
HAL Id: tel-00678258
https://theses.hal.science/tel-00678258

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex boundaries for the Totally Asymmetric Simple
Exclusion process

Nicky Sonigo

To cite this version:
Nicky Sonigo. Complex boundaries for the Totally Asymmetric Simple Exclusion process. General
Mathematics [math.GM]. Ecole normale supérieure de lyon - ENS LYON, 2011. English. �NNT :
2011ENSL0651�. �tel-00678258�

https://theses.hal.science/tel-00678258
https://hal.archives-ouvertes.fr


- école normale supérieure de LYON -

Laboratoire de l'Unité de Mathématiques Pures et Appliquées

THÈSE

en vue d'obtenir le grade de

Docteur de l'Université de Lyon - École Normale Supérieure
de Lyon

Spécialité : Mathématiques

au titre de l' École doctorale de Mathématiques et Informatique fondamentale

soutenue publiquement le 2 novembre 2011 par

Nicky SONIGO

Complex boundaries for the

Totally Asymmetric Simple

Exclusion process

Directeur de thèse : Alice GUIONNET

Co-encadrant de thèse : Vincent BEFFARA

Proposition de jury de thèse :

Christophe BAHADORAN Rapporteur

Vincent BEFFARA Membre

Stefan GROSSKINSKY Rapporteur

Alice GUIONNET Membre

Pierre MATHIEU Membre

Christophe SABOT Membre

Vladas SIDORAVICIUS Rapporteur



ii



Table des matières

1 Introduction au processus d'exclusion 1

1.1 Présentation du modèle . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Construction à partir du générateur in�nitésimal . . . . . . 2
1.1.2 Construction graphique . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mesures invariantes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Couplage et particules de deuxième classe . . . . . . . . . . . . . . 5
1.4 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Théorie ergodique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction 9

2.1 Statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The exclusion process . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Notation, de�nitions and �rst results . . . . . . . . . . . . . 10
2.2.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The symmetric exclusion process . . . . . . . . . . . . . . . 13
2.2.4 Asymmetric exclusion processes on Zd . . . . . . . . . . . . 15

2.3 Non-uniqueness for speci�cations . . . . . . . . . . . . . . . . . . . 26
2.4 Contents of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Semi-in�nite TASEP with a Complex Boundary Mechanism 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Harris construction . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 The attractive case . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The stationary measure . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Asymptotic measures . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 A strong law of large numbers . . . . . . . . . . . . . . . . . 38

3.4 A particular case and the Multi-Species model . . . . . . . . . . . . 40
3.4.1 Some estimates about the particle �ux . . . . . . . . . . . . 41
3.4.2 The asymptotic �ux at the �rst order . . . . . . . . . . . . . 46

4 Complex Boundary Mechanism: the general case 61

4.1 The coupled process . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



iv TABLE DES MATIÈRES

5 Metastability and speci�cations 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 The speci�cations problem . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 The bicolor-process . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Auxiliary processes . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Comparison with the k -process . . . . . . . . . . . . . . . . 76
5.3.3 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 A toy-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Survival Probability 81

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Finite sized systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2.1 A recursion relation . . . . . . . . . . . . . . . . . . . . . . . 85
A.2.2 Random con�gurations . . . . . . . . . . . . . . . . . . . . . 91

A.3 Survival probabilities in in�nite volume . . . . . . . . . . . . . . . . 92



Chapitre 1

Introduction au processus

d'exclusion

1.1 Présentation du modèle

Le processus d'exclusion simple est un processus de Markov en temps continu
sur un espace d'états de la forme X := {0, 1}S, où S est dénombrable. Il est formel-
lement dé�ni de la manière suivante. On se donne un noyau de Markov (p(x, y))x,y∈S
sur S, i.e. ∀x, y ∈ S, p(x, y) > 0 et

∀x ∈ S,
∑
y∈S

p(x, y) = 1.

Une con�guration du système décrit la présence ou l'absence d'une particule en
chaque site (élément de S). La règle d'exclusion n'autorise qu'au plus une particule
par site. Chaque particule e�ectue une marche aléatoire en temps continu sur S
selon le noyau (p(x, y))x,y∈S et interagit avec les autres particules en n'e�ectuant
pas les sauts violant la règle d'exclusion. Plus précisément, une particule située au
site x attend un temps de loi exponentielle de paramètre 1 puis choisit un site y
avec probabilité p(x, y). Si ce site est libre, la particule saute au site y, sinon elle
reste en x et attend de nouveau un temps de même loi pour e�ectuer une nouvelle
tentative de saut.

Étant donné qu'il peut y avoir une in�nité de particules (dans le cas où S est
in�ni), il n'est pas clair que le processus d'exclusion soit toujours bien dé�ni. En
e�et, il se pourrait a priori qu'il existe une suite de temps strictement décroissante
(txn)n>1 telle que pour tout n > 1, à l'instant txn une particule est au site xn et tente
de sauter au site y. Dans ce cas, il n'y a pas de moyen de déterminer la � première
particule � qui saute en y.

Nous allons voir qu'il y a deux manières équivalentes de construire le processus
d'exclusion : la première est analytique et la seconde probabiliste. Ceci nous donnera
deux points de vue di�érents pour aborder l'étude de ce processus. Dans cette
introduction, nous allons brièvement voir ces deux méthodes car elles seront toutes
les deux utilisées dans la suite de cette thèse.

1



2 CHAPITRE 1. INTRODUCTION AU PROCESSUS D'EXCLUSION

Dans toute cette thèse, X est muni de la topologie produit ce qui en fait un
espace compact. On note C(X) l'ensemble des fonctions réelles continues sur X.
On dira qu'une fonction (à valeurs réelles) f sur X est cylindrique si elle ne dépend
que de l'état d'un nombre �ni de sites, i.e. si il existe p > 0, x1, . . . , xp ∈ S et une
fonction g : {0, 1}{x1,...,xp} −→ R tels que pour tout η ∈ X, f(η) = g(η|{x1,...,xp}).
Soit P l'ensemble des mesures de probabilité sur X. On munit P de la topologie
de la convergence faible : µn −→ µ dans P si et seulement si pour toute fonction
f ∈ C(X), on a

∫
fdµn −→

∫
fdµ. On notera alors souvent µn =⇒ µ.

1.1.1 Construction à partir du générateur in�nitésimal

Commençons par donner quelques dé�nitions générales sur les processus de Mar-
kov. Soit (ηt)t>0 un processus de Markov surX. On dé�nit son semi-groupe (S(t))t>0

comme étant la famille d'opérateurs sur C(X) dé�nis par

S(t)f(η) := Eη [f(ηt)] , ∀f ∈ C(X), η ∈ X, t > 0,

où Eη désigne l'espérance sous la loi P η du processus (ηt)t>0 conditionné à partir
de la con�guration initiale η0 = η. On a alors le théorème fondamental suivant :

Théorème 1.1 (Hille-Yosida). Soit

D(Ω) :=

{
f ∈ C(X) : lim

t↓0

S(t)f − f

t
existe

}
,

et

Ωf := lim
t↓0

S(t)f − f

t
, pour toute fonction f ∈ D(Ω).

Alors pour toute fonction f ∈ C(X) et tout t > 0,

S(t)f = lim
n→∞

(
I − t

n
Ω

)−n

f.

De plus si f ∈ D(Ω), alors S(t)f ∈ D(Ω) et

d

dt
S(t)f = ΩS(t)f = S(t)Ωf.

L'opérateur Ω est appelé générateur in�nitésimal du processus de Markov (ηt)t>0.

Une première manière de dé�nir un processus d'interaction de particules est de
donner son générateur in�nitésimal. En utilisant le théorème de Hille-Yosida, il est
facile de voir que si le processus d'exclusion est bien dé�ni, alors son générateur est

Ωf(η) :=
∑
x,y∈S

p(x, y)η(x) (1− η(y)) [f(ηx,y)− f(η)] ,
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où

ηx,y(z) :=


η(y) si z = x,
η(x) si z = y,
η(z) sinon.

D'après un théorème de Liggett (cf. [44]), ce générateur est bien le générateur d'un
processus de Markov si et seulement si

sup
y∈S

∑
x∈S

p(x, y) <∞. (1.1)

L'interprétation de (1.1) est que le taux d'apparition d'une particule en un site
y ∈ S est borné ce qui empêche l'existence d'une in�nité de particules voulant
sauter au même site en temps �ni.

Remarque. Le théorème de Liggett dans [44] est en fait plus général et s'applique
pour une classe plus large de processus d'interaction de particules.

L'avantage de cette première construction est que l'on a un critère (le théorème
de Liggett) pour montrer qu'un processus est bien dé�ni. De plus, le générateur
est facile à écrire à partir de la description formelle du processus à l'aide des taux
de transitions. Elle permet également, grâce au théorème de Hille-Yosida, de faire
certains calculs explicites. En particulier, nous verrons plus loin que ce théorème
permet de véri�er si une mesure est invariante ou non pour un processus de Markov.

1.1.2 Construction graphique

Nous allons voir maintenant une manière de construire le processus d'exclusion
(et de manière analogue d'autres processus d'interaction de particules) entièrement
probabiliste. Cette construction est appelée � construction graphique � et elle est
due à Harris (cf. [29]).

Soit η ∈ X une con�guration (éventuellement aléatoire) et soit N := (Nx,y :
x, y ∈ S) une famille de processus ponctuels de Poisson, que l'on appellera horloges,
sur R∗

+ indépendants deux à deux et indépendants de η. Le processus de Poisson
Nx,y a pour intensité p(x, y) (si p(x, y) = 0, Nx,y := ∅). Puisque S est dénombrable,
la probabilité que deux horloges distinctes aient un point en commun est 0. On fera
donc l'hypothèse que toutes les horloges sont disjointes quitte à exclure un ensemble
de réalisations de probabilité 0.

Le processus d'exclusion (ηt)t>0 de con�guration initiale η est alors construit
comme une fonction (déterministe) de η et de N : si t ∈ Nx,y et si la condition
(ηt−(x), ηt−(y)) = (1, 0) est satisfaite, alors au temps t, la particule du site x saute
au site y et la con�guration devient (ηt(x), ηt(y)) = (0, 1). Si le saut n'est pas
autorisé, c'est à dire si (ηt−(x), ηt−(y)) 6= (1, 0), alors rien ne se passe au temps t
aux sites x et y.

Cette construction ne permet pas a priori de bien dé�nir le processus d'exclusion
pour les même raisons que précédemment. En e�et, pour déterminer si le site x est
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occupé au temps t, on a besoin de regarder en arrière dans le temps, tous les sites
desquels une particule aurait pu sauter en x. Cette construction ne s'arrête pas
si il existe une suite in�nie t > tx1 > tx2 > · · · > 0 telle que pour tout k > 1,
txk

∈ Nxk,xk−1
, avec x0 := x. Ce problème est résolu par l'argument de percolation

suivant. Pour t > 0 on dé�nit le graphe aléatoire Gt dont l'ensemble des sommets est
S et pour lequel l'arête 〈x, y〉 est présente si et seulement si (Nx,y∪Ny,x)∩[0, t] 6= ∅.
Alors sous l'hypothèse (1.1), il existe t0 > 0 (déterministe) tel que presque sûrement,
le graphe Gt0 n'a pas de composante connexe in�nie. Ainsi, si t > t0, une telle suite
décroissante ne peut pas exister presque sûrement. On peut donc construire sans
problème le processus jusqu'au temps t0. En itérant la construction, on obtient
�nalement le processus (ηt)t>0 pour tout temps t > 0.

L'origine de la terminologie � construction graphique � vient de la �gure sui-
vante (Figure 1.1) : on place en abscisse les sites de S et en ordonnée le temps. À
chaque site x ∈ S, on attache un axe temporel vertical orienté vers le haut et pour
chaque t ∈ Nx,y, on trace une �èche de (x, t) à (y, t) (il est plus pratique de faire le
dessin dans le cas où S = Z et (p(x, y))x,y∈Z est une marche aléatoire simple comme
dans le cas de la Figure 1.1). On dessine alors la con�guration initiale sur le plan
{t = 0} et pour obtenir la con�guration au temps t > 0, on fait suivre les �èches
aux particules (tant qu'elles ne sont pas bloquées par d'autres particules). On ob-
tient ainsi tout le processus de manière graphique ainsi que toutes les trajectoires
spatio-temporelles des particules.

Temps

t = 0

t

Fig. 1.1 � Construction graphique du processus d'exclusion.

1.2 Mesures invariantes

Soit µ une loi sur X. On note µS(t) la loi de ηt lorsque η0 a pour loi µ :∫
fd [µS(t)] :=

∫
S(t)fdµ,
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pour toute fonction f ∈ C(X).

Dé�nition 1.1. On dit que µ est invariante pour le processus (ηt)t>0 si pour tout
t > 0, µS(t) = µ.

On a alors la caractérisation des probabilités invariantes suivante :

Théorème 1.2. Soit Ω un générateur in�nitésimal d'un processus de Markov sur
X, et soit µ une loi sur X. Alors µ est invariante si et seulement si pour toute
fonction cylindrique f on a ∫

Ωfdµ = 0.

Ce dernier théorème sera très utile pour déterminer si une probabilité est invariante
ou non. En revanche, dans la plupart des cas, il ne permet pas, à lui seul, de déter-
miner toutes les mesures invariantes. Ce problème est en général di�cile à résoudre
mais nous verrons que pour le processus d'exclusion, sous certaines hypothèses, on
peut déterminer entièrement l'ensemble des mesures invariantes du processus. Les
preuves de ce genre de résultats suivent en général le plan suivant :

� identi�er les possibles mesures invariantes ;
� véri�er, à l'aide du Théorème 1.2, qu'elles sont bien invariantes ;
� montrer, à l'aide de couplages, que ce sont les seules.
Nous noterons I l'ensemble des probabilités invariantes du processus (ηt)t>0.

Propriété. L'ensemble I satisfait les propriétés suivantes :

(i) I est un convexe compact non vide dans l'ensemble P des lois sur X. D'après
le théorème de Krein-Milman, I est l'enveloppe convexe de ses points extré-
maux.

(ii) si µ ∈ P et si µS(t) converge faiblement vers µ∞, alors µ∞ ∈ I.

1.3 Couplage et particules de deuxième classe

Dans cette partie, nous allons voir l'une des principales techniques utilisées dans
cette thèse : le couplage. On considère deux con�gurations η, ξ ∈ X et une famille
N := (Nx,y : x, y ∈ S) d'horloges de Poisson. On e�ectue alors la construction
graphique avec la même famille d'horloges pour obtenir deux processus d'exclusion
(ηt)t>0 et (ξt)t>0 issus respectivement des con�gurations η et ξ. On appellera ce
couplage, le couplage standard.

Considérons le cas particulier suivant : on se place dans le cas S = Zd, d > 1.
Soit η ∈ X tel que η(0) = 0 et

ξ(z) :=

{
η(z) si z 6= 0,
1 si z = 0.

On considère le couplage standard (ηt, ξt)t>0 issu de ces deux con�gurations. Alors
pour tout t > 0, il existe un unique Q(t) ∈ Zd tel que η(Q(t)) = 0 et ξ(Q(t)) = 1. On
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peut donc coder ce couplage avec un seul processus de Markov (ζt)t>0 sur {0, 1, 2}Zd

dé�ni par

ζt(x) :=

{
ηt(x) si x 6= Q(t),
2 si x = Q(t).

La particule notée 2 est appelée particule de deuxième classe. Les particules notées
1 sont appelées particules de première classe. Cette terminologie provient de la re-
marque suivante : le déplacement des particules est régi par les mêmes lois que pour
le processus d'exclusion excepté que les particules de première classe ont priorité
sur la particule de seconde classe au sens où une particule de première classe peut
sauter sur un site occupé par la particule de deuxième classe. Dans ce cas de �gure,
les deux particules échangent leurs positions. Au contraire, la particule de deuxième
classe ne peut pas sauter sur un site occupé par une autre particule.

En considérant plus de deux processus, ou bien de manière formelle, on peut
dé�nir les particules de classe k > 1 de sorte que si 1 6 k < l alors une particule
de classe k a priorité sur une particule de classe l.

1.4 Monotonie

De nombreux arguments dans cette thèse, et de manière générale dans le do-
maine des processus d'interaction de particules, sont basés sur des propriétés de
monotonie. L'espace d'état X est naturellement muni d'un ordre partiel. On notera
η 6 ξ si pour tout x ∈ S, η(x) 6 ξ(x).

Dé�nition 1.2. Une fonction f : X −→ R est dite croissante (resp. décroissante)
si

η 6 ξ =⇒ f(η) 6 f(ξ),

respectivement si
η 6 ξ =⇒ f(η) > f(ξ).

Cela permet de dé�nir la notion de monotonie stochastique pour les lois sur X.

Dé�nition 1.3. Soit µ, ν deux lois sur X. On notera µ ≺ ν si pour toute fonction
f croissante ∫

fdµ 6
∫
fdν.

Cette dernière notion est fortement liée à celle de couplage. En e�et, deux lois, µ
et ν sur X sont stochastiquement ordonnées, i.e. µ ≺ ν si et seulement si on peut
coupler deux con�gurations aléatoires η et xi sur un même espace de probabilité,
de sorte que η a pour loi µ et ξ a pour loi ν et, presque sûrement, η 6 ξ.

Regardons maintenant le lien entre la monotonie stochastique et les processus
de Markov sur X.

Dé�nition 1.4. Un processus de Markov de semi-groupe S(t) est dit monotone ou
attractif si l'une des deux conditions équivalentes suivantes est véri�ée :
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� pour toute fonction croissante f et pour tout t > 0, S(t)f est croissante ;
� µ ≺ ν implique que µS(t) ≺ νS(t) pour tout t > 0.

La propriété d'attractivité joue un rôle très important dans cette thèse puisqu'elle
permet dans certains cas d'obtenir des convergences en loi automatiques lorsqu'elle
est véri�ée :

Théorème 1.3. Soit (ηt)t>0 un processus de Markov attractif sur X et soit S(t) son
semi-groupe. Soit µ0, respectivement µ1, la mesure de Dirac de la con�guration ne
contenant aucune particule, respectivement de la con�guration ne contenant aucun
site vide. Alors µ0S(t) et µ1S(t) convergent faiblement quand t tend vers l'in�ni
vers respectivement µ0

∞ et µ1
∞ qui sont des mesures invariantes pour (ηt)t>0. De

plus si µ est invariante pour (ηt)t>0, alors µ
0
∞ ≺ µ ≺ µ1

∞.

La preuve de ce résultat se trouve dans le Chapitre 3.

1.5 Théorie ergodique

Commençons par rappeler brièvement les dé�nitions liées à l'ergodicité d'un
processus.

Dé�nition 1.5. Un processus (ηt)t>0 sur X est dit stationnaire si pour tout n > 0
et t1, . . . , tn > 0, la loi de (ηt1+t, . . . , ηtn+t) est indépendante de t.

Il est dit ergodique si de plus il satisfait la propriété suivante : soit T un évé-
nement sur l'espace D[0,∞) des fonctions càdlàg de [0,∞) dans X, invariant par
décalage temporel. Alors P ((ηt)t>0 ∈ T ) ∈ {0, 1}.

Le seul résultat qui sera utilisé par la suite au sujet de l'ergodicité est le théorème
ergodique de Birkho� :

Théorème 1.4. Si (ηt)t>0 est stationnaire et ergodique, alors pour toute fonction
f mesurable bornée sur X

1

t

∫ t

0

f(ηs)ds −→
t→∞

E (f(η0)) presque sûrement.

A�n de montrer qu'un processus de Markov stationnaire est ergodique, on uti-
lisera à de nombreuses reprises le résultat suivant (Théorème B52 de [45]) :

Théorème 1.5. Soit (ηt)t>0 un processus de Markov stationnaire sur X de loi
µ ∈ I en tout temps �xé. Alors (ηt)t>0 est ergodique si et seulement si µ ∈ Ie
l'ensemble des points extrémaux de I.
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Chapter 2

Introduction

2.1 Statistical mechanics

Statistical mechanics is a branch of physics that aims to explore and describe physi-
cal systems consisting of a large number of components, also called particles. Given
their number, the particles are therefore very small compared to the whole system
so that there is a clear separation between the scale of the observed system, called
the macroscopic scale, and that of its constituents, called the microscopic scale.
However, the size of a single particle is not important in itself so that the studied
systems can be very diverse. For example, such physical systems can be a gas, a
strand of DNA or a forest and the corresponding particles are molecules (or atoms),
nucleic acids and trees.

The basic principle of statistical mechanics is the following. Since the studied
system is always composed of a very large number of microscopic components, un-
derstanding of a macroscopic phenomenon involves the description of the behavior
of a signi�cant number of its constituents. But it is not possible to study the micro-
scopic trajectory of each individual particle: �rstly because it would require a huge
number of computations and secondly because the result would not be satisfactory
since it would be impossible to interpret such a large number of trajectories. It is
at this stage that probabilities come in: using simple rules, generally derived from
quantum mechanics, we describe, from a statistical point of view, the movement
and interactions of the components. Then, we deduce the most likely behavior of
the whole system or its probability distribution on the space of possible con�gura-
tions. Hence, using probabilistic tools, we are able to study such physical systems
at the microscopic level and deduce information about the macroscopic level.

The foundations of statistical mechanics were laid down in the late 1800s. Its
birth is derived from the desire of physicists to explain the nature of gases and
interpret quantities such as heat, pressure or work. In 1738, Daniel Bernoulli pub-
lished �Hydrodynamica� [9] which laid the basis for the kinetic theory of gases. In
this work, Bernoulli posited the argument, still used to this day, that gases consist
of great numbers of molecules moving in all directions, that their impact on a sur-
face causes the gas pressure that we feel, and that what we experience as heat is

9
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simply the kinetic energy of their motion. This kinetic theory of gases will grow
over the next century with the works of Herapath [30] and Joule [33]. In 1859, after
reading a paper on the di�usion of molecules by Rudolf Clausius [17], physicist
James Clerk Maxwell [46] formulated the Maxwell distribution of molecular veloci-
ties, which gives the proportion of molecules having a certain velocity in a speci�c
range. This was the �rst ever statistical law in physics. A few years later, Ludwig
Boltzmann [11, 12] will be so inspired by Maxwell's paper that he will spent much
of his life developing the subject further. But it took the work of Gibbs [26] for a
formulation of the theory as we know it today.

Even today, statistical mechanics is an active branch of science that a whole
century was not enough to fully explore. This is probably due to the immense
variety of the models and observed phenomena: the relationship with quantum
mechanics, phase transitions, shock waves, di�usions, etc.

Models of statistical mechanics can be divided into two categories according
to the physical system they model: equilibrium statistical mechanics and out-of-
equilibrium statistical mechanics.

Equilibrium statistical mechanics is the study of physical systems in equilibrium
thermodynamics. In this context, we seek to explain and interpret macroscopic
quantities such as temperature, pressure or magnetization from the behavior of mi-
croscopic particles. One of the most important examples of a model at equilibrium
is the Ising model which will be developed later in this introduction.

We say that a model of statistical mechanics is out-of-equilibrium when the
underlying physical system is not in thermodynamic equilibrium. In particular, it
presents macroscopic currents of particles or energy. The techniques used to study
such models are di�erent from those models at equilibrium. One example is the
exclusion process that is the subject of this thesis; another classical one is that of
a system con�ned between two sources at di�erent temperatures.

2.2 The exclusion process

In this section, I will present the main results established on the exclusion process
since its introduction in 1970 by Spitzer [53]. This overview in not intended to be
exhaustive but aims to be as self-contained as possible and to direct the interested
reader to the existing literature on the subject.

2.2.1 Notation, de�nitions and �rst results

Let S be a �nite or countable set and let (p(x, y))x,y∈S be the transition function
of a Markov chain on S:

∀x, y ∈ S, p(x, y) > 0,

∀x ∈ S,
∑
y∈S

p(x, y) = 1.
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Let X = {0, 1}S be the set of all con�gurations of the exclusion process, endowed
with the product topology, and C(X) be the set of continuous real-valued functions
on X. We denote by P the set of probability measures on X endowed with the
topology of the weak convergence: the sequence of measures (µn)n>0 onX converges
weakly to µ if and only if

∫
fdµn converges to

∫
fdµ for every f ∈ C(X) (for more

background on weak convergence, see for instance Billingsley [10]).
The physical interpretation of η ∈ X is that a site x ∈ S is occupied (by a

particle) if η(x) = 1 and vacant or empty if η(x) = 0. The exclusion rule states
that there is at most one particle per site at a given time.

The exclusion process on S can be informally de�ned as follows. Each particle
individually tries to perform a random walk on S according to the transition kernel
p(., .), i.e., when it is at site x ∈ S, the particle waits for an exponential time of
parameter 1, chooses a site y ∈ S with probability p(x, y) and tries to jump from x
to y. The interaction between particles appears when a jump attempt violates the
exclusion rule. In this case, the jump is canceled and the particle simply remains
where it was until its next attempt at jumping.

When the set S is �nite, one can easily turn this description into a rigorous
de�nition of the exclusion process on S as a Markov process on X. If S is in�nite,
the construction of such a process requires more work and will be discussed below.

It will be useful to consider the following partial order on the space of con�g-
urations. For η, ξ ∈ X, we write η 6 ξ if for all x ∈ S, η(x) 6 ξ(x). Let f be a
real-valued function on X. We say that f is increasing if it satis�es:

η 6 ξ ⇒ f(η) 6 f(ξ).

Finally, consider two probability measures µ and ν on X. We say that µ is stochas-
tically dominated by ν, and we write µ ≺ ν, if for every increasing function f :∫

fdµ 6
∫
fdν.

We denote by I the set of invariant probability measures of the exclusion process
on S (see Chapter 1 or [44] for a de�nition of an invariant measure of a Markov
process). I is a non-empty, convex compact subset of P (see for example [44]);
hence, by the Krein-Milman Theorem, I is the convex hull of its extremal points.
We denote by Ie the set of extremal points of I.

In the study of particle systems such as the exclusion process, two important
questions occur naturally. The �rst is the determination of all extremal invariant
probability measures of the process. The second is to �nd the attraction domain of
each of them, i.e., to �nd for which initial states the process converges to a given
invariant measure.

As mentioned in the beginning of the section, the exclusion process was intro-
duced by Spitzer in the seminal paper [53]. The starting point of this article is a
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theorem of Doob [19] and Derman [18] on the independent particles process de�ned
as follows. Consider a certain number (possibly in�nite) of particles distributed on
the sites of the set S. Each particle, independently of the others, performs a random
walk on S according to the transition kernel (p(x, y))x,y∈S. Since the particles are
indistinguishable and since they perform random walks with the same transition
kernel, the process described above is Markovian. Doob and Derman's theorem
states that for each λ > 0, the Poisson measure µλ on NS for which the random
variables {η(x), x ∈ S} are independent and for all x ∈ S, k ∈ N,

µλ{η : η(x) = k} = e−λ
λk

k!
,

is invariant for this process. Furthermore, an ergodic theorem holds which states
that, under suitable aperiodicity assumptions on p, given any initial distribution of
the particles, their distribution at time t converges to some Poisson measure as t
goes to in�nity.

In [53], Spitzer tried to break away from the sphere of in�uence of the Poisson
point processes. For that, he considered �ve kinds of generalization of the indepen-
dent particles process, adding interaction between particles, and among which we
�nd the exclusion process and the zero-range process.

2.2.2 Construction

After Spitzer's paper, it was necessary to answer the question of the construction
of the exclusion process in the case where S and the initial number of particles
are both in�nite. The main di�culty to transform the informal description of the
process into a rigorous de�nition is the following. Let η ∈ X be a con�guration
with in�nitely many particles, x ∈ S a site and t > 0. In order to construct the
exclusion process starting from the con�guration η, we must be able to describe
under which conditions the site x is occupied at time t. But this event depends, a
priori, on the trajectories, between times 0 and t−, of all particles. Hence it is not
clear how to proceed since in the time interval [0, t), the number of jump attempts
is in�nite. Somehow, we have to show that two particles which are far apart have
very little in�uence on each other in a short time, so that the state of a site at time
t e�ectively depends on the behavior of only �nitely many particles.

There are two di�erent ways to make this construction. One is probabilistic and
the other is analytic. This former consist by de�ning the process as the Markov
process with a given in�nitesimal generator. The di�culty is then to prove that
this in�nitesimal generator exists.

The �rst work in this direction is the one by Holley [32] in which he develops
method for constructing such a stochastic process on the integers. His method uses
the Trotter-Kato Theorem [56] to obtain the convergence of a sequence of semi-
groups to the semi-group associated with the exclusion process. Then Harris [28]
found a direct probabilistic construction of the exclusion process in the case S = Zd

and with nearest-neighbor interactions. His construction can easily be extended to
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more general graphs S and to �nite-range interactions. The Harris construction,
also called the graphical construction, is described in Chapters 1 and 3. Finally,
Liggett [38, 44] uses the semi-group method to construct a large class of processes
including the exclusion process.

The exclusion process is then well de�ned on any countable set S if the associated
transition function (p(x, y))x,y∈S satis�es

sup
y∈S

∑
x∈S

p(x, y) <∞. (2.1)

Condition (2.1) can be understood as follows: for any site y ∈ S, the total rate at
which all particles in the system try to jump to y is bounded.

2.2.3 The symmetric exclusion process

The symmetric exclusion process refers to the exclusion process with a symmetric
transition function, i.e., p(x, y) = p(y, x) for all x, y ∈ S. In this case, Spitzer
proved the following important result known as duality.

Theorem 2.1 (Spitzer [53]). Suppose p(x, y) is a symmetric function of x and y.
If ξ1, ξ2 ∈ X and

∑
x ξ2(x) <∞, then

Pξ1(ηt > ξ2) = Pξ2(ηt 6 ξ1), (2.2)

where Pξ is the distribution of the exclusion process starting from the con�guration
ξ and (ηt)t>0 is the exclusion process.

This result often permits the reduction of a problem involving an in�nite number
of particles into a problem involving a �nite number of particles for which one can
make explicit computations. It is the main reason why the symmetric case is much
simpler as the asymmetric case. For example, this theorem has an immediate
consequence on the invariant measure problem:

Corollary 2.1. Assume p(x, y) is symmetric. If µ ∈ P, de�ne a function g on X
by g(η) := µ{ξ|ξ > η}. Then µ is invariant for the exclusion process (ηt)t>0 if and
only if Eη[g(ηt)] = g(η) for all η ∈ X for which

∑
x η(x) <∞.

Using these results, Liggett [39] solved the two main problems, i.e., describe
the set Ie and prove ergodic theorems, for the symmetric case with the additional
hypothesis that p(x, y) is irreducible and transient. More precisely, let H be the
set of [0, 1]-valued harmonic functions, i.e.,

H := {α : S −→ [0, 1] : ∀x ∈ S,
∑
y∈S

p(x, y)α(y) = α(x)}.

For α ∈ H, we de�ne the probability measure να on X as the product measure
with marginals

να{η : η(x) = 1} = α(x), ∀x ∈ S. (2.3)
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Theorem 2.2 (Liggett [39]). Suppose that p(x, y) is symmetric, irreducible and
transient and let S(t) be the semi-group of the exclusion process on S. Then

(i) µα := limt→∞ ναS(t) exists for every α ∈ H and µα ∈ Ie;

(ii) µα{η : η(x) = 1} = α(x), ∀x ∈ S;

(iii) Ie = {µα : α ∈ H};

(iv) µα = να if and only if α is constant.

In the same article, Liggett gives the following ergodic theorem.

Theorem 2.3 (Liggett [39]). Let

pt(x, y) := e−t
∞∑
k=0

tk

k!
p(k)(x, y), (2.4)

where p(k)(x, y) is the k-step transition probability associated to p(x, y). Let µ ∈ P
and α ∈ H. Then under the hypothesis of Theorem 2.2,

µS(t) −→
t→∞

µα

if and only if for all x ∈ S,∑
y∈S

pt(x, y)[η(y)− α(y)] −→
t→∞

0 in µ-probability. (2.5)

Following this, Spitzer [54] solves the symmetric case under a slightly stronger
assumption than the recurrence:

Let two discrete Markov chains move according to p(x, y) in the following
way: at each unit time, one of them is selected at random and makes a
transition according to p(., .). Then they will sooner or later occupy the
same point of S with probability one.

(2.6)

After a reduction into a problem involving �nitely many particles, Spitzer studies
the bounded harmonic functions using coupling techniques and proves that the
invariant probability measures are exactly the exchangeable probability measures
on X. He concludes his proof using De Finetti's Theorem [31]. The results obtained
are the following:

Theorem 2.4 (Spitzer [54]). Assume that p(., .) is symmetric, irreducible and re-
current, and suppose that (2.6) is satis�ed. Then Ie = {µα : α ∈ [0, 1]}.

We can remark that this theorem extends Theorem 2.2 since in the recurrent
case, H consists only of constant functions.

For the statement of the ergodic theorem, we need additional notation. If (ηt)t>0

is an exclusion process, we denote by At the set of occupied sites at time t. For
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A ⊂ S, we denote by PA, and the corresponding expectation by EA, the distribution
of the exclusion process starting from the con�guration η de�ned by η(x) = 1 if
and only if x ∈ A. Finally for a probability µ ∈ P , and a set A ⊂ S,

µ̂(A) := µ{η : ∀x ∈ A, η(x) = 1}.

Theorem 2.5 (Spitzer [54]). Let µ ∈ P and α ∈ [0, 1]. Then under the assumption
of Theorem 2.4,

µS(t) −→
t→∞

µα

if and only if for all x, y ∈ S, x 6= y,

lim
t→∞

E{x}µ̂(At) = α (2.7)

and
lim
t→∞

E{x,y}µ̂(At) = α2. (2.8)

It is not trivial at all that assumption (2.6) is not equivalent to the recurrence
of p(., .). A counter-example was found by Liggett [40]. In the same paper, Liggett
proves Theorems 2.2 and 2.3 in the case where p(., .) is recurrent and (2.6) does not
hold.

To summarize, the three papers [39, 54, 40] completely solve the main problems
for the symmetric exclusion process. Although the results are similar, the methods
used to solve the three cases are di�erent and each of them does not apply in any
other case.

2.2.4 Asymmetric exclusion processes on Zd

In this section, we do not assume anymore that the transition function p(., .) is
symmetric. Theorem 2.1 does not apply in this general case. Therefore, since we
can't simplify problems on the in�nite particle system into problems about �nite
system, we need techniques which deal with the in�nite system directly. The main
technique used in this thesis is the coupling technique. It consists of constructing
two copies of the process on the same probability space in such a way as to derive
some properties of the process itself.

Invariant probability measures

We want to describe the set of invariant probability measures I for the exclusion
process. Recall that it is su�cient to describe the set Ie of extremal invariant
probability measures. The veri�cation that a given probability measure is invariant
is usually a straightforward computation using the characterization of invariant
probabilities through the in�nitesimal generator. In most cases, one has a collection
of invariant probabilities and the di�cult question is to show that the process has
no other invariant measure.
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There are two cases in which one has an explicit collection of invariant measures.
First assume that p(., .) is doubly stochastic, i.e.,

∀y ∈ S,
∑
x∈S

p(x, y) = 1.

Recall that να denotes the product measure on X such that να{η : η(x) = 1} = α
for all x ∈ S. Then

{να : α ∈ [0, 1]} ⊂ I. (2.9)

Secondly, suppose that p(., .) is reversible, i.e., there exists some positive π(.) on S
such which satis�es π(x)p(x, y) = π(y)p(x, y) for all x, y ∈ S. We denote by ν(ρ)

the product measure on X such that

∀x ∈ S, ν(ρ){η : η(x) = 1} =
ρπ(x)

1 + ρπ(x)
.

Then it was shown in [40] that

{ν(ρ) : ρ ∈ [0,∞]} ⊂ I. (2.10)

Note that, when p(., .) is symmetric, these two classes of invariant measures coincide.
From now on, we look at the exclusion process on S = Zd, for d > 1, and we

assume that p(., .) is translation invariant, i.e., there exists a function p(.) such that
for all x, y ∈ S, p(x, y) = p(y − x). For the asymmetric case, we will need a more
�exible de�nition of irreducibility for the random walk kernel p(.):

De�nition 2.1. p(.) is said irreducible if for all x ∈ S there exists some n > 1
such that p(n)(x) + p(n)(−x) > 0.

If it makes sense, let µ :=
∑

x xp(x) be the mean of p(.).

In [42], Liggett uses the coupling technique to partially answer the invariant
probability problem. Let S be the set of translation invariant probability measures
on X.

Theorem 2.6 (Liggett [42]).

(I ∩ S)e = {να, α ∈ [0, 1]}. (2.11)

The above theorem begs the question whether there exists some extremal in-
variant measure which is not translation invariant. In the same paper, Liggett gives
an answer in two cases. The �rst one is the one-dimensional mean-zero exclusion
process where he proves that, as in the symmetric case, all invariant measures are
translation invariant:

Theorem 2.7 (Liggett [42]). Suppose d = 1 and µ = 0. Then

Ie = {να, α ∈ [0, 1]}. (2.12)
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The second one is the one-dimensional nearest-neighbor asymmetric exclusion
process. In this case, there is an other one-parameter collection of invariant prob-
ability which are not translation invariant:

Theorem 2.8 (Liggett [42]). Suppose d = 1, p(x, x + 1) = p, p(x, x − 1) = q,
p+ q = 1 and p > 1

2
. Then

Ie = {να, α ∈ [0, 1]} ∪ {γ(n), n ∈ N} (2.13)

In the above theorem, the measures γ(n) are blocking measures. That means
that they put mass on blocking con�gurations, i.e., con�gurations for which all sites
are occupied far enough to the right and all sites are empty far enough to the left.
In particular, a blocking measure ν is a pro�le measure, that is, ν{η : η(x) = 1}
goes to 1 as x goes to ∞ and ν{η : η(x) = 0} goes to 0 as x goes to −∞.

The outline of the proof of Theorem 2.7 is the following. Liggett de�nes the
coupled process on X × X consisting with two copies (ηt)t>0 and (ξt)t>0 of the
exclusion process. This coupling has the informal property that if a particle for
the process (ηt)t>0 is at the same site as a particle for the process (ξt)t>0, then
both particles will jump together as long as possible. Then he shows, using the
in�nitesimal generator, that any invariant measure ν for the coupled process satis�es
ν{(η, ξ) : η > ξ or η 6 ξ} = 1. If in addition ν is extremal, then ν{(η, ξ) : η >
ξ} = 1 or ν{(η, ξ) : η 6 ξ} = 1. Finally, if µ1, µ2 ∈ Ie, then one can �nd an
extremal invariant measure for the coupled process which has marginals µ1 and µ2

respectively. This proves that the set Ie is ordered.

Still in dimension 1, the existence of stationary blocking measures has been
proved by Ferrari, Lebowitz and Speer [25] for a restricted class of p(.) with µ > 0.
They �nd some su�cient inequalities on transition functions to deduce the exis-
tence of stationary blocking measures for a process from the existence of stationary
blocking measures for an other process. Next, Bramson and Mountford [16] have
shown that if p(.) has �nite range and µ > 0, then the associated exclusion pro-
cess has a stationary invariant blocking measure. Finally, Bramson, Liggett and
Mountford [15] have proved results in the opposite direction:

Theorem 2.9. Assume d = 1.

(i) If p(.) is irreducible and µ ∈ (0,∞), then the only possible extremal non-
translation invariant stationary measures consist of a pro�le measure ν, to-
gether with its translates;

(ii) If p(.) has �nite mean and satis�es∑
x<0

x2p(x) = ∞, (2.14)

then no stationary blocking measure exist;
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(iii) If µ ∈ (0,∞) and if p(.) satis�es∑
x<0

x2p(x) <∞,

p(y) 6 p(x) and p(−y) 6 p(−x) for 1 6 x 6 y,

p(−x) 6 p(x) for x > 1,

(2.15)

then there exists a stationary blocking measure ν satisfying∑
x

ν{η : η(x) = 1, η(x+ 1) = 0} <∞. (2.16)

For d > 2 very few results have been proved. The only paper which has made
signi�cant progress in this direction is the one of Bramson and Liggett [14]. In
this paper, the authors start by giving a very simple characterization of invariant
product measures for the exclusion process for general S and p(., .). Then, they
apply this characterization to the case S = Zd and p(., .) translation invariant to
get the following result:

Theorem 2.10. Let α : Zd −→ (0, 1) and π(x) := α(x)/(1 − α(x)). Suppose that
π(x) = π(0)e〈x,v〉 for all x ∈ Zd and v ∈ Rd. Then να is stationary for the exclusion
process if and only if

p(z) = e〈z,v〉p(−z) for all z such that 〈z, v〉 6= 0, (2.17)

Then, the authors prove that under a weak assumption, which is trivially nec-
essary, π must have the exponential form assumed in Theorem 2.10:

Theorem 2.11. Assume that the transition function p(.) has the following property:
there is no proper subgroup of Zd that contains P = {u ∈ Zd : p(u) > 0}. If α is
such that να is stationary for the exclusion process, then there exists v ∈ Rd so that
π(x) = π(0)e〈x,v〉 for all x ∈ Zd.

Finally, after a generalization of the concept of pro�le measure in dimension
d > 2, the authors give necessary conditions for the existence of a pro�le measure.

Some important open problems remain after this paper in high dimension. Here
is an non-exhaustive list of such problems:

(i) If
∑

x xp(x) = 0 then the extremal stationary measures are exactly the prod-
uct measures with constant density.

(ii) If
∑

x xp(x) 6= 0 there exists an extremal stationary measure that is not a
product measure.

(iii) There exists p(.) for d > 2 such that there exists an extremal stationary
measure that is not a product measure.
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Ergodic theorems

In this section, we are interested in ergodic theorems for the asymmetric exclusion
process. Indeed, once we have described the set of extremal stationary measures,
one important problem is to determine the initial measures from which the process
converges to a given extremal stationary measure.

The �rst article in this direction is the one by Liggett [41] on the one-dimensional
asymmetric simple exclusion process. In this paper, Liggett gives an almost com-
plete description of the limit behavior for initial measure with asymptotic densities
on both sides. Let p(x, x + 1) = p, p(x, x − 1) = q with p + q = 1 and p > 1

2
.

Consider a product measure µ on X such that

lim
x→−∞

µ{η : η(x) = 1} = λ, and lim
x→∞

µ{η : η(x) = 1} = ρ. (2.18)

Liggett �rst proves that µS(t) converges, as t goes to in�nity, to a stationary mea-
sure µ∞, except possibly if 0 < λ < 1

2
and λ + ρ = 1. Furthermore, the limit

distribution µ∞ is explicit and described in the diagram of Figure 2.1.

λ

νλ

ν
1
2

νρ

ρ

Figure 2.1: Phase diagram for the ASEP.

For the proof of this theorem, Liggett starts by studying the following auxiliary
process. Let S = Z+ and consider the exclusion process on S with the same
transition function p(.) for which we add a creation/destruction mechanism: at
jump times of a Poisson process with intensity pλ, a particle is created at site 0 if
this site is empty; at jump times of a Poisson process with intensity q(1 − λ), if a
particle is at site 0, then it disappears. This process is called the one-dimensional
semi-in�nite ASEP. If µ is a product probability on X such that

lim
x→∞

µ{η : η(x) = 1} = ρ, (2.19)

then µS(t) converges, as t goes to in�nity, to a stationary measure given by the
diagram of Figure 2.2. The measures appearing in Figure 2.2 are invariant for the
semi-in�nite ASEP and have the following properties:

Theorem 2.12. (i) µλ,ρ behaves like νρ at ∞, i.e., for every x1, . . . , xn ∈ Z and
all n > 1,

lim
x→∞

µ{η : η(x1 + x) = 1, . . . , η(xn + x) = 1} = ρn; (2.20)
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(ii) µλ,λ = νλ;

(iii) µλ,ρ is jointly continuous in λ and ρ;

(iv) If 0 < λ < 1
2
, then limρ↓1−λ µλ,ρ = νλ.

Liggett's method to prove these theorems is to start from an exclusion process
on the �nite set {1, . . . , N} with a creation/destruction mechanism, to make some
computations on the generator for this process and to pass to the limit. Liggett also
uses coupling methods and monotonicity. These methods will be used in this thesis
in order to compute a certain survival probability of a second class particle in the
semi-in�nite simple exclusion process (cf. Appendix A). In [43], Liggett extends
these results without the nearest neighbor hypothesis, i.e., he only assumes that∑

x |x|p(x) <∞ and that µ =
∑

x xp(x) > 0.
One reason for which the case 0 < λ < 1

2
and λ+ ρ = 1 is more complicated is

that the hypothesis �µ product measure having right and left asymptotic densities�
is not su�cient to prove that µS(t) converges as t goes to in�nity. Indeed, it was
shown in [41] that there exists µ with this property such that µS(t) have both νλ

and νρ = ν1−λ as weak limit points. However, Liggett conjectures in the same
paper that if we add the hypothesis:∑

x<0

|µ{η : η(x) = 1} − λ| <∞ and
∑
x>0

|µ{η : η(x) = 1} − ρ| <∞, (2.21)

then µS(t) converges weakly to 1
2
νλ+ 1

2
νρ. In 1986, Andjel [2] proves a weak form of

this conjecture using coupling and attractivity methods. The obtained result is that
the Cesaro convergence of µS(t) to 1

2
νλ + 1

2
νρ under the condition (2.21). Andjel

also shows that the convergence of µS(t) occurs outside a set of zero asymptotic
density. Finally, in 1988, Andjel, Bramson and Liggett [3] prove the full conjecture
using coupling and symmetry considerations. The �rst part of the proof consists in
showing that any weak limit point of µS(t) is translation invariant. For that, one
can couple the process starting from µ with the process starting from a translation

νλ

νλ

ρ

λ

µλ,ρ

µλ, 1
2

Figure 2.2: Phase diagram for the semi-in�nite ASEP. For λ = 0,
ρ = 1 and p = 1, the additional assumption that

∑
x>1 µ{η : η(x) =

0} = ∞ is required.
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of µ and show that all discrepancies eventually disappear. Once this is done, a
result of Andjel [2] allows to prove that any weak limit point ν of µS(t) has the
following form:

ν =

∫ 1−λ

λ

ναγ(dα), (2.22)

where γ is a probability measure on [λ, 1− λ]. Then, they show that the �ow is at
any time and any point smaller than the one in equilibrium. This part is done using
again a coupling argument and the semi-group theory of a Markov process. This
implies that γ put mass on λ and 1− λ. Finally, a symmetry argument permits to
conclude.

For ergodic theorems with non-product initial measures, a natural �rst step is
to look at the case where the initial measure is invariant under translations. Under
this hypothesis, Andjel [1] obtained two results: the �rst one in Zd and the second
one for the nearest-neighbor case in Z.

Theorem 2.13. Assume that S = Zd, p(.) is irreducible and µ is a translation
invariant probability measure on X. Then there exists a probability measure γ on
[0, 1] such that

µS(t) −→
t→∞

∫ 1

0

νργ(dρ). (2.23)

Furthermore,
∫ 1

0
ργ(dρ) = µ{η : η(0) = 1}.

Theorem 2.14. Assume that S = Z, p(1) = p, p(−1) = q with p + q = 1 and µ
is a translation invariant ergodic probability measure on X such that µ{η : η(0) =
1} = ρ0. Then

µS(t) −→
t→∞

νρ0 . (2.24)

Then Seppäläinen [51] proved Theorem 2.14 in the �nite-range case. Mountford
[47] also improved Theorem 2.14 using a very di�erent method. Its key idea is to
use the results of Rezakhanlou [49] on the hydrodynamical limit of the exclusion
process with coupling methods. This leads to the following theorem which is valid
without the �nite-range condition but which needs the existence of a nonzero mean:

Theorem 2.15. Assume that S = Z, p(.) is irreducible and has �nite positive
mean, i.e.,

∑
x |x|p(x) <∞ and m :=

∑
x xp(x) > 0. If µ is a translation invariant

probability measure on X such that for µ-almost every η ∈ X,

1

2n+ 1

∑
|x|6n

η(x) −→
n→∞

α ∈ [0, 1], (2.25)

then µS(t) converges weakly to να as t goes to in�nity.

In [49], Rezakhanlou derives the hydrodynamical limit for the exclusion process
and for other particle systems. His result on the exclusion process is as follows.
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Theorem 2.16. Let f be a positive function that is bounded by 1 and continuous
except at �nitely many points. Let (ηNt )t>0 be a sequence of exclusion processes on
Z/NZ with initial distribution such that the random variables (ηN0 (x)) are indepen-
dent with Bernoulli distribution: P

[
ηN0 (x) = 1

]
= f(x) for all x ∈ Z/NZ. Then

for every interval I we have ∀γ > 0,

P

∣∣∣∣∣∣ 1

N

∑
x∈(Z/NZ): x

N
∈I

ηNNt(x)−
∫
I

u(t, x)dx

∣∣∣∣∣∣ > γ

 −→
N→∞

0, (2.26)

where u is the unique entropy solution to

∂u

∂t
+m

∂(u(1− u))

∂x
= 0, (2.27)

with initial condition
u(0, x) = f(x). (2.28)

In this theorem, the exclusion process (ηNt )t>0 on Z/NZ has the following tran-
sition function: a particle at site x jumps to site y at rate p(N(y − x)). Roughly
speaking, the theorem above says that when we divide the length between two
neighbor sites by N and we multiply the time by N , the particle distribution of the
exclusion process starting from the product distribution associated to the function
f looks like, at time t, the entropy solution of the equations (2.27) and (2.28). (2.27)
is called Burgers' equation. For more about hydrodynamic limit of the exclusion
process, see [36].

Finally, Bahadoran and Mountford [5] also use the hydrodynamic technique and
coupling ideas to prove convergence without the translation invariance hypothesis.
But their theorem requires both �nite-range and non-zero mean assumptions:

Theorem 2.17. Suppose that S = Z, p(.) has �nite support and is irreducible,
and m :=

∑
x xp(x) 6= 0. Let µ be a probability measure on X such that for some

α ∈ [0, 1], the limits

lim
N→∞

1

N

N∑
x=0

η(x) = α (2.29)

and

lim
N→∞

1

N

N∑
x=0

η(x) = α, (2.30)

hold in probability with respect to the initial distribution of the process. Then µS(t)
converges weakly to να as t goes to in�nity.

Tagged particle and second-class particle

In this section, we are interested in the behavior of some individual particle instead
of the whole process. We will see that this point of view allows for the microscopical
localization of some macroscopic e�ects (in Burgers' equation).
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The tagged particle is an individual particle in the exclusion process. Of course,
the process consisting only of the position of the tagged particle is not Markovian
since the trajectory of this particle depends on the whole system. Hence, in order
to keep the Markov property, we have to keep track of the occupancy of all other
sites. One way to do that is to consider the process consisting of the con�guration
at time t �seen from the point of view of the tagged particle�, i.e., the exclusion
process shifted in order to have the tagged particle at site 0 at any time. Let S = Zd

and consider the tagged particle space

X̂ := X ∩ {η ∈ X : η(0) = 1}.

Then the tagged particle process is the process with state space X̂ and in�nitesimal
generator

Ω̂f(η) :=
∑
y∈S

(1− η(y))p(y)[f(θyη0,y)− f(η)]

+
∑
x,y 6=0

η(x)(1− η(y))p(y − x)[f(ηx,y)− f(η)],
(2.31)

where

ηx,y(z) :=


η(y) if z = x,
η(x) if z = y,
η(z) otherwise.

(2.32)

and θyη(z) := η(z+y). The existence of the tagged particle process can be obtained
using Liggett's existence criteria [38].

As we have seen before, the determination of stationary measures which are
translation invariant is easier than the determination of all stationary measures.
Hence it will be useful to generalize the notion of translation invariance in the state
space X̂. For a probability measure µ on X, we de�ne the measure µ̂ on X̂ by:

µ̂ := µ(.|η(0) = 1).

Let S be the set of translation invariant probability measures on X and

Ŝ := {µ̂ : µ ∈ S}.

We de�ne as Î the set of stationary measures for the tagged particle process. In
[20], Ferrari proves the following theorem on this process:

Theorem 2.18.

(Î ∩ Ŝ)e = ̂(I ∩ S)e = {ν̂ρ : ρ ∈ [0, 1]}. (2.33)

In the same article, he obtains a precise description of Îe in the one-dimensional
nearest-neighbor case analogous to the one of the simple exclusion process.

These results describe the con�guration around the tagged particle but do not
give information about its trajectory. We will see that the behavior of the tagged
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particle position depends on the transition function in a very complex way in di-
mension one. Recall that if Xt is a Markov process with transition function p(.)
with �nite mean, then it satis�es the following law of large numbers:

Xt

t
−→
t→∞

∑
x∈S

xp(x) =: v0 almost surely, (2.34)

and the following central limit theorem if p(.) has a �nite second moment:

Xt − vot√
t

−→
t→∞

N (0, σ2) in distribution, (2.35)

where σ2 =
∑

x∈S x
2p(x)− v2

0.
Consider now an exclusion process on Zd with distribution νρ conditioned to

have a particle at site 0. We denote by Xt the position of this particle at time
t. Then the process Xt is not a Markov process anymore in the general case. We
have seen that, seen from the position Xt, the process is stationary with a product
distribution. In the sequel, we say that Xt satis�es a law of large numbers if there
exists some constant v(p, ρ) ∈ R such that

Xt

t
−→
t→∞

v(p, ρ) almost surely. (2.36)

We say that Xt satis�es a central limit theorem if, furthermore, there exists σ > 0
such that

Xt − v(p, ρ)t√
t

−→
t→∞

N (0, σ2) in distribution. (2.37)

For the particular case where p(1) = 1, Xt is still a Markov process as was pointed
out by Kesten. Spitzer [53] uses this remark to prove that Xt satis�es a law of large
numbers with v(p, ρ) = 1− ρ and a central limit theorem with σ = 1− ρ.

For the general case, a law of large numbers has been proved by Kipnis [35]
when p(.) is nearest-neighbor in dimension one and then by Saada [50] in every
dimension under the assumption that

∑
x |x|p(x) < ∞. The speed obtained is

v(p, ρ) := (1 − ρ)
∑

x xp(x) which is the one conjectured by Liggett in [44] (see
Chapter VIII, Section 7). Kipnis uses the correspondence between the exclusion
process and the zero-range process and Saada uses the extremality of Bernoulli
measures conditioned to have a particle at site 0 for the tagged particle process.

The central limit theorem problem is more delicate. In dimension d > 2, nothing
spectacular is expected. It was proved in [37] that for p(.) symmetric, Xt satis�es
a central limit theorem with an unknown σ > 0. For non-symmetric p(.), the same
kind of results is conjectured. If d = 1, it was also proved in [37] that Xt satis�es a
central limit theorem if p(.) has at least 4 points in its support. On the other hand,
if p(1) = p(−1) = 1

2
, then Arratia [4] has proved that Xt does not satis�es a central

limit theorem. Indeed, the correct renormalization in this case is t
1
4 and we have

Xt

t
1
4

−→
t→∞

N (0, σ2) in distribution. (2.38)
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Still in [35], Kipnis has obtained a central limit theorem for Xt for the non-
symmetric nearest neighbor case with an unknown σ satisfying:

σ > (1− ρ)(
√

2p− 1), (2.39)

where p(1) = p = 1− p(−1).

Now, consider two initial con�gurations η1 and η2 such that for all x ∈ S \ {0},
η1(x) = η2(x), and η2(0) = 1 − η1(0) = 1. Performing the graphical construction
from both con�gurations using the same Poisson processes (Nx,y), one obtains a
coupled process (η1

t , η
2
t )t>0 in such a way that almost surely for every time t there

exists a unique Yt ∈ S such that η2(Yt) = 1 − η1(Yt) = 1. This coupling can be
interpreted in the following way. Sites in which there is an η1-particle contain a
�rst-class particle and the site Yt contains a second-class particle. All other sites
are empty. The second-class particle moves as a standard particle in the exclusion
process excepted that if a �rst-class particle tries to jump from a site x to Yt (the
location of the second-class particle), then the jump occurs and the two particles
exchange their positions.

The second-class particle has been introduced by Ferrari, Kipnis and Saada [24,
21] with the aim to identify the microscopic location of the shock in Burger's equa-
tion (2.27). Let λ, ρ ∈ [0, 1] and 1/2 < p 6 1. De�ne the measure νλ,ρ on {0, 1, 2}Z

as follows: the random variables (η(x), x ∈ Z) are independent,

νλ,ρ{η : η(x) = 1} =


λ if x < 0,
ρ if x > 0,
0 if x = 0,

(2.40)

and η(0) = 2 almost surely. The following theorem is a summary of some results
proved in [24, 23, 48].

Theorem 2.19. (i) If λ 6 ρ, then Yt/t converges almost surely to 2p−1−λ−ρ.

(ii) If λ > ρ and p = 1, then Yt/t converges almost surely to a uniform random
variable on the interval [1− 2λ, 1− 2ρ].

This result will be used a lot in the sequel since the speed of a second-class
particle plays an important role in techniques used in this thesis.

Concerning �uctuations of the second-class particle, Balázs and Seppäläinnen
[7] have proved the following theorem which states that these are of order t2/3

for the stationary ASEP. They used the exact connection between currents and
second-class particles.

Theorem 2.20. Assume that 1
2
< p 6 1. Consider the ASEP starting with the

product distribution with density ρ ∈ (0, 1) on Z∗ and with a second class particle
at site 0. There exist constants 0 < t0, C < ∞ such that for every 1 6 m < 3 and
t > t0

C−1 6 E

[∣∣∣∣Yt − (2p− 1− 2ρ)t

t2/3

∣∣∣∣m] 6 C. (2.41)
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In an other direction, some exact results have been proved by Ferrari, Gonc�alves
and Martin [22]. Consider the followings initial con�gurations:

η(x) :=

{
1 if x 6 0,
0 if x > 0,

(2.42)

and

ξ(x) :=

{
1 if x < 0 or x = 1,
0 else.

(2.43)

With the �rst/second-class particles interpretation, it is equivalent to consider the
con�guration for which all negative sites contain a �rst-class particle, sites 0 and 1
both contain a second-class particle and all other sites are empty. They proved the
following theorem.

Theorem 2.21. The probability that the second-class particle at site 0 eventually
tries to jump on a site occupied by the other second-class particle is 1+p

3p
.

We can remark that this event is the coupling event of processes (ηt)t>0 and
(ξt)t>0, i.e., the event that con�gurations ηt and ξt become eventually the same. In
the same paper, they also prove that the coupling probability becomes (1+2p2)/6p2

if the initial con�gurations are η and ξ1,2.

2.3 Non-uniqueness for speci�cations

Let A be a �nite alphabet and let P(A) be the set of probability distributions on
A.

De�nition 2.2. A speci�cation (also known as g-function) is a measurable function
g from AN to P(A).

A Gibbs measure for a speci�cation g is a probability measure µ on AZ such
that

• µ is shift-invariant;

• if (xn)n∈Z is distributed according to µ, then for every i ∈ Z and a ∈ A,

µ(xi = a|xi−1, xi−2, . . . ) = gxi−1,xi−2,...(a). (2.44)

Assume g has a range 1, i.e., if gx−1,x−2,... depends only on x−1. If µ is a probability
measure on AZ satisfying (5.1) and if (xn)n∈Z is distributed according to µ, then
(xn)n∈Z is a Markov process. Hence, in this case, a Gibbs measure is an invariant
measure and reciprocally. It is well known that if the Markov chain is ergodic, then
it admits a unique Gibbs measure.

For more general cases, the existence of a Gibbs measure is ensured when g is
continuous or if g de�nes a monotone Markov chain. For the question of uniqueness
we have to assume that g is regular, i.e., that g is bounded away from 0.



2.4. CONTENTS OF THE THESIS 27

For k > 1, we de�ne the k-variation of g by

vark(g) := sup{||gx − gy|| : x1 = y1, . . . , xk = yk}. (2.45)

We can remark that the continuity of g is equivalent to the condition that vark(g) →
0 as k goes to in�nity. An old result of Keane and Walter [34, 55] is the following:

Theorem 2.22. If (vark(g))k>1 is l1, then g admits a unique Gibbs measure.

However, the continuity is not su�cient to ensure the uniqueness as it was
proved by Bramson and Kalikow [13]:

Theorem 2.23. There exists a continuous regular speci�cation that admits multiple
Gibbs measures.

2.4 Contents of the thesis

In my thesis, I am interested in the exclusion process on Z+. I only considered the
totally asymmetric nearest neighbor exclusion process. However, most of the results
generalize to the partially asymmetric nearest neighbor case but the notations which
would be needed would be much more tedious. As seen before, Liggett [41] has �rst
studied this process in order to prove ergodic theorems for the exclusion process in
Z+ and in Z.

Let S := Z+, p(x, x + 1) := 1 for all x ∈ S. At site 0, we add a creation
mechanism in the following way. Let Nb be a Poisson point process on R∗

+ with
intensity 1 independent of the Harris system in the bulk. Let r be a measurable
function from X to [0, 1]. For each time t ∈ Nb such that ηt−(0) = 0, we create a
particle at site 0 at time t with probability r(ηt−). We will call r the creation rate
function.

In [41], Liggett considers the particular case r ≡ λ for some λ ∈ [0, 1]. He
obtains ergodic theorems for this process given by the phase diagram in Figure 2.2.
We see that the product measure with density λ is still invariant for the process.
When r is not a constant function this is not true anymore: the process does not
have an invariant measure which is product.

In Chapter 3 we consider the particular example where the creation function r
is given by

r(η) :=

{
α0 if η(1) = 0,
α1 if η(1) = 1,

(2.46)

where α0, α1 ∈ [0, 1] and α0 6= α1. This is the simplest example for which r is not
constant. In this chapter, we use coupling methods and second-class particles to
compare this process with semi-in�nite TASEP with constant creation density α0

and α1. Consider the process (ηt)t>0 starting from the empty con�guration:

η0(x) = 0 for all x ∈ Z+. (2.47)
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Let Nt be the number of created particles between times 0 and t. The main result
of this chapter is the following strong law of large numbers:

Nt

t
−→ v(α0, α1) as t→∞, (2.48)

almost surely, where v(α0, α1) is a constant. Furthermore, if α = λ ∈ [0, 1/2) and
α1 = λ+ ε ∈ [0, 1/2) with ε > 0, then

v(λ, λ+ ε) = λ(1− λ) [1 + p(λ)ε] + o(ε), (2.49)

as ε ↓ 0, where p(λ) is the probability of a certain event which will be discussed
later.

The subject of Chapter 4 is the study of the TASEP with a complex creation
mechanism for which the creation function r is of �nite-range, i.e., we assume there
exists some R ∈ Z+ such that for any two con�gurations η, ξ ∈ X such that

η(x) = ξ(x) for all x > R + 1, (2.50)

we have r(η) = r(ξ). In other words, the creation function depends only on the
�rst R sites. Under this assumption, there is no phase transition at low density.
More precisely, assume that the initial con�guration is distributed according to a
probability measure µ which is dominated by some product probability να with
α < 1/2. Then the process converges in distribution to a stationary probability
µ∞ which is independent of µ. For constant creation function r ≡ λ ∈ [0, 1/2),
the result holds but in this case µ∞ = νλ. The method used to prove this result
is based on the following idea. We couple two TASEP with a complex boundary
mechanism (ηt)t>0 and (ξt)t>0 using the standard coupling. We assume that η0 and
ξ0 are distributed according to the probability measures µ and ν respectively, which
are both dominated by να with α < 1/2. As usual, we interpret the discrepancies as
second-class particles. The key argument of the proof is a consequence of a theorem
of Ferrari, Kipnis and Saada [24, 23]: a second-class particle in a stationary TASEP
with density less than 1/2 goes to in�nity at positive speed. From this fact, a second-
class particle will eventually leave the system from site 0 (when a �rst class particle
is created when it is located at this site) or leave the box {0, . . . , R} from site R
and never return to it. Furthermore, for every time t, there is a positive probability
that no new second-class particle is created before time t. Hence, the event that
no second-class particle is created at any time has also positive probability. This
implies that there exists a �nite time after which all particle created are the same
for both processes which gives the result.

The result obtained in Chapter 4 can be generalized, without major changes in
the proof, to the case where the transition rate depends on the whole process in
the following way. Let N be a random variable on N with �nite mean and α be a
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measurable function from N×X to [0, 1] such that for every n ∈ N, αn is a creation
function with range (at most) n. We consider the creation function

r(η) := E [αN(η)] , (2.51)

where the expectation is taken relatively to the distribution of N . This function is
not of �nite range when N is unbounded.

There are extreme cases where the main result of Chapter 4 does not hold. For
example, consider the process for which the creation rate function is

r(η) := lim inf
y→∞

1

x

y∑
x=1

η(x). (2.52)

In this case, every mixture of Bernoulli product measures is invariant for the process.
Of course, this case is too extreme and it is not in the case of (2.51). In Chapter 5,
we use the methods of [13] to investigate the construction of a counter example with
a creation rate of the form (2.51) and where N has in�nite mean. Unfortunately,
we were not able to give a fully satisfactory answer to the question, and had to
instead introduce two intermediate toy models for which a phase transition can be
observed. In the �rst one, we look at a model with two particles types but with
the same priority. We obtain that the limiting behavior of the process depends
on the initial con�guration if the distribution of N is su�ciently heavy tailed.
In other words, the process does not forget the initial con�guration, as the time
goes to in�nity, since an i.i.d. sequence of random variable distributed as N takes
su�ciently often large values. The second toy-model is a mean-�eld version of the
initial model, which turns out to be a modi�ed Pòlya urn model and exhibits two
kinds of behavior according to the value of a parameter playing the same role as
the tail of N .

Finally, in the appendix, we complete the result obtained in Chapter 3, com-
puting the exact value of p(λ) the probability that a second-class particle survives,
which means that it does never be replaced by a �rst-class particle at site 0. The
developed method for this problem allows to compute this probability for a large
class of initial distribution.
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Chapter 3

Semi-in�nite TASEP with a

Complex Boundary Mechanism

We consider a totally asymmetric simple exclusion process on the positive half-
line. When particles enter the system according to a Poisson source, Liggett has
computed all the limit distributions when the initial distribution has an asymptotic
density. In this paper, we consider systems for which particles enter according to a
complex mechanism depending on the current con�guration in a �nite neighborhood
of the origin. For this kind of models, we prove a strong law of large numbers for the
number of particles which have entered the system at a given time. Our main tool
is a new representation of the model as a multi-type particle system with in�nitely
many particle types.

3.1 Introduction

The simple exclusion process η. = (ηt)t>0 on a countable space S, with random
walk kernel p(.), is a continuous time Markov process on X := {0, 1}S. For a
con�guration η ∈ X, we say that the site x is occupied (by a particle) if η(x) = 1,
and is empty if η(x) = 0. A particle "tries" to move from an occupied site x to
an empty site y at rate p(x, y), or in an equivalent way, waits for an exponential
time of parameter 1 and then chooses a site y randomly with probability p(x, y)
and "tries" to jump on y. If the site y is already occupied, the jump is cancelled
and the particle stays at x, otherwise it jumps to y. In this way, there is always at
most one particle at any given site. Formally, the exclusion process η. is de�ned as
the Feller process with generator

Ωf(η) :=
∑
x,y∈S

p(x, y)η(x) (1− η(y)) [f(ηx,y)− f(η)] , (3.1)

for all cylindrical functions f , where

ηx,y(z) :=


η(y) if z = x,
η(x) if z = y,
η(z) otherwise.

31
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A natural question is to describe the set of invariant probability measures I,
which is the set of probability measures µ on S such that, if η0 ∼ µ then for all
t > 0, ηt ∼ µ. These measures are characterized by the equations:∫

Ωfµ(dη) = 0,

for any cylindrical functions f (see e.g. [44] for a review). We denote by Ie the set
of extreme points of I. In the case S = Z, the set of extremal, translation-invariant
stationary measures is exactly the set of translation-invariant Bernoulli product
measures on Z (see [42]).

In this paper, we consider the case S := Z+ and p(x, x + 1) := 1, i.e., the
totally asymmetric nearest neighbor case. In Z+, one has to add some boundary
mechanism to make the model non trivial. The simplest way to do this is to add
a particle reservoir at site 0 with a certain density λ > 0. This means that a new
particle is created at site 1 according to a Poisson process with rate λ when this site
is empty. We call the model on Z+ TASEP(λ), and we denote by Ωλ its generator
and by Sλ(t) its semi-group:

Ωλf(η) := λ (1− η(1)) [f(η1)− f(η)]

+
∞∑
x=1

η(x) (1− η(x+ 1)) [f(ηx,x+1)− f(η)] ,
(3.2)

for all cylindrical functions f , where

η1(z) :=

{
1− η(1) if z = 1,
η(z) otherwise.

In (3.2) we see two parts for the generator: one is due to the boundary mechanism
and we will call it the boundary part ; the other one, which has the form given by
(3.1) for S = Z+, is due to the exclusion process and we will call it the bulk part.

Let us introduce some notation. In the following, we denote by νλ the product
measure on Z+ with density λ and by θ the shift. θ acts on con�gurations η ∈ X
by

θη(x) := η(x+ 1),∀x ∈ Z+,

on functions f : X −→ R by

θf(η) := f(θη),∀η ∈ X,

and on measures µ on X by∫
fdθµ :=

∫
θfdµ,∀f ∈ L1(µ).

For a measure µ on S and f ∈ L1(µ), we will denote 〈f〉µ :=
∫
fdµ.
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We are interested in the asymptotic behavior of the distribution when t goes
to in�nity. For this model, we have a good understanding about what happens
at equilibrium. Indeed, Liggett has shown in [41] the following ergodic theorem,
which gives the limit measure for an initial measure with a product form and an
asymptotic density:

Theorem 3.1 (Liggett [41]). Let π be a product measure on Z+ for which
ρ := limx→∞ 〈η(x)〉π exists.

If λ >
1

2
then lim

t→∞
πSλ(t) =

{
µλρ , if ρ > 1

2
(bulk dominated),

µλ1
2

, if ρ 6 1
2
(maximum current).

If λ 6
1

2
then lim

t→∞
πSλ(t) =

{
µλρ , if ρ > 1− λ (bulk dominated),

νλ, if ρ 6 1− λ (boundary dominated),

where the µλρ 's, for ρ > 1
2
, are stationary measures and asymptotically product with

density ρ, i.e., limx→∞ θxµλρ = νρ (in a weak sense with test functions f ∈ C(X,R)).
We also have µλλ = νλ.

To describe the set of invariant probability measures in the cases S = Z and
S = Z+, Liggett uses that the Bernoulli product measures are invariant and for
these measures one can make explicit computations. In this paper, we study Markov
processes with no invariant product measure. We consider a TASEP on Z+ for which
the boundary rate depends on the current con�guration. We limit ourselves to �nite
range boundary mechanisms, i.e., systems for which there exist some R ∈ Z+ such
that the boundary part of the generator vanishes on every cylindrical function with
support in {R+ 1, . . .}. This idea was �rst introduced by Groÿkinsky in chapter 3
of his PhD Thesis [27] where he de�nes the following Feller process:

Ωf(η) :=
∑
x∈Z∗+

η(x) (1− η(x+ 1)) [f(ηx,x+1)− f(η)]

+
∑
ξ∈XR

dη|SR
, ξ

[
f(ξ ∪ η|cSR

)− f(η)
]
,

(3.3)

for all cylindrical functions f where SR := {1, . . . , R}, XR := {0, 1}SR , η|SR
and

η|cSR
are the con�guration η restricted to SR and cSR = Z∗

+\SR respectively, ξ∪η|cSR

is the natural concatenation of con�gurations on SR and on cSR, and (dξ,ξ′)ξ,ξ′∈XR

are non-negative rates.
Assuming the existence of an invariant measure which is product outside of the

box {1, . . . , R} with a non-trivial density leads to relations which the boundary
rates have to satisfy � we will refer to such models as almost classic. These are
still within the reach of Theorem 3.1, at least for suitable choices of λ and ρ. From
now on, we will assume that at least one of these relations is not satis�ed by our
boundary mechanism.
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Remark. The reason for which we only treat the �nite range case is that when
we are not in this case, pathological things can occur. For example, consider the
following dynamic with a non-local boundary mechanism. De�ne the asymptotic
density of a con�guration η ∈ X by

ρ(η) := lim inf
x→∞

1

x

x∑
i=1

η(i);

we consider now a TASEP on Z+ for which the rate of apparition of a particle in
site 1 is ρ(η) where η is the current con�guration. More formally, the boundary
part of the generator is

ρ(η)(1− η(1)) [f(η1)− f(η)] .

In this example, every mixture of Bernoulli product measures is invariant for the
process. Admittedly this case is too extreme; probably, suitable decay of depen-
dency would create a behavior similar to the �nite dependency case.

For this generalized boundary mechanism, we will not have an exact solution as
for the TASEP(λ). Indeed, one can check that this process is not almost classic and
then does not have any invariant measure which is of product form. Our approach
is to study the number of particles which have entered the system by time t. We
will see that it grows linearly with an almost sure speed equal to the stationary
current j∞ := µ∞{η ∈ X : η(1) = 1, η(2) = 0} for an invariant measure µ∞. De�ne
ρ∞ as the root of ρ(1 − ρ) = j∞ in [0, 1/2[. We believe that the process has a
stationary measure which is asymptotically product with density ρ∞; but we are
still unable to prove it.

The rest of the paper is organized as follows: in Section 3.2 we give a construc-
tion of the process de�ned above using a graphical representation similar to that
introduced by Harris [29]. We also introduce the basic coupling technique which is
the main tool used in the paper; in Section 3.3 we give some general results on the
asymptotic behavior of the TASEP with complex boundary mechanism. In partic-
ular, we show that, starting from the empty con�guration, the process converges
in distribution to an invariant ergodic measure µ∞; �nally, in Section 3.4 we study
a particular example: take a TASEP(λ) on Z+ and add a source (independent of
everything) with density ε > 0 which is activated only when site 2 is occupied.
For this model, let Nt be the number of particles which have entered the system
between 0 and t. Then the main result of this paper is the following strong law of
large numbers:

Theorem 3.2. Let 0 6 λ < 1
2
, ε > 0. Then starting from µ∞,

lim
t→∞

Nt

t
= λ(1− λ) + λ(1− λ)p(λ)ε+ o(ε),

with probability one, where p(λ) is a positive constant (depending only on λ) for
which we give a natural probabilistic interpretation.
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It should be noted that this particular choice of boundary mechanism is rather
arbitrary, and that our method is robust enough to be used in a much larger gener-
ality. However, the notations which would be needed would be much more tedious,
while providing very little additional insight into the model � so we choose to limit
ourselves to one representative case.
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3.2 The Harris construction

We will use the method developed by Harris [29] to construct our process. Let

N :=
(
Nx,Nη,η′ ;x ∈ Z+, η, η

′ ∈ {0, 1}{1,...,R}
)
,

be a family of independent Poisson point processes on R∗
+ constructed on the same

probability space (Γ,F ,P), such that the rate of the processes indexed by Z+ is 1
and the rate of the process indexed by (η, η′) is dη,η′ > 0. By discarding a P�null
set, we may assume that

each poisson point process in N has only �nitely many jump times in
every bounded interval [0, T ], and no two distinct processes have a jump
in common.

(3.4)

We denote
N0 :=

⋃
η,η′∈{0,1}{1,...,R}

Nη,η′ .

Fix T > 0 and η ∈ X. The process (ηt)06t6T starting from η is now constructed
as follows. Consider the following subgraph of Z+:

GT :=
{
{x, x+ 1} : x > R,Nx ∩ [0, T ] 6= ∅

}
⋃{

{x, x+ 1} : x ∈ {0, . . . , R− 1}
}
.

It is easy to see that every connected component of GT is almost surely �nite. Let
Γ0 be the subset of Γ such that (3.4) and the above condition hold for all T > 0.
Then we have Γ0 ∈ F and P [Γ0] = 1. We consider now only ω ∈ Γ0. For every
connected component C of GT , the set (∪x∈CNx)

⋂
[0, T ] is �nite so its elements can

be ordered chronologically τ1 < . . . < τn and we need only to describe the action of
each of them. We start with the con�guration η:

ηt(x) := η(x)
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for all x ∈ C and 0 6 t < τ1.
Suppose that the process is constructed on C for 0 6 t < τk and k ∈ {1, . . . , n}.
Then:

• if τk ∈ Nξ,ξ′ and if ητ−k |SR
= ξ then ητk|SR

:= ξ′ and ητk(x) := ητ−k
(x) for all

x ∈ C\SR,

• if τk ∈ Nξ,ξ′ and if ητ−k |SR
6= ξ then ητk(x) := ητ−k

(x) for all x ∈ C,

• if τk ∈ Nx and ητ−k (x)(1− ητ−k
(x+ 1)) = 1 then ητk := (ητ−k

)x,x+1 on C,

• if τk ∈ Nx and ητ−k (x)(1− ητ−k
(x+ 1)) 6= 1 then ητk := ητ−k

on C,

Finally, we put ηt := ητk on C for τk 6 t < τk+1 if k < n and for τn 6 t 6 T if
k = n. We make the same construction on every connected component of GT and
then let T go to in�nity to get the process (ηt)t>0 for every ω ∈ Γ0.

The usefulness of such a construction is that, using the same Harris process, we
can construct two or more realizations of the process on the same probability space
starting from di�erent initial con�gurations. We will refer to this coupling as the
basic coupling.

3.3 The attractive case

Recall the usual de�nition of attractiveness (or monotonicity). De�ne a partial
order on X as follows:

η 6 ξ i� ∀x ∈ Z∗
+, η(x) 6 ξ(x).

A function f on X is called increasing if η 6 ξ implies f(η) 6 f(ξ). This leads to
the usual de�nition of the stochastic monotonicity: µ1 ≺ µ2 i� 〈f〉µ1

6 〈f〉µ2
for

every increasing function f . We say that a process on X is attractive (or monotone)
if one of the following equivalent statements hold:

for every increasing function f, S(t)f is also increasing for all t > 0,

and
µ1 ≺ µ2 implies µ1S(t) ≺ µ2S(t) for all t > 0.

In this section, we consider the process with generator (3.3) and we assume the
process attractive.

3.3.1 The stationary measure

Proposition 3.1. Assume that the process is attractive (or monotone). We start
from the empty con�guration and we denote by µt the distribution of the process at
time t. Then, the process (µt)t>0 is stochastically increasing and converges to a mea-
sure µ∞ ∈ I, which is the smallest invariant measure of the dynamic. Furthermore,
µ∞ ∈ Ie and µ∞ is ergodic.



3.3. THE ATTRACTIVE CASE 37

Proof. Let 0 6 s < t. We have δ0 ≺ µt−s, where δ0 is the measure charging
the empty con�guration. Thus by monotonicity of the process, we have δ0S(s) ≺
µt−sS(s), i.e., µs ≺ µt. Hence, by monotonicity, µt converges weakly to an invariant
measure µ∞.

For all ν ∈ I, we have δ0 ≺ ν, which implies that µt ≺ ν for all t > 0, and then
µ∞ ≺ ν. Assume now that µ∞ = λν1 + (1− λ) ν2, with ν1, ν2 ∈ I and λ ∈ ]0, 1[.
We have µ∞ = λν1 + (1− λ) ν2 � µ∞, thus ν1 = ν2 = µ∞ and µ∞ is extremal.
Finally, by Theorem B52 of [45], µ∞ is also ergodic. �

Proposition 3.2. θRµ∞ is stochastically dominated by the measure µ1
1/2 of Theorem

3.1.

Proof. De�ne N ′ := (N ′
x, x ∈ Z+), where N ′

x := Nx+R. Then N ′ de�nes a TASEP
(ξt) on Z+ with rate 1 of particle apparition in 1. By Theorem 3.1, starting from the
empty con�guration, the distribution at time t converges to µ1

1/2. In this coupling,
we have ξt(x) > ηt(x+R) almost surely for all t > 0 and x > 1. Thus the restriction
of µ∞ to {R + 1, R + 2, . . .} is stochastically dominated by µ1

1/2. �

3.3.2 Asymptotic measures

Let us extend the measure µ∞ to a measure on {0, 1}Z by

µ∞(A) := µ∞ {η ∈ X : η̃ ∈ A} ,

where

η̃(x) :=

{
η(x) if x > 1,

0 otherwise,

for all A in the product σ-�eld of {0, 1}Z. By a slight abuse of notation, we still
denote this measure by µ∞. Let µk := θkµ∞ and consider any weak limit µ∞ of
this sequence; let ki ↑ ∞ such that:

lim
i→∞

µki = µ∞.

Proposition 3.3. The measure µ∞ is a translation invariant stationary measure
for TASEP on Z. Consequently, it is a mixture of Bernoulli product measures, i.e.,
there exists a probability measure σ on [0, 1] such that

µ∞ =

∫ 1

0

νλσ(dλ).

Proof. Let Ωe be the generator of the TASEP on Z. For any cylindrical function
f : {0, 1}Z → R, let x ∈ Z+ large enough such that supp θxf ⊂ {R + 1, R + 2, . . .},
where suppf is the support of f . Thus θxf could be considered has a function on
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Z+ and we can apply the generator Ω to this function. We get Ωθyf = Ωeθyf for
all y > x. But it is easy to see that Ωe and θ commute, thus we have∫

Ωθyfµ∞(dη) = 0 =

∫
θyΩefµ∞(dη),

=

∫
Ωefµy(dη).

Hence for i large enough, 〈Ωef〉µi = 0, which implies that 〈Ωef〉µ∞ = 0. This is
true for arbitrary f thus µ∞ is invariant for the TASEP on Z. We know that for
this model we have Ie =

{
νλ, λ ∈ [0, 1]

}
∪ {νn, n ∈ Z}, where νn = θnν0 and ν0 is

the Dirac measure of the con�guration for which all the sites x > 0 are occupied
and all the sites x < 0 are empty (see [42]). Using Proposition 3.2, since µ1

1/2

is asymptotically product with density 1
2
, µ∞ is stochastically dominated by ν1/2.

Thus µ∞ is translation invariant and is a mixture of Bernoulli product measures. �

3.3.3 A strong law of large numbers

Let µ be an invariant and ergodic measure for the process with generator given by
(3.3). Fix ξ0, ξ and ξ′ three con�gurations on SR and consider

N(t) := ] (Nξ,ξ′ ∩ It) ,

with It :=
{
s ∈ [0, t] : ηs|SR

= ξ0
}
, where we denote by A the closure of a set A ⊂

R+. We show a strong law of large numbers for N(t) which will be useful in the
sequel.

Proposition 3.4. If η0 is distributed according to µ and if ξ′ 6= ξ0, then almost
surely:

lim
t→∞

N(t)

t
= dξ,ξ′µ

{
η ∈ X : η|SR

= ξ0
}
.

Proof. Let

Tt :=

∫ t

0

1ηs|SR
=ξ0ds,

and
ψ(t) := inf {s > 0 : Ts = t} .

Since µ is ergodic, Tt/t −→
t→∞

µ
{
η ∈ X : η|SR

= ξ0
}
almost surely. Let

I := {t > 0 : ηt|SR
= ξ0}.

ψ : R∗
+ → I is a one to one map, since it is increasing, thus we can de�ne M :=

ψ−1(Nξ,ξ′ ∩ I) and N ′(t) := ] (M∩ ]0, t]) the associated counting process. We have
N ′(t) = N(ψ(t)) almost surely.
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Claim: M is a Poisson point process with parameter dξ,ξ′ .
Let τ̃0 := 0 and for i > 1:

τi := inf{t > τ̃i−1 : ηt|SR
= ξ0}, τ̃i := inf{t > τi : ηt|SR

6= ξ0} and Ji = [τi, τ̃i] .

(τi)i>1 and (τ̃i)i>1 are stopping times for the process (N ∩ [0, t]). To prove the claim
we need to distinguish two cases.

Case ξ 6= ξ0: (see Figure 3.1) In this case, the points of Nξ,ξ′ ∩ I have no e�ect
on the con�guration. Hence for each i > 1, with the strong Markov property, τi
and the length of Ji are independent of Nξ,ξ′ ∩ [τi,∞[. Consequently, conditionally
to Ji, Nξ,ξ′ ∩ Ji is a Poisson point process with parameter dξ,ξ′ . Again with the
strong Markov property, (Nξ,ξ′ ∩ Ji)i>1 are independent conditionally to I. Hence,
the claim follows.

τ̃40 ψ(t)τ1 τ3 τ5τ̃1 τ2 τ̃2 τ̃3 τ4

Figure 3.1: On the time interval [0, ψ(t)] we see the set Iψ(t) in grey.
The total length of the grey part is t. The stars are points of the
process Nξ,ξ′. In this example, N ′(t) = 5.

Case ξ = ξ0: (see Figure 3.2) In this case, each Mi := Nξ,ξ′ ∩ Ji has, almost
surely, at most 1 point, thus we have to argue in a di�erent way. For i > 1, let

σi := infNξ,ξ′ ∩ [τi,∞[

and

σ′i := inf
⋃

ξ′′∈XR\{ξ0,ξ′}

(Nξ0,ξ′′ ∩ [τi,∞[)
⋃

x∈{1,...,R}:
ητi (x)=1,ητi (x+1)=0

(Nx ∩ [τi,∞[) .

The interpretation of σi and σ′i is simple: if σi < σ′i, then the time interval Ji ends
with a jump in Nξ,ξ′ and Mi contains one point (Mi = {τ̃i}); if σi > σ′i, then the
time interval Ji ends with an other jump and Mi is empty. By the strong Markov
property, the sequence (σi)i>1 is i.i.d. with distribution exponential with parameter
dξ,ξ′ . Furthermore, because of the independence of the Poisson point processes in
N , (σi)i>1 and (σ′i)i>1 are independent. By construction, infM =

∑
i6I min(σi, σ

′
i),

where I := min{i > 1 : σi < σ′i}. Hence, using basic properties of Poisson processes,
it is easy to see that infM is an exponential random variable with parameter dξ,ξ′ .
Finally, using again the strong Markov property, the claim follows.

Then, for every ε > 0, ψ(Tt) 6 t 6 ψ(Tt + ε). Since N(t) is non-decreasing, we
get N ′(Tt) 6 N(t) 6 N ′(Tt + ε). Consequently:

N ′(Tt)

Tt

Tt
t

6
N(t)

t
6
N ′(Tt + ε)

Tt + ε

Tt + ε

t
.
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t

0 ψ(t)

0

Figure 3.2: In the �rst line, we see the time interval [0, ψ(t)]: the
set Iψ(t) is in grey; the stars are points of the process Nξ,ξ′. They are
always at the end of intervals of Iψ(t) since they change the current
con�guration. In the second line, we see the Poisson point process
Nξ,ξ′ viewed from Iψ(t), i.e., the set M∩ ]0, t].

Since both sides converge to dξ,ξ′µ
{
η ∈ X : η|SR

= ξ0
}
almost surely, it leads to the

conclusion. �

3.4 A particular case and the Multi-Species model

In this section, we are interested in a particular case of TASEP with a complex
boundary mechanism: let λ, ε > 0 such that λ+ ε < 1

2
. Particles are created at site

1 with rate λ+ εη(2), where η is the current con�guration and the bulk dynamic is
the one of the TASEP. This model has a generator given by:

Ωf(η) :=
∑
x∈Z+

η(x) (1− η(x+ 1)) [f(ηx,x+1)− f(η)]

× (1− η(1)) (λ+ εη(2)) [f(η1)− f(η)] ,

(3.5)

for all cylindrical functions f onX. As it is explained in the introduction, the choice
of the model is rather arbitrary, and the methods that we use are quite robust (at
least as long as the system can be dominated by a Bernoulli product measure of
intensity lower than 1/2 � which is indeed the case here).

λ+ ε

λ

Figure 3.3: Particles enter with additional rate ε when the site 2 is
occupied.

In this model, the range of the boundary mechanism is R = 2. The hypothesis
ε > 0 implies that the process is monotone, thus we can de�ne the smallest sta-
tionary measure µ∞ = µ∞ (λ, ε) of the model. Using the Harris representation, we
can couple this process with ηλ. , a TASEP(λ), and ηλ+ε

. , a TASEP(λ + ε), in such
a way that if ηλ0 6 η0 6 ηλ+ε

0 then for all t > 0, ηλt 6 ηt 6 ηλ+ε
t . This proves that

νλ ≺ µ∞ ≺ νλ+ε and then νλ ≺ µ̃∞ ≺ νλ+ε.
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3.4.1 Some estimates about the particle �ux

Here we will see another way to see the process with generator given by (3.5). For
any i > 1, let

Xi := {∞, 1, . . . , i}Z+ .

We de�ne

Ω(i)f(η) :=λ1η(1)>2 [f (η1→1)− f(η)]

+
i∑

j=2

ε1η(1)>j+11η(2)=j−1 [f (ηj→1)− f(η)]

+ ε1η(1)=∞1η(2)=i [f (ηi→1)− f(η)]

+
∞∑
x=1

1η(x+1)>η(x) [f (ηx,x+1)− f(η)] ,

(3.6)

for all cylindrical function f : Xi → R, where

ηj→1(x) :=

{
j if x = 1,

η(x) otherwise,

for j ∈ {1, . . . , i}.

i

λ

ε

ε

ε

ε

2

1

1

3 2

i

i

i− 1

Figure 3.4: First class particles enter with rate λ whatever is the
con�guration in {2, 3, . . .} and second class particles enter with rate
ε if the site 2 is occupied by a �rst class particle. Particles in black
are indistinguishable particles (their class has no in�uence on the
rate of the source in the current con�guration).

We �x i > 2 for the sequel. The new description is described in Figure 3.4
and in the following. We put the particles into a certain number of classes. For a
con�guration η ∈ Xi and for a site x ∈ Z+, the number η(x) designates the class of
the particle at site x if it exists, i.e., if η(x) 6= ∞, and is equal to ∞ if the site is
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empty. We use here another notation for empty sites because it allows us to have a
simpler expression for the generator and we can also interpret holes as particles of
class in�nity. The evolution is the same as before, except that if a particle of the
k-th class (or of type k) attempts to jump on a site occupied by a particle of the
j-th class (or of type j), then it is not allowed to do so if k > j, and the particles
exchange positions if k < j. We say that a particle of class k ∈ {1, 2, . . .} has
priority over all particles of classes greater than k. In this way, a particle of type k
behaves as a hole for particles of type j < k.

Now we will explain how we a�ect classes to the particles. First class particles
enter the system (at site 1) at rate λ. As they have priority over other particles,
they are not a�ected by them, so the process of �rst class particles is simply a
TASEP(λ) on Z+. Next, particles of class 2 6 j 6 i− 1 enter the system with rate
ε, if the site 2 is occupied by a particle of class j − 1 and with rate 0 otherwise.
Finally, particles of class i enter the system with rate ε if the site 2 is occupied by
a particle of class i − 1 or i and with rate 0 otherwise. For each con�guration of
the system, at most 2 types of particles are allowed to enter the system. We can
also remark that if we consider the process consisting with particles of class 1, . . . , i,
then it has the generator given by (3.5).

In terms of the Harris system, we de�ne N the collection of the following inde-
pendent Poisson point processes on R∗

+: let (Nx, x > 1) be Poisson point processes
of rate 1; let (N b

j , j > 1) be Poisson point processes of rate λ for N b
1 and of rate

ε for the others. In the sequel, we consider holes as particles of class in�nity. The
mechanism is then the following: if t > 0 is a jump time of Nx and if at time t−

we have η(x+ 1) > η(x) (i.e., the particle at x has higher priority than the one at
x + 1), then the particles at x and x + 1 swap; if t > 0 is a jump time of N b

1 and
if at time t− we have η(1) > 2, then a �rst class particle appears at site 1; if t > 0
is a jump time of N b

j with 2 6 j 6 i − 1 and if at time t− we have η(1) > j + 1
and η(2) = j − 1, then a j-particle appears at site 1; �nally, if t > 0 is a jump time
of N b

i and if at time t− we have η(1) = ∞ and η(2) ∈ {i− 1, i}, then an i-particle
appears at site 1.

We denote by S(i)(t) the semi-group corresponding to the generator Ω(i) and by
(η

(j)
t )t>0 the process of the j-th class particles for j = 1, . . . , i, i.e., η(j)

t (x) := 1ηt(x)=j.

The process is attractive, thus we can de�ne µ(i)
∞ as the weak limit of δ0S(i)(t). As

in Proposition 3.1, this measure is extremal, ergodic and the smallest invariant
measure of the system. For all 1 6 j 6 i, we denote η̄(j)

t :=
∑j

k=1 η
(k)
t . Remark

that the process (η̄
(i)
t )t>0 is exactly the process that we want to study, i.e., it has

the generator given by (3.5). Furthermore, for all j > 1 the distribution of the
process (η̄

(j)
t )t>0 is the same for all i > j + 1, i.e., the generator of this process is

independent of i since changing the value of i is equivalent to adding or removing
some particles with lower priority.

In order to compare the processes (η̄
(i−1)
t )t>0 and (η̄

(i)
t )t>0, we need to control

the number of particles of a given type in the system at a given time. Let N (j)
t be
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the number of j-particles which have entered the system between times 0 and t,
and de�ne

T
(j)
t :=

∫ t

0

η(j)
s (2)ds

and

T̃t :=

∫ t

0

η(1)
s (2)

(
1− η(1)

s (1)
)
ds,

for all j ∈ {1, . . . , i}.
T

(j)
t is the time spent by j-particles in site 2 during [0, t], and T̃t is the length of

the subset of [0, t] for which 2-particles can enter site 1 with rate ε (excepted if the
site 1 is already occupied by another 2-particle). The following lemma says that we
have a uniform control on the total time spent by a particular particle of type > 2
at site 2. Let T (j),k

∞ be the total time spent in site 2 by the k-th particle of type
j > 2 which have entered the system.

Lemma 3.1. There exists a constant Cλ ∈ ]0,+∞[, independent of ε, such that for
all k > 1 and all j > 2 we have

E
[
T (j),k
∞

]
6 Cλ.

Proof. Let Et be the event that, between times t and t + 1, a �rst class particle
enters (or tries to enter) the system, then jumps, if it is possible, to site 2, and
�nally another �rst class particle tries to enter the system. We also assume that in
Et there is no other jump time for N1, N2 and N b

1 between 0 and t. In particular,
if Et occurs and if there was a particle of type greater or equal to 2 in site 2 at
time t, then it has disappeared at time t + 1. q(λ) := P [Et] does not depend on t
neither on ε and q(λ) > 0.

On the event
{
T

(j),k
∞ > t

}
, there exists a time τ such that the k-th particle of

type j is at the site 2 and it has spent exactly time t in this site between 0 and τ .

We have Eτ ⊂
{
T

(j),k
∞ 6 t+ 1

}
. Hence

P
[
Eτ |T (j),k

∞ > t
]

6 P
[
T (j),k
∞ 6 t+ 1|T (j),k

∞ > t
]
. (3.7)

But τ is a stopping time for the Markov process (η
(l)
t , l = 1, . . . , j)t>0 and the event

Eτ depends only on the poisson processes of the Harris system for times between τ
and τ + 1, so, conditionally to {τ <∞}, Eτ has the same law as E0 by the strong
Markov property. Hence the left-hand side of (3.7) is equal to q(λ). Finally, we
have

P
[
T (j),k
∞ > t+ 1

]
6 (1− q(λ))P

[
T (j),k
∞ > t

]
.

The last inequality implies that there exist some deterministic positive constants
a1, a2, depending only on λ, such that almost surely and for all t > 0 we have

P
[
T (j),k
∞ > t

]
6 a1e

−a2t.

The result follows with Cλ :=
∫∞

0
a1e

−a2tdt. �
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Finally, the following theorem gives the estimates that we need:

Theorem 3.3. For each 1 6 j 6 i and k > i, T (j)
t /t converges almost surely to a

deterministic value if the process starts under µ(k)
∞ . Furthermore, for all ε < 1

2Cλ
,

where Cλ is as in Lemma 3.1, we have

lim sup
t→∞

N
(j)
t

t
6 cj−1ε

j−1, lim
t→∞

T
(j)
t

t
6 cjε

j−1,

for 1 6 j 6 i− 1, and

lim sup
t→∞

N
(i)
t

t
6 2ci−1ε

i−1, lim
t→∞

T
(i)
t

t
6 2ciε

i−1,

where (cj)j=1,...,i are constants (depending only on λ) such that c0 := λ (1− λ) and
cj := Cj−1

λ c0.

Proof. We have seen that every µ(k)
∞ is stationary and ergodic, so by the ergodic

theorem, we have almost surely

T
(j)
t

t
−→
t→∞

µ(k)
∞ {η ∈ Xk : η(2) = j} (3.8)

and
T̃t
t
−→
t→∞

µ(k)
∞ {η ∈ Xk : η(1) > 2, η(2) = 1} . (3.9)

Since the distribution of the �rst class particles is νλ under every µ(k)
∞ , the right-

hand side of (3.8) is λ if j = 1 and the right-hand side of (3.9) is λ (1− λ). Using
Proposition 3.4, N (1)

t /t converges to λ(1− λ) almost surely.

Let
M

(2)
t := ]

{
s ∈ N b

2 ∩ [0, t] : η(1)
s (2)

(
1− η(1)

s (1)
)

= 1
}
.

Then almost surely N (2)
t 6 M

(2)
t and applying Proposition 3.4:

lim sup
t→∞

N
(2)
t

t
6 ελ (1− λ) = lim

t→∞

M
(2)
t

t
. (3.10)

Now, we need to �nd an upper bound for limt→∞ T
(2)
t /t. First, we can remark

that T (2)
t can be decomposed into two parts: the time spent by initial second class

particles, i.e., particles present at time 0, denoted by T (2)
t,1 , plus the time spent by the

new second class particles in site 2, denoted by T (2)
t,2 . But, since T

(2)
t,1 is bounded by

a random variable that is almost surely �nite, it is su�cient to study limt→∞ T
(2)
t,2 /t.

Indeed, using λ + ε < 1/2, it can be shown that every initial second class particle
has a probability uniformly bounded from below by a positive constant, to never
go behind its starting point (see [50]). Thus the number of initial second class
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particles visiting the site 2 is �nite and each of them spent a �nite time in this site
as a consequence of Lemma 3.1.

As we have seen previously, µ(k)
∞ ≺ νλ+ε. The idea is that since we know the

number of second class particles created up to time t, it is su�cient to bound the
time spent in site 2 by one of them in the environment νλ+ε where it is slower.
But there are some di�culties. For example, at the moment where a second class
particle is created, the environment in {2, 3, . . .} is not dominated anymore by a
Bernoulli product measure with density λ + ε because we know that a �rst class
particle has to be in site 2. To avoid this problem, we will use the following fact:
if a particle of a class di�erent than 1 is at site 2 at time t then it has a positive
probability (depending only on λ) to be out of the system at time t+1. This implies
Lemma 3.1 which says:

E
[
T (2),l
∞
]

6 Cλ, (3.11)

where Cλ is a constant. Take any β > ελ (1− λ) and

τ := inf
{
t > 0 : ∀s > t, N (2)

s 6 βs
}
.

We have that τ is almost surely �nite by (3.10) and

T
(2)
t,2

t
1{τ6t} 6

1

t

N
(2)
t∑

k=1

T (2),k
∞ 1{τ6t} 6

1

t

bβtc∑
k=1

T (2),k
∞ 1{τ6t}. (3.12)

Taking expectation in both sides, it leads to

E

[
T

(2)
t,2

t
1{τ6t}

]
6

1

t

bβtc∑
k=1

E
[
T (2),k
∞ 1{τ6t}

]
6

(3.11)

bβtc
t
Cλ. (3.13)

Hence, by dominated convergence we have almost surely

lim
t→∞

T
(2)
t

t
= lim

t→∞

T
(2)
t,2

t
= lim

t→∞
E

[
T

(2)
t,2

t
1{τ6t}

]
6 βCλ. (3.14)

The above inequality is true for all β > ελ (1− λ), thus we also have

lim
t→∞

T
(2)
t

t
6 ελ (1− λ)Cλ.

Let now c2 := Cλc1 and by induction, using exactly the same arguments, we have
for all 1 6 j 6 i− 1:

lim sup
t→∞

N
(j)
t

t
6 cj−1ε

j−1,

and

lim
t→∞

T
(j)
t

t
6 cjε

j−1,
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where cj := Cj−1
λ λ (1− λ).

Finally, let α := lim supt→∞N
(i)
t /t. Doing the same computation as in (3.12),

(3.13) and (3.14), we get:

lim
t→∞

T
(i)
t

t
6 αCλ.

Consequently,

lim
t→∞

T
(i−1)
t + T

(i)
t

t
6 ci−1ε

i−2 + αCλ,

which implies as in (3.10):

lim sup
t→∞

N
(i)
t

t
= α 6 (ci−1ε

i−2 + αCλ)ε.

Since ε < 1
2Cλ

, we have α 6 2ci−1ε
i−1 and

lim
t→∞

T
(i)
t

t
6 2ciε

i−1.

�

Now, let N̄ (i−1)
t and N̄

(i)
t be the number of particles which have entered the

system between 0 and t for the processes (η̄
(i−1)
t )t>0 and (η̄

(i)
t )t>0. We deduce from

the above theorem that

lim sup
t→∞

N̄
(i)
t − N̄

(i−1)
t

t
= lim sup

t→∞

N
(i)
t

t
= O

(
εi−1
)
.

3.4.2 The asymptotic �ux at the �rst order

In this section, we consider the particle system with generator given by (3.6) for
i = 3 (see Figure 3.5). In order to di�erentiate it from particle systems we will
de�ne below, we will now refer to this system as the true process. In the previous
section we have seen that in order to compute limt→∞ N̄

(i)
t /t up to order ε, it is

su�cient to compute this limit only for �rst and second class particles. In other
words, if N(j)

t denotes the number of new j-particles, i.e., the number of j-particles
at time t which was not in the system at time 0, then:

lim sup
t→∞

N
(1)
t + N

(2)
t + N

(3)
t

t
= lim sup

t→∞

N
(1)
t + N

(2)
t

t
+ o(ε),

= λ(1− λ) + lim sup
t→∞

N
(2)
t

t
+ o(ε).

In the following we denote by Nt, rather than by N
(2)
t , the number of new second

class particles because there will be no possible confusion. The aim of this section is
to prove a law of large numbers for Nt and to compute the limit up to order ε. First
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we introduce some notation. Let c > 0 such that λ+ c < 1
2
and ε ∈ [0, c]. Consider

the point process N b
2 ∩ {t > 0 : ηt(1) 6= 1, ηt(2) = 1}, and denote its elements

ordered chronologically by τ e1 < . . . < τ ei < . . . By construction, at each time τ ei , a
second class particle tries to enter the system. We denote by Xi(t) the position at
time t of this particle, with the convention Xi(t) := 0 if the corresponding particle
is not in the system at time t. We de�ne

τ si := inf{t > τ ei : Xi(t) = 0}, Si(t) := 1Xi(t)>1, and Si := 1τs
i =∞.

Remark that there is a positive probability that τ si = τ ei . This happens if ητe
i
(1) = 2.

In this case, Xi(t) = 0 for all t > 0.

ε

λ

Figure 3.5: First class particles, in black, enter with rate λ whatever
is the con�guration in {2, 3, . . .} and second class particles, in grey,
enter with rate ε if the site 2 is occupied by a �rst class particle.

In order to have simpler estimates in the sequel, we consider the process (ηt)t>0

on X3 starting with the measure µ(3)
∞ (.|η(1) 6= 1, η(2) = 1). Of course, the limit

that we obtain in this case is the same as the one we would get if we started from
µ

(3)
∞ . Moreover, the estimates of Theorem 3.3 also hold in this case. Indeed, the

distribution of the process converges to µ(3)
∞ . In the sequel, we denote η̄t(x) :=

1ηt(x) 6=∞ the process with indistinguishable particles associated to (ηt)t>0.
Since νλ ≺ µ∞ ≺ νλ+c and the dynamic is monotone, we can make a basic

coupling with a TASEP(λ), denoted ηinf. , and a TASEP(λ+ c), denoted ηsup. , such
that:

• ηinf0 has distribution νλ(.|η(1) = 0, η(2) = 1),

• ηsup0 has distribution νλ+c(.|η(1) = 0, η(2) = 1),

• almost surely ηinft 6 η̄t 6 ηsupt , for all t > 0.

The process without interaction

We de�ne a new particle system with state space {0, 1, (2, i)i>1}Z+ and the following
generator:

Ω̄νf(η) :=ν1η(1) 6=1 (f(η1→1)− f(η))

+ ε1η(1) 6=1,η(2)=1 (f(η2→1)− f(η)) ,

+
∞∑
x=1

1η(x) 6=0,η(x+1)6=1

(
f(ηx,x+1)− f(η)

)
,

(3.15)
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for all cylindrical function f , where

η1→1(z) :=

{
1 if z = 1,

η(z) otherwise,

η2→1(z) :=


(2, 1) if z = 1 and η(1) = 0,

(2, i+ 1) if z = 1 and η(1) = (2, i),
η(z) otherwise,

and

ηx,x+1(z) :=


ηx,x+1(z) if η(x) = 1,

0 if η(x) 6= 1 and z = x,
(2, i+ j) if z = x+ 1, η(x) = (2, i) and η(x+ 1) = (2, j),
η(z) otherwise,

with the convention (2, 0) := 0 (j can be equal to 0). We will refer to this process
as the process without interaction.

This particle system has the following description: there are two classes of
particles; �rst class particles perform a TASEP(ν); second class particles enter
with rate ε if a �rst class particle is in site 2 and with rate 0 otherwise; they have
lower priority than �rst class particles; and, contrary to the process of Section 3.4.1,
second class particles are allowed to jump on a site containing one or more second
class particles. Once some particles (necessarily of type 2) are on the same site at a
given time, they will always jump together since they use the same Harris system.
Another possible choice would be to put a Poisson clock on particles instead of
sites. This would lead to the same asymptotic results.

To link our process to the above one, we proceed as follows. We construct a
process ξinf. on {0, 1, (2, i)i>1}Z+ , with generator Ω̄λ, in such a way that the process
ηinf. de�ned above is exactly the process of �rst class particles of ξinf. . Furthermore,
at each time τ ei , we add a second class particle in ξinf. at site 1 and we denote by
X inf
i (t) its trajectory. This particle will behave as a second class particle in the

system with generator (3.15), i.e., it has a lower priority than �rst class particles
but it can jump on a site already occupied by an other second class particle. As
a consequence, we can remark that, contrary to Xi(τ

e
i ), we have almost surely

X inf
i (τ ei ) > 1. By construction we almost surely have Xi(t) 6 X inf

i (t) for all t > 0.
Indeed, ξinf and η have the same �rst class particles and contrary to X inf

i , the
particle Xi is blocked by other second class particles thus it stays behind X inf

i . In
order to bound from below the trajectory Xi(t), we now construct a process ξsup

on {0, 1, 2}Z+ such that for all t > 0, x > 1, 1ξsup
t (x) 6=0 = ηsupt (x), by a�ecting the

type 2 to particles of ηsup. entering at times (τ ei )i>1. In the same way, we denote by
Xsup
i (t) their trajectory and we have almost surely for all t > 0, Xsup

i (t) 6 Xi(t).
We de�ne analogously the quantities N inf

t , N sup
t , τ s,infi , τ s,supi , etc.

Consider the following initial con�guration: at time 0, �rst class particles are
distributed on Z+\ {1, 2} according to νλ (the Bernoulli product measure with
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density λ), and we put one �rst class particle in site 2 and one second class particle
in site 1. We show in Proposition 3.6 below that this is exactly the distribution
of the con�guration ηinfτe

i
for all i > 1. Then �rst class particles enter site 1 with

rate λ and they have priority over the second class particle. Two cases can occur:
either the second class particle survives, or it dies. Let p (λ) be the probability
that the second class particle survives. p is a non-increasing function, p(0) = 1,
p(1

2
) = 0 and p (λ) > 0 for all λ < 1

2
. Indeed, for the last point, it can be shown

that if the second class particle survives, then it has a positive speed 1 − 2λ (see
e.g. [50]). The exact expression of p(λ) is unknown. However, simulations indicate
that p(λ) = 1 − 2λ for λ ∈ [0, 1

2
]. We have by construction and with results of

Section 3.4.2 below, P[Sinfi = 1] = p(λ) and P[Ssupi = 1] = p(λ + c) for all i > 1.
Consequently, p(λ+ c) 6 P [Si = 1] 6 p(λ).

The aim of Section 3.4.2 is to prove the following law of large numbers:

Theorem 3.4. Almost surely, lim
ε↓0

1

ε
lim
t→∞

Nt

t
= λ (1− λ) p(λ).

With the discussion at the beginning of Section 3.4.2, Theorem 3.2 follows.
The idea is the following: when ε is very small, second class particles do not

interact before they are very far from the left boundary and if a second class particle
is far enough from this boundary, then it survives with high probability. In other
words, the e�ect on Nt of interaction goes to 0 with ε. The �rst step in the proof will
be to �nd estimates for the process without interaction and to prove the theorem in
this case. Next, we will show, for the true process, that if two second class particles
meet, they both survive with a probability going to 1 as ε goes to 0; this implies
the theorem.

Distribution of the process at time τ ei

In this section we prove that at each time τ ei , the con�guration η
inf
τe
i

has distribution
νλ(.|η0(2)(1 − η0(1)) = 1). For that we need some preliminary results about the
motion of a tagged particle in a TASEP. It is convenient to regard the exclusion
process as a Markov process (Xt, ηt) on the space V := {(x, η) ∈ Z+×X : η(x) = 1},
so that x is the position of the tagged particle and η is the entire con�guration.
Consider the generator

Ωf(x, η) :=
∑

y∈Z+,y 6=x

η(y)(1− η(y + 1)) [f(x, ηy.y+1)− f(x, η)]

+ (1− η(x+ 1)) [f(x+ 1, ηx.x+1)− f(x, η)] ,

(3.16)

for all cylindrical functions. Suppose that initially, the tagged particle is placed
at some point x ∈ Z+ and other particles are placed according to the Bernoulli
product measure with density λ on Z+\{x}. Then the system is stationary when
viewed from the position of the tagged particle. In other words, for all t > 0,

E

[∏
y∈A

ηt(φt(y))

]
= λ|A|,
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where A is a �nite subset of Z+ and

φt(y) :=

{
y if y < Xt,

y + 1 if y > Xt.

Moreover, the random variable
∏

y∈A ηt(φt(y)) is independent of Xt for each t.
Consequently, it can be shown that Xt − X0 is a Poisson process with parameter
1− λ (see [44]).

The following proposition will be useful to describe the process at a random
time.

Proposition 3.5. Let Xt be the position of a tagged particle starting at site 0. The
other particles are initially distributed according to a Bernoulli product measure with
density λ on {1, 2, . . .}. Let H0 := 0, and for i > 1, let Hi := inf {t > 0 : Xt = i}.
Then for all i > 0, (ηHi

(XHi
+ x))x>0 has the same distribution as η0.

Proof. By the strong Markov property, it is su�cient to prove it for i = 1 since it
is true for i = 0 by hypothesis. De�ne X0

t := Xt and for i > 1, X i
t is the position of

the i−th particle to the right of Xt (X i
t always exists if λ > 0 and if not the result

is obvious). The result will follow if we can prove that X1
H1
−X0

H1
, . . . , XL

H1
−XL−1

H1

are i.i.d. random variables with geometric distribution with parameter λ for all
L > 1. Since Xt − X0 is a Poisson process with parameter 1 − λ, the process
ξt(i) := X i+1

t − X i
t − 1, for i = 0, . . . , L − 1, is a totally asymmetric Zero Range

process on {0, . . . , L− 1} with generator

Ωf(ξ) :=
L−1∑
y=0

1ξ(y)>1 [f(ξy)− f(ξ)] + (1− λ)
[
f(ξL)− f(ξ)

]
, (3.17)

where

ξy(z) :=


ξ(z) if z /∈ {y − 1, y},
ξ(y)− 1 if z = y,
ξ(y − 1) + 1 if z = y − 1.

Let µ be the product measure on NL such that µ{ξ : ξ(0) = k} = λ(1 − λ)k. µ is
invariant for ξ. and ξ0 ∼ µ. We also have

H1 = inf {t > 0 : ξt−(0) = ξt(0) + 1} ,

i.e., H1 is the �rst time at which a particle leaves the system (from 0). We need
to prove that ξH1 has distribution µ. Let q(ξ, ζ) be the rate for which (ξt)t>0 goes
from ξ to ζ, for every ξ, ζ ∈ NL, and let q(ξ) :=

∑
ζ q(ξ, ζ).

Fix a con�guration γ ∈ NL and let φ(ξ) := P [ξH1 = γ|ξ0 = ξ]. Conditioning on
the �rst step we get:

φ(ξ) =
∑
ζ

q(ξ, ζ)

q(ξ)
1ζ(0)>ξ(0)φ(ζ) +

q(ξ, γ)

q(ξ)
1γ=ξ0 . (3.18)
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Moreover, since µ is invariant,
∫

Ωφ(ξ)dµ = 0, thus∑
ξ,ζ

µ(ξ)q(ξ, ζ)φ(ζ) =
∑
ξ,ζ

µ(ξ)q(ξ, ζ)φ(ξ),

=
∑
ξ

µ(ξ)q(ξ)φ(ξ),

(3.18)
=
∑
ξ,ζ

µ(ξ)q(ξ, ζ)1ζ(0)>ξ(0)φ(ζ)

+
∑
ξ

µ(ξ)q(ξ, γ)1γ=ξ0 .

(3.19)

But q(ξ, ζ)1ζ(0)<ξ(0) = 1 if ζ = ξ0 and 0 otherwise, hence∑
ξ

µ(ξ)φ(ξ0)1ξ(0)>1 =
∑
ξ

µ(ξ)q(ξ, γ)1γ=ξ0 ,

= µ(ξ : ξ0 = γ) = (1− λ)µ(γ).

(3.20)

Finally, the left-hand side of (3.20) is equal to

(1− λ)
∑
ξ

µ(ξ0)φ(ξ0)1ξ(0)>1 = (1− λ)

∫
φ(ξ)dµ,

which leads to P [ξH1 = γ] = µ(γ). �

Corollary 3.1. Consider the TASEP on Z+ starting from νλ(.|η(2)(1−η(1)) = 1).
Let Hi be the time at which the �rst particle created is at site i, for i > 1. Then
(ηHi

(i+ x))x>1 has distribution νλ.

Proof. By Proposition 3.5, it is su�cient to treat the case i = 1. The distance
d between the initial particle at site 2 and the new particle evolves as follows: it
increases by 1 with rate 1−λ and decreases by 1 with rate λ until the new particle
is at site 1. Hence, at this time, d+1 is distributed as a geometric random variable
with parameter λ. Using again Proposition 3.5, the con�guration in front of the
�rst particle has for distribution a Bernoulli product measure with parameter λ.
Therefore, it is the same for the new particle. �

Now we can give the distribution of ηinfτe
i
.

Proposition 3.6. For each i > 1, ηinfτe
i

has distribution νλ(.|η0(2)(1− η0(1)) = 1).
In particular, it does not depend on ε.

Proof. We use the following compact notation for initial measures: the conditioned
measure νλ(.|η0(2)(1 − η0(1)) = 1) will be denoted by 0 1 νλ, and νλ(.|η0(1)) = 1)
by 1 νλ.
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Let f be a bounded function on {0, 1}Z+ . Conditioning on the type of the �rst
new particle and using the above corollary with the Markov property we get:

E0 1 νλ [
f(θ2ητe

i
)
]

=
ε

1− λ+ ε
E2 1 νλ [

f(θ2η0)
]
+

1− λ

1− λ+ ε
E1 νλ [

f(θ2ητe
i
)
]
.

The �rst expectation on the right-hand side is equal to 〈f〉νλ and, using Proposition
3.5, the second expectation is equal to E0 1 νλ [

f(θ2ητe
i
)
]
. Hence E0 1 νλ [

f(θ2ητe
i
)
]

=
〈f〉νλ . �

Proof in the case "without interaction"

Consider a family
(
N b
λ

)
06λ< 1

2

of Poisson point processes such that the parameter of

N b
λ is λ and for all 0 6 λ 6 µ < 1

2
, N b

λ ⊂ N b
µ andN b

µ\N b
λ is independent ofN b

λ. Take
also a family

(
ηλ0
)
06λ< 1

2

of initial con�gurations such that ηλ0 (2)
(
1− ηλ0 (1)

)
= 1 for

all λ ∈
[
0, 1

2

[
, the distribution of ηλ0 on {3, 4, . . .} is νλ, and for all x > 3 and

all 0 6 λ 6 µ < 1
2
, ηλ0 (x) 6 ηµ0 (x) almost surely. Then using the same Poisson

point processes (Nx, x > 1) for the bulk dynamic we construct, as in Section 3.2,
the family of TASEP (ηλ. )06λ< 1

2
such that ηλ. is a TASEP(λ) and for all t > 0 and

all 0 6 λ 6 µ < 1
2
, ηλt 6 ηµt almost surely. At time 0 we add a second class particle

in site 1 to each of these processes and we denote by Xλ(t) the position at time t
of the particle in the process ηλ. (with the convention Xλ(t) := 0 if the particle has
left the system). We de�ne

Sλ := 1Xλ survives,

and
Hλ
x := inf {t > 0 : Xλ(t) = x} ,

for all x > 1.
Since we use the basic coupling, the following inequality holds almost surely:

Xλ(t) > Xµ(t),

for all λ 6 µ and all t > 0. This easily implies that, for all λ 6 µ and all x > 1,
Sλ > Sµ andHλ

x 6 Hµ
x . Furthermore, by de�nition of p(.), Sλ is a Bernoulli random

variable with parameter p(λ).
We start with an intuitive lemma which will be useful to propagate results from

the process without interaction to the true process.

Lemma 3.2. The function p : [0, 1] → [0, 1] is right-continuous.

Proof. Since p(λ) = 0 for λ > 1
2
, it is su�cient to prove it on

[
0, 1

2
[ . Let 0 6 λ < 1

2
,

ε′ > 0 and 0 < c < 1
2
− λ. There exists some x > 1 such that

P
[
Sλ+c = 0|Hλ+c

x <∞
]
< ε′.
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Indeed, ifM := max {Xλ+c(t), t > 0} then conditionally to
{
Sλ+c = 0

}
,M is almost

surely �nite. Thus there exists x > 1 such that

P
[
M > x|Sλ+c = 0

]
< ε′

p(λ+ c)

1− p(λ+ c)
.

Then, using
{Hλ+c

x <∞} = {M > x},

and
P [M > x] > P

[
Sλ+c = 1

]
= p(λ+ c),

this implies

P
[
Sλ+c = 0|Hλ+c

x <∞
]

= P
[
M > x|Sλ+c = 0

] P
[
Sλ+c = 0

]
P [M > x]

< ε′.

Furthermore for all ε ∈ [0, c],

P
[
Sλ+ε = 0|Hλ+ε

x <∞
]

=
P
[
Hλ+ε
x <∞

]
−P

[
Sλ+ε = 1

]
P [Hλ+ε

x <∞]
,

=
P
[
Sλ+ε = 0

]
− 1

P [Hλ+ε
x <∞]

+ 1,

6
P
[
Sλ+c = 0

]
− 1

P [Hλ+c
x <∞]

+ 1,

= P
[
Sλ+c = 0|Hλ+c

x <∞
]
< ε′.

(3.21)

Now let t0 > 0 such that

P

[
sup
t∈[0,t0]

Xλ(t) > x|Hλ
x <∞

]
> 1− ε′. (3.22)

We can �nd 0 < c′ 6 c such that

P

[
x∑
i=1

(
ηλ+c′

0 (i)− ηλ0 (i)
)

= 0,
(
N b
λ+c′\N b

λ

)
∩ [0, t0] = ∅

]
> 1− ε′. (3.23)

We de�ne the events

B :=

{
x∑
i=1

(
ηλ+c′

0 (i)− ηλ0 (i)
)

= 0,
(
N b
λ+c′\N b

λ

)
∩ [0, t0] = ∅

}
,

and

A :=

{
sup
t∈[0,t0]

Xλ(t) > x

}⋂
B.
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By the Harris construction of the process, the event B is independent of {Hλ
x <∞}

and {supt∈[0,t0]Xλ(t) > x}. Moreover, A ⊂ {Hλ+c′
x < ∞}, thus using (3.22) and

(3.23)

P
[
Hλ+c′

x <∞|Hλ
x <∞

]
> P

[
A|Hλ

x <∞
]
,

= P

[
sup
t∈[0,t0]

Xλ(t) > x|Hλ
x <∞

]
P [B] ,

> (1− ε′)
2
> 1− 2ε′.

(3.24)

Finally, with (3.21) and (3.24), we get

p(λ)− p(λ+ c′) = P
[
Sλ+c′ = 0, Sλ = 1

]
,

= P
[
Sλ+c′ = 0, Sλ = 1, Hλ+c′

x <∞
]

+ P
[
Sλ = 1, Hλ+c′

x = ∞
]
,

6 P
[
Sλ+c′ = 0, Hλ+c′

x <∞
]

+ P
[
Hλ
x <∞, Hλ+c′

x = ∞
]
,

6 P
[
Sλ+c′ = 0|Hλ+c′

x <∞
]

+ P
[
Hλ+c′

x = ∞|Hλ
x <∞

]
,

< 3ε′.

�

Now we prove Theorem 3.4 in the case without interaction.

Proposition 3.7. Nt

t
and N inf

t

t
both have almost sure limits as t goes to in�nity

and

lim
ε→0

1

ε
lim
t→∞

N inf
t

t
= λ (1− λ) p(λ).

Proof. We use the coupling of η. with the processes ξinf. and ξsup. de�ned in Section
3.4.2.

Recall that Nt is the number of 2-particles at time t which are not in the
system at time 0 for the true process (ηt)t>0, i.e., the number of Xi for which
τ ei 6 t < τ si . N

inf
t and N sup

t have the same de�nition as Nt but for processes ξinf.

and ξsup. respectively, or for particles X inf
i and Xsup

i respectively.
Let N̄t := ]

(
N b

2 ∩ {t > 0 : ηt(1) 6= 1, ηt(2) = 1}
)
. N̄t is the number of 2-particles

(in the process η.) which have entered the system between time 0 and time t, i.e.,
the number of Xi for which τ ei 6 t.

The convergence to almost sure limits is a consequence of Proposition 3.4. In-
deed, for example Nt counts the number of elements of N b

2 for which ηt(1) 6= 1 and
ηt(2) = 1 minus the number of elements of N b

1 for which ηt(1) = 2. Furthermore,
by Proposition 3.4, N̄t/t converges almost surely to λ(1− λ)ε.
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We denote by (tn)n>1 the successive times at which the N̄tn-th 2-particle of the
true process is exactly the n-th particle which will survive. Then:

N inf
tn

tn
=

1

tn

N̄tn∑
i=1

Sinfi =
n

tn
.

Thus if nt := sup{n > 1 : tn 6 t} then, since tn/n converges almost surely to

( lim
t→∞

N inf
t /t)−1,

we almost surely have:

lim
t→∞

nt −N inf
t

t
= 0. (3.25)

On the other hand, nt is exactly the number of 2-particles which are in the system
at time t and which will survive, i.e., nt =

∑N̄t

i=1 S
inf
i almost surely. Hence:

lim
t→∞

1

t

N̄t∑
i=1

Sinfi = lim
t→∞

N inf
t

t
, a.s.

Next we compute the limit of 1/t
∑N̄t

i=1 S
inf
i in expectation. Let ε′ > 0 and

τ := inf

{
t > 0 : ∀s > t,

∣∣∣∣N̄t

t
− λ(1− λ)ε

∣∣∣∣ < ε′
}
.

τ is almost surely �nite and, using E
[
Sinfi

]
= p(λ),

E

[
1

t

N̄t∑
i=1

Sinfi

]
>

1

t

b((λ(1−λ)ε−ε′)tc∑
i=1

E
[
Sinfi 1τ6t

]
,

>
b((λ(1− λ)ε− ε′) tc

t
p(λ)− 1

t

b((λ(1−λ)ε−ε′)tc∑
i=1

E
[
Sinfi 1τ>t

]
.

Since Sinfi is bounded by 1

E

[
1

t

N̄t∑
i=1

Sinfi

]
>
b((λ(1− λ)ε− ε′) tc

t
(p(λ)−P [τ > t]) .

Let t go to in�nity, then ε′ go to 0:

lim
t→∞

1

t

N̄t∑
i=1

Sinfi > λ(1− λ)p(λ)ε.
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On the other hand

E

[
1

t

N̄t∑
i=1

Sinfi 1τ6t

]
6

1

t

b((λ(1−λ)ε+ε′)tc∑
i=1

E
[
Sinfi 1τ6t

]
,

6
b((λ(1− λ)ε+ ε′) tc

t
p(λ),

which gives the reverse inequality letting t go to in�nity and ε′ go to 0. Finally

lim
t→∞

1

t

N̄t∑
i=1

Sinfi = lim
t→∞

N inf
t

t
= λ(1− λ)p(λ)ε.

�

Interaction implies survival

The following lemma states that if a second class particle goes far enough, then it
survives with high probability.

Lemma 3.3. For all ε′ > 0, there exists x0 (depending only on λ and ε′) such that
if c is small enough, then for all i > 1

P [τ si <∞,∃t > 0, Xi(t) > x0] < ε′.

Proof. We start by proving the same result for X inf . Let

M := sup
{
X inf
i (t), t > 0

}
.

Conditionally on
{
τ s,infi <∞

}
, M is almost surely �nite, thus we can choose x0

such that

P
[
M > x0|τ s,infi <∞

]
<
ε′

2
.

Hence

P
[
τ s,infi <∞,∃t > 0, X inf

i (t) > x0

]
= P

[
M > x0|τ s,infi <∞

]
×P

[
τ s,infi <∞

]
,

<
ε′

2
.

Furthermore, since the law of X inf
i is the same for all i > 1 (because they enter in

the same environment), we can choose the same x0 for all i > 1. Then we have,



3.4. A PARTICULAR CASE AND THE MULTI-SPECIES MODEL 57

using Lemma 3.2:

P [τ si <∞,∃t > 0, Xi(t) > x0] 6 P
[
τ s,infi <∞,∃t > 0, X inf

i (t) > x0

]
+ P

[
Si 6= Sinfi

]
,

<
ε′

2
+ p(λ)− p(λ+ c),

< ε′,

if c is small enough. �

For x > 1, let Hx := inf {t > 0 : Xi(t) = x} (we omit the dependence on i in
the notation because there will be no possible confusion). We can deduce from this
lemma a stronger form of the same estimate:

Corollary 3.2. Let x > 1. For all ε′ > 0, there exists x1 depending only on λ, ε′

and x such that if c is small enough, then for all i > 1

P [Hx1 <∞,∃t > Hx1 , Xi(t) 6 x] < ε′.

Proof. We will use the same method as in Lemma 3.1. Let Et be the following
event on the Poisson point processes of the Harris system during the time space
[t, t+ 1]:

• one �rst class particle enters site 1 and moves to site x;

• then one �rst class particle enters and moves to site x− 1;

• we continue in the same way until x �rst class particles have entered the
system and they have moved until that the box {1, . . . , x} is full;

• �nally we impose that Nx ∩ [t, t+ 1] = ∅.

Then qx(λ) := P [Et] depends only on λ and x, is positive and, under this event,
every second class particle which was in the box {1, . . . , x} at time t has left the
system at time t+ 1.

Now let x1 be given by Lemma 3.3 such that

P [τ si <∞,∃t > 0, Xi(t) > x1] < ε′qx(λ),

and de�ne H+
x := inf {t > Hx1 : Xi(t) = x}. Then

P
[
τ si <∞|H+

x <∞
]

> qx(λ).

This implies

P [Hx1 <∞,∃t > Hx1 , Xi(t) 6 x] = P
[
H+
x <∞

]
=

P [τ si <∞, H+
x <∞]

P [τ si <∞|H+
x <∞]

,

< ε′.

�
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The next lemma states that if we �x x > 1, then the probability that two second
class particles meet in the box {1, . . . , x} goes to 0 with ε.

Lemma 3.4. Let τi+1→i be the �rst time at which the (i+ 1)-th second class particle
tries to jump on the site occupied by the i-th second class particle. Then for all �xed
x > 1,

P [τi+1→i <∞, Xi(τi+1→i) 6 x] −→
ε→0

0, uniformly in i.

Proof. Fix ε′ > 0 and let x1 and 0 < c0 <
1
2
−λ be given by Corollary 3.2 such that

P [Hx1 <∞,∃t > Hx1 , Xi(t) 6 x] < ε′, for all ε 6 c0. (3.26)

Then x1 and c0 depend only on λ and ε′ (and x). We have:

P [∃s > t,Xi(s) ∈ {1, . . . , x}] 6 P [∃s > t,Xi(s) ∈ {1, . . . , x} , Hx1 6 t]

+ P [Xi(t) > 1, Hx1 > t] ,

6 P [Hx1 <∞,∃s > Hx1 , Xi(s) 6 x]

+ P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t]] .

(3.27)

As in Lemma 3.1, we have

P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t+ 1]] 6 (1− qx1(λ))×
P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t]] ,

which implies the existence of a constant C > 0 depending only on λ and ε′ such
that

P [Xi(s) ∈ {1, . . . , x1} ,∀s ∈ [0, t]] 6 e−Ct.

Finally, using (3.26) and (3.27), there exists some deterministic t0 > 0, depending
only on λ and ε′, such that

P [∃s > t,Xi(s) ∈ {1, . . . , x}] < 2ε′,

for all t > t0 and ε 6 c0.
Besides, if we de�ne σ as the time elapsed between τ ei and the �rst jump time

of N b
2 greater than τ ei , then σ is an exponential random variable with parameter ε

independent of the trajectory of Xi. As a consequence, we have

P [τi+1→i <∞, Xi(τi+1→i) 6 x] 6 P [∃t > σ,Xi(t) ∈ {1, . . . , x}] ,
6 P [∃t > σ,Xi(t) ∈ {1, . . . , x} , σ > t0]

+ P [σ 6 t0] ,

< 2ε′ + 1− e−εt0 .

Finally we have P [τi+1→i <∞, Xi(τi+1→i) 6 x] −→
ε→0

0 uniformly in i. �

Now we are able to prove that when a second class particle meets another one,
both survive with a probability going to 1 as ε goes to 0.
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Corollary 3.3.

P
[
τi+1→i <∞, τ si+1 <∞

]
−→
ε→0

0, uniformly in i. (3.28)

Proof. Fix ε′ > 0 and let x0 be given by Lemma 3.3. We have

P
[
τi+1→i <∞, τ si+1 <∞

]
= P

[
τi+1→i <∞, τ si+1 <∞, Xi(τi+1→i) 6 x0

]
+ P

[
τi+1→i <∞, τ si+1 <∞, Xi+1(τi+1→i) > x0

]
,

6 P [τi+1→i <∞, Xi(τi+1→i) 6 x0]

+ P
[
τ si+1 <∞,∃t > 0, Xi+1(t) > x0

]
,

< 2ε′,

if ε is small enough. �

The proof of Theorem 3.4

Fix ε′ > 0 and use (3.28) to �nd ε > 0 small enough to have

P
[
τi+1→i <∞, τ si+1 <∞

]
< ε′.

We have already seen that both Nt/t and N inf
t /t converge to almost sure limits

and that 1
ε
limt→∞N inf

t /t converges almost surely to λ (1− λ) p(λ) as ε goes to 0.
Recall the de�nition of N̄t at the beginning of the proof of Proposition 3.7. We
have limt→∞ N̄t/t = λ (1− λ) ε. Thus if we de�ne

τ := inf

{
t > 0 : ∀s > t,

N̄s

s
6 (λ (1− λ) + 1) ε

}
,

then τ is almost surely �nite and N inf
t −Nt =

∑N̄t

i=1 1Sinf
i (t)=1,Si(t)=0 which implies

E

[
N inf
t −Nt

t
1τ6t

]
6

1

t

b(λ(1−λ)+1)εtc∑
i=1

P
[
Sinfi (t) = 1, Si(t) = 0, τ 6 t

]
,

6
1

t

b(λ(1−λ)+1)εtc+1∑
i=2

P [τi→i−1 <∞, τ si <∞] ,

6
b(λ (1− λ) + 1) εtc+ 1

t
ε′,

and, by dominated convergence theorem, the left-hand side of the above inequality
converges to limt→∞N inf

t /t− limt→∞Nt/t as t goes to in�nity. Hence, dividing by
ε, we get

0 6
1

ε
lim
t→∞

N inf
t

t
− 1

ε
lim
t→∞

Nt

t
6 (λ (1− λ) + 1) ε′.

Since ε′ was arbitrary we can conclude.
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Chapter 4

Complex Boundary Mechanism:

the general case

Let λ ∈ [0, 1]. Recall the TASEP(λ) on S := N is the Feller process on X := {0, 1}S
with generator

Ωλf(η) := λ(1− η(0)) [f(η0)− f(η)] + Ωbulkf(η),

for all cylindrical function f : X → R, where

Ωbulkf(η) :=
∞∑
x=0

η(x)(1− η(x+ 1)) [f(ηx,x+1)− f(η)] ,

and

η0(y) =

{
η(y) if y 6= 0,
1− η(0) if y = 0,

ηx,x+1(y) =


η(y) if y /∈ {x, x+ 1},
η(x+ 1) if y = x,
η(x) if y = x+ 1.

In terms of particle system, particles are created at site 0 at rate λ and then, for
all i > 0, move from site i to site i+ 1 at rate 1 if the target site does not contain
any particle. Otherwise, the jump does not occur.

Let R ∈ N, SR := {0, . . . , R} and XR := {0, 1}SR . For a con�guration η ∈ X,
we denote by ηR its restriction to XR and by η̄R its restriction to {0, 1}Sc

R , where
ScR := N\SR. Conversely, for ξ ∈ XR and η ∈ {0, 1}Sc

R we denote by ξ ∪ η, or by
ξη, the concatenation of the two con�gurations into a con�guration of X.

Consider the TASEP on N with a complex boundary mechanism, i.e., the Feller
process with generator

Ωf(η) :=
∑
ξ∈XR

dη|SR
,ξ

[
f(ξ ∪ η|Sc

R
)− f(η)

]
+ Ωbulkf(η),

61
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where (dξ,ξ′)ξ,ξ′∈XR
are non-negative rates. In this process, we allow every possible

transition in the box SR respecting the exclusion condition of at most one particle
per site. We assume that, for all η ∈ XR, dη,η = 0. We will also assume that the
dynamic is dominated by a subcritical TASEP, i.e., there exist some λ ∈

[
0, 1

2

[
and

a Feller process (ηt, ξt)t>0, with generator Ω̃λ, such that:

• (ηt)t>0 has generator Ω,

• (ξt)t>0 is a TASEP(λ) (and has generator Ωλ),

• if η0 6 ξ0, then, almost surely for all t > 0, ηt 6 ξt,

(4.1)

where we used the usual partial order on X: η 6 ξ ⇔ ∀x ∈ S, η(x) 6 ξ(x). A
function f : X −→ R is said to be increasing if η 6 ξ implies f(η) 6 f(ξ). For
µ,ν two probability measures on X, we say that µ is stochastically dominated by
ν, denoted by µ ≺ ν, if for every increasing function f ,

∫
fdµ 6

∫
fdν. Finally,

we say that a Feller process is attractive (or monotone) if one of the following two
equivalent statements hold:

for every increasing function f , S(t)f is increasing for all t > 0,

and
µ ≺ ν implies µS(t) ≺ νS(t) for all t > 0.

In Chapter 3, we studied the TASEP with a complex boundary mechanism in
the attractive case. We proved that there exist a smallest (in the sense of stochastic
domination) invariant probability measure which is extremal and ergodic, and that
the stationary process starting with this distribution satis�es a strong law of large
numbers for the number of particles created. Furthermore, we computed the value
of the limit in a particular case in terms of the probability of survival of a single
second class particle in a stationary environment.

In this paper, we do not assume any attractivity of the process. Our main
assumption is the hypothesis (4.1) which allow us to bound from above the motion of
a tagged particle in this process with the one of a tagged particle in the TASEP(λ).
This hypothesis is satis�ed in most cases of interest, for example, the processes for
which the rate at which the particles enter the system in the �rst site is a function
of the con�guration in the box {0, . . . , R} and is bounded by some λ < 1

2
. For this

kind of processes we have dη,η0 = r(η) 6 λ for all η ∈ XR such that η(0) = 0 and
dη,ξ = 0 otherwise.

De�nition 4.1. We say that a probability measure µ on X is subcritical if µ ≺ νλ

for some λ < 1
2
.

We say that a probability measure ν on X2 is subcritical if both of its marginals
are subcritical.

One of the main result in this paper is the following ergodic theorem:
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Theorem 4.1. Under the assumption (4.1), there exist a unique subcritical in-
variant probability measure µ for the process with generator Ω. Furthermore, µ
is extremal and ergodic and if ν is a subcritical probability measure, the process
starting from ν converges weakly to µ.

As in Chapter 3, we use a description of the process in terms of particles with
di�erent classes. The particles in the system are divided into two (or possibly more)
classes. The evolution is the same as before, except that if a second class particle
attempts to jump on a site occupied by a �rst class particle, it is not allowed to do
so, while if a �rst class particle attempts to jump on a site occupied by a second
class particle, the two particles exchange positions. In other words, a �rst class
particle has priority over a second class particle. In particular, if a second class
particle is at site 0 while a �rst class particle is created, then the second class
particle disappears and we say it dies. If a second class particle never dies, then we
say it survives.

Consider the following initial con�guration. A second class particle is at site 0
and the con�guration on N∗ contains only �rst class particles distributed according
to the product measure with uniform density λ, denoted by νλ. Then we consider
a TASEP(λ) starting from this con�guration for which we create only �rst class
particles. We denote by p(λ) the probability that the second class particle survives.

Theorem 4.2. For all λ ∈ [0, 1], p(λ) = 1−2λ
1−λ 1λ< 1

2
.

We can remark that if we consider a random walk on Z starting from 0 with
jump +1 with probability 1−λ and −1 with probability λ, then the probability that
the walker never visits the site −1 is equal to p(λ). In Chapter 3, the probability
appearing in the law of large numbers was the probability of survival of a second
class particle starting in the same con�guration conditioned to have a �rst class
particle at site 1. Denote by q(λ) this probability.

Corollary 4.1. For all λ ∈ [0, 1], q(λ) = (1− 2λ)1λ< 1
2
.

This gives the exact value at the �rst order of the limit in the law of large
number of Chapter 3.

The paper is organized as follows: in Section 4.1, we prove the Theorem 4.1.
Then, we prove that the stationary process associated with this distribution satis�es
a strong law of large numbers for the number of particles created up to time t.

4.1 The coupled process

De�ne the coupled process by

Ω̃f(η, ξ) :=
∑

η′,ξ′∈XR

t
(
(ηR, ξR), (η′, ξ′)

) [
f(η′ ∪ η̄R, ξ′ ∪ ξ̄R)− f(η, ξ)

]
+ Ω̃bulkf(η, ξ),

(4.2)
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where

Ω̃bulkf(η, ξ) :=
∑

x:η(x)=ξ(x)=1,
η(x+1)=ξ(x+1)=0

[f(ηx,x+1, ξx,x+1)− f(η, ξ)]

+
∑

x:η(x)>ξ(x),
η(x+1)=0

[f(ηx,x+1, ξ)− f(η, ξ)]

+
∑

x:η(x)<ξ(x),
ξ(x+1)=0

[f(η, ξx,x+1)− f(η, ξ)] ,

(4.3)

and (t ((η, ξ), (η′, ξ′)))(η,ξ),(η′,ξ′)∈X2
R
are non-negative rates de�ned as follows: for all

(η, ξ) ∈ XR,

• t ((η, ξ), (η, η)) := dξ,η,

• t ((η, ξ), (ξ, ξ)) := dη,ξ,

• ∀ζ ∈ XR\{η, ξ}, t ((η, ξ), (ζ, ζ)) := min(dη,ζ , dξ,ζ),

• ∀η′ ∈ XR\{η, ξ}, t ((η, ξ), (η′, ξ)) := dη,η′ −min(dη,η′ , dξ,η′),

• ∀ξ′ ∈ XR\{η, ξ}, t ((η, ξ), (η, ξ′)) := dξ,ξ′ −min(dη,ξ′ , dξ,ξ′),

• t ((η, ξ), (η′, ξ′)) := 0 otherwise.

This coupled process is constructed in order to make agree at most as possible
the processes (ηt)t>0 and (ξt)t>0. It is easy to check that both marginals of the

coupled process have generator Ω. In the sequel, we denote by I (resp. Ĩ, Iλ)
the set of invariants probability measures of the process with generator Ω (resp.
Ω̃,Ωλ). Finally, we denote by S(t) (resp. S̃(t), Sλ(t)) the semi-group associated to
the generator Ω (resp. Ω̃,Ωλ).

Proposition 4.1 (Liggett [42]). Let µ1, µ2 ∈ I. There exists ν ∈ Ĩ with marginals
µ1 and µ2.

Proof. Let ν1 be the product measure with marginals µ1 and µ2. The marginals of
1
t

∫ t
0
ν1S̃(s)ds are µ1 and µ2 for all t > 0. Take any subsequence tn ↑ ∞ such that

1
tn

∫ tn
0
ν1S̃(s)ds converges weakly and denote ν its limit. Then, ν ∈ Ĩ (see [44]) and

has µ1 and µ2 for marginals. �

From now on, (ηt, ξt)t>0 is a process with generator Ω̃. We will only precise
when we change the initial distribution. De�ne the following multi-types exclusion
process:

ζt(x) :=


1 if ηt(x) = ξt(x) = 1,
2+ if ηt(x) > ξt(x),
2− if ηt(x) < ξt(x),
0 otherwise.

(4.4)
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If ζt(x) = 1, we say that there is a �rst class particle at site x (at time t). If
ζt(x) = 2+ or 2−, we say that there is a second class particle at site x. The ζ-
process has the same evolution as the exclusion process, excepted that if a second
class particle attempts to jump on a site occupied by a �rst class particle, it is not
allowed to do so, while if a �rst class particle attempts to jump on a site occupied
by a second class particle, the two particles exchange positions. In other words, a
�rst class particle has priority over a second class particle. Finally, if a second class
particle attempts to jump on a site occupied by another second class particle, then
nothing appends excepted if the two particles are labelled with di�erent signs. In
this case, the jump occurs and the particles merge into a �rst class particle. We
resume the possible transitions in the following diagram:

1 → 2± = 2± 1
2± → 1 = 2± 1
2+ → 2− = 0 1
2− → 2+ = 0 1

(4.5)

In the ζ-process, particles are created in the box {0, . . . , R} according to a complex
mechanism. However, we can remark that to create a second class particle at time
t, it is necessary to have an other second class particle in the box SR at this time.
In other words, if ηt and ξt agreed on the box SR, then the rate of creating a second
class particle is 0. Consequently, the following random time will be useful:

T := inf {t > 0 : ∀s > t,∀x ∈ SR, ηs(x) = ξs(x)} . (4.6)

Hence, if T is �nite, then for all t > T , ηt and ξt agreed on the box SR and no more
second class particle can be created. In the following proposition, we show that if
the process start from an invariant distribution, then T is either null or in�nite.

Proposition 4.2. Let ν ∈ Ĩ. We have:

ν{(η, ξ) : η = ξ} = Pν [η0 = ξ0] = Pν [T <∞] = Pν [T = 0] . (4.7)

Proof. We may assume that Pν [T <∞] > 0 since otherwise Pν [η0 = ξ0] = 0 be-
cause {η0 = ξ0} ⊂ {T = 0}.

Let ν̃ be the distribution of (η0, ξ0) when the process (ηt, ξt)t>0 is under the

measure Pν [.|T <∞]. Then ν̃ is invariant for Ω̃. Indeed, for t > 0, we de�ne the
following random variable:

T (t) := inf{u > t : ∀s > u, ∀x ∈ SR, ηs(x) = ξs(x)}, (4.8)

and let A ⊂ X2 measurable. Let Ft := σ((ηs, ξs)06s6t), the canonical �ltration
associated to the process (ηt, ξt)t>0. Since {T <∞} = {T (t) <∞}, we have:

Pν [(ηt, ξt) ∈ A and T <∞] = Eν [Pν [(ηt, ξt) ∈ A and T (t) <∞|Ft]] ,
= Eν

[
P(ηt,ξt) [(η0, ξ0) ∈ A and T <∞]

]
,

= Pν [(η0, ξ0) ∈ A and T <∞] ,
(4.9)
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where we have used the Markov property at the second line and the invariance of
ν at the third line. Hence, dividing by Pν [T <∞] and using the de�nition of ν̃ we
get:

ν̃S̃(t){(η, ξ) ∈ A} = ν̃{(η, ξ) ∈ A}. (4.10)

Now take any x > 0 and de�ne:

Tx := inf {t > 0 : ∀s > t,∀y ∈ Sx, ηs(y) = ξs(y)} .

Consider the stationary process starting from ν̃. After the time T (which is almost
surely �nite for this process), there is no more second class particle created and
all second class particles present at this time will survive. Hence there is a �nite
time for which the left-most second class particle will be in {x + 1, x + 2, . . .} for
ever after. This time is exactly Tx. In summary, Tx < ∞ almost surely under Pν̃ .
Consequently:

ν̃{(η, ξ) : η|Sx = ξ|Sx} = ν̃S̃(t){(η, ξ) : η|Sx = ξ|Sx},
= Pν̃

[
ηt|Sx = ξt|Sx

]
,

> Pν̃ [t > Tx] ,
−→
t→∞

1.

(4.11)

Since this is true for all x > 0, we have ν̃{(η, ξ) : η = ξ} = 1 and T = 0 almost
surely under Pν̃ . Finally:

Pν [T <∞] = Pν [T = 0] ,
= Pν [η0 = ξ0] ,
= ν{(η, ξ) : η = ξ}.

(4.12)

�

The next proposition says that if the initial distribution is subcritical, then T
is �nite with positive probability.

Proposition 4.3. Let ν ∈ Ĩ be a subcritical measure and T de�ned as above.
Assume that ν{(η, ξ) : η 6= ξ} > 0. Then Pν [T <∞|η0 6= ξ0] > 0.

Proof. Let λ ∈
[
0, 1

2

[
be such that both marginals of ν are dominated by νλ and

such that the process Ω̃λ satis�es the hypothesis (4.1). Since ν is subcritical, there
exist some measure γ on X2, invariant for the standard coupled process of the
TASEP(λ), such that ν ≺ γ and both marginals of γ are νλ. Hence, we can
construct four con�gurations (η0, ξ0, α0, β0) on the same probability space, such
that η0 6 α0 and ξ0 6 β0 almost surely, (η0, ξ0) has distribution ν, and (α0, β0)
has distribution γ. Using (4.1), we can couple the four processes (ηt, ξt, αt, βt)t>0

such that (ηt, ξt)t>0 is the stationary process with generator Ω̃ and distribution ν,
(αt)t>0 and (βt)t>0 are two TASEP(λ), and almost surely for all t > 0, ηt 6 αt and
ξt 6 βt.



4.1. THE COUPLED PROCESS 67

Let X+(t) be the position of the left-most second class particle of (ηt)t>0 and
X−(t) be the position of the left-most second class particle of (ξt)t>0 (with the
convention X±(t) = ∞ if the particle does not exists). Let Y +(t) be the position
of a second class particle in the α-process starting at the same site as X+ at time
0. In the same way, de�ne Y − for the β-process. Then, while none second class
particle is created, we have almost surely Y +(t) 6 X+(t) and Y −(t) 6 X−(t).
Furthermore, since a second class particle in a stationary TASEP of density λ has
a positive speed (cf. [24, 23]), with positive probability:

min(Y −(0), Y +(0)) 6 min(Y −(t), Y +(t)) 6 min(X−(t), X+(t)), (4.13)

for all t > 0. It remains to prove that

min(Y −(0), Y +(0)) = min(X−(0), X+(0)) > R + 1, (4.14)

with positive probability. Since λ < 1
2
, there exist x0 ∈ N such that

P []{y 6 x0 : η0(y) = ξ0(y) = 0} > R + 1] = P [Ax0 ] > 0.

Consider the following event denoted by Bx0 : there exist 0 < t11 < t21 < t22 < . . . <
tx0
1 < . . . < tx0

x0
< 1 such that

• ∀k = 1, . . . , x0, t
k
1 ∈ Nx0−k, t

k
2 ∈ Nx0−k+1, . . . , t

k
k ∈ Nx0−1,

• (Nboundary ∪N0 ∪ . . . ∪Nx0) ∩ [0, 1] =
{
tki : k = 1, . . . , x0, i = 1, . . . , k

}
.

We have P [Bx0 ] > 0 and Bx0 is independent of Ax0 by construction. Hence

P [Ax0 ∩Bx0 ] > 0.

But it is easy to see that under the event Ax0 ∩Bx0 , we have almost surely

min(Y −(1), Y +(1)) > R + 1.

Thus, since γ is invariant, (4.14) is proved. Finally:

Pν [T = 0|η0 6= ξ0] > P [min(X−(t), Y +(t)) > R + 1 for all t > 0|η0 6= ξ0] ,
> 0.

(4.15)
�

Now we can make the proof of the �rst part of Theorem 4.1:

Proof. Suppose µ1 and µ2 are subcritical invariant probability measure for the pro-
cess with generator Ω. We use the Proposition 4.1 to construct ν ∈ Ĩ subcritical
with marginals µ1 and µ2. Using now Proposition 4.2:

Pν [T <∞] = Pν [T <∞] + Pν [T <∞|η0 6= ξ0]P
ν [η0 6= ξ0] . (4.16)

Finally with Proposition 4.3, we get:

Pν [η0 6= ξ0] = ν{(η, ξ) : η 6= ξ} = 0. (4.17)

Hence µ1 = µ2.
For the existence, we just have to check that any weak limit of 1

t

∫ t
0
δ0S(s)ds is

an invariant subcritical probability measure for Ω. �
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4.2 Ergodicity

In order to �nish the proof of Theorem 4.1, it remains to prove that µ is an extremal
measure in I. This will implies that it is ergodic (see [45] Theorem B52). Assume
µ = αµ1 + (1− α)µ2 with µ1, µ2 ∈ I and α ∈]0, 1[.

There exists tn ↑ ∞ such that 1
tn

∫ tn
0
µ1Sλ(s)ds and 1

tn

∫ tn
0
µ2Sλ(s)ds converge

weakly to γ and γ′ respectively, as t goes to∞. Then γ and γ′ are invariant for the
TASEP(λ). Furthermore, δ0 ≺ αγ + (1− α)γ′ ≺ νλ, where δ0 is the Dirac measure
of the empty con�guration. Since λ < 1

2
, δ0Sλ(t) converges weakly to νλ. Hence

αγ + (1 − α)γ′ = νλ and �nally, by extremality of νλ, γ = γ′ = νλ which proves
that both 1

t

∫ t
0
µ1Sλ(s)ds and 1

t

∫ t
0
µ2Sλ(s)ds converge to νλ as t goes to ∞.

Now, by hypothesis (4.1), we have for i = 1, 2, µi = µiS(t) ≺ 1
t

∫ t
0
µiSλ(s)ds.

Letting t go to ∞, we get µi ≺ νλ. Finally, using the unicity of an subcritical
invariant probability measure, we have µ1 = µ2 = µ which proves that µ is extremal.

4.3 Law of large numbers

In this section, we consider the process (ηt)t>0 with generator Ω starting from the
unique subcritical invariant probability measure µ∞. However, the main result
of this section is still true when we start from any subcritical measure or, more
generally, any measure in the domain of attraction of µ∞.

Let Nt be the number of particles entering the system between times 0 and t
and N ′

t be the number of particles which have jumped throw the edge 〈R,R + 1〉
between times 0 and t. We have for all t > 0,

N ′
t −R 6 Nt 6 N ′

t +R.

Theorem 4.3. Almost surely

Nt

t
−→
t→∞

j∞ := µ∞{η : η(R) = 1, η(R + 1) = 0}.

Proof. De�ne
It := {s ∈ [0, t] : ηs(R) = 1, ηs(R + 1) = 0}.

By ergodicity, 1
t

∫ t
0
1ηs(R)=1,ηs(R+1)=0ds converges almost surely to j∞. Furthermore,

N ′
t = ](NR,R+1 ∩ It). Now, doing the same proof as the one of Proposition 3.4 in

Chapter 3, we get N ′
t/t, and also Nt/t, converge almost surely to j∞. �



Chapter 5

Metastability and speci�cations

5.1 Introduction

In this chapter, we focus on the opposite aspect of the preceding chapters. A natural
question is to �nd a complex source for which the system's behavior is qualitatively
di�erent from the behavior of the classic TASEP. The goal is then to construct a
process with a phase transition when the creation rate is small, which means that
the distribution of the system, as the time goes to in�nity, still depends on the
initial con�guration. According to the main result of Chapter 4, it is necessary to
have a long range source of particles.

A similar problem is that of the speci�cations about the uniqueness of Gibbs
measures. For this model, Bramson and Kalikow have proposed an example for
which this uniqueness does not hold [13]. This example gives a natural candidate
for our problem.

We start, in Section 2, by giving a description of the speci�cation model. We
also describe the example found by Bramson and Kalikow for which there are more
than one Gibbs measure. In the third section, we study a TASEP on Z+ with two
types of particle. Contrary to previous chapters, for this process, all particles have
the same priority. The mechanism of creation is similar to the one given by the
Bramson and Kalikow example. In the last section, we look at a model that is a
mean �eld version of the original question.

5.2 The speci�cations problem

Let A be a �nite alphabet and let P(A) be the set of probability distributions on
A.

De�nition 5.1. A speci�cation (also known as g-function) is a measurable function
g from AN to P(A). It is said regular if there exists some ε > 0 such that for every
x ∈ AN, g(x) > ε.

A Gibbs measure for a speci�cation g is a probability measure µ on AZ such
that

69
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• µ is shift-invariant;

• if (xn)n∈Z is distributed according to µ, then for every i ∈ Z and a ∈ A,

µ(xi = a|xi−1, xi−2, . . . ) = gxi−1,xi−2,...(a). (5.1)

Assume that g has range 1, i.e., that gx−1,x−2,... depends only on x−1. If µ is a
probability measure on AZ satisfying (5.1) and if (xn)n∈Z is distributed according
to µ, then (xn)n∈Z is a Markov process. Hence, in this case, a Gibbs measure is
an invariant measure and reciprocally. It is well known that if the Markov chain is
ergodic, then it admits a unique Gibbs measure.

For more general cases, the existence of a Gibbs measure is ensured when g is
continuous or if g de�nes a monotone Markov chain. For the question of uniqueness
we have to assume that g is regular.

For k > 1, de�ne the variation of g at distance k of g by

vark(g) := sup{||gx − gy|| : x1 = y1, . . . , xk = yk}. (5.2)

We can remark that the continuity of g is equivalent to the condition that vark(g) →
0 as k goes to in�nity. An old result of Keane and Walter [34, 55] is the following:

Theorem 5.1. If (vark(g))k>1 is summable, then g admits a unique Gibbs measure.

However, the continuity is not su�cient to ensure the uniqueness as it was
proved by Bramson and Kalikow :

Theorem 5.2 ([13]). There exists a continuous regular speci�cation that admits
multiple Gibbs measures.

Berger, Ho�man and Sidoravicius [8] have then construct a counter-example for
which the variation of g is in `p for every p > 2.

We now explain the idea of this counter-example. Let A := {0, 1} and ε > 0.
Let N be some random variable on N. Given (xi)i<0, de�ne the random variable:

W (x) :=


1− ε if

∑N
i=1 x−i >

N
2
,

1
2

if
∑N

i=1 x−i = N
2
,

ε if
∑N

i=1 x−i <
N
2
.

(5.3)

Then the probability distribution gx−1,x−2,... is given by

gx−1,x−2,...(1) = E(W (x)). (5.4)

In [13], Bramson and Kalikow prove that if the distribution ofN is su�ciently heavy
tailed, then the process starting from xi = 1 for every i < 0 has an asymptotic
density greater than 1

2
. This implies, by symmetry, that there are at least two

Gibbs measures.
In the next section, we use this idea to construct a TASEP on N with two types

of particles, such that, for every creation rate, there are multiple invariant measures.
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5.3 The bicolor-process

Let us consider the state space X := {0, B,R}N. A con�guration ξ ∈ X describes
the presence or the absence in each site x ∈ N of a blue-particle (if ξ(x) = B) or a
red-particle (if ξ(x) = R). Fix ε ∈ (0, 1

2
).

We start with some notation. For η ∈ X and n ∈ N∗, let Nn(ξ), resp. Bn(ξ),
Rn(ξ), be the number of particles, resp. blue-particles, red-particles, in the box
{1, . . . , n} in the con�guration ξ:

Nn(ξ) :=
∑n

i=1 1ξ(i) 6=0,

Bn(ξ) :=
∑n

i=1 1ξ(i)=B,

Rn(ξ) :=
∑n

i=1 1ξ(i)=R.

Then, de�ne bn(ξ), resp. rn(ξ), as the relative proportion of blue-particles, resp. of
red-particles, in this box:

bn(ξ) :=

{
Bn(ξ)
Nn(ξ)

if Nn(ξ) 6= 0,

0 otherwise,

rn(ξ) :=

{
Rn(ξ)
Nn(ξ)

if Nn(ξ) 6= 0,

0 otherwise.

Let (pj)j>1 be a decreasing sequence of positive numbers such that

∞∑
j=1

pj = 1 and ∀k > 1,
∑
j>k

pj > 2pk.

An example of such a probability is given by pk := crk, where r ∈ (2
3
, 1) and

c := 1−r
r
. Finally, let (mj)j>1 be an increasing sequence of integers and consider

the random variable N with distribution given by

P [N = mj] = pj,∀j > 1.

Let (Ni)i>1 be an i.i.d. sequence of random variables with the same distribution as
N and for each ξ ∈ X, i > 1:

Wi(ξ) :=


1− ε if bNi

(ξ) > rNi
(ξ),

ε if bNi
(ξ) < rNi

(ξ),
1
2

if bNi
(ξ) = rNi

(ξ).

In this section, we consider the bicolor-process (ξt)t>0 on N de�ned as follows.
The process (1ξt(x) 6=0)x>0 is a TASEP(λ) on N. Let N = {0 < t1 < t2 < . . .} be a
Poisson point process with parameter λ. At each time ti, if the site 0 is free, then
we create a particle at this site, otherwise we do nothing. If a particle is created,
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its color is chosen independently of everything and is blue with probability Wi(ξti)
and red with probability 1−Wi(ξti).

For ξ ∈ X we denote by Pξ the distribution of the process starting from the
con�guration ξ. If ξ is random and has distribution µ, we denote the distribution
of the process by Pµ.

It will be useful to introduce the following partial order on X. For ξ1, ξ2 ∈ X,
we note ξ1 ≺ ξ2 if for every x > 0

• 1ξ1(x) 6=0 = 1ξ2(x) 6=0;

• 1ξ1(x)=B 6 1ξ2(x)=B.

The bicolor-process is monotone in the following sense. If ξ1 ≺ ξ2, then we can
couple (using the standard coupling) two bicolor-processes starting from ξ1 and ξ2

in such a way that almost surely for every t > 0, ξ1
t ≺ ξ2

t .
Let µ(B) be the product product probability measure such that for every x > 0,

µ(B){η : η(x) = B} = λ and µ(B){η : η(x) = 0} = 1 − λ. De�ne similarly µ(R) for
red-particles. The aim of this section is to prove that the limit distributions of the
bicolor-process (which exist by monotonicity) di�er if the process starts from µ(B)

or from µ(R). In order to show this fact, our strategy is to compare the bicolor-
process with a TASEP with �nite range boundary mechanism with a creation rate
of blue-particles greater than the one of red-particles. For that, we will use the
methods of [13] on speci�cations.

5.3.1 Auxiliary processes

In this section, we de�ne an auxiliary process with �nite range boundary mechanism
and we obtain estimates on the density of blue-particles for the stationary process
associated. Fix k > 1. For every ξ ∈ X, let

W k
i (ξ) :=


Wi(ξ) if Ni ∈ {m1, . . . ,mk−1},
ε if Ni = mk,
1− ε if Ni ∈ {mk+1,mk+2, . . .},

and

W̃ k
i (ξ) :=

{
Wi(ξ) if Ni ∈ {m1, . . . ,mk−1},
1
2

otherwise.

We de�ne the processes (ξkt )t>0, resp. (ξ̃kt )t>0, using the random variables (W k
i )i>1,

resp. (W̃ k
i )i>1, as we did for the process (ξt)t>0 with the random variables (Wi)i>1.

We call the process (ξkt )t>0 the k-process. Both processes (ξkt )t>0 and (ξ̃kt )t>0 are
monotone. Hence, starting from the distribution µ(B), the law of the processes at
time t converges weakly to invariant measures µk,(B)

∞ and µ̃k,(B)
∞ . Similarly, if they

start from µ(R), the law of the processes converges weakly to invariant measures
µ
k,(R)
∞ and µ̃k,(R)

∞ . Using Theorem 4.1 of Chapter 4, we have µk,(B)
∞ = µ

k,(R)
∞ := µk∞

and µ̃k,(B)
∞ = µ̃

k,(R)
∞ := µ̃k∞ and both stationary processes (ξkt )t>0 and (ξ̃kt )t>0 with
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marginals µk∞ and µ̃k∞ respectively are ergodic. The process (ξ̃kt )t>0 is symmetric
in blue/red-particles, hence so is µ̃k∞. We start with two limit theorems for this
symmetric process and we deduce the estimates we need for the k-process. For a
probability measure µ on X, we write µ ∼ νλ if (1η(x) 6=0)x>0 has distribution νλ

when η has distribution µ.

Let Bk
t be the number of blue-particles created between times 0 and t for the

process (ξkt )t>0. Similarly de�ne Rk
t for the number of red-particles and Nk

t :=
Bk
t +Rk

t for the number of particles. De�ne also the analogous numbers B̃
k
t , R̃

k
t and

Ñk
t for the process (ξ̃kt )t>0.

Lemma 5.1. If µ ∼ νλ, then

Pµ

[
B̃k
t

t
−→
t→∞

λ(1− λ)

2

]
= 1.

Proof. By ergodicity and using the Proposition 3.4 of Chapter 3, under Pµ̃k
∞ , B̃k

t /t
converges almost surely to

λ
k−1∑
i=1

piE
µ̃k
∞

[(
(1− ε)1bmi (ξ)>

1
2

+ ε1bmi (ξ)<
1
2

+
1

2
1bmi (ξ)=

1
2

)
1ξ(0)=0

]
+
λ(1− λ)

2

∞∑
i=k

pi.

But by symmetry of the colors for µ̃k∞ and since µ̃k∞ ∼ νλ, this is equal to λ(1−λ)
2

.
Now, if µ ∼ νλ, then the process starting from µ converges weakly to µ̃k∞. This

easily implies

Pµ

[
B̃k
t

t
−→
t→∞

λ(1− λ)

2

]
= 1.

�

Lemma 5.2. Under µ̃k∞, Bm(ξ)/m converges almost surely to λ
2
as m goes to

in�nity.

Proof. Let xt be the position of the left-most initial particle, i.e., the left-most
particle at time 0. xt − x0 is a Poisson process with parameter 1 − λ, hence xt/t
converges to 1− λ almost surely as t goes to in�nity. By de�nition

Bt = Bxt−1.

Hence Bxt/xt converges to
λ
2
almost surely which implies

lim inf
m→∞

Bm

m
>
λ

2
.
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But since

lim sup
m→∞

Bm

m
= λ− lim inf

m→∞

Rm

m

and since Bm and Rm have the same distribution, we get that almost surely

lim sup
m→∞

Bm

m
6
λ

2
.

Finally, almost surely

lim
m→∞

Bm

m
=
λ

2
.

�

Now we compare the k-process with the symmetric process (ξ̃kt )t>0. Take ξ ∈ X.
For every i > 1

E
(
W k
i (ξ)− W̃ k

i (ξ)
)

= (
1

2
− ε)(

∞∑
i=k+1

pi − pk),

> (
1

2
− ε)pk := γk > 0.

(5.5)

Hence, if we modify the process (ξ̃kt )t>0 in such a way that at each time we create a
red-particle, we re-sample its color and the particle becomes blue with probability
γk, then by (5.5) we can �nd a monotone coupling between this modi�ed process
and (ξkt )t>0. This gives the following corollary.

Corollary 5.1. If µ ∼ νλ, then

Pµ

[
lim inf
t→∞

Bk
t

t
> λ(1− λ)

(
1

2
+ γk

)]
= 1.

As we done for Lemma 5.2 with Lemma 5.1, we deduce, in the following lemma,
an estimate on the stationary occupancy of blue-particle from the estimate on the
creation rate obtained in the above corollary. We get an estimate on the mixing
time for the k-process.

Lemma 5.3. For every ε′ > 0, there exists t0 > 0 such that for all t > t0, if
m = b(1− λ)tc, then for all µ ∼ νλ

Pµ

[
bm(ξkt ) <

1

2
(1 + γk)

]
6 ε′. (5.6)

Proof. Fix δ, ε′ > 0. By monotonicity, it su�ces to show the result for µ = µ(R).



5.3. THE BICOLOR-PROCESS 75

Let xt be the position of the left-most initial particle at time t. Since the process
is stationary, xt − x0 is a Poisson process with parameter 1 − λ. Hence, using the
Corollary 5.1, there exists t0 such that

Pµ

[
∃t > t0 :

Bk
t

t
<

(
1

2
+ δ′

)
λ(1− λ) (1 + γk) or

∣∣∣xt
t
− (1− λ)

∣∣∣ > δ

]
6
ε′

2
,

(5.7)
where 0 < δ′ < [2γk(1 + γk)]

−1.
Let m0 := b(1− λ)t0c and denote by At0 the event appearing in (5.7). Without

loss of generality we can assume δ small enough and then m0 large enough (t0/m0

is bounded from above) so that

1

m0

+ δ
t0
m0

6
δ′

2
λ (1 + γk) , (5.8)

and

Pµ
[
Nk
m0

(ξkt0) > (1 + δ′)λm0

]
= P [B(m0, λ) > (1 + δ′)λm0] 6

ε′

2
. (5.9)

Under the event cAt0∣∣Bm0(ξ
k
t0
)−Bk

t0

∣∣ =
∣∣∣Bm0(ξ

k
t0
)−Bk

xt0−1(ξ
k
t0
)
∣∣∣ 6 |m0 + 1− xt0| 6 1 + δt0.

Hence using (5.8) ∣∣∣∣Bm0(ξ
k
t0
)

m0

−
Bk
t0

m0

∣∣∣∣ 6 δ′

2
λ (1 + γk) . (5.10)

Also
Bk
t0

m0

=
Bk
t0

t0

t0
m0

>

(
1

2
+ δ′

)
λ (1 + γk) . (5.11)

Using (5.10) and (5.11)

Bm0(ξ
k
t0
)

m0

>
λ

2
(1 + δ′) (1 + γk) . (5.12)

Finally, if the event appearing in (5.9) does not hold, then

bm0(ξ
k
t0
) =

Bm0(ξ
k
t0
)

m0

m0

Nm0(ξ
k
t0)

>
1

2
(1 + γk) .

We get

Pµ

[
bm0(ξ

k
t0
) <

1

2
(1 + γk)

]
6 ε′.

The computations above are also valid for any t > t0 and m = b(1 − λ)tc which
�nishes the proof. �
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5.3.2 Comparison with the k-process

We now describe more explicitly how to choose the sequence (mk)k>1. We de�ne
it recursively as follows: given mj = b(1 − λ)tjc for j = 1, . . . , k − 1, we choose
mk = b(1− λ)tkc > mk−1 large enough so that

(i) P
[
B(mk, λ) < λ

2
mk

]
< 3−k−1γk;

(ii) 8tk−1

λγkmk
< 3−k−1γk;

(iii) ∀µ ∼ νλ,Pµ
[
bmk

(ξktk) <
1
2
(1 + γk)

]
< 1

2
3−k−1γk,

where we used the Lemma 5.3 and the fact the k-process does not depends on mj

for j > k for condition (iii).

Lemma 5.4. ∀t > 0,∀k > 1,

Pµ(B)

[
bmk

(ξt) 6
1 + γk

2

]
6 3−kγk. (5.13)

Proof. It su�ces to show that if µ is a probability measure on X satisfying

• µ ∼ νλ;

• for every k > 1, µ
{
ξ : bmk

(ξ) 6 1+γk

2

}
6 3−kγk;

then for every k > 1,

Pµ

[
bmk

(ξtk) 6
1 + γk

2

]
6 3−kγk.

Indeed, applying this result iteratively and using monotonicity, we get the result
for all t > 0.

Fix k > 1 and let

G := {ξ ∈ X : ∃j > k, bmj
(ξ) 6

1 + γj
2

}.

By hypothesis

µ{G} 6
∑
j>k

3−jγj 6
3

2
3−k−1γk, (5.14)

since the sequence (γk)k is non-increasing.
Using the standard coupling, we consider (ξt, ξ

k
t )t>0 a bicolor-process and a

k-process starting both from µ. Let C be the event that for all t ∈ [0, tk] and
x ∈ {0, . . . ,mk}

1ξt(x)=B > 1ξk
t (x)=B,

i.e., the event that the processes stay ordered up to time tk. The event C is realized
if for all j > k, the number of blue-particles that leave the box {1, . . . ,mj} by time
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tk plus the number of red-particles created by time tk is less than
γj

2
Nmj

(ξ0). Hence,
using (5.14), (i), (ii) and the Chebychev inequality

Pµ [cC] 6 µ {G}+
∑
j>k

µ

{
Nmj

(ξ) <
λ

2
mj

}
+
∑
j>k

P

[
N(tk) >

λ

4
γjmj

]
,

6
1

2
3−kγk +

∑
j>k

3−j−1γj +
∑
j>k

8tk
λγjmj

,

6 2.3−k−1γk +
1

2
3−k−1γk,

6
5

2
γk3

−k−1,

(5.15)

where (N(t))t>0 is a Poisson process with intensity 2 (greater than the number of
creations plus the number of leaves of the box by time t).

Finally, using (5.15) and (iii)

Pµ

[
bmk

(ξtk) 6
1 + γk

2

]
6 Pµ [cC] + Pµ

[
bmk

(ξktk) 6
1 + γk

2

]
,

6 3−kγk.

�

5.3.3 Consequences

Theorem 5.3. The invariant probability measure µ(B)
∞ is ergodic and Bt/t converges

almost surely to a constant τ (B) > λ(1− λ)/2 almost surely w.r.t. Pµ∞.
Consequently, µ(B)

∞ 6= µ
(R)
∞ .

Proof. As in Chapter 4, the ergodicity of µ(B)
∞ is a consequence of its extremality in

the convex compact set of the stationary probability measures of the bicolor-process.
Indeed, assume that µ(B)

∞ = (1 − α)µ0 + αµ1 where α ∈ (0, 1) and µ0, µ1 are
invariant probability measures for the bicolor process. Denote by ν0, ν1 the dis-
tributions of (1η(x) 6=0)x>0 when η has distribution µ0 and µ1 respectively. Since

µ
(B)
∞ ∼ νλ

νλ = (1− α)ν0 + αν1.

Furthermore, ν0 and ν1 are invariant for the TASEP(λ) and νλ is extremal for this
process (see for example [44]). Hence ν0 = ν1 = νλ which implies that µ0 ∼ νλ and
µ1 ∼ νλ.

But µ(B)
∞ is maximal in the sense that for every µ ∼ νλ invariant for the bicolor-

process, we can couple two con�gurations ξ with distribution µ
(B)
∞ and ξ′ with

distribution µ in such a way that, almost surely, ξ′ ≺ ξ. This property implies that
µ

(B)
∞ = µ0 = µ1.



78 CHAPTER 5. METASTABILITY AND SPECIFICATIONS

By the ergodic Theorem, Bt/t converges almost surely to a constant τ (B) under

Pµ
(B)
∞ . Again by ergodicity, if we let

Tt :=

∫ t

0

1∀k>1,bmk
(ξs)>

1+γk
2

ds,

then Tt/t converges almost surely to

µ(B)
∞

{
ξ : ∀k > 1, bmk

(ξ) >
1 + γk

2

}
> 1− 1

2
γ1 >

1

2
,

by Lemma 5.4. Finally, using the same techniques as in the proof of Proposition
3.4 of Chapter 3, we get

τ (B) > λ(1− λ)

[
(1− ε)µ(B)

∞

{
ξ : ∀k > 1, bmk

(ξ) >
1 + γk

2

}
+εµ(B)

∞

{
ξ : ∃k > 1, bmk

(ξ) 6
1 + γk

2

}]
,

>
λ(1− λ)

2
.

Now, by symmetry, Bt/t converges almost surely to a constant τ (R) < λ(1−λ)/2

under Pµ
(R)
∞ . Hence µ(B)

∞ 6= µ
(R)
∞ . �

As we did for Lemma 5.2, we can deduce from this the following corollary.

Corollary 5.2. Under µ(B)
∞ , lim infm→∞Bm/m > λ/2.

5.4 A toy-model

In this section, we try to break the geometry of the previous model, in order to be
able to make explicit computations.

Let α ∈ [0, 1]. For n ∈ N, let Nn = 2 + bnαc. We consider a generalized
Pòlya urn, containing Nn balls at the end of the step n, and such that the initial
distribution of the urn is one ball of each color blue and red. Then to proceed to
step n+ 1,

• We draw one ball uniformly from the urn and we denote by C its color. The
ball is then placed back in the urn.

• We add an other ball with color C in the urn.

• If Nn+1 = Nn, then we draw again one ball uniformly from the urn but we
don't place it back in the urn.
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Remark that, by construction, Nn+1 − Nn ∈ {0, 1}. We denote by Bn (resp. Rn)
the number of blue (resp. red) balls at step n. Hence, for all n ∈ N, Bn+Rn = Nn.

Comparing with the previous model, the urn plays the role of the particles �seen
by the source� when the nth particle is created. Let β > 0. If N has distribution
that satis�es

P [N > n] ∼ n−β, as n goes to in�nity,

and if (Nk)k∈N are i.i.d. with the same distribution as N , then max(N1, . . . , Nn)
behaves like n1/β. Hence, the parameter α in the mean-�eld version is the inverse
of the parameter β of the distribution of N .

If α = 1, this model is exactly the Pòlya urn model. In this case, we know that
the proportion of blue balls Bn/Nn converges almost surely to a random variable
with Beta distribution.

If α = 0, then the box will be mono-color eventually. Hence, Bn/Nn converges
almost surely to a random variable with Bernoulli distribution.

For the intermediate models, we get the following result:

Theorem 5.4. Bn/Nn converges almost surely to a random variable which has
Bernoulli distribution if α < 1

2
and has a distribution with support [0, 1] if α > 1

2
.

Proof. We start by proving the almost sure convergence. Let A be the subset of N
of times such that the size of the box increases, i.e.

n ∈ A⇔ Nn+1 = Nn + 1.

By de�nition of the model

E [Bn+1|Bn] = E [Bn+1 −Bn|Bn] +Bn,

= Bn

(
1

Nn

1n∈A + 1

)
.

(5.16)

Let

Mn = Bn

n−1∏
k=0

(
1

Nk

1k∈A + 1

)−1

.

Using (5.16), (Mn) is a bounded martingale, hence Mn converges almost surely to
some random variable. Remarking that

n−1∏
k=0

(
1

Nk

1k∈A + 1

)
=
Nn−1 + 1

2
,

we get the �rst part of the result. We denote by X the limit of Bn/Nn.
Assume now that α < 1

2
. If n /∈ A, then almost surely:

P [Bn+1 = Bn + 1|Bn] = P [Bn+1 = Bn − 1|Bn]

=
1

2
(1−P [Bn+1 = Bn|Bn]) =

BnRn

Nn(Nn + 1)
.

(5.17)
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Hence the random variable Bn+1 −Bn has a symmetric distribution. Furthermore,
BnRn/Nn(Nn + 1) converges almost surely to X(1−X) as n goes to in�nity.

Assume that the event {X /∈ {0, 1}} has positive probability. Then, on this
event,

1√
X(1−X)n

n−1∑
k=0

(Bk+1 −Bk)1k/∈A

converges in distribution to N (0, 1).
On the other side, the sum of non-symmetric terms

n−1∑
k=0

(Bk+1 −Bk)1k∈A

is at most nα. Hence, on the event X /∈ {0, 1}, since

Bn

nα
=

1

nα

(
n−1∑
k=0

(Bk+1 −Bk)1k/∈A +
n−1∑
k=0

(Bk+1 −Bk)1k∈A + 1

)
, (5.18)

Bn/n
α is unbounded with probability 1 which is a contradiction. Finally, by sym-

metry, X is a Bernoulli random variable with parameter 1/2.
In the case α > 1

2
, with probability 1, the symmetric parts of the process

n−1∑
k=0

(Bk+1 −Bk)1k/∈A

is less than
√
n for n large enough. Let

Xn :=
n−1∑
k=0

(Bk+1 −Bk)1k∈A.

Using (5.18),

lim
n→∞

Xn

nα
= X.

Fix some (large) n0 and assume that Xn0/Nn0 ∈ [x, y], where 0 6 x < y 6 1.
We consider two urns of size Nn0 : in the �rst one, we start with dxNn0e blue balls
and we denote by Yk the number of blue balls in this urn at time k > n0; in the
second one, we start with byNn0c blue balls and we denote by Zk the number of
blue balls in this urn at time k > n0. For both urns, at each time k ∈ A, we draw
a ball at random and add a new ball of the same color as in the Pòlya urn and at
each time k /∈ A, we do nothing. In this way, we can couple the processes (Xk)k>n0 ,
(Yk)k>n0 and (Zk)k>n0 in such a way that while Xk/Nk ∈ [x, y], Yk 6 Xk 6 Zk. But
it is well known that

P

[
∀k > n0, x 6

Yk
Nk

6
Zk
Nk

6 y

]
> 0.

Hence P
[
∀k > n0, x 6 Xk

Nk
6 y
]
> 0 which implies P [X ∈ [x, y]] > 0. �



Appendix A

Survival Probability

A.1 Introduction

The simple exclusion process is an interacting particle system introduced by Spitzer
in 1970 as a model of lattice gas. It became a central model of statistical mechanics
out of equilibrium since it combines a very simple microscopic description (which
allows the derivation of exact results) and very complex macroscopic properties
(phase transitions, shocks, long-range correlations, etc.). It is de�ned as follows.
On a given graph, particles are arranged on sites according to the exclusion rule: At
a given time, there is at most one particle in each site; each of these particles waits
for an exponential time with parameter 1 and then chooses one of its neighboring
site, according to some probability distribution, and tries to jump to it. The jump
occurs if and only if the site is empty, i.e. if it respects the exclusion rule.

More speci�cally, let S be a countable set and consider transition probabilities
(p(x, y))x,y∈S of a discrete-time Markov chain on S. The exclusion process on S is
the Feller process on X := {0, 1}S with generator Ω de�ned on every cylindrical
function f : X → R by

Ωf(η) :=
∑
x,y∈S

p(x, y)η(x)(1− η(y)) [f(ηx,y)− f(η)],

where ηx,y is the result of a swap between sites x and y:

ηx,y(z) :=


η(z) if z /∈ {x, y},
η(y) if z = x,
η(x) if z = y.

In terms of a particle system, each particle tries to perform a continuous-time
random walk on S with transition rates (p(x, y))x,y∈S, interacting with the others
through the exclusion rule. The resulting process (ηt)t>0 is a Markov process on
X. A site x ∈ S is said to be occupied (resp. empty) at time t if ηt(x) = 1 (resp.
ηt(x) = 0). If p(., .) is doubly stochastic, then the product Bernoulli measure νλ

81



82 APPENDIX A. SURVIVAL PROBABILITY

with constant density λ ∈ [0, 1] is an invariant probability for the exclusion process
(see [44]).

A convenient and graphical way to construct the exclusion process is using
the so-called Harris system. Consider a family of independent Poisson processes
{Nx,y : x, y ∈ S}, where Nx,y has intensity p(x, y). If t ∈ Nx,y, and if at time t
there is a particle at site x, then it attempts to jump to y. The jump is realized if
and only if site y is empty. This construction is easily seen to be equivalent to the
one using generator theory (see [44]).

Consider two initial con�gurations η1 and η2 such that η1 6 η2, i.e., such
that η1(x) 6 η2(x) for all x ∈ S. Performing the previous graphical construction
from both using the same Poisson processes (Nx,y), one obtains a coupled process
(η1
t , η

2
t )t>0 in such a way that η1

t 6 η2
t for all t > 0 with probability 1. This coupling

is called the standard coupling. De�ne the two-species process on {0, 1, 2}S by

ηt(x) :=


0 if η1

t (x) = η2
t (x) = 0,

1 if η1
t (x) = η2

t (x) = 1,
2 if η1

t (x) = 0 and η2
t (x) = 1

for all x ∈ S and t > 0. Particles labeled 1 are named �rst-class particles and
particles labelled 2, second-class particles. The reason for this terminology is the
following remark: If a �rst-class particle tries to jump to a site occupied by a
second-class particle, then the particles exchange positions, whereas if a second-
class particle tries to jump on a site occupied by a �rst-class particle, then the
particles do not move. In other words, �rst-class particles have priority on second-
class particles.

The motion of second-class particles for the exclusion process gives a lot of
information about the process itself: At the microscopic level, second-class particles
describe the discrepancies between two or more coupled exclusion processes; at the
macroscopic level, they can be used to localize the propagation of a shock [21].
Moreover, since the presence of second-class particles encodes the way in which two
coupled systems di�er, information about their survival has to do with the speed
of convergence to equilibrium of the initial process.

In this paper, we are interested in the TASEP (Totally Asymmetric Simple
Exclusion Process) on N where

p(x, y) =

{
1 if y = x+ 1,
0 otherwise.

In order to make the long-time behavior of the model non-trivial, we add a Poisson
source at the boundary, as follows. Let λ ∈ [0, 1] and consider the Feller process on
X = {0, 1}Z+ , denoted by TASEP(λ), with generator

Ωλf(η) := λ(1− η(0)) [f(η0)− f(η)] + Ωbulkf(η),
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for every cylindrical function f : X → R; here,

Ωbulkf(η) :=
∞∑
x=0

η(x)(1− η(x+ 1)) [f(ηx,x+1)− f(η)] ,

and

η0(y) :=

{
η(y) if y 6= 0,
1 if y = 0.

(η0 corresponds to adding a particle at the origin if there is not one already.)
Consider the initial state in which there is a second-class particle at site 0 and

every positive site contains a �rst class particle with probability λ independently
of the others. Let (ηt)t>0 the two-species process starting from this con�guration
and denote by X(t) the position of the second-class particle at time t with the
convention X(t) := −1 if the particle has died, i.e., if it has left the system. This
can only happen when a �rst class particle is created while a second-class particle
was at site 0. If the second-class particle never leaves the system, we say that it
survives.

We are interested in the exact value of the probability p(λ) that the second-class
particle survives; we denote by S this event. Using the result of [24], it is easy to
see that if λ > 1

2
, then p(λ) = 0; as in [22], this probability can be viewed as the

coupling probability of processes η1 and η2. Our main result is the following:

Theorem A.1. For all λ ∈ [0, 1], p(λ) = 1−2λ
1−λ 1λ< 1

2
.

The following remark is rather surprising: If we consider a random walk on
Z starting from 0, and jumping to the right (resp. to the left) with probability
1− λ (resp. λ), then the probability that the walker never visits site −1 is equal to
p(λ). However, the trajectory of the second-class particle is not the same as that
of the walker: Indeed, the �uctuations of X(t) are of order t2/3 (see [6]), which says
that the motion of a second-class particle in a stationary TASEP is super-di�usive.
Furthermore, the process seen from the position of the second-class particle is not
stationary. We were not able to get an intuition of this coincidence.

The reason why we are studying this particular survival probability comes from
our previous paper [52], where it appears in the statement of a law of large numbers.
More precisely, in [52] we consider the two-species process for which the rate of
creation of second-class particles (at site 0) is ε > 0 if site 0 is empty and site 1
contains a particle, whatever its class is, and 0 otherwise. If the process starts from
the empty con�guration, and if Nt denotes the number of particles in the system
at time t, we proved that Nt/t converges almost surely to a constant and that the
limit is equal, at the �rst order in ε, to

λ(1− λ)(1 + q(λ)ε) + o(ε)

where q(λ) := P [S|η0(1) = 1]. A corollary of the proof of the main theorem is the
exact value of q(λ):
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Corollary A.1. For all λ ∈ [0, 1], q(λ) = (1− 2λ)1λ< 1
2
.

A few others exact computations involving second-class particles are possible;
we now describe some of them. Let p ∈ (1

2
, 1], ρ ∈ [0, 1] and λ ∈ [0, 1] and consider

the one-dimensional ASEP (Asymmetric Simple Exclusion Process) on S = Z with
transition probabilities

p(x, y) =


p if y = x+ 1,

1− p if y = x− 1,
0 otherwise.

We start from the con�guration with the product distribution with density ρ on
Z∗
− and λ on Z∗

+ of �rst class particles, and with a second-class particle at site 0.
Denote by X(t) the location of this particle at time t. If ρ 6 λ, Ferrari, Kipnis and
Saada [24] proved that, almost surely, X(t)/t converges to 2p−1−λ−ρ. In the case
ρ > λ and p = 1, Ferrari and Kipnis [23] obtained the convergence in distribution
of X(t)/t to the uniform distribution on [1 − 2ρ, 1 − 2λ]. Then, Mountford and
Guiol [48] proved this convergence is almost sure.

In a di�erent setup, consider the two-species process starting from the con�gu-
ration

η(x) =


1 if x < 0,
2 if x ∈ {0, 1},
0 if x > 1.

Ferrari et al. [22] proved that the probability that the two second-class particles
collide (i.e., that one of them tries to jump on the other) is equal to (1+p)/3p. They
also proved that this probability becomes (1 + 2p2)/6p2 if the process starts from
η1,2 instead of η. These probabilities can be interpreted as coupling probabilities of
two ASEPs starting from

η1(x) =

{
1 if x 6 0,
0 if x > 0,

and

η2(x) =

{
1 if x < 0 or x = 1,
0 if x = 0 or x > 1,

for the �rst probability and from (η1, η2
1,2) for the second probability.

The plan of the article is the following. In Section A.2, we study the survival
probability of a second-class particle in a TASEP on {1, . . . , N}. (In this case,
we say that a particle survives if it leaves the system from site N .) Denoting by
PN(η) the probability of survival when the process starts from the con�guration η,
we obtain recursion relations for the (PN(η))N,η for all η with exactly one second-
class particle. This allow us to compute the probability of survival if the process
starts from the product Bernoulli distribution with parameter λ on {2, . . . , N} and
a second-class particle at site 1. In Section A.3, we compute the limit, as N goes
to in�nity, of the probability obtained in Section A.2 and we show that this limit
is the survival probability in the in�nite volume.
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A.2 Finite sized systems

A.2.1 A recursion relation

Let λ ∈ [0, 1] and N > 1. We de�ne the two state-spaces XN and YN by:

XN := {0, 1}N ,

YN := {η ∈ {0, 1, 2}N :
N∑
x=1

1η(x)=2 = 1}.

Consider the multi-type TASEP(λ) with generator:

ΩNf(η) := λ1η(1) 6=1 [f(η1)− f(η)]

+
N−1∑
x=1

[
1η(x)=1,η(x+1)6=1 + 1η(x)=2,η(x+1)=0

]
[f(ηx,x+1)− f(η)]

+ (1− λ)1η(N) 6=0 [f(ηN)− f(η)] ,

(A.1)

where

η1(y) =

{
η(y) if y 6= 1,
1 if y = 1,

ηN(y) =

{
η(y) if y 6= N,
0 if y = N,

ηx,x+1(y) =


η(y) if y /∈ {x, x+ 1},
η(x+ 1) if y = x,
η(x) if y = x+ 1.

For an initial con�guration η ∈ YN , we are interested in the probability that the
second-class particle leaves the system from the right (i.e., from the site N) instead
from the left (i.e., from the site 1). If it does, we say that the particle survives;
otherwise, we say that it dies.

Notation. In the sequel, we will use the shorthand 0a (resp. 1a) to denote a
sequence of a empty sites (resp. a sites occupied by a �rst class particle).

Let η ∈ YN+1 be a con�guration for which there exists x0 ∈ {1, . . . , N +1} such
that η(x0) = 0. De�ne the con�guration η0 ∈ YN in the following way:

• if η = ξ01k with 0 6 k 6 N − 1, ξ ∈ YN−k, then η0 := ξ1k;

• if η = ξ01k21l with k, l > 0, k + l 6 N − 1, ξ ∈ YN−k−l−1, then η0 := ξ21k+l.

We denote by η′ the con�guration of {0, 1, 2}N obtained by taking out the site
N + 1, i.e., η′(x) = η(x) for all x ∈ {1, . . . , N}. Note that η′ ∈ YN if η(N + 1) 6= 2
and η′ ∈ XN otherwise.
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Finally, we will denote by PN(η) the probability that the second class particle
survives if the process starts from the con�guration η ∈ YN . Furthermore, if η ∈ XN

we de�ne by convention PN(η) := 1.

Theorem A.2. The family (PN(η))η∈YN
satis�es the followings recursion relations:

1) P1(2) = 1− λ,

2) ∀N > 1, ∀η ∈ YN+1 with at least one empty site:

PN+1(η) = λPN(η0) + (1− λ)PN(η′),

3) ∀N > 1, ∀η ∈ YN+1 with no empty site:

PN+1(η) = (1− λ)PN(η′).

Proof. First, remark that the equations 1) to 3) de�ne all the PN(η) for N > 1 and
η ∈ YN . We will prove by induction that the numbers de�ned by these equations
are the probability searched.

For N = 1, the probability of survival is the probability that the second-class
particle jumps before a �rst class particle enter the system. Hence P1(2) = 1− λ.

Let N > 1. For η, ξ ∈ YN , de�ne

q(η, ξ) :=


λ if η(1) = 0 and ξ = η1,
1 if η(x) = 1, η(x+ 1) 6= 1 or η(x) = 2, η(x+ 1) = 0

and ξ = ηx,x+1 for x ∈ {1, . . . , N − 1},
1− λ if η(N) = 1 and ξ = ηN ,

0 otherwise,

the rate to go from the con�guration η to ξ, and

q(η) :=
∑
ξ∈YN

q(η, ξ) + λ1η(1)=2 + (1− λ)1η(N)=2,

the rate of leaving the con�guration η.
By construction of the process, the (PN(η))η∈YN

satisfy the following linear
system:

∀η ∈ YN , q(η)PN(η) =
∑
ξ∈YN

q(η, ξ)PN(ξ) + (1− λ)1η(N)=2. (A.2)

Furthermore, since the matrix associated to this system is irreducibly diagonally
dominant, (PN(η))η∈YN

is the unique solution of (A.2).
Assume now that for all k ∈ {1, . . . , N}, (Pk(η))η∈Yk

satis�es the equations 1)
to 3) and de�ne (Q(η))η∈YN+1

as follows:

Q(η) := λPN(η0) + (1− λ)PN(η′), (A.3)
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if η has at least one empty site, and

Q(η) := (1− λ)PN(η′), (A.4)

otherwise. We will show that this family is solution of (A.2) and hence Q(η) =
PN+1(η) for all η ∈ YN+1. It will be convenient to de�ne the following function:
∀N > 1,∀k ∈ {0, . . . , N},∀ξ ∈ YN ,

Ak(ξ) := λ1ξ(1)=0PN(ξ1) +
k−1∑
x=1

1ξ(x)�ξ(x+1)PN(ξx,x+1),

where we used the priority notation: For all i, j ∈ {0, 1, 2}, we write i � j if and
only if (i = 1 and j 6= 1) or (i = 2 and j = 0). We proceed by splitting the possible
con�guration into several cases which we study separately.

Case I: η = ξ0

We have η0 = η′ = ξ. Let a := ξ(N) = η(N) ∈ {0, 1, 2}. Then q(η) = q(ξ) + λ1a 6=0.
Hence:

q(η)Q(η) = [q(ξ) + λ1a 6=0]PN(ξ),

=
∑
ζ∈YN

q(ξ, ζ)PN(ζ) + (1− λ)1a=2 + λ1a 6=0PN(ξ),

= AN(ξ) + (1− λ)1a=1PN(ξ′0) + (1− λ)1a=2

+ λ1a 6=0PN(ξ),

= AN(ξ) + 1a 6=0 [λPN(ξ) + (1− λ)PN(ξ′0)] .

(A.5)

On the other hand,∑
ζ∈YN+1

q(η, ζ)Q(ζ) = λ1ξ(1)=0Q(ξ10) +
N−1∑
x=1

1ξ(x)�ξ(x+1)Q(ξx,x+10)

+ 1a 6=0Q(ξ′0a),

= AN(ξ) + 1a 6=0 [λPN(ξ) + (1− λ)PN(ξ′0)] ,

= q(η)Q(η).

(A.6)

Case II: η = ξ01k with k ∈ {1, . . . , N − 1}, N > 3

We have η0 = ξ1k and η′ = ξ01k−1. Let a := ξ(N) = η(N) ∈ {0, 1, 2}. Then
q(η) = q(η′) + (1− λ)1k=1 = q(η0) + 1a 6=0. Hence:

q(η)Q(η) = [q(ξ) + λ1a 6=0]PN(ξ),

=
∑
ζ∈YN

q(ξ, ζ)PN(ζ) + (1− λ)1a=2 + λ1a 6=0PN(ξ),

= AN(ξ) + (1− λ)1a=1PN(ξ′0) + (1− λ)1a=2

+ λ1a 6=0PN(ξ),

= AN(ξ) + 1a 6=0 [λPN(ξ) + (1− λ)PN(ξ′0)] .

(A.7)
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On the other hand,

∑
ζ∈YN+1

q(η, ζ)Q(ζ) = λ1ξ(1)=0Q(ξ10) +
N−1∑
x=1

1ξ(x)�ξ(x+1)Q(ξx,x+10)

+ 1a 6=0Q(ξ′0a),

= AN(ξ) + 1a 6=0 [λPN(ξ) + (1− λ)PN(ξ′0)] ,

= q(η)Q(η).

(A.8)

Case III: η = ξ02 with N > 2

The case N = 2 is easy and left to the reader. Assume that N > 3. We have
η′ = ξ0 and η0 = ξ2. Let a := ξ(N − 1) = η(N − 1) ∈ {0, 1}. Then q(η0) = q(η)
and:

q(η)Q(η) = λq(η0)PN(η0) + (1− λ)q(η),

= λ
∑
ζ∈YN

q(η0, ζ)PN(ζ) + λ(1− λ) + (1− λ)q(η),

= λAN−1(ξ2) + λaPN(ξ′21) + λ(1− λ) + (1− λ)q(η).

(A.9)

On the other hand,

∑
ζ∈YN+1

q(η, ζ)Q(ζ) = λ1ξ(1)=0Q(ξ102) +
N−2∑
x=1

1ξ(x)�ξ(x+1)Q(ξx,x+102)

+ aQ(ξ′012),

= λAN−1(ξ2) + λaPN(ξ′21)

+ (1− λ)
[
λ1ξ(1)=0 +

N−2∑
x=1

1ξ(x)�ξ(x+1) + a
]
,

= λAN−1(ξ2) + λaPN(ξ′21) + (1− λ)q(η)

− (1− λ)2,

= q(η)Q(η)− (1− λ).

(A.10)



A.2. FINITE SIZED SYSTEMS 89

Case IV: η = ξ021k with k ∈ {1, . . . , N − 1}, N > 3

We have η′ = ξ021k−1 and η0 = ξ21k. Let a := ξ(N−1−k) = η(N−1−k) ∈ {0, 1},
with a := 0 if k = N − 1. Then q(η) = q(η0) = q(η′) and:

q(η)Q(η) = λq(η0)PN(η0) + (1− λ)q(η′)PN(η′),

= λ
∑
ζ∈YN

q(η0, ζ)PN(ζ) + λ
∑
ζ∈YN

q(η′, ζ)PN(ζ)

+ (1− λ)21k=1,

= λAN−1−k(ξ21k) + (1− λ)AN−1−k(ξ021k−1)

+ λaPN(ξ′21k+1) + λ(1− λ)PN(ξ21k−10)

+ (1− λ)aPN(ξ′0121k−1) + (1− λ)21k>2PN(ξ021k−20)

+ (1− λ)21k=1.

(A.11)

On the other hand,∑
ζ∈YN+1

q(η, ζ)Q(ζ) = λAN−1−k(ξ21k) + (1− λ)AN−1−k(ξ021k−1)

+ aQ(ξ′0121k) + (1− λ)Q(ξ021k−10),

= λAN−1−k(ξ21k) + (1− λ)AN−1−k(ξ021k−1)

+ λaPN(ξ′21k+1) + (1− λ)aPN(ξ′0121k−1)

+ (1− λ)PN(ξ021k−1),

= q(η)Q(η) + (1− λ)PN(ξ021k−1)

− λ(1− λ)PN(ξ21k−10)

− (1− λ)21k>2PN(ξ021k−20)− (1− λ)21k=1,

= q(η)Q(η),

(A.12)

using for the last equality

PN(ξ021k−1) = λPN−1(ξ21k−1) + (1− λ)
[
1k>2PN−1(ξ021k−2) + 1k=1

]
,

= λPN(ξ21k−10) + (1− λ)
[
1k>2PN(ξ021k−20) + 1k=1

]
.

Case V: η = ξ01k21l with k > 1, l > 0, k + l 6 N − 1, N > 3

The computation, very similar to that of the previous case, gives

q(η)Q(η) =
∑

ζ∈YN+1

q(η, ζ)Q(ζ) + (1− λ)1l=0. �

For η ∈ XN , let a(η) be the number of occupied sites, x(η) be the rightmost
occupied site if η 6= 0N and 0 otherwise, and d(η) be the number of empty sites to
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the left of x(η):

d(η) :=

x(η)∑
x=1

(1− η(x)) = x(η)− a(η).

Corollary A.2. For all N > 0, η ∈ XN , PN+1(2η) = (1−λ)a(η)+1Qη(λ) where Qη is
a polynomial of degree d(η) satisfying the followings recurrence relations: ∀η ∈ XN ,

Q∅ = 1,

Qη = Qη′ , if η(N) = 0 or η = 1N ,

Qη = Qη′ + λQη0 , if η(N) = 1.

(A.13)

Proof. It is a straightforward induction using Theorem A.2. �

Corollary A.3. For all N > 0, η ∈ XN+1 such that η(N + 1) = 1:

Qη =
Qη′ −Qη′(1)λd(η)+1

1− λ
.

Proof. If η = 1N+1 then Qη = 1 = Q1N and the equality is veri�ed. We will show
the corollary for other cases by induction. For N = 0, there is only one case for
which η = 1. Since Qη = 1 = Qη′ = Q∅, the equality is again veri�ed.

Assume the corollary true for all η ∈ XN+1 and let η ∈ XN+2 such that η(N +
2) = 1 and η 6= 1N+2. We can write η = ξ1 with ξ 6= 1N+1. Let ξ̃ be the
con�guration of XN obtained from ξ by taking out the last empty site: ξ̃ = ξ′ if
ξ(N+1) = 0 and ξ̃ = ξ0 otherwise. Using the previous proposition Qη = Qξ+λQξ̃1.

Again we distinguish two cases. If ξ(N + 1) = 0,

(1− λ)Qη = (1− λ)Qξ + λ(1− λ)Qξ′1,

= (1− λ)Qξ′ + λQξ′ −Qξ′(1)λd(ξ
′1)+2,

= Qξ −Qξ(1)λd(η)+1,

(A.14)

since Qξ′ = Qξ and d(ξ′1) = d(η)− 1, using Corollary A.2. If ξ(N + 1) = 1,

(1− λ)Qη = (1− λ)Qξ + λ(1− λ)Qξ01,

= Qξ′ −Qξ′(1)λd(ξ)+1 + λQξ0 −Qξ0(1)λd(ξ
01)+2.

(A.15)

Since d(ξ) = d(η) and d(ξ01) = d(η)− 1, we get:

(1− λ)Qη = Qξ′ + λQξ0 − (Qξ′(1) +Qξ0(1))λd(η)+1,

= Qξ −Qξ(1)λd(η)+1,
(A.16)

since Qξ = Qξ′ + λQξ0 , using Corollary A.2.
Finally, in both cases we have (1− λ)Qη = Qη′ −Qη′(1)λd(η)+1. �
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A.2.2 Random con�gurations

Now we consider the probability pN(λ) of survival of a second class particle starting
from site 1 in a system of size N +1 for which the initial con�guration of �rst class
particles in {2, . . . , N + 1} is a random con�guration with the product measure
distribution of density λ. Using Corollary A.2, we obtain the following form for
pN(λ):

pN(λ) =
∑
η∈XN

νλ(η)PN+1(2η),

=
∑
η∈XN

λa(η)(1− λ)N−a(η)(1− λ)a(η)+1Qη(λ),

= (1− λ)N+1
∑
η∈XN

λa(η)Qη(λ).

(A.17)

Proposition A.1. For all N > 0,

∑
η∈XN

λa(η)Qη(λ) = 1 +
N∑
i=1

N + 1− i

i

(
N + i

N + 1

)
λi.

Proof. Let aN(λ) :=
∑

η∈XN
λa(η)Qη(λ). Using Corollary A.3 and splitting the sum

according to the value of η(N + 1),

aN+1 = aN +
∑
η∈XN

λa(η1)
Qη(λ)−Qη(1)λd(η1)+1

1− λ
. (A.18)

Then d(η1) + a(η1) = N + 1, therefore

(1− λ)aN+1 = aN − aN(1)λN+2. (A.19)

Furthermore, the polynomial family (aN(λ))N>0 is the unique family satisfying
(A.19) with a0(λ) = 1.

On the other hand, if bN(λ) is the polynomial on the right-hand side of (A.18),
then for all N > 1

(1− λ)bN+1 − bN

= 1− λ+
N+1∑
i=1

N + 2− i

i

(
N + 1 + i

N + 2

)
λi

−
N+2∑
i=2

N + 3− i

i− 1

(
N + i

N + 2

)
λi

− 1−
N∑
i=1

N + 1− i

i

(
N + i

N + 1

)
λi,
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= (−1 +N + 1−N)λ

+
N∑
i=2

[
N + 2− i

i

(
N + 1 + i

i− 1

)
− N + 3− i

i− 1

(
N + i

i− 2

)
−N + 1− i

i

(
N + i

i− 1

)]
λi

+

[
1

N + 1

(
2N + 2

N + 2

)
− 2

N

(
2N + 1

N + 2

)]
λN+1

+

[
2

(
2N + 2

N

)
−
(

2N + 3

N + 1

)]
λN+2,

= − 1

N + 1

(
2N + 2

N + 2

)
λN+2.

Evaluating the above equation for λ = 1, we get bN(1) = 1
N+2

(
2N + 2

N + 1

)
and

(1− λ)bN+1 − bN = −bN(1)λN+2. Finally, since b0(λ) = 1 and b1(λ) = 1 + λ, for all
N > 0, (1− λ)bN+1 − bN = −bN(1)λN+2 which implies that bN(λ) = aN(λ). �

A.3 Survival probabilities in in�nite volume

Theorem A.3. For all λ ∈ [0, 1], pN(λ) converges to 1−2λ
1−λ 1λ< 1

2
as N goes to

in�nity. Furthermore:

• if λ 6= 1
2
, then there exist some constants c1, c2 > 0 such that for all N > 0,

|pN(λ)− 1−2λ
1−λ 1λ< 1

2
| 6 c1e

−c2N ,

• if λ = 1
2
, then there exist some constant c3 > 0 such that for all N > 0,

|pN(1
2
)| 6 c3√

N
.

Proof. Let

FN(λ) :=
N∑
i=0

(
N + i

N

)
λi,

and
uN(λ) := (1− λ)NFN(λ).

An easy computation gives

aN(λ) = (1− 2λ)FN+1(λ) +RN(λ), (A.20)

where

RN(λ) := λN+1

[
2

(
2N + 1

N

)
− (1− 2λ)

(
2N + 2

N + 1

)]
.
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From
(
2N
N

)
∼N→∞ 4N/

√
πN , we get for all λ ∈]0, 1]

RN(λ) ∼N→∞ 2λN+2 4N+1

√
πN

.

Using λ(1− λ) 6 1
4
for λ ∈ [0, 1], there exist c′1, c

′
2 > 0 such that for all N > 0

(1− λ)N+1RN(λ) 6 c′1e
−c′2N if λ 6= 1

2
, (A.21)

and if λ = 1
2
, then there exist c′3 > 0 such that for all N > 0

1

2N+1
RN

(
1

2

)
6 c′3N

− 1
2 .

Therefore

pN

(
1

2

)
=

1

2N+1
RN

(
1

2

)
6 c′3N

− 1
2
N→∞−→ 0.

For all 0 6 p 6 N ,
(
p
p

)
+ · · ·+

(
N
p

)
=
(
N+1
p+1

)
, hence

FN+1(λ) =
N+1∑
i=0

i∑
k=0

(
N + k

k

)
λi,

=
N+1∑
k=0

N+1∑
i=k

(
N + k

k

)
λi,

=
N+1∑
k=0

(
N + k

k

)
λk

1− λN+2−k

1− λ
,

=
1

1− λ

N+1∑
k=0

(
N + k

k

)
(λk − λN+2).

Therefore

(1− λ)FN+1(λ) = FN(λ) +

(
2N + 1

N

)
λN+1 −

(
2N + 2

N + 1

)
λN+2,

hence

uN+1(λ)− uN(λ) = (1− 2λ)

(
2N + 1

N

)
λN+1(1− λ)N .

Finally, for every λ ∈ [0, 1], λ 6= 1/2, uN(λ) converges to

lλ = 1 + λ(1− 2λ)
∞∑
k=0

(
2k + 1

k

)
[λ(1− λ)]k,

=

{
1

1−λ if 0 6 λ < 1
2
,

0 if 1
2
< λ 6 1,
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as N goes to in�nity. From this and using (A.17), (A.20) and (A.21) we get the �rst
part of the result. It remains to show that the convergence of uN(λ) is exponentially
fast if λ 6= 1

2
. For that, let

GN(λ) :=
∞∑
k=N

(
2k + 1

k

)
[λ(1− λ)]k.

Since for all k,
(
2k+3
k+1

)
6 4
(
2k+1
k

)
, we have

GN+1(λ) 6 4λ(1− λ)GN(λ).

Hence there exist some constants c′4, c
′
5 > 0 such that |uN(λ) − lλ| 6 c′4e

−c′5N for
every N > 0. �

In order to �nish the proof of Theorem A.1, it remains to show that pN(λ)
converges to p(λ) as N goes to in�nity. In Chapter 3, we proved that if a second-
class particle is not died at time t large, then it survives with high probability.
Hence, if we consider the standard coupling between the �nite (with a large size)
and the in�nite system, then the two second-class particles will remain coupled for
a long time and consequently, the event the second-class particle in the �nite system
survives and the other dies has very small probability. Hence

lim
N→∞

pN(λ) 6 p(λ).

On the other hand, since, using Theorem A.2, for every M > N + 1,

pN(λ) = PM(2η0M−N−1),

where η is a random con�guration on XN with product distribution with density
λ, it is easy to see that pN(λ) > p(λ) for all N > 0. Hence

lim
N→∞

pN(λ) = p(λ) =
1− 2λ

1− λ
1λ6 1

2
.

The Corollary A.1 follows using again Theorem A.2 which implies that for all
η ∈ XN ,

PN+2(21η) = (1− λ)PN+1(2η).

Therefore, taking η random with product distribution with density λ and letting
N go to in�nity, we get

q(λ) = (1− λ)p(λ).
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