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Abstract

This thesis addresses two important classes of optimization: multiobjective optimization and bilevel op-
timization. The investigation concerns their solution methods, applications, and possible links between
them.

First of all, we develop a procedure for solving Multiple Objective Linear Programming Problems
(MOLPP). The method is based on a new characterization of efficient faces. It exploits the connectedness
property of the set of ideal tableaux associated to degenerated points in the case of degeneracy. We
also develop an approach for solving Bilevel Linear Programming Problems (BLPP). It is based on the
result that an optimal solution of the BLPP is reachable at an extreme point of the underlying region.
Consequently, we develop a pivoting technique to find the global optimal solution on an expanded tableau
that represents the data of the BLPP. The solutions obtained by our algorithm on some problems available
in the literature show that these problems were until now wrongly solved.

Some applications of these two areas of optimization problems are explored. An application of multi-
criteria optimization techniques for finding an optimal planning for the distribution of electrical energy in
Cameroon is provided. Similarly, a bilevel optimization model that could permit to protect any economic
sector where local initiatives are threatened is proposed.

Finally, the relationship between the two classes of optimization is investigated. We first look at the
conditions that guarantee that the optimal solution of a given BPP is Pareto optimal for both upper
and lower level objective functions. We then introduce a new relation that establishes a link between
MOLPP and BLPP. Moreover, we show that, to solve a BPP, it is possible to solve two artificial MOPPs.
In addition, we explore Bilevel Multiobjective Programming Problem (BMPP), a case of BPP where each
decision maker (DM) has more than one objective function. Given a BMPP, we show how to construct two
artificial MOPPs such that any point that is efficient for both problems is also efficient for the BMPP. For
the linear case specially, we introduce an artificial MOLPP such that its resolution can permit to generate
the whole feasible set of the leader DM. Based on this result and depending on whether the leader can
evaluate or not his preferences for his different objective functions, two approaches for obtaining efficient
solutions are presented.

Keywords: Multicriteria optimization, Bilevel optimization, Efficient point, Pareto-optimal point.
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Resumé

Contexte et résultats obtenus

La convergence de divers facteurs tels que la concurrence accrue dans une économie mondi-
ale, 'accés en temps réel & une foule d’informations transparentes et ’apparition d’une généra-
tion de consommateurs avertis et pragmatiques sont entrain de modifier le réle et la nature de
I’établissement des prises de décision. Bien que dans le passé, les modéles d’aides a la décision aient
principalement fait 'objet de recherches universitaires pures, ces modéles constituent aujourd’hui
des outils financiers et opérationnels fondamentaux au sein d’importants secteurs industriels et
se rangent maintenant parmi les principaux facteurs de rentabilité. C’est dans cette optique qu’il
est observé aussi bien au sein du secteur des affaires que dans la communauté des chercheurs
en mathématiques appliquées une volonté croissante de développer des approches de prises de
décision optimales.

Les problémes de décision se modélisent en général par des problémes d’optimisation sous con-
traintes. [’optimisation est 1'un des domaines des mathématiques appliquées en plein expansion
qui s’est imposée dés ses débuts dans les années 1940 comme un outil essentiel et incontourn-
able dans la prise de décision. Le courant principal de recherche dans ce domaine s’est, toutefois
beaucoup plus préoccupé des modéles unicritéres, c¢’est-a-dire, des modéles mathématiques bien
définis, régis par le paradigme classique d’existence de solutions optimales, de caractérisations et
des algorithmes convergeant vers celles-ci.

Méme si l'utilisation de ces modeéles unicritéres s’est révélée particuliérement efficace dans
de nombreuses situations, il est toutefois apparu qu’il existe une multitude d’applications pour
lesquelles ne prendre en compte qu'un seul décideur ou un seul critére de décision ne répond en
aucun cas a la réalité. C’est vers le milieu des années 1980 que la nécessité d’une aide multicritére
a la décision se fit cruellement sentir et ce fut le mérite exceptionnel des scientifiques de renom tels
que B. Roy pour I’école francaise et A. Geofrion pour I’école américaine. Depuis lors, ’aide mul-
ticritére a la décision connait une expansion fulgurante avec le développement de deux principaux
courants de recherches: I'optimisation multi-objectifs et 'optimisation a plusieurs niveaux.

Un probléme d’optimisation a deux niveaux (BPP) est caractérisé par deux niveaux de prise de
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Resumé étendu X

décision classés de maniére hiérarchique et ot chaque décideur essaie d’optimiser sa propre fonction
objectif, sans tenir compte de ’objectif de "autre partie, mais la décision de chaque partie affectant
la valeur optimale de I'autre partie ainsi que ’espace de décision. Ces problémes apparaissent dans
de nombreuses situations réelles dont entre autres le controle optimal, ’'optimisation des processus,
le probléme de transports.

L’optimisation multi-objectifs quant a elle, est une sorte de généralisation de 'optimisation
classique dans laquelle plusieurs fonctions objectif conflictuelles sont maximisées (ou minimisées)
simultanément. La plupart des problémes de décision réalistes nécessitent ’optimisation simultanée
de plus d’une fonction objectif.

Ces deux classes d’optimisation ont fait I’objet de nombreuses publications depuis une trentaine
d’années. Cependant, trés peu d’études ont porté sur les liens possibles entre les deux classes
d’optimisation. La présente thése porte principalement sur I’application des concepts et techniques
d’optimisation multicritére en optimisation a deux niveaux. Les méthodes de résolution et les
applications de chacune de ces deux classes d’optimisation sont aussi abordées. Dans le cadre des

travaux réalisés, plusieurs apports ont été éffectués, notamment:

e Le développement d’une approche de résolution des problémes d’optimisation linéaire mul-

ticritére;

e Le développement d’une approche de résolution des problémes d’optimisation linéaire & deux

niveaux;

e [a proposition des solutions exactes a certains problémes d’optimisation linéaire a deux

niveaux jusque la mal résolus dans la littérature;

e L’établissement de deux nouvelles relations entre 'optimisation multicritére et I’optimisation

a deux niveaux;

e La proposition de conditions de Pareto-optimalité pour les solutions des problémes d’optimisation

a deux niveaux;

e La proposition d’une nouvelle caractérisation de 'ensemble de solutions admissibles du prob-
leme du leader lors de la résolution de certaines classes de probléme d’optimisation multi-

critére a deux niveaux;

e La proposition d’une approche de détermination des solutions efficaces lors de la résolution

des problémes d’optimisation multicritére & deux niveaux;
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Resumé étendu XI

e La proposition de deux approches de résolutions des problémes d’optimisation linéaire mul-

ticritére & deux niveaux.

Ce qui suit est une présentation du condensé de la thése, chapitre par chapitre a partir du

chapitre 2, le chapitre 1 tenant lieu de préliminaire.

L’optimisation multicritére

Le chapitre 2 traite de I'optimisation multiobjectifs. Un probléme d’optimisation multicritére avec
n variables de décisions, m = my +msy contraintes et p fonctions objectif peut étre formulé comme

suit:
7 min” (ZL‘) - (fl(x)v f2(x)7 7fp(x))
( gi(x) <0,iel={1,.,m}

sujet a < (MOPP)
]%(I) = 0, ] © J = {1, ..,WLQ}

0

1\

T
\

Y

La notation ” min” évite ici I'obstacle de la mauvaise formulation du probléme (MOPP) car
la fonction de minimisation ne peut pas s’appliquer & un sous ensemble de R™ avec n > 1. Aussi,
il n’existe pas en général une solution admissible qui optimise simultanément toutes les fonctions
objectif. Résoudre le probléme (MOPP) revient a présenter au décideur un ensemble de bonnes
solutions possibles et éventuellement, avec les préférences du décideur, une solution de compromis
(qui satisfasse au mieux le décideur). De telles solutions sont appelées solutions efficaces.

Aprés un parcours des principales caractérisations et propriétés des solutions efficaces, nous
faisons une revue des différentes méthodes de résolutions des problémes (MOPP). 11 ressort qu'il
existe trois familles d’approches, selon que le décideur interviene avant, pendant ou aprés le proces-
sus de sélection de la solution (efficace). Si les préférences du décideur sont connues préalablement
a la procédure de resolution, on parle d’articulation a priori des préférences. Si par contre, le choix
du décideur s’exprime aprés que la procédure de resolution lui fournisse I’ensemble des solutions
efficaces, on parle d'une articulation a posteriori. Si enfin, ses préférences sont exprimées progres-
sivement, au fur et & mesure de I’avancement de la procédure de resolution, on parle de méthode
interactive.

Nous présentons ensuite une approche a priori de résolution des problémes linéaires d’optimisation
multicritére. L’approche est une généralisation de la méthode d’Ecker et Kouada qui est ineffi-

cace dans le cas de problémes dégénérés car: (i) leurs méthodes ne guarantit pas le parcours de
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Resumé étendu XII

I'ensemble des sommets extrémes efficaces et (ii) ’ensemble des solutions obtenues peut contenir
des solutions non-efficaces.

Notre approche surmonte le probléme (i) en débutant avec un sommet extréme efficace initial
associé a un tableau idéal et en procédant ensuite au parcours des différents sommets extrémes
par la technique de pivotage lexicographique. Pour cela, nous exploitons le résultat de P. Armand
selon lequel I'ensemble des tableaux idéaux associés aux sommets extrémes efficaces dégénérés
est connexe. Le probléme (ii) est resolu par l'utilisation d’une nouvelle caractérisation des faces
efficaces que nous avons développée. Ainsi, la méthode parcours les sommets extrémes efficaces
pour générer I’ensemble des faces efficaces dont I'union est I'ensemble des solutions efficaces.

Nous cloturons le chapitre par la présentation d’une application de 'optimisation multicritére

au probléme de planification de la distribution de 1’énergie électrique au Cameroun.

Optimisation a deux niveaux

Le chapitre 3 est consacré a 'optimisation & deux niveaux. La formulation générale d’un probléme

d’optimisation a deux niveaux peut étre donnée par :

iy F(z.0)
([ G(z,y) <0
sujet a < mingey f(z,y) (BPP)
ol y résoud sujet, a
X g(r,y) <0

Nous débutons par une bréve revue de littérature sur cette classe de probléme d’optimisation.
Il ressort que la résolution du probléme (BPP) dépend significativement du cardinal de I’ensemble
de réactions du suiveur pour un choix quelconque du leader. Si son cardinal est nul, alors le
probléme (BPP) n’a pas de solution. Si cet ensemble est de cardinal un, alors (BPP) peut étre
transformé en un probléme d’optimisation unicritére classique. Si par contre, le cardinal de cet
ensemble est supérieur ou égal a deux, alors le leader se trouve face & un dilemme en ce sens que
méme s’il connait sa région réalisable, il ne sait pas quelle sera la décision du suiveur. Dans ce cas,
deux situations sont envisageables : I’approche optimiste et ’approche pessimiste. Avec 'approche
optimiste, le leader suppose que le suiveur sélectionnera le choix qui contribuera a I'optimisation
de sa fonction objectif. Ce raisonnement n’est valable que si la collaboration entre le suiveur et

le leader est permise. Au cas ou elle n’est pas possible ou lorsque le leader n’est pas capable
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Resumé étendu XIII

d’influencer le choix du suiveur, le leader limite les dégats pouvant résulter d’un choix indésirable
du suiveur. Dans ce cas, il raisonne comme si le suiveur prendra la décision qui détériore le plus
sa fonction objectif, c’est I'approche pessimiste.

Nous présentons ensuite quelques méthodes développées dans la littérature pour résoudre des
classes particuliéres de (BPP). Cette présentation est suivie par le développement d’une méthode
de résolution des problémes linéaires d’optimisation a deux niveaux (BLPP), ot nous supposons
que la réaction du suiveur est unique a chaque choix du leader. Nous formulons et démontrons
le résultat selon lequel une solution optimale du probléme (BLPP) se trouve parmi les sommets
extrémes de l'ensemble des solutions réalisable. Nous proposons par la suite une approche de
parcours des sommets extrémes a partir d'un tableau simplexe initial qui permet de passer d'un
sommet extréme vers le sommet extréme adjacent avec la valeur optimale la moins dégradée. Nous
exploitons ce résultat pour développer un algorithme de détermination d’une solution optimale
du probléme (BLPP). Nous montrons alors que toute solution obtenue de cet algorithme est
effectivement une solution optimale du probléme d’optimisation linéaire a deux niveaux résolu. A
partir de I'implémentation de 'approche développée, nous proposons les solutions exactes de deux
problémes d’optimisation linéaire a deux niveaux jusque la mal résolus dans la littérature.

Nous achevons le chapitre par la présentation d’une application de l'optimisation & deux
niveaux dans un contexte de mondialisation ot les entreprises nationales ne sont pas encore capa-
bles de supporter la concurrence des firmes internationales et ot il est indispensable d’introduire
une taxe pour réguler cette inégale concurrence. Nous montrons que la modélisation du probléme
de détermination du taux de taxe qu’il faudra appliquer conduit & un probléme d’optimisation a

deux niveaux.

Les techniques d’optimisation multicritére en optimisation a
deux niveaux

Le chapitre quatre est une étude de 'application des techniques d’optimisation multicritére en

optimisation & deux niveaux. Le probléme d’optimisation bicritére (BOP) associé au probléme
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Resumé étendu XIV

d’optimisation & deux niveaux (BPP) présenté dans le chapitre précédent est donné par :

min T(z,y) = (F(z,y), f(x,y))

T,y
G(z,y) <0
sujet a (BOP)
g(z,y) <0

Le chapitre débute par I’étude de possibilité qu’une solution optimale du probléme d’optimisation
a deux niveaux (BPP) soit solution Pareto-optimale du probléme bicritére associé (BOP). Nous
montrons qu’en général, cela n’est pas possible, sauf sous certaines conditions particuliéres.

Nous poursuivons par une analyse post-optimale qui consiste & montrer que s’il y a collabora-
tion entre les deux décideurs, il est possible de déterminer une solution Pareto-optimale de BOP
procurant a chacun une valeur optimale meilleure que la solution optimale obtenue en résolvant
le probléme d’optimisation a deux niveaux (BPP).

Par la suite, nous présentons une généralisation de I"approche de |Fulop 1993| qui établit une
relation entre les problémes linéaires a deux niveaux et une certaine classe de problémes linéaires
multi-objectif. Nous montrons que ce résultat peut étre valide pour certaines classes de problémes
d’optimisation non linéaire a deux niveaux. En effet, si la fonction objectif du suiveur est continue
pour chaque choix du leader, et si le domaine admissible du suiveur est compact, alors le résultat
reste aussi valide.

Nous achevons le chapitre par la présentation d’'une nouvelle relation entre certaines classes
de problémes d’optimisation a deux niveaux et les problémes d’optimisation multicritére. Nous
montrons que la solution optimale d’un probléme d’optimisation a deux niveaux peut s’obtenir
par la résolution de deux problémes d’optimisation multicritére. Une solution optimale étant la
solution Pareto-optimale correspondant au point non-dominé appartenant a I'intersection des deux
ensembles non-dominés. Nous cloturons ce chapitre par la présentation de quatre conditions sous

lesquelles ce dernier résultat établi ne peut étre implémenté.

Modélisation multicritére en optimisation a deux niveaux

Le chapitre cinq étudie l'introduction de la modélisation multicritére en optimisation a deux
niveaux. ['introduction de la modélisation multicritére en optimisation a deux niveaux conduit a
une nouvelle classe de probléme d’optimisation appelée optimisation multicritére a deux niveaux.
C’est un cas particulier de probléme a deux niveaux, ot chaque décideur posséde plusieurs fonctions

objectif conflictuelles et désire les optimiser simultanément. Ce probléme peut étre formulé comme
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suit :

gg)r(l F(x,y) = (F1(1L“,y), F2(xvy)v ...,le(l',y))

G(z) <0
sujet a minyEY f(xay) = (fl(xay)a fg(l',y), 7fm2($7y)) (BMPP)
<0

ou y résoud
sujet & g(x,y)

Aprés une bréve revue de la littérature de cette classe de probléme d’optimisation, nous en-
chainons par quelques caractérisations de la formulation optimiste.

Nous développons ensuite une approche de détermination des solutions efficaces lors de la
résolution du probléme (BMPP). A partir de deux cones artificiels, nous construisons deux prob-
lemes d’optimisation multicritére dont tout point appartenant a I'intersection des deux ensembles
efficaces est aussi efficace pour le probléme (BMPP). Nous présentons ensuite un algorithme
générique permettant d’illustrer comment ce résultat peut étre implémenté. Mais avant cela, nous
développons quelque résultats théoriques permettant de définir sous quelles conditions utiliser
I’algorithme. Nous exploitons par la suite ’approche générique pour construire une méthode spé-
cifique aux problémes linéaires. .La méthode est illustrée a travers un exemple concret.

Nous exploitons enfin la caractérisation du domaine admissible du probléme du leadeur pro-
posée par in |Eichfelder 2008|, pour développer une nouvelle caractérisation du domaine admissible
du probléme du leader plus conviviale et facile & implémenter. En se basant sur ce résultat, nous
développons deux approches pouvant étre utilisées lors de la résolution la forme linéaire du prob-
léeme (BMPP). En effet, en supposant que le leader est capable de quantifier ses préférences pour
I’ensemble des fonctions objectif, nous montrons qu’il est possible que le probléme linéaire dé-
coulant de (BMPP) soit transformé en un probléme d’optimisation d’une fonction linéaire avec
comme domaine admissible I’ensemble des solutions Pareto-optimales d'un probléme artificiel
d’optimisation linéaire multicritére. Un algorithme basé sur ce résultat est présenté. La deuxiéme
approche est une méthode permettant de générer un sous ensemble représentatif de I’ensemble des

solutions Pareto-optimales.

Mots clés: Optimisation, Optimisation a deux niveauz, Optimisation multicritére, Solution

non dominée, Solution Pareto-optimale, Solution efficace.
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GENERAL INTRODUCTION

The convergence of various factors, such as increased competition in a global economy, the real-
time access to a mass of information and the emergence of a generation of pragmatic consumers,
are changing the role and nature of decision-making. Although in the past decision aid models
have mostly been pure academic research, these models are now financial and basic operational
tools in major industrial sectors. They rank among the key factors for profitability. For example,
an increase of one percentage point in the price of a product can lead to increases in operating
income more important than similar increase in variable costs, fixed costs or volumes. Conversely,
poor decisions on price setting can affect the profit of an organization. Therefore, there is, within
the business sector and particularly in the research community, a growing willingness to develop
methods for optimal decision making. Optimization is the field of Applied Mathematics that has
emerged since the early 1940s as the indispensable tool in decision making.

An optimization problem is to choose among a set of "alternatives" an "optimal one", where
optimality refers to certain criteria, according to which the quality of the alternatives is measured.
The mainstream research axis in this field delved almost exclusively into unicriteria models i.e
mathematical models well defined, governed by the classical paradigm of the existence of an
optimal solution and of algorithms converging towards it. Even if the use of these unicriteria
models has proved to be particularly effective in many situations, it has appeared that there is
a multitude of applications where only one criterion or (and) one decision maker would be not
sufficient to describe the reality. The present work addresses two alternatives that have been
developed in the literature since the mid-1970s in order to palliate these weaknesses: the bilevel
optimization and the multicriteria optimization.

A bilevel optimization problem (BPP) is characterized by two levels of hierarchical decision
making where each decision maker tries to optimize his own objective function without considering
the objective of the other party, but the decision of each party affects the objective value of the
other party as well as the decision space. These problems appear in many practical solving tasks,
including optimal control, process optimization, game-playing strategy development, transporta-
tion problem and others [Bard 1988; 1998, Dempe 2002, Fortuny-Amat and Carl 1981, Migdalas

1995]. Multiobjective optimization in the other hand is a kind of generalization of classical opti-
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General introduction 2

mization in which one wishes to optimize multiple functions at once. Most realistic optimization
problems, particularly those in design, require the simultaneous optimization of more than one
objective function. Some examples in [Brown et al. 1997, Martel June 1999, Philip 1972, Truong
2008, Vicente December 1997, Collete and Siarry 2003] are:

e In bridge construction, a good design is characterized by low total mass and high stiffness;
e Aircraft design requires simultaneous optimization of fuel efficiency, payload, and weight;

e In chemical plant design, or in design of a groundwater remediation facility, objectives to be

considered include total investment and net operating costs;

e A good sunroof design in a car could aim at minimizing the noise the driver hears and

maximizing the ventilation;

e The traditional portfolio optimization problem attempts to simultaneously minimize the risk

and maximize the fiscal return.

The main focus of this thesis is on the use of multiobjective optimization results and notions
in bilevel optimization problems. In addition, Solution approaches and applications of each of
these classes of optimization problems are investigated. More precisely, the thesis has the

following three objectives:

e (i) Development of Solution approaches for each of these two classes of optimization, espe-
cially for the linear case:
Even if there are several methods proposed in the literature for solving problems related to
these two areas of optimization, especially for the linear case, the majority of these methods
turn out to be not convergent, incorrect or convergent towards a local non global optimum.
For instance, Chenggen et al in [Chenggen et al. 2005] showed that the Kth-best method
[Dempe 2002, Bialas and Karwan 1982, Candler and Townsley 1982|, one of the most pop-
ular and workable methods for the linear bilevel programming problem, could badly deal
with a linear bilevel programming problem when the constraint functions at the upper-level
have an arbitrary linear form. More recently, C. Audet et al [Audet et al. 2006] showed
that the definition of the linear bilevel programming problem and consequently the methods
proposed by Lu, Shi, and Zhang [Lu et al. 2005a;b| do not solve a wider class of problems,
but rather relax the feasible region, allowing infeasible points to be considered as feasible. In
the same vein, P. Armand [Armand 1991; 1993| showed recently by a counter-example that
the method developed by Ecker et al |[Ecker and Kouada 1978, Ecker et al. 1980| for linear
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multiobjective programming problem was incomplete in case of degeneracy. In the light of

the foregoing, it becomes indispensable to develop new approaches with solid foundations.

e (ii) Ezploration and establishment of new relations between the two classes of optimization:
Although several authors have attempted to establish a link between bicriteria optimiza-
tion and bilevel optimization [Colson et al. 2007, Fulop 1993, Haurie et al. 1990], none has
succeeded thus far in proposing conditions that guarantee that the optimal solution of a
given bilevel program is Pareto-optimal for both upper and lower level objective functions.
Recently, several authors have started to study the possibility to exploit multicriteria ap-
proaches for solving bilevel programming problems |[Ivanenko and Plyasunov 2008, Fliege
and L.N.Vicente 2006, Dempe 2002, Bard 1983b, Winston 1994, Haurie et al. 1990, Clarke
and Westerberg 1988, Bard 1984, Unlii 1987]. Unfortunately, apart from relationship re-
ported in [Fulop 1993] that has been used in the literature to develop an algorithm for
solving bilevel linear programming problem, none of the other propositions has been imple-
mented for solving BPP, due possibly to the fact that the proposed multicriteria optimization
problems were defined by complicated relations [Fliege and L..N.Vicente 2006, Ivanenko and
Plyasunov 2008] or the propositions were wrong [Bard 1983b, Unlii 1987].

e (iii) Application of these two classes of optimization for modeling and solving real problems

in the Cameroonian context.

For further guidance, here follows an outline of the general organization of this dissertation.

From the outset, Chapter One is a brief review of certain basic tools of mathematical analysis
and optimization theory widely used in the dissertation. In particular, in section 1.2 some basic
concepts and notations are introduced while in section 1.3, some well known results of classical
optimization are provided.

In Chapter Two, after a survey on multiobjective programming problems provided in section
2.1, we devote section 2.2 to the presentation of a multiobjective linear programming method
that we have developed. It can be regarded as a corrected form of the method of Ecker et al
[Ecker and Kouada 1978, Ecker et al. 1980] shown to be incorrect by P. Armand [Armand 1993|.
A numerical example is given to illustrate the proposed method. Section 2.3 presents an applica-
tion of multicriteria optimization. We first describe the problem of electrical energy distribution
planning generally faced by developing countries, inspired by the case of AES-SONEL company in
Cameroon. We show that the mathematical formalization of the problem leads to a multicriteria

programming problem. Two approaches for solving the obtained model are provided.
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The focus of Chapter Three is bilevel programming. Mathematical formulation and classical
solving methods of bilevel programming problem are discussed in section 3.1. In section 3.2,
we present a new approach for solving linear bilevel programming problem. It is based on the
result that an optimal solution to the BLPP is reachable at an extreme point of the underlying
region. Consequently, we develop a pivoting technique to find the global optimal solution on an
expanded tableau that represents the data of the BLPP. The last section is an application of bilevel
programming. A strategy to protect national initiatives in the context of globalisation based on
the resolution of a bilevel programming problem is presented.

In Chapter Four, relationships between bilevel and multicriteria optimization are investigated.
In section 4.2, the issue of the Pareto-optimality of the optimal solution of a bilevel optimization
problem is discussed. In section 4.3, we introduce a generalisation of the Fulop relation [Fulop 1993|
that establishes a link between multiobjective linear programming and bilevel linear programming.
We show that under the assumption that the follower admissible set is bounded and its constraint
functions are continuous, the relation remains valid even if the objective function of the leader is
non linear. We end in section 4.4 by presenting a new relation between bilevel programming and
multicriteria optimization. We show that solving a certain class of bilevel programming problem
can be equivalent to solving two independent multicriteria optimization problems.

The last chapter, Chapter Five, deals with bilevel multi-objective programming problems
(BMPP). In the first section, we present the optimistic formulation and some related concepts. In
section 5.2, we present an approach that we have developed in order to generate efficient solutions.
Given a BMPP, we show how to construct two artificial multi-objective programming problems
such that any point that is efficient for both problems is an efficient solution of the BMPP. A
numerical example is provided to illustrate how the algorithm operates. In section 5.3, the focus
is essentially on linear case. We introduce an artificial multiobjective linear programming problem
such that its resolution can permit to generate the whole feasible set of the upper level decision
maker. Based on this result, two approaches for obtaining efficient solutions are presented.

A general conclusion ends the thesis with the summary of all the work done and the discussion

of new perspectives.
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CHAPTER ONE

ELEMENTS OF OPTIMIZATION THEORY

1.1 Introduction

Optimization problems can be broadly described as either continuous or discrete, but may be a
mixture of both. Discrete optimization is concerned with the case where the variables may only
take on discrete values. By contrast, the variables in continuous optimization problems are allowed
to take any value permitted by the constraints. Throughout this dissertation, we shall be concerned
with continuous optimization; more specifically, we shall study the class of mathematical model
for which each function (objective or constraint) is described in terms of real valued mathematical
function. This chapter is an overview of some basic tools of mathematical analysis and optimization
widely used in formulations and proofs of the main results in the dissertation. Much of the material
is based on the following books and courses [Canu December 2008, Ehrgott 2005, Horst et al. 1995,
Wen and Hsu 1989| where the reader can find more details (proof of theorems and propositions),

discussions, and references.

1.2 Basic concepts and notations

1.2.1 Notations

The following notations are extensively used throughout this thesis:

e The standard euclidean inner product, the norm and the distance defined in the euclidean
space R™ are noted by (., .), || . || and d(,) respectively.

e For any z,y € R", where = (21,29, ..., z,,) and y = (Y1, Y2, ..., Yn), We have:
(i) x =y if and only if x; = y; for all i =1, ..., m;
(ii) x Sy if and only if z; <y, for all i =1,...,n;
(iii) # < y denotes z < y and 35 € 1, ..., n such that z; < y;;
(iv) z < y if and only if z; < y; for all i = 1, ..., m;

e R’} denotes the set of x € R" such that x > 0;

Calice Olivier PIEUME/Ph.D thesis Multicriteria optimization approaches in bilevel optimization problems



Elements of optimization theory 6

o Let S C R™, S¢ int(S); ri(S); bd(S); cl(S) will denote the complementary, the interior ; the
relative interior ; the boundary; the closure (cl(S) = int(S) U bd(S)) of S, respectively.

1.2.2 Elements from convex analysis

We start with the notion of supporting hyperplane. A set H C R™ is called a hyperplane if there
exist @ € R™\ {0} and b € R such that

H = H(a,b) := {x € R"/ (a, x) = b}.
In this case, the vector a is called a normal vector to H. Moreover, the sets
H(a,b)" :={zx € R"/(a, ) > b} and H(a,b)” := {z € R"/{a, x) < b}

are called the positive and the negative halfspaces associated with H, respectively.

Definition 1.2.1. A hyperplane is said to support a set .S in euclidean space R" if it meets both
of the following:

e S is entirely contained in one of the two closed half-spaces determined by the hyperplane;
e S has at least one point on the hyperplane.

Definition 1.2.2. Let S C R", the set S is convezr if Va', 22 € S and X\ € (0, 1), one has
Axl+(1—=N)a? e S,

The set {x € R"/ ||z|| < a} is a convex set for every value of a € R". Let us remark that the

empty set is convex.

Definition 1.2.3. The affine hull of a finite set V = {v! v? ...,v™} C R" is the set
af fV = {Ao' + 0% + o+ A0™/ AL g, o A € R; Zn:)\i =1}.
=1
Definition 1.2.4. The convex hull of a finite set V = {v! v? ...,o™} C R" is the set
convV = {\v' + v + L+ Ant™/ AL Mgy ey A > 0; zn:)\,» =1}
=1

The convex hull of V' C R" is the smallest convex set containing V. As illustration, for a given
set V.= {A, B} where A and B are two given points, AffV is the line through A and B and
convV is the segment through A and B.

Definition 1.2.5. A set P C R” is a polytope if it is the convex hull of finitely many points of
R™.
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A cube and a tetrahedron are polytopes in R3.

Definition 1.2.6. A point v of a convex set P is called an extreme point if whenever v =
Ar! + (1 — N)a?, where !, 2% € P, and X € (0, 1), then v = 2! = 22

A triangle has three extreme points and a sphere has all its boundary points as extreme points.
When a convex set has only a finite number of extreme points, these are often called vertices.
The following proposition presents a relation between polytope and extreme points.

Proposition 1.2.1. Let P be the polytope convV, where V- = {v',v? ...,o™} C R". Then P is
equal to the convex hull of its extreme points.

Definition 1.2.7. Let C be a convex set. A nonzero vector d € R" is said to be a direction of
recession of C if for every z° € R" the ray { z/;x = 2° + Ad, A > 0} lies entirely in C.

At 2% in P, a recession direction is a nonzero vector, h, for which the associated ray is contained
in P. If h is a recession direction for some x in P, it is called a recession direction for P. It is
clear from the definition 1.2.7 that, for a given convex set C, C' is unbounded if and only if C'
has a direction. A direction d is called an extreme direction if it cannot be expressed as a positive
combination of two other distinct directions d' and d? of P ie fu' > 0,2 > 0 /d = p'd* + p2d>.

Definition 1.2.8. A subset P of R™ is a polyhedron if there exist a matrix A C R™*™ and a vector
b € R™ such that P = {z € R"/Azx < b}.

A convex polyhedron has a finite number of extreme points. The following proposition provides
two equivalent definitions of extreme points with respect to a polyhedron P. Let P = {z €
R"/Ax < b}.

Proposition 1.2.2. 2° € P is an extreme point of the polyhedron P if:

(i) There exists c € R™ such that, for ally € P, y # 2°, we have c'2® < cly. That is, 2° is the
unique point in P where a certain linear function is minimized.

(1) The point 2° lies on n of the hyperplanes defining the polyhedron P, such that the rows of A

associated with those hyperplanes are linearly independent. Thus, z° satisfies n linearly independent
tight constraints.

Two extreme points are adjacent if they satisfy a common set of n — 1 linearly independent
tight constraints. One has also the following definition of a particular class of extreme points.

Definition 1.2.9. An extreme point 2° € P is degenerate if it lies on more than n of the hyper-
planes defining P.

Let al denote the i'" row of matrix A defining the polyhedron P. Further z € P, let I(x) :=
{i € {1,....,1} / al x = b;} describe the inequalities which are saturated at x; and let A;(,) be the

matrix with row a!,i € I(x). Then, the vertex x of P is nondegenerate if |I(z)| = n.
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Let P be an n — dimensional polyhedron and H be a supporting hyperplane, then, the inter-
section ' = PN H defines a face of P. An edge is a face of dimension 1. Edges are either line
segments which connect adjacent extreme points or rays (respectively lines) parallel to an extreme
point. A facet of an n — dimensional polyhedron is a face of dimension n — 1.

Let us note that, every = of the polyhedron P can be represented as the sum of a convex

combination of extreme points of P and a non negative linear combination of extreme directions

of P:x = Zf\; vt + Z]Ail Bid? Zfil a;=10>0G=1,..,N), ;,>0(j=1,... M), where

N M

vl 02, ... oY are extreme points of P, and d',d?, ..., d™ are extreme directions of P.

We end this subsection by introducing two topological notions that will be useful for some

results in the text.

Definition 1.2.10. Y C R? is called RY — semicompact if every open cover of Y of the form
{(y* —RE)/ y* € Y, a € I} has a finite subcover. This means: Whenever Y C Uyer(y* — RY)C
there is m € N and {ay, ... a;,} C I such that Y C U, {(y* — RE )¢, where I is an index set.

Definition 1.2.11. Y C R? is called R — compact if for all y € Y the section (y — RL) (Y is
compact.

1.2.3 Orders and cones

1.2.3.1 Orders

Let R™ be a finite dimensional euclidean vector space, and S C R". Every nonempty subset

R C § xS defines a binary relation on Z. Below are some important properties of binary relation.
Definition 1.2.12. A binary relation R on S is called

o reflexive if (a,a) € R Va € S,

e symmetric if for all a,b € S, (a,b) € R = (b,a) € R;

e asymmetric if for all a,b € S, ((a,b) € R = (b,a) ¢ R);

e antisymmetric if for all a,b € S, ((a,b) € R and (b,a) € R = a = b);

e transitive if for all a,b,c € S, ((a,b) € R and (b,c) € R) = (a,c) € R;

e connected if for all a,b € S, a #b = ((a,b) € R or (b,a) € R).

In the context of orders, the relation R is usually written as 3. By convention, (a,b) €3 is

written a 3 b.
Definition 1.2.13. A binary relation = is called

e a preorder if it is reflexive and transitive.
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e a partial order if it is reflexive, transitive and antisymmetric,

e a strict partial order if it is asymmetric and transitive.
Definition 1.2.14. A binary relation = on R" is said to be compatible with
(i) addition if 2! < 2% and 23 2 2t = o' + 22 2 2% + 2, Vala?zi2t e R®
(ii) scalar multiplication if 2! 3 2? = Az! 2 A2?, Va'az? € R" and A > 0.
1.2.3.2 Cones

Definition 1.2.15. A subset K C R” is called cone, if A\ € K for all x € K and for all
AeR, A>0.

K={r€eR? 2; >0} and K = {z € R"/Az < 0} where A € R"*! are examples of cones.

Definition 1.2.16. A cone K in R" is called
e nontrivial if K # () and K # R"

e Convex if az! + (1 —a)z? € K for all ', 22 € K and for all 0 < a < 1
e Pointed if for x € K,z # 0 the negative —z ¢ K, ie K N (—K) C {0}.
It follows from the definition, that a cone K is convex if for all !, 2% € K, z! + 2? € K.

Proposition 1.2.3. Let Q = {x € R"/Axz < b}, P the convex hull of extreme points of @, and
C:={x e R"/Ax < 0}. If rankA = n then

Q=P+C={xeR"/x=u+wv for someu € P and v € C}

This last result is generally used to establish that there exists an optimal solution of linear

optimization that can be found at an extreme point.

1.2.3.3 A relation between cone and order

Definition 1.2.17. Let K be a cone. The binary relation denoted by =k and defined by
T 3y < y—x € K is called the cone relation on R" induced by K.

Proposition 1.2.4. Let K be a cone and g the induced relation on R™. Then Jk is compatible
with addition and scalar multiplication and

1. is reflexive if and only if 0 € K
2. 1is transitive if and only if K is convex
3. 1s antisymmetric if and only if K is pointed

For a given pointed convex cone K it follows that <y is a partial or a strict partial order if
and only if 0 € K or 0 ¢ K. The order relation induced by the set of nonnegative elements of R”

(considered as a cone) is extremely useful in multicriteria optimization.
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1.2.4 Some particular classes of functions

Let S C R"™ be a convex set.

Definition 1.2.18. A function f : S — R is convex if Vz!, 22 € S and A € (0, 1), one has
FOZ+ (1= XN)2?) < Af(x') + (1 = N) f(2?). The function f is strictly conver on S if the strict
inequality < holds for every z! # z?.

Definition 1.2.19. A function f : S — R is lower semi continuous at 2° € S if the value f(x°)
is less than or equal to every limit of f as z;, — 2%, i.e 7, — 2° = f(2°) < liminf, .. f(z)

Definition 1.2.20. A function f: R" — R? is R} — semicontinuous if
fTfly—RE) ={z eR"/ y— f(z) € R} is closed Vy € R”.
The following proposition gives a relation between RY — semicontinuous and lower semi con-
tinuous functions.

Proposition 1.2.5. A function f:R" — R? is RY — semicontinuous if and only if f; : R" — R
are lower semicontinuous for all i =1, ..., p.

Definition 1.2.21. Let K C R? be a cone, Y C R?P a set, and s : Y — R a function.
(i) The function s is K-monotonically increasing in Y if,

y Ix ¥ =s(y) < s(y), Y,y €Y
(ii) The function s is called stricly K-monotonically increasing in Y if,
y Ik yandy#y = s(y) < s@), Vy,y €Y
We present below two results that permit to construct a K-monotonically increasing function.
The importance of this class of function will be given in the next chapter .

Proposition 1.2.6. K C RP be a cone and Y C RP be a set; let us consider the following
notations:

K" ={weRP\ {0}/ (w, k) >0Vk € K} (1.2.1)
K*={weRP/(w, k) >0Vk € K} (1.2.2)
then

(i)Yw € K* | the function v:Y — R such that v(x) = (w, x) Yx € Y is K-monotone
(1)) Yw € KT | the function v :Y — R such that v(z) = (w, x) Yo € Y is strictly K —monotone.

Proposition 1.2.7. Let K C RP be a closed convex cone, let Y C RP be a non-convex set, and L
the subspace parallel to af f(Y), the affine hull of Y. Let Q € RP x RP, be a symmetric positive
semidefinite matriz, and define the function v by v(y) = (Qy, y) Yy €Y,

thenv is K monotonically increasing on Y iff QY C K* + L+
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1.3 Classical optimization

1.3.1 General formulation of optimization problems
A classical optimization(minimization) problem has the following form:

minimize f(x)

subject tox € S

where S (feasible or admissible domain) is a subset of R" and f(x) (objective function) is a real
valued function defined on S. In fact, the maximization problem is included in the minimization
formulation because max{f(z)/ x € S} = min{—f(z), = € S}. Solving an optimization problem

consists in finding local and, if possible, global minimizers.

Definition 1.3.1. A feasible point z* is a local minimizer of f(x) if there is € > 0 such that for
all © € S satisfying ||z — z*|| < ¢, one has f(z*) < f(x). x* is said to be a global minimizer if

f(z*) < f(x) Vx € S.

If f is a convex function and S'is a convex set, then every local minimizer is a global minimizer.

Moreover, if f is strictly convex, then a local minimizer is the unique global minimizer.

Proposition 1.3.1. If S is a nonempty compact set in R™, and f(zx) is a lower semi continuous
function on S, then f(z) has at least one global minimizer in S.

The simplest classes are unconstrained optimization and constrained optimization, correspond-

ing to the case where S = R" and S C R"”, respectively.

1.3.2 Unconstrained optimization

We explore some well known optimal conditions and algorithms related to unconstrained opti-

mization.

1.3.2.1 Optimality conditions for unconstrained optimization

We first consider what we might deduce if we were fortunate enough to have found a local minimizer
of f(x). The following two results provide first- and second-order necessary optimality conditions

(respectively).

Proposition 1.3.2. Suppose that f € C*(differentiable) and x* is a local minimizer of f(x). Then
8 *
V.f(z*) =0 i.e ];(x ) =0 Vie{l,..,n}.
€
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Proposition 1.3.3. Suppose that f € C? (twice differentiable) and z* is a local minimizer of f(x).

Then V,f(x*) =0 i.e 82(1‘ ) =0 Vi€ {l,..,n} and H(x*) is positive semi-definite. Where H
T

is the Hessian matriz of f that is defined by H(x) = V. f(x).

But what if we have found a point that satisfies the above conditions? Is it a local mini-
mizer? Yes, an isolated one, provided the following second-order sufficient optimality conditions

are satisfied.

Proposition 1.3.4. Suppose f € C?(twice differentiable), x* satisfies the condition V,f(z*) =0
and H(x*) is positive definite. Then z* is a local minimizer of f.

1.3.2.2 Algorithms for unconstrained optimization

One of the most used approaches is descent methods. The typical algorithm of descent methods

is as follows:

Algorithm 1. 1
1: Starting point o € R™. Set k =0

2: Search direction: dy € R™ such that (dy, V,f(zx)) <0 (if V. f(zx) # 0).
3: Find the step length: a; > 0 such that f(zy + axdi) < f(xx) holds.

4: Let Tpy1 = T + ody,

5: Termination criterion: If fulfilled, stop. Otherwise, let k := k + 1, go to step 1.

At step 2, a search direction dj, is calculated from x;. The direction is required to be a descent
direction so that for small step along dy, it is guaranteed that the objective function will be reduced
(Taylor theorem). In step 3, it is stated that «y > 0 should be chosen to minimize f(x) + agdy).
This is known as an exact linesearch. In most cases, exact linesearches prove to be very expensive.
Modern linesearch methods prefer to use inexact linesearches, which are guaranteed to pick steps
that are neither too long nor too short. The main contenders amongst the many possible inexact
linesearches are the so-called «backtracking- Armijoy and the «Armijo-Wolfe» varieties |Canu
December 2008]. The former are extremely easy to implement, and form the backbone of most
Newton-like linesearch methods. The latter are particularly important when using secant quasi-
Newton methods.

In the Descent method, one picks a descent direction dj and then picks a steplength oy > 0 to
"reduce" f(x + apdy) < f(xx) and finally sets xpy1 = xp + agd,. More approaches for solving

unconstrained optimization problem can be found in [Canu December 2008|.
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1.3.3 Constrained optimization

1.3.3.1 Optimality conditions for constrained optimization

When constraints are present, things get more complicated. The aim when dealing with constrained
optimization is in general to

minimize f(x)

subject tox € S

where the admissible set has the following form:

. {xeR”/ g:i(2) 0, i€ I={1,..,m}, gi: R" —R }

hj(z) =0, je€J=A{1,..,me}, hj: R®" — R
where ¢;(.) (i = 1,..,my are the functions of the inequality constraints and h;(.) (1,..,mg) are
the functions of the equality constraints, and where m; and my are the number of inequality and
equality constraints, respectively. The Karush Kuhn Tucker conditions ( or K K'T' conditions) are
necessary for a solution in optimization problem to be optimal, provided that some regularity
conditions are satisfied. The K KT approach to non-linear programming generalizes the method
of Lagrange multipliers, which allowed only equality constraints. The following is the statement
of the K KT optimal conditions.

Theorem 1.3.1. (KKT-Optimality Conditions) If z* is a local minimum that satisfies some reg-
ularity conditions, then there exist constants p; (i = 1,..,my) and \; (j = 1,..,mq) such that

V() + 2200 miVai(z™) + 27:21 AjVhi(z*) =0
pigi(z*) =0
i >0 (7, = 1,...,m1) ,)\j eR (] = 1,...,m2)
The three conditions of the theorem above represent the K KT conditions.

In order for a minimum point z* to satisfy the above KK'T conditions, it should satisfy some

regularity condition, the most used ones are listed below:

e Linear independence constraint qualification (LICQ): the gradients of the active inequality

constraints and the gradients of the equality constraints are linearly independent at z*.

e Mangasarian-Fromowitz constraint qualification (MFCQ): the gradients of the active in-
equality constraints and the gradients of the equality constraints are positive-linearly inde-

pendent at x*.

e Constant rank constraint qualification (CRCQ): for each subset of the gradients of the active
inequality constraints and the gradients of the equality constraints the rank at a vicinity of

x* 18 constant.
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e Constant positive linear dependence constraint qualification (CPLD): for each subset of the
gradients of the active inequality constraints and the gradients of the equality constraints,
if it is positive-linear dependent at z* then it is positive-linear dependent at a vicinity of

x* . ((v1,vg, ..., v,) is positive-linear dependent if there exists (ay, as, ..., a,) not all zero such

that ayvy + ... + a,v, = 0)

e Slater condition: for a convex problem, there exists a point x such that h(z) = 0 and

gi(x) < 0 for all i active in z*.

e Linearity constraints: If f and ¢ are affine functions, then no other condition is needed to

assure that the minimum point is KKT.

It can be shown that LICQ — MFCQ, LICQ — CRCQ = CPLD (and the converses are
not true). In practice weaker constraint qualifications are preferred since they provide stronger
optimality conditions.

As stated in the following theorem, the necessary conditions can be sufficient for optimality in

certain cases.

Theorem 1.3.2. Assume the optimization problem is conver, that is , f as well a g;(i = 1,...,my),
are conver, and h;(i = 1,...,my), are affine; all functions are in C' as well. Assume further that
for x* € S , the KKT conditions are satisfied. Then x* is a globally optimal solution to the
optimization problem.

There are many other optimality conditions developed in the literature, such as Lagrange

theorem, Fritz-John condition etc.

1.3.3.2 Algorithms for constrained optimization

There are several methods developed in the literature to tackle constrained optimization problem.
Most of them exploit unconstrained optimization algorithms. The concept of merit function is
used in general. Given a parameter p, a composite function ®(x,p) is a merit function if (some)
minimizers of ®(x,p) with respect to x approach those of f(x) subject to the constraints as p
approaches some set IP. In principle, what one has to do then is to choose the best unconstrained
algorithm to solve the new problem obtained. Here are two merit functions in the case of equality

constraints (I = 0):

e O(x,p) = flx) + i | h(x) ||2, h(z) = (hj(x)), j = 1,...,mq. It is called the quadratic

penalty function.
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o O(z,u,p) = f(x) —u'g(x) + 5 || h(x) |3, where both u and p are auxiliary parameters. It

is called the augmented Lagrangian function.

For inequality constraints (J = 0), the best known merit function is the logarithmic barrier
function defined by ®(z, p) = f(x) — pd> " log(—g(x)), g(z) = (g:i(x)), i =1,...,my

Let us note that in practice, the methods developed relate to the nature of the optimization
problem: linear problems, non linear problems, convex problems, quadratic problems etc. In par-
ticular, concerning linear optimization problems, the well known approach is the simplex method.
The simplex method is an iterative process which exploits the fact that an optimal solution of

linear optimization problem is an extreme point.

1.4 Conclusion

This chapter introduced notations with some familiar concepts and results of optimization theory
such as optimal solution, optimality conditions, extreme point notion, order relations, cone, etc.
As we have seen, classical optimization deals with problems having only one objective function.
The next chapters focus on optimization problems having more than one objective function. They
can be divided into two parts. The first part (Chapter Two and Chapter Three) is devoted to
solution approaches and applications. The last part (Chapter Four and Chapter Five) focuses on

the connections between bilevel optimization and multiobjective optimization.
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CHAPTER Two

MULTIOBJECTIVE OPTIMIZATION

2.1 Introduction

Life is about decision making. Decisions usually involve several conflicting objectives. The obser-
vation that real world problems have to be solved optimally according to criteria, which prohibit
an "ideal" solution (optimal for each decision-maker) has led to the development of multicriteria
optimization. A multi-objective optimization (or programming), also known as multi-criteria or
multi-attribute optimization, is the process of simultaneously optimizing two or more conflicting
objectives, subject to certain constraints. It is especially during the last three decades that it has
been much developed. Today, many decision support systems incorporate methods to deal with
conflicting objectives. This chapter deals with multicriteria optimization. The main result of the
chapter is a new approach for solving multiobjective linear programming problems. The chapter
is organized as follows. In the next section 2.1, a brief survey on multiobjective programming is
presented. A new a posteriori approach for solving linear multiobjective programming problems is
provided in section 2.3. It is followed in section 2.4 by the presentation of a multicriteria program-
ming optimization model that we have developed for the planning of the distribution of electrical

energy in Cameroon. Finally, the chapter is concluded in section 2.5.

2.2 Multiobjective optimization problem

2.2.1 Formulation of multiobjective optimization problems

A multiobjective optimization problem with n decision variables, m = my + msy constraints and p

objectives is formulated as follows:

Tmin” f(z) = (fi(2), fa(2), ., fp(2)) (2.2.1)
gi(x) <0,iel={1,...m}

subject to hi(x) =0, j € J={1,..,ma} (2.2.2)
x20

where:
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o f:R" — RP each f;: R" — R, each g; : R" — R, and each h; : R" — R.
e Objective functions (f;,i = 1,...,p) are at least partially conflicting, i.e they are conflicting
in some regions of the search space.
i\ L <0,i€[: 1,..,m .
o X =<qzecR}/ 9i(x) < { i} represents the set of the constraints (or
hj(l') = 0, j eJ= {1, ..,mg}
the feasible set) of the multiobjective optimization problem.
e YV := f(X) C RP is the set of all attainable outcomes or criterion vectors for all feasible

solutions in the objective space.

The multiobjective optimization problem can then be modelled as follows:

"min” f(z) = (fi(x), fo(2), ..., fo(x)) (2.2.3)
st z€XCR" (2.2.4)

When constraints and objectives are linear, one speaks about a Linear Multiobjective Programming

problem. In such case, formulation is simply:

"min”Cz (2.2.5)
st reX (2.2.6)

where C'is a p X n matrix and X = {x eRY,/ Az < bz > 0},
with A = (a;j)i=1.nj=1.m & m X n matrix, b = (b;);=1.,m a column vector of R™ and n,p, m are

integers.

2.2.2  Solutions of multiobjective programming problems

A feasible solution (decision) x € X is evaluated by the p objective functions producing the
outcome f(z). Since for p > 2, there is no canonical order in R? like in R, there does not exist
a feasible solution which optimizes simultaneously all the objectives. Dealing with multiobjective
programming problem then consists in finding compromise solutions. It seems natural to consider
x € X as possible satisfying compromise, if there does not exist any other solution y € X which
supplies values at least as good as x on every objective and better on at least one objective. Feasible
points like x are called Pareto-optimal solutions. Solving a multiobjective problem is defined as
finding a (or a subset of) Pareto-optimal solution(s) that satisfies the decision maker (DM), who
knows or understands the problem better. It is important to deal only with Pareto-optimal points.

In fact any x which is not Pareto-optimal cannot represent an optimal decision, because there
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exists at least one other point z’ € X, such that f(z') < f(x), i.e 2’ is clearly better than .

Formally, one has the following definition of a Pareto-optimal point.

Definition 2.2.1.
A feasible point z* € X is called Pareto-optimal if there does not exist x € X such that
f(z) < f(a*). If 2* is Pareto-optimal then f(z*) is called non-dominated point.

Depending on the context, Pareto-optimal points and nondominated points are usually called
Efficient points. Pareto-optimal points are then solutions that cannot be improved in one objec-
tive function without deteriorating their performance in at least one of the rest. The following

proposition from |Ehrgott 2005| provides seven equivalent definitions of Pareto-optimality.
Proposition 2.2.1. The following seven properties are equivalent:

e (i) x* is Pareto-optimal;

(i1) there is no x € X such that f;(x) < fi(2*),i = 1,....p and f;(x) < f;(z*) for some
je{l,...p};

(iii) there is no © € X such that f(x) — f(z*) € —RE \ {0,};
(i) f(x) = f(z*) € REAL{=RENA{O,}} for all v € X;

(v) YN (f(z7) —=RE) = {f(z")};

(vi) f(x) < f(z*) for some x € X implies f(zx) = f(z7);

(vii) there is no f(z) € Y \ {f(z*)} such that f(z) € f(z*) — RE.

We shall often refer to the one which is best suited to a given context.

There is a weaker concept of Pareto-optimality or efficiency, called weak efficiency. A feasible
point z* € X is weak efficient if there does not exist x € X such that f(z) < f(«*). Obviously,
efficient points (Pareto-optimal points) are weakly efficient, but the contrary is not always true.

Let K C RP be an arbitrary cone, the following is a more general definition of efficient points

based on the cone concept.

Definition 2.2.2.

A point yg € Y is a non-dominated point with respect to the cone K if and only if there does not
exist a point y € Y such that y Sk yo. If y* is a non-dominated point with respect to the cone
K, then x* € X such that y* = f(z*) is called a Pareto-optimal point with respect to the cone K.

Definition 2.2.1 is a particular case of De finition 2.2.2, where the cone used is R”. \ {0,}.
Throughout the rest of the text, the set of efficient(Pareto-optimal) points of a multi-objective

optimization problem defined by a vector valued function f on a feasible set X with respect to
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a cone K is denoted by: E(f, X, Zk), while, non-dominated set is denoted by ND(f(X), Zk)-
If one speaks of efficient points without making a reference to a cone, it will be with respect to
Definition 2.2.1. In this case, the set of Pareto-optimal points will be denoted by X, and the
set of non-dominated points by Ycy;.

2.2.3 Pareto-optimality conditions

We present here some well known results for the characterization of Pareto-optimal points. New
formulations and proofs are provided for most of them. We start with the following results related

to non-dominated points.

Theorem 2.2.1. Let K C RP be a non-trivial cone, let Y C RP a set, and s : Y — R a function.
(1) If argmingey { s(y) } = {a} and s is K-monotone, then a € ND(Y, Jk)
(it) If a € argmingey { s(y) } and s is strictly K-monotone, then a € ND(Y, Zk).

Proof:
(i) Suppose that a ¢ ND(Y, Zk), then 3b € Y (b # a) such that b Zx a. From this result and
since s is a K-monotonically function, we have s(b) < s(a), which is equivalent to s(b) < s(a)
or s(b) = s(a). But a € argmingey { s(y) }, so it cannot be possible to have s(b) < s(a).
Similarly, since a is the unique element which permits to have the minimum of the function s on
Y, s(b) = s(a) cannot be possible. Hence a € ND(Y, Zk).
(ii) The proof of (ii) is similar. O
The following corollaries can be seen as a practical way to obtain Pareto-optimal or non-dominated
points .
Corollary 2.2.1. Let K C RP be a convex cone and Y C RP.
(i) If there exists a point w € K+ such that y* is a solution to the problem

mingey { (w, y) } then y* € ND(M, Zk)

(i1 )If there exists a point w € K* such that y* is the unique solution to the problem

minyEY{ <U), y> }7 then y* € ND(M7 f—\<JK>

Proof: It follows from proposition 1.2.7 of chapter 1 and the preceding result. O

Proposition 2.2.2. Suppose x* is an optimal solution of the problem

rzeX <4

P
minz Aifi(x) where \ € R?
i=1

Then the following holds

(i) if \i >0, i=1,...,p and > \; =1 (or A € intR". ), then x* is Pareto-optimal;

(ii) if x>0 and > A\ =1 (or X € RE\ {0} ) and in addition, x* is the unique solution of the
optimization problem, then x* is Pareto-optimal.
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Proof
(i) Let z* be an optimal solution of the problem with \; >0, i = 1,....p and >_ \; = 1, then
one has > 0 N fi(x*) < X7 N fi(x), Vo € X.
Suppose that z* ¢ X, hence there must be z° € X with f(2°) < f(z*).
ie f;(2%) < fi(z*),i=1,..,pand 3j € 1,...,p/ f;(z°) < f;(z*). Multiplying by the weights gives
Nifi(@?) < Nifi(z*),i = 1,..,pand 35 € 1,...,p/ \;f;(z°) < A;f;(z*), this is possible because
all \; > 0, ¢ = 1,...,p are strictly positive. Since the last inequality is strict, we then have
P Nifi(2) < D7 N fi(@¥), contradicting the optimality of 2*.
(ii) The proof is a bit similar. In fact, let 2* be the unique optimal solution of the optimization
problem with XA > 0, then one has Y7 | A, fi(z*) <P | X\ fi(z), Vo € X.
Suppose that 2* ¢ X,,,, hence there must be 2° € X, 20 # z* with f(2°) < f(z*) i.e f;(2°) <
fi(z*),i=1,..,pand 3j € 1,....p/ f;j(z") < f;(z*). Multiplying by the weights leads to
P Nifi(@®) < S7F N fi(@*). This implies two cases: Y 0 A fi(2%) < Y0 Nifi(@*) or Y0 N fi(2®) =
P Aifi(z*). The first case is impossible because it contradicts the optimality of z*. The second
case implies that 2° is also an optimal solution of the optimization problem, contradicting the
uniqueness of r*. O
This proposition can also be seen as a corollary of corollary 2.2.1 where the natural scalar product

is considered.

Theorem 2.2.2. Suppose x*, an optimal solution of the problem

: .0
min || f(2) — 5" |

Where y° is a given point in RP \'Y. Then the following hold:
(i) If ||| is monotone and x* is the unique solution, then x* is Pareto-optimal;
(i) If ||| is strictly monotone, then x* is Pareto-optimal.

Proof

(i) Assume that z* is a unique optimal solution and that z* is not Pareto-optimal. Then there
is some x € X such that f;(z) < fi(z*) for alli € 1,..,p and f;(x) < f;(z*) for some j € 1, .., p.
Therefore 0 < f;(z) — ) < fi(z*) — ¢ for i = 1,..,p with one strict inequality. Because ||| is
monotone, one has then || f(z) —4° ||<|| f(z*) — 4° ||. From optimality of z* equality must hold,
which contradicts the uniqueness of z*.

(ii) similar. O

Theorem 2.2.3. let " € X and y; := f;(z").
Then x* is Pareto-optimal if and only if ¥_, L<(y;) = NY_, L_(y;) where Vz° € Xand g : X — R,

Le(g(2") ={ = € X/ g(x) < g(z") } and L_(g(2")) = { = € X/ g(x) = g(=") }

Calice Olivier PIEUME /Ph.D thesis



Multiobjective optimization 21

Proof

z* is Pareto-optimal < Az € X such that f;(x) < fi(z*) for all i = 1,...,p and f;(z) < f;(z*)
for some j. This is equivalent to say that there is no x € X such that both z € N?_; L-(y;) and
x € L(y;) for some j, which leads to M?_ L<(y;) = NY_, L_(y;) O

This theorem is illustrated by the following example taken from [Ehrgott 2005].
Example 2.2.1. Let fi(z) = 2} — 4z, + 23 — 632+ 51 and fo(z) = 7(2} — By + 23 — Lay) + 149.
We want to check if A= (2,2) or B = (2,3) is Pareto-optimal.

Let us start with A = (2,2). One has f1(2,2) = 15 and f5(2,2) = 41. The computation of
different sets of the theorem leads to:

Lo(fi(2.2) = {2 € B/ (w1 — 2 + (22— 3) = 1)

and
19 22, 89
Lo(h(2.2) = {r € B/ (1~ 2 + (0 — 22 = T,
So L_(f1(2,2)) is a circle with center (2,3) and radius 1 and L_(f(2,2)) is a circle with center
(179, %) and radius \/g.

One can check easily that N2 L<(fi(2,2)) # N2, L_(f:(2,2)), so (2,2) is not Pareto-optimal.
Now let us check the case of B = (2,3). We have f1(2,3) = 12 and f»(2,3) = 32. Repeating
the computations from above, one obtains fi(x) = 12 <= (11 — 2)?> + (2 — 3)* = 0 and fo(x) =

32 = (21— 2)* + (22 — 2)* = 2. Hence,

L-(f1(2,3)) ={z € R?/ (21 —=2)* + (2, = 3)° =0} = { (2,3) }
and

Lo(2,3)) = {2 € B/ (z1 = D) + (2 — 220 = 20)

L_(f2(2,3)) is then a circle around (%2, 2) with radius @.

One has now to check if L_(f1(2,3)) N L=(f2(2,3)) is the same as L<(f1(2,3)) N L<(f2(2,3)).
But L_(f1(2,3)) = {(2,3)}, i.e the level set consists of only one point, which is on the boundary

of L<(f1(2,3)). Thus (2,3) is Pareto-optimal.
For a given [ € R?, now let us consider the following problem denoted by Py ({):

mingey fr(x)

subject to fij(x) <l;;j=1,...,p, j #k,
The following result holds:

Theorem 2.2.4.

" € Xpgr if f A" € RP/ ™ is an optimal solution of Py(l) for allk =1,..,p
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Proof

—

Let I* = f(x*). Assume z* is not optimal for Py (l*) for some k. There must be z € X with
fe(x) < fi(x*) and fi(x) <5 = f;(2¥) for all j # k, that is , 2 & Xpq,.

<= Suppose z* is not Pareto-optimal. Then there is an index g € 1, ..., p and a feasible point
xr € X such that, f,(z) < f,(z*) and f,(z) < f,(z*) when j # ¢. Since z* is optimal for P,(I*)
by assumption, it must be feasible for I (I*). Therefore we have f;(x) < f;(2*) <[ for all j # k.
Thus z is feasible for P,(I*) and f,(z) < f,(z*) contradicts the assumption. Hence 2* is Pareto-
optimal. O
We end this section with the following Pareto-optimality conditions similar to the well known

K KT conditions. It is taken from [Majumdar 1997].

Theorem 2.2.5. Let consider the multiobjective optimization problem (2.2.1-2.2.2) presented in
section 2.2.1. Suppose the following for some x* € X:

e (i) f(x) is pseudoconver at x = x*;
e (ii) g(x) and h(zx) are quasiconvex and differentiable at x = x* ;

e (iii) There exist u* >0, v* 20, w* =2 0 such that:
(a) (V1 (@) u + (Vg(a™)) o + (Vh(z*))Tw* = 0
(b) () <0
(c) h(z*) =0

Then, x* is a Pareto-optimal solution for problem (2.2.1-2.2.2).

Remark 2.2.1. This section was a brief review of some main results on Pareto-optimality condi-
tions, without a reference to the structure of the optimization problem. In the literature, most of
optimality conditions are developed with respect to the structure of the multicriteria optimization
problems (linear problems, quadratic problems, convex problems etc.) More related studies can
be found in |Cochrane and Zeleny 1973, Ehrgott 2005; 2000, Fotso April 1981, Jimenez and Novo
2002, Othmani May 1998].

2.2.4 Solution methods

More generally, three general approaches are normally taken: a priori optimization; interactive
optimization and a posteriori optimization. This section is a brief survey on these methods. More
detailed studies can be found in [Ehrgott 2005, Steuer 1986, Cochrane and Zeleny 1973, Truong
2008].
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2.2.4.1 A priori methods

Here the DM is consulted before search and a mathematical model of his/her preferences is con-
structed to evaluate all solutions. The best solution found, according to the model, is returned
and represents the outcome of the optimization process with no further input from the DM.

The simplest approach is qualified as weighting method. It reformulates the original multicriteria
optimization problem as a convex linear combination of the individual objectives with weights
Ag > 0, such that >, Ay = 1. The task is then, to minimize this overall objective function, i.e

solve:

where each Ay, reflects (according to the point of view of the DM) the significance of the individual
objective fi.. The obtained solution is Pareto-optimal if the solution of the optimization problem
is unique or if A provided by the DM is such that each A, > 0.

But, the most popular approach is the Goal programming (GP). It can be seen as an extension
of the weighting method. The mathematical formulation of GP model (see |[Moussa 2007|) is as

follows:

p
min Z = Z(w;réf +w; 6; )

=1
fil)+6; =6 =1 (i=1,....p)
subject to re X CR”
57,07 >0(i=1,...p)

where

e 0;" and §; indicate the positive and negative deviations between the achievement level f;(x)
and the aspiration level [; respectively.

e w and w; are the coefficients of relative importance given to the positive and negative
deviations of the objective ¢ respectively.

The solution obtained through this model represents the compromise that can be made between
these objectives. However, there is no guarantee that the optimal solution is Pareto-optimal. The
following is the most recent test proposed in the literature [Moussa 2007| in order to know if the
obtained solution is Pareto-optimal and if not to provide a solution that is Pareto-optimal and
dominates the later. (The test supposes that each f; is continuous and X is compact.)

Step 1: Solve the GP optimization problem. Let x* be the optimal solution.

Step 2: Solve the following optimization problem
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mingex 3y fi(7)

subject tof;(x) < fi(z*);i=1,..,p

Let T be the solution of this problem.

Step 3: If Y V_, fu(z*) = >_7_, fu(T), then z* is Pareto-optimal. z* is then the optimal
decision of the DM.

Else > 7_, fu(z*) < >°F_, fx(T), then z* is not Pareto-optimal. But the decision T is Pareto-
optimal and dominates x*. The DM can adopt it as an optimal decision.
Remark 2.2.2. When solving the GP optimization problem, if each deviation has a strictly positive
value, then the optimal solution obtained is Pareto-optimal.

The main difficulty of a posteriori method is that it is very hard for the DM to give adequate
models determining which solutions he/she prefers, without knowing or having any idea what it is

possible to attain, and how much one objective may have to be sacrificed with respect to others.

2.2.4.2 Interactive approaches

In this approach, the DM works together with the analyst or an interactive computer program.
The analyst tries to determine the preference structure of the DM in an interactive way. The basic
step of interactive algorithm is as follows:

Step 1: Find an initial feasible solution

Step 2: Interact with the DM and

Step 3: Obtain a new solution (or a set of new solutions). If the new solution satisfies the DM

stop. Else go to step 2.

The following provides an example of interactive methods (see [Steuer 1986]).
Step 1: Initialization (m = 0)

Find for each k = 1, ..., p the optimal solution 2** of the following problem

min fx(z) (2.2.7)
st r€ X CR" (2.2.8)

Let My, = fi(x**) and M = (My, My, ..., M,); 2z, = My, — €x; k = 1, ..., p, where ¢, are arbitrary
positive fixed values.

Let Il = {m,(k = 1,...,p), /mx > 0,> h_, m = 1} be the set of initial weight of each objective
function provided by the DM.

Let p be the number of compromise solutions required by the DM at each iteration

Let (0 < r < 1) be a constant that will permit to define a convergence criteria
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Step 2: General iteration (m > 1)

a) Let TI"™ be the set of updated weights at iteration m

o If m =1 then II"™ =1I;

o If m > 1 then let IT™~! the set of weights to determine the compromise solution 2™~! retained

by the DM at the precedent iteration (iteration m — 1). The set II" is determined as follows:

P
" ={m(k=1,...,p), JII' <m < U?,Zﬁk =1}
k=1

where the interval [[[* u}"] is defined as follows:

0, r™ 1 ifrrt <
[, ul] = 1=t 1] i ot > 1 -
[7?,2”‘1 - Tm;, o+ ”m;] otherwise

The length of different possible values of weight 7 at iteration m is then equal to ™. So it
will lead to zero by the way the approach iterates.
B3) Choose p representative subsets of weights {my, k = 1,...,p} € II"™. For each of these

subsets, solve the following problem:

p
min M§ — ) e (2.2.9)
k=1
Wk(fk’(x) - Zk) S 0 — €k, k= 17 <D
re X
s.t (2.2.10)
020

€, k=1,..,p

(

\

One obtains p optimization problems that lead to p Pareto-optimal solutions.

Step 3: Information phase and solution

The set of p attainable outcomes for all the p Pareto-optimal solution is presented to the DM.
The DM is asked to provide the most preferred one. The corresponding Pareto-optimal solution
is then considered as the compromise solution z*. The weight to obtain the compromise solution
is retained and represents 7. If the DM is satisfied, the algorithm stops. Else go to step 2.

Interactive approaches have some problems, mainly related to the preference information that
the DM has to provide during the search process. For example, the DM can be asked to rank a
set of solutions, to estimate weights or to adjust a set of aspiration levels for each objective. None

of these tasks is trivial.
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2.2.4.3 A posteriori approaches

First, search is conducted to find the Pareto-optimal set and the DM will then choose between
these alternatives by inspection (with or without using some mathematical decision-making aid).
Unfortunately, it is not easy to obtain an exact description of the Pareto-optimal set, that typically
includes a very large or infinite number of points.

In practice, it is a finite subset of the efficient set that is found. W is a good representation
of the efficient set E(f, X, Zk) if the following three conditions are fulfilled: W is finite and
contains a reasonable number of points; non-dominated points corresponding to W do not miss a
large portion of ND(Y, Zk) (coverage criterion); and these points do not include points that are
very close to each other (uniformity criterion).

The coverage error is mathematically defined by:

e= max mind(f(z), f(y))

v€B(f, X, Zx) yeW
where d(.,.) is a given distance defined in the decision space. This measure can be seen as the error
associated with the worst representation of an element of E(f, X, ZSk) in W. The uniformity of
a representation is mathematically defined by:

p= min d(f(y), f(2))

y,z€W y#z

It measures the distance between a pair of closed elements of non dominated points corresponding
to W. A smaller number of points, a lower coverage error and a more uniform level are desirable
in order to have a good representation of the efficient set [Mena 2000, Messac and Mattson 2002,
Saying 1996; 2003].

However, concerning the particular case of linear multiobjective programming problems, there
exist, approaches developed in the literature that generate the whole set of efficient points for
small instances |Armand 1991; 1993, Armand and Malivert 1991, Ecker and Kouada 1978, Ecker
et al. 1980, Iserman 1977, Yu and Zeleny 1975|. They are in general enumerative approaches
based on the simplex method. We present in the next section an a posteriori method that we
have developed and that can be seen as a corrected form of the method developed by |Ecker and
Kouada 1978, Ecker et al. 1980| that has been shown by |[Armand 1991; 1993] to be inefficient in

case of degeneracy.
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2.3 An a posteriori approach for solving linear multiobjec-
tive optimization problems

Most works were mainly conducted for identifying efficient solutions [Fotso April 1981, Gal 1977,
Hong et al. 2005, Yu and Zeleny 1975, Ehrgott 2005|. There are two main approaches in the
literature: by solving multiple parametric programming or by using multiple criteria methods to
examine the adjacent extreme points. [Yu and Zeleny 1975] used a global view method and the
‘top-down‘ search strategy, while [Philip 1972] used a local view method to obtain the efficient
face incident to a given efficient extreme point. [Iserman 1977] and [Ecker and Kouada 1978, Ecker
et al. 1980] combined these two view methods. Later on, |Ecker et al. 1980] and [Armand 1991;
1993| applied a ‘bottom-up‘ search strategy to develop an algorithm. But the main difficulty for
these methods arises especially when dealing with degenerate problems. Recently, [Armand 1991;
1993] showed by a counter-example that the approach developed in [Ecker and Kouada 1978, Ecker
et al. 1980] was incomplete in case of degenerate problems.

In this section, we present a complete procedure for solving Multiple Objective Linear Pro-
gramming Problems, which can be regarded as a corrected form and an alternative to the method
of [Ecker et al. 1980]. In fact, we develop a new characterization of efficient faces similarly to the
one developed in |Ecker and Kouada 1978, Ecker et al. 1980|, but with an added property that
a face incident to a given vertex depends not only on the vertex but also on the associated basis
(tableau). In addition, the connectedness property of the set of ideal tableaux associated with a
degenerate point is used to handle degenerate cases. The approach generates the whole efficient
set and all extreme efficient points.

Throughout the section, we consider the following problem:

e Pb 1: Max {Cx st z € X} where X = {z/z>0,Ar =0} CR", Cisak xn matrix, Ais a

m X n matrix, b € R™, x € R".

To the problem, Pb1, we associate with respect to a given vector A > 0, the following problem:
e P\: Max {\'Cz st ze€ X}

We denote by E the whole set of efficient points of (Pb 1), X () the set of optimal solutions
of (P\) and e = (1,1,...,1) an element of R

The presentation is organized as follows. In the next section, basic notations and definitions
are presented. We also present a characterization of an efficient face incident to a point (vertex)
with respect to an associated tableau. We then show how to construct an efficient face using the

notion of A — ef ficient set. In section 2.3.2, an algorithm for finding all efficient faces incident to
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an extreme efficient point are provided. In section 2.3.3, we give an algorithm for finding the set

of efficient points. We illustrate these algorithms with a numerical example in section 2.3.4.

2.3.1 Efficient face

2.3.1.1 Notations and definitions

At each iteration of the algorithm, the current efficient extreme point x is associated with a
tableau T (not necessarily unique) called efficient extreme tableau which after column rearrange-

ment can have the form:

N IpB
(T): |d| —=C 0
b AT

The corresponding efficient extreme point can be put in the form = = (xy,xp) where zx and zp
represent, basic variables and nonbasic variables, respectively. We denote by N7, the nonbasic set
which is the set of indices of nonbasic variables.

Tableau T or the corresponding efficient extreme point is degenerate if the left hand side b has
at least one null component. A vertex is nondegenerate if and only if there is only one tableau
that can be associated with it. Given a degenerate tableau, one cannot always generate all the

efficient edges incident to the associated vertex.

Definition 2.3.1. |[Armand 1993|: T is called [ — feasible, if for any vertex x1 of X, it is possible,
to find a tableau 77 associated with x; and a finite sequence of lexicographic pivots linking 7" and
1.

This can be possible by using the finiteness property of the lexicographic rule ([Armand 1991]).
A nondegenerate tableau is I-feasible. However, with a degenerate vertex, only a subset (nonempty)

of its associated tableaux is l-feasible.

Definition 2.3.2. : Let C be the reduced cost matrix of 7" and let A > 0, T"is A—dual —ef ficient
if —\'C' > 0.

A pivot element on the jth column of T is A — dual — degenerate if T'is A — dual — ef ficient
and if the jth column of C satisfies \!C7 = 0.

On such a column, a pivot generates either an efficient edge of X, or a new dual-efficient
tableau associated with the same efficient vertex.

Let JT be the set of nonbasic indices j leading to an efficient edge by a lexicographic pivot
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on column j of T. JT is called set of efficient indices incident to x with respect to 7. If T is
A — dual — ef ficient, then JT C {j € Np/ANC? = 0}. Thus, from JT we can characterize all or
part of efficient edges (faces) incident to x. T is A — ideal, with A > 0, if it is [ — feasible and
A — dual — ef ficient.

Definition 2.3.3. : Two A —ideal tableaux are ideally-adjacent if it is possible to go from one to
another with a lexicographic pivot on a column j of C such that \X'C? = 0.

This adjacency relation induces an undirected graph|Armand and Malivert 1991|. Any efficient
extreme vertex can be associated with at least an ideal tableau [Armand 1991; 1993, Armand and
Malivert 1991]. Using these results and given an efficient extreme point x characterized by a
A —ideal tableau T, it follows that: If z is nondegenerate then T is unique and all the efficient
edges incident to x will be generated.
In this case, JT = {j € Np/AC7 = 0}. But if x is degenerate then T is not unique, only
information about a subset of efficient edges (faces) incident to x will be given. Then JT C {j €
Nr/ANC7T = 0}.
Let o C Np. Consider the following faces with respect to 7"

f(T,a) ={x € X/x; =0,j € Nr \ a}.

G(a)—{ (v,w) >0/ C'v+w = —C'e,w; = 0Vj € a}.
The face represented by f(7T,«) for o C Nr is efficient if f(T,a) C E.
If in addition there is no a* C Np/f(T,a*) C E with a C o* then the face is said mazimal
efficient.

A set F' C Ny is E-mazimal (with respect to T') if and only if G(F') # () and there is no set:
F*C Np/F C F*,G(F*) # (.

In the following section, we consider a given extreme efficient point x characterized by an [ —

feasible tableau T such that JT' # (.

2.3.1.2 Characterization of an efficient face

The characterization of an efficient face presented in [Ecker et al. 1980] is incorrect if the
problem is degenerate. Here, we introduce an extension which works even when the problem is
degenerate. We show that, under some hypothesis, a face f(T, F) is efficient if and only if G(F) # ().

We first present some results necessary to establish our characterization.

Lemma 2.3.1. [Ecker et al. 1980]: If X > e, then X(\) C E; conversely, given any mazimal
efficient face H, there is a vector X > e such that H = X (\)
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We use this lemma to prove the following theorem.

Theorem 2.3.1. : If F C {j € Np/XC7 =0} and — NC >0 then f(T,F) C X(\).

Proof: If 2 € f(T, F) then: 2} = 0 if j € Ny — F, therefore: 2° and x give the same value of
the objective function for (P\). Since —\'C' > 0, it follows that: z7 € X (A) and then : x5 € X(A) ;
we then have f(T,F) C X()).

O

Lemma 2.3.2. [Ecker et al. 1980]: If F = {j € Np/A'C7 = 0} and — N'C > 0 then f(T,F) =
X(N).

Remark 2.3.1. :1f f(T,F) C X(X\) then —\'C > 0. In fact, f(T,F) C X()) implies that z € X (\),
and thus —\'C' > 0.

With respect to previous results, we can now give the main theorem of this section.

Theorem 2.3.2. (Characterization theorem) : Let ' C JT; The face f(T,F) is efficient if and
only if G(F) # 0.

Proof: = (necessary condition): If f(7', F') is efficient, then it is contained in some maximal
efficient face which, by lemma 2.3.1, is X () for some A > e. From remark 2.3.1, —\'C' > 0, so
that T is A — ideal and JT C {j € Np/NC7 = 0}. But FF C JT,so F C {j € Np/\'C? = 0}.
Consequently, (v, w) = (A — e, =A'C') € G(F). Therefore G(F') # (.

<= (sufficient condition): Conversely, if (v,w) € G(F), then for A = v + e, one has that
A>e,—NC>0and F C {j € Ny/XC7 = 0}. Then according to theorem 2.3.1, f(T,F) C X(\)
and from lemma 2.3.1, X(\) C E. Consequently, f(T,F) C E. This completes the proof.

2.3.1.3 Construction of an efficient face

In this subsection, we present how to construct an efficient face incident to a given efficient

extreme point. We have the following results.

Theorem 2.3.3. : Let f(T,F) be an efficient face incident to z. If (v,w) € G(F), then for
A =wv+e, one has that f(T,F) C X(\).

Proof: By theorem 2.3.1, it is sufficient to prove that F' C {j € Ny /AC7 = 0} and —\'C > 0.
From theorem 2.3.2, G(F') # 0. Let (v, w) € G(F) and A = v+e. Then we have: —\'C' = —(v+e)'C
= (—=Clv—C')! =w'andw > 0= —\C > 0. Since f(T, F) is efficient, F C JT; and —\'C > 0,
then T is A —ideal so that JT C {j € Np/NC? = 0}; thus F C {j € Np/\'C? = 0}. These results
and theorem 2.3.1 imply that : (T, F) C X(\).
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From theorem 2.3.3, the following corollary can be deduced.

Corollary 2.3.1. : Let f(T, F) be an efficient face incident to xr; (v,w) € G(F) and A = v + e.
If X'(N\) ={x € X(\)/x; =0 Vi€ Np — F} then f(T,F) = X'()\).

Proof: (i) First, we show that f(7,F) C X(\): Let x € f(T,F), then from theorem 2.3.3,
r € X(\) and z; =0, Vj € Ny — F. It follows that x € X(\) and z; = 0 Vj € Ny — F which
implies that = € X'(\).
(ii) We now show that f(7, F') C X(\): Let x € X'(\) then z € X(\) and 2; =0V i € Ny — F or
X(A) C X. It follows that z € X and x; =0Vi € Ny — F,iex € f(T.,F).
From (i) and (ii) one can conclude that X'(\) = f(T, F).
(|

Definition 2.3.4. : The vector \ constructed in theorem 2.3.3 is called the characteristic vector
of the face f(T, F).

Definition 2.3.5. : We call, A\ — ef ficient set incident to xp, the set X'(\) constructed from
X (A) in the corollary 2.3.1.

Remark 2.3.2. : The corollary 2.3.1 provides a method for finding the face f(7, F) incident to zp
by finding the A — ef ficient set incident to xr.

Remark 2.3.3. : Let f(T, F) be an efficient face incident to x7. If (v, w) € G(F), then for A = v+e,
if (Vj € Npy,wj = 0 = j € F) then X'(\) = X()\). In fact, from F = {j € Np/\(C7 =
0} and — MNC > 0, lemma 2.3.2 implies that f(T,F) = X(\). Since X'(\) = f(T,F), then
X'(A) = X(N).

2.3.2 Finding all efficient faces incident to an extreme efficient point

The objective of this section is to use the results presented in the previous sections to develop
an algorithm to find all efficient faces incident to a given extreme efficient point.

We assume that the tableaux associated with the current efficient extreme point = are ideal. Let
T be such a tableau and Nt the corresponding nonbasic set. We first give a subroutine CALCUL1
that takes as input 7" and N7, and returns all efficient points S2, all efficient extreme points S1, and
all ideal tableaux S3 incident to x with respect to T'. CALCULL is called by subroutine CALCUL2
to compute all efficient points and all efficient extreme points incident to the given extreme efficient
point. CALCULT in step 1 finds two characteristic sets JT and KT where KT = NT — JT. In
step 2, it finds for every subset of JT' the characteristic vectors A of an efficient face incident to x
with respect to T'. Then, for each vector A the set X’(\) is found and saved in S2. Finally, step 3

finds for each element of K'T" an ideal tableau incident to x with respect to T" and saves it in S3.
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Algorithm 2. 1
Function CALCULI1[T, Ny| = [S1, 52, 53]

{T is an ideal tableau associated with the extreme efficient point x and N7 is the nonbasic
set. }

LT:=0; { LT is an intermediate set}

for all 7 € Nr do

Find optimal value m; of P; where

Problem P;: Min w;

such that

Clv+w=—-Clev,w>0

if mj =0then LT :=LTU{j} endif

endfor

for all y € LT do

Let p be the lexicographic pivot element.

if p is not primal degenerate then JT := JT U {j}
else KT := KT U{j} endif

endfor

for all 7 € JT do

Let t be the pivot that leads to a new efficient extreme point,
T the ideal tableau obtained by pivoting on t and Ny the nonbasic set.
if (T, Nr) ¢ S1 then S1:=S1U{(T,Nr)} endif
endfor

for all « C JT such that G(«) # ¢ do

Find (v,w) € G(a); A :==v +e; Find X(A); Find X'());
S2:=S2U{X'(\) — X'(\) N S2}

endfor

for all 7 € KT do

Let t be the lexicographic pivot element;

Let T™ be the ideal tableau obtained by pivoting on t;
Let Nr« be the nonbasic set;

if (7", Np+) ¢ S3 then S3 = S3U{(T", Ny+)} endif
endfor

endfunction

Remark 2.3.4. : JT contains all j such that AX'CY = 0 and such that a pivot on such columns
generates an efficient edge of X. KT contains all j such that \C? = 0 and such that a pivot
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on such columns generates a new ideal tableau associated with the same extreme efficient point.
Given JT', we use theorem 2.3.3 and its corollary 2.3.1 to construct efficient face incident to = with
respect to T (a subset of efficient faces incident to the current extreme point). S1 contains efficient
extreme points adjacent to the current efficient extreme point with respect to T'. Elements of S1
are characterized by an ideal tableau associated with the corresponding nonbasic set. S2 (possibly
empty) contains efficient faces incident to the current efficient extreme point with respect to 7.
S3 contains ideal tableaux incident to the current efficient extreme point with respect to 7.
Note that CALCULI considers only one ideal tableau incident to the current extreme efficient
point. If there are more than one ideal tableau, it is necessary to go through these ideal tableaux
and for each, generate the sets S1, S2 and S3. If the current extreme efficient point is nonde-
generate, there is just one ideal tableau associated with it and CALCUL1 generates all incident
efficient points and efficient extreme points. The variant algorithm (CALCUL2) uses the results
of CALCUL1 and of the following P. Armand connectness theorem.
Theorem 2.3.4. [Armand 1993]: Let 2° be an efficient extreme point; and let R(x°) be (the

subgraph spanned by) the set of ideal tableauz associated with x°. Then R(x°) is a connected graph.
Moreover, any efficient edge incident to x° can be generated from at least one tableau of R(zV).

Since the subgraph of ideal tableau incident to an efficient extreme point x is connected,
CALCUL2? is simply an iteration through different ideal tableaux incident to the current efficient
extreme point z. For every unexplored tableau T, it calls CALCULI to find efficient points and

extreme efficient points adjacent to x with respect to 7.

Algorithm 2. 2
Function CALCUL2[T, Ny| = [E1, E2]

151,52, $3] := CALCUL1[T, Ny);
E1:=51; E2:=52; H1 := {(T,Nr) };
for all (7", NT") € S3 do

§3:= 53— {(T", NT")}:
H1:=H1U{(T',NT")};

(21,22, 23] := CALCULL(T', NT');
El:= E1U{Z1 - Z1n E1};

E2:= E2U{Z2—-Z2nN E2};
S3:=S3U {23 Z3n H1);

endfor

endfunction

Remark 2.3.5. : For every ideal tableau incident to the current efficient extreme point, H1 contains
all ideal tableaux already dealt with. At the end of CALCUL2 , H1 contains all ideal tableaux
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incident to the current extreme efficient point, E1 contains all efficient extreme points adjacent to
the current efficient extreme point. An element of E'1 is characterized by an ideal tableau and the
corresponding nonbasic set (Np). E2 contains all efficient points adjacent to the current efficient
extreme point.

2.3.3 Finding all efficient points

Since efficient extreme points form a connected graph, the main algorithm EFFICACE iterates
through these different efficient extreme points. For every unexplored point x characterized by an
ideal tableau T and the corresponding non basic set NT', the main algorithm calls CALCUL2 to
compute all the efficient points and all the efficient extreme points adjacent to x and then saves

them in £ and H respectively.

Algorithm 2. 3
Function EFFICACE|T, Nr| = [E, H]

51, 52) := CALCUL2[T, Ny];
T1:=S1; E:=52; H:={(T,Nr)};
for all (7",NT") € T'1 do
T1:=T1—-{(T',NT")};
H:=HU{(T',NT")};

71, 22) .= CALCUL2(T, NT'):
T1:=T1U{Z1—-Z1NH};
E:=EU{Z2 - 72N E);

endfor

endfunction

Remark 2.3.6. : Here E is the union of efficient faces. But, as in [Armand and Malivert 1991, Ecker
and Kouada 1978, Ecker et al. 1980], the construction of the characteristic vectors can be done in
such a way that F is exactly the union of maximal efficient faces.

2.3.4 Numerical illustration

The method developed in |Ecker and Kouada 1978, Ecker et al. 1980 assumes nondegeneracy.
The example below proposed in [Armand 1993| shows that the method in |Ecker et al. 1980] can-
not give all maximal efficient faces in the degenerate case. This example is used to illustrate how

our approach gives all maximal efficient faces even for degenerate problems.
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max T, + xo — 373

max s
( T+ X9 S 4

—x1 — T2+ 223 <0

subject to r1 — 3x9 — 43 <0

I1+ZE2—3ZE3§O

\ L1, T2, T3 20

2.3.4.1 Running CALCUL1

xo = (0,0,0) is an efficient extreme point and the corresponding ideal tableau Ty is:

0(-05 -05 15|10 0 0 O
005 05 -0510 0 0 0
41 1 1 0 |1 0 0 0
0(-05 -05 05|10 1 0 0
0] -1 d 2 10 0 1 0
0/-05 -05 150 0 0 1

with the nonbasic set Np, = {1,2,5}. LTy = {2,5}, JT, = {2} and KTy = {5}. From
JTy = {2}, (v,w) = (0,0,0,0,1) € G(2). Thus A = (1,1). Since 1 ¢ {2}, the first efficient face
of the problem is X’(A;) that is put in S1. 21 = (0,4, 2) is an efficient extreme point adjacent to
xog = (0,0,0) with the corresponding ideal tableau T7:

210 05 150 0 0 O
210 -05 -05{0 0 0 O
4 |1 1 0 11 0 0 0
210 05 0510 1 0 O
20145 2 10 0 1 0
210 05 150 0 0 1

and the nonbasic set Ny, = {1,2,5}. T} and Np, are put in S2. From KTy = {5}, only one
ideal tableau T} is incident to 2o = (0, 0,0) with respect to Ty. T}, is:
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o(1 1 -3{0 0 0 O
00 0 10 0 0 O
411 1 01 0 0 0
0(j-1 -1 240 1 0 O
o/1 -3 470 0 1 0
o(1 1 -3{]0 0 0 1

and the nonbasic set is Ny = {1,2,3}. Since (T(;,NTé) ¢ S3, we add it to S3 to have
S3 = {(T(;,NT(;)}. Therefore: (i) The set of efficient points adjacent to xzy with respect to Tp
is X'(A), A = (1,1). (ii) The set of extreme efficient points adjacent to zy with respect to Tj is
x1 = (0,4, 2) characterized by (77, Nz, ). (iii) The set of ideal basis incident to zy with respect to

/

Ty is characterized by: (7, NT(/)).

Remark 2.3.7. : Since the extreme efficient point considered is degenerate, it is possible that
CALCUL1 gives only a subset of efficient points, efficient extreme points and ideal tableaux
incident to zg = (0,0, 0).

2.3.4.2 Running CALCUL2

After calling CALCUL1 with T, and N7y, we have: S1 = {(T1, NT1)}; S2 = {X'(\1)} where
A1 = (1,1) and S3 = {(T}, NT}))} where T is:

01 1 -3/0 0 0 O
00 0 10 0 0 O
411 1 01 0 0 O
0j-1 -1t 240 1 0 O
01 -3 440 0 1 0
01 1 310 0 0 1

and the nonbasic set Ny = {1,2,3}.

We thus obtain; E1 = {(T}, NT})}; E2 = {X'(\)}; H1 = {(Ty, N1,)}. The iteration begins
with (7§, NT{). (T}, NT}) is subtracted from S3 and added to H1 to give S3 = ¢ and H1 =
{(To, N1 ), (T, Nz)}. CALCULL with (7, NTj) is called to give Z1 = ¢; Z2 = ¢ and Z3 =
{(Tb, Ng,) }. In this process, E1 = {(T1, NT1)}, E2 = {X'(\)} and since {Z3 — Z3 N H1} = ¢,
S3 = ¢. Since S3 = ¢ the iteration terminates with:

Set of efficient extreme points adjacent to xy = (0,0,0), the set E1 = {(T1, NT})};

Set of efficient points adjacent to zo = (0,0,0), the set E2 = {X'(\)}.
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2.3.4.3 Running EFFICACE

After calling CALCUL2 with the pair (T, Nz, ), S2 = {X'(\1)} where A\; = (1,1). S1 = {(T1, Npy) }.
We found T'1 = {(T}, Np,)}, E = {X'(\)}, H={(To, Nr,)}.

The iteration begins with (7, N, ).

Then, T1 = ¢, H = {(Ty, Nuy ), (T4, Nz, ) ).

After the call of CALCUL2 with (T3, Np,), Z1 = {(Ts, Np,)}, Z2 = {X’(A\2)} where the ideal
tableau 75 is given by:

2105 0 1510 0 0 O
-21-05 0 -05]0 0 0 0O
4 11 0 |1 0 0 0
2105 0 050 1 0 O
4 1 6 2 (0 0 1 0
2105 0 1510 0 0 1

with the nonbasic set Ny, = {2,4,5} and the characteristic vector Ay = (1,1). T1 = {(T%, NT5)}
and E' = {X'(\;)} because X'(\;) = X'(\2). The first iteration finishes here. The second iteration
starts with (T3, Ng,). Then T1 = ¢, H = {(Ty, Nz ), (Ty, N, ), (Ts, Np ). After CALCUL2 is
called with (T, Np,), Z1 = {(Ty, N1}, Z2 = {X'(A3)} where A3 = (1,1). At this point T1 = ¢
and E is still equal to {X'(A;)} because X'(A\1) = X'(A3). Since T'1 = ¢, the algorithm terminates
with three efficient extreme points characterized by: (T, Ng), (11, Ng,) and (15, Nr,) respectively.
The set of efficient points is F = {X'(\1), M\ =(1,1)}.

2.4 Multicriteria optimization applications: planning of the
distribution of electrical energy in Cameroon

2.4.1 Statement of the problem

The applications of multicriteria optimization are numerous and varied [Ehrgott 2005; 2000, Fotso
April 1981]. For example, applications of multicriteria optimization in environmental management
and in the management of wild animal reserves can be found in [Mbountcha June 2001|. Multi-
criteria optimization was also used by Glover and Martinson to solve a problem connected to
regional development [Crama et al. 1997]. We present here a multicriteria optimization model for
the planning of the distribution of electrical energy generally met in developing countries, inspired

by the case of the AES-SONEL company of Cameroon.
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In developing countries and particularly in Cameroon, the planning of distribution of electrical
energy is a serious problem. Cameroon has only one single company, AES-SONEL, that produces
and distributes electrical energy. The company possesses hydroelectric power plants scattered
throughout the country. The electricity distribution system of AES-SONEL has two interconnected
networks [Mattson et al. 2004]: the NIN (North Interconnected Network ) which feeds the northern
part of the country and the SIN (South Interconnected Network ) which feeds the southern part
except the East province. The production capacity of different hydroelectric power plants depends
on the rainfall of the region where they are located. Until now, the policies adopted by AES-SONEL
consist in assigning to a given region the closest hydroelectric power plant. One consequence of
this strategy is that while certain regions have at their disposal a surplus of energy, others are in
demand (due to low rainfalls). During the season of low rainfall in a given region, the company

generally uses two policies:

e A load shedding strategy, which consists in depriving per given periods certain regions or

localities of electrical energy.

e The policy of penalization of high consumers, which consists in increasing the unit cost of
consumption when the total quantity of electrical energy consumed per month is higher than

a fixed maximum level.

Both policies have disadvantages. The application of the first policy does not allow for example
the company to make an optimal profit. The second policy obliges high electrical energy consum-
ing companies not to work in their full capacities and consequently not to achieve their optimal
production. Thus strategies for the distribution of electrical energy adopted so far by AES-SONEL
slow down considerably Cameroonian economy. There is a necessity to develop a new policy for
planning distribution of electrical energy in order to reduce this economical loss. The presentation
is organized in two parts. First, a description of the problem of the distribution of electrical en-
ergy in Cameroon is provided. This is followed by the presentation of the mathematical formalism
which leads to a multicriteria programming model. We conclude with the presentation of two
approaches developed in order to solve the obtained model. The first approach is an interactive
algorithm based on Geoffrion’s method and analytic hierarchy process that can be used if an a pri-
ori knowledge about the decision problems is not available. The second approach is an aggregation
method. A complete procedure written with the GAMS language |[GAMS-Development October
2003 (www.gams.com/| is described, which can be directly tested if the software GAMS and real

data are provided.
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2.4.2 Multicriteria model for planning the distribution of electrical en-

ergy
2.4.2.1 Description of the problem

The problem concerns a company having a set of factories producers and distributors of electrical
energy which has to satisfy the energy needs of a set of given regions. The search for an optimal

planning is necessary at least for two reasons:

e The variability of the production capacities of the various hydroelectric power plants due to
the fact that dams depend on the water level which in turn depends on the rainfall in the
region. The price of petroleum in the market (which allows to turn the turbines of dams) is

also variable.
e The quantities of electrical energy demanded by consumers are variable and must be satisfied.

The planning must try to reconcile at best the following often contradictory objectives:

1. Ensure the maximum profit to the company.

2. Ensure a distribution at the least possible cost.

3. Ensure a minimal pollution.

4. Ensure that each customer has the quantity of energy that he/she wishes at any moment.

These objectives are rather vague and sometimes contradictory; therefore, to remedy it, one has
to impose that required needs are covered with the electrical energy production capacities of the
various hydroelectric power plants and that certain objectives are translated into constraints. This
inevitably involves a maximization of the quantity of energy produced by the company within the
limits of its capabilities. We thus obtain a multicriteria optimization problem under the constraints

of capacity and demand.

2.4.2.2 Mathematical formalization of the problem

Let us consider that the company has N factories of production of electrical energy and must
satisfy the demands of P regions in electrical energy during a given period. Decision variables here
can be represented by the set of z;;, the quantity of energy transported by the factory i (i = 1..N)
to the region j (j = 1...P). Although the main mission is the search for profit, the company has

obligations vis- a-vis the country where it is established. It is supposed that two main clauses
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are to satisfy the energy needs of the country and to respect current legislation related to the
protection or pollution of the environment (destruction of the fauna and of its vegetation due to
electricity transportation lines, atmospheric pollution due to gases emitted by turbines allowing
the functioning of dams...).

The company would thus like to reach the following objectives:
e maximize the profit
e minimize the pollution or destruction of environment
e maximize the production of electrical energy
e satisfy incompressible demands (that of hospitals, security services...)

The following hypotheses are introduced:
e [H1)| Determinism: Apart from the unknown z;; which is the quantity of energy transported by
the factory ¢ (i = 1...N) to the region j (j = 1...P), all other parameters of the model are known
constants.
e |H2)| Divisibility: Levels of activities z;; are not necessarily integers.
o|H3)|Additivity: By considering the level of activity x;; , i = 1..N,j = 1..P , the total quantity of
every used resource is found by accumulating corresponding quantities used by various activities.
Thus the total quantity of electrical energy supplied by the factory i is equal to Zle x;; and the
quantity of energy received by the region j is Zfil Tij.
e|H4)| Proportionalities: Objective functions values are directly proportional to decision variables
Tij -

If for the considered period, the transport of a unity of energy from factory ¢ to region j
requires a cost estimated by ¢;; , then the cost of transport of the quantity of energy Ef\il Tij
towards the region j is Zfil cijxi;- So the total cost to distribute all energy produced in all the

P regions will be :

E Cijxij

j=1 i=1
Let us suppose that the transport of a unity of energy from factory ¢ towards region j causes a

loss of energy of p;; with o < p;; < 1; by considering that this loss has an impact on environment

estimated by d;; , the total quantity of energy lost will then be :

DijXij
j=1 i=1
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and the quantity of poured pollutant may be estimated by:
P N
2D duwi
j=1 i=1

Let ¢; be the cost of sale of a unity of energy in the region .J, then the selling price of the energy
produced for the region j will be:

N
> tiv
i=1
and for the P regions:
P N
DD iy
j=1 i=1

The loss of p;; quantity of energy during the transportation of a unity of energy from factory ¢

towards region j causes then a loss of p;;t; and thus, for the company a loss of:

P N
E E tjDijTij
j=1 i=1

The profit to be realized by the company with regard to the distribution of the energy is estimated

by : price of sale—cost of transport - cost of energy lost; it can be expressed by:

P N P N P N
Z Z tjwi; — Z Z CijTij — Z Z tiDiji

j=1 i=1 j=1 i=1 7=1 i=1

So the objectives of the company are:

e Maximize the profit value:

P N P N P N
Max Z Z tix;; — Z Z CijTij — Z Z tiDijTij

j=1 i=1 j=1 i=1 j=1 i=1

e Maximize the total production to satisfy needs in energy of the country:

e Minimize the environmental pollution:

P N

j=1 i=1
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The company has to reach the objectives within the limits of production capacity of all the
factories. Let b; be the production capacity of the factory ¢ for the considered period, we must

have

P
Z T < b;
J=1

furthermore, the company has to insure the satisfaction of its incompressible demand denoted by

[, one must have:

P N
PIYIETEL

j=1 i=1
The quantity of energy being always positive, it implies the constraint of non negativity on

One obtains the following multicriteria optimization problem:

Max 2521 Z’fil ti%ij — 25:1 szil Cijlij — Zf:l vazl Lipijxij
Maz 7 S0 @y
Min Y7 SO dijag
Zf:l szil Ty > 1
subject toq S @y <b;, ;i =1.N.
2 >0,i=1.N,j=1.P

P

\

2.4.3 Solution approach for the multicriteria optimization problem ob-
tained

We consider the following notations:

i) = 325y i by — oy Do iy — g Dot iPisis

fox) = 05 L, iy and fy(x) = =301, 0L, dijayy.

Q= {x — ()] X SN a2 L0 wy < by w2 0,i= 1N = 1..P}
Then the preceding problem becomes:

[ maz fi()

maz fo(x)
maz f3(x)

subject to z € 2

\
The resolution of the obtained problem normally depends on the company distributing the

electrical energy, AES-SONEL in the case of Cameroon. Two techniques can normally be use: It
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can be solve by using interactive methods as presented in 2.2.4.2. The difficulty of this approach
is that, one needs the presence of the Decision Makers (AES-SONEL) at different level of the
approach. The second method can be to use A priori methods as presented is section 2.2.4.1. In this
case, it suffice to the Decision Maker (AES-SONEL) to provide the weights A1, A2, A3 to quantify his
preferences concerning the three objectives fi, fo, f3 respectively. The solution of the multicriteria
optimization problem above can then be found by optimizing the aggregate function f = A\ f; +
Ao fa + A3 f3 over the decision space. The optimal solution will be a Pareto-optimal solution and
a good compromise. The GAMS |GAMS-Development October 2003 (www.gams.com /| program

model that implements the aggregate approach is as follows:
GAMS model for solving the problem

Sets
i put in slashes the name of different factories / factoryl, factory2, factory3 /
j put in slashes the name of different regions / centre, nord, sud, est ouest, sudouest, nordouest,
littoral, extremenord, adam/
Parameters
t(j) in the slash, put in front every name of region, the cost of the unity of energy there /centre
nord sud  jest ouest ,sudouest ,nordouest [littoral extremenord ,adam /
b(j) in the slashes, put in front every name of region, the market demand of energy there /centre
nord sud jest ouest ,sudouest ,nordouest [littoral  extremenord ,adam /
Table c(i,j) Put in any intersection (i,j) the cost of transport of an unity of energy of the factory i
towards the region j
centre nord sud est ouest sudouest nordouest littoral extremenord adam
factoryl
factory2
factory3
Table p(i,j) Put in any intersection (i,j) the quantity (rate) of energy lost during the transport of an
unity of energy of factory i towards region j
centre nord sud est ouest sudouest nordouest littoral extremenord adam
factoryl
factory2
factory3
Table d(i,j) Put in any intersection (i,j) the degre of pollution of environment caused by the transport
of an unity of energy of factory ¢ towards region j
centre nord sud est ouest sudouest nordouest littoral extremenord adam
factoryl
factory2
factory3
scalar in the slaches put the value collected for these scalars
M As ) L
variables
x(i,j), f
Positive variable x
Equations

cost..f=e= A xsum((j,i),t(j) % 2, j) — (i, j) * 2(i, ) — t(5) * p(i, ) * (i, )
o % sum((j, 7), 2, 1)) + As + sum((5, 1), d(i, j) * (3, 7))
supply Q). sum( (3,), x(1.§)) g1
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demand(i)..sum(j,x(i,j))=I1=b(i)
Model energy /all/
solve energy using lp minimizing -f, display x.l

Remark 2.4.1. With the real data collected (c;;, b;,tij.l,d;j, pij), one just has to submit a file
containing the statements above as input to the GAMS program, the planning problem model will
be formulated and solved.

2.5 Conclusion

In this chapter, the main issues related to multicriteria optimization were discussed first. New for-
mulations and proofs of some well known results in the literature where shown. We then presented
a new approach for solving linear multiobjective programming problems, which can be regarded
as a corrected form and an alternative to the method of [Ecker et al. 1980]. It ended with the
development of a model for planning the distribution of electric energy based on multicriteria
optimization techniques. The optimization process mainly comprises two steps: modelling of the
problem and elaboration of approaches that can permit to find the best compromise solution of
the modelled problem. The complete procedure of the GAMS model that implements the aggre-
gate approach was provided. It will be enough then for any company to introduce its own data:
b; (production capacity of the factory ¢ during the period considered), ¢;; (cost of transport of
a unity of energy from factory i towards region j), d;; (pollution of environment caused by the
transport of a unity of energy from factory ¢ towards region j), p;; (loss of quantity of energy
during the transport of a unity of energy from factory ¢ towards region j), ¢;; (selling price of a
unity of energy from factory i to region j) and incompressible demand [. The model provided can

be used for other types of distributions of resources such as water, petroleum by pipeline, etc.

Calice Olivier PIEUME /Ph.D thesis



CHAPTER THREE

BILEVEL OPTIMIZATION

3.1 Introduction

A mathematical programming problem is classified as a Bilevel Programming Problem (BPP)
when one of the constraints is also an optimization problem. The bilevel programming problem
is a hierarchical optimization problem where a subset of the variables is constrained to be a so-
lution of a given optimization problem parametrized by the remaining variables. The hierarchical
optimization structure appears naturally in diverse applications, such as economics, civil engi-
neering, chemical engineering, transportation (taxation, network design, trip demand estimation),
management (coordination of multidivisional firms, network facility location, credit allocation),
planning (agricultural policies, electric utility), etc. The aim of this chapter is to introduce a new
approach for solving bilevel linear programming problem. The chapter is organized as follows. In
the next section, a review of bilevel optimization is done. We investigate on the formulation and
solution approaches. In section 3.3, an enumerative approach for solving bilevel linear program-
ming problems is provided. It is followed in section 3.4 by a bilevel programming model that we
have developed for protecting national initiatives in the context of globalization. The chapter is

concluded in section 3.5.

3.2 The bilevel optimization problem

3.2.1 Mathematical formulation and notations

A standard Bilevel Programming Problem (BPP) is formulated as follows:

min F(z,y)
[ Glry) <0
subject to < mingey f(x,y) (BPP)
y solves s.t
\ g(z,y) <0
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where the variables of the BPP are divided into two classes, namely the upper (or outer or
planner’s or leader’s) variables + € X C R™ and the lower-level (or inner or behavioral or
follower’s) variables y € Y C R"™. x (resp y) are decision variables controlled by the leader (resp
the follower). Similarly, the functions F': XX Y — R and f: Xx Y — R are the upper-level
and lower-level objective functions, respectively, while G : X XY — R™ and g : Xx Y —
R™2 are called upper-level and lower-level constraints, respectively. When the objective functions
(F, f) and the constraints (G, g) of the upper-level and lower-level problems are all linear, the
resulting problem is a bilevel linear programming problem (BLPP), also called Linear Stackelberg
game. The mathematical model of a bilevel linear programming problem can be stated as follows:
géi)r(l F(z,y) = 1z + dyy

All' + Bly S bl

subject to mingey f(z,y) = cox + day (BLPP)

y solves s.t

AQI’ -+ Bgy S bg

\

where c1,c0 € R™ | dy,dy € R™, by € R™, by € R™, A € R™M>*™ By € R™M*™20 A, € R™M2*™,
By € R™2xm2,

Of course, once the leader selects an x, the first term in the follower’s objective function
becomes a constant and can be removed from the problem. Principles of bilevel program problems
are summarized as follows:

e The system has interacting decision making units within a hierarchical structure.

e The lower unit executes its policies after, and in view of, the decisions of the higher unit.

e Each level minimizes its objective function, compromise is not allowed (the leader is not allowed
to force the follower to take any of his optimal solutions).

e The effect of the upper decision maker on the lower problem is reflected in both its objective
function and set of feasible decisions.

The following concepts and notations are usually used when dealing with BPP:

e The relaxed problem associated with BPP is:

in F 2.1

ey F0Y) (3:2.1)
G(z,y) <0

subject to{ (@y) < (3.2.2)
g(z,y) <0
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and its optimal value is a lower bound for the optimal value of (BPP). A solution of a (BPP)
is any (z,y) € X x Y. A solution (z,y) is admissible if it belongs to the admissible set (2
defined by

Q= {(a.y) € X x Y/ Gla,y) < 0 and g(z,y) < 0)

e Projection of {2 onto the leader’s decision space is:

QX)={re X, /yeY/ G(z,y) <0and g(z,y) <0 }

e For a given (fixed) vector x € X, the follower’s admissible region is defined by:

Qz)={yeY/ glz,y) <0}

while the lower-level reaction set is
R(z) = argmin,{ f(x, y)/ y € Qx)}.

Every y* € R(x) is a rational response. For a given =, R(x) is an implicitly defined multi-
valued function of  that may be empty (or have more than one element) for some values of

its argument. Finally,
R={(z,y) e X xY/G(z,y) <0and y € R(z)}

represents the feasible set of the leader. Any (z,y) € R is called a feasible solution.

BPP can then be reformulated as:
min{ F(z,y)/ (z,y) € R} (3.2.3)
z,y

R is usually nonconvex and it can even be disconnected or empty in presence of upper-level

constraints. The following problem is an illustration:

Example 3.2.1.

min x — 2y

—r+3y—4<0
subject to min x + y (Ex1)
where y solves r—y<0
—x—y <0

\
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For this problem Q(x) = {y/ y >| = |} and R(x) =| x |. Thus, the induced region is given by:
R = {(z,y)) —z+3y—4<0andy € R(x)}
= {(z,y)/y=—2, -1 <z <0}n{(z,y)/y==, 0 <z <2}

i . —r+3y—4<0
which is nonconvex but connected. If the upper level constraints were changed to L1l<o
—YTag>

then the induced region would become

IN

x <2}

N | —

R={(wy)/y=—= -1<z< )iy y=r

which would be a disconnected set.

3.2.2 Solutions of bilevel optimization problems

The notion of solution in bilevel programming is not easy to define. It depends on the number of
optimal solutions in the lower level problem for some parameter values. The following example is

an illustration:
Example 3.2.2. Let us consider the following problem:
ml,in 2%+ y?
0<xr<l1

subject to (Ex2)

min, —ry

here y solve:
w Prquovee{ 0<y<1

Then, evaluating the lower level problem and inserting the optimal solution of this problem into

the objective function of the upper level results in

{0}, if x>0 =2% if x>0
R(z) = {0}, ifz <0 = F(z,y(x)) =1+2% ifz <0
0,1, if 1 =0 0,1, ifz=0

The value of the function x — F(x,y(x)) at the point x = 0 is unclear. The infimal function value
of Fx,y(x)) is equal to zero but this value is reached only if F(0,y(0)) = 0. This situation is
called the optimistic position in what follows. If this is not the case, then the bilevel problem has

no solution.

To overcome this ambiguity, at least two approaches have been suggested. In the case of opti-
mistic bilevel programming, it is assumed that, whenever the reaction set R(x) is not a singleton,

the leader is allowed to select the element in R(z) that suits him best. In this situation, a point

Calice Olivier PIEUME /Ph.D thesis



Bilevel optimization 49

(x*,y*) € R™ x R™ is said to be a local optimistic solution for problem (BPP) if the following
holds:

e X

G(z*,y*) <0

y* € R(x*)

F(z*,y*) < F(x*,y) for all y € R(x*)

\

and there exists an open neighbourhood V(z*, ) of x* (with radius 6 > 0) such that
O, (z*) < P (z) for all z € V(z*, §)NX

where ®,(z) = min, {F(x,y)/ y € R(z)}. It is called a global optimistic solution if 6 = oo can be
selected corresponding to V(z*, §) = X. The leader can use this approach if he supposes that the
follower is willing to support him. In the preceding example, in either case, the problem has two
local optimistic minimizers (—1,1) and (2,2) and one global optimistic minimizer (2, 2). The fol-
lowing statement from [Dempe 2002| is an existence result for the optimistic bilevel problem(with
the assumption that the leader constraint does not depend on the follower variables).

Theorem 3.2.1. If the set {(z,y)/G(x) < 0, g(x,y) < 0} is non-empty and compact and, for

each x with G(x) < 0, the (MFCQ) is satisfied, then the optimistic formulation of BPP has an
optimal solution.

When cooperation of the leader and the follower is not allowed, or if the leader is risk-averse
and wishes to limit the "damage" resulting from an undesirable selection from the follower, then
a point (z*,y*) € R™ x R™ is said to be a local pessimistic solution for problem (BPP) if the
following holds:

(
e X

)
F(z*,y*) > F(x*,y) for all y € R(x*)

\

and there exists an open neighbourhood V' (z*, §) of z* (with radius § > 0) such that
D, (z") < Py(z) for all z € V(z*, §)NX

where ®,(x) = max,{F(z,y)/ y € R(z)}. It is called a global pessimistic solution if 6 = oo can
be selected. The following statement from [Dempe 2002] is an existence result for the pessimistic
bilevel problem (with the assumption that the leader constraint does not depend on the follower

variables).
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Theorem 3.2.2. Let the point-to-set mapping R(.) be lower semicontinuous at all points x with
G(z) <0 and suppose that {(x,y)/G(x) <0, g(x,y) < 0} is non-empty and compact. Then, the
pessimistic formulation of BPP has an optimal solution.

A more complete discussion of these issues may be found in [Bard 1988; 1998; 1991, Dempe
2002, Pieume et al. 2008b|. Throughout the text, it is the optimistic formulation that is considered.

3.2.3 Some solution methods for bilevel programming problems
3.2.3.1 Penalty function methods
They usually incorporate exact penalty functions and are limited to computing stationary and

local optimal points. An initial step in this direction was achieved by [Shimizu et al. 1997|. Their

approach consists in replacing the lower-level problem by the penalized problem

minyp(z,y,r) = f(z,y) +ré(9(z,y)),

where 7 is a positive scalar, ¢ is a continuous penalty function that satisfies

o(9(x,y)) > 0if y € intS(x)
o(9(x,y)) — +ooif y — bdS(xv)

where S(zx) ={y/ g(z,y) < 0}

Problem BPP is then transformed into

. F *
Inin F(z,y’(z, 7))

G(z,y*(z,7)) <0
subject to (BPPA1)

p(z,y*(z,r),r) = min, p(z,y,r)

|Colson et al. 2007| proved that the sequence { (z*, y*(2*,r*)) } of optimal solutions to (BPPA1)

converges to a solution of (BPP).

3.2.3.2 Descent methods

Here we follow the presentation given in [Colson et al. 2007|. Assuming that, for any z, the optimal
solution of the lower level problem is unique and define y as an implicit function y(x) of x, problem
(BPP) may be viewed solely in terms of the upper level variables x € R™. Given a feasible point
x, an attempt is made to find a feasible (rational) direction d € R™ along which the upper level

objective decreases. A new point z + ad(a > 0) is computed so as to ensure a reasonable decrease
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in F' while maintaining feasibility for the bilevel problem. However, a major issue is the availability
of the gradient (or a sub-gradient) of the upper-level objective, vV, F'(z,y(z)), at a feasible point.

Applying the chain rule of differentiation, we have, whenever v, y(z) is well defined:
VoF(x,y(x)) = Vo F(z,y) + Vy F(x,y)Vey(z)

where the functions are evaluated at the current iterate. |[Kolstad and Lasdon 1990 proposed a
method for approximating this gradient. Another way is that of [Colson et al. 2007|, for problems
where no upper level constraints are present and where the lower level constraints are rewritten

as:
gi(z,y) <0 Viel
gi(z,y) =0 VjeJ

The authors first show that an upper-level descent direction at a given point x is a vector d € R™

such that:
Vo F (2, y")d+ V, F(z,y")w(x,d) <0,
where y* = y(z) and w € R™ is a solution of the program

min (d", w")V2 L(z,y*,\)(d,w)
(

vygi(xay*)w S _vxgz(xay*>d7 { € ](ZL’),

subject to _ (BPPA2)
vygi(x7y*)w = _vxgj(x7y*>d> JeJ;

Vyf(x, y*)w = —fo(x,y*)d + VxL(a:,y*, )‘)d;

\

with ](.T) = {7' < I/ gl(x7y*) = O} and L(ZL’,y,)\> = f(xay) + Zie](m)ﬁj Algl(x7y> is the La-
grangian of the lower-level problem with respect to the active constraints. The steepest descent

then coincides with the optimal solution of the linear-quadratic bilevel program:

mdin Vo F(z,y")d+ V,F(z,y")w(z,d)

ldfl<1

subject to
w(z, d) solves problem (BPPA2)

for which exact algorithms exist, such as those by |Bard and Moore 1990; 1992].
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3.2.3.3 Branch-and-Bound methods

Branch and bound methods are widely applied to convex bilevel programs. Several approaches
exploit the complementarity between the multipliers and the slack variables that arise from the
KKT-conditions of the lower level problem [Bard and Moore 1990, Bialas and Karwan 1984,
Bialas et al. 1980, Bialas and Karwan 1982|. In fact, when the lower-level problem is convex and
regular, it can be replaced by its Karush-Kuhn-Tucker (KKT) conditions, yielding the single-level

reformulation of BPP:

Lin, , Fley)
([ Gla,y) <0
g(z,y) <0
subject to ANi>0,1=1,....,ms

Xigi(z,y) =0, i=1,...,mg
VyL(z,y,A\) =0

\

where L(z,y,\) = f(x,y) + > Nigi(z,y) is the Lagrangian function associated with the lower-
level problem.

In addition to these methods, one can cite also trust-region algorithm developed in [Chen and
Florian 1995, Colson et al. 2007| for solving nonlinear bilevel programs where the function G solely
depends on the upper-level vector x. Complete and detailed presentations on methods for solving
bilevel programming problems can be found in |Bard and Moore 1990, Bialas and Karwan 1984,
Bialas et al. 1980, Bialas and Karwan 1982]. The next section presents a method that we have

developed. The approach is specially developed for linear problems.

3.3 An enumerative method for solving bilevel linear pro-

gramming problems

There have been nearly two dozen algorithms proposed for solving the BLPP. A wide class is based
on vertex enumeration, using the basic idea that the extreme points of the admissible set of a BLPP
are extreme points of the leader feasible region, and the optimal solution is one of these vertices
[Bialas and Karwan 1984, Chenggen et al. 2005, Falks 1973, Lu et al. 2005b, Onal 1992|. Other
approaches are based on replacing the lower level problem by its primal-dual optimality conditions
[Lu et al. 2005a, White and Anandalingam 1993|. This operation reduces the original problem to
a single-level program involving disjunctive constraints. Branch and bound algorithms have also

been developed by |Bard and Falk 1982 and |Fortuny-Amat and Carl 1981|. Combining branch
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and bound, monotonicity principles and penalization, [Hansen et al. 1992| have developed a code
capable of solving medium size instances of the BLPP. Alternatively, |Bialas et al. 1980, Bialas
and Karwan 1982| and [Judice and Faustino 1992; 1988| based their approach on complementary
pivot theory. The recent books by [Dempe 2002|, [Floudas et al. 1999 and |Bard 1998| present
results, applications and solution methods for general bilevel problems where the functions and
the constraints are not necessarily linear. However, only theoretical convergence is shown for the
majority of these methods. In addition, many algorithms solving bilevel programming problems
turned out to be incorrect, or convergent towards a local non global optimum.

[Ben-Ayed 1988| showed that the Parametric Complementary Pivot algorithm developed by [Bialas
and Karwan 1984, Bialas et al. 1980, Bialas and Karwan 1982| and the Grid Search Algorithm
presented by [Bard 1983a| do not always find the optimal solution. [Campelo and Scheimberg
2000| provided a counter-example to show that the method proposed by |Othmani May 1998|
may not find a global solution as it was claimed. [Manoel and Scheimberg 2000] identified some
troubles in the algorithm proposed by [Anandalingam and White 1990|. They showed that the set
of cuts used in the algorithm to discard local optima is not well defined. |[Chenggen et al. 2005|
showed that the Kth-best approach |Bialas and Karwan 1982, Candler and Townsley 1982|, one
of the most popular and workable approaches for the BLPP, could badly deal with a linear bilevel
programming problem when the constraint functions at the upper-level have an arbitrary linear
form. More recently, [Audet et al. 2006| showed that the methods proposed by |Lu et al. 2005a;b|
do not solve a wider class of problems, but rather relax the feasible region, allowing infeasible
points to be considered as feasible. Consequently, it is extremely desirable to develop a simple
technique that can locate the global solution.

The aim of this section is to describe a simple algorithm for solving the BLPP. We formalize
and prove the well known result that extreme points of the admissible set of the BLPP are
extreme points of the leader feasible region, and the optimal solution is one of these vertices.
Using this result, we develop a pivot technique to find the optimal solution on an expanded tableau
similar to a simplex tableau that represents the data of the BLPP. The pivot technique allows to
rank in increasing order the outer level objective function value until a value is reached with a
corresponding extreme point feasible for the BLPP. Then this extreme point is the required global
solution. The algorithm starts with the optimal simplex tableau of the linear programming problem
obtained by removing from the BLPP the follower objective function. Then an iteration procedure
using the pivot technique developed allows to find the global optimal solution. Solutions obtained
through our algorithm to some problems available in the literature show that these problems were

until now wrongly solved.
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The presentation is organized as follows. In the next section, BLPP formulation and properties
are provided. This is followed by the presentation of the mathematical basis and the principle of our
algorithm. In the third part, we present the algorithm and the implementation on some problems
available in the literature. An example for highlighting the different steps of the algorithm is
presented. We also present some problems from the literature that were until now wrongly solved
and for which our method provides the correct answer.

Throughout this section, we consider the formulation (BLPP) as presented in the first section.
With the following hypothesis (i) X = {x € R™/z 2 0}, (ii) Y = {y € R™/y = 0} and (iii) Q

bounded and nonempty.

3.3.1 Foundation of the approach

In this section, basic mathematical concepts and theorems necessary for the development of
the algorithm are discussed. Based on notations provided in section 3.2.1, an admissible point

(x7,y") of Q is feasible for the BLPP if y~ solves the lower level problem with x fixed at 2, i.e,
coy~ = min{day/Byy < by — Asx™ ,y > 0}. (3.3.1)
Yy

A global solution of a BLPP is any feasible point for the BLPP which provides the best value
to the leader objective function.

Let us now state the following theorem on the existence of a BLPP solution.

Theorem 3.3.1. : With the following assumptions:
(i) The leader objective function is bounded over the relaxed feasible region.
(ii) The rational set R(x) is a point — to — point map for all permissible x.
(i1i) R(z) is bounded for all permissible x.
Then, the problem (BLPP) admits at least one optimal solution.

Proof: The proof is done in two steps:

e We first show that the admissible set can be equivalently written as a piecewise linear equality

constraint comprised of supporting hyperplanes of €.
e Then, the result will be deduced from the new form of the inducible region.
Using the notation of section 3.2, we have
R(x)={y"/y* € aryg myin{cQa: +doy/y € Q(z)}} (3.3.2)

and the BLPP feasible set
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R={(z,y)/(z,y) € Qy € R(x)}
which can be written as

R=A{(z,y)/(z,y) € Q,dsy = mzin{dgz/Bgz < by — Agx,z > 0}} (3.3.3)
Now, let us define

T(x) = min{dyz/Byz < by — Agx, 2 > 0}. (3.3.4)

For each value of x € Q(X),the resulting feasible region to (BLPP) is nonempty and compact.
Thus T'(x), which is a linear program parameterized in x and from proposition 1.3.1, always has

a solution. From duality theory, the same problem can be stated as:

maz{u(Asx — by)/uBy > —dy,u > 0} (3.3.5)

which has the same optimal value as the primal problem (3.3.4) at the solution u*. Let u!,...u®

be a listing of all the extreme points of the constraint region of (3.3.5) given by U = {u/uBy >
—dg,u > 0}. Because we know that a solution of problem (3.3.5) occurs at an extreme point of U,

we get the equivalent problem:

maz{uw’ (Ayx — by) /v € {u', ..., u"}} (3.3.6)
which demonstrates that T'(z) is a piecewise linear function. Rewriting R as

R={(x,y) € Q/T(x) — dyy = 0} (3.3.7)

permit to conclude that, the admissible set can be equivalently written as a piecewise linear
equality constraint comprised of supporting hyperplanes of 2.

The problem (BLPP) is then equivalent to minimizing F over an admissible set comprised of
a piecewise linear equality constraint.

The function T'(z) is convex and continuous. In general, because we are minimizing a linear
function F' = ¢z + dyy, over R, and because F' is bounded from below on by, say min{c;z +

dyy/(z,y) € Q}, one can conclude that a solution to the linear (BLPP) occurs at an extreme point

of R.

We present now how to check the uniqueness condition.
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Theorem 3.3.2. : A solution (z*,y*) to a BLPP is not unique if the solution (a,b) of the following
problem:

min{dsy/(z,y) € Q,c1x + dyy = 12" + dyy*} (3.3.8)
Y
produces an objective function value such that dab < doy*.

Proof: In fact, if (a,b) satisfies (3.3.8), then:
(1) cra+dib=cix*+dy* and (i) dob < doy*

(i) implies that (a,b) gives the same value for the leader’s objective than (z*,y*), and

(ii) stipulates that (a,b) gives a better objective value for the follower. In this case, there is no
reason that players prefer (zx*,yx) to (a,b). O

The remaining question is where to find the BLPP solution. We study how to localize the
BLPP solution in the admissible set. Using some results presented in |[Bard 1998|, we show in the

next theorem that the solution vertex (z#,y*) of R is also an extreme point of ().

Theorem 3.3.3. :
The solution (xx,yx) of BLPP occurs at an extreme point of €.

Proof: Let (z',y'),..., (z",y") be the distinct extreme points of €.

Since any point in €2 can be written as a convex combination of these vertices, let (zx,yx) =
YN (2% y"), where XEIN, =1, \; >0, 0=1,....,7 and 7 < r. We will prove that 7 = 1.

To see this, let us write the constraints of (BLPP) at (z*,y#) in their piecewise linear form
(3.3.7). This gives: T'(x*) — dyyx = 0, which implies that T(3;\z") — da(Z;\y") = 0.
With the convexity of T'(z), we deduce that 3\ (T (z") — day’) > 0.

But, by definition, T'(z") = min,cqi)day, so that T'(z") < doy’ Vi .
Therefore, T'(z') — dyy* <0 Vi; i=1,...,7. Noting that \; >0 Vi; 4 =1,...,7, equality must
hold or else a contradiction would result.

Consequently, T'(z") — dyy’ = 0, Vi. This implies that (2%,y") € R, i = 1,...,7, and that
(%, y*) can be written as a convex combination of points in R. Because (x*,yx*) is an extreme
point of R, a contradiction results unless 7 = 1. O

Remark 3.3.1. : It can be seen from the proof of theorem 3.3.3 that any vertex of R is also an
extreme point of €2. This allows us to say that any extreme point of R is an extreme point of
Q). In addition, this section allows us to say that the solution of the BLPP lies at a vertex of

Q= {(z,y)/Aix + By < b, Agx + Boy < by, € X,y € Y}
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Remark 3.3.2. :

As stipulated in theorem 3.3.3, we only need to investigate extreme point in order to find the
solution of the BLPP. Since the size of the set of extreme points is usually very large, it would be
an impossible task to evaluate all the extreme points and select the feasible points for the BLPP.

Now a computational scheme that selects, in an orderly fashion, a small subset of the possible
solutions which converges to the global BLPP solution is required. We present in the following
section such a scheme that we have developed to iterate on different extreme points.

3.3.1.1 An orderly technique to iterate on potential BLPP solutions

Our objective in this section is to derive two rules that will be used in our algorithm. The main
objective of the rules is to show how to move from an extreme point to one with the value of
the objective function greater and closer to the current value than any other extreme point, when
dealing with a minimization problem. The search for the smallest deterioration is in fact a variant
of the simplex algorithm, only in reverse.

Let us consider the following problem: géi)t{l{cx/Ax = b}, where b > 0.

Where ¢ = (c1, ¢, ..., ¢,) is a row vector, A = (a;;) a n X m matrix, x = (21,22, ...,x,) and
b= (by,ba, ..., by,) are column vectors. We assume that the linear programming problem is realis-
able, that every extreme point (solution) is nondegenerate, and that we are given a basic extreme

point.

The linear programming problem can be reformulated as follows:
Min{z = cz/x1 P, + 2o Py + ... + x, P, = Py, > 0}.
Where P; for j =1,2,...,n is the jth column of A and F, = b.
We suppose that a basic extreme point (solution) is given, say xo = (210, 20, ..., Tmo) and let

the associated set of linearly independent vectors be { Py, P, ..., P, }. We then have
.I'l()Pl + xQOPQ + ...+ ZL’m()Pm = P() (339)

T10C1 + T20C2 + ... + TmoCm = 20 (3.3.10)
where all x;0 > 0, the ¢; are the cost coefficients of the objective function and zj is the corresponding
value of the objective function for the given solution. Since the set {Py, Ps,..., P,,} is linearly
independent and thus forms a basis, we can express any vector from the set {P;, P, ..., P,} in

terms of Py, P, ..., P,,. Let P; be given by

xle1+x2jP2—|—...+xijm:Pj, j: 1,...,n (3311)
and define
21,61 + XoiCa + .. F Tpicn, = 25,5 =1,..,n (3.3.12)
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where ¢; are the cost coefficients corresponding to the P;.

We then have the following result:

Theorem 3.3.4. If for j, the condition z; — c; < 0 holds, then a set of extreme points (solutions)
can be constructed such that, z > zy for any member of the set, where the upper bound of z is
either finite or infinite (z is the value of the objective function for a particular member of the set
of admissible points (solutions).

Proof: Multiplying (3.3.11) by some number 6 and subtracting from (3.3.9), and similarly
multiplying (3.3.12) by the same 6 and subtracting from (3.3.10), for j = 1,2,...,n, we get

(33'10 — Hij)Pl + (.7?’20 — eﬂfg,j)Pg + ...+ (l’mo — meyj)Pm -+ QPJ = PO (3313)

(ZL‘lO — QZL'LJ')Cl + (ZL’QO - QZL'QJ)CQ + ...+ (ZL’mo — 0$m7j)cm + QCJ' =20 — Q(Z] — Cj) (3314)

where fOc; has been added to both sides of (3.3.14). If all the coefficients of the vectors
Py, P, ..., Py, P; in (3.3.13) are non negative, then we have determined a new admissible point
(solution) whose value of the objective function is, by (3.3.14), z = 2, — 0(z; — ¢;). Since the
variables x1q, Z20, ..., Tmo in (3.3.13) are all positive, it is clear, from the previous result, that there
is a value of @ > 0 (either finite or infinite) for which the coefficients of the vectors in (3.3.13)
remain positive. From the assumption that, for a fixed j, z; — ¢; < 0, one have:

0(zj —c;) <0=2=2—0(z; —c;) > 2 for 6 > 0.

It can be seen that in either event, a new admissible point (solution) can be obtained with
the value of the objective function greater than the value of the objective function of the previous
admissible solution. O

Now, let us suppose given a simplex tableau [Winston 1994, Fotso Jully 2001| from a min-
imization linear programming problem. From the above results and some well known results of

simplex algorithm, one can deduce the following rules:

Rule 1:
All the extreme points (tableau) adjacent to the current simplex tableau (current extreme point)
can be obtained by making pivot operations on any column with a negative reduced cost coefficient

in the objective function. With the pivot line obtained using minimum (lexicographic) ratio rule.

Rule 2:
The pivot element which leads to the new extreme point with the smallest deterioration of the

objective function is obtained as follows:

e How to find candidate pivot columns: To be a candidate pivot column, a column must have

a negative reduced cost coefficient in the objective function.
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e For each candidate pivot column, use the minimum ratio rule to find the corresponding pivot

line.

e For each candidate pivot column j, let p; be the product of its pivot element by its coefficient

in the objective function.

e The selected pivot belongs to the pivot column with the smallest p;.

3.3.1.2 Principle of the approach

In the preceding section, we show that a global optimal solution of a BLPP always occurs at an
extreme point of the admissible set. We will iterate through these admissible points to locate an
optimal solution. We start with the best value of the objective function of the leader. Then, we

progressively deteriorate this best solution until a feasible point (optimal solution) is obtained.
e A description of the algorithm

In this subsection, the problem BLPP will be called (PB1) and the relaxed will be called (PB2).
We use T to represent the current simplex tableau, V' the set of potential tableaux to be considered
in the next iteration. (PB3) will represent problem (3.3.1) and (PB 4) problem (3.3.8).

To search for the global solution of the BLPP, the algorithm starts with the optimal simplex
tableau of the linear programming problem (PB2), obtained from (PB1) by removing the fol-
lower’s objective function. Using problem (PB3) and functiontest given below, the algorithm
tests the feasibility (as stated in definition 3.3.1) of the corresponding extreme point. If it is ver-
ified, then the algorithm terminates. Otherwise, using functionnewtableau as given below, the
algorithm generates the new tableau (extreme point) with the smallest increase in the value of
the objective function, the feasibility of the new solution is tested again, and the entire scheme is
repeated, until a feasible extreme point solution is found. The algorithm calls problem (PB4) to
check the uniqueness condition, to be sure that the extreme point obtained is really the solution
of the BLPP. If it is verified, the feasible point is the required global solution, else the BLPP has
no solution and the algorithm stops. Since € is regular, it has a finite number of extreme points;

so the algorithm is bound to terminate in a finite number of steps.
e Subroutine for testing if a tableau provides a BLPP solution

We first present a function called Functiontest, which tests if the extreme solution correspond-
ing to a given simplex tableau is the solution of the BLPP.

We consider T as the current simplex tableau and the notations given in the previous sections.
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Algorithm 3. 1
Z=Functiontest(d2,b2,A2,B2,T)

BEGIN
eStep 0 (Initialization): Z «— ()

e Step 1: Find the set V of adjacent tableaux to T" which provides the same objective value
as T. Add T to the set V.
eStep 2: Take an element (say T') from V', suppress it from V.
eStep 3: Let (z*,y*) be the solution read on the simplex tableau T
Find the solution y of problem (PB3)
If y = yx then Z « T else if V # () go to step 2 else stop.
END

If Z is empty, the current tableau does not provide a feasible solution for the BLPP. Else, Z

contains a tableau that provides a feasible solution for the BLPP.

Remark 3.3.3. Tt is possible to obtain more than one simplex tableau which provide the same
objective value. In order to tackle this case, we use at step 1 the well known scheme in the simplex
method to obtain all the other tableaux (extreme points) which give the same objective value.

e Subroutine for finding the new tableau to be considered

Now, if at iteration i—1 (i > 2), the tableau T is tested and does not provide a feasible solution
for the BLPP, the new tableau that has to be considered at iteration ¢ can be determined by the
following subroutine.

Let us call the subroutine Functionnewtableau and suppose the following notations:

(Z1,72) is a couple of tableaux such that:

Z1: is the tableau that will be considered at the current iteration.

72: is the tableau from which a pivot operation led to the tableau Z1.

V: the set of couples of tableaux with the same configuration as (7Z1,72), that contains the other
potential candidates for the current iteration. The elements of V were obtained from the previous
iterations.

J: the set of potential candidates (couples of tableaux) with the same configuration as (Z1,72) for
the next iteration (i + 1).

T: the tableau tested at the preceding iteration (i — 1).

T1: the tableau from where T was derived after a pivot operation
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Algorithm 3. 2

[(Z1, Z2), J|=Functionnewtableau (V, (T, T1) )
BEGIN
e Stepl: Apply Rule2 on tableau T to obtain the tableau T2 adjacent to T with the smallest
increase in the value of the objective function.
e Step2: Apply Rulel on tableau T1 to obtain all the adjacent tableaux to T1. Delete T from
the obtained set. For each of these tableaux (let T3), put the couple (T3,T1) in the set K.
e Step3: Put the pairs (T2,T), all the pairs of tableaux of the set K — K NV, and elements of
V in the set J.
e Step4: Find, among the elements of .J, the pairs such that the first tableau has the smallest
objective value and consider the corresponding pair as (71,72). Suppress it from J.
END

At the end, J contains all the potential candidates for the next iteration (i+1), Z1 the new
tableau to be considered in the current iteration (i) and Z2 the tableau from where Z1 was obtained

after a pivot operation. We can now state our algorithm.

3.3.2 An algorithm for solving bilevel linear programming problems

At any iteration of the proposed algorithm, T represents the current tableau that has to be
tested, T1 the tableau from which a pivot operation led to the tableau T and V the set of couples
of tableaux with the same configuration as (T,T1), containing the other potential candidates for

the next iteration.

3.3.2.1 Presentation of the algorithm
Algorithm 3. 3

BEGIN

e Step 01: Find the optimal simplex tableau Tj of the following problem (P B2):
min fi(z,y) = a1z + diy
All’ + Bly S bl

Ay + Boy < by
reX,yeY

e Step 02: Use functiontest to check if Ty provides the solution of the BLPP.
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If it is the case, then go to step 4.

e Step 03: Use Rule 2 to find all the adjacent tableaux 77 to Ty with the smallest increase

in the value of the objective function.

e Step 04: Using functiontest , if there is T7 that gives the solution of the BLPP, then go

to step 4, else continue to step 1.
e Step 1 (initialization): V «— (), T « T}, T1 « Ty.

e Step 2: With V, T, T1 use functionnewtableau to find the couple (71, Z2) and J . Update
T, T1 and V as follows: V «— J, T «— Z1,T1 «— Z2.

e Step 3: Use functiontest to check if T provides the solution of the BLPP.

If it is not the case, go to step 2.

e Step 4: Let (xx,yx) be the solution read on the tableau T. Find the optimal solution of
the following problem (PB4):

min{dsy/(x,y) € Q,c1x + d1y = c1x % +dyy*}

e Step 5: If the optimal value of the problem (PB3) obtained at step 3 is less than the
optimal value of the problem (PB4) obtained in step 4, then the solution of the problem

does not exist, stop. Else, the solution of the problem is (x*, y*), stop.

END

Step 01 provides the first tableau (which is the simplex optimal solution of (PB2)) from which
the algorithm will iterate. Then, in step 02 , the feasibility of any extreme point of problem (P B2)
which provides the optimal objective value is checked. If there is no feasible point among these
extreme points, we use rule 2 to find the next closer tableau (with the smallest increase in the
value of the objective function) at step 03. This new solution is tested at step 04. Step 2 and
step 3 are schemes to find and test, respectively, at any moment the next closer tableau (with
the smallest increase in the value of the objective function) until the first feasible extreme point
for the BLPP is found. Step 4 tests if the problem satisfies the uniqueness condition which is a

condition for the existence of the BLPP solution.

Theorem 3.3.5. : Under the uniqueness assumption associated with the rational reaction set R(x)
and the boundness of the leader function, the algorithm terminates with the global optimum of the
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BLPP (PBI).

Proof: The algorithm forces the satisfaction of conditions of definition 1 to be true for the
extreme point of the current tableau. So the obtained point is a feasible solution of (PB1). The
globality of the solution comes from the fact that we start our algorithm with the tableau that
contains the best value that the leader can have. Then iterate with a decreasing process, and stop
at the first extreme point which satisfies the definition 1. So if there are any other extreme points
that satisfy definition 1, they will provide an objective function value of the leader worse than the

one provided by the algorithm. O

3.3.2.2 Computational experience

INlustrative example We used Scilab language to implement our algorithm. Below is an illus-

trative example taken from |[Bard 1998].

min x + 3y
1<x2<6

min —y
r+y<8
—r—4y < =8
r+2y <13
—y<0
—x<0

[t represents our problem (PB 1) and (PB 2) is the following linear programming problem:

minz + 3y
1<x<6
r+y <8
—xr—4y < =8
r+2y <13
—y<0

—x <0

The best known solution is (2,6).
At step 01
The optimal simplex tableau T} corresponding to problem (PB1) is:
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—6.2510. 0. 0. 025 0. 0.75 O
1. 1. 0. 0. —=1. O 0. O
5 10. 0. 1. 1. O 0. 0
5.25 0. 0. 0. 0.75 1. 025 O
85 0. 0. 0. 05 0. 05 1
1.75 10. 1. 0. 0.25 0. —0.25 O
At Step 02,
functiontest shows that Ty does not provide the solution of the BLLPP.
At Step 03,

Rule 2 allows to have as tableau adjacent to Tj with the smallest increase in the value of the

objective function, the following tableau 7;:

—-75]10. 0. =025 0. 0. 075 O
6. [1. 0 1. 0.0 0. O
5. 10. 0. 1. 1. 0 0. O
1.5 (0. 0. =0.75 0. 1. 025 0
6. |0. 0. =05 0. 0. 05 1
0.5 10. 1. =025 0. 0. —-0.25 O
At step 04,
functiontest shows that T does not provide the solution of the BLLPP.
At step 1,

V is initialized as an empty set, T« 17, T'1 < Tj,.

At step 2,

with V, T, T1 functionnewtableau gives the different tableaux Z1, Z2 and the set J. T, T1 and
V are updated.

The new tableau T to be considered is:

—-12.70. 0. 2. 0. =3. 0. O
6. 1. 0. 1. 0. 0. 0. 0
5. 10. 0. 1. 1 0. 0
6. 0. 0. =3. 0. 1. 0
3. 10, 0. 1. 0. =2. 0. 1
2. 10. 1. =1. 0. 1. 0. O

The tableau T1 from where T was derived is given by:
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—7510. 0. =025 0. 0. 075 0
6. [ 1. 0. 1. 0.0 0. 0
5. 0. 0. 1. 1. 0. 0. 0.
1.5 0. 0. =075 0. 1. 025 O
6. (0. 0. =05 0. 0. 05 1
0.5 (0. 1. =025 0. 0. =025 O

And the set of potential candidates for the next iteration is given by:
V ={(K1,K2)}

where the candidate tableau K1 for the next iteration is :

—19.10. 0. 0. =05 0. 0. —1.5
1. |1. 0. 0. —=1. 0. 0. O.
5. 0. 0. 1. 1. 0. 0. O.
1. 0. 0. 0. 05 1. 0. =05
7. 10. 0. 0. 1. 0. 1. 2.
6. {0. 1. 0. 05 0. 0. 0.5

And the tableau K2 from where K1 was derived is given by:
—6.25 0. 0. 0. 025 0. 075 O
1. (1. 0. 0. —=1. O 0. 0
5. 10. 0. 1. 1. 0. 0. O

525 0. 0. 0. 075 1. 025 O

85 |0. 0. 0. 05 0. 05 1

1.75 |0. 1. 0. 025 0. =025 0

At step 3,

functiontest shows that T' provides a feasible solution of the BLPP.
Then the algorithm goes to step 4

At step 4,

(x*,y*) = (6,2) is the solution read on the simplex tableau 7. The optimal solution of the
following problem (PB4):

min{—y/(z,y) € O,z + 3y =12}

is (0,4) and the optimal value is -4. Then the algorithm moves to step 5.
At step 5,
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The optimal value of the problem (PB3) obtained at step 3 is 12 which is greater than -4, the
solution of the problem (PB4) obtained at step 4. The algorithm then stops and the solution of
the problem is (zx, yx) = (6, 2).

3.3.2.3 Incorrectness of some results in the literature

Here, we will just present the problem and the simplex tableau provided by our algorithm.

PROBLEM 1: Let us consider the following problem taken from chapter 5 of [Bard 1998].

minx — 4y
min y
—r—y< -3
—2x+y <0
20 +y <12
—3r+2y <-4
—y <0

—x <0

The solution provided is (4, 4). But a simple check shows that this solution is not feasible for
the bilevel linear programming problem. In fact for x = 4, y = 4 is not the optimal solution of the

following follower problem:

min y
—y<1
y <8
y<4
2y <8
—y=<0

The following tableau is provided by our algorithm:

2.10. 0. =2. 0. 0. 1.

7.10. 0. 14 0. 1. 02
3.10. 0. =02 1. 0. —-0.6
2.11. 0. =04 0. 0. —-0.2
1.10. 1. =06 0. 0. 0.2

The global optimal solution is then z = 2 and y = 1. It gives as outer objective function value —2

and inner objective function value 1.

Calice Olivier PIEUME /Ph.D thesis



Bilevel optimization

67

PROBLEM 2: Let us consider the following problem, taken from [Bard 1998| and used in

[Shimizu et al. 1997].

min z; + 10y; — v
min —y, — Yo
-y <0
—y2<0

—x <0

T —y <1
r1+y2 <1
y1+y2 <1

The solution provided in these papersis (1, 0, 0). But a simple check shows that this solution

is not feasible for the bilevel linear programming problem. In fact, for z = 1, the resolution of the

follower problem provided the following optimal simplex tableau:

1
1.
0
1.

0
0.
0
1

0.
1
1
1.

0.
1
0.
0

S = o2

1
1
0
1

The optimal solution for the follower when x = 1 is then (1, 0) and not (0, 0) as suggested. The

solving of the optimistic formulation of problem 2 provide (0,0, 1) as a global optimal solution.

3.4 Applications of bilevel programming optimization: pro-

tecting national initiative in the context of globalization

The following section illustrates an application of the bilevel programs that we have formulated

[Pieume and Fotso December 2005|. More examples of bilevel optimization applications can be

found in [Bard et al. 2000, Bard 1998, Dempe 2002].

3.4.1 Protecting national initiative

One fundamental problem for a state is how to reconcile the necessary liberal economic impera-

tives with the worry of consolidating or even reinforcing as much as possible national economic
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enterprises which are still fragile. There is a risk of the settlement of the "law of the jungle" in
developing countries like Cameroon where the most powerful crushes the weakest. It is sometimes
important that the State intervenes in various sectors of economy where national initiatives are
threatened in order to preserve national interest and, by extension, national cohesion and social
peace. The solution consists in general to impose a tax in all non local initiative in any economic
sector where local initiatives are threatened. Given an economic sector where national initiatives
(enterprises) are threatened, we present in the following section how the problem for determining
the tax rate to impose to non local initiatives in order to assist local enterprises can be modelled.
We show in fact that the problem of the determination of the tax rate can be modelled as a bilevel

programming problem.

3.4.2 Determination of the tax rate

Let x; and x5 be the quantity produced by all non local enterprises and local enterprises re-
spectively. A higher productivity of non local enterprises implies a lower productivity of local
enterprises, this is due to the fact that products of non local enterprises are generally best quality
and cheap and then are much demanded on the market. This implies an increase (respectively,
decrease) of profit of non local enterprises (respectively, local enterprises). Let p, (x1), p; (z1, 22)
denote the profit of non local enterprises and local enterprises, respectively, depending on their
respective productivity effort z;, and x,. Here, the profit obtained by local enterprises strongly
depends on the effort of non local enterprises and will decrease with increasing x;. Without loss
of generality, the functions p, (.) and p; (x1,.) are assumed to be concave with p; (z1,.) decreasing
in the space of non-negative arguments. If both parties try to maximize their respective profits,
the market will fall since the non local enterprises will make maximum production which will
dominate the market and will destroy local initiative and competition. As we have assumed, the
State has the obligation to protect national initiative, by imposing a tax on all products coming
from non local enterprises.

Let us assume for simplicity that this tax linearly depends on x;. Let r be the tax rate imposed
by the State, the profit of non local enterprises will be p,, (z1) — rz1, and the non local enterprises
will now maximize their profit depending on r. Let z; (r) denote the optimal effort of the non
local enterprises. Larger r implies smaller x; (r) of productivity of non local enterprises. Therefore,
the competitiveness of local enterprises will increase with increasing r. Consequently, the optimal
effort of local enterprises xo (21 (1)) also depends on 7.

The objective of the State is to determine the tax rate that will satisfy both parties. If the

State measures the social impact of the action it wants to take and the utility of both groups
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of enterprises by f (1, zo,7) then, it can decide to choose r that maximizes f(x1(r), xo(z1(r)),7)
where x1 (r)) and x5 (21 (1)) are the optimal efforts of the local and non local enterprises induced
by a fixed value of r respectively. In a very natural way, this leads to a formulation of a three-level
programming problem:

f1{1§3< f(z1,22,7)

x1 solves max p, (1) — ra;
x1>0

. and x5 solves g;%%(pl(xh 72)
s.t P(xq1,29) >0
This trilevel program formulation can be transformed into a bilevel program by suggesting that
the State also imposes that the profit gained by the local enterprises must at least exceed a certain
estimated preset level said, for example, P,,,;,,. The State can then decide to control the quantities
that local enterprises must produce (z5) and the tax rate (r). It will lead to solving the following
problem:

max f (@, 20,7)

Pl($1,$2) > Ppin

5.t
x1 solves max pp(x1) — ra;
x1>0

The optimal solution of this bilevel program will allow the State to fix the proper tax rate (and
the quantities that local enterprises must at least produce) that will permit national initiatives to

be competitive with concurrent non local enterprises.

3.5 Conclusion

After a review of some main results and notions of bilevel programming, we have presented a new
approach for solving bilevel linear programming problems. By using the basic idea that extreme
points of the accessible region of the BLPP are extreme points for the feasible space of the leader
problem, and that the optimal solution is one of these vertices, we have developed pivot techniques
to find the optimal solution on an expanded tableau (simplex tableau) that represents the data
of the BLPP. An example has been provided to illustrate how the approach works. A bilevel
optimization model that can permit to determine the tax rate to impose to non local enterprises
in order to protect national initiatives in the context of globalization was also formulated as a

bilevel programming problem.
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CHAPTER FOUR

MULTICRITERIA OPTIMIZATION CONCEPTS IN
BILEVEL OPTIMIZATION

4.1 Introduction

Although several authors have attempted to establish a link between bicriteria optimization and
bilevel optimization |Fulop 1993, Bard 1984|, none has succeeded thus far in proposing condi-
tions which guarantee that the optimal solution of a given bilevel program is Pareto-optimal for
both upper and lower level objective functions (counter-examples were reported in [Candler and
Townsley 1982, Clarke and Westerberg 1988, Haurie et al. 1990, Marcotte and Savard 1991]). More
recently, certain authors have started to study the possibility to exploit multicriteria approaches
for solving bilevel programming problems [Fulop 1993, Bard 1983b, Campelo and Scheimberg
2000, Fliege and 1..N.Vicente 2006, Haurie et al. 1990, Ivanenko and Plyasunov 2008, Manoel and
Scheimberg 2000, Marcotte and Savard 1991, Unlii 1987, Wen and Hsu 1989]. Unfortunately, apart
from the relationship reported in |Fulop 1993| that has been used in the literature to develop an
algorithm for solving bilevel linear programming problems, none of the other propositions has
been implemented for solving BPP, due certainly to the facts that the proposed multicriteria opti-
mization problems were defined by complicated relations [Fliege and L.N.Vicente 2006, Ivanenko
and Plyasunov 2008| or the propositions were wrong |[Bard 1983b, Campelo and Scheimberg 2000,
Haurie et al. 1990]. This chapter introduces our contributions in this study: the use of multicriteria
optimization approaches when dealing with bilevel optimization problems [Pieume et al. 2009].
The chapter is organized as follows. In the next section, we first show through an example that
the optimal solution of a bilevel optimization problem is not necessarily Pareto-optimal. We then
discuss conditions under which a solution of a bilevel optimization problem can be a Pareto-optimal
solution of the corresponding bicriteria optimization problem. Since it could be not economically
admissible for the two DM to use a non Pareto-optimal solution, we end the section by a strategy
that can permit the two decision makers to find a Pareto-optimal solution better than the bilevel
optimal solution. In section 4.3, we introduce a generalization of the Fulop relation |Fulop 1993|
that establishes a link between multiobjective linear programming and bilevel linear programming.

We show that it could be valid even if the leader objective function is not linear. In section 4.4,
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a new relation between bilevel programming problem and multicriteria optimization problem is
introduced. We also discuss the practical implementation of the new relation. The chapter is finally

concluded in section 4.5.

4.2 Pareto-optimality of the bilevel optimization solution

4.2.1 Non Pareto-optimality of the optimal solution

consider the following bilevel programming problem (BPP):

ny Fey)
G(z,y) <0
subject to mingey f(x,y) (BPP)
y solves s.t
\ g(z,y) <0

with X € R™ and Y C R™. The BPP corresponding bicriteria optimization problem BOP is
defined by:

G(z,y) <0
subject to (BOP)
9(x,y) <0
The admissible set = {(z,y) € X x Y/ G(z,y) < 0 and g(z,y) < 0} of BPP is also the
admissible set of BOP.
As illustrated by the following example from [Dempe 2002], the optimal solution of a bilevel
programming problem need not be Pareto-optimal for the corresponding bicriteria optimization
problem.

Example 4.2.1.

i 2
mip @+ 2
([ >0
( mingecy —y
. s.t
subject to
y solves r+y<2

r <1
y=>0
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with X C R and Y C R. The optimal solution of this BLPP is (1, 1). The following tableau

proposes some admissible points that improve either the upper or the lower level objective or both.

(x,y) | Nature of the point | f(x,y) | F(x,y) Remark
(1,1) Optimal point -1 3 Solution of the BLPP
(0,1) Pareto point -1 2 Improves the leader objective
(0,3/2) Pareto point -1.5 3 Improves the follower objective
(0,5/4) Pareto point -1.25 2.5 Improves both objectives

Hence, in general, it is not possible to directly use solution techniques based on the replacement

of the bilevel program by the bicriteria optimization problem. Previously, several researchers have

tried to do so, but their proposed approaches have all been proved inadequate. Let us remark that

despite this, there is always a point which is at the same time Pareto-optimal for the associated

bicriteria linear optimization problem and feasible for the bilevel linear problem. However, as il-

lustrated by the following example, the corresponding feasible point can be the worst choice for

the leader.

Example 4.2.2.

min z + 3y
([ 1<2<6
( ming,cy —y
. s.t
subject to
y solves < r+y<8
r+4y > 8
L L r+2y <13

with X C R and Y C R. The following figure (figure 4.1) illustrates the set of feasible points

and Pareto-optimal points.

One can easily check that:

e The union of segment [A, E] and segment [E, D] gives the set of feasible solutions to the

upper level problem.

e The global solution of the problem is the point D = (6, 2) with an optimal function value to

the leader equal to 12.

e The segment [A, B| constitutes the set of all Pareto-optimal points of the corresponding

bicriteria problem. The only efficient point which is feasible for the bilevel programming
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Figure 4.1: The linear bilevel programming problem

problem is the point A = (1,6), which has the worst possible function value for the upper

level objective function.

4.2.2 Conditions for Pareto-optimality of the optimal solution

To our knowledge, there is only one result in the literature that permits to have sufficient conditions

for the optimality of the bilevel programming problem. consider the following two assumptions:
Assumption 1

For any fixed element € X, R(x) = Argmin, {f(x,y)/ g(x,y) <0 } has only one element y(x).
Assumption 2

f@r, 1) < flao,y2) = Flz1,41) < F(22,92) V(z1,91) € Q,V(22,90) € Q

Theorem 4.2.1. If assumption 1 and assumption 2 are satisfied, then the optimal solution (x*,y*)
of BPP is a Pareto-optimal solution of BOP.

Proof:
Let us suppose that, (z*,y*) is not an efficient solution of BOP, then there exists a point (a,b) €
which dominates (z*, y*) i.e 3(a, b) such that F(a,b) < F(z*,y*) (i)
and f(a,b) < f(a*,y*) (ii) with at least one strict inequality. There are two cases:

Case 1: (a,b) is a feasible point of BPP, then from the inequality (i) and due to the fact that

(x*,y*) is an optimal solution of BPP, we necessarily have F'(a,b) = F(z*,y*) (i7i). From (ii), one
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have then f(a,b) < f(z*,y*) . Assumption 2 allow then to deduct that F'(a,b) < F(z*,y*), which
contradicts the fact that (z*,y*) is an optimal solution of BPP. So (z*,y*) is an efficient point.
Case 2: If (a,b) is not a feasible point of BPP, then f(a,y(a)) < f(a,b). From assumption
2, we have then F(a,y(a)) < F(a,b). From relation (i) we have then F(a,y(a)) < F(z*, y*)
contradiction, because (z*,y*) is an optimal solution of BPP. O

We also have the following result:

Theorem 4.2.2. If assumption 1 and assumption 2 are satisfied, then a Pareto-optimal point
(x*,y*) of problem (BOP) such that (x*,y*) is feasible for BPP is an optimal solution of BPP.

Proof:
Let us suppose that (z*, y*) is not an optimal solution of BPP, then there is (z,y) feasible for
BPP such that F(z,y) < F(z*,y*) (x* ). Since (z*,y*) is a Pareto-optimal of BOP, we have
f(z*,y*) < f(x,y). This implies, due to assumption 2, that F'(z*,y*) < F(x,y); which contradicts
the relation (x * x). O
To our knowledge there do not exist other conditions in the literature that guarantee Pareto-

optimality (with respect to BOP) of the optimal solution of BPP.

4.2.3 A post Pareto-optimality analysis

When the optimal solution of BPP is not Pareto-optimal with respect to BOP, it might be inter-
esting to develop a post analysis approach that could permit to generate a Pareto-optimal point
that improves both objective functions of the two DM. We present here an approach developed
for the linear case that is a minor variant of the one developed in [Wen and Hsu 1991]. Consider
the linear case (BLPP) defined as follows:

MiNgex = 1o + dyy

minyey f(z,y) = cox + day
where y solves s.t

AllL’ + Bly S 0
If the optimal solution (z*, y*) of BLPP is not Pareto-optimal for the corresponding bicriteria

linear programming problem (BOLP), we would like to develop a strategy that would permit to
find a Pareto-optimal point better (with respect to the two DM) than (z*,y*). Let us introduce

the following two results.

Lemma 4.2.1. IfQ(the feasible set) is a compact and convez set, then the optimal solution (xz*, y*)
of BLPP is Pareto-optimal if and only if intQ) = ().
where ' = {(z,y) € Q/ F(z,y) < F(z",y") and f(z,y) < f(z*,y")}
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The proof is very natural, because, if int€) # () then 3(z,y) € € such that
F(z,y) < F(z*,y*) and f(z,y) < f(z*,y*), which implies that (z*,y*) is not Pareto-optimal.

Lemma 4.2.2. An efficient point to min, ,(F, f) over S is also efficient to min, ,(F, f) over €.

Proof:
Let (a,b) € Q' be an efficient point to min,,(F, f) over € and suppose that (a,b) is not an
efficient point to min, ,(F, f) over Q. Then there exists a point (2/,y") € Q such that F(z/,y') <
F(a,b) and f(«',y) < f(a,b) (i) at least one inequality. Since (a,b) € €, we have then
F(2',y) < F(z*,y*) and f(2',y") < f(z*,y*) (i9). By the definition of ' it follows from (i7) that
(', y") € . From (i), it follows that the element (z’,y") of Q' dominates (a,b). This contradicts
the fact that (a,b) is an efficient point to min, ,(F, f) over Q' . O

Let us suppose that after having found that the optimal solution of BLPP is not Pareto-
optimal, the two DM decide to make an agreement to adjust their decision policies by replacing
the constraint set 2 by ' and preserving the hierarchical characteristics. The problem to solve
will be then the following bilevel linear programming problem (BLPP’):

MiNzex = X + diy

mingey f(z,y) = cox + day
where y solves s.t

(x,y) €
Where ¥ = {(z,y) € Q/; /F(z,y) < F(z*,y*) and f(x,y) < f(z*,y")}

The following result holds.

Theorem 4.2.3. The optimal solution, (zy¢,yy), of minimizing f over Q' is an optimal solution

of BLPP'.

Proof:
Let (xf,ys) be the optimal solution of minimizing f over €’ (i). Let us suppose that (zy,yy) is not
an optimal solution of BLPP' (ii). Then (i) implies that (xf,yy) is a feasible point to BLPP’. (ii)
implies that, there is another feasible point (a,b) of BLPP’ which give better value to the leader
than (xf,ys). This implies that F'(a,b) < F(zy,yr). Then (a,b) is a feasible point of BLPP. This
contradicts the fact that (z*,y*) is the optimal solution of BLPP, since F'(a,b) < F(zy,yr) <
F(x*,y*). It follows that (zf,ys) is an optimal solution to BLPP’. O

The following result can be naturally deducted.

Lemma 4.2.3. The optimal solution (x¢,ys) of BLPP' (the one which is the optimal solution of
minimizing f over '), is a Pareto-optimal solution of min, ,(F, f) over §) .
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Remark 4.2.1. The preceding results suggest that after solving the linear bilevel programming
problem (BLPP), and after the non Pareto-optimality of the optimal solution identified, it suffices
(the simple way) to retain the optimal solution of minimizing f over ) as an efficient solution
of BLPP. In the case of uniqueness of the optimal solution and from the definition of ', this
solution will be always better than the optimal optimal solution, of BLPP. In fact: If the the
optimal solution of minimizing f over €' is unique, one has

F(xy,yp) < F(2*,y*) and f(xf,yr) < f(2*,y") = F(op,yp) + f(zp,yp) < F2*, %) + f(2*, y7)
Else, one has

F($f,yf) < F(Jf*,y*) and f(xfayf) < f(x*ay*> — F(vayf> + f(xfayf> < F(a:*,y*) + f(a:*,y*)

4.3 A generalization of the Fulop approach

In|Fulop 1993|, the author shows that, there exist an equivalence between linear bilevel program-
ming and linear optimization over the efficient set. We show in this section that, under certain
conditions, the same relation remains valid for some particulars non linear problems. The following

class of BPP (call BPP’) is considered:

min {F(z,y)/ G(z) <0andy € R(z) }

zeX

where

R(z) = Argming,ey {cty/ g(x,y) <0 }

with ¢ € R™, g = (¢1,92,...,9,) and g; : R™* — R are continuous functions. Let K =
R\ {0}. Define a function T by: T(z) = Cz Vz € Q with

where e is a vector having each entry equals to 1, I is an n, by n, identity matrix.
Let us denote Y = T(€2). We suppose that, for any fixed element z € X, the set {(z,y) €
Q/ g(x,y) <0} is bounded. We have the following result.

Theorem 4.3.1. z € Q is feasible for BPP' if and only if T(z) € ND(Y, 3k)

~J

Proof:
— Suppose that z = (zg, yo) is feasible for BPP’ but that 7'(z) is not in ND(Y, Zk). Then there
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must be a point z; € Q such that T(z;) Zx T(z), which means that: T(z) — T(z;) € K, this
implies that C'z — Cz; € K. From the definition of K, we have then Cz — Cz; > 0 and Cz # Cz;.
which is equivalent to: C'z; < Cz and Cz # C'z;. Using the structure of the matrix C' and the fact

that z = (zo,v0) and 2z; = (x,y), we obtain:

0 c cy 0 ¢ Yo
x To

1o (): B P ( >:
Y Y

et 0 el et 0 ’ e'xg

and then

cy CYo

—r | # —Zo

etx etz

This implies that: x —zy > 0 and e'(z —zy) < 0 which means that z = zy and also that e’z = e'xy.
Since C'z # C'zy, it follows that cy < cyo, contradicting the fact that yo € R(x).

<= We suppose that there is a point z = (zo, yo) € Q with T'(2) € ND(Y, Zk) that is not feasible
for BPP. Then, the fact that z = (2o, yo) is not feasible for BPP’ implies that y, does not solve
miny {cy/ g(xo,y) < 0 }. Thus, there exists § # yo (using the assumptions that the admissible set
of the follower is bounded and that g is a continuous function) such that:

(1) ¥y # yo (i1) g(zo,y) <0 (idi) cy < cyo and (iv) cy < cy Yy / g(xo,y) < 0 We can then say
that z* = (0, y) is feasible for the BPP’. Let us remark that:

0 ¢ cy 0 ¢ cYo
N Zo Lo
Cz* = -7 0 ( ) =1 —x and Cz = -7 0 ( ) = | —x
Yo
et 0 etz et 0 e'wg

Since, from (iv), one has cy < cyo,

(3] me(5) o)

So T(xo ,Y) Sk T(xo, yo), which contradicts the fact T'(xq,yo) € ND(Y, Jk). O
The following result which gives a way to find the optimal solution of a bilevel programming
problem is a corollary of Theorem 4.3.1.

Corollary 4.3.1. Solving the bilevel programming problem BPP’ is equivalent to minimizing the
upper level objective function F(x,y) over the Pareto-optimal set corresponding to the non domi-

nated set ND(Y, Zk).

Calice Olivier PIEUME /Ph.D thesis



Multicriteria optimization concepts in bilevel optimization 78

4.4 A multicriteria approach for bilevel optimization

4.4.1 New relation between unconstrained bilevel optimization and mul-
ticriteria optimization

We suppose here that our goal is to solve the following bilevel programming problem (that will be
called BPP):

mingepns  { F(z,9) }
5.t mingegry  { f(z,y) }

In |Fliege and L.N.Vicente 2006|, the authors define an order that captures exactly the optimal-
ity properties of the bilevel problem, in such a way that all solutions to the BPP are non-dominated
with respect to the order introduced. In order to achieve this goal, the following order relation is

first introduced:

(x1 =z and f(z1) < f(22))
21 = (iﬁbyl) =z = ($2,y2) — or
(IVyf(z1)[| = 0 and F(z1) < F(22))

And the following result is derived.

Lemma 4.4.1. If z = (a,b) € R"™™ is non-dominated with respect to <, then z solves the bilevel
problem (BPP).

In order to compute the set of non-dominated points,the following function and notations are
introduced.

Let H be the function

H:7Z=(z,y) — (x,F(z,y), f(2,9), [V, f(z,9)])
Let M be the image space of H, and define on M the cone K by:
K ={(z,a,8,7) € M/ (x =0and > 0)or (> 0and vy >0) } (a)

Then the following result is a scheme to compute the set of non-dominated points with respect to

=.

Lemma 4.4.2. If H(z) is non-dominated with respect to Zg for some z € R™ x R™ then z is
non-dominated with respect to <.
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Proof:
If H(z) is non-dominated with respect to =i for some z = (21, z3) € R™ x R™, then there is
no w = (a,b) € R™ x R™ such that H(w) dominates H(z). It means that, there is no w such
that H(w) Sk H(z), which is equivalent to say that, there is no w such that H(z)—H(w) € K (i).

(e =amd f(z) < f(w))
(1) <= Pw = (a,b)/ or
([Vyfw)ll < IV, f(2)[] and F(w) < F(2))
This in turn implies that ||V, f(2)|| = 0 because otherwise, there is a point w* = (ax, bx) such

that ax = z; and f(w#) < f(2). Contradicting what we have just stated above. Thus,

(21 =aand f(2) < f(w))
Pw = (a,b)/ or
(IVyf(w)|l = 0 and F(w) < F(z))

which proves that z is non-dominated with respect to <. O

The following corollary is a simple consequence of the preceding two lemmas.

Corollary 4.4.1. If H(z) € ND(M,Zk) for some z = (x,y) € R™ ™™ then z is an optimal
solution of BPP.

Remark 4.4.1. Note that the same result was developed for constraint case, the difference was just
that M was different. As this corollary states, in order to solve the problem BPP, one can find
an element of the set ND(M, Sk) and the corresponding Pareto-optimal point will then be an
optimal solution to the BPP. But, the main difficulty of this result is effectively to find the set (or
an element of) ND(M, Zk). In fact, K is not convex, and most results developed in the literature
for finding efficient points suppose that the cone used must be convex.

We now present how to construct a more practical relation. It can be seen as an improvement

of the preceding results.

Note that K can be written as the union of two convex cones:

Ky ={(z,y,2,t) e R"/ (x =0and 2 > 0) } (b)

K:K1UK2 where
Ky ={(z,y,2,t) e R"/ (y>0and t >0) } (¢

We exploit this representation and introduce the following definition.

Definition 4.4.1. Consider the binary relations Sk, and Zg, defined on M. We can consider
their union to be a binary relation defined on M by:

T r_jKl U sz Y <~ (JI f_\<./K1 y) or (LL’ r_sz y)
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Theorem 4.4.1. ND(M, 2k, UZk,) = ND(M, Zk,) N ND(M, Zk,)

Proof:

First, assume y € ND(M,Zk, U Zk,), but y ¢ ND(M,Zk,) N ND(M, Zk,). There are
two possibilities. Case 1: y ¢ ND(M,Zk,) and y € ND(M, ZSk,). Then there is y' € M such
that v/ Sk, y. Therefore vy =Sk, U Zk, v, this implies y ¢ ND(M, Sk, U Zk,), contradicting
the assumption. Hence y € ND(M, Zk,) and then y € ND(M, Zk,) N ND(M, Zk,). Case 2:
y € ND(M,Zg,) and y ¢ ND(M,Zk,). A similar proof leads to the same conclusion. So,
ND(M, <, U =g,) C ND(M, <x,) N ND(M, =x,).

Second, assume y € ND(M, Zx,) N ND(M, Zk,) and y ¢ ND(M, Sk, U Zk,)- Then there
is ¥y € M such that ¥ Sk, U 2k, vy, this means that ¢ Zg, vy or v Zk, y. If ¥ Sk, v, then

y ¢ ND(M,Zk,), which implies that y ¢ ND(M, Sk, )NND(M, 3k, ), contradicting the assump-
tion. If v Zk, y, then y ¢ ND(M, Zg,), which implies that y ¢ ND(M, Zk,) N ND(M, Zk,),
contradicting the assumption. So, ND(M, 2k, ) " ND(M, Zk,) € ND(M, 2k, U Zk,)- O

Theorem 4.4.2. The binary relations Zx and Zg, U Zk, are equivalent (on M) i.e :
Ve,ye M 2 Sk y<= 2 Zk, UK, ¥
Proof:

Ve,ye Mz Sy <— y—r €K
<— y—rzeKiory—ze kK,
— T3k, YOrT K, Y
— xr—éKlqu2y
O

We can then deduct the following two corollaries which are the fundamental results of this

section:

Corollary 4.4.2. ND(M,Zk)=ND(M,Zk,) "N ND(M, Zk,)

Proof: It follows immediately from theorem 4.4.1 and theorem 4.4.2 O

Corollary 4.4.3. If H(z) € ND(M,Zk,) N ND(M, Zk,) for some z = (x,y) € R™*"  then z
18 an optimal solution of BPP.

Proof: It follows immediately from corollary 4.4.1 and corollary 4.4.2 O
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4.4.2 Practical implementation

The corollary 4.4.3 gives a simple way for solving BPP using multicriteria optimization tech-
niques. In order to solve the BPP, one has to solve two multicriteria problems, for any point
belonging to the intersection of the two non-dominated sets, the corresponding Pareto-optimal
solution is an optimal solution to the bilevel programming problem BPP. The advantage of this
approach is that K; and K, are convex sets, so results of corollary 2.1 can be easily used for
finding the set ND(M, Zk,) and ND(M, Zk,).

Let us remark that, if the set ND(M, Zk) is empty, it does not mean that the bilevel problem
(BPP) does not have a solution, but it means that the relationship given by corollary 4.4.3 is not
applicable to solve BPP. So the corollary 4.4.3 is applicable if and only if ND(M, 3k) # (. We
present below three conditions for which the relation given by corollary 4.4.3 cannot be applied for
solving BPP (ND(M, Zk) = 0). But we will first present some results necessary for establishing

these conditions.

Proposition 4.4.1. Let C C R% a cone, and Y C R%L a set.
(i1) If C' is convex, then ND(Y, 2¢) C ND(Y +C, Z¢);
(i) If 0 € C, then ND(Y + C, Z¢) C ND(Y, Z¢)-

Proof:
(i) Assume y € ND(Y, Z¢) but y ¢ ND(Y + C, Z¢). Then there exists a y € Y + C such
that y' <¢ v, which is equivalent to say that: 3y € Y 4+C /¢y —y e C.y €Y +C & ' €

Y and d' € C such that y =y +d", letd =y—y , theny =3y +d =y ' +d +d". Let d=d +d’,
since d', d € C and C is a convex cone, then d € C. Therefore, y =3y  +d =y —y € C, which
is equivalent to y" =<¢ y. This implies that y ¢ ND(Y, Z¢), contradicting the assumption. Hence
ND(Y, Z¢) S ND(Y +C, Z¢).
(ii) Assume y € ND(Y + C, NC) but y ¢ ND(Y, Z¢), there are two possibilities:

Case 1: If y ¢ Y, there exist y € Y and d € C such that y = y" + d, which implies that
y—vy €C (x).Sincey =y +0€Y +C, (x) implies that y ¢ ND(Y + C, =Z¢), contradiction.
Case 2: If y € Y, then there is ¥y € Y such that y' =<¢ y. This implies that y —y € C. Let
d=y—y, wehave d € C, therefore y =y +d € Y +C and y ¢ ND(Y + C, Z¢). Again
contradicting the assumption. In either case, y € ND(Y, Z¢). O

Proposition 4.4.2. Let C C R% a cone, and Y C R a set, then: ND(Y, Z¢) C bd(Y) where
bd(Y') denotes the boundary of Y.

Proof:
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Let y € ND(Y, Z¢) and suppose y ¢ bd(Y), therefore y € int(Y)(where int(M) is the
interior of Y). Then, there exists an ¢ — neighbourhood B(y,€) of y such that B(y,e) C Y.
But B(y,€) = y + B(0, ¢)(where B(0,¢€) is an open ball with radius centered at the origin). Let
d € B(0,¢), one can choose some A > 0 such that —Ad € B(0,¢€), this implies that y — A\d € Y’
, and there is t € Y such that y — Ad = t. This implies that y — ¢t = Ad. Since C' is a cone,
Ad € C, we have then y —t € C, which is equivalent to t Z¢ y. This implies that y ¢ ND(Y, Z¢).

Contradicting the assumption. O

Theorem 4.4.3. Consider M, K, Ky, Ky as defined in (a), (b) and (c) in the preceding pages .

(i) An approach for solving the bilevel programming problem (BPP) based on Corollary 4.4.3
is not applicable if M is closed-open (a set that is at the same time closed and open).

(i1) An approach for solving the bilevel programming problem (BPP) based on Corollary 4.4.3
1s not applicable if M + K is closed-open.

(iii) An approach for solving the bilevel programming problem (BPP) based on Corollary 4.4.3
18 not applicable if M + Ky 1s closed-open.

Proof:

(i) If M is closed-open, then bd(M) = (). From proposition 4.4.2, one has ND(M, Zf) C bd(M).
This implies that ND(M, Sk) = 0.

(i) If M + K is closed-open, then bd(M + K;) = (). From proposition 4.4.2,
ND(M + K, 3k,) = 0 (1) . Since K; is convex, then from proposition 4.4.1, we have :
ND(M, Zk,) € ND(M + K;, Zk,)- The relation (1) permits to deduct that ND(M, Zg,) = 0.
From Corollary 4.4.2, one has:
ND(M,=Zx) = ND(M, <x,) N ND(M, <x,) =00 ND(M, <x,) =0.
Hence ND(M, Zk) = 0.

(iii) Since Kj is also convex as K7, the proof of (iii) is similar to the one of (ii).

4.5 Conclusion

This chapter has presented a necessary and sufficient condition for the optimal solution of a bilevel
programming problem to be Pareto-optimal. A strategy to find a Pareto-optimal solution better
than the bilevel optimal solution was also developed. It has been shown that, in order to solve
a particular class of bilevel programming problems, it suffices to solve two artificial multicriteria
problems. Then for any point belonging to the intersection of the two non-dominated sets, the
corresponding Pareto-optimal solution is an optimal solution to the bilevel programming problem.
We have derived three necessary conditions by which the relation obtained is not applicable for

solving bilevel programming problems.
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CHAPTER FIVE

MULTICRITERIA OPTIMIZATION MODELING IN
BILEVEL OPTIMIZATION: THE BILEVEL
MULTIOBJECTIVE OPTIMIZATION

5.1 Introduction

Standard bilevel programming problems where each DM has only one objective function have
been extensively studied in the literature. However, despite their multiple applications, the special
case of bilevel programming problems where each DM has more than one objective function
has not yet received a broad attention in the literature. We have found only some few articles
related to this class of problems in [Yaman and Chin-Hui 2008, Tuy et al. 1993, Shi and Xia
1997, Shimizu et al. 1997, Omar and Blair 1990, Kalyanmoy and Ankur 2008|. This situation
is possibly due to the difficulty of searching and defining optimal solutions. Contrary to the
standard two levels programming problems, where it is usually assumed that the set of rational
responses of the follower is a singleton, in the bilevel multi-objective problem, the lower level
optimization problem has a number of trade-off optimal solutions and the task of the upper
level is to focus its search on multiple trade-off solutions, which are members of optimal trade-
off solutions of lower level optimization problem. Bilevel Multi-objective Programming Problem
is therefore computationally more complex than the conventional Multi-Objective Programming
Problem or a Bilevel Programming Problem. The investigation of the present chapter is on Bilevel
Multi-objective Programming Problem (BMPP).

The chapter is organized as follows: In the next section, we present the optimistic formulation of
BMPP. Some concepts and notations are recalled. Section 5.3 presents an approach for generating
efficient points when dealing with BMPP. We show how to construct two artificial multi-objective
programming problems such that any point that is efficient for both problems is also efficient for the
corresponding BM PP. Based on this result, a general algorithm for generating efficient solutions
of BM PP is provided. In section 5.4, the particular case of linear multi-objective programming
problem (LM PP) is addressed. The optimistic formulation of BM PP is considered. We introduce

an artificial LM PP such that its resolution permits to generate the whole set of admissible points
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of the upper level decision of the BMPP. Based on this result and depending on whether the
leader can evaluate or not his preferences for his different objective functions, two approaches for

obtaining Pareto-optimal solutions can be used.

5.2 Formulation of bilevel multiobjective optimization prob-

lems

Let us recall that standard Bilevel Programming Problems (BPP) are generally formulated as

follows:
wy Fey)
([ G(z,y) <0
subject to mingey f(z,y) (BPP)
y solves s.t
\ g9(z,y) <0

with X C R™ and Y C R™2.

If F and f are vector value functions ( F' : R™ x R" — R™ and f : R™ x R" — R™2),
then one speaks of bilevel multiobjective programming problems (BM P P). The formulation of a
BMPP can be given as follows:

Imrél)r(l F(x,y) == (F1(£13,y),F2($7y)7 ...,le(x,y))

G(z) <0

subject to mingey f(z,y) = (fi(z,y), fa(x,y), ., fma(2,Y)) (BMPP)
y solves
st g(w,y) <0

Let us denote by R(z), the set of rational responses of the follower for each decision z of the
leader, then it is defined as the set of Pareto-optimal points of the following problem:
IyIél}I/l f(xv y) = (fl(x7 y)> fQ(xa y)v L) fmz(za y))

st g(r,y) <0
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With this notation, one has the following formulation of BM P P:

min F(x,y) = (Fi(z,y), Fa(x,y), ..., Fpny (2,9))

zeX

G(z) <0

y € R(z)

Let us denote by € the feasible space of BM PP defined by:

subject to {

Q={(r,y) e X xY /G(x) <0and y € R(x) }
The optimistic formulation of BM PP is given by:
min F(z,y) = (Fi(z,9), F2(2,4); - Fm (2, 9))
st (x,y) € Q (BMPP’)

Consider the following definition.

Definition 5.2.1.
(z*,y*) is an efficient solution of BM PP’ if and only if (2*,y*) € Q and A(z,y) € Q such that
(Fi(z,y), Fa(z,y), s Fony (2,9) < (Fi(2%,y7), Fa(2%,47), o iy (27, 7)) and
(Fy(z,y), Fa(x,y), ..., By (2,y) # (Fy(z*,y7), Fa(a®, y%), ..., Foy (2%, 7).

Next sections are devoted to the development of approaches for finding efficient solutions of
BMPP’. Throughout the rest of the chapter, the following notations are considered:
Ky =R\ {0}, Ko = R12\{0,,}, X =RY, Y =R®, Z = { (z,) € R} x RY / G(a) <
0 and g(z,y) <0} and S denotes the whole set of efficient solutions of BAM PP'.
We intensively use the notation E(f, X, Zk) as stated in chapter 2, to represent the set of
efficient (Pareto-optimal) points of a multi-objective optimization problem defined by a vector

valued function f on an admissible set X with respect to a cone K.

5.3 Generating efficient solutions of BMPP’

5.3.1 Characterizations of efficient solutions

Let us consider the following multi-objective programming problem, constructed from the data of
BMPP'

121’1;1 f(x,y) = (fl(xyy)>f2(xvy)v '-'>fm2($7y)7x)
st (x,y) ez (MPP2)

Let K3 =R} \ {0,,,} X {0,,} and 2 as defined above. The following theorem provides a way to
capture the feasible set of BMPP'.
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Theorem 5.3.1. Q) = E(]?, Z, 3Ks)

Proof: This theorem is just a slight modified version of Theorem 4.1 given in |Eichfelder
2008]. O
Solving BM PP’ is then equivalent to solving the problem:

mingex F(z,y) = (Fi(z,y), Fa(2,y), .., Fony (2, 9))
st (z,y) € B(f, Z, Zx,)

This leads to the following corollary:

Corollary 5.3.1. S = E(F, E(f, Z, Zx,), Zx,)-

(5.3.1)

Finding E(f Z, Zk,) is not an easy task because it is difficult to generate the whole efficient
set E(f, , ZK,) since it can be infinite and methods found in the literature are usually for cones
defined in the form R} \ {0,}, n € N.

Let Ky = R7*™ \ {0,540, }- The following result holds.

Theorem 5.3.2. E(f, Z, 2x,) C E(f, Z, Zx,)

Proof:

Let (z,y) € E(f, , Sk,) then there does not exist (z/,y") € Z such that ]7(33’, Y) —f(a:,y) €
RTZ™ N\ {Oppin, b (x%). Since RT? \ {0} x {0,,} € RT*™™ N\ {0pyiny ), (¥%) = There
does not exist (2/,y') € Z such that f(2/,y') — f(z,y) € R72 \ {0, } % {0,,}. Consequently,
(z,y) € E(f, Z, =k,). Therefore, one can conclude that E(f, Z, Zx,) C E(f, Z, Zx,). O

Theorem 5.3.2 suggests to capture a subset of S by solving the following problem:

mingex F(z,y) = (F1(z,y), Fa(z,y), ..., o, (2,9)) (BMPP”)
st (z,y) € E(f, Z, <k,)

This formulation and Corollary 5.3.1 lead obviously to the following result:
Corollary 5.3.2. E(F E(f> ) NK4)7 NK1) - S.

Even if the cone used in corollary 5.3.2 has the desired representation ( R} \ {0,} n € N),
optimizing multi-objective functions over an efficient set might not be an easy task. We introduce a
new problem such that its resolution is easier and permits to capture a subset of efficient, solutions
of BMPP".

Let us consider the following multi-objective programming problem:

min F($,y) = (F1($,y),F2(ZE,y), "'>Fm1(x7y))

wiy

st (x,y) ez (MPP1)
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Theorem 5.3.3. E(.f) Z: §K4)QE(F7 Z) jKl) - E(F7 E(J?; Z7 jKﬁl)? jlﬁ)

Proof:

Let (z,y) € E(f, Z, Zx,) N EF, Z, =k, then (z,y) € E(f, Z, =Zk,) and (z,y) €
E(F, Z, Zk,). Let us suppose that (z,y) ¢ E(F, E(f, Z, 2x,), =x,). Then there exists (z/,y’)
that dominates (z,y) with respect to the problem M PP1 and the cone K, which means that
F(z',y') 2k, F(z,y). This implies that: 3(2',v) € E(f, Z, =x,) such that F(z',y) < F(z,y)
and F(2',y) # F(z,y). Since E(f, Z, Z3x,) C Z, Ia',y/) € Z such that F(«/,y/) < F(z,y)
and F(2',y) # F(z,y). Consequently (x,y) ¢ E(F, Z, Zk,). This contradicts the fact that

(xay) € E(}v‘? 7 NK4) N E(F Z NKl) 0.

The following result is deduced from Theorem 5.3.3 and Corollary 5.3.2:

Corollary 5.3.3. E(f, Z, Zx,) NE(F, Z, Zx,) C S.

Corollary 5.3.3 stipulates that, in order to find an efficient point of BM PP’, one can solve the
problem M PP1 (with respect to Zg,) and the problem M P P2 (with respect to Zg,). Then, any
point belonging to the intersection of the efficient solution set of M PP1 and the efficient solution
set of M PP2 can be retained as efficient point of BM PP’.

Corollary 5.3.3 can be use to generate efficient solutions to BM PP’ if and only if E(f, 7, 2k,
)N E(F, Z, Zx,) # 0. A necessary condition is that none of the two sets, E(f, Z, Z,) and
E(F, Z, Zk,) is empty. Theorem 5.3.4 gives sufficient conditions for this.

Theorem 5.3.4. If the following three conditions hold:
(i) Z is nonempty and compact set;
(11) Yi € {1,...,my}, F; is lower semicontinuous ;
(111) V5 € {1, ...,ma}, f; is lower semicontinuous ;

then E(F, Z, 2x,) # 0 and E(f, Z, Zx,) # 0.

Proof:

If (i7) holds, then F' is R} — semicontinuous (i.e. the pre-image of the translated negative
orthant is always closed). Since from (i) Z is nonempty and compact, F'(Z) is R — semicompact
and non-empty. This result and Theorem 2.8 of [Ehrgott 2005] imply that the set of non-dominated
points is non-empty. Thus, the set of Pareto-points is non-empty i.e E(F, Z, Jk,) # (). Similarly,
E(f. Z, Zx,) #0. =

Theorem 5.3.5 gives a sufficient condition for the implementation of an algorithm based on

Corollary 5.3.3.
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Theorem 5.3.5. If the following two conditions hold:
(i) Z C R s a non-empty and compact set.
(11) Jip € {1,...,m1},3jo € {1,...,ma}, Ja > 0 such that

e I, and f;, are lower semicontinuous functions;

o Va,y, fi(x) = fi(y) = 2 =1y;
i Fio = afjo;
Then E(f, Z, 2x,) NE(F, Z, Zx,) # 0.

Proof:
Let us suppose that (i) and (ii) hold. Consider the following optimization problem:

mind{ f;,(z), z € Z} (pbl).

Since f;, is a lower semicontinuous function and Z is a nonempty compact set, pbl has at least one
optimal solution, let zg be such a solution (in fact z is unique). We claim that 2z, € E(f, 7, 2k,
) E(F, 7, Z).

(a) Let us first show that zy € E(f, Z, =Zx,). Suppose that zy ¢ E(f, Z, =x,), then there
exists 2/ € Z, 2/ # z such that f(2/) < f(zo) and f(2') # f(zo). This implies that fio(2") < fio(20)-
Due to the fact that 2y is an optimal solution of pbl, one has f; (') = f;,(20)- The second condition
of hypothesis (i) implies that z’ = zy. This is a contradiction. Consequently z, € E(f, 7, ZK,)-

(b) Since F;, = afj, and a > 0, 2 is also an optimal solution of min{F; (z), z € Z}. With
a similar proof as in (a), one obtains that zyp € E(F, Z, Zk,). Combining (a) and (b) leads to
2w € E(f, Z, 2x,) NE(F, Z, 23x,), and hence E(f, Z, Zx,) NE(F, Z, 2x,) # 0 O

If conditions (i) and (ii) of Theorem 5.3.5 are fulfilled, then one can think of implementing an
algorithm to generate efficient points of BM PP’ based on Corollary 5.3.3. At least two ideas can
be used.

The first idea could be to generate the whole set of efficient points of M PP1 and then iterate
on this set in order to retain points that are also Pareto-optimal for the second problem M P P2.
But it would be a difficult task to generate the whole efficient set of M PP1 [Gal 1977, Iserman
1977, Pieume et al. 2008b, Saaty 2005.

The second idea could be to progressively generate efficient points for M PP1 and simulta-
neously test their efficiency for M P P2 before moving to another efficient point of M PP1. This
seems to be more practical. An approach for generating efficient solutions for linear bilevel multi-

objective programming problems based on this idea is presented in Algorithm 5.1.
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5.3.2 Generating efficient solutions for bilevel linear multi-objective
programming problems

5.3.2.1 Problem and implementation

We consider the optimistic formulation (BLM PP") of the following problem:

min F(z,y) = (Ci(z,y), Ca(x,y), ..., Coy (2, y))

ny
acE]RJr

Al.fL' S bl

subject to

y solves minyeRP f(x,y) = (c1(z,y), ca(@, ), oy Cmy (2, 9))
- st Asw + Agy < by

(BLMPP)
The two linear multi-objective programming problems to be used are:

quyn F(I', y) - (Ol(xa y)a OQ(I) y>7 s Oml (l’, y))
All' S bl
x>0,y >0

and

Igiyn fN(wa y) = (Cl(x7 y)> CZ(xa y)a o0y Cmy (ZL', y>7 l’)
All’ S b1

5.t Aoz + Ay < by (LMPP2)
r=>0,y=0

Given z € R and y € R’? |, we introduce the vector z € R whose first n; components

are oy, To, ..., Ty, and last my components are yq, Yo, ..., Yn,-

We call C' (resp ¢) the matrix such that F(z) = (Cyz,Caz,...,Cz) = Cz (resp f(z) =
(c12,¢92, ..., Cmy2) = cz). In order to be more concise, the notations and results that follow now
are with respect to LM PP1, but all are also valid for LM P P2.

The data of LM PP1 can be represented by the following tableau:

2N B
0 A b
(T): |d| C 0 Where A = ! and b = !
Ay As by

b| A I
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The algorithm starts with an initial efficient extreme point and iterates through different effi-
cient extreme points of LM PP1. At each iteration, for every unexplored efficient extreme point z
of LM PP1, the efficiency with respect to LM PP2 is tested. Points that are Pareto-optimal for
both problems are retained. The entire scheme is repeated, until all the efficient extreme solutions
of LM PP1 are tested. Since efficient extreme points form a connected graph and LM PP1 has

a finite number of extreme efficient points, the algorithm will terminate in a finite number of steps.

At each iteration of the algorithm, the current efficient (extreme) point z* is always associated
with a tableau T' (as presented above). NT denotes the nonbasic set of the current efficient point
z* associated with the tableau T'. S; represents the set of Pareto-optimal points of the problem
LM PP1 whose efficiency with respect to LM P P2 must be tested. S5 represents the set of points
found to be Pareto-optimal to both problems.

The result below [Ecker and Kouada 1978, Ecker et al. 1980] is the scheme used to check if an
admissible point is a Pareto-optimal solution.

Lemma 5.3.1. A point 2° in Z is Pareto-optimal for problem LM PP1 if and only if the solution
(Z,35) of the following linear program yields to a mazimum value zero:

max €t8
z€Z,5>0

s—t Cz+4+1s=Cz
If the maximum value is not zero, then z is Pareto-optimal (with respect to LM PP1).

The following result of [Ecker et al. 1980] can be used to determine incident efficient edges.

Lemma 5.3.2. The edge incident to the current efficient extreme point obtained by increasing the
. . N . . . .
nonbasic variable z;* is efficient if an only if the system

—Cv +w™ = C'e has a solution (v, w™) > 0 with wév >0 (5.3.2)

provided the pivot in the ZJN column has a pivot row (say row i) with b; > 0. If b; =0 and a;; < 0
for some j, then the edge obtained by pivoting using the minimum ratio rule is efficient iof and only

if (5.3.2) holds.

Based on this lemma, [Ecker and Song 1994| showed that one can implement this test for each

edge by solving the following linear program:

N

max 'lUj

s.t
—Ctv + TwN = Cte

v, wh >0

(5.3.3)
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If the optimal value is zero, then the corresponding edge is efficient.
The following algorithm (Algorithm 5.1) exploits lemma 5.3.1, lemma 5.3.2 and formulation 5.3.3
to find efficient solutions to BLM PP’.

Algorithm 5. 1
1: Read data of problem BLM PP. Construct problems LMPP1, LMPP2 and let S; := 0,

Sy = (.

2: Find an arbitrary admissible element 2z, € Z .

3: Construct and solve the following problem (in order to find an initial efficient point to
LMPP1)

max e’s

s.t

Cz+1s=Cx (Test0)
ze€Z

s>0

Let (Z,5) the optimal solution of Test0.
If the optimum value of (Test0) is 0, then zj is efficient, Sy := {20}.
Otherwise, 7 is efficient, S; := {Z}.
4: It Sy = (), stop. Otherwise, take an element 2* from Sy, S := 57\ {2*}.
5: Test if z* is efficient for LM P P2 by solving the following problem:

max e's

s.t

cz+1s=cz" (Test1)
ze€Z

s>0

Let (z,5) = (7,7, 5) the optimal solution of Test1 .
If the optimal value of (T'est1) is 0 then z* is efficient to LM P P2 and hence is a solution of
BLMPP': Sy := Sy U {z*}.

6: Find efficient edges (with respect to LM PP1) incident to z*, by solving for each j € NT
the problem (5.3.3).
Let JT C NT the set of j such that the optimal value of PB; is zero. (Let us recall that the
edge obtained by increasing the nonbasic variable ZJN in T is efficient if and only if j € JT.)

7: For each j € JT', generate efficient points incident to z* by making a pivot operation on the

column j + 1 of tableau T'. Let ST the set of efficient points incident to the current efficient
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point z* that have not yet been tested.
S1=5UST.
go to step 4

Remark 5.3.1. This algorithm is an implementation for linear problems of the second idea for
generating efficient points discussed at the end of section 5.3.1. Algorithm 5.1 is applicable if
conditions of Theorem 5.3.5 are fulfilled. The algorithm is certain to generate at least one efficient
point for BLM PP’, but cannot assure the generation of all the desired efficient points.

5.3.2.2 Illustration of Algorithm 5.1

Let us consider the problem of finding efficient solutions to the optimistic formulation (BLM PP’)
of the following problem:

min {—zy + 2x3, x; — T3, —T1 — 2xa}
( T t+w <1

Ty < 2

120, 1920

(BLMPP)
subject to <

min {—%xl + Z3, 21’1 + 29 + 2.733}
3 solves Ty —To+ a3 <4

x320

\

At Step 1: The following two problems are constructed:

min {—z — 2xe, —x1 + 223, 1 — X3}
(

T+ a9 <1

. T <2 (LMPPI)
subject to
T — 2o+ a3 <4

x1207 1'2207 x320

and

min {—3x; + @3, 221 + 22 + 223, 1, T2}
4
Ty + X9 S 1

. g <2 (LMPP2)
subject to
T — 29+ a3 <4

fﬂlZO, $2207 fL'gZO
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At step 2: We start with zo = (0,0,0) € Z
At step 3: The following problem is constructed in order to find an initial efficient extreme

point (with respect to LM PP1):

max S; -+ So + S3

( —r1 — 215+ 5, =0
—r1 +2x3+ 5, =0
Ty —23+83=0 (Test0)

subject toq  x; + 19 <1

Ty < 2

T — 2o+ a3 <4

120, 2020, 23>0, 5120, s592>0, s3>0

The optimal simplex tableau of the problem is:

21 0 1 2 0 0 0 0 0
21 0 0 2 0 0 1 0 0
0(-1 06 2 0 0 0 0 1 0
0j1 0 -1 0 0 0 0 0 1
1/1 1.0 1 0 0 0 0 O
1(-1 0 0 -1 1T 0 0 0 O
512 0 1 1 0 1 0 0 O

The solution of the problem is (z,5) = ((0,1,0),(2,0,0)) and the optimal value of the problem
is 2. Since the value is different from 0, zo = (0,0,0) is not an efficient point to LM PP1. We
deduce from this optimal tableau that Z = (0, 1,0) is an efficient extreme point to LM PP1 and

the corresponding efficient tableau is given by 77:

211 0 0 2 0 0
o(-1r 0 2 0 0 0
of1 0 -1 0 0 O
(17)
1171 1 0 1 0 0
1/-1 0 0 -1 1 0O
512 0 1 1 0 1

So Sl = {(0, 1,0)}
At step 4: Since S; # (), we take (0,1,0) and remove it from S;. S; becomes empty.
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At Step 5: We must test if (0, 1,0) is efficient to LM P P2 by solving the following problem:

max S; + So + S3 + S4
( —%$1+I3+81:O
201 + 10+ 223+ 59 =1
r1+53=0
To+ 454 =1 (Test1)
T+ a2 <1
To < 2

subject to <

.1'1—.1'2—|—£B3§4

xlz()? xQZO) I?)ZO) 81207 82207 83207 8420

\

The optimal simplex tableau of Test1 is:

2125 2 3 0 0 0 0 0 0 O
0(-05 0 1 0 0 0 1 0 0 O
11 2 1 2 0 0 0 0 1 0 O
0 1 0O 00 0 0 0 010
110 1 00 0 0 0 0 0 1
210 1 00 1 0 0 0 0 0
4171 -1.1.0 0 1 0 0 0 O

Since the optimal value is 2, so different from zero, zo = (1,0, 1) is not efficient to LM PP2. We
continue to step 6.

At step 6: We use T to find incident edges to zg = (1,0, 1). Here the set of non-basis variables
is given by NT7 = {1,3,4}. We solve for different j in N7} the problem (PB;) as presented in
(5.3.3). For j =1, PBy is:

max ?,Ujv

s—1t
—vl+v2—vg+w{\7:1
—2u; +wd =2

—20y +v3 +wl =1

v, wh >0

The optimal value is 0. Similarly, for j = 3, the optimal value of PBj is 2; for j = 4, the optimal
value of PBy is 0. So JT} = {1,4}. We go to step 7.
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At step 7: Only 7 = 1 leads to a new efficient extreme point. The new efficient point obtained
is (1,0,0) with the corresponding tableau given by (75):

110 -1 0 1 0 0
1 10 1 2 1 0 0
-110 -1 -1 -1 0 O
(13)
1 1 1 0 1 0 0
210 1 0 0O 1 0
310 -2 1 -1 0 1

The set of nonbasic variables is given by NT, = {2,3,4}. One has then ST, = {(1,0,0)} and
hence S; = {(1,0,0)}. We go again to step 4.

At step 4: Since S; # ), we take (1,0,0) and remove it from S;. S; becomes empty. We go
to step 5.

At Step 5: We must test if (1,0,0) is efficient to LM P P2 by solving the following problem:

max S1 + So + S3 + S4

( —311 + 23+ 51 = —3
201 + To 4+ 223+ 59 = 2
r1+s3=1
To + S4 =2 (Test1)
1+ a9 <1
To < 2

subject to <

1’1—1’2+l’3§4

x1207 x2207 x3207 81207 82207 83207 8420

\

The optimal value of Test1 is 0, so (1,0, 0) is efficient to LM P P2 and hence is an efficient solution
to BLMPP": Sy = {(1,0,0)}. We continue to step 6.

At step 6: We find efficient extreme points incident to our current efficient point z* = (1,0, 0),
using 75 and NI by solving for each j in NT5 the problem PB;.

For 7 = 2, one obtains 2 as optimal value of PBs; for j = 3 the optimal value of PBj is 0; for
J =4, the optimal value of PBy is 2. So JT, = {3}. We go to step 7.

At step 7: j = 3 leads to a new efficient extreme point (1,0, 3) with the corresponding tableau
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T3§
110 -1 0 1 0 O
-5|/0 5 0 3 0 -2
210 -3 0 -2 0 1
(T3)
1 ({1 1 0 1 0 O
210 1 0 0 1 0
310 -2 1 -1 0 1

The set of nonbasic variables is given by NT53 = {2,4,6}. One has then ST; = {(1,0,3)} and
hence 57 = {(1,0,3)}. We go again to step 4.

At step 4: Since S; # ), we take (1,0,3) and remove it from S;. S; becomes empty. We go
to step 5.

At step 5: We must test if (1,0, 3) is efficient to LM P P2 by solving the following problem:

max S1 + So + S3 + S4

( —3T + a3+ 8 = 2
201 + 29+ 203+ 59 =8
T +s3=1
To++s54 =0 (Test1)
1+ a9 <1
To < 2

subject to

1’1—1’2+£L’3§4

1'120, x2207 x3207 81207 52207 33207 5420

The optimal value of Testl is 11.5, so (1,0,3) is not efficient for LM PP2 and hence is not a
solution to BLM PP'. We continue to step 6.

At step 6: We find efficient extreme points incident to the current efficient point z* = (1,0, 3)
by solving for each j in NTj the problem (PB;).

For j = 2, the optimal value of the problem PBj; is 2. For j = 4 and j = 6, the optimal values
of the obtained problems are 0 and so JT3 = {4,6}. We go to step 7.

At step 7: One finds that it is only j = 4 that leads to a new efficient extreme point (0,0,4)
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with the corresponding tableau Tj:

0o1l/-1 -2 0 0 0 0
-81-3 2 0 0 0 -2
4 2 -1 0 0 0 1
(T%)
1 1 1 0 1 0 O
2 0 1 0 0 1 O
4 1 -1 1 0 0 1

The set of nonbasic variables is given by NT, = {1,2,6}. Thus STy = {(0,0,4)} and hence
S1={(0,0,4)}. We go again to step 4.
At step 4: Since S; # (), we take (0,0,4) and remove it from Sy (so S; = 0)). We go to step 5.
At step 5: We must test if (0,0,4) is efficient to LM P P2 by solving the following problem:

max Si -+ So + S3 + Sy

—3T a3+ 5 =4

201 + T2 + 2x3 + 59 = 8

1 +s3=0

To+ +54 =0 (Test1)
T+ a2 <1

Ty < 2

subject to

1’1—$2+l’3§4

1'120, x2207 x3207 81207 32207 33207 3420

\

The optimal value of Test1 is 12, so (0,0, 4) is not efficient for LM P P2 and hence is not a solution
to BLM PP'. We continue to step 6.

At step 6: We find efficient extreme points incident to the current efficient point z* = (0,0, 4)
by solving for each j in N7} the problem (PB;).

For all j in NT}, 0 is the optimal value of PB;. So JT, = {1,2,6}. We go to step 7.

At step 7: One finds that only j = 2 leads to a new efficient extreme point (0, 1,5) with the

corresponding tableau Tj:

2 1 0 0 2 0 0

-10(-5 0 0 -2 0 -2

5) 3 0 0 1 0 1
(T5)

1 1 1 0 1 0 0

1 -1 0 0 -1 1 0

5 2 0 1 1 0 1
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The set of nonbasic variables is given by NT; = {1,4,6} . So ST; = {(0,1,5)} and hence S; =
{(0,1,5)}. We go to step 4.
At step 4: Since S; # (), we take (0,1,5) and remove it from S (so S; = 0)). We go to step 5.
At step 5: We test if (0, 1,5) is efficient to LM P P2 by solving the following problem:

max S1 + Sz + S3+ Sa

( —%x1+x3+31:5

201 + 2 + 223 + 59 = 11

1 +s3=0

Ty + 454 =1 (Test1)
T+ a2 <1

Ty < 2

subject to

.1'1—.1'2+£L'3§4

-1'1207 .1'220, x3207 81207 52207 53207 5420

\

The optimal value of Test1is 17. So (0, 1, 5) is not efficient for LM P P2 and hence is not a solution
to BLM PP'. We continue to step 6.

At step 6: We find efficient extreme points incident to the current efficient point z* = (0, 1, 5)
by solving (PB;) for each j in NT5.

For 7 =1, 1.5 is the optimal value of PBy; for j = 4 the optimal value of PB, is 2; for j =6,
the optimal value of PBg is 0. So JT5 = {6}. We go to step 7.

At step 7: j = 6 leads to an efficient extreme point already tested (that is (0,1,0) ). We go
to step 4.

At step 4: S) is empty and the algorithm stops.
Since Sy = {(1,0,0)}, we deduce that (1,0,0) is an efficient solution to BLM PP".
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5.4 Solving bilevel linear multiobjective programming prob-
lems
5.4.1 The problem considered

The focus here is on the linear formulation of BMPP given as follows:

min F(z,y) = (Ci(z,y), Ca(x,y), ..., Coy (2, y))

zeR]!
Ajx < b
subject to iy J(@y) = (g 2y s emay) (BLMPP)
y solves s.t
\ Agz 4+ Ay < by
where C;,i = 1,...m; are n; + ng-dimensional constant row vectors; ¢;,i = 1,...mq are na-

dimensional constant row vectors; b; is a p-dimensional constant column vector and by is a q-
dimensional constant column vector; A;, Ay and Az are respectively p X ni; ¢ X nq and ¢ X no
constant matrices.

Let us denote by R(z), the set of rational responses of the follower for each decision z of the

leader. It is defined as the Pareto-optimal point of the following problem:

min f(x,y) = (19, 2y, -+, CmyY)
yGIR+2

s.t Agy S bg — AQI

With this notation, one has the following formulation of BLMPP:

min F(x,y) = (Ci(x,y), Co(z,y), ..., Crny (2, y))

reX
. Ayr <y
subject to
y € R(z)

Using the following representation for the feasible space of BLMPP:
Q={(r,y) eRY xR/ Ajz <byand y € R(x) }
One obtains the following optimistic formulation of BLMPP:

min F($,y) = (Cl($ay)v 02(377?4)7 X le(flf,y))

:Biy

st (BLMPP’)
(z,y) € Q
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The next section presents a new characterization of the feasible set of BM PP'. Throughout the
rest of this chapter, Z will represent the set defined by: Z = { (x,y) € R}' x R? / Az <
by and Asx + Azy < by }. It will be assumed that Z is a non-empty and bounded set over the
convex polyhedron. As adopted in section 5.3, S will represent the efficient solutions set of the

problem BLM PP’

5.4.2 A characterization of the feasible set of BLMPP’

We introduce a multi-objective programming problem which is such that its efficient solutions set
is equal to the feasible set of BLMPP’. A similar result was already developed in |Eichfelder 2008|,
but with a different multiobjective programming problem. The author considered the following

multi-objective programming problem:

min f(z.y) = (€19, 29, - €z, 7)

s.t (MPP2)
Al.’ﬂ S b1
AQ!E + A3y S bg

x>0,y >0

By letting K7 = R} \ {0,,,} X {0,,} and © as defined in section 5.3, the author showed the

following result:

Lemma 5.4.1. Q = E(f, Z, =x,)

The disadvantage of this result is that it is not easily applicable. In fact, there do not exist
approaches developed in the literature for finding efficient points with respect to the cone K; =
R\ {0, } % {05, }. Methods are usually for cones that have the form R" \ {0,}, n € N. It is
the reason why in |Eichfelder 2008|, the author approximated the efficient set of M PP2 by the
weakly efficient set.

Here, we introduce a new relation that can be applied directly to find an optimal solution. Let

us consider the following linear multi-objective programming problem:
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0 c
x
min H(z,y) = -7 0 < )
T,y y
et 0
s.t (LMPP1)
All' S bl

AQJZ' -+ Agy S bg

x>0,y >0

where ¢ is a my X ny matrix; e is a vector having each entry equal to 1 and [ is the n; x ny identity
matrix. Each ¢; represents the row vector that defines the ith-objective function of the follower.

Let Ky = RTQJF"IH \ {0pysny+1}, then the following result holds.

Theorem 5.4.1. Q= FE(H, Z, Zk,)

Proof:

<= Let us show that F(H, Z, Jk,) C
Let z = (xg, yo) € E(H, Z, Zk,), from the definition of E(H, Z, Zk,), one has Ayxo+ Asyg < by
and Ajxg < by. So, in order to show that z € €, it suffices to show that yy € R(zy). Let us suppose
the contrary. Then there exists § such that: (i) Aszg+ A3y < by and (ii) ¥ dominate yo.
Relation (iz) is equivalent to (17, ¥, .., Cmyy) < (€190, C2Yo, -+, CmyYo) With at least one k €
{1,...,ma} such that c;y < cxyo.

Let us now consider the point z* = (z9,7), we have:

0 c cy 0 ¢ cYo
" Lo To
Hz = I 0 ( B ) = —Zo and Hz = -7 0 ( > = —Zo
Y ¢ Yo t
et 0 e'xg et 0 ey

Due to relation (ii), one has ¢y < cyo and ¢y # cyq, this implies that:

()=o) () e ()

So (o, y) dominates (zg, yo) with respect to the cone K, = RT2+"1+1 \ {0mytny+1}, which
contradicts the fact that (2, yo) is a Pareto-optimal point with respect to the cone Ky = R\
{Omany+1}-

—> Let us now show that Q C E(H, Z, Zk,)

Suppose that there is z = (29, yo, ) € Q such that z ¢ F(H, Z, Zk,). Then there must be a point
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21 = (x1,y1) such that Hz; dominates Hz. This implies that Hz; < Hz and Hz # Hz;. Using

the structure of the matrix H, and the fact that z = (xg, yo) and z; = (z,y), one obtains:

0 c cin 0 ¢ Yo
X1 Zo
-1 0 = -1 < —I 0 = —xp
hn Yo
et 0 el'xq et 0 e’z
and then
CY1 CYo
—I # —Zo
eta; etz

This implies that: x; — z9 > 0 and e'(z; — 29) < 0 which means that z; = zy and also that
elwy = elwy. It follows that cy; < cyo and cy; # cyo. Thus y; dominates yy. Contradicting the fact
that Yo € R([L’(]) (I

From theorem 5.4.1, one can deduce that solving the problem (BLMPP') is equivalent to

solving:

Igjl’iyn F(m,y) - (01($,y),02(957y)> ...,le(x,y))

st (BLMPP”)
(xuy) € E(H7 Zu f—\<JK2>

The theorem 5.4.1 leads to the following corollary.

Corollary 5.4.1. S = BE(F, E(H, Z, Zx,), 3k,) where Ky = RT\ {0,,,} and Ky = R72TMH\

{0m1+m2+1}-

We provide in the next section, some discussions on the use of this last result for solving

BLMPP’.

5.4.3 Two approaches for solving BLMPP’

5.4.3.1 First approach

Suppose that the upper decision maker is fully knowledgeable of all his preferences. One could then
aggregate the leader objective functions using the weights A, A\o...\,,,, that measure his preferences

concerning different objective functions. Solving BLMPP’ will then be equivalent to solving the
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following problem:

mi
min ; Ci(z,y)
st (z,y) € E(H, Z, ZK,)

which is an optimization of a linear function over a Pareto-optimal set. There are several methods
developed in the literature that are devoted to the optimization of a linear function over an efficient
set (see [Ecker and Song 1994| or the survey presented by [Yin 2000]). Any of these approaches
can be applied.

5.4.3.2 Second approach

The second approach carried out in algorithm 5.2 below, could be to generate a representative
subset of E(H, Z, Zk,) using well known schemes in [Hong et al. 2005, Mattson et al. 2004, Shi
and Xia 2001|. Then, compute the image of the obtained subset by the leader objective functions
and select elements that lead to non-dominated points for the leader. Algorithm 5.2 below is an
illustration of this idea.

Algorithm 5. 2
1: Construct the following linear multiobjective programming problem:

x
min H(z,y) = —I 0 ( )
T,y y

e

st (LMPP1)
Ala: < bl
Aoz + Asy < by

x>0,y >0

2: Compute a representative subset (call S) of the efficient set of LM PP1 using for instance,
any of the methods developed in ([Mattson et al. 2004, Messac and Mattson 2002, Saying
1996]).

3: Compute the image set Y of S given by Y = F(S).

4: Find Non-dominated points of Y ( Y.rs) with respect to F'.

5: Find the set Xg of Pareto-optimal points corresponding to Y. f f.

6: Xg is a representative subset of the efficient set of BMLPP’, STOP.
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Remark 5.4.1. The Pareto-filter approach presented in [Mattson et al. 2004] can be used in step
4 and step 5.

5.5 Conclusion

This chapter has presented the optimistic formulation of a bilevel multi-objective programming
problem (BM PP). We derived two multi-objective programming problems such that any point
that is efficient for both problems is an efficient solution of the optimistic formulation of the
considered BM PP. We proposed an approach to generate efficient solutions of the optimistic
formulation of BM PP and applied it to the resolution of the linear case. We also provided a
necessary and sufficient condition under which the proposed algorithm is applicable. In addition,
we proved that the admissible set of a bilevel linear multiobjective programming problem is equal
to the set of efficient points of an artificial linear multiobjective programming problem. Based
on this result, we proposed two approaches for generating efficient solutions when solving the

optimistic formulation of a linear bilevel multiobjective programming problem.
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General conclusion

This thesis investigated on multiobjective optimization and bilevel optimization. The main results
obtained fall into three major parts:

We first developed methods for solving linear bilevel and multiobjective optimization problems
[Pieume et al. 2008a;b|. We presented a new approach for solving Multiobjective Linear Program-
ming Problems. We first developed a new characterization of efficient faces incident to efficient
extreme points and showed how it can be used to construct these efficient faces. Secondly, we pro-
posed a procedure to find all efficient faces incident to an extreme efficient point. Since efficient
extreme points form a connected graph, the main algorithm iterates through these efficient ex-
treme points, and for every unexplored point, computes all the efficient points and all the efficient
extreme points incident to it. We then showed, using the concept of ideal basis (ideal tableau) of
[Armand 1991; 1993| and the concept of A —ef ficient set introduced in the thesis, that the entire
set of efficient points of a multiobjective linear programming problem can be obtained by using
a revised version of efficient face characterization given by [Ecker and Kouada 1978, Ecker et al.
1980].

Still in part one, we developed a method for finding a global solution of some classes of bilevel
linear programming problem (BLPP). The approach is based on the basic idea that extreme
points of the admissible region of BLPP are extreme points for the feasible space of the problem,
and the optimal solution is one of these vertices. We then developed pivot techniques to find
the optimal solution on an expanded tableau (simplex tableau) that represents the data of the
BLPP. Experimental results showed that on all problems considered, our algorithm always finds
the global optimal solution. We applied our algorithm to two problems incorrectly solved in the
literature to find correct solutions.

The second part of our contributions is related to the applications of these two classes of
optimization problems [Pieume and Fotso December 2005, Pieume et al. 22-26 May 2005]. We
showed that, the mathematical formalization of the problem of planning of the distribution of
electrical energy in Cameroon is a multiobjective programming problem. We discussed approaches
for solving the obtained model. The complete procedure of the GAMS model that implements an
aggregate approach was provided. Similarly, with the hypothesis that it is an obligation for a
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State to protect local initiatives, a strategy that leads to the resolution of a bilevel programming
problem was developed and proposed for the protection of national initiatives in the context of
globalization.

The third part of our work dealt with links between bilevel optimization and multiobjective
optimization [Pieume et al. 2009; 2010a;b|. We started by studying the question of the Pareto op-
timality of the optimal solution of a bilevel programming problem. We carried out a post optimal
analysis approach and presented a technique that permits to generate a Pareto optimal solution
better than the optimal solution of a BPP. We introduced a generalization of the Fulop relation
[Fulop 1993| that establishes a link between multiobjective linear programming and bilevel linear
programming. We showed that, under the assumptions that the follower admissible set is bounded
and its constraints functions are continuous, the relation remains valid for some specific non linear
problems. In addition, we showed that, under certain conditions, solving a bilevel linear program-
ming problem is equivalent to solving two artificial linear multiobjective programming problems.
This third part continued with the focus on bilevel multi-objective programming problems (BM P Ps).
Given a BM PP, we showed how to construct two artificial multi-objective programming problems
such that any point that is efficient for both problems is an efficient solution of the BM PP. Some
necessary and sufficient conditions under which the obtained result is applicable were provided.
Concerning the particular case of BLMPP, we introduced an artificial multi-objective linear pro-
gramming problem whose resolution can permit to generate the whole set of feasible points of
the upper level decisions. Based on this result and depending on whether the leader can evaluate
his preferences for his different objective functions or not, two approaches for obtaining Pareto-
optimal solutions were developed. The first approach aggregates the leader objective functions
and suggests the use of a technique of optimization of linear function over an efficient set, in
order to find an optimal solution. The second approach uses a Pareto-filter schemes to find an
approximated discrete representation of the efficient set. The second approach has the advantage
of keeping the multi-criteria concept of the upper DM, while the first one uses an aggregation

process to eliminate the multi-criteria concept for the leader.

Even if all the developments presented here are applicable to small instances of problems, the
work carried out in this thesis and the results obtained so far are a source of encouragement for

further studies, that may include:

- Finding of less restrictive conditions than the ones proposed in theorems 5.3.5;

- Finding of conditions under which the approach developed in section 4.4 for generating bilevel
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optimization optimal solutions based on multiobjective techniques is applicable. In our re-

search, we just proposed conditions under which it is not applicable;

Finding of more conditions that can guarantee that the optimal solution to the bilevel optimiza-

tion problem is Pareto optimal. The ones presented in section 4.2.2 are too restrictive and

seem to be valid only in the optimistic case;

The search of what the new relation presented in section 4.1.1 (corollary 4.4.3) between bilevel
optimization and multiobjective programming can lead to, when it is applied to particular

classes of problems (linear, quadratic, convex...);

The improvement of the performance of algorithms presented and the study of the complexities
of these algorithms. It might be interesting to compare algorithms presented in the text with

those developed in the literature;

The derivation of Pareto optimality conditions for bilevel multiobjective programming by ap-
plying KKT Pareto-optimality conditions , as the one developed in [Jimenez and Novo 2002,

Majumdar 1997], to the lower DM multiobjective optimization problem;

Revisiting of some classical bilevel optimization or multiobjective optimization problems to try
to model them as bilevel multiobjective optimization problems. The obtained models could
be more realistic. For example, the bilevel transportation problem [Yin 2000, Winston 1994]

could be modelled as follows:
1. first level: minimization of the costs and time on the road;
2. second level: minimization of the costs and minimization of the degradation of perish-
able products.
while the bilevel supply chain planning, could be modelled as follows:
1. first level: the distribution company minimizes transportation costs and maximizes
retailers profits;

2. second level: manufacturing plants minimize their own operation costs.

This research also presented an open issue, the technique used to find the optimal solution in bilevel
linear problem seems to be a good way to solve multilevel programming problems with more than
two players. Hopefully, this study will spur the interest in handling bilevel and multiobjective

optimization to other interested researchers and practitioners.
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