
HAL Id: tel-00653622
https://theses.hal.science/tel-00653622v2
Submitted on 26 Jan 2012 (v2), last revised 10 May 2012 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Data Management for MapReduce
Applications on Large-Scale Distributed Infrastructures

Diana Moise

To cite this version:
Diana Moise. Optimizing Data Management for MapReduce Applications on Large-Scale Distributed
Infrastructures. Distributed, Parallel, and Cluster Computing [cs.DC]. École normale supérieure de
Cachan - ENS Cachan, 2011. English. �NNT : �. �tel-00653622v2�

https://theses.hal.science/tel-00653622v2
https://hal.archives-ouvertes.fr

THÈSE / ENS CACHAN - BRETAGNE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’école normale supérieure de Cachan

Mention : Informatique
École doctorale MATISSE

présentée par

Diana Maria Moise
Préparée à l’Unité Mixte de Recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

Optimizing data
management for

MapReduce
applications on

large-scale distributed
infrastructures

Thèse soutenue le 16 décembre 2011
devant le jury composé de :

Frédéric DESPREZ,
Directeur de recherche - ENS Lyon, INRIA Grenoble Rhône-Alpes/ rapporteur
Guillaume PIERRE,
Professeur associé - Vrije Universiteit Amsterdam / rapporteur

Valentin CRISTEA,
Professeur des universités - University Politehnica Of Bucharest / examinateur

Luc BOUGÉ
Professeur des universités - ENS Cachan-Bretagne / directeur de thèse
Gabriel ANTONIU
Chargé de recherche, INRIA Rennes Bretagne-Atlantique / directeur de thèse

N° d’ordre :
École normale supérieure de Cachan - Antenne de Bretagne
Campus de Ker Lann - Avenue Robert Schuman - 35170 BRUZ
Tél : +33(0)2 99 05 93 00 - Fax : +33(0)2 99 05 93 29

Résumé

Dans ce manuscrit, nous avons abordé la gestion de manière efficace
des données traitées et produites par des applications MapReduce sur
infrastructures distribuées à grande échelle.

La première partie du manuscrit est consacrée au contexte de notre
travail. Dans un premier temps, la partie se concentre sur le paradigme
MapReduce et ses mises en œuvre. Dans un second temps, elle présente
l’environnement ciblé, les infrastructures à grande échelle. Nous
détaillons deux environnements largement utilisés pour exécuter des
applications data-intensive. La première plate-forme sur laquelle nous
nous concentrons concerne les grilles informatiques, une approche bien
établie dans le domaine de recherche du calcul parallèle et distribué.
Nous présentons ensuite le cloud computing, un modèle récemment
émergé, qui a gagné en popularité très rapidement au cours des
dernières années.

La deuxième partie présente les contributions de cette thèse. Nous
proposons un système de fichiers distribué, optimisé pour des accès
hautement concurrents, qui puisse servir comme couche de stockage
pour des applications MapReduce. Nous avons conçu le BlobSeer File
System (BSFS), basé sur BlobSeer, un service de stockage distribué,
hautement efficace, facilitant le partage de données à grande échelle.
Nous étudions également plusieurs aspects liés à la gestion des
données intermédiaires dans des environnements MapReduce. Nous
explorons les contraintes des données intermédiaires MapReduce à
deux niveaux: dans le même job MapReduce et pendant l’exécution
des pipelines d’applications MapReduce. Enfin, nous proposons des
extensions de Hadoop, un environnement MapReduce populaire et open-
source, comme par example le support de l’opération append.

La troisième partie est consacrée à l’implémentation des travaux
présentés dans la partie 2. Dans cette partie, nous décrivons la mise
en œuvre du système de fichiers BSFS et son interconnexion avec
Hadoop et BlobSeer. Nous nous concentrons aussi sur les extensions
et les modifications réalisées afin d’améliorer l’environnement Hadoop
MapReduce avec les caractéristiques précédemment mentionnées.

La quatrième partie présente une évaluation expérimentale étendue
de nos contributions. Nous évaluons l’impact du système de fichiers
BSFS au travers d’une série d’expériences avec des benchmarks syn-
thétiques et des applications MapReduce réelles. Cette partie valide
aussi notre contribution dans le contexte des données intermédiaires.
L’évaluation expérimentale de l’opération append est également inclu-
se. Enfin, nous fournissons une évaluation des coûts d’exécution des
applications MapReduce dans le Cloud, en se basant sur le modèle de
coût d’Amazon EC2.

La cinquième partie conclut ce manuscrit en présentant un résumé de
nos contributions et en énumérant plusieurs directions de recherche
futures.

Mots clés :
Applications data-intensive, MapReduce, plate-formes distribuées à
grande échelle, grilles informatiques, cloud computing, gestion des
données intermédiaires, Hadoop, HDFS, BlobSeer, haut débit, accès
hautement concurrents.

Abstract

In this manuscript, we addressed the problem of efficiently managing
data processed and produced by MapReduce applications, on
infrastructures distributed at large scales.

The first part of the manuscript is dedicated to the context of our
work. It first focuses on the MapReduce programming paradigm and
its implementations, and then presents the targeted environment, i.e.,
large-scale infrastructures. We detail two environments that are most-
commonly used for executing data-intensive applications. The first
platform that we focus on is the Grid, a well-established approach to
distributed computing. We further present Cloud computing, a recently-
emerged model with a continuously-growing popularity.

The second part presents the contributions of this thesis. We propose
a concurrency-optimized file system for MapReduce Frameworks. As
a starting point, we rely on BlobSeer, a framework that was designed
as a solution to the challenge of efficiently storing data generated
by data-intensive applications running at large scales. We have built
the BlobSeer File System (BSFS), with the goal of providing high
throughput under heavy concurrency to MapReduce applications. We
also study several aspects related to intermediate data management
in MapReduce frameworks. We investigate the requirements of
MapReduce intermediate data at two levels: inside the same job, and
during the execution of pipeline applications. Finally, we show how
BSFS can enable extensions to the de facto MapReduce implementation
- Hadoop, such as the support for the append operation.

The third part details the implementation of the work presented in Part
2. In this part we describe the implementation of the BSFS file
system and its interconnection with Hadoop and BlobSeer. We also
focus on the extensions and modifications we carried out within the
Hadoop MapReduce framework to enhance it with the aforementioned
features.

The fourth part shows the extensive experimental evaluation of our
contributions. We evaluate the impact of the BlobSeer File System
by performing experiments both with synthetic microbenchmarks
and with real MapReduce applications. This part further validates our
contribution in the context of intermediate data. The experimental
evaluation of the append operation is also included in this part.
Finally, we provide a cost evaluation of running MapReduce applications
in the Cloud, by taking into account Amazon’s EC2 cost model.

The fifth part concludes this manuscript, by presenting a summary of
our contributions and listing several future directions brought forth by
our work.

Keywords:
Data-intensive applications, MapReduce, large-scale distributed
platforms, grid, cloud computing, intermediate data management,
Hadoop, HDFS, BlobSeer, high throughput, heavy access concurrency.

Many thanks to my family, friends and colleagues.

It is not the answer that enlightens, but the question.
Eugen Ionescu

i

Contents

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2
1.3 Publications . 3
1.4 Organization of the manuscript . 4

Part I – Context: Data-intensive Applications on Large-Scale Distributed
Platforms 7

2 Data-intensive applications 9
2.1 MapReduce applications . 10

2.1.1 The MapReduce programming model 10
2.1.2 The Google implementation . 11
2.1.3 Applications . 13

2.2 Hadoop-based applications . 16
2.2.1 The Hadoop project . 16
2.2.2 The Hadoop MapReduce implementation 17

2.3 Summary . 19

3 Infrastructures 21
3.1 Grids . 21
3.2 Clouds . 25

3.2.1 Cloud taxonomy . 26
3.2.2 Cloud examples . 28

3.3 Summary . 30

4 BlobSeer 31
4.1 Design overview . 31
4.2 Architecture . 32
4.3 Access interface to BLOBs . 33
4.4 How reads and writes are performed . 34
4.5 Summary . 36

ii Contents

Part II – Contribution 37

5 Designing a Concurrency-Optimized File System for MapReduce Frameworks 39
5.1 Dedicated file systems for MapReduce applications 40

5.1.1 Requirements for the storage layer . 40
5.1.2 File systems for MapReduce applications 40
5.1.3 The Hadoop Distributed File System - HDFS 42

5.2 The BlobSeer File System - BSFS . 43
5.2.1 Integrating BlobSeer with Hadoop . 43
5.2.2 The file system namespace manager . 44
5.2.3 Data prefetching . 45
5.2.4 Data layout exposure . 45

5.3 Summary . 46

6 Optimizing Intermediate Data Management in MapReduce Computations 49
6.1 Intermediate data in MapReduce computations 49
6.2 Intermediate data generated inside the same job 51

6.2.1 Intermediate data management in Hadoop 51
6.2.2 Using BlobSeer as storage for intermediate data 52

6.3 Intermediate data generated between jobs of a pipeline application 55
6.3.1 Pipeline MapReduce applications . 55
6.3.2 Introducing dynamic scheduling of map tasks in Hadoop 56
6.3.3 Our approach . 57

7 Enabling and Leveraging the Append Operation in Hadoop 63
7.1 Motivation . 64
7.2 The need for the append operation in MapReduce frameworks 64

7.2.1 Potential benefits of the append operation 64
7.2.2 Append status in Google File System 65
7.2.3 Append status in HDFS . 65

7.3 Introducing support for the append operation in Hadoop 66
7.3.1 BlobSeer: efficient support for the append operation 66
7.3.2 How BlobSeer enables appends in Hadoop 67

7.4 Summary . 69

Part III – Implementation Details 71

8 Implementation details 73
8.1 Designing BSFS . 73
8.2 Extensions to Hadoop . 75

8.2.1 Efficient intermediate data management in Hadoop 75
8.2.2 Introducing the append operation . 83

8.3 Automatic deployment tools . 84

Contents iii

Part IV – Evaluation 85

9 Evaluating BSFS as backend storage for MapReduce applications 87
9.1 Environmental setup . 87
9.2 Microbenchmarks . 88
9.3 Experiments with real MapReduce applications 90

10 Evaluating our approach for intermediate data management 93
10.1 Intermediate data generated inside a job . 93

10.1.1 Environmental setup . 94
10.1.2 Experiments with MapReduce applications 94

10.2 Intermediate data generated between the jobs of a pipeline 96
10.2.1 Environmental setup . 96
10.2.2 Microbenchmarks . 96

11 Evaluating the benefits of the append operation 101
11.1 Environmental setup . 101
11.2 Microbenchmarks . 102
11.3 Application study . 103

12 Evaluating the Cost of Running MapReduce Applications in the Cloud 107
12.1 Motivation . 108
12.2 Computational and cost model . 108
12.3 Execution environment . 109
12.4 Results . 110
12.5 Cost evaluation . 112
12.6 Related Work . 114

Part V – Conclusions and future work 115

13 Conclusions 117

14 Future work 121

A Résumé en français 129
A.1 Contexte . 130
A.2 Contributions . 131
A.3 Publications . 134
A.4 Organisation du manuscrit . 135
A.5 Conclusion . 137

iv Contents

1

Chapter 1
Introduction

Contents
1.1 Context . 1

1.2 Contributions . 2

1.3 Publications . 3

1.4 Organization of the manuscript . 4

1.1 Context

A large part of today’s most popular applications are data-intensive. Whether they are scien-
tific applications or Internet services, the data volume they process is continuously growing.
This trend followed by more and more applications entails increasing demands in terms of
the computational and data requirements. Some applications generate data volumes reach-
ing hundreds of terabytes and even petabytes.

Two main aspects arise when trying to accommodate the size of the data: processing the
computation in a manner that is efficient both in terms of resources and time, and provid-
ing storage capable to deal with the requirements of data-intensive applications. Since the
input data is large, the computation, which is, in most cases straightforward, is distributed
across hundreds or thousands of machines; thus, the application is split into tasks that run in
parallel on different machines, tasks that will need to access the data in a highly concurrent
manner.

Handling massive data has a strong impact on the design of the storage layer, which
must be able to cope with storing huge files, while still supporting fine-grained access to
data. Files are distributed at a large scale, I/O throughput must be sustained at a high level,
even in the context of heavy concurrency.

2 Chapter 1 – Introduction

Specialized abstractions like Google’s MapReduce and Pig-Latin were developed to ef-
ficiently manage the workloads of data-intensive applications. These models propose high-
level data processing frameworks intended to hide the details of parallelization from the
user. Such frameworks rely on storing huge objects and target high performance by opti-
mizing the parallel execution of the computation.

Google’s MapReduce is a parallel programming paradigm successfully used by large
Internet service providers to perform computations on massive amounts of data. A com-
putation takes a set of input key-value pairs, and produces a set of output key-value pairs.
The user of the MapReduce library expresses the computation as two functions: map, that
processes a key-value pair to generate a set of intermediate key-value pairs, and reduce, that
merges all intermediate values associated with the same intermediate key. The framework
takes care of splitting the input data, scheduling the jobs’ component tasks, monitoring them
and re-executing the failed ones.

Hadoop’s implementation of MapReduce follows the Google model. The framework
consists of a single master jobtracker, and multiple slave tasktrackers, one per node. A MapRe-
duce job is split into a set of tasks, which are executed by the tasktrackers, as assigned by
the jobtracker. The input data is also split into chunks of equal size, that are stored in a
distributed file system across the cluster. First, the map tasks are run, each processing a
chunk of the input file, by applying the map function defined by the user, and generating a
list of key-value pairs. After all the maps have finished, the tasktrackers execute the reduce
function on the map outputs.

Both the input data and the output produced by the reduce function are stored in a dis-
tributed file system; the storage layer is a key component of MapReduce frameworks, as its
design and functionalities influence the overall performance. MapReduce applications pro-
cess data consisting of up to billions of small records (of the order of KB); storing the data in a
large number of approximately KB-sized files would be impossible to manage and certainly
inefficient. Thus, the data sets are packed together into huge files (hundreds of GB).

There are numerous challenges raised by managing data processed and produced by
MapReduce applications, on infrastructures distributed at large scales. Although a large
community has tackled these challenges over the past decade, existing solutions still face
many limitations that need to be overcome.

1.2 Contributions

This work was carried out in the context of MapReduce applications, focusing on providing
efficient data management on large-scale infrastructures. The contributions of this thesis are
detailed below.

1. The work addresses in a first phase, the problem of how to efficiently provide storage
for MapReduce frameworks. We particularly focus on the Hadoop MapReduce frame-
work and its underlying storage layer, HDFS. Our contribution consists in building a
file system that can successfully be used as storage backend for MapReduce applica-
tions executed with Hadoop. Our proposed file system can be used as both a stand-
alone DFS and as a replacement for HDFS in the Hadoop framework. The benefits of

1.3 – Publications 3

our proposal for efficiently storing MapReduce applications were validated through
large-scale experiments.

2. We addressed the problem of efficiently managing intermediate data generated be-
tween the “map” and “reduce” phases of MapReduce computations. In this context,
we propose to store the intermediate data in the distributed file system used as back-
end. The work brings a twofold contribution. First, we investigate the features of
intermediate data in MapReduce computations and we propose a new approach for
storing this kind of data in a DFS. In this manner, we avoid the re-execution of tasks
in case of failures that lead to data loss. Second, we consider as storage for interme-
diate data, the file system we previously proposed, suitable for the requirements of
intermediate data: availability and high I/O access.

3. In order to speed-up the execution of pipeline MapReduce applications (applications
that consist of multiple jobs executed in a pipeline) and also, to improve cluster utiliza-
tion, we propose an optimized Hadoop MapReduce framework, in which the schedul-
ing is done in a dynamic manner. We introduce several optimizations in the Hadoop
MapReduce framework in order to improve its performance when executing pipelines.
Our proposal consists mainly in a new mechanism for creating tasks along the pipeline,
as soon as the tasks’ input data becomes available. This dynamic task scheduling leads
to an improved performance of the framework, in terms of job completion time. In
addition, our approach ensures a more efficient cluster utilizations, with respect to the
amount of resources that are involved in the computation.

4. The work also focuses on the append operation as a functionality that can bring bene-
fits at two levels. First, introducing append support at the level of the file system may
be a feature useful for some applications (not necessarily belonging to the MapReduce
class). Our proposed file system provides efficient support for the append operation.
We further modified the Hadoop MapReduce framework to take advantage of this
functionality. In our modified Hadoop framework, the reducers append their data to a
single file, instead of writing it to a separate file, as it was done in the original version
of Hadoop.

All the aforementioned contributions were implemented from scratch and then exten-
sively tested on large-scale platforms, in two environments: Grids and Clouds.

1.3 Publications

Journals

• BlobSeer: Next Generation Data Management for Large Scale Infrastructures. Nicolae B.,
Antoniu G., Bougé L., Moise D., Carpen-Amarie A. Journal of Parallel and Distributed
Computing 71, 2 (2011), pp. 168-184

Conferences and Workshops

• Optimizing Intermediate Data Management in MapReduce Computations Moise D., Trieu
T.-T.-L., Antoniu G., Bougé L. The ACM SIGOPS Eurosys 11 conference, CloudCP 2011

4 Chapter 1 – Introduction

1st International Workshop on Cloud Computing Platforms (2011)

• A Cost-Evaluation of MapReduce Applications in the Cloud. Moise D., Carpen-Amarie A.,
Antoniu G., Bougé L. To appear in the Grid’5000 Spring School Proceedings (2011)

• BlobSeer: Bringing High Throughput under Heavy Concurrency to Hadoop Map-Reduce Ap-
plications Nicolae B., Moise D., Antoniu G., Bougé L., Dorier M. The 24th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2010) (2010)

• Improving the Hadoop Map/Reduce Framework to Support Concurrent Appends through the
BlobSeer BLOB management system Moise D., Antoniu G., Bougé L. The 19th ACM Inter-
national Symposium on High Performance Distributed Computing (HPDC’10), Work-
shop on MapReduce and its Applications (2010)

• Large-Scale Distributed Storage for Highly Concurrent MapReduce Applications Moise D.
The 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2010): PhD Forum (2010)

• Resource CoAllocation for Scheduling Tasks with Dependencies, in Grid Moise D., Moise
I., Pop F., Cristea V. The 2nd International Workshop on High Performance in Grid
Middleware (HiPerGRID 2008) (2008)

• Advance Reservation of Resources for Task Execution in Grid Environments Moise I., Moise
D., Pop F., Cristea V. The 2nd International Workshop on High Performance in Grid
Middleware (HiPerGRID 2008) (2008)

1.4 Organization of the manuscript

This manuscript is organized in five main parts.

The first part is dedicated to the context of our work. The first chapter of this part presents
the target application domain of our work, i.e., data-intensive applications, more specifi-
cally, MapReduce applications. The chapter further focuses on the MapReduce program-
ming paradigm and its implementations. The second chapter of the context of this work
concerns large-scale infrastructures. We detail two environments that are most-commonly
used for executing data-intensive applications. The first platform that we focus on is the
Grid, a well-established approach to distributed computing. In a second part of the chap-
ter, we present Cloud computing, a recently-emerged model with a continuously-growing
popularity. The closing chapter of this first part introduces BlobSeer, a framework that was
designed as a solution to the challenge of efficiently storing data generated by data-intensive
applications running at large scales.

The second part presents the contributions of this thesis. In Chapter 5 we propose a
concurrency-optimized file system for MapReduce Frameworks. Using BlobSeer as a start-
ing point, we have built the BlobSeer File System (BSFS), with the goal of providing high
throughput under heavy concurrency to MapReduce applications. Chapter 6 develops our

1.4 – Organization of the manuscript 5

contribution in the context of intermediate data. We study several aspects related to in-
termediate data management in MapReduce frameworks. The work presented Chapter 6
addresses intermediate data at two levels: inside the same job, and during the execution
of pipeline applications. Finally, Chapter 7 shows how BSFS can enable extensions to the
de facto MapReduce implementation - Hadoop. The focus of this chapter is on introducing
support for the append operation in Hadoop.

The third part consists of a chapter that details the implementation of the work presented
in Part 2. In this part we describe the implementation of the BSFS file system and its inter-
connection with Hadoop and BlobSeer. We also focus on the extensions and modifications
we carried out within the Hadoop MapReduce framework to enhance it with the aforemen-
tioned features. The last section of this chapter is dedicated to the deployment tools we
developed to allow us to evaluate our work.

The forth part shows the extensive experimental evaluation of our contributions. Chap-
ter 9 evaluates the impact of the BlobSeer File System by performing experiments both with
synthetic microbenchmarks and with real MapReduce applications. The next chapter of this
part validates our contribution in the context of intermediate data. The experimental evalu-
ation of the append operation is also included in this part. In the final chapter of this part,
we provide a cost evaluation of running MapReduce applications in the Cloud, by looking
into several aspects: the overhead incurred by executing the job on the Cloud, compared to
executing it on a Grid, the actual costs of renting Cloud resources, and also, the impact of
the storage system used as backend by MapReduce applications.

The fifth part concludes this manuscript, by presenting a summary of our contributions
and listing several future directions brought forth by our work.

6 Chapter 1 – Introduction

7

Part I

Context: Data-intensive Applications
on Large-Scale Distributed Platforms

9

Chapter 2
Data-intensive applications

Contents
2.1 MapReduce applications . 10

2.1.1 The MapReduce programming model 10

2.1.2 The Google implementation . 11

2.1.3 Applications . 13

2.2 Hadoop-based applications . 16

2.2.1 The Hadoop project . 16

2.2.2 The Hadoop MapReduce implementation 17

2.3 Summary . 19

APPLICATIONS in most of today’s areas of both science and industry are data-intensive.
The “data-intensive” term refers to applications that spend most of their execution
time on I/O operations. An indirect but somehow, intrinsic meaning of the term is

related to the amount of data that data-intensive applications usually manage. Whether they
are scientific applications or Internet services, the data volume these applications process is
continuously growing.

As applications are becoming increasingly complex in terms of both data and compu-
tation, special interest has been devoted by the community to analyzing the requirements
of data-intensive applications. This class of applications has led to the emergence of data-
intensive scalable computing (DISC) that is now considered a new paradigm in scientific dis-
covery after empirical, theoretical, and computational scientific approaches. DISC includes
applications where the main challenge comes from the data size, its complexity or the rate
at which data is acquired. Data-intensive applications can be characterized through several
attributes.

10 Chapter 2 – Data-intensive applications

Large datasets. The size of the data handled by DISC applications is usually the factor that
impacts the most the design and execution of this kind of applications. The huge vol-
ume of data processed by DISC applications is of the order of terabytes, at least. Nowa-
days, the magnitude of the data size goes beyond petabytes, reaching even exabytes.

High I/O rate. In data-intensive applications, a significant amount of time is dedicated to
reading and writing data, as opposed to the actual computation that is far less time-
consuming.

Heavy read/write concurrency. Typically, the processing exhibited by the applications is
done in parallel, which yields heavy read access to multiple parts of the datasets.
Heavy write concurrency is also a common feature of data-intensive applications that
generate large amounts of data.

In practice, the aforementioned features give rise to real challenges when it comes to
dealing with data-intensive applications. Performing actions such as data storing, analyz-
ing, visualizing, etc., becomes a problematic issue that needs dedicated approaches. In this
direction, new programming models and specialized frameworks have been developed from
scratch to specifically meet the requirements of data-intensive applications. MapReduce [29],
Hadoop [16], Dryad [46] are well-known examples of abstractions and execution environ-
ments that enable parallel processing of large datasets on large-scale infrastructures. Issues
such as fault tolerance, performance, data storage, scheduling, represent a central design
point in those frameworks.

The rest of this chapter is dedicated to MapReduce, the programming model that is
nowadays widely acclaimed as a key solution to designing data-intensive applications. Ad-
ditionally, we present two of the reference MapReduce implementations, along with the
frameworks that provide support for the MapReduce abstraction.

2.1 MapReduce applications

2.1.1 The MapReduce programming model

Google introduced MapReduce [29] as a solution to the need to process datasets up to mul-
tiple terabytes in size on a daily basis. The goal of the MapReduce programming model is to
provide an abstraction that enables users to perform computations on large amounts of data.
Through its design, the MapReduce paradigm provides support for the following aspects:

Automatic parallelization of computations. The parallelization of the user’s computations,
as well as their parallel execution are automatically handled by the model. The user
supplies the computations to be performed and the MapReduce framework orches-
trates the dispatching of computations and their execution.

Large-scale data distribution. The MapReduce paradigm is designed to efficiently handle
the processing of very large datasets. This implies that the distribution of the user
datasets is inherently managed by the framework. The paradigm also aims at enabling
users to utilize the resources of a large distributed platform.

2.1 – MapReduce applications 11

Simple, yet powerful interface. The MapReduce model exposes a simple interface, that can
be easily manipulated by users without any experience with parallel and distributed
systems. However, the interface is versatile enough so that it can be employed to suit
a wide range of data-intensive applications.

User-transparent fault tolerance. The typical environment targeted by MapReduce compu-
tations is one that deals with faults on a regular basis. Thus, the framework is expected
to ensure fault tolerance through mechanisms that do not require user intervention.

Commodity hardware. The paradigm is engineered to work on clusters of inexpensive ma-
chines, therefore is does not require specialized hardware to run on.

The MapReduce abstraction is inspired by the “map” and “reduce” primitives commonly
used in functional programming. When designing an application using the MapReduce
paradigm, the user has to specify two functions: map and reduce that are executed in paral-
lel on multiple machines. Applications that can be modeled by the means of MapReduce,
mostly consist of two computations: the “map” step, that applies a filter on the input data,
selecting only the data that satisfies a given condition, and the “reduce” step, that collects
and aggregates all the data produced by the first phase.

The paradigm specifies that the “map” and “reduce” functions manipulate data in the
form of key/value pairs. Thus, “map” takes as input a list of key/value pairs and produces
a set of intermediate key/value pairs. Usually, the same intermediate key appears in several
pairs, associated with different values. The “reduce” function also handles data as key/
value pairs, thus the intermediate values that share the same key are grouped together and
passed to the “reduce” phase for processing. The “reduce” function applies the user compu-
tation on each intermediate key and its corresponding set of values. The result of this phase
is the final output of the MapReduce processing.

2.1.2 The Google implementation

Along with this abstraction, Google also proposed a framework that enables distributed pro-
cessing of MapReduce computations. The framework implements the features introduced
in Section 2.1.1, exposing the simple interface specified by the abstraction to the user.

A typical scenario of running an application with Google’s MapReduce framework com-
prises two phases: first, the user supplies the input data and the “map” and “reduce” func-
tions; second, the framework performs the computations and generates the result. These
phases are implemented through a user-side library and the MapReduce framework. On the
user’s side, the MapReduce library performs several actions.

1. The library first splits the input data into fixed-size blocks, creating thus, a set of splits.
The size of each split can be configured by the user and typically varies from 16 MB to
64 MB.

2. The “map” and “reduce” functions that will be invoked on multiple machines, are
instantiated into tasks that are created by the library as follows: the “map” tasks are
created one per input split, while the number of “reduce” tasks is specified by the
user. The mechanism of distributing the “reduce” invocations relies on a partitioning

12 Chapter 2 – Data-intensive applications

Input

data
Map

phase

Reduce

phase

Output

data
Intermediate

data

assign map assign reduce

Figure 2.1: Google’s MapReduce framework.

function supplied by the user. This function splits the intermediate key space into the
same number of partitions as the number of “reduce” tasks provided by the user.

The Google MapReduce implementation is designed in the master-slave fashion: a cen-
tralized master assigns tasks to multiple workers that execute them in parallel. The steps
carried out by the framework in order to execute a MapReduce application are illustrated on
Figure 2.1, and can be summarized as follows:

1. The master dispatches the “map” and “reduce” tasks to idle workers. Each worker is
assigned a task to run.

2. A worker that is assigned a “map” task is also allocated an input split. The mapper
reads the input data in order to parse key/value pairs on which it then applies the
“map” function, producing intermediate key/value pairs. The intermediate data is
stored on the worker’s local disk, partitioned into regions corresponding to each re-
ducer. The locations of the intermediate pairs are reported back to the master.

3. A worker running a “reduce” task receives from the master the locations holding the
partitions it was assigned to process. The “reduce” worker transfers all the interme-
diate pairs over the network, then sorts them by key, grouping together all the values
associated with the same key. The sorting phase is an optimization employed by the
framework for efficiency reasons, as it is very likely that the same intermediate key
is produced by several mappers. The worker then takes one pair at a time and ap-
plies the “reduce” computation on the key and its associated values. The result of this

2.1 – MapReduce applications 13

procedure is appended to a final output file. To avoid synchronization, each worker
appends the data it produces to its own output file.

4. When all the “map” and “reduce” tasks have completed, the master notifies the user.
The output of the MapReduce processing consists of as many files as the number of
“reduce” tasks that were executed by the framework. The merging of the output files
into a single file is an additional step that has to be performed by the user. However,
most distributed applications (including the MapReduce class) are able to deal with
multiple files as input data.

In the Google implementation, the master entity plays a key role in the system. In or-
der to be able to dispatch tasks and coordinate workers, the master maintains several data
structures. For each task, the master keeps its state and progress, along with the identity of
the worker in charge of running the task. If the task is a “map” computation, the master
also stores the locations and sizes of the intermediate data the task produced so far. This
information is updated as the “map” task is being executed and it is simultaneously pushed
to “reduce” workers. The first type of data structure helps the master to keep track of the
execution progress, and also to handle failures. The second structure is needed so that the
intermediate data produced by the mappers can be propagated to the reducers.

The MapReduce model is one of the promoters of a trend that has recently emerged in the
distributed-computing community. This trend brings forward a computational model that
consists in shipping computation to data instead of transferring large datasets across the net-
work. This approach relies on the assumption that in commodity- hardware environments,
network bandwidth is a rather scarce resource. It is thus preferable to avoid transferring
massive amounts of input data over the network, from the nodes that store the data, to
the nodes that perform the computation. MapReduce takes advantage of the deployment
model that collocates storage and computation on the same nodes. When dispatching tasks
to workers, the master takes into account the locality criterion, that is, it attempts to schedule
a “map” task as close as possible to the node that stores the corresponding input data: the
node itself, if available, or the node that is the closest to the data, in terms of the network
topology. Google reports that the locality mechanism helps preserve network bandwidth
during large MapReduce computations, as most of the input data is read locally.

2.1.3 Applications

Modeling an application with MapReduce requires the user to supply the definition of the
“map” and “reduce” functions. These methods need to be specified in compliance with the
MapReduce abstraction. We first give the algorithmic description of the canonical MapRe-
duce example, i.e., the word count application. We also provide examples showing the speci-
fication of two of the most-commonly use MapReduce applications: grep and sort.

Word Count

The word count application is a simple example that illustrates how a basic and common
problem can be solved using MapReduce. The application consists in counting the number
of occurrences of each word in a large collection of documents. Example 1 provides a specifi-
cation of the word-count problem in the MapReduce style. The “map” function parses each

14 Chapter 2 – Data-intensive applications

Example 1 Word Count
map(K key, V value)

//key: file name

//value: file contents

for word ∈ value
emitIntermediate(word, 1)

reduce(K key, V[] values)

//key: a word

//value: a list of '1'-s

sum← 0
for v ∈ values

sum← sum + v
emit(key, sum)

Example 2 Distributed Grep

map(K key, V value)

//key: file name

//value: file contents

for line ∈ value
if line matches pattern

emitIntermediate(key, line)
reduce(K key, V[] values)

//key: file name

//value: a list of lines matching the pattern

for v ∈ values
emit(key, v)

word of the input document and produces as intermediate data, a key/value pair consisting
of a word and the value ’1’, suggesting that the word appeared once. As the MapReduce
framework groups together all intermediate values related to the same key, the “reduce”
function processes a key and its list of associated values, i.e, a list containing ’1’-s. For each
key, the “reduce” computation sums up all the values in the list. This means that the function
computes the number of times the word appears, for each word.

Distributed grep

This application scans the input data in order to find the lines that match a specific pat-
tern. The grep example can be easily expressed with MapReduce (Example 2). The “map”
function processes the input file line by line and matches each single line against the given
pattern. If the matching is successful, then the line is emitted as intermediate data. The
“reduce function” simply passes the intermediate data as final result.

2.1 – MapReduce applications 15

Example 3 Distributed Sort
map(K key, V value)

emitIntermediate(key, value)
reduce(K key, V[] values)

for v ∈ values
emit(key, v)

Distributed Sort

Sorting datasets is a basic operation that is widely employed by data-processing applica-
tions. It consists in sorting key/value records based on key. The sorting is based on a com-
parator, a user-specified function that is applied on the keys of the records. With MapRe-
duce, sorting is a straightforward operation. As shown by Example 3, both the “map” and
“reduce” functions are trivial computations, as they simply take the input data and emit it
as output data. The sort MapReduce implementation takes advantage of the default opti-
mizations performed by the framework. First, the records are automatically parsed as key/
value pairs and dispatched to mappers. Second, the framework implicitly sorts all the values
associated with the same intermediate key, consequently, the list of values received by the
“reduce” function is already sorted for each key. Third, sorting by key is achieved through
the partitioning function that delegates a range of keys to each reducer. The partitioning
function (hashing scheme) must satisfy the following condition:

if k1 < k2 => hash(k1) < hash(k2).

This ensures that the partitioning of the keys namespace to reducers leads to a sorted output:
reducer1 producing output1 is assigned the first partition of intermediate keys, reducer2 takes
the second, and so on.

More examples

MapReduce is used to model a wide variety of applications, belonging to numerous domains
such as analytics (data processing), image processing, machine learning, bioinformatics, as-
trophysics, etc.

A first class of application that can be designed with MapReduce is brought forward
by Google and refers to information extraction and text processing. It contains operations that
Google, as well as most Internet-services providers, execute on a daily basis [29]: grep, sort,
inverted index construction, page rank, web access log stats, document clustering, web link-
graph reversal, Bayesian classification, etc.

Another significant usage of the MapReduce paradigm relates to search query analysis and
information retrieval. It targets applications that perform database-like operations, such as:
joins, aggregations, queries, group-by operations, etc. A large part of the SQL-like appli-
cations can be easily expressed as MapReduce operations [51, 78]. However, some queries
require a more complex design that, when written with MapReduce, may lead to a work-
flow that is complicated to manage and debug. In this direction, several frameworks and

16 Chapter 2 – Data-intensive applications

abstractions were developed based on MapReduce, with the goal of providing a simple-to-
use interface for expressing database-like queries [64, 6].

Bioinformatics is one of the numerous research domains that employ MapReduce to
model their algorithms [69, 58, 56]. As an example, CloudBurst [69] is a MapReduce-based
algorithm for mapping next-generation sequence data to the human genome and other ref-
erence genomes, for use in a variety of biological analyses.

Other research areas where MapReduce is widely employed, include: astronomy [76],
social networks [26], artificial intelligence [39, 60], image and video processing, simulations,
etc.

2.2 Hadoop-based applications

2.2.1 The Hadoop project

The Hadoop project [15] was founded by Yahoo! in 2006. It started out as an open-source
implementation of the MapReduce model promoted by Google. By 2008, Hadoop was being
used by other large companies apart from Yahoo!, such as Last.fm and Facebook. A notable
Hadoop use-case belongs to the New York Times. In 2007, the company rented resources on
Amazon’s EC2 in order to convert the newspaper’s scanned archives to PDF files. The data
reached 4 TB in size and the computation took less than 24 hours on 100 machines. Hadoop
was used to run this application in the cloud environment provided by Amazon. In 2008
and then in 2009, Hadoop broke the world record for sorting 1 TB. Using Hadoop, Yahoo!
managed to sort a terabyte of data in 62 seconds. Currently, the world record is 60 seconds,
held by a team from the University of California, San Diego.

The core of the Hadoop project consists of the MapReduce implementation and the
Hadoop Distributed File System (HDFS). Along the years, several sub-projects have been
developed as part of the Hadoop collection. The sub-projects include frameworks that cover
a wide range of the distributed computing area. They were either built as complementary to
the Hadoop core, or on top of the core, with the purpose of providing higher-level abstrac-
tions. Currently, the Hadoop project offers the following services.

MapReduce: a framework for large-scale data processing.

HDFS: a distributed file system for clusters of commodity hardware.

Avro: a system for efficient, platform-independent data serialization.

Pig: a distributed infrastructure for performing high-level analysis on large data sets.

HBase: a distributed, column-oriented storage for large amounts of structured data, on top
of HDFS.

ZooKeeper: a service which enables highly reliable coordination for building distributed
applications.

Hive: a data-warehouse system that provides data summarization, ad-hoc queries, and the
analysis of large datasets stored in HDFS.

2.2 – Hadoop-based applications 17

Chukwa: a system for collecting and analyzing data on large-scale platforms. It also in-
cludes tools for displaying, monitoring and analyzing results, in order to make the
best use of the collected data.

Cassandra: a distributed database management system. It was designed to handle very
large amounts of data, while providing a highly-available service with no single point
of failure.

Ever since it was released, Hadoop’s popularity rapidly increased, as a result of the fea-
tures it yields, such as performance, simplicity and inexpensiveness. The list of Hadoop
users [12] includes companies and institutes that employ one or several Hadoop projects
for research or production purposes. Companies such as Adobe and EBay use Hadoop
MapReduce, HBase and Pig for structured data storage and search optimization. Facebook
makes use of HDFS and Hive for storing logs and data sources and performing queries on
them. Twitter heavily uses Pig, MapReduce and Cassandra to process all types of data gen-
erated across Twitter. Reports from Yahoo! show that Hadoop is currently running on more
than 100,000 CPUs, and on the largest Hadoop cluster (comprising 4500 nodes and several
terabytes of RAM and petabytes of storage). Yahoo! also reports that more than 60 % of the
Hadoop jobs it runs are Pig jobs.

In addition to its cluster usage, Hadoop is becoming a de-facto standard for cloud
computing. The generic nature of cloud computing allows resources to be purchased on-
demand, especially to augment local resources for specific large or time-critical tasks. Sev-
eral organizations offer cloud compute cycles that can be accessed via Hadoop. Amazon’s
Elastic Compute Cloud (EC2) contains tens of thousands of virtual machines, and supports
Hadoop with minimal effort.

2.2.2 The Hadoop MapReduce implementation

The Hadoop project provides an open-source implementation of Google’s MapReduce
paradigm through the Hadoop MapReduce framework [16, 75]. The framework was de-
signed following Google’s architectural model and has become the reference MapReduce
implementation. The architecture is tailored in a master-slave manner, consisting in a single
master jobtracker and multiple slave tasktrackers.

Architecture

Figure 2.2 shows the main entities of the Hadoop system and the flow of interactions trig-
gered by a job-submission event. The Hadoop client submits a job to the jobtracker for exe-
cution. The jobtracker splits the job into a set of tasks that are either “map” or “reduce” com-
putations. The input data is also split into fixed-size chunks that are stored in the distributed
file system used as backend storage (by default, HDFS). Each “map” task is associated with
a data chunk. This step involves inquiring the file system’s namespace, so that the jobtracker
becomes aware of the location of each input chunk. This information is required by the next
step of the execution, which is the task scheduling.

The jobtracker’s main role is to act as the task scheduler of the system, by assigning work
to the tasktrackers. Each tasktracker disposes of a number of available slots for running

18 Chapter 2 – Data-intensive applications

Jobtracker

Figure 2.2: The Hadoop MapReduce framework.

tasks. Every active map or reduce task takes up one slot, thus a tasktracker usually executes
several tasks simultaneously. When dispatching “map” tasks to tasktrackers, the jobtracker
strives at keeping the computation as close to the data as possible. This technique is enabled
by the data-layout information previously acquired by the jobtracker. If the work cannot
be hosted on the actual node where the data resides, priority is given to nodes closer to the
data (belonging to the same network rack). The jobtracker schedules first “map” tasks, as
the reducers must wait for the “map” execution to generate the intermediate data.

Apart from data splitting and scheduling responsibilities, the jobtracker is also in charge
of monitoring tasks and dealing with failures.

Job scheduling

The default scheduling policy implemented by Hadoop’s jobtracker treats tasks on a first-
in-first-out (FIFO) basis. However, this approach has obvious limitations when considering
environment issues, such as heterogeneity, or special classes of applications. As a result,
the Hadoop framework was modified to allow users to plug-in a scheduler that suits their
execution environment and purposes. To take some examples, two of the major Hadoop
production users, Yahoo! and Facebook, developed cluster-oriented schedulers to address
their specific requirements.

The FIFO Scheduler keeps a queue of jobs that are processed each at a time. This very
simplistic scheduling algorithm was based on the assumption that the execution of each job
involves the whole cluster, so that jobs were processed sequentially. With this approach, it is
however possible to specify a job priority that is taken into account by the jobtracker. When
selecting the next job to execute, the jobtracker chooses the one with the highest priority in
the queue.

The Fair Scheduler developed at Facebook allows users to assign jobs to pools, and allo-
cates “map” and “reduce” slots to each pool. Yahoo!’s Capacity Scheduler addresses a scenario
that involves a large number of users, and targets a fair resource allocation to users. The Ca-
pacity Scheduler keeps queues with configurable number of slots to which jobs are added on
account of the submitting user. Overall, this type of scheduling enforces sharing of cluster
capacity among users, as opposed to sharing resources among jobs, as was the case for the
Fair Scheduler.

Failures

Hadoop was designed to tolerate failures in a user-transparent manner. One of the most-
promoted benefits of using Hadoop is its ability to automatically deal with various types
of failures caused by different sources. Hadoop identifies and manages several types of
failures.

Task failure. If a tasktracker reports an error code when running a certain task, the job-
tracker reschedules the execution of the failed task. The jobtracker attempts to dispatch
the task to a different tasktracker than the one on which the task had previously failed.
In addition, the jobtracker keeps track of the number of times a task had failed. If this
number reaches a configurable threshold, the task will not be re-executed further.

Tasktracker failure. The communication between the jobtracker and the tasktrackers is im-
plemented through a heartbeat mechanism: the tasktracker sends a message to the
jobtracker every configurable amount of time. A crashed tasktracker can be identi-
fied when the jobtracker notices that it stopped sending heartbeat messages in a given
time interval. This tasktracker is removed from the jobtracker’s pool of workers. Fur-
thermore, the jobtracker reschedules the “map” tasks that were run on the failed task-
tracker, as the intermediate data they produced is no longer accessible.

Jobtracker failure. The jobtracker represents the single point of failure in the system, thus
any failures at this level is critical and leads to a failed job.

2.3 Summary

This chapter presents the target application domain of our work, i.e., data-intensive ap-
plications, more specifically, MapReduce applications. In a first phase, we investigate the
properties of data-intensive applications and provide a general presentation of the program-
ming model proposed for designing DISC applications. We then focus on the MapReduce
programming paradigm and its implementations. Introduced by Google, the MapReduce
abstraction has revolutionized the data-intensive community and has rapidly spread to var-
ious research and production areas. An open-source implementation of Google’s abstraction
was provided by Yahoo! through the Hadoop project. This framework is considered the ref-
erence MapReduce implementation and is currently widely-used for various purposes and
on several infrastructures.

20 Chapter 2 – Data-intensive applications

21

Chapter 3
Infrastructures

Contents
3.1 Grids . 21

3.2 Clouds . 25

3.2.1 Cloud taxonomy . 26

3.2.2 Cloud examples . 28

3.3 Summary . 30

IN a previous chapter we presented a survey on data-intensive applications, mainly focus-
ing on MapReduce applications. The second part of the context of this work concerns
large-scale infrastructures. In this chapter we detail two environments that are most

commonly used for executing data-intensive applications. The first platform that we focus
on is the Grid, a well-established approach to distributed computing. In a second part of
the chapter, we present Cloud computing, a recently-emerged model with a continuously
growing popularity.

3.1 Grids

The main concept that lies behind the Grid was foreseen many years ago: in 1969 Len Klein-
rock suggested that “We will probably see the spread of ‘computer utilities’, which, like
present electric and telephone utilities, will service individual homes and offices across the
country.” A couple of decades later, in 2002, Ian Foster proposed a definition of the Grid
concept, that became the “reference” definition in the domain. In [34], the author defines the
Grid as “a system that coordinates resources which are not subject to centralized control, us-
ing standard, open, general-purpose protocols and interfaces to deliver nontrivial qualities
of service”. Several important features of the Grid emerge from this definition.

22 Chapter 3 – Infrastructures

• A Grid integrates and coordinates resources and users that are located within different
control domains.

• A Grid relies on multipurpose protocols and interfaces that address fundamental is-
sues such as authentication, authorization, resource discovery, and resource access.

• A Grid allows its resources to be used in a coordinated manner with the purpose of
providing various qualities of service (for instance, response time, throughput, avail-
ability, and security), and/or co-allocation of multiple resource types in order to ful-
fill complex user demands. Thus, the utility of the combined system is significantly
greater than the sum of its components.

The end of the past century has witnessed a growth of the long-distance networks, al-
lowing to interconnect computing units located in different institutions. The performance
of these networks has become developed enough with regard to the latency and bandwidth
aspects, to consider the execution of distributed applications on geographically remote com-
puters. The idea of taking advantage of the computing power of several centers was first
experimented in 1995 in United States, within the project Information Wide Area Year [31, 36].

Emergence of computational Grids

Aggregating computers is not a new idea: ever since the 80’s, universities and enterprises
have made use of computational clusters, strongly sustained by the increasing use of per-
sonal computers. These machines were interconnected by high-performance networks and
put together in the same room, with the goal of building distributed super-computers. This
approach has brought an alternative solution to centralized supercomputers, that are ex-
tremely expensive to build. The main particularity of computer clusters is their homogeneity,
as they are composed of identical machines. Clusters aggregate a few hundreds of machines
and take advantage of the interconnection link between universities and institutions, leading
to the emergence of cluster federations.

The concept of grid appeared in 1998 in the book [37], edited by Foster and Kesselman.
The term of “grid” was selected after an analogy between this type of computational infras-
tructure and the distributed electricity network, called the Power Grid. The correspondence
between the two infrastructures comes from the purpose of rendering the usage of com-
putational Grids as simple as the one of electricity networks: the machines are plugged into
sockets, without knowing the sources of energy or the techniques of producing it. In the con-
text of computational Grids, a user must be able to submit an application without having to
manage its execution or even knowing about the resources involved in the computation.

Defining computational grids is an open subject, even nowadays, when it comes to de-
ciding whether a platform can be viewed as a grid or not. Nonetheless, a prolific litera-
ture [38, 34] has been dedicated to profiling computational Grids. In order to provide a
definition of the Grid, we first introduce two fundamental concepts.

Computational resource. A computational resource is a hardware or software element that
allows to automatically generate, manage, store or exchange computational data.

3.1 – Grids 23

Grid site. A grid site is a set of computational resources geographically placed in a same
institute, university, research center, or a given user, that constitute a domain of an
autonomic, uniform and coordinated administration.

Considering these two concepts as a starting point, we can define a computational Grid
as a set of Grid sites. The users of a computational Grid are referred to as virtual organizations
(VOs). A virtual organization is defined by a set of users, represented either by an individual
or by an enterprise, having the common interest of sharing computational resources. Virtual
organizations are dynamic, as they are created and destroyed depending on the users needs.

A Grid classification

There exist several types of Grids. The classification of Grids is defined according to their
goals and their structure. A Grid that has the multi-user property allows several users to
access it and employ its resources. A multi-application Grid allows the submission of appli-
cations of different types.

Data Grids are specialized in the storage of large data. This type of Grids must guarantee
the persistence and the availability of data, while providing efficient data access. Data
Grids are multi-user, but mono-application. Typical applications for this Grid category
include special purpose data mining that correlates information from multiple differ-
ent data sources. Data Grids [45, 24] strive at efficiently supporting data management,
access and organization while accommodating large scales.

Service Grids federate resources to provide for services that can not to delivered by any
single machine. Sub-categories of service Grids include on-demand, collaborative and
multimedia Grids.

Computational Grids are primarily used for providing support for computing-intensive
applications. In this context, a crucial role is played by the performances of the Grid re-
sources and of the interconnecting networks. Computational Grids are multi-user and
multi-application. A further sub-classification of computational Grids leads to two cat-
egories: distributed supercomputing and high- throughput Grids. The first type of Grids is
dedicated to a class of applications that raise substantial challenges. A distributed su-
percomputing Grid executes the application in parallel on multiple machines to reduce
the total completion time. The high-throughput category targets applications consist-
ing of a batch of jobs. High-throughput Grids aim at increasing the completion rate of
the job stream.

A particular type of Grid systems refers to desktop Grids, systems composed of desktop
computers connected to the Internet. This type of grids uses desktop computer instruc-
tion cycles that would otherwise be wasted at night, during lunch, or even in the scattered
seconds throughout the day when the computer is waiting for user input or slow devices.
Projects such as SETI@Home [18] show the benefits of using millions of machines that vol-
unteer to perform a global computation. Since nodes are likely to go “offline” from time
to time, as their owners use their resources for their primary purpose, this model must be
designed to handle such challenges.

24 Chapter 3 – Infrastructures

Middleware for Grids

The creation of a Grid requires a toolkit that supplies the core components and offers the
basic interfaces for bringing together all the required infrastructures. A lot of effort was
invested in developing Grid middleware across various groups from different communities.
We further give examples of such Grid toolkits.

Globus. The Globus toolkit [35] is recognized as the standard Grid computing middle-
ware, intensively used both in business and academia. Globus is an open-source software
project, developed by the Globus Alliance. It integrates the basic building blocks required
for the construction of a Grid. Globus also provides higher-level services including software
for security, information infrastructure, resource and data management, communication and
fault tolerance. This toolkit relies on an object-oriented approach and offers the users a large
collection of services satisfying a wide range of requirements.

UNICORE. UNiform Interface to COmputing Resources [67] represents a Grid middleware
system currently used in several supercomputer centers worldwide. Developed under the
initiative of the German Ministry for Education and Research, UNICORE has become a solid
support in many european research projects, such as EUROGRID, GRIP, VIOLA, etc. The
UNICORE toolkit is an open-source technology with a three-layered structure: user, server
and target system tier. The server level provides several services that are accessed by the user
tier through the UNICORE Graphical User Interface (GUI). This interface allows a seam-
less and secure access to the server’s services. UNICORE implements services based on a
job model concept, called the Abstract Job Objects (AJO). Such an object contains descrip-
tions of computational and data related tasks, resource information and workflow specifi-
cations. The UNICORE Client supplies the functionalities to create and monitor jobs that
are launched on the UNICORE sites. The target system tier provides the interface with the
underlying local resource management system.

gLite. The Lightweight middleware for grid computing [55] was developed as part of the
EGEE Project with the purpose of providing a framework for designing grid applications.
The gLite infrastructure is currently used in different scientific communities, eg., High En-
ergy Physics, Earthscience, Fusion and Archeology. A notable gLite user is CERN that em-
ploys the middleware for many of its scientific projects. The core services of gLite include
security, application monitoring, data and workload management. A user has access to the
gLite services through a User Interface (UI). Apart from ensuring a secure and authenticated
access to gLite, this interface provides a large set of Grid operations such as: list all the
resources suitable to execute a job, submit jobs for execution, cancel jobs, retrieve the infor-
mation logged about the job, retrieve the outcome of jobs etc.

Grid’5000 The Grid’5000 [47] project is a widely-distributed infrastructure devoted to pro-
viding an experimental platform for the research community. Several features distinguish
Grid’5000 as a reliable, efficient, large-scale experimental tool.

Experiment diversity. Grid’5000 provides the users with a diversified set of software tech-
nologies at various levels: Grid middleware, application runtime, networking proto-

3.2 – Clouds 25

cols, operating systems mechanisms, etc. These services are supplied in such a way as
to guarantee scalability, fault tolerance, performance and security.

Deep reconfiguration. In order to support experimental diversity while allowing users to
tune the environment to suit their needs, Grid’5000 provide a deep reconfiguration
mechanism that enables users to deploy, install, boot and run their customized soft-
ware.

Security. Grid’5000 employs a two-level security scheme that specifies strong authentica-
tion, authorization checks and limited Internet connectivity.

A large homogeneous subset. Based on the remark that homogeneity enables a more facile
and accurate performance evaluation, 2/3 of the total set of machines incorporated by
Grid’5000 are homogeneous.

Control and measurement tools. Grid’5000 ensures experiment reproducibility and moni-
toring through a set of dedicated tools that enable users to run the experiments on a
specific set of nodes, synchronize the execution on different machines, collect monitor-
ing information regarding network traffic, machine load, disk usage, etc.

These features are built in the design of the Grid’5000 platform. Spread over 10 geograph-
ical sites located through on French territory and 1 in Luxembourg, the Grid’5000 testbed
includes more than 20 clusters and 7000 CPU cores. We detail a set of tools provided by
Grid’5000 that we also employed as heavy users of the platform.

OAR [10] is a batch scheduler that allows Grid’5000 users to make fine-grain reservations,
ranging from one processor core to Grid-level reservations spanning over several sites
and hundreds of nodes.

Kadeploy [8] enables users to deploy a customized operating system image on the
Grid’5000 infrastructure, with administrator rights allowing users to install specific
software for their experiments.

The Grid’5000 API is a set of well-defined interfaces that enable secure and scalable access
to resources in Grid’5000 from any machine through standard HTTP operations.

Taktuk [25] is a tool designed for efficiently managing parallel remote executions on large-
scale, heterogeneous infrastructures.

3.2 Clouds

Cloud computing is an emerging paradigm for enabling on-demand access to shared comput-
ing resources that can be rapidly provisioned and released. A Cloud is defined as a pool of
easily usable and accessible resources such as storage, network, applications, services, etc.
The Cloud model promotes resource availability and dynamic reconfiguration for achieving
optimal resource utilization. Virtualized physical resources, virtualized infrastructure, as
well as virtualized middleware platforms and business applications are being provided and
consumed as services in the Cloud. The resources are exploited through a pay-per-use model

26 Chapter 3 – Infrastructures

Figure 3.1: Cloud Service models.

and in compliance with customized service-level agreements (SLAs) specified by a contract be-
tween the cloud provider and the client. Several works in the literature focus on proposing
a Cloud definition [54, 72, 20, 21, 41, 43].

Cloud-computing borrows core principles from the Grid, both computing paradigms
sharing similar visions. Much the same as Grids, Clouds federate resources with the purpose
of providing users with a tool they can instrument according to their needs. Whereas Grids
facilitate the fair sharing of resources across organizations, Clouds provide the resources
on demand, giving the impression of a single dedicated resource. Furthermore, in Clouds,
the concept of sharing resources is replaced by the concept of isolation of the environment,
achieved through virtualization. Grids and Clouds share common features such as resource
heterogeneity, scalability, reconfigurability, etc.

The distinctions between the two infrastructures mainly arise from the features that the
Grid failed to provide or poorly supported and that Cloud computing managed to sup-
ply and enhance. Virtualization is the key technology of Clouds. This mechanism enables
several essential features such as on-demand resource provisioning and security through
virtualization-based isolation. The Cloud is considered to be user-friendly, by providing a
user-transparent deployment model, a flexible architecture and a software-independent tool
for designing applications.

3.2.1 Cloud taxonomy

We provide a classification of Clouds that takes into account the type of services the Cloud
provides and the scale at which the underlying infrastructure is employed.

3.2 – Clouds 27

Service models

A way to categorize Clouds is by characterizing them from the point of view of the services
they provide. An architectural categorization of Cloud technologies has been proposed [54],
as a stack of service types (Figure 3.1).

Infrastructure as a Service (IaaS). An IaaS Cloud enables on-demand provision of funda-
mental computational resources in the form of virtualized resources. Resources in-
clude basic computer networking, commodity data storage, and hosting virtualized
operating systems. Users of Iaas Clouds typically deploy customized virtual machine
images, run arbitrary software, and then explicitly save the data and the virtual ma-
chine image to remote storage options. The consumer does not manage nor control the
underlying Cloud infrastructure, but he/she has full control over operating systems,
storage, deployed applications, and possibly limited control in selecting networking
components. Examples of IaaS Cloud providers include: Amazon Elastic Compute
Cloud (EC2) [2], Eucalytus [63], Nimbus [9], OpenNebula [59].

Platform as a Service (PaaS). At the level of the platform as a service, the Cloud supplies
programming and execution environments as a software platform. Customers are pro-
vided with a ready-to-use platform including tools and programming languages that
enable users to design and execute their applications. The consumer does not man-
age nor control the underlying Cloud infrastructure such as storage or network, but
he/she has full control over the deployed applications and hosting environment con-
figurations. As examples of PaaS Clouds, we mention Google’s App Engine [68] and
Microsoft’s Azure [17].

Software as a Service (Saas). By providing software as a service, SaaS Clouds enable con-
sumers to directly use applications running on a Cloud infrastructure. The application
developers can either use the PaaS layer to develop and run their applications or di-
rectly use the IaaS Cloud. The applications can be accessed through a simple client
interface such as a web browser. The consumer has no control over the underlying
infrastructure nor over the application capabilities. However, the client can supply
configuration settings to adjust the application to fit his/her requirements. Some ex-
amples of applications in this layer are Google Docs, Microsoft Office Live, etc.

Deployment models

Private Clouds. In the case of private Clouds, the Cloud infrastructure is owned by a single
organization and its usage is targeted solely to that organization. Private Clouds are
basically an enhanced data-center model, that enables a flexible and efficient manage-
ment of local infrastructure. The advantages of private Clouds include an internal, cen-
tralized resource management, architecture-aware virtualization optimizations, dy-
namic resizing and partitioning of the infrastructure, etc. Probably the greatest ad-
vantage of private Clouds over other types of Clouds, is the fact that organizations can
handle security and control themselves, instead of commissioning service providers
against cost.

28 Chapter 3 – Infrastructures

Community Clouds. This type of Clouds is dedicated to a specific community that incor-
porates several organizations with shared interests. The Cloud infrastructure is shared
by the organizations. Examples of domain-specific Clouds include scientific Clouds [13]
and HPC Clouds. The first example refers to Clouds designed to provide experimental
means to scientific and educational projects. HPC Clouds offer adequate support to
the HPC community.

Public Clouds. The services offered against cost by commercial organizations to the general
public are considered public Clouds. The infrastructure of a public Cloud is owned by
a single, usually large company that provides customers with a simple interface for
handling virtualized resources.

Hybrid Clouds. A hybrid cloud is defined as a combination of private Clouds requiring
additional services that can be acquired from either of the 2 other Cloud deployment
models. The combined infrastructures are bound together by standardized technolo-
gies that enable data and application portability. Usually, hybrid Clouds are created as
extensions of private Clouds, for the sake of scalability.

3.2.2 Cloud examples

Amazon Elastic Compute Cloud (EC2)

Amazon’s EC2 Infrastructure as a Service (IaaS) Cloud is the most widely-used and feature-
rich commercial Cloud. Amazon defines EC2 as a web service that provides resizable com-
pute capacity in the Cloud. Amazon EC2 allows users to rent compute or storage resources,
in order to run their own applications. Typically, users first choose the type of virtual ma-
chine (VM) that suits their needs (application requirements, budget, etc.) and then boot the
VM on multiple Amazon resources, thus creating what is referred to as instances of that VM.
EC2 provides flexibility in terms of resource configuration as well as elasticity, by allowing
users to dynamically adapt the number of VM instances.

Amazon also delivers a storage service where users can keep their data. The storage
system introduced by Amazon, S3 [4], features a simple access interface that has become the
IaaS standard for data transfers in and out of the Cloud.

EC2 image types are grouped together into a collection of pre-configured virtual machine
images, referred to as Amazon Machine Images (AMIs). Default AMIs can be deployed and
customized according to users needs. To keep all modified configurations and settings, users
can save AMIs in S3.

The Nimbus IaaS Cloud toolkit

The Nimbus project [9] is an open-source toolkit that provides an implementation of an
Infrastructure-as-a-Service Cloud platform. Nimbus consists in an extensible IaaS imple-
mentation, that exposes to the users an EC2-like interface, as well as other features that
enable the ease-of-use: customizable environments, cluster deployment and configuration,
interfaces to other IaaS Clouds. The Nimbus Cloud was started as a project targeted mainly
towards the scientific community, with the purpose of building an experimental testbed tai-
lored for scientific needs.

3.2 – Clouds 29

Figure 3.2: The architecture of a Nimbus Cloud.

The architecture of a Nimbus Cloud, as shown on Figure 3.2 is based on four modular
components:

The Cloud Client provides the users with the commands for launching and managing vir-
tual resources.

The Workspace service is a standalone site VM manager that represents also the Cloud en-
try point. It handles client requests for virtualized resources and manages VM deploy-
ment.

The Workspace Control is an agent running on each node, in charge of VM deployment,
management and configuration.

Cumulus is an open source implementation of the S3 REST [33] API that plays the role of the
front-end to the Nimbus storage repository for VM images. It allows users to deploy
their own virtual machine images on the Cloud infrastructure, by uploading them to
the storage repository through standardized interfaces.

Eucalyptus

The Eucalyptus system [63] is an open-source Cloud that provides on-demand computing
instances and shares the same APIs as Amazon’s EC2 cloud. Eucalyptus stands for Elastic
Utility Computing Architecture Linking Your Programs To Useful Systems. The Eucalyptus Cloud
was designed as a highly-modular framework in order to enable extensibility with minimal
effort. Eucalyptus is advertised as being among the few providers of a virtual network overlay
that brings benefits at two levels: it isolates network traffic of different users, and it unifies
clusters such that their resources appear to the user as belonging to the same Local Area
Network.

Four high-level components make up the architecture of Eucalyptus.

The Node Controller (NC) runs on each node with the purpose of hosting virtual machine
instances, taking care of issues such as controlling and monitoring the VM execution.

The Cluster Controller (CC) is launched on the cluster front-end and manages several
tasks: it schedules requests for launching VMs on specific NCs, it controls the virtual
network overlay and it monitors the state of each NC, through status reports.

The Storage Controller (Walrus) provides a data-storage service for storing and accessing
virtual machine images as well as application-level data. Walrus exposes an interface
compatible with the S3 standard.

The Cloud Controller (CLC) acts as the Cloud entry-point by exposing and managing the
virtualized resources. The CLC offers a series of web services oriented towards re-
sources, data and interfaces.

OpenNebula

OpenNebula [59] is an open-source project that provides a toolkit for building a Cloud in-
frastructure. The OpenNebula tools enable the federation of heterogeneous, distributed in-
frastructures, in a flexible and user-friendly manner. The system provides an administration
interface for the centralized monitoring and management of the infrastructure. An essential
feature is that it enables users to plug-in workload and resource-aware allocation policies
such as load balancing, affinity-aware, capacity reservation, etc. The toolkit also supports
straightforward integration of management tools employed by the underlying, local infras-
tructure. OpenNebula’s main advantage is that it supports a combination of deployment
types: private, public, hybrid and community Clouds.

3.3 Summary

This chapter presented a survey of Grid and Cloud infrastructures, including features, clas-
sifications and popular examples. A good understanding of the targeted infrastructures is
required for the design and evaluation of the contribution we will present in the following
chapters. In this chapter we described in detail 2 platforms that we consider to be a pertinent
environment for validating our work: the Grid’5000 testbed and the Nimbus Cloud.

31

Chapter 4
BlobSeer

Contents
4.1 Design overview . 31

4.2 Architecture . 32

4.3 Access interface to BLOBs . 33

4.4 How reads and writes are performed . 34

4.5 Summary . 36

IN the previous chapters we described the application domain and the infrastructures tar-
geted by our work. In this chapter, we focus on a framework that was designed as a
solution to the challenge of efficiently storing data generated by data-intensive applica-

tions running at large scales.

BlobSeer [62, 61] is a data storage service specifically designed to deal with the needs of
data-intensive applications: scalable aggregation of storage space from the participating nodes
with minimal overhead; support to store huge data objects; efficient fine-grain access to data
subsets; and ability to sustain a high throughput under heavy access concurrency. In order to
achieve these goals, it relies on data striping, distributed metadata management and versioning-
based concurrency control. These techniques avoid data-access synchronization and enable the
distribution of the I/O workload at large scale both for data and metadata, which is crucial
in achieving a high aggregated throughput under concurrency.

4.1 Design overview

In order to provide highly-scalable storage to applications that exhibit massively-parallel
data access, BlobSeer’s design relies on a set of principles and techniques, detailed below.

32 Chapter 4 – BlobSeer

BLOBs. BlobSeer uses the concept of BLOBs (binary large objects) as an abstraction for
data. A BLOB is a large, flat sequence of bytes - intrinsically, unstructured data. The
size of a BLOB typically reaches the order of TBs. Each BLOB is assigned a globally
unique identifier from the BLOB namespace. BlobSeer is targeted towards applica-
tions that process large datasets in a fine-grain manner, i.e., data is accessed in blocks
of a few KBs. Managing data as BLOBs brings an essential benefit when it comes to
scalability: manipulating huge BLOBs comprising small KBs-sized blocks is much more
efficient than maintaining the small blocks themselves.

Data striping. In BlobSeer, each BLOB is split into even-sized blocks, called chunks, which
are spread across the storage nodes. The chunk is the data-management unit, and its
size can be configured for each BLOB.

Distributed metadata. The metadata incurred by the data striping mechanism is organized
in BlobSeer, as a distributed segment tree [79]. Typically, applications access data by
specifying an offset and a size, which define a range belonging to a certain BLOB. A
segment tree is a binary tree in which each node is associated to a range of the BLOB,
delimited by offset and size. Thus, a node covers the range (offset, size). The root covers
the whole BLOB. For each node that is not a leaf, the left child covers the first half of
the range, and the right child covers the second half. Each leaf covers a single chunk
of the BLOB. Such a tree is associated to each BLOB. BlobSeer’s metadata keeps the
mapping of a given range to the physical nodes where the corresponding blocks are
located. The metadata are distributed across a set of nodes, for scalability and data
availability purposes.

Versioning-based concurrency control. BlobSeer employs the versioning mechanism as a
main design principle. In BlobSeer, data and metadata are never modified. Instead,
BLOB-update operations generate new versions of the same BLOB. The benefits of us-
ing versioning are twofold. First, by exposing the versions of each BLOB to the applica-
tion, BlobSeer enables the user to efficiently design complex workflows, by paralleliz-
ing various stages of the application, so as to simultaneously process different versions
of the same BLOB. Another advantage of supporting versioning at the application level
is the straightforward implementation of rollback operations: the application can sim-
ply switch back to an older BLOB version.
Second, BlobSeer internally uses versioning to handle concurrency. When parallel ac-
cesses to the same BLOB are performed, BlobSeer manages to decouple the accesses
and execute them with a minimal amount of synchronization. A read operation can
thus access data and metadata in a fully parallel manner with respect to writers.

4.2 Architecture

BlobSeer’s architecture (Figure 4.1) includes several entities whose implementation follows
the design principles described in the previous section.

Data providers. Their role is to provide physical storage to applications. The providers store
the chunks that contain application-level data. In a typical BlobSeer environment, data
providers are started one per node.

4.3 – Access interface to BLOBs 33

Figure 4.1: BlobSeer’s architecture.

The provider manager. This centralized entity is in charge of allocating newly-generated
chunks to data providers. It also maintains the information about the total stor-
age space available on all data providers. The provider manager assigns chunks to
providers in a round-robin manner, which leads to a uniform data distribution in terms
of number of chunks stored by each provider. This strategy aims at achieving load
balancing with respect to data providers.

Metadata providers. All the metadata regarding chunk location for each BLOB version are
stored by entities called metadata providers. Managing metadata in a distributed fash-
ion is a mechanism that enables the BlobSeer system to perform fast access to metadata.

The version manager. BLOB version numbers are assigned by a centralized version man-
ager, which is also responsible for ensuring consistency when concurrent writes to the
same BLOB are issued. It is typically hosted on a dedicated node.

Clients. A BlobSeer client is employed by the user to perform basic operations on BLOBs,
such as create, read, write and append.

4.3 Access interface to BLOBs

A client of BlobSeer manipulates BLOBs by using a simple interface that allows to: create
a new empty BLOB; append data to an existing BLOB; read/write a subsequence of bytes

34 Chapter 4 – BlobSeer

specified by an offset and a size from/to an existing BLOB. Each BLOB is identified by a
unique id in the system.

1 id ← CREATE()

By invoking the CREATE primitive, a new BLOB is created in the system: its size is set to 0
and its assigned identifier id is returned to the user for further access operations.

1 WRITE(id, buffer, offset, size)

2 APPEND(id, buffer, size)

Each write or append operation generates a new version of the BLOB, version that is
assigned a number. The version numbers are incrementally generated by the version man-
ager. Both WRITE and APPEND functions require the user to specify the BLOB id, and have as
effect the copying of size bytes of data from the user-supplied buffer to the corresponding
BLOB. In case of a write operation, the user must indicate the offset at which the data is to
be written in the BLOB. For the APPEND function, the offset is assumed to be at the end of the
BLOB.

1 READ(id, v, buffer, offset, size)

Reading data from a BLOB involves first identifying the BLOB and the required version,
by supplying the id and v parameters. If the v parameter is missing, the system assumes the
latest version of the BLOB is requested. The result of calling the READ function is the filling
of buffer with size bytes of data representing the contents of the BLOB (id, v) starting from
offset.

1 new_id ← CLONE(id, v)

The purpose of the CLONE primitive is to enable users to create a new BLOB starting from
an existing one. The new BLOB is a duplicate of the BLOB identified by (id, v). This function
creates a new BLOB with the same data as the specified BLOB and returns the identifier
assigned by the version manager. Any further updates to the original and new BLOBs are
independent from each other. By the means of CLONE, the two BLOBs can evolve in two
separate directions.

BlobSeer provides additional primitives that enable users to switch between BLOB ver-
sions, find out the size of a BLOB, get the total number of BLOBs in the system, etc.

4.4 How reads and writes are performed

Zooming on reads

To read data, the client must specify the version number one wants to read from, as well as
the offset and size of the range to be read. The client may also call a special primitive first,
to find out the latest version available in the system at the time this primitive was invoked.

4.4 – How reads and writes are performed 35

The corresponding distributed algorithm, describing the interactions between the client, the
version manager, the distributed data and metadata providers are presented and discussed
in detail in [62]. The main global steps can be summarized as follows.

• The client queries the version manager about the requested version of the BLOB.

• The version manager forwards the query to the metadata providers, which send to the
client the metadata that corresponds to the chunks that make up the requested range.

• When the location of all these chunks is determined, the client fetches the chunks from
the data providers.

• Those requests are sent asynchronously and processed in parallel by the data
providers. If the requests involve parts of a chunk and not the entire chunk, only
the required parts are sent to the client. If one of the requests fails, the whole read
operation is considered to have failed and an error code is returned to the client.

Zooming on writes

The write operation involves the following steps.

• The client first splits the data to be written into a list of chunks that correspond to the
requested range.

• Then, it contacts the provider manager, requesting a list of data providers capable of
storing the chunks: one provider for each chunk.

• The chunks are then written in parallel to the providers allocated by the provider man-
ager. If, for some reason, the writing of a chunk fails, then the whole write fails.

• Otherwise the client proceeds by contacting the version manager to announce its intent
to update the BLOB.

• Subsequently, the version manager assigns a new snapshot version number to the write
request. This number is used by the client to generate new metadata, weave them
together with existing metadata, and store them on the distributed metadata providers,
in order to create the illusion of a new standalone version.

• Once metadata were successfully written to the metadata providers, the client notifies
the version manager of success, and returns to the user.

Concurrent write requests are dealt with at the level of the version manager. The version
manager needs to keep track of all writers concurrently active, and delay completing a new
version until all writers that were assigned a lower version number reported success. The
detailed algorithm for writing is provided in [62].

The append operation is identical to the write operation, except for a single difference:
the offset of the range to be appended is unknown at the time the append is issued. It is
eventually fixed by the version manager at the time the version number is assigned. It is set
to the size of the version corresponding to the latest version number.

36 Chapter 4 – BlobSeer

4.5 Summary

This chapter introduces the BlobSeer system, an answer to the requirements yielded by the
management of data-intensive applications on large-scale infrastructures. One such require-
ment is efficiently dealing with massive data in large-scale distributed systems while main-
taining a high throughput for heavily concurrent, fine-grain data accesses. To address these
requirements, BlobSeer relies on a set of principles such as data striping, versioning, dis-
tributed metadata management, and others. The core of BlobSeer’s design is using ver-
sioning as a mechanism for concurrency control. This approach enables clients to perform
read/write accesses to data in a concurrent manner, with minimal synchronization.

Thanks to its features, BlobSeer is a suitable candidate to provide storage for MapReduce
applications. In the next part of this manuscript, we dedicate several chapters to exploring
the benefits BlobSeer can bring in the MapReduce context.

37

Part II

Contribution

39

Chapter 5
Designing a Concurrency-Optimized

File System for MapReduce
Frameworks

Contents
5.1 Dedicated file systems for MapReduce applications 40

5.1.1 Requirements for the storage layer . 40
5.1.2 File systems for MapReduce applications 40
5.1.3 The Hadoop Distributed File System - HDFS 42

5.2 The BlobSeer File System - BSFS . 43
5.2.1 Integrating BlobSeer with Hadoop . 43
5.2.2 The file system namespace manager 44
5.2.3 Data prefetching . 45
5.2.4 Data layout exposure . 45

5.3 Summary . 46

THIS chapter presents our contribution at the level of the storage layer for MapReduce
applications. We first investigate the specific features of MapReduce applications that
have an impact on the storage backend. In this chapter we also briefly discuss file sys-

tems belonging to various communities, that are successfully used as storage for frameworks
executing MapReduce jobs.

With this survey as a starting point, we designed and implemented a concurrency-
optimized file system for MapReduce frameworks. The BlobSeer system introduced in Chap-
ter 4 allowed us to efficiently deal with the challenges that arise along with the MapReduce
paradigm. We built the BlobSeer File System (BSFS) with the goal of providing high through-
put under heavy concurrency to MapReduce applications.

40Chapter 5 – Designing a Concurrency-Optimized File System for MapReduce Frameworks

5.1 Dedicated file systems for MapReduce applications

5.1.1 Requirements for the storage layer

There are a number of challenges to be addressed by the storage layer of MapReduce appli-
cations. Fine-grained access to huge files is required, since MapReduce applications deal with
a very large number of small records of data. Completing the application in a reasonable
amount of time requires the storage layer to sustain high throughput, while a large number of
clients access the same file concurrently.

One of the optimization techniques employed by the MapReduce framework is to ship
the computation to nodes that store the input data; the goal is to minimize data transfers
between nodes. For this reason, the storage layer must be able to provide the information
about the location of the data. This data distribution exposure helps the framework to schedule
tasks as close as possible to the data they need.

5.1.2 File systems for MapReduce applications

Data intensive scalable computing. Several distributed file systems emerged from the In-
ternet services community, to provide the right abstraction for the MapReduce paradigm.
These file systems were most often built from scratch, tailored to offer high performance in
specific usage scenarios and for specific application workloads.

To meet its storage needs, Google introduced the Google File System (GFS) [40], a dis-
tributed file system that supports large-scale data processing on commodity hardware. In
GFS, a file is split into 64 MB chunks that are placed on storage nodes, called chunkservers.
A centralized master server is responsible for keeping the file metadata and the chunk loca-
tions. To access a file, a client first contacts the master to get the chunkservers that store the
required chunks; all file I/O operations are then performed through a direct interaction be-
tween the client and the chunkservers. GFS is optimized for access patterns involving huge
files that are mostly appended to, and then read from. Fault tolerance is ensured through
chunk replication and data checksumming.

Google introduced MapReduce as a solution to the need to process datasets up to multi-
ple terabytes in size on a daily basis. Although MapReduce is not restricted to work exclu-
sively with GFS as storage, there are however some advantages when using a DFS with a
design similar to GFS’s. Firstly, the MapReduce framework takes advantage of data striping
and chunk-level replication to efficiently schedule mappers. Secondly, GFS’s fault tolerant
techniques improve the execution of MapReduce applications when a failure occurs. For
example, since the reducers write their output to GFS, data availability is ensured; in case
of a reducer failure, the data generated up to the point of failure is not lost and the reduce
computation can resume on another node. Thirdly, using the same nodes for both process-
ing and storing data (thus placing computation close to data) brings significant performance
benefits in terms of high throughput.

High performance computing. Distributed file systems belonging to the HPC community
are also good candidates for supporting data-intensive workloads. Such file systems that
were adapted to fit the needs of MapReduce applications are PVFS (Parallel Virtual File
System) [11] and GPFS (General Parallel File System) [70].

5.1 – Dedicated file systems for MapReduce applications 41

GPFS [70] is part of the shared-disk file systems class that use a pool of block-level storage,
shared and distributed across all the nodes in the cluster. The shared storage can be directly
accessed by clients, with no interaction with any intermediate server. The integration of
GPFS with the Hadoop framework has to address two main issues. Firstly, GPFS supports
a maximal block size of 16 MB, whereas Hadoop often makes use of data in 64 MB chunks;
IBM solved this issue by adding a new concept, metablocks, that meant keeping the small
block size (512 KB-2 MB), but changing the block allocation policy, so that contiguous blocks
are placed on the same node. The second problem concerns the data layout the Hadoop’s
jobtracker must be aware of. Since GPFS exposes a POSIX interface, this aspect was solved
by introducing a new GPFS function.

PVFS [11] is an object-based file system that separates the nodes that store the data from the
ones that store the metadata (file information, and file block location). When a client wants
to access a file, it must first contact the metadata server and then directly access the data on
the data servers indicated by the metadata server. In order to be used as a storage back-end
for Hadoop, some functionalities were added to PVFS [77], through an additional layer built
on top of it: readahead buffering, data layout exposure and replication emulation.

Cloud computing. The MapReduce paradigm has also been adopted by the cloud com-
puting community as a support to those cloud-based applications that are data-intensive.
Cloud providers support MapReduce computations so as to take advantage of the huge
processing and storage capabilities the cloud holds, but at the same time, to provide the
user with a clean and easy to use interface. There are several options for running MapRe-
duce applications in clouds: renting cloud resources and deploying a cluster of virtualized
Hadoop instances on top of them, using the MapReduce service some clouds provide, or
using MapReduce frameworks built on cloud services.

The first option consists in using cloud resources to create a Hadoop cluster. Setting up
a Hadoop cluster is the typical scenario of using Hadoop, and implies the same process in a
virtualized environment as it does in a non-virtualized one: assigning Hadoop roles to the
cluster nodes and then launching the processes as configured by the first step.

Amazon released Elastic MapReduce [3], a web service that enables users to easily and
cost-effectively process large amounts of data. The service consists in a hosted Hadoop
framework running on Amazon’s Elastic Compute Cloud (EC2) [2]. Amazon’s Simple Stor-
age Service (S3) [4] serves as storage layer for Hadoop. The S3 file system stores files as
objects, using the key-value abstraction: the filename is used as the key, whereas the file con-
tent is the value. Files can be created, listed, and retrieved using either a REST-style HTTP
interface or a SOAP interface. S3’s design aims to provide scalability, high availability and
low latency at commodity costs. There are two ways of using S3 with Elastic MapReduce.
The first option is to use S3 as a replacement for HDFS, and thus, having Hadoop’s mappers
read the input data directly from S3, while the reducers write the output data to S3. The
second possibility is to have the input data in S3, but transfer it to HDFS before performing
the computation with Hadoop, and then retrieve the output files from HDFS and store them
in S3. Since S3 is not optimized for MapReduce access patterns, using the first method is
recommended only when the cost of moving the data from S3 to HDFS is too great (the data
is too large) and for long-running applications that query the datasets periodically.

AzureMapReduce [42] is an implementation of the MapReduce programming model,

42Chapter 5 – Designing a Concurrency-Optimized File System for MapReduce Frameworks

Client

Metadata

M
e
ta

d
a
ta

 o
p
e
ra

tio
n
s

Chunk
opera

tio
ns

W
rit

e

Replication

Chunks

Figure 5.1: The Hadoop Distributed File System (HDFS).

based on the infrastructure services the Azure cloud [17] offers. The framework uses the
Azure Blob as storage layer, which is a service that provides distributed storage where users
can store and retrieve any type of data through a web services interface. The Azure plat-
form offers two types of blobs as storage options: block blobs and page blobs. The user
selects a type of blob, depending on the way the data will be accessed, that is, block blobs
for streaming data access and page blobs for random read/write operations. Azure’s in-
frastructure services are built to provide scalability, high throughput and data availability.
These features are used by the AzureMapReduce runtime as mechanisms for achieving fault
tolerance and efficient data processing at large scale.

5.1.3 The Hadoop Distributed File System - HDFS

The Hadoop Distributed File System (HDFS) [7] is part of the Hadoop project. Its design
aims at providing storage for huge files with streaming data access patterns, while running on
clusters of commodity hardware. Like most distributed file systems, HDFS stores files that can
reach petabytes in size and that are processed in a write-once, read-many-times manner. In
HDFS, files are typically generated or transferred from source and they are rarely modified
over time; these datasets are usually read several times by applications that perform compu-
tations on them. HDFS is designed to work on inexpensive hardware, which implies that the
system has to manage failures in a user-transparent way. HDFS uses the same design con-
cepts as GFS: data is organized into files and directories, a file is split into fixed-size blocks
that are distributed across the cluster nodes. The blocks are called chunks and are usually of
64 MB in size (this parameter specifying the chunk size is configurable).

Figure 5.1 shows the architecture of HDFS, designed after the master-slave model. The
nodes in a HDFS cluster that store the chunks are called datanodes. A centralized namenode
is responsible for keeping the file metadata and the chunk location. Figure 5.1 also shows
the interactions between a client and the file system entities: when accessing a file, a client
first contacts the master to obtain the list of datanodes that store the required chunks; all
file I/O operations are then performed through a direct interaction between the client and

5.2 – The BlobSeer File System - BSFS 43

replace

Figure 5.2: Hadoop’s core: the MapReduce framework and the storage layer.

the datanodes. HDFS handles failures through chunk-level replication (3 replicas are kept
by default). When distributing the replicas to the datanodes, HDFS employs a rack-aware
policy: the first copy is always written locally, the second copy is stored on a datanode in
the same rack as the first replica, and the third copy is shipped to a datanode belonging to a
different rack (randomly chosen). The namenode decides and maintains the list of datanodes
that store the replicas of each chunk.

Like most file systems developed by the Internet services community, HDFS is optimized
for specific workloads and has different semantics than the POSIX-compliant file systems.
HDFS does not support concurrent writes to the same file. Moreover, once a file is created,
written and closed, the data cannot be overwritten nor appended to. HDFS is not optimized
for small I/O operations, however it uses client- side buffering to improve the throughput.
Clients buffer all write operations until the data reaches the size of a chunk (64 MB). HDFS
also implements readahead buffering: when HDFS receives a read request for a small block,
it prefetches the entire chunk that contains the required block. Another technique HDFS uses
to achieve an overall high throughput, is to expose the data layout to the Hadoop sched-
uler (the jobtracker). When distributing the chunks among datanodes, HDFS picks random
servers to store the data, which will often lead to a layout that is not load balanced. To make
up for this, the scheduler will try to place the computation as close as possible to the needed
data. HDFS provides the information about the location of each chunk, and the jobtracker
will use it to execute tasks on datanodes in such way as to improve load balancing across all
nodes.

5.2 The BlobSeer File System - BSFS

5.2.1 Integrating BlobSeer with Hadoop

The core of the Hadoop project consists of two main components: the Hadoop MapReduce
framework and the Hadoop Distributed File System. The latter of the two, HDFS, can be
used outside the project, as a stand-alone DFS; furthermore, Hadoop’s implementation of
the MapReduce programming model can operate with a storage layer other than HDFS.
This is possible since the two components are connected through a set of file system inter-
faces specified within the Hadoop project. Figure 5.2 shows the general layout of the main
Hadoop components. The file system API contains a set of Hadoop-specific interfaces that

44Chapter 5 – Designing a Concurrency-Optimized File System for MapReduce Frameworks

basically define standard file system operations (create, read, write, etc). Through this inter-
face, during the execution of an application, the Hadoop MapReduce framework accesses
the underlying DFS for creating job-specific files, storing temporary files, reading the input
data for processing and finally, writing the output data it produced.

The contribution presented in this chapter is at the level of the storage layer in the
Hadoop stack. As Figure 5.2 shows, we replace the default backend of Hadoop, HDFS,
with a file system built on top on BlobSeer, file system that we called BSFS.

Figure 5.3: BlobSeer’s architecture. The BSFS layer enables Hadoop to use BlobSeer as a
storage backend through a file system interface.

In order to use BlobSeer as storage layer for the Hadoop MapReduce framework, we
implemented this API on top of BlobSeer (Figure 5.3). Prior systems like the Kosmos File
System (KFS) [5] and Amazon S3 [4] have used this file system API to build backend stores
for Hadoop applications. The layer we added on top of BlobSeer, as well as some optimiza-
tion techniques are detailed in the following.

5.2.2 The file system namespace manager

Our BlobSeer-based DFS consists in a layer added on top of the BlobSeer storage system,
that also implements the file system operations specified by the Hadoop API. We designed
a centralized entity that has several roles:

Managing the file system namespace : The BSFS layer keeps the file system metadata and
directory structure, i.e., the information regarding file properties and the hierarchy of
files and directories.

Mapping files to BLOBs : BlobSeer offers a flat storage space, in which data is kept in
BLOBs uniquely identified in the system by a key. In order to use BlobSeer as a regular
DFS, BSFS maps each file to a BLOB, by associating the file name to the BLOB id.

Implementing the Hadoop API : By implementing the file system interface through which
Hadoop accesses its storage backend, BSFS can serve as storage for MapReduce appli-
cations run on top of Hadoop. Moreover, BSFS can act as a stand-alone DFS that can
be accessed through an HDFS-like file system interface.

5.2 – The BlobSeer File System - BSFS 45

Namespace Manager

Figure 5.4: BSFS - the namespace manager.

The BSFS layer, shown in Figure 5.4, keeps the interaction between clients and the names-
pace manager to the minimum. Clients interact with the namespace manager only for op-
erations concerning the file system metadata; data accesses are performed through a direct
communication between the client and the BlobSeer storage nodes.

5.2.3 Data prefetching

When running MapReduce applications with Hadoop, the data stored in the backend DFS
is processed in small records of 4 KB. More precisely, in the Hadoop MapReduce frame-
work, each mapper has to execute the “map” function specified by the user, on its assigned
chunk(s). However, the mapper reads each chunk sequentially in blocks of 4 KB and then
applies the “map” function to this piece of data. Instead of performing small reads on the
data stored in the file system, HDFS prefetches the entire chunk of 64 MB containing the
requested data. The prefetching is done in an asynchronous manner, but the read requests
are then served synchronously from the buffer. The same buffering mechanism is employed
by HDFS when the reducers produce their outputs and write them to HDFS. Since it reduces
the file system overhead, this technique, shown on Figure 5.5, becomes an important factor
in achieving performance in terms of high I/O throughput.

Our BSFS layer implements this optimization technique as client-side buffering. This
consists in prefetching a whole chunk when a read of 4 KB is issued, and in collecting the
small records issued as final output until the data collected reaches at least the size of a chunk
(64 MB by default). Hence, the actual reads and writes from/to the underlying storage layer
are performed on data large enough to compensate for network traffic overhead.

5.2.4 Data layout exposure

In a regular Hadoop deployment, the physical machines in the cluster are used for both
computation and data storage. The Hadoop MapReduce framework takes advantage of this
deployment model to collocate computations with the data they work on. This is actually
one of the goals of MapReduce frameworks, i.e., to minimize the transfer of large amounts

46Chapter 5 – Designing a Concurrency-Optimized File System for MapReduce Frameworks

read 4KB write 4KB

Figure 5.5: Client-side buffering. The DFS client buffers small data requests to reach a chunk
size(64 MB).

of data by shipping computations instead. For Hadoop, this approach is beneficial since
it comes as a mechanism for achieving overall load balancing. In Hadoop, there are two
operations that determine the load of the nodes: the write operation and the scheduling
mechanism. We further discuss how each of the two influences the load.

When a file is written to HDFS, the namenode employs a random chunk distribution
policy which consists in randomly choosing the datanodes to store the chunks of a file. This
policy does not aim at balancing the load of the nodes, furthermore, in most cases, it will
lead to a non-uniform data layout. Since the namenode is aware of the mapping of chunks
to datanodes, it can expose this information to the Hadoop MapReduce framework.

In particular, the jobtracker uses the chunk layout to determine how to dispatch map
tasks to datanodes; each mapper is assigned a chunk to process and the jobtracker tries
to run the mapper on the datanode storing the appropriate input chunk. This scheduling
policy tries to compensate for the unbalanced data distribution across datanodes, and to
achieve overall load balancing.

The Hadoop file-system API specifies a primitive that exposes the data layout in the
underlying DFS. By calling this primitive, the jobtracker becomes aware of the way data
was split into blocks and the exact location of each block. In order to provide the same
functionality to Hadoop in our BSFS implementation, we extended the BlobSeer API with
a new primitive. This primitive returns for a given data range in a BLOB, the list of pages
comprised in that range, as well as the addresses of the providers that store the pages. This
information is retrieved by the jobtracker when calling the primitive specified by the API,
and is used to schedule map tasks in an efficient manner.

5.3 Summary

The work described in this chapter addresses the problem of how to efficiently provide stor-
age for MapReduce frameworks. We particularly focus on the Hadoop MapReduce frame-
work and its underlying storage layer, HDFS. Our contribution consists in integrating Blob-
Seer with Hadoop, by building a BlobSeer-based file system, BSFS, that can successfully be
used as storage backend for MapReduce applications executed with Hadoop. BSFS can be

used as both a stand-alone DFS and as a replacement for HDFS in the Hadoop framework.
BSFS takes advantage of BlobSeer’s features to provide high I/O throughput and to sus-
tain it under highly-concurrent access to data. The benefits of using BSFS as storage layer
for MapReduce applications were validated through large-scale experiments; these tests de-
tailed in Chapter 9 compare BSFS and HDFS in different scenarios. Apart from the significant
speed-up of Hadoop’s performance shown by the results we obtained, BSFS has additional
functionalities that HDFS does not support: concurrent appends, concurrent writes at ran-
dom offsets and versioning. In the next chapters of this manuscript, we show how some
of these functionalities can be exploited as extensions and improvements at the level of the
MapReduce framework. Contributors to this work include Bogdan Nicolae, Gabriel Antoniu
and Luc Bougé.

48Chapter 5 – Designing a Concurrency-Optimized File System for MapReduce Frameworks

49

Chapter 6
Optimizing Intermediate Data

Management in MapReduce
Computations

Contents
6.1 Intermediate data in MapReduce computations 49
6.2 Intermediate data generated inside the same job 51

6.2.1 Intermediate data management in Hadoop 51
6.2.2 Using BlobSeer as storage for intermediate data 52

6.3 Intermediate data generated between jobs of a pipeline application 55
6.3.1 Pipeline MapReduce applications . 55
6.3.2 Introducing dynamic scheduling of map tasks in Hadoop 56
6.3.3 Our approach . 57

IN this chapter, we study several aspects related to intermediate data management in
MapReduce frameworks. We first define intermediate data in the MapReduce context
and analyze its characteristics, with an emphasis on the issues this type of data raises.

The work presented in this chapter addresses intermediate data at two levels: inside the
same job, and during the execution of pipeline applications.

6.1 Intermediate data in MapReduce computations

MapReduce applications, as well as other cloud data flows, consist of multiple stages of
computations that process the input data and output the result. At each stage, the compu-
tation produces intermediate data that is to be processed by the next computing stage. This

50 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

type of data is transferred between stages and has different characteristics from the ones of
meaningful data (the input and output of an application). While the input and output data
are expected to be persistent and are likely to be read multiple times (during and after the
execution of the application), intermediate data is transient data that is usually written once,
by one stage, and read once, by the next stage.

In this chapter, we consider two categories of intermediate data: the intermediate data
generated inside the same MapReduce job and the intermediate data produced between
successive MapReduce jobs that represent the stages of a pipeline application.

Intermediate data produced within a single MapReduce application take the form of
key/value pairs generated by the map phase of the application. All intermediate values
associated with the same intermediate key are grouped together and shipped to the reduce
function. Section 6.2 of the chapter focuses on this type of intermediate data.

In the case of pipeline MapReduce applications, the data produced by one job represents
the input to the next job in the pipeline. This data is considered to be intermediate data and
in most cases, is not relevant for the user. We elaborate on the case of pipeline MapReduce
applications in Section 6.3.

Motivating scenario - effect of failures

The importance of intermediate data management is best illustrated when considering fail-
ures. Actually, storing intermediate data on the local disk of the tasktrackers, impacts
Hadoop’s performance when failures occur. When running a MapReduce job with Hadoop,
failures can have multiple causes: bugs in the user code, crashing processes and machines,
etc. As far as intermediate data is concerned, failures can be fatal at two points during the
job’s execution: when the tasktracker is in the process of running the map function and is
writing the intermediate data to disk, and when the reducers are copying the map output
data to their local file system.

In both cases, a mapper-node failure makes the “map” output data unavailable. The in-
termediate data (partially or completely generated up to the moment the failure occurred)
stored on the failed mapper’s local disk is lost. Consequently, the reducers are not able to
transfer the data and proceed further in the computation. The policy Hadoop uses in this sit-
uation, is to restart the execution of the failed mapper on another node. When the jobtracker
becomes aware of a tasktracker failure, it simply reschedules all the “map” tasks that were
run and successfully completed on that tasktracker, to be rerun if they belong to incomplete
jobs. This restart mechanism is necessary as the intermediate output residing on the failed
tasktracker’s local file system is no longer accessible. Although this approach exempts the
user from the burden of handling failures, it also generates unsatisfactory consequences. In
our context, this approach implies re-generating the intermediate data, which is an overhead
that results in additional runtime.

As it was targeted towards commodity hardware, MapReduce has to deal with frequent
failures in a user-transparent manner. Several research studies show that failures are the
norm, rather than the exception. In [27], it is reported that for a system with 10 thousands of
super reliable servers (MTBF of 30 years), there is one failure per day. Also, every year, 1–5 %
of disk drives crash, while servers crash at least twice with a failure rate of 2–4 %. According
to Google’s experiences with MapReduce, failures happen much more often on commodity

6.2 – Intermediate data generated inside the same job 51

machines: an average of 5 worker deaths out of 268 machines per job in March 2006 [28],
and at least one disk crash in every run of a 6-hour MapReduce job with 4,000 machines [14].
In [52], the authors study the effect of failures on the total execution time. Their results
show that for a single Hadoop job, a single machine failure leads to a 50 % increase in job
completion time. Also, the work in [74] reports that a single machine failure can increase the
completion time of Tera-sort by 39 % and 44 % on a 72-node cluster and a 20-node cluster,
respectively.

6.2 Intermediate data generated inside the same job

In order to address the issues described in section 6.1, we propose to store the intermediate
data in a distributed file system (DFS) that is able to ensure data availability with a mini-
mal impact on efficiency at the level of the framework. Distributed file systems designed for
data-intensive applications provide data availability through replication, as well as high I/O
throughput under heavy access concurrency. By storing intermediate data in a DFS, a map-
per failure will have a far lesser impact on the job execution time, as the data produced up
to that point will not be lost. The framework could schedule the failed map task to resume
on another node, from where the failed tasktracker left off.

The real challenge is to select a DFS that fits the specific features of intermediate data and
also optimally satisfies the availability and efficiency requirements.

We further focus on the Hadoop project - the reference implementation of the MapRe-
duce paradigm - and we analyze how intermediate data is handled in the Hadoop frame-
work.

6.2.1 Intermediate data management in Hadoop

Each tasktracker executes the map user-defined function on its assigned data chunk; the
output is sorted by key and then transferred to the reducers as input. The process through
which the data is sorted and pipelined from the mappers to the reducers, is called the shuffle
phase and is an essential part of the Hadoop core. On the map side, the outputs are written to
the local filesystem of the tasktracker running the map function. The tasktracker notifies the
jobtracker upon successful completion of a map task, so that the jobtracker becomes aware
of the mapping between map outputs and the nodes that store them.

Each reducer is assigned a partition of keys to process in the reduce phase. The partition
contains key/value pairs residing on the local disk of multiple tasktrackers across the cluster.
Furthermore, the mappers will probably complete their execution at different times, so the
reduce task starts copying the outputs it needs, as soon as they become available. The map
outputs are copied to the local filesystem of the reducer via HTTP. Tasktrackers do not delete
map outputs from disk as soon as the reducer has retrieved them, as the reducer may fail.
Instead, they wait until the jobtracker notifies them to delete the copied files, which is done
only after the job has completed. The output of the reduce phase is written to a distributed
file system (by default, HDFS).

52 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

(a) Map side

(b) Reduce side

Figure 6.1: Intermediate data in the original Hadoop MapReduce framework.

6.2.2 Using BlobSeer as storage for intermediate data

Our proposal consists in using BlobSeer as storage layer for the intermediate data gener-
ated by MapReduce applications. We specifically focus on evaluating our approach within
the Hadoop project. To meet this goal, we extended the Hadoop project at two levels: the
MapReduce framework and the storage layer. Firstly, we modified the Hadoop MapReduce
framework to store the intermediate data in a DFS. Secondly, we developed the BlobSeer File
System, that allows BlobSeer to serve as storage layer for Hadoop. The latter of the two steps
is described in Chapter 5, whereas the extensions at the level of the MapReduce framework
are described in the following.

Modifying Hadoop to store intermediate data in a DFS

In the original Hadoop MapReduce framework, the output of a mapper goes through sev-
eral phases from the moment it is produced and until it is written to the local disk of the
tasktracker. Those steps are illustrated on Figure 6.1(a) and detailed below.

• As it is being generated, the output of each map task is written to a dedicated memory
buffer of configurable size (default 100 MB).

• When the buffer reaches a certain threshold, the content is divided into partitions cor-
responding to the reducers that will process them. The data is partitioned according to
a partitioning function specified by the user, or by default, a hash function on the keys.

6.2 – Intermediate data generated inside the same job 53

• The data within each partition is then sorted by key.

• The partitions in the buffer are then flushed to a job-specific directory on disk; each
time the buffer is flushed, a new spill file is created.

• Before the “map“ task completes, all the spill files are merged into a single partitioned
and sorted file.

When it successfully completes, each mapper sends a notification to the jobtracker. Thus,
the jobtracker keeps track of the map output each tasktracker stores locally and is able to
inform reducers where their assigned input data resides.

(a) Map side

(b) Reduce side

Figure 6.2: Intermediate data in the modified Hadoop MapReduce framework.

On the reduce side, the process is shown on Figure 6.1(b). It consists of several steps:

• Each partition in this map output file is copied by its assigned reducer over HTTP. A
reduce task starts copying in parallel all the map output files it needs to process, as
soon as they become available.

• The map output data is copied to a memory buffer which is then merged and spilled
to disk whenever it reaches a threshold size.

• As the spills accumulate on disk, the tasktracker merges them into larger, sorted files.
The merging process is done in stages, for efficiency reasons. We do not go into details

54 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

concerning this aspect, as it is a complex process which is not relevant to the focus of
the work presented in this chapter.

• The tasktracker applies the “reduce” function on each (key, value) pair in the sorted
files that are yielded by the merging phase. The output data is written to the underly-
ing DFS, in the output directory specified by the job.

We modified the Hadoop MapReduce framework to store the intermediate data gener-
ated by the mappers and processed by the reducers, in the distributed file system (DFS) used
as storage backend. Figure 6.2 describes the changes we made:

• We modified the mapper code to write the output to the DFS, after all the spill files are
merged and sorted. When the mapper finishes the processing, it combines all the spills
accumulated on disk, and creates a single sorted file that is written directly to the DFS.

• On the reducer side, we adjusted the code to read the output data it needs from the
files in the DFS into the memory buffer. Each reducer reads the data in the partitions
they have to process, from all the map output files in the DFS, as soon as they are ready.

These modifications were possible also because we kept some useful naming and com-
munication mechanisms from the original Hadoop version.

• In the original Hadoop framework, each map task is given a unique identifier. The out-
put of each mapper is stored on disk under a naming scheme that uses this identifier.
In our modified Hadoop, we store each map output file into the DFS by preserving the
path and the name under which the file was stored on disk, in the original version of
Hadoop.

• The original jobtracker - tasktracker communication protocol requires the jobtracker
to send the reducer the list of addresses of the nodes that store the map output data.
We modified this communication layer to send the list of file names in the DFS, in-
stead of network addresses. Next, instead of copying the files from the mappers’ local
filesystem, the tasktracker starts reading data from the specified files stored in the DFS.

Summary

The work presented here brings a twofold contribution. First, we investigate the features of
intermediate data in MapReduce computations and we propose a new approach for storing
this kind of data in a DFS. In this manner, we avoid the re-execution of tasks in case of failures
that lead to data loss. Second, we consider the BSFS file system as storage for intermediate
data. It is shown to be suitable for the requirements of intermediate data: availability and
high I/O access. This work was carried out in collaboration with Thi-Thu-Lan Trieu during
her master internship at INRIA Rennes.

6.3 – Intermediate data generated between jobs of a pipeline application 55

input

data

output

data

Figure 6.3: A pipeline MapReduce application.

6.3 Intermediate data generated between jobs of a pipeline appli-
cation

6.3.1 Pipeline MapReduce applications

Many of the computations that fit the MapReduce model, cannot be expressed as a single
MapReduce execution, but require a more complex design. These applications that consist of
multiple MapReduce jobs that are chained into a long-running execution, are called pipeline
MapReduce applications. Figure 6.3 illustrates the data flow between the jobs in the pipeline.
Each stage in the pipeline is a MapReduce job (with 2 phases, “map” and “reduce”), and the
output data produced by one stage is fed as input data to the next stage in the pipeline. Usu-
ally, pipeline MapReduce applications are long-running tasks that generate large amounts
of intermediate data (the data produced between stages).

However, there are only few scenarios in which users directly design their application
as a pipeline of MapReduce jobs. Most of the use cases of MapReduce pipelines come from
applications that translate into a chain of MapReduce jobs. One of the drawbacks of the ex-
treme simplicity of the MapReduce model is that it cannot be straightforwardly used in more
complex scenarios. For instance, in order to use MapReduce for higher-level computations
(for example, the operations performed in the database domain) one has to deal with issues
like multi-stage execution plan, branching data-flows, etc. The trend of using MapReduce
for database-like operations led to the development of high-level query languages that are
executed as MapReduce jobs, such as Hive [71], Pig [64], and Sawzall [66].

Pig is a distributed infrastructure for performing high-level analysis on large data sets. The
Pig platform consists of a high-level query language called PigLatin and the framework
for running computations expressed in PigLatin. The PigLatin language is considered
to be a compromise between SQL and MapReduce. Programs written in PigLatin com-
prise SQL-like high-level constructs for manipulating data that are interleaved with
MapReduce-style processing.

The Pig framework compiles these programs into a pipeline of MapReduce jobs that
are executed within the Hadoop MapReduce environment. Pig takes care of gener-
ating the execution plan (the pipeline of jobs), of submitting the jobs to Hadoop and
finally, of monitoring and reporting the status of the workflow. Since it uses Hadoop as
execution environment, Pig inherits Hadoop’s properties, such as scalability and fault
tolerance.

56 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

Figure 6.4: Executing a pipeline MapReduce application with Hadoop. The execution of
each job is started only when the previous job has completed.

6.3.2 Introducing dynamic scheduling of map tasks in Hadoop

In a pipeline of MapReduce applications, the intermediate data generated between the stages
represent the output data of one stage and the input data for the next stage. The intermediate
data is produced by one job and consumed by the next job in the pipeline. When running
this kind of applications in a dedicated framework, the intermediate data is usually stored
in the distributed file system that also stores the user input data and the output result. This
approach ensures intermediate data availability, and thus, provides fault tolerance, a very
important factor when executing pipeline applications.

However, using MapReduce frameworks to execute pipeline applications raises perfor-
mance issues, since MapReduce frameworks are not optimized for the specific features of
intermediate data. The main performance issue comes from the fact that the jobs in the
pipeline have to be executed sequentially. Figure 6.4 shows the process of executing pipeline
applications with Hadoop. Considering the case of Hadoop, and the fact that intermediate
data is stored in HDFS, a job cannot start until all the input data it processes has been gen-
erated by the job in the previous stage of the pipeline. Consequently, Hadoop runs only one
job at a time, which results in inefficient cluster utilization and basically, a waste of resources.

As shown on Figure 6.4, each job in the pipeline consists in a “map“ and a “reduce“
phase. The “map” computation is executed by Hadoop tasktrackers only when all the data
it processes is available in the underlying DFS. Thus, the mappers are scheduled to run
only after all the reducers from the preceding job have completed their execution. This sce-
nario is also representative for a Pig processing: the jobs in the logical plan generated by
the Pig framework are submitted to Hadoop sequentially. In consequence, at each step of
the pipeline, at most the “map” and “reduce” tasks of the same job are being executed (Fig-
ure 6.5). Running the mappers and the reducers of a single job involves only a part of the
nodes in the Hadoop cluster. The rest of the computational and storage cluster capabilities
remains idle.

6.3 – Intermediate data generated between jobs of a pipeline application 57

HDFS HDFS

Figure 6.5: Sequential execution of jobs in a pipeline application.

Client Jobtracker
submit job

create Map

and Reduce tasks

add job to

scheduling queue

dispatch

tasks

Figure 6.6: Job submission process in Hadoop.

6.3.3 Our approach

In order to speed-up the execution of pipeline MapReduce applications, and also to improve
cluster utilization, we propose an optimized Hadoop MapReduce framework, in which the
scheduling is done in a dynamic manner. For a better understanding of our approach, we
first detail the process through which “map” and “reduce” tasks are created and scheduled
in the original Hadoop MapReduce framework.

Figure 6.6 displays the job submission process:

• the user specifies the “map” and “reduce” computations of the application it wants to
execute;

• the Hadoop client generates all the job-related information (input and output directo-
ries, data placement, etc.) and then submits the job for execution to the jobtracker;

• the jobtracker creates the list of tasks for the submitted job. The number of “map” tasks
is equal to the number of chunks in the input data, while the number of “reduce” tasks
is computed by taking into account various factors, such as the cluster capacity, the
user specification, etc.

• the list of tasks is added to the job queue that the jobtracker holds;

• the jobtracker makes use of the job queue to schedule jobs for execution on tasktrack-
ers. The tasks of the currently scheduled job are dispatched to tasktrackers.

In the Hadoop MapReduce framework, the “map” and “reduce” tasks are created by the
jobtracker when the job is submitted for execution. When they are created, the “map” tasks

58 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

Figure 6.7: Dynamic creation of “map” tasks.

require to know the location of the chunks they will work on. In the context of multiple jobs
executed in a pipeline, the jobs are submitted to the jobtracker sequentially, as the chunk-
location information is available only when the previous job completes.

Our approach is based on the remark that a “map” task is created for a single input
chunk. It only needs to be aware of this very chunk location. Furthermore, when it is created,
the only information that the “map” task requires, is the list of nodes that store the data in
its associated chunk. We modified the Hadoop MapReduce framework to create “map”
tasks dynamically, that is, as soon as a chunk is available for processing. This approach can
bring substantial benefits to the execution of pipeline MapReduce applications. Since the
execution of a job can start as soon as the first chunk of data is generated by the previous
job, the total runtime is significantly reduced. Additionally, the tasks belonging to several
jobs in the pipeline can be executed at the same time, which leads to a more efficient cluster
utilization.

The modifications and extensions of the Hadoop MapReduce framework that we pro-
pose, are further presented.

Job-submission process

Client side. On the client side, we modified the submission process between the Hadoop
client and the jobtracker. Instead of waiting for the execution to complete, the client
launches a job monitor that reports the execution progress to the user. With this ap-
proach, a pipeline MapReduce application employs a single Hadoop client to run the
application. The client submits all the jobs in the pipeline from the beginning, instead
of submitting them sequentially. For an application like the one shown on Figure 6.3,
the modified Hadoop client submits the whole set of jobs job1...jobn for execution.

Jobtracker side. The job-submission protocol is similar to the one displayed on Figure 6.6.
However, at submission time, only input data for job1 is available in the DFS. Regard-
ing job2...jobn, the input data has to be generated throughout the pipeline. Thus, the
jobtracker creates the set of “map” and “reduce” tasks only for job1. For the rest of

6.3 – Intermediate data generated between jobs of a pipeline application 59

Example 4 Report output size (on tasktracker)
1: procedure CommitTask

2: (size, f iles)← tasktracker.writeReduceOutputData()
3: jobtracker.transmitOutputIn f o(size, f iles)
4: end procedure

the jobs, the jobtracker creates only “reduce” tasks, while “map” tasks will be created
along the pipeline, as the data is being generated.

Job scheduling

Tasktracker side: For a jobi in the pipeline, the data produced by the job’s “reduce” phase
(reducei) represents the input data of jobi+1’s “map” task (mapi+1). When reducei is
completed, the tasktracker writes the output data to the backend storage. We modified
the tasktracker code to notify the jobtracker whenever it successfully completes the
execution of a “reduce” function: the tasktracker informs the jobtracker about the size
of the data produced by the “reduce” task.

Jobtracker side: In our modified framework, the jobtracker keeps track of the output data
generated by reducers in the DFS. This information is important for the scheduling of
the jobs in the pipeline, as the output directory of jobi is the input directory of jobi+1.
Each time data is produced in jobi’s output directory, the jobtracker checks to see if
it can create new “map” tasks for jobi+1. If the data accumulated in jobi+1’s input
directory is at least of the size of a chunk, the jobtracker creates “map” tasks for the
newly generated data. For each new chunk, the jobtracker creates a “map” task to
process it. All the “map” tasks are added to the scheduling queue and then dispatched
to idle tasktrackers for execution.

Figure 6.7 summarizes these interactions. The arrows in red mark additional steps intro-
duced in our modified framework.

The modifications on the tasktracker side are described in Algorithm 4. We extended the
code with a primitive that sends to the jobtracker the information about the “reduce” output
data: the files written to the DFS and the total size of the data.

Algorithm 5 shows the process of updating a job with information received from task-
trackers. The algorithm is integrated in the jobtracker code, mainly in the scheduling phase.
The jobtracker also plays the role of task scheduler. It keeps a list of data written to the input
directory of each job. For each received update, the jobtracker checks if the data in the job’s
input directory reaches at least a chunk in size (64 MB default). If it is the case, “map” tasks
will be created, one per each new data chunk. Otherwise, the job’s information is stored for
subsequent processing.

The mechanism of creating “map” tasks is presented in Algorithm 6, executed by the
jobtracker, and integrated into the job code. We extended the code so that each job holds
the list of files that were generated so far in the job’s input directory. When the jobtracker
computes that at least a chunk of input data has been generated, new “map” tasks are created
for the job. The data in the files is split into chunks. A “map” task is created for each

Example 5 Update job (on jobtracker)
1: procedure transmitOutputInfo(size, f iles)
2: invoke updateJob(size, files) on taskscheduler

3: end procedure

4: procedure updateJob(size, f iles)
5: for all job ∈ jobQueue do
6: dir ← job.getInputDirectory()
7: if dir = getDirectory(f iles) then
8: if writtenBytes.contains(dir) = False then
9: writtenBytes.put(dir, size)

10: else
11: allBytes← writtenBytes.get(dir)
12: writtenBytes.put(dir, allBytes + size)
13: end if
14: allBytes← writtenBytes.get(dir)
15: if allBytes ≥ CHUNK_SIZE then
16: b← job.createMapsForSplits(f iles)
17: writtenBytes.put(dir, allBytes− b)
18: else
19: job.addToPending(f iles)
20: end if
21: end if
22: end for
23: end procedure

chunk and the newly launched tasks are added to the scheduling queue. The jobtracker also
informs the “reduce” tasks that the number of “map” tasks has changed. The reducers need
to be aware of the number of mappers of the same job, as they have to transfer their assigned
part of the output data from all the mappers to their local disk.

Summary

Section 6.3 of this chapter addresses a special class of MapReduce applications, i.e., applica-
tions that consist of multiple jobs executed in a pipeline. In this context, we propose several
optimizations in the Hadoop MapReduce framework in order to improve its performance
when executing pipelines. Our proposal consists mainly of a new mechanism for creating
tasks along the pipeline, as soon as their input data become available. This dynamic task
scheduling leads to an improved performance of the framework, in terms of job completion
time. In addition, our approach ensures a more efficient cluster utilization, with respect to
the amount of resources that are involved in the computation.

6.3 – Intermediate data generated between jobs of a pipeline application 61

Example 6 Create map tasks (on job)
1: procedure addToPending(f iles)
2: pendingFiles.addAll(f iles)
3: end procedure

4: function createMapsForSplits(f iles) returns splitBytes

5: pendingFiles.addAll(f iles)
6: splits← getSplits(pendingFiles)
7: pendingFiles.clear()
8: newSplits← splits.length
9: jobtracker.addWaitingMaps(newSplits)

10: for i ∈ [1..newSplits] do
11: maps[numMapTasks + i]← newMapTask(splits[i])
12: end for
13: numMapTasks← numMapTasks + newSplits
14: noti f yAllReduceTasks(numMapTasks)
15: for all s ∈ splits do
16: splitBytes← splitBytes + s.getLength()
17: end for
18: return splitBytes
19: end function

62 Chapter 6 – Optimizing Intermediate Data Management in MapReduce Computations

63

Chapter 7
Enabling and Leveraging the Append

Operation in Hadoop

Contents
7.1 Motivation . 64

7.2 The need for the append operation in MapReduce frameworks 64

7.2.1 Potential benefits of the append operation 64

7.2.2 Append status in Google File System 65

7.2.3 Append status in HDFS . 65

7.3 Introducing support for the append operation in Hadoop 66

7.3.1 BlobSeer: efficient support for the append operation 66

7.3.2 How BlobSeer enables appends in Hadoop 67

7.4 Summary . 69

IN a previous chapter we presented BSFS - a distributed file system able to deliver high
throughput under heavy concurrency, when used as a storage layer for MapReduce ap-
plications. In this chapter, we show how BSFS can enable extensions to the de facto

MapReduce implementation - Hadoop. The focus of this work is on introducing support for
the append operation in Hadoop. We first investigate the benefits of providing support for
append in scenarios that involve MapReduce applications, but also in other contexts where
the append operation is needed at the file-system level. The second part of the chapter is
dedicated to presenting the extensions we made in Hadoop in order to take advantage of
the append operation.

64 Chapter 7 – Enabling and Leveraging the Append Operation in Hadoop

7.1 Motivation

The storage layer is a key component of MapReduce frameworks. As both the input data
and the output data produced by the reduce function are stored by this layer (typically a
distributed file system), its design and functionalities influence the overall performance.
MapReduce applications typically process data consisting of up to billions of small records
(of the order of KB), hence scalability is critical in this context.

One important aspect of scalability regards the number of files that need to be managed
by the file system. Acquiring and storing large data sets of the order of hundreds of TB
and beyond, using KB-sized files incurs a significant metadata overhead. This approach is
both unmanageable and inefficient. This issue, known as the “file-count problem”, has been
acknowledged as a major source of inefficiency for large-scale settings of distributed file
systems. To take a representative example, according to its designers, Google File System is
facing this problem and therefore is likely to undergo substantial design changes in the near
future [57].

To handle such very large data sets of small pieces of data without having to manage very
large sets of small files, a better approach consists in packing these pieces of data together
into huge files (e.g., gathering hundreds of GB or TB of data). Consequently, massively par-
allel data generation leads to a large number of processes appending records to a huge, shared
file. This is why we believe that providing an efficient support for the append operation un-
der heavy concurrency will be increasingly important in the forthcoming years in the context
of data-intensive applications.

The work presented in this chapter focuses on the problem of efficiently supporting the
append operation to huge shared files in large-scale distributed infrastructures under heavy
concurrency. This problem is timely and particularly relevant to today’s emerging MapRe-
duce frameworks like Hadoop. In the context of massively parallel MapReduce applica-
tions, enabling efficient concurrent append operations to shared files within the MapReduce
framework brings two main benefits. First, the number of files (and the associated overhead
related to file management) can be substantially reduced. Second, application programming
also gets simpler: data do not need to be explicitly managed as a set of distributed chunks
and the MapReduce tasks can simply access data within globally shared files.

7.2 The need for the append operation in MapReduce frameworks

MapReduce applications do not require the append operation to be supported by the dis-
tributed file system used as underlying storage. However, many benefits can be drawn from
this functionality. These advantages are briefly discussed below, together with the status for
this feature in two of the file systems developed to support data-intensive applications.

7.2.1 Potential benefits of the append operation

MapReduce data processing applications are not the only class of applications that may po-
tentially benefit from an efficient support of the append operation in a file system. In the
Google File System, record append is heavily used in the context of applications following
the multiple-producer/single-consumer model; this kind of applications usually consists in

7.2 – The need for the append operation in MapReduce frameworks 65

processing data that is collected from multiple sources. Record append is useful in this sce-
nario, as it allows the data to be collected by multiple parallel processes into a single file.

As far as HDFS is concerned, supporting append can enable applications that require a
more elaborate API, to use the file system as storage back-end. An example of such appli-
cation is HBase [6], an open-source project from Hadoop, designed after Google’s BigTable
system [23], with the purpose of providing distributed, column-oriented storage of large
amounts of structured data, on top of HDFS. HBase keeps its transaction log in main mem-
ory and periodically, flushes it to HDFS; if a crash occurs, HBase can recover its previous
state by going through the transaction log. However, although the transaction log can be
opened for reading, after recovery, HBase will write its updates to a different file in HDFS.
Supporting appends can enable HBase, as well as other database applications, to manage
their ever-expanding transaction log as a single huge file, stored in HDFS.

At the level of the Hadoop Map/Reduce framework, a single output file can be generated
in the “reduce” phase, instead of having each reducer writing its output to a different file.
In a scenario with multiple Map/Reduce applications that can be executed in pipeline, the
framework can rely on append to significantly improve execution time, by allowing readers
to work in parallel with appenders: applications that generate the data can append it con-
currently to shared files, while at the same time, applications that process the data can read
it from those files.

7.2.2 Append status in Google File System

The Google File System (GFS) [40] was developed with the goal of accommodating the stor-
age needs of the applications Google runs on a daily basis. Hence, GFS is optimized for
access patterns involving huge files that are mostly appended to, and then read from. Since
applications that exhibit these types of access patterns were targeted, supporting append
was a critical functionality and thus was implemented right from the beginning.

The append operation in GFS is called record append. Its purpose is to enable multiple
clients to append data to the same file concurrently. By simply using the write operation
provided by GFS, this scenario with multiple clients simultaneously modifying the same file
can lead to inconsistent data. When writing data, the client has to specify also the offset
where the data must be written. Concurrent clients writing data to the same region (part of a
chunk) may lead to a interweaving of data fragments belonging to different clients. Due to
the way it is implemented, the record append operation prevents this from happening.

Record append was introduced with the purpose of ensuring atomicity in terms of data
contiguousness. When using record append, the clients supply only the data to be appended
and GFS ensures that the data will be appended to the file as a continuous sequence of bytes.
The offset the data is appended at is chosen by GFS and is returned to the client issuing the
append.

7.2.3 Append status in HDFS

The Hadoop Distributed File System was developed with the initial purpose of support-
ing applications that follow the Map/Reduce programming paradigm. These applications
process files that comply with the write-once, read-many-times model; HDFS features and

66 Chapter 7 – Enabling and Leveraging the Append Operation in Hadoop

providers
1. w

rit
e

new
 d

at
a

metadata

providers

2. w
rite new

 m
etadata

3. publish new version

Figure 7.1: The steps of appending in BlobSeer.

semantics were designed to suit this model. However, the growing popularity of HDFS, as
well as the variety and the increasing number of applications that can be modeled using
the Map/Reduce paradigm, led to extending HDFS with more functionalities. One of these
required functionalities is the support for append operations.

In early versions of HDFS, files were immutable once closed. They were visible in the file
system namespace only after a successful close operation. Implementing append in HDFS
required substantial modifications to the whole framework. One of them concerned the fact
that blocks were not longer immutable; once append was enabled, the last block of a file
became mutable, which rose the problem of how to detect obsolete versions of that block.
This situation is possible for instance, when a datanode holding a replica of the block dies
while data is appended to the block. The solution was to add a generation stamp to each
block - an incrementing integer that records the version of a particular block.

However, shortly after being introduced, append support was disabled, because all the
changes it involves are still an open issue. Currently, the append operation is defined in the
file system interface of Hadoop, but its support in HDFS is disabled for normal users.

7.3 Introducing support for the append operation in Hadoop

In order to provide support for the append operation in Hadoop, we rely on BlobSeer, the
versioning-based, concurrency-optimized BLOB (Binary Large Object) management system
described in Chapter 4. In Chapter 5 we presented how BlobSeer could be used as a storage
substrate providing the same interface as Hadoop’s default file system (HDFS), thanks to a
file system layer (BSFS) built on top of BlobSeer. In this chapter, we show how BSFS can
be integrated into Hadoop, to allow Hadoop’s Map/Reduce applications to benefit from
BlobSeer’s efficient support for concurrent data access to shared data.

7.3.1 BlobSeer: efficient support for the append operation

In BlobSeer, append is implemented as a special case of the write operation, in which the
offset is implicitly assumed to be the size of the latest version of the BLOB. For an append
operation, the user supplies as input the id of the BLOB that is appended to, the data to be

7.3 – Introducing support for the append operation in Hadoop 67

Figure 7.2: Original Hadoop framework: each reducer writes to a separate file.

stored (a buffer holding the data and the data size); after the append is finished, the user
receives the number of the version this update generates. The input data is split into pages
that are then written in parallel to a list of providers retrieved from the provider manager.
When all the pages are successfully written to the providers, the version manager assigns a
number to the newly generated BLOB version.

The design concepts BlobSeer uses enable a high degree of parallelism, especially where
updates are concerned. BlobSeer relies on a versioning-based concurrency control algorithm
that maximizes the number of operations performed in parallel in the system. This is done
by avoiding synchronization as much as possible, both at the data and metadata levels. An
update to a BLOB is done in two phases. First, any writer or appender writes its new data
blocks, by storing the differential patch. Then, in a second phase, the version number is allo-
cated and the new metadata referring to these blocks are generated. These steps are shown
in Figure 7.1. Since each writer or appender generates new data/metadata and never mod-
ifies existing data/metadata, readers are completely decoupled from writers/appenders, as
they always access immutable snapshots. A reader can thus access data and metadata in a
fully parallel fashion with respect to writers and appenders (and of course, with respect to
other readers).

To sum up, in BlobSeer, multiple clients can append their data in a fully parallel manner,
by asynchronously storing the pages on providers; synchronization is required only when
writing the metadata, but this overhead is low, as shown in [61].

7.3.2 How BlobSeer enables appends in Hadoop

Our approach aims at enabling Map/Reduce applications to benefit from the append oper-
ation BlobSeer provides, and consists of two steps: using append at the level of the Hadoop
framework, and supporting append at the level of the distributed file system that acts as
storage layer.

Modifying Hadoop to use appends

In the original Hadoop Map/Reduce framework (Figure 7.2), when a tasktracker executes
the “reduce” function specified by the user, the output is written to a temporary file; each
temporary file has a unique name, so that each reducer writes to a distinct file. When the
“reduce” phase is completed, each reducer renames the temporary file to the final output

68 Chapter 7 – Enabling and Leveraging the Append Operation in Hadoop

Figure 7.3: Modified Hadoop framework: all the reducers append to the same file.

directory, specified by the user. The final result obtained by running the Map/Reduce ap-
plication, consists of multiple parts, one part per reducer. We modified the reducer code
to append the output it produces to a single file, instead of writing it to distinct files (Fig-
ure 7.3). The name of the output file can be specified from the beginning when executing the
MapReduce job.

Having all the reducers append to the same file, impacts on both the application running
on top of the framework, and the file system storing the data. An application consisting of
multiple Map/Reduce instances that can be executed in pipeline, is able to complete sub-
stantially faster by running in parallel “map” and “reduce” phases from different stages.
Mappers from one stage of the pipeline open the input file for reading in order to process
the data, while reducers from the previous stage can still generate the data and append it
to the same file. The append operation reduces the number of files to be stored in the dis-
tributed file system that serves as storage for the application executed by the Hadoop frame-
work. This impacts on the namespace management, by considerably reducing the metadata
associated to files.

Supporting appends at the file-system level

The features BlobSeer exhibits meet the storage needs of Map/Reduce applications. In order
to enable BlobSeer to be used as a file system within the Hadoop framework, we added an
additional layer on top of the BlobSeer service, layer that we called the BlobSeer File System -
BSFS. This work was described in Chapter 5.

As previously shown, the Hadoop Map/Reduce framework accesses the storage layer
through an interface that exposes the basic functions of a file system. The append operation
is available in the interface (but is not implemented in the latest Hadoop release available):
we could thus implement it using the primitives provided by BlobSeer. Performing an ap-
pend to an existing file is translated into two operations: appending the data to the corre-
sponding BLOB, and updating the size of the file at the level of the namespace manager of
BSFS.

Supporting append enables applications like HBase to directly use the file system to store
their logs as a single file that can be read from and appended to at the same time.

7.4 – Summary 69

7.4 Summary

The Map/Reduce programming model initially emerged in the Internet services commu-
nity, but its simple yet versatile interface led to an increasing number of applications that
are modeled using this paradigm. Efficiently supporting various types of applications re-
quires that the framework executing them, as well as the distributed file system that acts as
backend storage, are extended with new functionalities. The work presented in this chap-
ter focuses on the append operation as a functionality that can bring benefits at two levels.
First, introducing append support at the level of the file system may be a feature useful for
some applications (not necessarily belonging to the Map/Reduce class). For instance, an
application may need to manage a log that is simultaneously and continuously being read
from/appended to. We describe how our BlobSeer-based file system (BSFS) offers support
for the append operation and, moreover, it is able to deliver high throughput when multiple
clients concurrently append data to the same file. Second, since append is supported by the
file system, we have modified the Hadoop Map/Reduce framework to take advantage of
this functionality. In our modified Hadoop framework, the reducers append their data to
a single file, instead of writing it to a separate file, as it was done in the original version of
Hadoop. The advantage is obvious in terms of simplicity: at the end of the computation,
data is already available in a single logical file (the distribution of the file chunks is transpar-
ently handled by BlobSeer). This file is ready to use for any subsequent processing. No extra
application logic is needed for subsequent processing, in contrast to the original Hadoop,
which has to explicitly handle a (potentially large) group of (thousands of) files.

Based on the use of BSFS as a storage layer, our improved Hadoop framework can further
be optimized for the case of MapReduce applications that are executed in pipeline. For
this type of applications, the mappers and the reducers belonging to distinct stages of the
pipeline, can concurrently be executed: the reducers generate the data and append it to a file
that is at the same time, read and processed by the mappers. This scenario can be efficiently
supported by BSFS, since the impact of concurrent readers and appenders on each other is
low.

70 Chapter 7 – Enabling and Leveraging the Append Operation in Hadoop

71

Part III

Implementation Details

73

Chapter 8
Implementation details

Contents
8.1 Designing BSFS . 73
8.2 Extensions to Hadoop . 75

8.2.1 Efficient intermediate data management in Hadoop 75
8.2.2 Introducing the append operation . 83

8.3 Automatic deployment tools . 84

IN this chapter we present the implementation of the contributions we proposed in the
previous chapters of this manuscript. First, we describe the implementation of the BSFS
file system and its interconnection with Hadoop and BlobSeer. Second, we focus on the

extensions and modifications we carried out within the Hadoop MapReduce framework to
enhance it with the aforementioned features. The last section of this chapter is dedicated to
the deployment tools we developed to allow us to evaluate our work.

8.1 Designing BSFS

The BSFS file system presented in Chapter 5 consists of a layer added on top of BlobSeer.
This layer that implements the Hadoop file-system interface. Since the Hadoop project is
written in Java, and BlobSeer provides bindings for several programming languages (in-
cluding Java), the BSFS layer is implemented using Java as well. In this section, we focus
on the implementation of BSFS, and we elaborate on specific issues for each module of the
implementation.

Figure 8.1 illustrates the modules that constitute the BSFS layer. There are two main com-
ponents in the BSFS layer: the namespace manager and the file-system client.The namespace
manager is a centralized standalone entity. It is responsible for managing the file-system

74 Chapter 8 – Implementation details

metadata. On the other hand, the file-system client is integrated with the Hadoop code. Its
main role being to enable BlobSeer to be used as a file system. Each Hadoop client launches
a BSFS file-system client to interact with the centralized namespace manager and to perform
file-system operations over the BLOBs stored in BlobSeer. We further detail the modules in
each of the two components.

The file-system client

This component resides on each node that acts as a BSFS user, including Hadoop’s mappers
and reducers. Each file-system client interacts with the namespace manager on one side,
and acts as a BlobSeer client, on the other side. To enable all these interactions we developed
several modules:

• The BlobSeerFileSystem module implements the file-system interface through which
Hadoop MapReduce accesses the storage backend. This interface specifies basic file-
system operations for accessing files and directories. The module processes two types
of user requests: file-system namespace inquiries, and file access operations. The first
class of requests involves only accessing file metadata, whereas the second type entails
additional steps of direct access to BLOBs.

• The BSFSClient module handles the communication with the namespace manager.
This module uses a Java socket to send user requests over the network. The reply
is then interpreted by the BlobSeerFileSystem module and returned to the user.

• The CachedInputStream and CachedOutputStream modules implement buffered handlers
for I/O operations. These handlers contain an ObjectHandler that is used to perform
operations on BLOBs, and a BLOB id that links a file to its corresponding BLOB. Both
streaming modules use Java’s NIO byte buffer to implement caching. For performance
reasons, we chose to use direct byte buffers, as the Java virtual machine handles them
more efficiently: the JVM will make a best effort to perform native I/O operations
directly upon it. That is, it will attempt to avoid copying the buffer content to (or
from) an intermediate buffer before (or after) each invocation of one of the underlying
operating system native I/O operations.

The namespace manager

The role of this centralized component is to manage the file-system namespace and to keep
the mapping of files to BLOBs. The modules in this component’s implementation are further
detailed:

• The Manager module handles the communication with the clients. Its implementation
is based on the Java New I/O (NIO) API, more specifically, the NIO channels and
selectors that enable efficient handling of multiple connections in an asynchronous
manner. The manager is basically a NIO server that uses a dedicated selector thread
to process client requests. Whenever it receives a request on an opened socket, the
manager adds the request to a Requests queue. When the request has been processed,
the manager sends the reply to the corresponding socket.

8.2 – Extensions to Hadoop 75

Figure 8.1: BSFS implementation.

• The Worker thread extracts requests from the queue and then handles them sequen-
tially.

• The Namespace module is the entity that does the actual metadata management,
whereas the other modules implement the communication layer. The namespace mod-
ule stores the metadata related to files (file properties, mapping to BLOBs) and also the
hierarchy of directories and files. The requests extracted by the worker from the queue
are processed by the namespace thread that updates the metadata accordingly and
then generates the reply.

8.2 Extensions to Hadoop

Chapters 6 and 7 describe several extensions and features we introduced in the Hadoop
MapReduce framework. In order to implement these features, a lot of effort was invested
in studying and understanding the design of Hadoop’s components and the interactions
between them. This section details the implementation issues related to the extensions we
brought to Hadoop.

8.2.1 Efficient intermediate data management in Hadoop

We addressed the problem of efficiently managing intermediate data in MapReduce compu-
tations in two cases: when the intermediate data is generated within the same job and when
it is produced between the stages of a pipeline application. In the first scenario, our proposal
of storing intermediate data in a DFS involves modifying both the mapper and the reducer

76 Chapter 8 – Implementation details

code of Hadoop. Section 6.2 lists the modifications on the mapper and reducer side. The
implementation uses Hadoop’s mechanisms and interfaces.

In the context of pipeline MapReduce applications, introducing a new mechanism for
creating and scheduling “map” tasks required a more complex and substantial implementa-
tion phase. To better illustrate the extensions of our modified framework, we further present
class diagrams summarizing the interactions between the entities in both original and modi-
fied Hadoop. To implement the pipeline-optimization algorithm we proposed in Section 6.3,
we extended and modified the Hadoop code in three of the interactions and communication
protocols, which we detail below.

Tasktracker - Task communication protocol

As Figure 8.2 shows, in the original Hadoop, the tasktracker communicates with the task it is
currently running, through an interface, TaskUmbilicalProtocol. When the task is launched
in a JVM on the tasktracker, the run method of either the “map” or “reduce“ task is executed.
Upon completion, the data generated by the task is committed as output data by invoking
the commitTask on the FileOutputCommitter. In the case of a “reduce” task, this method moves
the task’s output data from the task’s temporary directory in the DFS, to the final output
directory. Figure 8.2 also illustrates the heartbeat mechanism through which the tasktracker
and the jobtracker interact. Every (configurable) amount of time, the tasktracker sends a
status message to the jobtracker, indicating if it still has available slots for running new tasks.
The jobtracker replies with a list of actions that basically represent new tasks scheduled for
running on the tasktracker.

The first step towards enabling dynamic creation of “map” tasks is to keep track of the
amount of data produced by each “reduce” task. To meet this goal, we extended the Hadoop
interfaces, as shown on Figure 8.3. We introduced a new class that manages information
about the output data produced by the reducers: the size of the data and the directory con-
taining the data. We added new methods in both the tasktracker - task interface and the
jobtracker - tasktracker communication interface to allow the propagation of this informa-
tion from the FileOutputCommitter to the jobtracker.

Jobtracker - Jobscheduler interaction

Hadoop’s jobtracker is a complex component that implements communication interfaces
and also runs the scheduler of the submitted jobs. Figure 8.4 presents the flow of
interactions that constitute the scheduling process. The default task scheduler is the
JobQueueTaskScheduler that manages a queue of JobInProgress objects. The job queue is
updated by the Jobtracker as the jobs are submitted for execution, and it is processed in se-
quential order. Whenever a heartbeat message is received from a tasktracker with available
slots, the jobtracker invokes the assignTasks method on the JobQueueTaskScheduler. This
method searches for the first active (running) job in the queue and then tries to find a “map”
task of that job, that can be run locally on the given tasktracker. If it fails to find a local
“map” task, a remote task is selected. The scheduler selects as many tasks to run as the
number of available slots on the tasktracker. The list of tasks to launch is then transmitted
by the jobtracker over the network.

8.2 – Extensions to Hadoop 77

Figure 8.2: Original Hadoop: Tasktracker - Task interactions.

Figure 8.3: Modified Hadoop: Tasktracker - Task interactions.

78 Chapter 8 – Implementation details

Figure 8.4: Original Hadoop: Jobtracker - Jobscheduler interactions.

Figure 8.5: Modified Hadoop: Jobtracker - Jobscheduler interactions.

8.2 – Extensions to Hadoop 79

In order to keep track of the size of data generated by each stage of the pipeline, we ex-
tended the JobInProgress class to hold a list of files written so far in the job input directory.
This list is updated by the jobtracker whenever a notification is received from a reducer that
produced output into the DFS. Moreover, the jobtracker checks if the data accumulated in
the job input directory accounts for a chunk size. If it is the case, the JobInProgress is up-
dated with new “map” tasks created to process the newly generated chunks. The jobtracker
also updates all the data structures it holds and notifies all the entities that make use of the
number of “map” tasks. Figure 8.5 summarizes those extensions. The code snippet below
illustrates the job scheduler modifications.

1 public void updateJob(CommitInfo c, long blk)
2 {
3 Collection<JobInProgress> jobQueue = jobQueueJobInProgressListener.getJobQueue();
4 synchronized (jobQueue) {
5 for (JobInProgress job : jobQueue) {
6 JobConf conf = job.getJobConf();
7 String jod = conf.get("mapred.input.dir");
8 ArrayList<String> files = c.getJobOutputDir();
9 if (files == null)

10 return;
11 if (files.size() == 0)
12 return;
13 String dir = new Path(files.get(0)).getParent().toString();
14 if (jod.compareTo(dir) == 0) {
15 if (!writtenBytes.containsKey(dir))
16 writtenBytes.put(dir, c.getSize());
17 else {
18 long l = writtenBytes.get(dir);
19 writtenBytes.put(dir, l + c.getSize());
20 }
21 long l = writtenBytes.get(dir);
22 if (l >= blk)
23 try {
24 long rez = job.createMapForSplit(files);
25 writtenBytes.put(dir, l − rez);
26 } catch(Exception e) {
27 e.printStackTrace();
28 }
29 else
30 job.addToPending(files);
31 }
32 }
33 }
34 }
35
36 public long createMapForSplit(ArrayList<String> files) throws IOException
37 {
38 pendingFiles.addAll(files);
39
40 InputSplit[] splits = null;
41 try {
42 splits = conf.getInputFormat().getSplits(conf, conf.getNumMapTasks(), pendingFiles);
43 }
44 catch(Exception e) {
45 e.printStackTrace();
46 }

80 Chapter 8 – Implementation details

47 pendingFiles.clear();
48 if (splits == null)
49 return 0;
50
51 int newSplits = splits.length;
52 jobtracker.getInstrumentation().addWaitingMaps(getJobID(), newSplits);
53
54 TaskInProgress[] newMaps = new TaskInProgress[numMapTasks];
55 System.arraycopy(maps, 0, newMaps, 0, maps.length);
56 numMapTasks += newSplits;
57 maps = new TaskInProgress[numMapTasks];
58 System.arraycopy(newMaps, 0, maps, 0, newMaps.length);
59
60 String jobFile = profile.getJobFile();
61
62 RawSplit[] rw = new RawSplit[newSplits];
63
64 DataOutputBuffer buffer = new DataOutputBuffer();
65 for(int i = 0; i < newSplits; i++) {
66 RawSplit rawSplit = new RawSplit();
67 rawSplit.setClassName(splits[i].getClass().getName());
68 buffer.reset();
69 splits[i].write(buffer);
70 rawSplit.setDataLength(splits[i].getLength());
71 rawSplit.setBytes(buffer.getData(), 0, buffer.getLength());
72 rawSplit.setLocations(splits[i].getLocations());
73 maps[newMaps.length + i] = new TaskInProgress(jobId, jobFile, rawSplit,
74 jobtracker, conf, this, newMaps.length + i);
75 rw[i] = rawSplit;
76 }
77
78 if (newSplits > 0) {
79 Map<Node, List<TaskInProgress>> m = createCache(rw, maxLevel);
80 if (m != null)
81 if (nonRunningMapCache == null)
82 nonRunningMapCache = m;
83 else
84 nonRunningMapCache.putAll(m);
85 }
86
87 long splitBytes = 0;
88
89 for(InputSplit split: splits) {
90 splitBytes += split.getLength();
91 }
92
93 for (TaskInProgress t : nonRunningReduces) {
94 t.updateNumTasks(numMapTasks);
95 }
96 return splitBytes;
97 }

8.2 – Extensions to Hadoop 81

Figure 8.6: Original Hadoop: Job-submission process.

Figure 8.7: Modified Hadoop: Job-submission process.

82 Chapter 8 – Implementation details

Job-submission process

The job-submission process in Hadoop is handled by the JobClient class. The user calls the
submitJob method of the JobClient that copies all the application-related metadata (job jar, con-
figuration properties, etc.) from the user’s local machine to the DFS. The client also employs
a communication interface with the jobtracker through the jobSubmitClient. Through this in-
terface, the jobtracker becomes aware of the newly submitted job and thus is able to update
its internal structures accordingly. A new JobInProgress object is created which holds lists of
“map” and “reduce” tasks. The “reduce” tasks do not hold any meaningful information, as
they will be updated as they are scheduled to run. On the other hand, the “map” tasks are
assigned to process one or several data chunks and are aware of their data location since
their creation time. The job with its internal structures is added to the scheduling queue
and its tasks will be executed as soon as the jobtracker receives heartbeat messages from
tasktrackers with available slots. Calling the submitJob on the JobClient is a blocking process
that will return to the user only when the job is completed. The job-submission protocol is
described on Figure 8.6.

For our pipeline-optimized MapReduce framework, the job-submission process requires
that all the jobs are submitted at once. Thus, we modified the Hadoop client so that invok-
ing the submitJob does not block the whole submission process. In order to keep track of
each job execution status, we introduced a new entity MonitorJob that is responsible for mon-
itoring job progress and reporting the final result. The modified submitJob method creates
a new MonitorJob instance for each submitted job in the pipeline. On the jobtracker’s side,
the job-submission protocol consists in creating a JobInProgress instance and adding it to the
scheduler’s queue. However, in the modified Hadoop version, the newly created job has an
empty list of “map” tasks, as those tasks will be created at a later point in the pipeline. The
modifications we made are shown on Figure 8.7.

The following is a code snippet showing the modified job submission process on the
client side.

1 public class MonitorJob extends Thread
2 {
3 JobConf conf;
4 RunningJob job;
5 String fileName;
6 public MonitorJob(JobConf c, RunningJob j, String file)
7 {
8 conf = c;
9 job = j;

10 fileName = file;
11 }
12 public boolean monitorAndPrintJob() throws IOException, InterruptedException
13 {
14 File outFile = new File(fileName);
15 DataOutputStream dos = new DataOutputStream(new FileOutputStream(outFile));
16 String lastReport = null;
17 TaskStatusFilter filter;
18 filter = getTaskOutputFilter(conf);
19 JobID jobId = job.getID();
20 dos.writeBytes("Running job: " + jobId + "\n");
21 //LOG.info("Running job: " + jobId);
22 int eventCounter = 0;

8.2 – Extensions to Hadoop 83

23 boolean profiling = conf.getProfileEnabled();
24 Configuration.IntegerRanges mapRanges = conf.getProfileTaskRange(true);
25 Configuration.IntegerRanges reduceRanges = conf.getProfileTaskRange(false);
26 while (!job.isComplete()) {
27 if (!report.equals(lastReport)) {
28
29 dos.writeBytes(report + "\n");
30
31 // LOG.info(report);
32 lastReport = report;
33 }
34 TaskCompletionEvent[] events = job.getTaskCompletionEvents(eventCounter);
35 eventCounter += events.length;
36 for(TaskCompletionEvent event : events){
37 TaskCompletionEvent.Status status = event.getTaskStatus();
38 if (profiling && (status == TaskCompletionEvent.Status.SUCCEEDED ||
39 status == TaskCompletionEvent.Status.FAILED) &&
40 (event.isMap ? mapRanges : reduceRanges).isIncluded(event.idWithinJob())) {
41 downloadProfile(event);
42 }
43
44 }
45 dos.writeBytes("Job complete: " + jobId + "\n");
46 //LOG.info("Job complete: " + jobId);
47 job.getCounters().log(LOG);
48 dos.close();
49 return job.isSuccessful();
50 }
51 public void run()
52 {
53 try {
54 if (!monitorAndPrintJob()) {
55 throw new IOException("Job failed!");
56 }
57 } catch (Exception ie) {
58 Thread.currentThread().interrupt();
59 }
60 }
61 }
62
63 public static RunningJob runJob(JobConf job) throws IOException {
64 JobClient jc = new JobClient(job);
65 RunningJob rj = jc.submitJob(job);
66 MonitorJob mj = jc.new MonitorJob(job, rj, "logs/" + rj.getID() + ".log");
67 mj.start();
68 return rj;
69 }

8.2.2 Introducing the append operation

Enabling the support for the append operation in Hadoop requires first implementing ap-
pend at the file-system level, and second, exploiting this feature in the MapReduce layer.
As detailed in Chapter 7, BlobSeer provides efficient support for concurrently appending to
files, even in presence of a high degree of concurrency. Implementing support for append
in BSFS simply consists in mapping the append operation specified in the file-system inter-

84 Chapter 8 – Implementation details

face to the append operation on the corresponding BLOB in BlobSeer. An additional step is
required at the level of BSFS, to update the file metadata to the new size after the append is
successfully completed.

The second step of taking advantage of the append feature in the MapReduce context, is
to use the operation at the level of the framework, i.e. when the reducers write their output
data to the DFS. In the original Hadoop, the output data of the reducers is committed as
final result in the DFS, by the FileOutputCommitter. This class simply moves the data produced
by the reducer in its assigned temporary directory in the DFS, to the job output directory
indicated by the user. The temporary directory may contain several files that are copied as
such to the final directory. In consequence, the final result is split into multiple files, each
representing a part of the application’s output data.

The approach we propose in Chapter 7 consists in having all the reducers append data
to a single file, instead of writing the data to many different files in the DFS. To this end,
we modified the FileOutputCommitter class to invoke the append operation provided by the
file-system interface, on the shared output file in the DFS. Thereby, running the MapReduce
application results in a single output file stored in the DFS.

8.3 Automatic deployment tools

Apart from the implementation stage, a significant amount of effort was invested in build-
ing deployment tools for evaluation purposes. Given the complexity of the frameworks
involved in our experiments that target a large-scale environment, we developed a script-
ing framework to automate and facilitate the evaluation phase. The scripts automatically
deploy HDFS, BlobSeer, BSFS and the Hadoop MapReduce framework. After this stage is
completed, the scripts launch tests and then collect the results.

Our deployment tools were designed such that they provide us with a framework that
is configurable, enabling fine-tuning and straightforward customization of the deployment
setup. Another important feature that is required from the testing framework is to ensure
that the experiments can be performed automatically and thus, repeatable.

By the means of these tools, we were able to easily deploy and test all the systems re-
quired by our evaluation setup, on a platform consisting of hundreds of machines.

85

Part IV

Evaluation

87

Chapter 9
Evaluating BSFS as backend storage

for MapReduce applications

Contents
9.1 Environmental setup . 87
9.2 Microbenchmarks . 88
9.3 Experiments with real MapReduce applications 90

CHAPTER 5 illustrates the benefits of using BlobSeer in the MapReduce context, and
the integration with the Hadoop framework. In this chapter, we evaluate the im-
pact of the BlobSeer File System by performing experiments both with synthetic

microbenchmarks and with real MapReduce applications. The microbenchmarks consist
of processes that access the storage layer directly using the file system interface, whereas
MapReduce applications access the storage layer through the MapReduce framework.

9.1 Environmental setup

The experiments were carried out on the Orsay cluster of the Grid’5000 platform. Both the
microbenchmarks and the MapReduce applications were performed using 270 nodes, on
which we deployed both BSFS and HDFS. The nodes are connected through a 10 Gbit Ether-
net network emulated over Myrinet, with a measured bandwidth for end-to-end TCP sock-
ets of 527 MB/s. We selected the Orsay cluster for this set of experiments, as it provides
us with a large, homogeneous environment for deploying our frameworks and performing
accurate measurements.

For HDFS, we deployed the namenode on a dedicated machine and the datanodes on
the remaining nodes (one entity per machine). For BSFS, we deployed one version manager,

88 Chapter 9 – Evaluating BSFS as backend storage for MapReduce applications

Figure 9.1: Performance of HDFS and BSFS when concurrent clients write to different files.

Figure 9.2: Performance of HDFS and BSFS when concurrent clients read different files.

one provider manager, one node for the namespace manager and 20 metadata providers.
The remaining nodes were used as data providers. As HDFS handles data in 64 MB chunks,
we set the page size to 64 MB as well at the level of BlobSeer.

9.2 Microbenchmarks

The goal of the microbenchmarks is to evaluate the throughput achieved by BSFS and HDFS
when multiple, concurrent clients access the file systems, under several test scenarios. The
scenarios we chose are common access patterns in MapReduce applications. For each mi-
crobenchmark we measure the average throughput achieved when multiple concurrent
clients perform the same set of operations on the file system. The clients are launched si-
multaneously on the same machines as the datanodes (data providers, respectively). The
number of concurrent clients ranges from 1 to 246. Each test is executed 5 times, for each set
of clients.

Concurrent writers, each writing to a different file. In this test scenario, we start N clients
that write to HDFS/BSFS concurrently. Each client writes a 1 GB file sequentially in chunks

9.2 – Microbenchmarks 89

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

No of clients

HDFS
BSFS

Figure 9.3: Performance of HDFS and BSFS when concurrent clients read different parts from
the same file.

of 64 MB. This microbenchmark reproduces a pattern corresponding to a typical “reduce”
phase of a MapReduce application, when the reduce tasks all generate the data which they
write to different output files. Figure 9.1 shows the write performance of both HDFS and
BSFS.
As expected, when a client writes on a machine where a datanode was started, HDFS’s policy
of writing the first copy (and the only one, in this case) locally, leads to a constant average
throughput. BSFS achieves a significantly higher throughput than HDFS, which is a result of
the balanced, round-robin block distribution strategy used by BlobSeer. A high throughput
is sustained by BSFS even when the number of concurrent clients increases.

Concurrent readers, each reading from different files. In this experiment, N concurrent
clients read each a different 1 GB file, sequentially in chunks of 64 MB. This test scenario
with multiple concurrent readers, each processing a large file, corresponds to the “map”
phase of a MapReduce application, when the mappers read the input files in order to parse
the (key, value) pairs.
As shown by the previous test, in the case of HDFS, writing a file on a datanode is performed
locally. Thus, reading the file on the same datanode is also be performed locally. As far as
BSFS is concerned, reading a file is always performed remotely, because the file is spread
over several providers. In order to achieve a proper comparison, we configured HDFS so
that the clients read files remotely. This is done by letting the files be stored by datanodes not
co-deployed with them.
The average throughputs delivered by HDFS and BSFS in this test case are shown in Fig-
ure 9.2. Although HDFS reads remotely, the chunks read by a client are all stored by the
same datanode. Since the reading is done sequentially, the datanode will serve the read the
requests one at a time. For this reason, HDFS is able to maintain a constant throughput even
when dealing with a large number of clients. In contrast, in BSFS, a provider has to serve
read requests arriving concurrently from multiple clients. Although BSFS performs signifi-
cantly better than HDFS, there is a decrease in the average throughput when the number of
clients increases.

90 Chapter 9 – Evaluating BSFS as backend storage for MapReduce applications

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

T
im

e
(s

)

Size of the input data (GB)

HDFS
BSFS

Figure 9.4: Sort - Job completion time.

Concurrent readers, each reading from the same file. This microbenchmark tests the per-
formance of the file systems when concurrent clients read different (non-overlapping) parts
from the same file. Each client reads a 64 MB chunk, starting from a unique offset in the
shared file. For a configuration of N clients, the input shared file is N × 64 MB of size. The
file is created so that the N chunks are distributed among the datanodes/providers for both
HDFS and BSFS.
The obtained results are shown on Figure 9.3. In BlobSeer, the shared file is uniformly striped
among the providers, using a round-robin pattern. The average throughput delivered by
BSFS is thus high. In contrast, HDFS uses a random data-layout policy which leads to load
imbalance for datanodes when processing read requests: some of the datanodes get satu-
rated with client requests.

9.3 Experiments with real MapReduce applications

We compared the performance of HDFS and BSFS when being used by the Hadoop frame-
work to execute several MapReduce applications: sort and grep.

Sort is a standard MapReduce application that sorts key-value pairs. The key is repre-
sented by the first 10 bytes from each record, while the value is the remaining 100 bytes. This
application is read intensive in the map phase and it generates a write-intensive workload in
the reduce phase. The access patterns exhibited by this application are thus concurrent reads
from the same file and concurrent writes to different files.

In addition to the deployment of HDFS and BSFS, the environmental setup in which
this application was run also includes the entities belonging to the Hadoop framework:
the jobtracker, deployed on a dedicated node, and the tasktrackers, co-deployed with the
datanodes/providers. The input file processed by the application is stored in 64 MB chunks
spread across the datanodes/providers. The Hadoop jobtracker starts a mapper to process
each chunk from the input file. The input data was generated so as to vary the number of
mappers from 1 to 121. This corresponds to an input file whose size varies from 64 MB to
8 GB. For each of these input files, we measured the job completion time when HDFS and
BSFS are respectively used as storage layers.

Figure 9.4 displays the time needed by the application to complete, when increasing the
size of the input file. When using BSFS as a storage layer, the Hadoop framework manages
to finish the job faster than when using HDFS. These results are consistent with the ones
delivered by the microbenchmarks. However, the impact of the average throughput when
accessing a file in the file system is less visible in these results, as the job completion time
includes not only file access time, but also the computation time and the I/O transfer time.

92 Chapter 9 – Evaluating BSFS as backend storage for MapReduce applications

93

Chapter 10
Evaluating our approach for

intermediate data management

Contents
10.1 Intermediate data generated inside a job . 93

10.1.1 Environmental setup . 94
10.1.2 Experiments with MapReduce applications 94

10.2 Intermediate data generated between the jobs of a pipeline 96
10.2.1 Environmental setup . 96
10.2.2 Microbenchmarks . 96

THIS chapter is dedicated to the evaluation of the mechanisms we propose for managing
intermediate data generated when executing MapReduce applications. In Chapter 6,
we identify two types of intermediate data, according to the context in which it ap-

pears: between the “map” and “reduce” phases of the same MapReduce application, and
between the jobs of a pipeline application. We present the validation of our respective con-
tributions in those two contexts.

10.1 Intermediate data generated inside a job

In order to evaluate the benefits of using BlobSeer as storage for intermediate data in
Hadoop, we performed experiments with two MapReduce applications in various scenarios.
The purpose of our experiments is twofold: measure the impact of storing the intermediate
data in a DFS, and also assess the benefits of using BSFS as the backend DFS. The first part
of our goal is achieved by running real MapReduce applications through the Hadoop frame-
work, with both the original and modified versions. Evaluating the gains of using BSFS as

94 Chapter 10 – Evaluating our approach for intermediate data management

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

Input size (GB)

BSFS
HDFS

LFS

Figure 10.1: Distributed grep.

storage layer, is accomplished through a performance comparison of HDFS and BSFS when
running MapReduce applications. The environmental setup as well as the experiments and
the obtained results are further presented.

10.1.1 Environmental setup

The experiments were carried out on the Grid’5000 experimental platform. For our series of
experiments we used the nodes in the Orsay cluster, with x86_64 CPUs and 2 GB of RAM for
each node. Intra-cluster bandwidth is 10 Gbit/s provided by a Ethernet network emulated
over Myrinet, with a measured bandwidth for end-to-end TCP sockets of 527 MB/s.

10.1.2 Experiments with MapReduce applications

Running real MapReduce applications involves deploying the distributed file systems
(HDFS and BSFS) as well as the Hadoop MapReduce framework. The environmental setup
consists of 170 nodes. For HDFS, we deploy the namenode on a dedicated, single machine
and the datanodes on the rest of the nodes. For BSFS, each centralized entity (version man-
ager, provider manager and namespace manager) is deployed on a single machine each,
while the rest of the nodes are used for launching 10 metadata providers and data providers.
In addition to deploying the file systems, one dedicated machine acted as the jobtracker,
while the tasktrackers were co-deployed with the datanodes/providers.

We executed through the Hadoop framework 2 standard MapReduce applications: sort
and distributed grep, as they are representative for workloads commonly encountered in the
data-intensive community, and are often used for benchmarking purposes. For each of these
applications, we measured the job completion time in 3 scenarios, corresponding to the 3 file
systems that can be used for storing intermediate data:

• the local filesystem (LFS) of the mappers (as it is stored in the original Hadoop frame-
work)

10.1 – Intermediate data generated inside a job 95

• HDFS (using our modified version of Hadoop allowing to store data in a DFS)

• BSFS (modified Hadoop framework)

Note that for the latter 2 test cases, the same DFS is used for storing both intermediate
data and application-specific data (input and output files), whereas the first scenario is run
with the original Hadoop framework with its default storage backend (HDFS). By compar-
ing the original Hadoop framework with the modified one, both using HDFS as underlying
storage, we analyze the impact of our approach and try to identify the class of MapReduce
applications that could benefit from it. On the other hand, we also evaluate HDFS and BSFS
when they are used for storing intermediate data, in addition to storing the input data sup-
plied by the user and the output data generated by the application.

Distributed grep

This application is a distributed job that scans a huge text input file in order to find occur-
rences of a particular expression. The map function in this case, counts the number of times
the expression appears and the reduce function sums up these counters and outputs the final
result. We measured the job completion time in all 3 scenarios, when varying the input text
to be scanned from 1.5 GB to 9.5 GB. The input file processed by the application is stored in
64 MB chunks spread across the datanodes/providers. The Hadoop jobtracker starts a map-
per to process each chunk of the input file. Consequently the number of mappers to produce
intermediate data ranges from 24 to 152 mappers. The amount of intermediate data written
by the mappers and read by the reducers remains small, in the case of the grep application.

As can be seen on Figure 10.1, storing the intermediate data in HDFS leads to the high-
est execution time, while using BSFS for that purpose is the fastest of the 3 scenarios. The
difference of runtime in the first 2 test cases (LFS and HDFS) is very small (of a few sec-
onds) because of the fact that HDFS writes locally (data written on a datanode is stored on
that datanode), which means that writing to HDFS a small amount of data is practically
equivalent to writing to the local filesystem of the datanode/tasktracker. There is however,
a small overhead when testing with HDFS, inferred by namespace management. As the
microbenchmarks in Chapter 9 showed, BSFS delivers higher write/read throughput, there-
fore when used with our modified Hadoop framework, the job finishes faster. Again, since
the generated intermediate data is small, the runtime accounts mostly for computation time,
rather than I/O operations.

Distributed sort

The sort benchmark is a standard MapReduce application that sorts key/value pairs. The
data generated for this test, consists of records each holding a key of 10 bytes, and a value of
the remaining 100 bytes. The input data was generated so as to vary the number of mappers
from 24 to 152. This corresponds to an input file whose size varies from 1.5 GB to 9.5 GB. For
each of these input files, we measured the job completion time in the 3 scenarios previously
described. The map function for this application extracts the 10-byte sorting key from each
input record and emits the key and the value as the intermediate key/value pair. The reduce
function is trivial in this case, as it simply passes the intermediate key/value pair unchanged
as the output key/value pair; these final pairs are written to the DFS.

96 Chapter 10 – Evaluating our approach for intermediate data management

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10

J
o

b
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

Input size (GB)

BSFS
HDFS

LFS

Figure 10.2: Distributed sort.

Figure 10.2 displays the time needed by the application to complete, when increasing the
size of the input file. For this kind of applications with a trivial “reduce” phase, consisting
in copying the map outputs to the DFS, our approach of storing the intermediate data in the
DFS, allows us to run the MapReduce job without the “reduce” phase. In the case of appli-
cations that only process the input data, without any further aggregation, the intermediate
data is the final output data; for this reason, the modified Hadoop framework completes the
sorting job significantly faster both when running with HDFS and BSFS as storage.

10.2 Intermediate data generated between the jobs of a pipeline

In Chapter 6 we proposed an algorithm for dynamically creating “map” tasks that enables
the Hadoop MapReduce framework to efficiently execute pipeline applications. In this chap-
ter, we validate the proposed approach through a series of experiments that compare the
original Hadoop framework with our modified version, when running pipeline MapReduce
applications.

10.2.1 Environmental setup

The experimental platform comprises nodes from the Orsay cluster of the Grid’5000. Intra-
cluster communication is done through a 1 Gbps Ethernet network. We performed an initial
test at a small scale, i.e., 20 nodes, in order to assess the impact of our approach. The second
set of tests involves 50 nodes belonging to the Orsay cluster.

10.2.2 Microbenchmarks

The evaluation presented here focuses on assessing the performance gains of the optimized
MapReduce framework we propose, over the original one. To this end, we developed a
benchmark that creates a pipeline of n MapReduce jobs and submits them to Hadoop for

10.2 – Intermediate data generated between the jobs of a pipeline 97

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Figure 10.3: Completion time for short-running pipeline applications.

execution. Each job in the pipeline simulates a load that parses key-value pairs from the
input data and outputs 90 % of them as final result. In this manner, we manage to obtain
a long-running application that generates a large amount of data, allowing our dynamic
scheduling mechanism to optimize the execution of the pipeline. The computation itself is
not relevant in this case, as our goal is to create a scenario in which enough data chunks
are generated along the pipeline so that “map” tasks can be dynamically created. We run
this type of application first with the original Hadoop framework, then with our optimized
version of Hadoop. In both cases, we measure the pipeline completion-time and compare
the results.

In a first set of experiments, we run the benchmark in a small setup involving 20 nodes,
on top of which HDFS and Hadoop MapReduce are deployed as follows: a dedicated ma-
chine is allocated for each centralized entity (namenode, jobtracker), a node serves as the
Hadoop client that submits the jobs, and the rest of 17 nodes represent both datanodes and
tasktrackers. At each step, we keep the same deployment setup and we increase the number
of jobs in the pipeline to be executed. The first test consists in running a single job, while the
last one runs a pipeline of 9 MapReduce jobs.

The application’s input data, i.e., job1’s input data, consists of 5 data chunks (a total
of 320 MB). Jobi keeps 90 % of the input data it received from jobi−1. In the case of the
9-job pipeline, this data-generation mechanism leads to a total of 2 GB of data produced
throughout the pipeline, out of which 1.6 GB account for intermediate data.

Figure 10.3 shows the execution time of pipeline applications consisting of an increasing
number of jobs (from 1 to 9), in two scenarios: when running on top of the original Hadoop,
and with the pipeline-optimized version we proposed. In the first case, the client sequen-
tially submits the jobs in the pipeline to Hadoop’s jobtracker, i.e., waits for the completion
of jobi before submitting jobi+1. When using our version of Hadoop, the client submits all
the jobs in the pipeline from the beginning, and then waits for the completion of the whole
application. As expected, the completion time in both cases increases proportionally to the
number of jobs to be executed. However, our framework manages to run the jobs faster, as it
creates and schedules “map” tasks as soon as a chunk of data is generated during the execu-

98 Chapter 10 – Evaluating our approach for intermediate data management

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Figure 10.4: Completion time for long-running pipeline applications.

tion. This mechanism speeds-up the execution of the entire pipeline, and also exhibits a more
efficient cluster utilization. Compared to the original Hadoop, we obtain a performance gain
between 26 % and 32 %.

The first experiment we presented was focused on pipeline applications that consist of a
small up to a medium number of jobs (1 to 9). Due to the long-running nature of pipeline
applications and considering the significant size of the intermediate data our benchmark
generates, we performed experiments with larger applications and larger datasets in a dif-
ferent setup, including 50 nodes. HDFS and Hadoop MapReduce are deployed as for the
previous experiment, employing thus 47 tasktrackers. The size of the input data for each
pipeline application amounts to 2.4 GB (40 data chunks). We vary the number of jobs to be
executed in each pipeline, from 10 to 35. For the longest-running application, the generated
data add up to a total of 24.4 GB.

The results for this setup are displayed on Figure 10.4. Consistently with the previous
results, our approach proves to be more efficient for long-running applications as well. The
performance gains vary between 9 % and 19 % in this scenario. The benefits of our opti-
mized framework have a smaller impact in this case, because of the data size involved in the
experiment. Since more chunks are used as input, and substantially more chunks are being
generated throughout the pipeline, a large part of the tasktrackers is involved in the cur-
rent computation, leaving a smaller number of resources available for dynamically running
created “map” tasks.

In the context of pipeline applications, the number of nodes involved in the Hadoop de-
ployment can have a substantial impact on completion time. Furthermore, considering our
approach of dynamic scheduling “map” tasks, the scale of the deployment is an important
factor to take into account. Thus, we performed an experiment in which we vary the num-
ber of nodes employed by the Hadoop framework. At each step, we increase the number
of nodes used for the deployment, such that the number of tasktrackers that execute “map”
and “reduce” tasks is varied from 10 to 45. In each setup, we run the aforementioned bench-
mark with a fixed number of 7 jobs in the pipeline. The input data is also fixed, consisting of
25 chunks of data, i.e., 1.5 GB.

 700

 750

 800

 850

 900

 950

 1000

 1050

 10 15 20 25 30 35 40 45

T
im

e
(s

)

No of nodes

Original Hadoop
Modified Hadoop

Figure 10.5: Impact of deployment setup on performance.

Figure 10.5 shows the completion time of the 7-job pipeline when running with both orig-
inal Hadoop and modified Hadoop, while increasing the deployment setup. As the previous
experiments also showed, our improved framework manages to execute the jobs faster than
the original Hadoop. In both cases, as more nodes are added to the deployment, the appli-
cation is executed faster, as more tasktrackers can be used for running the jobs. However,
increasing the number of nodes yields performance gains up to a point, which corresponds
to 25 tasktrackers for the original Hadoop. This number is strongly related to the number
of chunks in the input data, since the jobtracker schedules a tasktracker to run the “map”
computation on each chunk. For the modified Hadoop, the point after which expanding
the deployment does not prove to be profitable any longer, is higher than for the original
Hadoop. The reason for this behavior lies in the scheduling approach of both frameworks:
in original Hadoop, the scheduling of jobs is done sequentially, while in modified Hadoop,
the “map” tasks of each job are scheduled as soon as the data is generated. The completion
time starts to increase for both frameworks after a certain point, as the overhead of launch-
ing and managing a larger number of tasktrackers overcomes the advantage of having more
nodes for running the application.

100 Chapter 10 – Evaluating our approach for intermediate data management

101

Chapter 11
Evaluating the benefits of the append

operation

Contents
11.1 Environmental setup . 101
11.2 Microbenchmarks . 102
11.3 Application study . 103

IN Chapter 7 we extended the Hadoop MapReduce framework to make use of the append
operation supported at the file-system level. In this chapter, we evaluate the benefits
that can be achieved through an efficient support for the append operation. To test the

append functionality, we performed two types of experiments: at the level of the file system,
and at the level of the Hadoop framework. The first type of experiments involve direct ac-
cesses to the file system, through the interface it exposes; we will further refer to these tests
as microbenchmarks. The second class of experiments consists in running MapReduce appli-
cations, and thus in indirectly accessing the storage layer, through the MapReduce frame-
work. The environmental setup, as well as the experiments and the obtained results, are
further presented.

11.1 Environmental setup

The experiments were performed on the Grid’5000 testbed, more precisely, on the nodes
of the Orsay cluster. These nodes are outfitted with dual-core x86_64 CPUs and 2 GB of
RAM. Intra-cluster bandwidth is 10 Gbit/s provided by a Ethernet network emulated over
Myrinet, with a measured bandwidth for end-to-end TCP sockets of 527 MB/s. Both the mi-
crobenchmarks and the MapReduce applications were performed using 270 nodes, on which

102 Chapter 11 – Evaluating the benefits of the append operation

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
B

/s
)

Number of clients

BSFS

Figure 11.1: Performance of BSFS when concurrent clients append data to the same file.

we deployed both BSFS and HDFS. For HDFS, we deployed the namenode on a dedicated
machine and the datanodes on the remaining nodes (one entity per machine). For BSFS, we
deployed one version manager, one provider manager, one node for the namespace manager
and 20 metadata providers. The remaining nodes were used as data providers. As HDFS
handles data in 64 MB chunks, we also set the page size at the level of BlobSeer to 64 MB, to
enable a fair comparison.

11.2 Microbenchmarks

The goal of the microbenchmarks is to evaluate the throughput achieved by BSFS when
multiple, concurrent clients access the file systems, under several test scenarios. The scenar-
ios we chose involve the append operation and represent access patterns exhibited by the
MapReduce applications described in Chapter 7. For each microbenchmark we measure the
average throughput achieved when multiple concurrent clients perform the same set of op-
erations on the file system. The clients are simultaneously launched on the same machines
as the datanodes (data providers, respectively). The number of concurrent clients ranges
from 1 to 246. Each test is executed 5 times, for each set of clients.

The microbenchmarks were performed only for BSFS; since the append operation is not
supported by HDFS, no comparison between HDFS and BSFS is possible.

Concurrent appends to the same file

In this test case, N concurrent clients append each a 64 MB chunk to the same file. The
results are displayed on Figure 11.1. They show that BSFS maintains a good throughput as
the number of appenders increases. This scenario illustrates the data access pattern exhibited
by the modified Hadoop framework, in which all the reducers append their outputs to the
same file, instead of creating many output files as it is done in the original version of Hadoop.

11.3 – Application study 103

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160

R
ea

d
av

er
ag

e
th

ro
ug

hp
ut

 (
M

B
/s

)

Number of Appenders

BSFS

(a) Impact of concurrent appends on concurrent reads
from the same file.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160

A
pp

en
d

av
er

ag
e

th
ro

ug
hp

ut
 (

M
B

/s
)

Number of Readers

BSFS

(b) Impact of concurrent reads on concurrent appends
to the same file.

Figure 11.2: Concurrent readers and appenders.

Concurrent reads and appends to the same file

This access pattern with concurrent clients reading and appending to the same file corre-
sponds to the case of MapReduce applications that can be executed in pipeline: the mappers
of one application can read the data for processing, while the reducers of an application
belonging to previous stages of the pipeline, can generate the data.

The test shown in Figure 11.2(a) assesses the performance of concurrent read operations
from a shared file, when they are executed simultaneously with multiple appends to the
same file. The test consists in deploying 100 readers and measuring the average throughput
of the read operations for a number of concurrent appenders that ranges between 0 (only
readers) and 140. Each reader processes 10 chunks of 64 MB and each appender writes
16 such chunks to the shared file. Each client processes disjoint regions of the file. The
obtained results show that the average throughput of BSFS reads is sustained even when the
same file is accessed by multiple concurrent appenders. As a consequence of the versioning-
based concurrency control in BlobSeer, the appenders work on their own version of the file,
and thus do not interfere with the older versions accessed by read operations.

Concurrent appenders maintain their throughput as well, when the number of concur-
rent readers from a shared file increases, as can be seen on Figure 11.2(b). In this experiment,
we fixed the number of appenders to 100 and varied the number of readers accessing the
same file from 0 to 140. Both readers and appenders access 10 chunks of 64 MB.

11.3 Application study

In order to evaluate how supporting the append operation influences the performance of
the Hadoop framework when running a MapReduce application, we chose the data join ap-
plication that is included in the contributions delivered with Yahoo!’s Hadoop release. The
data join application is similar to the outer join operation from the database context. Data
join takes as input two files consisting of key/value pairs, and merges them based on the
keys from the first file that appear in the second file as well. The generated output consists

104 Chapter 11 – Evaluating the benefits of the append operation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250

T
im

e
(s

)

Number of reducers

HDFS - multiple output files
BSFS - single output file

Figure 11.3: Completion time of the data join application when varying the number of reduc-
ers.

of 3 columns: the key from the first file and the values associated to the key in each of the
files. If a key in the first file appears more than once in either one of the two files, the output
will contain all the possible combinations. The keys that appear only in the first file are not
included in the output.

Running the data join application involves deploying the distributed file systems (HDFS
and BSFS) as well as the Hadoop MapReduce framework. The environmental setup is sim-
ilar to the one described in 11.1; one dedicated machine acted as the jobtracker, while the
tasktrackers were co-deployed with the datanodes/providers.

The input data consists of two files of 320 MB each; the input files contain key/value
pairs extracted from the datasets made public by Last.fm. For the experiments, we kept the
input data fixed, and we varied the number of reducers from 1 to 230. Since the Hadoop
framework starts a mapper to process each input chunk, 10 concurrent mappers will per-
form the “map” phase of the application. The join operation performed on the input files,
generates 6.3 GB of output data, written concurrently by the reducers, to the distributed file
system. In this environmental setup, we ran the data join application in two scenarios:

The original Hadoop framework with HDFS as storage. With this setup, the number of
output files is equal to the number of reducers. In the original Hadoop framework,
each reducer writes its output to a different file in HDFS. Thus, the access pattern gen-
erated in the “reduce” phase corresponds to concurrent writes to different files.

The modified Hadoop framework with BSFS as storage. BSFS supports concurrent ap-
pends to the same file. By modifying the Hadoop framework to append the data gen-
erated by each reducer instead of writing it to a separate file, a single output file can be
obtained by running the data join application in this context, without any intermediate
step. The reducers act as concurrent appenders to the same file.

The results displayed in figure 11.3 show the completion time of the data join applica-
tion in both of the scenarios previously described. BSFS finishes the job in approximately
the same amount of time as HDFS, and moreover, it produces a single output file, by sup-
porting the append operation. The completion time in both scenarios remains constant even

when the number of reducers increases, because data join a computation-intensive applica-
tion, and most of the time is spent on searching and matching keys in the “map” phase, and
on combining key-value pairs in the “reduce” phase.

106 Chapter 11 – Evaluating the benefits of the append operation

107

Chapter 12
Evaluating the Cost of Running

MapReduce Applications in the Cloud

Contents
12.1 Motivation . 108

12.2 Computational and cost model . 108

12.3 Execution environment . 109

12.4 Results . 110

12.5 Cost evaluation . 112

12.6 Related Work . 114

IN this chapter, we provide a cost evaluation of running MapReduce applications in the
Cloud, by looking into several aspects: the overhead incurred by executing the job on the
Cloud, compared to executing it on a Grid, the actual costs of renting Cloud resources,

and also, the impact of the storage system used as backend by MapReduce applications. To
evaluate all these factors, we run three MapReduce applications with the Hadoop frame-
work in two environments: first on clusters belonging to the Grid’5000 [47] platform, then
in a Nimbus [50] Cloud deployed on the Grid’5000 testbed. We then consider the payment
scheme used by Amazon for the rental of their Cloud resources and we compute the cost of
using our Nimbus deployment for running MapReduce applications. The evaluation pre-
sented in this chapter has been carried out in collaboration with Alexandra Carpen-Amarie.
A summary of this work as well as additional results can be found in her thesis manuscript.

108 Chapter 12 – Evaluating the Cost of Running MapReduce Applications in the Cloud

12.1 Motivation

Our goal is to assess and understand the overhead generated by the execution of a MapRe-
duce computation in a Cloud. More specifically, there are two aspects that we address: we
first analyze the virtualization overhead and the associated trade-offs when moving MapRe-
duce applications to the Cloud; second, we examine several storage options that can be used
as backend for MapReduce frameworks in the Cloud and their impact on the overall cost.

Virtualization overhead

One of the first aspects to consider when porting an application to the Cloud regards the
potential benefits and gains, if any. Moreover, it is important to be able to assess if those ben-
efits are worth the costs. Apart from the obvious advantages of the Cloud (huge processing
and storage capabilities), there are some application-related issues to take into account when
choosing the right environment for running that application. In most cases, there is a com-
promise to make between the cost of executing the application in the Cloud, and the gains
expected to be obtained. Therefore, it is highly important to understand the requirements
and features of MapReduce applications, in order to be able to tune the Cloud environment
in an optimal manner, so that the right balance between cost and performance is struck.

The main advantage of using virtualization is that one can create a homogeneous environ-
ment comprising a substantial number of machines by using a considerably lesser number
of physical machines. In this work, we consider various MapReduce applications, with the
goal of assessing the impact of replacing the typical MapReduce execution environment, i.e.
a physical cluster, with a virtualized one, i.e. Cloud resources.

Impact of storage on performance

Storage is another factor that may substantially impact the cost of running an application
in the Cloud. It is therefore interesting to investigate the behavior of several distributed file
systems as storage backend for MapReduce applications in the Cloud. Choosing the file
system that suits the application best, becomes a crucial factor when considering the pay-
per-use Cloud model. We provide a performance comparison of two distributed file systems
when employed as storage for MapReduce applications. We also assess the performance of
the BSFS file system presented in Chapter 5, when running in a virtualized environment.

12.2 Computational and cost model

For our cost-evaluation of running MapReduce applications in the Cloud, we chose the Ama-
zon services as the basic model. Amazon’s EC2 infrastructure as a service (IaaS) Cloud is the
most widely-used and feature-rich commercial Cloud. The storage system introduced by
Amazon, S3 [4], proposes a simple access interface that has become the IaaS standard for
data transfers in and out of the Cloud.

Amazon EC2 allows users to rent compute or storage resources, in order to run their own
applications. Typically, users first choose the type of virtual machine (VM) that suits their
needs (application requirements, budget, etc.) and then boot the VM on multiple Amazon

12.3 – Execution environment 109

resources, thus creating what is referred to as instances of that VM. Users are charged on a
pay-per-use model that involves 3 types of costs:

Computational cost (CPU cost), that accounts for the VM type, the number of required in-
stances and their use in EC2.

Data storage costs involve charges for persistently storing input and output data for the
executed applications. We only focus on saving data directly into S3 objects, since
existing storage alternatives, such as EBS [1] volumes, eventually rely on S3 for backup
storage and introduce additional costs.

Data transfer charges include costs for moving data into and out of the Cloud. Data trans-
fers between instances are free of charge, as well as transfers between S3 and the rented
EC2 VMs.

To evaluate the computational cost of our experiments, we consider the c1.medium Amazon
image type, as it meets two requirements: first, it is equivalent to the physical nodes we
used when measuring the overhead of moving applications to the Cloud. Second, in [49],
the authors show that the c1.medium image is the most cost-effective Amazon instance. The
c1.medium instance is charged $0.19 per hour in the EU Amazon region and it features 1.7 GB
of memory, 2 virtual cores and 350 GB of instance storage.

One important parameter that influences the cost-analysis of a Cloud application is the
granularity at which the Cloud provider charges for resources. In the case of Amazon EC2,
the rented instances are charged by the hour, assumption that may conceal the differences
between storage backends or the benefits of adding resources to improve the runtime per-
formance, when the execution lasts less than one hour. To better characterize the costs asso-
ciated with our experiments, we assume per-second charges in our cost model, by dividing
the hourly prices in Amazon EC2 by 3600.

As for the storage costs, we consider Amazon S3 charges for the EU region, i.e., $0.140
per GB for the first TB per month. Regarding the transfer costs, Amazon charges only for
data transfers out of the Cloud, that is $0.12 per GB for data downloaded from the Cloud
(download is free for less than 1 GB of output data). Some applications may need to persis-
tently store all the input and output data in S3, as input data-sets may be processed several
times by the application, and output results may be further refined. Besides storage costs,
Amazon S3 also charges for HTTP requests, as follows: the price for PUT, COPY, POST, or
LIST requests is $0.01 per 1,000 requests and GET requests are charged $0.01 per 10,000 re-
quests.

12.3 Execution environment

To analyze the performance and costs of MapReduce applications, we performed experi-
ments on two different platforms. To evaluate the pure performance of MapReduce access
patterns, we relied on the Grid’5000 testbed that provides the typical execution environment
for MapReduce. Then, we deployed the same MapReduce tests in an IaaS Cloud, namely
the Nimbus [50, 9] open-source Cloud toolkit, deployed on top of the Grid’5000 testbed. As
a MapReduce framework for running our computations, we chose Hadoop, the widely used
open-source implementation of Google’s MapReduce model.

110 Chapter 12 – Evaluating the Cost of Running MapReduce Applications in the Cloud

Experimental platform

For both of our experimental environments (a physical cluster and the Cloud) we employed
the clusters in Grid’5000. The first set of experiments aims to run MapReduce applications
in a typical cluster environment. For this setup, we selected the Grid’5000 cluster in Or-
say, i.e., 275 nodes outfitted with dual-core x86_64 CPUs and 2 GB of RAM. Intra-cluster
communication is done through a 1 Gbps Ethernet network.

The second type of environment is Cloud-oriented: it was achieved by first deploying
the Nimbus Cloud toolkit on top of physical nodes, and then by deploying VMs inside the
obtained Nimbus Cloud. For these experiments, we used 130 nodes belonging to the Rennes
site, and a VM type with features similar to the ones exhibited by the nodes from the first
setup. Thus, we deployed VMs with 2 cores and 2 GB of RAM each.

In both setups, we created and deployed an execution environment for Hadoop compris-
ing a dedicated node/VM for the jobtracker and another one for the namenode, while the
rest of the nodes/VMs served as both datanodes and tasktrackers.

12.4 Results

This sections describes the experiments we performed in order to achieve the goals pre-
sented in section 12.1. We further discuss the obtained results, with respect to the factors we
aim to evaluate.

Virtualization overhead

In order to assess the virtualization overhead, we compare Hadoop’s performance when
running in the two experimental environments previously described (grid cluster versus
Cloud). In both scenarios, we run the same tests that imply measuring the runtime of the grep
and sort applications. A test consists in deploying both HDFS and the Hadoop MapReduce
framework on a number of nodes/VMs and then running the two MapReduce applications.
For each test, we fix the input data size to 18.8 GB residing in HDFS. The number of nodes/
VMs on top of which Hadoop is deployed, ranges from 20 to 280. By executing the same
workload and keeping the same setup when running Hadoop on the Grid and the in the
Cloud, we manage to achieve a fair comparison between the two environments, and thus, to
evaluate the virtualization overhead.

Figure 12.1 shows the completion time of grep and sort when Hadoop runs on physi-
cal and then on virtual machines. The results show that the job completion time decreases
in both environments and for both applications, as the deployment platform increases, i.e.
more nodes/VMs are used. However, this gain in performance stabilizes when a certain
number of machines is reached. In our case, for the grep application (Figure 12.1(a)) the
execution time does not improve further when using more than 150 machines for the de-
ployment. The explanation for this behavior comes from the size of the input data and the
scheduling policy of Hadoop: the jobtracker launches a mapper to process each chunk of
input data. Considering the fact that we process 300 chunks of input data (18.8 GB) and that
by default, Hadoop executes 2 mappers per node/VM, the optimal number for running this
workload is 150 machines. After this point, performance is almost the same. As grep is only

12.4 – Results 111

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Number of machines

Nodes
VMs

(a) Distributed Grep.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Number of machines

Nodes
VMs

(b) Distributed Sort.

Figure 12.1: Grid versus Cloud: completion time for Hadoop applications.

read-intensive and produces very little output data, the completion time accounts mostly for
computation time.

For the sort application, the optimal number of machines involved in the deployment
is around 100, since the completion time accounts not only for computation, but also for
writing the output data. Sort generates the same amount of output data as the given input
data, thus a considerably large amount of time is spent in writing the final result to HDFS.

These tests also help us assess the overhead of porting the grep and sort applications to
the Cloud. As the results show, the virtualization overhead is negligible especially when
considering the major benefit provided by the Cloud through virtualization. With a much
smaller number of nodes, we managed to create inside the Cloud the same setup as the
testing environment provided by a large number of physical machines in the Grid (double,
in our case).

Performance analysis

In a second set of experiments we evaluated the performance of two storage options for the
grep and sort applications, by measuring their completion time in a Cloud environment. We
increased the number of VMs comprising the virtual Hadoop cluster from 10 to 250. For each
Hadoop backend, we repeated the experiments and we measured the application runtime.
The input data amounted to 100 chunks, i.e., 6.25 GB, for each of the two applications. As
storage backend, we evaluated the default storage option of Hadoop, HDFS, and the BSFS
system we developed and presented in Chapter 5.

The results in Figure 12.2 show the execution runtime improves when more VMs are
added to the cluster. This trend however becomes less steep when the number of VMs
reaches 50 and thus the framework deploys a number of mappers equal to the number of in-
put data chunks. In both experiments, the BSFS backend performs slightly better than HDFS,
result consistent with our previous evaluations in local clusters. This improvement suggests
that BSFS is able to deliver similar performance in both Cloud and Grid environments and is
thus suitable for read-intensive workloads, such as grep, as well as for write-intensive ones,
as shown by the sort results.

112 Chapter 12 – Evaluating the Cost of Running MapReduce Applications in the Cloud

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Number of VMs

HDFS
BSFS

(a) Distributed Grep.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

Number of VMs

HDFS
BSFS

(b) Distributed Sort.

Figure 12.2: Completion time when running Hadoop in the Cloud.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

C
os

t (
$)

VMs

BSFS-CPU
BSFS-Storage

BSFS-Total
HDFS-CPU

HDFS-Storage
HDFS-Total

(a) Distributed Grep.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

C
os

t (
$)

VMs

BSFS-CPU
BSFS-Storage

BSFS-Total
HDFS-CPU

HDFS-Storage
HDFS-Total

(b) Distributed Sort.

Figure 12.3: Cost evaluation.

12.5 Cost evaluation

In this section, we compute various types of costs associated to running three MapReduce
applications in the Cloud. The costs are calculated according to the model described in
section 12.2.

Grep and Sort

We first evaluate the cost of running grep and sort applications in the Cloud. Since data
transfers between S3 and the Cloud environment are free, we analyze only two of the types
of costs detailed in section 12.2, namely the cost of computation and the cost of storing the
data in S3.

Figure 12.3(a) shows the costs of running the grep application as a function of the number
of virtual machines that act as Hadoop nodes, for the same input size as in the previous

12.5 – Cost evaluation 113

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

T
im

e
(s

)

No of VMs

HDFS

(a) Completion time.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

C
os

t (
$)

VMs

CPU
Storage

Total

(b) Cost evaluation.

Figure 12.4: Pipeline MapReduce application.

experiment. The computational cost is computed as the number of VMs × the execution
time × the cost of the VM instance per second. It increases as more virtual machines are
provisioned, since the cost of deploying additional VMs outweighs the performance gain
caused by the decreasing execution time.

The data-storage costs do not vary with the number of deployed VMs, since the input
and output data are the same at each deployment setup. Both grep and sort process the same
input data, that is 100 chunks of text files. While the result yielded by grep has a negligible
size, the amount of data generated by sort is similar to its input. Figure 12.3 shows the
cost estimations for running both applications in a Cloud environment. As expected, since
running the applications with a BSFS backend is more efficient in terms of performance, the
same behavior is exhibited for the computational cost, which directly depends on the time
spent in computation. The storage cost, however, is independent of the used backend and it
significantly impacts the total cost for both applications.

Pipeline MapReduce applications

To illustrate the characteristics and requirements of pipeline MapReduce applications, we
developed a synthetic test which we then executed in a virtualized environment. Our syn-
thetic application consists of 10 MapReduce jobs that are chained into a pipeline and ex-
ecuted with Hadoop using HDFS as storage. The computation performed by each job in
the pipeline is trivial, as the “map ” and “reduce” functions simply output key-value pairs.
However, for our experiment, the computation itself is not relevant, as our goal is to exe-
cute a long-running pipeline application that generates large amounts of data. The input
data consists of 200 chunks accounting for 12.5 GB. Each job in the pipeline parses key-value
pairs from the input data and outputs 90% of them. This leads to a total amount of data to
be stored in HDFS (input, intermediate and output data) of 85.8 GB.

Figure 12.4(a) shows the runtime for the 10-job pipeline, while the number of VMs ranges
between 48 and 288. As expected, the pipeline is completed faster, as more machines are em-
ployed by Hadoop. At some point, the time spent in reading and writing a considerably
large data size overcomes the advantage of having more VMs added to the deployment, and

114 Chapter 12 – Evaluating the Cost of Running MapReduce Applications in the Cloud

thus, the completion time ceases to decrease. The costs associated with this application are
displayed on Figure 12.4(b). The CPU cost is computed as previously mentioned for the
grep and sort applications. However, for this scenario, the CPU cost is far higher and has a
significantly greater impact on the total cost, as a pipeline MapReduce application is usually
a long-running job. We also assess the cost of storing all the data generated throughout the
pipeline, in S3. This scenario in which data is stored in S3 and then transferred to HDFS
before performing the computation, also represents the typical usage of EC2. Since transfer-
ring data between S3 and VMs is free of charge, the total cost accounts only for computation
and storage.

12.6 Related Work

Several studies have investigated the performance of various Cloud platforms and the costs
and benefits of running scientific applications in such environments. Most evaluations fo-
cused on the Amazon’s EC2 Cloud, as it has become the most popular Infrastructure-as-
a-Service (IaaS) platform and has imposed its specific cost model to the Cloud computing
community. In [73, 32, 44], the authors explored the trade-offs of running high-performance
applications on EC2, showing that the Cloud environments introduce a significant overhead
for parallel applications compared to local clusters. The cost of using HPC Cloud resources
is discussed in [22], where the authors introduced a cost model for local resources and com-
pared the computational cost of jobs against a Cloud environment. However, this work in-
cludes only a benchmark-based performance evaluation and no specific type of application
is considered.

Recent works have focused on loosely-coupled applications, such as [30, 49, 19], in which
the authors conducted a cost analysis of running scientific workflows in Cloud environ-
ments. They considered the performance penalties introduced by Cloud frameworks and
evaluated computational and storage costs through simulations and experiments on EC2
and a local HPC cluster. More in-depth studies have investigated data storage in Clouds,
evaluating the Amazon S3 service through data-intensive benchmarks [65]. Moreover, Pa-
per [48] evaluated several file systems as Cloud storage backends for workflow applica-
tions, emphasizing running times and costs for each backend. The work in [53] conducted a
comparative evaluation of Cloud platforms against Desktop Grids. They examined perfor-
mance and cost issues for specific volunteer-computing applications and discussed hybrid
approaches designed to improve cost effectiveness.

In [42], the authors introduced the AzureMapReduce platform and conducted a perfor-
mance comparison of several commercial MapReduce implementations in Cloud environ-
ments. The analysis included scalability tests and cost estimations on two MapReduce ap-
plications.

115

Part V

Conclusions and future work

117

Chapter 13
Conclusions

D ATA-INTENSIVE applications are nowadays, widely used in various domains to ex-
tract and process information, to design complex systems, to perform simulations
of real models, etc. These applications exhibit challenging requirements in terms

of both storage and computation. In the context of data-intensive applications, we fo-
cus on the MapReduce programming paradigm and its implementations. Introduced by
Google, the MapReduce abstraction has revolutionized the data-intensive community and
has rapidly spread to various research and production areas. An open-source implemen-
tation of Google’s abstraction was provided by Yahoo! through the Hadoop project. This
framework is considered the reference MapReduce implementation and is currently heavily
used for various purposes and on several infrastructures.

The second part of the context in which this work was carried out, concerns large-scale
infrastructures. As a validation for the contribution proposed in this thesis manuscript, we
targeted two environments that are most-commonly used for executing data-intensive ap-
plications. The first platform that we focused on is the Grid, a well-established approach to
distributed computing. In a second phase, we considered another environment for our work,
Cloud computing, a recently-emerged model with a continuously-growing popularity.

In this manuscript, we addressed the problem of efficiently managing data processed
and produced by MapReduce applications, on infrastructures distributed at large scales.
The contribution of our work can be organized in three main research direction:

Designing a concurrency-optimized file system for MapReduce frameworks. We brought
a first contribution at the level of the storage layer for MapReduce applications. In or-
der to propose an efficient solution to the challenges raised by storing data processed
by MapReduce computations, we first investigated the specific features of MapRe-
duce applications that have an impact on the storage backend. We also discussed
several file systems belonging to various communities, that are successfully used as
storage for frameworks executing MapReduce jobs. Starting from the characteristics of

118 Chapter 13 – Conclusions

MapReduce applications and the limitations of existing storage solutions, we proposed
a concurrency-optimized file system for MapReduce frameworks. Our solution is based on
the BlobSeer data-management system. We built the BlobSeer File System (BSFS) with
the goal of providing high throughput under heavy concurrency to MapReduce ap-
plications. BSFS can be used as a stand-alone file system that can be directly accessed
through a file-system interface. We further integrated BSFS with the Hadoop MapRe-
duce framework, the reference MapReduce open-source implementation.

To validate our proposal, we performed intensive experiments on the Grid’5000 plat-
form. We thus showed that the proposed storage layer, BSFS, manages to deliver and
sustain a significantly higher throughput than the default storage backend of Hadoop,
HDFS. The various experiments we performed exhibit high concurrency to shared files
and were carried out at large scales, on clusters of up to 300 machines. We developed a
set of synthetic benchmarks to directly compare BSFS with HDFS when the file systems
are accessed in various patterns. At the level of the Hadoop MapReduce framework,
we evaluated the benefits that BSFS brings to real MapReduce applications. We ob-
served that BSFS is able to complete the job’s execution in substantially less amount of
time than HDFS.

Optimizing intermediate data management in MapReduce computations. A second part
of our contribution was dedicated to the management of a special type of data pro-
duced by MapReduce computations, i.e., intermediate data. We studied the characteris-
tics of intermediate data in general, and we discussed the way it is handled in MapRe-
duce frameworks. Our work addressed intermediate data at two levels: inside the
same MapReduce job, and during the execution of pipeline applications.

We focused first on efficiently managing intermediate data generated between the
“map” and “reduce” phases of MapReduce computations. In this context, we pro-
posed to store the intermediate data in the distributed file system used as underlying
backend. In this direction, we investigated the features of intermediate data in MapRe-
duce computations and we proposed a new approach consisting in storing this kind of
data in a DFS. The major benefit of this approach is better illustrated when considering
failures. Existing MapReduce frameworks store intermediate data on nodes local disk.
In case of failures, intermediate data produced by mappers can no longer be retrieved
and processed further by reducers. The solution of most frameworks is to reschedule
the failed tasks and to re-generate all the intermediate data that was lost because of
failures. This solution is costly in terms of additional execution time. With our ap-
proach of storing intermediate data in a DFS, we avoid the re-execution of tasks in case
of failures that lead to data loss. As storage for intermediate data, we considered BSFS
as being a suitable candidate for providing for the requirements of intermediate data:
availability and high I/O access. The tests we performed in this context, measured
the impact of using a DFS as storage for intermediate data instead of the local-disk ap-
proach. We then assessed the performance of BSFS and HDFS when serving as storage
for intermediate data produced by several MapReduce applications.

We then considered another type of intermediate data that appears in the context of
pipeline MapReduce applications. In order to speed-up the execution of pipeline MapRe-
duce applications (applications that consist of multiple jobs executed in a pipeline) and
also, to improve cluster utilization, we proposed an optimized Hadoop MapReduce

framework, in which the scheduling is done in a dynamic manner. We introduced
several optimizations in the Hadoop MapReduce framework in order to improve its
performance when executing pipelines. Our proposal consisted mainly in a new mech-
anism for creating tasks along the pipeline, as soon as the tasks’ input data becomes
available. As our evaluation showed, this dynamic task scheduling leads to an im-
proved performance of the framework, in terms of job completion time. In addition,
our approach ensures a more efficient cluster utilizations, with respect to the amount
of resources that are involved in the computation.

Enabling and leveraging the append operation in Hadoop. In a third contribution of our
work, we investigated ways to instrument the features of BSFS in order to enable ex-
tensions to the de facto MapReduce implementation, Hadoop. Starting from the lim-
itations of existing approaches, we identified the append operation as having valu-
able potential not only in the MapReduce context. We provided several examples
of scenarios where the append operation is needed at the file-system level. Tests
at the file-system level showed that BSFS provides efficient support for the append
operation by delivering high throughput when multiple clients concurrently append
data to the same file. Since append is supported by the file system, we modified the
Hadoop MapReduce framework to take advantage of this functionality. In our mod-
ified Hadoop framework, the reducers append their data to a single file, instead of
writing it to a separate file, as it was done in the original version of Hadoop. The ben-
efits of our approach are obvious in terms of simplicity: at the end of the computation,
data is already available in a single logical file. This file is ready to use for any sub-
sequent processing. No extra application logic is needed for subsequent processing,
in contrast to the original Hadoop, which has to explicitly handle a (potentially large)
group of files.

The implementation and evaluation of the aforementioned contributions required a con-
siderable amount of effort. The main challenges that we had to overcome arose from several
factors: the complexity of the Hadoop project that we had to study in order to validate our
work and to introduce several extensions, the targeted platforms on which we experimented,
the Grid and the Cloud, that both involved a substantial scripting phase, the difficulties en-
tailed by building an experimental environment consisting of various, complex systems.

In our experiments, we aimed at measuring the scalability of our approaches. We also fo-
cused on observing how our solutions behaved in stress conditions of high concurrency. We
started by thoroughly testing the proposed solutions on Grid’5000 and then we addressed
the Cloud environment, with the help of the Nimbus toolkit. In the Cloud context, we pro-
posed a cost-evaluation of MapReduce applications, in terms of computation and storage.
By considering the existing storage options, we provided a performance evaluation of run-
ning MapReduce jobs in the Cloud. We also modeled the costs of executing different types
of MapReduce applications when considering Amazon ECs costs.

120 Chapter 13 – Conclusions

121

Chapter 14
Future work

THE work presented in this manuscript comprises several proposals that aim at optimiz-
ing data management in MapReduce computations. To this end, we designed and
implemented systems and extensions that were then validated on Grid and Cloud

infrastructures. During the achievement of this work, several open-issues emerged, issues
that require a more profound investigation and that can lead to further optimizations and
extensions. We detail below several research directions brought forth by this work.

Exposing and leveraging versioning at the file-system level. The versioning mechanism
employed by BlobSeer could be exposed by BSFS’s interface. Applications accessing
data stored in BSFS can be re-designed to take advantage of versioning in their work-
flow. An interesting example refers to pipeline MapReduce applications that could
instrument versioning to enable parallel execution of stages.

Optimizing Hadoop’s scheduling policies in case of failures. The contribution we pre-
sented related to intermediate data management can be employed by Hadoop’s job-
tracker to deal with failures in an efficient way. Since the intermediate data is stored in
the underlying DFS, when failures occur, the application can carry on with a normal
execution, instead of repeating the failed computations. This involves extensions to
Hadoop’s scheduling mechanisms, to permit computations to resume on other nodes,
starting from the intermediate data generated up to the point of failure. This aspect
needs careful investigation of the scheduling policy Hadoop uses, as well as a valida-
tion phase that involves injecting failures and triggering the job-recovery process.

Experiments with a wider range of MapReduce applications. The features supported by
BSFS can bring substantial benefits to other domains that use MapReduce processing.
For instance, MapReduce-based image processing is a challenging area that crunches
huge amounts of data to execute complex computations. Image-processing applica-
tions can benefit from the high throughput BSFS delivers.

122 Chapter 14 – Future work

Integration with other data-processing frameworks. Both BSFS and our contribution in
the context of pipeline applications can be validated with higher-level frameworks,
such as Pig and HBase.

Optimizing MapReduce execution in the Cloud. Various Cloud models imply different in-
terfaces, features and costs. By looking into each of the aspects that are specific to dif-
ferent types of Clouds, we can tune both the application and the storage so that an
optimal environment is delivered. Another future direction that is worth considering
is supplying mechanisms that enable a cost-effective execution of MapReduce applica-
tions in the Cloud. Techniques such as performance models, dynamic tuning of storage
in compliance with applications needs, etc., are tools we can utilize in this direction.

Improving proposed systems. Further improvements can be performed for each of the con-
tributions. For example, the BSFS’s namespace manager is currently centralized. A dis-
tributed approach would be welcomed at this level, as it would enable better-scaling
capabilities. Also at the level of BSFS, we are considering several chunk-allocation
strategies, in addition to the round-robin policy proposed by BlobSeer. For instance, a
location-aware approach like the one employed by HDFS could prove to be beneficial
in deployment models where clients are co-located with storage nodes.

123

Bibliography

[1] Amazon Elastic Block Store (EBS). http://aws.amazon.com/ebs/.

[2] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[3] Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/.

[4] Amazon Simple Storage Service (S3). http://aws.amazon.com/s3/.

[5] Cloudstore distributed file system (formerly, Kosmos file system). http://kosmosfs.
sourceforge.net/index.html.

[6] HBase. The Hadoop Database. http://hadoop.apache.org/hbase/.

[7] HDFS. The Hadoop Distributed File System. http://hadoop.apache.org/common/docs/
r0.20.1/hdfs_design.html.

[8] The Kadeploy project. http://kadeploy.imag.fr/.

[9] The Nimbus project. http://www.nimbusproject.org/.

[10] The OAR project. http://oar.imag.fr/.

[11] Parallel Virtual File System, Version 2. http://pvfs2.org/.

[12] PoweredBy Hadoop. http://wiki.apache.org/hadoop/PoweredBy.

[13] Science Clouds. http://www.scienceclouds.org/.

[14] Sorting 1PB with MapReduce. http://googleblog.blogspot.com/2008/11/
sorting-1pb-with-mapreduce.html.

[15] The Apache Hadoop Project. http://www.hadoop.org.

[16] The Hadoop MapReduce Framework. http://hadoop.apache.org/mapreduce/.

[17] The Windows Azure Platform. http://www.microsoft.com/windowsazure/.

[18] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: an experiment in public-resource computing. Communications of the ACM,
45(11):56–61, 2002.

124 BIBLIOGRAPHY

[19] G. Bruce Berriman, Ewa Deelman, Gideon Juve, Moira Regelson, and Peter Plavchan.
The application of cloud computing to astronomy: A study of cost and performance.
CoRR, abs/1010.4813:1–7, 2010. informal publication.

[20] Roy Bragg. Cloud computing: When computers really rule. Tech News World, Electronic
Magazine, available at http://www.technewsworld.com/story/63954.html., July 2008.

[21] Rajkumar Buyya, Chee S. Yeo, and Srikumar Venugopal. Market-oriented cloud com-
puting: Vision, hype, and reality for delivering IT services as computing utilities. In
Department of Computer Science and Software Engineering (CSSE), The University of Mel-
bourne, Australia. He, pages 10–1016, 2008.

[22] Adam G. Carlyle, Stephen L. Harrell, and Preston M. Smith. Cost-effective HPC: The
community or the cloud? In Proceedings of the 2010 IEEE 2nd International Conference on
Cloud Computing Technology and Science, CLOUDCOM ’10, pages 169–176, Washington,
DC, USA, 2010. IEEE Computer Society.

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a dis-
tributed storage system for structured data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berke-
ley, CA, USA, 2006. USENIX Association.

[24] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The
Data Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Computer Applications, 23:187–200, 1999.

[25] Benoit Claudel, Guillaume Huard, and Olivier Richard. TakTuk, adaptive deployment
of remote executions. In Proceedings of the 18th ACM international symposium on High
performance distributed computing, HPDC ’09, pages 91–100, New York, NY, USA, 2009.
ACM.

[26] Gianmarco De Francisci Morales, Aristides Gionis, and Mauro Sozio. Social content
matching in MapReduce. Proceedings of VLDB Endowment, 4:460–469, April 2011.

[27] Jeff Dean. Designs, Lessons and Advice from Building Large Distributed Systems,
Keynote. Keynote at The 3rd ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware (LADIS), Big Sky, MT, October 2009.

[28] Jeffrey Dean. Experiences with MapReduce, an abstraction for large-scale computation.
In Proceedings of the 15th international conference on Parallel architectures and compilation
techniques, PACT ’06, pages 1–1, New York, NY, USA, 2006. ACM.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[30] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good. The cost
of doing science on the cloud: the Montage example. In Supercomputing’08, SC ’08,
pages 50:1–50:12, Piscataway, NJ, USA, 2008. IEEE Press.

BIBLIOGRAPHY 125

[31] Thomas A. DeFanti, Ian Foster, Michael E. Papka, Rick Stevens, and Tim Kuhfuss.
Overview of the I-WAY: wide-area visual supercomputing. International Journal of Super-
computer Applications and High Performance Computing, 10(2/3):123–131, Summer/Fall
1996.

[32] Constantinos Evangelinos and Chris N. Hill. Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2. Cloud Computing and Its Applications, October 2008.

[33] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-
ture. ACM Transactions on Internet Technology, 2(2):115–150, 2002.

[34] Ian Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6), July 2002.

[35] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779,
pages 2–13, 2005.

[36] Ian Foster, Jonathan Geisler, Bill Nickless, Warren Smith, and Steven Tuecke. Software
infrastructure for the i-way high-performance distributed computing experiment. In
Proceedings of the 5th IEEE International Symposium on High Performance Distributed Com-
puting, HPDC ’96, pages 562–, Washington, DC, USA, 1996. IEEE Computer Society.

[37] Ian Foster and Carl Kesselman, editors. The Grid: blueprint for a new computing infras-
tructure. Morgan Kaufmann, San Francisco, CA, USA, January 1998.

[38] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: enabling
scalable virtual organizations. Supercomputer Applications, 15(3):200–222, March 2001.

[39] Yasser Ganjisaffar, Thomas Debeauvais, Sara Javanmardi, Rich Caruana, and
Cristina Videira Lopes. Distributed tuning of machine learning algorithms using
MapReduce clusters. In Proceedings of the 3rd Workshop on Large Scale Data Mining: The-
ory and Applications, LDMTA ’11, pages 2:1–2:8, New York, NY, USA, 2011. ACM.

[40] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
SIGOPS - Operating Systems Review, 37(5):29–43, 2003.

[41] Galen Gruman and Eric Knorr. What cloud computing really means. In-
foWorld, Electronic Magazine, available at http://www.infoworld.com/article/08/04/07/15FE-
cloudcomputing-reality_1.html., April 2008.

[42] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox. MapReduce in the
Clouds for Science. In Proceedings of the 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, CLOUDCOM ’10, pages 565–572, Washington,
DC, USA, 2010. IEEE Computer Society.

[43] Brian Hayes. Cloud computing. Communications of the ACM, (7):9–11, July 2008.

[44] Zach Hill and Marty Humphrey. A quantitative analysis of high performance comput-
ing with Amazon’s EC2 infrastructure: The death of the local cluster? In Grid Comput-
ing, 2009 10th IEEE/ACM International Conference on, pages 26–33. IEEE, October 2009.

126 BIBLIOGRAPHY

[45] Wolfgang Hoschek, Javier Jaen-Martinez, Asad Samar, Heinz Stockinger, and Kurt
Stockinger. Data management in an international Data Grid Project. pages 77–90.
Springer-Verlag, 2000.

[46] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. In Proceedings of
the 2nd ACM SIGOPS/EuroSys 2007, EuroSys ’07, pages 59–72, New York, NY, USA,
2007. ACM.

[47] Yvon Jégou, Stephane Lantéri, Julien Leduc, Noredine Melab, Guillaume Mornet, Ray-
mond Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi,
and Touche Iréa. Grid’5000: a large scale and highly reconfigurable experimental Grid
testbed. International Journal of High Performance Computing Applications, 20(4):481–494,
November 2006.

[48] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Benjamin P. Berman, Bruce
Berriman, and Phil Maechling. Data Sharing Options for Scientific Workflows on Ama-
zon EC2. In Supercomputing’10, SC ’10, pages 1–9, Washington, DC, USA, 2010. IEEE
Computer Society.

[49] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman, Benjamin P.
Berman, and Phil Maechling. Scientific Workflow Applications on Amazon EC2. 2009
5th IEEE International Conference on EScience Workshops, pages 59–66, 2010.

[50] Kate Keahey and Tim Freeman. Science clouds: Early experiences in cloud computing
for scientific applications. In CCA ’08: Cloud Computing and Its Applications, Chicago, IL,
USA, 2008.

[51] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin-Gyu Kim, Hyungsoo Jung, and Heon Y.
Yeom. MRBench: A Benchmark for MapReduce Framework. In Proceedings of the 2008
14th IEEE International Conference on Parallel and Distributed Systems, pages 11–18, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[52] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta. On availability of inter-
mediate data in cloud computations. In Proceedings of the 12th conference on Hot topics in
operating systems, HotOS’09, pages 6–6, Berkeley, CA, USA, 2009. USENIX Association.

[53] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and David P. Ander-
son. Cost-benefit analysis of cloud computing versus desktop grids. In Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS ’09, pages
1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[54] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas Sandholm. What’s
inside the cloud? an architectural map of the cloud landscape. In Proceedings of the 2009
ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages
23–31, Washington, DC, USA, 2009. IEEE Computer Society.

[55] Cecchi Marco, Capannini Fabio, Dorigo Alvise, Ghiselli Antonia, Giacomini Francesco,
Maraschini Alessandro, Marzolla Moreno, Monforte Salvatore, Pacini Fabrizio,
Petronzio Luca, and Prelz Francesco. The gLite workload management system. In

BIBLIOGRAPHY 127

GPC ’09: Proceedings of the 4th International Conference on Advances in Grid and Pervasive
Computing, pages 256–268, Berlin, Heidelberg, 2009. Springer-Verlag.

[56] Andrea Matsunaga, Mauricio Tsugawa, and Jose Fortes. CloudBLAST: Combining
MapReduce and virtualization on distributed resources for bioinformatics applications.
eScience, IEEE International Conference on, 0:222–229, 2008.

[57] Kirk McKusick and Sean Quinlan. Gfs: Evolution on fast-forward. Communications of
the ACM, 53(3):42–49, 2010.

[58] Rohith K. Menon, Goutham P. Bhat, and Michael C. Schatz. Rapid parallel genome
indexing with MapReduce. In Proceedings of the 2nd international workshop on MapReduce
and its applications, MapReduce ’11, pages 51–58, New York, NY, USA, 2011. ACM.

[59] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente. Elastic man-
agement of cluster-based services in the cloud. In ACDC ’09: Proceedings of the 1st work-
shop on Automated control for datacenters and clouds, pages 19–24, New York, NY, USA,
2009. ACM.

[60] Andrew Y. Ng, Gary Bradski, Cheng-Tao Chu, Kunle Olukotun, Sang Kyun Kim, Yi-
An Lin, and YuanYuan Yu. MapReduce for machine learning on multicore. In NIPS,
December 2006. Selected for Oral Presentation.

[61] Bogdan Nicolae, Gabriel Antoniu, and Luc Bougé. BlobSeer: How to enable efficient
versioning for large object storage under heavy access concurrency. In Data Management
in Peer-to-Peer Systems, St-Petersburg, Russia, 2009. Workshop held within the scope of
the EDBT/ICDT 2009 joint conference.

[62] Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra Carpen-
Amarie. BlobSeer: Next-generation data management for large scale infrastructures.
Journal of Parallel and Distributed Computing, 71:169–184, February 2011.

[63] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus Open-Source Cloud-
Computing System. In Proceedings of the 9th IEEE/ACM International Symposium on Clus-
ter Computing and the Grid, pages 124–131, Los Alamitos, CA, USA, 2009. IEEE Com-
puter Society.

[64] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: a not-so-foreign language for data processing. In Proceedings of
the 2008 ACM SIGMOD, pages 1099–1110, New York, NY, USA, June 2008. ACM.

[65] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Amazon
S3 for science grids: a viable solution? In Proceedings of the 2008 international workshop
on Data-aware distributed computing, DADC ’08, pages 55–64, New York, NY, USA, 2008.
ACM.

[66] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data:
Parallel analysis with Sawzall. Scientific Programming Journal, 13:277–298, October 2005.

[67] Mathilde Romberg. The UNICORE grid infrastructure. Scientific Programming,
10(2):149–157, 2002.

128 BIBLIOGRAPHY

[68] Dan Sanderson. Programming Google App Engine: Build and Run Scalable Web Apps on
Google’s Infrastructure. O’Reilly Media, Inc., 2009.

[69] Michael C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce. Bioin-
formatics, 25(11):1363–1369, 2009.

[70] Frank B. Schmuck and Roger L. Haskin. GPFS: A shared-disk file system for large com-
puting clusters. In FAST ’02: Proceedings of the Conference on File and Storage Technologies,
pages 231–244. USENIX Association, 2002.

[71] Ashish Thusoo, Joydeep S. Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A warehousing so-
lution over a MapReduce framework. In Proceedings of the 35th conference on Very Large
Databases (VLDB’09), pages 1626–1629, 2009.

[72] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. SIGCOMM Computer Communication Review,
39:50–55, December 2008.

[73] Edward Walker. Benchmarking Amazon EC2 for high-performance scientific comput-
ing. LOGIN, 33(5):18–23, October 2008.

[74] Guanying Wang, Ali R. Butt, Prashant Pandey, and Karan Gupta. A simulation ap-
proach to evaluating design decisions in MapReduce setups. In MASCOTS, pages 1–11.
IEEE, 2009.

[75] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[76] Keith Wiley, Andrew Connolly, Jeffrey P. Gardner, Simon Krughof, Magdalena Bal-
azinska, Bill Howe, YongChul Kwon, and Yingyi Bu. Astronomy in the cloud: Using
MapReduce for image coaddition. CoRR, abs/1010.1015, 2010.

[77] Garth Gibson Wittawat Tantisiriroj, Swapnil Patil. Data-intensive file systems for inter-
net services: A rose by any other name... Technical Report UCB/EECS-2008-99, Parallel
Data Laboratory, October 2008.

[78] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In Proceedings of the 2007
ACM SIGMOD international conference on Management of data, SIGMOD ’07, pages 1029–
1040, New York, NY, USA, 2007. ACM.

[79] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed Segment Tree:
Support range query and cover query over DHT. In Proceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPS), 2006.

129

Appendix A
Résumé en français

Contents
A.1 Contexte . 130

A.2 Contributions . 131

A.3 Publications . 134

A.4 Organisation du manuscrit . 135

A.5 Conclusion . 137

UNE grande partie des applications les plus populaires aujourd’hui manipulent in-
tensivement les données. Qu’il s’agisse d’applications scientifiques ou de services
Internet, le volume des données qu’ils traitent ne cesse de croître. Cette tendance

suivie de plus en plus par des applications entraîne une augmentation croissante des ex-
igences en matière de calcul et de données. Certaines applications génèrent des données
dont le volume atteint des centaines de téraoctets, voire plusieurs pétaoctets.

Deux problèms principaux se posent lorsqu’on essaye de tenir compte de la taille des
données: effectuer le calcul d’une manière efficace en termes de ressources et de temps, et
fournir l’espace de stockage capable de satisfaire les exigences des applications manipulant
intensivement les données. Comme le volume des données d’entrée est grand, le calcul est
réparti sur des centaines ou des milliers de machines dans la plupart des cas. Par conséquent,
l’application est divisée en plusieurs tâches qui s’exécutent en parallèle sur des machines
différentes. Ces tâches devront avoir accès aux données de manière fortement concurrente.

La manipulation de données massives a un impact fort sur la conception de la couche
de stockage qui doit être capable de faire face au stockage des fichiers volumineux, tout en
permettant un accès à grain fin aux données. Les fichiers sont distribués à large échelle, le
débit d’entrée/sortie doit être maintenu à un niveau élevé, même dans le contexte de forte
concurrence.

130 Chapter A – Résumé en français

Les abstractions spécialisées comme MapReduce de Google et Pig-Latin ont été dévelop-
pées pour gérer efficacement la charge de travail des applications qui manipulent intensive-
ment les données. Ces modèles proposent des frameworks de traitement de données destinés
à masquer les détails de la parallélisation à l’utilisateur. Ces frameworks reposent sur le stock-
age d’objets volumineux et visent une haute performance en optimisant l’exécution du calcul
en parallèle .

MapReduce de Google est un paradigme de programmation parallèle utilisé avec succès
par plusieurs fournisseurs de services Internet pour effectuer des calculs sur des quantités
massives de données. Un calcul prend en entrée un ensemble de paires clé-valeur et produit
en sortie un ensemble de paires clé-valeur. L’utilisateur de la bibliothèque de MapReduce
exprime le calcul sous forme de deux fonctions: map qui traite une paire clé-valeur pour
générer un ensemble de paires clé-valeur intermédiaires, et reduce qui fusionne toutes les
valeurs intermédiaires associées à la même clé intermédiaire. Le framework se charge de
la division des données d’entrée, de l’ordonnancement des tâches des composants, de la
surveillance et de la ré-exécution de celles qui échouent.

L’implémentation de MapReduce par Hadoop suit le modèle de Google. Le framework
se compose d’un seul maître jobtracker et plusieurs esclaves tasktrackers, un par nœud. Une
tâche MapReduce est divisée en un ensemble de sous-tâches que le jobtracker attribut aux
différents tasktrackers, lesquels les exécutent. Les données d’entrée sont également divisées
en morceaux de taille égale qui sont stockés dans un système de fichiers distribué à travers
la grappe. Tout d’abord, les tâches de map sont exécutées: chacune traite un morceau du
fichier d’entrée, en appliquant la fonction de map définie par l’utilisateur et en générant
une liste de paires clé-valeur. Lorsque touts les maps sont finis, les tasktrackers exécutent la
fonction reduce sur les sorties du map.

Les données d’entrée et de sortie produites par la fonction reduce sont stockées dans
un système de fichiers distribué. La couche de stockage est un composant clé du frame-
work MapReduce puisque sa fonction et ses fonctionnalités influent sur la performance
globale. Les applications MapReduce traitent des données allant jusqu’à des milliards
d’enregistrements de petites tailles (de l’ordre de Ko). Le stockage des données dans un
grand nombre de fichiers qui font quelques Ko serait impossible à gérer et certainement
inefficace. Ainsi, les ensembles de données sont emballés ensemble dans des fichiers plus
volumineux (des centaines de Go).

Il existe de nombreux défis soulevés par la gestion des données traitées et produites par
des applications MapReduce sur les infrastructures distribuées à large échelle. Bien qu’une
grande communauté s’est attaquée à ces défis au cours de la dernière décennie, les solutions
existantes se heurtent encore à de nombreuses limitations qui doivent être surmontées.

A.1 Contexte

Aujourd’hui, les applications data-intensive sont largement utilisèes au sein de divers do-
maines dans le but d’extraire et de traiter des informations, de concevoir des systèmes com-
plexes, d’effectuer des simulations de modèles réels, etc. Ces applications posent des défis
complexes tant en termes de stockage que de calcul. Dans le contexte des applications data-
intensive, nous nous concentrons sur le paradigme MapReduce et ses mises en œuvre. In-
troduite par Google, l’abstraction MapReduce a révolutionné la communauté data-intensive

A.2 – Contributions 131

et s’est rapidement étendue à divers domaines de recherche et de production. Une implé-
mentation publique de l’abstraction mise en avant par Google, a été fournie par Yahoo au
travers du project Hadoop. Le framework Hadoop est considéré comme l’implémentation
de référence de MapReduce et est actuellement largement utilisé à des fins divers et sur
plusieurs infrastructures.

La deuxième partie du contexte dans lequel ce travail a été effectué concerne les infras-
tructures à grande échelle. Afin de valider les contributions proposées dans ce manuscrit de
thèse, nous avons visé deux environnements largement utilisés pour exécuter des applica-
tions data-intensive. La première plate-forme sur laquelle nous nous concentrons concerne
les grilles informatiques, une approche bien établie dans le domaine de recherche en calcul
parallèle et distribué. Nous présentons ensuite le cloud computing, un modèle récemment
émergé, qui a gagné en popularité très rapidement au cours des dernières années.

Dans ce manuscrit, nous avons abordé la gestion de manière efficace des données traitées
et produites par des applications MapReduce sur infrastructures distribuées à grande
échelle.

Nous proposons un système de fichiers distribué, optimisé pour des accès hautement
concurrents, qui puisse servir comme couche de stockage pour des applications MapReduce.
Nous avons conçu BlobSeer File System (BSFS), basé sur BlobSeer, un service de stockage dis-
tribué, hautement efficace, facilitant le partage de données à grande échelle. Nous étudions
également plusieurs aspects liés à la gestion des données intermédiaires dans des environ-
nements MapReduce. Nous explorons les contraintes des données intermédiaires MapRe-
duce à deux niveaux: dans le même job MapReduce et pendant l’exécution des pipelines
d’applications MapReduce. Enfin, nous proposons des extensions de Hadoop, un environ-
nement MapReduce populaire et open-source, comme par example le support de l’opération
append. Ce travail inclut également l’évaluation et les résultats obtenus sur des infrastruc-
tures à grande échelle: grilles informatiques et clouds.

A.2 Contributions

Le modèle MapReduce, ré-introduit il y a quelques années par Google, a connu un essor im-
portant et une adhésion des chercheurs et industriels travaillant sur les grandes masses de
données. La version publique fournie par Yahoo (Hadoop) a été le fruit de nombreux tests
et d’optimisations de part le monde. Par ailleurs, de nombreux chercheurs se sont attaqués
aux problématiques de recherche liées à l’implémentation de ce modèle sur les architectures
d’aujourd’hui et de demain et principalement sur les grilles et les Clouds. L’un des com-
posants central de cette architecture reste le système de fichier (HDFS dans le cas d’Hadoop)
qui a lui seul gère non seulement le stockage des données mais aussi leur réplication et en
quelque sorte l’ordonnancement des calculs (puisque les calculs sont effectués au plus près
des données). Il s’agit donc d’optimiser de manière fine cette partie si l’on souhaite obtenir
les meilleures performances.

Ce travail a été réalisé dans le cadre des applications MapReduce et s’est focalisé sur la
proposition d’une gestion efficace de données sur des infrastructures à grande échelle. Les
contributions de cette thèse sont détaillées dans la suite.

La conception d’un système de fichiers pour les frameworks MapReduce. Nous avons

132 Chapter A – Résumé en français

apporté une première contribution au niveau de la couche de stockage pour les
applications MapReduce. En vue de proposer une solution efficace aux défis soulevés
par le stockage des données traitées par des calculs MapReduce, nous avons d’abord
étudié les caractéristiques spécifiques des applications MapReduce qui ont un impact
sur le backend de stockage. Nous avons également discuté plusieurs systèmes de
fichiers appartenant à des communautés diverses, qui sont utilisés avec succès pour
le stockage par des frameworks qui exécutent des tâches MapReduce. À partir des
caractéristiques des applications MapReduce et des limites des solutions de stockage
existantes, nous avons proposé un système de fichiers à gestion de concurrence optimisée
pour MapReduce. Notre solution est basée sur le système de gestion des données Blob-
Seer. Nous avons construit le système de fichiers BlobSeer (BSFS) dans le but de fournir
un débit élevé sous forte concurrence à des applications MapReduce. BSFS peut être
utilisé comme un système de fichiers autonome qui peut être accessible directement
via une interface du système de fichiers. Nous avons également intégré BSFS au sein
de framework Hadoop MapReduce, l’implémentation de référence MapReduce à code
source libre.

Afin de valider notre proposition, nous avons effectué des expériences intensives sur
la plateforme Grid’5000. Nous avons ainsi montré que le projet de couche de stockage,
BSFS, parvient à offrir et à maintenir un débit nettement plus élevé que le backend
de stockage par défaut d’Hadoop, HDFS. Les différentes expériences que nous avons
effectuées présentent une forte concurrence à des fichiers partagés et utilisés à grande
échelle, sur des clusters allant jusqu’à 300 machines. Nous avons élaboré un ensemble
de benchmarks synthétiques pour comparer directement BSFS avec HDFS lorsque les
systèmes de fichiers sont accessibles selon différents modèles. Au niveau du framework
Hadoop MapReduce, nous avons évalué les avantages qu’apporte BSFS à des applica-
tions MapReduce réelles. Nous avons observé que BSFS est en mesure de compléter
l’exécution des tâches en con considérablement moins de temps que HDFS.

L’optimisation de la gestion des données intermédiaires de MapReduce. Une deuxième
partie de notre contribution a été consacrée à la gestion d’un type spécial de données
produites par des calculs de MapReduce, c’est à dire les données intermédiaires. Nous
avons étudié les caractéristiques des données intermédiaires en général, et nous avons
discuté de la façon dont elle sont traitées dans les canevas MapReduce. Nos travaux
ont porté sur les données intermédiaires à deux niveaux: à l’intérieur de la même
tâche MapReduce et pendant l’exécution des applications de pipeline.

Nous nous sommes concentrés d’abord sur la gestion efficace des données intermédi-
aires générées entre les phases “map” et “reduce” des calculs MapReduce. Dans ce
contexte, nous avons proposé de stocker les données intermédiaires dans le système
de fichiers distribué utilisé comme backend sous-jacent. Dans cette direction, nous
avons étudié les caractéristiques des données intermédiaires dans les calculs MapRe-
duce et nous avons proposé une nouvelle approche consistant à stocker ce type de
données dans un DFS. Le principal avantage de cette approche est mieux illustré lors
de l’examen des échecs. Les frameworks MapReduce existants stockent les données
intermédiaires sur les disques locaux des nœuds. En cas de défaillance, les données
intermédiaires produites par les mappeurs ne peuvent plus être récupérées et traitées
ultérieurement par des réducteurs. La solution de la plupart des frameworks est de

A.2 – Contributions 133

réordonnancer les tâches qui ont échoué et régénérer toutes les données intermédi-
aires qui ont été perdues en raison des échecs. Cette solution est coûteuse en terme de
temps d’exécution supplémentaire. Avec notre approche de stockage de données in-
termédiaires dans un DFS, nous évitons la ré-exécution des tâches en cas d’échecs qui
conduisent à la perte de données. Comme moyen de stockage pour les données inter-
médiaires, nous avons considéré BSFS comme étant un candidat adapté à fournir pour
les exigences des données intermédiaires: la disponibilité et le haut accès E/S. Les tests
que nous avons effectués dans ce contexte, ont mesuré l’impact de l’utilisation d’un
DFS comme moyen de stockage pour les données intermédiaires au lieu de l’approche
du disque local. Nous avons ensuite évalué la performance de BSFS et HDFS au mo-
ment de servir en tant que moyen de stockage pour les données intermédiaires pro-
duites par plusieurs applications MapReduce.

Nous avons ensuite examiné un autre type de données intermédiaires qui apparaît
dans le contexte des pipelines d’applications MapReduce. Afin d’accélérer l’exécution
du pipeline d’applications MapReduce (applications qui se composent de multiples
travaux exécutés dans un pipeline) et aussi, pour approuver l’utilisation de grappe
l’utilisation, nous avons proposé un framework Hadoop MapReduce optimisé, dans
lequel la programmation est faite d’une manière dynamique. Nous avons introduit
plusieurs optimisations dans le framework Hadoop MapReduce en vue d’améliorer ses
performances lors de l’exécution des pipelines. Notre proposition a consisté princi-
palement en un nouveau mécanisme pour la création de tâches le long du pipeline,
dès que les données d’entrée des tâches deviennent disponibles. Notre évaluation a
montré que cet ordonnancement dynamique des tâches conduit à une amélioration
des performances en terme de temps de terminaison des activités. De plus, notre ap-
proche garantit une utilisation plus efficace du cluster au regard de la quantité des
ressources qui sont impliquées dans le calcul.

Le support et l’exploitation de l’opération “append” dans Hadoop. Dans la troisième con-
tribution de notre travail, nous avons étudié les moyens pour instrumenter les car-
actéristiques de BSFS afin de permettre des extensions à l’implémentation MapRe-
duce, Hadoop. En partant des limites des approches existantes, nous avons identifié
l’opération “append” comme ayant un potentiel important non seulement dans le con-
texte MapReduce. Nous avons fourni plusieurs exemples de scénarios où l’opération
“append” est nécessaire au niveau du système de fichiers. Les tests au niveau du sys-
tème de fichiers ont montré que BSFS offre un support efficace pour l’opération “ap-
pend” en fournissant de haut débit lorsque plusieurs clients ajoutent en même temps
des données vers le même fichier. Comme “append” est supporté par le système de
fichiers, nous avons modifié le framework Hadoop MapReduce afin de profiter de cette
fonctionnalité. Dans notre framework Hadoop modifié, le réducteurs ajoutent leurs
données à un fichier unique au lieu d’écrire dans un fichier séparé, comme cela a été fait
dans la version originale d’Hadoop. Les avantages de notre approche sont évidents en
terme de simplicité: à la fin du calcul, les données sont déjà disponibles dans un seul
fichier logique. Ce fichier est prêt à l’utilisation pour tout traitement ultérieur. Au-
cune logique applicative supplémentaire n’est nécessaire pour un traitement ultérieur,
contrairement à la version originale d’Hadoop qui doit gérer explicitement un groupe
(potentiellement large) de fichiers.

134 Chapter A – Résumé en français

La mise en œuvre et l’évaluation des contributions mentionnées ont nécessité un effort
considérable. Les principaux défis que nous avons dû surmonter proviennent de plusieurs
facteurs: la complexité du projet Hadoop que nous avons étudié afin de valider notre travail
et introduire plusieurs extensions, les plates-formes ciblées sur lesquelles nous avons expéri-
menté, la grille et le cloud, puisque les deux impliquent une phase d’écriture de scripts, ainsi
que les difficultés entraînées par la construction d’un environnement d’expérimentation
composé de divers systèmes complexes.

Dans nos expériences, nous avons cherché à mesurer le passage à l’échelle de nos ap-
proches. Nous nous sommes également focalisés sur l’observation du comportement de nos
solutions dans des conditions de stress de forte concurrence. Nous avons commencé par bien
tester les solutions proposées sur Grid’5000 et nous avons ensuite abordé l’environnement
Cloud, avec l’aide de la boîte à outils Nimbus. Dans le contexte de Cloud, nous avons pro-
posé une évaluation des coûts des applications MapReduce, en termes de calcul et de stock-
age. En considérant les options de stockage existants, nous avons fourni une évaluation
des performances de l’exécution de tâches MapReduce dans le Cloud. Nous avons égale-
ment modélisé les coûts d’exécution de différents types d’applications MapReduce lors de
l’utilisation de clouds commerciaux tels qu’Amazon EC2.

A.3 Publications

Articles de journaux

• BlobSeer: Next Generation Data Management for Large Scale Infrastructures. Nicolae B.,
Antoniu G., Bougé L., Moise D., Carpen-Amarie A. Journal of Parallel and Distributed
Computing 71, 2 (2011), pp. 168-184

Conférences et Workshops

• Optimizing Intermediate Data Management in MapReduce Computations Moise D., Trieu
T.-T.-L., Antoniu G., Bougé L. The ACM SIGOPS Eurosys 11 conference, CloudCP 2011
1st International Workshop on Cloud Computing Platforms (2011)

• A Cost-Evaluation of MapReduce Applications in the Cloud. Moise D., Carpen-Amarie A.,
Antoniu G., Bougé L. To appear in the Grid’5000 Spring School Proceedings (2011)

• BlobSeer: Bringing High Throughput under Heavy Concurrency to Hadoop Map-Reduce Ap-
plications Nicolae B., Moise D., Antoniu G., Bougé L., Dorier M. The 24th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2010) (2010)

• Improving the Hadoop Map/Reduce Framework to Support Concurrent Appends through the
BlobSeer BLOB management system Moise D., Antoniu G., Bougé L. The 19th ACM Inter-
national Symposium on High Performance Distributed Computing (HPDC’10), Work-
shop on MapReduce and its Applications (2010)

• Large-Scale Distributed Storage for Highly Concurrent MapReduce Applications Moise D.
The 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2010): PhD Forum (2010)

A.4 – Organisation du manuscrit 135

• Resource CoAllocation for Scheduling Tasks with Dependencies, in Grid Moise D., Moise
I., Pop F., Cristea V. The 2nd International Workshop on High Performance in Grid
Middleware (HiPerGRID 2008) (2008)

• Advance Reservation of Resources for Task Execution in Grid Environments Moise I., Moise
D., Pop F., Cristea V. The 2nd International Workshop on High Performance in Grid
Middleware (HiPerGRID 2008) (2008)

A.4 Organisation du manuscrit

Dans ce manuscrit, nous avons abordé la gestion de manière efficace des données traitées et
produites par des applications MapReduce sur infrastructures distribuées à grande échelle.

Le manuscrit est organisé en 14 chapitres regroupés en 5 parties. Après une première par-
tie introductive et de mise en perspective, la seconde partie présente la contribution propre-
ment dite de la thèse. La troisième partie discute des détails d’implémentation, la quatrième
présente l’évaluation de performances, et enfin la cinquième partie conclue le document.

La première partie du manuscrit est consacrée au contexte de notre travail. Dans un pre-
mier temps, la partie se concentre sur le paradigme MapReduce et ses mises en œuvre. Dans
un second temps, elle présente l’environnement ciblé, les infrastructures à grande échelle.
Nous détaillons deux environnements largement utilisés pour exécuter des applications
data-intensive. La première plate-forme sur laquelle nous nous concentrons concerne les
grilles informatiques, une approche bien établie dans le domaine de recherche du calcul
parallèle et distribué. Nous présentons ensuite le cloud computing, un modèle récemment
émergé, qui a gagné en popularité très rapidement au cours des dernières années.

L’introduction (chapitre 1) présente rapidement les objectifs de la thèse et indique les
contributions. Ces contributions sont constituées d’un certain nombre de techniques qui
ont pour point commun d’optimiser la performance de MapReduce en s’intéressant en par-
ticulier à la thématique du stockage de données intermédiaires entre plusieurs phases de
calcul.

Le chapitre 2 présente le modèle de calcul MapReduce, ses implémentations les plus
connues, ainsi que les caractéristiques des applications pouvant exploiter ce modèle. Ces
applications sont caractérisées en particulier par de grands volumes de données. MapRe-
duce crèe donc des schémas de trafic très intenses entre le système de stockage et les nœuds
de calcul. C’est cette concurrence d’accès qui crée de nombreux goulôts d’étranglement dans
les implémentations standards, et que cette thèse vise à réduire.

Le chapitre 3 décrit les environnements d’exécution pour lesquels MapReduce est conçu.
Ces environnements sont généralement composées de nombreuses ressources de calcul et de
stockage disponibles sur demande. Ce peuvent être des grilles de calcul comme Grid’5000 en
France (où les évaluations de cette thèse ont été réalisées) ou des environnements “Cloud”
publics ou privés. Ce chapitre brosse rapidement un tableau des principaux systèmes dans
ces deux catégories.

La partie d’introduction se conclue au chapitre 4 qui est consacré au service de stockage
de données BlobSeer. Ce système est remarquable par le fait qu’il supporte naturellement
une grande concurrence d’accès, en particulier lors d’écritures. Les stratégies de placement

136 Chapter A – Résumé en français

de données parmi les machines qui le compose sont également optimisées par rapport à un
système comme HDFS (le système de stockage standard de Hadoop). Ce sont ces propriétés
que cette thèse vise à exploiter dans le contexte de MapReduce.

La deuxième partie présente les contributions de cette thèse. Nous proposons un sys-
tème de fichiers distribué, optimisé pour des accès hautement concurrents, qui puisse servir
comme couche de stockage pour des applications MapReduce. Nous avons conçu BlobSeer
File System (BSFS), basé sur BlobSeer, un service de stockage distribué, hautement efficace,
facilitant le partage de données à grande échelle. Nous étudions également plusieurs aspects
liés à la gestion des données intermédiaires dans des environnements MapReduce. Nous
explorons les contraintes des données intermédiaires MapReduce à deux niveaux: dans le
même job MapReduce et pendant l’exécution des pipelines d’applications MapReduce. En-
fin, nous proposons des extensions pour Hadoop, un environnement MapReduce populaire
et open-source, comme par exemple le support de l’opération append.

Le chapitre 5 est consacré à l’intégration de BlobSeer comme système de fichier pour
Hadoop en remplacement du systéme de stockage standard HDFS. Il est à noter que Blob-
Seer utilise sa propre interface de programmation à la place d’une interface de système de
fichiers classique. L’intégration de BlobSeer nécessite la création d’un système de fichiers
nommé BSFS (BlobSeer FS), et son intégration dans le systeme Hadoop. Cette intégration est
un élément important de la thèse puisqu’il conditionne l’utilisation des stratégies de stock-
age de données hautes performances de BlobSeer.

Le chapitre 6 est consacré à la principale contribution de cette thèse: une stratégie
d’optimisation du stockage de données dans Hadoop. Il s’agit d’optimiser le stockage de
données intermédiaires entre plusieurs phases d’exécution. Premièrement, des données in-
termédiaires sont crées de façon temporaires entre la phase “map” et la phase “reduce”
correspondante. Hadoop stocke simplement ces données sur les disques locaux des ma-
chines qui les ont générées. Cette stratégie présente l’inconvénient de disperser ces don-
nées intermédiaires sur de nombreuses machines, ce qui rend la phase “reduce” complexe
et inefficace. Deuxièmement, la façon dont Hadoop stocke les données intermédiaires entre
plusieurs exécutions MapReduce successives (un style de programmation trés courant dans
MapReduce) impose d’attendre la fin d’une exécution MapReduce avant de commencer la
suivante. L’introduction de BSFS pour le stockage de ces deux types de données intermé-
diaires permet des gains de performance importants: le stockage de données entre “map”
et “reduce” permet de simplifier l’implémentation des tâches “reduce”; le stockage de don-
nées entre deux exécutions MapReduce permet de démarrer la deuxième exécution dès que
des données commencent à être générées par l’étape précédente, ce qui exploite mieux les
resources de calcul disponibles.

Le chapitre 7 décrit l’utilisation d’une fonctionalité unique de BlobSeer: le support
d’opérations “append” concurrentes, où de nombreux processus peuvent écrire concurrem-
ment à la fin d’un fichier de façon très efficace. Cette fonctionnalité est très bien adaptée au
modèle MapReduce car il permet aux processus “mappers” de créer un seul fichier d’entrée
pour chaque “reducer” au lieu d’une multitude de fichiers partiels.

La troisième partie est consacrée à l’implémentation des travaux présentés dans la par-
tie 2. Dans cette partie, nous décrivons la mise en œuvre du système de fichiers BSFS et son

A.5 – Conclusion 137

interconnexion avec Hadoop et BlobSeer. Nous nous concentrons aussi sur les extensions
et les modifications réalisées afin d’améliorer l’environnement Hadoop MapReduce avec les
caractéristiques précédemment mentionnées.

La quatrième partie présente une évaluation expérimentale étendue de nos contributions.
Nous évaluons l’impact du système de fichiers BSFS au travers d’une série d’expériences
avec des benchmarks synthétiques et des applications MapReduce réelles. Cette partie
valide aussi notre contribution dans le contexte des données intermédiaires. L’évaluation
expérimentale de l’opération append est également incluse. Enfin, nous fournissons une
évaluation des coûts d’exécution des applications MapReduce dans le Cloud, en se basant
sur le modèle de coût d’Amazon EC2.

Le chapitre 9 évalue la performance de BSFS indépendamment du système MapReduce.
Les évaluations montrent l’intérêt de BSFS par rapport à HDFS: il offre de bien meilleures
performances dans la plupart des cas. On note également la très bonne tenue de BSFS face
à des scénarios difficiles avec une grande concurrence d’accès en lecture ou écriture. Finale-
ment, le chapitre montre le gain possible grâce à ce système de fichiers sur une exécution de
MapReduce conçue pour stresser le système de fichiers autant que possible.

Le chapitre 10 évalue les performances des contributions liées au stockage de données
intermédiaires, avec des applications un peu plus réalistes. Ici les gains potentiels sont plus
modestes car les applications consacrent une grande partie de leur temps à des opérations
indépendantes du stockage de données. On observe cependant un gain de performance
notable par rapport au MapReduce classique, en particulier dans le cas d’exécutions de
plusieurs tâches MapReduce consécutives.

Le chapitre 11 démontre que les opérations “append” concurrentes peuvent être très
efficaces. Outre le fait qu’elles permettent de stocker les résultats de chaque phase de calcul
dans un seul fichier, le coût en termes de performances est quasi-nul. Ce résultat confirme la
stratégie d’utiliser les fonctionnalités uniques à BlobSeer dans ce contexte particulier.

Le chapitre 12 évalue la possibilité d’utiliser les techniques précédemment décrites dans
un environnement de Cloud privé. Le surcoût dû à la virtualisation reste relativement mod-
este comparé aux multiples autres avantages de l’environnement Cloud.

La cinquième partie conclut ce manuscrit en présentant un résumé de nos contributions
et en énumérant plusieurs directions de recherche futures.

A.5 Conclusion

La puissance de calcul des ordinateurs augmente régulièrement d’une année sur l’autre.
Ces gains de performance sont cependant contrebalancés par un augmentation encore plus
rapide du volume de données à traiter par les applications gourmandes en ressources (ap-
plications scientifiques, etc.). Pour pouvoir traiter des volumes de données toujours plus
importants, il devient nécessaire d’utiliser la puissance combinée de nombreux ordina-
teurs. C’est dans ce contexte qu’a été développé le modèle de calcul hautes performances
dit MapReduce, qui permet d’automatiser la parallelisation d’un certaine classe de pro-
grammes. Les traitements lourds de données peuvent ainsi être conçus comme une suite

138 Chapter A – Résumé en français

plus ou moins longue de paires d’opérations “map” et “reduce”. MapReduce automatise
le partitionnement des tâches et permet donc de traiter de grands volumes de données
dans un temps raisonnable. Cependant, une analyse plus précise indique que la perfor-
mance effective de ces systèmes est encore très loin du maximum théorique qui diviserait
le temps de calcul total nécessaire par le nombre de machines disponibles pour obtenir la
durée d’exécution.

Dans ce manuscrit, nous avons abordé la gestion de manière efficace des données
traitées et produites par des applications MapReduce sur infrastructures distribuées à
grande échelle. Nous proposons un système de fichiers distribué, optimisé pour des accès
hautement concurrents, qui puisse servir comme couche de stockage pour des applications
MapReduce. Nous avons conçu BlobSeer File System (BSFS), basé sur BlobSeer, un service
de stockage distribué, hautement efficace, facilitant le partage de données à grande échelle.
Nous étudions également plusieurs aspects liés à la gestion des données intermédiaires dans
des environnements MapReduce. Nous explorons les contraintes des données intermédi-
aires MapReduce à deux niveaux: dans le même job MapReduce et pendant l’exécution des
pipelines d’applications MapReduce. Enfin, nous proposons des extensions de Hadoop, un
environnement MapReduce populaire et open-source, comme par exemple le support de
l’opération append. Ce travail inclut également l’évaluation et les résultats obtenus sur des
infrastructures à grande échelle: grilles informatiques et clouds.

