
HAL Id: tel-00657843
https://theses.hal.science/tel-00657843v2

Submitted on 27 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous Polynomial Approximations and Applications
Mioara Maria Joldes

To cite this version:
Mioara Maria Joldes. Rigorous Polynomial Approximations and Applications. Other [cs.OH]. Ecole
normale supérieure de lyon - ENS LYON, 2011. English. �NNT : 2011ENSL0655�. �tel-00657843v2�

https://theses.hal.science/tel-00657843v2
https://hal.archives-ouvertes.fr

N◦ d’ordre :
N◦ attribué par la bibliothèque :

ÉCOLE NORMALE SUPÉRIEURE DE LYON

Laboratoire de l’Informatique du Parallélisme

THÈSE

présentée et soutenue publiquement le 26 Septembre 2011 par

Mioara JOLDES,

pour l’obtention du grade de

Docteur de l’École Normale Supérieure de Lyon

spécialité : Informatique

au titre de l’École Doctorale de Mathématiques et d’Informatique Fondamentale de Lyon

Approximations polynomiales rigoureuses et
applications

Directeurs de thèse : Nicolas BRISEBARRE

Jean-Michel MULLER

Après avis de : Didier HENRION

Warwick TUCKER

Devant la commission d’examen formée de :

Frédéric BENHAMOU

Nicolas BRISEBARRE

Didier HENRION

Jean-Michel MULLER

Warwick TUCKER

For Soho, where I belong.

Acknowledgements

I cite G. Cantor, for saying that the art of proposing a question must be held of higher value than
solving it and express my deepest gratitude and appreciation for my advisors. Nicolas found me ∗

during an exam in a Master 2 course at ENS, and proposed the right question for me. Although the
answer was not given during my master, as initially thought, although there were moments when
I wanted different questions, he encouraged me every day, he believed in me, he was always
available when I needed his advice in scientific and non-scientific matters. His altruism when
sharing his knowledge with me, his desire for perfection when carefully reviewing all my work,
were always astonishing and motivating for me. This thesis, and the nice time I had, owes a lot to
his devotion, ideas, suggestions † and so good sense of humor (not the Romanians’ related jokes,
though!). Jean-Michel always kept an experienced and kind eye over my work. I felt honored to
have as supervisor the best expert in Computer Arithmetic: he answered all my related questions
and he always made so good and often mediating suggestions ‡. It was a great chance for me
to have had advisors who guided my path, but let me make my own choices and find my own
values and interests in research. I thank them for all that, and for having made une docteur out of
une chipie. Merci beaucoup, Nicolas et Jean-Michel.

I want to thank Frederic Benhamou, Didier Henrion and Warwick Tucker for having accepted
to participate in my jury, for their pertinent questions and useful suggestions. I would like to
express my gratitude to the reviewers of this manuscript. I thank them for their hard work, for
their understanding and availability regarding the schedule of this work. It seems that in what
follows I will have the chance and the honor to work more with them. I think that they brought
tremendous opportunities in my young researcher life and I thank them for that also.

Moreover, I would like to thank my collaborators: supnorm and Sollya (and big brothers) Sylvain
and Christoph, for having helped me with their hard work, bright ideas and (endless, since I
don’t give in either) debates; Bogdan and Florent, who let me keep in touch with my old love, the
FPGAs; Alexandre and Marc for having shared with me the magic of D-finite functions; Érik, Ioana
and Micaela for their formalization efforts in our Coqapprox meetings; Serge for his unbelievable
kindness.

I would also like to thank the members of the Arenaire team for having made my stay there an
unforgetable experience: my office mates Andy, Guillaume, Ivan and Xavier for having listened
to all my usual bla-bla and for having accepted my bike in the office; Claude-Pierre (thanks a lot
for your work for the Projet Région that financed my scholarship!), Damien (thanks for the beauti-
ful Euclidean Lattices course that led me to Arenaire!), Gilles (thanks for our short but extremely
meaningful discussions!), Guillaume (many thanks for your advices and help!), Nathalie (thanks
for often pointing me interesting conferences!), Nicolas L. (thanks for the fun I had teaching and
joking with you!), Vincent (thanks for the 17 obsession!), and our assistants Damien and Séver-
ine for their great help with les ordres de mission. I also thank Adrien, Christophe, Diep, Fabien,
Eleonora, Nicolas Brunie, Jingyan, Adeline, Philippe, David and Laurent-Stéphane for their help

∗. une pioupiou
†. Pas de calendriers et de répétitions, quand même !
‡. Some of us would be still debating today, otherwise.

4 Acknowledgements

in my Arenaire day-by-day life.
Then, I am very grateful to my external collaborators who helped and inspired me: Marius

Cornea, John Harrison, Alexander Goldsztejn, Marcus Neher, and my new team CAPA at Uppsala.
I would like to say a "pure" Mult,am fain! to my ENS Romanian mafia for being there for me,

for our coffees, lunches (sorry I always had to leave earlier!) and ies, it la scări. I adored our non-
scientific and not politically correct discussions and jokes.

My thesis would not exist without the basis of knowledge I accumulated during my studies
in Romania. I will always be grateful to my teachers there. Especially, I would like to thank
Octavian Cret, not only for having sent the e-mail announcing the scholarships at ENS, but also for
all his hard and fair work in difficult and unfair times. I thank also my professors Alin Suciu, Ioan
Gavrea and Dumitru Mircea Ivan who impressed my student mind with their unique intelligence,
modesty and humor.

I would like to give my special thanks to Bogdan (we made it, we’re doctors!) and my family
(parents, grand-parents, dear sister Oana and Dia). Their total support, care and love enabled me
to complete this work. I thank also my cousins Călin and Claudia for their help and support and
long trip to France.

Last but not least I thank the ENS janitor who brought me the hot chocolate the night before
my defense and my father for having taught me the beauty of mathematics. Their simple kindness
keeps me going on.

4

Contents

1 Introduction 13
1.1 Introduction to rigorous polynomial approximations - outline of the thesis 15
1.2 Computer arithmetic . 23
1.3 Interval Arithmetic . 30
1.4 From interval arithmetic to rigorous polynomial approximations 36

1.4.1 Computing the approximation polynomial before bounding the error 37
1.4.2 Simultaneously computing the approximation polynomial and the error . . . 41
1.4.3 Practical comparison of the different methods 42

1.5 Data structures for rigorous polynomial approximations 43

2 Taylor Models 45
2.1 Basic principles of Taylor Models . 45

2.1.1 Definitions and their ambiguities . 47
2.1.2 Bounding polynomials with interval coefficients 48

2.2 Taylor Models with Absolute Remainder . 50
2.2.1 Taylor Models for basic functions . 50
2.2.2 Operations with Taylor Models . 55

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder . 61
2.3.1 Taylor Models with relative remainders for basic functions 65
2.3.2 Operations with Taylor Models with relative remainders 69
2.3.3 Conclusion . 81

3 Efficient and Accurate Computation of Upper Bounds of Approximation Errors 83
3.1 Introduction . 83

3.1.1 Outline . 86
3.2 Previous work . 86

3.2.1 Numerical methods for supremum norms . 86
3.2.2 Rigorous global optimization methods using interval arithmetic 86
3.2.3 Methods that evade the dependency phenomenon 87

3.3 Computing a safe and guaranteed supremum norm 88
3.3.1 Computing a validated supremum norm vs. validating a computed supre-

mum norm . 88
3.3.2 Scheme of the algorithm . 89
3.3.3 Validating an upper bound on ‖ε‖∞ for absolute error problems ε = p− f . . 89
3.3.4 Case of failure of the algorithm . 90
3.3.5 Relative error problems ε = p/f − 1 without removable discontinuities . . . 91
3.3.6 Handling removable discontinuities . 92

6 Contents

3.4 Obtaining the intermediate polynomial T and its remainder 93
3.5 Certification and formal proof . 94

3.5.1 Formalizing Taylor models . 95
3.5.2 Formalizing polynomial nonnegativity . 95

3.6 Experimental results . 99
3.7 Conclusion . 102

4 Chebyshev Models 105
4.1 Introduction . 105

4.1.1 Previous works for using tighter polynomial approximations in the context
of rigorous computing . 106

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev inter-
polants . 107
4.2.1 Some basic facts about Chebyshev polynomials 107
4.2.2 Chebyshev Series . 109
4.2.3 Domains of convergence of Taylor versus Chebyshev series 113

4.3 Chebyshev Interpolants . 117
4.3.1 Interpolation polynomials . 117

4.4 Summary of formulas . 125
4.5 Chebyshev Models . 126

4.5.1 Chebyshev Models for basic functions . 129
4.5.2 Operations with Chebyshev models . 131
4.5.3 Addition . 133
4.5.4 Multiplication . 134
4.5.5 Composition . 135

4.6 Experimental results and discussion . 140
4.7 Conclusion and future work . 145

5 Rigorous Uniform Approximation of D-finite Functions 147
5.1 Introduction . 147

5.1.1 Setting . 148
5.1.2 Outline . 149

5.2 Chebyshev Expansions of D-finite Functions . 149
5.2.1 Chebyshev Series . 149
5.2.2 The Chebyshev Recurrence Relation . 150
5.2.3 Solutions of the Chebyshev Recurrence . 152
5.2.4 Convergent and Divergent Solutions . 154

5.3 Computing the Coefficients . 156
5.3.1 Clenshaw’s Algorithm Revisited . 156
5.3.2 Convergence . 156
5.3.3 Variants . 161

5.4 Chebyshev Expansions of Rational Functions . 162
5.4.1 Recurrence and Explicit Expression . 163
5.4.2 Bounding the truncation error . 164
5.4.3 Computation . 164

5.5 Error Bounds / Validation . 166
5.6 Discussion and future work. 170
5.7 Experiments . 171

6

Contents 7

6 Automatic Generation of Polynomial-based Hardware Architectures for Function Eval-
uation 175
6.1 Introduction and motivation . 175

6.1.1 Related work and contributions . 176
6.1.2 Relevant features of recent FPGAs . 177

6.2 Function evaluation by polynomial approximation . 177
6.2.1 Range reduction . 178
6.2.2 Polynomial approximation . 178
6.2.3 Polynomial evaluation . 180
6.2.4 Accuracy and error analysis . 180
6.2.5 Parameter space exploration for the FPGA target 182

6.3 Examples and comparisons . 183
6.4 Conclusion . 183

7

List of Figures

1.1 Approximation error ε = f − p for each RPA given in Example 1.1.3. 18
1.2 Approximation error ε = f − p for each RPA given in Example 1.1.4. 18
1.3 Approximation error ε = f − p for each RPA given in Example 1.1.5. 19
1.4 Approximation error ε = f − p for the RPA given in Example 1.1.6. 20
1.5 Values of ulp(x) around 1, assuming radix 2 and precision p. 25

2.1 A TM (P, [−d, d]) of order 2 for exp(x), over I = [−1
2 ,

1
2]. P (x) = 1 + x + 0.5x2 and

d = 0.035. We can view a TM as a a tube around the function in (a). The actual error
R2(x) = exp(x)− (1 + x+ 0.5x2) is plotted in (b). 46

3.1 Approximation error in a case typical for a libm . 84

4.1 Domain of convergence of Taylor and Chebyshev series for f 113

4.2 Joukowsky transform w(z) =
z + z−1

2
maps C(0, ρ) and C(0, ρ−1) respectively to ερ. 115

4.3 The dots are the errors log10 ‖f − fn‖∞ in function of n, where f(x) =
1

1 + 25x2
is

the Runge function and fn is the truncated Chebyshev series of degree n. The line

has slope log10 ρ
∗, ρ∗ =

1 +
√

26

5
. 116

4.4 Certified plot of f(x) = 2π − 2x asin((cos 0.797) sin(π/x)) + 0.0331x− 2.097 for x ∈
I = [3, 64]. 144

5.1 Newton polygon for Chebyshev recurrence. 155
5.2 Approximation errors for Example 5.7.1. 172
5.3 Approximation errors for Example 5.7.2. 172
5.4 Approximation errors for Example 5.7.3. 172
5.5 Certified plots for Example 5.7.4. 173

6.1 Automated implementation flow . 177
6.2 Alignment of the monomials . 179
6.3 The function evaluation architecture . 180

List of Tables

1.1 Main parameters of the binary interchange formats of size up to 128 bits specified
by the 754-2008 standard [81]. 24

1.2 Results obtained executing Program 1.2 implementing Example 1.2.4, with preci-
sion varying from 23 to 122 bits. 28

1.3 Examples of bounds obtained by several methods . 43

3.1 Definition of our examples . 101
3.2 Degree of the intermediate polynomial T chosen by Supnorm, and computed en-

closure of ‖ε‖∞ . 101
3.3 Timing of several algorithms . 101

4.1 Results obtained with double precision FP and IA for forward unrolling of the re-
currence verified for Chebyshev coefficients of exp. 112

4.2 Examples of bounds obtained by several methods . 142
4.3 Timings in miliseconds for results given in Table 4.2 142
4.4 Examples of bounds 1 CM vs. 2 TMs. 143
4.5 Computation of digits of π using TMs vs. CMs . 143

5.1 Timings and validated bounds for Examples 5.7.1, 5.7.2, 5.7.3. 171

6.1 Multiplier blocks in recent FPGAs . 177
6.2 Examples of polynomial approximations obtained for several functions. S repre-

sents the scaling factor so that the function image is in [0,1] 182
6.3 Synthesis Results using ISE 11.1 on VirtexIV xc4vfx100-12. l is the latency of the

operator in cycles. All the operators operate at a frequency close to 320 MHz. The
grayed rows represent results without coefficient table BRAM compaction and the
use of truncated multipliers . 183

6.4 Comparison with CORDIC for 32-bit sine/cosine functions on Virtex5 184

1 CHAPTER 1

Introduction

Rigorous computing (sometimes called validated computing as well) is the field that uses numer-
ical computations, yet is able to provide rigorous mathematical statements about the obtained
result. This area of research deals with problems that cannot or are difficult and costly in time
to be solved by traditional mathematical formal methods, like problems that have a large search
space, problems for which closed forms given by symbolic computations are not available or too
difficult to obtain, or problems that have a non-linear ingredient (the output is not proportional to
the input). Examples include problems from global optimization, ordinary differential equations
(ODE) solving or integration. While such hard problems could be well-studied by numerical com-
putations, with the advent of computers in scientific research, however, one lacks mathematical
formal statements about their solutions. Consider a simple definite integral example, taken from
Section "Numerical Mathematics in Mathematica" in The Mathematica Book [170].

Example 1.0.1. Compute

1∫
0

sin(sinx)dx.

In this case, there is no symbolic "closed-formula" for the result, so the answer is not known
exactly. Numerical computations come in handy, and we can obtain a numerical value for this
integral: 0.430606103120690604912377.... However, quoting from the same book, "an important
point to realize is that when Mathematica does a numerical integral, the only information it has
about your integrand is a sequence of numerical values for it.[...] If you give a sufficiently patho-
logical integrand, these assumptions may not be valid, and as a result, Mathematica may simply
give you the wrong answer for the integral." How can we then be sure of the number of digits
in the answer that are correct? How can we validate from a mathematical point of view what
we have computed? Maybe checking against other software could be useful. Indeed, in this case
Maple15 [110], Pari/GP [156] or Chebfun developed in Matlab [160] give us the same, say, 10
digits. So, maybe this could be enough for some to conclude that the first 10 digits are correct.

But consider another example that is a little bit trickier:

Example 1.0.2.

3∫
0

sin (10−3 + (1− x)2)−3/2dx.

Maple15 returns ∗ 10 significant digits: 0.7499743685, but fails to answer if we ask for more †,

∗. the code used is: evalf(int(sin((10ˆ(-3) + (1-x)ˆ2)ˆ(-3/2)), x=0..3)).
†. the code used is: evalf(int(sin((10ˆ(-3) + (1-x)ˆ2)ˆ(-3/2)), x=0..3),15).

14 Chapter 1. Introduction

Pari/GP [156] gives 0.7927730971479080755500978354, Mathematica ∗ and Chebfun † fail to an-
swer. Moreover, the article [32] where this example was taken from claims that the first 10 digits
are 0.7578918118. What is the correct answer, then ?

Another interesting example that we were faced with comes directly from a problem, dis-
cussed in detail in Chapter 3, that developers of mathematical libraries address. Roughly speak-
ing, the problem is the following: we are given a function f over an interval [a, b] and a polynomial
p that approximates f over [a, b]. Given some accuracy parameter η̄, we want to compute bounds

u, ` > 0 such that ` ≤ sup
a6x6b

|f(x)− p(x)| ≤ u and that
∣∣∣∣u− ``

∣∣∣∣ 6 η̄. We can also consider that

we have obtained u, ` by some numerical means and we want simply to check the above inequal-
ity. Roughly speaking, − log10 η̄ quantifies the number of correct significant digits obtained for
sup
a6x6b

|f(x)− p(x)|. A typical numerical example, which we slightly simplified for expository pur-

poses, is the following:

Example 1.0.3. Let [a, b] = [−205674681606191 · 2−53; 205674681606835 · 2−53],

f(x) = asin(x+ 770422123864867 · 2−50),

p(x) = 15651770362713997207607972106972745 · 2−114 + 3476698806776688943652103662933 ·
2−101x + 17894972500311187082269807705171 · 2−104x2 + 126976607296441025269345153102591 ·
2−106x3 + 249107378895562413495151944042799 · 2−106x4 + 139053951649796304768149995225589 ·
2−104x5 + 165428664168251249501887921888847 · 2−103x6 + 206167601873884163281098618631159 ·
2−102x7 + 66386611260133347295510390653099 · 2−99x8 + 2433556521489987 · 2−43x9 +
409716955440671 · 2−39x10 + 2242518346998655 · 240x11 + 3108616106416871 · 2−39x12 +
4356285307071455 · 2−38x13 + 6161286268548935 · 2−37x14 + 8783550111623067 · 2−36x15 +
788026560267325 · 2−31x16 + 1138037795125313 · 2−30x17 + 3304615966282565 · 230x18 +
602367826671283 · 2−26x19 + 1765006192104851 · 2−26x20 + 1337636086941861 · 2−24x21 +
986777691264547 · 2−22x22.

Compute max
x∈[a,b]

|f(x)− p(x)| with 6 correct significant digits.

We will see in Chapter 3 that this kind of problem can be reduced for instance to the following:
Prove that 0.194491 · 10−34 6 max

x∈[a,b]
|f(x)− p(x)| 6 0.1944913 · 10−34.

Authors of very efficient numerical software warn us [159]: "It is well known that the problem
of determining the sign of a difference of real numbers with guaranteed accuracy poses difficul-
ties. However, the chebfun system makes no claim to overcome these difficulties", or "A similar
problem arises when you try to find a numerical approximation to the minimum of a function.
Mathematica samples only a finite number of values, [...] and you may get the wrong answer for
the minimum." [170, Chap. 3.9.2].

This problem of proving inequalities occurs in another famous example from the area of com-
puter assisted proofs: the project of formally proving the Kepler’s conjecture [75]. One example
of such an inequality necessary in this proof is the following:

Example 1.0.4. Prove the inequality:
2π − 2x asin((cos 0.797) sin(π/x)) > 0.591− 0.0331x+ 1.506, where 3 < x < 64.

Finally we quote [170]: "In many calculations, it is therefore worthwhile to go as far as you can
symbolically, and then resort to numerical methods only at the very end. This gives you the best
chance of avoiding the problems that can arise in purely numerical computations."

∗. the code used is: NIntegrate[Sin[(10ˆ(-3)+(1-x)ˆ2)ˆ(-3/2)],x,0,3, Method->Oscillatory].
†. the code used is: F = @(t) sin((10ˆ(-3) + (1-t).ˆ2).ˆ(-3/2)); f = chebfun(F,[0,3]);.

14

1.1 Introduction to rigorous polynomial approximations - outline of the thesis 15

In fact, with rigorous computing we aim at combining efficiently symbolic and numeric com-
putations in order to benefit from the speed of numerical computations, but to guarantee in the
end mathematical statements about the results. In this way, rigorous computing bridges the gap
between scientific computing and pure mathematics, between speed and reliability.

The most courageous dream would be to be able to rigorously solve any problem that can be
solved numerically by efficient existing software, and even more. However, we will see through-
out this work that adaptation of numerical algorithms to rigorous computing is not straightfor-
ward in general. So our reasonable purpose is two-fold:

On the one hand we explain and exemplify how existing rigorous computing tools can be used
to solve practical problems that we encountered, with a major emphasis on the field of Computer
Arithmetic. This is mainly due to the fact that this thesis was developed in Arenaire project ∗

which aims at elaborating and consolidating knowledge in the field of Computer Arithmetic. Im-
provements are sought in terms of reliability, accuracy, and speed for the available arithmetic, at
the hardware level as well as at the software and algorithmic levels, on computers, processors,
dedicated or embedded chips.

On the other hand, when these tools fail, we try to improve them, design new ones and apply
them to a larger spectrum of practical problems. The examples we gave above can be solved today
with our tools. Some more complicated ones may be not. It is one of our future projects to extend
these tools to broader ranges of problems.

With this in mind, we restrict our presentation to the one-dimensional setting. This is due
mainly to the fact that the results presented in this work deal only with univariate functions.

When using validated computations, the aim is not only to compute approximations of the so-
lution, but also and more importantly, enclosures of the same. The width of such an enclosure
gives a direct quality measurement of the computation, and can be used to adaptively improve
the calculations at run-time. A major field for computing approximate solutions is to use poly-
nomial approximations. We consider appropriate at the beginning of this work to briefly recall
some essential theoretical results in the subject of polynomial approximation and to give a flavor
of why and how rigorous computing articulates with polynomial approximations to give rigorous
polynomial approximations - the subject of this thesis.

1.1 Introduction to rigorous polynomial approximations - outline of
the thesis

It is very useful to be able to replace any given function by a simpler function, such as a
polynomial, chosen to have values not identical with but very close to those of the given function,
since such an approximation may be more compact to represent and store but also more efficient to
evaluate and manipulate. Usually, an approximation problem consists of three components:

– A function f to be approximated which usually belongs to a function class Ω. Generally,
the functions we will work with are real functions of one real variable (unless specifically
stated otherwise). In order to isolate certain properties of these functions and the norms we
use, we consider several function classes, such as: continuous functions on [a, b] denoted
by C[a, b]; bounded functions on [a, b] denoted by L∞[a, b]; square-integrable functions on
[a, b] denoted by L2[a, b]; functions that are solutions of linear differential equations with
polynomial coefficients called D-finite functions, etc. For theoretical purposes it is usually
desirable to choose the function class Ω to be a vector space (or linear space).

– A type of approximation, which in this work is polynomial †. We consider a family of polyno-

∗. http://www.ens-lyon.fr/LIP/Arenaire/
†. rational fractions could also be considered - this is well-known under the name of rational approximations

15

http://www.ens-lyon.fr/LIP/Arenaire/

16 Chapter 1. Introduction

mials P and we search for approximations p ∈ P . Usually P is a subspace of Ω. For example,
given n ∈ N we can consider the family Pn = {p(x) ∈ R[x],deg p 6 n} of polynomials with
real coefficients of degree at most n.

– A norm (of the approximation error), in terms of which the problem may be formally posed.
Denoted by || · ||, the norm serves to compare the function f with p, and gives a single scalar
measure of the closeness of p to f , namely: ||f − p||.
Definition 1.1.1. A norm || · || is defined as any real scalar measure of elements of a vector space that
satisfies the axioms:
1. ||u|| > 0, with equality if and only if u ≡ 0;
2. ||u+ v|| 6 ||u||+ ||v|| (the triangle inequality);
3. ||αu|| = |α| ||u||, for any scalar α.
In this work, standard choices of norms for function spaces are the following:
– L∞ norm (or uniform norm, minimax norm, or Chebyshev norm):
‖f‖∞ = sup

a6x6b
|f(x)|;

– L2 norm (or least-squares norm, or Euclidean norm):

||f ||2 =

√
b∫
a
|f(x)|2w(x)dx, where w is a given continuous and non-negative weight func-

tion.
Once the norm is chosen, we can quantify the quality of the approximation p to f . In the sequel

we use [102, Definition 3.2.]:

Definition 1.1.2. Good, best, near-best approximations
– An approximation p ∈ P is said to be good if ||f−p|| 6 ε, where ε is a prescribed absolute accuracy.
– An approximation p∗ ∈ P is said to be best if, for any other approximation p ∈ P, ||f − p∗|| 6
||f − p||. This best approximation is not necessarily unique.

– An approximation p ∈ P is said to be near-best within a relative distance ρ if, ||f − p|| 6 (1 +
ρ)||f − p∗||, where p∗ is a best approximation to f in P .

We remark that in the definition above we used the absolute error: εabs = f − p. However, in
some contexts in the subsequent chapters we will use the relative error criterion εrel = 1− p/f .

Usually polynomials p ∈ P are represented by their coefficients in a certain polynomial basis.
For example, the most common representation for a polynomial is in monomial basis p(x) =
n∑
i=0

pix
i. Several other bases are available (Chebyshev, Newton, Bernstein) and will be discussed

in this work.
However, whatever basis we chose, when implementing approximation schemes in machine,

the real-valued coefficients of the obtained approximation polynomial will not in general be ex-
actly representable. Hence, we also need as a key element the machine representable format F
of the coefficients. Several formats are available and we will discuss them in the sequel. Ex-
amples are: basic hardware formats available in almost all processors today like floating-point
numbers; custom precision (constrained) hardware formats used in custom architectures; more
intricate formats that require intermediate micro-code or software routines like multiple-precision
floating-point numbers or multiple-precision intervals; even broader formats provided by existent
Computer Algebra Systems (CAS) like Maple, equipped with symbolic computation formats.

Moreover, when implementing approximation routines with only a finite machine representable
format F for underlying computations, instead of real numbers, rounding and truncation errors
occur. The purpose of this thesis is to provide algorithms, theoretical proofs and software tools for
computing both a polynomial approximation with coefficients in the format F (for a given rep-
resentation basis) and a measure of the quality of approximation that is a rigorous "good" upper-
boundB for the approximation error (absolute or relative): ||εabs/rel|| 6 B. We note that the defini-

16

1.1 Introduction to rigorous polynomial approximations - outline of the thesis 17

tion of "good" upper-boundB is that either the absolute or relative distance between ||εabs/rel|| and
B is within some prescribed accuracy level that depends on the kind of application we consider.

More formally, the general rigorous approximation problem dealt with in this thesis is:

Problem 1. Rigorous polynomial approximation (RPA)
Let f be a function belonging to some specified function class Ω over a given interval [a, b] and let P

a specified family of polynomials with coefficients (in a given basis) exactly representable in some specified
format F . Find the coefficients of a polynomial approximation p ∈ P together with a "good" bound B such
that ||f − p|| 6 B.

Usually we will give the answer to this problem in the form of a couple (p,B) that we call
rigorous polynomial approximation. The purpose of giving this general name and definition is two-
fold:

– On the one hand, there are already in literature several works that gave answers to particular
instances of Problem 1 depending both on the specified parameters: function class Ω, family
of polynomials P , coefficient format F and on the mathematical approximation method or
idea used to obtain p and B. Examples include: Taylor Models and Taylor Forms where the
name suggests that Taylor approximations are used in the process; Ultra-Arithmetic where
there is an idea of an analogy between numbers and function spaces arithmetic; Higher
Order Inclusions where a polynomial of degree higher than 1 is used with the purpose of
computing an enclosure of the image of the function, etc.
To that extent, our purpose is to describe, disambiguate, implement and compare these tools.

– On the other hand, our main contributions are to solve this problem using other polynomial
approximations different from Taylor series. We analyze the possibility of using other such
approximations, we design a new tool based on Chebyshev series approximations.

We give below examples representative for each of the following chapters:
– In Chapter 2 we deal with RPAs based roughly on Taylor series. The RPAs we are able to

obtain using this method will be given in Item (1) of the following examples.
– In Chapter 3 we deal with RPAs based on best polynomial approximations. This method

is more computationally expensive, in particular it uses an intermediary RPA obtained in
Chapter 2 and will be treated in Item (2). Example 1.0.3 was such an approximation.

– In Chapter 4 we deal with RPAs based on near-best polynomial approximations in Cheby-
shev basis and will be treated in Item (3) of the following examples. The first three chapters
consider functions given explicitly by an expression.

– In Chapter 5 we deal with RPAs based on near-best polynomial approximations in Cheby-
shev basis for functions that are given as solutions of ordinary differential equations with
polynomial coefficients (D-finite functions). This case is presented in Example 1.1.6.

For all examples in this section, the approximation error ε = f − p is plotted numerically for
each approximation. We show in Example 5.7.4 how to obtain rigorous plots for functions. The
norm considered is the supremum norm.

Let us start with the most trivial example:

Example 1.1.3. Let f = exp, over [0, 1].
(0) We consider first polynomials of degree 5, with real coefficients, expressed in monomial basis. Then

the common Taylor approximation p =
5∑
i=0

1
i!x

i together with the bound B = exp(1)
6! is a rigorous

polynomial approximation of f .
(1) Of course, instead of real coefficients, one usually requires coefficients exactly representable in some

machine format. In the item above, we change the required format to coefficients exactly representable
in binary32 formatF24 =

{
2E ·m|E ∈ Z,m ∈ Z, 223 ≤ |m| ≤ 224 − 1

}
∪{0}, with the required

bounds on E (see Table 1.1, Definition 1.2.2). Based simply on Taylor approximation, truncation of

17

18 Chapter 1. Introduction

the real coefficients and bounding of the truncation errors, one obtains p = 1+x+2−1 ·x2+5592405·
2−25 · x3 + 5592405 · 2−27 · x4 + 1118481 · 2−27x5 together with the bound B = 1.6155438 · 10−3.

(2) In Chapter 3, we will see how to obtain rigorous best polynomial approximations. In this case,
maintaining the requirements given above, one obtains: p = 16777197 · 2−24 + 8389275 · 2−23x +
4186719 · 2−23x2 + 1429441 · 2−23 · x3 + 9341529 · 2−28x4 + 1866159 · 2−27x5 together with the
bound B = 1.13248836 · 10−6.

(3) Changing the representation basis is also possible. In Chapter 4, we will see how to obtain near-best
rigorous polynomial approximations in Chebyshev basis. Here, for the sake of simplicity and just to
show the near-minimax character, we give the polynomial transformed back to monomial basis. Still
using binary32 coefficients, we are able to find: p = 8388599·2−23+8389241·2−23x+16747961·
2−25x2 + 11429449 · 2−26x3 + 2342335 · 2−26x4 + 14884743 · 2−30x5, B = 1.245354 · 10−6.

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 0.2 0.4 0.6 0.8 1

(a) RPA-Taylor

-1.5e-06

-1e-06

-5e-07

0

5e-07

1e-06

1.5e-06

0 0.2 0.4 0.6 0.8 1

(b) RPA-Minimax

-1.5e-06

-1e-06

-5e-07

0

5e-07

1e-06

1.5e-06

0 0.2 0.4 0.6 0.8 1

(c) RPA-Chebyshev

Figure 1.1: Approximation error ε = f − p for each RPA given in Example 1.1.3.

A more challenging example could be for a function that is given by a more complicated ex-
pression:

Example 1.1.4. f = exp(1/ cos(x)), over [−1, 1], considering approximation polynomials of degree 15,
with binary32 coefficients. For simplicity, we refrain from giving the actual polynomial coefficients in
each of the situations below and just plot the error ε in Figure 1.2.

(1) The rigorous error bound obtained with Taylor approximations is B = 0.2326799.
(2) In the case of best approximations, B = 2.702385 · 10−5.
(3) In the case of near-best approximations in Chebyshev basis, B = 5.343836 · 10−5.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-1 -0.5 0 0.5 1

(a) RPA-Taylor

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

-1 -0.5 0 0.5 1

(b) RPA-Minimax

-4e-05

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

-1 -0.5 0 0.5 1

(c) RPA-Chebyshev

Figure 1.2: Approximation error ε = f − p for each RPA given in Example 1.1.4.

18

1.1 Introduction to rigorous polynomial approximations - outline of the thesis 19

We can now consider even more complicated functions, like for example a function which is
infinitely differentiable on the real interval considered, but not analytic in the whole complex disc
containing this interval (see Section 4.2.3 for more details).

Example 1.1.5. f = exp
(

1
1+2x2

)
, over [−1, 1], considering approximation polynomials of degree 60, with

165 bits multiple precision floating-point coefficients. Like in the above example, we plot the error ε in
Figure 1.3 for each of the following cases:

(1) Taylor approximations are not convergent over [−1, 1]. Using our method, the bound obtained is
B = +∞.

(2) In the case of best approximations, the rigorous bound can be obtained using algorithms that resort
to interval subdivisions and to intermediary approximations computed with the method of Chapters 2
or 4 and it is: B = 0.486981 · 10−15.

(3) In the case of near-best approximations in Chebyshev basis, using methods in Chapter 4, we directly
obtain some finite bound B = 2.0269917 · 10−3 over the whole interval, but it is still highly over-
estimated.

-1.6e+12

-1.4e+12

-1.2e+12

-1e+12

-8e+11

-6e+11

-4e+11

-2e+11

 0

-1 -0.5 0 0.5 1

(a) RPA-Taylor

-5e-16

-4e-16

-3e-16

-2e-16

-1e-16

 0

 1e-16

 2e-16

 3e-16

 4e-16

 5e-16

-1 -0.5 0 0.5 1

(b) RPA-Minimax

-8e-16

-6e-16

-4e-16

-2e-16

 0

 2e-16

 4e-16

 6e-16

 8e-16

-1 -0.5 0 0.5 1

(c) RPA-Chebyshev

Figure 1.3: Approximation error ε = f − p for each RPA given in Example 1.1.5.

Finally, we can consider classes of functions that are not defined explicitly. For example, we ad-
dress the problem of computing near-best rigorous polynomial approximations for D-finite func-
tions:

Example 1.1.6. Let f be the solution of the following differential equation 4xy(x) + (1 + 4x2 +
4x4)y′(x), y(0) = exp(1) and [−1, 1] the interval considered. In Chapter 5 we will see that we can compute
near-best rigorous polynomial approximations in Chebyshev basis for such D-finite functions. We note that
the exact solution would be in this case f(x) = exp(1/(1 + 2x2)). For example, we plotted in Figure 1.4
the error between a polynomial of degree 60 whose coefficients are rational numbers and f over [−1, 1]. The
rigorous bound obtained is: B = 0.145 · 10−14.

Sometimes, when p is already given for example by some numerical routine, we name by cer-
tifying the approximation, the process of computing B. We note that certified results is a common
term used in conjunction with formal proof assistants [167, 11]. This work is not centered on for-
mally proving such approximations, although in Chapter 3 we prove formally some parts of our
algorithms and we intend to do so for the remaining parts. As we will see in the following chap-
ters, the algorithms we use are sufficiently simple for allowing their formal proof. It is essentially
a matter of implementation and one of our current goals in the TaMaDi project [116] is to have
formally proven polynomial approximations in COQ [43] using the algorithms presented in this
work.

Complexity model. We have seen in the previous examples that the format of the coefficients
is variable. Similarly, the computations involved in algorithms given in subsequent chapters are

19

20 Chapter 1. Introduction

Figure 1.4: Approximation error ε = f − p for the RPA given in Example 1.1.6.

also carried out using different numerical formats. To account for this variability in the underlying
arithmetic, we assess the complexity of the algorithms in the arithmetic model. In other words, we
only count basic operations in Q, while neglecting both the size of their operands and the cost of
accessory control operations.

Let us now turn to some theoretical fundaments on polynomial approximation to briefly see
why, when and how good polynomial approximations can be obtained.

In approximating f ∈ C[a, b] by polynomials on [a, b], it is always possible to obtain a good ap-
proximation by taking the degree high enough. This is the conclusion of the well-known theorem
of Weierstraß:

Theorem 1.1.7. Weierstraß’s Theorem
For any given f in C[a, b] and for any given ε > 0, there exists a polynomial pn of degree n for some

sufficiently large n such that ‖f − pn‖∞ < ε.

A constructive proof of this theorem was given by Bernstein who constructed for a given f ∈
C[0, 1] a sequence of polynomials (Bnf)n>1 (now called Bernstein polynomials):

Bnf =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k ,

that is proven to converge to f in the sense of the uniform norm. A detailed proof of this theorem
can be found in [33, Chap.3]. We note that another constructive sequence of polynomials that
are proven to be uniformly convergent towards f ∈ C[−1, 1] on [−1, 1] are the Cesaro sums of its
Chebyshev series expansion (see [102, Theorem 5.8]).

From the point of view of efficiency we would most of the time like to keep polynomials degree
as low as possible, so we will focus in what follows on best or near-best approximations.

Best uniform polynomial approximations Let f ∈ C[a, b] and n ∈ N given. The best uniform
polynomial approximation p∗ ∈ Pn as defined in Definition 1.1.2 can be viewed as the solution of
the following optimization problem:

20

1.1 Introduction to rigorous polynomial approximations - outline of the thesis 21

Find p ∈ Pnwhich minimizes ‖f − p‖∞ . (1.1)

It was theoretically proven probably for the first time by Kirchberger [86] that we can always
find such a polynomial p∗ and that it is unique. We refrain from giving proofs and refer the
interested reader to [Chap. 7][133]. The polynomial p∗ is also called minimax polynomial. The
name minimax comes form the rewriting of Equation (1.1) as:

Find p ∈ Pnwhich minimizes max
a6x6b

|f(x)− p(x)|. (1.2)

The following constructive powerful theorem characterizes minimax approximations:

Theorem 1.1.8. Alternation theorem
For any f in C[a, b] a unique minimax polynomial approximation p∗n ∈ Pn exists, and is uniquely

characterized by the alternating property (or equioscillation property) that there are at least n + 2
points in [a, b] at which f − p∗n attains its maximum absolute value (namely ‖f − p∗n‖∞) with alternating
signs.

This theorem, due to Borel (1905), asserts that, for p∗n to be the best approximation, it is both
necessary and sufficient that the alternating property should hold, that only one polynomial has this
property, and that there is only one best approximation.

Based on this property, the Soviet mathematician Remez designed in 1934 an iterative algo-
rithm for computing the minimax polynomial p∗n ∈ Pn. This algorithm stands out as a nontrivial
one conceived for solving a challenging computational problem and it was developed before the
advent of computers. For implementations we refer the reader to [126, 35].

Example 1.1.9. In Figures 1.1(b), 1.2(b), 1.3(b), the error between the approximated function and the
minimax polynomial obtained with Sollya software [37] was plotted.

We recall that in the above examples we said that we should be able to compute both the
coefficients of p∗n and a rigorous upper-bound B for ‖f − p∗n‖∞, while most numerical routines
are concerned only with the fast computation of the coefficients. So, in most of the cases, we can
not follow just the well-known ways of classical numerical algorithms. For Remez algorithm the
convergence is proved to be quadratical (under some reasonable conditions) [165]. But what about
bounding ‖f − p∗n‖∞ ?

A theoretical result proved by Bernstein [9] provides a closed error-bound formula:

Theorem 1.1.10. Let n ∈ N fixed and a function f ∈ C(n+1)[−1, 1]. Let p∗n be the best uniform approxi-
mation polynomial to f over [−1, 1], of degree at most n. Then there exists ξ ∈ (−1, 1) such that

‖f − p∗n‖∞ =

∣∣f (n+1)(ξ)
∣∣

2n (n+ 1)!
. (1.3)

This bound is not sufficient in general, since near-best uniform polynomial approximations also
satisfy such a bound (see Equation 1.3, Lemma 4.3.4). Hence, having only this bound, even if we
could find a way of having the "true" coefficients of p∗n, it would not worth paying the effort of
computing them, since easier ways exists for computing near-best approximations.

Certifying best. However, in some applications, one would like to take advantage of the im-
provement in the approximation error provided by the best approximation. Such an application
led us to conceive an algorithm that automatically provides a rigorous and as accurate as desired
enclosure of

∥∥εabs/rel∥∥∞, where εabs/rel is the absolute or relative approximation error between

21

22 Chapter 1. Introduction

a "sufficiently smooth" function f and a very good polynomial approximation of f . For exam-
ple, such an approximation can be the polynomial obtained by truncating the coefficients of the
real best approximation p∗n to a machine-representable format. This work is discussed in detail in
Chapter 3.

Using worse to certify best. One basic idea behind this work is to make use of a higher de-
gree worse quality polynomial approximation, say T , which has the advantage of being easier to
compute and certify. Then, with the help of the triangular inequality

||f − p∗n|| 6 ||f − T ||+ ||T − p∗n||,

we can obtain a bound for ||f − p∗n|| as the sum of the bounds ||f − T || and ||T − p∗n||. The second
norm is the norm of a polynomial T − p∗ which is in general easy to compute.

So, we were led to consider easily certifiable worse quality polynomial approximations. An al-
ready existing well-known rigorous computing tool based on Taylor approximations is: Taylor
models. This tool was made popular by Makino and Berz and the ideas behind it are explained in
a series of articles of several authors [97, 124, 98]. However, we encountered several difficulties in
using it in an "off-the-shelf" manner. Among these, the implementations are scarce or not freely
available, no multiple precision support for computations was available, we could not deal with
a class of functions sufficiently large for our purposes, etc. More detailed arguments are given in
Section 2.3. Hence, we proceeded to implementing Taylor Models-like algorithms in our software
tool Sollya. Our implementation deals only with univariate functions, but several improvements
or remarks were integrated, several data structure choices are different. We chose to explain in
detail in Chapter 2 the algorithms for Taylor Models, including the specificities of our implemen-
tation. To our knowledge, there is no such detailed account in the literature regarding detailed
algorithms for Taylor Models. This will also allow us to explain the "philosophy" of Taylor mod-
els that will be used in subsequent chapters. One other potential use of these algorithms is their
on-going formalization in a formal proof checker. We use then, this tool to deal with the practical
application of certifying the minimax error presented in Chapter 3.

Between worse and best there lay the near-best. But other well-known polynomial approxi-
mations of better quality than Taylor exist. So how can we take advantage of them in a rigorous
computing tool instead of Taylor approximations? This is the question we answer in detail in
Chapter 4. Here we mention just that we use two approximations proved to be near-best in the
sense of the uniform norm:

– Truncated Chebyshev series (TCS), i.e., the polynomial obtained by truncating the Cheby-
shev series of a function f .

– Chebyshev interpolants (CI), i.e., polynomials which interpolate the function at special
points called Chebyshev nodes. They are also called “approximate truncated Chebyshev
series” in literature.

For example, Powell [132] showed that a Chebyshev interpolation polynomial will be almost
as effective as the best approximation polynomial with the same degree. In fact, he showed that
the ratio between the Chebyshev interpolation error and the best approximation error is bounded
by:

1 <
εCI
εbest

≤ 1 +
1

n+ 1

n∑
i=0

tan

(
(i+ 1/2)π)

2(n+ 1)

)
6 2 +

2

π
log(n+ 1).

This implies that for example, if a polynomial approximation of degree 1000 is used, it may be
guaranteed that the resulting Chebyshev interpolation approximation error does not exceed the

22

1.2 Computer arithmetic 23

minimax error by more than at most a factor of six. A similar result [102, Chap. 5.5] exists for trun-
cated Chebyshev series. Some of their advantages are that compared to Taylor approximations,
these approximations have better convergence domain (see Section 4.2.3) and also, we should ob-
tain bounds for the approximations that are scaled down by a factor of 2n−1 for a polynomial of
degree n considered over [−1, 1] (cf. (4.47) for example). CI and TCS approximations are tightly
connected and we developed a rigorous computing tool analogous to Taylor Models based on
both of them. We will see in Chapter 4 that the challenge of so-called "Chebyshev models" is
to match the Taylor Model complexity of operations such addition, multiplication, composition,
while offering a rigorous error bound close to optimality.

While the first 4 chapters deal with RPAs for functions defined explicitly by closed formulas, in
Chapter 5 we will show how we can rigorously compute near-best uniform polynomial approx-
imations for solutions of linear differential equations with polynomial coefficients (also known
as D-finite functions). In this case, one key ingredient of our method is that coefficients of the
Chebyshev series expansions of the solutions obey linear recurrence relations with polynomial
coefficients. However, these do not lend themselves to a direct recursive computation of the co-
efficients, owing chiefly to the lack of initial conditions. Hence we will use a combination of a
classical numerical method going back to Clenshaw, revisited in the light of properties of the re-
currence relations we consider, and rigorous enclosure method for ordinary differential equation.

Finally, in Chapter 6 we present a practical application of RPAs to the synthesis of elementary
functions in hardware. The main motivation of this work is to facilitate the implementation of
a full hardware mathematical library (libm) in FloPoCo ∗, a core generator for high-performance
computing on Field Programmable Gate Arrays (FPGAs). We present an architecture generator
that inputs the specification of a function and outputs a synthesizable description of an architec-
ture evaluating this function with guaranteed accuracy. We give a complete implementation in
the context of modern FPGAs features, however, most of the methodology is independent of the
FPGA target and could apply to other hardware targets such as ASIC circuits.

But, we can not start presenting all these works without giving a brief overview on computer
arithmetic, just to remember in a glimpse on how modern computers compute today, whether we
can trust them, or we should agree with A. Householder on the fact that "It makes me nervous to
fly on airplanes, since I know they are designed using floating-point arithmetic.”

1.2 Computer arithmetic

We need to represent and manipulate real numbers in any computer. Since the early days of
electronic computing, many ways of approximating the infinite set of real numbers with a finite
set of "machine numbers" have been developed. Several examples are: floating-point arithmetic,
fixed-point arithmetic, logarithmic number systems, continued fractions, rational numbers, 2-adic
numbers, etc. For this task, many constraints like speed, accuracy, dynamic range, ease of use
and implementation, memory cost, or power consumption have to be taken into account. A good
compromise among these factors is achieved by floating-point arithmetic which is nowadays the
most widely used way of representing real numbers in computers. We give in what follows a
brief overview of floating-point arithmetic, with the main purpose of setting up some notations
and key concepts for the following chapters and refer the interested reader to [118], from which
this small recap is heavily inspired.

Definition 1.2.1 (Floating-point number). A floating-point number in radix-β (β ∈ N, β ≥ 2),

∗. www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

23

www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

24 Chapter 1. Introduction

Name binary16 binary32 binary64 binary128
(single precision) (double precision) (quad precision)

p 11 24 53 113

emax +15 +127 +1023 +16383

emin −14 −126 −1022 −16382

Table 1.1: Main parameters of the binary interchange formats of size up to 128 bits specified by
the 754-2008 standard [81].

precision-p (p ∈ N, p ≥ 2), is a number of the form

x = (−1)s ·m · βe,

where:
– e, called the exponent, is an integer such that emin ≤ e ≤ emax, where the extremal exponents
emin < 0 < emax are given;

– m = |M | · β1−p, called normal significand (or sometimes mantissa). M is an integer, called the
integral significand, represented in radix β, |M | 6 βp − 1. We note that m has one digit before the
radix point, and at most p− 1 digits after (notice that 0 ≤ m < β); and

– s ∈ {0, 1} is the sign bit of x.

In order to have a unique representation of a floating-point number, we normalize the finite
nonzero floating-point numbers by choosing the representation for which the exponent is mini-
mum (yet larger than or equal to emin). This gives two kinds of floating-point numbers:

– normal numbers: 1 ≤ |m| < β, or, equivalently, βp−1 ≤ |M | < βp.
– subnormal numbers: e = emin and |m| < 1 or, equivalently, |M | ≤ βp−1 − 1. Zero is a special

case (see Chapter 3 of [118] for more details).
In radix 2, the first digit of the significand of a normal number is a 1, and the first digit of the sig-
nificand of a subnormal number is a 0. The availability of subnormal numbers allows for gradual
underflow. This significantly eases in general the writing of stable numerical software (see Chapter
2 of [118] and references therein).

Since most computers are based on two-state logic, radix 2 (and, more generally, radices that
are a power of 2) are most common. However, radix 10 is also used, since it is what most humans
use, and what has been extensively used in financial calculations and in pocket calculators. The
computer algebra system Maple, also uses radix 10 for its internal representation of numbers.

In 1985, the IEEE754-1985 Standard for Binary Floating-Point Arithmetic was released [3]. This
standard specifies various formats, the behavior of the basic operations (+,−,×,÷ and √), con-
versions, and exceptional conditions. Nowadays, most systems of commercial significance offer
compatibility with IEEE 754-1985. This has resulted in significant improvements in terms of ac-
curacy, reliability, and portability of numerical software. A revision of this standard, called IEEE
754-2008 (which includes decimal floating-point arithmetic also), was adopted in June 2008 [81].
For example, the main parameters of the binary formats of size up to 128 bits defined by the new
revision of the standard are given in Table 1.1.

Definition 1.2.2. We define the set of binary floating-point numbers of precision p: Fp ={
2E ·m|E ∈ Z,m ∈ Z, 2p−1 ≤ |m| ≤ 2p − 1

}
∪ {0}.

For example, with the required bounds on E, F24 is the single precision (binary32) format.
One of the most interesting ideas brought out by IEEE 754-1985 is the concept of rounding

mode. In general, the result of an operation (or function) on floating-point numbers is not exactly

24

1.2 Computer arithmetic 25

1

ulp = 2−p
ulp = 2−p+1

Figure 1.5: Values of ulp(x) around 1, assuming radix 2 and precision p.

representable in the floating-point system being used, so it has to be rounded. The four rounding
modes that appear in the IEEE 754-2008 standard are:

– round toward −∞: RD(x) is the largest value that is either a floating-point number or −∞
less than or equal to x;

– round toward +∞: RU(x) is the smallest value that is either a floating-point number or +∞
greater than or equal to x;

– round toward zero: RZ(x) is the closest floating-point number to x that is no greater in
magnitude than x (it is equal to RD(x) if x ≥ 0, and to RU(x) if x ≤ 0);

– round to nearest: RN(x) is the floating-point number that is the closest to x. A tie-breaking
rule must be chosen when x falls exactly halfway between two consecutive floating-point
numbers. A frequently chosen tie-breaking rule is called round to nearest even: x is rounded
to the only one of these two consecutive floating-point numbers whose integral significand
is even. This is the default mode in the IEEE 754-2008 Standard.

One convenient way to measure rounding errors is to express them in terms of what we would
intuitively define as the "weight of the last bit of the significand" or unit in the last place (ulp).
We refer the reader to [118, Chapter 2.6.] for a detailed account. Roughly speaking, the ulp(x)
is the distance between two consecutive FP numbers around x. Since this is ambiguous at the
neighborhood of powers of radix 2, there are several slightly different definitions due for example
to W. Kahan, or J. Harrison or D. Goldberg. Here we use the last one. Accordingly, Figure 1.5
shows the values of ulp near 1.

Definition 1.2.3 (Goldberg’s ulp). If x ∈ [2e, 2e+1) then ulp(x) = 2e−p+1.

When the exact result of a function is rounded according to a given rounding mode (as if the
result were computed with infinite precision and unlimited range, then rounded), one says that
the function is correctly rounded. According to the IEEE754-1985 Standard, the basic operations
(+,−,×,÷ and√) have to produce correctly rounded results.

However, most of real applications use also functions such as exp, log, sin, arccos, or some
compositions of them. These functions are usually implemented in mathematical libraries called
libm. Such libraries are available on most systems and many numerical programs depend on
them. But until recently, there was no such requirement for these functions. The main imped-
iment for this was the Table Maker’s Dilemma (TMD) [118, Chapter 12], named in reference to
the early builders of logarithm tables. This problem can be stated as follows: consider a function
f and a floating-point number x. Since floating-point numbers are rational numbers, in many
cases, the image y = f(x) is not a rational number, and therefore, cannot be represented exactly
as a floating-point number. The correctly rounded result will be the floating-point number that

25

26 Chapter 1. Introduction

is closest to this mathematical value. Using a finite precision environment (on a computer), only
an approximation ŷ to the real number y can be computed. If the accuracy used for computa-
tion is not enough, it is impossible to decide the correct rounding of ŷ. A technique published by
Ziv [174, 118] is to improve the accuracy of the approximation until the correctly rounded value
can be decided. A first practical improvement over Ziv’s approach derives from the availabil-
ity of tight bounds on the worst case accuracy required to compute many elementary functions,
computed by Lefevre and Muller [94, 118] using ad-hoc algorithms. For some functions, these
worst cases are completely covered (exp, log2, log, hyperbolic sine, cosine and their inverses, for
the binary32 and binary64 formats). If the worst case accuracy required to round correctly a func-
tion is known [94], then only two steps are needed. This makes it easier to optimize and prove
each step. This improvement allowed for the possibility of writing a libm where the functions are
correctly rounded and this is obtained at known and modest additional costs. This is one of the
main purposes of the Arenaire team that develops the CRlibm project [135].

In the new revision IEEE754-2008, correct rounding for some function ∗ like:
exp, ln, log2, sin, cos, tan, arctan is recommended. The participation of leading micropro-
cessor manufacturers like Intel or AMD for this standard revision proves that the purpose of
CRlibm was achieved: the requirement of correct rounding for elementary functions is compatible
with industrial requirements and can be done for a modest additional cost compared to a classical
libm.

However, beside the TMD, the development and implementation of correctly rounded ele-
mentary functions is a complex process. A general scheme for this would include:

Step 1. Use the above mentioned methods of Muller and Lefevre [94] to obtain the necessary preci-
sion p in the worst cases. This subject is still an active research field, inside the TaMaDi [116]
project, since the methods mentioned do not scale for the format binary128, for example,
specified in the IEEE-754-2008 standard.

Step 2. Argument reduction for the function f to be considered: this involves the reduction of the
problem to evaluating a function g over a tight interval [a, b]. For this, different ad-hoc
methods are used on a case by case basis for each function.

Step 3. Find a polynomial approximation p1 for g such that the maximum relative error between p1

and g is small enough to allow for correct rounding in the general case. Find a polynomial
approximation p2 for g such that the maximum relative error between p2 and g is small
enough (less then 2−p) to allow for correct rounding in the worst case. Practical examples
for the implementation of binary64 correctly rounded standard functions in the CRlibm are:
in the general case, we need ‖(g − p1)/g‖∞ < 2−65, this value insures that in practice for
99.9% of values f can be correctly rounded using the evaluation of p1; in the worst cases, we
need between 120 and 160 correct bits: ‖(g − p2)/g‖∞ < 2−p.
Polynomial approximation is preferred since polynomials can be evaluated completely
based only on multiplications and additions, operations that are commonly available and
highly optimized in current hardware. An important remark is that the coefficients of the
approximation polynomials have to be exactly representable in an available machine for-
mat. There are several works [28, 26, 35] done within the Arenaire Team regarding ways of
obtaining very good or best polynomial approximations with machine efficient coefficients.

Step 4. Once the machine-efficient polynomial approximations have been numerically found, one has
to certify the maximum approximation error commited, i.e. to find a safe upper bound for
‖(g − p1)/g‖∞ and ‖(g − p2)/g‖∞. We note that in order to ensure the validity of the use of
p1 and p2 instead of g, this bound has to be rigorous. Although numerical algorithms for
supremum norms are efficient, they cannot offer the required safety. This was one of the

∗. The exhaustive list can be found in Chap. 12.1 of [118]

26

1.2 Computer arithmetic 27

initial motivations of this work and we will give a practical application of RPAs concerning
this step in Chapter 3.

Step 5. Write the code for evaluating p1 and p2 with the required accuracy. In this step round-off
errors have to be taken into account for each multiplication and addition such that the total
error stays below the required threshold. In Chapter 6 we will see an example of how this
step is implemented efficiently for a specific target architecture.

But, sometimes, even with a correctly implemented floating-point arithmetic, the result of a
computation is far from what could be expected. We take here an example designed by Siegfried
Rump in 1988 [147].

Example 1.2.4 (Rump’s example).

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and we want to compute f(a, b) for a = 77617.0 and b = 33096.0. The results obtained by Rump on an
IBM 370 computer were:

– 1.172603 in single precision;
– 1.1726039400531 in double precision; and
– 1.172603940053178 in extended precision.

From these computations we get the impression that the single precision result is certainly very accurate.
And yet, the exact result is −0.8273960599 · · · . On more recent systems, we do not see the same behavior
exactly. For instance, according to [118], on a Pentium4-based workstation, using GCC and the Linux
system, the C program (Program 1.1) which uses double-precision computations, will return 5.960604·1020,
whereas its single-precision equivalent will return 2.0317·1029 and its double-extended precision equivalent
will return −9.38724 · 10−323.

include < s t d i o . h>
i n t main (void)
{

double a = 7 7 6 1 7 . 0 ;
double b = 3 3 0 9 6 . 0 ;
double b2 , b4 , b6 , b8 , a2 , f i r s t e x p r , f ;
b2 = b∗b ;
b4 = b2∗b2 ;
b6 = b4∗b2 ;
b8 = b4∗b4 ;
a2 = a∗a ;
f i r s t e x p r = 11∗a2∗b2−b6−121∗b4−2;
f = 333 .75∗ b6 + a2 ∗ f i r s t e x p r + 5 . 5∗ b8 + (a / (2 . 0∗b)) ;
p r i n t f (" Double p r e c i s i o n r e s u l t : $ %1.17 e \n " , f) ;

}

Program 1.1: Rump’s example.

What happens if we increase the precision used? We continue this example, and implement
it in C (see Program 1.2), using a multiple precision package: MPFR [63]. We mention here that
MPFR implements arbitrary precision floating-point arithmetic compliant with the IEEE-754-2008
standard and we discuss more about this library in Section 1.3. The results obtained on an In-
tel Core2Duo-based workstation, using GCC and a Linux system, with MPFR version 3.0.1 for
precision varying from 23 to 122 bits are given in Table 1.2.

27

28 Chapter 1. Introduction

Precision Result
23 1.171875

24 −6.338253001141147007483516027e29

53 −1.180591620717411303424000000e21

54 1.172603940053178583902138143

55 1.172603940053178639413289374

56 1.172603940053178639413289374

57 1.172603940053178625535501566

58 3.689348814741910323200000000e19

59 −1.844674407370955161600000000e19

60 −1.844674407370955161600000000e19

62 1.172603940053178632040714601

63 5.764607523034234891875000000e17

65 1.172603940053178631878084275

70 1.172603940053178631859449551

80 1.172603940053178631858834128

85 2.748779069451726039400531789e11

90 1.717986918517260394005317863e10

100 1.172603940053178631858834904

110 1.172603940053178631858834904

120 1.172603940053178631858834904

122 −8.273960599468213681411650955e− 1

Table 1.2: Results obtained executing Program 1.2 implementing Example 1.2.4, with precision
varying from 23 to 122 bits.

We clearly see that gradually increasing the precision until the result seems to be stable is not
a secure approach. What is the "safe" precision to use such that no flagrant computation error
occurs? Here it seems to be 122. But how can we be sure in general that we have the correct
mathematical result, or at least some of the correct digits of the result? How can we determine the
accuracy of this computation ?

28

1.2 Computer arithmetic 29

include < s t d i o . h>
include < s t d l i b . h>
include <gmp. h>
include <mpfr . h>
i n t main (i n t argc , char∗argv []) {

unsigned i n t prec ;
mpfr_t f , a , b , sqra , sqrb , b4 , b8 , b6 , t ;
prec= a t o i (argv [1]) ;
mpfr_ in i t2 (f , prec) ;
mpfr_set_d (f , 3 3 3 . 7 5 ,GMP_RNDN) ;
mpfr_ in i t2 (b , prec) ;
mpfr_se t_s t r (b , " 3 3 0 9 6 " , 1 0 ,GMP_RNDN) ;
mpfr_ in i t2 (b6 , prec) ;
mpfr_pow_ui (b6 , b , 6 ,GMP_RNDN) ;
mpfr_mul (f , f , b6 ,GMP_RNDN) ;
mpfr_ in i t2 (sqrb , prec) ;
mpfr_pow_ui (sqrb , b , 2 ,GMP_RNDN) ;
mpfr_ in i t2 (a , prec) ;
mpfr_se t_s t r (a , " 7 7 6 1 7 " , 1 0 ,GMP_RNDN) ;
mpfr_ in i t2 (sqra , prec) ;
mpfr_pow_ui (sqra , a , 2 ,GMP_RNDN) ;
mpfr_ in i t2 (t , prec) ;
mpfr_mul (t , sqra , sqrb ,GMP_RNDN) ;
mpfr_mul_ui (t , t , 1 1 ,GMP_RNDN) ;
mpfr_sub (t , t , b6 ,GMP_RNDN) ;
mpfr_ in i t2 (b4 , prec) ;
mpfr_pow_ui (b4 , b , 4 ,GMP_RNDN) ;
mpfr_mul_ui (b4 , b4 , 1 2 1 ,GMP_RNDN) ;
mpfr_sub (t , t , b4 ,GMP_RNDN) ;
mpfr_sub_ui (t , t , 2 ,GMP_RNDN) ;
mpfr_mul (t , sqra , t ,GMP_RNDN) ;
mpfr_add (f , f , t ,GMP_RNDN) ;
mpfr_ in i t2 (b8 , prec) ;
mpfr_pow_ui (b8 , b , 8 ,GMP_RNDN) ;
mpfr_mul_ui (b8 , b8 , 5 5 ,GMP_RNDN) ;
mpfr_div_ui (b8 , b8 , 1 0 ,GMP_RNDN) ;
mpfr_add (f , f , b8 ,GMP_RNDN) ;
mpfr_div (t , a , b ,GMP_RNDN) ;
mpfr_div_ui (t , t , 2 ,GMP_RNDN) ;
mpfr_add (f , f , t ,GMP_RNDN) ;
p r i n t f (" Resul t i s ") ;
mpfr_out_str (stdout , 10 , 17 , f , GMP_RNDD) ;
re turn 0 ;

}

Program 1.2: Rump’s example - C implementation using MPFR.

We present in the following section the state-of-the-art tool that "never lies", the basic brick in
most rigorous computations: Interval Arithmetic.

29

30 Chapter 1. Introduction

1.3 Interval Arithmetic

In this chapter we briefly describe the fundamentals of interval arithmetic, following
mainly [115, 162, 74]. Interval arithmetic is of use when dealing with inequalities, approximate
numbers or error bounds in computations. We use an interval x as the formalization of the intu-
itive notion of an unknown number x known to lie in x. In interval analysis we do not say that
the value of a variable is a certain number, but we say that a value of a variable is in an interval of
possible values. For example, when dealing with numbers that cannot be represented exactly like
π or

√
2, we usually say that π is approximately equal to 3.14. Instead, in interval analysis we say

that π is exactly in the interval [3.14, 3.15]. For an operation where we have errors in the inputs we
can give an approximate result:

−π ·
√

2 ≈ −3.14 · 1.41 = −4.4274.

On the other hand, when we do an operation in interval arithmetic, we no longer use approxima-
tions, but enclosures. For example for the above multiplication, whenever we have 2 values in the
input intervals then their product is a value in the result interval:

[−3.15,−3.14] · [1.41, 1.42] = [−4.473,−4.4274].

So regardless of the imprecision in the input data, we can always be sure that the result will be
inside the computed bounds. With interval analysis we cannot be wrong because of rounding
errors or method errors, we can only be imprecise by giving a very wide interval enclosure for the
expected value.

Brief and subjective history. The birthdate of interval arithmetic is not certain: it it widely ac-
cepted that the father of interval arithmetic is Ramon Moore who mentioned it for the first time in
1962 [112] and completely defined it in 1966 [113], but earlier references were found, for example
in 1931 [171], or 1958 [154]. The site http://www.cs.utep.edu/interval-comp/, section
Early papers gives a complete list of references.

In the ’80s, there was a major development of interval arithmetic, especially in Germany, under
the impulse of U. Kulisch in Karlsruhe. A specific processor, followed by an instruction set and
a compiler were developed by IBM [80] after his suggestions. In the same time, the floating-
point arithmetic underwent a major turning point, with the adoption of the IEEE 754 Standard,
who specified in particular the rounding modes and facilitated this way the implementation of
interval arithmetic. On the other hand, interval arithmetic failed to convince many users - it was
probably because there was an over-rated tendency to pretend that by replacing all floating-point
computations with interval computations, one obtains a result that would give a tight enclosure
of the rounding errors. This is hardly the case, as we will see throughout this and the following
chapters. This failure was detrimental for the beginnings of interval arithmetic.

However, interval arithmetic continues to develop with several different objectives, and it
seems to be an indispensable tool for rigorous global optimization [137, 97, 14, 36, 15], for rig-
orous ODE solving [44, 161, 123, 100], for rigorous quadrature [13].

We note that standardization of interval arithmetic is currently undertaken by the IEEE-1788
working group [140].

Notations

Definition 1.3.1 (Real Interval). Let x, x ∈ R, x ≤ x. We define the interval x (denoted in bold letters)
by x = [x, x] := {x ∈ R | x ≤ x ≤ x}. We call x the minimum of x and x its maximum. We denote the
set of all real intervals by IR.

30

http://www.cs.utep.edu/interval-comp/

1.3 Interval Arithmetic 31

Remark 1.3.2. Intervals are closed, bounded, connected and nonempty subsets of R.

Definition 1.3.3 (Interval Width, Center, Radius). Let x ∈ IR. We denote the width of x byw(x) = x−
x. The centermid(x) and the radius rad(x) are defined bymid(x) = (x+ x) /2 and rad(x) = (x− x) /2
= w(x)/2.

Remark 1.3.4. We note that there exist alternative characterizations of intervals which are based roughly
on (mid(x), rad(x)) pair, for example in [120, 164], but in this work we do not detail further this repre-
sentation.

Definition 1.3.5 (Degenerate Interval). Let x ∈ R be a real number. A point (degenerate) interval
[x] = [x, x] is a usual numeric object that confounds with the interval of zero width and contains only the
value x.

Remark 1.3.6 (Machine representable point intervals). When x can not be exactly represented in the
underlying machine format, we will still denote by [x] the tightest machine representable interval containing
x. In order to remove any ambiguity, in what follows the convention would be the following: when we are
sure that x is exactly representable, we denote by [x, x] the point interval, e.g. [0, 0], [1, 1], when there is no
such assumption we denote simply by [x], e.g. [π] = [RD(π),RU(π)].

Operations. We define operations on intervals. The key point in these definitions is that com-
puting with intervals is computing with sets. For example, when we add two intervals, the resulting
interval is a set containing the sums of all pairs of numbers, one from each of the two initial sets.
So, addition will be described as follows (for simplicity, we use the same symbol + for both addi-
tion of intervals and of real numbers):

x+ y := {x+ y | x ∈ x, y ∈ y}.

We can summarize a similar definition for all the four common operations.

Definition 1.3.7 (Arithmetic operations). Let x,y ∈ IR. Let � ∈ {+,−, ·, /}. We denote by:

x� y := {x� y | x ∈ x, y ∈ y}.

with the mention that for division, 0 /∈ y.

Proposition 1.3.8. Let x,y ∈ IR, x = [x, x] ,y =
[
y, y
]
. We can compute x�y, for � ∈ {+,−, ·, /} in

the following way:

[x, x] +
[
y, y
]

=
[
x+ y, x+ y

]
[x, x]−

[
y, y
]

=
[
x− y, x− y

]
[x, x] ·

[
y, y
]

=
[
min(x · y, x · y, x · y, x · y),max(x · y, x · y, x · y, x · y)

]
1/
[
y, y
]

=
[
min(1/y, 1/y),max(1/y, 1/y)

]
if 0 6∈

[
y, y
]

[x, x] /
[
y, y
]

= [x, x] · (1/
[
y, y
]
) if 0 6∈

[
y, y
]

Proof. We obtain these formulas using the monotonicity of these operations.

Example 1.3.9. Let x = [1, 2] and y = [−1, 1].
Then x+ y = [0, 3]; y − x = [−3, 0]; x · y = [−2, 2]; 1/x = [0.5, 1].

We have seen above that division by an interval containing zero is not defined under the basic
interval arithmetic. However, one can define the extended division.

Remark 1.3.10 (Extended division). For division by an interval
[
y, y
]

including zero, y < 0 < y, one
defines 1/[y, 0] = [−∞, 1/y] and 1/[0, y] = [1/y,∞]. Then the result of the division is the union of two
intervals: 1/[y, y] = [−∞, 1/y] ∪ [1/y,∞].

31

32 Chapter 1. Introduction

Algebraic Properties. We can observe that the interval operations defined above do not have the
properties of their real numbers analogues.

Proposition 1.3.11. The following properties hold in interval arithmetic:
(i) Subtraction is not the reciprocal of addition;
(ii) Division is not the reciprocal of multiplication;
(iii) Multiplication of an interval by itself is not equivalent to squaring the interval;
(iv) Multiplication is not distributive with addition;
(v) Multiplication is under-distributive with addition i.e. ∀x,y, z ∈ IR, x · (y + z) ⊆ x · y + x · z;
(vi) Let x ∈ IR. Then [0] + x = x and [0] · x = [0].

Proof. For (i)-(iv) it suffices to give a counter-example:
(i) Let x = [2, 3], x−x = [2, 3]−[2, 3] = [−1, 1] 6= {0} even if, it obviously contains it. Moreover,

x− x = {x− y | x ∈ x, y ∈ x} ⊇ {x− x | x ∈ x} = {0}

and the inclusion is strict.
(ii) Let x = [2, 3], the interval x/x = [2, 3]/[2, 3] = [2/3, 3/2] 6= 1.
(iii) Let x = [−3, 2],

x · x = [−3, 2] · [−3, 2] = [−6, 9]

while
x2 = {x2 | x ∈ x} = [0, 9] .

(iv) Let x = [−2, 3], y = [1, 4] and z = [−2, 1],

x · (y + z) = [−2, 3] · ([1, 4] + [−2, 1])

= [−2, 3] · [−1, 5]

= [−10, 15]

x · y + x · z = [−2, 3] · [1, 4] + [−2, 3] · [−2, 1]

= [−8, 12] + [−6, 4]

= [−14, 16]

(v) We prove that
x · (y + z) ⊆ x · y + x · z.

We have {x ·(y+z) |x ∈ x, y ∈ y, z ∈ z} ={x ·y+x ·z |x ∈ x, y ∈ y, z ∈ z} ⊆ {x ·y+x′ ·z |x ∈
x, x′ ∈ x, y ∈ y, z ∈ z}.

Interval extension of functions. We could in fact go further and define functions of interval
variables by treating these, in a similar fashion, as "unary operations".

Definition 1.3.12 (Function Range (Image)). Let x ∈ IR and f : x→ R. We denote the image (range)
of f over x by: f(x) = {f(x) | x ∈ x}.

Finding the image of a function (usually multivariate) and in particular a value for which a
function attains its minimum (maximum) forms is in itself a wide field of study in mathematics
and computer science, called "Optimization Theory". Except for trivial cases, we do not have
standard easy ways to describe the exact image of such functions over a specific domain. We will
see, that in some cases, interval arithmetic is helpful in this matter.

For example, we give below simple formulas for computing the image of functions such as
exponential and square root or squaring.

32

1.3 Interval Arithmetic 33

Example 1.3.13. Let x ∈ IR, x = [x, x]. Using monotonicity properties, we can compute:

[x, x]2 = if 0 6∈ [x, x] then
[
min(x2, x2),max(x2, x2)

]
, else

[
0,max(x2, x2)

]
;√

[x, x] = if 0 ≤ x then
[√
x,
√
x
]

else FAIL;
exp([x, x]) = [expx, expx] .

For functions (ex. exp) which are monotonic, we can easily deduce simple formulas which
allow us to compute their range over a given interval. For periodic functions (ex. sin, tan, cos),
one has to be more careful, but it is possible to establish algorithms for computing their exact
range as soon as we can compute these functions over reals.

In this way, we can extend functions to interval functions.

Definition 1.3.14 (Interval extension). Let x ∈ IR and f : x → R, then f : IR → IR is called an
interval extension of f over x if for all y ⊆ x, f(y) ⊇ f(y).

This definition implies that several interval extensions are possible for the same function. For
example, for f = exp, both f([x, x]) = [expx, expx] and f([x, x]) = [−∞,∞] are allowable interval
extensions.

We are of course interested in obtaining tightest possible results. For future reference, we de-
fine the set of basic (standard) functions for which we can compute using simple formulas their
exact range over a given interval. We usually say that these functions have a sharp interval exten-
sion.

Definition 1.3.15 (Basic (standard) functions). We denote the set of basic (standard) functions S =
{sin, exp, tan, log,

√
...} for which we can compute using such simple formulas their exact range over a

given interval.

This class of functions is too small for most practical applications, so we will use it as basic
bricks for more complicated functions in what follows.

Definition 1.3.16 (Elementary function). Any real-valued function expressed only by a finite number of
arithmetic operations and compositions with basic functions and constants is called an elementary function
(see also [29, Definition 5.1.4]).

Given an explicit representation of an elementary function f , it follows that once we have al-
ready defined interval extensions for basic functions and arithmetic operations, we can define an
interval extension of f by replacing all occurrences of x by the interval x and replacing (overload-
ing) all operations with interval operations. This is usually called the natural interval extension of
f . In general, we can not hope for a sharp extension if the variable x occurs more than once in the
explicit representation of f .

It should also be pointed out that an elementary function has infinitely many interval exten-
sions. If F is an extension of f , then so is F (x) + x− x.

Elementary functions do not, in general, admit sharp interval extensions. However, it is pos-
sible to prove that the extensions, when well-defined, are inclusion isotonic:

Definition 1.3.17. Let x ∈ IR. An interval-valued function F : x ∩ IR→ IR is inclusion isotonic if, for
all z ⊆ z′ ⊆ x, we have F (z) ⊆ F (z′).

Theorem 1.3.18 (Fundamental Theorem of Interval Analysis). Given an elementary function f , and
a natural interval extension F such that F (x) is well-defined for some x ∈ IR, we have:

– z ⊆ z′ ⊆ x =⇒ F (z) ⊆ F (z′), (inclusion isotonicity)
– f(x) ⊆ F (x). (range enclosure)

33

34 Chapter 1. Introduction

Proof. Given in [162].

Also, with these interval extensions we obtain valid interval bounds for such functions.

Definition 1.3.19 (Valid interval bound). Let x ∈ IR and f : x → R. An interval B(f) is called a
valid interval bound for f when

∀x ∈ x, f(x) ∈ B(f).

Remark 1.3.20 (At least Natural Interval Extensions are available.). In the algorithms given in all
subsequent chapters we suppose that at least a natural interval extension is available. More specifically,
we suppose that we have an algorithm eval(f,x) that for a function f and an interval x returns a valid
interval bound for f over x, i.e. an interval y such that ∀ξ ∈ x, f(ξ) ∈ y. For basic functions this
algorithm returns a sharp interval enclosure. For elementary functions, we do not impose any constraints
on the size of the enclosure obtained, besides the fact that it should be a valid enclosure (obtained for example
by natural interval extension). We also assume that the algorithm is able to handle functions of several
variables varying in a vector of intervals.

Some examples are given in the following:

Example 1.3.21. Let x = [−5, 2], g(x) = 2x2 + x − 3. The natural interval extension of g is G(x) =
2x2 + x− 3. We can evaluate it using basic interval arithmetic operations.

2 [−5, 2]2 + [−5, 2]− 3

= 2 [0, 25] + [−5, 2]− 3

= [0, 50] + [−5, 2]− 3

= [−8, 49] .

We have g(x) ⊆ G(x). We note that the interval bound obtained is not the sharpest possible. Actually,
g(x) = [−3.125, 42].

We also note that although the representation of g is immaterial when computing over R, it
does make a big difference in IR.

Example 1.3.22. We write g(x) = x(2x+ 1)− 3. By evaluating in interval arithmetic over x = [−5, 2],
we get: [−5, 2] · (2 · [−5, 2] + [1, 1])− [3, 3] = [−28, 42].

Remark 1.3.23 (Overestimation). Previous examples show that the interval bounds obtained by replacing
all operations with their interval analogue are not the sharpest possible. This phenomenon is called overes-
timation and implies an impreciseness in the given result, since sometimes a very wide interval enclosure
is given for the expected results.

As mentioned above, this failure was detrimental for the beginnings of interval arithmetic. In
what follows we analyze in more detail some sources of overestimation in interval arithmetic, as
presented in [124]:

Dependency phenomenon Roughly speaking, it is due to the fact that multiple occurrences
of the same variable are not exploited by interval arithmetic. The computations are performed
“blindly”, taking into account only the range of a variable independently for each occurrence.
One can identify two special cases of "dependence":

– Wrapping, relates to overestimation due to the depth of the computational graph, caused by
long sequences of nested operations depending on a limited number of variables only, which
also magnifies bounds on rounding errors and hence can give wide meaningless results even
for problems with exact data.

34

1.3 Interval Arithmetic 35

– Cancellation relates to overestimation due to expressions containing at least one addition or
subtraction where, in floating point arithmetic, the result has much smaller magnitude than
the arguments; in interval arithmetic, the width is additive instead of cancelling, leading to
large overestimation in such cases.

In some cases, by using more clever techniques, rewriting expressions or taking into account
the properties of the functions considered, one can reduce this phenomenon.

We mention also the following theorem taken from [162] which asserts that using interval
subdivision, overestimation in valid bounds computations using isotonic interval extensions can
be made as small as desired using interval subdivisions. Let us recall that a function f : x→ R is
Lipschitz continuous if there existsK ∈ R, K > 0 such that for all x, y ∈ x, we have |f(x)−f(x)| 6
K|x− y|.

Theorem 1.3.24. Let x ∈ IR and let f : x → R be an elementary function such that any subexpression
of f is Lipschitz continuous over x. Let an inclusion isotonic interval extension F of f such that F (x) is

well-defined for x. Then there exists K ∈ R, K > 0 depending on F and x such that, if x =
k⋃
i=1
xi, then:

f(x) ⊆
k⋃
i=1

F (xi) ⊆ F (x),

and

rad

(
k⋃
i=1

F (xi)

)
6 rad (f(x)) +K max

i=1,...k
rad (xi) .

Proof. The detailed proof is given in [162, Chapter 3]. The idea is that the first statement is obtained
directly from the isotonic property of interval extension, while the second statement is proven
inductively based on the Lipschitz property of any subexpression of f .

Implementations of Interval Arithmetic When implementing interval arithmetic on a com-
puter, we no longer work over the reals R, but on a finite set of machine representable numbers.
As discussed in Section 1.2, one of the most commonly used formats are the floating-point num-
bers Fp, where p is the precision used (see Definition 1.2.2). So we consider only intervals whose
endpoints are in Fp.

Definition 1.3.25 (Floating point Interval). The set of all floating point intervals is

IFp = {[x, x] |x, x ∈ Fp and x ≤ x}.

Since Fp is not arithmetically closed, when performing arithmetic operations in IFp we must
round the resulting interval outwards to guarantee the inclusion of the true result. By this we mean
that the lower bound is rounded down and the upper bound is rounded up. Using this, we can
define the four arithmetic operations in a similar manner to what described in Proposition 1.3.8.

Multiple precision Interval Arithmetic - Need and existing packages. Multiple precision arith-
metic is a floating-point arithmetic, where the number of digits of the mantissa (i.e. the precision
p for Fp) can be any fixed or variable value. It offers the possibility to set precision to an arbitrary
value as needed in the computations; this can be done either statically or dynamically, i.e. during
the computations.

We note quoting [118] that "one should never forget that with 50 bits, one can express the
distance from the Earth to the Moon with an error less than the thickness of a bacterium" and that
the most accurate physical measurements used in quantum mechanics or general relativity have

35

36 Chapter 1. Introduction

a relative accuracy close to 10−15. This of course means that the current formats implemented in
almost all current platforms should suffice in general. And yet, one must not forget that sometimes
we must carry out computations that must end up with a relative error less than or equal to 10−15,
which is much more difficult. So multiple precision is usually applied to problems where it is
important to have a high accuracy (e.g., many digits of π), which in turn is needed especially in
problems where cancellation (defined in 1.3.23) is present. Such an application will be detailed in
Chapter 3.

We mention here several interval packages that are based on multiple precision packages, a
detailed comparison is available in [74]:

– IntLab [145, 146] is an interval arithmetic package for MatLab;
– the MPFI [74] package based on MPFR Multiple Precision Floating-point Interval arithmetic

library ∗;
– GMP-XSC † based on GMP multiple precision arithmetic;
– intpakX ‡ based on Maple arithmetic;
– the XSC language § offers a “staggered” arithmetic, which is a multiple, fixed, precision.
In what follows we chose to use MPFI, a portable library written in C, its source code and

documentation can be freely downloaded ¶. It is based on MPFR (Multiple Precision Floating-point
Reliable arithmetic library), library for arbitrary precision floating-point arithmetic compliant with
the IEEE-754-2008 standard [63]. The arithmetic operations are implemented and all functions pro-
vided by MPFR are included as well (trigonometric and hyperbolic trigonometric functions and
their inverses). The unique feature of MPFI is that for basic elementary functions (ex. sin, cos, exp),
their evaluation over a given interval returns the tightest interval (with floating-point endpoints)
enclosing the image. Conversions to and from usual and GMP data types are available as well as
rudimentary input/output functions. The largest achievable computing precision is determined
by MPFR and depends in practice on the computer memory. We note that according to tests
provided in [74], MPFI is slightly faster than GMP-XSC for basic operations (addition, multiplica-
tion), but for basic functions, due mainly to the "correct rounding" feature of MPFR, which makes
it slower than GMP, GMP-XSC is faster. However, in our implementations we want to benefit
from this feature of MPFR.

Moreover, in [74], experiments showed that intpakX is 50 times slower than MPFI for stan-
dard operations (addition, multiplication) with standard 15 digits numbers. However, we used
intpakX for prototyping several algorithms due to the convenience of using features of symbolic
computing, or support for various routines, provided directly by Maple. We mention that with
MPFR and thus MPFI, exact directed rounding is done, i.e. the resulting intervals are the tight-
est guaranteed enclosures of the exact results. In intpakX, the resulting intervals are rounded
outwardly by 1 ulp, yielding an interval with a width of 2 ulps in a single calculation.

1.4 From interval arithmetic to rigorous polynomial approximations

We have seen above that natural interval extensions do not yield in general a sharp interval
bound for elementary functions. This overestimation can be reduced by using different formulas
which lead to interval extensions providing sharper enclosures. For that, one could use centered
forms as well as some tricks related to monotonicity or convexity test for the function considered,
see for example Chap. 6.4. of [115].

∗. http://www.mpfr.org/
†. http://www-public.tu-bs.de:8080/~petras/software.html
‡. http://www.math.uni-wuppertal.de/wrswt/software/intpakX/
§. http://www2.math.uni-wuppertal.de/~xsc/
¶. https://gforge.inria.fr/projects/mpfi/

36

http://www-public.tu-bs.de:8080/~petras/software.html
http://www.math.uni-wuppertal.de/wrswt/software/intpakX/
http://www2.math.uni-wuppertal.de/~xsc/
https://gforge.inria.fr/projects/mpfi/

1.4 From interval arithmetic to rigorous polynomial approximations 37

But a simple idea available since Moore [114] would be to replace the considered function f
by its truncated Taylor series expansion, supposing that it is differentiable up to a sufficient order.
If f behaves sufficiently well, this eventually gives a good enough approximation polynomial T
to be used instead of f . Furthermore, for a validated approach, a bound for the error R = f − T is
not too difficult to obtain using the following lemma.

Lemma 1.4.1 (Taylor-Lagrange Formula). If f is n + 1 times continuously differentiable on a domain
I , then we can expand f in its Taylor series around any point x0 ∈ I and we have according to Lagrange
formula:

∀x ∈ I, ∃ξ betweenx0 andx, s.t. f(x) =

(
n∑
i=0

f (i)(x0)

i!
(x− x0)i

)
︸ ︷︷ ︸

T (x)

+
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1︸ ︷︷ ︸

∆n(x,ξ)

. (1.4)

In this way, obtaining an interval bound for f reduces to obtaining an interval bound ∆ for
∆n(x, ξ) and for T . It is obvious that (T,∆) represents a rigorous polynomial approximation for f
where the key ingredient is that Taylor approximations are used for obtaining T . This is classical
in literature and usually found under the name of Taylor forms [124]. Generally speaking, Taylor
forms represent an automatic way of providing both a Taylor polynomial T and a bound for the
error between f and T .

1.4.1 Computing the approximation polynomial before bounding the error

We give below a classical procedure that we used in [38], which combines automatic differen-
tiation and interval arithmetic for computing both coefficients of T and for obtaining an interval
enclosure ∆ for ∆n(x, ξ).

Automatic Differentiation (AD) (also known as algorithmic differentiation or Taylor arithmetic) is a
well-known technique for computing interval enclosures of higher order derivatives for functions.
We give some ideas of what AD consists of for univariate functions. We refer the reader to [136,
73, 6].

Automatic Differentiation

Automatic differentiation (AD) allows for evaluating the first n derivatives of f in a point
x0 ∈ R in an efficient way. The expressions for successive derivatives of practical functions f
typically become very involved with increasing n. Fortunately, it is not necessary to generate
these expressions for obtaining values of {f (i)(x0), i = 0, . . . , n}.

The general idea is to replace any function g by the arrayG = [g0, . . . , gn] where gi = g(i)(x)/i!.
There exist formulas for computing successive derivatives for all basic functions, specifically

for computing W where w is exp, sin, arctan, etc. These formulas are available since Moore for
most basic functions, see [114, 6], where they are written in a case by case manner. In fact, the
general idea is to find some recurrence relations between successive derivatives of w. Also, for
many basic functions simple closed formulas for the Taylor coefficients exist.

D-finite functions. We note that there exists a very interesting algorithmic approach for finding
recurrence relations between the Taylor coefficients for a large class of functions that are solutions
of linear ordinary differential equations (LODE) with polynomial coefficients, usually called D-
finite functions or holonomic functions. It is known that the Taylor coefficients of these functions
satisfy a linear recurrence with polynomial coefficients [153]. The vast majority of basic functions
are D-finite functions: it is estimated that about 60% of the functions described in Abramowitz &

37

38 Chapter 1. Introduction

Stegun’s handbook [1] fall into this category, with a simple counter-example being tan. For all
D-finite functions it is possible to generate these recurrence relations directly from the differential
equations defining the function, see for example Gfun module in Maple [150]. Once the recurrence
relation is found, the computation of the first n coefficients is done in linear time.

Example 1.4.2. Consider f = exp, it verifies the LODE f ′ = f , f(0) = 1, which gives the following
recurrence for the Taylor coefficients (cn)n∈N:

(n+ 1)cn+1 − cn = 0, c0 = 1,

satisfied by cn = 1
n! .

We remark that the D-finiteness property opens the way to including in the class of basic func-
tions all the D-finite functions, in the sense of the easiness and efficiency of computing Taylor series
coefficients.

In what concerns the remaining functions, it is easy to see that, given two arrays U and V
(corresponding to two functions u and v), the array corresponding to w = u+v is simply given by
∀i, wi = ui + vi. Moreover, it is also easy to see (using Leibniz formula) that the array correspond-
ing to w = uv is given by

∀i, wi =
i∑

k=0

uk vi−k.

More generally, if one knows the array U formed by the values u(i)(x)/i! and the array V formed
by the values v(i)(y)/i! where y = u(x), it is possible to compute from U and V the array cor-
responding to w = v ◦ u in x. Hence, given any expression expr representing a function f , a
straightforward recursive procedure computes the array F :

– if expr is a constant c, return [c, 0, 0, . . .];
– if expr is the variable, return [x, 1, 0, . . .];
– if expr is of the form expr1 + expr2, compute recursively the arrays U and V corre-

sponding to expr1 and expr2 and returns [u0 + v0, . . . , un + vn];
– etc.

For bounding f (n)(x), x ∈ IR, it suffices to apply the same algorithm using interval arithmetic,
replacing x0 by x0.

Example 1.4.3. Given f(x) = sin(x) cos(x), compute f (4)(0) and f (4)([0, 1]).
We compute the successive derivatives for sin and cos in x0 = 0 :

u = [sin(0), cos(0),− sin(0),− cos(0), sin(0)],

v = [cos(0),− sin(0),− cos(0), sin(0), cos(0)]

and then we apply for example Leibniz formula described above: [u0 v0, u0 v1 + u1 v0, . . . , u0 v4 + u1 v3 +
u2 v2 + u3 v1 + u4 v0] and obtain f (4)(0) = 0. When we replace the same computations with interval
arithmetic we obtain: f (4)([0, 1]) ∈ [0, 13.5]. We remark that overestimation is present when applying AD
with interval arithmetic also, since the image of f over [0, 1] is [0, 8].

Indeed, manipulating these arrays is nothing but manipulating truncated formal series. There
exist fast algorithms for multiplying, composing or inverting formal series [24, 25]. For instance,
computing the first n terms of the product of two series can be performed in O(n log(n)) oper-
ations only (instead of the O(n2) operations required when using Leibniz formula). We did not
implement these techniques for our applications presented in Chapter 3.

By combining automatic differentiation and interval arithmetic, we obtain enclosures of both

the coefficients of T , which we denote ci, i ∈ {0, . . . , n} and the n + 1-th derivative f (n+1)(I)
(n+1)! ⊆

38

1.4 From interval arithmetic to rigorous polynomial approximations 39

F (n+1)(I). Hence ∆n(I, I) ⊆ F (n+1)(I)(I − x0)n+1. Consequently, we can obtain an enclosure
of f based on:

(1). a polynomial part
n∑
i=0
ci(x− x0)i;

(2). an interval-valued remainder term ∆ = F (n+1)(I)(I − x0)n+1.
We then have the following inclusion:

∀x ∈ I, f(x) ∈
n∑
i=0

ci(x− x0)i + ∆, (1.5)

which also provides an enclosure of the range of f over I :

f(I) ⊆
n∑
i=0

ci(I − x0)i + ∆. (1.6)

Remark 1.4.4. We remark that taking x0 = mid(x), r = rad(x), the interval widths of ∆ scale like rn+1.

While this technique is simple, unfortunately, due to the dependency phenomenon, the bound
obtained for f (n+1)(I), and hence ∆, can be highly overestimated.

Example 1.4.5. Let f(x) = e1/ cosx, over [0, 1]. We consider a Taylor approximation polynomial of degree
n = 14, expanded around x0 = 0.5. It can be shown (see for example Chapter 3) that the supremum norm
of the error between f and T over [0, 1] is ‖f − T‖∞ 6 2.60 · 10−3. Now, using automatic differentiation
and Lagrange formula, one obtains the enclosure:

∆ = [−2.73 · 102, 1.78 · 103]. Obviously, the overestimation is too big for the obtained bound to be
useful.

We can alleviate this problem using several ideas from literature that we briefly mention here:

Using majorizing series

Besides Lagrange formula, another, more promising, technique to bound R starts with the
observation that if f is analytic on a complex disc D containing I and centered on x0 in the
complex plane [2], then, in equation (1.4), R = f − T can be expressed as a series: R(x) =∑+∞

i=n+1
f (i)(x0)

i! (x− x0)i. A basic theorem in complex analysis known under the name of Cauchy’s
estimate (see Theorem 4.2.16) and its variants (we refer to [55] for details) allows us to find values
M and d such that

∀i > n,

∣∣∣∣∣f (i)(x0)

i!

∣∣∣∣∣ ≤ M

di
:= bi. (1.7)

We can obviously bound R with

∀x ∈ I, |R(x)| =

∣∣∣∣∣
+∞∑
i=n+1

f (i)(x0)

i!
(x− x0)i

∣∣∣∣∣ ≤
+∞∑
i=n+1

bi |x− x0|i . (1.8)

Here,
∑+∞

i=n+1 bi |x− x0|i is a majorizing series of R. Since it is geometric, it is easy to bound:

if γ := max
x∈I

|x− x0|
d

< 1, it holds that ∀x ∈ I, |R(x)| ≤ M γn+1

1− γ
.

Of course the principle of majorizing series is not limited to geometric series: bi can take other
forms than M/di, provided that the series

∑+∞
i=n+1 bi |x − x0|i can easily be bounded. Neher and

39

40 Chapter 1. Introduction

Eble proposed a software tool called ACETAF [55] for automatically computing suitable majoriz-
ing series. ACETAF proposes several techniques, all based on Cauchy’s estimate.

The methods used in ACETAF depend on many parameters that, at least currently, need to be
heuristically adjusted by hand. With the parameters well adjusted, we experimentally observed
that the computed bound ∆ was a fairly tight enclosure of the actual rangeR(I). For the previous
example, we were able to compute the bound 9.17 · 10−2, for example.

However, without adjustment, very poor bounds are computed by ACETAF. Hence, though
promising, this method cannot straightforwardly be used for designing a completely automatic
algorithm. This is a drawback in our case.

Furthermore, these methods need the hypothesis that the function f is analytic on a given
complex disc D to be verified beforehand. If this hypothesis is not fulfilled, they may return
a completely incorrect finite bound ∆. One typical such case occurs when f has a singularity
in the interior of D, but |f | remains bounded over the contour ∂D [55]. As we already said,
the hypothesis of analyticity of f can be considered as practically always true. However, in our
context, it is not sufficient to believe that the function satisfies this hypothesis, but we have to prove
it automatically, and if possible formally. ACETAF includes a rigorous algorithm for checking the
analyticity of a function over a disc based on complex interval arithmetic, but it is not formally
proven.

As an alternative to methods based on Cauchy’s estimate, Mezzarobba and Salvy show in [108]
how to compute an accurate majorizing series and its bound, for the special class of D-finite func-
tions. We mentioned above that most, but not all commonly used functions are D-finite: for
instance tan is not. More generally, the set of D-finite functions is not closed under composition.
So this approach is limited to the class of D-finite functions.

Using an interpolation polynomial and automatic differentiation.

Instead of Taylor approximations, interpolation polynomials could be a good choice: first they
are easy to compute; the reader can find techniques in any book on numerical analysis, we briefly
discuss some in Section 4.3.1. Second, it is well-known (see Section 4.3.1 for details) that when
using suitable interpolation points, a near-best polynomial approximation is obtained. Finally, we
can rigorously bound the approximation error using the following formula (see Equation (4.23)):
if P interpolates f at points y0, . . . , yn ∈ I , the error R = f − P satisfies

∀x ∈ I, ∃ ξ ∈ I, R(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− yi), (1.9)

where f (n+1) denotes the (n+ 1)-st derivative of f .
When bounding R using (1.9), the only difficulty is to bound f (n+1)(ξ) for ξ ∈ I . For that, we

apply the same automatic differentiation algorithm as in the case of Taylor approximations ex-
plained before. Hence it leads to exactly the same problem of overestimation, with the advantage
that roughly speaking,

∏n
i=0(x − yi) can be taken to be 2n times smaller than in the case of Tay-

lor approximations (see for example Lemma 4.2.2, details are given in Section 4.2). However, in
general, due to the overestimation in ∆, we may lose all the benefit of using an interpolation poly-
nomial, although the actual bound ‖R‖∞ is almost optimal. If we consider the above example, the
bound for ‖R‖∞ obtained using AD would be 0.11, while ‖R‖∞ ' 6.10 · 10−7.

The above analysis suggests that it could be interesting to use a polynomial T with worse
actual approximation quality, i.e. a larger ‖R‖∞, but for which the computation of the bound ∆ is
less prone to overestimation.

40

1.4 From interval arithmetic to rigorous polynomial approximations 41

1.4.2 Simultaneously computing the approximation polynomial and the error

Both techniques presented so far consist in two separate steps: first we compute the approxi-
mation polynomial and afterwards we rigorously bound the approximation error by ∆. Simulta-
neous computation of both the polynomial and the error bound is also possible.

Such a technique has been promoted by Berz and Makino [97, 98] under the name of Taylor
models. More precisely, given a function f over an interval I , this method simultaneously com-
putes a polynomial Tf (usually, the Taylor polynomial of f , with approximate coefficients) and an
interval bound ∆f such that ∀x ∈ I, f(x) − Tf (x) ∈ ∆f . The method applies to any function
given by an expression; there is no parameter to manually adjust.

Taylor models do not require the function to be analytic. Indeed, if the function has a singu-
larity in the complex plane close to the interval I , Taylor models are likely to compute a very bad
bound ∆. However, this bound remains rigorous in any case.

Taylor models are heavily inspired by automatic differentiation. As we have seen, automatic
differentiation allows one to compute the first n derivatives of a function by applying simple
rules recursively on the structure of f . Following the same idea, Taylor models compute the
couple (T, ∆f) by applying simple rules recursively on the structure of f . Taylor models can be
added, multiplied, inverted, composed, etc., as with automatic differentiation.

Indeed, the computation of the coefficients of Tf with Taylor models is completely similar to
their computation by automatic differentiation. However, the bound ∆f computed with Taylor
models is usually much tighter than the one obtained when evaluating the Lagrange remainder
with automatic differentiation.

To understand this phenomenon, let us consider the Taylor expansion of a composite function
w = h ◦ u and, in particular, its Lagrange remainder part:

∀x ∈ I, ∃ ξ ∈ I, (h ◦ u)(x) =

(
n∑
i=0

(h ◦ u)(i)(x0)

i!
(x− x0)i

)
+

(h ◦ u)(n+1)(ξ)

(n+ 1)!
(x− x0)n+1︸ ︷︷ ︸

Lagrange remainder

.

When bounding this remainder with automatic differentiation, an interval enclosure J of (h ◦
u)(n+1)(I)/(n + 1)! is computed. This interval J is obtained by performing many operations in-
volving enclosures of all the u(i)(I)/i!. These enclosures are themselves obtained by recursive
calls. Due to the dependency phenomenon, these values are already overestimated and this over-
estimation increases at each step of the recursion.

In contrast, in the case of Taylor models, (h ◦ u)(x) is seen as the basic function h evaluated at
point u(x). Hence its Taylor expansion at u(x0) is

w(x) = h(u(x)) =

n∑
i=0

h(i)(u(x0))

i!
(u(x)− u(x0))i︸ ︷︷ ︸

=:S(x)

+
h(n+1)(u(ξ))

(n+ 1)!
(u(x)− u(x0))n+1. (1.10)

In this formula, the only derivatives involved are the derivatives of h which is a basic function
(such as exp, sin, arctan, etc.): fairly simple formulas exist for the derivatives of such functions and
evaluating them by interval arithmetic does not lead to serious overestimation. In the sum S(x),
(u(x)− u(x0))i is recursively replaced by a Taylor model (Ti, ∆i) representing it. Then, the parts
corresponding to the Ti contribute to the computation of Tw, while the parts corresponding to the
∆i contribute to the remainder. If the ∆i are not too much overestimated, the final remainder ∆w

is not too much overestimated either. In conclusion, the overestimation does not grow too much
during the recursion process. That subtle algorithmic trick is the key in Taylor models.

Let us now see some numerical examples.

41

42 Chapter 1. Introduction

1.4.3 Practical comparison of the different methods

Table 1.3 shows the quality of some bounds obtained by the methods that we have presented.
The function f , the interval I and the degree n of T are given in the first column. The interpola-
tion was performed at Chebyshev points of first kind (see Equation (4.2)) and the corresponding
approximation error R was bounded using automatic differentiation with interval arithmetic as
explained in Section 1.4.1. This leads to an enclosure ∆, the maximum absolute value of which is
shown in the second column. The third column is a numerical estimation of ‖R‖∞.

The Taylor polynomial was developed in the midpoint of I . The resulting interval bound was
computed using ACETAF as presented in Section 1.4.1. The result is reported in the fourth column
of the table. The sixth column of the table is a numerical estimation of ‖R‖∞.

The fifth column corresponds to the bound given by Taylor models.
ACETAF actually proposes four different methods, with more or fewer parameters to be ad-

justed by hand. To limit the search space, we only show the results obtained with the first method
in ACETAF, which actually has one parameter. This is somehow unfair because the other meth-
ods may give more accurate bounds. In our experiments, we adjusted this parameter by hand, in
order to minimize the width of ∆. As can be seen in Table 1.3, even this first simple method gives
results often as accurate as Taylor models, or even better.

We tried to make the examples representative for several situations. The first example is a
basic function which is analytic on the whole complex plane. There is almost no overestimation in
this case, whatever method we use. The second is also a basic function but it has singularities in
the complex plane. However, in this example, the interval I is relatively far from the singularities.
All the methods present a relatively small overestimation. The third example is the same function
but over a wider interval: so the singularities are closer and Taylor polynomials are not very good
approximations. The fourth and fifth example are composite functions on fairly wide intervals,
which challenges the methods. The overestimation in the interpolation method becomes very
large while it stays reasonable with ACETAF and Taylor models.

In each row, the method that leads to the tightest bound is set in bold. No method is better than
the others in all circumstances. We observe that for simple functions, the bound obtained with
interpolation is better, while for composite functions, Taylor models, although based on worse-
quality approximations, offer a tighter bound. We explain in detail the "philosophy" of Taylor
models in Chapter 2. This allows us to:

– have a detailed account that we could not find elsewhere in literature and that we intend to
use as reference document for one of our on-going projects of their formalization in a formal proof
checker.

– give a refinement of Taylor Models in the sense that we offer a solution to the practical
difficulty of having useful Taylor Models for functions that have removable discontinuities. For
example, the classical way of computing Taylor Models would return an infinite error bound for

the function ε(x) =
x− 1

6 x
3

sin(x)
− 1, on a tight interval around zero, say I = [−π/64; π/64]. This kind

of functions are common in our applications: this is a relative error function which quantifies the
approximation error between sin and the approximation polynomial p(x) = x − 1

6 x
3, which is a

quite common approximation for sin. Both p and sin vanish at z0 = 0, but the approximation error
stays bounded.

– pursue the symbolic-numeric approach for creating an algebra with RPAs that will allow
us to use in an efficient way the near-minimax character of interpolation polynomials for exam-
ple, in order to reduce the gap between the validated and estimated error bounds presented in
columns 2 and 3 of Table 1.3. This will lead us to obtaining new efficient RPAs based on better
approximations in Chapters 4 and 5.

In order to facilitate the explanations and development of an algebra with such models, we

42

1.5 Data structures for rigorous polynomial approximations 43

f(x), I , n Interpolation Exact bound ACETAF TM Exact bound
sin(x), [3, 4], 10 1.19e−14 1.13e−14 6.55e−11 1.22e−11 1.16e−11

arctan(x), [−0.25, 0.25], 15 7.89e−15 7.95e−17 1.00e−9 2.58e−10 3.24e−12

arctan(x), [−0.9, 0.9], 15 5.10e−3 1.76e−8 6.46 1.67e2 5.70e−3

exp(1/ cos(x)), [0, 1], 14 0.11 6.10e−7 9.17e−2 9.06e−3 2.59e−3
exp(x)

log(2+x) cos(x) , [0, 1], 15 0.18 2.68e−9 1.76e−3 1.18e−3 3.38e−5

Table 1.3: Examples of bounds obtained by several methods

give a brief explanation of how we chose to represent rigorous polynomial approximations in what
follows.

1.5 Data structures for rigorous polynomial approximations

We already noticed above that we computed interval enclosures of both the coefficients of the
Taylor polynomial T and the error bound R. Hence we obtained "a couple" (T,∆), but where
in fact T was a polynomial with interval coefficients. In the following we chose to represent the
polynomial T with tight interval coefficients. We note that we do not impose yet any representation
basis for the polynomial. Above, the monomial basis was used, but this is not a constrained choice.

Definition 1.5.1 (Rigorous Polynomial Approximation Structure).
Let c0, . . . , cn and ∆ be n+ 2 intervals. We call M = (c0, . . . , cn,∆) a rigorous polynomial approx-

imation structure.

Our choice may seem strange, since usually, one represents T with floating-point coefficients:
it saves both memory (half the memory is needed with floating-point numbers in comparison
with interval coefficients) and time (interval arithmetic is at least twice slower than floating-point
arithmetic [74]). When performing floating-point operations on the coefficients, roundings occur:
these rounding errors are usually added to the remainder ∆ [97]. In contrast, using interval coef-
ficients makes programming and prototyping algorithms easier, and more importantly, it ensures
that the "true" real coefficients of the approximation polynomial we consider (Taylor, Chebyshev,
etc.) are contained in the corresponding intervals. This property will be essential for handling
removable discontinuities of functions in Section 2.3.

43

2 CHAPTER 2

Taylor Models

În redactare nu are atâta pret, poleirea frazelor, cât organizarea ideilor.
Ion Barbu

Taylor models [97, 124, 98] are a well-known tool for obtaining rigorous polynomial approxima-
tions based on Taylor approximations. However, we encountered several difficulties in using it
in an "off-the-shelf" manner. Among these, the implementations are scarce or not freely available,
no multiple precision support for computations was available, we could not deal with a class of
functions sufficiently large for our purposes, etc.

Hence, we proceeded to implementing Taylor Models-like algorithms in our software tool
Sollya. Our implementation deals only with univariate functions, but several refinements were
integrated, several data structure choices are different. The most important refinement is the pos-
sibility of handling the practical difficulty of functions that have removable discontinuities. For
example, the classical way of computing Taylor Models would return an infinite error bound for

the function ε(x) =
x− 1

6 x
3

sin(x)
− 1, on a tight interval around zero, say I =

[
− π

64 ; π
64

]
. This kind

of functions are common in our applications: this is a relative error function which quantifies the
approximation error between sin and the approximation polynomial p(x) = x − 1

6 x
3, which is a

quite common approximation for sin. Both p and sin vanish at z0 = 0, but the approximation error
stays bounded.

Furthermore, we chose to explain in detail in this chapter the algorithms for Taylor Models,
because, to our knowledge, there is no such detailed account in the literature. This will also allow
us to explain the "philosophy" of Taylor models that will be used in subsequent chapters for ob-
taining new efficient RPAs based on better approximations. One other potential use is as reference
document for one of our on-going projects of their formalization in a formal proof checker.

The algorithms given in this chapter are used inside the process of certifying supremum norms
of approximation errors presented in Chapter 3. This is a joint work with S. Chevillard, J. Harrison
and C. Lauter.

2.1 Basic principles of Taylor Models

Taylor models [97, 98, 14, 15], introduced by Berz and his group, provide another way to rigor-
ously manipulate and evaluate functions using floating-point arithmetic. They have been widely
used for validated computing: in global optimization and range bounding [97, 14, 36, 15], for
validated solutions of ODEs [123], rigorous quadrature [13], etc.

46 Chapter 2. Taylor Models

A Taylor model (TM) of order n for a function f which is supposed to be n + 1 times con-
tinuously differentiable over an interval [a, b], is a rigorous polynomial approximation (RPA, see
Problem 1, page 17) of f . Specifically, it is a couple (P,∆) formed by a polynomial P of degree n,
and an interval part ∆, such that f(x) − P (x) ∈ ∆,∀x ∈ [a, b]. Roughly speaking, as their name
suggests, the polynomial can be seen as a Taylor expansion of the function at a given point. The
interval ∆ (also called interval remainder) provides the validation of the approximation, meaning
that it provides an enclosure of all the approximation errors encountered (truncation, roundings).

Example 2.1.1. Let I = [−1
2 ,

1
2], f(x) = exp(x). Its Taylor series around x0 = 0 is: f(x) =

∞∑
i=0

1
i!x

i.

Consider for example n = 2, P (x) = 1 + x + 0.5x2. We will see in the following (Example 2.2.3) that it
can be proved that |f(x) − T (x)| 6 d, where d = 0.035. Hence, we can say that (1 + x + 0.5x2, [−d, d])
is a TM of order 2, for f , over I . The visual interpretation of a TM is a tube around the function f . In
Figure 2.1(a), f is plotted over I . We observe that since |f(x) − P (x)| 6 d, we have P (x) − d 6 f(x) 6
P (x) + d, for all x ∈ I .

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-0.4 -0.2 0 0.2 0.4

exp(x)
P(x)+d
P(x)-d

(a)

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-0.4 -0.2 0 0.2 0.4

R_2

(b)

Figure 2.1: A TM (P, [−d, d]) of order 2 for exp(x), over I = [−1
2 ,

1
2]. P (x) = 1 + x + 0.5x2 and

d = 0.035. We can view a TM as a a tube around the function in (a). The actual error R2(x) =
exp(x)− (1 + x+ 0.5x2) is plotted in (b).

As we mentioned above, TMs are based on Taylor approximations. In fact, for functions like
trigonometric, exponential, logarithmic functions, as well as operations like 1/x or the power
function, all referred to in this work as basic functions (Definition 1.3.15, or as intrinsics in [97]),
the polynomial coefficients and the error bounds can be easily computed based on the Taylor-
Lagrange Formula and automatic differentiation as discussed in Section 1.4. However, the ap-
proach is different for composite functions: simple algebraic rules like addition, multiplication
and composition with TMs are applied recursively on the structure of the function f , such that
the final TMs is an RPA for f over [a, b]. As we will see in the following, due to this different
approach, TMs offer usually a much tighter error bound than the one directly computed for the
whole function, for example using the technique from Section 1.4.

In what follows we define more formally what such models are, and then describe algorithms
for computing Taylor Models of functions. We note that we consider only univariate functions f ,
which are supposed to be sufficiently smooth ∗.

∗. This means that given n, the order of TM we want to compute, over a given interval [a, b], f is n + 1 times
continuously differentiable over an interval [a, b].

46

2.1 Basic principles of Taylor Models 47

2.1.1 Definitions and their ambiguities

In literature, the consecrated definition of a Taylor Model states that it is a couple (T, ∆), where
T is a polynomial and ∆ is an interval bounding the absolute error between T and the function it
represents. The name implicitly suggests that the method used is based on Taylor approximations.
However, since we present in this work several ways of obtaining such couples, and some of the
methods do not use Taylor approximations, the consecrated definition becomes improper. Hence,
we make the following important remark:

Remark 2.1.2. We say that Taylor Models provide one special kind of rigorous polynomial approximations
and for short each time we refer to Taylor Models, it is implicit that the underlying methods used for
obtaining this RPA are based on:

– using truncated Taylor series expansions for basic functions;
– recursively applying algebraic rules with TMs on the structure of composite functions.

Moreover, several more clarifications are necessary:
– Usually, ∆ is an interval bound for the absolute error between the polynomial and the func-

tion, however, as we will see in the following, it does not permit to compute a finite error
bound for functions with removable discontinuities such as sin(x)/x. In order to overcome
this issue, we were led to modify this specification and we will discuss this in detail in Sec-
tion 2.3. To make the distinction between the standard TMs and the modified ones, we call
them Taylor Models with absolute remainder and respectively Taylor Models with relative
remainder. Sometimes, for brevity, and when no ambiguity occurs, when we refer to the
standard TMs, the term absolute remainder is omitted.

– We chose to represent the polynomial T with tight interval coefficients: this is not usual. Usu-
ally, one represents T with floating-point coefficients: it saves both memory (half the mem-
ory is needed with floating-point numbers in comparison with interval coefficients) and
time (interval arithmetic is at least twice slower than floating-point arithmetic [74]). When
performing floating-point operations on the coefficients, roundings occur: these rounding
errors are usually added to the remainder ∆ [97]. In contrast, using interval coefficients
makes programming easier (you do not have to care about the rounding errors) and, more
importantly, it ensures that the true coefficients of the Taylor polynomial lie inside the cor-
responding intervals. This property will be essential for handling removable discontinuities
as explained later in Section 2.3.

Now, the formal definition is the following:

Definition 2.1.3 (Taylor Model with Absolute Remainder). Let f : I → R be a function, x0 be a small
interval around an expansion point x0. Let M = (a0, . . . ,an,∆) be an RPA structure. We say that M is
a Taylor Model with Absolute Remainder of f at x0 on I when

x0 ⊆ I,

0 ∈∆,

∀ξ0 ∈ x0, ∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I, ∃δ ∈∆, f(x)−
n∑
i=0

αi (x− ξ0)i = δ.

Remark 2.1.4. The order (degree) of the Taylor model defined above is n.

We observe that evaluating or bounding the image of f reduces to evaluating or bounding the
image of T , a polynomial with tight interval coefficients, written in the monomial basis. We will
give several ideas about that in the following.

47

48 Chapter 2. Taylor Models

2.1.2 Bounding polynomials with interval coefficients

Let us first give a formal definition for a valid polynomial bound for T , over I and then discuss
methods for obtaining such valid bounds.

Definition 2.1.5 (Valid polynomial bound). Let a0, . . . ,an be intervals around polynomial coefficients.
Let I be an interval and x0 an expansion interval.

An intervalB is called a valid polynomial bound when

∀ξ0 ∈ x0, ∀α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ I,
n∑
i=0

αi (x− ξ0)i ∈ B.

Remark 2.1.6. We remark that, if x0 ⊆ I , we can take x = ξ0 in the previous equation and in this
particular case we obtain ∀α0 ∈ a0, α0 ∈ B. In other words if x0 ⊆ I and if B is a valid polynomial
bound for a0, . . . ,an,x0 and I , we have a0 ⊆ B.

One simple way to obtain a valid polynomial bound is to use a Horner scheme based evalua-
tion, that is known to reduce the overestimation and is described in Algorithm 2.1.1.

Algorithm: ComputeBound(a0, . . . ,an,x0, I)1

Input: a0, . . . ,an tight intervals
I an interval
x0 an interval
Output: a valid polynomial bound
B ← [0; 0] ;2

for i← n downto 0 do3

B ← B · (I − x0) + ai ;4

end5

returnB ;6

Algorithm 2.1.1: Computation of a valid polynomial bound

Proof of Algorithm 2.1.1. We prove the following loop invariant: at the end of each iteration of the
loop, B is a valid polynomial bound for ai, . . . ,an,x0, I . For i = n, it is trivial, since B = an in
this case. We suppose that the property holds at the end of i-th iteration, and prove that it holds
at the end of the (i− 1)-th. We have

Bnew ← Bold · (I − x0) + ai.

Let ξ0 ∈ x0, αk ∈ ak for k = i− 1, . . . , n, and x ∈ I : we shall prove that

n∑
k=i−1

αk (x− ξ0)k−i+1 ∈ Bnew.

By induction hypothesis, we know that
n∑
k=i

αk (x − ξ0)k−i ∈ Bold. Since x ∈ I and ξ0 ∈ x0, we

have x− ξ0 ∈ I − x0 and hence,(
n∑
k=i

αk (x− ξ0)k−i

)
(x− ξ0) ∈ Bold · (I − x0).

48

2.1 Basic principles of Taylor Models 49

Finally,

(
n∑
k=i

αk (x− ξ0)k−i

)
(x− ξ0) + αi−1 ∈ Bnew.

Remark 2.1.7. We note that we could roughly see Algorithm 2.1.1 as an evaluation of the polynomial,
using natural interval extension of the polynomial expression written in Horner form.

We have seen that in general, natural interval extension does not provide a sharp interval
bound. But, when using Taylor models, obtaining sharp interval bounds for polynomials is very
important [124]. As we will see in the following, for each operation involving Taylor models,
interval bounds on polynomials appearing in intermediary computations are necessary. These
bounds influence directly the final quality of the remainder obtained. We deal here only with uni-
variate polynomials, and we mention just that for multivariate polynomials, many techniques for
range bounding were proposed in [152]. Also, Taylor models interval extensions using Bernstein
expansions were studied [121].

Nevertheless, for univariate polynomials, obtaining the exact range of a polynomial is possible
by using well-established techniques for isolating the roots of its derivative. Specifically, this
means that given a univariate real polynomial T , we now want to compute a list Z of disjoint
thin intervals z such that each root of T lies in one of the intervals z. We may use general methods
such as the interval Newton method [139]. But we can also take advantage of the fact that T is a
polynomial and use a specific method for isolating the real roots of a polynomial. There are two
main classes of such specific methods which we mention for completeness, but we do not enter the
technical details in this work: methods based on “Descartes’ rule of signs”, see for example [143]
and methods based on Sturm’s method, see [144] for an overview.

For this, we need an automatic and reversible process that given a TM consisting of a poly-
nomial with tight interval coefficients and a remainder bound as defined above, returns a polynomial
with floating-point coefficients and a new rigorous remainder bound. It is not difficult to see that
we can do that by by taking a FP number contained in each interval coefficient (for example the
middle of the interval, if it happens to be a FP, otherwise an endpoint of the interval) as the new
coefficient and accumulating the small errors in the coefficients to the final error bound. This is
the idea of Algorithm 2.1.2.

Proof of Algorithm 2.1.2. Let us fix FP numbers ξ0 ∈ x0, ti ∈ ai, with the common choice ti =

mid (ai) and the polynomial T̃ (x) of degree n,

T̃ (x) =

n∑
i=0

ti(x− ξ0)i.

We have from Definition 2.1.3:

∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I,∃δ ∈ ∆, f(x) − T̃ (x) =

n∑
i=0

αi (x− ξ0)i − T̃ (x) + δ.

The difference between
n∑
i=0

αi (x− ξ0)i and T̃ (x) can easily be bounded using interval arithmetic.

We have αi ∈ ai, and thus (αi − ti) ∈ [inf(ai)− ti, sup(ai)− ti], which leads to

n−1∑
i=0

(αi − ti)(x− ξ0)i ∈
n−1∑
i=0

[inf(ai)− ti, sup(ai)− ti] · (I − ξ0)i = θ.

Finally, the error between f and T̃ is bounded by θ + ∆.

We will now give detailed algorithms for computing Taylor Models with absolute remainder.

49

50 Chapter 2. Taylor Models

Algorithm: ComputeFP-RPAfromTM((a0, . . . ,an,∆), x0, I)1

Input: I an interval,
(a0, . . . ,an,∆) a TM of degree n at x0 on I for some function.
Output: an RPA for the respective function, whose polynomial has FP coefficients
ξ0 = mid (x0);2

if ξ0 is not a FP number then3

ξ0 = inf(x0);4

end5

for k ← 0 to n do6

ti = mid (ai);7

if ti is not a FP number then8

ti = inf(ai);9

end10

bi = ai − ti;11

end12

θ ← ComputeBound(b0, . . . , bn,x0, I);13

∆←∆ + θ;14

return (t0, . . . , tn, ξ0,∆) ;15

Algorithm 2.1.2: Computation of a polynomial with FP coefficients and a rigorous error
bound from a TM.

2.2 Taylor Models with Absolute Remainder

We start with algorithms for computing Taylor Models for basic functions and then we con-
tinue with describing operations like addition, multiplication, composition with this models.

2.2.1 Taylor Models for basic functions

For each basic function f like identity, sin, cos, exp, etc. a case-by-case algorithm has to be
written. This can be tedious when programming Taylor Models, because it has mainly to be done
by hand, and proved case by case. We give below the example of the constant, identity and then
we describe the process to follow for other functions and exemplify on sin. We note that we will
use and have available an algorithm eval(f,x) that for a function f and an interval x returns a
valid bound for f over x as explained in Remark 1.3.20.

Algorithm: TMConst(c, n)1

Input: a (usually small) interval c, n ∈ N
Output: a Taylor structure which is a Taylor Model for any γ ∈ c
a0 ← c ;2

a1 . . .an ← [0, 0] ;3

∆← [0, 0] ;4

M ← (a0, . . . ,an,∆);5

return M ;6

Algorithm 2.2.1: Computation of a Taylor Model of a constant function

50

2.2 Taylor Models with Absolute Remainder 51

Constant function

Proof of Algorithm 2.2.1. We prove that, for any interval I , any expansion interval x0 ⊆ I and any
value γ ∈ c, the returned structure M is a Taylor Model of the constant function x 7→ γ, around
x0 over I .

Let I , x0 and γ as above. Assume that ξ0 ∈ x0. We choose α0 = γ ∈ a0 and, for i ∈ {1, . . . , n},
αi = 0 ∈ ai. Then, for any x ∈ I , we choose δ = 0 ∈∆ = [0, 0]. The property trivially holds.

Algorithm: TMVar(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a Taylor Model M of the identity function x 7→ x
a0 ← x0 ;2

a1 ← [1, 1] ;3

a2 . . .an ← [0, 0] ;4

∆← [0, 0] ;5

M ← (a0, . . . ,an,∆);6

return M ;7

Algorithm 2.2.2: Computation of a Taylor Model of the identity function

Identity function

Proof of Algorithm 2.2.2. Assume that ξ0 ∈ x0 and α0 = ξ0 ∈ a0. Moreover, we choose α1 = 1 and
α2 = · · · = αn = 0. Assume that x ∈ I . We choose δ = 0 ∈ ∆ = [0, 0]. The property trivially
holds.

Now, let us see how we can compute TMs for basic functions like f = sin, cos, exp, etc.

Computing the coefficients and the remainder for basic functions. We use like in Section 1.4,
the Taylor-Lagrange formula (see Lemma 1.4.1) that we recall below for clarity:

Let n ∈ N. Any n + 1 times differentiable function f over an interval I = [a, b] around x0 ∈ I
can be written according to Lagrange formula:

f(x) =

n∑
i=0

f (i)(x0)

i!
· (x− x0)i + ∆n(x, ξ),

where ∆n(x, ξ) =
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!
, x ∈ [a, b] and ξ lies strictly between x and x0.

We face two problems: enclosing the coefficients and the error. We have already seen in Sec-
tion 1.4 that this can be easily done for basic functions and we already have available either closed
formulas or recurrence relations between successive Taylor coefficients of these functions. The
only inconvenient comes from the fact that when using Interval Arithmetic and Lagrange formula
for bounding ∆n(I, I), we have sometimes an important overestimation for the true error bound,
so, we will try to take advantage of Lemma 5.12 of [176]. It is based on the following remark: often,
the absolute error between a function and its Taylor polynomial is monotonic (in fact, it behaves
more or less like the first neglected term, i.e. (x − ξ0)n+1); if we manage to prove the monotonic-
ity, we obtain a very sharp (yet safe) bound for the error by evaluating it at the endpoints of the
interval.

51

52 Chapter 2. Taylor Models

Proposition 2.2.1 (Adaptation of Lemma 5.12 of [176]). Let f be a function defined over an interval
I = [a, b]; let ξ0 ∈ I and let n > 0 be an integer. If the sign of f (n+1) is constant over I , then the remainder
between f and its Taylor expansion of degree n around ξ0 is monotonic on [a, ξ0] and on [ξ0, b].

Proof. For any function f , we denote by Tn(f) the Taylor polynomial of degree n and by Rn(f) =
f − Tn(f) the corresponding remainder. We remark that Rn(f)′ = f ′ − T ′n(f) = f ′ − Tn−1(f ′) =
Rn−1(f ′). We shall show that that Rn(f) is monotonic on [a, ξ0] and on [ξ0, b]. Thus it suffices to
show that the sign of Rn−1(f ′) is constant.

We can express Rn−1(f ′) by means of the Lagrange formula (applied to f ′):

Rn−1(f ′)(x) =
(x− ξ0)n

n!
f ′(n)(ξ)

for some ξ between x and ξ0. By hypothesis f ′(n)(ξ) = f (n+1)(ξ) has a constant sign over I . Hence
the sign of Rn−1(f ′)(x) is constant over [a, ξ0] and over [ξ0, b]. This concludes the proof.

We can use the above proposition for bounding the remainder of basic functions when we
construct their Taylor Model. Namely, we evaluate f (n+1)(I) by interval arithmetic: if the resulting
interval contains numbers of different signs, we cannot apply the technique and fall back to the
classical bound given by Lagrange formula. If, on the contrary, the resulting interval contains only
nonnegative numbers or only nonpositive numbers, the hypothesis of Proposition 2.2.1 holds. Let
R be the remainder: it is hence monotonic on [a, ξ0] and [ξ0, b]. Hence, R([a, ξ0]) is the interval
with bounds R(a) and R(ξ0) (and similarly for R([ξ0, b])). We conclude that R(I) is the smallest
interval containing R(a), R(ξ0) and R(b).

Example 2.2.2. Let f = exp, I = [−0.5, 0.5], n = 2, ξ0 = 0 and T2(x) = 1 + x + 0.5x2. The error
R2(x) = exp(x) − T2(x) is plotted in Figure 2.1(b). Using Lagrange formula (Lemma 1.4.1) we obtain:

R2(I) ⊆ exp(I)

3!
· I3, which gives: R2(I) ⊆ [−0.035, 0.035]. This is an overestimation of R2(I) as we

can observe from the figure.
By computing the 3rd derivative of f over I = [−0.5, 0.5], we obtain: f (3)(I) ⊆ [0.60, 1.65],

hence according to Prop. 2.2.1, R2 is monotonic over [−0.5, 0] and [0, 0.5]. We can compute almost
the exact ∗ image R2(I) by 3 evaluations: R2([−0.5]) ⊆ [−0.0185,−0.0184], R2([0]) ⊆ [0] and
R2([0.5]) ⊆ [0.0236, 0.0237] †. We obtain R2(I) ⊆ [−0.0185, 0.0237].

Let us now describe and prove the algorithm used for computing a Taylor Model for sin.

The sine function

Proof of TMSin. Assume that ξ0 ∈ x0. For all i we choose αi = sin(i)(ξ0)/i!. We know that
– sin(i)(ξ0) = sin(ξ0) when i = 0 mod 4;
– sin(i)(ξ0) = cos(ξ0) when i = 1 mod 4;
– sin(i)(ξ0) = − sin(ξ0) when i = 2 mod 4;
– sin(i)(ξ0) = − cos(ξ0) when i = 3 mod 4.

Hence, for all i, we have αi ∈ ai. Moreover, we remark that, for all ξ ∈ I , sin(n+1)(ξ)/(n+ 1)! ∈ Γ.
Now, assume that x ∈ I . From Lemma 1.4.1, there exists ξ between ξ0 and x such that

δ := sin(x)−
n∑
i=0

αi (x− ξ0)i = (x− ξ0)n+1 sin(n+1)(ξ)

(n+ 1)!
.

∗. the only overestimation errors in this case are due to rounding errors occurring in computations with point
intervals and are of the order of precision used for computation.
†. Note that this is a toy example, only 3 significant digits were used for the sake of clarity.

52

2.2 Taylor Models with Absolute Remainder 53

Algorithm: TMSin(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a Taylor Model M of the sine function sin
for i← 0 to n do2

switch i mod 4 do3

case 0: ai ← eval (sin (x) /i!, x0);4

case 1: ai ← eval (cos (x) /i!, x0);5

case 2: ai ← eval (− sin (x) /i!, x0);6

case 3: ai ← eval (− cos (x) /i!, x0);7

endsw8

end9

switch (n+ 1) mod 4 do10

case 0: Γ← eval (sin(x)/i!, I);11

case 1: Γ← eval (cos(x)/i!, I);12

case 2: Γ← eval (− sin(x)/i!, I);13

case 3: Γ← eval (− cos(x)/i!, I);14

endsw15

if (sup(Γ) ≤ 0) or (inf(Γ) ≥ 0) then16

a← [inf(I)];17

b← [sup(I)];18

∆a ← eval (sin(x),a)− ComputeBound(a0, . . . ,an,x0,a);19

∆b ← eval (sin(x), b)− ComputeBound(a0, . . . ,an,x0, b);20

∆x0 ← eval (sin(x),x0)− ComputeBound(a0, . . . ,an,x0,x0);21

∆← [min(inf(∆a), inf(∆x0), inf(∆b)), max(sup(∆a), sup(∆x0), sup(∆b))];22

else23

V ← eval
(
(x− y)n+1, (I,x0)

)
;24

∆← V · Γ;25

end26

M ← (a0, . . . ,an,∆);27

return M ;28

Algorithm 2.2.3: Computation of a Taylor Model of the sine function

53

54 Chapter 2. Taylor Models

Since ξ0 ∈ x0 ⊆ I and since x ∈ I , we have ξ ∈ I (convexity of I). Hence δ(x) ∈ V · Γ = ∆.
Finally, since x0 ⊆ I and n ≥ 0, V contains 0. Thus, ∆ contains 0. This concludes the proof in the
case when the execution goes through the “else” branch.

If, on the contrary, the execution goes through the “then” branch: in this case, sup(Γ) ≤ 0 or
inf(Γ) ≥ 0. Suppose, for instance, that we are in the case when sup(Γ) ≤ 0 (the other case is
handled similarly). Since ∀x ∈ I, sin(n+1)(x)/(n+ 1)! ∈ Γ, we have, in particular,

∀x ∈ I, sin(n+1)(x)/(n+ 1)! ≤ sup(Γ) ≤ 0.

Hence, the hypothesis of Proposition 2.2.1 holds and it follows that x 7→ δ(x) is monotonic on
[inf(I), ξ0] and on [ξ0, sup(I)]. Since ComputeBound computes a valid polynomial bound, and
since αi ∈ ai for all i, ξ0 ∈ x0 and inf(I) ∈ a, we know that

n∑
i=0

αi (inf(I)− ξ0)i ∈ ComputeBound(a0, . . . ,an,x0,a).

It follows that δ(inf(I)) ∈ ∆a. The same arguments show that δ(ξ0) ∈ ∆x0 and δ(sup(I)) ∈ ∆b.
By definition of ∆, we have ∆a ⊆ ∆, ∆x0 ⊆ ∆ and ∆b ⊆ ∆. In conclusion, the three values
δ(inf(I)), δ(ξ0) and δ(sup(I)) belong to ∆.

Since x ∈ I and ξ0 ∈ x0 ⊆ I , we either have x ∈ [inf(I), ξ0] or x ∈ [ξ0, sup(I)]. Since δ
is monotonic on these intervals, we know for sure that δ(x) lies between δ(inf(I)) and δ(ξ0) or
between δ(ξ0) and δ(sup(I)). In all cases, δ(x) ∈∆.

In order to conclude the proof, it only remains to prove that 0 ∈ ∆. Consider any point
µ0 ∈ x0. So, sin(µ0) ∈ a0. Using this result and the correctness of ComputeBound, we get
sin(µ0) ∈ ComputeBound(a0, . . . , an, x0, x0) (we take ξ0 = x = µ0 ∈ x0, α0 = sin(µ0) and
any value for α1, . . . , αn). Since obviously sin(µ0) ∈ eval(sin(x), x0), we conclude that 0 ∈ ∆x0 .
Hence 0 ∈∆, which concludes the proof.

Example 2.2.3. Executing an implementation of Algorithm 2.2.3 TMSin([−0.5, 0.5], [0], 8), with a toy
precision of 5 digits we obtain the TM below. We denote by a = 1234[5|6] the interval [12345, 12346] in
order have a shortcut representation that allows us to see faster the common digits in the decimal represen-
tation of a.

([0], [0.9998, 1.0002], [0], −0.1667[1|3], [0], 0.833[2|3]e− 2, [0],−0.198[4|3]e− 3,

[−0.16001e− 3, 0.16001e− 3]).

We mention for the sake of clarity that the last interval is the enclosure of the remainder ∆. Using
Algorithm 2.1.2, one can obtain a polynomial with numeric coefficients, ex. the polynomial T̃ (x) = x −
0.16672x3+0.8332·10−2 x5−0.1984·10−3 x7 and the remainder bound [−0.26201·10−3, 0.26201·10−3].

We note that here we chose a toy precision for the computation of the coefficients, and hence the error
in the accuracy of the coefficients is similar to the order of the remainder. In practice, the precision for
computing the coefficients is much higher, and hence, when passing from a polynomial with "tight interval
coefficients" to a numerical one, the error that is added is much smaller compared to the remainder.

Reciprocal function x 7→ 1/x. With Taylor Models, divisions are performed by computing a
reciprocal followed by a multiplication. The reciprocal x 7→ 1/x is handled like any other unary
basic function. We give below the pseudo-code for the constructor of the Taylor Model of the
reciprocal. It is exactly the same as for sin except that we compute the derivatives of x 7→ 1/x
instead of the derivatives of sin.

Proof of TMInv. Similar to the previous proof, remarking that the ith derivative of x 7→ 1/x is
x 7→ (−1)i i!

xi+1 .

54

2.2 Taylor Models with Absolute Remainder 55

Algorithm: TMInv(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a Taylor Model M of the reciprocal function x 7→ 1/x
for i← 0 to n do2

ai ← eval
(

(−1)i

xi+1 , x0

)
;3

end4

Γ← eval
(

(−1)n+1

xn+2 , I
)

;5

if (sup(Γ) ≤ 0) or (inf(Γ) ≥ 0) then6

a← [inf(I)];7

b← [sup(I)];8

∆a ← eval (1/x,a)− ComputeBound(a0, . . . ,an,x0,a);9

∆b ← eval (1/x, b)− ComputeBound(a0, . . . ,an,x0, b);10

∆x0 ← eval (1/x,x0)− ComputeBound(a0, . . . ,an,x0,x0);11

∆← [min(inf(∆a), inf(∆x0), inf(∆b)), max(sup(∆a), sup(∆x0), sup(∆b))];12

else13

V ← eval
(
(x− y)n+1, (I,x0)

)
;14

∆← V · Γ;15

end16

M ← (a0, . . . ,an,∆);17

return M ;18

Algorithm 2.2.4: Computation of a Taylor Model of the reciprocal function

2.2.2 Operations with Taylor Models

Once we have given algorithms for creating TMs for all basic functions, we need to see how
to add, multiply and compose Taylor Models. The Taylor Model of an expression is computed
by induction on the structure of the expression: we will give more detail on this later. For now
on, we only need to keep in mind that the addition and multiplication algorithms take as input
two RPA structures that are effectively Taylor Models of two functions f and g, developed around
the same expansion almost point interval x0 and on the same interval I (this will be ensured by
the induction hypothesis), and we shall prove that the addition and multiplication algorithms
produce valid Taylor Models for f + g and f g respectively.

Addition of Taylor Models. It is roughly speaking based on the observation that given two valid
TMs for two functions, we can add the polynomials and the remainders respectively and obtain a
new polynomial and a new remainder that form a valid TM for the sum of the two functions.

Example 2.2.4. Consider f = sin, g = cos, I = [−0.5, 0.5], x0 = 0, n = 6. We have two TMs for f and
g:

Mf = ([0, 0], [0.9979, 1.002], [0, 0], [−0.1671,−0.1663], [0, 0], [0.8323e− 2, 0.8335e− 2],

[−0.1501e− 2, 0.1501e− 2]),

Mg = ([0.9979, 1.002], [0, 0], [−0.5007,−0.4993], [0, 0], [0.04161, 0.04169], [0, 0]],

[−0.21771e− 4, 0]).

55

56 Chapter 2. Taylor Models

We can compute a TM for f + g, over I = [−0.5, 0.5], in x0 = 0, of order n = 6, by adding the respective
coefficients and remainders of the two models for f and g:

Mf+g = ([0.9979, 1.002], [0.9979, 1.002], [−0.5007,−0.4993], . . . , [0.8323e− 2, 0.8335e− 2],

[−0.1524e− 2, 0.1502e− 2]).

In this example we also observe that for computing the remainder in the TM for cos we used Prop. 2.2.1.

The algorithm and its proof are given below.

Algorithm: TMAdd(Mf ,Mg, n)1

Input: Mf ,Mg two Taylor Models corresponding to two functions f and g,
n ∈ N the common expansion order of both Taylor Models
Output: a Taylor Model M corresponding to f + g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for i← 0 to n do4

ci ← ai + bi;5

end6

∆←∆f + ∆g;7

M ← (c0, . . . , cn,∆);8

return M ;9

Algorithm 2.2.5: Addition of Taylor Models

Proof of TMAdd. First, we remark that 0 ∈∆f and 0 ∈∆g by hypothesis. So 0 ∈∆.
Assume that ξ0 ∈ x0. Since Mf is a Taylor model of f , we have that

∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I, ∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf .

We consider such values αi. The same holds for Mg and g with some βi ∈ bi. We shall show

∃γ0 ∈ c0, . . . , γn ∈ cn, ∀x ∈ I,∃δ ∈∆, f(x) + g(x)−
n∑
i=0

γi (x− ξ0)i = δ.

We choose γi = αi + βi ∈ ci. Assume that x ∈ I . In consequence, there exists δf ∈ ∆f such that

f(x)−
n∑
i=0

αi (x− ξ0)i = δf and accordingly for some δg ∈∆g. So, we can choose δ = δf + δg ∈∆

and we have

f(x) + g(x)−
n∑
i=0

γi (x− ξ0)i =

(
f(x)−

n∑
i=0

αi (x− ξ0)i
)

+

(
g(x)−

n∑
i=0

βi (x− ξ0)i
)

= δf + δg = δ.

56

2.2 Taylor Models with Absolute Remainder 57

Multiplication of Taylor Models. For multiplication, we give first an informal explanation, and
below we give the algorithm and its proof of correctness. Let us consider informally that we
have two TMs for two functions f and g, over I , in x0, of order n written as a couple made of a
polynomial with real coefficients and a remainder: (Pf ,∆f) and (Pg,∆g). Then, ∀x ∈ I,∃δf ∈
∆f and δg ∈∆g s.t. f(x)− Pf (x) = δf and g(x)− Pg(x) = δg. We have

f(x) · g(x) = Pf (x) · Pg(x) + Pg(x) · δf + Pf (x) · δg + δf · δg.

We observe that Pf · Pg is a polynomial of degree 2n. We split it into two parts: the polynomial
consisting of the terms that do not exceed n, (Pf · Pg)0...n and respectively the upper part (Pf ·
Pg)n+1...2n, for the terms of the product Pf · Pg whose order exceeds n.

Now, a TM for f · g can be obtained by finding an interval bound ∆ for all the terms except
P = (Pf · Pg)0...n:

∆ = B((Pf · Pg)n+1...2n) +B(Pg) ·∆f +B(Pf) ·∆g + ∆f ·∆g,

where we denote byB(h) a valid interval bound for h over the interval I under consideration.

Algorithm: TMMul(Mf ,Mg, I,x0, n)1

Input: Mf ,Mg two Taylor Models corresponding to two functions f and g,
I the interval of both Taylor Models,
x0 the expansion interval for both Taylor Model,
n ∈ N the order of both Taylor Models
Output: a Taylor Model M corresponding to f · g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for k ← 0 to 2n do4

ck ← [0; 0];5

end6

for i← 0 to n do7

for j ← 0 to n do8

ci+j ← ci+j + ai · bj ;9

end10

end11

for k ← 0 to n do12

dk ← [0; 0];13

end14

for k ← n+ 1 to 2n do15

dk ← ck;16

end17

B ← ComputeBound(d0, . . . ,d2n,x0, I);18

Bf ← ComputeBound(a0, . . . ,an,x0, I);19

Bg ← ComputeBound(b0, . . . , bn,x0, I);20

∆← B + (∆f ·Bg) + (∆g ·Bf) + (∆f ·∆g);21

M ← (c0, . . . , cn,∆);22

return M ;23

Algorithm 2.2.6: Multiplication of Taylor Models

57

58 Chapter 2. Taylor Models

Proof of TMMul. We assume the Mf and Mg are Taylor Models of two functions f and g, around
the same expansion interval x0 over the same interval I . We shall prove that TMMul returns a
Taylor Model of fg around x0 over I .

By hypothesis, 0 ∈∆f and 0 ∈∆g. Hence 0 ∈∆f ·Bg and 0 ∈∆g ·Bf and 0 ∈∆f ·∆g.
In order to prove that 0 ∈ B, we choose an arbitrary value µ0 in x0; since x0 ⊆ I , we can take

x = ξ0 = µ0 and use the correctness of ComputeBound. We get that ∀δ0 ∈ d0, δ0 ∈ B, and we
have that d0 = [0]. We conclude that 0 ∈∆.

Assume that ξ0 ∈ x0. Since Mf is a Taylor model of f , we have αi ∈ ai (i = 0, . . . , n) such that

∀x ∈ I, ∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf .

The same holds for Mg and g with βi ∈ bi. We have(
n∑
i=0

αi (x− ξ0)i
)
·

(
n∑
i=0

βi (x− ξ0)i
)

=

n∑
i=0

n∑
j=0

αi βj (x− ξ0)i+j =

2n∑
k=0

γk (x− ξ0)k.

Clearly, γk is the sum of all the αi βj such that i ∈ {0, . . . , n}, j ∈ {0, . . . , n} and i + j = k. Hence
we have γk ∈ ck for all k. Assume now that x ∈ I . We have values δf and δg such that

f(x) g(x) =

(
n∑
i=0

αi (x− ξ0)i + δf

)
·

(
n∑
i=0

βi (x− ξ0)i + δg

)

=
n∑
i=0

γi (x− ξ0)i

+


n∑
i=0

0 (x− ξ0)i +
2n∑

i=n+1

γi (x− ξ0)i︸ ︷︷ ︸
∈B

+ δf

(
n∑
i=0

βi (x− ξ0)i
)

︸ ︷︷ ︸
∈Bg

+δg

(
n∑
i=0

αi (x− ξ0)i
)

︸ ︷︷ ︸
∈Bf

+δf δg

 .

The inclusions in B, Bf and Bg are given by the correctness of ComputeBound. The conclusion
follows.

Composition of Taylor Models. We now describe the algorithm used for the composition of
functions. Suppose that we want to compute a Taylor Model for g ◦ f : the algorithm takes an
RPA structure Mf (supposed being a valid Taylor Model of f around x0 over I , by the induction
hypothesis) and it takes a symbol representing the function g. The first thing to do is to construct
a Taylor Model for g. This is is performed using the algorithms of the basic functions that we
already described above, while paying good attention that the parameters used for constructing
this Taylor Model are not I and x0 anymore but their image through function f . Then, we mainly
see the composition of Mg and Mf as the composition of two polynomials: this is performed by
means of PolynomialEvaluationOfTM. This algorithm is described and proved below.

58

2.2 Taylor Models with Absolute Remainder 59

Algorithm: PolynomialEvaluationOfTM(b0, . . . , bn, Mf , I,x0, n)1

Input: b0, . . . , bn tight intervals, I an interval,
Mf a Taylor Model of a function f developed around a tight interval x0 over I
A tight interval expansion x0,
n ∈ N
Output: an RPA structure M that is a Taylor Model of x 7→

n∑
i=0

βi f(x)i around x0 over I , for

any (β0, . . . , βn) such that βi ∈ bi for each i.
M ← ([0; 0], . . . , [0; 0], [0; 0]) ;2

for i← n downto 0 do3

M ← TMMul(M, Mf , I, x0, n);4

M ← TMAdd(M, TMConst(bi, n), n) ;5

end6

return M ;7

Algorithm 2.2.7: Composition of a polynomial with a Taylor Model

Proof of PolynomialEvaluationOfTM. By hypothesis, Mf is a Taylor Model of a function f
around an interval x0 over I . We prove that, for any values βi ∈ bi (i ∈ {0, . . . , n}), the returned

structure M is a Taylor Model of the function x 7→
n∑
i=0

βi f(x)i around x0 over I .

Let I , x0 and values βi as above. The proof is the same as the proof of correctness of the algo-
rithm ComputeBound (see Algorithm 2.1.1 on page 48). The loop invariant here is the following:

at the end of each iteration of the loop, M is a Taylor Model of the function x 7→
n∑
k=i

βk f(x)k

around x0 over I . Otherwise, the proof is the same and is based on the correctness of TMConst,
TMAdd and TMMul.

Remark 2.2.5. Any other polynomial evaluation algorithm could be used, provided that it only uses ad-
ditions and multiplications. The proof would then exactly follow the proof of correctness of the polynomial
evaluation algorithm.

Proof of TMComp. Assume that ξ0 ∈ x0. Since Mf is a Taylor model of f , we have values α0 ∈
a0, . . . , αn ∈ an such that

∀x ∈ I,∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf . (2.1)

As per Remark 2.1.6 (see page 48), a0 ⊆ Bf . Moreover, since 0 ∈ ∆f (induction hypothesis), we
have a0 ⊆ Bf + ∆f . This ensures that the call to TMSin, TMInv, etc., is correct and Mg is hence a
Taylor Model of g around a0 over Bf + ∆f . Since α0 ∈ a0, we have values β0 ∈ b0, . . . , βn ∈ bn
such that

∀y ∈ Bf + ∆f ,∃δg ∈∆g, g(y)−
n∑
i=0

βi (y − α0)i = δg. (2.2)

Now, as per Equation (2.1), and the correctness of ComputeBound, we have

∀x ∈ I, f(x) ∈ Bf + ∆f .

59

60 Chapter 2. Taylor Models

Algorithm: TMComp(I,x0,Mf , g, n)1

Input: I an interval,
x0 ⊆ I an expansion interval,
Mf a Taylor Model corresponding to a function f developed in x0 over I ,
g : R→ R a base function,
n ∈ N
Output: a Taylor Model M corresponding to g ◦ f developed in x0 over I
(a0, . . . ,an,∆f)←Mf ;2

Bf ← ComputeBound(a0, . . . ,an,x0, I);3

switch g do4

case sin: Mg ← TMSin(a0, Bf + ∆f , n);5

case x 7→ 1/x: Mg ← TMInv(a0, Bf + ∆f , n);6
...7

endsw8

(b0, . . . , bn,∆g)←Mg;9

M1 ← ([0, 0] ,a1, . . . ,an,∆f) ;10

(c0, . . . , cn,∆)← PolynomialEvaluationOfTM(b0, . . . , bn, M1, I, x0, n);11

M ← (c0, . . . , cn,∆ + ∆g);12

return M ;13

Algorithm 2.2.8: Composition of a Taylor Model with a Function

Combining this result with Equation (2.2), we get

∀x ∈ I,∃δg ∈∆g, (g ◦ f)(x)−
n∑
i=0

βi (f(x)− α0)i = δg. (2.3)

We now prove that M1 is a Taylor Model of x 7→ f(x) − α0 around [ξ0, ξ0] over I . Whatever
the expansion point µ0 ∈ [ξ0; ξ0], we trivially see that µ0 = ξ0. Taking α′0 = 0 ∈ [0] and, for i ≥ 1,
α′i = αi ∈ ai, we get, with Equation (2.1),

∀x ∈ I,∃δf ∈∆f , f(x)−

(
α0 +

n∑
i=1

αi (x− ξ0)i
)

= δf .

Hence

∀x ∈ I,∃δf ∈∆f , (f(x)− α0)−
n∑
i=0

α′i (x− µ0)i = δf .

So, M1 is a Taylor Model of f − α0 around [ξ0; ξ0] over I .
By correction of PolynomialEvaluationOfTM (and since [ξ0, ξ0] ⊆ x0, and all the βi belong

to the corresponding bi), we get that (c0, . . . , cn, ∆) is a Taylor Model of x 7→
n∑
i=0

βi (f(x) − α0)i

around [ξ0, ξ0] over I . Hence we have values γi ∈ ci (i ∈ {0, . . . , n}) such that

∀x ∈ I,∃δ ∈∆,

(
n∑
i=0

βi (f(x)− α0)i

)
−

(
n∑
i=0

γi (x− ξ0)i

)
= δ.

Combining this last result with Equation (2.3), we get

∀x ∈ I,∃δ ∈∆ + ∆g, (g ◦ f)(x)−

(
n∑
i=0

γi (x− ξ0)i

)
= δ,

60

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 61

which is the property that we wanted to prove.
Finally, we remark that 0 ∈ ∆ + ∆g. Indeed 0 ∈ ∆g and 0 ∈ ∆ by correctness of TMSin,

TMInv, etc. and PolynomialEvaluationOfTM, hence the result.

Division of Taylor Models. Computing a Taylor Model for
f

g
reduces to computing f ·

(
1

x
◦ g
)

.

This implies multiplication and composition of Taylor Models as well as computing a Taylor
Model for the basic function x 7→ 1/x, which was already explained before in this section. The
algorithm is given below.

Algorithm: TMBaseDiv(Mf ,Mg, I,x0, n)1

Input: Mf ,Mg two Taylor Models corresponding to two functions f and g,
I an interval,
x0 ⊆ I an expansion interval,
n ∈ N
Output: a Taylor Model M corresponding to f/g
M ← TMMul(Mf ,TMComp(I,x0,Mg, x 7→ 1/x, n), I,x0, n);2

return M ;3

Algorithm 2.2.9: Basic Division of Taylor Models

Proof of TMBaseDiv. Trivial by the correction of TMMul and TMComp and the fact that f/g can be
written f · 1/g.

Finally, we can write the complete algorithm that computes a Taylor Model for any expression,
by induction on this expression.

Computing Taylor Models for any function given by an expression

Proof of TM. We use structural induction on the expression tree for function h for the proof. In all
cases when the algorithm calls one of TMConst, TMVar, TMAdd, TMMul,TMDiv and TMComp, the
correction is trivial by correction of the called sub-algorithm.

We will give in Chapter 3 examples of application of Taylor Models.

2.3 The problem of removable discontinuities – the need for Taylor
Models with relative remainder

Suppose that the function f for which we want to compute a Taylor Model on an interval I ,
is given by an expression where a division occurs f = u

v and both u and v vanish on I at some
points zi ∈ I , points called removable discontinuities of f . Mathematically speaking, this is not a
problem for the function f . It may stay defined – and bounded – by continuity. As we will see in
Chapter 3, the matter is not purely theoretical but quite common in practice.

Example 2.3.1. Let us consider the function ε(x) =
x− 1

6 x
3

sin(x)
− 1, on a tight interval around zero, say

I =
[
− π

64 ; π
64

]
. This function is a relative error function which quantifies the approximation error between

sin and the approximation polynomial p(x) = x − 1
6 x

3, which is a quite common approximation for sin.
Both p and sin vanish at z0 = 0, but the approximation error stays bounded.

61

62 Chapter 2. Taylor Models

Algorithm: TM(I,x0, h, n)1

Input: I an interval,
x0 ⊆ I an expansion interval,
h the expression of a function,
n ∈ N an expansion order
Output: a Taylor Model M corresponding to h
switch h do2

case h = x 7→ c: M ← TMConst(c, I,x0, n);3

case h = x 7→ x: M ← TMVar(I,x0, n);4

case h = f + g:5

Mf ← TM(n, I,x0, f, n);6

Mg ← TM(n, I,x0, g, n);7

M ← TMAdd(Mf ,Mg, n);8

endsw9

case h = f · g:10

Mf ← TM(n, I,x0, f, n);11

Mg ← TM(n, I,x0, g, n);12

M ← TMMul(Mf ,Mg, I,x0, n);13

endsw14

case h = f/g: M ← TMBaseDiv(n, I,x0, f, g, n);15

case h = g ◦ f :16

Mf ← TM(n, I,x0, f, n);17

M ← TMComp(I,x0,Mf , g, n);18

endsw19

endsw20

return M ;21

Algorithm 2.2.10: Computation of Taylor Models

62

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 63

The technique of Taylor models, as usually described, is not able to handle such functions
f . The usual way of performing a division u/v is to compute a Taylor model for v, compute its
inverse, and then multiply by a Taylor model of u. The inversion fails if v vanishes in the interval
(more precisely, if extended division is available, it does not fail, but the computed remainder
bound is infinite). We propose an adaptation of Taylor models that allows for performing such a
division.

Consider an expression of the form u/v. We suppose that a numerical heuristic has already
found a point z0 where u and v seem to vanish simultaneously. If there are several distinct zeros
of v in the interval, we split it into several ones. So, we will assume that z0 is presumably the
unique zero of v in the interval. There are two important remarks:

– We additionally assume that z0 is exactly representable as a floating-point number. This
hypothesis may seem restrictive at first sight. However this is usually the case in the practice
of floating-point code development. More on, it is hopeless to handle non-representable
singularities without introducing symbolic methods;

– The numerical procedure that found z0 might have missed a zero of v. This is not a problem:
in this case, our variant of Taylor models will simply return an infinite remainder bound
the same way as the classical Taylor models do. We do not pretend to have a technique that
computes models for every possible function u/v: we only try to improve the classical algo-
rithms in order to handle the most common practical cases. In all other cases, our algorithm
is permitted to return useless (though correct) infinite bounds.

Our method is based on what everyone would do manually in such a situation: develop both
u and v in Taylor series with center z0 and factor out the leading part (z−z0)k0 in both expressions.
Let us take an example: v(x) = log(1 + x) vanishes at z0 = 0 and its Taylor series with center z0 is

log(1 + x) = 0 +
+∞∑
i=1

(−1)i+1 (x− z0)i

i
.

Note that the constant term is exactly 0: this is a direct consequence of the fact that log(1 + x)
vanishes at z0. More generally, if z0 is a zero of order k0 of a function v, the first k0 coefficients of
the Taylor series of v are exactly zero. If we take for instance u(x) = sin(x), we have

sin(x) = 0 +
+∞∑
i=0

(−1)i

(2i+ 1)!
(x− z0)2i+1.

So, we can factor out (x− z0) both from the denominator and the numerator and hence obtain

sin(x)

log(1 + x)
=

+∞∑
i=0

(−1)i

(2i+ 1)!
(x− z0)2i

+∞∑
i=1

(−1)i+1

i
(x− z0)i−1

.

The denominator of this division does not vanish anymore, so this division can be performed
using the usual division of Taylor models.

The first difficulty encountered when trying to automate this scheme is that we need to be sure
that the leading coefficients of u and v are exactly zero: it is not sufficient to approximately com-
pute them. A classical solution to this problem is to represent the coefficients by tight enclosing
intervals instead of floating-point numbers. Interval Arithmetic is used throughout the compu-
tations, which ensures that the true coefficients actually lie in the corresponding tight intervals.
For basic functions, we know which coefficients are exactly zero, so we can replace them by the

63

64 Chapter 2. Taylor Models

point-interval [0, 0]. This point interval has a nice property: it propagates well during the com-
putations, since any interval multiplied by [0, 0] leads to [0, 0] itself. So, in practice, the property
of being exactly zero is well propagated when composing functions: hence we can expect that for
any reasonably simple functions u and v vanishing at z0, the leading coefficients of their Taylor
expansion will be [0, 0] from which we can surely deduce that the true coefficients are exactly 0.

The second difficulty is that, in fact, we do not compute series: we use Taylor models, i.e.
truncated series together with a bound on the remainder. If we use classical Taylor models, the
function u/v will be replaced by something of the form

Tu + ∆u

Tv + ∆v
. (2.4)

Hence, even if both Tu and Tv have a common factor (x − z0)k0 , we cannot divide both the nu-
merator and denominator by (x − z0)k0 because the division will not simplify in the remainder
bounds.

The solution to this problem is easy: if Tu is the Taylor polynomial of degree n of a function u
in z0, we know that the remainder is of the form Ru = (x − z0)n+1 R̃u. The usual Taylor models
propagate an enclosure ∆u of Ru(I) through the computation. Instead, we can propagate an
enclosure ∆u of R̃u(I). In this case, equation (2.4) becomes

Tu + (x− z0)n+1 ∆u

Tv + (x− z0)n+1 ∆v
,

and it becomes possible to factor out the term (x− z0)k0 from the numerator and the denominator.
This led us to define some modified Taylor models that we call Taylor Models with relative remainder.
Their formal definition is given below. We note that in this definition, z0 itself is replaced by a tight
interval enclosing it. This is convenient when composing our modified Taylor models. Of course,
since we assume that z0 is a floating-point number, we can replace it by the point-interval [z0, z0].
Furthermore, we remark that similar to the definition of Taylor Models with absolute remainder,
we suppose implicit the fact that Taylor approximations are used for obtaining this type of RPA.

Definition 2.3.2 (Taylor Model with relative remainder (TMRelative)).
Let M = (a0, . . . ,an,∆) be an RPA structure. Let f : R → R be a function, z0 ⊆ R be a tight

interval around an expansion point (usually a point-interval) and I be an interval.
We say that M is a Taylor Model with relative remainder of f at z0 on I when z0 ⊆ I and

∀ξ0 ∈ z0, ∃α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ I,∃δ ∈∆, f(x)−
n∑
i=0

αi (x− ξ0)i = δ (x− ξ0)n+1 .

Using this definition, we can prove that effectively, the true coefficients of the Taylor polyno-
mial lie inside the corresponding intervals a0, . . . ,an and in this way, a TMRelative "contains" the
Taylor expansion. This justifies in a way the use ot the name of "Taylor".

Lemma 2.3.3. Let I be an interval. Let f be a function that is at least n+ 1 times differentiable on I . Let
x0 ⊆ I be an expansion interval. Let M = (a0, . . . , an,∆) be a TMRelative of f at x0 on I . We have:

∀ξ0 ∈ x0, ∀i ∈ {0, . . . , n} ,
f (i)(ξ0)

i!
∈ ai.

Proof. We choose ξ0 ∈ x0. Since M is a TMRelative of f at x0 on I , there exist α0 ∈ a0, . . . , αn ∈
an such that

∀x ∈ I, ∃δ ∈∆, f(x) =
n∑
i=0

αi (x− ξ0)i + δ (x− ξ0)n+1 . (2.5)

64

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 65

We shall prove by recurrence over i that for all i ∈ {0, . . . , n} , f
(i)(ξ0)
i! = αi.

For i = 0, taking x = ξ0 in Equation 2.5, we get that f(ξ0) = α0.

Assume now that the property holds for i ∈ {0, . . . , k} with k ≤ n − 1. Hence equation (2.5)
can be rewritten as

∀x ∈ I, ∃δ ∈∆, f(x) =

k∑
i=0

f (i)(ξ0)

i!
(x− ξ0)i +

n∑
i=k+1

αi (x− ξ0)i + δ (x− ξ0)n+1 .

This yields

∀x ∈ I, x 6= ξ0, ∃δ ∈∆,

f(x)−
k∑
i=0

f (i)(ξ0)
i! (x− ξ0)i

(x− ξ0)k+1
=

n−k−1∑
i=0

αi+k+1 (x− ξ0)i + δ (x− ξ0)n−k .

With x tending to ξ0, the right-hand side of the equality tends to αk+1. Expanding f into Taylor
series at ξ0, we have

∀x ∈ I, f(x) =
k+1∑
i=0

f (i)(ξ0)

i!
(x− ξ0)i +

∞∑
i=k+2

f (i)(ξ0)

i!
(x− ξ0)i .

Thus the left-hand side of the previous equation reduces to

f (k+1)(ξ0)

(k + 1)!
+

∞∑
i=k+2

f (i)(ξ0)

i!
(x− ξ0)i−k−1 ,

which tends to f (k+1)(ξ0)/(k + 1)! with x tending to ξ0. This finishes the proof.

Remark 2.3.4. It is not necessary to consider the expansion interval x0 as a tight, pseudo-point interval
merely capturing our incapability to exactly represent the expansion point. In fact, x0 can be an interval as
wide as I on which the TMRelative is valid. Such a TMRelative developed in such a wide interval x0 could
be seen as capturing any Taylor expansion of the respective function at any expansion point and includes
the remainder bound.

More importantly, as per Lemma 2.3.3, if M = (a0, . . . ,an,∆) is a Taylor Model of f developed at
x0 = I on I , we have for all i ∈ {0, . . . , n}:

f (i)(I)

i!
⊆ ai.

This means we can bound the derivatives of a function using Taylor Models.

In what follows we give algorithms for computing Taylor Models with relative remainders for
basic functions, which are very similar to those presented in Section 2.2.1.

2.3.1 Taylor Models with relative remainders for basic functions

Constant function

Proof of Algorithm 2.3.1. Assume that ξ0 ∈ x0 and α0 = c ∈ a0 and α1 = · · · = αn = 0. Assume
that x ∈ I . We choose δ = 0 ∈∆ = [0, 0]. The property trivially holds.

65

66 Chapter 2. Taylor Models

Algorithm: TMConstRelRem(c, I,x0, n)1

Input: c ∈ R, I,x0 ⊆ I, n ∈ N
Output: a TMRelative M of the constant function c
a0 ← [c] ;2

a1 . . .an ← [0, 0] ;3

∆← [0, 0] ;4

M ← (a0, . . . ,an,∆);5

return M ;6

Algorithm 2.3.1: Computation of a TMRelative of a constant function

Algorithm: TMVarRelRem(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a TMRelative M of the identity function x 7→ x
a0 ← x0 ;2

if n = 0 then3

∆← [1, 1] ;4

else5

a1 ← [1, 1] ;6

a2 . . .an ← [0, 0] ;7

∆← [0, 0] ;8

end9

M ← (a0, . . . ,an,∆);10

return M ;11

Algorithm 2.3.2: Computation of a TMRelative of the identity function

66

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 67

Identity function

Proof of Algorithm 2.3.2. Assume that ξ0 ∈ x0 and α0 = ξ0 ∈ a0. If n = 0, the property trivially
holds with δ = 1. Otherwise we choose α1 = 1 and α2 = · · · = αn = 0. Assume that x ∈ I . We
choose δ = 0 ∈∆ = [0, 0]. The property trivially holds.

Computing the coefficients and the remainder for basic functions.
Similarly to the case of Taylor Models with absolute remainder, using the Taylor-Lagrange for-

mula for bounding the remainder gives sometimes an important overestimation for the true error
bound, so, we can adapt Lemma 5.12 of [176] for Taylor Models with relative remainder also. We
recall without proof the following proposition which can be found in most calculus schoolbooks.

Proposition 2.3.5 (Integral form of the Taylor remainder). Let n ∈ N. Let f be an n + 1 times
continuously differentiable function on an interval I and ξ0 ∈ I . Then

f(x) =
n∑
i=0

f (i)(ξ0)

i!
· (x− ξ0)i︸ ︷︷ ︸

T (x)

+

∫ x

ξ0

f (n+1)(t)

n!
(x− t)ndt︸ ︷︷ ︸

Rn(x)

. (2.6)

Remark 2.3.6. In the previous proposition, with the change of variable t = ξ0 + u(x− ξ0), u ∈ [0, 1], we
have:

Rn(x) =
(x− ξ0)n+1

n!

1∫
0

f (n+1)(x0 + u(x− ξ0)) · (1− u)ndu. (2.7)

We denote:

In(x) =
1

n!

1∫
0

f (n+1)(ξ0 + u(x− ξ0)) · (1− u)ndu. (2.8)

Proposition 2.3.7 (Adaptation of Lemma 5.12 of [176] for TMRelative). Let f be a function defined
on an interval I = [a, b]; let ξ0 ∈ I and let n ∈ N. If f (n+1) is increasing (resp. decreasing) on I , then In
is increasing (resp. decreasing) on I .

Proof. We prove that if f (n+1) is increasing (resp. decreasing) on I , then In(x) is also increasing
(resp. decreasing) on I . Assume that f (n+1) is increasing. Let x, y ∈ I , x ≤ y, we notice that

In(y)− In(x) =
1

n!

∫ 1

0

(
f (n+1)(ξ0 + u(y − ξ0))− f (n+1)(ξ0 + u(x− ξ0))

)
(1− u)ndu. (2.9)

Since u ≥ 0, we have ξ0 + u(y − ξ0) ≥ x0 + u(x− ξ0). Since f (n+1) is increasing, it follows that the
integrand is nonnegative, which implies In(y) ≥ In(x).

We can use the above proposition for bounding the remainder of basic functions when we
construct their Taylor Model with relative remainder. Namely, we evaluate f (n+2)(I) by inter-
val arithmetic: if the resulting interval contains numbers of different signs, we cannot apply the
technique and fall back to the classical bound given by Lagrange formula. If, on the contrary, the
resulting interval contains only nonnegative numbers or only nonpositive numbers, then it means
that f (n+1) is increasing (resp. decreasing) on I and hence, the hypothesis of Proposition 2.3.7

holds. Hence In(x) =
f(x)− T (x)

(x− ξ0)n+1
is monotonic on [a, b]. Hence, In([a, b]) is the interval with

bounds In(a) and In(b). We conclude that In(I) is the tightest interval containing In(a) and In(b).

67

68 Chapter 2. Taylor Models

Algorithm: TMSinRelRem(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a TMRelative M of the sine function
for i← 0 to n do2

switch i mod 4 do3

case 0: ai ← eval (sin (x) /i!, x0);4

case 1: ai ← eval (cos (x) /i!, x0);5

case 2: ai ← eval (− sin (x) /i!, x0);6

case 3: ai ← eval (− cos (x) /i!, x0);7

endsw8

end9

switch (n+ 2) mod 4 do10

case 0: Γ← eval (sin(x)/(n+ 2)!, I);11

case 1: Γ← eval (cos(x)/(n+ 2)!, I);12

case 2: Γ← eval (− sin(x)/(n+ 2)!, I);13

case 3: Γ← eval (− cos(x)/(n+ 2)!, I);14

endsw15

a← [inf(I)];16

b← [sup(I)];17

if (a ∩ x0 = ∅) and (b ∩ x0 = ∅) and ((sup(Γ) ≤ 0) or (inf(Γ) ≥ 0)) then18

∆a ← eval (sin(x),a)− ComputeBound(a0, . . . ,an,x0,a);19

∆b ← eval (sin(x), b)− ComputeBound(a0, . . . ,an,x0, b);20

V a ← eval
(
(x− y)n+1, (a,x0)

)
;21

V b ← eval
(
(x− y)n+1, (b,x0)

)
;22

∆a ←∆a/V a;23

∆b ←∆b/V b;24

∆← [min(inf(∆a), inf(∆b)), max(sup(∆a), sup(∆b))];25

else26

switch (n+ 1) mod 4 do27

case 0: ∆← eval (sin(x)/(n+ 1)!, I);28

case 1: ∆← eval (cos(x)/(n+ 1)!, I);29

case 2: ∆← eval (− sin(x)/(n+ 1)!, I);30

case 3: ∆← eval (− cos(x)/(n+ 1)!, I);31

endsw32

end33

M ← (a0, . . . ,an,∆);34

return M ;35

Algorithm 2.3.3: Computation of a TMRelative of the sine function

68

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 69

The sine function

Proof of Algorithm 2.3.3. Assume that ξ0 ∈ x0. For all i we choose αi = sin(i)(ξ0)/i!. We know that
– sin(i)(ξ0) = sin(ξ0) when i = 0 mod 4;
– sin(i)(ξ0) = cos(ξ0) when i = 1 mod 4;
– sin(i)(ξ0) = − sin(ξ0) when i = 2 mod 4;
– sin(i)(ξ0) = − cos(ξ0) when i = 3 mod 4.

Hence, for all i, we have αi ∈ ai. Moreover, we remark that, for all ξ ∈ I , sin(n+2)(ξ)/(n+ 2)! ∈ Γ.
Let us prove first the computation of the remainder ∆ when the execution goes through the

"else" branch, i.e. we can not apply Proposition 2.3.7. Let x ∈ I . As per Taylor theorem, there
exists ξ strictly between ξ0 and x such that

sin(x)−
n∑
i=0

αi (x− ξ0)i = (x− ξ0)n+1 sin(n+1)(ξ)

(n+ 1)!
.

Since ξ0 ∈ x0 ⊆ I and since x ∈ I , we have ξ ∈ I (convexity of I). Hence sin(n+1)(ξ)
(n+1)! ∈ ∆. This

concludes the proof for the execution of the “else” branch.
If, on the contrary, we have sup(Γ) ≤ 0 or inf(Γ) ≥ 0, then suppose for instance that sup(Γ) ≤ 0

(the other case is handled similarly). Since ∀x ∈ I, sin(n+2)(x)/(n+ 2)! ∈ Γ, we have, in particular,

∀x ∈ I, sin(n+2)(x)/(n+ 2)! ≤ sup(Γ) ≤ 0.

Hence, the hypothesis of Proposition 2.3.7 holds (since sin(n+1) is monotonic on I). It follows

that x 7→
sin(x)−

n∑
i=0

αi(x− ξ0)

(x− ξ0)n+1
is monotonic on [inf(I), sup(I)]. The supplementary conditions

a ∩ x0 = ∅ and b ∩ x0 = ∅ (at line 18 of the algorithm) ensure that the range computed using the
division in lines 23 and 24 does not becomes infinite due to the presence of 0 in the denominator.
This would be correct, but completely useless for our purposes.

Finally, since ComputeBound computes a valid polynomial bound, and since αi ∈ ai for all i,
ξ0 ∈ x0 and inf(I) ∈ a, we know that

n∑
i=0

αi (inf(I)− ξ0)i ∈ ComputeBound(a0, . . . ,an,x0,a).

Similar arguments hold for computing the final bound ∆.

Reciprocal function x 7→ 1/x.

Proof of Algorithm 2.3.4. Like the previous proof, remarking that the ith derivative of x 7→ 1/x is
x 7→ (−1)i

xi+1 .

2.3.2 Operations with Taylor Models with relative remainders

All the classical operations on Taylor Models (addition, multiplication, composition) translate
easily to modified Taylor Models with relative remainder. In what follows we give the algorithms
and their proofs of correctness, while keeping in mind that the intuition is similar to Taylor Models
with absolute remainder presented in Section 2.2.2.

69

70 Chapter 2. Taylor Models

Algorithm: TMInvRelRem(I,x0, n)1

Input: I,x0 ⊆ I, n ∈ N
Output: a TMRelative M of the reciprocal function x 7→ 1/x
for i← 0 to n do2

ai ← eval
(

(−1)i

xi+1 , x0

)
;3

end4

Γ← eval
(

(−1)(n+2)

xn+3 , I
)

;5

a← [inf(I)];6

b← [sup(I)];7

if (a ∩ x0 = ∅) and (b ∩ x0 = ∅) and ((sup(Γ) ≤ 0) or (inf(Γ) ≥ 0)) then8

∆a ← eval (1/x,a)− ComputeBound(a0, . . . ,an,x0,a);9

∆b ← eval (1/x, b)− ComputeBound(a0, . . . ,an,x0, b);10

V a ← eval
(
(x− y)n+1, (a,x0)

)
;11

V b ← eval
(
(x− y)n+1, (b,x0)

)
;12

∆a ←∆a/V a;13

∆b ←∆b/V b;14

∆← [min(inf(∆a), inf(∆b)), max(sup(∆a), sup(∆b))];15

else16

∆← eval
(

(−1)n+1

xn+2 , I
)

;17

end18

M ← (a0, . . . ,an,∆);19

return M ;20

Algorithm 2.3.4: Computation of a TMRelative of the reciprocal function

Algorithm: TMAddRelRem(Mf ,Mg, n)1

Input: Mf ,Mg two TMRelative corresponding to two functions f and g,
n ∈ N a expansion order
Output: a TMRelative M corresponding to f + g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for i← 0 to n do4

ci ← ai + bi;5

end6

∆←∆f + ∆g;7

M ← (c0, . . . , cn,∆);8

return M ;9

Algorithm 2.3.5: Addition of TMRelative

70

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 71

Addition

Proof of Algorithm 2.3.5. Let ξ0 ∈ x0. Since Mf is a TMRelative of f , we have that

∃α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ I,∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf (x− ξ0)n+1 .

The same holds for Mg and g with βi ∈ bi. It suffices to choose γi = αi + βi ∈ ci. Then, for all
x ∈ I , there exists δ = δf + δg ∈∆ such that

f(x) + g(x)−

(
n∑
i=0

αi (x− ξ0)i +

n∑
i=0

βi (x− ξ0)i
)

= (δf + δg) (x− ξ0)n+1

= f(x) + g(x)−
n∑
i=0

γi (x− ξ0)i .

Multiplication

Proof of Algorithm 2.3.6. Assume that ξ0 ∈ x0. Since Mf is a TMRelative of f , we have that

∃α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ I,∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf (x− ξ0)n+1 .

The same holds for Mg and g with βi ∈ bi. We have(
n∑
i=0

αi (x− ξ0)i
)
·

(
n∑
i=0

βi (x− ξ0)i
)

=

2n∑
i=0

(
i∑

k=0

αk βi−k

)
︸ ︷︷ ︸

γi

(x− ξ0)i .

It is easy to verify that γi ∈ ci. Assume that x ∈ I . We have

f(x) g(x) =

(
n∑
i=0

αi (x− ξ0)i + δf (x− ξ0)n+1

)
·

(
n∑
i=0

βi (x− ξ0)i + δg (x− ξ0)n+1

)

=
n∑
i=0

γi (x− ξ0)i + (x− ξ0)n+1


n−1∑
i=0

γn+1+i (x− ξ0)i︸ ︷︷ ︸
∈B

+δf

(
n∑
i=0

βi (x− ξ0)i
)

︸ ︷︷ ︸
∈Bg

+ δg

(
n∑
i=0

αi (x− ξ0)i
)

︸ ︷︷ ︸
∈Bf

+δf δg (x− ξ0)n+1︸ ︷︷ ︸
∈V

 .

The conclusion is trivial.

Remark 2.3.8. Let i, j ∈ {0 . . . n}. If we have a0 = · · · = ai = b0 = · · · = bj = [0; 0], it is easy to
remark that

c0 = · · · = ci+j = [0; 0] .

In this case, the algorithm does nothing but applying + and · on intervals [0; 0] for the respective ck.

71

72 Chapter 2. Taylor Models

Algorithm: TMMulRelRem(Mf ,Mg, I,x0, n)1

Input: Mf ,Mg two TMRelative corresponding to two functions f and g,
I an interval,
x0 ⊆ I a expansion interval,
n ∈ N
Output: a TMRelative M corresponding to f · g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for k ← 0 to 2n do4

ck ← [0, 0];5

end6

for i← 0 to n do7

for j ← 0 to n do8

ci+j ← ci+j + ai · bj ;9

end10

end11

B ← ComputeBound(cn+1, . . . , c2n,x0, I);12

Bf ← ComputeBound(a0, . . . ,an,x0, I);13

Bg ← ComputeBound(b0, . . . , bn,x0, I);14

V ← eval
(
(x− y)n+1, (I,x0)

)
;15

∆← B + (∆f ·Bg) + (∆g ·Bf) + (∆f ·∆g · V);16

M ← (c0, . . . , cn,∆);17

return M ;18

Algorithm 2.3.6: Multiplication of TMRelative

72

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 73

Composition The composition algorithm described below is similar to that presented in Sec-
tion 2.2.2. For computing a Taylor Model with relative remainder for g ◦ f , the algorithm inputs
are: a TMRelative structureMf (supposed being a valid Taylor Model with relative remainder of f
around x0 on I , by the induction hypothesis) and a function g. The first thing to do is to construct
a Taylor Model with relative remainder for g. This is done using the constructors of the basic
functions that we already described above, while paying good attention that the parameters used
for constructing this Taylor Model are not I and x0 anymore but their image through function f .
Then, we mainly see the composition of Mg and Mf as the composition of two polynomials: this
is done by means of Algorithm 2.3.7. This algorithm is described and proved below and is similar
to PolynomialEvaluationOfTM.

Algorithm: PolynomialEvaluationOfTMRelRem(b0, . . . , bn, Mf , I,x0, n)1

Input: b0, . . . , bn tight intervals, I an interval,
Mf a TMRelative of a function f expanded around a tight interval x0 on I ,
n ∈ N
Output: an RPA M that is a TMRelative of x 7→

n∑
i=0

βi f(x)i around x0 on I , for any

(β0, . . . , βn) such that βi ∈ bi for each i.
M ← ([0; 0], . . . , [0; 0], [0; 0]) ;2

for i← n downto 0 do3

M ← TMMulRelRem(M, Mf , I, x0, n);4

M ← TMAddRelRem(M, TMConstRelRem(bi, n), n) ;5

end6

return M ;7

Algorithm 2.3.7: Composition of a polynomial with a TMRelative

Proof of Algorithm 2.3.7. By hypothesis, Mf is a TMRelative of a function f around an interval
x0 on I . We prove that, for any values βi ∈ bi (i ∈ {0, . . . , n}), the returned structure M is a

TMRelative of the function x 7→
n∑
i=0

βi f(x)i around x0 on I .

Let I , x0 and values βi as above. The proof is the same as the proof of correctness of the
algorithm ComputeBound (see Algorithm 2.1.1, page 48). The loop invariant here is the following:

at the end of each iteration of the loop, M is aTMRelative of the function x 7→
n∑
k=i

βk f(x)k around

x0 on I . Otherwise, the proof is the same and is based on the correctness of TMConstRelRem,
TMAddRelRem and TMMulRelRem.

Remark 2.3.9. Any other polynomial evaluation algorithm could be used, provided that it only uses ad-
ditions and multiplications. The proof would then exactly follow the proof of correctness of the polynomial
evaluation algorithm.

Proof of Algorithm 2.3.8. Let us prove first that the model Mg obtained at line 11 of the algorithm is
a TMRelative of g at a0 on J .

Let ξ0 ∈ x0. Since Mf is a TMRelative of f , there exist α0 ∈ a0, . . . , αn ∈ an such that

∀x ∈ I,∃δf ∈∆f , f(x)−
n∑
i=0

αi (x− ξ0)i = δf (x− ξ0)n+1 . (2.10)

73

74 Chapter 2. Taylor Models

Algorithm: TMCompRelRem(I,x0,Mf , g, n)1

Input: I an interval,
x0 ⊆ I an expansion interval,
Mf a TMRelative corresponding to a function f expanded at x0 on I ,
g : R→ R a basic function,
n ∈ N
Output: a TMRelative M corresponding to g ◦ f expanded at x0 on I
(a0, . . . ,an,∆f)←Mf ;2

Bf ← ComputeBound(a0, . . . ,an,x0, I);3

V ← eval
(
(x− y)n+1, (I,x0)

)
;4

J ← Bf + (∆f · V);5

switch g do6

case sin: Mg ← TMSinRelRem(a0, J , n);7

case x 7→ 1/x: Mg ← TMInvRelRem(a0, J , n);8
...9

endsw10

(b0, . . . , bn,∆g)←Mg;11

M1 ← ([0, 0] ,a1, . . . ,an,∆f) ;12

(c0, . . . , cn,∆)← PolynomialEvaluationOfTMRelRem(b0, . . . , bn, M1, I, x0, n);13

for i← 1 to n do14

Mi+1 ← TMMulRelRem(Mi,M1, I,x0, n);15

end16

(rn+1,0, . . . , rn+1,n,∆n+1)←Mn+1;17

M ← (c0, . . . , cn,∆ + ∆n+1 ·∆g);18

return M ;19

Algorithm 2.3.8: Composition of a TMRelative with a Function

74

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 75

In particular, taking x = ξ0, f(ξ0) = α0 because all other terms vanish. Hence f(ξ0) ∈ a0. More-
over, from Remark 2.1.6 we have a0 ⊆ Bf . Since 0 ∈ V , 0 ∈ (∆f · V) and thus a0 ⊆ Bf ⊆ J .
Hence, calling the basic function algorithms TMSinRelRem, TMInvRelRem, etc. on (a0,J , n) is
valid. By correction of these algorithms Mg = (b0, . . . , bn,∆g) is a TMRelative of g at a0 on J .

Hence, there exists β0 ∈ b0, . . . , βn ∈ bn such that

∀y ∈ J , ∃δg ∈∆g, g(y)−
n∑
i=0

βi (y − α0)i = δg (y − α0)n+1 . (2.11)

From Equation (2.10) and the correctness of ComputeBound, we have ∀x ∈ I, f(x) ∈ J . Combin-
ing this result with Equation (2.11), we get

∀x ∈ I,∃δg ∈∆g, (g ◦ f)(x)−
n∑
i=0

βi (f(x)− α0)i = δg (f(x)− α0)n+1 . (2.12)

Next, the key observation is that M1 is a TMRelative of x 7→ f(x) − α0 around [ξ0, ξ0] on I . To
prove this, we use trivially the definition of TMRelative, taking the expansion point µ0 ∈ [ξ0; ξ0],
µ0 = ξ0, α′0 = 0 ∈ [0] and, for i ≥ 1, α′i = αi ∈ ai and using Equation (2.10),

∀x ∈ I,∃δf ∈∆f , (f(x)− α0)−
n∑
i=0

α′i (x− µ0)i = δf (x− µ0)n+1 .

So, M1 is a TMRelative of f − α0 around [ξ0; ξ0] on I , and by correction of
PolynomialEvaluationOfTMRelRem (and since [ξ0, ξ0] ⊆ x0, and all the βi belong to the cor-

responding bi), we deduce that (c0, . . . , cn, ∆) is a TMRelative of x 7→
n∑
i=0

βi (f(x)− α0)i around

[ξ0, ξ0] on I . Hence we have values γi ∈ ci, i ∈ {0, . . . , n} such that

∀x ∈ I,∃δ ∈∆,

(
n∑
i=0

βi (f(x)− α0)i

)
−

(
n∑
i=0

γi (x− ξ0)i

)
= δ (x− ξ0)n+1 . (2.13)

Since M1 is a TMRelative of f − α0 at [ξ0; ξ0] on I , by trivial induction using the correction of
TMMulRelRem, we know that for all i = 0, . . . , n, Mi is a TMRelative of (f − α0)i in [ξ0; ξ0] on I .
In particular, for i = n+ 1, using Remark 2.3.8, the intervals rn+1,k, k = 0, . . . , n computed are all
[0, 0]. Furthermore, there exist ρn+1,k ∈ rn+1,k and δn+1 ∈∆n+1 such that

∀x ∈ I, (f(x)− α0)n+1 −
n∑
k=0

ρn+1,k (x− ξ0)k = δn+1 (x− ξ0)n+1 .

This reduces to:

∀x ∈ I,∃δn+1 ∈∆n+1, (f(x)− α0)n+1 = δn+1 (x− ξ0)n+1 . (2.14)

Combining Equations (2.13), (2.12) and (2.14), we get

∀x ∈ I,∃δ ∈∆ + ∆g ·∆n+1, (g ◦ f)(x)−

(
n∑
i=0

γi (x− ξ0)i

)
= δ (x− ξ0)n+1 ,

which is the property that we wanted to prove.

75

76 Chapter 2. Taylor Models

Division We can now modify the division rule, in order to handle correctly the case when both
the numerator and denominator of

u

v
vanish at z0. We note that usually the common root of

u and v is determined beforehand, using for example a numerical heuristic. We do not discuss
numerical root finders here and we suppose that we are already given an expansion point z0,
which we verify a posteriori whether it is a root of order (multiplicity) k0 of both u and v such that
we can factor out the term (x− z0)k0 . For that, we proceed in two steps:

– first, we use Algorithm DetermineRootOrderUpperBound to find an upper bound k >
k0 for the multiplicity of z0 as a root of v. This algorithm uses Remark 2.3.4 to compute
enclosures of successive derivatives of a given function v, at z0, until these enclosures do not
contain 0. This gives us an upper bound for the order of z0 as a root of v.

– second, we compute TMRelative of order n+k for u and v in z0. We then find k0 such that the
first k0 coefficients of Tu and Tv are all [0, 0]. We can then factor out the term (x−z0)k0 , which
leads to models of order n+ k − k0 > n. We use Algorithm 2.3.10 to reduce the order of the
models to n and proceed to "classical" division of Taylor Models, given in Algorithm 2.2.9.
All these algorithms are given and proved below. The complete division algorithm is given
in Algorithm 2.3.12.

Algorithm: DetermineRootOrderUpperBound(n,x0, f)1

Input: n ∈ N a maximal internal expansion order,
x0 an expansion interval,
f a function that is at least n+ 1 times continuously differentiable on x0,
Output: k an upper bound for the order of a zero of f at x0

or ⊥ if the algorithm fails to find such an order.
n← 4;2

while n ≤ n do3

(a0, . . . , an,∆)← TMRelRem(n,x0,x0, f, n);4

k ← 0;5

while k ≤ n ∧ 0 ∈ ak do k ← k + 1;6

if k ≤ n ∧ 0 6∈ ak then return k;7

n← 2n;8

end9

return ⊥ ;10

Algorithm 2.3.9: Determine an upper bound of the order of a root of a function

Proof of partial correction of DetermineRootOrderUpperBound. We have not yet proven the cor-
rection of function TMRelRem used by DetermineRootOrderUpperBound to compute a Taylor
Model of the function g at x0 on x0. We shall hence show a mere implication: the algorithm
DetermineRootOrderUpperBound is correct for functions f on which TMRelRem is correct.

Assume that TMRelRem is correct. The algorithm is trivially correct if it returns ⊥. Assume it
returns an integer k. So we have a Taylor Model with relative remainder (a0, . . . , an,∆) of the
function f which is at least n + 1 ≤ n + 1 times continuously differentiable such that 0 6∈ ak. As
per Lemma 2.3.3, this means that f (k)(ξ) does not vanish for any ξ ∈ x0. In consequence k is an
upper bound of the order of a zero of f in x0.

Proof of TMReduceOrder. Assume that ξ0 ∈ x0. Since Mf is a TMRelative of f at x0 on I , there

76

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 77

Algorithm: TMReduceOrder(Mf , I,x0, n, n
′)1

Input: Mf a TMRelative corresponding to a function f ,
I an interval,
x0 ⊆ I an expansion interval,
n ∈ N an expansion order,
n′ ∈ N, n′ 6 n, a new expansion order
Output: a TMRelative M corresponding to the function f of order n′

(a0, . . . ,an,∆f)←Mf ;2

Bf ← ComputeBound(an′+1, . . . ,an,x0, I);3

V ← eval
(

(x− y)n−n
′
, (I,x0)

)
;4

∆′f ← Bf + ∆f · V ;5

M ←
(
a0, . . . ,an′ ,∆

′
f

)
;6

return M ;7

Algorithm 2.3.10: Order reduction for TMRelative

exists α0 ∈ a0, . . . , αn ∈ an such that

∀x ∈ I, ∃δf ∈∆f , f(x) =

n′∑
i=0

αi (x− ξ0)i +

n∑
i=n′+1

αi (x− ξ0)i + δf (x− ξ0)n+1 .

Hence we get ∀x ∈ I, ∃δf ∈∆f ,

f(x) =

n′∑
i=0

αi (x− ξ0)i + (x− ξ0)n
′+1


n−n′−1∑
i=0

αi+n′+1 (x− ξ0)i︸ ︷︷ ︸
∈Bf

+δf (x− ξ0)n−n
′︸ ︷︷ ︸

∈V

 .

So M is a TMRelative of f of order n′ at x0 on I .

We give in the following the "basic division algorithm", i.e. the algorithm similar to the absolute
case, when we consider that no removable discontinuity is present.

Algorithm: TMBaseDiv(Mf ,Mg, I,x0, n)1

Input: Mf ,Mg two TMRelative corresponding to two functions f and g,
I an interval,
x0 ⊆ I an expansion interval,
n ∈ N
Output: a TMRelative M corresponding to f/g
M ← TMMulRelRem(Mf ,TMCompRelRem(I,x0,Mg, x 7→ 1/x, n), I,x0, n);2

return M ;3

Algorithm 2.3.11: Basic Division of TMRelative

Proof of TMBaseDiv. Trivial by the correction of TMMulRelRem and TMCompRelRem and the fact
that f/g can be written f ◦ 1/g.

77

78 Chapter 2. Taylor Models

Algorithm: TMDivRelRem(n, I,x0, f, g, n)1

Input: n ∈ N a continuity order,
I an interval,
x0 ⊆ I an expansion interval,
f and g two functions such that g is at least n+ 1 times continuously differentiable on x0,
n ∈ N
Output: a TMRelative M corresponding to f/g
y0 ← eval (g(x),x0);2

if 0 6∈ y0 then3

Mf ← TMRelRem(n, I,x0, f, n);4

Mg ← TMRelRem(n, I,x0, g, n);5

M ← TMBaseDiv(Mf ,Mg, I,x0, n);6

else7

k ← DetermineRootOrderUpperBound(n,x0, g);8

if k = ⊥ then9

Mf ← TMRelRem(n, I,x0, f, n);10

Mg ← TMRelRem(n, I,x0, g, n);11

M ← TMBaseDiv(Mf ,Mg, I,x0, n);12

else13

(a0, . . . ,an+k,∆f)← TMRelRem(n, I,x0, f, n+ k);14

(b0, . . . , bn+k,∆g)← TMRelRem(n, I,x0, g, n+ k);15

l← 0;16

while al = [0; 0] ∧ bl = [0; 0] do l← l + 1;17

Mf ← TMReduceOrder((al, . . . ,an+k,∆f) , I,x0, n+ k − l, n);18

Mg ← TMReduceOrder((bl, . . . , bn+k,∆g) , I,x0, n+ k − l, n);19

M ← TMBaseDiv(Mf ,Mg, I,x0, n);20

end21

end22

return M ;23

Algorithm 2.3.12: Division of TMRelative

78

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 79

Algorithm: TMRelRem(n, I,x0, h, n)1

Input: n ∈ N a continuity order,
I an interval,
x0 ⊆ I an expansion interval,
h a function that is at least n times continuously differentiable on x0,
n ∈ N a expansion order
Output: a TMRelative M corresponding to h
switch h do2

case h = x 7→ c: M ← TMConstRelRem(c, I,x0, n);3

case h = x 7→ x: M ← TMVarRelRem(I,x0, n);4

case h = f + g:5

Mf ← TMRelRem(n, I,x0, f, n);6

Mg ← TMRelRem(n, I,x0, g, n);7

M ← TMAddRelRem(Mf ,Mg, n);8

endsw9

case h = f · g:10

Mf ← TMRelRem(n, I,x0, f, n);11

Mg ← TMRelRem(n, I,x0, g, n);12

M ← TMMulRelRem(Mf ,Mg, I,x0, n);13

endsw14

case h = f/g: M ← TMDivRelRem(n, I,x0, f, g, n);15

case h = g ◦ f :16

Mf ← TMRelRem(n, I,x0, f, n);17

M ← TMCompRelRem(I,x0,Mf , g, n);18

endsw19

endsw20

return M ;21

Algorithm 2.3.13: Computation of TMRelative

79

80 Chapter 2. Taylor Models

Proof of TMRelRem (and TMDivRelRem). We use structural induction on the expression tree for
function h for the proof. When the algorithm calls one of TMConstRelRem, TMVarRelRem,
TMAddRelRem, TMMulRelRem and TMCompRelRem, the correction is trivial by correction of the
called sub-algorithm.

The problem is hence reduced to the case when the algorithm calls TMDivRelRem. By
induction hypothesis, we can suppose that calls to TMRelRem on f and g produce correct
TMRelative for f and g. This also allows us to use the proof for the partial correction of
DetermineRootOrderUpperBound: that function is correct when called with input functions
for which TMRelRem is correct.

We shall now prove that the result of TMDivRelRem on these particular functions f and g is
correct. We use in what follows the notations of Algorithm TMDivRelRem. We separate two cases:

If 0 6∈ y0 or if DetermineRootOrderUpperBound returns⊥, the correction of TMDivRelRem
reduces to the correction of TMBaseDiv and the correction of TMRelRem on f and g, which we
have already shown.

Otherwise, we have 0 ∈ y0 and k such that there exists k′ ≤ k such that it is proven that g(k′)

does not vanish on x0. We shall now prove that the loop iterating on l terminates with l ≤ k′.
Suppose the contrary. Hence we have b0 = · · · = bk′ = [0; 0]. Since (b0, . . . , bn+k−1,∆g) is a
TMRelative of g at x0 on I , we have

∀ξ0 ∈ x0, ∃ β0︸︷︷︸
=0

∈ b0, . . . βk′︸︷︷︸
=0

∈ bk′ , βk′+1 ∈ bk′+1, . . . βn+k−1 ∈ bn+k−1, ∀x ∈ I, ∃δg ∈∆g,

g(x) =
n+k−1∑
i=0

βi (x− ξ0)i + δg (x− ξ0)n+k .

This yields

∀ξ0 ∈ x0, ∃βk′+1 ∈ bk′+1, . . . βn+k−1 ∈ bn+k−1, ∀x ∈ I, ∃δg ∈∆g,

g(x) =
n+k−1∑
i=k′+1

βi (x− ξ0)i + δg (x− ξ0)n+k ,

which finally gives

∀ξ0 ∈ x0, ∃βk′+1 ∈ bk′+1, . . . βn+k−1 ∈ bn+k−1, ∀x ∈ I, ∃δg ∈∆g,

g(x) = (x− ξ0)k
′+1

(
n+k−k′−2∑

i=0

βi+k′+1 (x− ξ0)i + δg (x− ξ0)n+k−k′−1

)
.

Hence we know that for all ξ0 ∈ x0, g has a zero of order at least k′ + 1 at ξ0. It follows g(k′)

vanishes on the whole x0, which is a contradiction. The loop terminates with l ≤ k′.
Now, in function of l, we separate two cases:
First, if l = 0, Mf and Mg are Taylor Models of f and g of degree n at x0 on I by correction

of TMReduceOrder and induction hypothesis. So the result M is a Taylor Model with relative
remainder of f/g at x0 on I by correction of TMBaseDiv.

Second, we suppose that l 6= 0. Hence b0 = [0; 0] which means that for all ξ0 ∈ x0, g(ξ0) = 0.
We can deduce from that that x0 is a point-interval x0 = [ξ0; ξ0]: suppose the contrary. Then g
vanishes everywhere at x0 and thus all its derivatives vanish at any interior point of x0. This
implies that there is no suitable order k, returned by DetermineRootOrderUpperBound, for
which g(k) does not vanish at x0. This is a contradiction. So x0 must be a point-interval x0 =
[ξ0; ξ0].

80

2.3 The problem of removable discontinuities – the need for Taylor Models with relative
remainder 81

Since the loop terminates, we have with its postcondition that a0 = · · · = al−1 = [0; 0] and
b0 = · · · = bl−1 = [0; 0]. We shall now prove that Mf is a Taylor Model with relative remainder of
x 7→ f(x) / (x− ξ0)l at [ξ0; ξ0] on I and Mg is a Taylor Model of x 7→ g(x) / (x− ξ0)l at [ξ0; ξ0] on
I .

Since (a0, . . . ,an+k−1,∆f) is a Taylor Model of f at x0 on I we have

∀ξ0 ∈ x0, ∃ α0︸︷︷︸
=0

∈ a0, . . . αl−1︸︷︷︸
=0

∈ al−1, αl ∈ al, . . . αn+k−1 ∈ an+k−1, ∀x ∈ I, ∃δf ∈∆f ,

f(x) =
n+k−1∑
i=0

αi (x− ξ0)i + δf (x− ξ0)n+k .

which gives

∀ξ0 ∈ x0, ∃αl ∈ al, . . . , αn+k−l−1 ∈ an+k−l−1, ∀x ∈ I, ∃δf ∈∆f ,

f(x) = (x− ξ0)l
(
n+k−l−1∑

i=0

αi+l (x− ξ0)i + δf (x− ξ0)n+k−l

)
.

Hence (al, . . . ,an+k−l−1,∆f) is a Taylor Model with relative remainder of x 7→ f(x) / (x− ξ0)l of
order n+k−l at [ξ0; ξ0] on I . Since we have already shown that l ≤ k′ ≤ k, we have n ≤ n+k−l and
thus the correction of TMReduceOrder ensures thatMf is a Taylor Model with relative remainder
of x 7→ f(x) / (x− ξ0)l of order n in x0 = [ξ0; ξ0]. The same proof applies to g and Mg.

Since for all x, we have
f(x)

(x−ξ0)l

g(x)

(x−ξ0)l

=
f(x)

g(x)
,

we deduce that M is a Taylor Model with relative remainder of f/g of degree n at x0 = [ξ0; ξ0] on
I .

Remark that having now proven the correction of TMRelRem on any function h, we have also
proven that correction of TMDivRelRem and DetermineRootOrderUpperBound on any func-
tion. In fact these functions are mutually recursive.

Remark 2.3.10. We implemented these modified Taylor models in the Sollya software tool and used them
for handling functions with removable discontinuities. We report on several such examples in the next
chapter.

Remark 2.3.11. A modified Taylor model is easy to convert into a classical model: it mainly suffices to
multiply the bound ∆ by (I − x0)n+1. We observe in practice that the enclosures obtained this way are
generally a bit wider than the ones obtained with the usual Taylor models. This comes from the fact that the
remainder bounds in our modified approach are wider intervals than in the classical approach, hence more
subject to the dependency phenomenon. However, the gap between both methods stayed reasonably small in
all examples we tried.

2.3.3 Conclusion

All the algorithms presented in this chapter are implemented in Sollya. We will see in
the next chapter one of their applications. A prototype implementation is also available as
a Maple module at http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/Code/
taylorModels.mw. We strived for giving sufficiently simple and detailed algorithms for allow-
ing their formal proof. Currently, one of our current goals in the TaMaDi project [116] is to have

81

http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/Code/taylorModels.mw
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/Code/taylorModels.mw

82 Chapter 2. Taylor Models

formally proven polynomial approximations in COQ using the algorithms presented in this chap-
ter. As future works, we are interested in extending this detailed account and our implementation
to multivariate functions.

82

3 CHAPTER 3

Efficient and Accurate Computation of
Upper Bounds of Approximation Errors

If the handbook says nothing much about the accuracy of the functions,
then they had better be so accurate that nothing much need be said.

W. Kahan, Mathematics Written in Sand

For purposes of actual evaluation, mathematical functions f are commonly replaced by ap-
proximation polynomials p. Examples include floating-point implementations of elementary func-
tions, quadrature or more theoretical proof work involving transcendental functions.

Replacing f by p induces a relative error ε = p/f − 1. In order to ensure the validity of the
use of p instead of f , the maximum error, i.e. the supremum norm ‖ε‖I∞ must be safely bounded
above over an interval I , whose width is typically of order 1.

Numerical algorithms for supremum norms are efficient but cannot offer the required safety.
Previous validated approaches often require tedious manual intervention. If they are automated,
they have several drawbacks, such as the lack of quality guarantees.

In this chapter a novel, automated supremum norm algorithm on univariate approximation
errors ε is proposed, achieving an a priori quality on the result. It focuses on the validation step
and paves the way for formally certified supremum norms.

Key elements are the use of intermediate approximation polynomials with bounded approxi-
mation error that were already discussed in Chapter 2 and a non-negativity test based on a sum-
of-squares expression of polynomials.

The new algorithm was implemented in the Sollya tool. We include experimental results on
real-life examples. The work presented in this chapter is published in [36] and it is a joint work
with S. Chevillard, J. Harrison and Ch. Lauter.

3.1 Introduction

Replacing functions by polynomials to ease computations is a widespread technique in math-
ematics. For instance, handbooks of mathematical functions [1] give not only classical properties
of functions, but also convenient polynomial and rational approximations that can be used to ap-
proximately evaluate them. These tabulated polynomials have proved to be very useful in the
everyday work of scientists.

Nowadays, computers are commonly used for computing numerical approximations of func-
tions. Elementary functions, such as exp, sin, arccos, erf , etc., are usually implemented in libraries
called libms. Such libraries are available on most systems and many numerical programs depend

84 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

on them. Examples include CRlibm, glibc, Sun ∗ libmcr and the Intel R© libm available with
the Intel R© Professional Edition Compilers and other Intel R© Software Products.

When writing handbooks as well as when implementing such functions in a libm, it is impor-
tant to rigorously bound the error between the polynomial approximation p and the function f .
In particular, regarding the development of libms, as mentioned in Section 1.2, the IEEE 754-2008
standard [81] recommends that the functions be correctly rounded.

Currently most libms offer strong guarantees: they are made with care and pass many tests
before being published. However, in the core of libms, the error between polynomial approxi-
mations and functions is often only estimated with a numerical application such as Maple that
supports arbitrary precision computations. As good as this numerical estimation could be, it is
not a mathematical proof. As argued by the promoters of correctly rounded transcendentals, if a
library claims to provide correctly rounded results, its implementation should be mathematically
proven down to the smallest details, because necessary validation cannot be achieved through
mere testing [48].

Given f the function to be approximated and p the approximation polynomial used, the ap-
proximation error is given by ε(x) = p(x)/f(x) − 1 or ε(x) = p(x) − f(x) depending on whether
the relative or absolute error is considered. This function is often very regular: in Figure 3.1 the
approximation error is plotted in a typical case when a minimax approximation polynomial of
degree 5 is used [33, Chapter 3].

Figure 3.1: Approximation error in a case typical for a libm

A numerical algorithm tells us that the maximal absolute value of ε in this case (Figure 3.1)
is approximately 1.1385 · 10−6. But can we guarantee that this value is actually greater than the
real maximal error, i.e. an upper bound for the error due to the approximation of f by p? This
is the problem we address in this chapter. In fact, this problem is part of the generic rigorous
polynomial approximation class, see Problem 1. In this case, the approximation polynomial is given
by a numerical routine, and our goal is to validate the approximation error. More precisely, we
present an algorithm for computing a tight interval r = [`, u], such that ‖ε‖I∞ ∈ r. Here, ‖ε‖I∞

∗. Other names and brands may be claimed as the property of others.

84

3.1 Introduction 85

denotes the infinity or supremum norm over the interval I , defined by ‖ε‖I∞ = supx∈I{|ε(x)|}.
Although several previous approaches exist for bounding ‖ε‖I∞, this problem does not have a
completely satisfying solution at the moment. In what follows we give an overview of all the
features needed for and achieved by our algorithm:

i. The algorithm is fully automated. In practice, a libm contains many functions. Each of
them contains one or more approximation polynomials whose error must be bounded. It
is frequent that new libms are developed when new hardware features are available. So
our problem should be solved as automatically as possible and should not rely on manual
computations.

ii. The algorithm handles not only simple cases when f is a basic function (such as exp, arcsin,
tan, etc.) but also more complicated cases when f is obtained as a composition of basic
functions such as exp(1 + cos(x)2) for instance. Besides the obvious interest of having an
algorithm as general as possible, this is necessary even for implementing simple functions
in libms. Indeed it is usual to replace the function to be implemented f by another one g
in a so-called range reduction process [119, Chapter 11]. The value f(x) is in fact computed
from g(x). So, eventually, the function approximated by a polynomial is g. This function is
sometimes given as a composition of several basic functions.
In consequence, the algorithm should accept as input any function f defined by an expres-
sion. The expression is made using basic functions such as exp or cos. The precise list of
basic functions is not important for our purpose: we can consider the list of functions de-
fined in software tools like Maple or Sollya [40] for instance. The only requirement for basic
functions is that they be differentiable up to a sufficiently high order.

iii. The algorithm should be able to automatically handle a particular difficulty that frequently
arises when considering relative errors ε(x) = p(x)/f(x) − 1 in the process of developing
functions for libms: the problem of removable discontinuities. If the function to be imple-
mented f vanishes at a point x0 in the interval considered, in general, the approximation
polynomial is designed such that it vanishes also at the same point with a the same multi-
plicity as f , at least when this is possible.
Hence, although f vanishes, ε may be defined by continuous extension at such points x0,
called removable discontinuities. For example, if p is a polynomial of the form x q(x), the
function p(x)/ sin(x)− 1 has a removable discontinuity at x0 = 0. Our algorithm can handle
removable discontinuities in all practical cases.

iv. The accuracy obtained for the supremum norm is controlled a priori by the user through a
simple input parameter η. This parameter controls the relative tightness of r = [`, u]: this
means that the algorithm ensures that eventually 0 ≤ u−`

` ≤ η. This parameter can be chosen
as small as desired by the user: if the interval r is returned, it is guaranteed to contain ‖ε‖I∞
and to satisfy the required quality. In some rare cases, roughly speaking if the function is too
complicated, our algorithm will simply fail, but it never lies. In our implementation all the
computations performed are rigorous and a multiprecision interval arithmetic library [141]
is used. We have conducted many experiments challenging our algorithm and in practice it
never failed.

v. Since complicated algorithms are used, their implementation could contain some bugs.
Hence, beside the numerical result, the algorithm should return also a formal proof. This
proof can be automatically checked by a computer and gives a high guarantee on the re-
sult. Currently, this formal proof is not complete, but generating a complete formal proof is
essentially just a matter of implementation.

85

86 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

3.1.1 Outline

In the next section, we explain the main ideas of previous approaches that partially fulfilled
these goals and analyze their deficiencies. In Section 3.3, our algorithm is presented. It provides
all the features presented above. As we will see, the algorithm relies on automatically computing
an intermediate polynomial: for that we use the Taylor Models methods discussed in Chapter 2,
especially TMs with relative remainders since these methods are able to handle removable dis-
continuities. In Section 3.5, we explain how a formal proof can be generated by the algorithm
and checked by the HOL Light proof checker ∗. Finally, in Section 3.6 we show how our new
algorithm behaves on real-life examples and compare its results with the ones given by previous
approaches.

3.2 Previous work

3.2.1 Numerical methods for supremum norms

First, one can consider a simple numerical computation of the supremum norm. In fact, we
can reduce our problem to searching for extrema of the error function. These extrema are usually
found by searching for the zeros of the derivative of the error function. Well-known numerical
algorithms like bisection, Newton’s algorithm or the secant algorithm can be used [134]. These
techniques offer a good and fast estimation of the needed bound, and implementations are avail-
able in most numerical software tools, like Maple or Matlab.

Roughly speaking, all the numerical techniques finish by exhibiting a point x, more or less
near to a point x? where ε has a global extremum. Moreover, the convergence of these techniques
is generally very fast (quadratic in the case of Newton’s algorithm [134]). Improving the accuracy
of x with respect to x? directly improves the accuracy of ε(x) as an approximation of the global
optimum.

Moreover, it is possible to get a safe lower bound ` on |ε(x)| by evaluating |ε| over the point
interval [x, x] with interval arithmetic. This bound can be made arbitrarily tight by increasing the
working precision. This can be achieved using multiple precision interval arithmetic libraries, like
for example the MPFI Library [141] (briefly described also in Section 1.3).

Hence, we assume that a numerical procedure computeLowerBound is available that can com-
pute a rigorous lower bound ` ≤ ‖ε‖∞ with arbitrary precision. More formally, it takes as input a
parameter γ that heuristically controls the accuracy of `. The internal parameters of the numerical
algorithm (e.g. the number of steps in Newton’s iteration, the precision used for the computa-
tions, etc.) are heuristically adjusted in order to be fairly confident that the relative error between
` and ‖ε‖∞ is less than γ. However one cannot verify the actual accuracy obtained. Hence such
methods do not provide any mean of computing a tight upper bound, and are not sufficient in our
case.

3.2.2 Rigorous global optimization methods using interval arithmetic

It is important to remark that obtaining a tight upper bound for ‖ε‖∞ is equivalent to rigor-
ously solving a univariate global optimization problem. This question has already been exten-
sively studied in the literature [106, 85, 76]. These methods are based on a general interval branch-
and-bound algorithm, involving an exhaustive search over the initial interval. This interval is
subdivided recursively (“branching”), and those subintervals that cannot possibly contain global
optima are rejected. The rejection tests are based on using interval arithmetic for bounding the

∗. http://www.cl.cam.ac.uk/~jrh13/hol-light/

86

http://www.cl.cam.ac.uk/~jrh13/hol-light/

3.2 Previous work 87

image of a function. Many variants for accelerating the rejection process have been implemented.
They usually exploit information about derivatives (most commonly first and second derivatives)
of the function. One example is the Interval Newton method [139] used for rigorously enclosing
all the zeros of a univariate function.

Dependency problem for approximation errors While the above-mentioned methods can be
successfully used in general, when trying to solve our problem, one is faced with the so-called “de-
pendency phenomenon” [124] (briefly described also in Section 1.3). In our case, the dependency
phenomenon stems from the subtraction present in the approximation error function ε = p − f .
In short, when using interval arithmetic, the correlation between f and p is lost. This means that
although f and p have very close values, interval arithmetic can not benefit from this fact and will
compute an enclosure of ε as the difference of two separate interval enclosures for f and p over
the given interval. Even if we could obtain exact enclosures for both f and p over the interval
considered, the interval difference would be affected by overestimation. It can be shown (see e.g.
Section 3.2.4 of [35]) that in order to obtain a small overestimation for its image, we need to eval-
uate ε over intervals of the size of ‖ε‖∞. In some specific cases used in the process of obtaining
correctly rounded functions, this is around 2−120. This means that a regular global optimization
algorithm would have to subdivide the initial interval into an unfeasible number of narrow in-
tervals (for example, if the initial interval is [0, 1], 2120 intervals have to be obtained) before the
actual algorithm is able to suppress some that do not contain the global optima.

In fact, in [39] a similar recursive technique was tried, but the authors observed that the deriva-
tive of the error, the second derivative of the error and so on and so forth are all prone to the same
phenomenon of very high overestimation. That is why, for higher degree of p (higher than 10) the
number of splittings needed to eliminate the correlation problem is still unfeasible.

In conclusion, rigorous global optimization algorithms based only on recursive interval subdi-
vision and interval evaluation for the error function and its derivatives are not suitable in our case.

3.2.3 Methods that evade the dependency phenomenon

In order to bypass the high dependency problem present in ε = p− f , we have to write p− f
differently, so that we can avoid the decorrelation between f and p. For this, one widespread tech-
nique in the literature [77, 124, 98, 38] consists in replacing the function f by another polynomial
T that approximates it and for which a bound on the error f − T is not too difficult to obtain and
for which we know that ‖f − T‖∞ is much smaller than ‖f − p‖∞: in practice the degree of T will
be significantly larger than the degree of p. While choosing the new approximation polynomial T ,
we have several advantages.

First, we can consider particular polynomials for which the error bound is known or it is
not too difficult to compute. One such polynomial approximation can be obtained by a Taylor
series expansion of f , supposing that it is differentiable up to a sufficient order. If f behaves
sufficiently well, this eventually gives a good enough approximation of f to be used instead of f
in the supremum norm.

Second, we remove the decorrelation effect between f and p, by transforming it into a cancel-
lation phenomenon between the coefficients of T and those of p. Increasing the precision used is
sufficient for dealing with such a cancellation [38].

Approaches that follow this idea have been developed in the past fifteen years [88, 77, 39,
79, 38]. In the following we analyze them based on the above-mentioned key features for our
algorithm.

Krämer needed to bound approximation errors while he was developing the FI_LIB li-
brary [88]. His method was mostly manual: bounds were computed case by case and proofs

87

88 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

were made on paper. As explained above, from our point of view, this is a drawback.
In [77] and more recently in [79], John Harrison proposed approaches for validating bounds on

approximation errors with a formal proof checker. This method presents an important advantage
compared to other techniques concerning the safety of the results: the proofs of Krämer were
made by hand, which is error-prone; likewise, the implementation of an automatic algorithm
could contain bugs. In contrast, a formal proof can be checked by a computer and gives a high
guarantee. The methods presented in [77] and [79] mainly use the same techniques as Krämer: in
particular, the formal proof is written by hand. This is safer than in [88], since the proof can be
automatically checked, but not completely satisfying: we would like the proof to be automatically
produced by the algorithm.

Recently in [39, 38], we tried to automate the computation of an upper bound on ‖ε‖∞. It did
not seem obvious how to automate the technique used in [88, 77, 79], while correctly handling
the particular difficulty of removable discontinuities. The algorithm presented in [39] was a first
attempt. The idea was to enhance interval arithmetic [114], such that it could correctly handle
expressions exhibiting removable discontinuities. As mentioned in Section 3.2.2 this algorithm
does not really take into account the particular nature of ε and has mainly the same drawbacks as
the generic global optimization techniques.

The second attempt, presented in [38], was more suitable but not completely satisfying. This
approach uses Taylor expansions, automatic differentiation and Lagrange formula for comput-
ing both the coefficients of T and for obtaining an interval bound ∆ for the Taylor remainder as
discussed in Section 1.4.1. This algorithm is able to handle complicated examples quickly and
accurately. However, two limitations were spotted by the authors. One is that there is no a priori
control of the accuracy obtained for the supremum norm. In fact, the algorithm uses a polynomial
T , of a heuristically determined degree, such that the remainder bound obtained is less than a
“hidden” parameter, which is heuristically set by the user. This means in fact, that the approach is
not completely automatic. Another limitation of this algorithm is that no formal proof is provided.
This is mainly due to the combination of several techniques that are not currently available in for-
mal proof checkers, like techniques for rigorously isolating the zeros of a polynomial or automatic
differentiation.

As we have already seen in Chapter 2, another way of computing automatically a Taylor form
was introduced by Berz and his group [98] under the name of “Taylor models”. Although Taylor
models proved to have many applications, the available software implementations are scarce. The
best known, which however is not easily available, is COSY [12], written in FORTRAN by Berz and
his group. Although highly optimized and used for rigorous global optimization problems in [14,
15] and articles referenced therein, currently, for our specific problem, COSY has several major
drawbacks. First, it does not provide multiple precision arithmetic, and thus fails to solve the
cancellation problem mentioned. Second, it does not provide any a priori control of the accuracy
obtained for the global optimum. Third, it does not deal with the problem of functions that have
removable discontinuities. In Section 2.3 we gave a solution to this problem, that we are going to
use in the following.

3.3 Computing a safe and guaranteed supremum norm

3.3.1 Computing a validated supremum norm vs. validating a computed supremum
norm

As we have seen, the various previously proposed algorithms for supremum norm evaluation
have the following point in common: they use validated techniques for computing a rigorous upper
bound u ≥ ‖ε‖∞. In contrast, our method consists in computing a presumed upper bound with a

88

3.3 Computing a safe and guaranteed supremum norm 89

fast heuristic technique and then only validating this upper bound.
Moreover, we saw in Section 3.2.1, that it is easy to implement a procedure computeLowerBound

that allows us to compute a rigorous (and presumably accurate) lower bound ` ≤ ‖ε‖∞. If one
considers u as an approximate value of the exact norm ‖ε‖∞, it is possible to bound the relative
error between u and the exact norm by means of `:∣∣∣∣u− ‖ε‖∞‖ε‖∞

∣∣∣∣ ≤ ∣∣∣∣u− ``
∣∣∣∣ .

This is usually used as an a posteriori check that the computed bound u satisfies given quality re-
quirements on the supremum norm. Otherwise, the validated techniques can be repeated with
changed parameters in the hope of obtaining a more tightly bounded result. As already dis-
cussed, the exact relationship between these parameters and the accuracy of the result is generally
unknown [39, 38]. In contrast, our method ensures by construction that the quantity |(u− `)/`| is
smaller than a bound η given by the user.

3.3.2 Scheme of the algorithm

The principle of our algorithm is the following:

1. Compute a sufficiently accurate lower bound ` of ‖ε‖∞.

2. Consider a value u slightly greater than `, so that most likely u is an upper bound of ‖ε‖∞.

3. Validate that u is actually an upper bound:

(a) Compute a very good approximation polynomial T ' f , such that the error between
them is bounded by a given value δ.

(b) Use the triangle inequality: rigorously bound the error between p and T and use this
bound together with δ to prove that u is indeed a rigorous bound for the error between
p and f .

In the following, we will explain our algorithm more formally. We remark that the computa-
tional part and the validation part are completely distinct. This is particularly interesting if a for-
mal proof is to be generated: whatever methods are used for computing ` and u, the only things
that must be formally proved are a triangle inequality, a rigorous bound on the error between T
and f , and a rigorous bound on the error between p and T .

3.3.3 Validating an upper bound on ‖ε‖∞ for absolute error problems ε = p− f

Let us first consider the absolute error case. The relative error case is quite similar in nature
but slightly more intricate technically. It will be described in Section 3.3.5. Our method is summed
up in Algorithm 3.3.1.

We first run computeLowerBound with γ = η/32. Roughly speaking, it means that we compute
the supremum norm with 5 guard bits. These extra bits will be used as a headroom allowing for
roughness when validating that u is an upper bound. There is no particular need to choose the
value 1/32: generally speaking, we could choose β1 η where 0 < β1 < 1 is an arbitrary constant.
We letm := ` (1+η/32). If our hypothesis about the accuracy of ` is right, we thus have ‖ε‖∞ ≤ m.

We define u := ` (1 + 31 η/32). Trivially (u− `)/` ≤ η; we only have to validate that ‖ε‖∞ ≤ u.
We introduce an intermediate polynomial T . The triangle inequality gives

‖p− f‖∞ ≤ ‖p− T‖∞ + ‖T − f‖∞ . (3.1)

89

90 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

Algorithm: supremumNormAbsolute1

Input: p, f , I , η
Output: `, u such that ` ≤ ‖p− f‖I∞ ≤ u and |(u− `)/`| ≤ η

`← computeLowerBound(p − f, I, η/32);2

m′ ← ` (1 + η/2); u← ` (1 + 31 η/32); δ ← 15 ` η/32;3

T ← findPolyWithGivenError(f, I, δ);4

s1 ← m′ − (p− T); s2 ← m′ − (T − p);5

if showPositivity(s1, I) ∧ showPositivity(s2, I) then return (`, u);6

else return ⊥ ; /* Numerically obtained bound ` not accurate enough */7

Algorithm 3.3.1: Complete supremum norm algorithm for ‖ε‖∞ = ‖p− f‖∞

We can choose the polynomial T as close as we want to f . More precisely, we will describe
in Section 3.4 a procedure findPolyWithGivenError that rigorously computes T such that
‖T − f‖∞ ≤ δ, given f and δ.

We need a value m′ such that we are fairly confident that ‖p− T‖∞ ≤ m′. If this inequality
is true, it will be easy to check it afterwards: it suffices to check that the two polynomials s1 =
m′− (p−T) and s2 = m′− (T −p) are positive on the whole domain I under consideration. There
is a wide literature on proving positivity of polynomials. For the certification through formal
proofs, a perfectly adapted technique is to rewrite the polynomials si as a sum of squares. This
will be explained in detail in Section 3.5. If we do not need a formal proof, other techniques may be
more relevant. For instance, it suffices to exhibit one point where the polynomials si are positive
and to prove that they do not vanish in I : this can be performed using traditional polynomial
real roots counting techniques, such as Sturm sequences or the Descartes test [143]. In our current
implementation, the user can choose between proving the positivity with a Sturm sequence, or
computing a formal certificate using a decomposition as a sum of squares.

Clearly, if δ is small enough, T is very close to f and we have ‖p− T‖∞ ' ‖p− f‖∞. Hence
m′ will be chosen slightly greater than m. More formally, we use again the triangle inequality:
‖p− T‖∞ ≤ ‖p− f‖∞ + ‖f − T‖∞, hence we can choose m′ = m+ δ.

Putting this information into (3.1), we have ‖p− f‖∞ ≤ m′ + δ ≤ m + 2δ. This allows us to
quantify how small δ must be: we can take δ = ` µ η where µ is a positive parameter satisfying
β1 + 2µ ≤ 1. We conveniently choose µ = 15/32: hence m′ simplifies in m′ = ` (1 + η/2).

3.3.4 Case of failure of the algorithm

It is important to remark that the inequality ‖p− T‖∞ ≤ m + δ relies on the hypothesis
‖p− f‖∞ ≤ m. This hypothesis might actually be wrong because the accuracy provided by the
numerical procedure computeLowerBound is only heuristic. In such a case, the algorithm will
fail to prove the positivity of s1 or s2.

However, our algorithm never lies, i.e. if it returns an interval [`, u], this range is proved to
contain the supremum norm and to satisfy the quality requirement η.

There is another possible case of failure: the procedure findPolyWithGivenError might
fail to return an approximation polynomial T satisfying the requirement ‖T − f‖∞ ≤ δ. We will
explain why in Section 3.4.

In practice, we never encountered cases of failure. Nevertheless, if such a case happens, it is
always possible to bypass the problem: if the algorithm fails because of computeLowerBound it
suffices to run it again with γ � η/32, in the hope of obtaining at least the five desired guard bits.

90

3.3 Computing a safe and guaranteed supremum norm 91

If the algorithm fails because of findPolyWithGivenError, it suffices in general to split I into
two (or more) subintervals and handle each subinterval separately.

3.3.5 Relative error problems ε = p/f − 1 without removable discontinuities

In order to ease the issue with relative approximation error functions ε = p/f − 1, let us start
with the assumption that f does not vanish in the interval I under consideration for ‖ε‖I∞. That
assumption actually implies that p/f − 1 does not have any removable discontinuity. We will
eliminate this assumption in Section 3.3.6.

Algorithm: supremumNormRelative1

Input: p, f , I , η
Output: `, u such that ` ≤ ‖p/f − 1‖I∞ ≤ u and |(u− `)/`| ≤ η

J ← f(I); if 0 ∈ J then return ⊥ else F ← min{| inf J |, | supJ |};2

`← computeLowerBound(p/f − 1, I, η/32);3

m′ ← ` (1 + η/2); u← ` (1 + 31 η/32); δ ← 15 ` η/32
(

1
1+u

) (
F

1+15 η/32

)
;4

T ← findPolyWithGivenError(f, I, δ);5

s← sign(T (inf I)); s1 ← sm′ T − (p− T); s2 ← sm′ T − (T − p);6

if showPositivity(s1, I) ∧ showPositivity(s2, I) then return (`, u);7

else return ⊥ ; /* Numerically obtained bound ` not accurate enough */8

Algorithm 3.3.2: Complete supremum norm algorithm for ‖ε‖∞ = ‖p/f − 1‖∞

Since f does not vanish and is continuous on the compact domain I , infI |f | 6= 0. In general,
a simple interval evaluation of f over I gives an interval J that does not contain 0. In this case
F = min{| inf J |, | supJ |} is a rigorous non-trivial lower bound on |f |. Such a bound will prove
useful in the following. In the case when J actually contains zero, it suffices to split the interval I .
However we never had to split I in our experiments. The accuracy of F with respect to the exact
value infI |f | is not really important: it only influences the definition of δ, forcing it to be smaller
than it needs to be. As a result, the degree of the intermediate polynomial T might be slightly
greater than required.

We work by analogy with the absolute error case. As before, we define m := ` (1 + β1 η),
m′ := ` (1 + (β1 + µ) η) and u := ` (1 + (β1 + 2µ) η). As before, we want to choose δ in order
to ensure that

∥∥ p
T − 1

∥∥
∞ be smaller than m′. For this purpose, we use the convenient following

triangle inequality: ∥∥∥ p
T
− 1
∥∥∥
∞
≤
∥∥∥∥ pf − 1

∥∥∥∥
∞

+

∥∥∥∥ pf
∥∥∥∥
∞

∥∥∥∥ 1

T

∥∥∥∥
∞
‖T − f‖∞ (3.2)

If the hypothesis on the accuracy of ` is correct,
∥∥∥ pf ∥∥∥∞ is bounded by 1 + u. Moreover, T is close

to f , so ‖1/T‖∞ can be bounded by something a bit larger than 1/F . This lets us define δ as

δ := ` µ η

(
1

1 + u

) (
F

1 + µ η

)
. (3.3)

Lemma 3.3.1. We have ‖1/T‖∞ ≤ (1 + µ η)/F .

Proof. We remark that `/(1 + u) ≤ 1, hence we have δ ≤ F
(

µ η
1+µ η

)
. Now,

∀x ∈ I, |T (x)| ≥ |f(x)| − |T (x)− f(x)| ≥ F − δ ≥ F

1 + µ η
.

91

92 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

This concludes the proof.

Using this lemma, and provided that the hypothesis ‖p/f − 1‖∞ ≤ m is correct, we see that
Equation (3.2) implies ‖p/T − 1‖∞ ≤ m′. Our algorithm simply validates this inequality. As
before, this reduces to checking the positivity of two polynomials. Indeed, the previous lemma
shows, as a side effect, that T does not vanish in the interval I . Let us denote by s ∈ {−1, 1} its
sign on I . Thus |p/T − 1| ≤ m′ is equivalent to |p − T | ≤ sm′ T. Defining s1 = sm′ T − (p − T)
and s2 = sm′ T − (T − p), we just have to show the positivity of s1 and s2.

In order to conclude, it remains to show that ‖p/T − 1‖∞ ≤ m′ implies ‖p/f − 1‖∞ ≤ u. For
this purpose, we use Equation (3.2) where the roles of f and T are inverted:∥∥∥∥ pf − 1

∥∥∥∥
∞
≤
∥∥∥ p
T
− 1
∥∥∥
∞

+
∥∥∥ p
T

∥∥∥
∞

∥∥∥∥ 1

f

∥∥∥∥
∞
‖f − T‖∞ .

In this equation, ‖p/T − 1‖∞ is bounded by m′, ‖p/T‖∞ is bounded by 1 +m′ ≤ 1 + u, ‖1/f‖∞ is
bounded by 1/F and ‖f − T‖∞ is bounded by δ. Using the expression of δ given by Equation (3.3),
we finally have ‖p/f − 1‖∞ ≤ m′ + ` µ η ≤ u.

3.3.6 Handling removable discontinuities

We now consider the case when f vanishes over I . Several situations are possible:
– The zeros of f are exact floating-point numbers and the relative error ε = p/f − 1 can be

extended and remains bounded on the whole interval I by continuity. As seen in the intro-
duction, the matter is not purely theoretical but quite common in practice. This is the case
that we address in the following.

– The function f vanishes at some point z that is not exactly representable but ε remains rea-
sonably bounded if restricted to floating-point numbers. In this case, it is reasonable to
consider the closest floating-point values to z: z < z < z. It suffices to compute the supre-
mum norm of ε separately over the intervals [inf I, z] and [z, sup I]. Hence, this case does
not need to be specifically addressed by our algorithm.

– The relative error is not defined at some point z and takes very large values in the neigh-
borhood of z, even when restricted to floating-point numbers. This case does not appear in
practice: indeed we supposed that pwas constructed for being a good approximation of f on
the interval I . In consequence, we do not consider as a problem the fact that our algorithm
fails in such a situation.

From now on, we concentrate on the first item: hence we presume that we are in a case when
ε can be extended by continuity on the whole interval I and that the zeros of f are exact floating-
point numbers. As will be shown in the sequel, this presumption is not a hypothesis that is nec-
essary for the rigor of the supremum norm result. It merely ensures that the result is meaningful
and not just an enclosure with infinite bounds.

The following heuristic is quite common in manual supremum norm computations [39]: as p
is a polynomial, it can have only a finite number of zeros zi with orders ki. In order for ε to be ex-
tended by continuity, the zeros of f must be amongst the zi. This means that it is possible to deter-
mine a list of s presumed floating-point zeros zi of f and to transform the relative approximation
error function as ε = q/g− 1 where q(x) = p(x)

(x−z0)k0 ... (x−zs−1)ks−1
and g(x) = f(x)

(x−z0)k0 ... (x−zs−1)ks−1
.

In this transformation, two types of rewritings are used. On the one hand, q is computed by
long division using exact, rational arithmetic. The remainder being zero indicates whether the
presumed zeros of f are actual zeros of p, as expected. If the remainder is not zero, the heuristic
fails; otherwise q is a polynomial. In contrast, the division defining g is performed symbolically,
i.e. an expression representing g is constructed.

92

3.4 Obtaining the intermediate polynomial T and its remainder 93

With the transformation performed, q is a polynomial and g is presumably a function not
vanishing on I . These new functions are hence fed into Algorithm 3.3.2.

As a matter of course, g might actually still vanish on I as the zeros of f are only numerically
determined: this does not compromise the safety of our algorithm. In the case when g does vanish,
Algorithm 3.3.2 will fail while trying to computeF . This indicates the limits of our heuristic which,
in practice, just works fine. See Section 3.6 for details on examples stemming from practice.

We remark that the heuristic algorithm just discussed actually only moves the problem else-
where: into the function g for which an intermediate polynomial T must eventually be computed.
This is not an issue. The expression defining f may anyway have removable discontinuities. This
can even happen for supremum norms of absolute approximation error functions. An example
would be f(x) = sinx

log(1+x) approximated by p(x) = 1 + x/2 on an interval I containing 0. We
addressed in Section 2.3 the problem of computing an intermediate approximation polynomial T
and a finite bound δ when the expression of f contains a removable discontinuity.

3.4 Obtaining the intermediate polynomial T and its remainder

In what follows, we detail the procedure findPolyWithGivenError needed in the algo-
rithms 3.3.1 and 3.3.2. Given a function f , a domain I and a bound δ, it computes an intermediate
approximation polynomial T such that ‖T − f‖∞ ≤ δ. We denote by n the degree of the interme-
diate polynomial T and by R = f − T the approximation error.

In the following, we will in fact focus on procedures findPoly(f, I, n) that, given n, return
a polynomial T of degree n and an interval bound ∆ rigorously enclosing R(I): ∆ ⊇ R(I).
We note that this means in fact that we are interested in finding an RPA for f that is easy to
compute. We have already seen in Chapter 2 all the algorithms for computing RPAs based on
Taylor approximations. We will use them in the following. However, these are not the only easy
to compute RPAs. Furthermore, it is important to note that the polynomial T will eventually be
used to prove polynomial inequalities in a formal proof checker. In such an environment, the
cost of computations depends strongly on the degree of the polynomials involved. So we want
the degree n to be as small as possible. For the moment, a simple bisection strategy over n, as
described in Figure Algorithm 3.4.1, allows us to implement findPolyWithGivenError using
the procedure findPoly. In the next chapter, we will see how to reduce the degree n while
keeping the same error bound using better easy to compute RPAs.

The quality of an RPA is directly related to the quality of ∆. Two factors influence the quality
of ∆: first, how well T approximates f over I , i.e. how small ‖R‖∞ is, and second, how much
overestimation will be introduced in ∆ when rigorously bounding R over I .

In that respect, the clever reader, would have already noticed that several kinds of approxima-
tion polynomials and methods for rigorously bounding the error could be considered. We recall
below the "state-of-the-art" ones, which we analyzed and compared in detail in Section 1.4. We
just mention that the keyword "rigorous" does not have to be over-looked. We are interested in
bounding all the occurring errors, otherwise, a pleiad of numerical methods could be considered.
Hence, the procedure findPoly could be implemented using:

– Methods that separately compute a polynomial T and afterwards a bound ∆:
– The interpolation polynomial method that computes a near-optimal approximation (i.e. tries

to minimize ‖R‖∞) and then computes ∆ using automatic differentiation.
– Methods based on Taylor expansions, where ‖R‖∞ is larger, but ∆ is computed with less

overestimation.
– The Taylor models method that simultaneously computes the polynomial T along with a

bound ∆ discussed in detail in Chapter 2. We recall that the modified Taylor Models pre-
sented in Section 2.3 are able to handle removable discontinuities in all practical cases.

93

94 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

Algorithm: findPolyWithGivenError1

Input: f , I , δ
Output: T such that ‖T − f‖I∞ ≤ δ while trying to minimize the degree of T
n← 1;2

do3

(T, ∆try)← findPoly(f, I, n); n← 2n;4

while ∆try 6⊆
[
−δ; δ

]
;5

n← n/2; nmin ← n/2; nmax ← n;6

while nmin + 1 < nmax do7

n← b(nmin + nmax)/2c; (T, ∆try)← findPoly(f, I, n);8

if ∆try ⊆
[
−δ; δ

]
then nmax ← n else nmin ← n ;9

end10

(T, ∆try)← findPoly(f, I, nmax);11

return T ;12

Algorithm 3.4.1: Find a polynomial T such that ‖T − f‖∞ ≤ δ with n as small as possible.

We have tested all these methods. In our experiments, we could not find one clearly dominat-
ing the others by tightness of the obtained bound ∆. Taylor models often give relatively accurate
bounds, so they might be preferred in practice. However, this is just a remark based on a few
experiments and it probably should not be considered as a universal statement.

In Chapter 4 we will introduce a new kind of RPA based on near-minimax approximation
using Truncated Chebyshev Series or Chebyshev interpolators. We will show that this tool gives
better results that the above state-of-the-art methods.

When this work was published, we were implementing and using "Taylor Models" (Algo-
rithm 2.2.10) and in particular Algorithm 2.3.13 when removable discontinuities are detected. So,
we give the results obtained like this. The comparison with the newer tool is given in the next
chapter. We note that multiple precision interval arithmetic (MPFI library) is used throughout the
implementation of our supremum norm algorithm in the Sollya tool.

3.5 Certification and formal proof

Our approach is distinguished from many others in the literature in that we aim to give a
validated and guaranteed error bound, rather than merely one ‘with high probability’ or ‘mod-
ulo rounding error’. Nevertheless, since both the underlying mathematics and the actual im-
plementations are fairly involved, the reliability of our results, judged against the very highest
standards of rigor, can still be questioned by a determined skeptic. The most satisfying way
of dealing with such skepticism is to use our algorithms to generate a complete formal proof
that can be verified by a highly reliable proof-checking program. This is doubly attractive be-
cause such proof checkers are now often used for verifying floating-point hardware and software
[77, 111, 148, 125, 83, 78, 82, 18]. In such cases bounds on approximation errors often arise as key
lemmas in a larger formal proof, so an integrated way of handling them is desirable.

There is a substantial literature on using proof checkers to verify the results of various logical
and mathematical decision procedures [22]. In some cases, a direct approach seems necessary,
where the algorithm is expressed logically inside the theorem prover, formally proved correct
and ‘executed’ in a mathematically precise way via logical inference. In many cases, however,
it is possible to organize the main algorithm so that it generates some kind of ‘certificate’ that

94

3.5 Certification and formal proof 95

can be formally checked, i.e. used to generate a formal proof, without any formalization of the
process that was used to generate it. This can often be both simpler and more efficient than the
direct approach. (In fact, the basic observation that ‘result checking’ can be more productive than
‘proving correctness’ has been emphasized by Blum [17] and appears in many other contexts such
as computational geometry [104].) The two main phases of our approach illustrate this dichotomy:

– In order to bound the difference |f −T | between the function f and its Taylor series T , there
seems to be no shortcut beyond formalizing the theory underlying the Taylor models inside
the theorem prover and instantiating it for the particular cases used.

– Bounding the difference between the Taylor series T and the polynomial p that we are in-
terested in reduces to polynomial nonnegativity on an interval, and this admits several po-
tential methods of certification, with ‘sum-of-squares’ techniques being perhaps the most
convenient.

We consider each of these in turn.

3.5.1 Formalizing Taylor models

Fully formalizing this part inside a theorem prover is still work in progress. For several basic
functions such as sin, versions of Taylor’s theorem with specific, computable bounds on the re-
mainder have been formalized in HOL Light, and set up so that formally proven bounds for any
specific interval can be obtained automatically. For example, in this interaction example from [78],
the user requests a Taylor series for the cosine function such that the absolute error for |x| ≤ 2−2 is
less than 2−35. The theorem prover not only returns the series 1−x2/2+x4/24−x6/720+x8/40320
but also a theorem, formally proven from basic logical axioms, that indeed the desired error bound
holds: ∀x. |x| ≤ 2−2 ⇒ | cos(x)− (1− x2/2 + x4/24− x6/720 + x8/40320)| ≤ 2−35.

#MCLAURIN_COS_POLY_RULE 2 35;;
it : thm =
|- ∀x. abs x <= inv (&2 pow 2)

⇒ abs(cos x - poly [&1; &0; --&1 / &2; &0; &1 / &24; &0;
--&1 / &720; &0; &1 / &40320] x)

<= inv(&2 pow 35)

However, this is limited to a small repertoire of basic functions expanded about specific points,
in isolation, often with restrictions on the intervals considered. Much more work of the same kind
would be needed to formalize the general Taylor models framework we have described in this
paper, which can handle a wider range of functions, expanded about arbitrary points and nested
in complex ways. This is certainly feasible, and related work has been reported [175, 41], but
much remains to be done, and performing the whole operation inside a formal checker appears to
be very time-consuming.

3.5.2 Formalizing polynomial nonnegativity

Several approaches to formally proving polynomial nonnegativity have been reported, includ-
ing a formalization of Sturm’s theorem [77] and recursive isolation of roots of successive deriva-
tives [78]. Many of these, as well as others that could be amenable to formalization [56], have
the drawback of requiring extensive computation of cases inside the formal proof checker. Com-
putation in the formal environment of the checker is much more expensive than computing in
a standard arithmetic environment, such as an interval arithmetic library [105]. An appealing
idea for avoiding this cost in the proof checker is to generate certificates involving sum-of-squares
(SOS) decompositions. The computation needed for generating the certificate stays then external

95

96 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

to the proof checker. The proof checker simply checks the certificate, which is meant to be —and
is— much less computationally intense.

In order to prove that a polynomial p(x) is everywhere nonnegative, a SOS decomposition
p(x) =

∑k
i=1 aisi(x)2 for rational ai > 0 is an excellent certificate: it can be used to generate an

almost trivial formal proof, mainly involving the verification of an algebraic identity. For the more
refined assertions of nonnegativity over an interval [a, b], slightly more elaborate ‘Positivstellen-
satz’ certificates involving sums of squares and multiplication by b− x or x− a work well.

For general multivariate polynomials, Parrilo [129] pioneered the approach of generating
such certificates using semidefinite programming (SDP). However, the main high-performance
SDP solvers involve complicated nonlinear algorithms implemented in floating-point arithmetic.
While they can invariably be used to find approximate SOS decompositions, it can be problematic
to get exact rational decompositions, particularly if the original coefficients have many significant
bits and the polynomial has relatively low variation. Unfortunately these are just the kinds of
problems we are concerned with. But if we restrict ourselves to univariate polynomials, which still
covers our present application, more direct methods can be based only on complex root-finding,
which is easier to perform in high precision. In what follows we correct an earlier description of
such an algorithm [79] and extend it to the generation of full Positivstellensatz certificates.

The basic idea is simple. Suppose that a polynomial p(x) with rational coefficients is every-
where nonnegative. Roots always occur in conjugate pairs, and any real roots must have even
multiplicity, otherwise the polynomial would cross the x-axis instead of just touching it. Thus, if
the roots are aj ± ibj , we can imagine writing the polynomial as:

p(x) = l · [(x− [a1 + ib1])(x− [a2 + ib2]) · · · (x− [am + ibm])] ·
[(x− [a1 − ib1])(x− [a2 − ib2]) · · · (x− [am − ibm])]

= l(q(x) + ir(x))(q(x)− ir(x))

= lq(x)2 + lr(x)2.

This well-known proof that any nonnegative polynomial can be expressed as a sum of two
squares with arbitrary real coefficients can be adapted to give an exact rational decomposition
algorithm, compensating for the inevitably inexact representation of the roots aj±ibj . This is done
by finding a small initial perturbation of the polynomial that is still nonnegative. The complex
roots can then be located sufficiently accurately using the excellent arbitrary-precision complex
root finder in PARI/GP ∗, which implements a variant of an algorithm due to Schönhage [71].

Squarefree decomposition

Since the main part of the algorithm introduces inaccuracies that can be made arbitrarily small
but not eliminated completely, it is problematic if the polynomial is ever exactly zero. However,
if the polynomial touches the x-axis at x = a, there must be a root x − a of even multiplicity, say
p(x) = (x − a)2kp∗(x). We can factor out all such roots by a fairly standard squarefree decompo-
sition algorithm that uses only exact rational arithmetic and does not introduce any inaccuracy.
The modified polynomial p∗(x) can then be used in the next stage of the algorithm and the re-
sulting terms in the SOS decomposition multiplied appropriately by the (x − a)k. So suppose,
hypothetically, that the initial polynomial p(x) has degree n and splits as

p(x) = c
∏
k

(x− ak)mk .

∗. http://pari.math.u-bordeaux.fr/

96

http://pari.math.u-bordeaux.fr/

3.5 Certification and formal proof 97

We use the standard technique of taking the greatest common divisor of a polynomial and its
own derivative to separate out the repeated roots, applying it recursively to obtain the polynomi-
als ri(x) where r0(x) = p(x) and then ri+1 = gcd(ri(x), r′i(x)) for each 0 ≤ i ≤ n− 1, so

ri(x) = c
∏
k

(x− ak)max(mk−i,0).

Note that each mk ≤ n, so ri(x) = c for each i ≥ n. Now for each 1 ≤ i ≤ n + 1, let
li(x) = ri−1(x)/ri(x), so

li(x) =
∏
k

(x− ak)(if mk≥i then 1 else 0),

and then similarly for each 1 ≤ i ≤ n let fi(x) = li(x)/li+1(x), so that

fi(x) =
∏
k

(x− ak)(if mk=i then 1 else 0).

We have now separated the polynomial into the components fi(x) where the basic factors
(x− ak) appear with multiplicity i, and we can then extract a maximal ‘squarable’ factor by

s(x) =
∏

1≤i≤n
fi(x)bi/2c.

We can then obtain a new polynomial p∗(x) = p(x)/s(x)2 without repeated roots, for the next step,
and subsequently multiply each term inside the SOS decomposition by s(x).

Perturbation

From now on, thanks to the previous step, we can assume that our polynomial is strictly pos-
itive definite, i.e. ∀x ∈ R. p(x) > 0. Since all polynomials of odd degree have a real root, the
degree of the polynomial (and the original polynomial before the removal of squared part) must
be even, say deg(p) = n = 2m, and the leading coefficient of p(x) =

∑n
i=0 aixi must also be

positive, an > 0. Since p(x) is strictly positive, there must be an ε > 0 such that the perturbed
polynomial pε(x) = p(x)− ε(1 + x2 + ...+ x2m) is also (strictly) positive. For provided ε < an, this
is certainly positive for sufficiently large x, say |x| > R, since the highest term of the difference
p(x)− ε(1 + x2 + ...+ x2m) will eventually dominate. And on the compact set |x| ≤ R we can just
also choose ε < inf |x|≤R p(x)/ sup|x|≤R(1 + x2 + ...+ x2m).

To find such an ε algorithmically we just need to test if a polynomial has real roots, which we
can easily do in PARI/GP using Sturm’s method; we can then search for a suitable ε by choosing
a convenient starting value and repeatedly dividing by 2 until our goal is reached; we actually
divide by 2 again to leave a little margin of safety. (Of course, there are more efficient ways of
doing this.) We have been tacitly assuming that the initial polynomial is indeed nonnegative, but
if it is not, that fact can be detected at this stage by checking the ε = 0 case, ensuring that p(x) has
no roots and that p(c) > 0 for any convenient value like c = 0.

Approximate SOS of perturbed polynomial

We now use the basic ‘sum of two real squares’ idea to obtain an approximate SOS decompo-
sition of the perturbed polynomial pε(x), just by using approximations of the roots. Recall from
the discussion above that with exact knowledge of the roots aj ± ibj of pε(x), we could obtain a
SOS decomposition with two terms. Assuming l is the leading coefficient of pε(x) we would have
pε(x) = ls(x)2 + lt(x)2. Using only approximate knowledge of the roots as obtained by PARI/GP,

97

98 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

we obtain instead pε(x) = ls(x)2 + lt(x)2 + u(x) where the coefficients of the remainder u(x) can
be made as small as we wish. We determine how small this needs to be in order to make the next
step below work correctly, and select the accuracy of the root-finding accordingly.

Absorption of remainder term

We now have p(x) = ls(x)2 + lt(x)2 + ε(1 + x2 + ...+ x2m) + u(x), so it will suffice to express
ε(1 + x2 + ...+ x2m) + u(x) as a sum of squares. Note that the degree of u is < 2m by construction
(though the procedure to be outlined would work with minor variations even if it were exactly
2m). Let us say u(x) = a0 + a1x + . . . + a2m−1x

2m−1. Note that x = (x + 1/2)2 − (x2 + 1/4) and
−x = (x− 1/2)2 − (x2 + 1/4), and so for any c ≥ 0:

cx2k+1 = c(xk+1 + xk/2)2 − c(x2k+2 + x2k/4),

−cx2k+1 = c(xk+1 − xk/2)2 − c(x2k+2 + x2k/4).

Consequently we can rewrite the odd-degree terms of u as

a2k+1x
2k+1 = |a2k+1|(xk+1 + sgn(a2k+1)xk/2)2 − |a2k+1|(x2k+2 + x2k/4)

and so:
ε(1 + x2 + ...+ x2m) + u =

∑m−1
k=0 |a2k+1|(xk+1 + sgn(a2k+1)xk/2)2+∑m
k=0(ε+ a2k − |a2k−1| − |a2k+1|/4)x2k,

where by convention a−1 = a2m+1 = 0. This already gives us the required SOS representation,
provided ε ≥ |a2k+1|/4 − a2k + |a2k−1| for each k, and we can ensure this by computing the
approximate SOS sufficiently accurately.

Finding Positivstellensatz certificates

By a well-known trick, we can reduce a problem of the form ∀x ∈ [a, b], 0 ≤ p(x), where p(x) is
a univariate polynomial, to the unrestricted polynomial nonnegativity problem ∀y ∈ R. 0 ≤ q(y)

by the change of variable x = a+by2

1+y2
and clearing denominators:

q(y) = (1 + y2)deg(p)p

(
a+ by2

1 + y2

)
.

To see that this change of variables works, note that as y ranges over the whole real line, y2

ranges over the nonnegative reals and so x = (a + by2)/(1 + y2) ranges over a ≤ x < b, and
although we do not attain the upper limit b, the two problems ∀x. a ≤ x ≤ b ⇒ 0 ≤ p(x) and
∀x. a ≤ x < b⇒ 0 ≤ p(x) are equivalent, since p(x) is a continuous function.

If we now use the algorithm from the previous subsections to obtain a SOS decomposition
q(y) =

∑
i cisi(y)2 for nonnegative rational numbers ci, it is useful to be able to transform back to

a Positivstellensatz certificate [129] for the nonnegativity on [a, b] of the original polynomial p(x).
So suppose we have

q(y) = (1 + y2)deg(p)p

(
a+ by2

1 + y2

)
=
∑
i

cisi(y)2.

Let us separate each si(y) into the terms of even and odd degree si(y) = ri(y
2) + yti(y

2), giving us
the decomposition

q(y) =
∑
i

ci(ri(y
2)2 + y2ti(y

2)2 + 2yri(y
2)ti(y

2)).

98

3.6 Experimental results 99

However, note that by construction q(y) is an even polynomial, and so by comparing the odd
terms on both sides we see that

∑
i yri(y

2)ti(y
2) = 0. By using this, we obtain the simpler decom-

position arising by removing all those terms:

q(y) =
∑
i

ci ri(y
2)2 + ci y

2 ti(y
2)2.

Inverting the change of variable we get y2 = x−a
b−x and 1 + y2 = b−a

b−x . Therefore we have, writing
d = deg(p), (

b− a
b− x

)d
p(x) =

∑
i

ciri

(
x− a
b− x

)2

+ ci
x− a
b− x

ti

(
x− a
b− x

)2

,

and so

p(x) =
∑
i

ci
(b− a)d

(b− x)dri

(
x− a
b− x

)2

+
ci

(b− a)d
(x− a)(b− x)d−1ti

(
x− a
b− x

)2

.

We can now absorb the additional powers of b − x into the squared terms to clear their de-
nominators and turn them into polynomials. We distinguish two cases, according to whether
d = deg(p) is even or odd. If d is even, we have

p(x) =
∑

i
ci

(b−a)d

[
(b− x)

d
2 ri

(
x−a
b−x

)]2
+ (x− a)(b− x)

∑
i

ci
(b−a)d

[
(b− x)

d
2
−1ti

(
x−a
b−x

)]2
.

while if d is odd, we have

p(x) = (b− x)
∑

i
ci

(b−a)d

[
(b− x)

d−1
2 ri

(
x−a
b−x

)]2
+ (x− a)

∑
i

ci
(b−a)d

[
(b− x)

d−1
2 ti

(
x−a
b−x

)]2
.

In either case, this gives a certificate that makes clear the nonnegativity of p(x) on the inter-
val [a, b], since it constructs p(x) via sums and products from squared polynomials, nonnegative
constants and the expressions x− a and b− x in a simple and uniform way.

3.6 Experimental results

We have implemented our novel algorithm for validated supremum norms in the Sollya soft-
ware tool ∗. The sum-of-squares decomposition necessary for the certification step has been im-
plemented using the PARI/GP software tool †. The formal certification step has been performed
using the HOL light theorem prover ‡.

During the computation step before formal verification, the positivity of difference polyno-
mials s1 and s2 (see Section 3.3) is shown using an interval arithmetic based implementation of
the Sturm Sequence algorithm [144]. The implementation has a fall-back to rational arithmetic if
interval arithmetic fails to give an unambiguous answer because the enclosure is not sufficiently
tight [39]. In the examples presented, this fall-back has never been invoked. However, beside this
method, other well known techniques exist [143].

The intermediate polynomial T has been computed using Taylor models. Our implementation
supports both absolute and relative remainder bounds. Relative remainder bounds are used by
the algorithm only when strictly necessary, i.e. when a removable discontinuity is detected (see

∗. http://sollya.gforge.inria.fr/
†. http://pari.math.u-bordeaux.fr/
‡. http://www.cl.cam.ac.uk/~jrh13/hol-light/

99

http://sollya.gforge.inria.fr/
http://pari.math.u-bordeaux.fr/
http://www.cl.cam.ac.uk/~jrh13/hol-light/

100 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

Section 2.3). Our implementation of Taylor models also contains some optimizations for comput-
ing tighter remainder bounds that were presented in Proposition 2.2.1 and 2.3.7.

We have compared the implementation of our novel supremum norm algorithm on 10 exam-
ples with implementations of the following existing algorithms discussed in Section 3.2:

– A pure numerical algorithm for supremum norms available in the Sollya tool through the
command dirtyinfnorm [40]. The algorithm mainly samples the zeros of the derivative of
the approximation error function ε and refines them with a Newton iteration. We will refer
to this algorithm as Ref1. As a matter of course, this algorithm does not offer the guarantees
we address herein. Its purpose is only to give reference timings corresponding to the kind
of algorithms commonly used to compute supremum norms.

– A rigorous, interval arithmetic based supremum norm available through the Sollya com-
mand infnorm [40]. The algorithm performs a trivial bisection until interval arithmetic
shows that the derivative of the approximation error function ε no longer contains any zero
or some threshold is reached. The algorithm is published in [39]. We will refer to this algo-
rithm as Ref2. We were not able to obtain a result in reasonable time (less than 10 minutes)
using this algorithm for some instances. The cases are marked “N/A” below.

– A rigorous supremum norm algorithm based on automatic differentiation and rigorous
bounds of the zeros of a polynomial. The algorithm is published in [38]. It gives an a poste-
riori error. We will refer to this algorithm as Ref3.

We will refer to the implementation of our new supremum norm algorithm as Supnorm. We made
sure all algorithms computed a result with comparable final accuracy. This required choosing
suitable parameters by hand for algorithms Ref2 and Ref3. The time required for this manual
adaptation is not accounted for but, of course, it exceeds the computation time by a huge factor.
Our novel algorithm achieves this automatically by its a priori accuracy control.

We used the example instances for supremum norm computations published in [38]. They are
summed up in Table 3.1. In this table, the “mode” indicates whether the absolute or relative error
between p and f was considered. In the “quality” column we compute − log2(η) which gives a
measure of the number of correct bits obtained for ‖ε‖∞.

More precisely, we can classify the examples as follows:
– The two first examples are somehow “toy” examples also presented in [39].
– The third example is a polynomial taken from the source code of CRlibm. It is the typical

problem that developers of libms address. The degree of p is 22, which is quite high in this
domain.

– In examples 4 through 10, p is the minimax polynomial, i.e. the polynomial p of a given
degree that minimizes the supremum norm of the error. These examples involve more or
less complicated functions over intervals of various width. Examples 7 and 9 should be
considered as quite hard for our algorithm since the interval [a, b] has width 1: this is wide
when using Taylor polynomials and it requires a high degree. Example 10 shows that our
algorithm is also able to manage removable discontinuities inside the function f .

The complete definition of the examples as well as our implementation of the algorithms is avail-
able at http://prunel.ccsd.cnrs.fr/ensl-00445343/.

The implementation of both the novel supremum norm algorithm and the three reference al-
gorithms is based on the Sollya tool. That tool was compiled using gcc version 4.3.2. The timings
were performed on an Intel R© CoreTM i7-975 based system clocked at 3.33 GHz running Red-
hat ∗ Fedora 10 x64 Linux 2.6.27.21. Table 3.2 presents the results of our algorithm. In this table
the interval [`, u] computed by our algorithm is represented with the first common leading digits
to ` and u, followed by brackets that give the actual enclosure. For instance 1.234[5−7] actually
represents the interval [1.2345, 1.2347]. Table 3.3 gives the timings that we obtained.

∗. Other names and brands may be claimed as the property of others.

100

http://prunel.ccsd.cnrs.fr/ensl-00445343/

3.6 Experimental results 101

No f [a, b] deg(p) mode quality
− log2 η

#1 exp(x)− 1 [−0.25, 0.25] 5 rel. 37.6

#2 log2(1 + x) [−2−9, 2−9] 7 rel. 83.3

#3† arcsin(x+m) [a3, b3] 22 rel. 15.9

#4 cos(x) [−0.5, 0.25] 15 rel. 19.5

#5 exp(x) [−0.125, 0.125] 25 rel. 42.3

#6 sin(x) [−0.5, 0.5] 9 abs. 21.5

#7 exp(cos2 x+ 1) [1, 2] 15 rel. 25.5

#8 tan(x) [0.25, 0.5] 10 rel. 26.0

#9 x2.5 [1, 2] 7 rel. 15.5

#10 sin(x)/(exp(x)− 1) [−2−3, 2−3] 15 abs. 15.5

Table 3.1: Definition of our examples

No deg(p) deg(T) ‖ε‖∞ ∈ [`, u]

#1 5 13 0.98349131972[2−7]e−7

#2 7 17 0.2150606332322520014062770[4−7]e−21

#3 22 32 0.25592[3−8]e−34

#4 15 22 0.23083[7−9]e−24

#5 25 34 0.244473007268[5−7]e−57

#6 9 17 0.118837[0−2]e−13

#7 15 44 0.30893006[2−9]e−13

#8 10 22 0.35428[6−8]e−13

#9 7 20 0.2182[5−7]e−8

#10 15 27 0.6908[7−9]e−20

Table 3.2: Degree of the intermediate polynomial T chosen by Supnorm, and computed enclosure
of ‖ε‖∞

No Ref1 Ref2 Ref3 Supnorm SOS

time (ms) time (ms) time (ms) time (ms) time (ms)
not rigorous rigorous

#1 14 2,190 121 42 1,631

#2 41 N/A 913 103 11,436

#3 270 N/A 1,803 364 42,735

#4 93 N/A 1,009 139 8,631

#5 337 N/A 2,887 443 155,265

#6 13 3,657 140 39 2,600

#7 180 N/A 3,220 747 81,527

#8 47 66,565 362 94 5,919

#9 27 5,109 315 73 3,839

#10 43 N/A N/A 168 8,061

Table 3.3: Timing of several algorithms

101

102 Chapter 3. Efficient and Accurate Computation of Upper Bounds of Approximation Errors

The implementation of our novel algorithm, compared with the other validated supremum
algorithms Ref2 and Ref3, exhibits the best performance. As a matter of course, counterexamples
can be constructed but are hard to find.

We note that with our new supremum norm algorithm, the overhead of using a validated tech-
nique for supremum norms of approximation error functions with respect to an unsafe, numerical
technique Ref1 drops to a factor around 3 to 5. This positive effect is reinforced by the fact that
the absolute execution times for our supremum norm algorithm are less than 1 second in most
cases. Hence supremum norm validation needs no longer be a one time - one shot overnight task
as previous work suggests [39].

Even certification in a formal proof checker comes into reach with our supremum norm al-
gorithm. In the last column of Table 3.3, we give the execution times for the post-computational
rewriting of the difference polynomials si as a sum of squares.

Even if the execution times for sum-of-squares decomposition may seem high compared to the
actual supremum norm computation times, they are quite reasonable, since our implementation
is still not at all optimized. Moreover, most of the time, the final certification step, requiring the
computation of a sum-of-squares decomposition is run only once per supremum norm instance in
practice. Hence the time needed for computing this certificate is not critical.

3.7 Conclusion

Each time a transcendental function f is approximated using a polynomial p, there is a need
to determine the maximum error induced by this approximation. Several domains where such a
bound for the error is needed are: floating-point implementation of elementary functions, some
cases of validated quadrature as well as in more theoretical proof work, involving transcendental
functions.

Computing a rigorous upper bound on the supremum norm of an approximation error func-
tion ε has long been considered a difficult task. While fast numerical algorithms exist, there was
a lack of a validated algorithm. Expecting certified results was out of sight. Several previous
proposals in the literature had many drawbacks. The computational time was too high, hence
not permitting one to tackle complicated cases involving composite functions or high degree ap-
proximation polynomials. Moreover, the quality of the supremum norm’s output was difficult
to control. This was due either to the unknown influence of parameters or simply because the
techniques required too much manual work.

The supremum norm algorithm proposed in this work solves most of the problems. It is able
to compute, in a validated way, a rigorous upper bound for the supremum norm of an approxima-
tion error function —in both absolute and relative error cases— with an a priori quality. Execution
time, measured on real-life examples, is more than encouraging. There is no longer an important
overhead in computing a validated supremum norm instead of a mere floating-point approxima-
tion without any bound on its error. In fact, the overhead factor is between 3 and 5 only and the
absolute execution time is often less than 1 second on a current machine.

The algorithm presented is based on two important validation steps: the computation of an
intermediate polynomial T with a validated bound for the remainder and the proof that some
polynomials si are non-negative. In this work, several ways of automatically computing an inter-
mediate polynomial with a remainder bound were revised. Special attention was given to how
non-negativity of a polynomial could be shown rewriting it as a sum of squares. This technique
already permits us not only to validate a non-negativity result but actually to certify it by formally
proving it in a formal proof checker.

†. Values for example #3: m = 770422123864867 · 2−50, a3 = −205674681606191 · 2−53, b3 = 205674681606835 ·
2−53

102

3.7 Conclusion 103

One point in certification is still outstanding: certification of the intermediate polynomial’s
remainder bound in a formal proof checker. The algorithms for Taylor models, revised and refined
in the previous chapter are implemented in a validated way, but will have to be “ported” to the
environment of a formal proof checker. Previous works like [175] are encouraging and the task
does not seem to be technically difficult, the algorithms being well understood. The challenge is
in the sheer number of basic remainder bounds to be formally proved for all basic functions. Even
given general “collateral” proofs in the field of analysis, there would be extensive case-by-case
work for each of the basic functions considered. However, we will continue to work on this point
in the future.

Another small issue in the proposed validated supremum norm algorithm also needs to be
addressed and understood. As detailed in Section 3.3, the algorithm consists of two steps: first, a
numerical computation of a potential upper bound and second, a validation of this upper bound.
A detailed timing analysis shows that the first step often takes more than half of the execution
time. On the one hand, this observation is encouraging as it means that computing a validated
result for a supremum norm is not much more expensive than computing a numerical approxi-
mation. On the other hand, this means that our hypothesis that a lower bound for a supremum
norm could be found in negligible time has to be reconsidered. Future work should address that
point, finding a way to start with a very rough and quickly available lower bound approximation
that gets refined in the course of alternating computation and validation.

103

4 CHAPTER 4

Chebyshev Models

Dacă vor fi observat unii că mai judec s, i piezis, , sau că m-am dedulcit
la mai multe prostii decât alt,ii, am astfel unele justificări formale.

Dan P. Brânzei

In previous chapters we have discussed about Taylor Models, a rigorous computing tool based
on Taylor approximations. This approach benefits from the advantages of numerical methods, but
also gives the ability to make reliable statements about the approximated function. Despite the
fact that better approximations than Taylor exist, an analogous to Taylor models, based on other
approximations, has not been yet well-established in the field of validated numerics.

In this chapter we present a new rigorous computing tool called Chebyshev Models, which is
based on two approximations proved to be near-best in the sense of the uniform norm:

– Truncated Chebyshev series (TCS), i.e., the polynomial obtained by truncating the Cheby-
shev series of a function f .

– Chebyshev interpolants (CI), i.e., polynomials which interpolate the function at special
points called Chebyshev nodes. They are also called “approximate truncated Chebyshev
series” in literature.

We give several examples from global optimization or integration and compare the quality and
performance of these new rigorous polynomial approximations to the ones provided by Taylor
Models. We believe that these examples show that Chebyshev Models can be potentially useful in
many alike rigorous computing applications.

This is a joint work with Nicolas Brisebarre, part of it is published in [27].

4.1 Introduction

In the previous chapters we presented a widely used rigorous computation tool: Taylor Mod-
els (TMs), which roughly speaking, associate to a function a pair made of a Taylor approximation
polynomial and a rigorous approximation error bound. This approach benefits from the advan-
tages of numerical methods, but also gives the ability to make reliable statements about the ap-
proximated function.

A natural idea is to try to replace Taylor polynomials with better approximations such as min-
imax approximation, truncated Chebyshev series or Chebyshev interpolants (also called approxi-
mate Chebyshev truncated series when the points under consideration are Chebyshev nodes) for
instance. The last two kinds of approximations are of particular relevance for replacing Taylor
polynomials since the series they define converge on domains better shaped for various usual

106 Chapter 4. Chebyshev Models

applications than Taylor expansions (see, for instance, Section 4.2.3 for a more detailed account).
Moreover, we can take advantage of numerous powerful techniques for computing these approx-
imations. So far, the attempts for using these better approximations, in the context of rigorous
computing, do not seem to have succeeded, see for example [98] for a comparison of existing
techniques. In this chapter we propose two approaches for computing models: one based on
interpolation polynomials at Chebyshev nodes, what we call Chebyshev Interpolants (CI), the
other on truncated Chebyshev series (TCS). We believe that bringing a certified error bound to an
(approximate) truncated Chebyshev series, and providing effective tools for working with such
models, opens the way to adapting to rigorous computing many numerical algorithms based on
approximate Chebyshev series, for rigorous ODE solving, quadrature, etc.

4.1.1 Previous works for using tighter polynomial approximations in the context of
rigorous computing

The idea of using better approximation polynomials, for example Chebyshev truncated series,
in the context of validated computations was introduced in [60] under the name ultra-arithmetic.
As explained in [98], in their setting, the advantages of non-Taylor approximations cannot be ex-
plicitly maintained due to several drawbacks. It is noted in [98] that Taylor representation is a spe-
cial case, because for two functions f1 and f2 , the Taylor representation of order n, for the product
f1 · f2 can be obtained merely from the Taylor expansions of f1 and f2, simply by multiplying
the polynomials and discarding the orders n+ 1 to 2n. On the contrary, the Chebyshev truncated
series of a product f1 · f2 can in general not be obtained from the Chebyshev representations of
the factors f1 and f2, and no operation analogous to TMs multiplication is given. Moreover, there
is no systematic treatment of common basic functions. Finally, [98] explains that the methods de-
veloped in ultra-arithmetic can lead to an increase in the magnitude of the coefficients, which will
increase both the computational errors and the difficulty of finding good interval enclosures of the
polynomials involved.

In [176] a suggestion of directly using the minimax polynomial was made. In fact, this polyno-
mial can be obtained only through an iterative procedure, namely Remez algorithm, which can be
considered too computationally expensive in our context. We showed in Chapter 3 that the main
drawback is linked to the computation of the approximation error bound: obtaining a certified
bound in such a procedure, raises a significant dependency problem as discussed in Section 3.2.2
which led us to use Taylor Models as intermediary rigorous approximations. In [176] the idea
that such minimax approximations models could be stored in a database was proposed, however
this is very application specific and limited to a finite number of certain intervals over which the
approximation was computed. It is hence not a general or scalable solution for such a problem.

Despite these unsuccessful attempts, we tried to find another way to take advantage of near-
best approximations.

Trefethen [159] uses the idea of representing the functions by Chebyshev interpolation polyno-
mials. He chooses their expansion length in such a way as to maintain the accuracy of the obtained
approximation close to machine precision. Moreover, the idea of using basic functions and then
consider an algebra on them is used. The developed software, Chebfun was successfully used for
numerically solving differential equations, quadrature problems. However, the Chebfun system
does not provide any validation of the obtained results. As mentioned in [159], the aim of this
system are numerical computations and no formal proof or safeguards are yet implemented to
guarantee a validated computation, although it seems to be a future project.

Although we will make use where possible of some fast numerical algorithms similar to those
of Chebfun, one should remember that obtaining good rigorous bounds for enclosing approxima-
tion and rounding errors is not a straightforward process. For instance, one should not fall into the

106

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants 107

old trap of the beginnings of interval arithmetic: in general one can not pretend that by replacing
all floating-point computations with interval computations, one obtains a result that would give
a tight enclosure of the rounding or approximation errors. So our work tries to cleverly adapt
numerical algorithms or to conceive new ones that provide rigorous useful results in the end.

4.2 Preliminary theoretical statements about Chebyshev series and
Chebyshev interpolants

In this section, we collect several theoretical results that we will use in the sequel. We try to
explain the advantages, the mathematical meaning behind these advantages and of course, the
disadvantages of using Chebyshev Truncated Series and Chebyshev interpolants.

4.2.1 Some basic facts about Chebyshev polynomials

A detailed presentation can be found in [19, 142]. We focus on the statements necessary for
our approach. Over [−1, 1], Chebyshev polynomials can be defined as

Tn(x) = cos (n arccosx) , n ≥ 0.

We give several classical properties without proof:
– These polynomials can also be defined recursively as:

Tn(x) = 1

T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2;

(4.1)

– {T0, T1, . . . , Tn} form a basis for Pn, the space of polynomials of degree at most n over [−1, 1].
– Tn+1 has n+ 1 distinct real roots in [−1, 1], called Chebyshev nodes of first kind:

µi = cos

(
(i+ 1/2)π

n+ 1

)
, i = 0, . . . , n. (4.2)

– Tn has n+ 1 distinct local extrema over [−1, 1], called Chebyshev nodes of second kind:

νi = cos

(
i π

n

)
, i = 0, . . . , n. (4.3)

Remark 4.2.1. Over any interval I = [a, b], a 6= b, a simple map of the interval I to [−1, 1] allows us to
extend Chebyshev polynomials over I as

T [a,b]
n (x) = Tn

(
2x− b− a
b− a

)
. (4.4)

We now recall

Lemma 4.2.2. The polynomial W (x) =
n∏
i=0

(x−µi), is the monic degree-n+ 1 polynomial that minimizes

the supremum norm over [−1, 1] of all monic polynomials in C[x] of degree at most n+ 1. We have

W (x) =
Tn+1 (x)

2n

and
max

x∈[−1,1]
|W (x)| = 1

2n
.

107

108 Chapter 4. Chebyshev Models

Beside this, Chebyshev polynomials possess another and equally important property: they
form a family of orthogonal polynomials. Before going into details about this property, we men-
tion that it is exploited in Chebyshev series expansions and Galerkin methods for differential
equations [23].

Of course, there are other families of orthogonal polynomials beside Chebyshev, and they con-
stitute a future extension of this work. That is why, several properties given in the sequel are
presented in general setting of orthogonal polynomials. On the other hand, Chebyshev polyno-
mials have further properties, which are peculiar to them and have a trigonometric origin, hence
there is a strong link with Fourier series (see Remark 4.2.11) or, in the complex plane, Laurent
series (see Remark 4.2.21).

We recall:

Definition 4.2.3. Two functions f(x) and g(x) in L2[a, b] are said to be orthogonal on the interval [a, b]
with respect to a given continuous and non-negative weight function w(x) if 〈f, g〉 = 0, where

〈f, g〉 =

b∫
a

w(x)f(x)g(x)dx, (4.5)

is the inner product between f and g.

The formal definition of an inner product (in the context of real functions of a real variable) is:

Definition 4.2.4. Let V be a real vector space. An inner product 〈·, ·〉 is a function from V × V to R such
that, for all f, g, h ∈ V , α ∈ R we have:

1. 〈f, f〉 > 0, with equality if and only if f = 0;
2. 〈f, g〉 = 〈g, f〉;
3. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉;
4. 〈αf, g〉 = α〈f, g〉.

An inner product defines an L2-type norm: ‖f‖2 =
√
〈f, f〉.

A family of orthogonal polynomials (ϕn)n>0 where ϕn is of degree n verifies:

〈ϕi, ϕj〉 = 0, (i 6= j).

Lemma 4.2.5. Chebyshev polynomials (Tn)n>0 form an orthogonal polynomial system i.e. 〈Ti, Tj〉 = 0,
with respect to the interval [−1, 1], weight function w(x) = 1√

1−x2 .

Remark 4.2.6. The L2 norm of Ti is given by ‖T0‖22 = π, ‖Ti‖22 = π/2, i > 1.

Lemma 4.2.7. If {ϕi} is an orthogonal polynomial system on [a, b] then:
1. the zero function is the best L2 polynomial approximation of degree n− 1 to ϕn on [a, b];
2. ϕn is the bestL2 approximation to zero on [a, b] among polynomials of degree nwith the same leading

coefficient.

We observe that every polynomial in an orthogonal system has a minimal L2 property analo-
gous to the minimax property of Chebyshev polynomials. Moreover, it can be proven that

Lemma 4.2.8. The best L2 polynomial approximation pn of degree n to f may be expressed in terms of the
orthogonal polynomials family {ϕi} in the form:

pn =
n∑
i=0

ciϕi,

where
ci =

〈f, ϕi〉
〈ϕi, ϕi〉

.

108

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants 109

4.2.2 Chebyshev Series

In a similar manner, on the assumption that it is possible to expand a given function f in a
(suitably convergent) series based on the orthogonal polynomial system (ϕn)n>0, we may write f
as an infinite orthogonal series:

f(x) =
∞∑
k=0

akϕk(x). (4.6)

Focusing on Chebyshev series, what are the assumptions about the function f in order to
ensure their convergence over [−1, 1]?

Here we restate without proof a result from [158, Chap. 3] that covers most applications,
although a weaker assumption is sufficient [158, Chap. 7]. We shall assume that f is Lipschitz
continuous on [−1, 1]. Recall that this means that there is a constant C such that |f(x) − f(y)| ≤
C|x−y| for all x, y ∈ [−1, 1]. Recall also that a series is absolutely convergent if it remains convergent
if each term is replaced by its absolute value, and that this implies that one can reorder the terms
arbitrarily without changing the result.

Theorem 4.2.9. Chebyshev series
If f is Lipschitz continuous on [−1, 1], it has a unique representation as an absolutely and uniformly

convergent series

f(x) =

∞∑′

k=0

akTk(x), (4.7)

where the coefficients ak are given for k > 0 by

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx, (4.8)

and the dash in the summation indicating that the first coefficient is halved.

Remark 4.2.10. Note that ai =
〈f, Ti〉
〈Ti, Ti〉

, i > 0.

There is a strong link between Chebyshev and Fourier series [102, Chap. 5.3]. In brief, with
the usual change of variable x = cos θ, 0 6 θ 6 π, the function f(x) defines a new function g(θ),
where g : R → R is an even periodic function of period 2π, with g(θ) = f(cos θ), 0 6 θ 6 π,
g(θ + 2π) = g(θ) and g(−θ) = g(θ).

In general, the Fourier series of a 2π-periodic function g may be written as:

g(θ) =

∞∑′

k=0

(uk cos(kθ) + vk sin(kθ)),

where uk =
1

π

∫ π

−π
g(θ) cos(kθ) dθ and vk =

1

π

∫ π

−π
g(θ) sin(kθ) dθ.

Here, since g is even, all coefficients vk vanish and hence the series simplifies to the Fourier
cosine series of g.

Remark 4.2.11. (Link between Chebyshev and Fourier series) The coefficients uk of the Fourier cosine series
of g defined above are the same as the coefficients of the Chebyshev series of f . This can be easily seen since,
with the change of variable x = cos θ, 0 6 θ 6 π, we have:

ak =
2

π

∫ π

0
f(cos θ) cos(kθ) dθ =

1

π

∫ π

−π
g(θ) cos(kθ) dθ. (4.9)

109

110 Chapter 4. Chebyshev Models

Remark 4.2.12. An orthogonal expansion has the property that its partial sum of degree n is the best L2

approximation of degree n to its infinite sum.

Hence it is an ideal expansion to be used in the L2 context. We will see in this chapter that
truncated Chebyshev series are also near-best approximations with respect to the uniform norm.

Let us focus for the moment on the computation of the coefficients of this series.

Computation of Chebyshev series coefficients

In general, the Chebyshev coefficients can be obtained by some numerical computation of the
integral (eq. (4.8)), but here we are interested in rigorous and fast ways of computing them. There
are several functions for which the coefficients ak in (4.8) may be determined explicitly, like in the
following example:

Example 4.2.13. Coefficients of Chebyshev expansion of f(x) = arccos(x).
Integrating using formula (4.8) one obtains:

a0 = π, a2k = 0, a2k−1 = − 2

(2k − 1)2
, k > 1.

The interested user can find more explicit Chebyshev expansions in [102, Chap. 5.2], but this
is not possible in general. Moreover, even when this is possible for some basic functions, the
coefficients of the explicit expansion contain sometimes expressions related to special functions
like Bessel function, hypergeometric functions, etc. For example, for exp, one finds the following
explicit expansion:

Example 4.2.14. Coefficients of Chebyshev expansion of f(x) = exp(x).

ak = 2Ik(1), k > 0,

where Ik(z) is the modified Bessel function of the first kind.

So, going back to Definition 1.3.15 of "basic functions", we said that we consider as "basic
function" any function for which we can easily compute its range over a given interval, then in
Chapter 2 we considered "basic" any function for which the data structure needed to represent
it (in our case, Taylor polynomial and interval error bound) was easily computable. Here, for
Chebyshev series, in the case of exp, we are faced with a dilemma : if we consider that we dispose
of a "powerful" system that is capable of evaluating correctly rounded Bessel functions, than we
can consider this expansion as "explicit" and consequently exp as basic function, otherwise we
have to devise another way of computing these coefficients not relying on Bessel special functions.

Chebyshev coefficients for D-finite functions. We recall that in Section 1.4.1 we mentioned that
the Taylor coefficients of such functions satisfy a linear recurrence with polynomial coefficients.
A similar property holds for Chebyshev series coefficients, for details see Section 5.2.2 and refer-
ences therein. For the moment, let us suppose that we dispose of an algorithm for obtaining this
recurrence and consider the simple example of exp.

Let exp(x) = c0T0 (x) +
∑∞

i=1 ciTn (x), where x ∈ [−1, 1]. Based on the LODE verified by exp,
i.e. f ′−f = 0, we can find the following recurrence verified by the Chebyshev coefficients (ck)n∈N:

− ck + (2 k + 2) ck+1 + ck+2 = 0. (4.10)

However, even in this simple example, there are several differences compared to the Taylor case.
The first one is related to initial conditions. Unlike the Taylor coefficients of f , the Chebyshev

110

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants 111

coefficients c0, c1 that could serve as initial conditions for the recurrence are not related to the
initial condition f(0) = 1 of the differential equation in any simple way. In particular, we see that
the order of the recurrence is larger than that of the differential equation, meaning that we need
to somehow obtain more initial values for the recurrence than we “naturally” have at hand. We
come back in more detail to this and other issues in Chapter 5. For this example, however, given
that we know an explicit expansion for exp, we could use it to add the initial conditions c0 = I0 (1)
and c1 = I1 (1).

At a first look this would imply that for computing n coefficients in a rigorous manner, we only
need to compute the first two, i.e. I0 (1) and I1 (1), and then to unroll the recurrence and obtain all
of them in linear time. However, this recurrence is not numerically stable.

Example 4.2.15 (Forward unrolling of the recurrence verified for Chebyshev coefficients of exp.).
Given the recurrence (4.10), we compute in Sollya, using both double precision FP numbers and interval
arithmetic the coefficients ci, supposing that we have initially a high precision rigorous value/enclosure for
c0 and c1:

prec =54;

I _ 0 _ t i l d e = 1.26606587775200833559824 ;
I_0 =[round (1 .26606587775200833559824 ,54 ,RD)−1b−54 ,

round (1 .26606587775200833559824 ,54 ,RU)+1b−54] ;

I _ 1 _ t i l d e = 0.565159103992485027207696 ;
I_1 =[round (0 .565159103992485027207696 ,54 ,RD)−1b−54 ,

round (0 .565159103992485027207696 ,54 ,RU)+1b−54] ;

c o e f f s =[||] ; c o e f f s _ t i l d e =[||] ;
c o e f f s [0] = I_0 ;
c o e f f s [1] = I_1 ;

c o e f f s _ t i l d e [0] = I_0 ;
c o e f f s _ t i l d e [1] = I_1 ;

n=52;
f o r i from 0 to n−2 do {
c o e f f s [i +2]=−2∗(i +1)∗ c o e f f s [i +1]+ c o e f f s [i] ;
c o e f f s _ t i l d e [i +2]=−2∗(i +1)∗ c o e f f s _ t i l d e [i +1]+ c o e f f s _ t i l d e [i] ;
} ;
midpointmode=on ! ;
p r i n t (c o e f f s _ t i l d e) ;
p r i n t (c o e f f s) ;

Program 4.1: Forward unrolling of the recurrence verified for Chebyshev coefficients of exp using
both FP and IA.

The obtained values for the coefficients are given in Table 4.2.15. We observe a very important precision
loss. Of course, with IA, we have rigorous results, but they are already useless after the first 10 coefficients.

This issue is classical in the context of computational problems regarding recurrence rela-
tions, since we attempt to compute so called minimal solutions. We refer the reader for example

111

112 Chapter 4. Chebyshev Models

Table 4.1: Results obtained with double precision FP and IA for forward unrolling of the recur-
rence verified for Chebyshev coefficients of exp.

Coeff. FP value IA value 5 digit accurate value
0 1.266065877752008 1.266065877752008[2, 4] 1.26606

5 2.714631559685987 · 10−4 2.7146315[5, 7] · 10−4 2.71463 · 10−4

10 −5.545631842629461 · 10−9 [−2 · 10−8, 2 · 10−8] 2.75294 · 10−10

15 4.519395853118779 · 10−2 [−9.75 · 10−2, 1.88 · 10−1] 2.37046 · 10−17

20 −2.027469166976402 · 106 [−8 · 106, 5 · 106] 3.96683 · 10−25

25 3.318216535386249 · 1014 [−8 · 1014, 3 · 1014] 1.93990 · 10−33

50 −1.097390053134071 · 1061 [−5 · 1061, 3 · 461] 2.93463 · 10−80

to [66, 168] and briefly explain on this example the basic idea of the problem. We observe that

the recurrence (4.10) is also verified by BesselK function Kn(1), and that we have lim
n→∞

In(1)

Kn(1)
= 0.

Moreover, In(1) and Kn(1) form a basis of solutions of this recurrence. Any solution yn that is not
proportional to In(1), can be written in the form yn = aIn(1) + bKn(1), b 6= 0. We thus have

lim
n→∞

In(1)

yn
= 0, for all such solutions yn. (4.11)

When (4.11) is verified we say that In(1) is a minimal solution and yn is a dominant solution. When at-
tempting to compute the minimal solution In(1), and only approximate initial values are available
(due to roundings for example), we will compute in fact a solution yn, which is in general linearly
independent of In(1). Then, it is not difficult to see that the relative error becomes arbitrary large:

lim

∣∣∣∣yn − In(1)

In(1)

∣∣∣∣→∞, as n→∞.

So, roughly speaking, before applying a recurrence relation for computing a function, it is
necessary to determine whether it has a minimal solution and, if so, if the function under consid-
eration is minimal. In such a case, one can use Miller’s algorithm [16, 168] which is based on the
interesting idea of applying the recurrence backwards. Of course, in such a case, initial conditions
"at the tail" have to be provided.

For getting around this problem, we need to look at two aspects:
– whether we are interested in computing numerical (e.g. FP) values for coefficients that are

"close" to the real values; this problem is dealt with is Chapter 5;
– or whether we need to compute rigorous enclosures of Chebyshev expansions coefficients ci.

For the second problem, we do not have yet a solution for any general recurrence verified by coef-
ficients of D-finite functions, without resorting to rigorous computations of definite integrals. We
do have however a solution for Chebyshev coefficients of "basic" functions. Similarly to the Taylor
Models approach, we can analyze in a "case-by-case" manner every basic function, and compute
a priori closed forms for the initial conditions needed when applying the recurrence backwards.
To conclude our example, fixing the values of c50 and c49 in double precision IA and unrolling
backwards the recurrence (4.10), we obtain c0 = 1.2660658777520[0, 2].

The above issues tend to suggest that Taylor series have however more advantages. So, it is
time to focus also on an important potential advantage of Chebyshev series compared to Taylor
series.

112

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants 113

4.2.3 Domains of convergence of Taylor versus Chebyshev series

In what follows, we consider a class of "very well-behaved" functions. We denote byM the set
of functions which are analytic on a simply-connected open set U , except for a given set of points
of U , their singularities: Sg(f) = {s1, s2, . . .}.

Suppose that we want to approximate f ∈ M over the real axis segment [−1, 1] by Taylor and
Chebyshev series respectively. We suppose also that f(x) is real for x ∈ [−1, 1]. So, the coefficients
of both series are real.

Convergence of Taylor series

It is classical [2] that the Taylor series expansion of f at x0 converges on a complex disc D
centered at x0 that avoids all the singularities of f .

For simplicity, assume x0 = 0, then the Taylor series expansion of f converges in the region
(plotted in Figure 4.1):

|x| < ρ,where ρ ≤ min
j
{|sj |}. (4.12)

Figure 4.1: Domain of convergence of Taylor and Chebyshev series for f .

It is easily seen that the series can not converge over entire [−1, 1] unless all the singularities sj
lie outside the unit circle.

Let f be an analytic function inside an open set Ω ⊆ C containing the disc Dρ = {z, |z| < ρ}.
We recall that the speed of convergence of the Taylor series coefficients of f inside D is given in
the following classical theorem:

Theorem 4.2.16. Cauchy’s Estimate for Taylor coefficients of analytic functions inside the disc Dρ =
{z, |z| < ρ}.

Let f(z) =
∞∑
k=0

tk z
k be analytic inside an open set Ω ⊆ C containing the disc Dρ = {z, |z| < ρ}, for

some ρ > 0. Then its Taylor coefficients satisfy

|tk| ≤Mρ−k, whereM = max
z∈Dρ

|f(z)| . (4.13)

Corollary 4.2.17. If f has the properties of Theorem 4.2.16 then the Taylor truncated series fn(z) =∑n
k=0 tkz

k satisfies for all z ∈ Dρ:

|f(z)− fn(z)| ≤ Mβ−(n+1)

1− β
, whereM = max

z∈Dρ
|f(z)| andβ =

|z|
ρ
. (4.14)

113

114 Chapter 4. Chebyshev Models

Convergence of Chebyshev series

The region of convergence of the Chebyshev series is the interior of an ellipse with foci at ±1
(plotted in Figure 4.1); more precisely, it is the largest such ellipse for which all the singularities of
f lie outside or on the ellipse.

In order to define the region of convergence algebraically we present without proof several
complex geometry elements related to such ellipses ερ , so called Bernstein ellipses [158, Chap. 8].

Probably the most widely known definition for an ellipse is: the set of points P in the complex
plane such that the sum of the distances from P to the two foci is constant and equal to the length
of the major axis. Let α, β the length of its major and minor axis respectively.

Definition 4.2.18. Ellipse ερ
For any ρ ≥ 1, ερ is the ellipse of foci at −1 and 1 such that the sum of the lengths of its two axes is 2ρ.

Definition 4.2.19. Elliptic disk ε̄ρ
We denote by ε̄ρ the elliptic disk bounded by ερ i.e. the ellipse ερ and its interior (in the geometric sense).

Proposition 4.2.20. We have the following basic properties:
– α2 − β2 = 4;
– α = ρ+ ρ−1 and β = ρ− ρ−1.

We note that α(ρ) and β(ρ) are increasing. Hence, the ellipse ερ1 is in the interior of the ellipse
ερ2 if and only if ρ1 ≤ ρ2. This gives us an intuitive notion of radius ρ of the ellipse ερ. However,

this can be viewed also through the so-called Joukowsky transform w(z) =
z + z−1

2
: the image

of the circle C(0, ρ) of center 0 and radius ρ under this transformation is ερ. Also, the image of
the circle C(0, ρ−1) of center 0 and radius ρ−1 under this transformation is ερ. This, as well as the
above mentioned properties of ellipses are illustrated in Figure 4.2.

This inverse of this transformation maps the elliptic disk ε̄ρ to the annulusAρ = {z ∈ C : ρ−1 <
|z| < ρ}. Moreover, letting x = cos θ and z = eiθ, the formula Tn(cos θ) = cos(nθ) translates into
Tn(z+z

−1

2) = zn+z−n

2 . This allows one to easily see the link between Laurent series and Chebyshev
series.

Remark 4.2.21. Let f(x) =

∞∑′

k=0

akTk(x). The coefficients ãk of the (doubly infinite) Laurent expansion

of the function f̃(z) = f(z+z
−1

2) =
∞∑

k=−∞
ãkz

k around the unit circle verify ã|k| = ak/2.

Theorem 4.2.22. Chebyshev coefficients of analytic functions inside the elliptic disk ε̄ρ .
Let f be an analytic function inside an open set Ω ⊆ C containing the elliptic disk ε̄ρ for some ρ ≥ 1.

Then its Chebyshev coefficients satisfy

|ak| ≤ 2Mρ−k, whereM = max
z∈ερ
|f(z)| . (4.15)

Proof. Given for example in [158].

Now, suppose we are given the singularities Sg(f) and none of them lies on the segment
[−1, 1]. How can we compute the smallest ρ > 1 such that f is analytic inside the elliptic disk ε̄ρ ?

Consider z ∈ Sg(f). A simple computation using Proposition 4.2.20 suffices to prove that z

lies on the Bernstein ellipse εr(z) with r(z) =
αz +

√
α2
z − 4

2
and αz = |z + 1| + |z − 1|. Hence we

have the following proposition:

114

4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants 115

Figure 4.2: Joukowsky transform w(z) =
z + z−1

2
maps C(0, ρ) and C(0, ρ−1) respectively to ερ.

Proposition 4.2.23. Let f analytic on [−1, 1] and let ρ∗ = min
s∈Sg(f)

r(s). Then, for all ρ < ρ∗ Theo-

rem 4.2.22 applies.

Remark 4.2.24. If Sg(f) is empty, i.e. f is analytic on the whole complex plane – it is said to be entire–,
then Theorem 4.2.22 applies with ρ∗ = +∞. This means that the Chebyshev series coefficients of an entire
function decrease faster than any geometric sequence.

Remark 4.2.25. A result adapted in [138] from Rivlin shows that ρ∗ verifies:

1

ρ∗
= lim sup

n→∞
|an|

1
n .

We can thus say that ρ∗ represents the speed of convergence of the coefficients of the Chebyshev series of f .
We note that this provides a nice analogy with power series, where the radius of convergence r verifies

1

r
= lim sup

n→∞
|tn|

1
n (Cauchy-Hadamard formula).

Theorem 4.2.26. Convergence of analytic functions.
If f has the properties of Theorem 4.2.22 then for each n ≥ 0, the truncated Chebyshev series over

[−1, 1], fn(x) =

n∑′

k=0

akTk(x) satisfy:

‖f − fn‖∞ ≤
2Mρ−n

ρ− 1
, whereM = max

z∈ερ
|f(z)| . (4.16)

Hence, the speed of convergence of the coefficients of the Chebyshev series of f can be seen as the
speed of convergence of the Chebyshev series of f on [−1, 1]. We note that convergence theorems exist
for less "well-behaved" functions, that are not analytic, but at most k times differentiable, but we
do not enter the details here and cite [158, Chap. 7] for interested readers.

Example 4.2.27. We consider the Runge function f(x) =
1

1 + 25x2
. It has two poles in z1,2 = ± i

5
. Then

ρ∗ =
1 +
√

26

5
. In Figure 4.3 we plotted the log10 of errors of Chebyshev truncated series in function of

115

116 Chapter 4. Chebyshev Models

the truncation degree. These errors match the geometrical rate of convergence given by ρ∗. We note that the
coefficients of the Chebyshev truncated series were computed using Maple code based on Chapter 5 of this
thesis.

Figure 4.3: The dots are the errors log10 ‖f − fn‖∞ in function of n, where f(x) =
1

1 + 25x2
is the

Runge function and fn is the truncated Chebyshev series of degree n. The line has slope log10 ρ
∗,

ρ∗ =
1 +
√

26

5
.

Provided that none of the singularities lie on [−1, 1], we can thus guarantee the convergence
of Chebyshev series over [−1, 1], while this is not the case for Taylor series. However, in this case,
one solution for Taylor series would be to split [−1, 1] into subintervals that can be covered by
disks that avoid all singularities and then reason on each subinterval separately.

Now, let us recall the fact that we are interested in computing both the coefficients and an
approximation error bound for such a truncated Chebyshev series. Although the convergence
domain seems better, from their definition, we can not identify any straightforward computation
neither for the coefficients, nor for the tail of the series for a given function f . For bounding the
tail, one could of course try to identify ρ∗ and compute M , but as we already discussed, like in the
case of Taylor series, identifying the optimal ρ is not automatic and sometimes this bound can be
very pessimistic.

One solution to bounding the tail of the series can be found in [59]:

Theorem 4.2.28. Let n ∈ N fixed and a function f ∈ Cn+1[−1, 1]. Let fn the degree n truncated Chebyshev
series of f on [−1, 1]. Then there exists ξ ∈ (−1, 1) such that

‖f − fn‖∞ =

∣∣f (n+1)(ξ)
∣∣

2n (n+ 1)!
. (4.17)

It is also well known that truncated Chebyshev series are near-minimax uniform approxima-
tions [102, Chap. 5.5]:

‖f − fn‖∞ 6
(4

π2
log n+O(1)

)
‖f − p∗n‖∞ (4.18)

116

4.3 Chebyshev Interpolants 117

where p∗n is the best uniform approximation polynomial of degree at most n.
That being said, however, it seems that we have to adopt a different approach for computing

the coefficients of Chebyshev expansions for most functions. One solution comes from another
magnificent property of Chebyshev polynomials: their discrete orthogonality.

The link between Chebyshev series and Chebyshev interpolants We note that it is always
possible to convert a (continuous) orthogonality relationship, as defined in Definition 4.2.3, into
a discrete orthogonality relationship simply by replacing the integral with a summation. In gen-
eral, of course, the result is only approximately true. However, where trigonometric functions or
Chebyshev polynomials are involved, there are many cases in which the discrete orthogonality
can be shown to hold exactly. For the Chebyshev polynomials {Ti(x), i = 0, . . . , n} we can prove
that a discrete orthogonality holds for Chebyshev nodes of both kinds defined in Equations (4.2)
and (4.3). More specifically, we have:

Proposition 4.2.29. Discrete orthogonality of Chebyshev polynomials
– The polynomials {Ti(x), i = 0, . . . , n} are orthogonal over the discrete point set {µk, k = 0, . . . , n},

consisting of the zeros of Tn+1(x) with respect to the discrete orthogonal product 〈u, v〉 =
n∑
k=0

u(µk)v(µk).

We have:

〈Ti, Tj〉 =


0, i 6= j,

n+ 1, i = j = 0,

(n+ 1)/2, i = j (6 n).

(4.19)

– The polynomials {Ti(x), i = 0, . . . , n} are orthogonal over the discrete point set {νk, k = 0, . . . , n},
consisting of the extrema of Tn(x) with respect to the discrete orthogonal product 〈u, v〉 =
n∑′′

k=0

u(νk)v(νk), where
∑′′ denotes that both the first and the last terms in the sum are to be halved.

We have:

〈Ti, Tj〉 =


0, i 6= j,

n, i = j = 0 or i = j = n,

n/2, 0 < i = j < n.

(4.20)

This property makes the link between truncated Chebyshev series and Chebyshev interpolation
polynomials.

4.3 Chebyshev Interpolants

Let us briefly review some classical facts about interpolation.

4.3.1 Interpolation polynomials

– Lagrange polynomial interpolation is classical. Consider a continuous function f on I =
[−1, 1] and a set of n+1 suitably selected distinct points in the interval, say {yi, i = 0, . . . , n}.
There exists a unique polynomial p of degree ≤ n which interpolates f at these points [151]:
p(yi) = f(yi), ∀i = 0, . . . , n.

117

118 Chapter 4. Chebyshev Models

The interpolation polynomial p can be uniquely written as p(x) =
n∑
i=0

f(yi)`i(x), where `i are

Lagrange basis polynomials defined by `i(x) =
n∏
k=0
k 6=i

(x− yk)
(yi − yk)

, i = 0, . . . , n.

– Hermite polynomial interpolation denotes the similar process in which we require f to be
at least k − 1 times differentiable over I , we can repeat the points yi at most k times. There
exists a unique polynomial p of degree ≤ n which interpolates f at the given points and :
p(yi) = f(yi),∀i = 0, . . . , n, or if yi is repeated k times, p(j)(yi) = f (j)(yi), ∀j = 0, . . . , k − 1.

– Taylor polynomial is in fact the extreme case that all the yi are equal.
The interpolation polynomial itself is easy to compute and a wide variety of methods and vari-

ous bases representations for example monomial basis, Lagrange, Newton, Barycentric Lagrange,
Chebyshev basis [33, 10, 151] exist (we refer the reader to any numerical analysis book, see [151]
for instance, for its computation). We discuss below the so called divided differences computation
of the coefficients in the Newton basis, since that allows us to directly deduce a formula for the
interpolation error.

Let us consider the interpolation polynomial p(x) =
n∑
i=0

ciNi(x), in the Newton basis {Ni, i =

0, . . . n}, where

Ni(x) =


1, i = 0;
i−1∏
j=0

(x− yj), i = 1, . . . , n.

The coefficients ci are the so-called divided-differences f [y0, . . . , yi] of f at the points y0, . . . , yi.
As mentioned above, if k points coincide, it suffices to take f and its k − 1 successive derivatives
of f . Two interesting properties of divided differences are the following [69, 151]:

– It can be proven that the following recurrence relation holds:

f [y0, . . . , yi] =
f [y0, . . . , yi−1]− f [y1, . . . , yi]

y0 − yi
, i > 0.

From this recurrence a polynomial evaluation algorithm similar to Horner scheme in the
monomial basis can be deduced.

– If the function f ∈ Ci over I then (see Chap. 4 of [151] for instance):

f [y0, . . . , yi] =

∫ 1

0

∫ t1

0
· · ·
∫ ti

0
f (i)(y0 + t1(y1 − y0) + . . . + ti(yi − yi−1))dt1 · · · dti. (4.21)

Interpolation Error The error between f and p is given [69, 151] by:

∀x ∈ I, f(x)− p(x) = f [y0, . . . , yn, x]
n∏
i=0

(x− yi), (4.22)

where f [y0, . . . , yn, x] is the divided-difference of f at the points y0, . . . , yn, x.
By a repeated application of Rolle’s theorem [33, 69, 151], we can prove that ∀x ∈ I, ∃ξ ∈ (a, b)

s.t.

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=0

(x− yi). (4.23)

In the following we denote the right member of this formula for the error by ∆n(x, ξ). In some
cases, for efficiently computing an upper bound ∆n(x, ξ) we will take advantage of the following
Lemma which generalizes Proposition 2.3.7:

118

4.3 Chebyshev Interpolants 119

Lemma 4.3.1. Under the assumptions on f and yi above, if f (n+1) is increasing (resp. decreasing) over I ,
then f [y0, . . . , yn, x] is increasing (resp. decreasing) over I .

Proof. Assume that f (n+1) is increasing. From Equation (4.21), for all x ∈ [a, b], we have

f [y0, . . . , yn, x] =

∫ 1

0

∫ t1

0
· · ·
∫ tn

0
f (n+1)(y0 + t1(y1 − y0) + · · · + tn+1(x − yn))dt1 · · · dtn+1.

Let x, y ∈ [a, b], x ≤ y, let Zn denote y0 + t1(y1 − y0) + · · ·+ tn(yn − yn−1)− tn+1yn, we notice that

f [y0, . . . , yn, y]− f [y0, . . . , yn, x] =

∫ 1

0

∫ t1

0
· · ·
∫ tn

0(
f (n+1)(Zn + tn+1y)− f (n+1)(Zn + tn+1x)

)
dt1 · · · dtn+1.

Since tn+1 ≥ 0, we have Zn + tn+1y ≥ Zn + tn+1x. As f (n+1) is increasing, it follows that the
integrand is nonnegative, which implies f [y0, . . . , yn, y] ≥ f [y0, . . . , yn, x].

Quantifying good approximations: Lebesgue constant
Obviously ∆n(x, ξ) depends on the choice of interpolation points. Suppose we are given a set

S of n + 1 points in [−1, 1]. A famous notion used to quantify the amplification of errors in the
interpolation process at these points is Lebesgue constant. Let us define it in the following. We recall
first that the process of interpolation maps f to p. This defines a mapping τS : C[−1, 1]→ C[−1, 1]
from the space C[−1, 1] to itself. This map is linear and it is a projection on the subspace Pn of
polynomials of degree n or less.

The Lebesgue constant Λn(S) is defined as the operator norm of τS , where we equip C[−1, 1]
with the uniform norm ‖·‖∞, for example. Let p∗n be the best approximation polynomial to f of
degree at most n on [−1, 1]. Then, it is not difficult to prove the following inequality:

‖f − p∗n‖∞ 6 ‖f − τS(f)‖∞ 6 (1 + Λn(S)) ‖f − p∗n‖∞ .

In other words, this gives us a measure of how much worse can the interpolation polynomial
τS(f) be compared to the best possible approximation. This suggests that we look for a set of
interpolation nodes with a small Lebesgue constant.

Remark 4.3.2. For example, when choosing the points yi, the classical Runge phenomenon [102, Theorem
6.1.] shows that equally spaced points are not necessarily a good idea. The Lebesgue constant shows that,
since for interpolation at evenly-spaced points it is asymptotically 2n+1/(e n log n).

Good sets of interpolation points
As seen above, Lebesgue constant could be used as a measure for good interpolation points.

Nevertheless, except for several classical sets S, it is not easy in general to find an explicit expres-
sion for Λn(S).

Another way would be to find a set S for which the interpolation error ∆n(x, ξ) is "small".
Using this, we notice that Lemma 4.2.2 shows that the polynomial that minimizes the supremum

norm of W (x) =
∏n
i=0(x− yi) over [−1, 1] is

Tn+1

2n
. While it does not seem obvious how to control

f (n+1)(ξ), this indicates that we can optimize at least W (x). Consequently, an optimal choice of
interpolation points is the Chebyshev nodes of first kind given in Equation (4.2).

It can be proven that this choice of interpolation points ensures uniform convergence for any
Lipschitz continuous function f [33]. This condition is slightly more restrictive than requiring

119

120 Chapter 4. Chebyshev Models

simply f to be continuous. However, it can be proven that similarly to TCS, convergence in L2

norm occurs for any continuous f .
But several other choices of interpolation points for which ∆n(x, ξ) is "small" are possible, for

example Chebyshev nodes of second kind given in Equation (4.3). Lemma 4.3.4 shows that for
this choice the interpolation error is as most two times bigger than the one obtained for Cheby-
shev nodes of first kind. Moreover, if f is Lipschitz continuous on [−1, 1], then the sequence of
Chebyshev interpolants converges uniformly to f on [−1, 1]. Actually, this holds under weaker
hypothesis [102, Chap. 6] [158, Chap. 7].

For both kinds of Chebyshev nodes, one can prove that the interpolation polynomial is near-
best.

Lemma 4.3.3. The Lebesgue constant for Chebyshev nodes of first kind satisfies:

Λµ(n) =
1

π

n+1∑
k=1

∣∣∣∣cot
(k − 1/2)π

2(n+ 1)

∣∣∣∣ , (4.24)

which is asymptotically

Λµ(n) =
2

π
log n+ 0.9625 +O(1/n). (4.25)

The Lebesgue constant for Chebyshev points of second kind satisfies:

Λν(n) =

{
Λµ(n− 1), n odd,
Λµ(n− 1)− αn, π/8n2 6 αn <

2
√

2−2
n2 , n even.

(4.26)

Proof. We refer to [31, Equations 12,13, 24] for an interesting survey and further references.

Lemma 4.3.4. Interpolation Error
Let f ∈ Cn+1[−1, 1], p1, p2 ∈ Pn interpolation polynomials at n + 1 Chebyshev nodes of first and

second kind respectively. Then there exists ξ ∈ (−1, 1) such that

‖f − p1‖∞ ≤
∣∣f (n+1)(ξ)

∣∣
2n (n+ 1)!

(4.27)

and

‖f − p2‖∞ ≤
∣∣f (n+1)(ξ)

∣∣
2n−1 (n+ 1)!

. (4.28)

Proof. Inequality (4.27) is obvious using Equation (4.23) and Lemma 4.2.2. For inequality (4.28),
using Equation (4.23) we have:

f(x)− p2(x) =
1

2n−1(n+ 1)!
f (n+1)(ξ)(x2 − 1)Un−1(x),

where Un−1(x) = sin(nθ)/ sin θ is the second kind Chebyshev polynomial and x = cos θ, see for
example [102, Sec. 1.2.2]. Using this definition we have |(x2 − 1)Un−1(x)| 6 1.

In what follows, we focus on interpolation at Chebyshev nodes.

Proposition 4.3.5. Chebyshev interpolation formulas

Let p1,n(x) =

n∑′

i=0

c1,iTi(x) be the degree n polynomial interpolating f on the set {µk, k = 0, . . . , n}

of roots of Tn+1. The coefficients c1,i are given by the explicit formula:

c1,i =
2

n+ 1

n∑
k=0

f(µk)Ti(µk). (4.29)

120

4.3 Chebyshev Interpolants 121

Proposition 4.3.6. Chebyshev interpolation formulas

Let p2,n(x) =

n∑′′

i=0

c2,iTi(x) be the degree n polynomial interpolating f on the set {νk, k = 0, . . . , n}

of extrema of Tn over [−1, 1]. The coefficients c2,i are given by the explicit formula:

c2,i =
2

n

n∑
k=0

f(νk)Ti(νk). (4.30)

Proof. Both Proposition 4.3.5 and 4.3.6 are based on the discrete orthogonality property of Cheby-
shev polynomials (Property 4.2.29).

Relations between Chebyshev interpolants coefficients and truncated Chebyshev series coeffi-
cients. We have seen that both the coefficients of TCS and CI can be obtained using the discrete
or continuous orthogonality properties of the Chebyshev polynomials. Another way of seeing
the connection between them is to look at the aliasing phenomenon of Chebyshev polynomials,
described as follows.

Theorem 4.3.7. Aliasing formula for Chebyshev coefficients
Let f be Lipschitz continuous on [−1, 1] and let {c1,k}, {c2,k} be the coefficients of Chebyshev inter-

polants defined in Proposition 4.3.5 and 4.3.6. Let {ak} be the coefficients of Chebyshev expansion of f .
Then

c1,k = ak − a2n+2−k − a2n+2+k + a4n+4−k + a4n+4+k − . . . , k = 0, . . . , n.

c2,k = ak + (ak+2n + ak+4n + . . .) + (a−k+2n + a−k+4n + . . .), k = 0, . . . , n

Proof. We give the ideas of the proof. For details, please see [158, Chap. 4], [102, Section 6.3.1].
Using the definition of Tn, the following identity holds:

Tj + T2n+2±j =
1

2
Tn+1Tn+1±j .

Hence, when interpolating at {µk, k = 0, . . . , n} the zeros of Tn+1:

T2n+2±j(µk) = −Tj(µk).

Now, using Proposition 4.3.5 and Theorem 4.2.9, since f has a unique Chebyshev series and
it converges absolutely, we can rearrange the terms of the series without affecting convergence
and obtain Eq. (4.3.7). In a similar manner we can deduce a similar identity for coefficients of
interpolants at Chebyshev nodes of second kind.

From this theorem we can deduce an error formula for the interpolation polynomial based on
the coefficients of TCS. We have

f(x)− p2,n(x) =

∞∑
k=n+1

ak
(
Tk(x)− T|(k+n−1)(mod 2n)−(n−1)|(x)

)
; (4.31)

f(x)− p1,n(x) =
∞∑

k=n+1

ak

(
Tk(x)− (−1)sT|k̃|(x)

)
, where k̃ = (k+ n+ 1)(mod 2n+ 2)− (n+ 1),

s =

{
0, if (k + k̃)(mod 4n+ 4) = 0,

1, otherwise.
(4.32)

121

122 Chapter 4. Chebyshev Models

From here we can deduce the interesting remark that the interpolation error can be at most 2
times bigger than the TCS error.

‖f − fn‖∞ ≤
∞∑

k=n+1

|ak|; (4.33)

‖f − pn‖∞ ≤
∞∑

k=n+1

2 |ak| = 2
∞∑

k=n+1

|ak|, (4.34)

where pn is either p1,n or p2,n.
Based on this relation, we can also extend Theorem 4.2.26 to CI. We cite [158, Chap. 8] for

detailed proofs.

Theorem 4.3.8. Convergence of Chebyshev interpolants of analytic functions.
If f has the properties of Theorem 4.2.22 then for each n ≥ 0, the Chebyshev interpolant at Chebyshev

nodes (of first or second order) over [−1, 1], pn satisfy:

‖f − pn‖∞ ≤
4Mρ−n

ρ− 1
, whereM = max

z∈ερ
|f(z)| . (4.35)

To summarize, advantages for choosing interpolation polynomials at Chebyshev points are:
– Expressing the polynomial in Chebyshev basis with this choice of interpolation points is

proven to be more efficient and stable from a computational point of view than the equally-
spaced set and the monomial basis. From Theorem 4.3.8 and 4.3.7 we see that for functions
analytic in an elliptic disk which contains [−1, 1] the sequence of interpolation polynomials
converges uniformly and the coefficients decrease rapidly and that they converge individ-
ually with n. Moreover, it can be proven that Chebyshev basis is well-conditioned, see [67]
for more details.

– As discussed above, this approximation is near-minimax as well as that obtained by trun-
cating the Chebyshev series expansion - but in this case it is obtained by a much simpler
procedure.

– For bounding the approximation error we benefit both from the closed-error formula given
in Lemma 4.3.4 and also from the possibility of computing exactly the range of this error for
certain functions using Lemma 4.3.1.

Potential disadvantages are:
– When using an interpolation polynomial of degree n one has to evaluate the function f at
n + 1 points. The cost of such evaluation is not anodyne in all cases, for multiple precision
evaluation of basic functions see [63].

– It would be interesting to be able to use also Theorem 4.3.8 for bounding the approximation
error. Unfortunately, similarly to what we discussed in Section 1.4.1 regarding Cauchy’s
estimate, for the moment we do not dispose of an automatic algorithm for choosing the
optimal radius ρ such that sufficiently tight bounds are computed in the end.

Operations with polynomials in Chebyshev basis We now turn to the examination of com-
mon operations like addition, multiplication, evaluation, etc. with finite Chebyshev series. Their
analogues in power series are well-established and much research was devoted to having good
operation complexity bounds for such algorithms.

On the one hand, one may think of converting from Chebyshev to monomial basis, performing
the operations in this basis and then convert back to the initial Chebyshev basis. Let us first
analyze this case in terms of arithmetic complexity. For this, let p, q ∈ K[x] be polynomials of

122

4.3 Chebyshev Interpolants 123

degree n with coefficients in some field K[x], written in Chebyshev basis: p(x) =
n∑
i=0

piTi(x) and

q(x) =
n∑
i=0

qiTi(x). In terms of arithmetic complexity, for both back and forth conversions, the

best algorithms given in [20, 21] are in O(M(n)) arithmetic operations in K, where M is the usual
multiplication time function, such that polynomials of degree less than n in K[x] can be multiplied
in M(n) operations in K, when written in the monomial basis. Using Fast Fourier Transform
algorithms, M(n) is usually done in O(n log(n)) over fields with suitable roots of unity, and in
O(n log(n) log log(n)) over any field [166, Chap. 8].

On the other hand, from a numerical point of view, monomial basis is not stable and during the
transformation, the coefficients in this basis may be considerably larger than those in Chebyshev
basis simply because the power series convergence domain will not be sufficient to cover [−1, 1]
as discussed above. So, we are interested in finding algorithms for operations with truncated
Chebyshev series that do not make use of conversion to monomial basis. We describe the classical
ones in what follows.

Addition. Adding p and q in Chebyshev basis is straightforward and takes O(n) operations:

p(x) + q(x) =

n∑
i=0

(pi + qi)Ti(x). (4.36)

Multiplication. The product can be expressed in Chebyshev basis as follows:

p(x) · q(x) =
2n∑
k=0

ckTk(x),where ck =
1

2

 ∑
|i−j|=k

pi · qj +
∑
i+j=k

pi · qj

 . (4.37)

This identity can be obtained noting that Ti(x) · Tj(x) = (Ti+j + T|i−j|)/2 [102]. The cost using
this simple identity is O(n2) operations. We note that in [70] an algorithm of complexity 2M(n)
is given, but in this case also, there seem to be some numerical stability issues and no thorough
study was yet undertaken.

Composition The composition (p ◦ q)(x) = p(q(x)) can be expressed in Chebyshev basis using
a recursive algorithm for evaluation of polynomials in Chebyshev basis which we will discuss
below. One apparent difficulty seems to be that the range of q(x) is not necessarily in [−1, 1],
while so far this is the interval over which we presented all the results. The solution is simple,
using Remark 4.2.1, which says that with the simple change of variable which maps any interval
I = [a, b], a 6= b to [−1, 1]:

x 7→ 2x− b− a
b− a

,

we extend Chebyshev polynomials over I .
For the sake of clarity and implementation reasons we continue the presentation using the

basis of Chebyshev Polynomials over [a, b]:
(
T

[a,b]
i

)
i>0

, with T [a,b]
i (x) = Ti

(
2x− b− a
b− a

)
.

Remark 4.3.9. We note that the image of T [a,b]
i (x) = Ti

(
2x−b−a
b−a

)
over [a, b] is exactly Ti([−1, 1]), which

is [−1, 1] for i > 1 and 1 for i = 0.

Evaluation. To evaluate p at a given value x, we can use Clenshaw’s algorithm [102, Chap.
2.4.1.]. It is a recursive method to evaluate linear combinations of polynomials that verify a three-
term recurrence relation, in particular Chebyshev polynomials. It is similar to Horner’s scheme,
and it has linear complexity. It is described in Algorithm 4.3.1 whose correction proof is given
below.

123

124 Chapter 4. Chebyshev Models

Algorithm: EvaluateClenshaw(p0, . . . , pn, x, [a, b])1

Input: [a, b] an interval, a 6= b,
x a point in [a, b],

p0, . . . , pn coefficients of p(x) =
n∑
i=0

piT
[a,b]
i (x).

Output: value of p(x).
bn+1 ← 0 ;2

bn+2 ← 0 ;3

for k ← n downto 0 do4

bk ← pk +
2(2x− b− a)

b− a
bk+1 − bk+2 ;5

end6

return b0 −
(2x− b− a)

b− a
b1 ;7

Algorithm 4.3.1: Clenshaw’s algorithm for evaluating Chebyshev sums

Proof of Algorithm 4.3.1. Let us write the recurrence relations verified by
(
T

[a,b]
i

)
i>0

in matrix no-

tation. Let

A =



1
−2(2x− b− a)

b− a
1

1
−2(2x− b− a)

b− a
1

1
−2(2x− b− a)

b− a
1

.

1
−2(2x− b− a)

b− a
1


,

and

t =



T
[a,b]
0 (x)

T
[a,b]
1 (x)

T
[a,b]
2 (x)

T
[a,b]
3 (x)

...
T

[a,b]
n (x)


, r =



1
−(2x− b− a)

b− a
0

0
...
0


, p =



p0

p1

...
pn


, b =



b0

b1

...
bn


.

We have: At = r and p(x) = pT t and we notice that {bk, k = 0, . . . , n} computed by Algo-

rithm 4.3.1 verify: bTA = pT . Hence we have: p(x) = bTAt = bT r = b0 −
(2x− b− a)

b− a
b1.

Interval Range Bounding. One simple way of obtaining a rigorous range bound over [a, b] for
a polynomial expressed in Chebyshev basis

(
T

[a,b]
i

)
i>0

is to use Remark 4.3.9 which gives the

following identity which takes O(n) operations:

∀x ∈ [a, b], p(x) ∈ p0 +
n∑
i=1

pi · [−1, 1]. (4.38)

124

4.4 Summary of formulas 125

Integration and differentiation.
The indefinite integral of Tn(x) can be expressed as follows:

∫
Tn(x)dx =


1

2

(
Tn+1(x)

n+ 1
−
T|n−1|(x)

n− 1

)
, n 6= 1;

1

4
T2(x), n = 1.

(4.39)

So, the indefinite integral of p is In+1(x) =

∫
p(x)dx =

n+1∑
i=0

AiTi(x), with A0 determined from the

constant of integration, and

Ai =
pi−1 − pi+1

2i
, i ∈ {1, . . . , n+ 1}, pn+1 = pn+2 = 0. (4.40)

This means that the coefficients of the integral of p can be determined in O(n) arithmetic oper-
ations.

Also, we can compute the derivative of In+1 in O(n) arithmetic operations using Equa-
tion (4.40), in the form: pi−1 = 2iAi + pi+1.

In the next sections we work in more generality with other intervals besides [−1, 1], so we
deem it useful to give in the following a small summary of the simple extension of the above
results over [a, b].

4.4 Summary of formulas

With the simple change of variable which maps any interval I = [a, b], a 6= b to [−1, 1]:

x 7→ 2x− b− a
b− a

,

we extend Chebyshev polynomials over I , using Remark 4.2.1. Several results given above gener-
alize easily over I and we give them in what follows:

1. Chebyshev Nodes:
– of first kind:

µ
[a,b]
i =

a+ b

2
+
b− a

2
cos

(
(i+ 1/2)π

n+ 1

)
, i = 0, . . . , n. (4.41)

– of second kind:

ν
[a,b]
i =

a+ b

2
+
b− a

2
cos

(
i π

n

)
, i = 0, . . . , n. (4.42)

2. Computation of coefficients of Chebyshev interpolants at Chebyshev nodes defined above
over [a, b].
– The analogous of Proposition 4.3.5 for Chebyshev nodes of first kind:

Proposition 4.4.1. Chebyshev interpolation formulas

Let p1,n(x) =

n∑′

i=0

c1,iT
[a,b]
i (x) be the degree n polynomial interpolating f on I in the set

{µ[a,b]
k , k = 0, . . . , n}. The coefficients c1,i are given by the explicit formula:

c1,i =
2

n+ 1

n∑
k=0

f(µ
[a,b]
k)T

[a,b]
i (µ

[a,b]
k) (4.43)

=
2

n+ 1

n∑
k=0

f(µ
[a,b]
k)Ti(µk). (4.44)

125

126 Chapter 4. Chebyshev Models

– The analogous of Proposition 4.3.5 for Chebyshev nodes of second kind:
Proposition 4.4.2. Chebyshev interpolation formulas

Let p2,n(x) =

n∑′′

i=0

c2,iTi(x) be the degree n polynomial interpolating f in the set {ν[a,b]
k , k =

0, . . . , n}. The coefficients c2,i are given by the explicit formula:

c2,i =
2

n

n∑
k=0

f(ν
[a,b]
k)T

[a,b]
i (ν

[a,b]
k); (4.45)

=
2

n

n∑
k=0

f(µ
[a,b]
k)Ti(µk). (4.46)

3. The norm over [a, b]:
∥∥∥∥ n∏
i=0

(x− µ[a,b]
i)

∥∥∥∥
∞

=
(b− a)n+1

22n+1
.

4. Interpolation error
– for Chebyshev nodes of first kind over [a, b]:

‖f − p1,n‖∞ =
(b− a)n+1

∣∣f (n+1)(ξ)
∣∣

22n+1 (n+ 1)!
, ξ ∈ (a, b); (4.47)

– for Chebyshev nodes of second kind:

‖f − p2,n‖∞ =
(b− a)n+1

∣∣f (n+1)(ξ)
∣∣

22n (n+ 1)!
, ξ ∈ (a, b). (4.48)

5. Over [a, b], Theorem 4.2.28 which bounds the error for truncated Chebyshev series is simi-
larly stated:

Theorem 4.4.3. Let n ∈ N fixed and a function f ∈ Cn+1[a, b]. Let fn the degree n truncated
Chebyshev series of f on [a, b]. Then there exists ξ ∈ (a, b) such that:

‖f − fn‖∞ =
(b− a)n+1

∣∣f (n+1)(ξ)
∣∣

22n+1 (n+ 1)!
. (4.49)

4.5 Chebyshev Models

Section 4.2 shows that it is of interest to use approximate Chebyshev series, which are of similar
quality to the minimax polynomials, but can be obtained much easier. Moreover, closed formulas,
hence explicit bounds, for the approximation error exist, cf. (4.47), (4.48) and (4.49). These equa-
tions induce that for an approximation polynomial of degree n, roughly speaking, compared to a
Taylor error bound, the approximation error will be scaled down by a factor of 21−n.

We showed in Section 1.4.3 that, in practice, it is significantly more suitable to use a two-step
procedure for handling composite functions: first step consists in computing models (P,∆) for all
basic functions; second, apply algebraic rules specifically designed for handling operations with
these mixed models instead of operations with the corresponding functions.

Roughly speaking, we consider a Chebyshev Model (CM) for a function f as a couple (P, ∆)
where P is a polynomial represented in Chebyshev basis whose coefficients are tight intervals
"close" to the coefficients of the Chebyshev series of f , and ∆ is an interval bounding the absolute
error between P and f . This name implicitly suggests that the method used is based in this case
on Chebyshev Series approximations – either truncated Chebyshev series (TCS) or Chebyshev
interpolants (CI) which we remark in the following:

126

4.5 Chebyshev Models 127

Remark 4.5.1. Each time we refer in this work to Chebyshev models, it is implicit that we discuss about an
RPA based on:

– using either truncated Chebyshev series or Chebyshev interpolants for basic functions;
– recursively applying algebraic rules with CMs on the structure of composite functions.

In what follows, we consider an interval I = [a, b], a 6= b whose endpoints a and b are ex-
actly representable in the number format used by IA. For example, a and b are two floating-point
numbers.

Definition 4.5.2 (Chebyshev Model). Let f : I → R be a function. Let M = (a0, . . . ,an,∆) be a RPA
structure. We say that M is a Chebyshev Model of f over I when

∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I,∃δ ∈∆, f(x)−
n∑
i=0

αiT
[a,b]
i (x) = δ.

Remark 4.5.3. While the only "obvious" difference to other presented RPAs is the representation basis, it
is important to have in mind Remark 4.5.1, which states that it is the way we construct this RPA that is
different: we are using Chebyshev series which are naturally expressed in Chebyshev basis.

We compute in this case also a polynomial with tight interval coefficients, but which is repre-
sented in Chebyshev basis

(
T

[a,b]
i

)
n>0

. When using this approach, one needs:

– to compute bounds for such a polynomial over the whole interval [a, b];
– to compute bounds for such a polynomial over tighter intervals, which can be also point

intervals;
– to efficiently compute from it a polynomial with floating-point coefficients and a new rigor-

ous error bound.
This is explained in what follows. We also need an algorithm eval(f,x) which, for a function f

and an interval x, returns a valid bound for f over x as explained in Remark 1.3.20. For simplicity,
if f is a constant function, then x can be omitted.

Bounding polynomials with interval coefficients in Chebyshev Basis

Since we are using Chebyshev basis, we need to evaluate or bound a polynomial with tight
interval coefficients, written in this basis. We give a formal definition for a valid polynomial bound
and discuss methods for obtaining such valid bounds.

Definition 4.5.4 (Valid polynomial bound). Let [a, b] an interval, a 6= b and a, b exactly representable in

the numerical format chosen. Let p(x) =
n∑
i=0

piT
[a,b]
i (x), x ∈ [a, b] such that pi ∈ ai, for i = 0, . . . , n, i.e.

ai are intervals around polynomial coefficients. Let x ⊆ [a, b] be an interval over which p is to be bounded.
An intervalB is called a valid polynomial bound when

∀ξ ∈ x,∀α0 ∈ a0, . . . , αn ∈ an,
n∑
i=0

αi T
[a,b]
i (ξ) ∈ B.

Several methods exist and a trade-off between their speed and the tightness of the bound is
usually considered. For TMs, where monomial basis is used, the fastest but "rough" method was
a Horner-like interval evaluation (see Algorithm 2.1.1 and Remark 2.1.7). In this case we focus
again on computation speed, and so, when considering interval range bounding for polynomials
in Chebyshev basis we used the straightforward adaptation to interval arithmetic of two simple
methods described in Section 4.3.1 which are linear in the number of operations used. The first
one, Algorithm 4.5.1, uses natural interval extension of the polynomial expression written using
Clenshaw’s scheme (which is the Chebyshev analogue of Horner’s scheme for monomials).

127

128 Chapter 4. Chebyshev Models

Algorithm: EvaluateClenshawIA(a0, . . . ,an,x, [a, b])1

Input: [a, b] an interval, a 6= b,
x ⊆ [a, b],

a0, . . . ,an interval coefficients of P (x) =
n∑
i=0
aiT

[a,b]
i (x).

Output: interval bound of P (x).
bn+1 ← [0, 0] ;2

bn+2 ← [0, 0] ;3

for k ← n downto 0 do4

bk ← ak + eval

(
2(2x− b− a)

b− a
,x

)
bk+1 − bk+2 ;

5

end6

return b0 − eval

(
2(2x− b− a)

b− a
,x

)
b1 ;

7

Algorithm 4.5.1: Interval Arithmetic version of Clenshaw’s algorithm for evaluating Cheby-
shev sums

Proof of Algorithm 4.5.1. Based on the fact that Algorithm 4.3.1 is correct and that we simply use
the extension to interval arithmetic of all computations.

Algorithm 4.5.1 computes a valid bound over any interval x ⊆ [a, b]. We give another al-
gorithm that computes directly a valid bound over the whole interval [a, b]. It is based on Re-
mark 4.3.9 and Equation (4.38).

Algorithm: EvaluateChebyshevRangeIA(a0, . . . ,an,x, [a, b])1

Input: [a, b] an interval, a 6= b,
x ⊆ [a, b],

a0, . . . ,an interval coefficients of P (x) =
n∑
i=0
aiT

[a,b]
i (x).

Output: interval bound of P (x).
B ← a0 ;2

for k ← 1 to n do3

B ← B + ak · [−1, 1] ;4

end5

returnB ;6

Algorithm 4.5.2: Interval Arithmetic Range Evaluation of Chebyshev sums

Proof of Algorithm 4.5.2. From Remark 4.3.9 and Equation (4.38) we have for all i > 1, x ∈ [a, b],
T

[a,b]
i (x) ∈ [−1, 1], hence if we want to bound T [a,b]

i (x) over an interval x ⊆ [a, b] we can bound it by

[−1, 1]. This implies that using interval arithmetic P (x) =
n∑
i=0
aiT

[a,b]
i (x) ⊆ a0 +

n∑
i=1
ai · [−1, 1].

Both algorithms have linear complexity. Of course, similarly to TMs, for a penalty in speed,
more refined algorithms can also be plugged-in. However the simple techniques we used, proved
effective in most of the examples we treated so far.

128

4.5 Chebyshev Models 129

Finally, we can compute from a CM consisting of a polynomial with tight interval coefficients
and an approximation error bound as defined in 4.5.2, a polynomial with floating-point coefficients
and a new rigorous error bound, by taking a FP number contained in each interval coefficient
(for example the middle of the interval, if it is a FP number, of course) as the new coefficient and
accumulating the small errors in the coefficients in the final error bound.

Algorithm: ComputeFP-RPAfromCM((a0, . . . ,an,∆), [a, b])1

Input: [a, b] an interval, a 6= b,
(a0, . . . ,an,∆) a CM of degree n over [a, b] for some function.
Output: an RPA whose polynomial has FP coefficients
for k ← 0 to n do2

ti = mid (ai);3

if ti is not a FP number then4

ti = inf(ai);5

end6

bi = ai − ti;7

end8

θ ← EvaluateChebyshevRangeIA(b0, . . . , bn, [a, b], [a, b]);9

∆←∆ + θ;10

return (t0, . . . , tn,∆) ;11

Algorithm 4.5.3: Computation of a polynomial with FP coefficients and a rigorous error
bound from a CM.

Proof of Algorithm 4.5.3. Let us set ti ∈ ai, one common choice is ti = mid (ai), if this is not a
floating-point number, then inf(ai) can be taken, for example. Let P̃ (x) be a polynomial of degree
n,

P̃ (x) =
n∑
i=0

tiT
[a,b]
i (x).

We have from Definition 4.5.2:

∃α0 ∈ a0, . . . , αn ∈ an, ∀x ∈ [a, b], ∃δ ∈ ∆, f(x) − P̃ (x) =

n∑
i=0

αiT
[a,b]
i (x) − P̃ (x) + δ.

The difference between
n∑
i=0

αiT
[a,b]
i (x) and P̃ (x) can easily be bounded using Equation (4.38) and

interval arithmetic. We have αi ∈ ai, and thus αi − ti ∈ [inf(ai)− ti, sup(ai)− ti], which leads to

∀x ∈ [a, b], α0 ∈ a0, . . . , αn ∈ an,
n∑
i=0

(αi − ti)T [a,b]
i (x) ∈ [inf(a0)− t0, sup(a0)− t0] +

n∑
i=1

[inf(ai)− ti, sup(ai)− ti] · [−1, 1] = θ.

Finally, the error between f and P̃ is bounded by θ + ∆.

4.5.1 Chebyshev Models for basic functions

We now give algorithms for computing Chebyshev Models for basic functions. We write a
special procedure for each basic function f like identity, sin, cos, exp, etc. We tune case by case the

129

130 Chapter 4. Chebyshev Models

best choice among using Chebyshev interpolators (CI) or truncated Chebyshev series (TCS). We
give below the example of constant function, identity function and then we describe the process
to follow for other functions. We exemplify on sin for using CI.

Algorithm: CMConst(c, n)1

Input: a (usually small) interval c, n ∈ N?
Output: a Chebyshev Model for x 7→ γ for any γ ∈ c
a0 ← c ;2

a1 . . .an ← [0, 0] ;3

∆← [0, 0] ;4

M ← (a0, . . . ,an,∆);5

return M ;6

Algorithm 4.5.4: Computation of a Chebyshev Model of a constant function

Constant function

Proof of Algorithm 4.5.4. Similar to that of Algorithm 2.2.1.

Algorithm: CMVar(I, n)1

Input: n ∈ N?
Output: a Chebyshev Model M of the identity function x 7→ x
a0 ← [0, 0] ;2

a1 ← [1, 1] ;3

a2 . . .an ← [0, 0] ;4

∆← [0, 0] ;5

M ← (a0, . . . ,an,∆);6

return M ;7

Algorithm 4.5.5: Computation of a Chebyshev Model of the identity function

Identity function

Proof of Algorithm 4.5.5. It suffices to notice that T1(x) = x and to choose α1 = 1.

Computing the coefficients and the error bound for basic functions. We have two ways of
computing Chebyshev models for basic functions:

– We use truncated Chebyshev series for functions whose Chebyshev coefficients have a sim-
ple explicit form (e.g. arccos, see Example 4.2.13) when this can be obtained as explained in
Section 4.2.2.

– We use Chebyshev interpolants described in Section 4.3. The summary of formulas used is
given in Section 4.4. Both kinds of Chebyshev nodes can be used. For simplicity we chose
to give the algorithms using Chebyshev nodes of first kind. We also use like in the case of
Taylor Models an adaptation of Lemma 5.12 of [176]. Lemma 4.3.1 gives us a way to obtain
an exact error bound for Chebyshev interpolants in some cases:

130

4.5 Chebyshev Models 131

Proposition 4.5.5 (Adaptation of Lemma 5.12 of [176]). Let f ∈ Cn+2[a, b] the function to be
approximated over an interval I = [a, b]; let n ≥ 1 be an integer, p1,n be the interpolant of f at

Chebyshev nodes of first kind and In(x) =
f(x)− p1,n(x)

T
[a,b]
n+1(x)

.

If the sign of f (n+2) is constant over I , then In(x) is monotonic over [a, b] and letting B =
max{|f(a)− p1,n(a)|, |f(b)− p1,n(b)|}, we have : f(x)− p1,n(x) ∈ [−B,B].

Proof. If f (n+2) has constant sign over I , then f (n+1) is monotonic over I , so Lemma 4.3.1
implies that In(x) is monotonic over [a, b]. It follows that we can bound it by the tightest
interval that contains In(a) and In(b). Furthermore, observing that T [a,b]

n+1(a) = Tn+1(−1) =

(−1)n+1, T [a,b]
n+1(b) = Tn+1(1) = 1 and T

[a,b]
n+1([a, b]) = [−1, 1] and letting B = max{|f(a) −

p1,n(a)|, |f(b)− p1,n(b)|}, we have : f(x)− p1,n(x) ∈ [−B,B].

Remark 4.5.6. Automatically checking whether f (n+2) has constant sign over [a, b] is simple to
achieve for basic functions using interval arithmetic evaluation: if the resulting interval contains
numbers of different signs, we cannot apply Prop. 4.5.5 and fall back to the classical bound given by
Equation (4.47). Otherwise, we can obtain the "tightest" error bound for the error f(x) − p1,n(x)
using four simple evaluations f(a), f(b), p1,n(a), p1,n(b).
This remark makes it possible to obtain smaller error bounds and strengthens the effective-
ness of the “basic bricks” approach. Examples will be given in Section 4.6.

Let us now describe and prove the algorithm used for computing a Chebyshev Model for sin.

The sin function

Proof of CMSin. In lines 4− 11 of the algorithm, enclosures of the coefficients ck given by interpo-
lation formula (4.43) are computed, so for all k = 0, . . . , n, we have ck ∈ ck. In lines 12 − 17 an
interval enclosure of the n+ 2 derivative of sine is computed. Based on its sign, Proposition 4.5.5
applies or not. If it does not apply, we compute an enclosure of the error given in formula (4.47)
in a similar manner to what we have seen in the Taylor Models algorithms.

If, on the contrary, the hypothesis of Remark 4.5.6 holds, we compute an enclosure of the error
based on Proposition 4.5.5 in lines 18− 24. Obviously, we supposed that EvaluateClenshawIA
computes a valid polynomial bound.

Remark 4.5.7. The complexity of the algorithm isO(n2) operations. It is known [131] that the usage of Fast
Fourier Transform, can speed-up this computation of the coefficients to O(n log n) operations. However,
note that in this case, an interval arithmetic adaptation of FFT should be considered. It is a future work to
use [163] for that. The correction of the present algorithm should not be affected as long as enclosures of the
real coefficients of the interpolant are computed.

Reciprocal function x 7→ 1/x. Similarly to Taylor Models, here, divisions are performed also by
computing a reciprocal followed by a multiplication. The reciprocal x 7→ 1/x is handled like any
other unary basic function.

4.5.2 Operations with Chebyshev models

For an informal simplified description of these operations, we consider two couples (polyno-
mial, error bound) for two functions f1 and f2, over the interval [a, b], of degree n: (P1,∆1) and
(P2,∆2). Similarly to TM arithmetic, we discuss first informally the operations defined on these
couples. Then we give and prove the algorithms in detail.

131

132 Chapter 4. Chebyshev Models

Algorithm: CMSin(I, n)1

Input: I = [a, b] an interval, a 6= b, n ∈ N?

Output: a Chebyshev Model M of the sin function in the basis
(
T

[a,b]
i

)
i>0

a← [inf(I)];2

b← [sup(I)];3

a← [a, a];4

b← [b, b];5

for i← 0 to n do6

µi ← eval
(

cos
(

(i+1/2)x
n+1

)
, eval(π)

)
;7

µ
[a,b]
i ← a+ b

2
+
b− a

2
µi, [−1, 1];8

fi ← eval
(

sin,µ
[a,b]
i

)
;9

end10

for k ← 0 to n do11

ck ← EvaluateClenshawIA(f0, . . . ,fn,µk);12

end13

switch (n+ 2) mod 4 do14

case 0: Γ← eval (sin(x)/i!, I);15

case 1: Γ← eval (cos(x)/i!, I);16

case 2: Γ← eval (− sin(x)/i!, I);17

case 3: Γ← eval (− cos(x)/i!, I);18

endsw19

if (sup(Γ) ≤ 0) or (inf(Γ) ≥ 0) then20

∆a ← eval (sin(x),a)− EvaluateClenshawIA(c0, . . . , cn,a, [a, b]);21

∆b ← eval (sin(x), b)− EvaluateClenshawIA(c0, . . . , cn, b, [a, b]);22

B ← max(|sup(∆a)| , |inf(∆a)| , |sup(∆b)| , |inf(∆b)|);23

∆← [−B,B];24

else25

switch (n+ 1) mod 4 do26

case 0: Γ← eval (sin(x)/i!, I);27

case 1: Γ← eval (cos(x)/i!, I);28

case 2: Γ← eval (− sin(x)/i!, I);29

case 3: Γ← eval (− cos(x)/i!, I);30

endsw31

∆← [− |sup(Γ)| , |sup(Γ)|];32

V ← eval
(
(x− y)n+1/22n+1, (b,a)

)
;33

∆← V ·∆;34

end35

M ← (c0, . . . , cn,∆);36

return M ;37

Algorithm 4.5.6: Computation of a Chebyshev Model of the sine function

132

4.5 Chebyshev Models 133

4.5.3 Addition

Addition of two such models is done straightforwardly by adding the two polynomials and
the remainder bounds as:

(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 + ∆2).

It is obvious that since f1(x) ∈ P1 + ∆1 and f2(x) ∈ P2 + ∆2, f1(x) + f2(x) ∈ P1 +P2 + ∆1 + ∆2.
The algorithm and its proof are given below.

Algorithm: CMAdd(Mf ,Mg, n)1

Input: Mf ,Mg two Chebyshev Models corresponding to two functions f and g (over the
same interval I = [a, b]),

n ∈ N? the common degree of polynomials involved in Mf and Mg

Output: a Chebyshev Model M corresponding to f + g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for i← 0 to n do4

ci ← ai + bi;5

end6

∆←∆f + ∆g;7

M ← (c0, . . . , cn,∆);8

return M ;9

Algorithm 4.5.7: Addition of Chebyshev Models

Proof of CMAdd. Since Mf is a Chebyshev model of f , we have that

∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I, ∃δf ∈∆f , f(x)−
n∑
i=0

αiT
[a,b]
i (x) = δf .

We consider such values αi. The same holds for Mg and g with some βi ∈ bi. We shall show

∃γ0 ∈ c0, . . . , γn ∈ cn,∀x ∈ I, ∃δ ∈∆, (f(x) + g(x))−
n∑
i=0

γiT
[a,b]
i (x) = δ.

We choose γi = αi + βi ∈ ci and δ = δf + δg ∈∆. Assume that x ∈ I . We have

f(x) + g(x)−
n∑
i=0

γiT
[a,b]
i (x) =

(
f(x)−

n∑
i=0

αiT
[a,b]
i (x)

)
+

(
g(x)−

n∑
i=0

βiT
[a,b]
i (x)

)
= δf + δg = δ.

Remark 4.5.8. The algorithm has a linear complexity.

133

134 Chapter 4. Chebyshev Models

4.5.4 Multiplication

Consider f1(x) ∈ P1 + ∆1 and f2(x) ∈ P2 + ∆2. We have

f1(x) · f2(x) ∈ P1 · P2 + P2 ·∆1 + P1 ·∆2 + ∆1 ·∆2.

We observe that P1 · P2 is a polynomial of degree 2n. Depending on the basis used, we split it
into two parts: the polynomial consisting of the terms that “do not exceed n”, (P1 · P2)0...n and
respectively the upper part (P1 · P2)n+1...2n, for the terms of the product P1 · P2 whose “order
exceeds n”.

Now, a CM for f1 · f2 can be obtained by finding an interval bound for all the terms except
P = (P1 · P2)0...n. Hence we have,

∆ = B((P1 · P2)n+1...2n) +B(P2) ·∆1 +B(P1) ·∆2 + ∆1 ·∆2.

The interval bound for the polynomials involved can be computed as discussed in 4.5.

Algorithm: CMMul(Mf ,Mg, I,x0, n)1

Input: Mf ,Mg two Chebyshev Models corresponding to two functions f and g (over the
same interval I = [a, b],

n ∈ N? the common degree of polynomials involved in Mf and Mg

Output: a Chebyshev Model M corresponding to f · g
(a0, . . . ,an,∆f)←Mf ;2

(b0, . . . , bn,∆g)←Mg;3

for k ← 0 to 2n do4

ck ← [0; 0];5

end6

for i← 0 to n do7

for j ← 0 to n do8

ci+j ← (ci+j + ai · bj)/2;9

c|i−j| ← (c|i−j| + ai · bj)/2;10

end11

end12

for k ← 0 to n do13

dk ← [0; 0];14

end15

for k ← n+ 1 to 2n do16

dk ← ck;17

end18

B ← EvaluateChebyshevRangeIA(d0, . . . ,d2n, [a, b], [a, b]);19

Bf ← EvaluateChebyshevRangeIA(a0, . . . ,an, [a, b], [a, b]);20

Bg ← EvaluateChebyshevRangeIA(b0, . . . , bn, [a, b], [a, b]);21

∆← B + (∆f ·Bg) + (∆g ·Bf) + (∆f ·∆g);22

M ← (c0, . . . , cn,∆);23

return M ;24

Algorithm 4.5.8: Multiplication of Chebyshev Models

Proof of CMMul. We assume that Mf and Mg are Chebyshev Models of two functions f and g, over
the same interval I . We shall prove that CMMul returns a Chebyshev Model of fg over I .

134

4.5 Chebyshev Models 135

By definition, since Mf is a Chebyshev model of f , we have αi ∈ ai (i = 0, . . . , n) such that

∀x ∈ I,∃δf ∈∆f , f(x)−
n∑
i=0

αiT
[a,b]
i (x) = δf .

The same holds for Mg and g with βi ∈ bi. We have(
n∑
i=0

αiT
[a,b]
i (x)

)
·

(
n∑
i=0

βiT
[a,b]
i (x)

)
=

n∑
i=0

n∑
j=0

αi βj
2

(
T

[a,b]
i+j + T

[a,b]
|i−j|

)
=

2n∑
k=0

γk T
[a,b]
k (x).

Hence we have γk ∈ ck for all k. Assume now that x ∈ I . We have values δf and δg such that

f(x) g(x) =

(
n∑
i=0

αiT
[a,b]
i (x) + δf

)
·

(
n∑
i=0

βiT
[a,b]
i (x) + δg

)

=
n∑
i=0

γiT
[a,b]
i (x) +

n∑
i=0

0T
[a,b]
i +

2n∑
i=n+1

γiT
[a,b]
i (x)︸ ︷︷ ︸

∈B

+ δf

(
n∑
i=0

βiT
[a,b]
i (x)

)
︸ ︷︷ ︸

∈Bg

+δg

(
n∑
i=0

αiT
[a,b]
i (x)

)
︸ ︷︷ ︸

∈Bf

+δf δg.

The inclusions in B, Bf and Bg are given by the correctness of EvaluateChebyshevRangeIA.
The conclusion follows.

In this current setting the number of operations necessary to multiply two such models is
O(n2).

4.5.5 Composition

Let f1 and f2 be two basic functions. When the model for f1 ◦ f2 is needed, we can consider
(f1 ◦ f2)(x) as function f1 evaluated at point y = f2(x). Hence, we have to take into account the
additional constraint that the image of f2 has to be included in the definition range of f1. This can
be checked by a simple interval bound computation of B(P2) + ∆2. Then we have:

(f1 ◦ f2)(x) ∈ P1(f2(x)) + ∆1 ∈ P1(P2(x) + ∆2) + ∆1 (4.50)

In this formula, the only polynomial coefficients and remainders involved are those of the CMs of
f1 and f2 which are basic functions. As we have seen above, fairly simple formulæ exist for com-
puting the coefficients and remainders of such functions. However, when using formula (4.50),
it is not obvious how to extract a polynomial and a final remainder bound from it. In fact, we
have to reduce this extraction process to performing just multiplications and additions of CMs. A
similar idea is used for composing TMs.

In our case, the difference is that P1 and P2 are polynomials represented in Chebyshev basis,
and not in the monomial basis. In consequence, for computing the composition, we had to use
a different algorithm. It is worth mentioning that a simple change of basis back and forth to
monomial basis will not be successful. The problem is that the multiplications and additions used
in such a composition process do not have to add too much overestimation to the final remainder.
As we discussed in Section 4.2.3, for Taylor expansions of most of the functions we address, the

135

136 Chapter 4. Chebyshev Models

size of the coefficients for the representation in the monomial basis is bounded by a decreasing
sequence (see Theorem 4.2.16). Hence the contributions of the remainders in such a recursive
algorithm are smaller and smaller. On the contrary, for interpolation polynomials, the coefficients
represented in monomial basis oscillate too much and have poor numerical properties. Hence, a
direct application of the principle of composing TMs will not be successful.

When using Chebyshev basis, we perform the composition using an adaptation of Clenshaw
Algorithm 4.3.1. This algorithm is used for efficient evaluation of a Chebyshev sum

∑
piT

[a,b]
i (x).

In our case, the variable x where the sum is to be evaluated is a CM, the multiplications and addi-
tions are operations between CMs. Moreover, using this algorithm, we perform a linear number
of such operations between models.

Algorithm: PolynomialEvaluationOfCM(b0, . . . , bn, [c, d], Mf , [a, b], n)1

Input: n ∈ N?;
b0, . . . , bn tight intervals;
[c, d], [a, b] intervals, a 6= b, c 6= d;
Mf = (a0, . . . ,an,∆f) a Chebyshev Model of a function f over [a, b] such that
n∑
i=0

αi T
[a,b]
i (x) + δf ∈ [c, d], for any x ∈ [a, b] and (α0, . . . , αn, δf) such that αi ∈ ai for each i

and δf ∈∆f .

Output: a Chebyshev Model of x 7→
n∑
i=0

βi T
[c,d]
i (f(x)) over [a, b], for any (β0, . . . , βn) such

that βi ∈ bi for each i.
Mn+1 ← ([0; 0], . . . , [0; 0], [0; 0]) ;2

Mn+2 ← ([0; 0], . . . , [0; 0], [0; 0]) ;3

c1 ← eval

(
−2(c+ d)

d− c

)
;

4

c2 ← eval

(
4

d− c

)
;

5

N ← CMAdd(CMMul(Mf ,CMConst(c2, n), [a, b], n), CMConst(c1, n), n) ;6

for i← n downto 0 do7

Mi ← CMMul(N, Mi+1, [a, b], n);8

Mi ← CMAdd(Mi, CMMul(Mi+2,CMConst([−1,−1], n), [a, b], n), n) ;9

Mi ← CMAdd(Mi, CMConst(bi, n), n) ;10

end11

M ← CMMul(N, M1, [a, b], n);12

M ← CMAdd(M0, CMMul(M,CMConst([−1,−1], n), [a, b], n), n) ;13

return M ;14

Algorithm 4.5.9: Composition of a polynomial with a Chebyshev Model

Proof of PolynomialEvaluationOfCM. The proof is the same as the proof of correctness of the
algorithm EvaluateClenshawIA and based on the correctness of CMConst, CMAdd and CMMul.

Proof of CMComp. Since Mf is a Chebyshev model of f , we have values α0 ∈ a0, . . . , αn ∈ an such
that

∀x ∈ [a, b],∃δf ∈∆f , f(x)−
n∑
i=0

αiT
[a,b]
i (x) = δf . (4.51)

136

4.5 Chebyshev Models 137

Algorithm: CMComp(Mf , [a, b], g, n)1

Input: Mf a Chebyshev Model corresponding to a function f over [a, b], a 6= b;
g : R→ R a basic function;
n ∈ N?.
Output: a Chebyshev Model M corresponding to g ◦ f over [a, b]
(a0, . . . ,an,∆f)←Mf ;2

Bf ← EvaluateChebyshevRangeIA(a0, . . . ,an, [a, b], [a, b]);3

[c, d]← Bf + ∆f ;4

switch g do5

case sin: Mg ← CMSin([c, d], n);6

case x 7→ 1/x: Mg ← CMInv([c, d], n);7
...8

endsw9

(b0, . . . , bn,∆g)←Mg;10

(c0, . . . , cn,∆)← PolynomialEvaluationOfCM(b0, . . . , bn, [c, d], Mf , [a, b], n);11

M ← (c0, . . . , cn,∆ + ∆g);12

return M ;13

Algorithm 4.5.10: Composition of a Chebyshev Model with a Function

Moreover, since Mf is defined over [a, b] it is correct to call EvaluateChebyshevRangeIA over
[a, b] and hence, [c, d] represents a valid bound for

f(x) =

n∑
i=0

αiT
[a,b]
i (x) + δf ∈ [c, d]. (4.52)

Furthermore, by correction of CMSin, CMInv, etc. Mg is a Chebyshev Model of g over [c, d].
So, we have values β0 ∈ b0, . . . , βn ∈ bn such that

∀y ∈ [c, d],∃δg ∈∆g, g(y)−
n∑
i=0

βiT
[c,d]
i (y) = δg. (4.53)

Based on Equations (4.52) and (4.53) we have

∀x ∈ [a, b], ∃δg ∈∆g, (g ◦ f)(x) =

n∑
i=0

βiT
[c,d]
i (f(x)) + δg. (4.54)

The call to PolynomialEvaluationOfCM is correct as per Equations (4.52) and based on its

correction, we have that (c0, . . . , cn, ∆) is a Chebyshev Model of x 7→
n∑
i=0

βi T
[c,d]
i (f(x)) over [a, b].

Hence we have values γi ∈ ci (i ∈ J0, nK) such that

∀x ∈ [a, b],∃δ ∈∆,

(
n∑
i=0

βi T
[c,d]
i (f(x))

)
−

(
n∑
i=0

γi T
[a,b]
i (x)

)
= δ.

Combining this last result with Equation (4.54), we get

∀x ∈ [a, b], ∃δ ∈∆ + ∆g, (g ◦ f)(x)−

(
n∑
i=0

γi T
[a,b]
i (x)

)
= δ,

which is the property that we wanted to prove.

137

138 Chapter 4. Chebyshev Models

Division of Chebyshev Models Computing a Chebyshev Model for
f

g
reduces to computing f ·(

1

x
◦ g
)

. This implies multiplication and composition of Chebyshev Models as well as computing

a Chebyshev Model for the basic function x 7→ 1/x, which was already explained before in this
section. We give below the algorithm for completeness.

Algorithm: CMDiv(Mf ,Mg, [a, b], n)1

Input: n ∈ N?,
[a, b] an interval, a 6= b,
Mf ,Mg two Chebyshev Models of degree n corresponding to two functions f and g over
[a, b],
Output: a Chebyshev Model M corresponding to f/g
M ← CMMul(Mf ,CMComp(Mg, [a, b], x 7→ 1/x, n), [a, b], n);2

return M ;3

Algorithm 4.5.11: Division of Chebyshev Models

Finally, we can write the complete algorithm that computes a Chebyshev Model for any ex-
pression, by induction on this expression.

Computing Chebyshev Models for any function given by an expression

Proof of CM. We use structural induction on the expression tree for function h and we have proven
above the correction of the sub-algorithms used.

Remark 4.5.9. Growth of the coefficients and overestimation.
The overestimation does not grow too much during the recursion process. This is due to the nice con-

vergence properties already seen in Section 4.2.2 of the series expansions in Chebyshev polynomial basis.
As with TMs, when composing two such models, the intervals contributing to the final remainder become
smaller for higher coefficients, which yields a reduced overestimation in the final remainder.

Integral of a Chebyshev Model. Finally, we give a simple linear time algorithm for computing
a CM for the integral of a function.

Proof of CMIntegrate. We assume the Mf is Chebyshev Model of f over I . We shall prove that

CMIntegrate returns a Chebyshev Model of g(t, ξ0) =
t∫
ξ0

f(x)dx over I , for all ξ0 ∈ x0.

By definition, since Mf is a Chebyshev model of f , we have αi ∈ ai (i = 0, . . . , n) such that

∀x ∈ I, ∃δf ∈∆f , f(x)−
n∑
i=0

αiT
[a,b]
i (x) = δf .

Then,

∀ξ0 ∈ x0, x ∈ I,∃δf ∈∆f , g(t, ξ0) =

t∫
ξ0

n∑
i=0

αiT
[a,b]
i (x)dx+

t∫
ξ0

δfdx.

Let I(t) =
n+1∑
i=1

b− a
2
· αi−1 − αi+1

2
T

[a,b]
i (t), with αn+1 = αn+2 = 0. Now, using equation (4.40),

we have:

138

4.5 Chebyshev Models 139

Algorithm: CM([a, b], h, n)1

Input: [a, b] an interval, a 6= b,
h the expression of a function,
n ∈ N?
Output: a Chebyshev Model M corresponding to h
switch h do2

case h = x 7→ c: M ← CMConst(c, [a, b], n);3

case h = x 7→ x: M ← CMVar([a, b], n);4

case h = f + g:5

Mf ← CM(n, [a, b], f, n);6

Mg ← CM(n, [a, b], g, n);7

M ← CMAdd(Mf ,Mg, n);8

endsw9

case h = f · g:10

Mf ← CM(n, [a, b], f, n);11

Mg ← CM(n, [a, b], g, n);12

M ← CMMul(Mf ,Mg, [a, b], n);13

endsw14

case h = f/g: M ← CMDiv(n, [a, b], f, g, n);15

case h = g ◦ f :16

Mf ← CM(n, [a, b], f, n);17

M ← CMComp([a, b],Mf , g, n);18

endsw19

endsw20

return M ;21

Algorithm 4.5.12: Computation of Chebyshev Models

139

140 Chapter 4. Chebyshev Models

Algorithm: CMIntegrate(Mf , I,x0, n)1

Input: Mf a Chebyshev Model corresponding to a function f over the interval I = [a, b],
n ∈ N? the degree of polynomial involved in Mf

Output: a Chebyshev Model M corresponding to g(t, ξ0) =
t∫
ξ0

f(x)dx, for all ξ0 ∈ x0

(a0, . . . ,an,∆f)←Mf ;2

an+1 ← [0; 0];3

an+2 ← [0; 0];4

for k ← 0 to n+ 1 do5

ck ← [0; 0];6

end7

for i← 1 to n+ 1 do8

ci ←
b− a

2
· ai−1 − ai+1

2i
;9

end10

c0 ← [−1,−1] · EvaluateClenshawIA(c0, . . . , cn+1,x0, [a, b]);11

B ←∆ · ([a, b]− x0);12

B ← max(|sup(B)| , |inf(B)|;13

∆← [−B,B] + cn+1 · [−1, 1];14

M ← (c0, . . . , cn,∆);15

return M ;16

Algorithm 4.5.13: Integration of Chebyshev Models

t∫
ξ0

n∑
i=0

αiT
[a,b]
i (x)dx = I(t)− I(ξ0) =

n+1∑
k=0

γk T
[a,b]
k (t),

and ∣∣∣∣∣∣∣
t∫

ξ0

δfdx

∣∣∣∣∣∣∣ 6 |δf | |x− ξ0| 6 B.

Now based on the correction of EvaluateClenshawIA, we have−I(x0) ⊆ c0 and hence γk ∈ ck
for all k = 0 . . . n+ 1.

This means that we have γi ∈ ci (i = 0, . . . , n+ 1) such that

∀ξ0 ∈ x0, t ∈ I, ∃β ∈ [−B,B], g(t, ξ0) =

n∑
k=0

γk T
[a,b]
k (t) + γn+1 T

[a,b]
n+1(t) + β︸ ︷︷ ︸

∆

.

4.6 Experimental results and discussion

We implemented a prototype of both TMs and CMs methods in Maple, using the Int-
pakX ∗ package. They are available at http://www.ens-lyon.fr/LIP/Arenaire/Ware/

∗. http://www.math.uni-wuppertal.de/~xsc/software/intpakX/

140

http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/
http://www.math.uni-wuppertal.de/~xsc/software/intpakX/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/

4.6 Experimental results and discussion 141

ChebModels/. A tuned C implementation is available for TMs in Sollya and a C implementation
for CMs will soon be included also therein. The timings are given based on these C implementa-
tions. They were obtained on a system having a hardware configuration featuring an Intel Core2
Duo processor running at 2.4GHz, and 4GB of memory, and running Ubuntu 10.04 LTS.

Table 4.2 shows the quality of some absolute error bounds obtained with CMs vs. TMs. Each
row of the table represents one example. The function f , the interval I and the degree n of the
approximation polynomial are given in the first column. In the second column we give the val-
idated upper-bound obtained using a CM. The exact error between f and the polynomial from
CM is provided in the third column such that one can observe the overestimation of the validated
bound. We also give the remainder bounds and the exact error obtained when an interpolating
polynomial is directly used (directly means that the remainder is computed using (1.9) and au-
tomatic differentiation as explained in Section 1.4.3). Finally we present the remainder obtained
using a TM and the exact error. The Taylor polynomial was developed in the midpoint of I and the
necessary polynomials bounds were computed using a Horner scheme as explained in Chapter 2.

The examples presented are representative for several situations, and we will detail them in
what follows. The first five were analyzed in Section 1.4.3 for comparing the bounds obtained
with "interpolation + AD" vs. TMs. There, we observed that in some cases the overestimation in
the interpolation remainder is so big, that we can not benefit from using such a polynomial. We
used them in order to highlight that CMs do not have this drawback and the remainders obtained
with our methods have better quality than the TMs in all situations.

The first example presents a basic function which is analytic on the whole complex plane.
There is almost no overestimation in this case, whatever method we use. The second is also a
basic function. It has singularities in the complex plane (in π/2+Zπ), but the interval I is relatively
far from these singularities. All the methods present a relatively small overestimation. The third
example is the same function but over a larger interval. In these case, the singularities are closer
and Taylor polynomials are not very good approximations. The fourth and fifth examples are
composite functions on larger intervals. The overestimation in the interpolation method becomes
very large, rendering this method useless, while it stays reasonable with TMs and CMs.

The following examples (6− 8) are similar to some presented in [10]. There, the authors com-
puted the minimax polynomials for these functions. Evidently, the polynomials obtained with
CMs have a higher approximation error than the minimax, however, it is important to notice that
in these tricky cases the remainder bound obtained for the CMs stays fairly good and it is much
better than the one obtained from TMs.

Examples 8− 9 present the case when the definition domain of the function is close to a singu-
larity. As seen in these examples, when a direct interpolation process is used for a composite func-
tion, unfortunately, one can not apply Lemma 4.3.1 for bounding the remainder. Consequently, the
bound obtained for the remainder is highly overestimated. However, when using the approach
based on “basic bricks” both TMs and CMs benefit from it, yielding a much better remainder
bound.

Example 10 deals with a function which is associated to the classical Runge phenomenon.
Firstly, since the complex singularities of the function f defined by f(x) = 1/(1 + 4x2) are close to
the definition interval I , the Taylor polynomial is not a good approximation. Then, the interpola-
tion method gives unfeasible interval remainder bounds due to the overestimation of the n+ 1th
derivative of the function f . On the contrary, CM bound is feasible in this case.

Example 11 is presented to emphasize the fact that similarly to TMs, the CMs reduce the
dependency problem and can convey informations about the properties of functions. The CM
for f = sin2 + cos2 over [−1, 1], without performing any expression simplification, is in fact
(0.99999999997 + P̃ (x), [−3.91 · 10−9, 3.91 · 10−9]), where P̃ (x) is a polynomial with a tiny supre-
mum norm. Hence, the information that f is in fact 1, is conveyed when using such models, while

141

http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/

142 Chapter 4. Chebyshev Models

when using interval arithmetic directly, one would obtain an interval range of [0.29, 1.71].
For the same examples, timings are given in Table 4.3. We observe that in practice, for the

current C implementation, TMs are 2 times faster than CMs for the same fixed degree n for the
polynomial. We have already seen that the advantage of Taylor polynomials consists of consid-
ering splitting the input interval. So, we give in Table 4.4 the comparison of the error bounds
between the same CM of degree n over the interval [a, b] and 2 TMs with the same degree n over
[a, (a + b)/2] and [(a + b)/2, b] (the maximum of the two bounds obtained for the 2 TMs is given
in the table). Consequently, we observe that for basic analytic functions TMs are currently more
efficient. Taylor approximations are better in the sense that they can be obtained faster, given the
same target error bound. For these functions, if several polynomial approximations are allowed,
i.e. we are not interested in obtaining a compact representation of the function over the whole in-
terval, it seems to be more efficient to split the interval an compute several Taylor approximations.
On the other hand, for more complicated functions, CMs seem to be more performant.

No f(x), I , n CM Exact bound Interpolation Exact bound TM Exact bound

1 sin(x), [3, 4], 10 1.19 · 10−14 1.13 · 10−14 1.19 · 10−14 1.13 · 10−14 1.22 · 10−11 1.16 · 10−11

2 arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 7.95 · 10−17 7.89 · 10−15 7.95 · 10−17 2.58 · 10−10 3.24 · 10−12

3 arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 1.76 · 10−8 5.10 · 10−3 1.76 · 10−8 1.67 · 102 5.70 · 10−3

4 exp(1/ cos(x)), [0, 1], 14 5.22 · 10−7 4.95 · 10−7 0.11 6.10 · 10−7 9.06 · 10−3 2.59 · 10−3

5
exp(x)

log(2+x) cos(x)
, [0, 1], 15 4.86 · 10−9 2.21 · 10−9 0.18 2.68 · 10−9 1.18 · 10−3 3.38 · 10−5

6 sin(exp(x)),[−1, 1], 10 2.56 · 10−5 3.72 · 10−6 4.42 · 10−3 3.72 · 10−6 2.96 · 10−2 1.55 · 10−3

7 tanh(x + 0.5)− tanh(x− 0.5), [−1, 1], 10 1.75 · 10−3 4.88 · 10−7 8.48 · 10−3 4.88 · 10−7 8.68 2.96 · 10−3

8
√
x + 1.0001, [−1, 0], 10 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 3.64 · 10−2 0.11 0.11

9
√
x + 1.0001 · sin(x), [−1, 0], 10 3.32 · 10−2 3.08 · 10−2 3.21 · 1033 3.08 · 10−2 0.12 9.83 · 10−2

10 1
1+4x2

, [−1, 1], 10 1.13 · 10−2 6.17 · 10−3 1.50 · 107 4.95 · 10−3 +∞ 8.20 · 102

11 sin2(x) + cos2(x), [−1, 1], 10 3.91 · 10−9 2.1 · 10−11 8.44 · 10−8 2.29 · 10−50 8.74 · 10−6 5.57 · 10−52

Table 4.2: Examples of bounds obtained by several methods

No f(x), I , n Timing CM (ms) Timing TM (ms)
1 sin(x), [3, 4], 10 4 2
2 arctan(x), [−0.25, 0.25], 15 10 4
3 arctan(x), [−0.9, 0.9], 15 14 7
4 exp(1/ cos(x)), [0, 1], 14 31 14
5 exp(x)

log(2+x) cos(x) , [0, 1], 15 38 19

6 sin(exp(x)),[−1, 1], 10 7 4
7 tanh(x+ 0.5)− tanh(x− 0.5), [−1, 1], 10 5 3
8

√
x+ 1.0001, [−1, 0], 10 10 4

9
√
x+ 1.0001 · sin(x), [−1, 0], 10 20 8

10 1
1+4x2

, [−1, 1], 10 10 4

11 sin2(x) + cos2(x), [−1, 1], 10 18 10

Table 4.3: Timings in miliseconds for results given in Table 4.2

Examples regarding rigorous quadrature

We have seen in the introduction that we are interested in rigorously computing some definite
integrals. We consider in the following examples comparisons between TMs and CMs regarding
the number of correct digits obtained in these integrals. The results obtained with TMs are based
on the classical algorithm of integrating TMs taken from [13]. In the case of the CMs, the algorithm

142

4.6 Experimental results and discussion 143

No f(x), I , n CM bound TM bound
1 sin(x), [3, 4], 10 1.19 · 10−14 5.95 · 10−15

2 arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 1.06 · 10−15

3 arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 5.81 · 10−4

4 exp(1/ cos(x)), [0, 1], 14 5.22 · 10−7 1.10 · 10−5

5 exp(x)
log(2+x) cos(x) , [0, 1], 15 4.86 · 10−9 4.60 · 10−8

6 sin(exp(x)),[−1, 1], 10 2.56 · 10−5 1.01 · 10−4

7 tanh(x+ 0.5)− tanh(x− 0.5), [−1, 1], 10 1.75 · 10−3 7.28 · 10−4

8
√
x+ 1.0001, [−1, 0], 10 3.64 · 10−2 0.11

9
√
x+ 1.0001 · sin(x), [−1, 0], 10 3.32 · 10−2 7.06 · 10−2

10 1
1+4x2

, [−1, 1], 10 1.13 · 10−2 1.39 · 102

11 sin2(x) + cos2(x), [−1, 1], 10 3.91 · 10−9 2.23 · 10−8

Table 4.4: Examples of bounds 1 CM vs. 2 TMs.

Order Subdiv. Bound TM Bound CM
5 1 [3.0231893333333, 8.5807786666666] [3.0986941190195, 3.1859962140742]

4 [3.1415363229415, 3.1416629536292] [3.1415907717769, 3.1415943610772]
16 [3.1415926101614, 3.1415926980786] [3.1415926531269, 3.1415926539131]

10 1 [-2.1984010266006, 3.2113963175267] [3.1411981994969, 3.1419909934525]
4 [3.1415926519535, 3.1415926546870] [3.1415926535805, 3.1415926535990]

16 [3.1415926535897, 3.1415926535897] [3.1415926535897932, 3.1415926535897932]

Table 4.5: Computation of digits of π using TMs vs. CMs

is very similar: we integrate the polynomial part and bound straightforwardly the remainder as
shown in Algorithm 4.5.13. Then we bound the polynomial part using Algorithm 4.5.1 for CMs
and Algorithm 2.1.1 for TMs. We can choose to subdivide the interval over which we consider the
definite integral, in order to have better approximations for the same fixed order of the model.

Example 4.6.1 (Toy example: digits of π.). For a first toy example, let us consider the comparison
between TMs and CMs regarding the computation of the digits of π using

π =

1∫
0

4

1 + x2
dx.

The results obtained using a TM are taken from [13]. We show in Table 4.5 the number of correct digits
obtained with both methods. In the first column we give the degree of the polynomial used; in the second
column, the number of subintervals we split the initial interval.

Let us now give a rigorous answer to the integral in Example 1.0.1. In 0.2 seconds in our Sollya
implementation, we have all the exact digits given in the introduction plus a rigorous enclosure
of the result: 0.4306061031206906049123773552[4, 6]. We used a CM of degree 30 over the whole
interval [0, 1].

For the second example 1.0.2, we face the case of a very oscillatory function. In this case, we
had to make a tuned splitting in subintervals in order to obtain the enclosure of the solution. We
note that our purpose is to show the potential of these tools in developing rigorous methods. Of

143

144 Chapter 4. Chebyshev Models

course, several methods exist in literature [109, 62] that were not analyzed here, for computing
numerical integrals, with guarantees on the quality of output.

Certified plots

Finally, let us analyze the inequality given in Example 1.0.4, that is necessary in the formal
proof of Kepler’s conjecture. We want to prove that f(x) = 2π − 2x asin((cos 0.797) sin(π/x)) +
0.0331x − 2.097 > 0 for x ∈ I = [3, 64]. Firstly, we provide the certified plot of f(x). We use the
following method: first, Algorithm 4.5.12 is used to compute an RPA for f of the form (p,B), then
we consider a partition of the function domain [3, 64] =

⋃
i=J0,n−1K,
x0=3, xn=64

[xi, xi+1] and evaluate using

interval arithmetic p̃([xi, xi+1]) +B ⊇ f([xi, xi+1]), for each i. These intervals provide a piecewise
enclosure of the image of f . This is shown in Figure 4.4, where we used a CM of degree 81 for the
whole interval, which provides us with an error bound of 2 · 10−11. This gives us a first level of
confidence in the result.

Figure 4.4: Certified plot of f(x) = 2π− 2x asin((cos 0.797) sin(π/x)) + 0.0331x− 2.097 for x ∈ I =
[3, 64].

In order to formally prove this kind of inequalities, we use a method similar to the one pre-
sented in Chapter 3. Specifically, once we have computed a formally proven RPA (TM or CM)
such that |f(x) − p(x)| 6 B, for all x ∈ I , the positivity of p(x) − B implies the positivity of f ,
since f(x) > p(x) − B for all x ∈ I . We have shown in Chapter 3 that showing the positivity of a
polynomial relies on the sum-of-squares method that is already formalized.

In this example, using a partitioning in intervals of length 1 and computing one TM for each
interval and obtaining the SOS instance for each polynomial using the same tools as in Chapter 3,
took us 3.5 seconds.

144

4.7 Conclusion and future work 145

For instance, on I0 = [3, 4] we obtain:

f(x) > (4−x)∗(95709837/1048576000∗(x2−11/2∗x+6)2 +95709837/1048576000∗(−2∗x+5)2

+ 40842491377/536870912000 ∗ (x2 − 8 ∗ x+ 16)2 + 2180258663/16777216000 ∗ (−x2 + 7 ∗ x− 12)2

+ 35497951/2097152000 ∗ (x2 − 6 ∗ x+ 9)2 + 95709837/2097152000 ∗ (−1/2 ∗ x2 + 4 ∗ x− 8)2

+ 95709837/1048576000 ∗ (−x2 + 7 ∗ x− 12)2 + 95709837/2097152000 ∗ (−1/2 ∗ x2 + 7/2 ∗ x− 6)2

+ 95709837/1048576000 ∗ (x2 − 6 ∗ x+ 9)2) + (x− 3) ∗ (95709837/1048576000 ∗ (3/2 ∗ x− 5)2

+ 95709837/1048576000 ∗ (3/2 ∗ x2 − 11 ∗ x+ 20)2 + 6004769207/134217728000 ∗ (x2− 8 ∗ x+ 16)2

+ 28278727/838860800 ∗ (−x2 + 7 ∗ x− 12)2 + 95709837/1048576000 ∗ (x2 − 6 ∗ x+ 9)2

+ 95709837/2097152000 ∗ (x2 − 8 ∗ x+ 16)2 + 95709837/1048576000 ∗ (1/2 ∗ x2 − 4 ∗ x+ 8)2

+ 95709837/2097152000 ∗ (−x2 + 7 ∗ x− 12)2 + 95709837/1048576000 ∗ (1/2 ∗ x2− 7/2 ∗ x+ 6)2).

The only part that is still under development is a formally proven TM.

4.7 Conclusion and future work

We presented a new tool which is potentially useful in various rigorous computing applica-
tions. Currently, CMs for univariate composite functions are more efficient than TMs. This obser-
vation seems promising for replacing Taylor Models for multivariate functions with models based
on better approximations. As we already mentioned, another future work consists in improving
both the complexity of computation of coefficients of CI for basic functions, and the complexity
of multiplication of CMs using an adaptation of Fast Fourier Transform to interval arithmetic.
Longer term goals are the complete formalization of TMs and CMs in a formal proof checker and
the extension of CMs to other families of orthogonal polynomials, like Legendre polynomials for
example.

Another potential application of CMs is the rigorous solving of ODE using validated enclosure
methods. In the next chapter, we begin the study of the complexity of such methods for the case
of D-finite functions.

145

5 CHAPTER 5

Rigorous Uniform Approximation of
D-finite Functions

două culori ce nu s-au văzut niciodată,
una foarte de jos, intoarsă spre pământ,

una foarte de sus, aproape ruptă
în infrigurata, neasemuita luptă

Nichita Stănescu, Ce bine că es, ti.

In the previous chapter we studied rigorous polynomial approximations based on truncated
Chebyshev series expansions or Chebyshev interpolants for functions given explicitly by an ex-
pression. In this chapter we obtain this kind of RPAs for functions that are given as solutions of
ordinary differential equations with polynomial coefficients (D-finite functions). This case was
presented in Example 1.1.6.

The order-n truncation of the Chebyshev expansion of a function over a given interval is a
near-best uniform polynomial approximation of the function on that interval and a wide range
of numerical methods exist for obtaining these approximations. Moreover, in the case of D-finite
functions, the coefficients of the expansions obey linear recurrence relations with polynomial co-
efficients. However, these do not lend themselves to a direct recursive computation of the coeffi-
cients, owing chiefly to the lack of initial conditions.

In this work, we show how these recurrences can nonetheless be used, as part of a validated
process, to compute good uniform approximations of D-finite functions, together with rigorous
error bounds. Our approach is based on a classical numerical method going back to Clenshaw,
revisited in the light of properties of the recurrence relations we consider, and combined with an
enclosure method for ODE. One more important contribution of this work is that the algorithms
for obtaining these RPAs have a linear arithmetic complexity.

This is part of an undergoing joint work [7] with Alexandre Benoit and Marc Mezzarobba.

5.1 Introduction

In the previous chapter we have seen how to obtain near-minimax rigorous polynomial approx-
imations for elementary functions, that is, functions that were given by an expression containing
only basic functions like constants, identity function, exp, sin, cos, etc. and operations like ad-
dition, multiplication, division, composition. In this work, we extend the possibility of having
Chebyshev Models (Definition 4.5.2) for D-finite functions, that is, solutions of linear ordinary
differential equations (LODE) with polynomial coefficients [153]. This property allows to develop

148 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

a uniform theoretic and algorithmic treatment of these functions, an idea that has led to many
applications in recent years in the context of Symbolic Computation [173, 149].

Many of the special functions commonly used in areas such as mathematical physics are D-
finite, so, besides their exact representation by differential equations, their repeated evaluation is
often needed. We evaluate a function y at many points lying on an interval, usually with moder-
ate precision for plotting, numerical integration, or the computation of minimax approximation
polynomials. A standard approach to address this need resorts to polynomial approximations
of y. We deem it useful to support working with arbitrary D-finite functions in a computer alge-
bra system. Hence, it makes sense to ask for good uniform polynomial approximations of these
functions on intervals. Rigorous error bounds are necessary in order for the whole computation
to yield a rigorous result.

We recall that besides easy numerical evaluation, polynomial approximations provide a con-
venient representation of continuous functions on which comprehensive arithmetics including ad-
dition, multiplication, composition and integration may be defined. For a variety of reasons, it is
natural to write the polynomials on the Chebyshev basis rather than the monomial basis. In partic-
ular, the truncations that occur during most arithmetic operations then maintain good approxima-
tion on the whole interval. In this sense, previous works already mentioned in Chapter 4 include
Trefethen et al.’s Chebfun [159, 54] or Epstein, Miranker and Rivlin’s “ultra-arithmetic” [60, 61, 84].

We already explained in previous chapters the need of an algebra with RPAs. This work allows
us to use arbitrary D-finite functions as “basic functions” at the leaves and nodes of expression
trees to be evaluated using Chebyshev Models.

Finally, perhaps the main appeal of RPAs and related techniques is the ability to solve func-
tional equations rigorously using enclosure methods [114, 84, 99, 124]. LODE with polynomial
coefficients are among the simplest equations to which these tools apply. A third goal of this work
is to begin the study of the complexity of validated enclosure methods, from a computer algebra
point of view, using this family of problems as a prototype.

5.1.1 Setting

We fix a linear homogeneous differential equation of order r with polynomial coefficients

L · y = ary
(r) + ar−1y

(r−1) + · · ·+ a0y = 0, ai ∈ Q[x]. (5.1)

Up to a change of variable, we assume that we seek a polynomial approximation of a solution y
of (5.1) over the interval [−1, 1]. We also assume that ar(x) 6= 0 for x ∈ [−1, 1], so that all solutions
of (5.1) are analytic on [−1, 1]. Besides the operator L, we are given r boundary conditions

λi(y) = `i, 1 6 i 6 r, (5.2)

each of the form λi(y) =
∑q

j=1 µjy
(rj)(xj) with xj ∈ [−1; 1] and rj 6 r − 1. The boundary condi-

tions are chosen such that the function y of interest is the unique solution of (5.1) satisfying (5.2).
They are independent in the sense that the λi : kerL→ C are linearly independent. Note that the
case of initial values given outside the domain of expansion may be reduced to our setting using
numerical analytic continuation [107].

Complexity model Unless otherwise noted, we assume for simplicity that all computations are
carried out in exact (rational) arithmetic. The rigor of the computation is unaffected if exact arith-
metic is replaced by floating-point arithmetic in Algorithm 5.3.1 and by interval arithmetic in
Algorithm 5.5.2. (In the case of Algorithm 5.4.1, switching to interval arithmetic requires small
adjustments.) However, we do not analyze the effect of rounding errors on the quality of the ap-
proximation polynomial p and error bound B when the computations are done in floating-point

148

5.2 Chebyshev Expansions of D-finite Functions 149

arithmetic. In simple cases at least, we expect that Algorithm 5.3.1 exhibits comparable stability to
similar methods based on backward recurrence [168]. Our experiments (reported in Section 5.7)
show a satisfactory numerical behavior.

To account for this variability in the underlying arithmetic, we assess the complexity of the
algorithms in the arithmetic model. In other words, we only count basic operations in Q, while
neglecting both the size of their operands and the cost of accessory control operations.

Notations We use double brackets to denote integer intervals Ji, jK. Related to Chebyshev ex-
pansions, in this chapter we use for simplifying some proofs a slightly different notation detailed
in §5.2.1 below. Notations from Theorem 5.2.1 are also repeatedly used in the subsequent discus-
sion.

5.1.2 Outline

In this work, Chebyshev Models of D-finite functions are obtained in two stages. We first com-
pute a candidate approximation polynomial, based on the Chebyshev expansion of the function y.
No attempt is made to control the errors rigorously at this point. We then validate the output using
enclosure methods.

This chapter is organized as follows. In Section 5.2, we review and study the recurrence re-
lation satisfied by the coefficients of Chebyshev series of D-finite functions. The use of this re-
currence is the key to the linear time complexity. The algorithm we use to actually compute the
coefficients, described in Section 5.3, is essentially Fox and Parker’s variant [65, Chap. 5] of Clen-
shaw’s algorithm [42]. In general, its output is an approximation of unspecified quality. Under
some simplifying assumptions (i.e. Hypothesis H, page 156), we prove that the computed approx-
imated truncated Chebyshev series converges at least exponentially to the true TCS (see Propo-
sition 5.3.2). In Section 5.4, we study Chebyshev series expansions of rational functions. Most
importantly, we state remainder bounds that are then used in Section 5.5, along with an enclosure
method for differential equations, to validate the output of the first stage and obtain the bound B.
Section 5.7 presents a prototype implementation of our approach and experimental results.

5.2 Chebyshev Expansions of D-finite Functions

5.2.1 Chebyshev Series

A brief overview of Chebyshev series was given in Section 4.2. Let f be a solution of Equa-
tion (5.1). As such, it may be analytically continued to any domainU ⊆ C that contains no singular
point of the equation. Since there are no singularities on the segment [−1, 1], there exists an elliptic
disk ε̄r ⊆ U , with foci in ±1 and r ≥ 1 (cf. Definition 4.2.19), for which Theorem 4.2.22 applies.
Instead of the more common ∑

n

′
anTn =

a0

2
T0 + a1T1 + a2T2 + · · · , (5.3)

we write the Chebyshev series of f as

f(x) =

∞∑
n=−∞

cnTn(x), c−n = cn, (5.4)

where the Chebyshev coefficients cn = 1
2an are given by

cn =
1

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx, n ∈ Z. (5.5)

149

150 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

This choice makes the link between Chebyshev and Laurent expansions (Remark 4.2.21) as well
as the action of recurrence operators (both discussed below) more transparent.

From Theorem 4.2.22, the coefficients cn then satisfy cn = O(αn) for all α > r−1; and the
Chebyshev expansion (5.4) converges uniformly to f on ε̄r. From Remark 4.2.21, cn are also the
coefficients of the (doubly infinite) Laurent expansion of the function f̃(z) = f(z+z

−1

2) around the
unit circle.

Let C ⊆ CZ be the vector space of doubly infinite sequences (cn)n∈Z such that

(∀n ∈ N)(cn = c−n) and (∃α < 1)(cn = O(αn)).

Thus the sequence of Chebyshev coefficients of a function f that is analytic on some complex
neighborhood of [−1; 1] belongs toC. Conversely, for all c ∈ C, the function series

∑∞
n=−∞ cnTn(x)

converges uniformly on (some neighborhood of) [−1; 1] to an analytic function f(x).
We denote by πd : f 7→

∑d
n=−d cnTn the associated orthogonal projection on the subspace of

polynomials of degree at most d. It is well-known (Equation (4.18)) that πd(y) is a near-minimax
uniform approximation. Our choice of truncated Chebyshev expansions over other near-minimax
approximations with nice analytical properties is motivated primarily by the existence of a recur-
rence relation on the coefficients (cn) when f is a D-finite function.

5.2.2 The Chebyshev Recurrence Relation

The polynomials Tn satisfy the recurrence

2xTn(x) = Tn−1(x) + Tn+1(x), (5.6)

as well as the mixed differential-difference relation

2(1− x2)T ′n(x) = n(Tn−1(x)− Tn+1(x)) (5.7)

which translates into the integration formula 2ncn = c′n−1 − c′n+1 where
∑
c′nTn = (

∑
cnTn)′.

From these equalities follows the key ingredient of the approach developed in this work, namely
that the sequence of Chebyshev coefficients of a D-finite function obeys a linear recurrence with
polynomial coefficients. This fact was observed by Fox and Parker [64, 65] in special cases and later
proved in general by Paszkowski [130]. Properties of this recurrence and generalizations to other
orthogonal polynomial bases were explored in a series of papers by Lewanowicz starting 1976 (see
in particular [95, 96]). The automatic determination of this recurrence in a symbolic computation
system was first studied by Geddes [68].

The following theorem summarizes results regarding this recurrence extracted from existing
work [130, 95, 96, 138, 8] and slightly extended to fit our purposes. Here and in the sequel, we de-
note byQ(n)〈S, S−1〉 the skew Laurent polynomial ring overQ(n) in the indeterminate S, subject
to the commutation rules

Sλ = λS (λ ∈ Q), Sn = (n+ 1)S. (5.8)

Likewise, Q[n]〈S, S−1〉 ⊆ Q(n)〈S, S−1〉 is the subring of noncommutative Laurent polynomials
in S themselves with polynomial coefficients. The elements ofQ[n]〈S, S−1〉 identify naturally with
linear recurrence operators through the left action ofQ[n]〈S, S−1〉 onCZ defined by (n ·u)n = nun
and (S · u)n = un+1. Recall that L denotes the differential operator appearing in Equation (5.1).

Theorem 5.2.1. [130, 95, 96, 138, 8] Let u, v be analytic functions on some complex neighborhood of the
segment [−1, 1], with Chebyshev expansions

u(x) =
∞∑

n=−∞
unTn(x), v(x) =

∞∑
n=−∞

vnTn(x).

150

5.2 Chebyshev Expansions of D-finite Functions 151

There exist difference operators P,Q ∈ Q[n]〈S, S−1〉 with the following properties.
1. The differential equation L · u(x) = v(x) holds if and only if

P · (un) = Q · (vn). (5.9)

2. The left-hand side operator P is of the form P =
∑s

k=−s bk(n)Sk where s = r + maxi(deg ai) and
b−k(−n) = −bk(n) for all k.

3. Letting

δr(n) = 2r
r−1∏

i=−r+1

(n− i), I =
1

2n
(S−1 − S), (5.10)

we have Q = Qr = δr(n)Ir (formally, in Q(n)〈S, S−1〉). In particular, Q depends only on r and
satisfies the same symmetry property as P .

We note that I as defined in Eq. (5.10) makes sense as an operator from the symmetric sequences
(u|n|)n∈Z to {(un)n∈Z\{0}} and corresponds to the integration of Chebyshev series. A sloppy but
perhaps more intuitive statement of the main point of Theorem 5.2.1 would be: “(

∫
)rL · u = w if

and only if δr(n)P · u = w, up to some integration constants”.

Proof. Assume L · u = v. Benoit and Salvy [8, Theorem 1] give a simple proof that (5.9) holds for
some P,Q ∈ Q(n)〈S, S−1〉. That P andQ can actually be taken to have polynomial coefficients and
satisfy the properties listed in the last two items follows from the explicit construction discussed
in §4.1 of the same article, based on Paszkowski’s algorithm [130, 95], and from the observation
that δr(n)Ir ∈ Q[n]〈S, S−1〉. Rebillard’s thesis [138, §4.1] contains detailed proofs of this last point
as well as the assertions of Item 2. Several of these results actually go back to [130, 95, 96].

There remains to prove the “if” direction. Consider sequences u, v ∈ C such that P · u = Q · v,
and let y ∈ C be defined by L · u(x) =

∑∞
n=−∞ ynTn(x). Then, from what we already proved,

we have P · u = Q · y, and hence, Q · y = Q · v and we conclude that y = v using Lemma 5.2.2
below.

Lemma 5.2.2. The restriction to C of the operator Q of Theorem 5.2.1 is injective.

Proof. With the notations of Theorem 5.2.1, we show by induction on r > 1 that

(v ∈ C) ∧
(
|n| > r =⇒ (Qr · v)n = 0

)
=⇒ v = 0. (5.11)

First, we have (kerQ1)∩C = {0} since any sequence belonging toC converges to zero as n→ ±∞.
Now assume that (5.11) holds, and let v ∈ C be such that (Qr+1 ·v)n = 0 for |n| > r+1. We observe
that w, defined by:

w := Qr · v,

is an element of C. Since r > 1, we have

nQr+1 = δr+1(n)(S−1 − S)Ir

= ((n+ r)(n+ r − 1)S−1δr(n)− (n− r)(n− r + 1)Sδr(n))Ir

= ((n+ r)(n+ r − 1)S−1 − (n− r)(n− r + 1)S)Qr

hence for |n| > r + 1,

(n+ r)(n+ r − 1)wn−1 = (n− r)(n− r + 1)wn+1. (5.12)

Unless wn is ultimately zero, this implies that wn+1/wn−1 → 1 as n → ∞, which is incompatible
with the fact that w ∈ C. It follows that wn = 0 for |n| large enough, and using (5.12) again
that wn = 0 as soon as |n| > r. Applying the hypothesis (5.11) concludes the induction.

151

152 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

Following Rebillard, we call (5.9) the Chebyshev recurrence relation associated to (5.1). An
easy-to-explain way to compute it,which curiously does not seem to have appeared in print in this
form, although it is undoubtedly known to specialists, is to first perform the change of variable
x = 1

2(z + z−1) in the differential equation (5.1), and then obtain a recurrence on the Laurent
coefficients of ũ(z) = u(x) by the classical “Frobenius” method. Benoit and Salvy [8] give a unified
presentation of several other algorithms by interpreting them as various ways to perform the
substitution x 7→ 1

2(S + S−1), d
dx 7→ (S − S−1)−1(2n) in a suitable non-commutative division

algebra, and show that they compute the same operator P , if the recurrence has no singularities
in [−1, 1], which is our case.

Remark 5.2.3. Using Theorem 5.2.12 and the same notations, for any sequence (un) we have:

∀n,
∑
k

bk(n)un+k = −
∑
k

b−k(−n)un+k = −
∑
k

bk(−n)u−n−k,

i.e., P · (un)n∈Z = −P · (u−n)n∈Z. Specifically, if (un) is a solution of P · (un) = 0 then so it is (u−n).
Hence, from any solution (un), we get the symmetric solution (un + u−n).

5.2.3 Solutions of the Chebyshev Recurrence

Several difficulties arise when trying to use the Chebyshev recurrence to compute the Cheby-
shev coefficients. The first one is related to initial conditions. Here it may be worth contrasting
the situation with the more familiar case of the solution of differential equations in power series.
Unlike the Taylor coefficients of y, the Chebyshev coefficients c0, c1, . . . that could serve as initial
conditions for the recurrence are not related to initial or boundary conditions of the differential
equation in any simple way. In particular, as can be seen from Theorem 5.2.1 above, the order 2s of
the recurrence is larger than that of the differential equation (except in degenerate cases), meaning
that we need to somehow obtain more initial values for the recurrence than we “naturally” have at
hand. Nevertheless, the recurrence (5.9) shows that the Chebyshev coefficients of a D-finite func-
tion are rational linear combinations of a finite number of integrals of the form (5.5). Computing
these coefficients efficiently to high accuracy is an interesting problem to which we hope to come
back in future work.

Next, also in contrast with the case of power series, the leading and trailing coefficients b±s of
the recurrence (5.9) may vanish for arbitrarily large values of n even though the differential equa-
tion (5.1) is nonsingular. The zeroes of bs are called the leading singularities of (5.9), those of b−s, its
trailing singularities. In the case of Chebyshev recurrences, leading and trailing singularity sets are
opposite of each other.

Example 5.2.4. For all k ∈ Z, the Chebyshev recurrence relation associated to the differential equation
y′′(x) + xy′(x) + ky(x) = 0, namely

(n+ 1)(n+ k − 2)un−2 − 2n(−2n2 − k + 1)un − (n− 1)(n− k + 2)un+2 = 0,

admits the leading singularity n = k − 2.

We do however have some control over the singularities.

Proposition 5.2.5. With the notations of Theorem 5.2.1, the coefficients of the Chebyshev recurrence (as
computed by one of the equivalent algorithms mentioned above) satisfy the relations

bj−i(−j) = −bj+i(−j), |j| 6 r − 1, i ∈ N, (5.13)

with bk = 0 for |k| > s.

152

5.2 Chebyshev Expansions of D-finite Functions 153

Proof. We proceed by induction on r. When j = 0, the assertion (5.13) reduces to b−i(0) = −bi(0),
which follows from the second item of Theorem 5.2.1. In particular, this proves the result for r = 1.
Now let r > 2 and assume that the proposition holds whenL has order r−1. WriteL = L̂+∂rpr(x)
where pr ∈ Q[x] and L̂ is a differential operator of order r − 1. Letting P̂ =

∑
k∈Z b̂k(n)Sk be the

Chebyshev recurrence operator associated to L̂, we then have [8]

δr(n)−1P = Iδr−1(n)−1P̂ + pr(
1
2(S + S−1)) (5.14)

where the last term denotes the evaluation of pr at x = 1
2(S + S−1). Since

Iδr−1(n)−1 = (nδr(n))−1((n− r + 2)(n− r + 1)S−1 − (n+ r − 2)(n+ r − 1)S)

by the commutation rule (5.8), the relation (5.14) rewrites as

P =
1

n

∑
k

(
(n− r + 2)(n− r + 1)b̂k+1(n− 1)− (n+ r − 2)(n+ r − 1)b̂k−1(n+ 1)

)
Sk

+ δr(n)pr

(
1

2
(S + S−1)

)
.

The case j = 0 having already been dealt with, assume 0 < |j| < r. Since δr(−j) = 0 and pr
is a polynomial, it follows by extracting the coefficient of Sk in the last equality and evaluating
at n = −j that

− jbk(−j) = (j + r − 2)(j + r − 1)b̂k+1(−j − 1) − (j − r + 2)(j − r + 1)b̂k−1(−j + 1). (5.15)

Now b̂j−i(−j) = −b̂j+i(−j) for |j| < r−1 by the induction hypothesis, and the term involving b̂k±1

vanishes for j = ∓(r − 1) and j = ∓(r − 2). In each case, we obtain bj−i(−j) = −bj+i(−j).

Corollary 5.2.6. If (u|n|)n∈Z is a symmetric sequence, then (P · u)n = 0, for all |n| < r.

Proof. We have
(P · u)n =

∑
k∈Z

bk(n)un+k =
∑
i∈Z

bi−n(n)ui.

Using Proposition 5.2.5 with j = −n,∑
i∈Z

bi−n(n)ui = −
∑
i∈Z

b−i−n(n)ui = −
∑
i∈Z

bi−n(n)ui,

whence, (P · u)n = −(P · u)n, for all |n| < r.

Corollary 5.2.7. The dimension of the space of symmetric solutions of a Chebyshev recurrence is at least
s+ r.

Proof. Let P be a Chebyshev operator recurrence of order 2s in relation to a differential equation
of order r.

Let (u0, · · · , us+r−1) be a tuple. Let (yn)n∈Z be a sequence which satisfies yi = ui for all 0 ≤ |i| <
s+ r and P · yn = 0 for all |n| ≥ r. Since P is of order 2s, there exists always a sequence yn which
satisfies these properties. Proving the corollary is equivalent to prove that this sequence is solution
of the recurrence relation P and is symmetric. By the Theorem 5.2.1, we have P ·yn = −P ·y−n. By
equality of the initial condition of the recurrence, we deduce yn = y−n. To prove that yn is solution
of the recurrence relation, we need to prove the equality P · yn = 0 for all |n| < r, which follows
directly from Corollary 5.2.6.

153

154 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

5.2.4 Convergent and Divergent Solutions

We briefly recall a powerful result regarding asymptotic behavior of solutions of linear recur-
rences. For simplicity, the exact statement of the following theorem was taken from [108], while
other formulations and proofs can be found in references therein, the actual results going back to
Poincaré (1885), Perron (1910), Kreuser (1914).

Perron-Kreuser theorem

Let a linear recurrence relation

pm(n)un+m + . . .+ p1(n)un+1 + p0(n)un = 0, (5.16)

and the corresponding operator
m∑
k=0

pkS
k. Assume that the coefficients pk(n) ∼n→∞ ckn

dk for

some ck ∈ C, dk ∈ Z. If (un) is a solution of (5.16) with un+1/un ∼n→∞ αnκ, then for the recurrence
equation to hold asymptotically, the maximum value of dk + kκ must be reached at least twice,
so that the corresponding terms can cancel. This means that −κ must be among the slopes of the
edges of the Newton polygon of the equation. The Newton polygon of (5.16) is the upper convex
hull of the points Ak = (k, dk) ∈ R2, k = 0, . . . ,m. For each edge e = [Ai, Aj] (i < j), we denote
by −κ(e) its slope and we attach the algebraic equation χe(α) =

∑
Ak∈e ckα

k−i = 0 called the
characteristic equation of e. Observe that the degrees of the characteristic equations sum up to the
order m of the recurrence.

Theorem 5.2.8 (Poincaré, Perron, Kreuser). For each edge e of the Newton polygon of (5.16), let
αe,1, αe,2, . . . be the solutions of the characteristic equationχe, counted with multiplicities.

(a) If for each e, the moduli |αe,1|, |αe,2|, . . . are pairwise distinct, then any solution of (un) that is not
ultimately 0 satisfies un+1/un ∼n→∞ αe,in

κ(e) for some e and i.
(b) If moreover, (5.16) is reversible (i.e., p0(n) 6= 0,∀n ∈ N) then it admits a basis of solutions(

u[e,i]
)
e,16i6degχe

such that

u
[e,i]
n+1

u
[e,i]
n

∼n→∞ αe,in
κ(e). (5.17)

(c) If there exists e and i 6= j such that |αe,i| = |αe,j | results analogous to (a) and (b) hold with the
weaker conclusion

lim sup
n→∞

∣∣∣∣∣ u[e,i]
n

n!κ(e)

∣∣∣∣∣
1/n

= αe,i. (5.18)

Let us go back to the operator P of the Chebyshev recurrence given in Theorem 5.2.12. The
symmetry properties of the coefficients of P can be translated to its Newton polygon, as defined
above and drawn in Figure 5.1. Denote by αs, . . . , α1, α−1, . . . , α−s the roots of the corresponding
characteristic equations, the edges being traversed from left to right and the roots attached to a
same edge in order of nondecreasing modulus, and by −κs, . . . ,−κ1,−κ−1, . . . ,−κ−s the slopes
of the corresponding edges.

Proposition 5.2.9. The slopes and the roots of the characteristic equations of Newton polygon of P verify:
κ−i = −κi and |α−i| = |αi|−1 for all i. Moreover, the characteristic equation associated to the horizontal
edge (if it exists) does not have any root of modulus 1.

Proof. From Theorem 5.2.1, item 2, we have b−k(n) = −bk(−n), so the Newton polygon is sym-
metric with respect to the vertical axis, and −κi = κ−i for all i. Let Ak = (k,deg bk) and the edge

154

5.2 Chebyshev Expansions of D-finite Functions 155

ei = [Al(i), Ar(i)] the edge of slope κi. We denote by lc(b) the leading coefficient of b. For proving
that |α−i| = |αi|−1 we write characteristic equation of ei:

χi(α) =
∑

Ak∈ei lc(bk)α
k−l(i) =

∑
Ak∈ei(−1)1+deg bk lc(b−k)α

k−l(i)

= ±
∑

Ak∈e−i lc(bk)((−1)κiα)−k−l(i) = ±αl(i)−l(−i)χ−i((−1)κiα−1),
(5.19)

since we have deg bk − deg bl(i) = κi(k − l(i)).
Finally, for proving that the characteristic equation associated to the horizontal edge (if it ex-

ists) does not have any root of modulus 1, it suffices to observe that it is given by ar(1
2(α+ α−1)),

where ar is the leading coefficient in equation (5.1) and we supposed that ar(x) 6= 1, for all
x ∈ [−1, 1].

Hence, using Theorem 5.2.8, and Proposition 5.2.9, in some neighborhood of infinity the
Chebyshev recurrence admits a basis of 2s solutions of the form given in Theorem 5.2.8. Moreover,
s of these solutions are convergent and s are divergent. We call these solutions in some neighbor-
hood at infinity germs of solutions at infinity. Specifically, we define:

Definition 5.2.10 (Germs of solutions at infinity.). A germ of sequence in the neighborhood of +∞ is
given by a definition domain JN,∞K and a sequence (un)n>N modulo the identification of sequences which
coincide on the definition domain. We call germ of solution at infinity (of a linear recurrence) a germ of
sequence at +∞ whose representatives satisfy the recurrence relation on their definition domain.

We note for completeness that in the case of linear recurrences with polynomial coefficients,
the germs of solutions at infinity coincide with the solutions of the recurrence when N is taken to
be greater than the largest singularity of the recurrence, the singularities being in a finite number.
So, the dimension of the space of the germs of solutions at infinity is equal to the order of the
recurrence, i.e. 2s in our case.

Figure 5.1: Newton polygon for Chebyshev recurrence.

Proposition 5.2.11. The dimension of the space of symmetric solutions of a Chebyshev recurrence is s+ r.

Proof. In the Corollary 5.2.7, we have shown that this dimension is at least s + r. It remains to
prove that this dimension is at most s+ r. Let L be a differential operator of degree r and let P be
the recurrence operator of order 2s in relation to L.

Let S = {n > s : b−s(n) = 0} be the set of trailing singularities of P greater than s and let k be
their cardinality.

We consider (u|n|)n∈Z a symmetric sequence such that it verifies (P · u)n = 0 for all n ∈ N \ S.
Using Remark 5.2.3, (P ·u)n = 0 for−n ∈ N\S. Then this sequence is completely characterized by
a germ of solution at infinity of P together with the terms un where n+ s ∈ S. Specifically, taking
2s initial conditions {uN , . . . , uN+2s−1} for N sufficiently large, together with {uσ−s : σ ∈ S}, the
remaining terms of nonnegative index are determined from the recurrence and the negative index
ones by the symmetry property. Let E be the set of such sequences. It follows that the dimension

155

156 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

of E is 2s + k. If we consider only the convergent sequences among these, i.e. E ∩ C, then the
dimension of this space is s+ k (since there are s convergent and s divergent germs at infinity).

In order for u to be a (symmetric) solution of the Chebyshev recurrence, we need also that
(P · u)σ = 0, for σ ∈ S and (P · u)n = 0, for all |n| < s. From Corollary 5.2.6, since u is symmetric,
(P · u)n = 0 for all |n| < r. So, u is a symmetric solution of the recurrence if and only if:

(P · u)n = 0, n ∈ Jr, s− 1K ∪ S. (5.20)

According to the Theorem 5.2.1, if a symmetric convergent sequence yn is canceled by P , the
Chebyshev series

∑
ynTn(x) is canceled by L. The dimension of the space of solutions of L is r,

then the dimension of the space of symmetric convergent solutions is r.
This implies that the rank of the system (5.20) taken over the space E ∩ C is s + k − r. Then

the rank of the same system taken over E is at least s + k − r. So, the dimension of the space of
symmetric solutions of the Chebyshev recurrence is at most 2s+ k − (s+ k − r) = s+ r.

So, the structure of solutions of the Chebyshev recurrence is the following:
– The dimension of the space of germs of solutions at infinity is 2s.
– The dimension of the space of germs of convergent solutions at infinity is s.
– The dimension of the space of symmetric convergent solutions is r.
– The dimension of the space of symmetric solutions is s+ r.

5.3 Computing the Coefficients

5.3.1 Clenshaw’s Algorithm Revisited

Using the properties of the Chebyshev recurrence given above, we revisit now a classical algo-
rithm of Clenshaw [42] for numerically computing the coefficients of Chebyshev series solutions
of LODE. We use ideas based on Miller’s algorithm for the computation of a minimal solution
of a linear recurrence using a "backward" unrolling of the recurrence as we already showed in
Section 4.2.2. Now, that we have briefly seen the asymptotic behavior of solutions of linear recur-
rences, and in particular of Chebyshev recurrences, we can explain better Miller’s algorithm. Let
un be a sequence that verifies a linear recurrence, like (5.16) for instance. The idea is to compute
"backwardly" the coefficients uN , uN−1, . . . , u0 starting with arbitrarily chosen initial conditions
for N sufficiently big. In this way, roughly speaking, the behavior of the minimal ("most con-
vergent") solution of the recurrence will be "caught" when having computed u0, u1, . . . , un, for
n � N . We have seen one advantage in Section 4.2.2: this computation method is much more
stable than the "forward" unrolling of the recurrence. Moreover, and more interestingly, by com-
puting s linearly independent test solutions we expect that their restrictions to J0, nK will form a
vector space "close" to the one we would obtain with the "s most convergent" solutions.

Our algorithm takes as input both the degree d of the searched polynomial and a parameter N
as a "high" index where we set the initial conditions. In practice, it was sufficient to take simply
N = d+ s.

5.3.2 Convergence

We now prove that our algorithm converges, under some simplifying assumptions. The proof
is inspired by the analysis of the generalized Miller algorithm [172, 168].

These hypothesis are (Hypothesis H):
H1. The complex roots of the characteristic equations of each edge of the Newton polygon are

simple and of distinct modulus (see Item (a) of Theorem 5.2.8).

156

5.3 Computing the Coefficients 157

Algorithm: ComputeCoeffsClenshaw(L, {λi(y) = li}ri=1, d,N)1

Input: a differential operator L of order r, boundary conditions λ1(y) = `1, . . . , λr(y) = `r
as in (5.2),

a degree d > s, where 2s is the order of the Chebyshev recurrence associated to L,
an integer N ≥ d.
Output: an approximation ỹ(x) =

∑d
n=−d ỹnTn(x) of the corresponding solution y of

L · y = 0.
Procedure:2

1 compute the Paszkowski operator P =
∑s

k=−s bk(n)Sk associated to L
2 set S = {n ∈ N | (s 6 n 6 N) ∧ (b−s(n) = 0)} and I = S ∪ JN,N + s− 1K
3 for i ∈ I

4 for n from N + s− 1 downto s

5 compute the coefficients ti,n−s using the recurrence relation if n 6∈ I with the initial
conditions {

ti,i−s = 1

ti,n−s = 0, n ∈ I \ {i}

6 set ỹn =
∑

i∈I ηiti,|n| for |n| 6 N , and ỹn = 0 for |n| > N (hence ηi = ỹi), and
ỹ(x) =

∑N
n=−N ỹnTn(x)

7 solve for (ηi)i∈I the linear system{
λk(ỹ) = `k, 1 6 k 6 r

b−s(n)ỹn−s + · · ·+ bs(n)ỹn+s = 0, n ∈ Jr, s− 1K ∪ S

8 return
∑d

n=−d ỹnTn(x)

Algorithm 5.3.1: Computation of the coefficients of Chebyshev series of D-finite functions
based on Clenshaw’s Algorithm.

157

158 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

H2. The operator P does not have trailing singularities at indexes n > s, that is, S = ∅ (see
Item (b) of Theorem 5.2.8).

With these assumptions we can apply the strong form of Theorem 5.2.8 (Item (b)). We note that
Hypothesis H2 implies that any germ of solution at infinity extends to a solution defined on the
whole set of nonnegative integers (but not necessarily a priori, a symmetric solution, or a solution
on the whole Z). This hypothesis also implies that the equation L · y does not have polynomial
solutions.

If these assumptions are not fulfilled, Algorithm 5.3.1 still computes some approximation
of πd(y), and its output may still be validated using the algorithm of Section 5.5 if it happens
to be satisfactory.

We will prove in Proposition 5.3.2 that for a fixed degree d and as N tends to infinity, the com-
puted polynomial converges at least exponentially fast towards the truncated Chebyshev series
πd(y) of degree d of y.

The proof makes use of the following lemma:

Lemma 5.3.1. Assume that (e0,n)n, . . . , (es−1,n)n are sequences such that
ei,n+1

ei,n
∼n→+∞ αin

κi (αi ∈ C \ {0}, κi ∈ Q)

with κ0 6 κ1 6 · · · 6 κs−1 and κi = κj → αi 6= αj . Then the Casorati determinant

C(n) =

∣∣∣∣∣∣∣∣∣∣
e0,n e1,n · · · es−1,n

e0,n+1 es−1,n+1
...

...
e0,n+s−1 e1,n+s−1 · · · es−1,n+s−1

∣∣∣∣∣∣∣∣∣∣
satisfies

C(n) ∼n→∞ e0,ne1,n+1 · · · es−1,n+s−1

∏
i<j
κi=κj

(αi
αj
− 1
)
.

Proof. Write C(n) = e0,ne1,n+1 · · · es−1,n+s−1C
′(n). Then

C ′(n) = det
(ej,n+i

ej,n+j

)
06i,j<s

=
∑
σ∈Ss

ε(σ)

s−1∏
j=0

ej,n+σ(j)

ej,n+j
,

where the term of index σ of the sum grows like n
∑s−1
j=0(σ(j)−j)κj . The dominant terms are those

such that
∑s−1

j=0 σ(j)κj =
∑s−1

j=0 jκσ(j) is maximal, that is, such that the κσ(j) are in nondecreasing
order. Using the Iverson bracket, i.e. [P] = 1 if P is true and [P] = 0 otherwise, this translates into

C ′(n) =
∑
σ∈Ss

ε(σ)
s−1∏
j=0

[κσ(j) = κj]
ej,n+σ(j)

ej,n+j
+ o(1)

= det
(

[κi = κj]
ej,n+i

ej,n+j

)
0≤i,j<s

+ o(1)

=
∏

κ∈{κi}

det
(ej,n+i

ej,n+j

)
κi=κj=κ

+ o(1).

Each determinant in the last product has the form

det
(ej,n+i

ej,n+j

)
= det

(
n(j−i)κ ej,n+i

ej,n+j

)
→n→∞ det(αi−jj) =

∏
i<j

κi=κj=κ

(αi
αj
− 1
)
6= 0

whence the result.

158

5.3 Computing the Coefficients 159

Proposition 5.3.2. Assume Hypothesis (H). In the notations of Algorithm 5.3.1, fix L as well as the
boundary conditions λi(y) = `i, write y(x) =

∑∞
n=−∞ ynTn(x) and let y(N)

n = ỹn, |n| 6 N , be the
approximate Chebyshev coefficients computed by the algorithm (run in exact arithmetic), as a function of
the remaining input parameter N . As N →∞ it holds that

N
max
n=−N

(y(N)
n − yn) = O(N te1,N)

for some t independent of N .

Proof. Let us first describe the output of Algorithm 5.3.1. The sequence (y
(N)
n)Nn=−N extends to a

solution (y
(N)
n)n∈Z of P · y(N) = 0 characterized by the conditions y(N)

N = · · · = y
(N)
N+s−1 = 0 from

Step 5, and the linear system solved in Step 7. By writing the linear forms λ1, . . . , λr : C → C

that express the boundary conditions (5.2) as λi(y) =
∑∞

n=−∞ λi,nyn, we may define “truncations”

λ
(N)
i (y) =

∑N
n=−N λi,nyn that make sense even for divergent series. Abusing notation slightly,

we apply the λi and λ
(N)
i indifferently to functions, formal Chebyshev series or their coefficient

sequences. We also introduce linear forms λr+1 = λ
(N)
r+1, . . . , λs = λ

(N)
s to write the last s − r

equations (i.e., the symmetry constraints on Chebyshev expansions) in the same form as the first r,
so that the system (7) translates into

λ
(N)
i (y(N)) =

N∑
n=−N

λi,ny
(N)
n = `i, 1 6 i 6 s. (5.21)

Now let

∆(N) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1,N · · · es,N e−1,N · · · e−s,N
...

...
...

...
e1,N+s−1 · · · es,N+s−1 e−1,N+s−1 · · · e−s,N+s−1

λ
(N)
1 (e1) · · · λ

(N)
1 (es) λ

(N)
1 (e−1) · · · λ

(N)
1 (e−s)

...
...

...
...

λ
(N)
s (e1) · · · λ

(N)
s (es) λ

(N)
s (e−1) · · · λ

(N)
s (e−s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.22)

and let ∆
(N)
j be the same determinant with the column involving ej replaced by

(0, . . . , 0, `1, . . . , `s)
T. By Cramer’s rule, the sequence (y

(N)
n)n decomposes on the basis (ej)

s
j=−s

of kerP ⊆ CZ as

y(N) =

s∑
k=−s

γ
(N)
k ek, γ

(N)
k =

∆
(N)
k

∆(N)
. (5.23)

The “exact” sequence of Chebyshev coefficients of the function y defined by the input is likewise
given by

y =
s∑

k=1

γkek, γk =
∆k

∆
, (5.24)

where ∆ = det(λi(ej))16i,j6s and ∆j denotes the determinant ∆ with the j-th column replaced by
(`1, . . . , `s)

T.
Our goal is now to prove that γ(N)

k → γk fast as N →∞. We decompose ∆(N) into four blocks
as follows:

∆(N) =

∣∣∣∣∣A B

C D

∣∣∣∣∣ .
159

160 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

The corresponding modified blocks in ∆
(N)
k are denotedAk,Bk, Ck,Dk. Notice that these matrices

depend on N , although we dropped the explicit index for readability.
The blocks A and B (by Lemma 5.3.1) as well as C (since detC → ∆ 6= 0 when n → ∞) are

nonsingular for large N . The Schur complement formula implies that

∆(N) = −det(B) det(C) det(I − C−1DB−1A).

Setting ej = (ej,N , . . . , ej,N+s−1)T, the entry at position (i, j) in the matrix B−1A satisfies

(B−1A)i,j =
det(e−1, . . . , e−i+1, ej , e−i−1, . . . , e−s)

detB

=
(−1)i−1 det(ej , e−1, . . . , ê−i, . . . , e−s)

det(e−1, . . . , e−s)

= O

(
ej,Ne−1,N+1 . . . e−i+1,N+i−1e−i−1,N+i . . . e−s,N+s−1

e−1,Ne−2,N+1 . . . e−s,N+s−1

)
= O

(
Nκ−1+···+κ−i+1−(i−1)κi

ej,N
e−i,N

)
= O

(
ej,N
e−i,N

)
as N → ∞ by Lemma 5.3.1. Given our assumptions on the boundary conditions (5.2), we have
λi,n = On→±∞(nr) in (5.21), so that the entries of D satisfy Di,j = λ

(N)
i (e−j) = O(N re−j,N). This

yields the estimate (DB−1A)i,j = O(N rej,N) for the j-th column of DB−1A. Since

Ci,j = λ
(N)
i (ej) = λi(ej) +O(N rej,N),

we get (C−1DB−1A)i,j = O(N rej,N) as well, and

∆(N) = −det(B) det(C)(1− tr(C−1DB−1A) +O(‖C−1DB−1A‖2))

= −det(B)(∆ +O(N re1,N)).

We turn to the modified determinants ∆k. For k > 0, the same reasoning as above (except
that Ck may now be singular) leads to ∗

∆
(N)
k = −det(B) det(Ck −DB−1Ak)

= −det(B)(det(Ck) +O(N re1,N))

= −det(B)(∆k +O(N re1,N)),

hence

γ
(N)
k =

∆
(N)
k

∆(N)
= γk +O(N re1,N), k > 0. (5.25)

In the case k < 0, write
∆

(N)
k = −det(C) det(Bk −AC−1Dk).

The natural entrywise bounds on A and D yield (C−1Dk)i,j = O(N re−j,N+s−1) and from there

(AC−1Dk)i,j = O(N re1,Ne−j,N+s−1) = o(e−j,N),

so that
(Bk +AC−1Dk)i,j ∼ e−j,N+i−1, j 6= −k.

∗. we even have ∆
(N)
1 = ∆1 +O(Nre2,N)

160

5.3 Computing the Coefficients 161

For j = −k however, the j-th column of Bk is zero and that of Dk is constant, hence

(Bk +AC−1Dk)i,j = O(e1,N), j = −k.

It follows that

det(Bk +AC−1Dk) = O(e−1,N+s−1 · · · ̂ek,N+s−1 · · · e−s,N+s−1 e1,N)

= O

(
N τ det(B)

ek,N
e1,N

)
with τ 6

∑
j 6=k(s− j)κ−j , and

γ
(N)
k =

∆
(N)
k

∆(N)
=

−det(B) det(C)N τ

−det(B) det(C)(1 +O(e1,N))

e1,N

ek,N

= O

(
N τ e1,N

ek,N

)
, k < 0.

(5.26)

Combining (5.23), (5.24) with (5.25), (5.26) finally yields

y(N)
n = yn +O

(
Nmax(r,τ)e1,N

s∑
k=1

(
ek,n +

e−k,n
e−k,N

))

as N →∞, uniformly in n.

5.3.3 Variants

Another popular method for the approximate computation of Chebyshev expansions is Lánc-
zos’ tau method [89, 90]. It has been observed by Fox [64] and later in greater generality (and
different language) by El Daou, Ortiz and Samara [58] that both methods are in fact equivalent, in
the sense that they may be cast into a common framework and tweaked to give exactly the same
result. We now outline how the use of the Chebyshev recurrence fits into the picture. This sheds
another light on Algorithm 5.3.1 and indicates how the Chebyshev recurrence may be used in the
context of the tau method.

As in the previous sections, consider a differential equationL·y = 0 of order r, with polynomial
coefficients, to some solution of which a polynomial approximation of degree d is seeked. Assume
for simplicity that there are no nontrivial polynomial solutions, i.e., (kerL) ∩C[x] = {0}.

In a nutshell, the tau method works as follows. The first step is to compute L · p where p is a
polynomial of degree d with indeterminate coefficients. Since (kerL) ∩C[x] = {0}, the result has
degree greater than d. One then introduces additional unknowns τd+1, . . . , τd+m in such number
that the system

L · p = τd+1Td+1 + · · ·+ τd+mTd+m,

λi(p) = `i, (1 6 i 6 r),
(5.27)

has a (preferably unique) solution. The output is the value of p obtained by solving this system; it
is an exact solution of the projection πd(L · y) = 0 of the original differential equation.

Now let p =
∑d

n=−d pnTn and extend the sequence (τn) by putting τn = 0 for n 6∈ Jd+ 1, d+mK
and τ−n = τn. It follows from (5.27) that P · (pn) = 1

2Q · (τn) where P and Q are the recurrence
operators given by Theorem 5.2.1. Denoting Suppu = {n|un 6= 0}, we also see from the explicit
expression of Q that Supp(Q · τ) ⊆ Jd, d+m+ 1K. Hence the coefficients pn of the result of the tau
method are given by the Chebyshev recurrence, starting from a small number of initial conditions
given near the index |n| = d.

161

162 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

“Conversely,” consider the polynomial ỹ computed in Algorithm 5.3.1 and let v =
∑

n vnTn =
L · ỹ. We have P · ỹ = Q · v by Theorem 5.2.1. But the definition of ỹ in the algorithm also
implies that (P · ỹ)n = 0 when |n| 6 N − s (since the ỹn, |n| 6 N are linear combinations of se-
quences (ti,n)|n|6N recursively computed using the recurrence P ·ti = 0) or |n| > N+s (since ỹn = 0
for |n| > N), so that Supp(Q · v) ⊆ JN − s,N + s− 1K. It can be checked that the recurrence oper-
ator P associated to L = (d

dx)r by Paszkowski’s algorithm is P = δr(n) : indeed, in the language
of [8], it must satisfy Q−1P = I−r. Thus δr(n) · u = Q · v is equivalent to u(r) = v, whence

v(x) =
dr

dxr

∑
|n|>r

(P · ỹ)n
δr(n)

Tn(x) =
∑

N−s6|n|<N+s

(P · ỹ)n
δr(n)

T (r)
n (x). (5.28)

We see that the output ỹ(x) of Algorithm 5.3.1 satisfies an inhomogeneous differential equation of
the form L · ỹ = τN−sT

(r)
n (x) + · · · + τN+s−1T

(r)
n (x). (However, the support of the sequence (vn)

itself is not sparse in general.)
This point of view also leads us to the following observation. In comparison, the best known

arithmetic complexity bound for the conversion of arbitrary polynomials of degree d from the
Chebyshev basis to the monomial basis is O(M(n)), where M stands for the cost of polynomial
multiplication [128, 20].

Proposition 5.3.3. The expression on the monomial basis of the polynomial ỹ(x) returned by Algo-
rithm 5.3.1 may be computed in O(d) arithmetic operations.

Proof. As already mentioned, the Taylor series expansion of a function that satisfies a LODE with
polynomial coefficients obeys a linear recurrence relation with polynomial coefficients. In the case
of an inhomogeneous equation L · u = v, the recurrence operator does not depend on v, and the
right-hand side of the recurrence is the coefficient sequence of v. Now ỹ satisfies L · ỹ = v where v
is given by (5.28). The coefficients (P · ỹ)n/δr(n) of (5.28) are easy to compute from the last few
Chebyshev coefficients of ỹ. One deduces the coefficients vn in linear time by applying repeatedly
the non-homogeneous recurrence relation

T ′n−1(x) = −T ′n+1(x) + 2xT ′n(x) + 2Tn(x) (5.29)

obtained by differentiation of the equation (5.6), and finally those of the expansion of ỹ on the
monomial basis using the recurrence relation they satisfy.

5.4 Chebyshev Expansions of Rational Functions

This section is devoted to the same problems as the remainder of the chapter, only restricted
to the case where y(x) is a rational function. We are interested in computing a recurrence relation
on the coefficients yn of the Chebyshev expansion of a function y, using this recurrence to obtain
a good uniform polynomial approximation of y(x) on [−1, 1], and certifying the accuracy of this
approximation. All this will be useful in the validation part of our main algorithm.

Our primary tool is the change of variable x = 1
2(z + z−1) followed by partial fraction decom-

position. Similar ideas have been used in the past with goals only slightly different from ours, like
the computation of yn in closed form [57, 103]. Indeed, the sequence (yn)n∈N turns out to obey a
recurrence with constant coefficients. Finding this recurrence or a closed form of yn are essentially
equivalent problems. However, we need results regarding the cost of the algorithms that do not
seem to appear in the literature. Our main concern in this respect is to avoid conversions from
polynomial and series from the monomial to the Chebyshev basis and back. We also require sim-
ple error bounds on the result. To summarize, in fact, we are interested in computing a Chebyshev
model for a rational function in a linear time (see Proposition 5.4.6 for the exact formulation of the
result).

162

5.4 Chebyshev Expansions of Rational Functions 163

5.4.1 Recurrence and Explicit Expression

Let y(x) = a(x)/b(x) ∈ Q[x] be a rational function without any pole in [−1, 1]. As usual, we
denote by (yn)n∈Z, (an)n∈Z and (bn)n∈Z the symmetric Chebyshev coefficient sequences of y, a
and b.

Proposition 5.4.1. The Chebyshev coefficient sequence (yn)n∈Z obeys the recurrence relation with constant
coefficients b(1

2(S + S−1)) · (yn) = (an).

Proof. This is actually the limit case r = 0 of Theorem 5.2.1, but a direct proof is very easy: just
write

∞∑
i=−∞

biz
i
∞∑

n=−∞
ynz

n =
∞∑

n=−∞

(∞∑
i=−∞

biyn−i

)
zn =

∞∑
n=−∞

anz
n, x =

z + z−1

2
,

and identify the coefficients of like powers of z.

The recurrence suffers from the existence of divergent solutions and lack of easily accessible
initial values discussed in §5.2. However, we can explicitly separate the positive powers of z from
the negative ones in the Laurent series expansion

ŷ(z) = y
(z + z−1

2

)
=

∞∑
n=−∞

ynz
n, ρ−1 < |z| < ρ, (5.30)

using partial fraction decomposition. From the computational point of view, it is better to start
with the square-free factorization of the denominator of ỹ:

β(z) = zdeg bb

(
z + z−1

2

)
= β1(z)β2(z)2 · · ·βk(z)k (5.31)

and write the full partial fraction decomposition of ŷ(z) in the form

ŷ(z) = q(z) +
k∑
i=1

∑
βi(ζ)=0

i∑
j=1

hi,j(ζ)

(ζ − z)j
, q(z) =

∑
n

qnz
n ∈ Q[z], hi,j ∈ Q(z). (5.32)

The hi,j may be computed efficiently using the Bronstein-Salvy algorithm [30] (see also [72]).
We obtain an identity of the form (5.30) by expanding the partial fractions corresponding to

poles ζ with |ζ| > 1 in power series about the origin, and those with |ζ| < 1 about infinity. The
expansion at infinity of

hi,j(ζ)

(ζ − z)j
=

(−1)jz−jhi,j(ζ)

(1− ζz−1)j

does not contribute to the coefficients of zn, n > 0 in the complete Laurent series. It follows from
the uniqueness of the Laurent expansion of ŷ on the annulus ρ−1 < |z| < ρ that ∗

∞∑
n=0

ynz
n = q(z) +

k∑
i=1

∑
βi(ζ) = 0

|ζ| > 1

i∑
j=1

hi,j(ζ)

(ζ − z)j
. (5.33)

∗. To prevent confusion, it may be worth pointing out that in the expression

ỹ(z) = q(z) +

k∑
i=1

∑
βi(ζ) = 0

|ζ| > 1

i∑
j=1

(
hi,j(ζ)

(ζ − z)j +
hi,j(ζ

−1)

(ζ−1 − z)j)

the Laurent expansion of a single term of the form hi,j(ζ)

(ζ−z)j +
hi,j(ζ

−1)

(ζ−1−z)j is not symmetric for j > 1, even if q(z) = 0.

163

164 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

We now extract the coefficient of zn in (5.33) and use the symmetry of (yn)n∈Z to get an explicit
expression of yn in terms of the roots of b(1

2(z + z−1)).

Proposition 5.4.2. The coefficients of the Chebyshev expansion y(x) =
∑∞

n=−∞ y|n|Tn(x) are

yn = qn +

k∑
i=1

i∑
j=1

∑
βi(ζ) = 0

|ζ| > 1

(
n+ j − 1

j − 1

)
hi,j(ζ)ζ−n−j (n > 0) (5.34)

where the qn ∈ Q, βi ∈ Q[z] and hi,j ∈ Q(z) are defined in Equations (5.31) and (5.32).

Note that (5.33) also yields a recurrence of order deg b on (yn)n∈N, instead of 2 deg b for that
from Proposition 5.4.1, but now with algebraic rather than rational coefficients in general. Besides,
we can now explicitly bound the error in truncating the Chebyshev expansion of y.

5.4.2 Bounding the truncation error

Proposition 5.4.3. Let y ∈ Q(x) have no pole within the elliptic disk ε̄ρ (cf. Definition 4.2.19). Assume
again the notations from (5.31) and (5.32). For all d > deg q, it holds that

‖
∑
n>d

ynTn‖∞ 6
k∑
i=1

i∑
j=1

∑
βi(ζ) = 0

|ζ| > 1

|hi,j(ζ)|(d+ 2)j−1

(|ζ| − 1)j
|ζ|−d−1 = O(ddeg bρ−d).

Proof. We have ‖
∑

n>d ynTn‖∞ 6
∑

n>d|yn| because ‖Tn‖∞ 6 1 for all n. Using the inequality

∑
n>d

(
n+ j − 1

j − 1

)
tn+j 6 (d+ 2)j−1td+1

∞∑
n=0

(
n+ j − 1

j − 1

)
tn+j =

(d+ 2)j−1td+j+1

(1− t)j

for t < 1, the explicit expression from Proposition 5.4.2 yields

∑
n>d

|yn| 6
∑
n>d

k∑
i=1

i∑
j=1

∑
βi(ζ)=0
|ζ|>1

(
n+ j − 1

j − 1

)
|hi,j(ζ)||ζ|−n−j (5.35)

6
k∑
i=1

i∑
j=1

∑
βi(ζ)=0
|ζ|>1

|hi,j(ζ)|(d+ 2)j−1

(|ζ| − 1)j
|ζ|−d−1. (5.36)

The asymptotic estimate follows since |ζ| > 1 actually implies |ζ| > ρ when b(1
2(ζ + ζ−1)) = 0.

5.4.3 Computation

There remains to check that the previous results really translate into a linear time algorithm.
We first state a lemma regarding polynomial division with remainder. The naïve algorithm for this
task [166, Algorithm 2.5] runs in linear time with respect to the degree of the dividend when the
divisor is fixed. Its input and output are usually represented by their coefficients on the monomial
basis, but the algorithm is easily adapted to work on other polynomial bases.

Lemma 5.4.4. The division with remainder a = bq + r (deg r < deg b) where a, b, q, r ∈ Q[x] are
represented on the Chebyshev basis may be performed in O(deg a) operations for fixed b.

164

5.4 Chebyshev Expansions of Rational Functions 165

Proof Assume n = deg a > deg b = m. The naïve polynomial division algorithm mainly relies on
the fact that deg(a−b−1

m anx
n−mb) < nwhere a =

∑
i aix

i and b =
∑

i bix
i. From the multiplication

formula 2TnTm = Tn+m + Tn−m follows the analogous inequality deg(a − 2b−1
m anTn−mb) < n

where ak, bk now denote the coefficients of a and b on the Chebyshev basis. Performing the
whole computation on that basis amounts to replace each of the assignments a← a− b−1

m anx
n−mb

repeatedly done by the classical algorithm by a← a− 2b−1
m anTn−mb. Since the polynomial Tn−mb

has at most 2m nonzero coefficients, each of these steps takes constant time with respect to n. We
do at most n−m such assignments, hence the overall complexity is O(n). �

Remark 5.4.5. For completeness, we recall that the "naive" product represented in Chebyshev basis, of two
polynomials in Chebyshev basis a, b ∈ Q[x] can be performed in O((deg a)(deg b)) operations (see (4.37)).

Algorithm

Algorithm: ChebExpandRatFrac(y, f, ε)1

Input: Coefficients of the polynomial f =
∑d

i=−d f̃iTi(x) of degree d in Chebyshev basis,
a rational fraction y(x) = a(x)/b(x),
an error bound ε.
Output: Coefficients of an approximation ỹ(x) =

∑k
i=−k ỹiTi(x) of fy, such that

‖ỹ − fy‖∞ 6 ε
Procedure:2

1 convert a and b to Chebyshev basis;
2 compute the polynomial g = af in Chebyshev basis;
3 compute the quotient q and the remainder r with euclidean division of g by b;

4 compute the partial fraction decomposition of ŵ(z) = w(x) = r(x)/b(x), where x = z+z−1

2
using Bronstein-Salvy Algorithm and obtain that of ŷ(z) = q(x) + w(x) (cf. (5.32));

5 find d′ > deg q such that
∥∥∥∥ ∑
n>d′

ynTn

∥∥∥∥
∞
6 ε/4 using Proposition 5.4.3;

6 compute ρ− and ρ+ such that βi(ζ) = 0 ∧ |ζ| > 1⇒ 1 < ρ− 6 |ζ| 6 ρ+;

7 compute M >
∑k

i=1

∑i
j=1 j(deg βi) sup

ρ−6|ζ|6ρ+

(
|h′i,j(ζ)|+ |ζ−1hi,j(ζ)|

)
ρ−
−j ;

8 ε′ := min
(
ρ− − 1,M−1

(
1− ρ−1

−
)D+1 ε

4

)
, with D = deg b;

9 compute approximations ζ̃ ∈ Q[i] of the roots ζ of βi such that
∣∣∣ζ̃ − ζ∣∣∣ < ε′;

10 for 0 6 n 6 d′

11 ỹn = qn + Re

 k∑
i=1

i∑
j=1

∑
βi(ζ) = 0

|ζ| > 1

(
n+j−1
j−1

)
hi,j(ζ̃)ζ̃−n−j

;

12 return

ỹ(x) =

d′∑
n=−d′

ỹnTn(x)

Algorithm 5.4.1: Linear time computation of Chebyshev models for rational functions

165

166 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

Proposition 5.4.6. Algorithm 5.4.1 is correct. Its arithmetic complexity is O(d + log(ε−1)), all the other
parameters being fixed.

Proof. Firstly, we prove that ‖ỹ − y‖∞ 6 ε.
Let A = {ζ : ρ− 6 |ζ| 6 ρ+} and M0 = sup

ζ∈A
|h′i,j(ζ)|, M1 = sup

ζ∈A
|ζ−1hi,j(ζ)|.

For all ζ ∈ A,∣∣∣(hi,j(ζ)ζ−n−j
)′∣∣∣ 6 (M0 + (n+ j)M1) |ζ|−n−j 6 (n+ j)(M0 +M1)ρ−n−j− . (5.37)

From Proposition 5.4.2, observing that condition |ζ − ζ̃| < ρ− − 1 implies that
[
ζ, ζ̃
]
⊆ A, and

using (5.37), we have:

|yn − ỹn| 6
k∑
i=1

i∑
j=1

∑
βi(ζ) = 0

|ζ| > 1

(
n+ j − 1

j − 1

) ∣∣∣hi,j(ζ)ζ−n−j − hi,j(ζ̃)ζ̃−n−j
∣∣∣

6
k∑
i=1

i∑
j=1

j(deg βi)

(
n+ j

j

)
(M0 +M1) ρ−

−n−jε′

6M

(
n+D

D

)
ρ−
−nε′.

Whence,

‖yn − ỹn‖∞ 6
d′∑

n=−d′
|yn − ỹn|+ 2

∥∥∥∥∥∑
n>d′

ynTn

∥∥∥∥∥
∞

6
2Mε′

(1− ρ−1
−)D+1

+ 2
ε

4
6 ε.

Complexity analysis. It is easy to see that steps 1, 4-8 have a constant cost. Steps 2 and 3 are in
O(d), using Lemma 5.4.4 and Remark 5.4.5. For step 9, it is known [127, Theorem 1.1(d)] that the
roots of a polynomial with integer coefficients can be approximated with of absolute accuracy η in
O(η−1) arithmetic operations. We note that the binary complexity of the algorithm is also almost
linear with respect to ε−1. Since M does not depend neither on ε nor on d, we have ε′ = Ω(ε) and
hence step 9 is in O(ε−1). Finally each iteration of the loop has a constant cost by keeping track of
the values ζ̃−n from one iteration to another.

5.5 Error Bounds / Validation

In this section we assume that we have already computed (see Algorithm 5.3.1) a polynomial
p(x) =

∑d
n=0 ỹnTn(x) of degree d, which is an approximate solution for a D-finite function y,

specified by a LODE and suitable boundary conditions. As stated in our goal in Introduction,
we are now interested in computing a “small” bound B such that |y(x) − p(x)| 6 B for all x ∈
[−1, 1]. The main idea for computing this bound, is to use an interval method, also called validated
or verified method for ODE (see the reviews given in [122, 45] for example). We note that in
general these methods are based on interval Taylor series expansions, but here we have a simple
adaptation to validate solutions in Chebyshev basis. We use the Picard-Lindelöf iteration map,
defined in the space of continuous functions u : [−1, 1]→ R by:

τ(u)(t) = y0 +

t∫
t0

f(u(s), s)ds. (5.38)

166

5.5 Error Bounds / Validation 167

It is classical (see [Chap. 15] [151]) that if f satisfies a Lipschitz condition in its first variable, then
τ has a unique fixed point y, solution of the associated ODE, with the initial condition y(t0) = y0.

For the sake of simplicity, we initially present our method for the case of an order 1 linear
differential equation with polynomial coefficients, then we show how we can use this method to
give a more general algorithm for linear differential equation of order r.

Algorithm: ValidateOrder-1(L, y(t0) = y0, p,M)1

Input: an order 1 differential operator L (written in suitable form L · y = y′ − a · y, with
a ∈ Q(x)),

an initial condition y(t0) = y0,
an approximation polynomial p(x) =

∑d
n=0 ỹnTn(x) for y,

an error bound M that will be used in Algorithm 5.4.1.
Output: an error bound B s.t. ‖y − p‖∞ 6 B
Procedure:2

1 P0 := p;

2 Find j such that γj(t) := ‖a‖∞
j · |t−t0|

j

j! < 1;
3 For i = 1 . . . j

4 use Algorithm 5.4.1 to compute an approximation polynomial Pa,i for a · Pi−1 such that
‖Pa,i − a · Pi−1‖∞ 6M ;

5 compute Pi(t) := y0 +
t∫
t0

Pa,i(x)dx;

6 Compute αj(t) := M ·
j∑

k=1

‖a‖∞
k−1 |t−t0|k

k! , βj(t) := Pj(t)− P0(t);

7 Return R∗j =
‖αj‖∞+‖βj‖∞

1−‖γj‖∞
.

Algorithm 5.5.1: Linear time validation of a numerical polynomial solution in Chebyshev
basis for an order 1 LODE.

Order 1 LODE with polynomial coefficients

Proposition 5.5.1. Given a linear differential equation with polynomial coefficients of order 1, a boundary
condition and a polynomial approximation p of degree d of the unique solution y of the differential equation,
Algorithm 5.5.1 computes an upper-bound B of ‖y − p‖∞ in O(d) arithmetic operations.

We first prove the correctness of the algorithm. The idea of this algorithm is to iterate, starting
with the initial approximation p, the unique fixed point of the operator

τ(u)(t) = y0 +

t∫
t0

a(s) · u(s)ds,with a ∈ Q(s), (5.39)

which is also the solution of the differential operator L described in the input of the algorithm, in
order to construct a convergent sequence of valid upper-bounds for ‖y − p‖∞, whose limit is the
returned bound B.

Lemma 5.5.2. Using the notations of Algorithm 5.5.1, for all upper-bounds R > 0, ‖y − p‖∞ ≤ R,
Sk,i(R) defined, for all integers i, by

S0,i(R) = ‖αi‖∞ + ‖βi‖∞ + ‖γi‖∞R,
Sk,i(R) = ‖αi‖∞ + ‖βi‖∞ + ‖γi‖∞ Sk−1,i(R), k ∈ N∗,

(5.40)

167

168 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

is also an upper-bound of ‖y − p‖∞.

Proof. Let p be a polynomial and R an upper-bound for ‖y − p‖∞. Using (5.39) we construct
successive approximations Pi(t) as described in lines 4−5 of Algorithm 5.5.1 with the initialization
P0 = p. We also compute through simple integration valid bounds of |y(t)− Pi(t)|:

Ri(t) := M
i∑

k=1

‖a‖∞
k−1 |t− t0|k

k!
+ ‖a‖∞

iR
|t− t0|i

i!
, t ∈ [−1, 1], i ≥ 1. (5.41)

We verify this bound with an induction and the following triangular inequality:

|y(t)− Pi+1(t)| ≤ |y(t)− τ(Pi)(t)|+ |τ(Pi)(t)− Pi+1(t)|

≤
∣∣∣∣∫ t

t0

a(s)Ri(s)ds

∣∣∣∣+

∣∣∣∣∫ t

t0

Mds

∣∣∣∣
≤ Ri+1(t).

Hence, for each t ∈ [−1, 1] and each integer i, we have:

|y(t)− p(t)| ≤ |y(t)− Pi(t)|+ |Pi(t)− p(t)|.

It follows that ‖y − p‖∞ 6 ‖αi‖∞+‖βi‖∞+‖γi‖∞R. With an induction over k, we deduce the
lemma.

This lemma is the main idea of our algorithm, since it allows us to obtain sequences of upper-
bounds for ‖y − p‖∞.

Lemma 5.5.3. For all integer j such that ‖γj‖∞ < 1, we have the following limit:

lim
k→∞

Sk,j(R) =
‖αj‖∞ + ‖βj‖∞

1− ‖γj‖∞
.

Proof. Using Lemma 5.5.2, an induction over k and the equation 5.40, we prove the equality:

Sk,j(R) =
k−1∑
i=0

((‖αj‖∞ + ‖βj‖∞)‖γj‖∞
i) + ‖γj‖∞

kR.

Knowing the convergence of a geometric series and the inequality ‖γj‖∞ < 1, we deduce:

lim
k→∞

Sk,j(R) =
‖αj‖∞ + ‖βj‖∞

1− ‖γj‖∞
.

Proof of Proposition 5.5.1. Algorithm 5.5.1 computes an integer j such that ‖γj‖∞ < 1, from previ-
ous lemmata, it follows that ‖y − p‖∞ 6 R∗j and hence the value returned by Algorithm 5.5.1 is
correct.

Dependencies of this algorithm in d are given by the call of Algorithm 5.4.1. Moreover, each
loop iterations takes O(d) operations and the number of loop iterations does not depend on d.
Hence, the complexity analysis of this algorithm is well O(d) arithmetic operations.

168

5.5 Error Bounds / Validation 169

Quality of the validated bound.

Lemma 5.5.4. Let ε∗ = ‖y − p‖∞, B =
‖αj‖∞+‖βj‖∞

1−‖γj‖∞
. We have:

ε∗ 6 B 6
2 ‖αj‖∞ + (1 + ‖γj‖∞)ε∗

1− ‖γj‖∞
.

Proof. We have ‖βj‖∞ = ‖Pj − p‖∞ 6 ‖y − Pj‖∞ + ‖y − p‖∞. Using (5.41) with R = ε∗ we have:
‖βj‖∞ 6 ‖αj‖∞ + (1 + ‖γj‖∞)ε∗.

Remark 5.5.5. Since ‖αj‖∞ can be made as small as desired, suppose that ‖αj‖∞ 6 µMε
∗. We can

compute the uniform norm with a relative error:∣∣∣∣ε∗ −Bε∗

∣∣∣∣ 6 2(µM + ‖γj‖∞)

1− ‖γj‖∞
.

The generalization to order r LODE is pretty straightforward. We give below the algorithm
and its correction.

Algorithm: ValidateOrder-r(L, {y(i)(t0) = y
(i)
0 }

r−1
i=0 , p,M)1

Input: an order r differential operator L (written in suitable form
L · y = y(r) −

(
ar−1y

(r−1) + · · ·+ a0y
)
, with ai ∈ Q(x)),

and suitable initial values conditions {y(i)(t0) = y
(i)
0 }

r−1
i=0 ,

an approximation polynomial p(x) =
∑d

n=0 ỹnTn(x) for y,
an error bound M that will be used in Algorithm 5.4.1.
Output: an error bound B s.t. ‖y − p‖∞ 6 B
Procedure:2

1 Pr−1,0 := p(r−1); A := max{‖ai‖∞ , i = r − 1 . . . 0}; Q :=

∥∥∥∥r−1∑
i=0

|t−t0|i
i!

∥∥∥∥
∞

;

2 Find j such that γj(t) := Aj ·Qj · |t−t0|
j

j! < 1.

3 For i = 0 . . . j − 1

4 For k = r − 2 . . . 0 compute Pk,i(t) := y(k)(t0) +
t∫
t0

Pk+1,i(u)du

5 For k = r − 1 . . . 0 use Algorithm 5.4.1 to compute approximations polynomials Pak,i for
ak · Pk,i such that ‖Pak,i − ak · Pak,i‖∞ ≤M

6 compute Pr−1,i+1(t) := y(r−1)(t0) +
t∫
t0

r−1∑
k=0

Pak,i(u)du;

7 Compute αj(t) := rM ·
j∑

k=1

Ak−1Qk−1 |t−t0|k
k! , βj(t) := Pr−1,j(t)− Pr−1,0(t);

8 Compute R∗j =
‖αj‖∞+‖βj‖∞

1−‖γj‖∞
(R∗j is already a valid error bound for

∥∥y(r−1) − Pr−1,0

∥∥
∞);

9 Return B = R∗j ·
|t−t0|r−1

(r−1)! + ‖P0,0 − p‖∞.

Algorithm 5.5.2: Linear time validation of a numerical polynomial solution in Chebyshev
basis for an order r LODE.

Order r LODE with polynomial coefficients

169

170 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

Proposition 5.5.6. Let L an order r differential operator, written in suitable form L · y = y(r) −(
ar−1y

(r−1) + · · ·+ a0y
)
, with ai ∈ Q(x), and suitable initial values conditions y(i)(t0) = y

(i)
0 , y the

unique solution of L · y = 0 and p(x) =
∑d

n=0 ỹnTn(x) an approximation polynomial of degree d for y.
Algorithm 5.5.1 computes a “small” bound B such that ‖y − p‖∞ 6 B in O(d) arithmetic operations.

Proof. Correction of the algorithm.
The generalization of Algorithm 5.5.1 is based on applying (5.38), for validating an approxi-

mation of y(r−1):

τ(ur−1)(t) = y
(n−1)
0 +

t∫
t0

(
ar−1(s)u(r−1)(s) + · · ·+ a0(s)u(s)

)
ds, (5.42)

where ai ∈ Q(x).
Since we are given a numerical approximation polynomial p for y, we can compute numer-

ically its r − 1 derivative Pr−1,0 = p(r−1). We initially compute in lines 1 − 8 a validated error
bound R∗j ≥

∥∥y(r−1) − Pr−1,0

∥∥
∞ (this is discussed below). From that, we can easily deduce, by

r − 1 successive validated integrations of Pr−1,0, the polynomial P0,0 and validated error bound
‖P0,0 − y‖∞ ≤ R

∗
j ·
|t−t0|r−1

(r−1)! .
Hence, we can bound the error ‖y − p‖∞ ≤ ‖y − P0,0‖∞ + ‖p− P0,0‖∞ .
Now, let us detail the lines 1 − 8. The correction proof is similar to that of Algorithm 5.5.1,

noting that when the order of the equation is greater than 1, we have to work not only with a poly-
nomial approximation of y, but also with polynomial approximations of derivatives y′, . . . , y(r−1).
The only significant change is that one can show by computation that in this case, (5.41) becomes:

Rr−1,j(t) := rM ·
j∑

k=1

(
Ak−1Qk−1 · |t− t0|

k

k!

)
+Aj ·Qj ·Rr−1 ·

|t− t0|j

j!
, j ≥ 1 (5.43)

where A,Q,M are defined in Algorithm 5.5.2, and Rr−1 > 0 is a bound for the error between
y(r−1) and p(r−1).

5.6 Discussion and future work.

The algorithms we presented validate only initial value LODE. Our initial setting included
also boundary values problems. From a theoretical point of view, we could extend these algo-
rithms to handle boundary values problems in two ways:

– Since the dimension of the space of solutions ofL is r, we can compute and validate r linearly
independent solutions y0 = (p0, B0), . . . , yr−1 = (pr−1, Br−1) of initial values problems using
Algorithm 5.3.1 and 5.5.2. Then, our solution is a linear combination of these r solutions

y =
r−1∑
i=0

ciyi. We can rigorously find ci by solving in interval arithmetic the linear system

given by the boundary conditions {λi(y) = `i}ri=1. The complexity of this approach would
still be linear in function of the degree d of the polynomial searched.

– Another possibility would be to construct fixed point operators based directly on the bound-
ary conditions. One issue we should consider in this case is whether we can prove that these
operators are contracting. We are currently exploring these two methods.

In this setting also, we intend to extend this work to other families of orthogonal polynomials.
Another exploratory idea would be to try to use this work as a basic brick in a process of solving
non-linear ODE using a linearization method such as Newton’s method.

170

5.7 Experiments 171

Now, we give below experimental results obtained with our prototype implementation (writ-
ten in Maple). Our implementation is not yet tuned and it is highly probable that timings will be
improved.

5.7 Experiments

First, Algorithm 5.3.1 is used to compute a numerical solution, then Algorithm 5.5.2 computes
the validated bound. For the following three examples, we plot in the respective figures the error
between the exact solution and the polynomial computed using Algorithm 5.3.1 for degrees d ∈
30, 60, 90. In Table 5.1 we give timings and validated bounds using Algorithm 5.5.1 and 5.5.2.

Example 5.7.1. Example adapted from [84]:

(−x− 15)y(x) + (32 + 2x)y′(x) = 0, y(0) = 1/
√

16 (5.44)

with the exact solution:

y(x) =
ex/2√
x+ 16

(5.45)

Example 5.7.2. Fourth order initial value problem taken from [68].

y(4)(x)− y(x) = 0, y(0) = 3/2, y′(0) = −1/2, y′′(0) = −3/2, y′′′(0) = 1/2, (5.46)

with the exact solution:
y(x) = 3/2 cos(x)− 1/2 sin(x). (5.47)

Example 5.7.3. Initial value problem for a function that has complex singularities in z = ±
√

2/2, note
also that the initial condition is not rational.

4xy(x) + (1 + 4x2 + 4x4)y′(x) = 0, y(0) = exp(1), (5.48)

with the exact solution:
y(x) = exp(1/(1 + 2x2)). (5.49)

Ex. Deg. d
Timings (s)

Validated Bound
Timings (s)

Algorithm 5.3.1 Validation Algorithm

5.7.1
30 0.09 0.20 · 10−46 0.57

60 0.09 0.73 · 10−96 1.17

90 0.096 0.44 · 10−141 1.74

5.7.2
30 0.10 0.78 · 10−40 0.76

60 0.116 0.45 · 10−98 1.8

90 0.116 0.35 · 10−163 3.9

5.7.3
30 0.10 0.15 · 10−6 2.2

60 0.104 0.26 · 10−14 13.3

90 0.108 0.32 · 10−22 20.9

Table 5.1: Timings and validated bounds for Examples 5.7.1, 5.7.2, 5.7.3.

In general, we do not know the closed form solution of LODEs with polynomial coefficients, so
we deem it interesting to provide as an example the certified plot of the solution using the following

171

172 Chapter 5. Rigorous Uniform Approximation of D-finite Functions

–4e–52

–2e–52

2e–52

4e–52

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(a) d = 30

–2e–97

–1e–97

1e–97

2e–97

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(b) d = 60

–1.5e–142

–1e–142

–5e–143

5e–143

1e–142

1.5e–142

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(c) d = 90

Figure 5.2: Approximation errors for Example 5.7.1.

–8e–44

–6e–44

–4e–44

–2e–44

2e–44

4e–44

6e–44

8e–44

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(a) d = 30

–1e–102

–5e–103

0

5e–103

1e–102

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(b) d = 60

–4e–168

–2e–168

0

2e–168

4e–168

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(c) d = 90

Figure 5.3: Approximation errors for Example 5.7.2.

–4e–08

–3e–08

–2e–08

–1e–08

1e–08

2e–08

3e–08

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(a) d = 30

–1e–15

–8e–16

–6e–16

–4e–16

–2e–16

0

2e–16

4e–16

6e–16

8e–16

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(b) d = 60

–1e–23

–5e–24

0

5e–24

1e–23

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

(c) d = 90

Figure 5.4: Approximation errors for Example 5.7.3.

172

5.7 Experiments 173

method: first, Algorithm 5.3.1 is used to compute a numerical solution ỹ, then Algorithm 5.5.2
computes the validated boundB. Finally, we consider a partition of the function domain [−1, 1] =⋃
i=J0,n−1K,
x0=−1, xn=1

[xi, xi+1] and evaluate using interval arithmetic ỹ([xi, xi+1])+B ⊇ y([xi, xi+1]), for each

i. These intervals provide a piecewise enclosure of the image of y.

Example 5.7.4. Certified plots of D-finite functions.

(x2 + 16)y′′(x) + (3x2 − x+ 2)y′(x) + (5x+ 1)y(x) = 0, y(0) = 1, y′(0) = 0. (5.50)

(60x2 + 75 + 9x4)y(x) + (−4x3 − 12x)y′(x) + (x4 + 6x2 + 9)y′′(x), y(0) = 3, y′(0) = 0. (5.51)

0.94

0.96

0.98

1

1.02

–1 –0.5 0 0.5 1

(a) (5.50)

–4

–3

–2

–1

0

1

2

3

–1 –0.5 0.5 1

(b) (5.51)

Figure 5.5: Certified plots for Example 5.7.4.

173

6 CHAPTER 6

Automatic Generation of
Polynomial-based Hardware

Architectures for Function Evaluation

Look engineers. All we’re asking for is an infinite number of
transistors on a finite-sized chip. You can’t even do that? ∗

We present a practical application of RPAs to the synthesis of elementary functions in hard-
ware. The main motivation of this work is to facilitate the implementation of a full hardware
mathematical library (libm) in FloPoCo †, a core generator for high-performance computing on
Field Programmable Gate Arrays (FPGAs).

This chapter details an architecture generator that inputs the specification of a univariate func-
tion and outputs a synthesizable description of an architecture evaluating this function with guar-
anteed accuracy. It improves upon the literature in two aspects. Firstly, it uses better polynomials,
thanks to recent advances related to constrained-coefficient polynomial approximation. Secondly,
it refines the error analysis of polynomial evaluation to reduce the size of the multipliers used.

An open-source implementation is provided in the FloPoCo project, including architecture
exploration heuristics designed to use efficiently the embedded memories and multipliers of high-
end FPGAs. High-performance pipelined architectures for precisions up to 64 bits can be obtained
in seconds.

This is a joint work [46] with Florent de Dinechin and Bogdan Pasca.

6.1 Introduction and motivation

In this work, we deal also with univariate real functions f : [a, b] → R which are assumed
to be sufficiently smooth, i.e. continuously differentiable on the interval [a, b] up to a certain order.
We are interested in a hardware fixed-point implementation of this function over this interval.
The literature provides many examples of such functions for which a hardware implementation
is required.

– Fixed-point sine, cosine, exponential and logarithms are routinely used in signal processing
algorithms.

– Random number generators with a Gaussian distribution may be built using the Box-Muller
method, which requires logarithm, square root, sine and cosine [92]. Arbitrary distributions
may be obtained by the inversion method, in which case one needs a fixed-point evaluator

∗. Dark Discussions at Cafe Infinity, using calculators as proof, http://www.mathisfunforum.com/
†. www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

176
Chapter 6. Automatic Generation of Polynomial-based Hardware Architectures for Function

Evaluation

for the inverse cumulative distribution function (ICDF) of the required distribution [34].
There are as many ICDF as there are statistical distributions.

– Approximations of the inverse 1/x and inverse square root 1/
√
x functions are used in recent

floating-point units to bootstrap division and square root computation [101].
– flog(x) = log(x + 1/2)/(x − 1/2) over [0, 1], and fexp(x) = ex − 1 − x over [0, 2−k] for some

small k, are used to build hardware floating-point logarithm and exponential in [53].

– fcos(x) = 1 − cos
(
π
4x
)
, and fsin(x) = π

4 −
sin(π4 x)

x over [0, 1], are used to build hardware
floating-point trigonometric functions in [52].

– s2(x) = log2(1 + 2x) and d2(x) = log2(1 + 2x) are used to build adders and subtracters in the
Logarithm Number System (LNS), and many more functions are needed for Complex LNS
[4].

Many function-specific algorithms exist, for example variations on the CORDIC algorithm pro-
vide low-area, long-latency evaluation of most elementary functions [117]. Our purpose here is to
provide a generic method, that is a method that works for a very large class of functions. The main
motivation of this work is to facilitate the implementation of a full hardware mathematical library
(libm) in FloPoCo, a core generator for high-performance computing on FPGAs ∗. We present a
complete implementation in this context, however, most of the methodology is independent of
the FPGA target and could apply to other hardware targets such as ASIC circuits.

6.1.1 Related work and contributions

Articles describing specific polynomial evaluators are too numerous to be mentioned here, and
we just review works that describe generic methods.

Several table-based, multiplier-less methods for linear (or degree-1) approximation have
evolved from the original paper by Sunderland et al [155]. See [50] or [117] for a review. These
methods have very low latency but do not scale well beyond 20 bits: the table sizes scale expo-
nentially, and so does the design-space exploration time.

The High-Order Table-Based Method (HOTBM) by Detrey and de Dinechin [51] extended the
previous methods to higher-degree polynomial approximation. An open-source implementation
is available in FloPoCo. However it is not suited to recent FPGAs with powerful DSP blocks and
large embedded memories. In addition, it doesn’t scale beyond 32 bits.

Lee et al [93] have published many variations on a generic datapath optimization tool called
MiniBit to optimize polynomial approximation. They use ad-hoc mixes of analytical techniques
such as interval analysis, and heuristics such as simulated annealing to explore the design space.
However, the design space explored in these articles does not include the architectures we describe
in the present paper: All the multipliers in these papers are larger than strictly needed, therefore
they miss the optimal. In addition, this tool is closed-source and difficult to evaluate from the
publications, in particular it is unclear if it scales beyond 32 bits.

Tisserand studied the optimization of low-precision (less than 10 bits) polynomial evalua-
tors [157]. He finetunes a rounded minimax approximation using an exhaustive exploration of
neighboring polynomials. He also uses other tricks on smaller (5-bit or less) coefficients to replace
the multiplication by such a coefficient by very few additions. Such tricks do not scale to larger
precisions.

Compared to these publications, the present work has the following distinctive features.
– This approach scales to precisions of 64 bits or more, while being equivalent or better than

the previous approaches for smaller precisions.

∗. www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

176

www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

6.2 Function evaluation by polynomial approximation 177

Family Multipliers

Virtex II to Virtex-4 18x18 signed or 17x17 unsigned
Virtex-5/Virtex-6 18x25 signed or 17x24 unsigned
Stratix II/III/IV 18x18 signed or unsigned

Table 6.1: Multiplier blocks in recent FPGAs

Approximation
generation

CodeEvaluation

optimizer

VHDL

compute approximation error
compute evaluation error

function

degree εapprox

coeff tables
architecture
parameters

precision

increase the gπj and gyjvary coefficient sizes
increase k

Figure 6.1: Automated implementation flow

– We use for polynomial approximation minimax polynomials provided by the Sollya tool ∗,
which is the state-of-the-art for this application, as detailed in Section 6.2.2.

– We attempt to use the smallest possible multipliers. As others, we attempt to minimize the
coefficient sizes. In addition, we also truncate, at each computation step, the input argu-
ment to the bare minimum of bits that are needed at this step. Besides, we use truncated
multipliers [169, 5] in order to further reduce resource consumption.

– This approach is fully automated, from the parsing of an expression describing the function
to VHDL generation. An open-source implementation is available as the FunctionEvaluator
class in FloPoCo, starting with version 2.0.0. This implementation is fully operational, to the
point that Table 6.2 was obtained in less one hour.

– The resulting architecture evaluates the function with last-bit accuracy. It may be automati-
cally pipelined to a user-specified frequency thanks FloPoCo’s pipelining framework [47].

6.1.2 Relevant features of recent FPGAs

Here are some of the features of recent FPGAs that can be used in polynomial evaluators.
– Embedded multipliers features are summed up in Table. 6.1 It is possible to build larger

multipliers by assembling these embedded multipliers. The DSP blocks include specific
adders and shifters designed for this purpose [5].

– Memories have a capacity of 9Kbit or 144Kbit (Altera) or 18Kbit (Xilinx) and can be config-
ured in shape, for instance from 216 × 1 to 29 × 36 for the Virtex-4.

A given FPGA typically contains a comparable number of memory blocks and multipliers. It
therefore makes sense to try and balance the consumption of these two resources. However, the
availability of these resources also depends on the wider context of the application, and it is even
better to expose a range of trade-offs between them.

6.2 Function evaluation by polynomial approximation

We recall that for evaluating a function in hardware, it is usual to replace it by an approxi-
mation polynomial, in order to reduce this evaluation to additions and multiplications. For these

∗. http://sollya.gforge.inria.fr/

177

http://sollya.gforge.inria.fr/

178
Chapter 6. Automatic Generation of Polynomial-based Hardware Architectures for Function

Evaluation

operations, we can either build architectures (in FPGAs or ASICs), or use built-in operators (in
processors or DSP-enabled FPGAs).

Building a polynomial-based evaluator for a function may be decomposed into two subprob-
lems: 1/ approximation: finding a good approximation polynomial, and 2/ evaluation: evaluating
it using adders and multipliers. The smaller the input argument, the better these two steps will
behave, therefore a range reduction may be applied first if the input interval is large.

We now discuss each of these steps in more detail, to build the implementation flow depicted
on Figure 6.1. In this paper we will consider, without loss of generality, a function f over the input
interval [0, 1).

In our implementation, the user inputs a function (assumed on [0, 1), the input and output
precisions, both expressed as least significant bit (LSB) weight, and the degree d of the polynomials
used. This last parameter could be determined heuristically, but we leave it as a means for the user
to trade-off multipliers and latency for memory size.

6.2.1 Range reduction

In this work, we use the simple range reduction that consists in splitting the input interval in
2k sub-intervals, indexed by i ∈ {0, 1, ..., 2k−1}. The index imay be obtained as the leading bits of
the binary representation of the input: x = 2−ki+y with y ∈ [0, 2−k). This decomposition comes at
no hardware cost. We now have ∀i ∈ {0, . . . , 2k−1} f(x) = fi(y), and we may approximate each
fi by a polynomial pi. A table will hold the coefficients of all these polynomials, and the evaluation
of each polynomial will share the same hardware (adders and multipliers), which therefore have
to be built to accommodate the worst-case among these polynomials. Figure 6.3 describes the
resulting architecture.

Compared to a single polynomial on the interval, this range reduction increases the storage
space required, but decreases the cost of the evaluation hardware for two reasons. First, for a given
target accuracy εtotal, the degree of each of the pi decreases with k. There is a strong threshold effect
here, and for a given degree there is a minimal k that allows to achieve the accuracy. Second, the
reduced argument y has k bits less than the input argument x, which will reduce the input size
of the corresponding multipliers. If we target an FPGA with DSP blocks, there will also be a
threshold effect here on the number of DSP blocks used.

Many other range reductions are possible, most related to a given function or class of functions,
like the logarithmic segmentation used in [34]. For an overview, see Muller [117]. Most of our
contributions are independent of the range reduction used.

6.2.2 Polynomial approximation

We recall that in this case the coefficients of the approximation polynomial have to be machine
efficient. We already saw that coefficients of well-known approximation polynomials like Taylor,
Chebyshev or minimax can be obtained with very high precision in practice, using various numer-
ical methods. So naively, the best polynomial to use would be the one obtained by rounding each
coefficient of the minimax polynomial to smaller-precision numbers suitable for efficient evalua-
tion to the machine representable format. On a processor, one will typically try to round to single-
or double-precision numbers. On an FPGA, we may build adders and multipliers of arbitrary size,
so we have one more question to answer: what is the optimal size of these coefficients? In [93],
this question is answered by an error analysis that considers separately the error of rounding each
coefficient of the minimax polynomial (considered as a real-coefficient one) and tries to minimize
the bit-width of the rounded coefficients while remaining within acceptable error bounds.

However, there is no guarantee that the polynomial obtained by rounding the coefficients of
the real minimax polynomial is the minimax among the polynomials with coefficients constrained

178

6.2 Function evaluation by polynomial approximation 179

to these bit-width. Indeed, this assumption is generally wrong. One may obtain much more
accurate polynomials for the same coefficient bit-width using a combination of an extension of
Remez algorithm and lattice basis reduction algorithms, due to Brisebarre and Chevillard [26] and
implemented as the fpminimax command of the Sollya tool. This command inputs a function,
an interval and a list of constraints on the coefficient (e.g. constraints on bitwidths), and returns
a polynomial that is very close to the best minimax approximation polynomial among those with
such constrained coefficients.

Since the approximation polynomial now has constrained coefficients, we will not round these
coefficients anymore. In other words, we have merged the approximation error and the coefficient
truncation error of [93] into a single error, which we still denote εapprox. We have seen in Chapter 3
how we can automatically validate an upper-bound for εapprox. In fact, one can observe that we
combined the the work of Brisebarre and Chevillard [26] for finding numerically machine-efficient
polynomial approximations with the process of validated computation of supremum norms of ap-
proximation errors in order obtain a Rigorous Polynomial Approximation with machine-efficient
coefficients. This provides an answer for the generic Problem 1 in the case of polynomials with
constrained machine coefficients.

In this way, the only remaining rounding or truncation errors to consider are those that happen
during the evaluation of the polynomial. Before dealing with that, let us first provide a good
heuristic for determining the coefficient constraints.

Let p(y) = a0 +a1y+a2y
2 + ...+ady

d be the polynomial on one of the sub-intervals (for clarity,
we remove the indices corresponding to the sub-interval). The constraints taken by fpminimax
are the minimal weights of the least significant bit (LSB) of each coefficient. To reach some target
precision 2−p, we need the LSB of a0 to be of weight at most 2−p. This provides the constraint on
a0. Now consider the developed form of the polynomial, as illustrated by Figure 6.2. As coefficient
aj is multiplied by yj which is smaller than 2−kj , the accuracy of the monomial ajyj will be aligned
on that of the monomial a0 if its LSB is of weight 2−p+kj . This provides a constraint on aj .

The heuristic used is therefore the following. Remember that the degree d is provided by
the user. The constraints on the d + 1 coefficients are set as just explained. For increasing k, we
try to find 2k approximation polynomials pi of degree d respecting the constraints, and fulfilling
the target approximation error (which will be defined in Section 6.2.4). We stop at the first k
that succeeds. Then, the 2k polynomials are scanned, and the maximum magnitude of all the
coefficients of degree j provides the most significant bit that must be tabulated, hence the memory
consumed by this coefficient.

a0

a1y

a2y
2

k

2k

any
n

2−p

Figure 6.2: Alignment of the monomials

179

180
Chapter 6. Automatic Generation of Polynomial-based Hardware Architectures for Function

Evaluation

1 110 000101

address

01 00 1.

a1 a0ad

ỹ1

i

Coefficient ROM

σ′d−1

ỹd
π̃′dπ′d σ′d

y

round

trunc

trunc trunc

x

r

Figure 6.3: The function evaluation architecture

6.2.3 Polynomial evaluation

Given a polynomial, there are many possible ways to evaluate it. The HOTBM method [51]
uses the developed form p(y) = a0 + a1y + a2y

2 + ... + ady
d and attempts to tabulate as much of

the computation as possible. This leads to short-latency architecture since each of the aiyi may be
evaluated in parallel and added thanks to an adder tree, but at a high hardware cost.

In this work, we chose a more classical Horner evaluation scheme, which minimizes the num-
ber of operations, at the expense of the latency: p(y) = a0 + y × (a1 + y × (a2 + + y × ad)...).
Our contribution is essentially a fine error analysis that allows us to minimize the size of each of
the operations. It is presented below in 6.2.4.

There are intermediate schemes that could be explored. For large degrees, the polynomial may
be decomposed into an odd and an even part: p(y) = pe(y

2) + y×po(y2). The two sub-polynomial
may be evaluated in parallel, so this scheme has a shorter latency than Horner, at the expense of
the precomputation of x2 and a slightly degraded accuracy. Many variations on this idea, e.g. the
Estrin scheme, exist [117], and this should be the subject of future work. A polynomial may also
be refactored to trade multiplications for more additions [87], but this idea is mostly incompatible
with range reduction.

6.2.4 Accuracy and error analysis

The maximal error target εtotal is an input to the algorithm. Typically, we aim at faithful round-
ing, which means that εtotal must be smaller than the weight of the LSB of the result, noted u. In
other words, all the bits returned hold useful information. This error is decomposed as follows:
εtotal = εapprox + εeval + εfinalround where

– εapprox is the approximation error, the maximum absolute difference between any of the pi
and the corresponding fi over their respective intervals. This computation belongs to the
approximation step and is also performed in Sollya, as explained in Chapter 3.

– εeval is the total of all rounding errors during the evaluation;
– εfinalround is the error corresponding to the final rounding of the evaluated polynomial to the

target format. It is bounded by u/2.
We therefore need to ensure εapprox + εeval < u/2. The polynomial approximation algorithm

iterates until εapprox < u/4, then reports εapprox. The error budget that remains for the evaluation
is therefore εeval < u/2− εapprox and is between u/4 and u/2.

In p(y) = a0 + a1y + a2y
2 + ... + ady

d, the input y is considered exact, so p(y) is the value of
the polynomial if evaluated in infinite precision. What the architecture evaluates is p′(y), and our

180

6.2 Function evaluation by polynomial approximation 181

purpose here is to compute a bound on εeval(y) = p′(y)− p(y).
Let us decompose the Horner evaluation of p as a recurrence:

σ0 = ad

πj = y × σj−1 ∀j ∈ {1...d}
σj = ad−j + πj ∀j ∈ {1...d}
p(y) = σd

This would compute the exact value of the polynomial, but at each evaluation step, we may
perform two truncations, one on y, and one on πj . As a rule of thumb, each step should balance
the effect of these two truncations on the final error. For instance, in an addition, if one of the
addends is much more accurate than the other one, it probably means that it was computed too
accurately, wasting resources.

To understand what is going on, consider step j. In the addition σj = ad−j + πj , the πj should
be at least as accurate as ad−j , but not much more accurate: let us keep gπj bits to the right of the
LSB of ad−j , where gπj is a small positive integer (0 ≤ gπj < 5 in our experiments). The parameter
gπj defines the truncation of πj , and also the size of σj (which also depends on the weight of the
MSB of ad−j).

Now since we are going to truncate πj = y×σj−1, there is no need to input to this computation
a fully accurate y. Instead, y should be truncated to the size of the truncated πj , plus a small
number gyj of guard bits.

The computation actually performed is therefore the following:
σ′0 = ad,

π′j = ỹj × σ′j−1, ∀j ∈ {1...d},
σ′j = ad−j + π̃′j , ∀j ∈ {1...d},
p′(y) = σ′d

In both previous equations, the additions and multiplications should be viewed as exact: the
truncations are explicited by the tilded variables, e.g. π̃′j is the truncation of π′j to gπj bits beyond
the LSB of ad−j . There is no need to truncate the result of the addition, as the truncation of π′j
serves this purpose already.

We may now compute the rounding error:

εeval = p′(y)− p(y) = σ′d − σd
where

σ′j − σj = π̃′j − πj
= (π̃′j − π′j) + (π′j − πj)

Here we have a sum of two errors. The first, π̃′j − π′j , is the truncation error on π′ and is bounded
by a power of two depending on the parameter gπj . The second is computed as

π′j − πj = ỹj × σ′j−1 − y × σj−1

= (ỹjσ
′
j−1 − yσ′j−1) + (yσ′j−1 − yσj−1)

= (ỹj − y)σ′j−1 + y × (σ′j−1 − σj−1)

Again, we have two error terms which we may bound separately. The first bound is the truncation
error on y, which depends on the parameter gyj , and is multiplied by a bound on σ′j−1 which has
to be computed recursively itself. The second term recursively uses the computation of σ′j − σj ,
and the bound y < 2−k.

The previous error computation is implemented in C++. From the values of the parameters gπj
and gyj , it decides if the architecture defined by these parameters is accurate enough.

181

182
Chapter 6. Automatic Generation of Polynomial-based Hardware Architectures for Function

Evaluation

Table 6.2: Examples of polynomial approximations obtained for several functions. S represents
the scaling factor so that the function image is in [0,1]

f(x) S
23 bits (single prec.) 36 bits 52 bits (double prec.)
d k Coeffs size d k Coeffs size d k Coeffs size

√
1 + x 1

2

2 64 26, 20, 14 3 128 39, 32, 25, 18 4 512 55, 46, 37, 28, 19

1 2048 26, 15 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

π
4 −

sin(π4 x)

x
23

2 128 26, 19, 12 3 128 39, 32, 25, 18 4 256 55, 47, 39, 31, 23

1 4096 26, 14 2 2048 39, 28, 17 3 2048 55, 44, 33, 22

1− cos(π4x) 2
2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 47, 39, 31, 23

1 4096 26, 14 2 2048 39, 28, 17 3 4096 55, 43, 31, 19

log2(1 + x) 1
2 128 26, 19, 12 3 256 39, 31, 23, 15 4 256 55, 45, 35, 25, 15

1 4096 26, 14 2 4096 39, 27, 15 3 4096 55, 43, 31, 19

log(x+1/2)
x−1/2

1
2

2 256 26, 18, 10 3 512 39, 30, 21, 12 4 1024 55, 45, 35, 25, 15

1 4096 26, 14 2 4096 39, 27, 15 3 8192 55, 42, 29, 16

6.2.5 Parameter space exploration for the FPGA target

The last problem to solve is to find values of these parameters that minimize the cost of an
implementation. This optimization problem is very dependent on the target technology, and we
now present an exploration heuristic that is specific to DSP-enabled FPGAs: our objective will be
to minimize the number of DSP blocks.

Let us first consider the gyj parameter. The size of this truncation directly influences the DSP
count. Here, we observe that once a DSP block is used, it saves us almost nothing to under-
use it. We therefore favor truncations which reduce the size of y to the smallest multiple of a
multiplier input size that allows us to reach the target accuracy. For Virtex4 and StratixII, the size
of y should target a multiple of 17 and 18 respectively. On Virtex5 and Virtex6, multiples of 17 or
24 should be investigated. Consequently, each gyj can take a maximum of three possible values: 0,
corresponding to no truncation, and one or two soft spots corresponding to multiples of multiplier
input size.

The determination of the possible values of gπj also depends on the DSP multiplier size, as
the truncation of π′j defines the size of the sum σ′j , which is input to a multiplier. There are two
considerations to be made: First, it makes no sense to keep guard bits to the right of the LSB of π̃′j .
This gives us an upper bound on gπj . Secondly, as we are trying to reduce DSP count, we should
not allow a number of guard bits that increases the size of σ′j over a multiple of the multiplier
input size. This gives us a second upper bound on gπj . The real upper-bound in computed as a
minimum of the two precomputed upper-bounds.

These upper bounds define the parameter space to explore. We also observe that the size of the
multiplications increases with j in our Horner evaluation scheme. We therefore favor truncations
in the last Horner steps, as these truncations can save more DSP blocks. This defines the order of
exploration of the parameter space. The parameters gπj and gyj are explored using the above rules
until the error εeval satisfies the bound εeval < u/2− εapprox.

This is a fairly small parameter space exploration, and its execution time is negligible with
respect to the few seconds it may take to compute all the constrained minimax approximations.

Table 6.2 presents the input and output parameters for obtaining the approximation polyno-
mials for several representative functions mentioned in the introduction. The functions f are all
considered over [0, 1], with identical input and output precision. Three precisions are given in
Table 6.2. Table 6.3 provides synthesis results for the same experiments.

182

6.3 Examples and comparisons 183

Table 6.3: Synthesis Results using ISE 11.1 on VirtexIV xc4vfx100-12. l is the latency of the operator
in cycles. All the operators operate at a frequency close to 320 MHz. The grayed rows represent
results without coefficient table BRAM compaction and the use of truncated multipliers

f(x)
23 bits (single prec.) 36 bits 52 bits (double prec.)

d l slices DSP BRAM d. l slices DSP BRAM d l slices DSP BRAM

√
1 + x

2 8 92 2 1 3 17 672 3 2 4 31 1313 11 6
1 4 37 1 3 2 11 373 3 5 3 23 819 9 18

π
4
− sin(π

4
x)

x

2 9 120 2 1 3 19 1039 4 2 4 34 1172 14 3
1 4 36 1 11 2 13 412 3 11 3 25 1029 10 19

1− cos(π
4
x)

2 9 120 2 1 3 19 1039 4 2 4 34 1773 14 3
1 4 36 1 11 2 13 412 3 11 3 22 790 9 40

log2(1 + x)
2 9 120 2 1 3 21 1066 4 2 4 33 1569 14 6
1 4 36 1 11 2 11 320 3 22 3 24 933 9 40

log(x+1/2)
x−1/2

2 8 103 2 1 3 17 779 4 4 4 32 1584 12 11
1 4 36 1 11 2 11 314 3 22 3 23 999 8 78

6.3 Examples and comparisons

Table 6.2 presents the input and output parameters for obtaining the approximation polyno-
mials for several representative functions mentioned in the introduction. The functions f are all
considered over [0, 1], with identical input and output precision. Three precisions are given in
Table 1. Table 2 provides synthesis results for the same experiments.

It is difficult to compare to previous works, especially as none of them scales to the large
precisions we do. Our approach brings no savings in terms of DSP blocks for precisions below 17
bits.

We may compare to the logarithm unit [92] which computes log(1+x) on 27 bits using a degree-
2 approximation. Our tool instantly finds the similar coefficient sizes 30, 22 and 12 (13 in [92]).
However, our implementation uses 2 DSP blocks where [92] uses 6: one multiplier is saved thanks
to the truncation of y and others thanks to truncated multipliers. For larger precisions, the savings
would also be larger.

We should compare the polynomial approach to the CORDIC family of algorithms which can
be used for many elementary functions [117]. Table 6.4 compares implementations for 32-bit sine
and cosine, using for CORDIC the implementation from Xilinx LogiCore ∗. This table illustrates
that these two approaches address different ends of the implementation spectrum. The polyno-
mial approach provides smaller latency, higher frequency and low logic consumption (hence pre-
dictability in performance independently of routing pressure). The CORDIC approach consumes
no DSP nor memory block. Variations on CORDIC using higher radices could improve frequency
and reduce latency, but at the expense of an even higher logic cost. A deeper comparison remains
to be done.

6.4 Conclusion

Application-specific systems sometimes need application-specific operators, and this includes
operators for function evaluation. This work has presented a fully automatic design tool that al-
lows one to quickly obtain architectures for the evaluation of a polynomial approximation with a

∗. LogiCORE IP CORDIC v4.0, 2011,
http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf

183

http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf

184
Chapter 6. Automatic Generation of Polynomial-based Hardware Architectures for Function

Evaluation

LogiCore CORDIC 4.0 sin+cos
32 cyles@296MHz, 3812 LUT, 3812 FF

This work, sin alone
16 cycles@353MHz, 2 BlockRam, 3 DSP48E, 575 FF, 770 LUT

This work, cos alone
16 cycles@390MHz, 2 BlockRam, 3 DSP48E, 609 FF, 832 LUT

Table 6.4: Comparison with CORDIC for 32-bit sine/cosine functions on Virtex5

uniform range reduction for large precisions, up to 64 bits. The resulting architectures are better
optimized than what the literature offers, firstly thanks to state-of-the-art polynomial approxima-
tion tools, and secondly thanks to a finer error analysis that allows for truncating the reduced
argument. They may be fully pipelined to a frequency close to the nominal frequency of current
FPGAs.

This work will enable the design, in the near future, of elementary function libraries for recon-
figurable computing that scale to double precision. However, we also wish to offer to the designer
a tool that goes beyond a library: a generator that produces carefully optimized hardware for his
very function. Such application-specific hardware may be more efficient than the composition of
library components.

Towards this goal, this work can be extended in several directions.
– There is one simple way to further reduce the multiplier cost, by the careful use of truncated

multipliers [169, 5]. Technically, this only changes the bound on the multiplier truncation
error in the error analysis of 6.2.4. This improvement should be implemented soon.

– Another way, for large multiplications, is the use of the Karatsuba technique, which is also
implemented in FloPoCo [49]. It is even compatible with the previous one.

– Non-uniform range reduction schemes should be explored. The power-of-two segmentation
of the input interval used in [34] has a fairly simple hardware implementation using a lead-
ing zero or one counter. This will enable more efficient implementation of some functions.

– More parallel versions of the Horner scheme should be explored to reduce the latency.
– Parameter space exploration is tuned for minimizing DSP usage, it should also be tuned to

make the best possible usage of available configurations of embedded memory blocks.
– Our tools could attempt to detect if the function is odd or even [91], and consider only odd

or even polynomials for such case [117, 91]. Whether this works along with range reduction
remains to be explored.

– We currently only consider a constant target error corresponding to faithful rounding, but a
target error function could also be input.

– Designing a pleasant and universal interface for such a tool is a surprisingly difficult task.
Currently, we require the user to input a function on [0, 1), and the input and output LSB
weight. Most functions can be trivially scaled to fit in this framework, but many other spe-
cific situations exist.

184

Bibliography

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, 1965.
[2] L. V. Ahlfors. Complex analysis. An introduction to the theory of analytic functions of one complex

variable. McGraw-Hill New York, 3rd edition, 1979.
[3] American National Standards Institute and Institute of Electrical and Electronic Engineers.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754–1985, 1985.
[4] M.G. Arnold and S. Collange. A real/complex logarithmic number system ALU. IEEE

Transactions on Computers, 60(2):202 –213, feb. 2011.
[5] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran. Multipliers for floating-point double

precision and beyond on FPGAs. SIGARCH Comput. Archit. News, 38:73–79, January 2011.
[6] C. Bendsten and O. Stauning. TADIFF, a Flexible C++ Package for Automatic Differentiation

Using Taylor Series. Technical Report IMM-REP-1997-07, Technical University of Denmark,
April 1997.

[7] A. Benoit, M. Joldes, and M. Mezzarobba. Rigorous uniform approximation of D-finite
functions. 2011. In preparation.

[8] A. Benoit and B. Salvy. Chebyshev expansions for solutions of linear differential equations.
In John May, editor, ISSAC ’09: Proceedings of the twenty-second international symposium on
Symbolic and algebraic computation, pages 23–30, 2009.

[9] S. Bernstein. Leçons sur les propriétés extrémales et la meilleure approximation des fonctions ana-
lytiques d’une variable réelle professées à la Sorbonne. Gauthier-Villars, Paris, 1926.

[10] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM Rev., 46(3):501–
517, 2004.

[11] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development, Coq’Art:the
Calculus of Inductive Constructions. Springer-Verlag, 2004.

[12] M. Berz and K. Makino. COSY INFINITY Version 9.0. http://cosyinfinity.org.
[13] M. Berz and K. Makino. New methods for high-dimensional verified quadrature. Reliable

Computing, 5(1):13–22, 1999.
[14] M. Berz and K. Makino. Rigorous global search using Taylor models. In SNC ’09: Proceedings

of the 2009 conference on Symbolic numeric computation, pages 11–20, New York, NY, USA, 2009.
ACM.

[15] M. Berz, K. Makino, and Y-K. Kim. Long-term stability of the tevatron by verified global
optimization. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 558(1):1 – 10, 2006. Proceedings of the 8th
International Computational Accelerator Physics Conference - ICAP 2004.

[16] W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson. Bessel functions.
Part II. Functions of positive integer order. British Association for the Advancement of Science,
Mathematical Tables, vol. X. University Press, Cambridge, 1952.

http://cosyinfinity.org

186 Bibliography

[17] M. Blum. Program result checking: A new approach to making programs more reliable. In
Andrzej Lingas, Rolf Karlsson, and Svante Carlsson, editors, Automata, Languages and Pro-
gramming, 20th International Colloquium, ICALP93, Proceedings, volume 700 of Lecture Notes
in Computer Science, pages 1–14, Lund, Sweden, 1993. Springer-Verlag.

[18] S. Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis, ENS Lyon,
2004. Available on the Web from http://www.ens-lyon.fr/LIP/Pub/Rapports/
PhD/PhD2004/PhD2004-05.pdf.

[19] P. Borwein and T. Erdélyi. Polynomials and Polynomial Inequalities. Graduate Texts in Mathe-
matics, Vol. 161. Springer-Verlag, New York, NY, 1995.

[20] A. Bostan, B. Salvy, and E. Schost. Power series composition and change of basis. In David
Jeffrey, editor, ISSAC’08, pages 269–276. ACM, 2008.

[21] A. Bostan, B. Salvy, and E. Schost. Fast conversion algorithms for orthogonal polynomials.
Linear Algebra and its Applications, 432(1):249–258, January 2010.

[22] R. J. Boulton. Efficiency in a fully-expansive theorem prover. Technical Report 337, Univer-
sity of Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cambridge,
CB2 3QG, UK, 1993. Author’s PhD thesis.

[23] J. P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications Inc., Mineola, NY,
second edition, 2001.

[24] R. P. Brent and H. T. Kung. O
(
(n log n)3/2

)
algorithms for composition and reversion of

power series. In J. F. Traub, editor, Analytic Computational Complexity, pages 217–225, New
York, 1975. Academic Press.

[25] R. P. Brent and H. T. Kung. Fast Algorithms for Manipulating Formal Power Series. Journal
of the ACM, 25(4):581–595, 1978.

[26] N. Brisebarre and S. Chevillard. Efficient polynomial L∞ approximations. In ARITH ’07:
Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pages 169–176, Washington,
DC, 2007. IEEE Computer Society.

[27] N. Brisebarre and M. Joldes. Chebyshev interpolation polynomial-based tools for rigorous
computing. In Wolfram Koepf, editor, ISSAC, pages 147–154. ACM, 2010.

[28] N. Brisebarre, J.-M. Muller, and A. Tisserand. Computing machine-efficient polynomial
approximations. ACM Transactions on Mathematical Software, 32(2):236–256, June 2006.

[29] M. Bronstein. Symbolic integration. I, volume 1 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin, second edition, 2005. Transcendental functions, With a foreword by
B. F. Caviness.

[30] M. Bronstein and B. Salvy. Full partial fraction decomposition of rational functions. In
M. Bronstein, editor, ISSAC’93, pages 157–160. ACM, 1993.

[31] L. Brutman. Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math.,
4(1-4):111–127, 1997. The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th
birthday of T. J. Rivlin.

[32] C.-Y. Chen. Computing interval enclosures for definite integrals by application of triple
adaptive strategies. Computing, pages 81–99, 2006.

[33] E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, 1966.

[34] R.C.C. Cheung, Dong-U Lee, W. Luk, and J.D. Villasenor. Hardware generation of arbitrary
random number distributions from uniform distributions via the inversion method. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 15(8):952 –962, aug. 2007.

186

http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2004/PhD2004-05.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2004/PhD2004-05.pdf

Bibliography 187

[35] S. Chevillard. Évaluation efficace de fonctions numériques. Outils et exemples. PhD thesis, École
Normale Supérieure de Lyon, Lyon, France, 2009.

[36] S. Chevillard, J. Harrison, M. Joldeş, and Ch. Lauter. Efficient and accurate computation of
upper bounds of approximation errors. Theoret. Comput. Sci., 412(16):1523–1543, 2011.

[37] S. Chevillard, M. Joldeş, and C. Lauter. Sollya: An environment for the development of
numerical codes. In K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors,
Mathematical Software - ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages
28–31, Heidelberg, Germany, September 2010. Springer.

[38] S. Chevillard, M. Joldes, and C. Lauter. Certified and fast computation of supremum norms
of approximation errors. In 19th IEEE SYMPOSIUM on Computer Arithmetic, pages 169–176,
2009.

[39] S. Chevillard and Ch. Lauter. A certified infinite norm for the implementation of elementary
functions. In Proc. of the 7th International Conference on Quality Software, pages 153–160, 2007.

[40] S. Chevillard, Ch. Lauter, and M. Joldes. Users’ manual for the Sollya tool, Release 2.0.
https://gforge.inria.fr/frs/download.php/26860/sollya.pdf, April 2010.

[41] F. Cháves and M. Daumas. A library of taylor models for pvs automatic proof checker. In in
Proceedings of the NSF workshop on reliable engineering computing, pages 39–52, 2006.

[42] C. W. Clenshaw. The numerical solution of linear differential equations in Chebyshev series.
Proceedings of the Cambridge Philosophical Society, 53(1):134–149, 1957.

[43] Coq development team. The Coq Proof Assistant Reference Manual, 2010. http://coq.
inria.fr.

[44] G. F. Corliss. Survey of interval algorithms for ordinary differential equations. Applied Math-
ematics and Computation, 31:112 – 120, 1989. Special Issue Numerical Ordinary Diferrential
Equations (Proceedings of the 1986 ODE Conference).

[45] G. F. Corliss. Guaranteed error bounds for ordinary differential equations. In In Theory of
Numerics in Ordinary and Partial Differential Equations, pages 1–75. Oxford University Press,
1994.

[46] F. de Dinechin, M. Joldes, and B. Pasca. Automatic generation of polynomial-based hard-
ware architectures for function evaluation. In Application-specific Systems Architectures and
Processors (ASAP), 2010 21st IEEE International Conference on, pages 216 –222, july 2010.

[47] F. de Dinechin, C. Klein, and B. Pasca. Generating high-performance custom floating-point
pipelines. In International Conference on Field Programmable Logic and Applications, Prague
Czech Republic, 08 2009. IEEE. RR LIP 2009-16.

[48] F. de Dinechin, Ch. Q. Lauter, and G. Melquiond. Assisted verification of elementary func-
tions using Gappa. In P. Langlois and S. Rump, editors, Proceedings of the 21st Annual ACM
Symposium on Applied Computing - MCMS Track, volume 2, pages 1318–1322, Dijon, France,
April 2006. Association for Computing Machinery, Inc. (ACM).

[49] F. de Dinechin and B. Pasca. Large multipliers with fewer DSP blocks. In International
Conference on Field Programmable Logic and Applications. IEEE, aug 2009.

[50] F. de Dinechin and A. Tisserand. Multipartite table methods. IEEE Transactions on Computers,
54(3):319–330, 2005.

[51] J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware function evaluation.
In Application-Specific Systems, Architectures and Processors, pages 328–333. IEEE, 2005.

[52] J. Detrey and F. de Dinechin. Floating-point trigonometric functions for FPGAs. In Intl
Conference on Field-Programmable Logic and Applications, pages 29–34. IEEE, August 2007.

187

https://gforge.inria.fr/frs/download.php/26860/sollya.pdf
http://coq.inria.fr
http://coq.inria.fr

188 Bibliography

[53] J. Detrey and F. de Dinechin. Parameterized floating-point logarithm and exponential func-
tions for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable
Computing, 31(8):537–545, 2007.

[54] T.A. Driscoll, F. Bornemann, and L.N. Trefethen. The chebop system for automatic solution
of differential equations. BIT Numerical Mathematics, 48(4):701–723, 2008.

[55] I. Eble and M. Neher. ACETAF: A Software Package for Computing Validated Bounds
for Taylor Coefficients of Analytic Functions. ACM Transactions on Mathematical Software,
29(3):263–286, 2003.

[56] H. Ehlich and K. Zeller. Schwankung von Polynomen zwischen Gitterpunkten. Mathematis-
che Zeitschrift, 86(1):41–44, February 1964.

[57] T. H. Einwohner and R. J. Fateman. A macsyma package for the generation and manipu-
lation of chebyshev series. In Proceedings of the ACM-SIGSAM 1989 international symposium
on Symbolic and algebraic computation, ISSAC ’89, pages 180–185, New York, NY, USA, 1989.
ACM.

[58] M. K. El-Daou, E. L. Ortiz, and H. Samara. A unified approach to the tau method and
Chebyshev series expansion techniques. Comput. Math. Appl., 25(3):73–82, 1993.

[59] D. Elliott, D. F. Paget, G. M. Phillips, and P. J. Taylor. Error of truncated Chebyshev series
and other near minimax polynomial approximations. J. Approx. Theory, 50(1):49–57, 1987.

[60] C. Epstein, W.L. Miranker, and T.J. Rivlin. Ultra-arithmetic i: function data types. Mathe-
matics and Computers in Simulation, 24(1):1–18, 1982.

[61] C. Epstein, W.L. Miranker, and T.J. Rivlin. Ultra-arithmetic ii: intervals of polynomials.
Mathematics and Computers in Simulation, 24(1):19–29, 1982.

[62] L. Fousse. Intégration numérique avec erreur bornée en précision arbitraire. PhD in Computer
Science, Université Henri Poincaré – Nancy 1, 2006.

[63] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. Mpfr: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw., 33,
June 2007.

[64] L. Fox. Chebyshev methods for ordinary differential equations. The Computer Journal,
4(4):318, 1962.

[65] L. Fox and I.B. Parker. Chebyshev polynomials in numerical analysis. Oxford University Press,
1968.

[66] W. Gautschi. Computational aspects of three-term recurrence relations. SIAM Review,
9(1):pp. 24–82, 1967.

[67] W. Gautschi. Questions of numerical condition related to polynomials. Studies in Numerical
Analysis, MAA Stud. Math., Math. Assoc. America, (24):140–177, 1984.

[68] K.O. Geddes. Symbolic computation of recurrence equations for the Chebyshev series solu-
tion of linear ODE’s. In Proceedings of the 1977 MACSYMA User’s Conference, pages 405–423,
jul 1977.

[69] A. O. Gel′fond. Calculus of finite differences. Hindustan Pub. Corp., Delhi, 1971. Translated
from the Russian, International Monographs on Advanced Mathematics and Physics.

[70] P. Giorgi. On polynomial multiplication in Chebyshev basis. To appear in IEEE Transactions
on Computers, 2010.

[71] X. Gourdon. Combinatoire, Algorithmique et Géometrie des Polynômes. PhD thesis, École Poly-
technique, Paris, France, 1996.

188

Bibliography 189

[72] X. Gourdon and B. Salvy. Effective asymptotics of linear recurrences with rational coeffi-
cients. Discrete Mathematics, 153(1-3):145–163, 1996.

[73] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[74] M. Grimmer, K. Petras, and N. Revol. Multiple Precision Interval Packages: Comparing
Different Approaches. In Lecture Notes in Computer Science, volume 2991, pages 64–90, 2004.

[75] Th. C. Hales. The flyspeck project. http://code.google.com/p/flyspeck/.

[76] E. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, 1992.

[77] J. Harrison. Floating point verification in HOL light: the exponential function. Technical
Report 428, University of Cambridge Computer Laboratory, 1997.

[78] J. Harrison. Formal verification of floating point trigonometric functions. In Warren A. Hunt
and Steven D. Johnson, editors, Formal Methods in Computer-Aided Design: Third International
Conference FMCAD 2000, volume 1954 of Lecture Notes in Computer Science, pages 217–233.
Springer-Verlag, 2000.

[79] J. Harrison. Verifying nonlinear real formulas via sums of squares. In Proc. of the 20th
International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2007, pages 102–
118. Springer-Verlag, 2007.

[80] IBM. IBM High-Accuracy Arithmetic Subroutine Library (ACRITH), 1986.

[81] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard
754-2008, August 2008. available at http://ieeexplore.ieee.org/servlet/opac?
punumber=4610933.

[82] C. Jacobi. Formal Verification of a Fully IEEE Compliant Floating Point Unit. PhD thesis, Uni-
versity of the Saarland, 2002. Available on the Web as http://engr.smu.edu/~seidel/
research/diss-jacobi.ps.gz.

[83] R. Kaivola and M. D. Aagaard. Divider circuit verification with model checking and theorem
proving. In M. Aagaard and J. Harrison, editors, Theorem Proving in Higher Order Logics:
13th International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science,
pages 338–355. Springer-Verlag, 2000.

[84] E.W. Kaucher and W.L. Miranker. Self-validating numerics for function space problems. Aca-
demic Press, 1984.

[85] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, Netherlands,
1996.

[86] P. Kirchberger. Über Tchebychefsche Annäherungsmethoden. Ph.D. thesis, Göttingen, Germany,
1902.

[87] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison
Wesley, 3rd edition, 1997.

[88] W. Krämer. Sichere und genaue Abschätzung des Approximationsfehlers bei rationalen
Approximationen. Technical report, Institut für angewandte Mathematik, Universität Karl-
sruhe, 1996.

[89] C. Lanczos. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys,
17:123–199, 1938.

[90] C. Lanczos. Applied analysis. Prentice-Hall, 1956.

[91] C. Lauter and F. de Dinechin. Optimising polynomials for floating-point implementation.
In Proceedings of the 8th Conference on Real Numbers and Computers, pages 7–16, 2008.

189

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://engr.smu.edu/~seidel/research/diss-jacobi.ps.gz
http://engr.smu.edu/~seidel/research/diss-jacobi.ps.gz

190 Bibliography

[92] D.-U. Lee, J.D. Villasenor, W. Luk, and P.H.W. Leong. A hardware gaussian noise generator
using the Box-Muller method and its error analysis. IEEE Transactions on Computers, 55(6),
2006.

[93] D.U. Lee, A.A. Gaffar, O. Mencer, and W. Luk. Optimizing hardware function evaluation.
IEEE Transactions on Computers, 54(12):1520–1531, December 2005.

[94] V. Lefèvre and J.-M. Muller. Worst cases for correct rounding of the elementary functions
in double precision. In N. Burgess and L. Ciminiera, editors, Proceedings of the 15th IEEE
Symposium on Computer Arithmetic (ARITH-16), Vail, CO, June 2001.

[95] S. Lewanowicz. Construction of a recurrence relation of the lowest order for coefficients of
the Gegenbauer series. Zastosowania Matematyki, XV(3):345–395, 1976.

[96] S. Lewanowicz. A new approach to the problem of constructing recurrence relations for the
jacobi coefficients. Zastos. Mat, 21:303–326, 1991.

[97] K. Makino. Rigorous Analysis of Nonlinear Motion in Particle Accelerators. PhD thesis, Michigan
State University, East Lansing, Michigan, USA, 1998.

[98] K. Makino and M. Berz. Taylor models and other validated functional inclusion methods.
International Journal of Pure and Applied Mathematics, 4(4):379–456, 2003. http://bt.pa.
msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf.

[99] K. Makino and M. Berz. Taylor models and other validated functional inclusion methods.
International Journal of Pure and Applied Mathematics, 4(4):379–456, 2003.

[100] K. Makino and M. Berz. Rigorous integration of flows and odes using taylor models. In
Proceedings of the 2009 conference on Symbolic numeric computation, SNC ’09, pages 79–84, New
York, NY, USA, 2009. ACM.

[101] P. Markstein. IA-64 and Elementary Functions : Speed and Precision. Hewlett-Packard Profes-
sional Books. Prentice Hall, 2000. ISBN: 0130183482.

[102] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. Chapman & Hall/CRC, Boca
Raton, FL, 2003.

[103] R. J. Mathar. Chebyshev series expansion of inverse polynomials. J. Comput. Appl. Math.,
196(2):596–607, 2006.

[104] K. Mehlhorn, S. Nher, M. Seel, R. Seidel, Th. Schilz, S. Schirra, and Ch. Uhrig. Checking
geometric programs or verification of geometric structures. In Proceedings of the 12th An-
nual Symposium on Computational Geometry (FCRC’96), pages 159–165, Philadelphia, 1996.
Association for Computing Machinery.

[105] G. Melquiond. Floating-point arithmetic in the Coq system. In Proc. of the 8th Conference on
Real Numbers and Computers, pages 93–102, 2008.

[106] F. Messine. Méthodes d’optimisation globale basées sur l’analyse d’intervalle pour la résolution de
problèmes avec contraintes. PhD thesis, INP de Toulouse, 1997.

[107] M. Mezzarobba. Numgfun: a package for numerical and analytic computation with d-
finite functions. In Stephen M. Watt, editor, ISSAC 2010: Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, 25-28 July 2010, Munich, Germany, pages
139–146. ACM, 2010.

[108] M. Mezzarobba and B. Salvy. Effective bounds for p-recursive sequences. Journal of Symbolic
Computation, 45(10):1075–1096, 2010.

[109] P. Molin. Intégration numérique et calculs de fonctions L. Ph.D. thesis, Université Bordeaux 1,
2010.

190

http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf

Bibliography 191

[110] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and
P. DeMarco. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada, 2005.

[111] J. Strother Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof of the cor-
rectness of the kernel of the AMD5K86 floating-point division program. IEEE Transactions
on Computers, 47:913–926, 1998.

[112] R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing. Ph.D. dis-
sertation, Department of Mathematics, Stanford University, Stanford, CA, USA, November
1962. Also published as Applied Mathematics and Statistics Laboratories Technical Report
No. 25.

[113] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[114] R. E. Moore. Methods and Applications of Interval Analysis. Society for Industrial and Applied
Mathematics, 1979.

[115] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval analysis. SIAM, Philadel-
phia, PA, USA, 2009.

[116] J.-M. Muller. Projet ANR TaMaDi – dilemme du fabricant de tables – table maker’s dilemma
(ref. ANR 2010 BLAN 0203 01). http://tamadiwiki.ens-lyon.fr/tamadiwiki/.

[117] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhäuser Boston, MA,
2nd edition, 2006.

[118] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston,
2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[119] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond,
N. Revol, D. Stehlé, and S. Torrès. Handbook of Floating-Point Arithmetic. Birkhäuser Boston,
November 2009.

[120] N. Th. Müller. The iRRAM: Exact arithmetic in c++.

[121] P. S. V. Nataraj and K. Kotecha. Global optimization with higher order inclusion function
forms part 1: A combined Taylor-Bernstein form. Reliable Computing, 10(1):27–44, 2004.

[122] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial value problems
for ordinary differential equations. Applied Mathematics and Computation, 105(1):21 – 68, 1999.

[123] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based integration of ODEs.
SIAM J. Numer. Anal., 45:236–262, 2007.

[124] A. Neumaier. Taylor forms – use and limits. Reliable Computing, 9(1):43–79, 2003.

[125] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally verifying IEEE compliance of
floating-point hardware. Intel Technology Journal, 1999-Q1:1–14, 1999. Available on the
Web as http://download.intel.com/technology/itj/q11999/pdf/floating_
point.pdf.

[126] R. Pachón and L. N. Trefethen. Barycentric-Remez algorithms for best polynomial approxi-
mation in the chebfun system. BIT Numerical Mathematics, 49(4):721–741, 2009.

[127] V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros.
Comput. Math. Appl, 31:97–138, 1996.

[128] V. Y. Pan. New fast algorithms for polynomial interpolation and evaluation on the Cheby-
shev node set. Comput. Math. Appl., 35(3):125–129, 1998.

[129] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathemat-
ical Programming, 96:293–320, 2003.

191

http://download.intel.com/technology/itj/q11999/pdf/floating_point.pdf
http://download.intel.com/technology/itj/q11999/pdf/floating_point.pdf

192 Bibliography

[130] S. Paszkowski. Zastosowania numeryczne wielomianow i szeregow Czebyszewa. Podsta-
wowe Algorytmy Numeryczne, 1975.

[131] R. B. Platte and L. N. Trefethen. Chebfun: A New Kind of Numerical Computing. In E. Fitt,
A. D.; Norbury, J.; Ockendon, H.; Wilson, editor, Progress in Industrial Mathematics at ECMI
2008, pages 69–87. Springer, 2010.

[132] M. J. D. Powell. On the maximum errors of polynomial approximations defined by interpo-
lation and by least squares criteria. Comput. J., 9:404–407, 1967.

[133] M. J. D. Powell. Approximation theory and methods. Cambridge University Press, 1981.

[134] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C, The
Art of Scientific Computing, 2nd edition. Cambridge University Press, 1992.

[135] The Arénaire Project. CRlibm, Correctly Rounded mathematical library, July 2006. http:
//lipforge.ens-lyon.fr/www/crlibm/.

[136] L. B. Rall. The arithmetic of differentiation. Mathematics Magazine, 59(5):275–282, 1986.

[137] H. Ratschek and J. Rokne. New computer methods for global optimization. Ellis Horwood Ltd,
1988.

[138] L. Rebillard. Etude théorique et algorithmique des series de Chebychev, solutions d’équations dif-
férentielles holonomes. PhD thesis, Institut national polytechnique de Grenoble, 1998.

[139] N. Revol. Interval Newton Iteration in Multiple Precision for the Univariate Case. Numerical
Algorithms, 34(2):417–426, 2003.

[140] N. Revol. Standardized Interval Arithmetic and Interval Arithmetic Used in Libraries. In
ICMS 2010 - Third International Congress on Mathematical Software Lecture Notes in Computer
Science, volume 6327, pages 337–341, Kobe Japan, 2010. Takayama, Nobuki and Fukuda,
Komei and van der Hoeven, Joris and Joswig, Michael and Noro, Masayuki, Springer.

[141] N. Revol and F. Rouillier. The MPFI library. http://gforge.inria.fr/projects/
mpfi/.

[142] T. J. Rivlin. Chebyshev polynomials. From approximation theory to algebra. Pure and Applied
Mathematics. John Wiley & Sons, New York, 2nd edition, 1990.

[143] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots. Journal of
Computational and Applied Mathematics, 162(1):33–50, 2004.

[144] M.-F. Roy. Basic algorithms in real algebraic geometry and their complexity: from Sturm’s theorem
to the existential theory of reals, volume 23 of Expositions in Mathematics. de Gruyter, 1996. in
F. Broglia (Ed.), Lectures in Real Geometry.

[145] S. Rump. Developments in Reliable Computing, T. Csendes ed., chapter INTLAB - Interval Lab-
oratory, pages 77–104. Kluwer, 1999.

[146] S. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534–554, 1999.

[147] S. M. Rump. Algorithms for verified inclusion. In R. Moore, editor, Reliability in Computing,
Perspectives in Computing, pages 109–126. Academic Press, New York, 1988.

[148] D. Russinoff. A mechanically checked proof of IEEE compliance of a register-transfer-level
specification of the AMD-K7 floating-point multiplication, division, and square root instruc-
tions. LMS Journal of Computation and Mathematics, 1:148–200, 1998. Available on the Web at
http://www.russinoff.com/papers/k7-div-sqrt.html.

[149] B. Salvy. D-finiteness: Algorithms and applications. In Manuel Kauers, editor, ISSAC’05,
pages 2–3. ACM Press, 2005. Abstract for an invited talk.

192

http://lipforge.ens-lyon.fr/www/crlibm/
http://lipforge.ens-lyon.fr/www/crlibm/
http://gforge.inria.fr/projects/mpfi/
http://gforge.inria.fr/projects/mpfi/
http://www.russinoff.com/papers/k7-div-sqrt.html

Bibliography 193

[150] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generat-
ing and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994.

[151] M. Schatzman. Numerical Analysis, A Mathematical Introduction. Oxford University Press,
2002.

[152] V. Stahl. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear
Equations. PhD thesis, Johannes Kepler University Linz, Linz, Austria, 1995.

[153] R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1(2):175–
188, 1980.

[154] T. Sunaga. Theory of interval algebra and its application to numerical analysis. RAAG
Memoirs, Ggujutsu Bunken Fukuy-kai, Tokyo, 2:29–46 (547–564), 1958.

[155] D. A. Sunderland, R. A. Strauch, S. S. Wharfield, H. T. Peterson, and C. +R. Role. CMOS/-
SOS frequency synthesizer LSI circuit for spread spectrum +communications. IEEE Journal
of Solid-State Circuits, 19(4):497–506, August 1984.

[156] The PARI Group, Bordeaux. PARI/GP, version 2.3.4, 2011. available from http://pari.
math.u-bordeaux.fr/.

[157] A. Tisserand. High-performance hardware operators for polynomial evaluation. Interna-
tional Journal of High Performance Syststem Architectures, 1:14–23, April 2007.

[158] L. N. Trefethen. Approximation Theory and Approximation Practice, Draft version, June 11, 2011,
http://www2.maths.ox.ac.uk/chebfun/ATAP/.

[159] L. N. Trefethen. Computing numerically with functions instead of numbers. Mathematics in
Computer Science, 1(1):9–19, 2007.

[160] L. N. Trefethen et al. Chebfun Version 4.0. The Chebfun Development Team, 2011.
http://www.maths.ox.ac.uk/chebfun/.

[161] W. Tucker. A Rigorous ODE Solver and Smale’s 14th Problem. Foundations of Computational
Mathematics, 2(1):53–117, 2002.

[162] W. Tucker. Auto-validating numerical methods, 2009.

[163] J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical
Report 2008-02, Université Paris-Sud, Orsay, France, 2008.

[164] J. van der Hoeven. Ball arithmetic. In Arnold Beckmann, Christine Gaßner, and Be-
dedikt Löwe, editors, Logical approaches to Barriers in Computing and Complexity, number 6
in Preprint-Reihe Mathematik, pages 179–208. Ernst-Moritz-Arndt-Universität Greifswald,
February 2010. International Workshop.

[165] L. Veidinger. On the numerical determination of the best approximations in the Chebyshev
sense. Numerische Mathematik, 2:99–105, 1960.

[166] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,
New York, 2nd edition, 2003.

[167] F. Wiedijk. The seventeen provers of the world, volume 3600 of Lecture Notes in Computer Science.
Springer, 2006.

[168] J. Wimp. Computation with Recurrence Relations. Pitman, Boston, 1984.

[169] K. E. Wires, M. J. Schulte, and D. McCarley. FPGA resource reduction through truncated
multiplication. In International Conference on Field Programmable Logic and Applications, pages
574–583. Springer-Verlag, 2001.

[170] S. Wolfram. The Mathematica Book. Wolfram Media, Incorporated, 5 edition, 2003.

193

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www2.maths.ox.ac.uk/chebfun/ATAP/

194 Bibliography

[171] R. C. Young. The algebra of multi-valued quantities. Mathematische Annalen, 104(12):260–
290, 1931.

[172] R. V. M. Zahar. A mathematical analysis of miller’s algorithm. Numerische Mathematik,
27(4):427–447, 1976.

[173] D. Zeilberger. A holonomic systems approach to special functions identities. Journal of
Computational and Applied Mathematics, 32(3):321–368, 1990.

[174] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last
bit. ACM Transactions on Mathematical Software, 17(3):410–423, September 1991.

[175] R. Zumkeller. Formal Global Optimization with Taylor Models. In Proc. of the 4th Interna-
tional Joint Conference on Automated Reasoning, pages 408–422, 2008.

[176] R. Zumkeller. Global Optimization in Type Theory. PhD thesis, École polytechnique, 2008.

194

	1 Introduction
	1.1 Introduction to rigorous polynomial approximations - outline of the thesis
	1.2 Computer arithmetic
	1.3 Interval Arithmetic
	1.4 From interval arithmetic to rigorous polynomial approximations
	1.4.1 Computing the approximation polynomial before bounding the error
	1.4.2 Simultaneously computing the approximation polynomial and the error
	1.4.3 Practical comparison of the different methods

	1.5 Data structures for rigorous polynomial approximations

	2 Taylor Models
	2.1 Basic principles of Taylor Models
	2.1.1 Definitions and their ambiguities
	2.1.2 Bounding polynomials with interval coefficients

	2.2 Taylor Models with Absolute Remainder
	2.2.1 Taylor Models for basic functions
	2.2.2 Operations with Taylor Models

	2.3 The problem of removable discontinuities – the need for Taylor Models with relative remainder
	2.3.1 Taylor Models with relative remainders for basic functions
	2.3.2 Operations with Taylor Models with relative remainders
	2.3.3 Conclusion

	3 Efficient and Accurate Computation of Upper Bounds of Approximation Errors
	3.1 Introduction
	3.1.1 Outline

	3.2 Previous work
	3.2.1 Numerical methods for supremum norms
	3.2.2 Rigorous global optimization methods using interval arithmetic
	3.2.3 Methods that evade the dependency phenomenon

	3.3 Computing a safe and guaranteed supremum norm
	3.3.1 Computing a validated supremum norm vs. validating a computed supremum norm
	3.3.2 Scheme of the algorithm
	3.3.3 Validating an upper bound on for absolute error problems = p - f
	3.3.4 Case of failure of the algorithm
	3.3.5 Relative error problems = p/f - 1 without removable discontinuities
	3.3.6 Handling removable discontinuities

	3.4 Obtaining the intermediate polynomial T and its remainder
	3.5 Certification and formal proof
	3.5.1 Formalizing Taylor models
	3.5.2 Formalizing polynomial nonnegativity

	3.6 Experimental results
	3.7 Conclusion

	4 Chebyshev Models
	4.1 Introduction
	4.1.1 Previous works for using tighter polynomial approximations in the context of rigorous computing

	4.2 Preliminary theoretical statements about Chebyshev series and Chebyshev interpolants
	4.2.1 Some basic facts about Chebyshev polynomials
	4.2.2 Chebyshev Series
	4.2.3 Domains of convergence of Taylor versus Chebyshev series

	4.3 Chebyshev Interpolants
	4.3.1 Interpolation polynomials

	4.4 Summary of formulas
	4.5 Chebyshev Models
	4.5.1 Chebyshev Models for basic functions
	4.5.2 Operations with Chebyshev models
	4.5.3 Addition
	4.5.4 Multiplication
	4.5.5 Composition

	4.6 Experimental results and discussion
	4.7 Conclusion and future work

	5 Rigorous Uniform Approximation of D-finite Functions
	5.1 Introduction
	5.1.1 Setting
	5.1.2 Outline

	5.2 Chebyshev Expansions of D-finite Functions
	5.2.1 Chebyshev Series
	5.2.2 The Chebyshev Recurrence Relation
	5.2.3 Solutions of the Chebyshev Recurrence
	5.2.4 Convergent and Divergent Solutions

	5.3 Computing the Coefficients
	5.3.1 Clenshaw's Algorithm Revisited
	5.3.2 Convergence
	5.3.3 Variants

	5.4 Chebyshev Expansions of Rational Functions
	5.4.1 Recurrence and Explicit Expression
	5.4.2 Bounding the truncation error
	5.4.3 Computation

	5.5 Error Bounds / Validation
	5.6 Discussion and future work.
	5.7 Experiments

	6 Automatic Generation of Polynomial-based Hardware Architectures for Function Evaluation
	6.1 Introduction and motivation
	6.1.1 Related work and contributions
	6.1.2 Relevant features of recent FPGAs

	6.2 Function evaluation by polynomial approximation
	6.2.1 Range reduction
	6.2.2 Polynomial approximation
	6.2.3 Polynomial evaluation
	6.2.4 Accuracy and error analysis
	6.2.5 Parameter space exploration for the FPGA target

	6.3 Examples and comparisons
	6.4 Conclusion

