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Introduction

The tremendous progress in the miniaturization of electronic devices has reached the

point that makes it crucial to address the effect of a single dopant in a device and

motivates the study of a single dopant spin to store digital information (1). The

manipulation of a single atom spin in a solid state environment has been demonstrated

using several approaches, like scanning tunnelling microscope on magnetic adatoms (2,

3), or optical probing of nitrogen-vacancy centres in diamond (4) and single magnetic

atoms in semiconductor quantum dots. Single quantum dots doped with a single Mn

atom can be probed by means of single exciton spectroscopy in photoluminescence

experiments. This has been done both in II-VI (5, 6), and III-V (7, 8) materials. In the

case of single Mn doped CdTe dots, information about the quantum spin state of a single

Mn atom is extracted from the single exciton quantum dot photoluminescence due to

the one on one relation between photon energy and polarization and the electronic spin

state of the Mn atom. This has made it possible to measure the spin relaxation time of

a single Mn atom in a quantum dot, using photon autocorrelation measurements (9),

and to realize the optical initialization and readout of the spin of the Mn atom (6,

10, 11). The observation of Mn spin orientation under quasiresonant optical pumping

can be accounted for if the Mn spin relaxation time is shorter in the presence of a

quantum dot exciton (11, 12, 13, 14). In that situation, resonant excitation of an optical

transition associated to a given Mn spin projection results in the depletion of the laser

driven Mn spin state, via Mn spin relaxation in the presence of the exciton. Whereas

theoretical understanding of the exchange couplings between electrons, holes and Mn

spin in quantum dots permits to account for the observed photoluminescence spectra (5,

15, 16, 17), a complete understanding of the spin dynamics under the combined action

of laser pumping, incoherent spin relaxation and coherent spin-flips is still missing.

Here, in thesis, we will discuss the spin relaxation mechanism, taking fully into account

the interplay between incoherent dynamics due to the coupling to a reservoir and the

coherent spin flips associated to exciton-Mn exchange in the quantum dot.

The aim of this Ph.D thesis is to further investigate the spin relaxation mechanism

in a CdTe semiconductor quantum dot containing an individual Mn atom first observed
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in Grenoble in 2004. Full investigation of spin relaxation mechanism due to spin-phonon

coupling are discussed in detail. The coherent evolution of states are also discussed at

the end of this thesis. The spin-phonon coupling relaxation mechanism explains the

Mn-spin polarization mechanism observed in resonant time resolved optical pumping

experiments.

This thesis is organized as follows: In chapter 1, we present basic background on

spintronics, diluted magnetic semiconductors and quantum dots. In chapter 2, we

present a summary of some recent experimental results on the optical pumping of a

Mn spin in a single quantum dot. Chapter 3, 4, 5, and 6 constitute the central part of

this work. In chapter 3, a theoretical model of the quantum dot and its corresponding

Hamiltonian are described. A model is introduced to describe the mixing of the valence

bands. Then, a spin effective Hamiltonian is used to model the details of the optical

spectrum of quantum dots containing one or two Mn atoms. This model is compared

with experiments. In chapter 4, the coupling between spin and phonon in a single

quantum dot with a single Mn atom is discussed. In chapter 5, The spin dynamics is

analyzed using a rate equation model for the exciton-Mn system and calculated phonon

induced spin flip rates. Chapter 6 discusses the coherent evolution of the exciton and

Mn system under the combined action of resonant laser and microwave excitation.

Concluding remarks are given in chapter 7. Some details on the calculation of the

valence band structure in quantum dots are discussed in the appendix.
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Spintronics, diluted magnetic

semiconductors and quantum

dots

Contents

1.1 Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Diluted magnetic semiconductors . . . . . . . . . . . . . . . . 5

1.3 Diluted magnetic semiconductor quantum dots . . . . . . . 8

1.3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Magnetic Cd(Mn)Te quantum dots . . . . . . . . . . . . . . . 9

1.4 Singly Mn doped CdTe quantum dots . . . . . . . . . . . . . 11

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Since the 60’s, the density of transistors integrated on a microprocessor doubles

every 18 months, driven by Moore’s law. The last generation of MOS transistors, has

typical dimensions below 45 nm. At a length scale of a few nm, pure quantum effects

like energy quantization in the channel of the transistor or tunneling from the gate

to the channel, will strongly degrade the performances of this device. CMOS technol-

ogy scaling to smaller and smaller dimensions is therefore likely to be compromised

by these quantum effects and fundamental limits of miniaturization are expected to

be reached in the near future, even if progress in materials can still significantly im-

prove transistor performance. Nevertheless, quantum physics provides new principles

for information processing. The inexorable decrease of structure size in semiconduc-

tor devices inevitably leads from todays quasiclassical devices to quantum mechanical
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1. SPINTRONICS, DILUTED MAGNETIC SEMICONDUCTORS AND
QUANTUM DOTS

devices. These quantum mechanical devices might rely not only on the charge of elec-

trons, i.e., on the spatial part of the electron wave function, but also on the much more

robust spin part of the wave function.

1.1 Spintronics

Spintronics, is an emerging technology which has recently become one of the key re-

search areas connected with the magnetic-recording and semiconductor industries. It

tries to answer the question: can magnetic materials be used in electronic components

and circuits? The hope of using the spins of single electrons, rather than their charge,

for storing, transmitting and processing quantum information invoked a great deal of

interest in spin effects and magnetism in semiconductors. Spintronics emerged from

discoveries in the 1980s concerning spin-dependent electron transport phenomena in

solid-state devices. This includes the observation of spin-polarized electron injection

from a ferromagnetic metal to a normal metal by Johnson and Silsbee (1985) (18) and

the discovery of giant magnetoresistance independently by Albert Fert et al. (19) and

Peter Grunberg et al. (1988) (20).

The use of semiconductors for spintronics can be traced back at least as far as the

theoretical proposal of a spin field-effect-transistor by Datta and Das in 1990. The

robustness of the electron spin motivates the current extensive research on the spin dy-

namics in semiconductors and might lead to spintronic devices with superior function-

ality and to the enchanting goal of spin quantum information processing. A valuable

testing ground for spintronics, for various theoretical ideas and device applications,

comes from the diluted magnetic (also called semimagnetic) semiconductors.

Thanks to the increase of purity of semiconductor materials, besides the study of

spintronics for a spin ensemble, the study of one single spin also becomes possible. For

example, the nitrogen-vacancy centers in diamond (21), the isolated Mn spin in a CdTe

quantum dot (5) and a single phosphorous dopant in a nano-FET (22) are possible ways

to study single dopant spin properties. These examples may be viewed as the initial

demonstrations of model single spin devices, which requires considerable additional

fundamental study. These single-spins can be addressed and manipulated in various

ways, for example, the Mn spin can be addressed and manipulated optically using micro-

spectroscopy (23) in single Mn doped quantum dots. Individual Mn atoms can also be

addressed in III-V Material by scanning tunneling microscopy (24) (Figure 1.1). The

desirable features of single dopants, such as reproducible quantized properties, make

them ideal objects for further scientific study and robust applications. However, it is

still a challenge to control the properties of a single dopant because their properties

strongly depends on their local environment (strain, electronic, magnetic and optical

fields). In this thesis, we focus on the influence of the environment on the spin dynamics

4



1.2 Diluted magnetic semiconductors

of a Mn atom embedded in a CdTe quantum dots.

Figure 1.1: (45 × 35 nm2) constant-current topography map of the GaAs(110) surface

showing a number of Mn acceptors in their neutral charge state. The numbers correspond

with the atomic layer position of the Mn acceptors in GaAs. See reference (24).

1.2 Diluted magnetic semiconductors

Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is

made up in part of substitutional magnetic atoms, it forms a class of magnetic mate-

rials, filling the gap between ferromagnets and semiconductors. In the early literature

these DMS were often named semimagnetic semiconductors, because they are midway

between nonmagnetic and magnetic materials. DMS are semiconductor compounds

A1−xMxB in which a fraction x of the cations is substituted by magnetic impurities

(Mn, Co ...), thereby introducing magnetic properties into the host semiconductor AB.

They can be II-VI materials like CdTe or ZnSe, IV-VI materials like PbTe or SnTe, or

III-V materials like GaAs or InSb. These DMS exhibit exciting phenomena like giant

magneto resistance and giant Faraday rotation.

With the fabrication of semiconductor nanostructures being well known, the search

for the benefits of nanoscale structures made from DMS began. Among the principal

DMS families, II-VI and, to a less extent, III-V based DMS, with Mn as the magnetic

impurity, are the best understood. The band structures of DMS are quite similar to

those of their host II-VI or III-V compounds. They exhibit the band structures of

zinc-blende or wurtzite semiconductors, and, except for some III-V compounds, they

5



1. SPINTRONICS, DILUTED MAGNETIC SEMICONDUCTORS AND
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Figure 1.2: Band structure of CdTe

possess a direct band gap (Figure 1.2 ). But in addition, the d-states of the Mn atoms,

with a more or less localized character, contribute to the total density of states, and

they are responsible for the important magnetic properties of DMS.

In II-VI based DMS, Mn atoms behave as isoelectronic impurities, and in general

do not introduce bound states. The two 4s electrons of Mn atoms participate to the

covalent bonding, while the Mn d shell remains relatively inert. Hence, in zero mag-

netic field, the semiconducting properties of DMS look like those of non magnetic II-VI

alloys. As in other standard alloys, DMS exhibit a shift of the energy gap with Mn con-

centration, and alloy fluctuations responsible for potential fluctuations, and eventually

tails of localized states at the band edges. In III-V DMS, Mn atoms introduce energy

levels in the gap of the semiconductor. In the best understood case of antimonides

and arsenides, Mn behaves as a shallow acceptor. It keeps its d5 configuration and is

surrounded by a weak bound hole.

When a magnetic field is applied, or a spontaneous magnetization appears, magnetic

properties of DMS come into play. The pd hybridization is essential to understand

magnetic and magneto-optical properties of DMS. This leads to a strong exchange

interaction between holes in the valence band and Mn atoms. Therefore the magnetic

properties of DMS depend critically on pd hybridization and on the positions of d-

levels in the host band structure (Figure 1.3 (25)). These positions determine the

6



1.2 Diluted magnetic semiconductors

energy needed to promote an electron from the occupied d-level of the Mn to the top

of the valence band (d5/d4 donor level), or to promote an electron from the top of the

valence band to the unoccupied d-level (d5/d6 acceptor level). In the latter case there

is an extra energy cost due to the intra-d-shell Coulomb energy (the energy to be paid

to add an electron on the Mn d orbitals).

Figure 1.3: Schematic diagram of the p-d hybridization in CdMnTe (a) Atomic unpolar-

ized levels, (b) exchange-split atomic levels, (c) crystal-field split levels, (d) final interaction

states. (see (25))

DMS of the II-VI type are of special interest for several distinct reasons. Their

ternary nature offers the possibility of tuning the lattice constant, band parameters

and magneto-optical properties by the band structure and magnetic ion concentra-

tions. The techniques developed for semiconductor heterostructures enable incorpora-

tion of DMS layers into quantum wells, quantum dots and other electro-optical devices

in which the spin splitting can also be tuned by the confinement energy and the size

quantization. The presence of localized magnetic ions in these semiconductor alloys

leads to an extremely large Zeeman splittings of electronic levels. This selective am-

plification of spin-dependent properties leads to new effects, such as the giant Faraday

rotation, the magnetic-field-induced metal-insulator transition, and the formation of

bound magnetic polarons.
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1. SPINTRONICS, DILUTED MAGNETIC SEMICONDUCTORS AND
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1.3 Diluted magnetic semiconductor quantum dots

A quantum dot, also called artificial atom, is a semiconductor nanostructure where the

electrons are confined in all three spatial directions in nanometer scale, which leads

to the formation of discrete energy levels. The properties of quantum dots can be

controlled by the material and their shape, which can be controlled by the growth pro-

cess. There are several fabrication methods, the most prominent being self-assembled

growth, also known as Stranski-Krastanov growth. Semiconductor quantum dots have

been the subject of research for about 30 years. They are expected to become a basic

ingredient for many applications in optics and optoelectronics in the near future. Since

the proposal of Di Vincenzo and Loss, quantum dots are moreover dealt as promising

candidates for qubits in a quantum computer (26).

1.3.1 State of the art

Carrier-Mn coupling was mostly studied in bulk DMS made of II-VI semiconductors

in which Mn impurities were introduced (see the review papers (27, 28)). In these ma-

terials, Mn impurities have the d5 electronic configuration and substitute the cations

from column II (Zn, Cd or Hg) up to 100%. An important point for the study of mag-

netic quantum dots is that Mn is an isoelectronic impurity in II-VIs - by contrast to

the acceptor character observed in GaAs and similar III-Vs (29, 30). The Mn ground

state is 6S, introducing localized spins with S=5/2. If not interacting, these localized

spins follow Maxwell-Boltzmann statistics, resulting in a magnetization induced by an

applied field given by a Brillouin function. Optical spectroscopy around the bandgap

reveals the giant Zeeman effect, with a spin splitting proportional to the Mn magneti-

zation (31). Several studies have demonstrated this proportionality and measured the

strength of the coupling (32). Magneto-optical spectroscopy is now a very sensitive

method for measuring locally the magnetization of the Mn system (33). Altogether,

this excellent knowledge of II-VI DMS, and of the coupling between the localized spins

and carriers, constitutes a very firm basis for the further studies described below.

In a magnetic quantum dot, the sp-d interaction takes place with a single carrier or

a single electron-hole pair. However, besides effects related to the carriers-Mn exchange

interaction such as giant Zeeman shift, it was found that even a small content of Mn

introduced in a II-VI semiconductor material can strongly suppress photoluminescence

(PL) if the energy gap Eg exceeds the energy of the Mn internal transition. This

strongly limits the study of individual DMS quantum dots (34). The first studies of

individual quantum dots doped with Mn atoms were reported by Maksimov et al (35).

They studied CdMnTe quantum dots inserted in CdMgTe barriers in which the optical

transition energies are lower than the energy of the internal transition of the Mn atom.

This suppresses the non-radiative losses due to the transfer of confined carriers to

8



1.3 Diluted magnetic semiconductor quantum dots

the Mn internal levels. This system allowed observing the formation of quasi zero-

dimensional magnetic polaron.

Another way to reduce the non-radiative losses was to introduce the magnetic atoms

in the quantum dots barriers. This was realized for self-assembled CdSe dots embedded

in ZnMnSe barriers by Seufert et al. (36). In this system, the interaction between the

confined exciton and the magnetic atoms is due to the spread of the wave function in

the barriers and to a small diffusion of the magnetic atoms in the quantum dots. In

these DMS structures, the formation of a ferromagnetically aligned spin complex was

demonstrated to be surprisingly stable as compared to bulk magnetic polaron (37, 38)

even at elevated temperature and high magnetic fields. The PL of a single electron-hole

pair confined in one magnetic quantum dot, which sensitively depends on the align-

ment of the magnetic atoms spins, allowed to measure the statistical fluctuation of the

magnetization on the nanometer scale. Quantitative access to statistical magnetic fluc-

tuations was obtained by analyzing the linewidth broadening of the single dot emission.

This all optical technique allowed to address a magnetic moment of about 100 µB and

to resolve changes in the order of a few µB (39, 40, 41).

A huge effort has also been done to incorporate magnetic ions in chemically syn-

thesized II-VI nanocrystals (42). The incorporation of the magnetic atoms is strongly

dependent on the growth conditions and controlled by the adsorption of atoms on the

nanocrystal surface during growth (43). The doping of nanocrystals with magnetic

impurities also leads to interesting magneto-optical properties (44) but once again, in

these highly confined systems, the transfer of confined carriers to the Mn internal levels

strongly reduces their quantum efficiency and prevents the optical study of individual

Mn-doped nanocrystals. However, by looking to magnetic circular dichroism absorp-

tion spectra, it is possible to observe a giant excitonic Zeeman splitting and to deduce

directly the sp-d exchange interaction (45). Recently, a very robust light induced spon-

taneous spin polarization (46) was obtained in large CdSe nanocrystals containing a

few percent of Mn and emitting at lower energy than the internal transition of the Mn.

1.3.2 Magnetic Cd(Mn)Te quantum dots

In this thesis, we focus on self-assembled CdTe quantum dots grown on a ZnTe sub-

strate. Theorefore, in this section, we first discuss the band structure of bulk CdTe and

then present the CdTe quantum dots modeled in our theory.

The band structure of CdTe is shown in Figure 1.2. CdTe has a Zinc-Blende type

structure: Cd and Te atoms are both on a face-centered cubic crystal, the two lattice

are shifted from each other by a quarter of the [111] diagonal. Hence CdTe has a

Td symmetry. As shown in Figure 1.2, the valence band splits into two banches near

the Γ8 point. The one with the smallest curvature (highest effective mass) is called

the heavy-hole band and the other is called the light-hole band. If we include spin-

9



1. SPINTRONICS, DILUTED MAGNETIC SEMICONDUCTORS AND
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Figure 1.4: (a) AFM image of a CdTe surface deposited on a ZnTe substrate before

deposition of a ZnTe capping layer. (b) High resolution TEM image showing the structure

of a CdTe/ZnTe quantqum dot. (c) Crystalline structure of CdTe with the substitution of

a Cd atom by a magnetic Mn atom.

orbit coupling, the valence band maximum with L = 1 is split into a quadruplet with

J = 3/2 (Γ8 point) and at lower energy, a doublet with J = 1/2 (Γ7 point). The energy

splitting at the Γ point between the valence band and the split-off band (Γ7) is 0.9eV

approximately for CdTe and ZnTe. The valence band eigenstates at the Γ point can

be expressed as a function of the three electronic states |X >, |Y >, |Z > and the

spin-states | ↑> and | ↓>. We define the eigenstates of Lz = 0,±1:

|+ 1〉 = −|X〉+ i|Y 〉√
2

|0〉 = |Z〉

| − 1〉 =
|X〉 − i|Y 〉√

2
(1.1)

The composition with the 1/2 spin leads to:

Γ6 : |1
2
,
1

2
〉 = |S〉| ↑〉

|1
2
,−1

2
〉 = |S〉|↓〉
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1.4 Singly Mn doped CdTe quantum dots

Γ8 : |3
2
,
1

2
〉 =

√

2

3
|0〉|↑〉+

√

1

3
|1〉|↓〉

|3
2
,−1

2
〉 =

√

2

3
|0〉|↓〉+

√

1

3
|−1〉|↑〉 (1.2)

|3
2
,
3

2
〉 = |1〉|↑〉

|3
2
,−3

2
〉 = |−1〉|↓〉

Γ7 : |1
2
,
1

2
〉 =

√

2

3
|1〉|↓〉 −

√

1

3
|0〉|↑〉

|1
2
,−1

2
〉 = −

√

2

3
|−1〉|↑〉+

√

1

3
|0〉|↓〉

These eigenstates give directly the optical selection rules at the Γ point. In chapter 3,

we will discuss in detail the eigenstates of holes (Γ8 band) in quantum dots using Kohn-

Luttinger and Bir-Pikus Hamiltonian and derive the effective interacting Hamiltonian

between hole and Mn spins.

Self-assembled quantum dots based on CdTe usually present an emission energy

below the internal transition of the Mn atom. The incorporation of magnetic atoms

is then possible without loosing the good optical properties of these quantum dots.

Most of the experimental studies on these quantum dots are focused on the interaction

of a single carrier spin with its paramagnetic environment (large number of magnetic

atoms) (47, 48). CdTe/ZnTe quantum dots structures doped with a low density of Mn

allow to control optically the spin states of a single magnetic atom interacting with a

single electron-hole pair or a single carrier (49).

The CdTe/ZnTe quantum dots samples used in our study (Figure 1.4) are all grown

on ZnTe substrates. A 6.5- monolayer-thick CdTe layer is deposited by atomic layer

epitaxy on a ZnTe barrier grown by molecular beam epitaxy. The dots are formed by the

well-established Tellurium deposition/desorption process (50) and protected by a 100-

nm-thick ZnTe top barrier. Single Mn atoms are introduced in CdTe/ZnTe quantum

dots during their growth adjusting the density of Mn atoms to be roughly equal to the

density of quantum dots (51). The height of the quantum dots core is a few nanometers

and their diameter is in the 10 nm range.

1.4 Singly Mn doped CdTe quantum dots

Micro-spectroscopy can be used to study the magneto-optical properties of individual

CdTe/ZnTe quantum dots containing an individual Mn atom. Typical PL and PL

11
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Figure 1.5: Photoluminescence and photoluminescence excitation spectra of an exciton

in a single CdTe/ZnTe quantum dot.

excitation spectra of an exciton in a single CdTe/ZnTe quantum dot are shown on

Figure 1.5.

In Figure 1.6, PL spectra of an individual Mn-doped quantum dot are compared

to those of a non-magnetic CdTe/ZnTe reference sample. In non-magnetic samples,

narrow PL peaks can be resolved, each attributed to the recombination of a single

electron-hole pair in a single quantum dot. The emission of neutral quantum dots is split

by the e-h exchange interaction and usually a linearly polarized doublet is observed (11).

On the over hand, most of the individual emission peaks of magnetic single quantum

dots are characterized by a rather large linewidth of about 0.5 meV. For some of

these quantum dots, a fine structure can be resolved and six emission lines are clearly

observed at zero magnetic field. The measured splitting changes from dot to dot. This

fine structure splitting as well as the broadening is obviously related to the influence

of the magnetic ions located within the spatial extent of the exciton wave function.

The broadening observed in magnetic quantum dots has been attributed by Bacher et

al. to the magnetic fluctuations of the spin projection of a large number of Mn spins

interacting with the confined exciton (39). In the low concentration Mn-doped samples,

the observation of a fine structure shows that the quantum dot exciton interacts with a

single Mn spin. In time-averaged experiments, the statistical fluctuations of a single Mn

spin (M=5/2) can be described in terms of populations of its six spin states quantized

12



1.4 Singly Mn doped CdTe quantum dots

Jz=  1

Jz=  2+-

X+MnX
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E
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Figure 1.6: Low temperature (T=5K) PL spectra obtained at B=0T for an individual

CdTe/ZnTe quantum dot (a) and a Mn-doped quantum dot (b). (c) Scheme of the energy

levels of the Mn-exciton coupled system at zero magnetic field. The exciton-Mn exchange

interaction shift the energy of the exciton depending on the Sz component of the Mn spin

projection.

along the direction normal to the quantum dot plane. The exchange interaction of

the confined exciton with the Mn atom shifts its energy depending on the Mn spin

projection.

At zero magnetic field, the quantum dot emission presents a fine structure composed

of six doubly degenerated transitions roughly equally spaced in energy. The lower

energy bright states, |+ 1/2〉e| − 3/2〉h|+ 5/2〉Mn and | − 1/2〉e|+ 3/2〉h| − 5/2〉Mn are

characterized by an anti-ferromagnetic coupling between the hole and the Mn atom.

The following states are associated with the Mn spin projections Sz = ±3/2,±1/2 until

the higher energy states | − 1/2〉e|+ 3/2〉h|+ 5/2〉Mn and |+ 1/2〉e| − 3/2〉h| − 5/2〉Mn

corresponding to ferromagnetically coupled hole and manganese. In this simple model

the zero field splitting δMn = 1
2(je − 3jh) depends only on the electron-Mn exchange

integral (je) and hole-Mn exchange integral (jh). As we will see, they are related to

the position of the Mn atom within the exciton wave function.

When an external magnetic field is applied in the Faraday geometry (Figure 1.7),

each PL peak is further split and twelve lines are observed, six in each circular polar-

ization. The Zeeman effect of the Mn states is identical in the initial and final states

of the optical transitions then the six lines in a given polarization follow the Zeeman

and diamagnetic shift of the exciton, as in a non-magnetic quantum dot. The parallel

13
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Figure 1.7: Magnetic field dependence of the emission of a Mn-doped quantum dot

recorded in σ+ and σ− polarisation. Anticrossing of the bright and dark states appears

around 7T in σ− polarisation. From reference (5)

evolution of the six lines is perturbed around 7T in σ− polarization by anti-crossings

observed for five of the lines. In addition, as the magnetic field increases, one line in

each circular polarization increases in intensity and progressively dominates the others.

The electron-Mn part of the interaction Hamiltonian je(S ·M) couples the dark

(Jz + Sz = ±2) and bright (Jz + Sz = ±1) heavy hole exciton states. This coupling

corresponds to a simultaneous electron and Mn spin flip changing a bright exciton into

a dark exciton. In a first approximation, because of the strain induced splitting of

light hole and heavy hole levels, a similar Mn-hole spin flip scattering is not allowed.

The electron-Mn spin flip is enhanced as the corresponding levels of bright and dark

excitons are brought into coincidence by the Zeeman effect. An anti-crossing is observed

around 7T for five of the bright states in σ− polarization (Figure 1.7). It induces

a transfer of oscillator strength to the dark states. The lower energy state in σ−
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1.5 Summary

polarization (| + 1/2〉e| − 3/2〉h|+ 5/2〉Mn) does not present any anti-crossing. In this

spin configuration, both the electron and the Mn atom have maximum spin projection

and a spin flip is not possible.

The minimum energy splitting at the anti-crossing is directly related to the electron-

Mn exchange integral Je. For instance, the splitting measured for the higher energy line

in σ− polarisation (Figure 1.7), ∆E = 150µeV gives je ≈-70µeV. From the overall split-

ting measured at zero field (1.3meV ) and with this value of je, we obtain jh ≈150µeV.

These are typical values for the exchange integrals in CdTe magnetic quantum dots.

1.5 Summary

In this chapter, we introduced basis on spintronics, diluted magnetic semiconductor,

and single spin based devices. We then discussed the basic properties of CdTe and CdTe

base self-assembled quantum dots. We then introduced the optical properties of single

Mn doped quantum dots. In the next chapter, we will give more experimental evidence

on the optical pumping and the dynamics of an individual Mn spin in a quantum dots.
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We will first present in this chapter a summary of some recent experiments show-

ing that the spin state of a single magnetic atom embedded in an individual

semiconductor quantum dot can be optically probed and controlled using micro-

spectroscopy1. A high degree of spin polarization has been achieved for an in-

dividual Mn atom using quasi-resonant or fully-resonant optical excitation of the

quantum dot at zero magnetic field. Under quasi-resonant excitation, optically cre-

ated spin polarized carriers generate an energy splitting of the Mn spin and enable

magnetic moment orientation controlled by the photon helicity and energy. Mon-

itoring the time dependence of the intensity of the fluorescence during a resonant

optical pumping process allows to directly probe the dynamics of the initialization

1most of the experimental data of this chapter comes from the reference (10) and (11), published

by the author’s group
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2. OPTICAL PUMPING OF AN INDIVIDUAL MN SPIN:
EXPERIMENTS AND RATE EQUATIONS

of the Mn spin: the optical initialization can take place in less than 100ns. The Mn

spin state prepared by optical pumping is fully conserved for a few microseconds.

These experiments suggest a complex carriers-Mn spin dynamics we will describe

in the following chapters. In the last part of this chapter, we give a simple rate

equations model for the exciton-Mn system, with the phenomenological parameter

and discuss the pumping of Mn spin by a resonant laser excitation.

2.1 Optical Mn spin orientation

To optically pump the Mn spin, Mn-doped quantum dots were quasi-resonantly excited

with a tunable continuous wave (CW) dye laser. In order to record the dynamics of

the preparation of the Mn spin (spin transients), the linear polarization of the excita-

tion laser was modulated between two orthogonal states by switching an electro-optic

modulator, and converted to circular polarization with a quarter-wave plate. Trains of

resonant light with variable duration were generated from the CW laser using acoustic-

optical modulators with a switching time of 10 ns. The circularly polarized collected

light was dispersed by a 1 m double monochrometer before being detected by a fast

avalanche photodiode in conjunction with a time correlated photon counting unit.

Figure 2.1 and 2.2 summarize the main features of the time-resolved optical orien-

tation experiment. The PL of the exciton-Mn (X-Mn) complex was excited about 20

meV above the PL (top of Figure 2.1(a)), on an excited state of the X-Mn complex (52);

the PL intensity was detected in circular polarization (e.g., σ−, corresponding to the

recombination of the −1 exciton). The relative intensities of the six lines dramatically

depend on the excitation energy (bottom of Figure 2.1(a)): as each line corresponds to

one value of the Mn spin projection Mz, the whole process creates a non-equilibrium

occupation probability of the Mn spin states. Under these conditions, switching the

circular polarization of the excitation produces a change of the σ− PL intensity (Fig-

ure 2.1(b)) with two transients: first an abrupt one with the same sign for all six lines,

reflecting the population change of the spin polarized excitons; then a slower transient

reflecting an increase or a decrease of the occupation of the detected Mn spin state.

This slow transient has an opposite sign for the two extreme PL lines (i.e., when mon-

itoring the Mn spin states Mz = ±5/2, Figure 2.2(b)), and a characteristic time which

is inversely proportional to the pump intensity (Figure 2.2(a)). This is the signature of

an optical pumping process which realizes a spin orientation of the Mn atom. We first

discuss the details of this process, then use it to study the spin dynamics of the single

Mn in the quantum dot.

The relevant sub-levels of X-Mn and Mn are schematized in Figure 2.2(c). For

the sake of simplicity, we omit the dark exciton states which will be included for a

quantitative analysis and consider that the dynamics can be described by two spin
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Figure 2.1: (a) PL and PLE of a Mn-doped quantum dot (quantum dot 1) at B = 0 T and

T = 5 K. The PL is detected in circular polarization under an alternate σ−/σ+ excitation

at two different wavelengths: 1987.0 meV (black) and 1987.4 meV (red). (b) PL transient

under polarization switching at B = 0 T. The PL is detected on the high energy line of

X-Mn in σ− polarization (Mn spin Mz = −5/2). Transient (I) (resp. (II)) was observed

under resonant excitation at 1975 meV (resp. 1987 meV). From reference (10)
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Figure 2.2: PL transients at different values of the excitation power. Inset: power

dependence of the inverse response time τr, taken at the 1/e point of the spin-related

transient. (b) PL transients recorded in σ− polarization on the high (Mz=-5/2) and low

(Mz=+5/2) energy line of the X-Mn complex. (c) Simplified level diagram of a Mn-doped

quantum dot, as a function of Mn spin (X-Mn: bright exciton-Mn). From reference (10)

relaxation rates, one for the Mn alone ΓMn,G and one within the X-Mn complex ΓX−Mn

(12, 53). As spin orientation results from a cumulative effect of relaxation in presence

of the exciton, it can be performed only if ΓX−Mn is faster than ΓMn,G. When exciting

one of the low energy excited states of the quantum dot, two mechanisms are expected

to contribute to the observed spin orientation: the selective excitation of the quantum

dot can show a dependence on the Mn spin state (52), and the relaxation of the Mn spin

within the X-Mn system is driven by the interaction with the spin polarized carriers

which have been injected.

Under spin selective excitation, the spin relaxation of X-Mn tends to empty the

spin state of the Mn which is most absorbant (12). Under injection of spin polarized

carriers, relaxation processes tend to anti-align the Mn spin with the X exchange field to

reach a thermal equilibrium on the X-Mn levels (12). Hence, optical pumping with σ−

photons for instance, tends to decrease the population of the spin state Mz=-5/2 and

increase that of Mz=+5/2, as observed in Figure 2.2(b). Both mechanisms, absorption

selectivity and spin injection, depend on the structure of the excited states, resulting

in a pumping signal which depends on the excitation energy (Figure 2.1). An efficient

pumping of the Mn spin can be performed within a few tens of ns, showing that at

B = 0T the spin relaxation time of the Mn alone is long enough compared to the X-Mn
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Figure 2.3: (a) PL transients recorded on quantum dot 1 (corresponding PL in the

inset) under the optical polarization sequence displayed at the bottom of the plot. The

spin distribution prepared by optical pumping is conserved during τdark=3.5µs. (b) PL

transients recorded on quantum dot 2. The amplitude of the pumping signal is restored

after τdark∼3µs. From the delay dependence of this amplitude we deduce a Mn relaxation

time of ∼700ns.
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out-of-plane (b). Inset: transverse field dependence of the transient amplitude ∆I/I).

B1/2 is the half width at half maximum. From reference (10)

Having established a method to prepare the Mn spin, we will perform pump-probe

experiments to observe how long the Mn polarization can be conserved (Figure 2.3).

We prepare a non-equilibrium distribution of the Mn spin with a σ± pump pulse. The

pump laser is then switched off, and switched on again after a dark time τdark. The

amplitude of the pumping transient after τdark depends on the Mn spin relaxation

in the dark. For quantum dot 1 (Figure 2.3(a)) no transients are observed after a

dark time of 3.5µs. This demonstrates that in the absence of charges fluctuations (i.e.

neutral quantum dot (see inset of Figure 2.3(a))) the prepared Mn spin is conserved

over µs. For quantum dot 2 (Figure 2.3(b)) the amplitude of the pumping signal is

restored after τdark∼3µs. From the delay dependence of this amplitude we deduce a Mn

relaxation time of ∼700ns. These two examples show that the measured spin relaxation

is not intrinsic to the Mn spin but depends on its local environment (strain, presence

of carriers...).

More information on the Mn local environment can be obtained from the magnetic

field dependence of the optical pumping signal. For an isotropic Mn spin, the deco-
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2.2 Resonant optical pumping of a single Mn spin.

herence of the precessing spin in a transverse field gives rise to the standard Hanle

depolarization curve with a Lorentzian shape and a width proportional to 1/T2 (54).

In the present case, a magnetic field in the Faraday configuration (Bz) does not

change significantly the PL transients (Figure 2.4(b)): a weak increase of the spin

orientation efficiency is observed as soon as a field of a few mT is applied. By contrast,

an in-plane field (Bx) induces a coherent precession of the Mn spin away from the

optical axis (= quantum dots’ growth axis), so that the average spin polarization, and

therefore the amplitude of the optical pumping signal, decays (Figure 2.4(a)).

It is known from electron paramagnetic resonance spectroscopy that the ground

state of Mn2+ presents a fine structure (55). In a cubic crystal, it results from a

hyperfine coupling with the Mn nuclear spin, A~I · ~M (with I=5/2 and A≈ 0.7µeV),

and the crystal field. In addition, in epitaxial structures, built-in strains due to the

lattice mismatch induce a magnetic anisotropy with an easy axis along the quantum

dot’s axis. It scales as D0M
2
z , with D0 proportional to the biaxial strain (55).

This fine structure controls the Mn spin dynamics at zero or weak magnetic field.

At zero field, in the absence of anisotropy, the precession of the electronic spin of the

Mn in its own hyperfine field should erase any information stored on the electronic

spin (56). In the presence of magnetic anisotropy, the precession of the Mn spin in

the nuclear field is blocked even at B = 0T . The magnetic anisotropy also blocks

the Mn spin precession in a weak transverse magnetic field. Then the tranverse field

dependence of the optical pumping efficiency is controlled both by the anisotropy D0

and the coherence time T2.

2.2 Resonant optical pumping of a single Mn spin.

As proposed by Govorov et al. (12), the direct resonant excitation of one optical

transition of the ground X-Mn complex can be used to perform a direct and more

efficient optical pumping of the Mn spin. In this optical pumping process, a laser drives

resonantly one of the exciton-Mn transition ( | − 1,Mz = −5/2〉 in Figure 2.5) with

a Rabi frequency Ω = PE/~, P is the dipolar moment of the quantum dot transition

and E the amplitude of the electric field of the resonant laser. A photon absorption

occurs only if the Mn spin in the quantum dot is in the Mz = −5/2 spin state. The

resultant exciton can radiatively recombine via the same channel, or a spin-flip process

can project the X-Mn complex in a state with Mz 6= −5/2. After a few cycles of

absorption-emission, the probability of detecting the Mn in the Mz = −5/2 state

decreases. In this mechanism, we have assumed that the Mn spin was conserved once the

exciton has recombined. The conservation of the Mn spin between the recombination

of an exciton and the absorption of a photon can be altered in two ways: either by a

relaxation process involving an exchange of energy or by a coherent evolution (10, 56).
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Figure 2.5: Energy levels of a Mn doped quantum dot involved in the optical pumping

mechanism described in the text (Black: bright excitons (Xb)); grey: dark excitons (Xd)).

The sates are displayed as a function of their total angular momentum Mz and energy

E. For the resonant optical pumping, the quantum dot is resonantly driven on the state

Mz = −5/2 with a σ− laser pulse with a Rabi frequency Ω. The scattered photons obtained

after a spin-flip of the exciton (rate ΓX,Mn) are recorded in σ+ polarisation.
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2.2 Resonant optical pumping of a single Mn spin.

A coherent evolution can be neglected if the fine structure of the Mn atom is dominated

by a magnetic anisotropy along the growth axis (10). Otherwise, processes such as the

coherent evolution of the Mn spin in the hyperfine field of the Mn nucleus or in the

tetragonal crystal field leads to a change of the Mn spin state between the injection

of two excitons. In that case, no optical pumping can occur. In the following, we will

use ΓMn,G to describe the characteristic rate at which the Mn spin state changes due

to coherent or incoherent processes, when the quantum dot is empty. This mechanism

of Mn spin manipulation is similar to the pumping process used to prepare a single

carrier spin in a quantum dot (57, 58). It involves an optically forbidden transition

(i.e. spin flip of the Mn interacting with the exciton) and is based on the inequality

ΓMn,X > ΓMn,G.

To demonstrate and test the efficiency of this optical pumping process, we developed

a two wavelength pump-probe set-up allowing an optical initialization and read-out of

the Mn spin (11). In this experiment, a resonant circularly polarized CW laser (resonant

pump) tuned on a X-Mn level pumps the Mn spin. In the initial state at t=0, the Mn

atom is in thermal equilibrium. The resonant creation of an exciton followed by a

spin relaxation of the Mn in the exchange field of the exciton empties the spin-state

under excitation. Then, a second laser train, linearly polarized and tuned on an excited

state of the quantum dot (quasi-resonant probe), injects excitons independently of the

Mn spin state Mz. A spin relaxation of the X-Mn complex under these conditions of

excitation drives the Mn atom back to an equilibrium where all spin states are equally

populated. Recording one of the six PL lines under this periodic sequence of excitation,

we monitor the time evolution of the probability of occupation of a given Mn spin state.

The main features of this experiment are presented in Figure 2.6. In this example,

σ+ PL signal is recorded on the low energy X-Mn line. The quantum dot is resonantly

excited on the high energy state of the X-Mn complex with σ− photons. This excitation

can only create an exciton in the dot if the Mn spin state is Mz=-5/2. After this

pumping sequence, the resonant pump laser is switched off and followed by a linearly

polarized excitation on an excited state (quasi-resonant probe). The amplitude of this

quasi-resonant PL depends on the population of Mz=-5/2 and, at the beginning of the

probe pulse, is a probe of the resonant pumping efficiency reached at the end of the

pump pulse.

This is illustrated in Figure 2.6(i) which presents the difference of the two PL signals

produced by the probe when the resonant pump laser was OFF or ON in the pump-

probe sequence presented underneath the curve 2.6(ii). The difference of the two PL

signals reflects the population difference between a sequence with optical pumping and

a sequence whereMz = −5/2 is evenly populated. The height of the difference signal at

the beginning of the probe pulse, which reaches 75% gives a direct measurement of the

efficiency of the spin optical pumping. The PL transients observed during the probe
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Figure 2.6: PL transients recorded on the low energy line of a Mn-doped quantum dot

(quantum dot 1) under the quasi-resonant (quantum dot excited state: probe) and resonant

(quantum dot ground state: pump) optical excitation sequence displayed at the bottom.

The inset presents the quantum dot PL under non-resonant excitation and the configuration

of the resonant excitation and detection. (i) Difference between the PL produced by the

probe when the pump is OFF and when the pump is ON, (ii) PL from the pump and the

probe and (iii) resonant PL produced by the pump alone. Because of the Mn spin memory

in the absence of injected carriers, no signature of pumping is observed when the linearly

non-resonant probe is OFF (iii). The optical pumping process is directly observed on the

resonant fluorescence produced by the pump and latter on the PL from the probe laser.

I0 is the amplitude of the fluorescence at the beginning of the pump pulse and ∆I the

amplitude of the transient. ∆I/I0 is the efficiency of the spin optical pumping.
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2.2 Resonant optical pumping of a single Mn spin.

pulse corresponds to the progressive destruction of the non-equilibrium distribution

prepared by the pump. This reset process is produced by the injection of unpolarized

excitons and its rapidity depends on the intensity of the probe laser.

A more direct way to probe the optical pumping process is to monitor the time

evolution of the fluorescence signal observed during the resonant excitation. Excitation

transfer can occur within the X-Mn complex during the lifetime of the exciton and

gives rise to a weak PL on all the quantum dot’s levels. Whatever the spin relaxation

processes involved in this excitation transfer, this signal depends on the absorption of

the pump laser which is controlled by the occupation of Mz=-5/2: it monitors the spin

selective absorption of the quantum dot and is then a direct probe of the pumping

efficiency of the Mn spin. The pumping efficiency is then given by ∆I/I0 ≈ 75% (see

Figure 2.6), in agreement with the pumping efficiency measured on the probe sequence.
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Figure 2.7: (a) Excitation energy dependence of the resonant fluorescence signal obtained

on quantum dot 1 for cross circular excitation-detection on the high and low energy exciton

line respectively (positive detuning corresponds to an excitation on the high energy side

of the line). (b) Detail of the resonant fluorescence transient recorded during the optical

pumping process. The exponential fit (black line) gives an optical pumping efficiency

Peff ≈ 75% and a pump time of 70 ns. (c) Amplitude of the resonant fluorescence signal

as the excitation is tuned around the high energy line of X-Mn. The Lorentzian fit give a

full width at half maximum of 80µeV .

The time evolution of the PL detected on the low energy state of X-Mn under a
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resonant excitation on the high energy state is presented in Figure 2.6(ii) and 2.6(iii)

for two different pump-probe sequences: probe ON and probe OFF respectively. When

the probe laser is switched ON, an equilibrium distribution of the Mn spin is restored

by the non-resonantly injected unpolarized excitons before each pumping pulse. The

absorption, and then the amplitude of the resonant fluorescence signal is maximum at

the beginning of the pump pulse and progressively decreases as the state Mz=-5/2 is

emptied by the optical pumping process. When the probe laser is switched OFF in

the pump-probe sequence, the resonant fluorescence transients during the pump pulse

disappears and a weak constant PL is observed. This disappearance of the transient is

a signature of the perfect conservation of the Mn spin distribution during the dark time

between each pumping pulse. The steady state PL depends on the optical pumping

efficiency which is controlled by the ratio of the relaxation rates for the Mn spin in the

exchange field of the exciton and the relaxation and coherent evolution of the Mn spin

in an empty dot (10, 56).

2.3 Time resolved resonant fluorescence of a Mn doped

quantum dot.

The resonant fluorescence signal can be used to analyze the influence of the excitation

power, wavelength and polarization on the efficiency of the Mn spin optical pumping

(11). A detail of the time resolved resonant fluorescence signal obtained with the pump

laser tuned strictly on resonance with the high energy level is presented in Figure 2.7(b).

A decrease of about 75% of the resonant PL is observed during the optical pumping

process with a characteristic time of τpump=70 ns. This exponential decay reflects

the decrease of the absorption of the quantum dot induced by the decrease of the

population of the state Mz=-5/2 and shows it takes a few tens of ns to initialize the

Mn spin. Alternatively, one can say that the transition can be recycled for a few tens

of ns before the laser induces a Mn spin-flip event. After a few tens of ns the PL

reaches a steady state intensity.

Figure 2.7(a) and 2.7(b) present the amplitude and time evolution of the fluorescence

signal detected on | + 1,Mz = −5/2〉 for different pump wavelength around the high

energy level | − 1,Mz = −5/2〉. A clear resonant behavior is observed in the initial

amplitude I0 of the fluorescence signal (Figure 2.7(c)). This reflects the wavelength

and excitation power dependence of the absorption of the quantum dot. The measured

width of the resonance (∼ 80µeV ) is a convolution of the width of the quantum dot’s

absorption in the non-linear regime and of the linewidth of the excitation laser (∼
60µeV ). The efficiency of the optical pumping ∆I/I0, presents a similar resonance

demonstrating the strong excitation energy dependence of the spin optical pumping

process.
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2.3 Time resolved resonant fluorescence of a Mn doped quantum dot.
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Figure 2.8: (a) Excitation power dependence of the resonant fluorescence signal of quan-

tum dot 1. (b) Excitation power dependence of the optical pumping rate. The vertical

dotted line shows the excitation power range used in the optical pumping wavelength de-

pendence presented in Figure 3. (c) Excitation power dependence of the amplitude of the

optical pumping signal. The solid lines in (b) and (c) represent the calculated evolution of

the population of a resonantly excited two level system as a function of the square of the

Rabi frequency which is proportional to excitation intensity. In this calculation, T1=180ps,

T2=10ps and Ω2 is adjusted to reproduce the observed saturation.
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As displayed in Figure 2.8, the characteristic time and the amplitude of the optical

pumping signal also depends on the excitation intensity. In the low excitation regime,

as expected for a spin optical pumping process, the transient characteristic time (τpump)

is inversely proportional to the pump laser intensity. A saturation behavior is clearly

observed for the amplitude and the characteristic time of the resonant fluorescence

transient. The saturation of the optical pumping process results from a saturation of the

absorption of the resonantly excited excitonic level. Indeed, the population of a two level

system driven by a resonant excitation laser is given by (59): neq = Ω2(T1

T2
)/2(∆ω2 +

1
T 2
2

+ Ω2 T1

T2
), where Ω is the Rabi frequency, ∆ω the detuning between the excitation

laser and the excitonic transition, T1 and T2 the lifetime and the coherence time of the

exciton respectively. The rate of the spin optical pumping process, which is proportional

to neq, is expected to increase with the excitation Rabi frequency until it reaches a

saturation value when the Rabi frequency is larger than the spontaneous emission rate

(Ω ≫ T−11 ). neq obtained with T1=180ps, T2=10ps (60) and ∆ω=0 is compared with

the optical pumping signal in Figure 2.8(b) and 2.8(c). A good agreement with this

simple model describing the population of a two level system resonantly excited by a

CW laser is obtained.

In the saturation regime, ifMz = −5/2 the quantum dot is in the |−1,Mz = −5/2〉
state half of the time in average. Taking for granted that ΓMn,X ≫ ΓMn,G, the rapidity

of the optical pumping process is no longer controlled by the rate at which excitons

are injected but depends only on the relaxation rate from the state | − 1,Mz = −5/2〉
to other X-Mn levels with Mz 6= −5/2. Therefore, the pumping rate in the saturation

regime gives an estimation of the spin-flip rate of the Mn in the exchange field of the

exciton ΓMn,X/2 ≈ Γpump and a relaxation time τMn,X ≈ 20ns in agreement with the

value deduced from photon correlation measurements (53).

2.4 Rate equations for X+Mn system

Here we provide a heuristic non-equilibrium model for the Mn spin dynamics driven

by laser pumping. We propose a master equation for the occupation of the eigenstates

of a simplified single Mn-doped Hamiltonian quantum dot that features the projection

along the z axis of the spin 1/2 electron, the pseudo spin J = 3/2, Jz = ±3/2 of the

heavy hole and the spin 5/2 of the Mn:

H = jhĴzM̂z + jehŜzĴz + jeŜzM̂z +D0M̂
2
z (2.1)

The first term corresponds to the hole Mn coupling, which is antiferromagnetic (jh >

0). The second to the electron-hole exchange, which is ferromagnetic , so that the

dark ±2 excitons lie below the bright ±1 exciton doublet. The third term is the

electron-Mn exchange. The fourth term is the single ion anisotropy adequate for a
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2.4 Rate equations for X+Mn system

strained thin layer (61). The spin-flip contributions, which certainly present in the

carrier-Mn coupling, have been studied in detail elsewhere (17). In first approximation,

they can be neglected. A complete analysis of their effect will be discussed elsewere

(13). Hamiltonian (2.1) commutes with Mz, Sz and Jz so that the eigenvalues are

E(Mz , Sz, Jz) = EX + jhJzMz+ jehSzJz+ jeSzMz where EX ≃ 2eV is the bare exciton

energy. To reproduce the experimental spectrum we take je = −0.05meV , jh = 0.2meV

and jeh = −0.75meV (5). As shown in figure 1, this spectrum is made of 6 doublets

for the bright exciton above the 6 doublets for the dark excitons. The ground state

spectrum is given by D0M
2
z , with D0 = 0.007meV (61).

Figure 2.9: (A) Diagram of the 24 exciton-Mn levels and the 6 Mn levels involved in the

optical pumping process. (B) Scheme of the optical pumping.

The master equation model that we use here is an extension of the simple model by

Govorov and Kalameitsev (hereafter GK) (12) in their proposal of optical spin pumping

of a single Mn in a quantum dot. In GK, a unique rate is assigned to transitions between

the 24 exciton levels, complying with principle of detailed balance but neglecting the

dependence of the rates on energy and spin change. Whereas a detailed microscopic

model will be presented elsewhere (13), here we propose a model for the rates in which

transitions are only permitted between states that are connected via the flip of a single

spin (the one of either the Mn, the electron or the hole). This rule is certainly present in

most of spin relaxation mechanisms and restricts significantly the relaxation pathways.
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However, we still neglect the dependence of the rates on the energy difference, except for

the fact that we use the principle of detailed balance. Thus, our model has 4 elementary

rates Γe, Γh, ΓMn,X and ΓMn,G for the relaxation of the spin of the electron, hole, Mn in

the presence of the exciton and Mn in the dark. In addition, Mz conserving transitions

between the six ground states and the 12 bright exciton transitions are described with

a laser pumping function g(Mz ,X) where X = ±1,±2 labels the excitons. We take

g(Mz ,X = ±2) = 0. Mn spin conserving spontaneous emission from bright ΓB and

dark ΓD are also included.
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Figure 2.10: (A) Calculated photoluminescence transients obtained in σ− polarization

on the high (Mz=-5/2) and low (Mz=+5/2) energy line under alternate injection of σ−
and σ+ excitons. The inset shows the Mn spin population at the end of the σ− pumping

sequence. (B) Calculated photoluminescence of |−1,+5/2〉 under excitation on |+1,+5/2〉.
As shown in the inset, the resonant laser excitation empty the state Mz=+5/2.

The master equation reads:

dpN
dt

=
∑

N ′

ΓN←N ′pN ′ −
∑

N ′

ΓN←N ′pN ′ (2.2)

The model permits to consider three excitation modes: (i) resonant, for which Γ(Mz,X)

is non-zero for only one of the 12 bright excitons states, (ii) unpolarized and non-

resonant (or quasi-resonant, using the jargon of the experimental paper (10)) for which

Γ(Mz,X) is non-zero for all the 12 bright states, and (iii) polarized non-resonant, for

which Γ(Mz,X) is non zero for the six states of a given bright exciton.

In Figure 2.10 we show the results of the simulation of the optical pumping processed
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2.5 Conclusion.

reported by Le Gall et al. (10). We take Γe=Γh = 1ns−1, ΓB = 4ns−1, ΓD = 0.1ns−1,

ΓMn,X = 0.1ns−1 and ΓMn,G = 0.0001ns−1. ΓB, ΓD and ΓMn,X have been measured

using time resolved and photon correlation measurements on single Mn doped quantum

dots (9). A ΓMn,G larger than a few micro-seconds has been deduced from recent

optical pumping experiments (10). Γe=Γh=ΓX in the ns range are typical values of

spin relaxation for an exciton under magnetic field (62)(the exchange interaction with

the Mn act on the exciton as an effective magnetic field of a few Teslas).

In the work of Le Gall (10) a quantum dot excited state level is pumped with

circularly polarized light. This process has some degree of Mn spin selectivity which

results in the depletion of the pumped Mn spin transition. The latter is traced by the

time evolution of the PL intensity in the low energy peak which corresponds to the

Mn spin +5/2 and −5/2 depending on the polarization of the detected photon. The

main result observed experimentally is that the optically pumped Mn spin ground level

is depleted. The solution of the master equation (2.2) with the restricted relaxation

rules proposed here is able to account for the observed experimental optical pumping

mechanism (Figure 2.10). As proposed by Govorov (63), this still can be understood

within our model if the Mn spin relaxation is more efficient in the presence of the

exciton than in the ground state (ΓMn,X >> ΓMn,G).

A more efficient pumping efficiency could be obtained under resonant excitation

on the ground state of the quantum dot. Such process is illustrated in Figure 2.10.

The high energy state +5/2 is resonantly driven by a σ+ laser. The initialization of

the Mn spin is probed in the resonance fluorescence signal of the low energy state in

σ− polarization. The intensity of this signal probe the population of the state +5/2

and appears after a spin flip of the created exciton without any change in the Mn

spin projection. With the same parameters used for the modelling of the non-resonant

pumping experiment, we predict a pumping efficiency larger than 95% in a few tens of

ns.

In summary, we have presented here preliminary simulations to account of Mn spin

optical pumping using a model with realistic spin relaxation rules. The results are

in good agreement with the reported experiments of optical orientation under quasi-

resonant excitation reported in this chapter previously. The model suggest an efficient

optical pumping in a tens of ns range for a resonantly driven Mn-doped quantum dot.

This process suggest a very efficient exciton Mn spin relaxation. We will analyze these

relaxation process in the following chapters.

2.5 Conclusion.

The results presented in this chapter demonstrate an efficient optical spin orientation of

a single magnetic atom in a semiconductor host. Quasi-resonant or fully-resonant opti-
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cal excitation of an individual Mn-doped quantum dot with circularly polarized photons

can be used to prepare a non-equilibrium distribution of the Mn spin without any ap-

plied magnetic field. This distribution is fully conserved during a few microseconds.

The spin-flip scattered photons can be used to probe the dynamics of the initialization

of the Mn spin during the resonant optical pumping process.

These optical pumping experiments requires an efficient Mn spin relaxation in the

presence of an exciton in the quantum dot which is in agreement with the simulation

results of the heuristic model. They also suggest a strong influence of the Mn fine and

hyperfine structure of the Mn on the pumping process. We will analyze in the following

chapters some possible origin of this fast carrier-Mn spin dynamics in order to model

these optical pumping experiments. We will also propose and model experiments to

probe the fine and hyperfine structure of the Mn spin and its influence on the coherent

dynamics of the Mn spin.
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In the first part of this chapter, we first derive the Hamiltonian for the

hole-Mn coupling, starting from Kohn-Luttinger Hamiltonian and Bir-Pikus

Hamiltonian in a hard wall potential quantum dot. Then we give the Hamil-

tonian for the exciton-Mn system and discuss the influence of the Heisenberg

term of hole-Mn coupling using a pseudo spin approach for holes. In the

second part of this chapter, we introduce a spin-effective Hamiltonian for

Mn-exciton complex to study the influence of the coupling between elec-

tronic and nuclear spins of the Mn on the spectra of a neutral quantum dot.

We will then present an model the emission of quantum dots containing two

Mn atoms.
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3. QUANTUM DOT MODEL

3.1 Exciton-Mn Hamiltonian

In this section we describe a minimal quantum dot model and Hamiltonian that can

accounts for the PL spectra of single Mn doped CdTe quantum dots. We will use it

as a starting point of the modeling of the spin dynamics. For that matter we need to

consider both the Mn spin in the unexcited crystal and the Mn spin interacting with

a quantum dot exciton. The peaks in the PL spectra are associated to the energy

differences between the states of the dot with and without the exciton.

3.1.1 Mn spin Hamiltonian

As we have seen, the Mn is a substitutional impurity in the Cd site of CdTe. Thus, it

has an oxidation state of 2+, so that the 5 d electrons have spin S = 5
2 , resulting in a

sextuplet(27) whose degeneracy is lifted by the interplay of spin orbit and the crystal

field. In an unstrained CdTe, the crystal field has cubic symmetry which should result

in a magnetic anisotropy Hamiltonian without quadratic terms. Electron paramagnetic

resonance (EPR) in CdTe strained epilayers(61) show that Mn has a dominant uniaxial

term in the spin Hamiltonian. In a quantum dot there could be some in-plane anisotropy

as well, which lead us to consider the following minimal Hamiltonian:

H0 =
∑

ij

DijMiMj + gµB ~B · ~M (3.1)

where Mi are the S = 5
2 spin operators of the electronic spin of the Mn. Dij is a

diagonal matrix with Dxx = E, Dyy = −E, and Dzz = D0. Notice that Dij describes

the magnetic anisotropy that comes from the spin-orbit interaction of the electrons

in the d orbits and the effect of neighbour atoms (crystal field) which split the 5 d

levels into a doublet (e) and a triplet (d) (shown in Figure 1.3). The crystal field

surrounding the magnetic atom interacts with the orbital momentum of the ion and

then in turn interacts with the spin via spin-orbit coupling. So, we can write Dij as a

function of the Mn-Te distances Dij(RMn −RTe), and RMn −RTe = a0 + uMn − uTe,

where a0 is the equilibrium distance determined by the lattice, uMn and uTe are the

displacements introduced by the strain or phonon. These displacements caused by

phonon can introduce a spin relaxation which we will discuss in chapter 4.

The eigenstates of the Hamiltonian (Equation 3.1) are denoted by φm

H0|φm〉 = Em|φm〉 = Em

∑

Mz

φm(Mz)|Mz〉 (3.2)

where |Mz〉 are the eigenstates of Mz. In this section we neglect the hyperfine coupling

to the I = 5
2 nuclear spin and the tetragonal term of the fine structure splitting, which

could affect the decay of the electronic spin coherence (10). Their effect will be discussed
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3.1 Exciton-Mn Hamiltonian

in detail in chapter 6 where the coherent dynamics of the Mn is analyzed. The magnetic

anisotropy parameters, E andD0 can not be easily inferred from PL experiments, which

are only sensitive to the Mn-exciton coupling. EPR experiments(61) in strained layer

could be fit with D0 = 12µeV, E = 0 and g = 2.0. Thus, the ground state should have

Mz = ±1
2 , split from the first excited state by 2D0. At 4 Kelvin and zero magnetic

field, we expect all the six spin levels to be almost equally populated. We refer to these

six states as the ground state manifold, in contrast to the excited state manifold, which

we describe with 24 states corresponding to 4 possible quantum dot exciton states and

the 6 Mn spin states.

3.1.2 Single particle states of the quantum dot

We describe the confined states of the quantum dot with a simple effective mass model.

In the case of the conduction band electrons, we neglect spin orbit coupling and we only

consider the lowest energy orbital, with wave function ψ0(~r), which can accommodate

1 electron with two spin orientations.

In the case of holes, spin orbit coupling lifts the sixfold degeneracy of the top of

the valence band into a J = 3
2 quartet and a J = 1

2 doublet which, in CdTe, is more

than 0.8eV below in energy. Confinement and strain lift the fourfold degeneracy of the

J = 3
2 hole states, giving rise to a mostly Jz = ±3

2 heavy hole doublet and a almost

Jz = ±1
2 light hole doublet. Importantly, it is crucial to include LH-HH mixing to

describe the experimental observation.

3.1.2.1 Effect of confinement

The top of the valence band states are described in the kp approximation with the so

called Kohn-Luttinger Hamiltonian (64, 65, 66). For that matter, the crystal Hamilto-

nian is represented in the basis of the 4 topmost J = 3
2 valence states of the Γ point. We

label them by J = 3
2 , Jz . The resulting kp Hamiltonian can be written as Hholes = HKL

HKL =
∑

i,j=x,y,z

V KL
ij (~k)JiJj + κµBJzB (3.3)

where ~k is the Bloch wave vector, Ji are the spin 3
2 matrices, and V KL

ij are coefficients

given in the appendix A which are quadratic in the components of ~k. The last term

accounts for the Zeeman coupling to an external field along the growth direction.

The kp Hamiltonian for states in the presence of a quantum dot confinement po-

tential that breaks translational invariance reads, for zero applied field:

Hkp = −~
2

∑

i,j=x,y,z

V KL
ij (∂a∂b)JiJj + V (~r)δjz ,j′z (3.4)
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3. QUANTUM DOT MODEL

where the matrix elements of V KL
ij (∂a∂b) are a second order differential operators and

a, b = x, y, z. In general, the numerical solution of equation (3.4) can be very com-

plicated. Following previous work(17, 67), we make two approximations that permit

to obtain analytical solutions. First, we model the quantum dot with a hard-wall

box-shape potential. The dimensions of the box are Lx, Ly and Lz. This permits to

write the wave function as a linear combination of |J = 3
2 , Jz〉 states multiplied by the

confined waves

ψ~n(~r) =

√

8

V
Sin

(

nxπx

Lx

)

Sin

(

nyπy

Ly

)

Sin

(

nzπz

Lz

)

(3.5)

Our second approximation is to restrict the basis set to the fundamental mode only,

nx = ny = nz = 1. As a result, the quantum dot Hamiltonian reads

Hkp = −~
2

∑

i,j=x,y,z

V KL
ij (〈∂a∂b〉)JiJj (3.6)

where

〈∂a∂b〉 =
∫

ψ1,1,1(~r)∂a∂bψ1,1,1(~r) = δab

(

2π

La

)2

(3.7)

Thus, within this approximation, the quantum dot hole states are described by a 4*4

Kohn Luttinger Hamiltonian where the terms linear in ki vanish and the k2i terms are

replaced by
(

2π
Li

)2
. The resulting matrix Hconf has two decoupled sectors denoted by

+ (Jz = +3
2 ,Jz = −1

2) and − (Jz = −3
2 ,Jz = +1

2). In the (+3
2 ,−1

2 ,+
1
2 ,−3

2 ) basis we

have:

Hconf =

(

H+ 0
0 H−

)

(3.8)

with

H+ =

(

P +Q− 3b
2 R

R P −Q+ b
2

)

(3.9)

and

H− =

(

P −Q− b
2 R

R P +Q+ 3b
2

)

(3.10)

where b ≡ κνBB and P , Q and R are given in the appendix A. In order to find the

corresponding energies and wavefunctions it is convenient to write these matrices as:

H± = a± +~h± · ~σ where ~σ are the Pauli matrices acting on the pseudo spin 1
2 space of

the + and − spaces, a± = P ∓ b/2 and

~h± =
(

R, 0, Q∓ b
)

= |~h±| (Sinθ±, 0, Cosθ±) (3.11)
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3.1 Exciton-Mn Hamiltonian

We keep only the two ground states (heavy-hole like), denoted by | ⇑〉 and | ⇓〉, which
are several meV away from the light-hole like states. The ground state doublet for the

quantum dot holes states so obtained, neglecting strain, can be written as

| ⇑〉 = cos
θ+
2
|+ 3

2
〉+ sin

θ+
2
| − 1

2
〉

| ⇓〉 = cos
θ−
2
|+ −3

2
〉+ sin

θ−
2
|+ 1

2
〉 (3.12)

Thus, the LH-HH mixing parameters, θ± depend on the dot dimension, Li, on the

Kohn Luttinger parameters, γi and on the applied magnetic field B.

In most cases the elimination of the 2 higher energy eigenstates of the hole Hamil-

tonian is a good approximation. Let us consider the single-hole states in eq. (3.12)

at finite field and expand them in terms of the zero field (b = 0, θ+ = θ−) basis. It

is apparent that the effect of the magnetic field is to mix the low and high energy

sectors (as defined at zero field). In addition, this mixing is different for the two sectors

denoted by ±. As we show in the next chapter, hole-spin relaxation is possible at finite

magnetic field exactly because of this channel dependent mixing. At zero magnetic field

exchange coupling of the hole to Mn and electrons has the same effect, but, by keeping

only the low energy states (3.12) in the zero field basis, the effect is not captured.

3.1.2.2 Effect of homogeneous strain

We now consider the effect of the strain that arises from the lattice mismatch between

the CdTe quantum dot and the ZnTe substrate on the J = 3
2 states of the valence

band. It has a similar effect than the confinement, resulting in a splitting of the J = 3
2

manifold and a mixing of the LH and HH states. The Hamiltonian that describes the

effect of strain, as described by the strain tensor ǫij, on the top of the valence band

states in zinc-blende semiconductors was proposed by Bir and Pikus (for details, see

appendix B). We can write the Bir-Pikus Hamiltonian as (68) :

HBP =

(

a− 3b

4

)

(exx + eyy + ezz) +

+b
∑

i=x,y,z

J2
i eii +

d√
3
((JxJy + JyJx) exy + c.p.) (3.13)

where c.p. stands for cyclic permutation, and a = −0.91eV, b = −1.2eV, d = −5.4eV

for CdTe(68).

For CdTe quantum dots grown in ZnTe, we mainly consider the effects of strain

anisotropy in the growth plane(69) and describe the strain by the average values of exy
and exx − eyy. In this approximation the Bir-Pikus Hamiltonian is reduced to a block
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3. QUANTUM DOT MODEL

diagonal matrix in the (+3
2 ,−1

2 ,+
1
2 ,−3

2) basis:

HBP =

(

HBP+ 0
0 HBP−

)

(3.14)

where

HBP+ =

(

0 ρse
−2iϕs

ρse
2iϕs ∆lh−hh

)

(3.15)

HBP− =

(

∆lh−hh ρse
−2iϕs

ρse
2iϕs 0

)

(3.16)

where ∆lh−hh = b(exx + eyy) is the strain-induced HH-LH splitting, ρs is the strained

induced amplitude of the HH-LH mixing and φs the angle between the strained induced

anisotropy axis in the quantum dot plane and the x (100) axis and they are defined by:

ρse
−2iϕs =

√
3

2
b (exx − eyy)− idexy (3.17)

Importantly, the effect of confinement and the effect of strain have a very similar math-

ematical structure. They both split and mix the LH and HH levels. The main difference

lies in the mixing term, which is real for the confinement Hamiltonian controlled by

the shape of the quantum dot and in general complex for the Bir-Pikus Hamiltonian

depending on the strain distribution in the quantum dot plane.

3.1.2.3 Combined effect of confinement and strain

We finally consider the combined action of confinement and strain described byHholes =

Hconf +HBP . Summing the Hamiltonians of equations (3.8) and (B.6) to obtain two

decoupled matrices for the + and − subspaces. They can be written as

Htot,± = A± + ~H± · ~σ (3.18)

where A± = P ∓ b
2 +

∆lh−hh

2 and

~H± =

(

R+ ρscos(2ϕs),±ρssin(2ϕs), Q∓ b− ∆lh−hh
2

)

(3.19)

It is convenient to express the ground state doublet associated to Hholes in terms of the

spherical coordinates of the vectors ~H±, | ~H±|, θ± and φ±:

| ⇑〉 = Cos
θ+
2
|+3

2
〉 − Sin

θ+
2
eiφ+ |−1

2
〉

| ⇓〉 = Cos
θ−
2
|−3

2
〉 − Sin

θ−
2
eiφ− |+1

2
〉 (3.20)

where

eiφ± =
R+ ρse

±2iϕs

|R+ ρse±2iϕs |
(3.21)
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3.1 Exciton-Mn Hamiltonian

Expectedly, this expression is formally very similar to that of equation (3.12).

Formally, we express eq. (3.20) as

|σh〉 =
∑

jz

Ch(jz)|jz〉 (3.22)

Both in equations (3.12) and (3.20) the (+3
2 ,−1

2 ) sector is decoupled from the

(−3
2 ,+

1
2). Whereas, this is not true in general, it is sufficient to account for the correct

symmetry of a variety of exchange couplings between the hole spin and both the Mn

and the electron spins.

3.1.3 Effective Mn-carrier exchange Hamiltonian

3.1.3.1 Hole-Mn Hamiltonian

We now consider the exchange coupling of hole spin ( ~J) and the Mn spin ( ~M ). The

leading term in the exchange interaction is the Heisenberg operator(27, 70):

Vexch =
1

3
βδ(~rh − ~rM ) ~J · ~M (3.23)

where β is the hole-Mn exchange coupling constant. For Mn in CdTe we have βN0 =0.88

eV, where N0 is the volume of the CdTe unit cell(27). The exchange interaction is taken

as short ranged, the Mn atom is located at ~rMn and ~J are the spin 3
2 angular momentum

matrices. We represent the operator (3.23) in the product basis |M〉 × σh. Thus, the

exchange operator in the product basis reads:

〈M |〈σh|Vexch|M ′〉|σ′h〉 = β|ψ0(~rMn)|2
∑

a

〈M |Ma|M ′〉|〈σh|Ja|σ′h〉 (3.24)

where ψ0(~r) is the envelope part of the heavy hole wave function, eq. (3.5), and

jh ≡ 1
3β|ψ0(~rMn)|2 is the hole-Mn coupling constant, which depends both on a material

dependent constant β and on a quantum dot dependent property, the probability of

finding the hole at the Mn location.

Now we define the two by two matrix:

Vi(h, h
′) = 〈σh|Ji|σ′h〉 =

∑

jz,j′z

Ch(jz)
∗Ch′(j′z)〈jz |Ji|j′z〉 (3.25)

where Ch(jz) and Ch′(j′z) are cofficients of hole wave function considering the effect of

confinement in equation 3.12. Importantly, since every 2 by 2 matrix can be written as

a linear combination of the unit matrix and the Pauli matrices we shall have:

Vi = ai1 +~bi · ~σh (3.26)

after some algebra (see detailed calculation in Appendix D), we get:
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3. QUANTUM DOT MODEL

Vz = az1 + bzσz (3.27)

with

az =
1

2

[

3

2

(

Cos2(θ+/2)− Cos2(θ+/2)
)

− 1

2

(

Sin2(θ+/2)− Sin2(θ−/2)
)

]

(3.28)

and

bz =
1

2

[

3

2

(

Cos2(θ+/2) + Cos2(θ−/2)
)

− 1

2

(

Sin2(θ+/2) + Sin2(θ−/2)
)

]

(3.29)

At zero field we have θ+ = θ− so that az = 0 and

bz(b = 0) =
1

2

[

3Cos2(θ/2)− Sin2(θ/2)
]

= 2Cos2(θ/2)− 1

2
(3.30)

If there is no LH-HH mixing then bz =
3
2 , Vx = Vy = 0 and the effective spin exchange

Hamiltonian would read:

VIsing =
3

2
jhσzMz (3.31)

with

jh ≡ β

3
|ψ0(~rMn)|2 (3.32)

and

σz =

(

1 0
0 −1

)

(3.33)

similarly to V z, we can also get V + and V −:

V +(h, h′) =

(

0
√
3Sin

(

θ++θ−
2

)

2Sin(θ+/2)Sin(θ−/2) 0

)

(3.34)

If b = 0 we have θ+ = θ− ≡ θ and

V +(h, h′) =

(

0
√
3Sinθ

1− Cos(θ) 0

)

=

√
3

2
Sinθσ+ +

1− Cos(θ)

2
σ− (3.35)

In the small θ limit we have:

V +(h, h′) ≃ θ

(

0
√
3

θ
2 0

)

(3.36)

Notice how the spin-flip Mn-hole coupling vanishes if there is no LH-HH mixing.
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3.1 Exciton-Mn Hamiltonian

V −(h, h′) =

(

0 2Sin(θ+/2)Sin(θ−/2)√
3Sin

(

θ++θ−
2

)

0

)

(3.37)

If b = 0 we have θ+ = θ− ≡ θ and

V −(h, h′) =

(

0 1− Cos(θ)√
3Sinθ 0

)

=

√
3

2
Sinθσ− +

1− Cos(θ)

2
σ+ (3.38)

In summary, the effective Mn-hole coupling spin model working in the space (M,σh)

of dimension 12 reads:

Vh−Mn = jh[σzMz(2Cos
2(θ/2)− 1

2
) +

√
3

4
Sinθ

(

σ+M− + σ−M+
)

+
1− Cosθ

4

(

σ+M+ + σ−M−)] (3.39)

If we define

jz(θ) = jh(2Cos
2(θ/2)− 1

2
) (3.40)

ǫ1(θ) =

√
3
2 Sinθ

2Cos2(θ/2)− 1
2

(3.41)

and

ǫ2(θ) =
1−Cosθ

2

2Cos2(θ/2)− 1
2

(3.42)

we can write the exchange coupling as:

Vh−Mn = jz(θ)
[

σzMz +
ǫ1
2

(

σ+M− + σ−M+
)

+
ǫ2
2

(

σ+M+ + σ−M−)
]

(3.43)

The functions jz(θ), ǫ1(θ) and ǫ2(θ) are shown in the Figure 3.1. For θ = 0.6 the LH-HH

mixing is 9 percent (Sin(0.6/2)2 = 0.08 and we have ǫ1(0.6) = 0.37 and ǫ2(0.6) = 0.06).

For moderate mixing it is a good approximation to neglect ǫ2.

We now write the model using the cartesian operators, rather than the ladder op-

erators. The first term is the dominant Ising coupling, the second term is the standard

or conserving spin-flip Mn hole coupling that couples states M,σh to M ± 1, σh ∓ 1:

1

2

(

σ+M− + σ−M+
)

=Mxσx +Myσy (3.44)

The third term is the anomalous or non-conserving spin flip term, which couples

M,σh to M ± 1, σh ± 1 . In cartesian coordinates it reads:

1

2

(

σ+M+ + σ−M−) =Mxσx −Myσy (3.45)
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Figure 3.1: Functions jz(θ) (blue), ǫ1 (magnenta) and ǫ2 (green) defined in the text.

As a result, the effective spin exchange is different for the x, y and z coordinates:

Vh−Mn = jhxMxσx + jhyMyσy + jhzMzσz (3.46)

where

jhx = jh

(√
3

2
Sinθ +

1− Cosθ

2

)

jhy = jh

(√
3

2
Sinθ − 1− Cosθ

2

)

jhz = jh(2Cos
2(θ/2)− 1

2
) (3.47)

Thus, the Mn-hole coupling is a so called XYZ model. Notice that for θ = 0 there is

no LH-HH mixing and we have jhx = jhy = 0 and jhz = 3
2jh. In this extreme case

the Mn-hole coupling is Ising like and Mz and σz are conserved. This limit is a good

starting point to model hole-Mn coupling in CdTe quantum dots(17, 71)

Now we expand this expression for the relevant case of small LH-HH mixing, ie,

small θ:

Vh−Mn = jh

[

σzMz(
3

2
− θ2

2
) +

√
3

2
θ
1

2

(

σ+M− + σ−M+
)

+
θ2

4

1

2

(

σ+M+ + σ−M−)
]

(3.48)

equation 3.48 describe the hole-Mn interaction Hamiltonian, it can be divided in to three

terms, the first term is the spin interaction in the z axis, it is an Ising type interaction,

the second term describes the xx and yy spin interaction, is it an Heisenberg type

interaction, the third term is in the second order of theta. Since θ is a small angle,

the third term can be neglected safely. In the following part of the thesis, we use this

approximation unless specified.
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3.1 Exciton-Mn Hamiltonian

3.1.3.2 Influence of strain on the effective hole-Mn Hamiltonian

In 3.1.3.1 we derived the effective spin model for hole-Mn coupling from Kohn-Luttinger

Hamiltonian, and equation (3.48) is a good enough approximation in most cases. How-

ever, in this section, we investigate how the hole-Mn interaction Hamiltonian in a self

assembled quantum dot is effected by strain in detail. In this section, we derive the

effective spin Hamiltonian using both Kohn-Luttinger and Bir-Pikkus Hamiltonian, il-

lustrate the influence of Bir-Pikus Hamiltonian, the finally results suggests that the

influence of Bir-Pikus is small.

From section 3.1.2.3, we know the strain has an influence on the wave function of

holes ( equation 3.20) compared to the wave function without strain (equation 3.12), we

employ the similar procedure as in section 3.1.3.1, after a straightforward calculation,

we get the effective hole-Mn coupling Hamiltonian:

Vh−Mn =
jh
2
[jxxMxσx + jxyMxσy + jyxMyσx + jyyMyσy + jzzMzσz] (3.49)

with:

jxx = (1− Cosθ)Cos(2φ−)− SinθCosφ− (3.50)

jxy = SinθSinφ− + (1− Cosθ)Sin(−2φ−) (3.51)

jyx = −SinθSinφ− + (1− Cosθ)Sin(−2φ−) (3.52)

jyy = −(1− Cosθ)Cos(2φ−)− SinθCosφ− (3.53)

jzz = 3Cos2
θ

2
− Sin2

θ

2
= 1 + 2Cosθ (3.54)

If we neglect valence band mixing, which means θ is small enough, for the first ap-

proximation, we can let Sinθ = 0, the hole-Mn Hamiltonian has the Ising type:

Vh−Mn = jh
2 jzzMzσz. In our calculation, we need to calculate the influence of the

valence band mixing wich means we do not have the approximation Sinθ = 0. For

simplicity, we can let Sin(−2φ−) = 0, then get the Heisenberg type Hamiltonian:

Vh−Mn = jh
2 [jxxMxσx + jyyMyσy + jzzMzσz], which is the same as the equation we

get in the previous section. Heisenberg type Hamiltonian is a good enough approxi-

mation for our calculation. If the strain effect on the effective hole-Mn coupling is not

negligible, we have to consider all the terms coming from φ−.

3.1.3.3 Electron-Mn Hamiltonian

In analogy to the hole-Mn bare coupling, the electron-Mn coupling reads:

Ve−Mn = αδ(~re − ~rM )~S · ~M (3.55)

where ~S is the spin of the electron. Since the spin orbit coupling has a very small effect

on the s like conduction band, the effective exchange for the quantum dot electron and
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3. QUANTUM DOT MODEL

the Mn is also a Heisenberg term given by

Ve−Mn = je~S · ~M = je (SxMz + SyMy + SzMz) (3.56)

where je ≡ α|ψ0(~rMn)|2 is the electron-Mn coupling constant, which depends both

on a material dependent constant α and on a quantum dot dependent property, the

probability of finding the electron at the Mn location. In the hard-wall model the

orbital wave function for the confined electron and hole is the same, so that the ratio

should be jh/je ≃ β
3α for CdTe. However, in experiments the ratio is bigger than

that(5). In the following we take je and jh as adjustable parameters.

3.1.4 Exciton-Mn wavefunctions and energy levels

Let’s now evaluate the wave functions and energy levels obtained for Mn doped quantum

dots with this minimal Hamiltonian.

3.1.4.1 Hamiltonian

The effective Hamiltonian for the exciton in a single Mn doped CdTe quantum dot

is the sum of the single ion magnetic anisotropy Hamiltonian, the Mn-electron and

Mn-hole exchange coupling and the electron-hole exchange coupling

H = H0 + Ve−Mn + Vh−Mn + Ve−h (3.57)

where

Ve−h = jehSzσh (3.58)

is the electron hole exchange coupling, neglecting transverse components. Electron hole

exchange is ferromagnetic (jeh < 0) and splits the 4 exciton levels into two doublets,

the low energy dark doublet (⇑↑,⇓↓), denoted by X = ±2 and the high energy bright

doublet (⇑↓,⇓↑) (X = ±1).

Since we consider two electron states (Sz =↑, ↓), two hole states (σh =⇑,⇓), and
six Mn states Mz = ±5

2 ,±3
2 ,±1

2 , the Hilbert space for the Mn-exciton system has

dimension 24. Whereas we do obtain the exact eigenstates of Hamiltonian (3.57) by

numerical diagonalization, it is convenient for the discussion to relate them to eigenstate

of the Ising, or spin conserving part, of the Hamiltonian:

H = HIsing +Hflip (3.59)

where

HIsing = D0M
2
z + jehSzσh + jeSzMz + jhMzσh (3.60)
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3.1 Exciton-Mn Hamiltonian

and

Hflip = E(M2
x −M2

y ) + je (SxMx + SyMy) +

+ (jhxσxMx + jhyσyMy) (3.61)

If we expand jhx and jhy in the series of LH-HH mixing parameter θ, they are the same

in the first order of θ. For simplicity, we take

jh⊥ ≡ jhx = jhy = jh
θ

2
√
3

(3.62)

in the following calculation. In the case of a LH-HH mixing induced by the anisotropy

of the confinement described by a hard-wall box shape potential, we get from the

Kohn-Luttinger Hamiltonian:

θ =
π2

√
3γ2| 1

L2
x
− 1

L2
y
|

√

3π4γ22

(

1
L2
x
− 1

L2
y

)2
+ γ21

(

−2
L2
z
+ 1

L2
x
+ 1

L2
y

)2
(3.63)

The eigenstates of HIsing are trivially given by the product basis

|P 〉 ≡ |Mz〉|Sz〉|σh〉 (3.64)

with eigenenergies:

EP = D0M
2
z + jehSzσh + jeSzMz + jhMzσh (3.65)

Since the magnetic anisotropy term D0M
2
z is present both in the ground state and

exciton state manifolds, it does not affect the PL spectra of the bright excitons. Within

this picture, for each of the 6 possible values of Mz, there are 4 exciton states. We use

a short-hand notation to refer to the Ising states PX(Mz) where X = ±1,±2 labels the

spin of the exciton, X = Sz + σz. An energy diagram for the exciton levels, within the

Ising approximation, is shown in figure (3.2).

The PL spectra of a single Mn doped quantum dot predicted by the model of

Ising excitons, ie, neglecting the spin flip transitions, features 6 peaks corresponding to

transitions conserving Mz. For the recombination of σ+ excitons (Sz = −1
2 , σh =⇑) the

high energy peak corresponds to Mz = +5
2 and the low energy peak to Mz = −5

2 on

account of the antiferromagnetic coupling between the hole and the Mn. In the case of

σ− excitons the roles are reversed, but the PL spectrum is identical at zero magnetic

field.

47



3. QUANTUM DOT MODEL

M
z

-2

-1

0

1

2

3
E

n
er

g
y

 (
m

eV
)

-2
-1
+1
+2

5
2

-
2 2 22 2
3 1- - 1 3 5

Figure 3.2: Scheme of the energy levels of the quantum dot exciton interacting with 1

Mn when spin-flip terms are neglected.

3.1.4.2 Wave functions

When spin-flip terms are restored in the Hamiltonian, the P states are no longer eigen-

states, but they form a very convenient basis to expand the actual eigenstates of H,

denoted by |Ψn〉:

|Ψn〉 =
∑

P

Ψn(P )|P 〉 =
∑

X,Mz

Ψn(X,Mz)|X,Mz〉 (3.66)

In most cases, there is a strong overlap between Ψn and a single state |P 〉. This is

expected for several reasons. First, the single ion in plane anisotropy is probably much

smaller than the uniaxial anisotropy, D0 ≫ E. Second, the electron-hole exchange,

which is the exchange energy in the system, splits the dark and bright levels. Thus, both

electron and hole spin flip due to the exchange with the Mn spin is inhibited because

they involve coupling between energy split bright and dark excitons. In addition, the

electron Mn exchange is smaller than the hole Mn exchange, whose spin-flip part is

proportional to the LH-HH mixing and approximately 10 times smaller than the Ising

part. In order to quantify the degree of spin mixing of an exact exciton state Ψn, we

48



3.1 Exciton-Mn Hamiltonian

0 0.02 0.04
J

h⊥
 (meV)

-0.4

-0.2

0

0.2

E
n

er
g

y
 (

m
eV

)

0 0.02 0.04
J

h⊥
 (meV)

0.4

0.6

0.8

1

IP
Z

0 0.02 0.04
J

h⊥
 (meV)

-2

-1

0

1

2

E
n

er
g

y
 (

m
eV

)

Figure 3.3: Left panel: Evolution of the exciton levels as a function of the LH-HH

mixing parameter Jh⊥. Right panel: Evolution of the IPZ as a function of the LH-HH

mixing parameter. The inset presents the evolution of the energy for all the 24 exciton

levels.

define the inverse participation ratio:

IPZn ≡
∑

P

|Ψn(P )|4 (3.67)

This quantity gives a measure of the delocalization of the state Ψn on the space of

product states of eq. (3.64). In the absence of mixing of different P states, we have

IPZn = 1. In the case of a state equally delocalized in the 24 states of the P space,

we would have Ψn(P ) =
1√
24

and IPZn = 1
24 .

In figure (3.3) we plot the evolution of both the energy (left panel) and the IPZ

(right panel) as a function of Jh⊥, the LH-HH mixing parameter, of four states denoted

by their dominant component at Jh⊥ = 0. For our choice of exchange constants, two

of them |+ 1,−3
2 〉 and | − 2,−1

2 〉 are almost degenerate at Jh⊥ = 0, which means that

the hole-Mn exchange compensates the dark-bright splitting, and couple these states
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via a hole-Mn spin flip. As a result, their energy levels split linearly as a function of

Jh⊥ and the wave-functions have a large weight on the two product states for finite

Jh⊥. In contrast, the other two levels shown in figure (3.3), | + 1,−1
2〉 and | − 2,−3

2 〉
are not coupled via hole-Mn spin flip. As a result, their energies shift as a function of

Jh⊥ due to coupling to other states, and their IPZ undergoes a minor change, reflecting

moderate mixing.

3.1.4.3 Exchange induced dark-bright mixing

The most conspicuous experimentally observable consequence of the exchange induced

mixing, is the transfer of optical weight from the bright to the dark exciton, which

results in the observation of more than 6 peaks in the PL. This can be understood

as follows. The spin-flip part of the hole-Mn interaction couples the bright exciton

| + 1,Mz〉 to the dark exciton | − 2,Mz + 1〉. Thus, a state with dominantly dark

character |−2,Mz+1〉 and energy given, to first order, by that of the dark exciton, has

a small but finite probability of emitting a photon through its bright component, via a

Mn-hole coherent spin-flip. Thus, PL is seen at transition energy of the dark exciton.

Reversely, nominally bright excitons loose optical weight due to their coupling to the

dark sector. Importantly, the emission of a photon from a dark exciton with dominant

Mn spin component Mz, entails carrier-Mn spin exchange, so that the ground state has

Mz ± 1.

Transitions from the optical excited states to the optical ground states happens

via spontaneous emission of a photon with energy ~ω and circular polarization. We

consider circularly polarized photons only. The rate of spontaneous emission of a photon

with energy ~ω = EX − EG from the state |X > to the state |G > can be given

by the Weisskopf-Wigner expression(see the reference: (17)): ΓGX = 4ω3/4πǫ~c3| <
G|P±|X > |2, where:

P± =
∑

ν,n,σ

< ν|e(x+ iy)|nσ > d†νc
†
n,σ +H.c. (3.68)

is the second quantization representation of the interband electric dipole operator that

yields the standard optical selection rules, where cn,σ stands for the CB electron creation

operator and dν stands for the creation operator for a hole. Standard optical selection

rules forbid photon emission from | ± 2 >X states. Since the electric dipole operator

does not affect the Mn d electrons, the Mn spin part of the collective wave function does

not change during the recombination process. As a result, the rate for the emission of

a circularly polarized photon from the exciton state Ψn to the ground state φm reads:

Γ±n,m = Γ0

∣

∣

∣

∣

∣

∑

Mz

φm(Mz)Ψ
∗
n(Mz ,X = ±1)

∣

∣

∣

∣

∣

2

(3.69)
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3.1 Exciton-Mn Hamiltonian

where

Γ0 ≡
3ω3d2cv
4πǫ~c3

(3.70)

is the recombination rate of the bare exciton, ω is the frequency associated to the energy

difference between the exciton state n and the ground state m, c is the speed of light,

ǫ is the dielectric constant of the material, dcv is the dipole matrix element. From the

experiments, we infer Γ0 =5 ns−1

In the absence of spin-flip terms, the matrix Γ±n,m would have only non-zero elements

for n = |X = ±1,Mz〉 states connected to m = Mz states. The presence of spin-flip

terms in the Hamiltonian enables the recombination from exciton states with dominant

dark component. In figure (3.4) we represent the matrix elements Γ±n,m/Γ0 for jeh =

−0.73meV , jh = 0.36meV , je = −0.09meV , jh⊥ = 0.036meV , D0 = 0.01meV and

E = 0meV . It is apparent that the recombination rates from the dark states are, at

least, 2 times smaller (a and b) than those of the bright states. For Γ0= 4 ns−1, the

lifetime of the dark excitons (a and b) are in the range of 1 ns. Thus, this provides a

quite efficient Mn spin relaxation mechanism, provided that a dark exciton is present

in the quantum dot.

Figure 3.4: Recombination rates of the excitons levels in a Mn doped quantum dot

Γi/Γ0: a : | + 2,+ 1

2
>→ | + 3

2
>, b : | − 2,− 1

2
>→ | − 3

2
>, c : | − 1,+ 3

2
>→ | + 3

2
>,

d : |+ 1,− 3

2
>→ | − 3

2
>, states from e to n are bright excitons. Other states are mainly

dark excitons with a small bright component.
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3. QUANTUM DOT MODEL

The recombination rate matrix, together with the non-equilibrium occupation of

the exciton states, Pn, determines the PL spectrum(17) for ± circular polarization:

I±PL(ω) =
∑

n,m,

PnΓ
±
n,mδ (~ω − En − Em) (3.71)

In a typical PL spectrum(11), the dark peaks are, at most, 2 times smaller than the

bright peaks. Since Γ±n,m is at least 2 times smaller for dark states, this implies a larger

occupation of the dark states. Thus, we can infer a transfer from the optical ground

state to the dark exciton states, via the bright exciton states. This transfer requires

an incoherent spin flip of either the electron or hole. Below we show that phonon

induced hole-spin relaxation provides the most efficient channel for this bright to dark

conversion.

3.2 Detailed optical spectra of a Mn doped quantum dot

In this section, to get more detailed information of the Mn-exciton spectrum, we use

the full basis for holes ( -3/2, -1/2, +1/2, +3/2), instead of the pseudo spin approach

used in section 3.1. We want first to estimate the influence of the Mn fine and hyperfine

structure on the optical spectra of a singly Mn doped quantum dot. This would give

an optical mean to measure the spin structure of an individual Mn atom in its solid

state environment and eventually gives a technique to optically probe and control an

individual nuclear spin. We will first analyze with a spin effective Hamiltonian the

optical spectrum of a singly Mn doped quantum dot taking into account heavy hole and

light hole and possible shape and strain anisotropy of the quantum dot. We will then

introduce the coupling between electronic and nuclear spins of the Mn and see in which

condition it can be detected in the optical spectrum of a neutral individual quantum

dot. In the last part we will present and model the emission spectrum of quantum dots

containing two Mn atoms. All this description is based on a spin effective Hamiltonian

where the parameters are chosen to reproduce standard Mn doped quantum dots.

3.2.1 Detailed spin effective Hamiltonian of a Mn doped quantum

dot.

Here we introduce the fine structure Hamiltonian for the exciton-Mn complex. Pa-

rameters of the effective Hamiltonian are chosen to reproduce the spectrum of a self

assembled Mn doped II-VI quantum dots. For a sufficiently small number of Mn atoms

(1 or 2 in this work, including electronic and nuclear spins) the size of the Hilbert

space permits the exact numerical diagonalization of the Hamiltonian. The spectra are

obtained from the exact eigenstates of the Hamiltonian.

The exciton-Mn complex Hamiltonian consist of six parts:
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3.2 Detailed optical spectra of a Mn doped quantum dot

Hfine = Ve−Mn +Hh−Mn +He−h +Hmag +Hs +HX (3.72)

which

Hh−Mn = jh ~M · ~J (3.73)

and

Hs = A~I · ~M +D0M
2
z +

1

6
a[M4

x +M4
y +M4

z ]

Comparing to H0 in equation 3.1, we assume the dot is isotropic in X-Y plane (E=0).

The additional terms A and a are the hyperfine coupling and the tetragonal crystal

field respectively.

100

50

0

-50

E
n

er
g

y
 (

  
eV

)

-200 -100 0 100 200

B(mT)

Mn (M=5/2,I=5/2)

B x B z

Figure 3.5: Magnetic field dependence of the fine structure of the Mn spin with out-of-

plane (right) and in-plane (left) field, calculated with A = 0.68 µeV, D0 = 7 µeV and a

crystal field parameter a = 0.32 µeV.

An external magnetic field couples via the standard Zeeman term to both the Mn

spin and carriers spins and a diamagnetic shift is also included:

Hmag = gMnµB ~B · ~M + geµB ~B · ~S + ghµB ~B · ~J + γB2 (3.74)

The electron-hole exchange interaction He−h contains two parts. The short range

part can be describe by the Hamiltonian:
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3. QUANTUM DOT MODEL

He−h,sr = jeh~S · ~J +
∑

i

biSiJ
3
i (3.75)

The first term already exists in spherical symmetry whereas the second term takes

into account the reduction of the symmetry in a cubic crystal. The long range part

mixes bright excitons confined in an anisotropic potential and can be represented in

the heavy-hole exciton subspace (Jz + Sz = +2, +1, −1, −2) by:

Hexc,lr =









0 0 0 0
0 0 1

2δ2e
−2iφ2 0

0 1
2δ2e

2iφ2 0 0
0 0 0 0









(3.76)

where δ2 is the splitting of the bright exciton.

The exciton Hamiltonian HX stand for the energy of the electron Ec, and the en-

ergy of the heavy-hole and light-hole. It has to take into account a possible valence

band mixing that can be induced by an anisotropy of the potential confinement or

an anisotropy of the strain distribution. In the case of a valence band mixing in-

duced by the strain, the hole part of this Hamiltonian can be written, in the basis

(|32 ,+3
2〉, |32 ,+1

2 〉, |32 ,−1
2〉, |32 ,−3

2 〉) as (69):

Hvbm =









0 −S R 0
−S∗ ∆hh−lh 0 R
R∗ 0 ∆hh−lh S
0 R∗ S∗ 0









(3.77)

with

S = δxz − iδyz

R = δxx,yy − iδxy (3.78)

R describe the mixing induced by an anisotropy in the quantum dot plane xy and S

take into account an asymmetry in the plane containing the quantum dot growth axis.

As we have discussed in the previous section, in the case of a valence band mixing

induced by the strain, the δi can be linked to the deformation of the crystal by the Bir

and Pikus Hamiltonian. ∆hh−lh is the splitting between light holes and heavy holes

controlled by the in-plane strain and the confinement. An Hamiltonian with the same

symmetry can be used to describe the influence of an anisotropic confinement potential.

The Hamiltonian of the coupled electronic and nuclear Mn spins in the ground state

reads (55):

54



3.2 Detailed optical spectra of a Mn doped quantum dot
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Figure 3.6: Calculated energy levels in a Mn doped quantum dot. The parameters used

in the calculation are: A = 0.68 µeV, D0 = 7 µeV, a = 0.32 µeV, jeh = −200 µeV,

je = −30 µeV, jh = 120 µeV, ∆hh−lh=25 meV, δxz=δyz=0, δxy=0, δxx,yy=2.5 meV,

δ2 = 50 µeV, φ2=0, bx=by=bz=0.
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3. QUANTUM DOT MODEL

HMn = gµB ~B · ~M +Hs (3.79)

The resulting fine structure of the Mn under a magnetic field applied in-plane or

out-of-plane is shown in Figure 3.5. At zero field, the Mn electronic spin is quantized

along the growth axis and the different electronic spin doublets are separated by an

energy proportional to D0. Each level is further split into six lines by the hyperfine

coupling.

Using the Hamiltonian of the excited state HX−Mn (288 x 288 matrix) and the

Hamiltonian of the ground state HMn (36 x 36 matrix), we can compute the spectrum

of a neutral quantum dot containing a Mn atom. They are obtained calculating the

matrix elements |〈Mz |X,Mz〉|2 where X stands for the 8 possible exciton states.

An example of calculated spectrum of a Mn doped quantum dot is presented in

Figure 3.6. The parameters used for this calculation are listed in the caption of the

figure. They are determined to reproduce the emission spectrum of typical II-VI Mn

doped quantum dots. The appearance of a seventh line in the spectrum of the bright

heavy hole levels is characteristic of the presence of hole-Mn spins flips. These spin flips

are allowed by a mixing with light holes produced by an anisotropy in the quantum

dot plane (δxx,yy 6= 0 for instance). We will in the following particularly analyze the

influence the fine and hyperfine structure of the Mn spin controlled by the parameters

D0 and A on the spectrum of the ground state heavy-hole neutral exciton.

3.2.2 Influence of A and D0 on the optical spectrum of a neutral

quantum dot

In the case of a neutral quantum dot, as the Mn spin Mz is conserved during the

optical transition, one expect no signature of D0 in the optical spectra of the bright

excitons. On the other hand, the hyperfine coupling A mixes the different spin sate

of the Mn. This isotropic coupling is partially blocked by the magnetic anisotropy D0

except for the states Mz=±1/2 where flip-flop with the nuclear spin are completely

allowed. Depending on the relative value of D0 and A, an influence of the Mn fine

and hyperfine structure on the exciton-Mn emission is expected. This is illustrated in

Figure 3.7. In the absence of valence band mixing, a clear influence of A is obtained

in the intensity distribution of the calculated spectrum: a decrease of the intensity

of the center lines corresponding to Mz=±1/2 is observed. Such decrease could also

be observed in the presence of a significant valence band mixing but in this case, the

intensity distribution is mainly controlled by the coupling with light holes.

One way to tune the influence of the hyperfine coupling is to apply a magnetic

field in the Faraday configuration. When the Zeeman energy of the Mn dominates

the hyperfine energy, a quantization axis along z is restored for the Mn alone. The
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Figure 3.7: Calculated spectrum of the ground state of a Mn doped quantum dot in

circular polarisation with (lower panels) and without (upper panels) valence band mixing

for A=0.68µeV (left panels) and A=0µeV (right panels). The other parameters are the

same as in Figure 3.6.
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Figure 3.8: Calculated spectrum of the ground state of a Mn doped quantum dot in

circular polarization under magnetic field in Faraday configuration (two right panels) com-

pared with the spectrum at zero field (left panel). The other parameters are the same as

in Figure 3.6.

influence of A on the emission spectrum vanishes. The influence of a magnetic field

in the Faraday configuration is illustrated in Figure 3.8. Under a field Bz=0.4T no

significant influence of A is observed in the circularly polarized PL spectrum.

As presented in Figure 3.9, D0 also influence the position of the dark exciton state

as there emission is coming from a hole Mn flip-flop . A more direct way to observe

the effect of D0 is to analyze the spectrum of charged quantum dot.

3.3 Spectrum of quantum dots containing two Mn atoms:

experiment and model.

Here we analyze how the optical spectra of the quantum dot evolves as the number

of Mn atoms increases. We consider the case of quantum dots containing a pair of

Mn atoms that we recently identified in experimental spectrum. A photoluminescence

spectrum of such quantum dot is presented in Figure 3.10. As in non-magnetic or

singly Mn-doped quantum dots, the emission of the neutral exciton, negatively charged

exciton and biexciton are simultaneously observed. For each excitonic complexe, a

fine structure coming for the exchange interaction with the two Mn spins is observed.

To understand the detail of this quantum dot emission, a modeling of these two Mn

quantum dots has to be performed.

To compute the quantum dot spectrum, two Mn atoms with coupling (je,1,jh,1)

and (je,2,jh,2) are introduced in the spin effective Hamiltonian presented previously.
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Figure 3.9: Calculated spectrum of the ground state of a Mn doped quantum dot in

circular polarization with D0 = 0 and D0=7µeV. The other parameters are the same as in

Figure 3.6.

We will, in a first approximation, neglect the anti-ferromagnetic Mn-Mn interaction

which strongly decrease with the distance between the two Mn spins (72). A valence

band mixing induced by the anisotropy of the quantum dot can be included. For this

particular calculation, we consider a weak valence band mixing and use a development

of the ladder operators J̃+ and J̃− in Hh−Mn in the heavy hole subspace:

J̃+ =
ρ

∆lh−hh

(

0 −2
√
3e−2iθ

0 0

)

; J̃− =
ρ

∆lh−hh

(

0 0

−2
√
3e2iθ 0

)

J̃z =

(

3/2 0
0 −3/2

)

where ρ describes the coupling energy between heavy-holes and light-holes split by

∆lh−hh. The sample growth direction is z(001) axis. θ is the strain induced anisotropy

respect to the x(100) axis, in our particular case, θ = 0. The carrier-Mn coupling in a

quantum dots containing two Mn can be written:

Hcarrier−Mn = Hh−Mn +He−Mn (3.80)

(3.81)

where

Hh−Mn = jh,1 ~M · ~J + jh,2 ~M · ~J

= jh,1MzJ̃z +
jh,1
2

(M+J̃− +M−J̃+)

+jh,2MzJ̃z +
jh,2
2

(M+J̃− +M−J̃+)

(3.82)
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Figure 3.10: Low temperature (T=5K) emission of a CdTe/ZnMgTe quantum dot con-

taining two Mn atoms. Three groups of lines are observed corresponding to the emission

of the exciton, of the negatively charged exciton and biexciton.

and

He−Mn = je,1 ~M · ~S + je,2 ~M · ~S

= je,1MzSz +
je,1
2

(M+S− +M−S+)

+je,2MzSz +
je,2
2

(M+S− +M−S+)

(3.83)

The symmetric case where the two Mn atoms are identically coupled to the carriers

shows a spectrum with 11 lines corresponding to quantum states with the 2M +1

possible orientations of the collective Mz of the two Mn atoms (M=5) (17). For different

coupling of the two atoms, a much more complicated spectrum appears. This is the

situation which is observed experimentally.

Using a similar spin effective Hamiltonian, the emission spectrum of the negatively

charged exciton can be computed. It corresponds to the transitions between an initial

state where the 2 Mn interact with a hole spin and two paired electron spins and a

final state where the remaining electron is exchanged coupled with the two Mn spins.

We will neglect in a first approximation the energy correction produced by the Mn-

Mn interaction mediated by the presence of the two electrons in the initial state (72).

We then consider the optical transitions between the hole-2Mn and the electron-2Mn

complexes.

Calculated emission spectra for a neutral and negatively charged exciton coupled

to two Mn spin are presented in Figure 3.11. The main feature (i.e. overall splitting,
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Figure 3.11: Calculated (black) and experimental (red) spectrum of a neutral (right)

and negatively charged (left) 2 Mn doped quantum dot. The calculation are performed

with je,1=-55µeV,jh,1=150µeV, je,2=-90µeV,jh,2=270µeV, jeh = −600µeV and an effective

valence band mixing parameter ρ/∆lh−hh=0.025. A thermalization with an effective tem-

perature T=40K is included for X-2Mn and for h-2Mn in the initial state of the negatively

charged exciton transition.

number of lines, linear polarization) of the experimental spectra can be reproduced.

The quantum dot presented in Figure 3.10 corresponds to a situation where the cou-

pling with Mn(1) is about twice the coupling with Mn(2). To reproduce the intensity

distribution of the photoluminescence spectra, a thermalization on the exciton-2Mn

levels with an effective temperature T=40K is included in the model. Surprisingly, a

thermalization on the hole-2Mn levels has to be also included to reproduce the charged

exciton spectrum suggesting an efficient hole-2Mn spin relaxation during the lifetime

of X−.

As for singly Mn doped quantum dots, the overall splitting of the charged exciton

is larger than the one obtained with the values of exchange integrals used for the

calculation of the neutral exciton spectra (69). In CdTe/ZnTe quantum dots, the

confinement of the hole is strongly influenced by the Coulomb attraction of the confined

electron. The hole-Mn exchange integral is maximum in the excited state of X− where

the Coulomb attraction of two electrons confined the hole.

A linear polarization rate is observed in the center of the emission spectra for both
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Figure 3.12: Experimental polarization resolved spectrum of a neutral (right) and nega-

tively charged (left) 2 Mn doped quantum dot obtained at T=5K.

the neutral and the charged exciton (Figure 3.12). As in singly Mn-doped quantum

dot, this polarization rate is coming from the presence of a valence band mixing.

Valence band mixing combined with the short range electron-hole exchange interac-

tion couples the bright excitons +1 and -1 associated to the same Mn spins configuration

producing linear polarization. In the absence of electron hole exchange interaction (case

of a charged exciton) the presence of valence band mixing allows simultaneous hole-Mn

flip-flop. This introduces coupling between different states of the hole - 2Mn complex

in the initial state of the negatively charged exciton optical transition. This linear

polarization is well reproduced by the spin effective model if an effective valence band

mixing is introduced (Figure 3.13).

3.4 Conclusion

We have described the different terms in the Mn spin Hamiltonian, including exchange

with the 0-dimensional exciton, presented the Mn spin Hamiltonian with or without the

presence of the exciton, derived the effective Mn-hole coupling employing the pseudo
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Figure 3.13: Calculated polarization resolved spectrum of a neutral (right) and negatively

charged (left) 2 Mn doped quantum dot. The calculation are performed with je,1=-55

µeV,jh,1=150µeV, je,2=-90µeV,jh,2=270µeV, jeh = −600 µeV and an effective valence

band mixing parameter ρ/∆lh−hh=0.025. A thermalization with an effective temperature

T=40K is included for X-2Mn and for h-2Mn in the initial state of the negatively charged

exciton transition.
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spin method. The symmetry of the exchange interaction depends on the spin properties

of the carriers, which in the case of holes are strongly affected by the interplay of

confinement, strain and spin orbit coupling. In section (3.1) we also use a model for

holes(17, 67, 73) in quantum dots, which permits to obtain analytical expressions for

the wave functions of the holes, the hole-Mn exchange, in terms of the dimensions of the

dot and the Kohh-Luttinger Hamiltonian. We also calculated the detailed spectrum of

Mn-exciton complex using a spin effective Hamiltonian and studied influence of A and

D0 on the spectrum. For isotropic quantum dots one expect an influence of the nuclear

Mn spin on the optical emission of the exciton confined in a Mn-doped CdTe quantum

dot. In realistic quantum dots, this effect can be partially masked by the dominant

contribution of the electron-hole exchange interaction in an anisotropic potential or

in the presence of an anisotropic in-plane strain distribution. Then we presented and

modelled the emission spectrum of quantum dot containing two Mn atoms. Even if

an accurate fit is difficult, a spin effective Hamiltonian permits to describe the main

feature of the spectra
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In this chapter we discuss the Mn-phonon, hole-phonon coupling and the

transition rates caused by spin-phonon coupling in detail. In the first part

of this chapter, we present a general formula for phonon-induced spin-flip

rate. In the second part of this chapter, we discuss the Mn spin relaxation

in the absence of excitons and then discuss how the rates are modified when

an exciton is interacting with the Mn. In the third part we propose a simple

model for the spin relaxation of holes confined in quantum dots and split by

the exchange interaction with Mn spin. The single particle spectra of holes

is described within the Kohn Luttinger model plus a hard wall potential(67).

The effect of time dependent strain is described by the Bir-Pikus Hamil-

tonian. We follow the standard master equation approach(74) to calculate

the rates, considering two states of holes and the acoustic phonons as a

reservoir.
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4. PHONON INDUCED SPIN RELAXATION

4.1 General formula for phonon-induced spin-flip rate

In this section we derive a general formula for the scattering rate between two electronic

state n and n′ induced by a phonon emission. The Hamiltonian of the system can be

split in three parts, the electronic states n, the phonon states, and their mutual cou-

pling. The phonon states are labelled according to their polarization and momentum,

λ, ~q. We consider the following coupling

V =
∑

m,m′,~q,λ

V
m,m′

~q,λ |m〉〈m′|
(

b†λq + bλ,−q
)

(4.1)

wherem andm′ are electronic states. We refer to the free phonon states as the reservoir

states. Within the Born-Markov approximation, the scattering rate between states n

and n′ is given by:

Γn→n′ =
2π

~

∑

r

Pr

∑

r′

∣

∣〈nr|V |n′r′〉
∣

∣

2
δ (En −En′ + er − er′) (4.2)

where Pr is the occupation of the r reservoir state with energy er. This equation can

be interpreted as a statistical average over reservoir initial states r of the Fermi Golden

rule decay rate of state N, r.

The sums over r and r′ are performed using the following trick. For a given r, the

initial reservoir state, r′ must have an additional phonon, since we consider the phonon

emission case. Thus, we write:

|r′〉 = 1
√

nλ′,q′ + 1
b†λ′,q′ |r〉 (4.3)

so that

〈r|b†q,λ + b−q,λ|r′〉 = δ−q,q′δλ,λ′

√

nrλ′,q′ + 1 (4.4)

The matrix element

〈nr|V |n′r′〉 = V
n,n′

~q,λ

√

nrλ′,q′ + 1 (4.5)

We see for all the terms in the sum that defines the coupling, only one survives and fixes

the index r′. Thus, the only term that the sums left are the one over the initial reservoir

states and the λ, q index which define the final state. Now we use the definition of the

Bose function:
∑

r

Pr

(

nrλ′,q′ + 1
)

= nB
(

ωλ′(q′)
)

+ 1 (4.6)

and we arrive to the following expression for the rate:

Γn→n′ =
2π

~

∑

λ,q

|Vn,n′

~q,λ |2 (nB (ωλ(q)) + 1) δ (En − En′ − ωλ(q)) (4.7)
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4.2 Mn spin relaxation due to spin-phonon coupling

Notice that it is possible to write the rate as a sum over different contributions arising

from different polarizations, Γ =
∑

λ Γλ. In the particular case where we can neglect

the dependence of the matrix element V~q,λ(n, n
′) ≃ |V(n,n′)|2 on ~q and λ, we arrive to

the following expression:

Γn→n′ =
2π

~
(nB (∆) + 1) ρλ(∆)|Vn,n′ |2 (4.8)

where ρ(∆) ≡
∑

λ,q δ (∆− ωλ(q)) is the density of states of the phonons evaluated at

the transition energy ∆.

4.2 Mn spin relaxation due to spin-phonon coupling

In this section we discuss the Mn spin relaxation in the absence of excitons. In the

absence of carriers and given the fact that Mn-Mn distance is comparable to the dot-dot

distance (100 nm for a dot and Mn density of about 1010cm−2), which makes direct

super-exchange negligible, the Mn-phonon coupling should be the dominant, albeit

small, Mn spin relaxation mechanism. Transverse phonons induce local rotations of

the lattice. Since the crystal field, together with spin orbit coupling, determines the

Mn magnetocrystalline anisotropy, the phonon induced lattice rotation (75) acts as a

stochastic torque on the Mn spin, resulting in spin relaxation.

As we discussed in chapter 3, the phonon can modulate the electric crystal field

surrounding the magnetic atom, since the field interacts with the orbital momentum of

the ion, it can finally interacts with the spin via the spin-orbit coupling. The atomic

displacement at point ~r in the crystal is expressed in terms of the phonon operators

with wave vector ~q, polarization mode λ = T1, T2, L, frequency ωλ(~q) and polarization

vector ~eλ(~q)(68):

~u(~r) =
∑

~q,λ

Uλ(~q)~eλ(~q)
(

b†~q,λ + b−~q,λ
)

ei~q·~r (4.9)

where

Uλ(~q) =

√

~

2ρωλ(~q)V
(4.10)

and V and ρ are the volume of the crystal and the mass density respectively. In a

zinc-blende structure there are two transverse acoustic (TA) phonon branches and one

longitudinal acoustic branch (LA). Following Woods(76) we have:

~eTA1 =
1

qq⊥

(

qxqz, qyqz,−q2⊥
)

(4.11)

~eTA2 =
1

q⊥
(qy,−qx, 0) (4.12)
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4. PHONON INDUCED SPIN RELAXATION

where q ≡ |~q| and q⊥ =
√

q2x + q2y. These vectors satisfy ~q·~eTAi = 0, and ~eTAi·~eTAj = δij

The longitudinal mode has ~eLA = 1
q
~q.

The lattice rotation vector is given by (75)

~δΦ(~r) = ~∇× ~u(~r) (4.13)

so that only the transverse modes contribute. Within this picture, the Mn spin-phonon

coupling can be written as(75):

VM−ph = i
[

H0, ~M
]

· ~δΦ(~rMn) (4.14)

Without loss of generality we can set the Mn position as the origin, ~rMn = 0. Equation

(4.14) couples the Mn spin to a reservoir of phonons whose non-interacting Hamiltonian

is

Hph =
∑

~q,λ

~ωλ(~q)b
†
~q,λb~q,λ (4.15)

Within the standard system plus reservoir master equation approach, we have de-

rived the scattering rate from a state n to a state n′, both eigenstates of the single Mn

Hamiltonian H0, due the emission of a phonon. In order to use a general result for that

rate (4.7), derived in section (4.1), we need to express the spin-phonon coupling (4.14)

using the same notation than in equation (4.1):

V
n,n′

~q,λ = i2Uλ(~q)~fn,n′ · (~q × ~eλ(~q)) (4.16)

where
~fn,n′ ≡ 〈n|

[

H0, ~M
]

|n′〉 (4.17)

We compute now the scattering rate due to a single phonon emission assuming the

3 dimensional phonons modes described above. The rate reads:

Γn→n′ =
|∆|3

12πρ~4c5
(nB(∆) + 1)

∑

b,b′=x,y,z

f bn′,n(f
b′

n′,n)
∗ (4.18)

where c = 1.79kms−1 is the CdTe speed of sound(77), ρ = 5870kgm−3 is the mass

density of the CdTe unit cell(78) and nB(∆) ≡ 1
eβ|∆|−1 . The |∆|3 factor comes from

the dependence of the phonon density of states on the energy.

4.2.1 Mn spin relaxation in the optical ground state

We now discuss the relaxation of the Mn electronic spin due to spin-phonon coupling

without an exciton in the quantum dot. According to our experimental results(10, 11),

the Mn spin relaxation time in our samples is at least 5µs.
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4.2 Mn spin relaxation due to spin-phonon coupling

If we take E = 0, the transition rate between the excited states |φn〉 = |Mz = +5
2〉

and |φn′〉 = |Mz = +3
2〉, via a phonon emission, is given by:

Γn→n′ =
640|D0|5
3πρ~4c5

(nB(∆) + 1) (4.19)

The dependence on D5
0 comes both from the density of states of phonons ρ ∝ ω3

and the square of the Mn phonon coupling, which is proportional to the anisotropy,

and gives the additional D2
0 factor. Whereas the uniaxial anisotropy of Mn in CdTe

quantum wells has been determined by EPR (61), the actual value for Mn in quantum

dots is not known and can not be measured directly from single exciton spectroscopy

of neutral dots. Therefore, in figure (4.1) we plot the lifetime for the transition of

the Mn spin from 5
2 to 3

2 , due to a phonon emission, as a function of D0. We take

D0 in a range around the value reported for CdTe:Mn epilayers, D0 = 12µeV (61).

We find that the spin lifetime of Mn in the optical ground state can be very large.

Even for D0 = 20µeV the Mn spin lifetime is in the range of 0.1 seconds, well above

the lower limit for the Mn spin relaxation reported experimentally(10, 11). Whereas

we can not rule out completely that the Mn spin lifetimes that long, there are other

spin relaxation mechanisms that might be more efficient that the Mn-phonon coupling

considered above, like the coupling of the Mn electronic spin to nuclear spins of Mn

and the host atoms(10).

This model can be used also in the limit case where the D0 is much smaller and

the energy splittings given by the applied field B. In that case one could expect spin

relaxation rates proportional to B5. This B5 behavior has been observed(79) in very

diluted (x = 0.002) bulk Cd1−xMnxTe at very high magnetic fields B > 10T , giving

qualitative support to the assumption that phonon-induced relaxation is the dominant

mechanism in the dilute limit. Quantitatively, though, the observed relaxation rate at

B = 20T was Γ ≃ 106s−1, which corresponds to a lifetime of T1 ≃ 1µs for a splitting

of 1 meV, much larger than what we would extrapolate from figure (4.1).

Since part of the ∆5 scaling arises from the ω3 scaling of the phonon density of

states, we have explored the possibility that phonons localized in the wetting layer

could be more efficient in relaxing the Mn spin. For that matter we have considered a

toy model of two dimensional phonons confined in a slab of thickness W = 2nm. The

resulting Mn spin relaxation rate for those reads:

Γn→n′ =
∆2

16~3c4ρW
(nB(∆) + 1)

∑

b,b′=x,y,z

Ab,b′f
b
n′,n(f

b′

n′,n)
∗ (4.20)

where W is the width of the sample and A is a diagonal matrix with Axx = 1, Ayy = 1,

Azz = 2.

In figure (4.1) we plot the associated spin lifetime in this case, taking W = 2nm
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4. PHONON INDUCED SPIN RELAXATION

and show how it is at least 100 shorter than for 3D phonons, but still we would have

T1 ≃ 1 ms for D0 = 20µeV.

4.2.2 Mn spin relaxation in the presence of an exciton

Here we discuss how the Mn spin relaxation due to Mn-phonon coupling is modified

when an exciton is interacting with the Mn. The Mn-phonon coupling is still given by

Hamiltonian (4.14), with H0 given by eq. (3.1). We assume that the only effect of the

exciton on the Mn is to change the energy spectrum and mix the spin wave-functions,

giving rise to larger spin relaxation rates, due to the larger exchange-induced energy

splittings.
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Figure 4.1: Left panel: Lifetime of the (+ 5

2
to + 3

2
) transition in the optical ground state

at zero field as a function of the magnetic anisotropy energy splitting D0. Right panel:

Lifetime of the same transition in the presence of a +1 exciton for different values of D0.

The rates are calculated for a 3 dimensional (3D) and a 2 dimensional (2D) density of

states of acoustic phonons.

In the presence of the exciton, the Mn-phonon coupling results in transitions be-

tween different exciton-Mn spin states, n and n′. As we did in the case of the Mn

without excitons, we need to express the spin-phonon coupling (4.14) using the same
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4.2 Mn spin relaxation due to spin-phonon coupling

notation than in equation (4.1).

For that matter we define the matrix elements

~Fn,n′ ≡ 〈Ψn|
[

H0, ~M
]

|Ψ′n〉 =
∑

X,Mz,M ′
z

Ψn(X,M)∗Ψn(X,M
′)∗ ~fM,M ′ (4.21)

where

~fM,M ′ ≡ 〈M |
[

H0, ~M
]

|M ′〉 (4.22)

M and M ′ stand for eigenstates of the Mn spin operator Mz. Thus, in the exciton-Mn

spin states basis, the Mn-phonon coupling reads:

V
n,n′

~q,λ = i2Uλ(~q)~Fn,n′(M) · (~q × ~eλ(~q)) (4.23)

Notice how if we neglect the spin mixing of the exciton states we have ~Fn,n′ = ~fM,M ′

and the only difference in the scattering rates arises from the larger energy splittings

in the presence of the exciton.

Using the equation (4.7) for the phonon induced spin relaxation rate, and in analogy

with equation (4.18) we write:

Γn→n′ =
|∆|3

12πρ~4c5
(nB(∆) + 1)

∑

b,b′=x,y,z

F b
n,n′(F b′

n,n′)∗ (4.24)

In figure (4.1) we see how Mn-phonon spin relaxation is much faster in the presence

of the exciton. Ignoring the difference arising from the spin mixing, we can write the

ratio of the rates as:
Γn→n′(X)

Γn→n′(G)
=

(

∆X

∆G

)3

(4.25)

The energy splitting associated to the 5
2 to 3

2 spin flip in the ground state is 4D0. In the

presence of the exciton the energy splitting of the same transition would be 4D0+jh−je.
If we take D0 = 12µeV, jh = 360µeV and je = −90µeV the ratio yields ≈ 103. From

the experimental side we know that T1G > 5µs and, in the presence of the exciton

T1 ≃ 50ns. Thus, the ratio could be accounted for by this mechanism. However, in

order to have T1G = 5µs we would need to assume an unrealistically large value for

D0. Thus, we think that another spin relaxation mechanism must be operative in the

system when the exciton is in the dot which makes it possible to control the spin of the

Mn in a time scale of 50 ns. In the next sections we discuss the hole spin relaxation

due to phonons as the mechanism that, combined with Mn-carrier exchange, yields a

quick Mn spin relaxation in the presence of the exciton.
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4. PHONON INDUCED SPIN RELAXATION

4.3 Hole-phonon coupling in Mn doped quantum dot

4.3.1 Hole spin relaxation in non magnetic dots

We now consider the relaxation of the hole spin due to hole-phonon coupling. We

consider first the case of undoped quantum dots. The coupling of the spin of the hole

to phonons can be understood extending the Bir-Pikus Hamiltonian to the case of

inhomogeneous strain associated to lattice vibrations:

ǫij(~r) ≡
1

2

(

∂ui
∂rj

+
∂uj
∂ri

)

(4.26)

It is convenient to write the strain tensor field as:

ǫij(~r) =
∑

~q

ei~q·~rǫij(~q) (4.27)

so that we write:

ǫij(~q) =
1

2

∑

λ

Uλ(~q)
(

b†~q,λ + b−~q,λ
)(

qje
i
λ(~q) + qie

j
λ(~q)

)

(4.28)

We consider the coupling of the ground state doublet, formed by states ⇑ and ⇓, to
the phonon reservoir (80, 81, 82). The effective hole-phonon Hamiltonian is obtained

by projecting the BP Hamiltonian onto this subspace:

Vh−phonon =
∑

ij,~qσh,σ
′
h

I
σh,σ

′
h

ij (~q)|σh〉〈σ′h|ǫij(~q) (4.29)

Here |σh〉 denotes the quantum dot state defined in eq. (3.20) and the coupling constant

reads

I
σh,σ

′
h

ij (~q) ≡
∑

jz,j′z

VijC
∗
h(jz)Ch′(j′z)〈jz |JiJj|j′z〉I~q (4.30)

where I~q =
∫

|ψ0(~r)|2ei~q·~rd~r. Hamiltonian (4.29) shows how the absorption or emission

of a phonon can induce a transition between the two quantum dot hole states, ⇑ and

⇓.
We now calculate the time scale for the spin relaxation of a single hole in a non

magnetic dot under the influence of an applied magnetic field so that the hole ground

state doublet is split in energy. In order to compute the transition rate for decay of the

hole from the excited to the ground state we use again the general equation (4.7). For

that matter, we express the hole-spin coupling (4.29) as:

Vh−phonon =
∑

~q,λσh,σ
′
h

V
σh,σ

′
h

~q,λ |σh〉〈σ′h|
(

b†λq + bλ,−q
)

(4.31)
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Figure 4.2: Left panel: Hole spin-flip rate as a function of the dot size and shape. Ly

is fixed at 6nm, scanning of Lx change the LH-HH mixing. In the inset the ratio Ly/Lx

is fixed at 1.2 so the shape of the dot are fixed, only the size of the dot changes. One

can see that the hole spin-flip rate is a size sensitive quantum quantity, the rate is a semi-

exponential function of the size of the dot. Right panel: Hole spin-flip rate as a function

of the energy splitting for two different values of the quantum dot anisotropy, ie LH-HH

mixing.
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where

V
σh,σ

′
h

~q,λ =
i

2

∑

i,j

I
σh,σ

′
h

ij (~q)Uλ(~q)
(

qie
j
λ(~q) + qje

i
λ(~q)

)

(4.32)

In order to illustrate the physics of the phonon-driven hole spin relaxation, we

consider the case of a single hole in a non-magnetic dot under the influence of an

applied magnetic field. For that matter, we compute the Hamiltonian (4.32) using the

wave functions from the simple model of confined holes defined in eq. (3.12). We focus

on the non-diagonal terms in the hole spin index, i.e., the terms that result in scattering

form ⇑ to ⇓ due to phonon emission.

Importantly, the BP Hamiltonian couples hole states that differ in, at most, two

units of Jz. Thus, in the absence of LH-HH mixing, the BP Hamiltonian does not

couple directly the ⇑ and ⇓ states. Transitions between ⇑ and ⇓ states, as defined in eq.

(3.20), are only possible, through one phonon processes, through the ǫyz(JyJz + JzJy)

and ǫzx(JzJx+JxJz) terms in the Hamiltonian. After a straightforward calculation we

obtain:

V
⇑,⇓
~q,λ =

i

2

√
3dSin

(

θ1 − θ2
2

)

(ǫyz(~q)− iǫzx(~q)) (4.33)

The important role played by the LH −HH mixing θ1,2 is apparent. Using equation

(4.7) it is quite straightforward to compute the rate for the 3 phonon branches. They

are all proportional to

Γ0
⇑→⇓ =

1

18π
D2

u′Sin2
(

θ1 − θ2
2

)

∆3

ρ~4c5
(4.34)

with coefficients 7
5 , 1 and 8

5 for the TA1, TA2 and L modes respectively. Here, Du′

stands for the deformation potential of Kleiner-Roth(83), following reference (66),

Du′ = −3
√
3d
2 , ρ for the mass density of CdTe, c for its transverse speed of sound,

and ∆ for the energy splitting between the ⇑ and ⇓ states, which is proportional to

the external magnetic field B. In figure (4.2) we plot the rates ΓTA1,ΓTA2,ΓL, as well

as their sum as function of the dot size (left panel) and as a function of the energy

splitting between the initial and final hole state, ∆ (right panel). We see how hole spin

relaxation rates can be in the range of Γ ≃ 1/(40ns).

The results of figure (4.2) suggest that for sufficiently high ∆, as those provided by

the Mn-hole exchange, the hole spin can relax in a time scale of 30ns. These numbers

are in the same range than those obtained by Woods et al (76). As we discuss in the

next section, these spin flips, together with Mn-carrier exchange, can also induce Mn

spin relaxation in a time scale much shorter than the one due to Mn-phonon coupling

only. Notice that the saturation of the hole spin relaxation rate as the energy splitting

is increased is related to the phonon wavelength becoming smaller than the dot size,

leading to a suppression of the matrix element I~q (84).
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4.3 Hole-phonon coupling in Mn doped quantum dot

Importantly, the rate is finite only if θ1 − θ2 6= 0, which is the case in the presence

of an applied magnetic field. This indicates that, within the simple model of eq. (3.12),

the non-diagonal terms in the hole-phonon Hamiltonian (4.29) vanishes identically.

Similar cancellation of the spin relaxation at zero field occur in other models and might

be a general result (85). The exchange coupling of the hole to either Mn or electron

spin are expected to have a similar effect on the hole wave functions, and thereby on

the phonon-induced hole spin relaxation, than the magnetic field. However, this effect

is only captured if the system is described with the complete hole basis, ie, without

removing from the Hilbert space the 2 high energy hole states. It is worth pointing

out that hole spin relaxation is thereby very different if an electron (or a Mn atom) is

present in the dot. In the presence of an electron, zero field hole spin relaxation can

take place(81).

4.3.2 Spin relaxation in magnetic dots due to hole-phonon coupling

The results of the previous sections indicate that, because of their coupling to phonons,

the hole spin lifetime in a non-magnetic dot is much shorter than the Mn spin lifetime.

Here we explore the consequences of this phonon-driven hole spin relaxation for the

single exciton states in a dot doped with one magnetic atom. The leading process

results in a Mn spin conserving decay from the bright exciton to the dark exciton

state, via hole-spin flip in a time scale in the 10 ns range. Combined with the optical

recombination of the dark state, made possible via Mn-hole or Mn-electron spin flip,

provide a pathway for exciton induced Mn spin relaxation in a time scale under 100 ns,

as observed experimentally (6, 10, 11).

We also explore the scattering between two bright states enabled by the combination

of phonon induced hole spin relaxation and Mn-carrier exchange. The lifetimes of these

processes is in the range of 103 ns and higher, and therefore they are probably not

determinant for the optical orientation of the Mn spin in the sub-microsecond scale.

4.3.2.1 Exciton-phonon coupling in magnetic dots

The Hamiltonian that couples the exciton states Ψn to the phonons is derived by

projecting the hole-phonon coupling Hamiltonian (4.29) onto the exciton states (3.66).

The result reads:

VX−phon =
∑

n,n′~qλ

|Ψn〉〈Ψn′ |Vn,n′

~q,λ

(

b†λq + bλ,−q
)

(4.35)

where

V
n,n′

~q,λ =
∑

Mz,σe,σh,σ
′
h

V
σh,σ

′
h

~q,λ Ψn(Mz ,X)Ψ∗n′(Mz,X
′) (4.36)
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Figure 4.3: Scheme of the Mn spin flip channels due to the combined action of hole-

phonon coupling and carrier-Mn exchange.

where X = (σe, σh) and X ′ = (σe, σ
′
h) (same electron spin) and V

σh,σ
′
h

~q,λ is given by

equation (4.32).

4.3.2.2 Qualitative description of the spin relaxation processes

In order to describe qualitatively the variety of different processes accounted for by

Hamiltonian (4.35) it is convenient to consider an initial state ψn as a linear combi-

nation of a dominant component |M〉| ↓〉e| ⇑〉h plus a minor contribution of two dark

components, which arise from the coherent exchange of the Mn with either the electron

or the hole:

|ψn〉 = |M〉| ↓〉e| ⇑〉h +
+ ǫe|M − 1〉| ↑〉e| ⇑〉h + ǫh|M + 1〉| ↓〉e| ⇓〉h (4.37)

where ǫe ∝ je/jeh and ǫh ∝ jh/jeh are small dimensionless coefficients that can be

obtained doing perturbation theory.

Depending on the elementary process that takes place, there are several possible

final states:
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Figure 4.4: Calculated rates for the transitions between exciton states in a Mn-doped

quantum dot due to hole-phonon coupling. Left panel, red line, transition from |−1,− 5

2
>

to |+ 2,− 5

2
>, Right panel, red line, transition from| − 1,− 5

2
> to | − 2,− 1

2
>. Blue line,

transition from | − 1,− 5

2
> to | + 1,− 3

2
>. Ly is fixed at 6nm and scanning Lx changes

the LH-HH mixing parameter Jh⊥.

1. Hole spin relaxation. In this case the final state would be dominantly a dark

exciton whose wave function read:

|ψn′〉 = |M〉| ↓〉e| ⇓〉h +O(ǫ) (4.38)

and the scattering rate Γ0 would be proportional to |I⇑,⇓|2. This is process II in
figure (4.3).

2. Hole spin relaxation plus coherent hole-Mn spin flip. This is process III in figure

(4.3). This can be realized through two dominant channels. An incoherent hole

spin flip will couple the dominant component of the initial state, |M〉| ↓〉e| ⇑〉h
with a secondary component |M〉| ↓〉e| ⇓〉h of the final state

|ψn′〉 = |M − 1〉| ↓〉e| ⇑〉h +
+ ǫh|M〉| ↓〉e| ⇓〉h +O(ǫe) (4.39)

In this case the final state is a bright exciton in the same branch +1 than the

initial state but the Mn component goes from M to M − 1.
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The second channel comes from the hole spin flip of the minority dark component

of the initial state, ǫh|M +1〉| ↓〉e| ⇓〉h which decays into the majority component

of the final state

|ψn′〉 = |M + 1〉| ↓〉e| ⇑〉h +O(ǫe,h) (4.40)

Thus, in this second case a hole spin flips due to phonons, plus a coherent Mn-

electron spin flip connect the X = +1,M initial state to the X = −1,M + 1

state. Thus, both the initial and final state in this process are the same than in

the first channel, the rates for each would be proportional to ǫ2hΓ0, but the decay

pathways are different, and interferences are expected.

3. Hole spin relaxation plus coherent electron-Mn spin flip. This is process I in figure

(4.3). As in the previous case, there are two channels for this type of process. In

the first channel, the majority component of the initial state decays into a final

state given by:

|ψn′〉 = |M − 1〉| ↑〉e| ⇓〉h + ǫ′e|M〉| ↓〉e| ⇓〉h (4.41)

The incoherent hole spin flip connects the initial state (4.37) to the final state

(4.41) through the minority component |M〉| ↓〉e| ⇓〉h of the later.

The second channel comes from the hole spin flip of the minority dark component

of the initial state, ǫe|M − 1〉| ↑〉e| ⇑〉h which decays into the majority component

of the final state

|ψn′〉 = |M − 1〉| ↑〉e| ⇓〉h +O(ǫe,h) (4.42)

Thus, a hole spin flips due the phonon, plus a coherent Mn-electron spin flip

connect the X = +1,M initial state to the X = −1,M − 1 state. The scattering

rate of these two process scales as ǫ2eΓ0

4.3.2.3 Calculation of the relaxation rates

In order to implement equations (4.35 and 4.36) to compute scattering rates, we use

the single particle basis for the holes done with equations (3.12) which leads, at finite

magnetic field to the matrix element (4.33) that would be incorporated into equations

(4.36) to compute the rates using equation (4.7). As discussed above, a zero field model

(3.12) yields a zero spin-flip matrix element in equation (4.33). This is a feature of the

simple hole model rather than an intrinsic property of the system. Thus, for the sake

of simplicity, we compute the rates between exciton states by computing the matrix

element (4.33) as if there was a magnetic field that yields the energy splitting between

the initial and final exciton states equal to the splitting produced by the exchange

interaction with the Mn spin.
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In the calculation of the rates we perform an additional approximation: we only

consider spin-flip terms in equation (4.36) and we do exclude spin-conserving terms.

The results for transition rates from the state n with dominant (−1,−5
2) to three

possible final states with dominant components (+2,−5
2 ), (−2,−1

2 ) and (+1,−3
2 ) as a

function of the spin-flip Mn hole exchange Jh⊥, are shown in figure (4.4). The transition

to the (+2,−5
2 ), which only involves the irreversible spin flip of the hole via a phonon

emission is the dominant process and has a lifetime of 30 ns. The transition to the

(+1,−3
2 ) state requires both the hole spin flip and the Mn-hole spin flip and it is three

orders of magnitude less efficient.

Thus, these calculations indicate that the most likely mechanism for Mn spin ori-

entation in the presence of an exciton combines a rapid bright-to dark conversion,

produced by phonon induced hole spin flip, and a dark to ground transition, enabled

by Mn-carrier spin exchange and radiative recombination.

4.4 Conclusion

In section (4.2) we studied the dissipative dynamics of the Mn spin due to its coupling

to phonons, both with and without excitons in the dot. The Mn spin-phonon coupling

arises from the time dependent stochastic fluctuations of the crystal field and thereby of

the single ion magnetic anisotropy, induced by the phonon field. Whereas the Mn spin

relaxation is accelerated by 2 or 3 orders of magnitude in the presence of the exciton,

the efficiency of this mechanism is too low to account for the optical orientation of the

Mn spin reported experimentally(6, 10, 11). The small Mn spin-phonon coupling comes

from the small magnetic anisotropy of Mn as a substituional impurity in CdTe.

In section (4.3) we described the interaction between the hole spin and the phonons

in non-magnetic dots. Using the simple analytical model for the holes presented in

section (3.1) we obtained analytical formulas for the hole spin relaxation. We find that

hole spin lifetime can be in the range of 30 ns for a hole spin splitting as large as that

provided by the hole-Mn coupling. Thus, we expect that bright excitons will relax

into dark excitons via hole-spin relaxation. This provides a microscopic mechanism to

the scenario for Mn spin relaxation proposed by Cywinski (14): bright excitons relax

into dark excitons, via carrier spin relaxation, and the joint process of Mn-carrier spin

exchange couples the dark excitons to the bright excitons, resulting in PL from dark

states which implies Mn spin relaxation in a time scale of a few nanoseconds. we will

see in the next chapter, how these calculated spin flip rates can explain the observed

spin dynamics in Mn doped quantum dots driven by a resonant laser field.
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Laser driven spin dynamics

Contents

5.1 Scattering mechanisms and master equation . . . . . . . . . 81

5.2 Optical Mn spin orientation . . . . . . . . . . . . . . . . . . . 82

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Experiments show that a Mn spin in a quantum dot can be optically oriented

using resonant laser excitation. In this chapter we discuss theoretically the

optical Mn spin orientation mechanism in a single Mn doped CdTe quantum

dot employing standard master equation and the spin-flip rates calculated

in chapter 4. In this chapter we only consider the time evolution of the

diagonal part of the density matrix (population), the coherence evolution

will be discussed in the next chapter.

5.1 Scattering mechanisms and master equation

The spin dynamics of a single Mn atom in a laser driven quantum dot is described in

terms of the 24 exciton states Ψn and the 6 ground states φm. In the previous chapter

we have calculated the scattering rates of these states. They can be summarized as

follows:

1. Transitions from the Ψn to the φm, via photon emission (eq. (3.69)). In the case

of bright excitons, this process is the quickest of all, with a typical lifetime of 0.3

ns. In the case of dark excitons the lifetime depends on the bright/dark mixing,

which is both level and dot dependent. Dark lifetime ranges from twice the one

of bright excitons to 1000 times larger, ie, between 1 and 300 nanoseconds. In

any event, dark recombination involves a Mn spin flip.
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2. Transitions between different φm states, due to Mn spin phonon coupling (eq.

(4.18)). The lifetimes of these transitions are, at least, 1ms (see right panel of

figure 4.1).

3. Transitions between different exciton states Ψn that flip the spin of the Mn only,

due to Mn-phonon coupling (equation (4.24)). The lifetimes of these transitions

are, at least, 0.1ms (see left panel figure 4.1).

4. Transitions between exciton states due to hole-phonon coupling (equation (4.35)).

The bright to dark transition is the quickest process with a lifetime of about 30ns

(see figure 4.4). Bright to bright transitions, combining hole-phonon and Mn-

carrier interactions, have lifetimes in the 10 µs range.

In addition to these dissipative scattering processes, we have to consider driving

effect of the laser field, described in the semiclassical approximation. All things con-

sidered, we arrive to a master equation that describes the evolution of the occupations

pN , where N = (n,m) includes states both with and without exciton in the dot. The

master equation reads:

dpN
dt

=
∑

N ′

ΓN ′→NpN ′ −
∑

N ′

ΓN→N ′pN (5.1)

Eq. (5.1) is a system of 36 coupled differential equations that we solve by numerical

iteration, starting from a thermal distribution for the initial occupation pN . Since the

temperature is larger than the energy splitting in the ground state, but much smaller

than the band gap, at t = 0 we have the six ground states with similar occupation

Pm ≃ 1/6, Pn ≃ 0. As a result, the average magnetization, defined as:

〈Mz〉 =
∑

m

pm〈φm|Mz|φm〉 (5.2)

is zero, at zero magnetic field, as expected.

5.2 Optical Mn spin orientation

Under the action of the laser, the exciton states become populated and, under the

adequate pumping conditions, the average Mn magnetization 〈Mz〉 acquires a non-zero

value. This transfer of angular momentum, known as optical Mn spin orientation has

been observed experimentally (10) and predicted theoretically(12). It results from a

decrease of the Mn spin lifetime in the presence of the exciton in the dot. In that

circumstance, the laser transfers population from theMz state to the X,Mz state. The

enhanced relaxation transfers population from X,Mz to X,M ′
z and the recombination

toM ′
z state. Thus, if the laser is resonant with a single Mz to X,Mz transition, theMz
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Figure 5.1: Simulation of PL intensity from state (X = +1,Mz = − 5

2
) under the influence

of a driving laser pumping the system resonantly from optical ground state Mz = − 5

2
to

the excited state (X = −1, Mz = − 5

2
) for two laser intensities. The inset is the PL

spectrum assuming all the states are equally populated. In the calculation, the quantum

dot anisotropy (Lx=5nm and Ly=6nm) controls the LH-HH mixing. The other parameters

are discussed in the text.

state is depleted, which results in a decrease of the PL coming both from the X,Mz

and the −X,Mz transitions.

In figure (5.1) we show the result of our simulations for a dot at thermal equilibrium

(kBT = 4K) at t = 0 which is pumped with a laser pulse resonant with the X =

−1,Mz = −5
2 transition, which is the high energy one, since the hole is parallel to Mn

spin. The laser pulse has a duration of 300 nanoseconds, so that the spectral broadening

is negligible. In the upper panel we plot the PL coming from the counter-polarized

transition, X = +1,Mz = −5
2 , which has lower energy and can be detected without

interference with the laser, for two different pumping power intensity. It is apparent

that after a rise of the PL in a time scale of tens of nanoseconds , corresponding the

spin relaxation of the exciton spin from X = −1 to X = +1, probably mediated by

exciton-Mn exchange, the PL signal is depleted. The origin of the depletion is seen in
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Figure 5.2: Left panel: average magnetization and right panel: occupation of the different

spin states under optical pumping of the state (X = −1, Mz = − 5

2
). Parameters are the

same as for the calculation presented in figure (5.1).

figure (5.2). The occupation of the Mz = −5
2 spin state in the ground reduced down

to zero, in benefit of the other Mn spin states.

Accordingly, the average magnetization becomes finite. Thus, net angular momen-

tum is transferred from the laser to the Mn spin. The transfer takes place through

Mn spin relaxation enabled in the presence of the exciton. As discussed above, the

most efficient mechanism combines hole-spin relaxation due to phonons combined with

dark-bright mixing, which involves a Mn spin flip.

Interestingly, the fact that in the steady state several Mn spin states are occupied,

including the higher energy ones, is compatible with a picture in which the Mn spin is

precessing. Thus, a steady supply of spin-polarized excitons in the dot would result in

the precession of the Mn spin, a scenario similar to that of current drive spin-torque

oscillators(86). Further work is necessary to confirm this scenario.

The efficiency of the process increases with the laser power, as shown in figure (5.3).

We define the spin orientation time τpump as the time at which the PL of the counter
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Figure 5.3: Evolution of Mn spin orientation efficiency as a function of the laser power.

The pumping is detected in the PL intensity from state (X = +1,Mz = − 5

2
) under the

influence of a driving laser pumping the system from optical ground state Mz = − 5

2
to

the excited state (X = −1, Mz = − 5

2
). The inset presents the laser power dependence

of τpump, from where we can see that the efficiency of the pumping gets higher with the

increasing of the laser power.

polarized transition is half the maximum. We can see that, as expected, τpump is a

decreasing function of the laser power. A pumping time τpump ≃90ns is obtained with

a generation rate of about 1ns−1. The amplitude of the valence band mixing, controlled

by the anisotropy of the confinement potential or the in-plane strain distribution, is

the main quantum dot parameter controlling the efficiency of the optical pumping. As

presented in figure (5.4), decreasing the quantum dot anisotropy, i.e., decreasing the

LH-HH mixing parameter Jh⊥, produces a rapid increase of τpump (inset of figure (5.4).

This is a direct consequence of the reduction of the phonon induced hole spin flip rates.
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Quantity Symbol Value

Hole-Mn exchange jh 0.31 meV

Electron-Mn exchange je -0.09 meV

Electron-Hole jeh -0.73 meV

Uniaxial Anisotropy D0 10 µeV

In plane Anisotropy E 0

Quantum dot width Ly 6nm

Quantum dot width Lx 5nm

Quantum dot height Lz 3nm

Table 5.1: Parameters used in the simulation of the resonant PL observed in the time

resolved optical pumping experiments.
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Figure 5.4: Evolution of Mn spin orientation efficiency as a function of the valence band

mixing controlled by the anisotropy of the confinement potentiel (Ly=13nm, variable Lx).

The pumping is detected in the PL intensity from state (X = +1,Mz = − 5

2
) under the

influence of a driving laser pumping the system from optical ground state Mz = − 5

2
to the

excited state (X = −1, Mz = − 5

2
). The inset shows the evolution of τpump with Lx and

Jh⊥. The exciton generation rate is fixed at 1 ns−1.
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5.3 Conclusions

We have studied the spin dynamics of a single Mn atom in a CdTe quantum dot excited

by a laser that drives the transition between the 6 optical ground states, associated to

the 2S+1 states of the Mn spin S = 5
2 , and the 24 single exciton states, corresponding

to X = ±1,±2 states interacting with the Mn spin. The main goal was to have a

microscopic theory for the Mn spin relaxation mechanisms that makes it possible to

produce laser induced Mn spin orientation in a time scale of less than 100 ns. (6, 10, 11)

For that matter, we need to describe how the Mn and the quantum dot exciton affect

each other. In this section 5.1 we presented the master equation that governs the

dynamics of the 30 states of the dot, we solve it numerically and we model the optical

Mn spin orientation reported experimentally.

Our main conclusions are:

• Mn spin-phonon spin relaxation is presumably too weak to account for Mn spin

dynamics in the presence of the exciton

• The Mn spin orientation is possible in a time scale of one hundred nanoseconds

via a combination of phonon-induced hole spin relaxation and the subsequent

recombination of the dark exciton enabled by spin-flip exchange of the Mn and

the carrier

• The critical property that governs the hole-Mn exchange and the hole spin relax-

ation is the mixing between light and heavy holes, which depends both on the

shape of the dot and on strain.

• Our microscopic model permits to account for the optically induced Mn spin

orientation. However, for a quantitative agreement, a strong hole localization has

to considered. This strong localization is also consistent with the large value of

Jh−Mn observed experimentally.
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We want to estimate in this chapter how we could use optical or microwave ex-

citation of a quantum dot to study the coherent dynamics of the spin state of a Mn

atom. After a short description of recent experiments showing that the energy of the

spin state of a Mn atom can be tuned using the optical Stark effect we will show the
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influence of the Mn fine and hyperfine structure on a direct coherent optical control

exploiting time resolved optical Stark effect. We will also demonstrate the importance

of the coherent dynamics of the coupled electronic and nuclear Mn spins on the optical

pumping of the Mn atom. We will then show how Mn spin switching at zero magnetic

field can be performed via optically induced electron-nuclei flip-flops. Finally we will

show how direct microwave coherent control of the Mn spin could be optically detected.

6.1 Experimental evidence of optical Stark effect on an

individual Mn spin.

Each spin state of the Mn can be addressed with a control laser circularly polarized (σ±)

and tuned on resonance with an emission line of the exciton-Mn (XMn) complex (87).

The strong coupling between the control laser and the excited two level system can

induce an energy shift and a splitting of the electronic states. The splitting induced

by the control laser tuned to the high energy line of XMn in σ+ polarization can be

detected in σ− polarization on the low energy line of XMn as both lines correspond to

the same Mn spin. This is the equivalent of the Autler-Townes splitting observed in

atomic physics (88).

The effect of the control laser field is to mix the states with a Mn spin component

Mz=+5/2 in the presence (XMn) or absence (Mn alone) of the exciton. At the reso-

nance, the unperturbed states |Mn〉 ⊗ |n〉 and |XMn〉 ⊗ |n − 1〉 can be dressed into

pairs of hybrid matter-field states |I, n〉 and |II, n〉 where |n〉 is a n-photons state of

the control laser. These states can be written as (89):

|I, n〉 = c|Mn〉 ⊗ |n〉 − s|XMn〉 ⊗ |n− 1〉
|II, n〉 = s|Mn〉 ⊗ |n〉+ c|XMn〉 ⊗ |n− 1〉

with corresponding energies E± = ~

2 (ωc + ω0) ± ~

2Ω
′
r. Here, c =

√

1
2(1− δ

Ω′ ) and

s =
√

1
2(1 +

δ
Ω′ ). δ = ωc − ω0 is the laser detuning with ω0 the resonance frequency of

the unperturbed transition and ωc the frequency of the control laser. ~Ω′r = ~
√

Ω2
r + δ2

defines the energy splitting of the dressed states where Ωr = PE/~ is the Rabi frequency

with P the dipolar moment of the quantum dot transition and E the amplitude of the

electric field of the control laser. A power dependent Autler-Townes type splitting is

then expected for all transitions that share such an optically dressed state (88, 90).

Experimental data corresponding to a control laser tuned on |+1,+5/2〉 and the ob-

servation of an Autler-Townes splitting in the PL of the state |−1,+5/2〉 are presented
in Fig. 6.1. Particular care is given to the effect of the detuning of the control laser from

the XMn resonance (Fig. 6.1(c) and 6.1(d)) and its intensity (Fig. 6.1(e) and 6.1(f)).

At large laser detuning, the optically active transitions asymptotically approach the
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Figure 6.1: Autler-Townes splitting of the emission of |−1,+5/2〉 in a Mn-doped quantum

dot resonantly excited on | + 1,+5/2〉. (a) shows the non-resonant photoluminescence of

the quantum dot. The intensity map (c) shows the excitation energy dependence of the

Rabi splitting. The corresponding emission line-shape is presented in (d). The inset shows

the spectral position of the Autler-Townes doublet as a function of the pump detuning.

The fit is obtained with a Rabi energy ~Ωr = 180µeV . The straight lines corresponds

to the uncoupled exciton and laser energy. The excitation intensity dependence of the

Autler-Townes doublet is presented in the intensity map (e). The corresponding emission

line-shape are presented in (f). The inset shows the evolution of the Rabi splitting as

a function of the square-root of the pump intensity. A linear increase is observed. (b)

presents the circular polarization dependence of the Rabi splitting obtained under resonant

excitation. Extracted from reference (87).
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original excitonic transitions where the remaining energy offset is the optical Stark

shift. At the resonance, an anti-crossing is observed showing that the strong coupling

between the laser field and the exciton creates hybrid light-matter states. As presented

in the inset of Fig. 6.1(d), a good agreement with the simple dressed atom model is

obtained with a Rabi energy of ~Ωr=180µeV. On resonance, the emission from the

| − 1,+5/2〉 state splits into a doublet when the power of the control laser is increased,

as expected from the Autler-Townes model. The splitting is plotted as a function of

the square root of the control laser intensity in Fig. 6.1(f), showing that the splitting

linearly depends on the laser field strength. The laser induced energy shift can be easily

larger than the magnetic anisotropy of an isolated Mn spin created by the strain in the

quantum dot plane (≈40µeV) (10, 55, 56). As we will see in the following, the laser

induced shift of the Mn spin could be used for a fast optical coherent manipulation and

the optical tuning of the fine structure may lead to a control of the coherent dynamics

of the isolated Mn spin.

6.2 Coherent control of a Mn spin using time resolved

optical Stark effect.

The model developed in this part describes the coherent time evolution of the coupled

electronic and nuclear spins of the Mn spin in a transverse magnetic field under pulsed

laser coupling to an exciton state. We want to estimate how the pulsed excitation of

the quantum dot could be used to coherently control the spin of an individual Mn atom

exploiting time resolved optical Stark effect.

6.2.1 Master equation.

As presented in Fig. 6.2, we consider the coherent evolution of coupled electronic and

nuclear spins in a transverse magnetic field laser coupled to a single exciton-Mn state.

This can be achieved under resonant optical excitation of one transition of X-Mn with

picosecond pulses( ≈ 10 ps).

We compute the time evolution of ̺, the 42x42 density matrix describing the popu-

lation and the coherence of the 36 nuclear (Iz) and Mn spins (Mz) in the ground state

and 6 exciton sates (+1,Mz=5/2,Iz) in the excited state.

The general form of the master equation which governs the Mn evolution ̺ is given

by:

∂̺

∂t
= −i/~[H, ̺] + L̺ (6.1)

The first term represents the Hamiltonian evolution and the second term describes

all the coupling with the environment. L̺ separates into one contribution for each
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6.2 Coherent control of a Mn spin using time resolved optical Stark effect.

Figure 6.2: Scheme of the energy levels and transitions rates involved in the resonant

excitation model. Ω is the coupling with the laser, γd is a pure dephasing of the exciton,

ΓMn is the relaxation rate of the Mn, Γr is the optical recombination rate of the exciton.

A relaxation rate of the exciton-Mn complex Γpump can be introduced for an effective

description of the optical pumping effect.
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6. COHERENT DYNAMICS OF A MN SPIN

coupling or decay channel (91):

1- The coherent coupling between two levels induced by a resonant laser i↔ j leads

to Rabi oscillation between the populations ̺ii and ̺jj and coherence of these levels

̺ij = ̺∗ji. This reversible coupling is described by the operator:

Lcoh,i↔j̺ = i
Ωij

2
(|j〉〈i|̺ + |i〉〈j|̺ − ̺|j〉〈i| − ̺|i〉〈j|) (6.2)

where Ωij = PijE/~ is the Rabi frequency with Pij the dipolar moment of the quantum

dot transition and E the amplitude of the electric field of the control laser.

2- The incoherent population decay from level j to level i in an irreversible process

associated with a coupling to a reservoir. It results in a one way exponential decay that

can be described by the operator:

Linc,j→i̺ =
Γj→i

2
(2|i〉〈j|̺|j〉〈i| − ̺|j〉〈j| − |j〉〈j|̺) (6.3)

where Γj→i is the incoherent relaxation rate from level j to level i. This form operator

can describe the radiative decay of the exciton (irreversible coupling to the photon

modes) or the relaxation of the Mn spin (irreversible coupling to the phonon modes)

3- A pure dephasing (i.e. not related to an exchange of energy with a reservoir) can

also be introduced and is described by an operator of the form:

Ldeph,jj̺ =
γjj
2

(2|j〉〈j|̺|j〉〈j| − ̺|j〉〈j| − |j〉〈j|̺) (6.4)

where γjj is a pure dephasing rate.

6.2.2 Hamiltonian

The Hamiltonian of the coupled electronic and nuclear Mn spins in the ground state

is given in equation 3.79 of chapter 3. We consider only one exciton state | + 1〉 laser

coupled with one state of the Mn |Mz = +5/2, Iz〉 with a Rabi frequency Ω. This

approximation is justified in strongly confined CdTe/ZnTe quantum dots resonantly

excited by a narrow band laser. The exciton can relax to the ground state by conserving

the Mn spin with a rate Γr. The exciton presents a pure dephasing γd. At low transverse

magnetic field, the hole Mn exchange interaction is much larger than the Mn Zeeman

energy and we can neglect its influence on the exciton-Mn state. Additional relaxation

terms could be added in the excited state (exciton-Mn) to take into account the Mn

spin relaxation within the exciton-Mn complex.

The relaxation of the Mn spins in the ground state are described by a relaxation

rate ΓMn coupling one by one the different spin states Mz. We do not consider any
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Figure 6.3: Time evolution of ̺5/2 obtained with for a pure electronic spin M=5/2

(A=0 µeV, a=0 µeV, D0=0 µeV) under a transverse magnetic field Bx = 0.1T and with

Γr = 200ps−1,ΓMn = 20ns−1, γd = 100ps−1, ̺5/2(0) = 1. A 2π Gaussian pulse with a

width of τ = 10ps is sent at t1 = 1ns (the blue line presents the time evolution of the

|X, 5/2〉 population displayed on the right axis).

spin relaxation for the nuclear spin I which is considered to be frozen in the timescale

of the data presented here.

6.2.3 Time resolved optical Stark effect on a Mn spin.

This simplified model can be used to model pulsed optical coherent control experi-

ments on a Mn spin. These experiments are difficult to implement but theoretically

interesting.

A rotation of the Mn spin can be performed with picosecond optical pulses which will

move the system outside of the Mn spin subspace during the rotation in the transverse

magnetic field. field. This introduces a phase shift between each Mn spin component.

Such phase shifts can be seen as a rotation of the Mn spin. Any direction of the Mn

spin could be targeted with a carefully designed pulse sequence (amplitude and delay).

For instance, in a simple three level model, a 2π pulse induces a π rotation about the z

axis. This coherent manipulation is illustrated in Fig. 6.3 in the case of a pure electronic

spin M=5/2 (no coupling to the nuclear spin and no crystal field).

For a real Mn atom in a semiconductor matrix, the hyperfine coupling with the

nuclear spin and the crystal field as to be taken into account. The precession of a

Mn spin in a transverse magnetic field Bx = 0.25T for different values of strained
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Figure 6.4: Time evolution of ̺5/2 obtained with A=0.68 µeV, a=0.32 µeV and variable

D0 under a transverse magnetic field Bx = 0.25T with ΓMn = 20ns−1 and ̺5/2(0) = 1.
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6.2 Coherent control of a Mn spin using time resolved optical Stark effect.

induced magnetic anisotropy D0 is presented in Fig. 6.4. After 1ns, the precession of

the electronic Mn spin is blurred by the hyperfine coupling and influence of crystal

field. In a transverse field, a coherent control of the Mn can only be performed in the

first 1ns and in a weakly strained quantum dot resulting in a D0 typically lower than

1 µeV.
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Figure 6.5: Time evolution of ̺5/2 in a weakly strained Mn-doped quantum dot (A=0.68

µeV, a=0.32 µeV and D0 = 1µeV) under a transverse magnetic field Bx = 0.25T , with

ΓMn = 20ns−1 and ̺5/2(0) = 1. 0, 1 or 2 2π Gaussian pulses with a width of τ = 10ps

are sent at t1= 260 ps and t2=720 ps. The calculations are performed with Γr = 200ps−1

and a pure dephasing for the exciton γd = 100ps−1

Such coherent control is presented in Fig. 6.5 for D0= 1 µeV and sequences of one

or two resonant picosecond pulses. This model shows that a phase shift can be induced

in the precessing Mn spin during the first ns.

In conclusion, in a transverse magnetic field, the optical Stark effect could be used

to act on the Mn spin only during the first ns of its precession. In addition, this optical
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6. COHERENT DYNAMICS OF A MN SPIN

coherent control scheme works well only for a free precessing spin. D0 in highly strained

quantum dots is a problem.

6.3 Influence of the Mn spin coherent dynamics on the

optical pumping.

The same model of Mn spin coherent dynamics under resonant optical excitation can

be used to analyze the origin of the residual fluorescence signal observed under optical

pumping conditions: Experimentally, the optical pumping efficiency nether reach 100%,

a resonant fluorescence signal can always be observed at zero magnetic field. This

intensity of resonant fluorescence decreases under a small magnetic applied along the

quantum dot growth axis (11)
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Figure 6.6: Magnetic field dependence of the optical pumping transient calculated

with D0=4µeV, a=0.32µeV A=0.68µeV, E=0µeV, Tpump=20ns, Tg=0.5ns TMn=10µs and

Tr=0.25ns. The inset shows the amplitude of ρX,5/2 at 300ns (steady state) as a function

of a magnetic field applied along the quantum dot growth axis z.

An effective spin relaxation rate (Γpump = 1/Tpump) for the exciton-Mn complex is
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introduced in the model presented in Fig.6.2. It allows a transfer of population from

the state | + 1,+5/2, Iz〉 to any other spin state of the Mn |Mz〉 with Iz unchanged.

This is a simplified effective way to include the exciton-Mn spin relaxation channels we

discussed in the previous chapters. Here, we do not take into account the details of

these relaxation channels. These spin flips rates are responsible for an optical pumping

of the Mn spin state under resonant optical excitation. However, as confirmed by the

calculated PL transients presented in Fig. 6.6, the coherent coupling with the nuclear

spin prevents the optical pumping efficiency to reach 100% (10). This is particularly

pronounced for a weak value of D0. As observed experimentally, this effect can be

suppressed by a weak magnetic field applied along the quantum dot growth axis. This

evolution is qualitatively reproduced by our simple model (Inset of Fig. 6.6). When the

Zeeman energy exceeds the hyperfine coupling and the tetragonal crystal field energies

(magnetic field larger than 50 mT), the coherent precession of Mz in its hyperfine field

is blocked and the efficiency of optical pumping is maximum.
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Figure 6.7: Optical pumping transients calculated for different values of E with

D0=5µeV, a=0.32µeV A=0.68µeV, Tpump=20ns, Tg=0.5ns and Tr=0.25ns. The inset

shows the amplitude of ρX,5/2 at 300ns (steady state) as a function of magnetic field applied

on a quantum dot with E = 1µeV along its growth axis z. ρX,5/2(300ns) is proportional

to the steady state PL.
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An anisotropy in the strain distribution at the Mn spin location, resulting in a

term E(M2
x − M2

y ) in Mn fine structure, can also be responsible for a poor optical

pumping efficiency. This is illustrated in Fig. 6.7 where the influence of E on the optical

pumping transient are presented. Even a weak anisotropy of the strain (E = 0.5µeV

compared to the isotropic term D0=4µeV) significantly reduces the efficiency of the

optical pumping. In the presence of this strain anisotropy, a magnetic field along z

has a strong influence on the optical pumping transient. The pumping is almost fully

restored and the resonance fluorescence almost suppressed within the first 100mT, in

good agreement with experimental data (11). This model confirms that the presence of

anisotropic strain at the Mn location is responsible for the magnetic field dependence

of the resonance fluorescence signal and the poor efficiency of the resonant optical

pumping in most of the Mn doped quantum dots.
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Figure 6.8: Optical pumping transients calculated for different values of transverse mag-

netic field Bx with D0=4µeV, a=0.32µeV A=0.68µeV, E=0µeV Tpump=20ns, Tg=0.5ns

and Tr=0.25ns. The inset shows the amplitude of ρX,5/2 at 300ns (steady state) as a

function of magnetic field.

The fine and hyperfine structure of the Mn also control the transverse magnetic

field dependence of the optical pumping. In this case, the determinant parameter is
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the magnetic anisotropy D0 which blocks the precession of the Mn spin at low magnetic

field (Fig. 6.8). The larger the value of D0, the larger the field needed to suppress the

optical pumping.

6.4 Optically controlled electron-nuclei coupling for Mn

spin switching.

Alternatively, the hyperfine coupling could be exploited to perform an optical manipu-

lation of the Mn spin at zero external magnetic field. We want to show in this part how

the optical Stark shift induced by a resonant single mode laser can be used to control

the coupling between the electronic and nuclear spin of an Mn atom. This controlled

interaction could be exploited for an all optical detection of the Mn fine structure and

for a control of the dynamics of the electronic Mn spin.

6.4.1 Mn energy levels in the strong coupling regime.

We want first to analyze the Mn fine structure in the optical strong coupling regime.

We start again from the Hamiltonian of the coupled electronic and nuclear Mn spins

given in equation 3.79 of chapter 3. It is mainly controlled by A, the hyperfine coupling

with the nuclear spin, and D0 the strain induced magnetic anisotropy.

Lets us consider, as in the experiments presented previously, that the Mn spin

is coherently coupled to a single excited exciton-Mn level (+1,Mz = 5/2, Iz) with

a resonant laser field. This is a good approximation if the Rabi splitting induced by

resonant laser is much weaker than the splitting between the lines of the X-Mn complex.

This can be verified in most of the Mn doped quantum dots as the laser energy shift

we need to influence the Mn spin fine structure is typically lower than 50µeV.

The Hamiltonian of the coupled light matter systems reads:

Hlm = HMn + ~ω0|XMn〉〈XMn|+ ~ωlaa
† + ~Ωr(ad

† + a†d) (6.5)

where a (resp. a†) is the annihilation (resp. creation) operator of a photon in the

mode at energy ωl. ω0 is the energy of the optical transition and d (resp. d†) is the

annihilation (resp. creation) operator of an exciton of energy ω0. Ωr =
√
ng is the Raby

frequency, with g the electrical dipole matrix element describing the coupling between

the dipole of the quantum dot transition and the mode ωl of the electric field and n the

number of photons in the mode. The optically dressed states are found diagonalizing

the total Hamiltonian. The result of the diagonalization for different values of ~Ωr is

presented in Fig. 6.9. As expected, optically dressed states are created for Mz=5/2

and all the spin states of the nuclei Iz. As observed experimentally, the laser induced
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Figure 6.9: Fine structure of the Mn spin in a strained quantum dot as a function of the

Raby energy ~ΩR. The enlarged view in the inset shows anti-crossing between the different

Mn spin states Mz = 5/2 and Mz = 3/2. Calculated with A = 0.68 µeV, D0 = 10 µeV,

a = 0.32 µeV.

102



6.5 Optically detected coherent control via resonant microwave excitation

splitting can be much larger than the fine structure produced by D0. Consequently, the

degeneracy between Mz=+5/2 and Mz=+3/2 can be optically restored. The strong

coupling with the laser field could be used to tune the energy of any other spin state

of the Mn and control there degeneracy (87).

When the light induced energy shift compensate the strain induced magnetic an-

isotropy, two consecutive spin states of the Mn are coupled by simultaneous electron-

nuclei flip-flops, governed by A. This is responsible for the anti-crossing observed

between the states Mz=+5/2 and Mz=+3/2 in the inset of Fig. 6.9. At the resonance,

as D0 blocks further evolution in the spin ladder, the electronic and nuclear spins will

start to oscillate at a frequency governed by A. This coherent oscillation controlled

during a time ∆t could be exploited for a coherent manipulation of the electronic Mn

spin.

6.4.2 Optical switching of the Mn spin at zero magnetic field.

We consider a Mn spin in the state +5/2. With a large value of D0 (larger than 5 µeV),

the coherent precession of the electronic and nuclear spin is blocked. The precession

starts when a control laser tuned on resonance with the (X,+5/2) transition is turned

on putting on resonance +5/2 and +3/2 levels. The hyperfine interaction

HHyper = A[IzMz +
1

2
(I+M− + I−M+)] (6.6)

simultaneously flips the electronic and nuclear spins with a characteristic time governed

by A. With A=0.68µeV a flip-flop occurs in typically 6 ns. If the control laser is

switched off after this characteristic time, the precession stops and the Mn electronic

spin has been switched from 5/2 to 3/2.

6.5 Optically detected coherent control via resonant mi-

crowave excitation

Optically detected magnetic resonance is often used to study the property of the

nitrogen-vacancy centers in diamond (21). The nitrogen-vacancy system is similar

to our single Mn doped quantum dot system except that we have more energy levels.

Here we will consider the probability to use this technique in our system.

In this section, we will present a model for optically detected coherent control of a

Mn spin induced by a resonant microwave excitation using optical Bloch equation. We

will first derive the general optical Bloch equation for any level system driven by one

and two fields and then we will show some preliminary results of this model applied to

the case of an individual Mn spin in a quantum dot.

103



6. COHERENT DYNAMICS OF A MN SPIN

We consider the 42 levels system (6 excited states and 36 optical ground states)

driven by a laser field (microwave field) which couples one ground states and one excited

state (two ground states). The scheme of the system is shown in Figure 6.10. | +
1,+5/2,+5/2 > and | + 5/2,+5/2 > are coupled by laser with a frequency of ωl.

|+5/2,+5/2 > and |+3/2,+5/2 > are coupled by a microwave field with a frequency

of ωm. The lifetime of exciton is 1/Γr. To induce the pumping, we introduce the rates

Γpump that stands for the transition from |+ 1,+5/2,+5/2 > to all the ground states

that has different Mn spin with conservation of the spin of nuclei. The relaxation of the

Mn spin in the ground states is described by a rate ΓMn which conserves the nuclear

spin. Notice that Mn spin flips only by 1 unit with a rate of ΓMn, which may be caused

by phonons as we discussed in the previous chapters.

Figure 6.10: Scheme of the energy levels and transition rates involved in the optically

detected coherent control model. Laser field couples |+1,+5/2,+5/2> and |+5/2,+5/2 >

with a frequency of ωl and microwave field couples | + 5/2,+5/2 > and | + 3/2,+5/2 >

with a frequency of ωm. Γr is the recombination rates for exction, ΓMn is the relaxation

rate of the Mn spin in ground states and Γpump is the transition rates from |+1,Mz, Iz >

to |M ′

z, Iz > (Mz 6=M ′

z)
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6.5 Optically detected coherent control via resonant microwave excitation

The Hamiltonian of the system can be written as follows:

H = Hdot +HESR +Hd−L (6.7)

HESR = M̂ · gµB ~BCos (ωmt) (6.8)

Hd−L = d̂ · ~ǫCos (ωlt) (6.9)

Hdot = HA +He−Mn +Hh−Mn +He−h (6.10)

HA = D0M
2
z +A~I · ~M +

a

6
(M4

x +M4
y +M4

z ) (6.11)

Hdot is the total carrier-Mn Hamiltonian. It contains the electron-Mn (He−Mn), hole-

Mn (Hh−Mn), and electron-hole coupling (He−h). HA is the Hamiltonian of the empty

quantum dot, described in equation 3.79 in chapter 3 at zero magnetic field. It contains

the magnetic anisotropy (D0 ·M2
z ), the hyperfine coupling (A~I · ~M) and the tetragonal

crystal field. HESR and Hd−L are the coupling between the atom and microwave/laser

field respectively. ωm/ωl are the frequency of the microwave/laser, d̂ is the electric

dipole moment of the atom and ~ǫ is the amplitude of the laser electric field. M̂ is the

magnetic dipole moment of the atom and ~B is the amplitude of the incident microwave

field. We define d̂ · ~ǫ = ~Ωl, Ωl is the Rabi frequency of the laser field-atom inter-

action and ~Ω is the corresponding Rabi energy, which depends on the power of the

laser. Similarly, we can define a Rabi frequency and Rabi energy for microwave-nuclei

coupling. The diagonalization of Hdot gives:

Hdotφn = Enφn (6.12)

where En are the eigenvalues of the Hamiltonian and the corresponding wave function

φn of the system can be written in the product basis:

φn =
∑

i

Cn
i |XiM

i
z > (6.13)

where |XiM
i
z > is the basis of the X+Mn system, Xi is the spin of the exciton, it can be

−2,−1,+1,+2 andM i
z is the spin of Mn in z direction. We write down the Schrodinger

equation:

i~σ̇ = [H,σ] (6.14)

To start our analysis, we first assume that HESR couple |m1〉 and |n1〉, and Hd−L
couples |m2〉 and |n2〉. By expanding the equation 6.14 in the product basis, and

adding the damping terms from spontaneous emission relaxation, we get the Bloch

equation for the multi-level system which is discussed in detail in the following section.

6.5.1 Bloch equation under one monochromatic field

We first consider the Bloch equation for a multi-level system driven by one monochro-

matic field.
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We assume the interaction between the atom and the monochromatic field can be

described by:

Hinter = ŴCos(ωt) (6.15)

Where Ŵ = ~Ω. The Liouville Von-Neumann equation of the system can be written

as:

i~σ̇ = [H +Hinter, σ] (6.16)

where H is the Hamiltonian of the atom. We assume the interaction Hamiltonian

couples states |m〉 and |n〉, where |m〉 is the ground state and |n〉 is the excited state.

The Hamiltonian in the basis {|m〉, |n〉, · · · } can be written:

Hinter = (Wmn|m〉〈n|+Wnm|n〉〈m|)Cosωt

=
1

2
{eiωtWmn|m〉〈n|+ e−iωtWnm|n〉〈m|+ e−iωtWmn|m〉〈n|

+eiωtWnm|n〉〈m|} (6.17)

The first two terms inside the brace describe processes where the atom falls from n to

m by emitting a photon and rises from m to n by absorbing a photon. These process

are resonant near ω = ω0, where ω0 is the emission frequency of the transition n→ m.

The nonresonant processes associated with the last two terms in equation 6.17 where

the atom falls from n to m by absorbing a photon and rises from m to n by emitting

photon. Therefore, we omit the last two terms of equation 6.17, this approximation is

called the rotating-wave approximation. We get:

Hinter ≈
1

2

{

eiωtWmn|m〉〈n|+ e−iωtWnm|n〉〈m|
}

(6.18)

Using this approximation, after a straightforward calculation, we get the Liouville

Von-Neumann equation (equation 6.16) in the basis of energy eigenstates.

i~σ̇ij =
1

2
{eiωtWmnσnjδim + e−iωtWnmσmjδin

−eiωtWmnσimδjn − e−iωtWnmσinδjm}+ ~ωijσij (6.19)

Right now, we did not consider the coupling between the atom and the vacuum, which

caused the spontaneous emission. Here we describe the effect of spontaneous emission

by using the same terms as those derived in the absence of radiation field, we neglect

the modifications of spontaneous emission connected with the presence of the incident

radiation. Such an approximation is valid if the effect of the coupling with this radia-

tion can be neglected during the correlation time of the vacuum fluctuations that are

responsible for spontaneous emission, that is indeed the case if the Rabi frequency is

much smaller than the frequency of the transition of the coupled two levels. By adding

the damping terms of spontaneous emission, we can get the optical Bloch equation(74):
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First, we get the time evolution of the population σii:

σ̇ii =
1

2i~
{eiωtWmnσniδim + e−iωtWnmσmiδin − eiωtWmnσimδin

−e−iωtWnmσinδim}+
∑

p 6=i

Γp→iσpp −
∑

q 6=i

Γi→qσii (6.20)

Second, we get the time evolution of the coherence σij(i 6= j):

σ̇ij =
1

2i~
{eiωtWmnσnjδim + e−iωtWnmσmjδin − eiωtWmnσimδjn

−e−iωtWnmσinδjm} − iωijσij +Rijijσij (6.21)

Right now, the coefficients in the evolution equation of both population and coherence

are time dependent. We can suppress any time dependence in the coefficients of these

equations by introducing new variables:

σ̂ij = eiωtσij i, j∈ m, n or i, j/∈m, n and i6=j and Ei > Ej

σ̂ij = e−iωtσij i, j∈ m, n or i, j/∈m, n and i6=j and Ei < Ej

σ̂im = σime
iωt σ̂in = σin i/∈ m, n

σ̂mj = σmje
−iωt σ̂nj = σnj j/∈ m, n

σ̂ii = σii

Using these new variables, we get the evolution of the population:

˙̂σii =
1

2i~
{Wmnσ̂nm(δim − δin) +Wnmσ̂mn(δin − δim)}+

∑

p 6=i

Γp→iσ̂pp −
∑

q 6=i

Γi→qσ̂ii

(6.22)

and we can get the evolution of coherence:

˙̂σij =
1

2i~
(Wnmσ̂mmδin −Wnmσ̂nnδjm +Wmnσ̂nnδim −Wmnσ̂mmδjn)

+i (γij − ωij) σ̂ij +Rijijσ̂ij (6.23)

where γij is defined by σ̂ij = σije
iγij t and ~ωij = Ei−Ej , which is the energy difference

between the two states i and j.

So far we get the optical Bloch equation for a mutli-level system under one monochro-

matic field. These new variables removes the time dependence in the coefficients and

makes the equation much simpler. Notice that the populations keep the same form for

the new variables. We will derive the optical Bloch equation for a multi-level system

under two monochromatic field in the next section.
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6.5.2 Bloch equation under two monochromatic field

We can write down the Liouville-Von Neumann equation as:

i~σ̇ =
[

H + ŴCosω1t+ Ŵ ′Cosω2t, σ
]

(6.24)

Where W couples m1 and n1, W
′ couples m2 and n2. mi are the lower level and ni

are the higher level coupled by the field. We suppose n1 and n2 are different here.

Analogous to the one monochromatic field case, we can get the Bloch equation. For

i = j, we get the time evolution for the population:

σ̇ii =
1

2i~
{eiω1tWm1n1

σn1iδim1
+ e−iω1tWn1m1

σm1iδin1
− eiω1tWm1n1

σim1
δin1

−e−iω1tWn1m1
σin1

δim1
}+ 1

2i~
{eiω2tW ′

m2n2
σn2iδim2

+e−iω2tW ′
n2m2

σm2iδin2
− eiω2tW ′

m2n2
σim2

δin2
− e−iω2tW ′

n2m2
σin2

δim2
}

+
∑

p 6=i

Γp→iσpp −
∑

q 6=i

Γi→qσii (6.25)

For i 6= j, we get the time evolution for the coherence:

σ̇ij =
1

2i~
{eiω1tWm1n1

σn1jδim1
+ e−iω1tWn1m1

σm1jδin1
− eiω1tWm1n1

σim1
δjn1

−e−iω1tWn1m1
σin1

δjm1
}+ 1

2i~
{eiω2tW ′

m2n2
σn2jδim2

+ e−iω2tW ′
n2m2

σm2jδin2

−eiω2tW ′
m2n2

σim2
δjn2

− e−iω2tW ′
n2m2

σin2
δjm2

}
−iωijσij +Rijijσij (6.26)

Employing the following new variables, we can get the time-independent form of Bloch

equation for a multilevel system driven by two monochromatic field.

σ̂n1m1
= σn1m1

eiω1t σ̂m1n1
= σm1n1

e−iω1t

σ̂n2m2
= σn2m2

eiω2t σ̂m2n2
= σm2n2

e−iω2t

σ̂im1
= σim1

σ̂im2
= σim2

i /∈ m1, n1,m2, n2

σ̂in1
= σin1

e−iω1t σ̂in2
= σin2

e−iω2t i /∈ m1, n1,m2, n2

σ̂m1j = σm1j σ̂m2j = σm2j j /∈ m1, n1,m2, n2

σ̂n1j = σn1je
iω1t σ̂n2j = σn2je

iω2t j /∈ m1, n1,m2, n2

σ̂ij = σij i, j /∈ n1,m1, n2,m2 and i 6= j

σ̂ii = σii (6.27)
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6.5 Optically detected coherent control via resonant microwave excitation

For n1 6= m2:

σ̂n1n2
= σn1n2

ei(ω1−ω2)t σ̂m1n2
= σm1n2

e−iω2t

σ̂n1m2
= σn1m2

eiω1t σ̂m1m2
= σm1m2

σ̂n2n1
= σn2n1

ei(ω2−ω1)t σ̂m2n1
= σm2n1

e−iω1t

σ̂n2m1
= σn2m1

eiω2t σ̂m2m1
= σm2m1

(6.28)

For n1 = m2:

σ̂n1n2
= σn1n2

e−iω2t σ̂m1n2
= σm1n2

e−i(ω1+ω2)t

σ̂n1m2
= σn1m2

σ̂m1m2
= σm1m2

e−iω1t

σ̂n2n1
= σn2n1

eiω2t σ̂m2n1
= σm2n1

σ̂n2m1
= σn2m1

ei(ω1+ω2)t σ̂m2m1
= σm2m1

eiω1t (6.29)

After a straightforward calculation, we get the evolution of the population:

˙̂σii =
1

2i~
{Wm1n1

σ̂n1m1
(δim1

− δin1
) +Wn1m1

σ̂m1n1
(δin1

− δim1
)}

+
1

2i~

{

W ′
m2n2

σ̂n2m2
(δim2

− δin2
) +W ′

n2m2
σ̂m2n2

(δin2
− δim2

)
}

+
∑

p 6=i

Γp→iσ̂pp −
∑

q 6=i

Γi→qσ̂ii (6.30)

We can also get the coherent evolution:

˙̂σij =
1

2i~
{Wm1n1

(σ̂n1jδim1
− σ̂im1

δjn1
) +Wn1m1

(σ̂m1jδin1
− σ̂in1

δjm1
)}

+
1

2i~

{

W ′
m2n2

(σ̂n2jδim2
− σ̂im2

δjn2
) +W ′

n2m2
(σ̂m2jδin2

− σ̂in2
δjm2

)
}

+i (γij − ωij) σ̂ij +

sec
∑

i′j′

Ri′j′ij σ̂ij (6.31)

where

σ̂ij = σije
iγij t (6.32)

and ~ωij = Ei − Ej , the energy difference between the states i and j.
∑sec

i′j′ Ri′j′ij is

the Redfield factor (74)

6.5.3 Optically detected coherent control of Mn spin

Now we use the Bloch equation (Equation 6.30 and Equation 6.31) discussed in the

above section 6.5.2 to calculate the steady states of the 42 levels system driven by the

laser and the microwave fields. Figure 6.10 shows the scheme of the system.
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Figure 6.11: Population vs microwave detuning. Black line is the population of | +
5/2,+5/2 > the red line is the population of | + 3/2,+5/2 > and the green line is the

population of |+1,+5/2,+5/2 >. ΓMn = (20µs)−1 for the left panel and ΓMn = (10µs)−1

for the right panel respectively and Γr = (0.25ns)−1, Γpump = (100ns)−1 for both panels,

the power of microwave and laser are Pm and Pl for both panels.
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6.5 Optically detected coherent control via resonant microwave excitation

In the system driven by two monochromatic fields (laser and microwave), the

laser/microwave couples several pairs of energy levels whose emission frequency is close

to the laser/microwave frequency with different detuning. However, it is a good approx-

imation that the laser or microwave couples only one pair of levels. This approximation

simplify the calculation and can show some basic properties of the optically detected

coherent control induced by microwave excitation in our system.

Since we are indeed interested in the steady state, instead of calculating the time

evolution of the population (Equation 6.30) and coherence (Equation 6.31), we can solve

the optical Bloch equations with steady state condition σ̂ij = 0 to uniquely determine

the steady state (see Appendix E for details).
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Figure 6.12: Population vs microwave detuning. Black line is the population of | +
5/2,+5/2 > the red line is the population of | + 3/2,+5/2 > and the green line is the

population of | + 1,+5/2,+5/2 >. ΓMn = (20µs)−1, Γr = (0.25ns)−1 and Γpump =

(100ns)−1 for both panels, the power of microwave and laser are 2Pm, Pl for the left panel

and Pm, 2Pl for the right panel

Figure 6.11 and Figure 6.12 demonstrated the detuning dependence of population

under different parameters. This calculation shows how the change of the ground state
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6. COHERENT DYNAMICS OF A MN SPIN

levels induced by the microwave could be detected optically, through the corresponding

change of the occupation of the exciton level, which would imply a change in the

photoluminescence. The microwave couples states |+5/2,+5/2 > and |+3/2,+5/2 >.

The detuning is the energy difference between the splitting of these two coupled states

and the energy of the microwave. The laser couples states | + 1,+5/2,+5/2 > and

| + 5/2,+5/2 > resonantly. Comparing the left panel and right panel of figure 6.11,

we can see that the linewidth increases with the transition rate in the ground states

which is consistent with the NMR experiments. We also notice that the pumping is less

efficient for the ground states with a larger lifetime ΓMn = (20µs)−1 (left panel) than

for the ground states with a smaller lifetime ΓMn = (10µs)−1 (right panel). Comparing

the left panel of figure 6.11 and the right panel of figure 6.12, we can see that with

the increase of the power of the laser, the population of the optical excited states gets

bigger, it is because the laser can excite more population to | + 1,+5/2,+5/2 >, and

consequently the population of state |+ 5/2,+5/2 > is depleted. The linewidth is also

broadened with the increase of the power of the laser and microwave field.

6.6 Conclusion

In this chapter, we discussed the coherent dynamics of a Mn spin in a quantum dot.

After the introduction of the experimental evidence of optical Stark effect, we proposed

a model to describe the coherent control of a Mn spin using time resolved optical Stark

effect, then, we discussed the influence of the coherent dynamics on the optical pumping

and suggested possible use of optically controlled electron-nuclei coupling for Mn spin

switching. Finally, we discussed optically detected microwave excitation. In this model,

we avoided the calculation of the fast oscillation induced by the coherent coupling using

singular value decomposition.
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7

Conclusion

In this thesis, models to study the spin dynamics in Mn doped CdTe quantum were

presented. Our core goal was to explain the optical pumping experiment performed

recently and to understand the origin of the observed fast optical spin orientation.

We first presented some recent experiments showing that an efficient optical spin

orientation of a single magnetic atom in a semiconductor host can be performed. These

experiments shows that the Mn spin lifetime in the ground state is larger than a few

microseconds. This fast optical pumping requires an efficient Mn spin relaxation in the

presence of an exciton in the quantum dot. These experiments also suggested a strong

influence of the Mn fine and hyperfine structure of the Mn on the pumping process.

We then developed a model to explain these experimental results. We have first

described the different terms in the Mn spin Hamiltonian, including exchange with

the 0-dimensional exciton, presented the Mn spin Hamiltonian with or without the

presence of the exciton, derived the effective Mn-hole coupling employing the pseudo

spin method. Our calculation suggested that the hole-Mn interaction are strongly

affected by the interplay of confinement, strain and spin orbit coupling. Then, we

presented a detailed spin effective model showing that for isotropic quantum dots, one

expects a significant influence of the nuclear Mn spin on the optical emission of the

exciton confined in a Mn-doped CdTe quantum dot. We also presented and modelled

the emission spectrum of quantum dot containing two Mn atoms. To simulate the

optical pumping experiments, we introduced a simple rate equation model employing

phenomenological transition rates to describe the exciton Mn dynamics.

To study the spin relaxation mechanism and the optical Mn spin orientation in

detail, we developed a quantum dot model in order to compute the carrier-phonon

coupling and its influence on the spin dynamics of the exciton Mn system. The Mn spin-

phonon coupling arises from the time dependent stochastic fluctuations of the crystal

field and thereby of the single ion magnetic anisotropy, induced by the phonon field.

Since Mn spin relaxation in the presence of the exciton is too slow to account for the
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optical orientation of the Mn spin reported experimentally(6, 10, 11), we investigated

the interaction between the hole spin and the phonons in magnetic quantum dots as a

possible origin for spin orientation. We find that hole spin lifetime can be in the range

of 30 ns for a hole spin splitting as large as that provided by the hole-Mn coupling.

Thus, bright excitons relax into dark excitons via hole-spin relaxation, resulting in

photoluminescence from dark states which implies Mn spin relaxation in a time scale

of a few tens of nanoseconds. The hole-Mn exchange and the hole spin relaxation are

governed by the mixing between light and heavy holes, which depends both on the

shape of the dot and on strain. In Chapter 5, we showed how these calculated spin flip

rates can explain the observed spin dynamics in Mn doped quantum dots driven by a

resonant laser field.

In the last part of the thesis, we discussed the coherent dynamics of a Mn spin

in a quantum dot. We proposed a model to describe the coherent control of a Mn

spin using time resolved optical Stark effect, then, we discussed the influence of the

coherent dynamics on optical pumping. We have shown that the optically controlled

electron-nuclei coupling could be used for a Mn spin switching. Then, we discussed the

optically detected microwave excitation. We have shown how the change in the popu-

lation of the ground state levels induced by the microwave could be detected optically,

through the corresponding change of the occupation of the exciton level detected in the

photoluminescence.
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Appendix A

Kohn Luttinger Hamiltonian in

short notation

In this appendix, we derive the Kohn-Luttinger Hamiltonian in short nota-

tion, which is used in Chapter 3.

Using the notation in Chapter 3, the Kohn-Luttinger Hamiltonian for the 4 topmost

valence bands of a zinc-blend compound under zero mangentic field is given by:

V KL(kx, ky, kz) =









P +Q S R 0
S† P −Q 0 R
R† 0 P −Q −S
0 R∗ −S∗ P +Q









(A.1)

We can write this Hamiltonian as:

H = PMP +QMQ +RMR +R∗MR∗ + SMS + S∗MS∗ (A.2)

where Mi is a 4 by 4 matrice that we can express in terms of the J = 3/2 matrices

shown in appendix C.

From inspection, it is trivial that

MP = 1 =
1

J(J + 1)
(J2

x + J2
y + J2

z )

.

In the case ofMQ, a bit of algebra (using the angular momentums matrices presented

in appendix C) leads to:

MQ = J2
z − 5

4
1 = J2

z − 5

4

(

J2
x + J2

y + J2
z

)
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.

The R terms must be related to J2
x − J2

y ± i(JxJy + JyJx). We can check that:

MR =
1

2
√
3

(

J2
x − J2

y − i(JxJy + JyJx)
)

Unsurprisingly, we have:

MR∗ =
1

2
√
3

(

J2
x − J2

y + i(JxJy + JyJx)
)

Finally, the S terms are written as:

MS =
−1

2
√
3
(i(JyJz + JzJy) + JzJx + JxJz)

and

MS∗ =
1

2
√
3
(i(JyJz + JzJy)− JzJx − JxJz)

Thus, we can finally write:

H =
∑

ij=x,y,z

VijJiJj (A.3)

where

Vij =





Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz



 (A.4)

with :

Vxx =
4

15
P − 5

4
Q+

R

2
√
3
+

R∗

2
√
3

Vxy =
−i
2
√
3
R+

i

2
√
3
R∗

Vxz =
−1

2
√
3
S − 1

2
√
3
S∗

Vyx =
−i
2
√
3
R+

i

2
√
3
R∗

Vyy =
4

15
P − 5

4
Q+

R

2
√
3
+

R∗

2
√
3

Vyz =
−i
2
√
3
S +

i

2
√
3
S∗

Vzx =
−1

2
√
3
(S + S∗)

Vzy =
i

2
√
3
(−S + S∗)

Vzz =
4

15
P − 1

4
Q
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Now, we can write the Kohn-Luttinger Hamiltonian under an additional magentic field

in a short notation as follows:

HKL =
∑

i,j=x,y,z

V KL
ij (~k)JiJj + κµBJzB (A.5)
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Appendix B

Bir-Pikus Hamiltonian in a

strained quantum dots

The Bir-Pikus Hamiltonian describes the effect of strain on the top of the valence band

states in zinc-blende semicondouctors. It reads(68):

HBP = a(exx + eyy + ezz) + b

[

(J2
x − J2

3
)exx + c.p.

]

+
2d√
3

(

1

2
(JxJy + JyJx)exy + c.p.

)

(B.1)

where a, b and d are the three deformation potentials and c.p. stands for coordinate

permutation. For CdTe we have a = −0.91eV , b = −1.2eV , d = −5.4eV . we can also

write:

HBP =

(

a− 3b

4

)

(exx + eyy + ezz) + b
∑

i=x,y,z

J2
i eii +

d√
3

∑

i,j,c.p.

(JiJj + JjJi) eij (B.2)

For CdTe quantum dots grown in CdTe, we mainly consider the effects of strain

anisotropy in the growth plane(92) and describe the strain by the average values of exy
and exx − eyy. Thus, we keep the following terms in the BP Hamiltonian

HBP = a(exx − eyy) + b

[

(J2
x − J2

3
)exx + (J2

y − J2

3
)eyy

]

+
2d√
3

(

1

2
(JxJy + JyJx)exy

)

=

(

a− 3b

4
+ bJ2

x

)

exx +

(

a− 3b

4
+ bJ2

y

)

eyy

+
d√
3
(JxJy + JyJx) exy (B.3)

Since naturally, the two hole states | ⇑> and | ⇓> described in Chapter 3 has no overlap

(each of them couples two of the four Jz states independently), the constant term a− 3b
4
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has no contribution to the spin flip rates in the basis of | ⇑> and | ⇓> , then it can be

safely negelected, so we write:

HBP = bJ2
xexx + bJ2

y eyy +
d√
3
(JxJy + JyJx) exy (B.4)

= Vijeij (B.5)

In the (+3/2,−1/2,+1/2,−3/2) basis, the Bir-Pikus Hamiltonian is reduced to a

block diagonal matrix

HBP =

(

HBP+ 0
0 HBP−

)

(B.6)

where :

HBP+ =

(

P +Q R
R∗ P −Q

)

(B.7)

HBP− =

(

P −Q R
R∗ P +Q

)

(B.8)

with

P = a
∑

i

eii (B.9)

Q = b

(

exx + eyy
2

)

(B.10)

R = idexy − b

√
3

2
(exx − eyy) (B.11)

using the heavy hole band as the orign of the energies in the valence-band:

HBP+ =

(

0 ρse
−2iϕs

ρse
2iϕs ∆lh−hh

)

(B.12)

HBP− =

(

∆lh−hh ρse
−2iϕs

ρse
2iϕs 0

)

(B.13)

this notation allows us to introduce useful parameters to describe the strain effects,

namely, the light-heavy hole splitting ∆lh−hh, the strain coupling amplitude ρs, and

the strain induced anisotropy axis in the QD plane defined by the angle ϕs with respect

to the x (100) axis corresponding to the cleaved edge of the sample.
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Appendix C

Angular momentum matrices for

hole

JX =











0
√
3
2 0 0√

3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0











JY =











0
√
3i
2 0 0

−
√
3i
2 0 i 0

0 −i 0
√
3i
2

0 0 −
√
3i
2 0











(C.1)

Jz =









3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2









(C.2)

J2
X =











3
4 0

√
3
2 0

0 7
4 0

√
3
2√

3
2 0 7

4 0

0
√
3
2 0 3

4











J2
Y =











3
4 0 −

√
3
2 0

0 7
4 0 −

√
3
2

−
√
3
2 0 7

4 0

0 −
√
3
2 0 3

4











(C.3)

J2
X − J2

Y =
√
3









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









(C.4)

JxJy + JyJx =









0 0
√
3i 0

0 0 0
√
3i

−
√
3i 0 0 0

0 −
√
3i 0 0









=
√
3i









0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0









(C.5)
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Jy,z ≡ JyJz + JzJy =









0 i
√
3 0 0

−i
√
3 0 0 0

0 0 0 −i
√
3

0 0 i
√
3 0









(C.6)

Jz,x ≡ JzJx + JxJz =









0
√
3 0 0√

3 0 0 0

0 0 0 −
√
3

0 0 −
√
3 0









(C.7)

We can now write:

iJy,z + Jz,x = 2
√
3









0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









(C.8)

We can now write:

iJy,z − Jz,x = 2
√
3









0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0









(C.9)
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Appendix D

Derivation of V

In chapter 5, when we calculate the effective hole-Mn Hamiltonian, we need to transform

the matrix elements of Vα to a linear combination of the unit matrix and the Pauli

matrices σ. In this appendix, we will show the detailed derivation of Vz, V
+ and V −.

D.1 Calculation of Vz

In the section, we show the calculation of Vz(h, h
′). We write:

Vz(h, h
′) =

∑

jz

Ch(jz)
∗Ch′(jz)jz

=

(

3
2Cos

2(θ+/2) − 1
2Sin

2(θ+/2) 0
0 −3

2Cos
2(θ−/2) +

1
2Sin

2(θ−/2)

)

(D.1)

From here we derive:

Vz(h, h
′) = az1 + bzσz (D.2)

with

az =
1

2

[

3

2

(

Cos2(θ+/2) −Cos2(θ−/2)
)

− 1

2

(

Sin2(θ+/2)− Sin2(θ−/2)
)

]

(D.3)

and

bz =
1

2

[

3

2

(

Cos2(θ+/2) + Cos2(θ−/2)
)

− 1

2

(

Sin2(θ+/2) + Sin2(θ−/2)
)

]

(D.4)

At zero field we have θ+ = θ− so that az = 0 and

bz(b = 0) =
1

2

[

3Cos2(θ/2)− Sin2(θ/2)
]

= 2Cos2(θ/2)− 1

2
(D.5)
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D. DERIVATION OF V

D.2 Calculation of V +

We now compute:

V +(h, h′) =
∑

jz,j′z

Ch(jz)
∗Ch′(j′z)〈jz |J+|j′z〉 (D.6)

Using

〈jz|J+|j′z〉 = δjz ,j′z−1
√

J(J + 1)− jz(jz + 1) (D.7)

we can obtain

V +(h, h′) =
∑

jz

Ch(jz)
∗Ch′(jz − 1)

√

J(J + 1)− jz(jz + 1) (D.8)

It is apparent that the diagonal entries of V + are zero. We now compute:

〈⇑ |V +| ⇓〉 = Cosθ+/2Sinθ−/2〈+3/2|J+|+ 1/2〉 + Sinθ+/2Cosθ−/2〈−1/2|J+| − 3/2〉

=
√
3Sin

(

θ+ + θ−
2

)

(D.9)

Similarly, we obtain

〈⇓ |V +| ⇑〉 = Sinθ−/2Sinθ+/2〈+1/2|J+| − 1/2〉 = 2Sinθ−/2Sinθ+/2 (D.10)

So, we get the matrix form of V +

V +(h, h′) =

(

0
√
3Sin

(

θ++θ−
2

)

2Sin(θ+/2)Sin(θ−/2) 0

)

(D.11)

If b = 0 we have θ+ = θ− ≡ θ and

V +(h, h′) =

(

0
√
3Sinθ

1− Cos(θ) 0

)

=

√
3

2
Sinθσ+ +

1− Cos(θ)

2
σ− (D.12)

In the small θ limit we have:

V +(h, h′) ≃ θ

(

0
√
3

θ
2 0

)

(D.13)

Notice how the spin-flip Mn-hole coupling vanishes if there is no LH-HH mixing.

D.3 Calculation of V −

We now compute V −:

V −(h, h′) =
∑

jz,j′z

Ch(jz)
∗Ch′(j′z)〈jz |J−|j′z〉 (D.14)
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D.3 Calculation of V −

Using

〈jz |J−|j′z〉 = δjz ,j′z+1

√

J(J + 1)− jz(jz − 1) (D.15)

we can get

V −(h, h′) =
∑

jz

Ch(jz)
∗Ch′(jz + 1)

√

J(J + 1)− jz(jz − 1) (D.16)

It is apparent that the diagonal entries of V − are zero. We now compute the offdiagonal

elements:

〈⇑ |V −| ⇓〉 = Sinθ+/2Sinθ−/2〈−1/2|J−|+ 1/2〉 = 2Sinθ+/2Sinθ−/2 (D.17)

〈⇓ |V −| ⇑〉 = Cosθ−/2Sinθ+/2〈−3/2|J−| − 1/2〉 + Sinθ−/2Cosθ+/2〈+1/2|J−|3/2〉

=
√
3Sin

(

θ+ + θ−
2

)

(D.18)

So, we can write

V −(h, h′) =

(

0 2Sin(θ+/2)Sin(θ−/2)√
3Sin

(

θ++θ−
2

)

0

)

(D.19)

If b = 0 we have θ+ = θ− ≡ θ and

V −(h, h′) =

(

0 1− Cos(θ)√
3Sinθ 0

)

=

√
3

2
Sinθσ− +

1− Cos(θ)

2
σ+ (D.20)
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Appendix E

Steady state solution of the

optical Bloch equation

In this appendix, we present a method to find the steady state solution of the Optical

Bloch equation. The optical Bloch equation is given by

dσ̂

dt
= M · σ̂ (E.1)

with a given initial state σ̂0 at t = 0 where M is a matrix defined by Equation 6.11

and Equation 6.12. For stationary cases, t → ∞, we have dσ̂
dt = 0. Then we obtain a

system of linear equations:

M · σ̂ = 0 (E.2)

The equation itself does not uniquely determine σ̂ in general because the matrix M

may be singular. We can see this because if it is singular, the set of equations in

Equation E.2 are not linearly independent. Theorefore, we need more conditions to

uniquely determine the steady state. We have two more constraint to take advantage,

the normalization condidtion
∑

i σii = 1 and the initial condition σ̂|t=0 = σ̂0. If the

rank of matrix M is smaller than the dimension (number of columns) of M , it is

possible to use the normalization condition to reach the steady state, if not, we need

to use the initial states. Here we introduce a technique to get the steady state using

the initial state σ̂|t=0 = σ̂0. It can be generally used to get steady state of one order

linear differential equation groups.

We fist use the singular value decomposition of M

M = UDV T (E.3)

where U and V are orthogonal matrices and D is a diagonal matrix. The diagonal

elements of D are called singular values. All singular values are zero or positive and
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EQUATION

the diagonal elements of D are in descending order. Equation E.2 can be written as

dz

dt
= Dy (E.4)

where z = UTP , y = V TP . Separating the null space (B) and the complementary

space (A) of D, it becomes

d

dt

(

zA

zB

)

=

(

DA 0
0 0

)(

yA

yB

)

(E.5)

Then we can get:
dzA

dt
= DAyA,

dzB

dt
= 0 (E.6)

zA is a diagonal matrix whose diagonal elements are the nonzero singular values of M .

Since time derivative of zB is zero, we obtain

zB(t) = zB(0) (E.7)

at all time t. At t→ ∞, all time derivatives are zero and we also obtain

dzA(t → ∞)

dt
= DAyA(t→ ∞) = 0 (E.8)

Considering DA is a diagonal matrix with nonzero diagonal elements, we get

yA(t → ∞) = 0 (E.9)

Using

y = V TP = V TUz ≡ Wz (E.10)

We get
(

yA

yB

)

=

(

WAA WAB

WBA WBB

)(

zA

zB

)

(E.11)

So, we get

yA(∞) = WAAzA(∞) +WABzB(∞) = 0 (E.12)

We also get the equation for zA(∞)

WAAzA(∞) = −WABzB(∞) (E.13)

zA(∞) = −W−1
AAWABzB(0) (E.14)

Where we use the result that zB is constant in time. The existance of W−1
AA can be

proved easily. Once we have z(∞), we can find the steady state of σ using

σ(t → ∞) = Uz(∞) (E.15)
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mann, E. O. Göbel, A. Waag, and G. Landwehr. Picosecond dynamics of mag-

netic polarons governed by energy transfer to the Zeeman reservoir. Phys. Rev.

B, 56(15):9782, Oct 1997.

[39] G. Bacher, A. A. Maksimov, H. Schömig, V. D. Kulakovskii, M. K. Welsch,

A. Forchel, P. S. Dorozhkin, A. V. Chernenko, S. Lee, M. Dobrowolska, and

J. K. Furdyna. Monitoring Statistical Magnetic Fluctuations on the Nanometer

Scale. Phys. Rev. Lett., 89(12):127201, Aug 2002.

[40] P. S. Dorozhkin, A. V. Chernenko, V. D. Kulakovskii, A. S. Brichkin, A. A.

Maksimov, H. Schoemig, G. Bacher, A. Forchel, S. Lee, M. Dobrowolska, and

J. K. Furdyna. Longitudinal and transverse fluctuations of magnetization of

the excitonic magnetic polaron in a semimagnetic single quantum dot. Phys.

Rev. B, 68(19):195313, Nov 2003.

[41] A. Hundt, J. Puls, and F. Henneberger. Spin properties of self-organized

diluted magnetic Cd1−xMnxSe quantum dots. Phys. Rev. B, 69(12):121309, Mar

2004.

[42] D. J. Norris, Nan Yao, F. T. Charnock, and T. A. Kennedy. High-Quality

Manganese-Doped ZnSe Nanocrystals. Nanoletters, 1:3, 2001.

[43] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris.

Doping semiconductor nanocrystals. Nature, 436:91, 2005.
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Résumé

Nous avons étudié la dynamique de spin d’un atome de Mn inséré dans une boite

quantique CdTe. Nos résultats montrent que la relaxation de spin du Mn est plus rapide

lorsque la boite quantique contient un exciton. Ceci peut permettre une orientation

optique du spin du Mn. Le mélange de bande de valence est le paramètre essentiel

permettant la relaxation rapide du spin du Mn dans le champ d’échange de l’exciton.

Ce mélange de bande de valence est controlé par la forme et les contraintes dans la

boite quantique. L’influence de ces paramètres sur la dynamique du pompage optique

a été analysée en détail. Nos simulations du pompage optique sont en bon accord

avec les expériences. La dynamique cohérente d’un Mn individuel a aussi été étudiée.

L’influence sur le pompage optique de la dynamique cohérente du spin électronique et

nucléaire est discutée. Nous avons montré que le couplage entre spin électronique et

nucléaire peut être contrôlé optiquement permettant une manipulation du spin du Mn.

Nous avons finalement montré que la combinaison d’une excitation résonante optique

et micro-onde peut être utilisée pour détecter optiquement la résonance magnétique

d’un Mn dans une boite quantique CdTe.

Mots-clés: Bôıte quantique, semiconducteur magnétique dilué, dynamique de spin.

Abstract

We have studied the spin dynamics of an individual Mn atom embedded a CdTe quan-

tum dot. Our results show that the Mn spin relaxation is faster when the quantum

dot contains an exciton. This can result in an optical orientation of the Mn spin. The

valence band mixing is the critical parameter for the fast relaxation rates of the Mn

spin in the exchange field of the exciton. This valence band mixing is controlled by

the shape and strain of the quantum dot. The influence of these parameters on the

optical pumping dynamics were analyzed in detail. Our simulation of optical pumping

are in good agreement with experiments. The coherent dynamics of an individual Mn

spin was also investigated. We discussed the influence of the coherent dynamics of

the coupled electronic and nuclear spins on the optical pumping. We have shown that

optically controlled coupling between electronic and nuclear spins could be used for Mn

spin switching. We finally demonstrated that the combination of resonant laser and

microwave fields can be used to optically detect the magnetic resonance of a Mn spin

in a CdTe quantum dot.

Keywords: Quantum dot, diluted magnetic semiconductor, spin dynamics.


