horizontale et verticale est mintenu tout au long du test. La traction horizontale ex11

induit une rotation de la fissure vers la verticale, tandis que la traction verticale ex22

tend à orienter la fissure vers l’horizontale. La déformation ex22 étant supérieur à ex11, la
fissure se tourne vers la direction horizontale. Quand ex11 = 0, la rotation de la fissure
est maximale. Par contre, lorsque ex11 = ex22, la fissure se propage sans rotation.

La figure 6.38 montre l’évolution de la contrainte verticale en fonction de la défor-
mation verticale appliquée au cours d’un essai de compression biaxiale. La vitesse de
chargement reste constante. Un rapport constant entre la compression horizontale et ver-
ticale est maintenu tout au long du test. Les fissures se propagent et tournent jusqu’a
atteindre une position où les facteurs d’intensité s’annulent à la pointe de la fissure. La
longueur et l’orientation de la fissure finale dépendent de la position initiale et des con-
ditions de chargement, dans notre cas, du rapport entre les déformations dans les deux
directions. Plus ce rapport est proche de l’unité moins la fissure tourne. Dans le cas
limite, lorsque ex11 = ex22, la fissure initiale ne se propage pas car elle est déjà orientée
dans la direction produisant l’annulation des facteurs d’intensité.

Résultats numériques: comportement global

Calcul de la matrice tangente cohérente

Le calcul anlytique de la matrice tangente pour le modèle avec rotation de microfissures
est décrit sur l’algorithme dans la figure 9.11.
Nous considérons les développement analytiques sur 3 niveaux, le niveau 0 contient les
termes impliqués directement dans l’expression de la matrice tangente. Sur la configura-
tion actuelle nous connaissons l’endommagement d et l’orientation θ ce qui nous permet
de calculer les coefficients homogénéisés et leur dérivés par rapport à d et θ.
Les termes restant ( ∂∆d

∂∆εk
et ∂∆θ

∂∆εk
) nécessitent des développements supplémentaires briève-

ment décrits au niveau 1. Ces termes sont obtenus en calculant 113-116 et 119-120.

L’étape la plus complexe est le calcul décrit au niveau 2 du terme ∂K?
I

∂∆εk
obtenue

via l’équation 116 avec K?
I,II (les facteurs d’intensité des contraintes aux extrémités des

branches), KI,II (le SIF aux extrémités de la précédente fissure droite) et les polynomes
de Leblond Fij(φmax) ([95]).

Test en traction uniaxiale
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Level 0: Consistent Tangent Matrix

Level 1: Terms which enters directly in the formula of Consistent Tangent Matrix

Level 2: Terms used for computation of Level 1 terms

Figure 9.11: La matrice tangente cohérente pour les modèle avec des microfissures
branchées

Nous effectuons une première simulation avec le modèle enrichi, un test en traction
uniaxial. L’échantillon et les conditions aux limites utilisées sont décrites dans la figure
6.1. Nous utilisons pour cette simulation un maillage a 1250 éléments qudrilatéraux à 4
points de Gauss.
Les paramètres considérés pour le modèle sont les suivants:

• paramètres de la loi de Charles: K0 = 4.47Pa m
1
2 , v0 = 1e− 3 m/s, n = 2.

• paramètres élastiques: Module de Young E = 2GPa, Coefficient de Poisson ν = 0.3.

Sur la figure 9.12 nous représentons l’évolution de l’endommagement et de l’orientation des
microfissures au cours du processus de chargement et sur la figure 9.13 l’évolution des dé-
formations horizontale et de cisaillement au cours du processus de chargement. Les simula-
tions ont été réalisées pour une orientation initiale des microfissures de 90◦ et une longueur
initiale d = 0.01. Sur ces 2 figures, 4 étapes de chargement sont considérés. On observe la
formation progressive d’une bande localisée dans la zone centrale de l’échantillon. Cette
formation est clairement visible sur les distributions d’endommagement et de déforma-
tion horizontale au cours de l’avancement du chargement. La figure 9.12 nous montre
également une rotation progressive des microfissures (initialement orientées de 90◦) qui
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Figure 9.12: Evolution de l’endommagement et orientation des microfissures.

évoluent avec la formation de la bande. La distribution d’orientation des microfissures
reste symétrique par rapport au centre de l’échantillon au cours du processus de charge-
ment.

9.4.2 Conclusions partielles

Implémentation des trois modèles d’endommagement dépendent du temps a été réalisé
dans ce chapitre. Le modèle le plus complex, dans lequel nous donons des critères pour
les orientation de microfissures, a été présenté. De plus, une discution a été faite pour
les facteurs d’intensité des contraintes dans le cas des fissures droites et dans le cas des
fissures branchées.

Une comparaison entre les trois modèls dévéloppés a été faite en soulignant l’importance
de controller pas seulement la vitesse de propagation, mais aussi la trajectoire des mi-
crofissures. Dans tous les cas, l’indépendence du maillage a été provée.
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t2 = 16229 s

Damage evolution Rotation of the micro-cracks

t3 = 16369 s

t4 = 16487 s

t1 = 15955 s

 

Horizontal strain evolution Shear strain evolution

t2 = 16229 s

t3 = 16369 s

t4 = 16487 s

t1 = 15955 s

Figure 9.13: Evolution de la déformation horizontale et de la déformation de cisaillement.
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9.5 Applications

A l’aide du modèle d’endommagement avec rotation des microfissures précédemment
décrit, nous avons rélisé trois tests à différent échelles. Au niveau du laboratoire, une
geometrie de type Meuwissen avec deux entailles a été utilisé. Puis, en 2D une galerie
souterraine dans le but d’observer l’endommagement de la roche environnante, notam-
ment par la formation des plans de rupture orienté par la direction de creusement, a été
faite. Finalement, la simulation de la phase de production/injection du CO2 dans un
réservoir a été discutée. Aspects specifiques de la procedure d’homogénéisation ont été
donné dans chaque test (i.e. pour le test au niveau du labortoire, nous vons étudié le com-
portement de différent paramètres appartenant a la lois d’évolution d’endommagement
et nous vons compré nos résultats numeriques avec les résultats expérimentaux trouvé
dans [113]; la spécificité du test simulé a l’échelle du reservoir est la modélisation des
événiments micro-sismiques et des changements dans les propriétes sismiques en incluant
aussi l’anisotropie).

9.6 Conclusions

L’objectif de cette thèse a été le dévéloppement des lois macroscopiques d’évolution de
l’endommagement basés exclusivement sur la description de la micro-structure. L’homo-
généisation (le changement d’échelle) a été l’aspect clé dans notre approche. Nous avons
considèré les dévéloppements asymptotiques des champs de contraintes et de déplacement
ainsi que l’analyse de l’énérgie avec la propagation de la micro-fissure.

Un résumé a été donné à la fin de chaque chapitre. Dans cette partie nous donnons
les conclusions générales:

Au début de la thèse nous avons décrit la modélisation multi-échelle de l’endommage-
ment que nous avons utilisé et dévéloppé dans les chapitres suivants.

Une partie de la thèse a été dédié aux modèles d’endommagement indépendants du
temps. Nous avons commencé par les microfissures branchés et les microfissures dans le
milieau poreux. Des modèles d’endommagement specifiques ont été développé. Ensuite,
des modèles d’endommagement quasi-fragile en 2D et 3D ont été décrite.

Le Chapitre 6 - la quintessence de cette thèse, a été dédié aux lois d’endommagement
dependents du temps. Trois modèles basés sur une loi de propagation de type Charles
ont été dévéloppé. Dans un premier temps nous avons modélisé la propagation de mi-
crofissures en utilisant des coefficients linèairs. Ensuite, nous avons considéré que les
microfissures se propagent dans une direction fixe a priori definie. Dans le cadre de ce
modèle, des coefficients homogénéisés, ont été utilisés. Ainsi, l’anisotropie intrinséque due
à l’orientation de la micro-fissure, a été naturallement capturée. Le troisième modèle que
nous avons proposé dans cette thèse, prend en compte non seulement la vitesse de prop-
agation de microfissures, mais aussi la direction de la propagation. La propagation et la
trajectoire des microfissures ont été controllés par les facteurs d’intensité des contraintes
(SIF). C’est pour cette raison que nous avons introduit une section dédiée aux SIF. Des
microfissures branchées ont été considérés.

La dernière partie a été dédiée aux applications. Nous avons présenté trois types de
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simulations, en utilisnt le modèle avec des fissures branchées: au niveau du laboratoire,
au niveau d’excavation d’une gallerie et aux niveau d’un reservoire de petrol. Différent
aspects de la modèlisation ont été donée a chaque niveau. A l’échelle de laboratoire,
des tests uniaxiau ont été effectués en traction et en compression sur un echantillon avec
deux entailles. Nos résultats ont été comparés de point de vu qualitatif avec les résultats
expérimentaux obtenus par [113].

A l’aide du modèle d’endommagement avec de microfissures branchées, précédem-
ment décrit, nous avons modélisé en 2D une galerie souterraine dans le but d’observer
l’endommagement de la roche environnante, notamment par la formation des plans de
rupture orientés par la direction de creusement.

A l’échelle du reservoire, nous avons simulé les processus de production du petrol
ou d’injection du CO2 en imposant des conditions de déplacement sur les frontières ex-
terieures d’un souscouche entourant un reservoire de petrol. La specificité de ce test a été
la modélisation des événements micro-sismiques.

9.7 Perspectives

Plusieurs directions de developpement sont possibles.
Au niveau de la cellule unitaire d’autres formes des microfissures peuvent être considéré

(i.e des courbes au lieu des microfissures droites). De plus, l’intégration des conditions de
frottement sur les lèvres de la microfissures où des conditions de couplage hydro-mecanique
doivent être considérés.

Les modèles indépendents du temps peuvent être approfondis. D’autres formulations
pour la courbe de résistence doivent être étudiés. De plus, le cas quasi-fragile en 3D
présenté dans cette thèse a été juste le debut. Tous les developpements faites pour le cas
2D doivent être faites pour 3D (conditions d’ouverture ou férmeture des microfissures, des
crit́‘eres de propagation basés soit sur le bilan de l’énérgie, soit sur les SIF . . . ).

Une autre direction peut être l’implémentation des équations dynamiques pour la
modélisation de l’évolution de l’endommagement et la comparaison avec les résultats
quasi-statiques.

D’autres solutions pour les microfissures branchée dans le cas de compression sont nec-
essaires. Nous avons observé que les microfissures changent d’orientations trop rapidement
sans se propager de façon évidente.

L’application de notre approche dans la modélisation des résultats expérimentaux doit
être plus soutenue.

La modélisation des milieux contenant des macro-fracturés ainsi que l’invéstigation
des modèles de production/injection doit continuer soit en utilisant des modèlas symples
comme celui qui été présenté dans cette thèse, soit avec des modèles complexes.
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