
A proof checking
kernel

for the λΠ-calculus modulo

Mathieu Boespflug, École Polytechnique
☙

PhD defense, 18 january 2011
☙

Funded by



Pythia of Delphi



Pythia of Delphi

True

False



Proof implies truth.1

1 For any reasonable notion of proof.



Formal systems
Example

☙ The language of formulae words

☙ The set of axioms (or assumptions) a-z,ε

☙ The language of proofs

P is an axiom(ax)
P is a palindrome
P is a palindrome(ext)

xP x is a palindrome
P is a palindrome Q is a palindrome(concat)

QP Q is a palindrome

☙ Theorems are formulae that have proofs.



Palindromes: example

d is an axiom
(ax)
t is a palindrome

(ext)
rtr is a palindrome

(ext)
artra is a palindrome

(ext)
tartrat is a palindrome

(ext)
etartrate is a palindrome

(ext)
detartrated is a palindrome



Palindromes: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(ext)

Γ ` radar
(concat) Γ ` radardetartratedradar



Tree of proofs

...



Tree of proofs

...



Proof reduction

Γ ` P
Γ ` Q(ext) Γ ` xQx(concat) Γ ` xQxP xQx

−→ Γ ` P(ext) Γ ` xP x Γ ` Q(concat) Γ ` QxP xQ(ext) Γ ` xQxP xQx



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(ext)

Γ ` radar
(concat)

Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr

d ∈ Γ
(ax)

Γ ` d
(ext)

Γ ` ada
(concat)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
d ∈ Γ

(ax)
Γ ` d

(concat)
Γ ` dardetartratedrad

(ext)
Γ ` adardetartratedrada

(ext)
Γ ` radardetartratedradar



Proof reduction: example

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
(ext)

Γ ` dardetartratedrad
(ext)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar



Proof reduction: example

n

t ∈ Γ
(ax)

Γ ` t
(ext)

Γ ` rtr
(ext)

Γ ` artra
(ext)

Γ ` tartrat
(ext)

Γ ` etartrate
(ext)

Γ ` detartrated
(ext)

Γ ` rdetartratedr
(ext)

Γ ` ardetartratedra
(ext)

Γ ` dardetartratedrad
(ext)

Γ ` adardetartratedrada
(ext)

Γ ` radardetartratedradar

2n + 1

☙ Proof in normal form.

☙ Proof always ends with an (ax)
or (ext) rule.

☙ Can compute with proofs.

Γ, radar ` radar



Modus Ponens

Γ ` A⇒ B Γ ` A
Γ ` B



Computation with proofs of logical formulae

Γ ` A⇒ B Γ ` A
Γ ` B

Γ,A ` B
Γ ` A⇒ B

Computation Rule:
Γ,A ` B

Γ ` A⇒ B Γ ` A
Γ ` B

−→

Γ ` B



Modulo --- formula rewriting

Proofs←→ Programs
Formulae←→ Types

☙ Want to reason on proofs/programs.

☙ If we can write proofs inside formulae then we should be able to compute
inside formulae.

☙ Computation is a means to reduce proof effort (e.g. Four Colour Theorem,
reflexive tactics).



Dedukti

Dedukti (λΠ modulo)



Dedukti

Dedukti (λΠ modulo)Coq

HOL

PVS

Epigram

Isabelle

Agda

...

...



Thesis

Analysis, transformation and compilation of programs
is a simple and effective method for checking proofs.



Conversion test

Γ ` A A ≡βR BΓ ` B



Normalization by Evaluation

terms model

interpretation ⟦·⟧

reification ↓ ·

1. ∀M .∀N . M ≡ N ⇒ ⟦M ⟧ = ⟦N ⟧ (soundness),

2. ∀M . ↓ ⟦M ⟧ = M ifM is in normal form (reproduction).



From program to data

pxq = B x

pλx. M q = Lam (λx. pM q)

pM ·N q = App pM q pN q



Data evaluation

pxq = B x

pλx. M q = Lam (λx. pM q)

pM ·N q = App pM q pN q

eval (B x) = x

eval (Lam f ) = λx. eval (f x)

eval (App M N ) = app (eval M ) (eval N )

app f N = f N



Evaluation to a residualizing semantics

pxq = B x

pλx. M q = Lam (λx. pM q)

pM ·N q = App pM q pN q

eval (B x) = x

eval (Lam f ) = Lam (λx. eval (f x))

eval (App M N ) = app (eval M ) (eval N )

app (Lam f ) N = f N

app M N = App M N



Interpretation

pxq = B x

pλx. M q = Lam (λx. pM q)

pM ·N q = App pM q pN q

eval (B x) = x

eval (Lam f ) = Lam (λx. eval (f x))

eval (App M N ) = app (eval M ) (eval N )

app (Lam f ) N = f N

app M N = App M N

⟦M ⟧ = eval pM q.



Partial evaluation of eval ◦ p·q

⟦x⟧ = x

⟦λx. M ⟧ = Lam (λx. ⟦M ⟧)

⟦M ·N ⟧ = app ⟦M ⟧ ⟦N ⟧



Reification
⟦x⟧ = x

⟦λx. M ⟧ = Lam (λx. ⟦M ⟧)

⟦M ·N ⟧ = app ⟦M ⟧ ⟦N ⟧

↓n F m = m

↓n Lam f = λn. ↓n+1 (f (F n))

↓n App M N = (↓n M )·(↓n N )



Rewrite Rules and extensions
⟦_⟧ = _ ⟦x⟧ = x

⟦c P 1 . . . P n⟧ = App (. . .(App (Con ĉ) ⟦P 1⟧). . .) ⟦P n⟧


 c P 11 . . . P 1n −→ M 1

..

.
..
.

c P m1 . . . P mn −→ Mm


 =

fix (λc. λx1. · · ·λxn.
case (x1, . . ., xn) of

(⟦P 11⟧, . . ., ⟦P 1n⟧) → ⟦M 1⟧

..

.
..
.

(⟦P m1⟧, . . ., ⟦P mn⟧) → ⟦Mm⟧
default →

App (. . .(App (Con ĉ) x1). . .) xn)

☙ Untyped NbE extends naturally to residual forms and reduction rules of
the Calculus of Constructions.



Optimizations

☙ Removal of intermediate closure allocation by standard
eval/apply transformation.

☙ Constructors of object-level datatypes interpreted as metalevel
constructors.

☙ Native pattern matching.



Micro benchmarks

append even sort exp38 queens

0

1

2

3

ahn singlearity evalapply constructors ucea whnf



Synthetic benchmark

Cooper n = 5

0

50

100

n/a

Standard VM NbE NbE accu



Context-free typing



An alternative interpretation

⟦x⟧ = x

⟦λx. M ⟧ = Lam (λx. ⟦M ⟧)

⟦M ·N ⟧ = App ⟦M ⟧ ⟦N ⟧



Dependent product elimination

Γ `M : Πx : A. B Γ ` N : A(app) Γ `M N : {N /x}B



Dependent product elimination

Γ `M : Πx : A. B Γ ` N : A(app) Γ `M N : {N /x}B

Γ `M : Pi A f Γ ` N : A(app-ho) Γ `M N : f N

☙ Easy implementation of capture avoiding substitution.



Dependent product introduction

⟦λx. M ⟧ = Lam (λx. ⟦M ⟧)︸ ︷︷ ︸
f



Dependent product introduction

⟦λx. M ⟧ = Lam (λx. ⟦M ⟧)︸ ︷︷ ︸
f



Dependent product introduction

f (Var n)



Dependent product introduction

f [n : A]



Dependent product introduction

Γ,x : A `M : B(abs) Γ ` λx : A. M : Πx : A. B



Dependent product introduction

Γ,x : A `M : B(abs) Γ ` λx : A. M : Πx : A. B

`M : f [n : A](abs-ho) ` Lam A f : Pi A f

☙ Drop explicit context in judgements.



Towards a LCF style proof checker
for dependently typed theories

☙ Type decorated variable occurrences in HOL.

☙ Proofs checked by construction.

☙ Allows cheap combination of proofs.

☙ No context — no checking that contexts are compatible.

Example:

Γ `M : Πx : A. B Γ′ ` N : A′

Γ ` {N /x}B



Towards a LCF style proof checker
for dependently typed theories

☙ Type decorated variable occurrences in HOL.

☙ Proofs checked by construction.

☙ Allows cheap combination of proofs.

☙ No context — no checking that contexts are compatible.

Example:

Γ `M : Πx : A. B Γ′ ` N : A′

Γ ` {N /x}B



A purely functional kernel
☙ Proof checked by construction means no need for global registry of
checked proofs.

☙ No state during proof checking.



A purely functional kernel
☙ Proof checked by construction means no need for global registry of
checked proofs.

☙ No state during proof checking.

◦

◦

◦

t

◦

◦ t

t = ◦

◦ ◦



A purely functional kernel
☙ Proof checked by construction means no need for global registry of
checked proofs.

☙ No state during proof checking.

◦

◦

◦

◦

◦

◦ ◦

[ ◦

◦ ◦

: A]



Managing dual
interpretations



Code explosion: example

a1 (a2 (a3 (a4 (a5 (a6 (a7 a8))))))



Recuperating sharing

[[[x]]]ρ = ρ(x) si x ∈ dom(ρ).

[[[s]]]ρ = 〈s, s〉

[[[λx : A. M ]]]ρ = Let [[[A]]]ρ (λy. 〈Lam ŷ (λx. [[[M ]]]ρ[x 7→x]), Lam (λx. ⟦M ⟧)〉)

[[[Πx : A. B ]]]ρ = Let [[[A]]]ρ (λy. 〈Pi ŷ (λx. [[[B ]]]ρ[x 7→x]), Pi y̌ (λx. ⟦B⟧)〉)

[[[M N ]]]ρ = Let [[[N ]]]ρ (λx. Let [[[M ]]]ρ (λy. 〈App x̂ ŷ, app x̌ y̌〉))



Connecting subterms to their code



Connecting subterms to their code

◦

λ

λ

◦

◦

◦ ◦

◦

λ

λ

◦

◦

◦ ◦



Connecting subterms to their code

◦

λ

λ

◦

◦

◦ ◦

◦

λ

λ

◦

◦

◦ ◦



Lambda-lifting

◦

λ λ ◦ ◦

◦ ◦

◦

λ λ ◦ ◦

◦ ◦



Lambda-lifting

◦

λ λ ◦ ◦

◦ ◦

◦

λ λ ◦ ◦

◦ ◦



Final words



Proof checking by program analysis,
transformation and compilation is a cheap
and effective method for checking proofs.



Future work
☙ More clever shortcutting of normalization.

☙ Development of more embeddings in the λΠ-calculus modulo.

☙ Bootstrap of core type checker.


