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Résumeé

Les progres des techniques de séquencage au cours de la derniére décennie ont permis aux
chercheurs en sciences de la vie d’avoir accés a une quantité toujours plus importante de données
génomiques. Si ces nouvelles données permettent des avancées importantes en biologie, médecine
ou encore agronomie, elle nécessitent également de développer de nouvelles méthodes d’analyse
capable de traiter la quantité toujours grandissante de données issues des projets de séquencage
de nouvelle génération.

Dans cette thése, nous nous intéressons au probléme de la classification des domaines pro-
téiques en familles de domaines apparentés. Un domaine protéique est une sous-partie d’une
protéine qui fonctionne et évolue de facon indépendante du reste de la protéine. Des domaines
apparentés peuvent étre présents dans différentes protéines et 'arrangement combinatoire de
ces domaines est & 'origine de la diversité structurale et fonctionnelle des protéines. Plusieurs
méthodes ont été développées pour permettre l'identification de ces domaines au sein des sé-
quences de protéines et permettre leur classification en familles de domaines apparentés de fagon
automatique. Nous étudions le cas de 'une de ces méthodes, MKDOM2. MKDOM?2 est un al-
gorithme glouton séquentiel : & partir d’'un jeu de séquences protéiques, MKDOM2 infére les
familles de domaines les unes aprés les autres de fagon a créer une partition de ’ensemble des
séquences protéiques en familles de domaines non-recouvrantes. MKDOM?2 est un élément es-
sentiel de la construction de ProDom, une base de données de familles de domaines protéiques.
Aujourd’hui, la complexité quadratique de MKDOM?2 et sa séquentialité ont rendu impossible
la mise & jour de ProDom dans des délais raisonnables. Il faudrait actuellement plus de 10 ans
pour pouvoir calculer une nouvelle version de la base de données a partir de ’ensemble des
données disponibles.

Afin de permettre la mise & jour de ProDom, il est nécessaire de définir une nouvelle mé-
thode permettant d’inférer efficacement les familles de domaines protéiques tout en préser-
vant la qualité des résultats que fournit MKDOM2. Nous proposons un nouvel algorithme
distribué¢, MPI MKDOMZ2, qui, tout en préservant les principes de I'heuristique que MK-
DOM?2, permet le calcul simultané de plusieurs familles sur une plate-forme de calcul distribué.
MPI MKDOM2 doit s’assurer que bien que plusieurs familles sont définies en méme temps, le
résultat final ne contient pas de familles chevauchantes. MPT MKDOM2 essaye, par le biais
d’un meécanisme de prédiction, d’éviter au maximum de calculer simultanément des familles
pouvant se chevaucher. Les familles conflictuelles pour lesquelles cette prédiction échoue sont
détectées et recalculées suivant la logique séquentielle. Tout en permettant la parallélisation du
calcul des familles, MPI MKDOM2 garantit que le résultat final est bien composé de familles
non-recouvrantes. Afin de d’assurer une utilisation efficace des ressources, MPI MKDOM?2
évite la synchronisation entre les calculs intermédiaires et ainsi évite les temps d’attente qui pé-
naliseraient les performances paralléles de I’algorithme. MPI _ MKDOM2 & permis de créer une
version mise & jour de ProDom basée sur ’ensemble des données disponible en 2010, calculant
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iv RESUME

en 20 jours ce qui aurait pris plus de 12 ans a calculer séquentiellement.

Une mesure de similarité entre les classifications de domaines protéiques a été définies afin
d’étudier les effets de parallélisation sur les résultats. Cette mesure prend en compte a la fois les
différences dans la définitions des domaines et les différences dans la classification des domaines
en familles. Tout en réduisant de facon importante le temps de calcul nécessaire & la construction
de ProDom, MPI MKDOM?2 crée des classifications qui restent cohérentes avec celles créées
par ’algorithme séquentiel MKDOMZ2. Une classification en familles de domaines protéiques est
souvent utilisée en conjonction avec une classification en familles de séquences protéiques pour
des études phylogénétiques en génomique évolutive. Le calcul séparé de ces deux classifications
entraine des difficultés méthodologiques et des incohérences entre les deux classifications. Une
solution possible est la construction de familles de domaines sur la base de familles de séquences
pré-calculées, ce que nous avons réalisé dans un second algorithme, MPI MKDOMS3. Sur la
base du travail de parallélisation effectué pour MPI_ MKDOM2, ce nouvel algorithme permet la
création coordonnée d’une classification de familles de domaines protéiques et d’une classification
de familles de séquences protéiques constituées des mémes domaines. Tout en améliorant le
résultat des deux classifications, MPI MKDOMS3 permet également, en basant la construction
des familles de domaines sur des familles de séquences et non plus sur les séquences elles-mémes,
une compression des données d’entrée qui vient atténuer 'augmentation exponentielle du nombre
de séquences a traiter.



Abstract

In recent years, vast amounts of genomic data were made available through mext generation’
sequencing technologies. While this abundance of information drives new insight into many
fields of life sciences, analysing these data also calls for the development of new methods that
can handle the ever increasing load.

In this dissertation, we focus on the problem of protein domain clustering. Protein domains
are discrete structural/evolutionary units that may occur in different proteins. The combinato-
rial arrangement of these domains is at the root of structural and functional protein diversity.
Over the years, several methods have been developed to automatically infer the decomposition
of proteins into domain arrangements, and the clustering of these domains into families. One
such method is MKDOM2. MKDOM?2 is a sequential algorithm that works in a greedy fashion:
starting from a database of protein sequences, families are inferred one at a time in order to
create a complete clustering of the protein space into a set of non-overlapping protein domain
families. MKDOMZ2 has been instrumental in the building of ProDom, a protein domain family
database. Because of its sequential nature and quadratic complexity, MKDOMZ2 has become
unable to process the ever increasing number of protein sequences available.

In order to allow further updates of ProDom, a new method is needed that can efficiently
infer protein domain families while preserving the quality of the results provided by MkDom?2.
We propose a new distributed algorithm, MPI MKDOM2. While retaining the same basic
heuristic, this algorithm differs from MKDOMZ2 in that it allows the exploration of several do-
main families in parallel across a distributed computing platform. MPI MKDOM2 needs to
ensure that, while multiple families are computed in parallel, the end result is still composed of
non-overlapping domain families. MPT  MKDOM?2 uses a prediction mechanism to avoid such
overlaps as much as possible. Remaining overlapping results are detected and re-computed to
ensure that no overlap remains in the final clustering. Problems of load-balancing and commu-
nication bottlenecks have been addressed. While MPI MKDOMZ2 is able to achieve a reason-
able speedup on a small database, the larger the database, the larger the achievable speedup.
MPI MKDOM2 has been successfully used to create a new version of ProDom based on all
the complete protein sequences available as of 2010, achieving in 20 days a computation that
would have taken more than 12 years to complete sequentially.

The impact of parallelization on clustering has been assessed by defining a measure of simi-
larity between domain clusterings. This measure takes into account differences in both domain
boundaries and domain clustering. While allowing to substantially decrease the construction
time of ProDom, the new algorithm still creates results that are consistent with those of the
original sequential algorithm.

Protein domain clustering is frequently used in conjunction with protein sequence clustering
for phylogenetic studies in evolutionary genomics. However computing separately the two types
of clusterings may lead to methodological difficulties when the two clusterings are inconsistent.



vi ABSTRACT

One possible solution is to construct domain families from precomputed protein families, which
we achieved with a second algorithm, MPI MKDOMS3. Building upon the parallel frame-
work developed in MPI MKDOM?2, this new algorithm allows the creation of a coordinated
clustering of protein domain families along with families of protein sequences having the same
domain decomposition. While improving the results of both classifications, MPI MKDOM3
also allows significant computing gains by basing the domain classification on sequence families
rather than on individual sequences, resulting in compression of the input data in the face of
the exponential increase of the number of sequences.
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Introduction

Proteins are the products of genes and the building blocks of the metabolism of living organisms.
A predominant challenge in molecular biology is therefore to understand how proteins function
and how they have evolved. Proteins are often composed of independent structural and func-
tional units called domains. Evolutionarily related domains can be found in different proteins.
In fact, much of the functional and structural diversity of proteins arises from the combinato-
rial rearrangement of these domains across proteins. Understanding domain arrangements of
proteins is therefore crucial for the interpretation of protein sequence data. Resolving protein
domain arrangements is also a prerequisite for protein classification, either for bioinformatics
purposes or for evolutionary studies.

Protein domains sharing a common evolutionary history can often be recognized by sequence
similarity. Several methods have been proposed to identify and classify domains following this
principle. Some databases gather domain families compiled by manually driven computational
tools. Consequently, domain family definitions found in these databases rest on human expertise
and experimental results such as structural information. These databases are therefore regarded
as closely matching the “biological truth”. The construction of these databases, however, re-
quires expertise and experimental data which render them unsuitable for the comprehensive
processing of the vast amount of protein sequence data available nowadays. Furthermore, the
gap between these domain family databases and the raw databases of protein sequences is con-
stantly widening as the size of the latter is increasing at an exponential pace. To bridge this gap,
some bioinformaticians have thus designed systems to fully automatically build domain family
databases.

One of these fully automated projects is the ProDom database. ProDom aims at being a
comprehensive repository of families of homologous domains built by an automatic process based
solely on sequence similarity. ProDom is built from all known protein sequences available and,
since 1998, it has been successfully built using an algorithm called MKDOM?2. This algorithm,
however, is inherently a sequential and iterative algorithm, whose complexity is quadratic in the
size of the protein database processed. Therefore, the exponential increase in processing speed
over the years is not sufficient to maintain the construction time of ProDom at a reasonable
level. Indeed, while MKDOM2 took 2 months to build a new version of ProDom in 2002, it
needed more than 15 months in 2007. The latest release of ProDom was released in 2008, and
it took one and a half year to build.

It has thus become impossible to produce new versions of ProDom using the sequential
MKDOM2 program. In principle it could be possible to run incremental updates by clustering
homologous domains into pre-existing ProDom families, and running MKDOM?2 on the remain-
ing sequences, which would limit the computational cost. However such a greedy incremental
procedure would forbid the re-examination of previously inferred domain families, even in the
light of contradictory new evidence. In order to avoid the latest release of ProDom to be the last,



2 INTRODUCTION

we decided to design a new algorithm allowing the inference of protein domain family clustering
at large scale on distributed computing platforms. This document relates our work on this topic.

Dissertation organization

This work is divided in an introductory chapter and 3 chapters outlining our contributions.

In Chapter 1, we give the information and related work required to understand the problem
addressed in this dissertation. This preliminary chapter is split in two main parts. To begin
with, we give an overview of the field of research, and the context of the problem from a biology
and bioinformatics point of view. In a second part we focus on computational notions, tools,
and platforms used throughout this work.

In chapter 2 we present the design, implementation and testing of MPI MKDOM2, a
parallel, distributed, and scalable algorithm allowing the computation of new ProDom releases
on gigabit scale datasets. The design decisions are motivated, and the parallel performance and
the scalability are tested on current scale dataset.

Our objective to create a distributed algorithm that closely reproduce the result of a se-
quential computation leads us in Chapter 3 to address the problem of the comparison of protein
domain clusterings. Several criteria have been proposed in the literature to compare and assess
differences between clusterings. We present some of these methods and our criteria to take into
account both differences in domain delineation and domain clustering. Using these criteria, we
then assess the effect of the parallelization on the clusterings produced by MPI  MKDOMZ2.
The exponential growth of the input data has been known to cause the fragmentation of families
of ProDom. We explain the cause of this fragmentation and assess its impact on the stability
of the clusterings with respect to the size of the input data. We then investigate the use of an
alternative methods to define families to improve the stability of the clusterings produced by
ProDom.

In Chapter 4, we present a new algorithm, MPI MKDOM3, which computes protein do-
main clusterings on families of globally homologous sequences. By grouping sequences into fami-
lies, we aim at solving two problems at once. While we show in Chapter 2 that MPI MKDOM2
is a highly scalable method capable of efficiently processing large scale datasets, it must use
more and more resources to handle the growth of the input data. Grouping sequences into
families would help contain the increase of the input data, and reduce the need for addi-
tional computing resources for each new release of ProDom. This new algorithm also allows
the construction of a coherent classification of protein domain families, and families of protein
sequences sharing the same decomposition into domains. We place our work in the context
of the HOGENOM database of protein families. We present how the methods used for the
construction of HOGENOM and ProDom can be chained to create a new pipeline of methods
for building paired databases of protein domains and protein sequence families. We present
the modification that must be applied in order to allow MPI MKDOM2 to handle protein
families instead of protein sequences. To motivate our choices, we present several methods to
analyze homology between protein families and outline their respective merits and drawbacks in
terms of accuracy of results and computational efficiency. As we did for MPIT MKDOM2, we
demonstrate that this algorithm is applicable at large scale on a current exhaustive dataset of
protein sequences. Finally we summarize our work and outline perspectives for further evolution
of the methods.



Chapter 1

Preliminaries

In this chapter, we give the information and related work required to understand the problem
addressed in this dissertation. The first three sections give an overview of the fields of research
from a biology and bioinformatics point of view, the rest of the chapter presents computer science
notions used throughout the rest of the manuscript. In Section 1.1, we give an introduction to the
biological context of the problem, namely the study of protein sequences and protein domains and
their evolutionary relationships. Biological sequence analysis makes great use of computational
tools to detect similarities between sequences. In Section 1.2, we outline how these similarities
are detected and present BLAST, PSI-BLAST and HMMER, three of the most widely used
sequence similarity search tools. Section 1.3 presents various biological sequences databases.
The various databases differ on the information they contain, from only protein sequences to
highly curated and annotated data and in the way they are constructed, which ranges from
manual verification to fully automatic inference.

Automatically constructing these databases and applying sequence similarity search at large
scale requires massive amount of computation that can only be solved in a reasonable time frame
through parallel and distributed computing. In Section 1.4 we present the parallel platforms
used throughout this work. Finally in Section 1.5 we give a brief overview of MPI, the most
widely used distributed application framework in high performance computing and the one that
was used in our implementations.

1.1 Proteins and protein domains

Proteins are the products of genes and they are the gears of the metabolism of living organisms.
A protein is a molecule composed of amino acids chained together in a sequence. Since amino
acids lose their amine and acid functions when chained together, we use the term amino acid
residue or simply residue to name what is left of an amino acid within a protein chain. Protein
molecules fold into three-dimensional structures depending mainly on their sequences [3]. The
spatial conformation of the folded protein, the relative position of the different residues, their
exposure or not on the outside surface of the molecule, determine the functional properties of
the protein. A protein can therefore be defined by three interdependent characteristics:

e its sequence in residues;
e its three dimensional structure once folded;

e its functions or capabilities in interacting with other molecules.



4 CHAPTER 1. PRELIMINARIES

Protein sequences observed today have evolved from ancestral sequences through mutations
of their coding genes and natural selection, a trial and error process compared by Jacob to the
work of a tinkerer [26]. This “tinkering” leaves traces. Despite these mutations, two related or
homologous sequences will in general bear a resemblance to their common ancestor and may
therefore share some similarities themselves. Significant similarity between two sequences is
interpreted as a sign of common origin or homology.

Some proteins can be viewed as a collage or concatenation of independent regions called
modules or domains. Although belonging to a single amino acid chain, encoded by a single
gene, these domains may have independent characteristics to some extent: they may fold [55],
function and have evolved in part independently [10] from the rest of the protein. Homologous
domains can be found in globally non-homologous proteins, often adopting the same structure
and performing the same function. The creation of multi-domain proteins by a combinatorial
arrangement of conserved blocks through evolution has been called domain shuffling [6] and is a
major cause of protein diversity; it is estimated that multi-domain proteins make up about 80%
of eukaryotic proteins and about 65% of prokaryotic proteins [4].

Proteins can be grouped according to their sequences, structures, or functions. Charac-
terizing the functions or the structure of a protein is a difficult task requiring expertise and
experimentation. Obtaining protein sequences however is nowadays comparatively easy and af-
fordable. High throughput sequencing techniques have made available a wealth of genomic data,
and protein sequences can be derived from their corresponding genes. From homology relation-
ship between protein sequences one can define families of closely related proteins. If proteins
from the same family have similar sequences, it is likely that they also have similar structures
and possibly similar functions. Knowledge about the structure or function of a protein in a
family may be transferred to other proteins by homology. Similarly to full proteins, domains
can be grouped into families of closely related elements, based on their sequence or structural
similarities.

1.2 Homology search algorithms

1.2.1 Protein alignment

From a purely computational point of view, a protein sequence can be view as a text string
defined over a 20 letter alphabet, one for each possible residue:

E-AA = {A7 C7 D7 E? F7 G7 H7 ’[7 K7 L7 M? N7 P7 Q? R? S? T7 V? M/’ Y}

Detecting similarities between two sequences in its simplest form consists in putting matching
positions in correspondence between the two text strings, in a process called an alignment.

Figure 1.1 illustrates the alignment between two sequences. Exact match between positions
are marked with the symbol ‘|’. Two diverging sequences may differ in two ways: new residues
may be inserted in one of the sequences, or deleted in the other, creating gaps in the alignments,
symbolized by the symbol ‘-’ in our example; otherwise, residues can be substituted by others
such as in the four leftmost positions in our example. Natural selection acts as a filter and some
mutations, between chemically close residues are more frequently observed than others. In our
example, substitutions between similar residues are marked by the symbol ‘+’.

The quality of an alignment is assessed by assigning a score to each match, substitution, and
gaps. The most common scoring scheme for protein sequences is the BLOSUM62 matrix [24]
represented in table 1.2.1. BLOSUM stands for BLOcks of amino acid SUbstitution Matrix.
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GSGDLLYLDSLTFVGKKGV---NTIADYLPSCDSALYLDDLT

Figure 1.1: Example of an alignment between two sequences.

Match scores in the BLOSUMG62 matrix were derived from observed substitutions in alignment
of conserved blocks. Diagonal scores reflect the relative abundance of the different amino-
acids. For instance, Tryptophan (W) is relatively rare compared to other residues, matching two
Tryptophan residues is therefore more significant than matching more frequent amino-acids such
as Leucine (L) or Serine (S). Additionally, the matrix contains score for 2 additional pseudo-
residues: the X stands for “any residue”; the * stands for end of translation, it corresponds to the
end of the gene coding for the protein. Gaps are usually scored negatively following an affine
function f(g) = Go+ (g —1)Ge, where g is the length of the gap, G, is the cost for opening a gap
and G, is the cost for extending the gap. By default in BLAST (see Section 1.2.2) algorithm
for instance, G, = 11 and G, = 1.
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Table 1.1: BLOSUMS62 scoring matrix.

The best alignment between two sequences &1 and Ss can be found using the Needleman-
Wunsch algorithm [39]. S; and Sy may not be globally homologous and yet share a local
homology such as for instance two proteins sharing a related domain. In that case, a global
alignment of §; and Sz would not get a good score while an alignment of a restriction of the two
sequences to their homologous regions would be scored more favorably. The Smith-Waterman
algorithm |45], a variation of the Needleman-Wunsch algorithm, allows to find the best local
alignment between two sequences, that is, the best match between two subsequences of §; and
8. Both algorithms use dynamic programming and have a time complexity of O(mn) where m
is the length of &1 and n is the length of Ss.
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1.2.2 Blast

Several bioinformatic problems require aligning a query sequence against a larger set of target
sequences to find local matches. For instance, one may ask if a protein of known function is
present in the proteins produced by a recently sequenced genome yet to be annotated. Using the
Smith-Waterman algorithm to answer this question would require trying all the possible local
alignments on all the target sequences in order to usually find none or very few good alignments.

BLAST [1] stands for Basic Local Alignment Search Tool. BLAST is designed to efficiently
search for local alignments between a query sequence and a database of target sequences. While
the worst case complexity of BLAST is the same as the Smith-Waterman algorithm, BLAST
heuristically avoids most of the unnecessary alignments by starting the alignments in high scoring
regions and stopping when the alignment score drops below a certain threshold. A principle of
a BLAST search can be decomposed in 3 steps:

1. All the k letter words, or seeds, that can be created from continuous portions of the query
are listed. Usually, £ = 3 for protein alignments.

2. Sequences in the target database are scanned for exact or nearly exact matches of the
seeds.

3. If a seed matches, BLAST will try to extend the match on the left and right sides of
the seed using a dynamic programming approach similar to that of the Smith-Waterman
algorithm. The alignment score is allowed to drop locally to allow local variations between
the two sequences. If the score drops more than a certain threshold, the alignment stops
and the end of the alignment is defined as the position where the score was maximal.

Local alignments found by BLAST are often referred to as matches. Figure 1.2 illustrates a
BLAST match between two sequences. The top sequence is the query sequence and the bottom
one is a target sequence, the line in between gives the alignment score between the positions on
the query and on the target sequence. The seed ADF from the query sequence finds a high scoring
match on a target sequence (dark gray zone). The match with the seed is extended leftward and
rightward from the seed. The score of the extension is defined as the sum of the scores from
the start of the seed extension. Extension stops when the score drops by more than a certain
threshold. In our example we set the tolerated drop to 15 points, so that the leftward alignment
reaches its maximal score on position 14. BLAST will try to further extend the match to the
left but stops on position 6, as the score drops by 17 points. The end of the alignment is defined
as the last position where the maximum was reached. In our example, the final alignment is
delineated by the light gray zone.

5 10 15 20 25 30 35 40

NEP ELQAHAGD CGVAKEKAVALTDNAVADFMPDNANSAGAHALEZKEK
00-2+2+44-2-2-3-20-4-1-3+4 0+5+5 0+4-1-1-9+6 0+3FAGIS+2+7+1 0+1+4+4-4-2-3-2-2-2-1
GSGDLLYLDSLTPFVGKEKGY---NTIADYLPSCDSALYLDDLT

Figure 1.2: Illustration of an alignment with BLAST.

Estimation of the statistical significance of a match

Scoring schemes allow us to find the optimal alignment between two sequences. The score of
an alignment does not however tell us if the alignment is biologically meaningful and reflects an
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underlying homology, or if the two aligned sequences are completely unrelated. The statistical
significance of a BLAST alignment is assessed through its E-value [28]:

E(S) = Kmne S

where m is the size of the query, n is the size of the target database, and S is the score of
the alignment. K and A are scaling constants [28]. The E-value gives the expectation of the
number of matches with a score greater than or equal to S, given the sizes of the query and of
the database. The lower the E-value, the more significant the alignment.

1.2.3 PSI-BLAST

PSI-BLAST [2] stands for Position Specific Iterative BLAST. As its name says, it is an iterative
tool where the search results are refined through several consecutive BLAST searches. The first
iteration of a PSI-BLAST search is executed in a similar fashion as a classical BLAST search
of the query against the target database. From the results of this first iteration, a multiple
alignment of the results with the query is constructed. Log-likelihood ratios are computed for
all 20 aminoacids at each position of the alignment and tabulated in a Position Specific Scoring
Matrix (PSSM). In the second iteration, the PSSM is used in place of the aminoacid substitution
matrix to score alignments of the query with target sequences. The results of the second iteration
are themselves turned into a PSSM which can further be used as input for a third iteration and
so on. The search is iterated until the results of two iterations is identical, or until a maximum
number of iterations is reached. Each iteration of PSI-BLAST takes slightly longer on average
than a classical BLAST search. By taking into consideration more sequences than just the
original query to find matches, PSI-BLAST is able to detect more distant homology than
BLAST [2].

1.2.4 HMMER

HMMER |[27] is not strictly speaking a sequence alignment search tool as it searches for align-
ments between Hidden Markov Models (HMM) and protein sequences (or vice versa). HMMs
are a representation of multiple alignments akin to PSSMs. For each position, an HMM gives the
probability of finding a given residue, of opening or inserting a gap, or of deleting the position.
Figure 1.3 represents an example HMM model of an alignment. B and E represent respectively
the beginning and the end of the alignment. I, M, and D states represent respectively Inser-
tion, Match, and Deletion states. To each arrow in the model is associated a probability of going
from one state to another. A random variable is associated to each I and M state giving the
probability of inserting or matching a given residue at this position. HMMER has two main
advantages compared to traditional score-based alignment methods. HMMs used by HMMER
are a more precise model of a multiple alignment. For instance, they allow position specific
gap opening and extending probability, instead of a general affine gap penalty. HMMs are also
easier to interpret statistically. By optimizing the score of the alignment, score-based methods
only take into consideration the maximum scoring alignment between two sequences. On closely
related sequences, the similarity between the two sequences might be clear enough that only one
alignment is possible. On more distantly related sequences however, it might not be clear how
the two sequences should be aligned. A score based method, by only looking at the maximum
scoring alignment, will miss this homology. HMMER, on the other hand, is able to recognize
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that several alignment paths are possible and compute a global significance by marginalization
over all possible alignments between the two sequences [13].

28563

Figure 1.3: Example HMM representing a 4 position model.

Despite its theoretical advantages, HMMER has not replaced BLAST and PSI-BLAST up
to now as the most used protein similarity search tool, due to its high computational cost. How-
ever the most recent version HMMER 3.0, released in March 2010, has seen great improvements
both in terms of ease of use, adding for instance the possibility to carry out sequence-sequence
alignments, and in terms of speed. This makes HMMER a viable alternative for large scale
projects like ours.

1.3 Biological databases

1.3.1 UniProt

UniProt [52] stands for UNIversal PROTein resource. This it is a database of protein sequences.
UniProt is split into two subsets, Swiss-PROT and TREMBL. Swiss-PROT is the smaller of
the two subsets. It contains manually curated and annotated sequences. TREMBL contains
sequences translated from gene sequences resulting from genome sequencing projects that are
automatically annotated.

Figure 1.4 shows the evolution of the size of Swiss-PrROT and TREMBL over the years
and illustrates well the discrepancy between the amount of information produced by genome
sequencing projects and the quantity of data that can be manually reviewed: SWISsS-PROT is
almost 30 times smaller than TREMBL. In the release 2011 06 released in June 2011, Swiss-
PRrOT contained 529,056 sequences and TREMBL 15,400,876 sequences.

1.3.2 Manually currated domain databases
SCOP

SCOP [38] is a manually curated hierarchical classification of proteins, inferred from three
dimensional structures in the Protein Data Bank (PDB) [9]. SCOP groups domains in a 4
level hierarchical classification based mostly on their structural similarities. Domains are given
identifiers of the form A.B.C.D giving their classification at each level:

A defines the class of the domain. There are 11 different classes based mostly on the global
secondary (two dimensional) structures of the domain.
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Figure 1.4: Evolution of the size of UniProt/Swiss-PrROT (top) and UniProt/TREMBL (bot-
tom) over the years [70, 69].
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B represents the fold of the domain. Domains in the same fold share major structural
similarity. A common fold however does not indicate a common evolutionary origin.

C defines the superfamily of the domain. Domains in the same superfamily share enough
structural similarities to suggest a probable homology.

D classify together domains into family that are strongly believed to be homologous. Most
of the time this belief is backed by a high sequence similarity (more than 30% of identity)
or strong structural concordance.

As of release 1.75, released in June 2010, SCOP classified 110,800 domains based on 38,221

three dimensional structures.

Pfam

Pfam [14] is a database of protein and protein domain families. Pfam is constructed in a semi
manual process. Each family is represented by an HMM automatically constructed based on
multiple alignments results that are manually curated. The set of manually curated families
known as Pfam-A are complemented by automatically constructed families taken from the Adda
database (see Section 1.3.3) called Pfam-B. The last release of Pfam, Pfam 25.0 was released
in April 2011. it contains 12,273 families in Pfam-A and 142,303 families in Pfam-B. Pfam-A
HMMs cover 53.86% of the amino acids in UniProt [66].

1.3.3 Automatically generated protein domain databases

Manual or semi-manual approaches are the best source of information from a qualitative point
of view by the human expertise they convey, but their strength is also their biggest weak-
ness. The best reported coverage is that of Pfam which covers about 53% of the amino-acids
of known protein sequences, coverage which increases only slowly [14]. This gap might even
widen in the future because of the exponential growth of sequence databases. For instance, the
UniProt database [57] doubles in size approximately every two years. In addition, genome and
metagenome data have shown that the universe of protein families is far from being completely
represented in current data [58]. This gap in coverage has justified efforts to create methods that
could infer domain boundaries and domain families automatically from homology relationships
between sequences. MKDOM2, the method used to build ProDom falls into that category. In
this section, we present two methods, ADDA and EVEREST, that have the same scope as MK-
DOM?2 and that have been successfully applied on large datasets. We give a brief overview of
MKDOMZ2 for comparison but a more detailed description of MKDOM2 is given in Chapter 2.

ADDA

ADDA |23] stands for the Automatic Domain Decomposition Algorithm. ADDA is a two step
process which first defines the domains and then groups them into families. This process can be
summarized into 5 steps as follows:

1. ADDA starts from an input dataset of protein sequences. For its most recent release,
ADDA input dataset was composed of more than 1.5 million non-redundant sequences

(nrdb).
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2. The input set is compressed by grouping together sequences sharing more than 40% iden-
tity, yielding 249,264 representative sequences (nrdb/0).

3. A global comparison of all the sequences of nrdb0 is carried out using BLAST.

4. From the alignments found by BLAST, the ADDA algorithm determines domain bound-
aries in order to globally minimize the number of alignments that are split by a domain
boundary as well as the number of residue pairs that are in the same domain without
belonging to the same alignment. Figure 1.5 illustrates this mechanism on a sequence
with two domains. In the latest release of ADDA, there were 2.7 million domains defined
when reporting the domain boundaries onto the original 1.5 million original sequences.

5. Using the previously defined domains, a graph is created where vertices are domains and
edges are BLAST matches. Each BLAST match, that is each edge of the graph, is
verified via a profile-based alignment method between the two domains linked by the
edge. Spurious edges are removed from the graph. Finally, each connected component
remaining in the graph after checking all edges defines a family. The latest release of
ADDA defined 123,000 families.

Figure 1.5: Domain decomposition of sequence EA6 ARATH from Arabidopsis thaliana in
Pfam (top) and ADDA (middle), and BLAST neighbours (bottom) [23].

Everest

EVEREST stands for EVolutionary Ensembles of Recurring SegmenTs [42]. The EVEREST
process is outlined in figure 1.6 and can be summarized in the following steps:

1. From an input dataset of sequences corresponding to all of Swiss-ProOT (211,000 se-
quences in the latest release of EVEREST), a non-redundant database is defined by
grouping together sequences that are aligned on more than 95% of their length with
an E-value below 107%°. The non-redundant database contained 125,000 sequences in the
latest release of EVEREST.

2. Internal repeats are short repeated segments within a protein. Blast alignments with
sequences containing repeats are hard to interpret. When one such case is detected, all
but the first and last instances of the repeat are masked.
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. Based on the BLAST Results from Step 1, segments sharing similarities with other seg-

ments are detected and collected into a set of putative domains. At this stage the latest
release of EVEREST defined 51,000,000 segments.

. On each sequence, segments overlapping on at least 50% of their length are grouped.

. Groups of segments are iteratively clustered together according to their similarity. The

successive merges form a tree of potential clusters. The leaves of the tree are single groups
while the root of the tree corresponds to all the groups merged into one cluster.

. Using a statistical model [32] trained on intrinsic features of Pfam families (cluster size,

similarity within cluster, variance of length of the domains in cluster, etc), all the potential
clusters are tested.

. For each cluster validated by the statistical model, an HMM is constructed.

. A new database of segments is created by scanning the original database with the HMM

created at the previous step. Steps 4 to 8 are repeated, starting from this new segment
set.

. HMMs which recruit the same segments are merged together to avoid overlapping families,

leaving 20,230 final families in the latest EVEREST release.

s

Figure 1.6: Tlustration of the EVEREST process [42].
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ProDom

ProDom [48] is a database of protein domain families built automatically using the MKDOM2
algorithm [19]. MKDOM2 is a greedy algorithm that is based on the simple heuristic that the
shortest segment in a database is the most likely to be a mono-domain sequence. Until the
database is empty, a family is created based on all the segments matching the shortest sequence
via PSI-BLAST [2] and the family is removed from the database before the next iteration. The
resulting domain family database, ProDom, has last been updated in 2008 and was based on
a 2006 snapshot of UniProt. This last release was based on 2,001,128 sequences and defined
1,716,114 domain families.

The three methods presented here all have the same goal but employ different methods to
reach it. All three methods base the construction of the domain families on homology relation-
ships between the sequences. Both EVEREST and ADDA are based on an initial global all vs
all BLAST to detect similarities between sequences. PSI-BLAST is a more sensitive algorithm
than BLAST but when applied to multi-domain proteins, its iterative nature may generate
chimeric results, and group together unrelated proteins. MKDOM2 on the other hand, by
processing domain families one by one, is able to use PSI-BLAST instead of BLAST. ADDA
makes up for the lesser sensitivity of BLAST by applying a careful single-linkage procedure to
transitively expand the families. EVEREST on the other hand refines its initial set of families
over several iterations, using a more sensitive profile based method.

EVEREST was last updated in 2006 and has never been tested on a database larger than
Swiss-ProT. Both ADDA and ProDom have been able to cover all known protein sequences
at one point. However ADDA was last updated using a 2007 snapshot of UniProt [14], and
ProDom with a 2006 snapshot. Therefore, today no protein domain database covers the whole
set of known protein sequences. This is due, at least for ProDom, to the prohibitive time that
would be required to process all known sequences. Updating ProDom based on current data
would take over 12 years using the current MKDOM2 algorithm. EVEREST and ADDA are
composed of a series of steps that are, for the most part, composed of independent subtasks
that can easily be carried out in parallel. Both EVEREST and ADDA already use parallel
computing, at least in part during their construction. MKDOM2 on the other hand, computes
families one by one, and is inherently a sequential process. For a new release of ProDom to be
possible, a parallelization of its construction method is mandatory.

1.4 Parallel computing means

1.4.1 Shared memory platforms

Shared memory platforms are machines with more than one processor, or processor cores, shar-
ing a common main memory. This type of platform is also often referred to as Symmetric
Multi-Processor (SMP) or Unified Memory Access (UMA) systems because all the processors
(CPU) have an equal access to the same memory (see Fig. 1.7). Most of today’s computers,
from laptops to servers are shared memory platforms. On an SMP system, a classic sequential
program is only able to use one of the CPUs. In order to use several CPUs at once, a program
must define independent subtasks or threads that can run in parallel on the different cores.
Defining independent subtasks can be done either explicitly or implicitly through libraries such
as OpenMP [7].

The parallelization of a program on an SMP has a relatively low overhead as all the threads
have access to the same data through the main memory and there is no need to explicitly
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transfer the data from one CPU to the other. The operating system ensures data consistency
between the local cache of the CPUs and the main memory, it is however the responsibility of
the programmer to ensure that two threads do not use the same data at the same time.

Main memory

v
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[Cache || | [Cache | | | [Cache || | [Cache |

CPU CPU CPU CPU

Figure 1.7: Schematic representation of an SMP system.

1.4.2 Distributed platforms

The most common form of distributed platforms are clusters. A cluster can be viewed as a set
of individual machines linked together through a common network as illustrated by Figure 1.8.
Each individual machine in a cluster is called a node. Clusters range from simple off-the-shelf
machines linked together by a local Ethernet network and managed via software solutions such
as Beowulf [49] to large supercomputers of several thousand machines linked together by fast
proprietary interconnects such as the IBM Blue Gene supercomputers [50].
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Figure 1.8: Schematic representation of a cluster.

On this type of platforms, the processors do not share a common main memory. Instead, data
transfers between the different processors have to be explicitly defined by the programmer. Even
fast interconnections between the nodes operate several orders of magnitude slower than a CPU.
When designing an algorithm aimed at distributed platforms, one must take into account that
communication costs may outweigh the benefits of increased parallelism. A distributed algorithm
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must therefore use communications scarcely to be efficient and overlap communication time with
computation time as much as possible.

Computing grids also fall in the category of distributed platforms. A computing grid is a set
of clusters linked together by a wide area network. The main differences between clusters and
grids from a practical point of view are: grids are more prone than clusters to be composed of
heterogeneous resources both in terms of computing and networking resources; while nodes in
a cluster commonly share a networked file system, clusters in a computing grid do not usually
have a shared storage.

The two approaches, multi-threading and distributed computing, are not mutually exclusive.
Distributed systems are usually composed of multiple SMP systems. It is therefore possible to
use both levels of parallelism: a macro level, or coarse grain parallelism, to distribute large
units of computations over a distributed platform, and a micro level, or fine grain parallelism,
to further split each unit of computation on each node.

Besides the two classes of platforms presented here, there are other parallel platforms that
allow finer parallelism such as General Purpose Graphical Processing Units (GPGPU) or coarser
parallelism such as desktop grids. These platforms however are not addressed in this dissertation.

1.4.3 Platforms used throughout this work
Grid'5000

GRID’5000 [60] is a French research grid designed as an experimental testbed for large-scale
distributed computing. The GRID’5000 is composed of 25 clusters representing almost 7,500
computing cores scattered over 10 sites interconnected through the RENATER education and
research network [67]. Being an experimental platform, GRID’5000 is more customizable than
a production platform usually is. However its heterogeneity both in terms of hardware and
software makes it a less adapted platform for production and routine jobs.

CINES

CINES [59] stands for Centre Informatique National de I’Enseignement Superieur. CINES pro-
vides computing means for French universities and research. Computing hours are allotted twice
a year to selected projects. We were granted 240,000 computing hours both in 2010 and 2011
on the jade cluster.

Jade [61] is a SGI ALTIX ICE cluster containing 23,040 computing cores, grouped in 2,880
nodes. Each node contains 2 Intel Xeon Quad-core processors (either E5472 or X5560) and
either 30 GB or 34 GB of memory. Nodes are diskless, that is, they do not have local storage
besides their memory. For persistent storage, jade relies on a 500 TB networked file system.

1.5 MPI

On distributed platforms, communications between the nodes have to be handled explicitly by
the program. MPI [63] stands for Message Passing Interface and is an application programming
interface (API) that facilitates the development of distributed applications and has become a
de facto standard in high performance computing. A distributed application in MPI is a set of
sequential or multithreaded processes identified by their rank and communicating by exchanging
messages. The MPI standard defines various communication primitives to exchange messages
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between processes of a distributed application. These communications can be grouped into three
main categories:

Point to point blocking communications: a point to point communication is a communi-
cation involving two nodes, a sender and a receiver. A point to point message is defined
by the rank of the sender, the rank of the receiver and a tag attached to the message. The
sender initiates the communication by calling MPI_Send at some point in its execution,
on the other side, the sender must call MPI_Recv. These calls are blocking, that is, both
calls to MPI_Send and MPI_Recv return only once the message has been received. Blocking
communications therefore have the side effect of synchronizing the two nodes.

Point to point non-blocking communications: non-blocking communications on the other
hand can return before the message has been sent to allow processes to carry on their
computation while the communication progresses, overlapping communication time with
computation time. Non-blocking communications can be achieved through MPI_Isend on
the sender side and MPI_Irecv on the receiver side. The I in the function names stands for
immediate indicating that the calls should return as soon as possible to the caller before the
communication has actually occurred. Non-blocking calls return a request to identify the
communication late on. Using this request, processes must check that the communication
has occurred through calls to MPI_Wait (blocking) or MPI_Test (non-blocking).

Variations of these functions allow a finer control on how these communications are han-
dled for instance with MPI_Ibsend, the message is buffered on the sender side before the
receiver is ready; MPI_Issend is unbuffered but the sender must not reuse or destroy the
sent data before either MPI_Wait has returned or MPI_Test indicates completion of the
transfer.

The efficiency of asynchronous communications is highly dependent on the implementation
of the MPI library; for instance, if the library is not multi-threaded, the communications
can only progress when the MPI library is accessed and regular calls to MPI Test are in
this case required to allow the communication to progress asynchronously. Both types of
communications can be mixed for instance an MPI_Isend can be matched by an MPI_Recv
on the other side, making the communication blocking only on the receiver side.

Collective communication: Collective communications involve a group of tasks, or commu-
nicators and are most of the time blocking communications. An example of such calls is
MPI_Bcast through which one process can send a message to a set of nodes. Messages sent
through MPI_BCast to n processes can be sent more efficiently than n individual messages
by having the first receiving nodes re-send the message themselves.

Messages sent through MPI can be of any size. MPI usually deals differently with short
and large messages (the limit between short and large being implementation defined). Short
messages are sent directly and buffered on the receiver side. For larger message, a rendez-vous
protocol is used, The sender first sends a short message to the receiver to ensure that the receiver
is ready and has enough memory to receive the complete message before the actual message is
sent. The MPI library may enforce a flow control mechanism and temporarily limit or block
new messages to ensure that a node is not overwhelmed by incoming messages.

The MPI standard defines Fortran, C and C++ bindings. However C-++ bindings are
marked for deprecation in the next version of the standard [64]. There are several open source
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implementations of the MPI standard such as MPICH2 [21] and OpenMPI [16]. Addition-
ally, hardware manufacturers usually provide MPI implementations tailored for their machines,
sometimes based on open implementations.
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Chapter 2

Parallelizing the construction of ProDom

In the previous chapter we introduced the problem of protein domain family clustering and the
methods available to solve it including MKDOMZ2, the algorithm in charge of updating the
ProDom database. The interest for ProDom as a data source for evolutionary biology is still
strong. Indeed, each year, the ProDom web server handles 60,000 unique visitors, and more than
1,500,000 queries. The survival of ProDom as a viable reference is challenged by the massive
amount of new sequences pouring in every day. The most recent release of ProDom is called
ProDom 2006.1 because it was built against the set of all complete protein sequences available
in UniProt in 2006. It took 15 months for MKDOM2 to create the domain family clustering. In
the meantime, UniProt kept on growing and upon its release in late 2008, ProDom 2006.1 was
already covering less than half of the available sequences. MKDOMZ2 is now unable to maintain
ProDom up-to-date. Given the increase in input data, computing a new ProDom release today
would take more than 10 years of computation, an unrealistic duration for a sequential algorithm.

To be able to continue building ProDom on up-to-date and exhaustive data, we have de-
signed MPI MKDOM?2, a new parallel algorithm. Our aim in designing MPI MKDOM2
was twofold: 1) from the biological point of view we did not want to compromise on the quality
of the output, and thus decided to stay as close as possible to the behavior of MKDOMZ2; 2)
from the computer science point of view we wanted an efficient distributed algorithm capable of
harnessing the processing power of distributed computing platforms to compute ProDom in a
reasonable time frame. Satisfying these two objectives appeared to be contradictory because of
the assumptions the MKDOM?2 algorithm relied upon. MKDOM?2 relies on the different parts
of the computation occurring in a certain sequence and, therefore, some computations cannot
be carried out in parallel. Moreover, the running times of the different parts of the computation
are unpredictable and highly variable. It is therefore extremely challenging to design an efficient
scheduling of these computations.

Section 2.1 is dedicated to the static and dynamic analysis of MKDOM2. In Section 2.2
we explore two possible alternative parallelization strategies and detail their pros and cons.
In Section 2.3 and 2.4 the most promising parallelization approach is refined to address both
biological and computational difficulties. Finally the last two sections are dedicated to exper-
imental results, in Section 2.5 we test MPI MKDOM?2 on small datasets to characterize its
parallel performance and in Section 2.6 we further show the validity of our approach by using
MPI MKDOM?2 to create a new release of ProDom from all available sequences in UniProt as
of July 2010. The quality of the results is assessed in Chapter 3.
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2.1 The MKDOMZ2 algorithm

2.1.1 Algorithm overview

MKDOM?2 is a greedy algorithm, that defines domain families iteratively one after the other,
removing domain families from the database as it goes, until the database is empty [19]. Each
iteration can be further detailed into 5 steps as follows:

1. Protein domains considered in ProDom have a minimum length of 20 residues: MKDOM2
discards all shorter sequences.

2. The shortest sequence is selected under the assumption that it contains only one domain.
The more comprehensive the protein database, the stronger the assumption.

3. Proteins often contain repeated segments [34], in particular tandem repeats (back to back
occurrences of homologous segments). MKDOM?2 tries to detect these cases and if a
repeat is found, the repeat motif is selected in place of the original sequence.

4. The selected sequence (or repeat unit) is used as a query to search the database. Segments
of protein found homologous to the query are defined as domains. A new domain family
is defined that contains the query and the homologous segments.

5. All the domains from the newly defined family are removed from the database. Domains
are segments of sequences. Removing a domain from one of the extremities of a sequence
will shorten this sequence. Removing a domain from the middle of a sequence will split
this sequence in two new sequences, on the left and right ends of the domain. Both of
these operations create shorter sequences that may become the new shortest sequence of
the database.

The algorithm is summarized in pseudo code in Algorithm 1. Figure 2.1 illustrates the behaviour
of the algorithm over one iteration when the query finds no results, some results, or if the query
is a repeat.

2.1.2 Runtime analysis of MKDOM2

The goal of the runtime analysis — or profiling — of a program is to find how much time is spent in
the different parts of this program. This is generally achieved by recording the time at which a
program enters and leaves any function. While considerably slowing down the actual processing,
the time-keeping mechanism should not affect the relative weight of the different components
of a program. Knowing how time is spent across a program helps identifying hotspots, that
is, parts of the program that are particularly time consuming and on which optimization and
parallelization efforts should be focused. MKDOM?2 being implemented as a Perl script, the
profiling was carried out using Perl’s Devel: :DProf profiler. Figure 2.2 shows the abridged
results of the profiling of MKDOM2 on five different database sizes.

We profiled MKDOM?2 running against 4 subsets of the Swiss-PROT database of increasing
sizes. The profiling results reveal that two functions PsiBlast and UpdateDB represent most
of the computational cost of the program. With the largest database tested, PsiBlast and
UpdateDB account for almost 90% of the total computing time of MKDOM?2. The other func-
tions, for instance for parsing the PSI-BLAST output, verifying that the each family does not
contain duplicated segments or writing out the output, tend to account for proportionally less of
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Algorithm 1: MKDOM2

Input : sequences, a collection of
protein sequences

Output: families, a collection of protein
domain families

Data: query, a protein sequence
Data: family, a set of protein segments

while sequences not empty do

1 foreach sequence seq in sequences

do
if seq shorter than 20 residues

then
| remove seq from sequences

2 query < shortest sequence in
sequences
3 if query contains a repeat then

L query « repeat motif

4 family < psiblast (query, sequences)

add family to families

5 foreach segment seg in family do

L remove seg from sequences

Iteration i

Step 1 Elimination of short sequences

Step 2 Query-sequence selection
CEmssssd  query-sequence
Step 3 Internal repeat detection

no yos  ESSE——

query sequence —
Step 4 PSI-BLAST search of the query-sequence
No match Matches Match of repeat
GEassssssaaad S
C 1 C 1 [ s
: ) : )
: ) : ) : )
E E
Steps 5 Database update
=
B
—_— = m
: 3 ; ) o]
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Iteration i+1

Step 1 Elimination of short sequences
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Figure 2.1: Tllustration of an iteration of
MKDOM2 [19].
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the total computing time as the database grows. PsiBlast carries out Step 4 of each iteration of
MKDOM2. As its name indicates, it uses PSI-BLAST [2] to search the database for segments
that are homologous to the query. UpdateDB corresponds to Step 5 of the iterations. Its objec-
tives are to remove the newly created families from the database, to sort the sequences according
to their size and to reformat the new version of the database for PSI-BLAST. Any attempt
to significantly affect the running time of MKDOM2 should investigate the optimization and
parallelization of these parts of the algorithm.
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Figure 2.2: Evolution of the processing time of MKDOM2 as a function of the database size.

2.2 Parallelization strategies

The profiling of MKDOM2 revealed that the most time consuming part of the algorithm is the
PSI-BLAST search. We see two possible parallelization approaches:

Internal parallelization: We call internal parallelization the parallelization of PSI-BLAST
itself, that is, for each iteration, allow PSI-BLAST to use 2 or more cores to process a

query.

External parallelization: The external parallelization corresponds to a scenario where we
allow several queries to be processed in parallel, each PSI-BLAST instance using one
core.

These two approaches are not necessarily mutually exclusive. Depending on there respective
merits and drawbacks, we may decide to use one, the other, or both combined.

2.2.1 Parallelizing PSI-BLAST

Parallelizing PSI-BLAST means allocating 2 or more cores for PSI-BLAST to process each
query. Such an approach would have the great advantage, from the biological point of view, to
leave untouched the overall structure of the algorithm and thus the nature of the heuristics. No
change would be made in the order of the queries, they would only be processed faster. The
parallel and sequential versions of the algorithm would deliver the exact same output.
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This strategy can quickly be tested since PSI-BLAST already has an option that lets the
user set the number of threads. We tested this option using query sets and the target database
from the REFPROTDOM [18] evaluation dataset to test the acceleration possible when using
several threads. Figure 2.3 shows the observed speedup, that is the acceleration factor with
respect to the sequential execution, and the efficiency, the speedup divided by the number of
resources used, as a function of the number of threads. PSI-BLLAST multi-threading yields
suboptimal results, reaching only a 1.60 speedup with 8 threads (with 8 cores available). One
may say that these results are due to a sub-par implementation and do not reflect the potential
speedup of the strategy itself. Looking more closely at how PSI-BLAST functions below, it
appears that it would be really difficult to reach a significant speedup with this strategy.
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Figure 2.3: Speedup (top graph) and efficiency (bottom graph) of PSI-BLAST as a function of
the number of threads used for the processing of the hard and sampled sets of queries from the
RerPrOTDOM dataset [18]. The machine used for the tests had 8 cores and PSI-BLAST was
setup up to stop after 2 iterations.

A typical execution of MKDOMZ2 is composed of a large number of iterations that are in
average quite short. For instance, MKDOM2 needed 88,788 iterations to process a database
containing 69,621 protein sequences, each iteration lasting on average 0.58 seconds. A parallel
version of PSI-BLAST would therefore be a very fine-grain parallelization. For such a par-
allelization to deliver significant speed-ups, the cost of the parallelization must be really low.
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If the load is not almost perfectly balanced, the loss in efficiency induced by the paralleliza-
tion will quickly outweigh its benefits. Unfortunately, the structure of PSI-BLAST makes any
parallelization attempt prone to poor load balancing. Indeed as detailed in Section 1.2.3, a
PSI-BLAST search is also an iterative process: it is a succession of BLAST searches. The
first iteration is a classic BLAST search of the query sequence against the database. After this
first step, the results of the search are merged into a position specific scoring matrix (PSSM)
based on the probability of aligning a given residue at each position of the query. For the second
iteration, the PSSM is used as query instead of the sequence. The results from this second iter-
ation are again turned into a PSSM. The process goes on until either two successive iterations
generate the same result or until a maximum number of iterations is reached (in MKDOMZ2,
the maximum number of PSI-BLAS'T iterations is set to 10). The construction of the PSSM is
a strong synchronization point between all the threads: the next iteration cannot start without
the new PSSM and since this PSSM summarizes the results of the current iteration, all the
results must be available in order to create it. While the longest thread finishes computing the
current iteration on one core, all the other cores are left idle because nothing can start unless
all the results are available. Keeping the time wasted at the end of each iteration to a mini-
mum would require a good load balancing between all the threads so that they all terminate
at approximately the same time. Unfortunately, the duration of each thread depends on how
many alignments it will have to perform which cannot be predicted in advance [17]. No matter
how well implemented this solution is, such a tightly coupled parallelization with no guarantee
on load balancing is unlikely to deliver useful speed-ups. With a shared memory parallelization
yielding such poor results, chances are that a distributed approach would perform even worse
because of communications between different machines. It can be noted that the distributed
implementation of the BLAST tool suite, mpiBLAST [8], does not include PSI-BLAST for
similar reasons [65].

2.2.2 Running several iterations in parallel

In the second strategy, the parallelization is done outside of PSI-BLLAST. Instead of distributing
the load of one query over several cores, we allow several queries to be processed at the same time.
This parallelization theoretically gives us more room to maneuver since the atomic operations
we would be running in parallel are larger and less coupled. If the successive iterations were
totally decoupled, MKDOM?2 would be an embarrassingly parallel problem: there would be no
restriction on how many iterations can be run in parallel, and the only decision to be made
would be how to schedule these iterations to best absorb their variations in completion time and
to minimize the completion time of the whole process.

MKDOMZ2 unfortunately relies on the creation of the families one after the other in a greedy
way: departing from the sequential logic of the algorithm may have repercussions on the results.
The sequentiality of the iterations in MKDOM2 has two advantages: firstly it ensures that each
family is created from the most likely mono-domain sequence, and secondly, by updating the
database each time a new family has been defined, it guarantees that families cannot overlap. If
several iterations are to be run in parallel, our scheduling strategy must not only address load
balancing problems, it must also take into account that, from a biological point of view, some
scheduling strategies may be better than others. Yet with all the concerns raised above, this
strategy is the only one worth trying as the internal parallelization has proven unfit for the large
scale distributed processing.In the next section we discuss these problems in detail and outline
ways to handle them.
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2.3 From a strategy to an algorithm

Of the two possible parallelization strategies only one, which consists in processing several queries
at the same time, offers the prospect of significantly reducing the wall-clock time of MKDOM2.
In its simplest form, this solution can be viewed as a data parallel version of MKDOM2 following
a master-worker scheme: One process, designated as the master, is in charge of allocating queries
to the worker processes that run PSI-BLAST searches and send results back to the master
process. Algorithm 2 illustrates the behaviour of the master node in a naive version of this
scheme. Unfortunately, as mentioned above, MKDOM2 cannot be reduced to an embarrassingly
parallel problem. Parallelization should be implemented with attention to several considerations
that are important for computational performance or result quality:

Order of the queries: By always selecting the shortest sequence at each iteration, MKDOM?2
was ensuring that families were most likely created from a sequence that contains only one
domain. By selecting several queries at once, we may alter this property in a significant
manner.

Load balancing: This problem may arise even in an embarrassingly parallel algorithm but in
MKDOM?2 it is especially stringent. Running times of different PSI-BLAST instances
may vary by several orders of magnitude.

Overlapping families: By creating several families in parallel, we will encounter situations
that the sequentiality of MKDOM2 prohibited: Two families created in parallel may
claim the same part of the same sequence, at which point we must decide which of the
two families has the priority over the other.

The above problems posed by this parallelization strategy have been addressed and have shaped
the way we designed our parallel algorithm. The database updates which represent the second
most time consuming part of the algorithm have not yet been addressed at this stage of our
analysis. They must also be taken into account for the algorithm to be efficient.

Algorithm 2: Master in a naive master-worker parallelization of MKDOM2 over n pro-
cesses.
while Database is not empty do
Select n — 1 sequences
Send 1 sequence to each of the n — 1 workers
Gather the results
Resolve the potential conflicts between the overlapping results
Update the database

2.3.1 Order of the queries

While running several queries in parallel, we would still want our parallel algorithm to stay as
close as possible to the sequential one: sequences running in parallel must be chosen among
the shortest sequences of the database. Indeed, several of these sequences are likely to be
mono-domain sequences, especially on large databases. MKDOM?2 already makes an arbitrary
decision on which is the best candidate to be a single domain in case of a tie. If for instance at a
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given iteration, the shortest segment is 50 residue long, MKDOM2 still has to choose which of
the 50 residue-long sequences will be used to create the next family. Therefore, even by selecting
many sequences at once, this parallel strategy would not stray far from the original heuristics.

Under the original MKDOM?2 algorithm, the processing of a query S; can lead to the
apparition of a new shortest sequence Sy. Following the logics of MKDOM?2, Ss is now the
most likely sequence to be mono-domain, it should therefore be the next query. In a parallel
execution, the query S is processed among several other queries that may be longer than Sy and
that, in effect, are overtaking Sy with respect to the sequential logics. In order to stay true to the
sequential heuristics, the parallel algorithm should cancel the other currently running iterations
and start over from Sp. This approach was tested in a first parallelization attempt carried out
in 2004 by Blanquart [5] but unfortunately this parallelization strategy could only provide a
maximum speedup of 1.71. It is therefore not possible to go significantly faster than MKDOM2
while keeping exactly the same constraints. This @ prior: forbids that a short sequence, produced
by the processing of the first n query-sequences, be processed before these n query-sequences
are all processed and their results removed from the database. Therefore, a parallel execution
will not process query-sequences in the same order as the original MKDOMZ2 algorithm. This
will obviously have an impact on the solution that should be minimized.

2.3.2 Load balancing

We discarded the internal parallelization of PSI-BLAST on the basis that the tight coupling
between the threads and the unpredictability of the running time of each thread made it impos-
sible to correctly balance the load within each of the successive BLAST searches across different
workers. Parallelizing outside of PSI-BLAST, we now need to balance the load of several in-
stances of PSI-BLAST. The running time of PSI-BLAST is at least as unpredictable as the
running time of its internal iterations. In fact, there may be several orders of magnitude be-
tween the shortest and the longest running time. Figure 2.4 shows the duration of PSI-BLAST
instances while processing a database of 556,964 sequences: the average duration of a query was
3.21 s, the median 2.59 s and the maximum 266 s. However, contrary to the first strategy, our
iterations are in this case independent of each other. Provided we can handle conflicts between
results afterwards, we are not required to wait for the completion of all the currently running
PSI-BLAST searches to start a new one. Our algorithm will therefore absorb the irregularities
in PSI-BLAST run times by desynchronizing the workers, the master providing them with a
new query as soon as they finish one.

In this asynchronous scheme, the first workers to finish do not have to wait for the more
loaded workers to complete their queries. However they still have to wait for the master to
select new queries before resuming work. In order to limit the time workers need to wait for
the master, we would like the master to start selecting the next queries before the workers have
finished computing their allotted task. In addition, a worker processing a short query that does
not find any match will return its result almost immediately, not giving the master enough time
to select new queries. In order to avoid this behaviour, the master needs to send batches of
several queries to each worker. When one of the worker is already halfway through its allotted
batch, the master starts selecting new queries for all the workers. The query selection by the
master now happens before it receives all the results from the workers: it anticipates that all
workers will finish in a near future and will soon need new queries. It might be possible however
that one of the workers will spend a large amount of time processing one of its queries. To avoid
queuing queries on an already overloaded worker, the master will not send new queries to a node
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Figure 2.4: Distribution of the processing times of queries for the processing of a 556,964 sequence
database.

which still has a full batch of queries left to process.

Figure 2.5 illustrates the differences between a synchronous (top of the figure) and an asyn-
chronous (bottom of the figure) execution. The waiting time at the beginning of the first iteration
is unavoidable in both schemes, but from the second iteration onwards, the inactivity period
for the workers and the total wall-clock time is reduced by the asynchronism between all the
workers and between the workers and the master.
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Figure 2.5: Illustration of the difference between synchronous (top) and asynchronous (bottom)
execution.

The target database must be regularly updated to remove the segments that have been
identified as domains. If the database is centralized and the work of the workers desynchronized,
at any time there may be a worker processing a query and using the database. In order to
update the database, the master would have at some point to stop all the workers which would
reintroduce a synchronization point between the workers. Asynchronous workers are therefore
incompatible with a centralized database. In order to allow the workers to work on up-to-date
databases without stopping all the workers, we need to give each worker its own copy of the
database. The worker will receive, along with a new query, a list of all the families that have
been defined since its last update. The worker will need to remove the families from its own
database prior to starting computing the new query. Duplicating the database, and therefore
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the database updates, on all the nodes may seem like an unnecessary duplication of computation
and a waste of storage space. However, with a single shared database, all the workers would have
to stop before the update could start and they would have to wait while the master performs the
update. The workers would be unable to process queries during the update but also potentially
prior to the update as well, waiting for other workers to finish. With one database per worker,
each worker still cannot run queries while it is updating its database, but it does not have to
wait for all the workers to stop before performing its update. Therefore, even if replicating the
database requires more work from the workers, in term of wall clock time however, it cannot be
slower than a centralized database.

While we try to keep the workers as busy as possible processing queries, we want exactly the
opposite for the master. The master node plays a pivotal role in a master worker scheme. If the
master is overloaded, it can quickly become a contention point for the whole process. The less
work the master has to do, the more workers it can handle. By delegating the database updates
to the workers we also unload the master node from a costly task. In fact, by giving each worker
a copy of the database, we remove the last reason for the master to actually have a copy of
the database. To keep track of the remaining sequence segments in the database and define
updates, the master node only needs metadata defining these segments: a sequence identifier
and start/end positions (or start position and length) suffice to uniquely identify a segment.

An asynchronous computation scheme also requires asynchronous communications between
the nodes. Using synchronous communications in an asynchronous execution scheme is prone
to trigger deadlocks. When two nodes want to communicate with synchronous communications,
both sides must be ready before the communication can occur. For instance, if the master node
has to send new queries or an update message to a worker w;, it has to wait for the worker to be
ready to receive. If in the meantime w; tries to send a query result back to the master, both nodes
get stuck indefinitely waiting for the other node to finish its current operation. With synchronous
communications, exchanges between the node must be sequentially scheduled in order to avoid
these situations. Even in a deadlock free scheme, using synchronous communications still has
some unwanted consequences. If w; is currently processing a query when the master node starts
sending it a message, the master node will effectively be blocked until the end of the processing on
w;. If other workers in the meantime need to send their results back to the master, they in turn
get blocked as well. Synchronous communications, by requiring a fixed sequential scheduling of
the transactions induce synchronization of the computation between the nodes.

2.3.3 Dealing with overlapping families

By computing several families in parallel, we are likely to run into a situation where two families
computed in parallel claim a common part of the database. This situation may occur for two
different reasons:

e The conflicting queries may both be representatives of the same domain family. In that
case, both queries will gather identical or highly similar result sets and each query will
appear in the result set of the other. This situation may occur fairly regularly. Indeed,
each time we select new queries, we choose sequences among the shortest that have exactly
or almost the same length. Variations of a homologous domain are likely to be similar in
length and to become eligible as queries at around the same time.

e Overlaps between result sets may also be fortuitous; two queries belonging to two different
domain families may still overlap over a few residues if a member from the first family
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is neighbouring a member from the second family in the same protein sequence. Indeed
domain boundaries are not sharply defined. In MKDOM?2, an inferred domain ends
where the alignment ends. However this alignment might extend across the true domain
boundary due to incidental similarity, creating an overlap with the neighbouring domain.
An illustration of this scenario is given in Figure 2.6. Because of its sequential nature, the
MKDOM2 algorithm was implicitly taking care of these peculiarities (yet in an arbitrary
way). In a parallel execution we will have to deal with this problem explicitly.
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Query 2 NN

Figure 2.6: Tllustration of a conflict between two results. In the sequential version (right-hand
side), the database update prevents the potential overlap that leads to a conflict in the parallel
version (left-hand size).

Despite these situations, we still expect our end results to be a partition of the protein
space into non overlapping families. Even in a parallel processing, queries are still selected in a
sequential fashion by the master, queries are therefore ordered and we use this ordering to solve
the conflicts. Results are prioritized according to the age of the queries. Indeed, we outlined
previously that queries may have widely varying processing times, which implies that the master
may receive the result of query Sy before that of query &; even if S was selected after S;. In
the case of a conflict, we want to give the priority over the conflicting residues to the result of
the oldest query, that is, to the query that was selected earlier by the master. The master must
therefore maintain a waiting list of results to queue the results and process them in an orderly
fashion, no result can be taken into consideration unless all the results of the previous queries
have been received and processed.

In the case of an overlap due to homology, one of the results is lost for good since both results
reflect the same underlying homology relation between the segments. In a sequential processing
only the fist selected sequence would be processed so it seems logical to discard the result of
the second one. If the case of an overlap due to neighbouring domains, one may think that in
order to avoid recomputing the second family, shaving the few compromising residues off the
most recent query would be a fair resolution of the conflict. In practice however, this solution is
not applicable. If the overlap is indeed accidental, a few residues removed from a segment may
make the quality of its match with the query fall below the threshold above which we consider
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the match to be relevant. Using PSI-BLAST makes the matter even worse: if this segment was
considered in the construction of the PSSM, it may have influenced other matches that would
not have been found were those residues absent from the database. In conclusion, even with an
incidental match we have to consider the whole result as tainted and discard it completely. The
same query may be processed again once the database has been updated and the conflicting
residues have been removed.

Each time we encounter a conflict, regardless of the cause, we must throw away one of the
results and the compute time spent creating that results is therefore wasted. If it is an incidental
overlap, the situation is even worse since for only a few overlapping residues, we must recompute
the discarded result again. All this time spent computing families that are not part of the end
results is harmful to the performance and these situations should therefore be avoided if we
want our parallel algorithm to be efficient. Avoiding all these overlaps however, would require
knowing the results in advance. Yet with some additional information on the sequences, we may
be able to forecast potential conflicts sufficiently well to prevent most of them.

Given two sequences, we would like to know if they are likely to match the same parts of
the database through PSI-BLAST. For this we rely on a global comparison of all sequences
in the initial database using BLAST. The results of this BLAST search are summarized by
a logical matrix A, called the adjacency matrix, where As, s, # 0 if sequences S; and S;
were found to match locally. Using this matrix as a guide, we only select queries to run in
parallel if they do not share similarity in this first BLAST search: if Ags, s, # 0, S;, §j, or any
subsequence of S; or §;, may never be selected as queries at the same time. Since a PSI-BLAST
search generates broader results than a classical BLAST search, the all-against-all search cannot
absolutely guarantee that the results of non-homologous queries will not overlap. This additional
information, however, ought to be sufficient to ensure that the occurrence of these overlaps is
infrequent enough not to have a significant impact on the performance of the parallel execution.
We outlined in 2.3.2 that queries must be processed asynchronously to balance the load across
the workers. The queries selected at a given time must therefore not only be independent from
each other, they must also be independent of all the previously selected queries which are either
still running or whose results have not yet been validated and removed from the database.

In our scheme, two sequences &1 and Sp, which are fragments of homologous sequences,
are considered homologous even if §; and Sz are not themselves homologous. This has two
unpleasant consequences towards the end of the processing when most of the sequences remaining
in the database are fragments of larger sequences: 1) this may artificially decrease the number
of potential query-sequences thus leading to partial starvation (not enough runnable query-
sequences to harness all the platform resources); 2) by forbidding the selection of some small
queries for reasons that are not applicable any more, the adjacency matrix might force us to
select bigger queries than we would actually need. Recording the positions of the matches on
the sequences could also help reduce the number of false positives. However the information
on matches is kept as basic as possible for performance. Indeed query selection is performed
by the master that should be as lightly loaded as possible, as outlined previously in 2.3.2.
The adjacency matrix in its binary form is already a massive amount of information, scaling
quadratically with respect to the size of the database; having the master handle this most basic
information efficiently enough to avoid hurting the global efficiency of the algorithm is already
an implementation challenge, adding more information may do more harm than good if it slows
the master down significantly.

Running all the sequences through BLAST may be seen as a very expensive preprocessing
phase, almost as expensive as the whole computation we want to parallelize. However contrary to
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the MKDOM2 algorithm, this all-against-all BLAST search is embarrassingly parallel and can
therefore be trivially parallelized. Furthermore, this search uses a simple BLAST search which
is less time-consuming than a PSI-BLAST search. Therefore, even if this preprocessing has a
large computational cost, it enables us to reach our goal: to very significantly decrease the wall-
clock time needed to produce the ProDom database (including the time needed to perform this
preprocessing). Moreover the global comparison of all sequences is a common computation in
bioinformatics that is required for other applications: its cost can be shared with other projects.
For instance, in the prospect of routinely creating new releases of ProDom, we may envision to
reuse the results of the global comparison required to build protein families in the HOGENOM
database [41].

Optimizing database updates

The database updates in MKDOM2 are there to ensure that once a protein segment has been
defined as a domain in a family, it can never appear again in another search result and therefore
be part of another family. In MKDOM2 this is done by recreating a new version of the database
where the previously defined domains have been removed and by reformatting the new version of
the database into BLAST format. It would seem more efficient to amend the existing BLAST
database than recreating a new version at every iteration, but writing into an already formatted
BLAST database is not officially supported. For this matter, MKDOM2 use of PSI-BLAST
is at odds with the way BLAST tools were intended to be used. Reformatting a database in
BLAST format is a costly process that reorganizes the data for PSI-BLAST efficiency. This is
deemed worthy because the target database is assumed to be long-lived, so that many queries
may be performed on a database once it has been formatted. The cost of database formatting
is therefore balanced by the time saved every time PSI-BLAST uses the database. However in
MEKDOM2 the lifespan of a database is typically only one query, which makes reformatting the
database a burden.

Although updating the database is not officially supported, it is not impossible. Formatting
a set of sequences into BLAST format creates three new files: a data file containing the sequence
data, a header file containing metadata (e.g., sequence identifiers) and an index file containing
the start positions of each sequence and its metadata in the data and metadata files, respectively.
Modifications can be applied to the data file provided these modifications do not require changing
the length of the sequences. Taking advantage of this fact, we designed a masking mechanism
that relies on the scoring mechanism of PSI-BLAST to ensure that masked segments can never
appear again in the result of a query against the database. With the default parameters, which
we use in MKDOMZ2, an alignment stops if its score drops by 25 points or more without going up
again. In the amino acid alphabet, one symbol, the end of translation or ‘*’, scores particularly
badly when matched with any other residue than itself. As ‘*’ denotes the end of the translation,
it does not correspond to an actual amino acid but is a counterpart for STOP codons in DNA.
In the standard BLOSUMS62 [24] scoring scheme used by PSI-BLAST, a ‘¥’ is worth —4 points
against any residue other than itself. Since domains defined by MKDOM2 are composed of 20
or more consecutive residues, replacing the residues of a domain by a series of ‘*’ gives it an
alignment value of at least -80, which is more than enough to ensure that the domain cannot
appear again in a search result. Over the processing of a database by MPI MKDOM2, using
the update mechanism requires as many write operations as one formating of the full database.
This mechanism implies that MPI _ MKDOM2 must hold an index to know where to apply the
modifications in the data file. This functionality however is provided “for free” as an index is
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already created by the BLAST formatting and MPI _ MKDOM2 can reuse the same index.

2.4 MPI_MKDOM2 outlined

In the previous section we presented the most important points of our distributed algorithm,
MPI_MKDOM2. In this section we summarize our algorithm and present MPI MKDOM?2
in its complete form on the master and worker sides.

2.4.1 Notations

We note S the initial list of protein sequences Sy, -+ ,S,. We use Sf’e to identify a segment on
sequence S; going from position b to position e.

The logical homology matrix is noted A where As; s, # 0 if S; and S; are homologous and
therefore mutually exclusive as queries.

An instance of MPI_MKDOMZ2 is composed of g processes Py, - -+ ,P,. The set of processes
is split into a set W of worker processes Wi, --- , WV, and a master process M.

MPI messages are noted (7| D) where T is the type associated with the message and D
are the data sent. The master process sends to the workers either ( QUERIES |¢) where ¢ is a
list of queries to be processed or ( UPDATE |u) where u is a set of segments to be masked in
the database. Workers send back to the master message of type ( RESULT |gs, f) where g5 is
a segment identifying a query and f the domain family created by processing gs.

2.4.2 Worker algorithm

The worker side of MPI MKDOM2 presented in Algorithm 3 is fairly straightforward: a
worker is an infinite loop waiting for messages from the master. Messages can either be new
query batches or database update instructions and the worker acts upon them in the order they
are received. In both cases, database updates or query batches, the content of the message is a
list of segments. If the message contains QUERIES, the worker fetches the sequence data from
the database. The sequence is tested for repeats, and either the sequence or its internal repeat is
used to search the database for homologous segments using PSI-BLAST. The resulting matches
are parsed to define a set of non overlapping segments. The result is then sent back to the master
immediately before processing the next query. If the message is an UPDATE message, all the
positions of the segments are masked in the BLAST database and replaced by strings of ‘*’.

2.4.3 Master algorithm

The main loop of the master process is outlined in Algorithm 6 and goes on until the database
is empty. The master process relies on 3 data structures:

segments: a set of segments Sf “ representing all the sequence segments that are not yet part
of a domain family.

workload: for each worker Wy, workload[W}] holds the number of queries that have been allo-
cated to this worker and are still to be processed.

result _queue: the role of this data structure is to make sure that results are validated in the
same order as the queries were selected. When the master selects a segment Sf “ as query,
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Algorithm 3: MPI MKDOM2 worker algorithm.

db — BLAST database created from S
while db not empty do

Receive (type | segments) from My
if type = UPDATE then

for Sf’e € segments do
L Mask §; from position b to position e in db

Ise if type = QUERIES then
for segment Sf’e € segments do

o)

if Sf’e contains a repeat Sf/’e/ then
| f < PSI-BLAST(S!*, db)
else
| f < PSI-BLAST(S!, db)

| send (RESULT|S)°, f) to My

it pushes Sf’e to the back of result queue. When the result for Sf’e is received, it takes
the place of the query segment in result queue. The results are pulled from the front of
the queue for validation.

blocking: for each sequence S;, blocking[S;] records how many homologous sequences are cur-
rently selected as query. A segment Sf “ is selectable as a query only if blocking[S;] = 0.

update: a set of segments that contains domains from recently validated families that have yet
to be masked in the BLAST databases on the workers.

The master is discharged of all tasks that could be performed by workers in order to keep its load
as low as possible. Ultimately, the master process only performs operations that must remain
sequential: query selection and result validation.

Query Selection: The query selection algorithm is represented in Algorithm 4. The constant
QUERY_ THRESHOLD defines the minimum number of queries per batch. For each worker
that has fewer than QUERY THRESHOLD queries to process, a new list of queries is created.
Queries are selected by scanning segments by order of increasing segment size. A segment S;’ e
is selected if blocking[S;] = 0. Once a segment has been selected, it is added to the current list
of shortest queries. blocking is updated by incrementing by one blocking[S;] for all sequences
§S;j verifying Ag,s; # 0.

Result validation: To validate a family f, we must check that none of its domains overlap
with a domain in previously defined families. We use a simpler and equivalent test represented
in Algorithm 5, which consists in checking that all the segments within f can be found within

segments. For each segment Sf’e € f we must find a segment Sjl?/’el € segments such that

S C S, that is, S; = S;, V' <band ¢ > e.
The main loop of the master, illustrated in Algorithm 6, goes through 3 steps:
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Algorithm 4: SelectQueries
Input: A reference to result queue
Output: new queries: a table of list of queries

foreach worker W, do
if workloadWV,] < QUERY THRESHOLD then
L new _queries|[Wy] < ()

foreach Sf’e € segments by increasing order of size do
if blocking[S;] = 0 then
Select Wy, for which length(new _queriesVy]) is minimum
if length(new _queries)Wi]) = QUERY _THRESHOLD then break
new _queriesWy| < new _queriesWy], Sf’e
result _queue «— result _queue, (Sf’e, {1
workloadWy] <« workload W] + 1
foreach S;, As; s, # 0 do
L blocking[S;] < blocking[S;] + 1

return new queries

Algorithm 5: FamilylsValid
Input: f, a protein domain family
Output: TRUE if the family is valid, FALSE otherwise

foreach segment Sf’e € fdo
if 398;’ © € segments, Sf’e C 8;-) “ then
L return FALSE

return TRUE
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1. If queries _meeded is set to TRUE, the master select new queries following the Algorithm 4
detailed above. The master sends update to all the workers and sends new queries. update
is then reset to an empty set.

2. A result is received from a worker Wy, the workload for W is decremented accordingly.
If the worker has less than QUERY THRESHOLD/2 queries left, queries needed is set
to TRUE to trigger the query selection at the beginning of the next iteration. The new
family is inserted in result queue in place of the query that created it.

3. All the families available from the front of the queue are validated following the algorithm
detailed in Algorithm 5. If a family is valid, its domains are added to update, and removed
from segments, possibly shortening or splitting some segments.

2.4.4 Note on the implementation of MPI_MKDOM?2
Implementation of asynchronous communications

The MPI MKDOM2 algorithm was implemented in C++ and our implementation is, for the
most part, faithful to the theoretical algorithm. However some changes were required in order
to deal with technical limitations in some MPI implementations. We have attempted to make
our implementation independent of specific MPI implementations. It has thus been successfully
compiled and tested with various MPI libraries such as OpenMPI [20] or MPICH2 [21]|. However, due
to technical difficulties, implementation of communications differs from the theoretical algorithm.
As explained in Section 1.5 asynchronous communications are a necessity for MPI_ MKDOM2.
MPI provides the possibility to asynchronously send messages through the MPI_Isend function.
The I in MPI_Isend stands for immediate, meaning that the call can return before the receiver has
actually received the data. The sender must test that the reception has happened using calls such
as MPI_Test or MPI_Wait. Incomplete non-blocking operations consume resources, for instance
each communication in progress requires a handle to identify it. An MPI implementation may
have a fixed number of these handles. When it runs out of handles, it will either fail or block
new communications until some handles are freed. In the case of MPI MKDOMZ2, workers
could be blocked during long periods of time processing a query, time during which they are
unable to check for incoming messages. The master process must therefore be cautious when
sending messages to workers with a large backlog of yet unreceived messages. Implementing a
flow control mechanism would have been too cumbersome. Instead we added a second thread to
all processes to handle communications. The second thread allows communications to progress
even when a worker is otherwise busy for a long time. This additional thread is woken up
periodically by the operating system scheduler and explicitly put to sleep after performing the
necessary send/receive operations.

Restart mechanism

An MPI  MKDOM2 computation does not have to be performed in a single instance and may
be split into several runs. MPI MKDOM2 can be stopped, either intentionally, for instance
because allotted time has expired, or unintentionally, for instance after a system or hardware
failure. Before launching the next run, domain families that have been validated and recorded
to disk by the master in the previous run can be removed from the database. The next run is
therefore started on a smaller database which does not contain previously computed families.
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Algorithm 6: MPI MKDOM?2 master algorithm
Input: S, a set of protein sequences S1,...,S,
Input: A, a logical matrix of homology between members of S
Input: W, a set of worker processes Wi, ..., W,
Output: F, a set of protein domain families

foreach sequence S; do
L segments <« segments U SZQ’length(Si)

blocking[S;] < 0

foreach workers W, do
L workload[Wy| < 0

result _queue «— ()
update — {}
queries_needed <+ TRUE
while segments not empty do
1 if queries _needed = TRUE then
queries «— SelectQueries(result _queue)
foreach worker W, do
Send ( UPDATE |update ) to Wi
if JqueriesWy] then
L Send ( QUERIES | queriesWx|) to Wy

update — {}
| queries_needed < FALSE

2 | wait until Receive ( RESULT | S2°, f) from any worker Wj
result_queue[Sy) — (SU°, f)
workloadWy] < workload[Wy] — 1
if workload)Wy] <QUERY THRESHOLD/2 then
L queries_needed — TRUE
3 while result _queue not empty and front(result queue) has received a result do
(8V¢, f) — front(result_queue)

result _queue «— tail(result _queue)
if FamilylsValid(f) then

foreach segment Sf’e € fdo
segments «— Segments\{Sf’e}
L update «— update U {Sf’e}
F—FU{f}

foreach S;, As,s; # 0 do
L blocking|S;| «— blocking[S;] — 1
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However results that were being computed or that were held in queue awaiting validation at the
time of the interruption are lost and have to be recomputed.

Memory management on the worker nodes

An MPI_MKDOM2 worker process needs to have access to the sequence data in order to
fetch the sequences that have been selected as queries. The PSI-BLAST processes also need
to load the database into memory to execute the searches. In order to avoid maintaining two
versions of the same database in memory, we take advantage of the mmap mechanism that is used
by PSI-BLAST to read the target BLAST database. mmap is a POSIX system call [62] that
maps bytes of a file to addresses in the process’ memory space. Data from the file are loaded
into memory when the corresponding addresses are accessed. Depending on the memory usage,
data can be maintained in memory and may be reaccessed without requiring reading from the
file again. mmap allows two processes to share the same mapping of a file. MPI MKDOM?2
therefore also uses mmap to access the sequence data in the BLAST database without requiring
any additional memory. If the machine on which MPI MKDOM?2 runs has enough memory
to hold the whole BLAST database in memory, all operations, fetching query sequence data,
performing PSI-BLAST searches, and masking domains, can be performed in memory on a
common mapping of the database after reading the file once.

2.4.5 Adjacency matrix storage and manipulation

The adjacency matrix in MPI _MKDOM?2 represents a large quantity of data, and grows
quadratically with respect to the number of sequences. Our first choice to store and access
the adjacency matrix was to use an SQLite3 [68] database table. SQLite3 is a lightweight
database engine that stores all data in a single portable file. This choice was motivated by the
ease of use of SQLite, the indexation mechanism provided by the database engine and its low
memory usage. While SQLite3 did provide a convenient and quite efficient way to store and
retrieve data, we found that adjacency matrices stored in SQLite3 did not scale up well, to
the point that it would become problematic for recent versions of UniProt. For instance for a
210 MB dataset, the adjacency matrix stored as an SQLite3 database already occupies more
than 2.3 GB.

To replace SQLite, we defined a format based on 3 binary files: the first file contains the
identifiers of all the sequences; the second file contains, for each sequence, a list of its adjacent
sequences; and an index file containing for each sequence, a structure with three fields indicating
the position of its identifier in the first file, the position of its adjacency list in the second, and the
number of adjacencies for this sequence. Figure 2.7 Illustrates the new database format. Identi-
fiers are represented as null terminated text strings. Sequences in the adjacency file are identified
by their position in the index file. The three files are loaded into memory by MPI MKDOM2
using mmap, which handles the caching of the data according to available memory. As we select
sequences according to their sizes, adjacency data for sequences of similar size are likely to be
accessed at approximately the same time by MPI MKDOM2. We therefore store adjacency
information in the different files according to the size of the sequences. Adjacencies stored in this
format require 7 to 8 times less disk space than the same adjacency matrix in SQLite3 format.
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Figure 2.7: Hlustration of the adjacency matrix format in MPI MKDOM2. From top to
bottom, arrays represent bytes in: the identifier file, the index file, and the adjacency file. In
this example, the matrix stores adjacency relations (ID1, ID2) and (ID2, ID3).

2.5 Experimental evaluation of MPI _MKDOMZ2's performance

Our goal in designing MPI MKDOM2 was to develop a method able to produce results close
to those of MKDOM?2 while being able to process large datasets (on the Gigabyte scale) in a
reasonable time-frame. The proximity between the sequential and parallel results is addressed
in Chapter 3. In this section we evaluate the second part of this statement, that is, how fast
and how efficiently can MPI MKDOM?2 process a dataset. We evaluate two aspects of the
runtime performance of MPI MKDOM2:

Sequential performance: we compare the time required by MKDOM?2 and MPI MKDOM2
in a sequential setup to process the same dataset.

Parallel performance: we assess the evolution of the time needed by MPI MKDOM2 to
process a sequence dataset as a function of the number of workers.

2.5.1 Experimental setup

We based our experiment on the processing of the entry dataset for ProDom 2003.1, here called
'DB’. This 556,964 sequence dataset presents the advantage to be realistic and conveniently
sized for our experiments. We created a smaller dataset called DB/8 as a random subset of DB
containing 69,621 sequences (an eighth of DB) that could be run sequentially in a reasonable
time.

2.5.2 Comparison between MKDOM2 and a sequential run of MPI_MKDOM?2

Although MPI MKDOM2 has been designed as a distributed algorithm, it can be set to run
with only one worker selecting queries one by one, thus replicating the behaviour of MKDOMZ2.
In order to test the effect of the sequential optimizations in MPI _MKDOM2 (mainly differences
in the way database updates are handled), we processed DB/8 with both MPI MKDOM?2 and
MKDOM2. Processing DB/8 using MKDOM2 took 1,420 minutes while it took 1,043 minutes
using MPT_ MKDOM2. In a sequential execution, MPT _MKDOM?2 is more than 25% faster
than MKDOM2.
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2.5.3 Parallel efficiency

To assess the efficiency of parallelization, we studied the evolution of the time needed by
MPI_MKDOM2 to process the DB/8 database as a function of the number of workers. The
results are reported in Table 2.1:

e the wall-clock time is the time elapsed between the beginning of the processing and its
completion;

e the total compute time is the cumulative use time of the resources, that is, the wall-clock
time multiplied by the number of workers;

e the speedup is the acceleration factor achieved with respect to the 1-worker execution;

e the efficiency is the total compute time divided by the total compute time of the 1-worker
execution.

The speedup, pictured as a function of the number of workers in Figure 2.8 (left-hand side graph),
reaches a maximum slightly below 33. In fact, after a quick initial increase, the speedup shows
a plateau between 39 and 79 workers (achieving values between 32 and 33), before decreasing.
This behaviour is also exemplified by the evolution of the efficiency (see Fig. 2.8, right-hand
side graph) which is quite high up to around 31 workers, before dramatically decreasing. We
conclude that, for DB/8, our parallelization is quite efficient for up to 31 workers.

Number of workers Completion time Total compute time Speedup Efficiency

1 14h20°32” 14h20°32” 1.00 1.00
2 7h09’37” 14h19714” 2.00 1.00
3 5h03’30” 15h10°32” 2.84 0.95
7 2h12°50” 15h29°54” 6.48 0.93
15 1h0512” 16h18°02” 13.20 0.88
31 0h33’32” 17h19°51” 25.65 0.83
39 0h29°00” 18h51’32” 29.66 0.76
47 0h26’48” 21h00°02” 32.10 0.68
63 0h26°17” 27h36’41” 32.72 0.52
79 0h26’10” 34h28°24” 32.87 0.42
95 0h29°13” 46h16’47" 29.44 0.31
127 0h40’28” 85h40°26” 21.26 0.17

Table 2.1: Summary of parallel performance results.

There are two factors that can negatively influence the speedup as the number of workers in-
creases:

e For a given database size, the average query processing time is the same, yet as there are
more workers, the master node must work harder to select queries for all workers. The
balance between the time the workers spend processing queries and the time the master
needs to process the results and select new queries is crucial.

e The more workers there are, the more queries are processed in parallel and the higher the
chances of conflicts. Indeed, the efficiency of our algorithm relies in part on its ability
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to predict conflicts between results of different queries. If a significant proportion of the
results are discarded, our algorithm will fail to provide a significant improvement in terms
of wall-clock time.

The limitation in achievable speedup could therefore be due either to the master process being
overloaded by the number of workers to manage, or alternatively by an increase in the frequency
of conflicts. Table 2.2 reports the percentage of results whose output had to be discarded as
a function of the number of workers: even for a large number of workers, the percentage of
conflicts remains low. Our approach for preventing conflicts is thus successful: for instance we
observed only 1.59% conflicts when processing DB/8 on 39 workers, vs. 25.2% without conflict
prediction.

Number of workers 1 2 3 7 15 31

% of conflicts 0.37 047 0.55 0.70 092 1.35
Number of workers 39 47 63 79 95 127
% of conflicts 1.59 2.18 3.13 3.75 4.22 5.11

Table 2.2: Percentage of queries leading to conflicts as a function of the number of workers, for
the processing of DB/8.

Since our conflict mechanism is apparently efficient even with a high number of workers,
the decrease of efficiency must be due to the master node. The prospect of trying to process
gigabyte-scale datasets given the fact that the speedup reaches a maximum that is less than 33
may look rather grim. However, the larger the database, the larger the achievable speedups.
Indeed, with larger databases query processing times will increase, and it should be easier to
find non inter-dependent queries. To verify this, we processed the DB database with 39 and
79 workers, which took 57,424 s and 33,403 s respectively, and compared these execution times
with those for DB/8. The processing time of DB was divided by 1.72 when going from 39 to 79
workers, whereas that of DB/8 was only divided by 1.11. Therefore the larger the database, the
larger the speed-up achievable by MPI MKDOMZ2. This was further exemplified during the
construction of a new version of ProDom.

2.6 Computing ProDom 2010.1

To demonstrate the ability of MPI MKDOM?2 to efficiently process large datasets, we used
MPI_MKDOM2 to compute the family domain clustering on the whole UniProt [57] release
2010 7. After masking low complexity sequence segments with SEG [56], we carried out a global
comparison of all sequences using BLAST. This blast search generated 7,875,535,700 matches
with an E-value below 107, From these matches, we built an adjacency matrix containing
6,664,994,831 relations. Following the methodology used to produce ProDom releases with MK-
DOM?2, UniProt was filtered for partial or preliminary sequences, leaving 6,118,869 sequences or
2,194,382,846 residues to be processed. A first batch of domain families was then defined based
on 2,929 families from SCOP [38] release 1.75, leaving 1,896,351,896 residues to be processed
by MPI MKDOM2. This processing was carried out through successive fractional runs on
the CINES jade cluster and various clusters of GRID’5000 as well as tomate, a 16-core shared
memory machine, for the last part of the computation. The processing was split into 26 runs.
For each run at CINES or on GRID’5000, as many worker processes were started as there are
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cores on each node so that each worker process had full access to one core. The master process
was treated differently and was placed on a node without any other processes. The main reason
for this was to give the master process access to the full physical memory of the machine for
handling the adjacency matrix.

Table 2.3 summarizes various aspects of the computation. The complete processing took
12 years and 233 days of CPU time and was carried out in 19 days and 4 hours of wall-clock
time. The workers were kept busy 78% of the time on average, and the master process 20%.
Although MPI_ MKDOM2 was processing thousands of queries in parallel, only 3.5% of the
results had to be discarded because of conflicts. MPI MKDOM?2 is therefore very well suited
for processing large datasets.

CPU time | 110,804 hours (12 years, 233 days)
Wall clock time | 460 hours (19 days, 4 hours)
Avg. Worker activity | 78.76%
# queries | 5,626,277
# invalid queries | 198,313 (3.5%)

Table 2.3: Some aspects of the computation of ProDom 2010.1.

Table 2.4 summarizes several aspects for each run:
Platform: platform used for this run.

Wall-clock time: duration of the run in hours.
Number of workers: number of worker processes.

CPU time: the definition of the CPU time depends on the platform used: on jade and
GRID’5000 clusters, the CPU time is defined as the number of nodes reserved x number
of cores per nodes x wall-clock time. On tomate which is a shared machine, the CPU
time is defined as number of processes x wall-clock time.

Master load: percentage of the time during which the master node is busy, selecting queries
or validating results.

Worker load: percentage of the time during which the worker nodes are busy, either processing
queries or applying database updates.

Conflicts: percentage of the results that were not valid.

Data processed: the percentage of the initial dataset processed during this run.

size of the data processed
CPU time

Efficiency the efficiency is defined as

Figure 2.9 illustrates the evolution of several aspects of the computation as a function of the
wall-clock time. From top to bottom, the different panels represent:

e the evolution of the size of the database;

e the size of the result queue plotted each time a result is tested and therefore removed from
the queue;
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e the size of the query, plotted with respect to the time of reception of the result for this
query;

e the time required to process a query, also plotted with respect the time of reception of the
result for this query; .

e a graphical representation of the activity of the different nodes over time.

While the whole processing was performed globally efficiently, some runs were more efficient
than others. For some runs such as run 15, the worker load is high yet efficiency is relatively
low. This can be attributed to the fact that, at the end of a run, computed results that are
queued and awaiting validation are lost. Short runs tend to have a lower efficiency because of
this border effect. This is exacerbated as queries get longer because of their larger processing
times. Despite the large variations in processing time, MPI MKDOM?2 was still able to find
independent queries and maintain a high worker load, even with several thousands of results
queued. However, as the number of sequences in the database diminishes, it becomes more and
more difficult to efficiently use a large number of workers. This is exemplified by the end of runs
19 to 22, where it became increasingly difficult to find independent queries and consequently,
more and more workers were left idle. Therefore when the size of the database decreases, it is
necessary to decrease the number of workers to maintain a high efficiency. Run 25 is noteworthy
as it exhibits a rare pathological behaviour of MPI MKDOM2: on very long queries, the
internal repeat detection mechanism may fail because of combinatorial explosion of matches
between repeats. In MPI _ MKDOMZ2, we reused the internal repeat detection mechanism used
by MKDOM2 for simplicity. However for future releases of ProDom it appears important to
investigate the possible replacement of the internal repeat detection procedure by a newer, more
reliable method.
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Run # | Platform | Wall-clock | Number of | CPU time | Master | Worker | Conflicts Data Efficiency
time (h) workers (h) load (%) | load (%) (%) processed (%)
1 CINES 2 32 80 5.74 96.14 0 0.02 3,504
2 CINES 2 152 320 16.67 95.56 1.60 0.21 12,387
3 CINES 2 480 976 14.22 91.83 1.89 0.09 1,697
4 CINES 2 480 976 12.64 85.83 1.54 0.10 1,848
5 CINES 2 480 976 13.01 93.04 0.82 0.04 776
6 CINES 6 480 1,952 22.87 96.32 5.47 2.25 21,293
7 CINES 24 952 23,040 34.93 69.15 12.31 9.72 7,793
8 GRID’5000 5 36 200 4.48 91.89 0.01 0.07 6,058
9 GRID’5000 7 272 1,960 5.89 88.07 2.12 0.75 7,034
10 GRID’5000 8 80 704 2.93 88.22 1.64 0.26 6,858
11 GRID’5000 6 80 528 3.65 96.86 1.79 0.41 14,503
12 GRID’5000 12 144 1,824 4.49 98.07 3.25 2.79 28,209
13 GRID’5000 10 128 1,360 3.85 98.00 6.10 2.21 29,962
14 GRID’5000 9 88 864 3.13 98.08 3.41 1.19 25,470
15 GRID’5000 8 64 4,096 2.70 97.83 2.69 0.53 2,383
16 GRID’5000 8 136 1,152 4.49 97.89 3.62 2.70 43,223
17 GRID’5000 2 136 336 23.79 96.39 5.04 1.23 67,422
18 CINES 24 512 12,480 29.04 99.56 7.20 18.35 27,162
19 CINES 24 512 12,480 50.88 95.46 10.31 18.12 26,825
20 CINES 24 512 12,480 37.79 85.26 4.06 11.52 17,077
21 CINES 24 512 12,480 25.83 72.53 2.72 6.11 9,044
22 CINES 24 512 12,480 20.73 39.26 3.16 2.54 3,760
23 GRID’5000 60 48 3,600 7.26 99.92 0.39 5.68 29,148
24 CINES 24 48 1,344 21.52 98.28 0.57 7.74 106,336
25 tomate 137 15 2,032 18.56 46.86 0.35 4.48 40,728
26 tomate 12 6 84 24.92 39.79 0.02 0.94 205,757

Table 2.4: Some aspects of the runs for the computation of ProDom 2010.1.
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Figure 2.9: Graphical summary of the execution of MPI _MKDOM?2 on UniProt 2010 _07. From top to bottom: (a) size of database
in millions of amino-acids; (b) number of queries considered at a given time; the dark fringe accounts for the queries currently being
processed, the light part represents the sequences already processed and awaiting validation; (¢) query size in amino-acids; (d) run time
of individual queries; (e) worker time-line, a coloured line indicates that the worker is busy either processing queries (blue) or updating
the database (red).
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CHAPTER 2. PARALLELIZING THE CONSTRUCTION OF PRODOM




Chapter 3

Comparing protein domain clusterings

In the previous chapter, we presented a distributed protein domain clustering algorithm and we
showed that this new algorithm could efficiently process gigabyte-scale protein datasets. Yet, we
had to cut some corners to allow this speedup: the heuristics behind the MKDOM?2 algorithm
had to be changed to allow the creation of several protein domain families in parallel. While we
designed MPT  MKDOM2 to ensure that the disruption was minimal, it remains to be shown
how close sequential and parallel results actually are.

Data clustering is used in many fields of study and the problem of comparing different
clusterings has been addressed previously in the literature. In Section 3.1, we present several
existing global similarity criteria: the Jaccard index [25], which reflects the proximity of two
clusterings; the asymmetrical Wallace indices [53] measuring how well one clustering is conserved
in a second clustering; the variation of information 36|, a metric measuring the distance between
two clusterings.

To our knowledge, these global clustering comparison criteria have never been used for com-
paring protein domain clusterings. Indeed, variations between two protein domain clusterings
may come from the way protein domains are grouped, but domains themselves are not atomic
data and may be defined differently in the two clusterings. Consequently, it is not straightfor-
ward to apply global clustering comparison criteria to protein domain clusterings. Automatic
domain family clustering methods are usually compared to expert defined clusterings in ad-hoc
ways by comparing expert defined families to their closest match in the automatic clustering.
The closest matching family between two clusterings is hard to define and often requires to
experimentally set thresholds and rules. Moreover, the average similarity between families does
not necessarily equates to the global correspondence between two clusterings. For these reasons,
it is usually hard to globally assess the similarity between two clusterings using these meth-
ods. In section 3.2, we present our solution to apply global similarity criteria to protein domain
clusterings in a way that takes into account both differences in domain delineation and domain
clustering.

Using these global clustering similarity criteria, we study the scalability and stability of
the results of MPI MKDOM2. By processing several queries in parallel MPI MKDOM2
changes the order in which families are defined and takes into consideration segments which are
by construction longer on average than in a sequential processing. We analyze the effects of
these changes in Section 3.3.

The database growth that motivated the parallelization of MKDOM?2 also has an effect on
the results of PSI-BLAST. The sensitivity of a PSI-BLAST search is conditioned by the size of
the database and decreases linearly with database growth. These effects on PSI-BLAST results
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ultimately impact the clustering produced by MPI MKDOM2 and we assess this impact in
Section 3.4.

3.1 Global clustering comparison criteria

Comparison criteria of clusterings are based on the definition of a clustering as a partition of
the inititial dataset, that is, a set of non-empty disjoint subsets that forms a complete cover

of the initial set of data points. More formally, given a set of data points D = {dy,--- ,dy},
C ={c1, - ,cp} is a clustering of elements of D if:
e VcelC, c#
e U ¢="D;
c; eC

o Vei,c;€C, ¢ #¢; = ¢iNej=0.

3.1.1 Similarity measures based on counting pairs

The intuitive approach to assess the proximity of two clusterings is to count how many ele-
ments clustered together in one clustering are still clustered together in the second one. Several
measures to compare clusterings are based on this intuition. Given a set of data points D =
{di, - ,dy}, one can define @ distinct pairs {d;, d;} € D% d; # d;. Given C = {c1,- -+ ,¢p}
and C' = {c}, -+, ¢} two clusterings of D, we define m (respectively 7') as the sets of pairs of
points clustered together in C (resp. C'):

T = {{di,dj} | de, € C, d; € ¢, /\dj € Ck}
= {{di,dj} ‘ 302 € Cl, d; € C;c Ndj € C;c}

Jaccard similarity coefficient

The symmetric Jaccard index [25], also known as the Jaccard similarity coefficient, J(C,C’) [25],
measures the fraction of pairs clustered in both C and C’ relatively to pairs clustered in C or C":

|m N’
_ T

Je.c)

~|mun

J(C,C") = 1 when C = C', except for C = C' = {{d1},{d2} -+ ,{dn}} where it is undefined.
Inversely, J(C,C") =0if C = {{d1},{d2} - ,{dn}} and C' #C.

Wallace indices

The asymmetric Wallace Wy [53] (resp. Wir) index measures the probability that a pair of
points clustered together in a given cluster of C (resp. C’) are also grouped in C’ (resp. C):

/ /
wic.c) =0T d wie,ey = 07

||

|7

W measures the stability of clustering when going from C to C’. For instance W; = 0.5 is
obtained if a cluster is split into 2 sub-clusters of equal size. Wy, on the other hand, measures
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how well one clustering is represented by the other. For instance, if a cluster ¢; in C containing
1,000 data points is split into two clusters ¢} and ¢, containing 500 points each in C’, Wy(¢) = 0.5
and W][ =1.

3.1.2 Weighted pair based indices

Because Wi, Wiy, and J are based on pairs of residues, each cluster contributes according to the
square of its size in the final index. In order to counterbalance this effect, we compute weighted
indices, where the index of each family is weighted by the number of residues in the family.
Weighted Wallace indices W,,,, and W,,,, are defined as:

W, (C,C) ZMZ

lein el (Jlesnesl = 1)
|cif (Jeil = 1) ’

Czec C ec’
and
\czﬁc ]c,ﬂc | —1)
Va1 =2 Y1l Y <l
C»LEC cieC’

Noting that J(C,C’) can be rewritten as follows:

|m N 7'|

Je,.c) =

|m U /|
|m N ']
|l 4[] = [ |

s !
e+ 1

J(C,C/) = 1 1 4>
Wt Wi

we define J,,(C,C’), a weighted variation of J(C,C’) as
1

Jw (C’C/) = 1 1
W'U]I WU/I[

-1

3.1.3 Variation of information distance

More recently, criteria based on information-theoretic concepts have been proposed. These
criteria are based on the idea that a clustering C = {c1, - ,¢,} of a set of data points D =
{di,--+ ,d,} can be seen as a discrete random variable X : D — C: choosing a random point
d; € D, the value of the random variable corresponds to the cluster ¢; € C to which d; belongs.
Assuming equiprobability of all the points, we define p(¢;), the probability that a random point
d; belongs to cluster ¢; as:
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The properties characterizing the random variable X can therefore be applied to characterize the
clustering C. The “Variation of Information” [36] (V' I) is one of the most recent criteria proposed
in this category and is based on the notion of conditional entropy of two random variables. The
entropy H(C) of C is defined as the entropy of its random variable:

H(C) ==Y ples) log (p(ci)) -

c;eC

The entropy characterizes the uncertainty of a random variable. H(C) = 0 if C = {D} and is
maximal if C = {{d1},{d2}, -+ ,{dn}}. Given a second clustering C’ = {c},-- ,c,} over D, we
can define p(c¢;, c;-), the joint probability of a point d € D to be both in the cluster ¢; € C and in
the cluster ¢ € C":

_eing

p(ci7 Cl') - n

The mutual information I(C,C’) corresponds to the mutual information of their associated ran-
dom variables. It measures the information shared by the two clusterings:

I(X,)Y) = Z Z plci, ;) log (M) .

¢ €C diec’ p(Ci)p(Cj)

I(C,C") expresses how much knowing the value of one of the variables reduces the entropy (i.e.,
the uncertainty) of the second one. If C =C’, I(C,C") = H(C) = H(C'), that is, if both clusters
are identical knowing one completely reduces the entropy of the other.

The variation of information between the two clusterings VI(C,C’) is defined by Meila [36]
as:

VI(C,C'") = H(C)+ H(C") — 2I(C,C").

VI is a true metric respecting the triangular inequality for expressing distances between clus-
terings. VI(C,C") =0 if and only if C = C’. If C # C’ then we have:

VI, C) >

SYIN

The nearest possible neighbor C’ of a clustering C is obtained when two singleton clusters in C
are merged together in C’ (or inversely, when a 2-point cluster is split). The distance between
two clusterings also has an upper bound:

VI(C,C") <logn.

This upper bound is reached with C = {{d1},{dz2}, - ,{dn}} and C' = {D}. VI also verifies a
stronger bound if max(|C|,[C']) < v/n:

VI(C,C') < 2log (max(|C,|C])) .
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3.2 Assessing the similarity of protein domain clustering

3.2.1 Comparison by matching segments and families

Authors of automatic domain classification methods usually empirically assess the quality of their
results by comparing automatically created families to families extracted from expert sources [23,
42] such as SCOP [38] or Pfam [47]. Each expert family is compared to its closest match in
the automatic clustering. The global similarity between the two clusterings is then defined as
the average similarity of these one on one comparisons. This approach is however problematic:
the closest matching family between two clusterings is hard to define, and the average similarity
between families does not necessarily equates to the global correspondence between the two

clusterings.
The “best matching family” in our case is ill-defined. Let C = {c1,--- , ¢y} be the reference
protein domain family clustering, and C’ = {c}, - , ¢} an automatically generated set of fam-

ilies. Given a family ¢; € C, there are several ways to define the best matching family c;» el
A first method may consist in first finding the best match for each domain individually and
then choose the family with most domains in common. A second approach would be to find the
best match for the whole family in terms of number of residues covered by both families. As
illustrated in figure 3.1 both definition are not be equivalent.

fi

=

Figure 3.1: Tllustration of the differences between matching families based on segments and
matching families based on residues. Family f]’- matches the majority of the segments in f;
without matching the majority of its residues.

A second difficulty arises from the fact that the average similarity of families in C with their
best counterparts in C’ does not necessarily equate to the global similarity between C and C'.
As noted by Meila [35], when comparing clusterings by matching clusters, unmatched parts are
unaccounted for. Figure 3.2 illustrates the problem on three families: even though clustering 2
intuitively seems further from the truth than the first one, both would get the same similarity
score with a cluster matching criterion.

True clustering Clustering 1 Clustering 2
I N I . I .
I N I . I N
I I I
I H ] . 777 N
I N E (7] . ENN [ .

Figure 3.2: Illustration of the problem of cluster matching. Both clusterings 1 and 2 are equiv-
alent if each family is compared to its best match in the true clustering.

All these difficulties make the current evaluation schemes for protein domain family cluster-
ings counter-intuitive, incomplete, and hard to interpret. We propose instead to use residues as
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atomic data to apply global clustering comparison criteria.

3.2.2 Applying global criteria to domain families

Global criteria presented in Section 3.1 do not have the same drawbacks as ad-hoc methods.
They are able to provide an intuitive reading of the overall similarity between two clusterings.
These criteria however cannot be applied directly to domain families.

A protein domain family clustering F such as those produced by MPI _ MKDOMZ2 do not
match the mathematical definition of a partition because the clustered elements, the segments,
are not atomic data points. A family of homologous domains f € F is a set of segments of the
initial sequences that are believed to share a common evolutionary history. Variations between
two clusterings can come from the composition of the clusters. For instance, a segment s; can be
clustered with a second segment so within one clustering but not in the other. Therefore, varia-
tions between clusterings can also come from the segments themselves being defined differently
by the two clusterings. Comparing clusterings by looking at segments is ill-defined: segments
are not atomic data, they can overlap, and there may be more segments in one clustering than in
the other. It is therefore difficult to define a bijection between cluster elements in different clus-
terings without resorting to subjective criteria, thresholds, and rules, that render the analysis
harder to interpret.

For the purpose of comparing clusterings, protein domain families can be viewed as sets of
residues. In this context, The actual chemical nature of the residues is irrelevant. A residue is
uniquely defined by the sequence it belongs to, and its position within this sequence. Residues
are atomic data that are unequivocally defined in both clusterings. By basing our analysis on
residues, we take into account both the clustering of domains into families and the congruence
between domain boundaries.

Domain families defined by MKDOM?2 or MPI MKDOM?2 do not cover the full initial
dataset. Segments shorter than 20 residues, considered too small to represent an actual domain,
are not taken into account. For our analysis however, clusterings are required to be complete
partitions of the dataset. In order to have as many residues in each of the partitions, segment
extrema that are too short to be considered segments and that do not belong to any family are
viewed as singleton families, thus ensuring that both partitions are complete partitions of the
initial data set.

Computing global indices on protein domain families

Global criteria are computed based on cardinals of clusters and cluster intersections. Considering
a domain family f € F as a set of residues, we can define |f|, the cardinal of f as:

[fl= D (ei—bi+1)

Sheef

Cardinals for all families f € F can be linearly computed on a list of segments sorted by
family. In order to compute cardinals of intersections between families f € F and f' € F' we
define a partition P as the set of segments of maximal length on which the both clusterings
agree.

Figure 3.3 illustrates the definition of P on an example sequence with two domains defined
differently in F and F’. Sorting segments of P according to their family f € F and f' € F’
effectively groups segments belonging to the same intersection. The cardinals of all intersections
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can then be computed linearly on the sorted list of segments of P, from which we directly derive
Wallace indices, Jaccard index and VI distance using the equations given in sections 3.1.2 and
3.1.3.

IATSTSS) ) ) ) )] )] )] )] ]/
P SNV

F' LTI \
F I
S | \

Figure 3.3: Tllustration of the relation between F, 7' and P on a sequence S.

3.3 Measuring the effect of parallelization

In Chapter 2, we tested the parallel efficiency of MPI MKDOM?2 by processing DB/8, a
69,621 sequence database, with an increasing number of workers. We showed that on DB/S8,
MPI MEKDOM?2 was able to efficiently use up to 31 workers, providing a speedup above 25
compared to a 1-worker execution. We designed our algorithm to ensure that the parallelism has
as little effect as possible on the results: queries running in parallel are believed to be unrelated
and the few remaining conflicts between families are resolved in a conservative way. However,
the more workers we use, the more queries are processed in parallel and the further we depart
from the sequential behavior. We therefore expect the results to be modified as we increase the
number of workers.

To quantify the effect of the parallelization on the results of MPI MKDOMZ2, we compared
the protein domain clusterings inferred on DB/8 with an increasing number of workers to the
clustering produced sequentially on the same database. The top left graph in Figure 3.4 shows
the evolution of the W,,, and W,,,, indices with respect to the sequentially produced clustering
as a function of the number of workers. W,,, (resp. Wi,rr) denotes the probability, weighted by
family size, that two residues belonging to the same family according to the sequential (resp.
parallel) clustering, also belong to the same family according to the parallel (resp. sequential)
clustering. Wy, and W,,,, indices slowly decrease as the number of workers increases, denoting a
predictable negative impact of parallelization. However, Wallace indices stay high, above 0.9, as
long as fewer than 50 workers are used. This denotes a very good stability of the clustering with
regard to parallelization. W,,, indices are larger than W,,,, indices, meaning that the sequential
clustering is better recognized in the parallel clustering, than the opposite is true. The same
trends are observable with the VI distance (Figure 3.4, top right graph). VI divergence from
the sequentially produced clustering seems to stall at around 0.8, when the maximum distance
one may observe between two such clusterings is around 25. One may also note that even the
one worker execution results are not identical to the sequential results. This is because in the
sequential version, queries are processed and validated one by one, while in the one worker
execution, the worker node receives several queries at once (between 10 and 50, depending on
the size of the queries).

Because Wallace indices seem to reach a plateau for more than 70 workers, the bottom
left graph in Figure 3.4 presents the Wallace indices between clusterings obtained at consecutive
points. In other words, in this figure, W,,, (resp. W,,,,) for 15 worker processes is the probability
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Figure 3.4: Overall assessment of the stability of protein domain families with respect to the number of workers. Top panels compare
the clusterings produced in parallel to sequential results, bottom panels compare successive MPI  MKDOM2 clusterings. Left panels
shows Wy,,, Wy,,, and J,, indices, right panels, the Variation of Information distance.
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that two residues belonging to the same family according to MPI _ MKDOM2 run on 7 workers
(resp. 15 workers) also belong to the same family with 15 workers (resp. 7 workers). Contrary to
what the apparent plateau of W,,, and W,,,, indices could suggest, the structure of the clusterings
still evolves slightly when the plateau is reached even if this evolution is quite limited: all Wallace
indices are around 0.95. Similarly, the VI distance (Figure 3.4, bottom right graph) between
two consecutive clusterings does not tend towards 0. These distances remain however relatively
small, around 0.4.

One could expect the chances of conflict between results to be higher with larger families
and that, consequently, larger families would be more impacted by parallelization than others.
However, we did not find any significant correlation between family size and W,,, even with 127
workers.

Figure 3.5 presents the distribution of the W,,,, index with respect to the numbers of domains
in families. The left-hand side panels are zooms of right-hand side panels for families containing
fewer than 50 domains. Wallace indices do degrade when the number of workers increases.
However, even if the Wallace index of a small family can take any value, more than 80% of these
families have an index larger than 95%.
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Figure 3.5: Impact of parallelization as a function of family size. Each panel compares the
protein domain families built from DB/8 sequentially and in parallel runs respectively with 1,
31, and 127 workers.

From this assessment we conclude that the sequential clustering is essentially preserved in a
parallel computation as long as the number of workers is not too large (below 40 workers). The
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bound on workers induced by this qualitative constraint —preserving protein domain families—
is however less stringent than the bound induced by the computational requirements —the
efficiency should stay high. Indeed, as we have seen in Section 2.5, MPI MKDOM?2 starts
sharply loosing efficiency above 30 workers while processing DB/8. The number of workers that
MPI MKDOM?2 can efficiently use depends on the size of the database (see Section 2.5), but
so does the quality of the results: the larger the database, the less likely conflicts become and, as
more sequences of similar size are available, the more families we can compute in parallel without
departing too much from the sequential heuristics. It therefore does not seem unreasonable to
generalize this conclusion and use the computational limitations as a guideline for ensuring the
quality of the results.

3.4 Effect of input dataset growth on protein domain clustering

The increase in size of the input database in successive releases of ProDom has been known to
cause the subdivision of protein families into subfamilies in successive releases. Although the
cause of this problem was known, studying this problem and testing alternative strategies with
MKDOM2 on large enough databases would have taken months or years. MPI MKDOM2
now offers the possibility to quickly carry out experiments on large databases and we can assess
the effect of the different solutions using global comparison criteria.

The growth of the input database may modify the composition of domain families in two
ways, as illustrated by figure 3.6. A new shorter sequence may become available and split families
vertically: families that were previously thought to be mono-domain appears to be composed of
two different domain families in the light of the new data. This type of modification of existing
families is expected and can be beneficial for the quality of the results.

The growth of the input database may also split families horizontally. This kind of subdi-
vision is unwanted and is a consequence of the way PSI-BLAST estimates the significance of
alignments.

The significance of an alignment between two sequences is assessed by the E—value (see
Section 1.2.2). The E-value in BLAST and PSI-BLAST is approximated by:

N
E = 25

where N is the number of residues in the target database and S’ is the normalized score of
the alignment [2]. Because E—values increase linearly with the database size, the sensitivity of
homology searches is expected to decrease correspondingly. Matches that, in a previous database
had an E-value low enough to be included in a family, may be deemed not significant enough
in a larger database.

To alleviate the undesirable effects of database growth, we consider the use of False Discovery
Rates (FDR) instead of E-values as homology criterion:

E—val
FDR — value

rank

where rank is the rank among the matches sorted by increasing E-values. FDR are expected to
be more stable with respect to the variation in size of the database as both E-values and ranks
scale linearly with database size.
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Figure 3.6: Illustration of vertical and horizontal splitting of a family. In a vertical splitting
scenario (lower left corner), the addition of a new shorter segment in the database splits all
domains in the family in two. In a horizontal splitting scenario (lower right corner), the increased
E-value induced by the database growth splits the family into two subfamilies or more.

3.4.1 Assessing the impact of database growth on protein domain clustering

We tested the impact of database growth on domain families by running MPI  MKDOM2 on
4 increasingly larger nested databases. In addition to DB and DB/8 previously used, we define
DB/4 and DB/2 which represent respectively a fourth and a half of DB. From DB to DB/S,
these databases respectively contain 556,964; 278,482; 139,241; and 69,621 sequences and are
nested so that

DB/8 c DB/4 C DB/2 C DB.

We ran MPI MKDOM2 with 39 workers on the four databases using the same E—value
criterion as for ProDom releases: a matching segment is considered for inclusion in a family if
the E-value of its alignment with the query is below 1076, We consider the evolution of Wallace
indices for the set of nested databases DB/8 to DB. Table 3.1 presents the Wy, and W,,,, indices
for these comparisons. W), indices probe the stability of families built from the smaller protein
sets when they are embedded in progressively larger sets. As expected, we find that the W,
index decreases as families are constructed from progressively larger sequence sets when using
the E-value criterion (Table 3.1 left hand side).

The right-hand side of Table 3.1 presents the W,,,, indices. There, the clustering of a large
database is compared to the clustering obtained from a subset of this database. The same trends
are seen as for the W, indices, but these trends are significantly milder as The W,,,, indices
stays nearly stable, around 0.80. This means that the clustering of a large database can be
better recognized in the clustering of one of its subsets, than the converse is true. This conveys
the idea that what we see in these tables is indeed the effect of the splitting of families induced

by the growth of databases.

3.4.2 Effect of FDR on the stability of domain clustering

In order to assess the effect of the use of FDR on the stability of domain clustering, we ran
MPI_MKDOM?2 on the four nested databases, this time using a FDR threshold of 1076 instead
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Ww; WwII
DB/4 DB/2 DB |DB/4 DB/2 DB
DB/8 0.75 0.65 0.56 0.82 0.80 0.80
DB/4 0.72 0.61 0.81 0.78
DB/2 0.70 0.78

Table 3.1: Wy, and Wy, indices when comparing the families produced from nested databases
while using the E-value.

of E—value as condition for inclusion in a family. We expect the use of the FDR to result in
larger families in average, and in a better stability of clustering with respect to database growth.
We plot on Figure 3.7, for clusterings with and without FDR, the probability that a family has
at least m domains as a function of n. As expected, we find that using FDR instead of E—value
does result in a significant increase of the number of large families.

However, as shown by table 3.1, using the FDR does not improve the stability of the results
of MPI MKDOMZ2, presumably because the diminution of the horizontal splitting is counter-
balanced by an increase in vertical splitting of the families. In other words, larger families that
are obtained using FDR (Figure 3.7) tend to be subdivided into families with shorter domains.

Ww[ WwII

DB/4 DB/2 DB
DB/8 0.71 061 0.54

DB/4 DB/2 DB
080  0.77 0.77
0.77 0.75

DB/4 0.69 0.59
DB/2 0.66 0.74

Table 3.2: W,,, and W,

w;; indices when comparing the families produced from nested databases
while using the FDR.

Figure 3.8 show the average domain length as a function of database size. As the database
grows, more information is available and some segments, which were thought to be mono-domain
based on a less complete database, are split into two or more shorter segments, pushing the
average domain size down. Using FDR however, always leads to shorter domains in average
than using E—value.

It had previously been forecast, but not demonstrated, that the growth of databases had
a negative impact on the structure of domain families, by splitting domain families into sub-
families due to a loss in sensitivity in the homology search. We demonstrated this impact and
investigated whether the use of FDR could mitigate it. It appears that using FDR instead of E—-
value does enable to build larger families, but it also increases domain subdivision. Determining
whether this increased subdivision of the domains results in a better inference of the underlying
protein organizations would require further study. However, Contrary to our expectation, the
use of an FDR criterion instead of the classical E-value criterion does not globally improve
the stability of domain families produced by MPI MKDOM2. In terms of stability of the
clusterings produced, using the E-value therefore appears to be a slightly better option than
using FDR.
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Figure 3.7: Impact of FDR clustering on family size distribution.
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Figure 3.8: Evolution of the average domain size as a function of the database size, with and
without FDR.



Chapter 4

Consistent clustering of protein sequences
and protein domain families

In the previous chapters, we presented and tested MPI  MKDOMZ2, a new algorithm allowing
the clustering of families of homologous protein domains over a distributed computing platform.
We have shown that MPI MKDOM2 was highly scalable and that it could efficiently process
large scale datasets. Yet, as the number of available sequences grows, more and more resources
will be necessary to compute new releases of ProDom. As UniProt gets larger, the new sequences
that are added into UniProt are more and more likely to be similar to sequences that are already
present in the database, because homologous genes may exist in previously sequenced genomes.
In order to cope with the rapid increase of sequence data, we envision in this chapter a new
algorithm, MPI MKDOMS3, that can infer protein domain families based on families of globally
homologous sequences.

This new strategy is also motivated by a bioinformatics methodological problem. In order
to understand the genomic mechanisms that drive the evolution of genes and genomes, protein
domain classifications are often used jointly with protein sequence classifications. However,
computing separately the two types of clusterings often lead to inconsistencies. For instance,
the sequence clustering may group sequences S; and Sy into the same family while, according
to domain classification, these two sequences do not share the same domain decomposition. We
therefore also envision our new algorithm as being part of a pipeline of methods that would build
protein domain families based on homologous sequence families, guaranteeing by construction
the consistency between the classification of protein sequences and protein domains.

We based our work on the Hogenom|41| database of protein families. We present Hogenom
and its current construction method, SIL1X, in section 4.1. It is especially crucial in our case that
protein families do not accidentally group non-homologous sequences. We discuss the current
developments around Hogenom on this aspect and evaluate how these developments can be
applied in the case of MPI MKDOMS3.

In MPI MKDOM2, homologous domains were detected based on local similarities between
sequences. For this new algorithm, we need to find local homologies between protein families
instead of protein sequences. There exists several ways to represent and search for local homology
between protein sequence families. In Section 4.2 and 4.3, we investigate these different methods
in search for the best compromise between speed of execution and accuracy of the results.

We describe in Section 4.4 the new algorithm, MPI MKDOMS3, based on the conclusion of
the two previous sections. We summarize our approach, describe how MPI _MKDOMS3 relates
to MPI MKDOMZ2, and how the construction of ProDom can fit in with the construction of
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Hogenom.

By compressing the input database, we hope to further reduce the time required to build
ProDom releases. However, handling and searching for similarity between protein families is
a more complex operation and may require more time than searching for similarity between
sequences. In Section 4.5, we assess the performance of the new algorithm at large scale by
processing all the sequences available in UniProt as of July 2010.

4.1 Building protein sequence families

The Hogenom database [41] is built by the SIL1X algorithm [37] based on a similarity search of
all proteins against all using BLAST, with the BLOSUMG62 matrix and an E-value threshold
of 107*. SILIX defines global homology relations based on the matches found in this similarity
search. Two sequences are considered globally homologous if they match over at least 80% of
the longest of the two proteins, and if their similarity is over 50%. Two aligned residues are
considered similar if their alignment score is positive (see Section 1.2).

Based on the global homology graph, families are built by transitive closure, or single-linkage
clustering. For instance, if sequence S is considered homologous to sequence Sy, and Sy is also
homologous to a third sequence Ss, then &1, S2, and S3 are grouped into the same family, even
if §; and S3 themselves are not homologous.

The constraints put on similarity and alignment length gives most families a good homogene-
ity. There are however large families for which the transitive closure leads to chimeric families
as illustrated by Figure 4.1. These families are composed of sequences that may have nothing in
common. In our case, we require that all sequences in a family should have the same domain de-
composition, therefore, considering these sequences as one entity would be extremely damaging.

[ s
T — i 1
— I —
i I | —
[ R |

Figure 4.1: Example of a chimeric family built by single linkage clustering. All sequences share 3
out of 4 domains with their neighbor sequences and respect the coverage and similarity threshold.
Yet, the top and bottom sequences do not share any similarity.

The current development path chosen by SiLiX authors to address this problem is to use
community detection to further split large families according to a modularity criterion with
the Newman algorithm [40]. This algorithm creates communities from a graph by maximizing
modularity @ defined as:

1 kykuw
Q = % Z (Avw - om ) 5(0’1)761[])

vw

where m is the number of edges in the graph; A,,, = 1 if an edge exists between vertices v and

w, 0 otherwise; and d(cy, ¢y) = 1 if vertex v and w are in the same community and 0 otherwise.
kvkw

=s-w denotes the probability of existence of an edge between v and w in a random graph of the

same size, where k, and k,, are respectively the degrees of vertices v and w.
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Preliminary tests showed that for large families, applying the Newman algorithm is still not
sufficient to generate consistent families. This is a known drawback of the modularity maxi-
mization approach [15]: as the modularity measure takes into account the size of the graph, the
Newman algorithm often fails to detect small communities in large graphs. As an empirical so-
lution to this problem, we apply the Newman algorithm recursively on SiL1X generated families,
then on communities until they are sufficiently homogeneous in length (less than 20% difference
between the shortest and the longest sequence in the community). This process may lead us to
split families more than we would like, and to compress the database less than we could. In our
case however, we would rather split too much than too little, as families with the same domain
decomposition can be regrouped once the domain decomposition has been established.

We tested the potential compression gains possible by using the SIL1X and recursive Newman
approach on the different databases used previously, DB/8 to DB, as well as UniProt 2010 _07.
Datasets DB/8 to DB have been defined explicitly as subsets. Since UniProt develops mainly
by adding new sequences to an existing set, DB which is based on UniProt as of 2003, can
also be considered a subset UniProt 2010 07. Figure 4.2 shows the evolution of the number of
families or communities as the sequence dataset grows. As expected, there are far fewer families
and communities than sequences. On the largest dataset, sequence families represent a 5-fold
compression over the number of sequences. While there are more communities than families,
applying recursively the Newman algorithm does not completely alleviate the compression. On
UniProt 2010 07, there are a third as many communities as there are sequences. Moreover, the
ratio of new families or communities to new sequences decreases as the dataset grows. Indeed,
as the database grows, new sequences are more likely to find a match in the already existing
database. We can therefore expect the compression ratio to increase with future releases of
UniProt.

4.2 Detecting local homology between protein families

In the framework we envision, our new algorithm needs to find local homologies between protein
families. Protein families are sets of protein sequences that can be aligned globally. The most
complete and faithful representation of a protein family is therefore a multiple alignment of all
its sequences.

Tools exist such as alignalign [30] or ClustalW [31] to find the optimal global multiple
alignment of two fixed multiple alignments, and also to assess the quality of the resulting multiple
alignment by giving it a score such as norMD [51]. However to our knowledge there are no
existing methods to find local similarity and assess the significance of these similarities directly
on multiple alignments. In order to carry out local homology search, multiple alignments must
be simplified into different representations. In its simplest form, a multiple alignment can be
summarized by a consensus sequence. A consensus sequence contains the most likely residue
for each position of the alignment (positions where gaps are most likely are usually removed).
Using consensus sequences, one can use classical sequence similarity search algorithms such as
BLAST to find local statistically significant homologies between protein families.

The reduction of the multiple alignment to a consensus sequence however represents a strong
loss of information. As only the most probable amino acid is conserved at each position, position
specific information about the probability of other residues is ignored. Multiple alignments can
be more faithfully represented using so called profile representations such as PSSMs or HMMs
(see Section 1.2.3 and Section 1.2.4). These representations reflect the probability distribution
for all 20 amino acids at each column of the alignment,.
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Figure 4.2: Number of protein families and homogeneous communities as a function of the num-
ber of sequences in the database (top), and ratio between the number of families or communities
and the number of sequences as a function of the number of sequences (bottom).

4.2.1 Profile vs profile methods

Several methods, called profile-profile methods, have been developed to allow the detection
of statistically significant local homologies between profiles. These methods, such as COM-
PASS [44], HHsearch [46], or PRC [33], have all been found to be able to detect remote ho-
mologies more accurately than sequence—sequence or even profile—sequence methods by their
authors [44, 46, 33| or by others [54]. However, these methods are not adapted for the kind of
large scale computation we envision.

Profile—profile methods usually use the same dynamic programing techniques as sequence—
sequence or profile—sequence methods. They therefore usually have the same worst case complex-
ity in O(mn) to align two profiles of respective length m and n. The complexity of individual
scoring operations for these methods is however higher than for classical sequence—sequence
methods such as BLAST, or profile—sequence methods such as PSI-BLAST or HMMER. For
instance, PRC defines the score s(Hy, Hs) of aligning two HMMs H; and Hs as the probability
of co-emission of the same sequence by the two HMMs, over the probability of emitting the same
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sequence according to a null model, summed over all possible sequences:

s(Hy, Hy) = log (Z P(0|H1)P(0|H2)>

P(o|null)

o

This scoring scheme requires, for each pair of position, p; € Hy, and p; € Ha, to consider all
the possible pairs between the 20 residues. Comparatively, in a profile-sequence or sequence—
sequence approach, scoring the alignment of two positions is a matter of looking up a score or
a probability in a table.

More importantly, profile—profile methods do not benefit from the usual alignment seed
heuristics (see Section 1.2.2) that is possible when the target database is composed of sequences.
When a sequence or a profile is used as query against a target database of sequences with
BLAST, PSI-BLAST, or HMMER for instance, a list of short words that can be aligned with
the query with a score above a given threshold is generated and the database is scanned to find
exact matches for these words and start alignments only where these alignments are likely to be
significant. If the target database contains profiles and not sequences, such a heuristics is not
possible.

4.2.2 Profile-sequence methods

Profile—profile methods are considered the most accurate way to detect homology between protein
families. However, none of the currently available methods are applicable at large scale due to
their computational cost. It has recently been suggested that profile—profile searches could be
approximated by profile—consensus searches [43]. A profile—consensus search is technically the
same ag a profile—sequence search, but sequences in the target database are consensus sequences
representative of a whole sequence family. This approach in our case seems like a reasonable
compromise between accuracy and computational efficiency. There are currently two main tools
to carry out profile—sequence alignment: PSI-BLAST and HMMER. We now investigate these
two options.

4.3 Comparison between PSI-BLAST and HMMER

Although PSI-BLAST was used to detect homology between sequences in MPI MKDOM?2,
it can also be used as a profile—sequence search tool. The first iteration of a PSI-BLAST
search (see Section 1.2.3) can be bypassed by providing PSI-BLAST a precomputed profile, or
a multiple alignment, as query. Using PSI-BLAST in our case would seem like a convenient
choice as only a few modifications to the existing MPI MKDOM?2 algorithm would be required
to handle profile-consensus searches. However the recent release of version 3 of HMMER [27]
led us to investigate the replacement of PSI-BLAST by HMMER as our similarity search
algorithm. Previous releases of HMMER [12] had already been shown to be more accurate but
orders of magnitude slower than PSI-BLAST. However in its most recent release HMMER  has
been updated to incorporate heuristics similar to the seed heuristics used by BLAST. In order
to compare the two algorithms, we processed the RefProtDom dataset [18] with PSI-BLAST
and HMMER, and compared both their efficiency and accuracy. RefProtDom is a dataset
designed to benchmark similarity search algorithms. It is composed of a selection of queries and
a database containing annotated target sequences. From the annotations, it is easy to determine
whether the matches found by similarity search algorithms are true or false positives. Similarly
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to PSI-BLAST, HMMER can perform iterative searches starting from a sequence using a tool
called jackHMMer [11]. We compared the performances of PSI-BLAST and jackHMMer with
two iterations, one to build the PSSM or HMM, a second iteration where the PSSM or HMM is
used to search the database.

4.3.1 Speed of execution

Table 4.1 shows the completion time, speedup, and efficiency for PSI-BLAST and HMMER
running on 1, 2, 4, and 8 cores. PSI-BLAST on one core is faster than HMMER by a factor
of 3.

PSI-BLAST HMMER
Number | Completion Speedup Efficiency | Completion Speedup FEfficiency
of cores time time
1 10’147 1.00 1.00 33'62” 1.00 1.00
2 8°36” 1.21 0.61 17787 1.89 0.95
4 7227 1.40 0.35 10°06” 3.34 0.84
8 6°90” 1.47 0.18 6°38” 5.27 0.66

Table 4.1: Summary of parallel performance of PSI-BLAST and HMMER on the RefProtDom
dataset.

As illustrated by Figure 4.3, HMMER shows a better speedup than PSI-BLAST and when
using 4 cores, the running time for HMMER. comes close to that of PSI-BLAST. HMMER be-
comes even faster than PSI-BLAST when using 8 cores. However the efficiency of the execution
in this case is quite low, around 0.66.

4.3.2 Result quality

Figure 4.4 shows the ROC curve, that is, the sensitivity as a function of 1-specificity when results
are ordered by increasing E—value, for both algorithms. The sensitivity is defined as the fraction
of the true positives found by the method with respect to the total number of true matches
possible; the specificity is defined as the fraction of true positives among the matches found,
1-specificity is therefore the fraction of false positives among the matches found. A perfect
method would find all possible true matches without finding any false positive, and its ROC
curve would therefore be a line along the y axis. More generally, the closer to the upper left
corner the curve is, the better the method. The ROC curve for HMMER is counsistently above
that of PSI-BLAST, showing a better accuracy of HMMER in comparison to PSI-BLAST.

From a qualitative point of view, HMMER appears to perform better than PSI-BLAST.
From a computational point of view, PSI-BLAST is still faster than HMMER, on one processor,
but HMMER can, when multithreaded on four cores, become almost as fast as PSI-BLAST
while keeping a high enough efficiency. We therefore chose, for MPI MKDOM3, to replace
PSI-BLAST by HMMER similarity searches.

4.4 Description of MPI_ MKDOM3

In the previous sections, we established that MPI _MKDOMS3 should be part of a pipeline of
methods that, altogether, would allow the definition of a consistent classification of proteins and
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of protein domain families. This pipeline could be summarized in 8 steps:

1. A set of input sequences is defined, it should be as exhaustive as possible without con-
taining fragments of sequences.

2. A global comparison of all the input sequences is carried out using BLAST.

3. The BLAST matches are parsed with S1L1X to cluster protein sequences into families of
homologous sequences.

4. Protein families are split into communities by applying the Newman algorithm recursively.

5. For each protein family we build a multiple alignment and a consensus sequence represen-
tative of the family.

6. Protein domain families are computed on protein communities using HMMER to detect
local homologies, using HMMs built according to the alignments previously defined, and
using consensus sequences as targets.

7. Protein communities that share the same domain decomposition are regrouped to create
families of homologous proteins.

8. The protein domains that are defined, on each family, as segments on the consensus
sequence are transfered to individual protein sequences.

MPI MKDOMS3, in this scheme, is in charge of carrying out Step 6. MPI MKDOM3 is
based on MPI MKDOMZ2. Both algorithms share the same master—worker architecture, the
same asynchronous communication methods, and much of the same code. We will now detail the
differences between MPI MKDOM?2 and MPI MKDOMa3, on the master and on the worker
sides.

4.4.1 MPI_MKDOM3 master process

In MPT_MKDOM?2, the master process (see Section 2.4.3) had been defined to be completely
ignorant of the actual data, and to only reason in terms of segments, defined by a sequence
identifier, a start position and a length (or an end position). Although this design decision was
taken for performance reasons when creating MPI MKDOMZ2, it appears it also allows us to
reuse the same algorithm for the master node of MPI MKDOMS3 as for the master node of
MPI MKDOMZ2. Indeed, the nature of the similarity search, or of the data used as query is
completely irrelevant from the master’s point of view. As long as worker nodes accept sequence
segments as queries and return sequence segments as results, the master’s algorithm does not
need to be changed. A slight modification of the code of the master process was made however,
to add the possibility to read an additional field in the descriptions of the sequences in the
input data file, giving the number of sequences in the family to which a consensus sequence
corresponds. This information is used to prioritize larger families when selecting queries in case
of an ex-2equo in sequence length.

Similarly to MPI MKDOM2, MPI MKDOMS3 uses a logical adjacency matrix to avoid
processing in parallel queries that are likely to generate overlapping families. The adjacency
matrix is constructed from the BLAST results of step 1 like in MPT  MKDOMZ2: two protein
families p; and po are defined to be adjacent if at least one sequence S; € pi is found to be
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homologous to a sequence S; € po in the initial all against all comparison. Here again, the
modification in the construction of the matrix does not require any modification of the master’s
algorithm.

4.42 MPI_MKDOMS3 worker process

The worker processes in MPI MKDOM3 differ on two points from those of MPI MKDOM?2:
the query definition and the database masking mechanism.

Query definition

In MPI MKDOMZ2, the worker processes received queries defined as sequence segments, that
is, a sequence identifier, start position and length (or end position). The worker processes would
then fetch the corresponding string of data from the BLAST database to define the query
used for the search. In MPI MKDOMS3, the worker processes also receive queries defined as
segments of the consensus sequences. But the process to build the query from this information
is a little more complicated.

In consensus sequences, positions where gaps are more likely than residues are removed.
Consequently, positions on the consensus sequence of a family are not equivalent to positions on
the corresponding alignment. From the coordinates of a segment in the consensus sequence of a
family, the worker will lookup in a table the corresponding positions on the alignment to only
extract the required positions from the alignment. An HMM is then built from these positions to
be used as query. For instance figure 4.5 presents an illustration of the correspondence between
positions on a multiple alignment and on its associated consensus sequence. Positions 17 to 21
of the multiple alignment are omitted in the consensus sequence. Consequently, if positions 10
to 30 of this consensus sequence were selected as query, the worker should use positions 10 to
35 of the multiple alignment to build the query HMM.

Multiple alignment

5 10 15 20 25 30 35 40
SLETQYSTYDYLGFNPNFVSDHIPSGEGVVHAEFTNAIGSY
SLEIQYSSYDYIGYNP----- HNNAGEGVVHAAYSNALGSY
SLEVQYDSYDYIGYNP----- NNNAGVGVVHASFANALGSY

Consensus sequence
5 10 15 20 25 30 35
SLEVQYSSYDYIGYNP HNNAGEGVVHAEFANALGSY

Figure 4.5: Mlustration of the correspondence between positions on the consensus sequence and
on the multiple alignment of a family.

Like consensus sequences, HMMs also ignore positions where gaps are most likely. Tt would
therefore seem easier to store pre-built HMMs instead of multiple alignments and thus avoid
tedious position mappings. This solution however appeared difficult for two reasons. The first
reason is a methodological one. An HMM model is composed of position specific statistical
data that are independent of each other. Considering a subset of these data to define a query is
therefore possible. But an HMM model also holds statistical parameters [11], used for estimating
the E—value of a match, that are globally computed for the whole model. The result of the
calibration on the whole HMM will differ from the calibration for a sub-model: to be used
correctly, the calibration for the sub-model should be recomputed. The easiest way to do this is
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simply to rebuild an HMM based on the corresponding segment of the multiple alignment. The
second reason is a practical one. The HMM format defined by HMMER is quite verbose, so
storing HMMs instead of multiple alignments would result in a query dataset several orders of
magnitude larger, which would be impractical to store and probably inefficient to work with.

Database masking

In MPI_ MKDOM2, we optimized the database updates by masking already defined domains
with ‘*’ directly in the BLAST formatted database. Contrary to PSI-BLAST, HMMER does
not reformat the sequence database, and works directly on the text representation of the database
in FASTA format. A protein sequence in FASTA format consists in a single description line,
followed by lines of sequence data. The description line is identified by the leading character ‘>’
that should be followed directly after by the identifier for the sequence. The sequence data may
be split over several lines and it is recommended that data lines do not exceed 80 characters.
Figure 4.7 illustrate a sequence represented in FASTA format. A FASTA file containing multiple
sequences consists in the concatenation of several sequences in FASTA format.

>seqid1234
MREVKKLYEDEEVEEIALKISDEEIEIVDKKGVVKGKISSKQLAKKALEKKTLKFRIKEA
VDTKITKEDEKSLPSLRELYFDPHLLIYGKRAEEVKGSGYVCPVCGIEIDEYGYCGCGAG
SSLKCENCGAKLSEEEIYVRE

Figure 4.6: Example of a sequence in FASTA format.

HMMER unfortunately does not accept ‘*’ as a valid character in its target data file. The
masking mechanism we designed for MPI MKDOM2 therefore cannot be replicated directly
in MPI _MKDOMS3. In order to update the database file without rewriting the complete
datafile at each iteration, we designed a new masking mechanism where masked domains are
replaced by artificial sequence description lines. Domains defined by MPI  MKDOMS3 are, like
those of MKDOM2, at least 20-residue long. If the domain to be masked is embedded within
a sequence, the 20 characters corresponding to this residues in the FASTA file are replaced
by a string “\n>@XXXXXXXXXXXXXXXX\n” representing a new description line, where @X...X is
a newly created artificial sequence identifier. The remaining bits of the sequence now appear
to HMMER as two independent sequences. The first character of the new identifier, ‘@’, is a
special character common to all artificial sequence identifiers. When a segment with an artificial
identifier appears in a search result, the segment is modified to replace the artificial identifier
with the actual identifier for the sequence, and correct the position of the segment to reflect its
position within the original sequence. If the domain to be masked is longer than 20 residues,
the string is left-padded with ‘\n’ characters to reach the desired length. With a minimum
domain length of 20 residues, the artificial identifiers can be as large as 16 characters as we have
4 characters which are fixed: two new lines characters, the >’ character marking the start of
the sequence, and the ‘@ character indicating that the identifier is an artificial one. Using case
sensitive alpha numeric symbols, this allows more than 4 x 10%® possible artificial identifiers.

As with the previous masking solution, masking operations on the FASTA file allows us to
carry out database updates without having to rewrite the whole file. Masking m residues on a
database containing n residues only require m write operations instead of n—m with a complete
rewrite of the database. Most of the time, m < n.
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Before masking
>seqid1234
MREVKKLYEDEEVEEIALKIS DEETEIVDKKGVVKGKISSK QLAKKALEKKTLKFRIKEA
VDTKITKEDEKSLPSLRELYFDPHLLIYGKRAEEVKGSGYVCPVCGIEIDEYGYCGCGAG
SSLKCENCGAKLSEEEIYVRE

After masking
>seqid1234
MREVKKLYEDEEVEEIALKIS
>Q@ipgiwRqyVYvEBVgB
QLAKKALEKKTLKFRIKEA
VDTKITKEDEKSLPSLRELYFDPHLLIYGKRAEEVKGSGYVCPVCGIEIDEYGYCGCGAG
SSLKCENCGAKLSEEEIYVRE

Figure 4.7: Nlustration of the masking mechanism in MPI MKDOMS3. The highlighted seg-
ment in the top sequence is the segment to be masked. The masking mechanism replaces the
residue of the masked segment by a new sequence description line and attributes an artificial
identifier to the end of the sequence.

4.5 Large scale test of MPI _MKDOM3

As for MPI  MKDOM2, we tested MPI MKDOMS3 at large scale by processing the release
2010 07 of UniProt (see Section 2.6). We reused the result of the filtering and global BLAST
comparison carried out in Section 2.6. Running S1L1X on the BLAST matches defined 1,296,176
families. After applying the Newman community detection algorithm recursively, these fami-
lies were split into 2,116,200 communities. For each community, a multiple alignment of the
sequences in this community was created using MAFFT [29], and a consensus sequence was
generated by creating an HMM from the multiple alignment and generating the consensus se-
quence from the HMM using hmmemit [11]. From the 7,875,535,700 matches found in the global
comparison of the sequences, we defined an adjacency matrix between communities containing
442,127,755 relations. Similarly to MPI  MKDOMZ2, a first batch of domain families were cre-
ated based on 2,929 SCOP families from SCOP [38| release 1.75. After this phase, there were
651,828,259 residues still to be processed by MPI  MKDOM3. Compared to the 1,896,351,896
left at this stage when processing the same database with MPI MKDOM2, this represents
almost a 3-fold decrease of the data to be processed due to the compression of individual se-
quences into families. All this preprocessing represents additional computation compared to
MPI MKDOM2. The longest of these operations, aligning families and creating consensus
sequences, took around 5 days on a multi-user 16 core machine. All these operations, including
S1L1X, are data-parallel and could easily be parallelized on a larger scale for future computations.

Table 4.2 summarizes various aspects of the computation. The complete processing took 11
years and 306 days of CPU time and was carried out in 4 days and 9 hours of wall-clock time. De-
spite the fact that the database to be processed was almost 3 times smaller, it took approximately
the same amount of CPU time (93% as much) for MPI MKDOMS3 as for MPI _MKDOM2.
This reflects the fact that individual similarity search operations are longer with HMMER than
they are with PSI-BLAST. However the multi-threading allowed by HMMER significantly re-
duced the wall-clock time, from 19 days and 4 hours with MPI MKDOM2 to 4 days and 9
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hours with MPI  MKDOMS3. The average worker activity was higher in MPI MKDOMS3 than
in MPI _MKDOMZ2. This is probably due to the higher running time of HMMER compared
to that of PSI-BLAST: the median query processing time while processing UniProt 2010 07
was 10.3 s with MPT MKDOM2 while it was 18.5 s with MPI MKDOMS3. It is easier in
this case for the master node to select new queries before any worker has finished processing
its current queries and therefore, to keep workers as busy as possible. The ratio between the
median query processing time of MPI MKDOM?2 and MPI MKDOMS3 observed here on a
large database also lead us to think that HMMER multi-threaded performance are not good
as those observed on a small test case in Section 4.3.1. There were more than twice as manyit
is easier for the master node to select new queries invalid results with MPI MKDOM3 than
with MPI MKDOMZ2. This may be caused by the fact that HMMER, detects more distant
homologies than PSI-BLAST. The homologies between families recorded in the adjacency ma-
trix, as computed with BLAST, may therefore not be as good at predicting conflicts between
HMMER results.

CPU time | 103,852 hours (11 years, 306 days)
Wall clock time | 105 hours (4 days, 9 hours)
Avg. worker activity | 94.54%
# queries | 3,748,748
# invalid queries | 459,226 (12.38%)

Table 4.2: Some aspects of the processing of UniProt 2010 07 with MPI MKDOMS3.

The processing by MPI  MKDOM3 was split into 6 runs. For all the runs on the jade
cluster at CINES, we set up 2 workers per node. Each worker had therefore access to 4 cores,
HMMER was set up to use the 4 cores available for both HMM construction and similarity
search. However contrary to MPT MKDOM2, we did not give the master process access to
a full node. The adjacency matrix on family is much smaller than the adjacency matrix on
sequences and could fit in half the memory of a node (15GB or 16GB depending on the node).

Table 4.3 summarize the several aspects for each run:

Platform: platform used for this run.
Wall-clock time: duration of the run in hours.
Number of workers: number of worker processes.

CPU time: the definition of the CPU time depends on the platform used. On jade and
GRID’5000 clusters, the CPU time is defined as the number of nodes reserved x number
of cores per nodes x wall-clock time. On tomate, which is a shared machine, the CPU
time is defined as number of processes (workers + master) x wall-clock time.

Master load: percentage of time during which the master node is busy, selecting queries or
validating results.

Worker load: percentage of time during which worker nodes are busy, either processing queries
or applying database updates.

Conflicts: percentage of the results that were not valid.
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Data processed: percentage of the initial dataset processed during a given run.

s . : : size of the data processed :
Processing speed: the processing speed is defined as CPU time . This measure can

be thought of as a measure of the efficiency of processing.

Figure 4.8 illustrates the evolution of several aspects of the computation as a function of
wall-clock time. From top to bottom, the different panels represent:

e the evolution of the size of the database;

e the size of the result queue plotted each time a result is tested and therefore removed from
the queue;

e the size of the query, plotted with respect to the time of reception of the result for this
query;

e the time required to process a query, also plotted with respect the time of reception of the
result for this query;

e a graphical representation of the level activity of the different processes over time.

MPI_ MKDOMS3 runs have globally the same characteristics as for MPI _MKDOM2. The
number of results that are queued before validation is however on average larger than for
MPI_ MKDOM2. This is partly due to the longer processing times of HMMER compared
to PSI-BLAST, but this may also be due to a more accute effect of the internal repeat detec-
tion mechanism problem. For some reasons that we have not identified, the problems affecting
internal repeat detection seem to be more stringent on consensus sequences than on real se-
quences. Runs 2 and 3 were initially set up to last for 24 hours and had to be cut due to
an internal repeat detection that, either crashed a process by filling up the memory, or lasted
several hours, blocking the whole process. In order to avoid to be blocked by these problems,
we tried, starting from run 3, to replace the adjacency matrix by an empty matrix, effectively
allowing any query to be selected. This was justified by the fact that in previous experiments,
the number of conflicts would drop as the size of the database would decrease. This induced for
runs 3 and 4 a higher rate of conflicts, however for smaller runs on tomate the removal of the
adjacency matrix does not seem to have had a negative effect on the number of conflicts. We
conclude that this solution seems best suited only for accelerating small runs at the end of the
processing, and are not a general solution for mitigating internal repeat detection problems. At
the end of run 3, after 48 hours of wall-clock time, more than 90% of the initial database was
processed, again, the end of the processing was prolonged by internal repeat detection problems.
For instance, the last run lasted for 30 hours, of which about 20 hours were spent searching for
repeats in 2 sequences.

4.6 Future work

The work presented in this Chapter is a first step towards the integration of HOGENOM and
ProDom into a common and consistent source of information that maps both local and global ho-
mology relationships between proteins. In order to finalize our new solution we would first wish
to compare the results of MPI MKDOM?2 and MPI MKDOMS3 on UniProt 2010 07, using
the criterion defined in Chapter 3, and characterize the difference between the results of the two
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Run # | Platform | Wall-clock | Number of | CPU time | Master | Worker | Conflicts Data Processing
time (h) workers (h) load (%) | load (%) (%) processed (%) speed
1 CINES 24 511 49,152 25.53 99.74 7.3 48.67 6,454
2 CINES 12 511 24,576 38.87 98.95 4.4 26.12 6,927
3 CINES 12 511 24,576 5.35 82.35 24.30 19.63 5,206
4 CINES 10 127 5,120 12.64 85.83 8.69 3.83 4,880
5 tomate 17 3 68 0.00 99.24 2.36 0.63 59,838
6 tomate 30 11 360 0.00 39.14 3.11 1.12 20,258

Table 4.3: Some aspects of the computation of ProDom 2010.1.
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methods. A prerequisite for this is to implement the post-processing of MPI _ MKDOMS3 re-
sults. MPT _ MKDOMS3 outputs domain defined on families’ consensus sequences. To complete
the process, we would need to first group families that share the same domain decomposition,
and then, port the positions of the domains back onto the original individual protein sequences.
Similarly, we would like to compare the resulting protein sequence clustering to the clustering
that S1L1X alone would produce on the same data.

Before finalizing MPI MEKDOMS3, we would also like to investigate a few modifications
that may enhance the result quality of MPI MKDOM3 and at the same time greatly reduce
its computational cost:

e The performance of large scale experiments carried out throughout this work were harmed
by problems induced by the internal repeat detection procedure. The internal repeat
detection program predates even MKDOM?2 and has not been updated, or even main-
tained much since. We chose not to address this problem during the development of
MPI MKDOM2, as we did not know whether they would be reused for MPI MKDOMS3.
Instead of correcting the problems in the current procedure, it may be more efficient to
simply replace it with a more recent method such as RADAR [22] or Internal Repeat
Finder [34]. Additionally we may want to move the internal repeat detection outside of
MPI MKDOMS3 and treat it as a preprocessing step. Indeed, as internal repeat de-
tection is done on each sequence independently, it may be more efficient to run it in a
data-parallel way prior to MPI _ MKDOMS3.

e In MPI MKDOMS3 as in MPI MKDOM2, results are validated in the order queries
are selected. When a query takes a long time to process, it blocks the validation of the
results of all queries that were launched after it. Long running queries are a problem for
MPI_MKDOMS3 both in terms of result quality as well as computational efficiency. As
new queries must be independent to all the queries that have not yet been validated, it
becomes increasingly difficult for the master to select new independent queries. The master
is then forced to select longer queries and therefore depart further from the sequential
heuristics. MPI MKDOMS3 is fairly resistant to these situations and most of the time
manages to keep all workers busy despite the large number of queries awaiting validation.
However there are two situations where a large number of queries in the queue can become
a problem. The first is when the master node runs out of independent queries, in which
case workers are left idle until the blocking query finishes. The second case occurs when
the computation is split across several runs: at the end of a run the computed results
that have not yet been validated are wasted. The changes in internal repeat detection
method may greatly reduce the problem as they are at the root of the pathologically long
run times of certain queries. Small modifications to the result ordering policy may also
improve the situation. In some instances we may choose to allow results from queries that
have been selected after a blocking query to take over. It may also happen that a query
(or part of it) has been included in another family before it has been fully processed, in
which case it could just be ignored.

The results of these analysis may prompt us to adjust parts of the pipeline before we decide
that MPI MKDOMS3 is a good candidate to replace MPI MKDOM2. MPI MKDOM3 is
therefore not yet production ready, but we are confident that, once completed, the integration
of protein sequence and protein domain clustering into a consistent structure will provide new
insight on protein evolution.



Concluding summary

Contributions

In this thesis we addressed the problems posed by the exponential increase of the available
protein sequences to the delineation and clustering of protein domain families in the context of
the ProDom database. Our work in this context can be summarized as follows:

A new method for the construction of ProDom

The ProDom database has been constructed for more than 16 years following a sequential pro-
cess, but this method is now unable to process current datasets in a reasonable time. We
proposed in Chapter 2 a new algorithm, MPI MKDOM2, able to compute protein domain
clusterings on distributed computing platforms. We presented and justified our parallelization
approach and explained our solutions to solve or circumvent the problems posed by depen-
dencies between families and the large variations in running times of individual computations.
MPI MKDOM?2 has been implemented carefully to minimize resource usage, in particular,
memory and communications. We have shown that MPI MKDOM2 was scalable to large
datasets, including current releases of UniProt, which makes MPI MKDOM?2 a good solution
for the computation of future releases of ProDom.

The results of the computation carried out on UniProt 2010 07 using MPI MKDOM2 are
currently being post-processed in order to create a new release of ProDom which is scheduled
to be released before the end of 2012.

Comparison of protein domain clusterings

Our second contribution, presented in Chapter 3, was motivated by the necessity to compare
the results of MPI  MKDOM2 to sequentially computed results in order to assess the impact
of parallelization on the clustering. We presented existing criteria to assess the proximity of two
data clusterings. We showed that these methods could be adapted to protein domain clusterings,
despite the fact that protein domains are not atomic data. Our criterion for comparing domain
clusterings thus takes into account both differences in domain delineation and domain clustering.
Using this criterion, we have shown that clusterings computed using MPI MKDOM2 in
parallel were essentially faithful to the results computed sequentially. We also investigated the
effect of the data growth on the stability of the clusterings produced by MPI MKDOM2.
We were able to assess this effect and to tested the use of FDR instead of E-value as homology
criterion to build families to mitigate it. The use of FDR did counterbalance the loss of sensitivity
of the homology search and allowed the construction of larger families. However, it also increased
domain subdivision and therefore, was not able to increase the stability of the clustering.
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Coherent clustering of protein families and protein domain families

Finally, in Chapter 4, we presented an evolution of the method to address a larger problem,
the consistent clustering of protein families and protein domain families. We presented a new
algorithm, MPI MKDOMS3, that can delineate domains and cluster protein domain families
on families of globally homologous sequences. We outlined how MPI MKDOMS3 could fit in a
pipeline of methods that would allow the clustering of homologous domain families, as well as
families of globally homologous sequences sharing the same domain architecture. We presented
the different solutions we took into consideration and explain our choices based on result quality
and computational cost. We demonstrated that MPI MKDOMS3 is applicable at large scale
by processing a recent release of UniProt.

Perspective: standing the test of time

The amount of data made available through public sequence databases has grown exponentially
for the last decade and nothing indicates that this growth will stop anytime soon. We have
shown in this thesis how both MPI MKDOM?2 and MPI MKDOM3 were able to process
current datasets efficiently. However, in a few years, the computing time required to create a
new release of ProDom with MPI MKDOM2 will approach a century. Even if by that time
MPI_MKDOMS3 has replaced MPT _ MKDOMZ2, and we benefit from the compression of input
data into families, the computing power required to compute ProDom will still be considerable.
In the meantime, it is predictable that the available computing power will continue to grow.
However it is hard to predict how computing platforms will evolve in years to come, and how
this computing power will be provided. Cloud computing might become the norm, and large
scientific computations could in the future be outsourced to be run on virtual clusters, somewhere
on the infrastructure of private providers such as Amazon or Google. Alternatively, with the
advent of manycore processors, it might become affordable for a laboratory to maintain its own
machine boasting several thousand cores. We believe that MPI is versatile enough to handle
this large variety of platforms.

We are also confident that, from a biological point of view, our method will stay relevant
in the long run. The current rate of growth of sequence databases forces any manually driven
annotation attempts to be partial. Automatic methods will remain the only way to cover the
whole protein space. Moreover, in their efforts to cover as much of the protein space as they
can, manually curated databases may also introduce a bias toward large, ubiquitous domain
families. For a researcher studying evolutionary mechanisms, smaller, more recently evolved
domain families are also of interest, and the undiscriminating nature of automatic methods
gives a more balanced view of the whole protein space.
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