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Problem Statement

Let F be compactly supported in a bounded smooth domain 2 ¢ R? with = 2, 3 and boundary 9.

Problem
Find supp{ F(x, 1)} given {g.(y,1) := pa(y,1) : (y,1) € O x [0, T]} such that :

2
(}2% —A- La) pali, 1) = F(x,1), (x,1) € R? x R,

pa(x, 1) = 0 = 2palest) xeR <0,
ot

for T sufficiently large.

2 .
L0 = s | <n2<w> - —2) ¢l
uy CO

- w(w) = gy Hialw|®, 1< €<
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Problem Statement

Let F be compactly supported in a bounded smooth domain © c R¢ with = 2,3 and boundary 9.

Problem

Find supp{F (x, 1)} given {g.(y, 1) := Pa(y,1) : (v,1) € 92 x [0,T]} such that :

»”? 9 . o
(ﬁ ~ ZEmam — ﬁw) Palx,t) = F(x,1), (x,1) € R! xR,

- 0
Pa(x, 1) =0 = gﬁu(x,t), reR <0,

for T sufficiently large.

- (A, p) : Lamé parameters,
- (nx,nu) : visco-elastic moduli,
- Laplpa] = (@ +B)VV - fa — BAP,
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Introduction

Motivation

@ Multi-Physics Imaging
- Photo-acoustic imaging, Magneto-acoustic
imaging, Acoustic radiation force imaging,

Optical pulse .3 !
Elasticity Imaging, ...

- Temporally localized sources i.e.
F(x,1) = 0:6(0)f (x)

Tissue optical
absorption:
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Motivation

@ Multi-Physics Imaging

- Photo-acoustic imaging, Magneto-acoustic
imaging, Acoustic radiation force imaging,

Optical pulse .3 !
Elasticity Imaging, ...

A

Temporally localized sources i.e.

F(x,1) = 8,6(1)f (x)
p(y,t) @ Noise Source Localization
Robotics, Passive Elastography, ...
F(x, 1) is stationary Gaussian process with

mean zero.

Tissue optical
absorption:
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Motivation

@ Multi-Physics Imaging

- Photo-acoustic imaging, Magneto-acoustic
imaging, Acoustic radiation force imaging,

Optical pulse .3 !
Elasticity Imaging, ...

A

Temporally localized sources i.e.

F(x,1) = 8,6(1)f (x)
p(y,t) @ Noise Source Localization
Robotics, Passive Elastography, ...
F(x, 1) is stationary Gaussian process with

mean zero.

Tissue optical

absorption: @ Other Applications

Earthquake sources (spatially localized),

Dynamical systems (initial state identification)....
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Outlines

@ Photo-acoustic Imaging

- Radon transform based algorithms
- Attenuation correction

@ Acoustic Time Reversal

- Mathematical analysis
- Extension to attenuating media
- Preprocessing techniques

@ Elastic Time Reversal

- Weighted time reversal
- Visco-elastic extension

@ Noise Source Localization

- Lossless media
- Attenuating media
- Spatial correlation

@ Conclusions and Perspectives
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Photo-acoustic Imaging

Photo-acoustic Imaging

A. WAHAB (CMAP-Ecole Polytechnique, France) Modeling & Imaging of Attenuation November 25, 2011 4/62



Photo-acoustic Imaging

Photo-acoustic Imaging

Problem Formulation
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Photo-acoustic Imaging

Photo-acoustic Imaging

Problem Formulation
Ultrasounic

Emission

Pulsed Laser
Excitation /

‘9
o,

Ultrasounic
Detection

\

,‘l -

Acoustic Ultrasonic Image
—*Detection ["|Formation

e : Thermal
RF Pulse Ahsorptlon—O‘Evr o1 \Wave

= po(y,t) forall (y,t) € 0Q x [0, T] such that

Mathematical Formulation
Find the absorbed energy density f (x) given go(y, 1)

(22 - A)polnn = 227(), (v1) R xR,

reR, <0,

)
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App (x,
po(x, 1) =0= %
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Photo-acoustic Imaging

Spherical Radon transform : a = 0, 2D

@ Spherical Radon transform

Ralfl(v,1) = /bjl‘f(y + tw)do (w)

R (H(y.1)
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Photo-acoustic Imaging

Spherical Radon transform : a = 0, 2D

@ Spherical Radon transform

Ralfl(v,1) = /Stf(y + tw)do (w)

@ Kirchhoff formula implies
1 9 " Ralfl(,er)
dr

y, t = — — — L,
y go(y, 1) o), o

Ralfl6nr) = 4r/0r 8o, 1/e) 4

/2 _p

@ Therefore,

R (H(y.1)

" go(y,t/c)

0 \r2t—1

Ralfl(v;r) = Wil (v, r) 1= 4r dt.
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Photo-acoustic Imaging

Photo-acoustic Imaging
Filtered back-projection : a = 0, 2D

@ Filtered back-projection formula [04Finch, [07Haltmeier], [07Kunyanskyl, [09Nguyen]
10 = o [ [ERan00)] w1 - - larao)
X = —_— ), I ni|r — ) — X rdo\y
@x2) Joq Jo Lar VY g !

= R [BWI]] ),

2 2
with R [¢] (x) = /m g0, |y —x))do(y) and Blgl(y,1) := /0 [%g(y, r)] In|? — #|dr

forallg: O x RT — R.
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Photo-acoustic Imaging

Photo-acoustic Imaging
Filtered back-projection : a = 0, 2D

@ Filtered back-projection formula [04Finch, [07Haltmeier], [07Kunyanskyl, [09Nguyen]
fx) : //2 dzR[f]( )| ] — (v — x)*|drdo ()
X = — —_— p,r)| In|rm — (y —x rdo(y
@) Joo Jo Lar TV Y )

= R [BWI]] ),

2 2
wih RG (60 = [ el sdot) and Bl0.0 = [ [ a0l =

forallg: Q x RT — R.
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Photo-acoustic Imaging

Acoustic attenuation : a > 0
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Photo-acoustic Imaging

Acoustic attenuation : a > 0

@ To take into account acoustic attenuation, let p, be the solution to

18 88(1)
—— —A—-1L X, 1) = X
2or a | Pa(x,1) o1 f(x)
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Photo-acoustic Imaging

Acoustic attenuation : a > 0

@ To take into account acoustic attenuation, let p, be the solution to

1 o (1)
(szﬁ—A—L,J palx 1) = =5 =f(x)

@ The loss term L,[p,] is given by [04Sushilov]

La[pa(x, )](1) := \/—Pa (nz(w) - %) &' dw

with complex wave number x(w) = 25 +ialw|®, 1 <& < 2.
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Photo-acoustic Imaging

Spherical Radon Transform : a > 0

Remark that py (x, w) and p, (x, w) satisfy

2
(K@) +2) pulr,w) = —==f(x), and (“’—2 + A) Polr,w) = —==—(x).

fz Fz

Therefore, pu(x, w) = ZE5Po(x, cr(w))  or  pa(x,1) = Lpo(x,-)](r) where

Attenuation Operator

L[o](1) 217r /R cr:w)eiiw {/mz+ (b(s)eim(“’)xds} dw
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Photo-acoustic Imaging

Spherical Radon Transform : a > 0

Remark that py (x, w) and p, (x, w) satisfy

2
(K@) +2) pulr,w) = —==f(x), and (“’—2 + A) Polr,w) = —==—(x).

fz Fz

Therefore, pu(x, w) = ZE5Po(x, cr(w))  or  pa(x,1) = Lpo(x,-)](r) where

Attenuation Operator

L(p)(t) = b /R cr:w)eiiw {/mz+ (b(s)ei‘”(“’)xds} dw

@ A natural definition of the spherical Radon transform when a > 0 is
Ra.alf] := Wipa] = W [Lpo]]

@ Then, a pseudo-inverse R, fd may be given by

—1 —1 —1ya,—1
Roe=Rg WL W
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Photo-acoustic Imaging

Photo-acoustic Imaging
SVD-Approach

@ Consider a singular value decomposition of £ :

Llg] =S ol i)y,

1

where (3;) and (v are two orthonormal bases of L2 (0, T) and o are positives eigenvalues such that
LX[g] =D ol )t
L Ll = z’:am Py,
LLre] = Z'j a7 (&, ).

1

A. WAHAB (CMAP-Ecole Polytechnique, France) Modeling & Imaging of Attenuation November 25, 2011 10/62



Photo-acoustic Imaging

Photo-acoustic Imaging
SVD-Approach

@ Consider a singular value decomposition of £ :

Llg] =S ol i)y,

1

where (3;) and (v are two orthonormal bases of L2 (0, T) and o are positives eigenvalues such that
LX[g] =D ol )t
L Ll = z’:am Py,
LLre] = Z'j a7 (&, ).

1

@ An e-approximation inverse of L is then given by [08Modgil]
— g ~
£ e) = ——— (9, )
CWI=2 g (B

where ¢ > 0.
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Photo-acoustic Imaging

Photo-acoustic Imaging
SVD-Approach

@ Consider a singular value decomposition of £ :

Llg] =S ol i)y,

1

where (3;) and (v are two orthonormal bases of L2 (0, T) and o are positives eigenvalues such that

coel =3 ald, i,
!

£oclgl =3 oi (¢, i,
1

LL7[G] =D of (¢, vt

1
@ An e-approximation inverse of L is then given by [08Modgil]
_ o ~
£ e) = ——— (9, )
CWI=2 g (B

where ¢ > 0.
@ An e-approximation inverse of spherical Radon transform is given by
Rol.=Ro'we'wl
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Photo-acoustic Imaging

SVD-Approach : Reconstruction using £

‘ i

Top : @ = 0.0005 ; Bottom :

A. WAHAB (CMAP-Ecole Polytechnique,

00

)

o5

o7

oo

a = 0.0025. Lefttoright : € = 0.01, e = 0.001 and e = 0.0001.
N = 256, Np = 200 and Ny = 200.
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Photo-acoustic Imaging

Asymptotic approach : Quadratic losses (£ = 2)

Approximate thermo-viscous Model : a < i E=2,r(w) ~ £ +ias

. ac 9 1 N =971
B <1+?E)E R+ ¢(A)MCXP{ 2 acs }da.
= L[¢](1)
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Photo-acoustic Imaging

Photo-acoustic Imaging

Asymptotic approach : Quadratic losses (£ = 2)

Approximate thermo-viscous Model : a < % E=2,k(w) > ¥ +ia w?

c 3
. ac 9 1 N =9
B <1+EE) V27 Jr+ ¢(A)MCXP{ 2 acs }ds'
= L[e)(1)

Theorem (Stationary Phase Theorem [03Hormander])
ForK C [0, 00) compact, X its open neighbourhood, k € N, ¢ € CZ(K) andh € C}**'(X) such that :

Sm{h(r)} >0, Sm{h(t)} =0, () =0, h'(t)#0, and h' #0inK\{t}

we have

/d)(r)e:h(t)/edt lh(l(])/e ( N(ZU)/Z!?TE —1/2 ZGID [w

j<k

< céf Z sup }w(o‘)(xﬂ

a <2k *

fore > 0, where

=2 > N7

v—p=j2v>3p

)™ (0 1) ™ (1)

with
01, (1) == h(t) — h(t9) — —h”(tg)(t —1)”.
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Photo-acoustic Imaging

Asymptotic approach : Stationary phase analysis

Theorem (Asymptotic expansion)

For a sufficiently smooth function ¢

LIl = Z @) 161 + 0 () where Djf¢] =

2/l

Moreover, an approximate inverse of order k of L is given by
Yo =1
k
L' W] =" diny,  where

J o
=0 Yej=—> WD,,,[WJ,,,,], forall j < k.
m=1 .
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Photo-acoustic Imaging

Asymptotic approach : Stationary phase analysis

Theorem (Asymptotic expansion)

For a sufficiently smooth function ¢

Zlel(r) = Z (Z“f)' 910) +o () where D[] = (Fo())”

Moreover, an approximate inverse of order k of L is given by
Yo =Y

k
L' W] =" diny,  where i
=0 Py = — Z WD,,,[WJ,,,,], forall j < k.
m=1 °

Consequently,

@ An approximate inverse of order k to the spherical Radon transform is given by

—1 —1 g1 . —1 ~—1 ac 9\ 7!
Rolhi=Ro WL W with £;7' = Z; <1+77) .
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Photo-acoustic Imaging

Photo-acoustic Imaging
Asymptotic approach : 1 < & < 2

@ In general
L)1) = / b(s) / 6= gmaeslwl® g g
R+ i:d
@ Its adjoint £* is given by

act

£* — iw(t—s) —actlwlé 1 _aa
L7[¢](t) = /]]ﬁ ¢(s)/} 4 e dwds = - /Bng o(s) @ T =) ds
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Photo-acoustic Imaging

Photo-acoustic Imaging
Asymptotic approach : 1 < & < 2

@ In general
ol = [ o) [ e
R+ i:d

@ lts adjoint £* is given by

~ . 1 act
7 _ iw(t—s) —act|w|& ods — A / d
[o](2) /]R+ ¢(s)/} e e dw ds = Jor o(s) 7@”)2 P s
Theorem
For a sufficiently smooth function ¢,
L[g1(1) = ¢(1) + Ce acD;? (16(1)) + o(a),
and _ 5
L*[8)(1) = $(1) + Ce ac 1D ($(1)) + o(a),
where C¢ is a constant, depending only on & and Df/ % s defined by

1 #(s) — o(1)
'Df/z[zﬁ](t) = ;p.v. . st
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Photo-acoustic Imaging
Asymptotic approach : Reconstruction using E,j

|||||||||||||||||||| D
|||||||||||||||||||||| ﬂ
oz
oos

Top : @ = 0.0005 ; Bottom : @ = 0. 0071 Leﬂ 10 ngm k=0;k=1andk = 8.
N = 256, Ng = 200 and Ny = 200.
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Acoustic Time Reversal

Acoustic Time Reversal
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Acoustic Time Reversal

Acoustic Time-reversal

Idea of time-reversal

@ The wave equation

p(y.)=g(y,t)
, o, 7%
Oupo(x,1) — Apo(x, 1) =0 t=0 '?ﬂ\'oj\f 0 '7)\\0 t=T
is invariant under time-transformation r — 7" — . ] ’QD\\O
@ By reciprocity principle, we can re-focus on a
(temporally localized) source location. [97Fink], N
[07Fouque] t e
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Acoustic Time Reversal

Acoustic Time-reversal

Idea of time-reversal

@ The wave equation

p(y.)=g(y,t)
oo, 7%
611P0(Xa t) - Apo(x, t) =0 t=0 ,’Oa'f())\f '7)\\0 t=T
is invariant under time-transformation r — 7" — . ] ’QD\\O
@ By reciprocity principle, we can re-focus on a
(temporally localized) source location. [97Fink],

[07Fouque]

Adjoint Wave

Let v be the solution of the wave equation

Ouv(x,1) — Av(x,1) =0, (x,1) € 2 x (0,7)
v(x,0) =0, Ow(x,0)=0, x€N

v(x, 1) = go(x, T — 1), (x,1) € 92 x [0, T]
Then,

v(x, 1) =po(x, T — 1), Y(x,1) € Q2 x[0,T], and v(x,T)=f(x)
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Acoustic Time Reversal

Acoustic Time-reversal

Time-reversal experiment

50

100

150

250

Simulations carried out by E. Bretin(INSA-Lyon)
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Acoustic Time Reversal

Acoustic Time-reversal

Time-reversal experiment

50

100

150

Simulations carried out by E. Bretin(INSA-Lyon)
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Acoustic Time-reversal

Integral formulation

Exact Integral Formulation

Green'’s theorem and integration by parts yield

F() = v(x, T) / /m 36”“‘ 9G¥t =)yt~ Thdo(y) Vr€ ©

where Gy, is the Dirichlet Green function and v is the ad/omt wave.
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Acoustic Time-reversal

Integral formulation

Exact Integral Formulation

Green'’s theorem and integration by parts yield

() = v(x, T) / /BQ 36’)()‘ Y ! )gg(y,l— T)do ()

where Gy, is the Dirichlet Green function and v is the ad/omt wave.

Vx e Q

v
Modified TR-functional
Let Gy(x, y,t) be the outgoing fundamental solution and v, (x, t) be such that
Ouvs(x, 1) — Avg(x, 1) = 9,05(t)go(x, T — 5)d90(x), V(x,1) € R? X R,
vs(x, 1) =0, Os(x,1) =0 Vx € ]Rd, 1L s,
Then, a modified time-reversal functional is given by
T T
I(x):= / v(x, T)ds = / / 8,Go(x,y, T — s)go(y, T — s)do(y)ds Vx € Q.
0 0o Joa
v
Modeling & Imaging of Attenuation November 25,2011 19/62




Acoustic Time-reversal

Integral formulation |1

@ Remark that gy (y) = —iw/ Go(z,))f (2)dz for all y € 89
Q
@ Helmholtz-Kirchhoff Identity : For x, z € €2 sufficiently far from y € 9Q

[ @Bz o) = ~Sm{G(x)}
o0 w

o /]Rw Sm{Go(x, 2) }dw = 8,(2)
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Acoustic Time Reversal

Acoustic Time-reversal

Integral formulation |1

@ Remark that gy (y) = —iw/ Go(z,))f (2)dz for all y € 89
Q
@ Helmholtz-Kirchhoff Identity : For x, z € €2 sufficiently far from y € 9Q

[ @Bz o) = ~Sm{G(x)}
o0 w

o /]Rw Sm{Go(x, 2) }dw = 8,(2)

@ Therefore,

1 —~ _
Z(x) —g/]];-/an iwGo(x, )8y (y)do (y)dw
= i Rdf(Z)/m/mwz@o(my)go(z7y)d0(Y)dwdz

= % Rdf(z)/mwgm{ao(x,z)}dwdz
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Acoustic Time Reversal

Acoustic Time-reversal

Integral formulation |1

@ Remark that gy (y) = —iw/ Go(z,))f (2)dz for all y € 89
Q
@ Helmholtz-Kirchhoff Identity : For x, z € €2 sufficiently far from y € 9Q

[ @Bz o) = ~Sm{G(x)}
o0 w

o /w Sm{Go(x, 2) }dw = 8,(2)
R
@ Therefore,

Z(x)

: iwC =
_777/1];_/59 iwGo (x, )2, (y)do (y)dw
~ L [0 [ / w2Bo(x, )Gz, Y)do (y)dwdz

= o (z)/ w\fm{Gg(x 2) }dwdz

Theorem

For x far from 8 (w.r.t. wavelength), we have Z (x) ~ f(x).
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Acoustic Time-reversal

Reconstructions

o o

Left to Right : Initial image, Exact time-reversal, Modified time-reversal

04

1 0 -0& D4 -02 0 02 04 08 08
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Acoustic Time-reversal

Reconstructions

0 b2 04 02 0 02 04 06 08

TR in Attenuating Media

A. WAHAB (CMAP-Ecole Polytechnique, Fi

Modeling & Imaging of Attenuation

Left to Right : Initial image, Exact time-reversal, Modified time-reversal

November 25, 2011

21/62



Acoustic Time-reversal

TR in attenuating media

Consider the thermo-viscous wave equation

Oupa(x,1) — Apy(x,1) — ad,(Apa(x,1)) =0

Pa(x,0) =f(x), and  9pa(x,0) =0.

Attenuated TR-functional
Define ,
Za(x) = / vs,a(x, T)ds VYx € Q
0
where v, . (x, 1) is the solution of the adjoint attenuated wave equation [07Burgholzer], [10Treeby]
OuVs,a (X, 1) — Avy o (x,1)+a0; (Avs o(x, 1)) = 805(1)ga(x, T — 5)da0(x).
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Acoustic Time-reversal

TR in attenuating media

Consider the thermo-viscous wave equation

Oupa(x,1) — Apy(x,1) — ad,(Apa(x,1)) =0

Pa(x,0) =f(x), and  9pa(x,0) =0.

Attenuated TR-functional
Define ,
Za(x) = / vs,a(x, T)ds VYx € Q
0
where v, . (x, 1) is the solution of the adjoint attenuated wave equation [07Burgholzer], [10Treeby]
OuVs,a (X, 1) — Avy o (x,1)+a0; (Avs o(x, 1)) = 805(1)ga(x, T — 5)da0(x).

- Highly unstable,
- Order of correction,
- Mathematical justifications.
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Acoustic Time-reversal

TR in attenuating media : Truncated functional

@ Let G, be the fundamental solution of the Lossy Helmholtz equation
wzaa(x, y) + (1 + iaw) Avau(x, y) = —d&:(y) in R
~ 1 =
@ LetGyp(x,y,1) 1= o— Ga(x, y) exp(—iwt)dw
2m Jjwi<p

@ Consider an approximation vy 4, (x, ) of v, . (x, 1) given by :

Vo (5, 1) = /a 0Byt = gl T = o ()
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Acoustic Time-reversal

TR in attenuating media : Truncated functional

@ Let G, be the fundamental solution of the Lossy Helmholtz equation
W Ga(x,y) + (1 + iaw) A,Ga(x,y) = =8,(y) in R,

~ 1 =
@ LetG,,(x,y,1) = I o Gg(x,y) exp(—iwt)dw
w|<p

@ Consider an approximation vy 4, (x, ) of v, . (x, 1) given by :
o) = [ 8Bup(eyt = Dm0 T =)o)
We define :

Truncated TR-Functional

T T ~
La,p(x) := / Vs,a,p(x, T)ds = / / 0Ga,p(x,y, T — 5)ga(y, T — s)do(y)ds, x & Q.
0 0 o
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Acoustic Time-reversal

Attenuation operators

@ We have p,(x,1) = L[p(x, -)](¢), where

2ol = 5= [ Z2] [owerras} e,

with k(w) = ﬁ
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Acoustic Time-reversal

Attenuation operators

@ We have p,(x,1) = L[p(x, -)](¢), where

2ol = 5= [ Z2] [owerras} e,

@ Moreover we define operator f:p associated with K (w) =

with k(w) =

w
s oY

C [¢]( )= 2171' = b(s) {/‘ g @e%(w)sefiwldw} ds,
wl<p
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Acoustic Time Reversal

Acoustic Time-reversal

Attenuation operators

@ We have p,(x,1) = L[p(x, -)](¢), where
L[g](r) = ;ﬂ/”“(“ {/¢(s)e“‘(“>‘ds}e—'“’dw.

@ Moreover we define operator f:p associated with & (w)

with k(w) =

PR —
V1—iaw®

w
s oY

C [¢]( )= 2171' = b(s) {/‘ g @e%(w)sefiwldw} ds,
wl<p

@ We denote its adjoint operator by Z; given by

22[4)](0 = ﬁ /Iw\Sp @eiﬁ(“’)' {/:o ¢(s)eii“’5ds} dw.

6/5a.p(x-, Yy t) = E;J [6160(’\"’}'7 )] (Z)

Remark that
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Acoustic Time Reversal

Acoustic Time-reversal

Asymptotic approximation : a < w ™!

Proposition

Fork(w) ~ w + "““2”2 and a — 0 following results hold :

@ Letp(r) € S([0, 0f), then
£[6)(1) = 6(0) + 5 (19')" (1) + o(a).
@ Letp(r) € D([0, ), then forall p > 0
L3101(0) = S,61(1) = 58,[(16")'] + o(a).
@ Letp(r) € D([0,00[) and p > 0, then
LyLp(1) = Splel(1) + ola).

where S is the Schwartz space, D is the space of C°° — functions of compact support and

Spl0l0) = o [ TR
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Acoustic Time-reversal

Analysis of truncated functional

Consequently we have

T = / [ 0G50 Z; (£ fso0s, ] (D )

= [ [ 008, e )] Do) + o0
0 an
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Acoustic Time-reversal

Analysis of truncated functional

Consequently we have
T ~
Zo@ = [ [ 0GuwynE; L.l (o)
= [ [ 008, e )] Do) + o0
0 an

Finally remark that
8px(z) = —/ w%m{ao(x, 2)}dw — 6c(z) as p— +oo.
2m Jjwi<p

Therefore,

Iu,p(x) jasd 6p,x()’) *f(y) + 0(“)
p— oo f(x)+o(a).
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ic Time Reversal

0o -osf 0
os -0 s
o5 -o2] s
os o s
04 o2 o4
02 odf I
02 o] o2
o1 o) o1
o o

Acoustic Time-reversal

Truncated TR-functional : Reconstruction

-0 s -0
-0 s -
04 or
02 os o
a. D
o4 o2
o o2
o3 o1

Test with = 0.0005. Left to Right : Without correction, with correction & p = 15, with correction & p = 20.

O

Test with = 0.001. Left to Right : Without correction, with correction & p = 15, with correction & p = 20.
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Acoustic Time-reversal

Pre-processing TR-scheme

@ As g,(y,1) = L[go(y, .](¢), an alternative strategy is to
- pre-process the measured data g, (y, t) using a pseudo-inverse of £ as a filter

- apply the ideal time-reversal functional Z (x) to identify source location.
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Acoustic Time-reversal

Pre-processing TR-scheme

@ As g,(y,1) = L[go(y, .](¢), an alternative strategy is to
- pre-process the measured data g, (y, t) using a pseudo-inverse of £ as a filter

- apply the ideal time-reversal functional Z (x) to identify source location.

@ Using higher order asymptotics :

k m
Llgl0) = 52 = ("¢ )™ (1) + o(a)

| om
mmo M2

k
L£,'10)(0) = > d"um(t) suchthat £ 'L]@)(r) = o(r) + o(d").

m=0

and ¢y, verify
b0 = ¢
- and D,o(1) = ! (6" ) @ (o).
¢'k,m = - Z ’DI[d’k,mfl]; " m! 2m
=1
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Acoustic Time Reversal

Acoustic Time-reversal

Pre-processing TR-scheme : Reconstructi

&

Test with a = 0.0005. Left to Right :

Test with a = 0.001. Left to Right :

A. WAHAB (CMAP-Ecole Polytechnique, France)

p os
o
07
o s
o5 o
~ . o2 o
01
o

on

.

-

02

o8

Without correction, with correction & k = 1, with correction & k = 4.

02

08

08

Without correction, with correction & k = 1, with correction & k = 4.
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Elastic Time-reversal

Elastic Time-reversal
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Elastic Time-Reversal

Elastic Time-reversal

Ideas of elastic time-reversal

Problem
Find supp{f(x) } given {go(v, 1) :=ug(y, 1) : (v,1) € 9L x [0, T]} such that :
(O — L) Wo(x, 1) = 8ido(NE(x), (x,1) ER x R

u(x, 1) =0, Bug(x, 1) =0, reRLI<0,
for T sufficiently large and
Lo g = (a4 B)VV -u— fAu.
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Elastic Time-reversal

Ideas of elastic time-reversal

Problem

Find supp{f(x) } given {go(v, 1) :=ug(y, 1) : (v,1) € 9L x [0, T]} such that :

(811 - E),u) ll(J(JC7 l) = 8,50([)f(x), (JC, t) S RY x R,

ug(x, 1) =0, Suy(x,1) =0, xeR <0,

for T sufficiently large and

Ly pu] = (a+p)VV -u— gAu.

y
Elastic TR-functional
An elastic time-reversal functional is given by
I(x):= /OT v (x, T)ds,

where v,(x, 1) is the adjoint elastic wave :

Ouvs(x,1) — Lx, uVs(x,1) = 0:0,(1)go(x, T — 5)dp0(x), Y(x,1) € R? x R,

Vi(x, 1) =0, Ovy(x, 1) =0 Vx €RY, 1< s

y
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Elastic Time-reversal

Integral formulation and Green’s Tensors

Integral formulation
Z(x) := Re {i /Rtf /]]; w? |:/an @(x,y)a(y,z)da'(y)} dwf(z) dz}

@ We have defined G(x, y) := Go(x — y) such that G (x — y) is the fundamental solution of the time
harmonic wave equation i.e.

(LW + wz) Bo(x) = —6o(x)L, xR
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Elastic Time-reversal

Integral formulation and Green’s Tensors

Integral formulation
Z(x) := Re {i /Rtf /]]; w? |:/an @(x,y)a(y,z)da'(y)} dwf(z) dz}

@ We have defined G(x, y) := Go(x — y) such that G (x — y) is the fundamental solution of the time
harmonic wave equation i.e.

(LW + wz) Bo(x) = —6o(x)L, xR

@ It can be expressed as

Golx) = ﬁ (ngag(x)ﬂ +D (ég - 65) (x)) , x e R

where
- D= (39, - [A+ KL]GE(x) = —6(x) in RY,
- k2=uw?p""and nf,:wz()\—&-Zu)_l, - a=p,s.

A. WAHAB (CMAP-Ecole Polytechnique, France) Modeling & Imaging of Attenuation November 25, 2011 32/62



Elastic Time-Reversal

Elastic Time-reversal
Helmholtz-Kirchhoff identities

Let G” and G’ be the divergence and curl free parts of G such that G(x) = G”(x) 4+ G*(x). Then

Proposition (Elastic HK-identities)

For all x, z € Q, we have

1. /BQ [@@(M) - @(XJ')%]LJU()}) = 2iSm{G(x,2)}.

9G” (v, )= = 8G (v, S
2. /(;Q [MG”(y,z) - G“(Ly)w]do’(y) =2iSm{G"(x,2)}, a=p,s.

ov v
G (x,y) = 8y,
3 [ (x,y) T2 — & (ny) O Z)}da(y) 0
20 ov v

where the co-normal derivative in the outward unit normal direction n is defined by

o
a—u =AMV -wn+ p(vVu' 4+ (V) )n.
1%
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Elastic Time-Reversal

Elastic Time-reversal
Helmholtz-Kirchhoff identities 11

Proposition

Ifn=y—xand|x—y| > 1then
oG~
ov

where ¢} = ju and ¢, = X\ + 2y are shear and pressure wave speeds.

(,) = iweaG*(x,y) +o(lx—y7"), a=p,s.
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Elastic Time-Reversal

Elastic Time-reversal
Helmholtz-Kirchhoff identities 11

Proposition
Ifn=y—xand|x—y| > 1then
a@a

(x y) = lwca *(x,y) +0(\x -y~ ) a =p,s.

where ¢> = p and ¢ = X + 2 are shear and pressure wave speeds.
s P

Lemma

LetQ) C RY be a ball with large radius (w.r.t. wavelength). Then, for all x, z €  sufficiently far from the boundary
o9, we have

we{ [ 8B o)} = ——wm{E WA}, a=ps

Re {/BQ G (x, y)@(y,z)da(y)} ~0
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Elastic Time-reversal

Analysis of TR-functional

@ For x far from 942,
I(x) = Re {i /Rd/mwz [/an Glx, y)é(y,z)da(y)] dwt(z) dz}
~ cscj_ic:pﬁ -/Rd / w %m{ (@P + @)(x, z)}dwf(z) dz

o[ el -oreafens
& +"’f<> ] / [ Bx, ()

2¢5¢p 2¢5¢p

14

1 —~ ~
@ The operator B(x, z) := I / wgm{(G” -G (x, z)}du, is not diagonal.
R

T

@ The reconstruction mixes the components of f when ¢, # ¢;.
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Elastic Time-Reversal

Elastic Time-reversal

Elastic TR-functional Z : Reconstructions

Left to Right : Initial data, reconstruction with (X, 1) (1, 1), with (X,
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Elastic Time-Reversal

Elastic Time-reversal
Weighted TR-functional

@ Let ¥ and ® be the divergence and the curl free functions respectively such that
I=VXUV+4+VD.

@ Define the weighted time-reversal functional by
I = ¢VXU+4¢Vd.

= Re {i /]Rd /sz [/80 (cﬁ.@‘(x, y) + cp@”(x,y))é(y,z)da(y)} dwt(z) dz}
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Elastic Time-Reversal

Elastic Time-reversal
Weighted TR-functional

@ Let ¥ and ® be the divergence and the curl free functions respectively such that
I=VXUV+4+VD.

@ Define the weighted time-reversal functional by
I = ¢VXU+4¢Vd.

= we{ o [ [ [ @800 + 686080 o) dut(e) e |

Theorem
Letx € Q be sufficiently far (w.r.t. wavelength) from the boundary 9. Then, T (x) ~ f(x). J
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Elastic Time-Reversal

Elastic Time-reversal

Weighted TR-functional Z : Reconstructions
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Elastic Time-Reversal

Elastic Time-reversal

Weighted TR-functional Z : Reconstructions

(10, 1). Left to Right : Initial data, T
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Elastic Time-reversal

TR in visco-elastic media

@ Consider the Stoke’s visco-elastic wave equation with visco-elastic moduli (nx,n,.) i.e.

(an — L — az[rm\ﬂm) u,(x, 1) = 9,00 ()f(x), (x,1) € R? x R,

u,(x,0) =0, Hu,(x,0) =0, xeRL I 5.
@ Define an approximation of the adjoint visco-elastic wave by
1 - —iw(t—s)
Vsa,p (X, 1) = —— WG _a(x,Y)8(y, T — 5)do(y) pe dw
2 Jjwi<p UJoa

where
(Lxp £ iwLyy i, +0°) Cralry) = =6, %y € R,
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Elastic Time-reversal

TR in visco-elastic media

@ Consider the Stoke’s visco-elastic wave equation with visco-elastic moduli (nx,n,.) i.e.

(an — L — az[rm\ﬂm) u,(x, 1) = 9,00 ()f(x), (x,1) € R? x R,

u,(x,0) =0, Hu,(x,0) =0, xeRL I 5.
@ Define an approximation of the adjoint visco-elastic wave by
1 ~ iwli—s
s =<5 [ L[ BT = ) fe
2 Jjwi<p UJoa
where
(LM +iwly . + uﬁ) Cralx,y) = 6,01, x,y € R
@ Define o oo
Lo = [ Veuse D= [ [ 06000 T = 90T = o ()as
0 0 o0
where

Gap(x,3,1) Gl y)e ™ dw.

Com lw|<p
@ Finally, for ¥ and @ the divergence and curl free components of Z,, ,,, let

Zup(x) i= c, VO + ¢,V X ¥
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Elastic Time-reversal

Visco-elastic HK-identities

Proposition

LetQ C R? be a ball with large radius. Then,

1R

Re { [ &L, z)dU(Y)} 0

Re { T z)do(y)} ~0

for all x, z € 2 sufficiently far from the boundary 62 w.r.t. wavelength
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Elastic Time-reversal

Visco-elastic HK-identities

Proposition

LetQ C R? be a ball with large radius. Then,

1R

Re { [ &L, z)dU(Y)} 0

Re { T z)do(y)} ~0

for all x, z € 2 sufficiently far from the boundary 62 w.r.t. wavelength

v
Theorem
For all x € Q sufficiently far from the boundary 92, we have
Tap(®) = T, (x) + 0w} /] + 1 /c})
where _ e~
T,(x) =5 T(x) ~ f(x),
vy and v, are shear and bulk viscosities and
~ T .
L@ = [ [ afe® ) + o8 s, a0 )} 0drde ()
0
v
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Elastic Time-Reversal

Elastic Time-reversal

Visco-elastic Weighted TR-functional : Reconstructions

Reconstruction with (X, 1) = (1, 1) and a« = 0.0002. Left to Right : Initial data, without correction using Z (x), correction using
Za,p With p = 15, with p = 20.
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Noise Source Localization

Noise Source Localization
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_NoiseSource Localzation |
Noise Source Localization

@ Let py satisfy the wave equation
1 9

mﬁpo()ﬁ 1) — Apo(x, 1) = n(x,1), (x,1) €ER! xR

o
po(x;1) =0, and  —po(x,1) =0, xeERLI<0, d=2,3.

n is compactly supported in a bounded smooth domain €.
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_NoiseSource Localzation |
Noise Source Localization

@ Let py satisfy the wave equation

1 9 )
%ﬁpo(x, 1) — Apo(x, 1) = n(x,1), (x,1) € RY x R

o
polx,t) =0, and  —po(x,1) =0, x€ R 1 <0, d=2,3.

n is compactly supported in a bounded smooth domain €.

@ nis a stationary Gaussian process with mean zero and covariance
(n(x,n)n(y, s)) = F(t = 5)K(x)8(x — y).

Problem

Find supp{n} given {po(y,1) :  (y,1) € 0 x [0, T]} for sufficiently large T.

- () : Statistical average, - F : Time covariance function,
- ¢ : Positive, smooth and bounded function, - K : Spatial support of n.
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Noise Source Localization

Cross-correlation based functional

Imaging functional[osGarnier]

() = / / /6 G @)l 2 )y, @) (o ()

2
o 8 Gowyw) = —6(x—y), xyeERL
()
@ The statistical cross-correlation Cy is defined by

oy, ) = {poles Dpo(yst + 7)) = — /R [ /Q Go (3,2, )Goly 7 )K (e | F(w)e ™™ duo.

T or
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Noise Source Localization

Cross-correlation based functional

Imaging functional[osGarnier]

I(&) = / / /8 Bl )Gl )Ty, ) () (5

2
o 8 Gowyw) = —6(x—y), xyeERL
()
@ The statistical cross-correlation Cy is defined by

Co(x,y,7) = (po(x, )po(y, t + 7)) = ! A [Aa(x,z,w)ao(y,z, w)K(z)dz ?(w)eii“”dw.

T or

Theorem

Functional T gives K up to a smoothing operator, that is
() = [ 0 DK,
Q

where

Q(,2) :/ LQj)%m{f}o(zs,z,u.z)}zalu.z.
R w?

v
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Noise Source Localization

Weighted imaging functional

@ Consider the power spectral density F(w) :/ Co(x, x, w)do (x).
o0

0 Fw)= ! /erAw/z F(w"dw' zf(w)/ﬂ igm{ao(z,z, w) }K(2)dz ~ % /QK(z)dz.

Aw Jo—aw

@ Moving frequency window Aw should be large than 1/T and smaller than noise bandwidth.
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Noise Source Localization

Weighted imaging functional

@ Consider the power spectral density F(w) :/ Co(x, x, w)do (x).
o0

. _ 1 wt+Aw/2 , P 1 o - - @
@ F(w)= E/wau/z F(w")dw _F(w)/n;\rm{Go(z,z,w)}K(z)dz_ . /ﬂK(z)dz.

@ Moving frequency window Aw should be large than 1/T and smaller than noise bandwidth.

Imaging functional

@)= | gii; Gl o002 ) 13,0 () )
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Noise Source Localization

Noise Source Localization
Weighted imaging functional

@ Consider the power spectral density F(w) =

= / Co(x, x, w)do (x).
20

. _ 1 wt+Aw/2 , P 1 o - - @
@ F(w)= E/wau/z F(w")dw _F(w)/Q ;\rm{Go(z,z, w) }K(2)dz ~ . /ﬂK(z)dz.

@ Moving frequency window Aw should be large than 1/T and smaller than noise bandwidth.

Imaging functional
W(w ~ = —~
w (&) :=/ ~( )// Go(x,2°, w)Go(y, 2°, w)Co(x, y, w)do (x)do (y)dw.
rR F(w) JJoaxon
v
Theorem
K . 1
Iw(zs)z/ ow@ 0 e, with k= L / K(z)dz and
Q Ko ar Ja
W(w
s W) .~ , & Jo M2 R (wlz]ydw, d=2
Qw(z,2) = / 79"”{@)(1 5 w) }dw =
‘ o Jo i wleldw, =3,
v
46 /62
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Noise Source Localization

Weighted imaging functional : Remarks

@ A potential candidate for W is

WPl <oms 4 =2
Ww =4
w 1|W\<wmax7 d=3.

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

1 2. 2 1
wl(wlz dw = —4(z), and / wsine” (w|z])dw = —6(z2).
[, il = =) [ i’ (wld) o = 302
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Noise Source Localization

Noise Source Localization
Weighted imaging functional : Remarks

@ A potential candidate for W is

3
Wl o) <omas  d=2

W(w) = ,
w 1|W\<wmax7 d=3.

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

1 1
Wl (wlz))dw = 6(z), and / wsine® (wlz])dw = —5(2).
[, il = =) [ i’ (wld) o = 302

@ Zy can seen as an application of Z on filtered data p (x, 1) where

fo(x, w) = Mﬁo()ﬁ w).

F(w)

where (—wmax, wmax) is the estimated support of ]-‘(w).
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Noise Source Localization

Weighted imaging functional : Remarks

@ A potential candidate for W is
P <omes 4 =2
W(w) =
2
w 1|W\<wmax7 d=3.

where 1 denotes the characteristic function, based on the closure formulae [65Abramowitz]

1 2. 2 1
Wl (wlz dw = —6(z), and / wsinc” (wlz])dw = —8§(2).
[, il = =) [ i’ (wld) o = 302

@ Zy can seen as an application of Z on filtered data p (x, 1) where

fo(x, w) = Mﬁo()ﬁ w).

F(w)

where (—wmax, wmax) is the estimated support of ]-‘(w).

@ Time reversal analogy : Let v be the adjoint wave then,

7 =[] [ G o] aw =2 [ "o e,
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Noise Source Localization

Reconstructions

Top : point sources. Bottom : extended sources.Left to Right : K (x) ; Z ; Zy with W(w) = |‘*’|31\wl<wmax'
T =8, wmax = 1000, Ny = 2% and N, = 2!,
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Noise Source Localization

Estimation of power spectral density

3.
7 — F(w) estimated
— F(w) estimated and denoised
— F(w) exact
3
2.5 -
o N
i L
\‘\ H i ‘\ I ‘
1 LY mﬂm w“l,"‘“‘\.:} H"m ""i i l;, ulﬂl\l A
A w""‘(‘ 1 ‘ l \]"”l - I
ﬂl b “[Il"u ‘l‘ ‘ * ' ' [ ” “ ’ i ” l\l I 'vll‘ L
05- ll H Hl“‘ I 4
1 1 | | | | | | 1
*gOO —-400 -300 —-200 -100 0 100 200 300 400 500
4]

Fw) =ew (-
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Noise Source Localization

Localization in Attenuating Media

@ Let p, satisfy the thermo-viscous wave equation

2
L»th) %pa(x, 1) — Apa(x, 1) — %Apl,(x, 1) =n(x,1), (x,1)€ RY x R

pa(x,1) =0, and Zp.(x,1) =0, xeRL K0 d=2,3.

® Culyim) = ulw a4 1) = o= [ [ [ B2 B2 K@ Fw)e ™

2
S (1 Fiaw)A, | Caalx,y,w) = —8(x — ), x,y € R
@)
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Noise Source Localization

Localization in Attenuating Media

@ Let p, satisfy the thermo-viscous wave equation

2
o Zpu (1) = Apa(e,1) — G AP, 1) = (1), (n1) € RO X R

pa(x,1) =0, and Zp.(x,1) =0, xeRL K0 d=2,3.

© Culwye) = Guls et + 1) = 5 [ | [ Btz )Butr. 2 )k ] Pl ™

2
S (1 Fiaw)A, | Caalx,y,w) = —8(x — ), x,y € R
@)

® 7,() i= / / / Ga(t, P, )0 a0, ) Ca(x, v, w)dor (x)dor (y)dw.
R O xON

Truncated imaging functional

L@ = [ [ G )62 @)y, w)do ()do (),
|w[<p a0 X 0
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Noise Source Localization

Attenuated Helmholtz-Kirchhoff identities & localization

Lemma

If Q2 is a ball with large radius (w.r.t. wavelength) and c(x) = 1 outside the ball then

/ G_alx, zs,w)ga(x,z,w)da(x) ~ (a—a(11z57w) - a(& ZS,W))-
20

2ika(w) (1 + iaw)

where w

V1 Fiaw

Ftq(w) =
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Noise Source Localization

Attenuated Helmholtz-Kirchhoff identities & localization

Lemma

If Q2 is a ball with large radius (w.r.t. wavelength) and c(x) = 1 outside the ball then

—~ = 1
G o(x,2°, w)Ga(x, 2, w)d ey N SRR
/asz (227, )Gl 2, w)do () 2ikq (w) (1 + iaw)

(C—u(z. P w) — Gulz, 2, w)).

where
w
Kta(w) = >
V1 Fiaw
v
Proposition
The truncated imaging functional Z,,,, satisfies
s s
za,p(z)::/ 0, (2, )K()dz
Q
with .
. F(w) ~ = . 2
s s s
sz:/ G _4(2, 2, w) — Gu(2,7,w)| dw.
G e v oy 7] (S CERO RGN
v
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Noise Source Localization

Reconstructions : Point sources in attenuating media

Top : @ = 0.0005. Bottom :a = 0.001. Left to right : Zy,, Z, with p = 7.5, and Z, with p = 15.
T = 8, wmax = 1000, Ny = 2% and N, = 2!,
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Noise Source Localization

Spatially correlated sources

@ Let n be a stationary Gaussian process with mean zero and covariance function

(n(x, On(y, s)) = F(t — $)L(x,y)
where T" characterizes spatial support and covariance of the sources.
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Noise Source Localization

Noise Source Localization

Spatially correlated sources

@ Let n be a stationary Gaussian process with mean zero and covariance function
(n(x,0n(y, s)) = F(t — 5)T'(x,y)
where T" characterizes spatial support and covariance of the sources.

0 @)= [ [ G B @)t w)do (o (),
R I X ON

1 = = P
@ Co(x,y,7) = ﬁ/& [//Q o Go(x, z, w)Go(y,z/,w)F(z,zl)dzdz/} F(w)e dw.
X
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Noise Source Localization

Noise Source Localization

Spatially correlated sources

@ Let n be a stationary Gaussian process with mean zero and covariance function
(n(x,0n(y, s)) = F(t — 5)T'(x,y)
where T" characterizes spatial support and covariance of the sources.

0 @)= [ [ G B @)t w)do (o (),
I I X ON

@ Gl = 27r/ [//QXQ (2, w)Go(y, 7', )T (2,2 )dzdz]F(w)e_"”dw.

Proposition
—~ o/
J(zs,z // / \sm{G(z Zow)tsm{G(, 2 w)}dwD(z,7') dzdz'.
QxQ
‘l’(:S,:S/ 27
In 3D homogeneous media, (5,25 ,2,2') = (5 — 2,25 — ') with

P(z,7) = /]Rf(w)sinc(w|z|)sinc(w\z’|)dw.

162
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Noise Source Localization

Spatially correlated sources Il

z+7
2

@ Extended distribution of locally correlated sources : T'(z,z’) = K ( > v(z—Z'). Then

I(zs)://Lf) ‘\‘rm{f}(z+5/2,zs,w)}3m{a(z75/2,15,w)}w(f)dgdwK(z)dz.
QJr W7 Q

D(z,25)
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Noise Source Localization

Spatially correlated sources Il

z+7
2

@ Extended distribution of locally correlated sources : T'(z,z’) = K ( > v(z—Z'). Then

I(zs)://Lf) ‘\‘rm{f}(z+5/2,zs,w)}3m{a(z75/2,15,w)}w(f)dgdwK(z)dz.
QJr W7 Q

P(z,2%)
Ny

@ Correlated point sources : T'(z,2') = > _ p;d(z — 2)8(z — z)
ij=1

N -
: F .
- Find z; from Z(z°) ~ > /);/-/ (—f)%m{G(z,zS,w)}zdw.
ij=1 R W

—~ ~ 1 -~
- Estimate p; from J(z;,z) = p,j/ Sm{G(zi,zi, w) } Sm{G (3, 7, w) pdw =~ PiTen /F(w)w.
R ™ JR
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Noise Source Localization

Spatially correlated sources Il

z+7
2

@ Extended distribution of locally correlated sources : T'(z,z’) = K (

I(zs)://Lf) (\‘rm{f}(z+5/2,zs,w)}i‘rm{a(z75/2,15,w)}w(f)dgdwK(z)dz‘
QJr W7 Q

> ~(z — 7). Then

P(z,2%)

Ny
@ Correlated point sources : T'(z,2') = > _ p;d(z — 2)8(z — z)
ij=1

N -
: F .
- Find z; from Z(z%) ~ > /);/-/ (—f)%m{G(z,zS,w)}zdw.
ij=1 R W

- Estimate p; from J(z;,z) = p,j/ Sm{a(zi,z;, w)}%m{a(zj,zj, w) }dw >~ p
R

1 1/vV2  1/vV2 0 1.000  0.733

1/V2 1 0 0 (0733 1.000
vz 0 1 0 P=10.701  0.049
0 0 0 1 0.061  0.061
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Noise Source Localization

Correlated point sources : Reconstruction

Top : K(z) (left), Zy with W(w) = “"‘31\w\<wmux (middle), and z — Jw(z;, z) (right).
Bottom : z — Jw (22, 2) (left),z — Jw(z3, z) (middle), and z — Jyw (z4, z) (right).
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Noise Source Localization

Extended correlated sources : Reconstruction

Top : K(z) (left), Zy with W(w) = |w\31w‘<w'mx (middle), and z — Jyw (z1, z) (right).
Bottom : z — Jw (22, 2) (left),z — Jw(z3,z) (middle), and z — Jyw (z4, z) (right).
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Conclusion and Perspectives

Conclusion and Perspectives
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Conclusion and Perspectives

Conclusion
@ Developed Radon transform and time reversal algorithms for Photo-acoustic imaging.
@ Justified the use of adjoint of the attenuated wave operator in time reversal.
@ Proposed pre-processing technique to compensate for attenuation effects.
@ Proposed and justified weighted elastic time-reversal algorithms.
@ Proposed weighted algorithms for noise source localization.
@ Studied impact of spatial correlation between noise sources.
@ Derived Helmholtz-Kirchhoff identities for elastic, viscoelastic and attenuating acoustic media.
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Conclusion and Perspectives

Perspectives

(]

Extension of the algorithms to complex wave propagation models, e.g. by taking into account non-linearity,
heterogeneity, anisotropy ...

Applications : Non-destructive testing, underwater acoustics, telecommunications ...
Recovery of the attenuation map from attenuated far field measurements ...
Variable attenuation correction.

®© ©6 6 ¢

Time reversal with a few transducers : lower bound on the number of transducers for stable
reconstructions.

Passive elastography : Elastic noise source localization in a transversally isotropic medium.
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It's not the End !

Thank you'!
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