Vendredi 09 décembre 2011

Élaboration de graphène par épitaxie par jets moléculaires et caractérisation

Eléonore Moreau

Directeur de thèse : Dominique Vignaud (IEMN)

Université

Rapporteurs :

Laurence Magaud (IN) Laurent Simon (IS2M) <u>Examinateurs</u> :

<u>s</u>: Maria-Carmen Asensio (Synchrotron SOLEIL)
 Erik Dujardin (CEMES)
 Xavier Wallart et Gilles Dambrine (IEMN)

Contexte de la thèse

Projet ANR Xp-Graphène :

Elaboration et caractérisation de nano-composants à base de graphène (cf. thèse de Nan Meng : nano-rubans de graphène pour des transistors à haute fréquence de coupure)

Moyens mis en œuvre :

- Bâti de croissance sous ultravide
- Analyse XPS

Université

- Synchrotron SOLEIL pour les mesures UPS et XPS
- Autres collaborations pour : spectrométrie Raman, effet Hall, AFM, STM

Sommaire

I. Introduction au graphène

- 1. Caractéristiques du graphène
- 2. Etat de l'art de son élaboration
- 3. Objectifs de la thèse

II. Conditions expérimentales

- 1. Présentation du bâti de croissance
- 2. Techniques de caractérisation
- 3. Préparation du substrat

III. Résultats obtenus

Université

- 1. Croissance à 1050°C
- 2. Croissance sous flux Si à 1150°C

IV. Conclusion et perspectives

Sommaire

I. Introduction au graphène

- 1. Caractéristiques du graphène
- 2. Etat de l'art de son élaboration
- 3. Objectifs de la thèse

II. Conditions expérimentales

- 1. Présentation du bâti de croissance
- 2. Techniques de caractérisation
- 3. Préparation du substrat

III. Résultats obtenus

Université

- 1. Croissance à 1050°C
- 2. Croissance sous flux Si à 1150°C

IV. Conclusion et perspectives

I.1. Caractéristiques du graphène

• Structure hexagonale du graphène avec $|\vec{a_1}| = |\vec{a_2}| = 2.46 \text{ Å}$

Université

- Première zone de Brillouin correspondante
- Dispersion électronique du graphène E=f(k_x,k_y) avec un zoom au point de Dirac.

[1] Jannik Meyer, University of Manchester [2] A. H. Castro Neto et al, Rev. Mod Phys 81(1),109-162

I.1. Caractéristiques du graphène

Ses propriétés attractives :

- Effet bipolaire : conducteur par les électrons ou les trous [1]
- Haute mobilité : 200 000 cm²/V.s pour un plan suspendu [2]
- Fréquence de coupure (sur SiC face Si) : 60 GHz [5] et 200 GHz [3]
- Transparent et conducteur : 97,7 % et R_{\Box} < 1 k Ω /sq [4]

[1] K.S. Novoselov et al, Science 306 (2004), 666-669
[2] K. Bolotin et al, Solid State Communication 146 (2008), 351-355
[3] N. Meng et al, IEEE Trans. Electron Dev. 58 (2011), 1594
[4] Y.M.Lin et al, IEEE Electron Dev. Lett. 32 (2011), 1343
[5] R. R. Nair et al, Science 320 (2008), 1308

a) Exfoliation

K.S. Novoselov et al, Science 306 (2004), 666-669

Plans de graphène exfoliés à partir d'HOPG sont reportés sur un substrat de SiO₂.

b) Dépôt par voie chimique sur métaux

Ni hydrocarbon metal carbon dissolving surface body Fast/medium cooling slow cooling extremely fast cooling

Yu et al, Appl. Phys. Lett. 93, 113103 (2008)

b) Dépôt par voie chimique sur métaux

Report du graphène obligatoire sur support isolant pour applications en électronique souple ou transparente

S. Bae et al, Nature Nanotechnology vol. 5 (2010), 574-578

c) Graphitisation sur SiC

Face C [000-1]

Face Si [0001]

Cristal de SiC :

- Structure hexagonale
- Empilement de biplans
- Polytypes commercialisés : 4H et 6H
- Bande interdite $\approx 3 \text{ eV}$
- Paramètre de maille c : 6H : c ≈ 15 Å 4H : c ≈ 10 Å

Schéma réalisé par Evelyne Lampin

c) Graphitisation sur SiC

Face Si [0001]

Schéma réalisé par Evelyne Lampin

Université

Recuit du SiC

Sublimation du Si

Réorganisation des atomes de C

Graphène

1 plan de graphène = 3 biplans de SiC

c) Graphitisation sur SiC face Si

P. Lauffer et al, PRB 77(15), 155426 (2008)

K. V. Emtsev et al, PRB 77 (2008), 155303

Plan d'interface : reconstruction $(6\sqrt{3} \times 6\sqrt{3})R30^{\circ}$

Orientation du graphène : hexagone pivoté de 30° par rapport à l'orientation principal du SiC

c) Graphitisation sur SiC face Si

Bandes de valence du graphène pour 1 ML [1] et 2 ML [2] (en plus du plan d'interface) → ouverture du cône de Dirac au point K (2 ML)

> [1] K. V. Emtsev et al, PRB 77 (2008), 155303 [2] T. Ohta et al, PRL 98 (2007), 206802

c) Graphitisation sur SiC face C

→ très faible couplage des plans avec le substrat

[1] C. Riedl et al, J. Phys. D: Appl. Phys. 43, 374009 (2010)
 [2] K. V. Emtsev et al, PRB 77 (2008), 155303

c) Graphitisation sur SiC face C

Plans de graphène désorientés les uns par rapport aux autres et par rapport au SiC(000-1)

[1] K. V. Emtsev et al, PRB 77 (2008), 155303 [2] Luxmi et al, PRB 82 (2010), 235406

c) Graphitisation sur SiC face C

Image STM de plusieurs plans

Cônes de Dirac à deux directions préférentielles pour 10 ML env.

[1] F. Varchon et al, PRB 77 (2008), 165415 [2] M. Sprinkle et al, JPD:AP 43 (2010), 374006

c) Graphitisation sur SiC : bilan

[1] W.A. de Heer et al, ArXiv e-prints, arXiv:1103.3552

Lille1

[2] P. Sutter, Nat. Mat. 8, 171-172 (2009)

d) Epitaxie par jets moléculaires

Croissance par une source d'hydrocarbure sur 2/3 ML de graphène déjà obtenu par graphitisation sur SiC(0001).

niversité Lille Nord de France

F. Maeda & H. Hibino, Physica Status Solidi (b), 247, 916-920 (2010)

d) Epitaxie par jets moléculaires

Croissance par la cellule de C60 ou par le filament en graphite du four

Graphitisation

Croissance MBE

T _{échantillon} = 1400°C pendant 30 min

J. Park et al, Advanced Materials 22, 4140-4145 (2010)

d) Epitaxie par jets moléculaires

Croissance à partir d'une source de carbone solide à 1050°C (face C) ou 950°C (face Si)

A. Al-Temimy et al (2009), Applied Physics Letters 95 (23), 231907 (2009)

I.2. Objectifs de la thèse

Alternative à la graphitisation

- A plus basse température
- Sans altération du substrat
- Contrôle épaisseur (pour la face C)

Sur carbure de silicium

Compatibilité technologique

Elaboration de graphène par épitaxie par jets moléculaires

Sommaire

I. Introduction au graphène

- 1. Caractéristiques du graphène
- 2. Etat de l'art de son élaboration
- 3. Objectifs de la thèse

II. Conditions expérimentales

- 1. Présentation du bâti de croissance
- 2. Techniques de caractérisation
- 3. Préparation du substrat
- III. Résultats obtenus

Université

- 1. Croissance à 1050°C
- 2. Croissance sous flux Si à 1150°C

IV. Conclusion et perspectives

Vidéo réalisée par Guillaume Defoort

Vues schématiques des principaux éléments du bâti de croissance :

- 1. Cellule C (SuKo)
- 2. Cellule Si
- 3. Cellule Si (SuSi)
- 4. Pyromètre
- 5. Canon à e⁻ RHEED
- 6. Ecran RHEED
- 7. Manipulateur

Images réalisées par Guillaume Defoort

Ensemble porte substrat et four-manipulateur :

- a. Substrat de SiC de 4x4 mm
- b. Support en tantale
- c. Disque de graphite de 3"

Cellules utilisées pour la croissance MBE :

SuKo : vitesse de croissance de 0.3 Å/min

Silicium

SuSi (haut flux) : vitesse de croissance de 1.4 Å/min Cellule à effusion de Si (bas flux) : 0.3 Å/min

a) Diffractions d'électrons :

RHEED : accès à une seule direction à la fois in-situ

b) Spectroscopie de photoélectrons : $hv = E_L(k) + E_{cin} + \phi_{spe}$

b) Spectroscopie de photoélectrons :

b) Spectroscopie de photoélectrons :

Variation de l'angle

- ➔ Variation de l'intensité des pics
 - → Mesure de l'épaisseur

Cellule de C : vitesse de croissance mesurée de 0.3 Å/min

Université

Lille1

b) Spectroscopie de photoélectrons :

Mesures sur la ligne ANTARES au synchrotron SOLEIL

- hv de 12 eV à 1000 eV, polarisation linéaire et circulaire
- Manipulateur XYZ, θ et φ
- Analyseur Scienta R4000 avec capteur CCD en 2D

c) Mesures complémentaires :

Avant mesures sous pointes avec les billes d'Indium (objectif x2.5)

Exemples de spectres pour une graphitisation de plusieurs monocouches sur face C

Lille1

I.2. Objectifs de la thèse

Préparation de surface du substrat

Rugosité 0.04 nm

Sommaire

I. Introduction au graphène

- 1. Caractéristiques du graphène
- 2. Etat de l'art de son élaboration
- 3. Objectifs de la thèse

II. Conditions expérimentales

- 1. Présentation du bâti de croissance
- 2. Techniques de caractérisation
- 3. Préparation du substrat

III. Résultats obtenus

Université

- 1. Croissance à 1050°C
- 2. Croissance sous flux Si à 1150°C

IV. Conclusion et perspectives

Face Si

Spectres XPS pour 1ML environ

ARNOT

Face Si

Université

Lille1

Université

Bandes de valence du graphène (1ML environ)

niversité Lille Nord de France

Face C

Orientation du graphène

Topographie de surface

Echelle : – 400 nm

Graphitisation

Face C

Rugosité : 0.12 nm

Face C

Comparaison des spectres XPS C1s à 25°

Face C

Bandes de valence du graphène (~2ML)

E. Moreau et al, Applied Physics Letters 97 (24), 241907 (2010)

Face C

Bandes de valence du graphène (~2 ML)

Face C

20 min de croissance MBE (~2 ML)

Image AFM

Surface très rugueuse : 0.13 nm sur 2 x 2 µm²

Université

Lille1

Surface de 100 x 100 nm² avec V=+1 V et I=0,2 nA

Image STM

Scan de 10 x 10 nm² sur la zone marquée X avec V=-20 mV et I=0,2 nA

\rightarrow De nombreux domaines de petites tailles

Qualité des couches épitaxiées

Conclusion :

- Graphène d'épaisseur 3 ML max
- Cônes de Dirac obtenus en UPS

MAIS

Forte rugosité de surface et

présence de nombreux défauts (sp³)

→ faible mobilité

Croissance à plus haute température

Face Si

Topographie de surface et orientation du graphène Rugosité de 0.1 à 0.13 nm

Rugosité de 0.07nm

Face Si

 $v_F = 0.92 \text{ x } 10^6 \text{ m/s}$

Face C

Topographie de surface et orientation du graphène

Face C

Bandes de valence du graphène de 2 ML

Face C

Bandes de valence du graphène de 2 ML selon la direction FK en polarisation circulaire.

➔ Dopage n du graphène

 $v_F = 0.9 \text{ x } 10^6 \text{ m/s}$

-0.6 -

-0.8 -

-1.0 -

-1.2 -

1.4

1.6

1.8

k_x

2.0

Bilan des mobilités

	Face C	Face Si
Croissance MBE	µ = 30 - 45 cm²/V.s	μ = 40 cm²/V.s
Croissance MBE sous flux Si	$\mu = 220 \text{ cm}^2/\text{V.s}$	µ = 260 - 410 cm²/V.s
Graphitisation	μ = 2000-3000 cm²/V.s	μ = 1000 cm²/V.s

Sommaire

I. Introduction au graphène

- 1. Caractéristiques du graphène
- 2. Etat de l'art de son élaboration
- 3. Objectifs de la thèse

II. Conditions expérimentales

- 1. Présentation du bâti de croissance
- 2. Techniques de caractérisation
- 3. Préparation du substrat

III. Résultats obtenus

Université

- 1. Croissance à 1050°C
- 2. Croissance sous flux Si à 1150°C

IV. Conclusion et perspectives

IV. Conclusion et perspective

- ✓ Obtention de graphène à température inférieure à la graphitisation
- Graphène réalisé par croissance MBE équivalent au graphène obtenu par graphitisation en diffraction d'électrons (reconstruction et orientation)
- ✓ Amélioration de la qualité des couches sous flux Si
- ➔ approfondir cette voie en utilisant un flux plus important

Iniversité

Remerciements

IEMN :

- Sylvie Godey (XPS et mesures au synchrotron SOLEIL)
- Javier Ferrer (ancien post-doc, AFM)

Collaborations :

Université

- José Avila et Maria-Carmen Asensio (Synchrotron SOLEIL)
- Mathieu Hureau, Ophélie Lancry et Emmanuelle Pichonat (LASIR)
- Jean-Yves Veuillen et Pierre Mallet (Institut Néel)

