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Avant-propos

«Dis papa : quand est-ce que tu passes ton habilitation ?»

Anonyme(s), XXIième siècle

Je présente ici une thèse d’habilitation à diriger les recherches. Ce document est, non
seulement, une synthèse de mes travaux de recherche en informatique théorique, mais aussi,
car ils recouvrent largement le domaine, un parcours plutôt complet de la logique, la théorie
des automates (ou la théorie des calculs de points fixes) et de la théorie des jeux appliquées
à la spécification, la vérification ou la synthèse de systèmes discrets finis.

Domaine de recherche

La logique, les automates, les calculs de points-fixes et les jeux offrent un fondement
théorique aux méthodes formelles de la façon suivante.

La logique offre un cadre descriptif à ces méthodes en proposant un langage et des
outils qui permettent de définir formellement, c’est à dire sans ambiguïté, les systèmes
à concevoir à travers la description des propriétés qu’ils devront satisfaire. Les notions
de modèles, formules, théories, satisfactions, cohérences, etc. . ., font partie des notions
couramment utilisées. Les concepts, résultats et techniques issues de la logique s’appliquent
donc naturellement aux problèmes liés à la spécification des systèmes.

La théorie des automates offre le cadre opérationnel naturellement associé à ces outils
logiques de spécifications. Les formules, compactes, construites avec des opérateurs très
expressifs ont en effets des algorithmes de traitement généralement complexes, même non
élémentaires. Lorsqu’elles peuvent se traduire en automates équivalents, dont la sémantique
est plus opérationnelle, on dispose alors d’algorithmes beaucoup plus efficaces, PTIME ou
NPTIME, de vérification ou de synthèse des systèmes spécifiés en logique.

Les calculs de points-fixes, étroitement reliés à la théorie des automates, offrent une des-
cription inductive (et co-inductive) des langages définis à l’aide d’automates. Ils donnent
ainsi une description plus mathématique des concepts mis en oeuvre dans les automates
d’arbres infinis. Par exemple, le critère de parité apparaît comme une traduction opéra-
tionnelle, dans les automates, de l’alternance d’expressions de plus grands et plus petit
points-fixes.
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La théorie des jeux offre, quant à elle, le cadre combinatoire sous-jacent à l’utilisation
de ces techniques algorithmiques. Elle permet une modélisation précise, et uniforme, des
interactions qu’il peut exister entre les systèmes conçus et les procédures de vérification
mises en oeuvre. En particulier, la théorie des jeux capture la complexité des méthodes liés
à l’utilisation des automates. Les algorithmes de synthèse ou de vérification de systèmes
se réduisent polynomialement sinon linéairement à la résolution de jeux formels de même
taille.

Bien sûr, cette répartition entre logique, automates et jeux n’est pas aussi stricte qu’il
y paraît. Les frontières entre ces trois domaines sont parfois poreuses.

Par exemple, une fois étudié et compris le pouvoir d’expression des automates dans le
cadre de référence qu’offre la logique mathématique on peut, tout aussi bien, manipuler
des langages de spécification plus spécialisés tels que les logiques temporelles ou les calculs
de points fixes. Ces langages se situent quelques part entre la logique mathématique et les
la théorie des automates puisqu’ils s’appuient sur des concepts et des outils qui viennent,
selon le cas, de l’un ou de l’autre.

Autre exemple, on peut comprendre les jeux comme un cas particulier d’automates
d’arbres qui définissent, sur leur propre structure, des ensembles d’arbres : les stratégies
gagnantes. Ce point de vue pourra même être appliqué de façon pertinente en appliquant,
sur les jeux eux-mêmes, des résultats classiques de théorie des automates.

Les jeux eux-mêmes empruntent beaucoup à la logique puisque qu’ils peuvent être
vus comme des sortes de formules booléennes infinies - on traite ici de jeux infinis - dont
on souhaite évaluer la satisfaisabilité. Construire des systèmes formels de raisonnement
sur les jeux, par exemple construire des stratégies gagnantes à partir d’autres stratégies
existantes, peut ainsi s’appuyer sur les outils et notions déjà développés en théorie de la
démonstration.

Principaux résultats

Mon activité de recherche s’inscrit, précisément, dans l’étude et le développement des
liens étroits qui existent entre logique, automates, calculs de points-fixes et jeux. Plus
précisément, mes principaux résultats sont les suivants :

1. Etude du non déterminisme tel qu’il est manipulé en logique modale et obtention d’un
théorème de normalisation ; application à la caractérisation du pouvoir d’expression
du fragment invariant par bisimulation de la logique monadique du second ordre
(MSO) sur les structures amorphes (voir [92] et [93]),

2. Etude du mu-calcul modal et de ses liens avec la théorie des automates alternants ;
normalisation - par théorème de simulation - des formules du mu-calcul modal en
formules dites disjonctives - analogue logique (et modal) de la notion d’automates
non déterministe sur les arbres binaires ; applications à la décidabilité et à la propriété
dites du modèle fini (voir [103] et [93] - résultats obtenus en collaboration avec Igor
Walukiewicz),

3. Etude des liens entre mu-calcul modal et logique monadique du second ordre via
la notion d’invariance par bisimulation ; caractérisation du pouvoir d’expression du
mu-calcul modal comme fragment invariant par bisimulation de MSO ; application
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à l’étude du mu-calcul quantifié ; démonstration simple de l’interpolation uniforme
pour le mu-calcul (voir [93], [104] et section 4.3 dans ce rapport - résultats obtenus
en collaboration avec Igor Walukiewicz),

4. Définition et étude d’un calcul de points-fixes abstrait ; généralisation de la notion de
formules disjonctives ; obtention, sous hypothèses de commutation locale adéquates,
d’un théorème de simulation des formules quelconques par des formules disjonctives ;
applications à la décidabilité (voir [94] et [95]),

5. Extension des résultats d’invariance par bisimulation aux mu-calcul avec «counting
modalities» et la notion d’invariance par «counting bisimulation» ; nouvelle 1 caracté-
risation du pouvoir d’expression de MSO sur les arbres relationnels à l’aide d’expres-
sions de point-fixes (voir [100] et chapitre 4.2.1 dans ce rapport - résultats obtenus
en collaboration avec Giacomo Lenzi),

6. Etude des liens entre les niveaux de la hiérarchie d’alternance de quantificateurs (en
logique monadique du second ordre) et les niveaux de la hiérarchie d’alternance de
points-fixes (en mu-calcul) ; établissement d’une correspondance entre les premiers
niveaux (voir [98] et [99]) ; plus précisément : caractérisation logique du pouvoir
d’expression des premiers niveaux de la hiérarchie du mu-calcul en établissant une
correspondance entre :

(a) le niveau Σ1 de la logique monadique et le niveau N1 du mu-calcul - les langages
reconnaissables et fermés au sens de la topologie préfixe - (voir [100]),

(b) le niveau Σ2 de la logique monadique et le niveau N2 du mu-calcul - les langages
définissables à l’aide d’automates de Büchi - (voir [101]),

en établissant aussi que cette correspondance ne peut aller au delà (voir [99] - résultats
obtenus en collaboration avec Giacomo Lenzi),

7. Etude de la restriction du mu-calcul aux modèles finis ; étude, dans le niveau mona-
dique Σ1 et étude des «graphs acceptors» invariant par bisimulation ; caractérisation
partielle de ces derniers par normalisation en accepteurs de graphes avec spécifica-
tions arborescentes des voisinages ; étude et caractérisation de la logique monadique
du second ordre sur les graphes unaires ; caractérisation de MSO sur les représenta-
tions finies de mots infinis (voir [50] et section 6.1 dans ce rapport - résultats obtenus
en collaboration avec Anuj Dawar),

8. Etude des clôtures par booléens ou par quantificateurs du premier ordre des niveaux
de la hiérarchie monadique sur les graphes finis ; résultats de séparations (voir [102]
- résultats obtenus en collaboration avec Jerzy Marcinkowski),

9. Etude des jeux de parité ; définition de la notion de stratégies permissives dans ces
jeux ; mise au point d’un algorithme de calcul de ces stratégies ; comparaison avec les
algorithmes existants de résolution des jeux de parités (voir [26] et Thèse de Julien
Bernet - résultats obtenus en collaboration avec Igor Walukiewicz et Julien Bernet),

10. Etude des relations de simulations entre jeux de parité ; définition de plusieurs ni-
veaux de simulation (asynchrones, synchrones, généralisées) ; résultats de corrections
pour l’utilisation de ces simulations comme outils de démonstrations sur les jeux (voir
section 2.3 dans ce rapport),

1. une première caractérisation est obtenu par Walukiewicz [181]
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11. Définition et étude d’un modèle de jeux étendus, les jeux distribués, pour le traite-
ment uniforme des problèmes de synthèse de programmes distribués ; mise en évidence
de l’applicabilité - et application - de la théorie classique des automates infinis à la
résolution des jeux distribués linéaires ; démonstration de l’équivalence entre jeux
synchrones et jeux asynchrones dans le cas des stratégies distribuées à mémoire finie
(voir [25] et thèse de Julien Bernet - résultats obtenus en collaboration avec Julien
Bernet).

Ces résultats, sont présentés, en anglais, dans le document qui suit.

L’étude systématique à laquelle je me suis livrée des liens qui existent entre logique,
théorie des automates, calculs de points-fixes et théorie des jeux - dans le cadre des modèles
discrets - fait que l’ensemble de ces résultats offre une bonne couverture du domaine. Le
document qui suit, qui est ma thèse d’habilitation, peut aussi constituer la base d’un cours
de niveau Maîtrise.

Perspectives

Je présente ici les problèmes ouverts et les perspectives de recherches qui, volontaire-
ment, sont étroitement liés à mes travaux.

Jeux à deux joueurs

Le problème ouvert majeur dans le domaine des jeux de parité est le suivants :

Problème 1 La résolution des jeux de parité est-elle PTIME?

Une meilleur compréhension des propriétés mathématiques des jeux de parités - et des stra-
tégies gagnantes qu’ils définissent - contribuera, sans doute, à la résolution de ce problème.

Expressions de points-fixes relationnels pour la définition (et le calcul) des
positions gagnantes. A l’exception, notable, de l’algorithme de Vöge et Jurdzinski dont
la complexité est, à ce jour, inconnue [179], la plupart des algorithmes de résolution des jeux
de parité tend a s’appuyer, implicitement, sur une description monadique de l’ensemble des
positions gagnantes. Le théorème d’invariance par bisimulation sur MSO et l’infinitude de
la hiérarchie du mu-calcul semble alors indiquer que ces algorithmes se ramèneront, peu
ou prou, à l’évaluation de formules du mu-calcul arbitrairement complexes, c’est à dire à
la résolution de jeux de parité quelconques !

On peut éviter ce point de vue circulaire en s’attachant à définir les positions gagnantes
dans les jeux de parités à l’aide d’expressions de points-fixes sur des relations binaires (ou
plus). Bien sûr, la caractérisation partielle de PTIME par la logique du premier ordre
étendu par points-fixes inductifs tend à suggérer que si la résolution de ces jeux est ef-
fectivement polynomiale, ce programme de recherche à toutes les chances d’aboutir . . ., a
posteriori.

Dans une démarche a priori, on peut aussi, par exemple, tenter de résoudre le problème
suivant :

Problème 2 Existe t’il, pour chaque entier strictement positif n, un jeu canonique Gn de
taille polynomiale en n tel que, pour tous jeux de parité G de taille au plus n, il existe
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une relation de simulation asynchrone (ou étendue) permettant de simuler toute position
gagnante de G par une position gagnante de Gn.

Dans l’affirmative, si le calcul d’une telle simulation est, de plus, PTIME, le problème de
la complexité des jeux de parité est résolu.

C’est une tentative dans ce sens, avec une simulation synchrone, qui nous a conduit à
l’algorithme des stratégies permissives [26].

Système de preuves complet pour les jeux de parité. Les diverses notions de
relation de simulation entre jeux définies dans ce rapport s’apparentent à des systèmes de
démonstrations. En effet, les positions des joueurs peuvent être vue comme des conjonctions
et des disjonctions. Il y a une analogie certaine entre les notions de simulation présentées
dans ce rapport et les règles de raisonnement du calcul des séquents de Gentzen.

Nous avons démontré la correction de ces simulations (voir Lemme 2.3.3.5). On peut
se poser la question de leur éventuelle complétude.

Plus précisément : sur les jeux de parité finis, étendus à l’aide de variables libres, toute
position peut-être vue comme une formule propositionnelle sur ces variables. On peut alors
dire qu’un séquent de positions x ⊢ y est valide lorsque sa traduction à l’aide de formules
booléennes est valide.

Il vient :

Problème 3 La notion de simulation généralisée (étendue aux variables libres) est-elle
complète, i.e. tout séquent valide de positions de jeux de parité est-il prouvable à l’aide
d’une relation de simulation généralisée ?

Remarquons cependant que la définition actuelle s’appuie sur une condition globale de
transfert des critères de gains infinitaires, i.e. cette condition doit être vérifiée une fois la
relation de simulation construite. Il vient :

Problème 4 Comment étendre la notion de simulation généralisée pour garantir locale-
ment la condition de transfert, des hypothèses vers les conclusions, des conditions infini-
taires de gains ?

Normalisation des indices de parité dans les jeux. Pour chercher une axiomati-
sation complète de la validité des séquents dans les jeux de parité avec règles de preuves
purement locales, on peut aussi s’appuyer sur l’axiomatisation de Kozen du mu-calcul dont
Walukiewicz a démontré la complétude [180]. Tout jeu de parité peut, en effet, être traduit
en mu-calcul booléen (ou même en système d’équations de points-fixes [16]) et les condi-
tions de parité du jeu se retrouvent codées par l’alternance de plus grand et plus petit
points-fixes dans sa traduction.

Cependant, dans cette modélisation par formule de points-fixes, (1) le jeu est - im-
plicitement - développé en arbres avec arcs retour, et (2) la traduction des indices de
parité en alternance de points-fixes induit une normalisation des conditions de gains que
le développement du jeu rend difficile à suivre.

Il vient :

Problème 5 Pour un jeu de parité donné, quels sont les changements d’indices de parité
des positions qui préservent l’ensemble des stratégies (ou des parties) gagnantes ? Peut-on
définir un coloriage canonique ?
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Les ω-semigroupes [146], qui offrent une représentation canonique des langages ω-rationnels,
pourraient être utilisés pour cela. Plus encore, ils pourraient même permettre de traiter
tout jeux régulier, à condition, sans doute, de comprendre au sein des ω-semigroupes,
comment est implicitement codée la mémoire de ces stratégies régulières.

Automates et graphes finis

Dans le cas des graphes finis, le problème ouvert majeur lié aux travaux présentés ici,
est un problème énoncé par Anuj Dawar et Martin Otto au milieu des années 90.

Problème 6 Est-il vrai, comme dans le cas de graphes quelconques, que le fragment de la
logique monadique du second ordre invariant par bisimulation sur les modèles finis est égal
au mu-calcul modal ?

Malgré quelques réponses partielles [144, 50], ce problème semble toujours difficile.
Même restreint au niveau monadique Σ1, le problème reste ouvert. L’invariance par bisi-
mulation autorisant la définition, sur les graphes finis, de problèmes difficiles pour le niveau
N2∩M2, on sait seulement que les correspondances établies dans le cas général ne tiennent
plus dans le cas fini.

Les travaux et résultats obtenus dans le cas de monadique Σ1 soulèvent par ailleurs les
questions suivantes.

Accepteurs de graphes étendus par coloriage d’arc. La notion d’accepteur de
graphes, définie par Thomas [173] comme extension des automates d’états finis sur les
mots ou arbres finis, capture le pouvoir d’expression de monadique Σ1.

Il apparaît cependant que, sur les (codages des) mots ou arbres finis, chaque arc est
complètement déterminé par son sommet cible. On peut donc, indifféremment, définir le
calcul d’un automate par coloriage des sommets ou des arcs. Sur les graphes quelconques,
cela n’est plus vrai. Un coloriage des seuls sommets induit une extension de la notion
d’automate qui peut sembler artificiellement limitée. On constate par exemple une corres-
pondance irrégulière entre le niveau monadique Σ1 et le mu-calcul ; ce premier ne capture
que partiellement le niveau N2 ∩M2 de ce dernier. Pour remédier à cela, on peut se placer
dans le cadre de la logique MSO2 définie par Courcelle [42, 44].

Il vient :

Problème 7 Quel est le pouvoir d’expression des accepteurs de graphes étendus par colo-
riage des arcs ?

Ce problème est actuellement à l’étude en collaboration avec Dietmar Berwanger.

Accepteur de graphes étendus avec conditions infinitaires. De la même façon
que les automates de mots et d’arbres sont étendus aux mots et arbres infinis par ajout de
conditions infinitaires sur les chemins infinis, on peut se demander que devient la notion
d’accepteurs de graphes étendue de même.

L’étude en cours de cette piste de recherche, en collaboration avec Dietmar Berwanger,
montre que : (1) ajouter des conditions infinitaires régulières aux accepteurs de graphes
échoue à capturer le pouvoir d’expression du mu-calcul, (2) ajouter des conditions infini-
taires de parité aux accepteurs de graphes étendus par coloriage des arcs échoue, aussi, à
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capturer le pouvoir d’expression du mu-calcul, et, par contre, (3) ajouter des conditions
infinitaires régulières aux accepteurs de graphes étendus par coloriage des arcs donne, sur
les graphes finis, un langage au moins aussi expressif que le mu-calcul.

Il vient :

Problème 8 Quel est le pouvoir d’expression des accepteurs de graphes étendu par colo-
riage des arcs et conditions infinitaires régulières ? Les propriétés ainsi définies sont-elle
nécessairement PTIME?

Jeux distribués

La définition, puis l’étude des jeux distribués, en collaboration avec Julien Bernet,
Swarup Mohalik et Igor Walukiewicz, vise à offrir un cadre uniforme et minimaliste aux
traitements des problèmes de synthèse de programmes d’états finis, dont, en particulier,
les programmes distribués.

Il convient maintenant, puisqu’il s’agit là d’un modèle récent, inventé au LaBRI, de
poursuivre encore, par des travaux de recherche adéquats, la défense de sa pertinence
théorique et de son applicabilité pratique. On peut distinguer, en particulier, les trois axes
de recherche suivants.

Universalité des jeux distribués. Quels modèles de synthèses de programmes peuvent
encore être encodés et résolubles dans le cadre des jeux distribués ?

Liens avec d’autres théories. Quels outils, provenant d’autres théories telles que la
théorie des automates, ou la théorie de la démonstration, sont applicables aux jeux distri-
bués ?

Applicabilité. Quels problèmes concrets, logiciels ou matériels, peuvent être modélisés
et résolus dans le cadre des jeux distribués ? Quelles limites impose l’utilisation des jeux
distribués dans de telles modélisations ?

Répondre à ces questions conduira sans doute à enrichir de concepts ou de structures la
notion de jeux distribués. La manipulation de données arbitraires, l’étude des flux d’in-
formations possibles entre les joueurs, la résolution d’autre problèmes théoriques encore
ouverts, etc. . ., sont autant de pistes qui restent à explorer !
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Introduction

The Way that can be told of is not an Unvarying Way;

The names that can be named are not unvarying names.

Lao-Tseu, Tao Te Ching (Tr. A. Waley)

A brief historical overview

In the sixties, Büchi [35] and Rabin [152], prove the decidability of the monadic second
order theory of the infinite word (S1S) and the infinite binary tree (S2S). These two difficult
results are obtained by means of an automata characterization of the expressive power of
monadic second order logic (MSO). In mathematical logic, they open the way to many other
decidability results. The use of automata theory as an algorithmical and combinatorial tools
then spreads in the research community. Following these works, many other results [134,
109, 38, 133, 153, 81, 145] have completed, developed and enriched this theory that is now
central in many other fields.

In computer science, for instance, the increasing complexity of computerized applica-
tions requires, since the seventies and more and more, formal methods that help designers
to guarantee their reliability. These methods must, as much as possible, be grounded upon
a solid and well-defined theory. Automata theory on infinite objects probably finds here
one of its most spectacular application field.

In fact, words or trees, whether they are finite or infinite, can be seen as simple models
of systems behaviors [89, 127, 52, 7, 88, 85]. It follows that logic offers an adequate language
for the formal modeling and specification of these behaviors. Such observations leads to an
increase of interest for Büchi and Rabin works. Since then, a significant number of impor-
tant results have been proved. They form, altogether, the mathematical basis for modeling,
specifying, analyzing and synthesizing interactive discrete computerized systems [78].

The work presented in this report lays in this quite recent and still evolving fundationnal
research field.
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Word language theory and automata

It is first infinite words language theory that is developed towards applications to formal
methods in computer science [38, 158, 80, 63].

In fact, a process behavior can simply be modeled by the sequence of the elementary
actions it executes. These actions being seen as letters of an alphabet, the process behavior
is, from this point of view, a finite or - even more often - an infinite word. It follows that
the specification of the behavior expected from a process can be made by describing the
set - also called language - of the words modeling the many possible correct behaviors. In
turn, this specification can be formally described in monadic second order logic. The works
of Büchi and others can be applied.

For instance, deciding the existence of a process satisfying the behavioral specifications
amounts in deciding the satisfiability of the corresponding logical specification. It follows
that building an automaton equivalent to a specification leads to the definition of an
effective and efficient verification procedure to check that a given model of this process
satisfies this specification [177]. From this automaton one can also synthesize the model of
a process that does satisfy this specification [154, 39].

Although conceptually attracting, this approach may fall on the quite complex syntax
and associated algorithms used with MSO. Many specialized languages - called temporal
or program logics [109, 149, 57, 145, 63] - have been defined to remedy to this fact. Easier
to use, all these languages still have the property of being translatable in MSO. It follows
that the theory and tools developed from Büchi’s works can still be applied efficiently [177].

Since then, many software tools implement this language theory and associated tools.
After adequate modeling of computerized systems, these tools allow formal verification of
the correctness of these systems. They have already been efficiently used. Among others,
the software SPIN/PROMELA has been successfully used for certifying the correctness of
many communication protocols [91].

Tree language theory and branching time logic

From the early eighties, the development of concurrency theory, that aims at defin-
ing the behavior of the process interacting with its environment, leads to model process
behaviors as trees instead of words [84, 127, 86, 85, 88].

In fact, with the word models alone, especially in presence of systems inputs, one may
fail to describe the way the expected behaviors of a process can be conditioned, at every
moment, by the environment in which it evolves. Conceptually, there is a shift from a linear
notion of time to a branching notion of time[70, 71].

But here again, automata theory, with Rabin’s theorem as a cornerstone, offers a con-
ceptual, combinatorial and algorithmic tool case applicable to this richer approach [171].
Here again, specialized languages are developed and proposed, in place of MSO, for the
specification of tree shaped models of process behaviors such as the branching time tem-
poral logics CTL, CTL∗[149, 56, 60] or logics based on fixed point such as the mu-
calculus [57, 151, 110, 18, 138, 169].

While much richer from a theoretical point of view, this branching time approach is,
so far, much less developed towards application than the linear time approach.
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The high complexity of the various concepts it handles, compared to the much simpler
setting of infinite words, probably explain this. Application fields - and both conceptual
and technical tools - probably still need to be developed in order to penetrate more the
world of industrial applications.

From a didactic point of view, it also seems that available textbooks are still oriented
towards researchers or PhD students [16, 78]. There is probably a need for more elementary
books, say for average master students, which would slowly open the way into this rich
and difficult theory.

Two player games in formal methods

The necessity of achieving a better understanding of the underlying theory was proba-
bly one of the main motivation for introducing, in the seventies, two player discrete game
theory into tree automata theory [81]. It occurs that game theory offers an ideal setting
for the uniform treatment and understanding of many theoretical problems encountered in
this field. In fact, deciding the emptiness problem for a non deterministic tree automaton
amounts to solving an infinite two players game: a satisfiability game. Deciding if an alter-
nating automaton accepts a given model can also be made - or even defined - by means of
solving a two player game: a model-checking game [167].

In these two reductions to game, the roles played by the two player AND and OR
already differs. In a satisfiability game: the player OR builds a model and proves it is
accepted while, at the same time, the AND player (arbitrarily) chooses branches from
which this construction/proof have to be continued. In a model-checking game: the roles
of the player AND and the player OR are to handle, moreover, the arbitrary conjunctions
and disjunctions that occur in automata transition specifications.

Other roles can also be assigned to players. For instance, defining the player OR as
a process that evolved in an environment governed by the player AND, solving a game
amounts to proving that there exists a program for the process (encoded by a strategy)
that fulfilled a desired task (encoded in the rules of the game and its winning conditions)
in an environment that may have various behavior. In other words, games can also be seen
as versatile models of interacting systems.

On a conceptual point of view, game theory may enable clear, abstract and unambigu-
ous definitions of various phenomena that commonly occur in computerized systems. In
a more application oriented perspective, game theory may offer concrete models of sys-
tem specifications: games, and algorithms to solve these specifications: winning strategies.
Increasing the number of players having partial information about the play globally per-
formed may even describe more complex phenomena that occur in distributed systems.

Objective of the report

This report first aims at describing the contribution of the author to these fields: this
document is a research habilitation thesis. for this reason, it first describes in detail the
author’s own results obtained during the last decade [25, 50, 101, 26, 100, 99, 102, 98, 94,
95, 93, 104, 103, 92].

However, these results were achieved while aiming at studying, developing and finding
new relationships between logic, automata, fixed points calculus and games. It occurs that
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these results, altogether, offer quite a good coverage of the field. Writing a monograph that
could also form the basis of a one semester graduate lecture became a secondary goal. It
follows that a particular attention has also been paid, in writing this document, to give as
much as possible simple and uniform proofs of the many results that are presented.

Observe that, in this text, some results were, to some extent, already known in the
field.

For instance, in Chapter 4, we do provide an original characterization of MSO on un-
ranked and unordered trees by means of the counting mu-calculus and give a complete
proof of it. No doubt however that this result would have been considerably more difficult
to achieve - not to say more - without, especially, Rabin’s original result on the binary
tree [152], Gurevich and Harrington game based approach [81], Muller and Schupp defini-
tion of alternating automata and simulation theorem [136, 137], and, more specifically for
the author’s own understanding, many other works, e.g. [139, 171, 27, 10, 181].

This is especially true concerning the relationship between monadic second order logic
and tree automata [152, 153, 168, 81, 171, 27, 174, 137, 10, 181, 182], and the relationship
between fixed point calculus and automata [138, 139, 58, 167, 167, 56, 59, 54, 60, 16] that
have been also discovered, understood, analyzed, and detailed for many years by many
authors in various settings: from binary trees to tree-like structures, via unranked trees
with ordered or unordered successors, possibly modulo bisimulation, etc. . .

In some sense, these various concepts, techniques and notions were already between the
lines of Rabin’s original article. However, observing the long list of research publications
- and the number of years - that have occurred after Rabin published his seminal result,
there is no doubt that they deserved to be better understood, specifically explained, related
to other fields or techniques, better distinguished one from the other, cut into smaller and
simpler concepts and tools, and, moreover, extended to more general settings requiring
new proofs and, sometimes, even new technicalities and concepts.

The present document follows this quite long research tradition.

Structure and contribution of the report

The present report is organized as follows.

In the first chapter, we review some standard notations and concepts that are used all
through this report. Words and word automata, transition systems, bisimulation relations,
trees, MSO and the mu-calculus are presented there. Some original technicalities such as
graph κ-expansions also defined and studied.

Two player games are presented in the second chapter. We first review some classical
definitions and results on discrete two player games from regular, to parity and safety
games.

An algorithm that solves parity games while computing what we call permissive strate-
gies is presented. To some extent, this algorithm is very close to Jurdzinski’s small progress
measure algorithm [108]. However, the emphasis made on permissiveness not only shed a
new light on this algorithm but also gives new results and raises several new open problems.
A presentation of this algorithm has already been published in a joint work with Bernet
and Walukiewicz [26]
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We conclude this chapter by describing several notions of game simulations. These
simulations are used in the sequel to compare and prove game (or automata) equivalence
in a more uniform way.

A generalization of Muller and Schupp alternating tree automata [136], with transition
specifications expressed by means of arbitrary fixed point formulas, is defined in the third
chapter. Automata runs are defined in terms of strategies in model checking games. Several
operations and automata transformations such as boolean compositions and general sub-
stitutions are presented and semantically characterized. This leads to relate the expressive
power of alternating automata with the expressive power of the mu-calculus in an inductive
way. The mu-calculus invariance properties under bisimulation are obtained as corollaries.

This chapter is a detailed presentation and a generalization of techniques and concepts
that have been first used during a collaboration with Walukiewicz [103] and latter extended
and partially published by the author himself [94, 95].

The relationship between the fixed point calculus and MSO is studied in the fourth
chapter. An original semantical notion of non alternating tree automata is defined and
characterized syntactically by means of - an extension of - non deterministic automata. A
simulation theorem, à la Muller and Schupp [137], is then established to prove expressive-
ness equivalence between alternating and non alternating automata. Further proving that
non deterministic tree languages are closed under projection, this series of results shows
that on trees (resp. on κ-expanded trees) MSO is as expressive as the counting mu-calculus
(resp. the modal mu-calculus).

On arbitrary graphs, these results provide a characterization of the expressive power of
the counting bisimulation invariant (resp. bisimulation invariant) of MSO by the counting
mu-calculus (resp. the modal mu-calculus). The bisimulation invariance result has been
established in a collaboration with Walukiewicz [104].

Several applications are given at the end of this chapter.

The fifth chapter shows that there is even a finer correspondence between the first levels
of the quantifier alternation depth hierarchy of monadic second order logic and the fixed
point alternation depth of the mu-calculus. More precisely, up to the monadic Σ2 level, the
bisimulation invariance correspondence still holds level by level.

Classical model theoretical notions such as ultraproducts are reviewed and then used
in order to achieve these finer characterizations. The case of levels above the monadic Σ2

level are considered at the end of the chapter.
These results have been established in a joint work with Lenzi [101, 100, 99, 98]

The finite model case, that is quite distinct from the general case, is investigated in the
sixth chapter.

A Büchi like characterization theorem of MSO on finite representations of infinite (ulti-
mately periodic) words, obtained in a joint work with Dawar [50], is established. Extended
to arbitrary finite graphs, this result provides counter examples to properties of bisimula-
tion invariance one could have expected to hold in the finite.

Graph acceptors, which generalizes to arbitrary finite graphs the notion of finite state
automata on finite words or trees, are reviewed. We study bisimulation invariant properties
which are definable by graph acceptors.

Various separation results within the first order closure of levels of the monadic hier-
archy are also proved. These results were obtained with Marcinkowski [102].
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System modeling by means of game is proposed in the seventh chapter. For this purpose,
a notion of distributed games is defined and studied. In particular, we show that many
distributed synthesis problems can be encoded and solved in this setting. Complexity issues
are also addressed. This work is partially the result of a collaboration with Bernet, Mohalik
and Walukiewicz [25, 128]. It is also the core of Bernet’s PhD thesis under the author’s
supervision.

Precise open problems, or more general research directions to be developed are pre-
sented in the last chapter.
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Chapter 1

Preliminaries

Dessine moi un mouton !

Le petit prince, Antoine de Saint Exupery

In this chapter, we first review standard notations, definitions of labeled oriented graphs
(also called transition systems) and bisimulation equivalences. We also review first-order
logic (FO) and monadic second order logic (MSO) over transition systems. We define the
modal and the counting mu-calculus as fragments of monadic second-order logic. An we
also review some classical properties of word languages and automata theory.

1.1 Notations and standard concepts

An alphabet is a finite set Σ. The elements of alphabet Σ are called letters and are
written a, b, c, etc. A finite word on alphabet Σ is a finite sequence w of letters of Σ. We
write w = a0. · · · .an1 with a0, a1, . . . , an−1 ∈ Σ, such a word w, the length of word w,
written |w|, defined to be n. Equivalently, a word can also be seen as a partial function
from IN to Σ with domain dom(w) = [0, |w| − 1] and w(i) = ai for each 0 ≤ i < |w|. The
empty word (the unique word with empty domain) is written ǫ.

The set of all finite words on alphabet Σ is written Σ∗, and the set of all words but
the empty word is written Σ+. Set Σ∗ is equipped with the catenation operation written
multiplicatively, i.e. the catenation of two words v and w ∈ Σ∗ is written v.w. The structure
〈Σ∗, .〉 is a monoïd.

A language of words on alphabet Σ is any subset L of Σ∗. Given any two languages
L and M ⊆ Σ∗, we write L +M the union of the languages and L.M the element-wise
extension of concatenation to languages, i.e. L.M = {u.v ∈ Sigma∗ : u ∈ L, v ∈ M}. For
every language L ⊆ Σ∗, we put L0 = {ǫ} and, for every n ∈ IN , Ln+1 = L.Ln. We write
then L∗ =

⋃
0≤n Ln and L+ =

⋃
0<n L

n. Language L∗ is called the Kleene star of language
L. A language L ⊆ Σ∗ is a regular language when it can be defined from finite languages
and sum, product or star operation.
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2 CHAPTER 1. PRELIMINARIES

In the forthcoming text, we use ordinals and cardinals. In particular, we write ω the
first infinite ordinal. This set is isomorphic to the set IN of natural numbers. We may
also use the notation IN for this ordinal. We do not distinguish finite ordinals and their
corresponding cardinals that are just seen as natural numbers. We also use the symbol ∞
for an infinite cardinal big enough. Most of the time, it will stand for ℵ0 (the cardinals of
ω). In particular, we will often (and implicitly) consider the extension of the ordered set
of naturals by adding an extra maximal element written ∞.

1.2 Infinite word languages

We review in this section some standard notations and results in (infinite words) lan-
guage theory.

1.2.1 Infinite words and languages

Infinite words on alphabet Σ are defined as (total) function from IN to Σ. An infinite
words w will be written similarly w = a0.a1.a2. · · · with w(i) = ai for each i ∈ IN . The
length of an infinite word w is still written |w| but now equals ∞.

The set of infinite words on the alphabet Σ is written Σω. For every finite word v ∈ Σ∗

and every infinite word w ∈ Σω, we write v.w for the mixed product of v and w, that is the
infinite word defined, for every i ∈ [0, |u| − 1] by v.w(i) = u(i) and, for every i ≥ |u| by
u.v(i) = v(i − |u|). For every infinite sequence (vi)i∈ω of finite non empty words, we also
write v0.v1. · · · the infinite product of all words of the sequence. More precisely, writing,
for every k ∈ IN , sk = Σj∈[0,k−1]|vj |, the infinite product is defined to be the infinite word
w defined for every k ∈ IN and every i ∈ IN with sk ≤ i < sk+1, w(i) = vk(i − sk). As
a particular case, for every word v ∈ Σ+, we write wω for the infinite words obtained by
making the infinite product of the sequence (vi = v)i∈ω.

A language of infinite words is any subset L of Σω. Given a language of non empty
finite words L ⊆ Σ+ we write Lω ⊆ Σω for the set of infinite words one can built by
infinite products of words of L. Given also a language of infinite words M ⊆ Σω, we write
L.M ⊆ Σω for the set of infinite words one can built by mixed products of words of L
followed by words of M .

A language L ⊆ Σω is called ω-regular when it can be defined as a finite union of
languages of the form L.(U)ω with regular languages L and U ⊆ L+.

The set of finite and infinite words on alphabet Σ is written Σ∞. Set Σ∞ can be equipped
with a distance d(w1, w2) defined to be 0 when w1 = w2 or 1/2n otherwise, where n is the
length of the longest common prefix of w1 and w2. This distance is ultrametric and induces
a compact topology called the word prefix topology.

Given two alphabets A et B, we write πA or π1 (resp. πB or π2) the projection from
A×B to A (resp. from A×B to B). By extension, for every word w = (a0, b0).(a1, b1). · · · ∈
(A × B)∞, we write πA(w) = π1(w) = a0.a1. · · · or πB(w) = π2(w) = a0.a1. · · · the
projections of word w on A∞ or B∞.

Given n numbered sets A1, . . . , An, given A = A1×. . .×An, given any set of indices I =
{i1, . . . , ik} ⊆ {1, . . . , n} with i1 < . . . < ik, we write A[I] for the set A[I] = Ai1 × . . . Aik ,
for every x = (a1, . . . , an) ∈ A, we write x[I] for the elements x[I] = (xi1 , . . . , xik) ∈ A[I],



1.2. INFINITE WORD LANGUAGES 3

and, for every P ⊆ A, we write P [I] for the set P [I] = {x[I] ∈ A[I] : x ∈ P}. In case
I = {i, i + 1, . . . , j} (where 1 ≤ i ≤ j ≤ n), these notations simplify to A[i, j], x[i, j] and
P [i, j] respectively (and even simplify to A[i], x[i] and P [i] when i = j).

These notations also extend to words as follows: for every word w = a1.a2. . . . ∈ A∞, for
every I ⊆ {1, . . . , n}, w[I] = a1[I].a2[I].a3[I] . . .. For instance, given w = (a0, b0).(a1, b1).(a2, b2) ∈
(A×B)∗ there shall be no confusion between w[2] = b0.b1.b2 (equivalently πB(w) or π2(w)),
i.e. the second projection of w on alphabet B, and w(2) = (a2, b2) the third letter of w.

These notations also extend to relations: for every relation R ⊆ A × B, we write
R[I] ⊆ A[I]×B[I] defined by R[I] = {(x[I], y[I]) ∈ A[I]×B[I] : (x, y) ∈ R}.

We also need in the sequel to restrict to words where no sequence of identical letters
occurs, i.e. words where only changes of letters are relevant. For this purpose we define the
function view that delete these repetitions.

More precisely, for every word w ∈ Σ∞, we define function view(w) by induction on the
length of w as follows. For every a and b ∈ Σ, for every finite words w ∈ Σ∗, view(ǫ) = ǫ,
view(a) = a, view(w.a.b) = view(w.a).b when a 6= b or view(w.a) when a = b. Observe
that for every infinite words w ∈ Σω, view(w) equals the limit, in the prefix topology, of
the converging sequence {view(wn)}n∈IN of the images of the prefix wn of length n of w
by function view.

1.2.2 Infinite word automata

A ω-word automaton is a tuple A = 〈Q,Σ, q0, δ, T 〉 with finite set of states Q, finite
alphabet Σ, initial state q0 ∈ Q, transition function δ : Q × Σ → P(Q) and infinite
acceptance table T ⊆ P(Q) called Muller acceptance criteria.

The Automaton A is a deterministic when, for every q ∈ Q, every a ∈ Σ, |δ(q, a)| ≤ 1.
The Muller acceptance criterion is called a parity condition when there is a mapping

Ω : Q→ IN such that T = {Q′ ⊆ Q|min(Ω(Q′)) is even}. In this case, we write Ω instead
of T in the automaton definition.

A parity condition is a Büchi condition (resp. co-Büchi condition) when Ω(Q) ⊆ {0, 1}
(resp. Ω(Q) ⊆ {1, 2}).

A parity condition is a closed condition when Ω(Q) = {0}.

Given an infinite word w ∈ Σω, a run of the automaton A on the word w is an infinite
word ρ ∈ Qω such that: ρ(0) = q0 and, for each i ∈ ω, ρ(i+ 1) ∈ δ(ρ(i), w(i)).

One may also use ω-automata with ǫ-transition, i.e. automata with transition function
δ extended to Q× {ǫ}.

Given an infinite word w ∈ Σω, a run of the automaton A with ǫ-transition on the
word w is an infinite word ρ ∈ Qω such that ρ(0) = q0 and there is an increasing sequence
{ki}i∈IN such that k0 = 0, for every i ∈ IN :

1. either ki+1 = ki + 1 and ρ(i+ 1) ∈ δ(ρ(i), w(ki)),

2. or ki+1 = ki and ρ(i+ 1) ∈ δ(ρ(i), ǫ).

Given a run ρ ∈ Qω, given the set Inf(ρ) ⊆ Q of states that occurs infinitely often in
ρ, we say that ρ is an accepting run when Inf(ρ) ∈ T .

Word w ∈ Σω is accepted by the automaton A when there is an accepting run of A
on w. The set of words accepted by the automaton A is written Lω(A) and is called the
language recognized by the automaton A.
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Remark. A language recognized by a closed automaton is closed in the prefix topology.
Conversely, one can check that a recognizable closed language is recognized by a closed
automaton.

The following theorem is a condensed version of several results that make infinite word
automata theory so rich and useful [34, 35, 134, 126].

1.2.2.1 Theorem (Büchi, Muller, MacNaughton). For every language L ⊆ Σω , the
following properties are equivalent:

1. L is ω-regular,

2. L is recognizable by a Muller automaton,

3. L is recognizable by a deterministic Muller automaton,

4. L is recognizable by a Büchi automaton,

5. L is recognizable by a deterministic parity automaton.

In particular:

1.2.2.2 Theorem (Safra[157, 158]). Every Büchi non deterministic automaton A =
〈Q,Σ, q0, δ, T 〉, with or without ǫ-transition, is equivalent to a deterministic Muller au-
tomaton with Ad = 〈Qd,Σ, q0,d, δd, Td〉 with |Qd| =!|Q|.

Languages recognizable by deterministic parity automata are obviously closed by com-
plement and projection, it follows:

1.2.2.3 Corollary. Ω-regular languages are closed under union,complement and projec-
tion.

1.3 Transition systems and bisimulation

1.3.1 Models

Let D and Σ be two alphabet. A transition system is a rooted directed labeled graph

M = 〈VM , rM , D, {TM
d }d∈D,Σ, λ

M 〉

with a set VM of vertices, a root vertex rM ∈ VM , a direction (or action) alphabet D, for
each direction d ∈ D, a binary d-edge relation TM

d ⊆ VM ×VM , a labeling alphabet Σ and
a labeling function λM : VM → Σ.

In the sequel, we shall write TM =
⋃

d∈D T
M
d for the edge relation regardless the

direction taken into account. Observe that when D is a singleton alphabet, there is only a
single d-edge relation so that the direction alphabet D can also be omitted.

When Σ is a singleton, the labeling function is uniquely determined and thus can be
omitted as well. The graph Sk(M) obtained from a transition system M by removing the
labeling function is called the skeleton graph of M .

In the sequel, a transition system is simply called a a D,Σ-graph, a Σ-graph, a D-graph
or even simply a graph when alphabets are either singletons or clear from the context.

Let d ∈ D. We say that a vertex v ∈ VM is a d-successor (or just successor) of u when
(u, v) ∈ TM

d . The set of all d-successors of u is written Succ
M
d (u).
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Graph M is called D-deterministic graph when, for every direction d ∈ D, any vertex
u ∈ VM has at most one d-successor, i.e. |SuccMd (u)| ≤ 1.

Graph M is called D-complete graph when, for every direction d ∈ D, any vertex
u ∈ VM has at least one d-successor, i.e. 1 ≤ |SuccMd (u)|.

The set of all successors of vertex u is written Succ
M (u). Again, when D is a singleton,

directions are omitted so that successors and d-successors are the same. The branching
degree of vertex u is defined to be the cardinal |SuccM (u)|. We say that graph M is finitely
branching when, for every vertex u ∈ VM , the branching degree of u is finite.

Given two D,Σ-graphs M and N , a graph morphism from M to N is a mapping f
from VM to V N such that: f(rM ) = rN , for every vertex u ∈ VM , λM (u) = λN (f(u)),
and, for every d ∈ D, for every vertex v ∈ VM , if (u, v) ∈ TM

d then (f(u), f(v)) ∈ TN
d .

A graph embedding from M into N if a one to one morphism from M to N such that,
moreover, for every direction d ∈ D, every vertices u and v ∈ VM , (u, v) ∈ TM if and
only if (f(u), f(v)) ∈ TN . An onto embedding is called a graph isomorphism. Two graphs
are isomorphic when there is an isomorphism from one to the other. In every theoretical
situation, isomorphic graphs are considered to be just the same.

Given a graph M and a subset of vertices X ⊆ VM with rM ∈ X, the subgraph induced
by set X, written M |X, is defined to be the graph

M |X = 〈X, rM , D, {TM
d ∩X ×X}d∈D,Σ, λ

M |X〉

One can check that the canonical inclusion mapping from X to VM is a graph embedding
from M |X into M .

Given two alphabets A and B with Σ = A×B, and a Σ-graph M , we define the graph
projection πA(M) (resp. πB(M)) on the alphabet A (resp. B) to be the graph obtained from
M by keeping every components identical but the labeling function λ that is composed
with the projection ΠA of Σ into A (resp. πB of Σ into B).

1.3.2 Paths and trees

Let D be is a disjoint set of copy of directions of D (an element of D is called a reverse
direction) and let () : D → D be a canonical bijection from D into D.

A undirected path is in a graph M is a non empty finite sequence of vertices and
directions p = v1.d1.v2.d2. · · · .vn ∈ (VM .(D⊎D))∗.VM such that, for every i ∈ {1, · · · , n−
1}, (vi, vi+1) ∈ Td when di = d ∈∈ D or (vi+1, vi) ∈ Td when di = d ∈ D. The length of
path p, written |p|, is defined to be n− 1 and we say that its source (resp. its target) is the
vertex v1 (resp. the vertex vn).

A directed path (or simply called path in the sequel) is a undirected path p as above
with the extra requirement that only directions (and not their reverse) are taken.

The undirected distance d(u, v) (resp. the directed distance ~d(u, v)) between any two
vertices u and v ∈ VM is defined to be the length of the smallest undirected path (resp.
directed path) from u to v if such a path exists and ∞ otherwise.

1.3.2.1 Definition (Unraveling and trees). The unraveling of a graph M is defined
to be the D,Σ-labeled graph

T (M) = 〈V T (M), rT (M), D, {T
T (M)
d }d∈D,Σ, λ

T (M)〉
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defined as follows: the set of vertices V T (M) is defined to be the set of paths in M with
source rM , the root rT (M) is the one-length path rM , for each d ∈ D, the d-successor
relation T T

d (M) is the set of all pairs of paths of the form (p.u, p.u.v) ∈ V T (M) × V T (M)

that (u, v) ∈ TM
d , and the labeling function λT (M) is defined, for every path p ∈ V T (M), to

be λT (M)(p) = λM (v) where v is the target of p.
A tree is a graph M isomorphic to its unraveling T (M).

Strictly speaking, such a tree shall be called a D,Σ-tree. However, in the sequel, with a
little abuse of language, we shall often only called D,Σ-trees those tree-shaped D,Σ-graphs
that are (at least) deterministic.

Remark (On the representation of deterministic trees). InD-deterministic graphs,
a directed path

p = v1.d1.v2.d2. · · · .vn−1.dn−1.vn

from a known vertex v1 is uniquely determined by the sequence

πD(p) = d1.d2. . . . .dn−1

of directions followed along this path. It follows that the above “encoding” is, indeed, a
faithful encoding.

It follows that every deterministic D,Σ-trees M can be seen as a partial function

tM : D∗ → Σ

with a non empty and prefix closed domain dom(tM ) ⊆ D∗ defined by tM (ǫ) = λM (rM )
and, for every non empty word p ∈ D+, tM (p) = λ(rM .p) where rM .p is the unique vertex
(if it exists) reached from the root following the sequence of directions p.

For instance with D = {l, r}, Σ-colored binary infinite trees are represented by map-
pings t : D∗ → Σ.

Remark (Representing D,Σ-Graphs by D × Σ-graphs). Observe also that anyD,Σ-
tree M - or more generally any D,Σ-graph - can be encoded as a D × Σ-tree M ′ - or
D×Σ-graph M ′ -, i.e. with a single edge relation, obtained from M by “moving” any edge
label to the label of its target vertices.

On trees, this can be done keeping the same domain, with an arbitrary edge label put
at the root, since every vertex but the root is the target of a single edge. On graphs, this
can be done by taking VM ′

= D×VM with, for every v ∈ VM , λM
′
(d, v) = (d, λM (v)). In

fact, since several edges with distinct label may reach the same vertex.
In the sequel, in order to simplify notations and proofs, we shall often use this encoding

considering thus graphs with single edge relation.

1.3.3 Bisimulation and counting bisimulation

1.3.3.1 Definition (Van Benthem [20], Park [145]). Given two Σ-labeled graphs M
and N , we say that R ⊆ VM × V N is a bisimulation relation, when, for every (u, v) ∈ R,
λM (u) = λN (v) and, for every direction d ∈ D:

1. for every u′ ∈ VM such that (u, u′) ∈ TM
d there exists v′ such that (v, v′) ∈ TN

d and
(u′, v′) ∈ R,
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2. for every v′ ∈ V N such that (v, v′) ∈ TN
d there exists u′ such that (u, u′) ∈ TM

d and
(u′, v′) ∈ R.

The relation R is a counting bisimulation [99] if, in addition, for each (u, v) ∈ R, each
d ∈ D, there is a bijection fu,v : SuccMd (u) → Succ

N
d (v) such that, for each u′ ∈ Succ

M (u)
one has (u′, fu,v(u

′)) ∈ R.

We say that the graphs M and N are bisimilar (resp. counting bisimilar) when there
is a bisimulation relation (resp. a counting bisimulation relation) R ⊆ VM ×V N such that
(rM , rN ) ∈ R.

Since, in a given graph M , identity is a (counting) bisimulation relation and the class of
(counting) bisimulation relation is closed under symmetry and composition, both counting
bisimulation and bisimulation are equivalence relations in the class of graphs.

These equivalences admit algebraic characterizations by means of adequate notions of
graph saturating morphisms.

1.3.3.2 Definition (Castellani [40], Arnold and Dicky [12]). Given two Σ, D-graphs
M and N , a mapping f : VM → V N is a saturating morphism (resp. strictly saturating
morphism) from M to N when f(rM ) = rN and, for every u ∈ VM , λM (u) = λN (f(u))
and, for every d ∈ D, f(SuccMd (u)) = Succ

N
d (f(u)) (resp. f(SuccMd (u)) = Succ

N
d (f(u))

and the restriction of f to Succ
M
d (u) is one to one).

In this case, we say that graph M is a partial expansion (resp. partial unraveling) of
graph N .

Remark. To a certain extend, saturating morphisms can be seen as sort of homomorphism
in the usual algebraic sense on the algebraic signature {λ}∪{Succd}d∈D relating sets with
or without cardinality constraints.

Saturating morphisms capture bisimulation and counting bisimulation in the following
sense.

1.3.3.3 Theorem (Castellani [40], Arnold et al. [12], J. and Lenzi [100]).
Two D,Σ-graphs M1 and M2 are bisimilar (resp. counting bisimilar) if and only if there

exists a third graph N and two saturating morphisms (resp. strictly saturating morphisms)
f1 : N →M1 and f2 : N →M2.

Proof. In the bisimulation case, graph N can be built out of the pairs of vertices that
belong to a bisimulation relation between M1 and N1. The saturating morphisms f1 and
f2 are then just defined as the first and the second projection. In the counting bisimulation
case the construction is analogous although slightly more technical since local bijections
need to be extracted from the counting bisimulation.

The converse is immediate since (strictly) saturating homomorphisms do define (count-
ing) bisimulation relation. A complete proof is given in [100].

�

Going further in this algebraic characterization, one may ask if there are canonical
graphs (initial objects in the underlying category) that would characterize bisimulation or
counting bisimulation classes of graphs.

The answer for counting bisimulation is positive.



8 CHAPTER 1. PRELIMINARIES

1.3.3.4 Theorem (J. and Lenzi [99, 100]). Every graph M is counting bisimilar to
its unraveling T (M). Moreover, two graphs M1 and M2 are counting bisimilar if and only
if their unravelings T (M1) and T (M2) are isomorphic.

Proof. The function from V T (M) to VM that maps each finite path to its target is a
strictly saturating morphism from T (M) and M . Then we conclude the proof applying
Lemma 1.3.3.3 on T (M1) and T (M2) observing, moreover, that, on trees, strictly saturating
morphisms are just isomorphisms.

�

The purpose of the κ-expansion defined below is to provide, up to some cardinal, similar
representatives for bisimulation equivalence classes.

1.3.3.5 Definition (J. and Walukiewicz [93, 104]). Let κ be a non zero cardinal. A
κ-indexed path in M is a non empty finite word

p = u1.d1.k1.u2. · · · .un−1.dn−1.kn−1.un ∈ VM .(κ.VM )∗

with u1, . . . , un ∈ VM and k2, . . . , kn ∈ κ such that u1.d1.u2. · · · .dn−1.un is a (directed)
path in M . As for a path, we say that u1 (resp. un) is the source (resp. the target) of the
κ-indexed path p. The length of p is also defined to be |p| = n− 1.

The κ-expansion of a D,Σ-labeled graph M is defined to be the D,Σ-labeled graph

Mκ = 〈VMκ

, rM
κ

, D, {TMκ

d }d∈D,Σ, λ
Mκ

〉

where the set of vertices VMκ

is the set of all finite κ-indexed paths of M with source rM ,
the root rM

κ

is rM , for every d ∈ D, the relation TMκ

d is the set of all pairs of the form
(w.u,w.u.d.k.v) ∈ VMκ

×VMκ

such that (u, v) ∈ TM
d and k ∈ κ is an arbitrary element of

κ. Finally, given any κ-indexed path w ∈ VMκ

with target v ∈ VM , the labeling function
is defined to be λM

κ

(w) = λM (v).

Remark. Observe that when κ = 1, the κ-expansion Mκ of M is isomorphic to its unrav-
eling T (M). Observe also that for every cardinal κ and for every graph M , the κ-expansion
Mκ of M is a tree.

1.3.3.6 Theorem (J. and Walukiewicz [93, 104]). For every infinite cardinal κ, two
graphs M and N of out-degree bounded by κ are bisimilar if and only if their κ-expansions
Mκ and Nκ are isomorphic.

Proof. Let R be a bisimulation relation between M and N and let a cardinal κ be as above.
Let R′ be the relation between vertices of Mκ and Nκ that relates any two κ-indexed paths
of the same length whose targets are related in R. Relation R′ is a bisimulation relation.
Moreover, provided κ is infinite (so that, κ.κ = κ) and big enough (actually as big as
the branching degree of M and N), one can observe that the relation R′ is a counting
bisimulation.

The converse is immediate since every graph M is bisimilar with its expansion Mκ.
�

Example. For the reader who is not familiar with bisimulation equivalence, let us remind
that the two finite trees M and N defined by a single edge (resp. two edges only) from
the root, with all vertices labeled identically, are bisimilar while not counting bisimilar.
Moreover, for every finite and non empty cardinal κ, Mκ and Nκ are not isomorphic, i.e.
in Theorem 1.3.3.6, the hypothesis that κ is infinite is essential.
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1.3.4 The prefix topology over finitely branching trees

We consider a topology on the set of all finitely branching trees. This topology is a
straightforward generalization of the classical prefix topology on words, binary trees, or,
more generally, k-ary trees, where k is a fixed integer.

Let FBT (Pred) be the class of all finitely branching trees over a finite set Pred of
predicate symbols. We define the prefix topology on FBT (Pred) by taking as the basic
open sets, the sets of the form:

{M ∈ FBT (Pred) | Ph(M) ∼= F},

where h is a positive integer and F is a finite tree. This topology is Hausdorff’s, as shown
by the following lemma.

1.3.4.1 Lemma. Let M and N be two finitely branching trees. The trees M and N are
isomorphic if and only if for infinitely many h, Ph(M) and Ph(N) are isomorphic.

Proof. The only non-trivial argument which we need to make is to show that if M and N
are infinite and Ph(M) ∼= Ph(N) for infinitely many h (hence for every h) then M ∼= N . In
order to do so, let IM,N be the set of isomorphisms from Ph(M) to Ph(N), for h ranging
over positive integers. The set IM,N ordered by inclusion forms an infinite finitely branching
trees. Hence, by Koenig’s Lemma, it has an infinite branch which defines an isomorphism
between M and N .

�

As a curiosity, note that the lemma does not extend to arbitrary trees M and N . As
an example consider for every n, a unary tree Mn with n vertices, and a unary, infinite
tree M∞. Let M be the graph obtained from the disjoint union of the Mn’s by adding a
new root on top of them (hence the root of M has countably many successors: one per
graph Mn). And let N be the graph obtained in a similar way from the disjoint union of
the Mn’s and M∞. For every h ∈ ω, both Ph(M) and Ph(N) are trees formed by a copy of
Mk for each k < h, plus countably many copies of Mh. But M and N are not isomorphic,
because N has an infinite branch and M has none.

Observe that the prefix topology can be defined by a metric. In fact, given two trees
M and N , let d(M,N) = 0 when M and N are isomorphic and d(M,N) = 2−k otherwise
where k is the biggest integer such that Pk(M) and Pk(N) are isomorphic (which exists by
the gluing Lemma). The function d is obviously a metric that defines the prefix topology.

The prefix topology satisfies a weak form of compactness. More precisely, we define the
skeleton of a tree M to be the tree (over zero predicates)

Sk(M) = 〈VM , rM , TM 〉

i.e. Sk(M) is the structure obtained from M by forgetting all unary predicates. Then,

1.3.4.2 Theorem (J. and Lenzi [100]). Let (Mn)n∈IN be a sequence in FBT (Pred).
If the sequence
{Sk(Mn)}n∈IN has a converging subsequence so does have {Mn}n∈IN .

Proof. Let Mn be such a sequence. Assuming the sequence {Sk(Mn)}n∈IN has a con-
verging subsequence, let I ⊆ IN be an infinite set such that {Sk(Mn)}n∈I converges.
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By induction, we build a strictly decreasing sequence {Ih}h∈IN of infinite sets of positive
integers such that I0 = I and, for every h > 0, m and n ∈ Ih, Ph(Mn) = Ph(Mm). This
enables us to conclude as it implies that the sequence {Mmin(Ih)}h∈IN converges.

More precisely, assume that, for some h ∈ IN , the finite sequence of infinite sets I =
I0 ⊃ I1 ⊃ · · · ⊃ Ih has already been built.

Since the sequence {Sk(Mn)}n∈I converges, there exists mh ∈ I such that, for every
n ∈ I with n ≥ mh, Ph+1(Sk(Mmh

)) = Ph+1(Sk(Mn)). Now, as there are finitely many
trees in FBT (Pred) with skeleton Ph+1(Sk(Mmh

)) and the set Ih is infinite, there exists
an infinite subset Ih+1 of Ih (which can be chosen distinct from Ih) such that, for every n
and m ∈ Ih+1, Ph+1(Mn) = Ph+1(Mm).

�

The prefix topology is not compact as shown, for instance, by any sequence of trees
Mn where the root has degree n and which has no converging subsequence.

1.4 Logic and mu-calculi

1.4.1 First order and monadic second order logic

In this section, we review the first order and the monadic second order logic over graphs.
Let Pred be a finite set of unary predicate symbols and let Σ be P(Pred). Every

D,Σ-graph M can be represented by a first order structure, still denoted by M , on the
vocabulary {r} ∪ {Td}d∈D ∪ Pred, with structure domain dom(M) = VM , the constant
symbol r interpreted by rM , each binary relation symbols Td interpreted by TM

d , and each
unary predicate symbol p ∈ Pred interpreted by the set pM = {v ∈ VM : p ∈ λM (v)}.

Let var = {x, y, · · ·} and V ar = {X,Y, · · ·} be respectively some disjoint sets of first
order and monadic second order variable symbols. First order (FO) and monadic second
order (MSO) formulas over the vocabulary {r} ∪ {T} ∪ Pred can be defined as follows.

The set of FO formulas is the smallest set containing formulas p(t), t = t′, Td(t, t
′), X(t)

for p ∈ Pred, d ∈ D, X ∈ V ar and t ∈ var∪{r} and closed under negation ¬, disjunction
∨, conjunction ∧, implication ⇒ and existential ∃ and universal ∀ quantification over FO
variables.

The set of MSO formulas is the smallest set containing all FO formulas and closed,
moreover, under existential ∃ and universal ∀ quantification over set variables.

We use the notation ϕ(x1, · · · , xm, X1, · · · , Xn) for an MSO formula ϕ with free FO-
variables among {x1, · · · , xm} and free set variables among {X1, · · · , Xn}. A sentence is a
formula with no free variable.

Given a model M , if v1, . . . , vn ∈ VM and if V1, . . . , Vn ⊆ VM , we write M |=
ϕ(v1, · · · , vn, V1, · · · , Vn), or simply M |= ϕ when there is no ambiguity, to say that the
formula ϕ is true in M (or M satisfies ϕ) when the interpretation xMi (resp. XM

j ) of each
FO-variable xi (resp. set variable Xj) is defined as the element vi (resp. the set Vj). This
satisfaction relation is classical and not redefined here; see for instance [164, 41]. In the
sequel, we also use the notation ⊥ (resp. ⊤) for any formula false (resp. true) in all models.

A class C of graphs is said MSO definable when there exists a sentence ϕ ∈MSO such
that C is the class of all models of ϕ.
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A class C of graphs is bisimulation closed (resp. counting bisimulation closed) if whenever
M ∈ C and M ′ is bisimilar (resp. counting bisimilar) to M then M ′ ∈ C.

Then, a sentence ϕ is bisimulation invariant (resp. counting bisimulation invariant) if
the class of transition systems it defines is bisimulation closed (resp. counting bisimulation
closed).

The notion of bisimulation invariance (or counting bisimulation invariance) is extended
to arbitrary formulas ϕ(X1, · · · , Xn) by considering graphs over the set of predicate symbols
Pred′ = Pred∪{X1, · · · , Xn}. In the sequel, fixed point formulas may have free set variables
and we will often implicitly consider this extension of graphs to Pred′ whenever there is
no ambiguity.

Finally, the monadic quantifier alternation depth hierarchy is defined as follows. The
first (or zeroth) level Σ0 = Π0 is defined as the set of all formulas of first order logic. Then,
for each integer k, the level Σk+1 (resp. level Πk+1) is defined as the set of all formulas of
the form ∃X1 · · · ∃Xnϕ with ϕ ∈ Πk (resp. ∀X1 · · · ∀Xnϕ with ϕ ∈ Σk). The bisimulation
invariant (resp. unwinding invariant) fragment of the level Σk of MSO sentences is defined
as the set of all bisimulation invariant (resp. unwinding invariant) sentences of Σk.

The level monadic Σ1 of the monadic hierarchy is also called existential monadic second-
order logic (EMSO). Aside the monadic hierarchy, an extension of the level monadic Σ1 has
also been defined and is of some interest in this report. Closed existential monadic second-
order logic (CEMSO) is defined as the set of all formulas of the form θ1x1∃X1 · · · θnxn∃Xnϕ
where ϕ is an FO formula, the (θixi)s are finite sequences of FO quantifications. Ajtai et al.
proved that, over finite models, CEMSO is strictly more expressive than EMSO [4] Arnold
et al. [13] show that the same holds over infinite trees.

1.4.2 Modal and counting mu-calculus

In this section we review the definition of the counting and modal propositional mu-
calculus on Σ-graphs. The modal mu-calculus was introduced by Kozen [110]. The counting
mu-calculus is just the extension of the modal mu-calculus with counting modalities.

1.4.2.1 Definition (Kozen [110]). The set of modal mu-calculus formulas is the small-
est set containing Pred ∪ V ar and closed under negation, disjunction, conjunction, and
the following formation rules, if α is a formula then ♦α and �α are mu-calculus formulas,
and, provided X occurs only positively (i.e. under an even number of negations) in α then
µX.α and νX.α are modal mu-calculus formulas.

The set of counting µ-calculus formulas is defined as above replacing standard modal-
ities ♦ and � by counting modalities ♦k and �k for any integer k.

Remark. Strictly speaking, the counting mu-calculus is an extension of the mu-calculus
defined by the author and Lenzi in [99].

We use the same convention as for MSO with free set variables, i.e. we denote by
α(X1, · · · , Xn) a formula with free variables among {X1, · · · , Xn}. For convenience, we may
also omit these free set variables in the formula α considering then implicitly that graphs
have been built over the set of unary predicate symbols Pred′ = Pred ∪ {X1, · · · , Xn}. In
the sequel, we call fixed point formula any formula of the modal or counting µ-calculus.
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We also write α[β/X] for the formula obtained from the formula α by replacing any
free occurrence of X by the formula β.

The semantics of fixed point formulas can be defined formally by translating fixed point
formulas into MSO. An equivalent fixpoint semantics discussed in the next section.

1.4.2.2 Definition (Fixed point formulas semantics). Let p ∈ Pred, α and β be
fixed point formulas, X be a set variable, x and z be FO variables, and z = (z1, · · · , zk) be
a k-tuple of FO variables. The semantics of the fixed point formulas is defined inductively
according to the following induction rules:

– Atomic formulas :
ϕp(x) = p(x) and ϕX(x) = X(x),

– Boolean connectives :
ϕα∧β(x) = ϕα(x) ∧ ϕβ(x), ϕα∨β(x) = ϕα(x) ∨ ϕβ(x)
and ϕ¬α(x) = ¬ϕα(x)

– Modalities :
ϕ♦α(x) = ∃z (T (x, z) ∧ ϕα(z)),
ϕ�α(x) = ∀z (T (x, z) ⇒ ϕα(z))

– Counting modalities :

ϕ�kα(x) = ∀z
(
(d iff(z) ∧

∧
i∈[1,k] T (x, zi)) ⇒

∨
i∈[1,k] ϕα(zi)

)
,

ϕ♦kα(x) = ∃z
(
d iff(z) ∧

∧
i∈[1,k] T (x, zi) ∧ ϕα(zi)

)
,

– Fixed points :
ϕµX.α(X)(x) = ∀X

(
(ϕα(X) ⊆ X) ⇒ X(x)

)
,

ϕνX.α(X)(x) = ∃X
(
(X ⊆ ϕα(X)) ∧X(x)

)
.

There, d iff(z) is the quantifier-free FO formula stating that zi 6= zj for every i 6= j,
ϕα(X) ⊆ X is the MSO formula ∀zϕα(X)(z) ⇒ X(z), and, similarly, X ⊆ ϕα(X) is the
MSO formula ∀zX(z) ⇒ ϕα(X)(z). For every fixed point formula α, every model M , we
write M |= α when M |= ϕα(r).

Remark. In the sequel, we also use backward modalities ♦−1 and �−1, and backward
counting modalities ♦−1

i and �−1
i that are defined like the ordinary modalities but with

respect to the inverse edge relation (TM )−1 in place of TM . In the presence of backward
modalities, the standard modalities are referred to as forward modalities.

1.4.3 Fixed points in mu-calculus

The above definition of fixed point formulas semantics does not give much intuition
on the meaning of these formulas. We review here also a standard (and somehow more
intuitive) point of view on the semantics of fixed point formulas.

1.4.3.1 Definition (Set mappings defined by fixed point formulas). In a modelM ,
a fixed point formula α(X1, . . . , Xn) induces an n-ary mapping αM from (P(VM ))n to
P(VM ) defined, for every sets V1, . . . , Vn ⊆ VM by αM (V1, . . . , Vn) = {v ∈ VM : M |=
ϕα(v, V1, · · · , Vn)}.

Remark. The meaning of a formula with no free variable is a set. For instance, rephrasing
the definition of modalities semantics, the sentence ♦α (resp. the sentence �α) defines the
set of vertices which have at least one successor (resp. all successors) satisfying predicate α.
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Likewise, for counting modalities, the sentence ♦kα (resp. �kα) defines the set of vertices
which have at least k successors (resp. all but at most k−1 successors) satisfying predicate
α.

In particular, modalities ♦ and ♦1 on the one hand, and modalities � and �1 on
the other hand, have the same meaning. For this reason, we always consider the modal
mu-calculus to be a sub-language of the counting mu-calculus.

If X occurs only positively in a fixed point formula α(X) then the mapping αM from
P(VM ) to P(VM ) is monotonic increasing w.r.t. the inclusion order. By Knaster and
Tarski’s Theorem [170], it has a least and greatest fixed point. The purpose of the µ and
the ν connectives is to define these fixed points.

1.4.3.2 Lemma (Least and greatest fixed points). The meaning (µX.α(X))M of the
formulas µX.α(X) and, respectively, the meaning (νX.α(X))M the formula νX.α(X) in
M are the least and, respectively, the greatest solution of the set equation X = αM (X).
They are given by

µX.αM (X) =
⋂

{X ⊆ VM : αM (X) ⊆ X}

and

νX.αM (X) =
⋃

{X ⊆ VM : X ⊆ αM (X)}

In particular, we do have:

1.4.3.3 Corollary. For every fixed point formula α, the formula µX.α (resp. νX.α) is
equivalent to the formula α[µX.α/X] (resp. α[νX.α/X]).

1.4.4 The fixed-point alternation depth hierarchy

We review, in the rest of the section, some properties of the syntax of fixed point
formulas. This leads to the definition of the alternation depth of fixed point formulas.

1.4.4.1 Definition (Well-named formula). We call a fixed point formula well named
if negation only applies to unary predicates, every variable is bound at most once, and,
free variables are distinct from bound variables.

For a variable X bound in a well-named formula α there is a unique subformula of α, of
the form σX.β, from now on called the binding definition of X in α. We call X a ν-variable
when σ = ν, we call X a µ-variable when σ = µ.

By applying de Morgan laws and by consistent renaming of bound variables in a fixed
formula α, one can always built an equivalent well-named formula β.

1.4.4.2 Definition (Bound variable dependency ordering). We define the depen-
dency order relation ≤α over the set of bound variables in a fixed point formula α as the
least order relation ≤α such that: for any two bound variables X and Y , if the variable X
occurs free in the binding definition σY.β of the variable Y then X ≤α Y .

Observe that because α is well-named, the order ≤α is well defined. Moreover, every
non minimal variable has a unique predecessor. In fact, the dependency order ≤α over the
bound variables in α inherits the (tree-shaped) syntactic structure of the formula α, i.e.
the predecessors of each variable are totally ordered.
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1.4.4.3 Definition (Bound variable alternation depth). Let α be a well named for-
mula. The nu-depth Nα(X) (resp. the mu-depth Mα(X)) of any bound variable X in the
formula α, is defined by induction on the depth of X is the dependency order ≤α as follows:

1. when variable X is minimal in ≤α: if X is a ν-variable then Nα(X) = 0 (resp.
Mα(X) = 1) and if X is a µ-variable then Nα(X) = 1 (resp. Mα(X) = 0);

2. otherwise, given Y the (unique) immediate predecessor of X in the dependency order
Nα(X) = Nα(Y ) (resp. Mα(X) = Mα(Y )): X and Y are both at the same time
µ-variables or ν-variables, or Nα(X) = Nα(Y ) + 1 (resp. Mα(X) = Mα(Y ) + 1)
otherwise.

Observe that, with such a definition, ν-variables have even nu-depth (resp. odd mu-
depth) while µ-variables have odd nu-depth (resp. even nu-depth).

1.4.4.4 Definition (Niwinski [138, 139]). Levels of the modal (resp. counting) propo-
sitional fixpoint alternation depth hierarchy {Nk}k∈IN and {Mk}k∈IN (resp. {NCk}k∈IN and
{MCk}k∈IN ) are defined as follows: for every k ∈ IN : Nk (resp. NCk) is the set of modal
fixed point formulas (resp. counting fixed point formulas) with bound variable of nu-depth
at most k−1 and, similarly, Mk (resp. MCk) is the set of modal fixed point formula (resp.
counting fixed point formula) with bound variable of mu-depth at most k − 1.

Remark. The level N0 (or M0) is the set of fixed point free modal formula. Levels N1

and M1 are formulas built with greatest or least fixpoint only. Level N2 corresponds to
formulas with greatest fixpoint nested by least fixpoint. etc. . .

An interested level is the level N2∩M2 of formulas where no bound variables of distinct
type are dependent one with the other. This level is often called the alternation free mu-
calculus. It can be equivalently defined as the closure of levels N1 and M1 under boolean
connectives and (well-behaving) substitutions.

Aside such a syntactical hierarchy: formulas that belong to such or such level, there is
a semantical hierarchy: properties that are definable by means of formulas in such or such
level.

1.4.4.5 Theorem (Bradfield [32] and Arnold [11]). The modal (resp. counting) fixed
point alternation depth hierarchy is strict, i.e. for every k > 0, there is a property αk in
Nk (resp. NCk) which does not belong to Nk−1 (resp. NCk−1).

Proof. Strictly speaking, the counting case is rather a corollary of Arnold’s result. In fact,
he proved that the modal mu-calculus hierarchy remains strict over the binary tree. Then,
the strictness of the counting fixed point alternation depth hierarchy follows from the facts
that: first, the binary tree is definable in the counting mu-calculus, and, next, on the binary
tree, the counting and the modal mu-calculus are, level by level, equal.

�

Remark. An interesting and independent related result has also been obtained by Lenzi [113,
114].
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1.4.5 MS0-definable languages of words and automata

With a singleton (direction) alphabet D, one can encode words as deterministic Σ-
graph. More precisely, given any finite or infinite word w ∈ Σ∞, there is a unique deter-
ministic Σ-tree Mw such that the sequence of labels of vertices along the (unique) path
emanating from the root equals w. Then it make sense to speak about MSO-definable
language as languages of words which set of models is definable is MSO.

1.4.5.1 Theorem (Büchi [34], Trakhtenbrot [175, 176]). A language L ⊆ Σ∞ is
MS-definable if and only if it is recognizable by a non deterministic Büchi automaton.

1.5 Notes

Bisimulation equivalence appears already in logic [20] under the name of π-equivalence.
In computer science, it was rediscovered by Park [145]. Observe that in this work, Park
is comparing word automaton. It follows that he defines there bisimulation where double
simulation would have suffice. Bisimulation really becomes popular with Milner et al. [85,
86, 127] studying process algebras [88, 89, 127, 23, 84, 7, 9]. The relevance of bisimulation
equivalence as behavioral equivalence for processes have been studied a lot. It is generally
consider to be the finest. A quite exhaustive overview and classification of other behavioral
equivalences can be found in [70, 71].

The algebraic point of view presented here appears in the works of Castellani [40] and
Arnold and Dicky [12]. Other algebrico-categorical approaches have been proposed and
studied later [1, 106]. The notion of κ-unraveling, strongly related with the above, is an
original notion developed by the author [93]. It has been used in several work studying
bisimulation invariant fragment of various logical formalisms [104, 129, 2, 90, 99, 100, 101].

The prefix topology, presented here on relational graphs, is quite a straightforward
generalization of the prefix topology on binary trees - equivalently the standard metric
topology on sets of reals in [0, 1] - . One may observe, however, that the restriction to
finitely branching trees make statements and proofs slightly more delicate than in the
binary case.

In Kozen’s original definition [110], the mu-calculus is multi-modal in the sense that,
for each direction d ∈ D, there is a box [d] and a diamond 〈d〉 modality. It essentially
means that the resulting fixed point calculus is interpreted on D,Σ-graphs instead of Σ-
graphs. More precisely, for each d ∈ D, the pair of modalities [d] and 〈d〉 are interpreted on
relation Td in D,Σ-graphs while ♦ and � are interpreted on the unique edge relation T on
Σ-graphs. It shall be clear that Kozen’s original multi-modal mu-calculus essentially have
the same property than the mu-calculus as shown by the (counting bisimulation preserving)
encoding of D,Σ-graphs into D × Σ-graphs given in page 6 of this document.
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Chapter 2

Two player games

Two player games bear an important role in computer science. Verifying that a given
model of program satisfies a given specification often equivalently amounts to checking that
in some model-checking game - a game built from the model and the specification - one of
the player has a winning strategy. Synthesizing a program from a specification also often
equivalently amounts to finding a winning strategy in some satisfiability game, a game
built from the specification formula. In both these cases, the notion of two player games
captures, under adequate assumption, the combinatorial properties of these problems. More
generally, two player games can also be seen as a versatile model of potential interactions
between processes and their environment. They allow a firm and precise definition of many
fundamental concepts that are commonly used in program design and validation.

How two player games can effectively be used and related with model-checking or
program synthesis is illustrated in next chapters. In this chapter, we are mainly concerns
with two player games themselves.

In the first section, we are reviewing classical definitions and properties of two player
games. In the second section, we provide an algorithm to compute winning position in
parity games. More precisely, this algorithm computes a winning strategy that is called
permissive strategy in the sense that it allows every move that is allowed by a positional
winning strategy. Various notions of two player games simulations are then presented and
illustrated in the last section. The purpose of these simulations is to be used later in the
text as uniform proof techniques to show the existence (or transfer) of winning strategies.

2.1 Classical definitions and results

2.1.1 General background and notations

The games we consider are discrete two players turn based games. The two players are
called Process (or the player P ) and Environement (or the player E).

2.1.1.1 Definition (Game). A game arena or game for short is a bipartite graph

G = 〈V G = V G
P ⊎ V G

E , T
G = T G

P ⊎ T G
E ,Acc

G〉

with a partition V G = V G
P ⊎ V G

E of the set of vertices called game positions, a partition
T G = T G

P ⊎ T G
E ⊆ V G × V G of the set of edges called game moves with T G

P ⊆ V G
P × V G

E and

17
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T G
E ⊆ V G

E × V G
P , equipped with a distinguished set of infinite paths AccG ⊆ (V G)ω called

the (infinite) acceptance condition. A game G may also have an game initial position that
is a distinguished element of V G written rG .

The Game G may be written G = 〈V G
P , V

G
E , T

G
P , T

G
E ,Acc

G〉, superscript G possibly omit-
ted when there is no ambiguity, sets V G and T G being implicitly defined.

The dual game G of the game G is defined by taking V G
P = V G

E , V G
E = V G

P , T G
P = T G

E ,

T G
E = T G

P , AccG = (V G)ω − AccG .

We say that the game G is P -deterministic (resp. E-deterministic) when relation T G
P

(resp. relation T G
E ) is functional.

2.1.1.2 Definition (Play). A partial play or just play in a game arena G is a non empty
path in the underlying game graph 〈V G

P ∪ V G
E , T

G
P ∪ TG

E g〉. A play is winning for Process
either when it is finite and ends in a Environement’s position or when it is infinite and
belongs to AccG . Dually, a play is winning for Environement either when it is finite and

ends in a Process’s position or when it is infinite and belongs to Acc
G
. A complete play is

a play maximal with respect to the prefix ordering.

2.1.1.3 Definition (Strategy). A (non deterministic) strategy for Process (resp. for En-
vironement) is a function

σ : (V G)∗.V G
P → P(V G

E ) (resp. τ : (V G)∗ → P(V G
E ))

such that, for every play p.v ∈ (V G)∗.V G
P (resp. p.v ∈ (V G)∗.V G

P ), {v}×σ(p.v) ⊆ T G
P (resp.

{v} × τ(p.v) ⊆ T G
P ).

In the sequel, especially when used with quantifiers, letter σ will always denote a
strategy for the player P and letter τ will always denote a strategy for the player E.

From a position v ∈ V G , the plays induced by strategies σ and τ , written

σ ∗ τ(v) ⊆ (V G)∞

is defined to be the set of play p starting in v and such that for every prefix of p of the
form p′.v′ either v′ = σ(p′) when p′ ends in V G

P or v′ = τ(p′) when p′ ends in V G
E .

Observe that all plays induced by strategies are path the the game graphs.

Strategy σ (resp. strategy τ) is a deterministic strategy when, for every p ∈ (V G)∗.V G
P ,

|σ(p)| ≤ 1 (resp. for every p ∈ (V G)∗.V G
E , |τ(p)| ≤ 1. In this case strategy σ (resp. strategy

τ) is often seen as a partial function from (V G)∗.V G
P to V G

E (resp. from (V G)∗.V G
E to V G

P ).

Strategy σ is a non blocking strategy from position v ∈ V G when, for every counter
strategy τ , every position v ∈ V G , there is no maximal play w ∈ σ ∗ τ(v) that ends in a
player P position.

2.1.1.4 Lemma. For every strategy σ, every counter strategy τ and every position v, the
set σ ∗ τ(v) is prefix-closed . Moreover, an infinite play belongs to σ ∗ τ(v) if and only if all
its finite prefixes belong to σ ∗ τ(v).

In particular, the set Beh(G, v, σ) =
⋃

τ σ ∗ τ(σ) called the behavior of strategy σ is
prefix-closed and closed in the prefix topology.
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Proof. Observe that if all the prefixes of a path are allowed by strategy σ (strategy τ) then
the whole path is allowed by strategy σ (strategy τ).

�

For arbitrary strategies, it makes sense to compare strategies by comparing the plays
they allow.

2.1.1.5 Definition (Strategy order). A strategy σ is subsumed by a strategy σ′, which
is written σ ⊑ σ′, if, for every position v, every counter strategy τ , σ ∗ τ(v) ⊆ σ′ ∗ τ(v).
Strategies σ and σ′ are equivalent when σ ⊑ σ′ and σ′ ⊑ σ.

2.1.1.6 Definition (Winning strategy, winning position). Strategy σ for the player
P (resp. strategy τ for player E) is a winning strategy from position v ∈ V G when, for every
strategy τ for the player E (resp. every strategy σ for the player P ), every maximal play
p ∈ σ ∗ τ(v) is winning for the player P (resp. winning for the player E).

A position in the game arena is a winning position for a player when there is a winning
strategy for this player from this position.

Remark. Observe that if there is a non deterministic winning strategy for some player
then there is a deterministic one.

Observe also that there might be two reasons for a strategy for the player P to fail to
be winning from a given position v. The first reason, local, is that strategy σ allows a play
from position v that stops in a player P position (either because σ is no longer defined
or this position has no successor). The second global reason is that strategy σ allows an
infinite play from position v that does not belong to Acc.

This observation justifies somehow the definition of non blocking strategies given above.
In fact, a strategy that is winning from position v is non blocking, and a non blocking
strategy that fails to be winning always fails to be winning for the second reason.

Since the main issues and difficulties when dealing with two player infinite games arise
with infinitary conditions, it is often assumed that strategies are always non blocking, and
even games themselves does not have positions for the player P without successors. For
reasons that shall become clear when dealing with tree automata, this is not the point of
view followed in this presentation.

2.1.1.7 Definition (Game determinacy). A game is determined when every position
of the game arena is winning for one of the player.

2.1.1.8 Theorem (Gale and Stewart [65]). There are games (even on finite arena)
that are not determined.

2.1.1.9 Theorem (Martin [123]). Games with Borel infinitary conditions are deter-
mined.

2.1.2 Strategy trees vs strategies

2.1.2.1 Definition (Strategy tree). Given a game G = 〈VP , VE , TP , TE ,Acc〉, a strat-
egy tree for player P in game G is defined to be a function f : (VP )

+ → VE . Dually, a
strategy tree for player E is defined to be a function g : (VE)

+ → VP ).

From an initial position v, the plays induced by strategy trees f and g, written f ∗ g(v)
is defined to be the set of (finite or infinite) word p ∈ (V G

E + V G
P )∞ such that p(0) = v
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and, for every prefix of p of the form p′.v1.v2, if v1 ∈ VP then v2 = f(πV G
P
(p′.v1)) with

(v1, v2) ∈ TP or, if v1 ∈ VE then v2 = g(πV G
E
(p′.v1)) with (v1, v2) ∈ TE .

Observe that, as for deterministic strategies, the set of play f ∗ g(v) has a unique
maximal elements and is closed under prefix.

As for standard strategies, one can define the behavior of a strategy tree f from a
position v ∈ V G to be the set Beh(G, v, f) =

⋃
g f ∗ g(v).

The following lemma says that the notion of strategy tree is essentially equivalent with
the notion of strategy.

2.1.2.2 Lemma. For every game G, for every position v ∈ V G, for every strategy tree
f there exists a deterministic strategy σf,v such that Beh(G, v, f) = Beh(G, v, σf,v) and,
conversely, for every deterministic strategy σ there exists a strategy tree fσ,v such that
Beh(G, v, σ) = Beh(G, v, fσ,v).

In particular, a position v is winning for player P in game G if and only if there is a
strategy tree f for player P such that, for every strategy tree for player E, the maximal
play in f ∗ g(v) is winning for player P .

Proof. We show here the translation from strategy to strategy tree. The other direction is
essentially the same.

Observe first that for every deterministic winning strategy σ in a game G, for every
position v ∈ V G , the projection mapping

πV G
P
: Beh(G, σ, v) ∩ (V G)∗.V G

P → (V G
P )+

is one to one, i.e. for every p ∈ (V G
P )+, there is at most one play from now on written

hσ,v(p) ∈ (V G)∗.V G
P such that hσ,v(p).σ(hσ,v(p)) ∈ Beh(G, σ, v) and πV G

P
(hσ,v(p)) = p.

It follows that we can define the strategy tree fσ,v from the strategy σ and the position
v ∈ V G as follows: for every p ∈ (V G

P )+, we put fσ,v(p) = σ(hσ,v(p)) whenever defined. One
then can easily check that Beh(G, v, σ) = Beh(G, v, fσ,v).

�

2.1.3 Regular and parity games

Computability is not an issue in the definitions above. Regular games are quickly re-
viewed here. They are essentially games with ω-regular winning conditions. In the finite
case, regular games are solvable.

2.1.3.1 Definition (Regular and Muller game). A game G = 〈V G = V G
P ⊎V G

E , T
G =

T G
P ⊎ T G

E ,Acc
G〉 is a regular game when there is a finite alphabet C, an ω-regular language

L ⊆ Cω and a labeling function λ : V G → C such that AccG = λ−1(L).

A Muller game is a regular game such that there is a set T ⊆ P(C) with L =⋃
P∈T

⋂
a∈P (C

∗.a)ω, i.e. p ∈ L if and only if the set Inf(p) of letters occurring infinitely
often in p belongs to T .

Observe that, as a particular case, when V G is finite, AccG is itself a regular language
on the alphabet V G and there is no longer any need to distinguish (even in Muller games)
the alphabet C from the set of position V G . In the sequel, in order to simplify statement
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and notation, we essentially consider finite games with C = V G , and, except when stated
otherwise or just not applicable, all statements and proofs are easily generalizable to infinite
regular or Muller games.

The size |G| of a finite regular game is defined to be the size of the game graph |V G |+
|T G |. It follows that the complexity of computing winning positions may also take into
account the size of (a representation) of the winning condition AccG .

2.1.3.2 Definition (Memory of a strategy, regular strategy). A strategy σ for the
player P (or for the player E accordingly) is a strategy with memory when there is a triple

c :M × V G
P → P(V G), δu :M × V G →M, m0 ∈M

such that, defining inductively, δ∗uM × (V G)∗ →M by

δ∗u(m, ǫ) = m and δ∗u(m, p.v) = δ∗u(δu(m, p), v)

for every play p.v ∈ (V G)∗.V G
P

σ(p.v) = c(δ∗u(m0, λ(p)), v)

i.e. the strategy at a partial play p.v is defined up to some memory δ∗u(p) of the past of the
play. When δu and m0 will be clear from the context, we will sometimes use σ to denote
the function c.

With a slight abuse of language, M is called the memory of the strategy. A regular
strategy is a strategy with finite memory. A memoryless strategy or a positional strategy
is a strategy with memory M which is a singleton set. Alternatively one can see it as a
function σ : V G

P → P(V G
E ).

2.1.3.3 Theorem (Büchi et al. [36, 37, 38, 81]). In finite regular games a position
is winning for a player if and only if this player has a regular winning strategy from this
position. Moreover, winning positions (and winning strategies) are computable.

2.1.3.4 Definition (Parity games). A game G is a parity game when the winning con-
dition AccG is specified by means of a priority function Ω : V G → IN (with Ω(V G) finite
when G is infinite) such that AccG = {w ∈ (V G)ω : liminf Ω(w) even}. In the sequel, a
parity game is written G = 〈V G

P , V
G
E , T

G
P , T

G
E ,Ω

G〉 with priority function ΩG given in place
of Acc.

The parity index of a parity game G is defined to be d = max(Ω(V G)).

Observe that parity games are a special case of Muller games. In fact, one can define the
Muller table T = {P ⊆ V G : min(Ω(P )) even } that define the same winning condition.

2.1.3.5 Theorem (Emerson et al. [59], Mostowski [131], Jurdzinski [107]). In par-
ity games a position is winning for a player if and only if this player has a memoryless
winning strategy from this position. The problem of solving a parity game is in UP ∩co-UP
and winning positions (and strategies) can be computed in time O(|G|[d+1/2]).

Remark. An algorithm for solving finite parity games is presented in section 2.2 below.
It is a variant of Jurdzinski’s small progress measure algorithm [108]. A basic algorithm
to solve parity games with priorities [0, 2k] interpreted by predicate symbols Pii∈[0,2k] and
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partition of states described by predicate symbols PE and PP , amounts to evaluate the
following mu-calculus formula:

νX0µX1 · · · νX2k.


PP →


 ∧

i∈[0,2k]

Pi → ♦Xi


 ∧ PE →


 ∧

i∈[0,2k]

Pi → �Xi






that computes [181, 11] the set of winning positions for the player P . A naive evaluation
leads, for a game G, to an algorithm in O(|G‖2k+1). A more clever evaluation of the mu-
calculus formula (see for instance [162, 16]) gives an algorithm in O(|G|k+1).

2.1.4 Safety games

A safety game is a special kind of parity game where the player P wins a play if it
never enters any of forbidden positions.

2.1.4.1 Definition. A safety game is a parity game

G = 〈V G
P , V

G
E , T

G
P , T

G
E ,Ω

G〉

with ΩG(V G) = {0, 1} and the property that for every vertex v:
– if v ∈ VP and all successors of v have priority 1 then ΩG(v) = 1,
– if v ∈ VE and ΩG(v) = 1 then there must exist a successor of v with priority 1,

The definition may at first seem too complicated, but we want it to be general with the
property that a play is winning for the player P if and only if it never enters a position of
priority 1. Observe in particular that, with this definition, player P positions with priority
0 always have successors.

2.1.4.2 Lemma. In a safety game the player P has a ⊑-biggest winning strategy. This
(memoryless) strategy is to stay in winning positions.

Proof. To calculate the set of winning positions for the player P in a game G, one can
proceed as follows. First, one sets W1 = {v : Ω(v) = 1}. Then, repeatedly one tries to find
a vertex v such that either:

– v ∈ VP and all successors of v are in W1, or
– v ∈ VE and there is a successor of v in W1.

One adds v to W1 and repeats the process. The loop ends when there are no more vertices
to add.

It is not difficult to show that from every in W1, the player E can force the play to
reach (and to stay in) the set of vertices of priority 1 and thus the player E has winning
strategy.

On the other hand, from every vertex in W0 = V G −W1, the player P has a strategy
to stay in W0. This strategy is given by σ(v) = {v′ ∈ W0 : T G

P (v, v
′)}. The strategy is

maximal as no winning strategy can allow a play to get outside W0.
�

Remark. In general, there is not ⊑-maximum winning strategies. Moreover, the following
Theorem shows that, to some extent, existence of ⊑-maximum strategy characterizes safety
games.
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2.1.4.3 Theorem (Bernet, J. and Walukiewicz [26]). If a game G with suffix closed
acceptance condition has a ⊑-maximum winning strategy σ, then one can assign to each
vertex of G a priority in {0, 1} in such a way that the result G′ is a safety game and σ is
also the ⊑-maximum winning strategy in G′.

Proof. Let σ be the ⊑-maximum winning strategy for player P , and let W be the set of
winning positions in G for player P .

If every path through W is winning for the player P then we are done. We put Ω(v) = 0
for every vertex in W and Ω(v) = 1 for every other vertex.

Otherwise, suppose that there is a maximal path p in W which is not winning for the
player P . Play p cannot be a finite path as every vertex in W ∩ VP has a successor in W .
We conclude the proof by showing that p cannot either be an infinite path.

In fact, for every finite prefix p′ of p we define a strategy σp′ that extends σ by allowing
moves along p′. When the play goes out of p′, or p′ finishes, the strategy becomes the same
as σ. Formally, for every play q:

σp′(qv) =





σ(qv) ∪ {v′} if qvv′ is a prefix of p′

σ(q2v) if q = q1q2 and q1 is the longest common prefix
of p′ and q.

Every play respecting σp′ has a suffix which is a play starting from some v ∈ W and
respecting σ. Since AccG is closed under suffix every play respecting σp′ is winning.

Observe now that, because σ is the ⊑-maximum winning strategy, we also have σp′ ⊑ σ.
It follows there is some counter strategy τ such that for every finite prefix p′ of p, p′ ∈ σ∗τ(v)
hence, by closure under limit (Lemma 2.1.1.4), p ∈ σ ∗ τ(v) which is impossible since p is
loosing for the player P while σ is winning.

�

Remark. In the above Theorem we consider relabeling that preserves the ⊑-maximum
winning strategy (henceforth arbitrary winning strategy). We have not considered the re-
labeling that only preserves winning vertices because, according to such a weaker require-
ment, every game can be relabeled to a safety game. In fact, one can just put Ω(v) = 0
for every vertex winning for the player P and Ω(v) = 1 for all the vertices winning for the
player E. After this relabeling the sets of winning vertices do not change as the player P
has a strategy to stay in his winning vertices, and the player E has a strategy to stay in
his winning vertices.

2.2 Permissive strategies in parity game

We have already seen that, in general, there is no ⊑-maximal winning strategy in a
parity game. In this section, it is shown, however, that in finite parity games there always
exists a regular strategy, called permissive strategy, that encompasses all the behaviors of
all memoryless strategies. An algorithm for finding such a permissive strategy is presented.
Its complexity matches currently known upper bounds for the simpler problem of finding
the set of winning positions in a parity game. The algorithm can be seen as a reduction of
a parity to a safety game and computation of the set of winning positions in the resulting
game.

This material is extracted from paper [26]
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2.2.1 Finding permissive strategies

2.2.1.1 Definition. A strategy σ in a parity game G is permissive when it is winning and
if σ′ ⊑ σ for every winning memoryless strategy σ′.

In this section we will show that there are finite memory permissive strategies. It can
be shown that there cannot be a memory size that is sufficient for a permissive strategy in
every game. Still we can hope to have one uniform memory for all the games of fixed size.
There is a similar situation in the case of games with Muller’s conditions [172, 184, 53].
There, the size of memory also cannot in general be bounded, but there is a finite memory
sufficient for all games with conditions over some fixed set of elements.

Remark. One can define M -permissive strategies, which would be the strategies subsum-
ing all strategies with memory of size M . The approach presented here extends to this
setting, but we have chosen not to consider such strategies due to a substantial notational
overhead.

For the rest of this section let us fix a set I = {0, . . . , d + 1} of priorities and a
number np for each odd priority p ∈ I. For convenience let us assume that d is odd. Let
~n = (n1n3 . . . nd). This vector will be used to bound the size of considered games.

2.2.1.2 Definition. A parity game is ~n bounded if its set of priorities is included in
{0, . . . , d+ 1} and there are at most np vertices of priority p, for each odd p.

In this section we will show a uniform construction of permissive strategies in ~n-bounded
games. For this we define a memory set M(~n) that will be used by our strategies.

M(~n) =
∏

1≤p≤d, p odd

{0, . . . , np}

An element ~m ∈ M(~n) is a tuple of numbers (m1,m3, . . . ,md) with 0 ≤ mi ≤ ni. We can
consider such a tuple as a counter representing the number

∑

i=1,3,...,d

mi


 ∏

j=i+2,i+4,...,d

(nj + 1)




. So the most significant digit is the first one and each position p is in base np. For example,
in the simple case when np = 1 for every p, we get a binary encoding of numbers up to
2(d+1)/2 − 1.

The plan for finding a permissive strategy is the following. First, we will take M⊤(~n)
which is an extension of M(~n) with an element ⊤ standing for overflow. Then, we will
define a uniform memory update function δu : M⊤(~n) × I → M⊤(~n). We call it uniform
because it does not depend on vertices of a particular game but only on the priorities (and
these are the same for all the games in question). Memory M⊤(~n) will allow to reduce a
game G to a safety game G⊗. The biggest strategy in this game will in turn be used to get
a permissive strategy in G.

To define the memory update function we need to define two kinds of auxiliary functions
on memories: ~m|p and incp(~m) for every p ∈ I. The first is just resetting to 0 all the
positions bigger than p:

(m1,m3, . . . ,md)|p = (m1, . . . ,mp, 0, . . . , 0)
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This operation is also defined for even p in an obvious way.
The other operation is like adding 1 to position p when considering ~m as a counter; if

the value on this position is already np then we try recursively to add 1 to the position
p− 2:

incp((m1, . . . ,md)) =





(m1, . . . ,mp + 1, . . . ,md) if mp < np
incp−2((m1, . . . ,md)) if mp = np and p ≥ 3
⊤ otherwise

The intuition for the last case of the above definition is that if the value of the counter on
first p positions is n1n2 . . . np then adding 1 is impossible and the value is ⊤ which denotes
an overflow.

Now, we can define a generic update function δu :M⊤(~n)× I →M⊤(~n),

δu(m, p) =

{
m|p for p even
incp(m) for p odd

Of course we also have δu(⊤, p) = ⊤ which means that there is no possibility to recover
from the overflow. Observe that in the above we have stopped to write vectors over m. We
will do it often for clarity.

Using the memory M⊤(~n) and the function δu we can reduce any ~n bounded game G
to a safety game. Let us take an ~n-bounded game G = 〈V, VP , VE , T, I,Ω〉. Define a safety
game G⊗ = 〈V ⊗, V ⊗

P , V
⊗
E , T

⊗, {0, 1},Ω⊗〉, where:
– V ⊗

i = VP ×M⊤(~n), for i = 0, 1;
– T⊗((v,m), (v′,m′)) if T (v, v′) and m′ = δu(m,Ω(v));
– Ω⊗((v,m)) = 0 if m 6= ⊤ and Ω⊗((v,⊤)) = 1.

So the player P wins in G⊗ from a position (v,m) if he has a strategy to avoid vertices with
⊤ in the second component. By Lemma 2.1.4.2, in such a game there is always a maximal
memoryless winning strategy.

A memoryless strategy σ⊗ in G⊗ gives a strategy σ with memory M(~n) in G. The
strategy is defined by σ(m, v) = σ⊗((v,m)), the initial memory element is m0 = (0, . . . , 0)
and the memory update function is δu(m, v) = δu(m,Ω(v)).

2.2.1.3 Lemma. For every ~n bounded game G. If σ⊗ is a memoryless strategy winning
from (v,m) in G⊗ then σ is a winning strategy from v with initial memory m.

Proof. The main observation is that if we have an infinite play (v1,m1)(v2,m2) . . . and ⊤
does not appear in the sequence, then the sequence v1v2 . . . satisfies the parity condition.
Suppose the contrary; then some odd priority p would be the smallest one appearing
infinitely often in v1v2 . . . But then, by the definition of δu function, we will get ⊤ after
meeting (n1 ·n3 · · ·np+1) times a vertex of priority p and not meeting any vertex of smaller
priority in between.

To see that σ is winning from v with initial memory m it is enough to note that for
every play vv1v2 . . . from v respecting σ there is a sequence of memories mm1m2 . . . such
that (v,m)(v1,m1)(v2,m2) . . . is a play from (v,m) respecting σ⊗.

�

There is also a construction in the opposite direction. A memoryless strategy σ in G
defines a memoryless strategy σ⊗ in G⊗ by:

σ⊗(v,m) = {(v′, δu(m,Ω(v))) : v
′ ∈ σ(v)}
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2.2.1.4 Lemma. For every ~n bounded game G and every memoryless strategy σ for the
player P . If σ is a winning strategy from v then σ⊗ is winning from (v, (0, . . . , 0)) in G⊗.

Proof. Suppose that σ⊗ is not winning from (v,m0) where ~m0 = (0, . . . , 0). Then there is a
finite path (v, ~m0)(v1, ~m1)(v2, ~m2) . . . (vk+1, ~mk+1) such that ~mk+1 = ⊤. This can happen
only because ~mk = (n1, n3, . . . , nq, . . .) and Ω(vk) = q, i.e., the counter ~mk+1 overflows.

Let i be the smallest integer such that mi,p = np, where p = Ω(vi) and ~mi =
(mi,1,mi,3, . . .). So we take the first vertex where the counter reaches the maximal value on
the position corresponding to the priority of the vertex. Unlike in the paragraph above we
do not require that all smaller positions have maximal values. So p may be different from
q. Take the largest j < i s.t. Ω(vj) is both even and less than p (or take j = −1 if there
is no such vertex). By definition of δu function we have mj+1,p = 0. By the choice of i, in
all memories up to i no position reaches its maximal allowed value. So by the definition
of δu function, the value on position p can increase only when we see a vertex of priority
p. Hence, there must exist np + 1 occurrences of vertices of priority p between vj and vi.
As the game G is ~n bounded, some vertex must occur twice. This is a contradiction with
the fact that vv1v2 . . . vk is a play respecting σ. On such a play there cannot be a loop
through a vertex of odd priority p without a vertex of smaller priority on this loop since σ
is winning.

�

2.2.1.5 Theorem (Bernet, J. and Walukiewicz [26]). For every ~n = (n1, n3, . . . , nd)
and for every ~n-bounded game G there is a permissive strategy on G using memory M⊤(~n).

Proof. Let σ⊗ be the maximal winning strategy in the game G⊗. This defines in G a strategy
σ with memory M⊤(~n). The strategy is winning by Lemma 2.2.1.4. We want to show that
it is a permissive strategy. For this we take some memoryless winning strategy σ1 in G and
show that Beh(G, v0, σ1) ⊆ Beh(G, v0, σ) for every v0.

Take v0v1 . . . ∈ Beh(G, v, σ1). By Lemma 2.2.1.4, there are memories such that

(v0,m0)(v1,m1) . . . ∈ Beh(G⊗, (v,m), σ1
⊗)

Next, by the maximality of σ⊗, we have Beh(G⊗, (v,m), σ1
⊗) ⊆ Beh(G⊗, (v,m), σ⊗) for

every (v,m). So, (v0,m0)(v1,m1) . . . ∈ Beh(G⊗, (v0,m0), σ
⊗). Finally, by the definition of

σ we have that v1v2 . . . ∈ Beh(G, v, σ)
�

Remark. The memory as defined above is essentially nothing more than a deterministic
automaton accepting sequences satisfying a parity condition. The important point is that
this automaton is a safety automaton. It is well known that deterministic safety automata
cannot recognize the language of all the sequences satisfying a parity condition [171]. We
overcome this problem by limiting the number of odd priorities that can appear in the
sequence without a smaller even priority in between. Other solutions are also possible with
other memories and other permissive strategies.

2.2.2 Small representations of permissive strategies

In the previous section we have seen that for every game G there is a permissive strategy
that can be represented as the biggest strategy in G⊗. The size of G⊗ is (|G| ·n1 ·n3 · · ·nd),
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hence it is exponential in the size of G. So at first glance it may seem that we need this
much space to describe a permissive strategy. Fortunately it is not the case. Here we will
show that a permissive strategy can be determined by a function Max : V →M(~n), i.e., a
function assigning one memory value to each node.

The key observation is that the lexicographic ordering on memories is also a “permis-
siveness” ordering. We say that ~m′ = (m′

1,m
′
3, . . . ,m

′
d) is lexicographically smaller than

~m = (m1,m3, . . . ,md), denoted ~m′ <L ~m, if there is a p such that m′
p 6= mp, and m′

p < mp

for the smallest such p. We extend this ordering by two new elements ⊥ and ⊤ with
⊥ <L ~m <L ⊤ for every ~m ∈ M(~n). These two elements signify undefined and overflow
respectively. Element ⊤ was already introduced in the previous section.

2.2.2.1 Lemma. For every game G⊗: if the player P has a winning strategy from a posi-
tion (v, ~m) then he has a winning strategy from position (v, ~m′) for every ~m′ <L ~m.

Proof. For the proof it is enough to observe that δu function is monotonic, i.e., for every
priority p: δu(~m

′, p) ≤L δu(~m, p) if ~m′ ≤L ~m. In particular for overflow it means that: if
δu(~m

′, p) = ⊤ and ~m′ <L ~m then δu(~m, p) = ⊤.

�

For each vertex v, let Max (v) be the <L-supremum of all the memories m such that
(v,m) is winning for the player P in G⊗. So, if there is no such memory then Max (v) = ⊥.
By Lemma 2.2.1.4, Max (v) = ⊥ if and only if v is not winning for the player P in G. By
definition, Max (v) can never be ⊤.

We can use Max (v) to get a permissive strategy. It is defined by telling for every v
for which memories m the position (v,m) is winning in G⊗. As Max (v) gives the biggest
such m, we know that (v,m) is winning for exactly those m that are lexicographically
not bigger than Max (v). So in a vertex v with memory m ≤L Max (v) the strategy is
σ(m, v) = {v′ : δu(m,Ω(v)) ≤L Max (v′)}.

2.2.3 Algorithmic issues

Here we will describe how to use the reduction from G to G⊗ in algorithms for solving
parity games, i.e., algorithms that find the set of vertices from which the player P has a
winning strategy.

A simple algorithm for solving a ~n bounded game G is to construct G⊗ and solve this
safety game. This can be done by any alternating reachability algorithm. The size of G⊗ is
(|G| · n1 · n3 · · ·nd), where np is the number of vertices of priority p in G. Hence, the time
complexity of this algorithm is as good as the best known upper bounds for solving parity
games. The weakness of this approach, however, is that a memory needed for alternating
reachability algorithm is proportional to the size of the game, and hence exponential in
the number of priorities.

Yet, a better approach is available. The idea is to calculate Max function in a bottom-
up way. Before presenting the algorithm we need to define a function down. For a memory
m and a priority p, we put

down(m, p) = max{m′ : δu(m
′, p) ≤ m}

Hence, the value of down(m, p) can be ⊥ if m = (0, . . . , 0). It is easy to check that
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down(m, p) can be defined in a similar way to δu(m, p):

down(m, p) =

{
m|p if p even
decp(m) if p odd

where

(m1, . . . ,mp)|
p = (m1, . . . ,mp, np+2, . . . , nd)

decp(m1, . . . ,md) =





(m1, . . . ,mp − 1, . . . ,md) if md > 0
decp−2(m1, . . . ,md) if mp = 0 and p ≥ 3
⊥ otherwise

The algorithm calculating function Max will work with the auxiliary assignment F : V →
(M(~n) ∪ {⊥}). Initially we put F (v) = ~n for each v; recall that ~n = (n1, n3, . . . , nd).
Afterwards, we start a loop were we find a vertex v such that

F (v) >L down(m′,Ω(v))

where

m′ =

{
max{F (v′) : v′ successor of v} if v ∈ VP
min{F (v′) : v′ successor of v} if v ∈ VE

For such v we set F (v) = down(m′,Ω(v)) and repeat the loop. We stop when we cannot
find a vertex with the above property. We show below that at the end F (v) = Max (v) for
all vertices v.

Remark. The algorithm is just a computation of the greatest fixpoint of some operator
on V → (M(~n) ∪ {⊥}). The lemmas below make it more explicit.

2.2.3.1 Lemma. If F : V → (M(~n) ∪ {⊥}) is such that the value of no vertex can be
decreased then F (v) ≤L Max (v) for all vertices v.

Proof. It is enough to show that for every v with F (v) 6= ⊥ the position (v, F (v)) in G⊗ is
winning for the player P . The observation we need is that if F is as in the assumption of
the lemma then for every v s.t. F (v) 6= ⊥ we have:

– if v ∈ VP then there must be a successor v′ with δu(F (v),Ω(v)) ≤L F (v
′);

– if v ∈ VE then for all successors v′ of v we have δu(F (v),Ω(v)) ≤L F (v
′).

Now the strategy for the player P is to choose in every v ∈ VP a successor v′ such that
δu(F (v),Ω(v)) ≤L F (v′). By the above this is possible for every vertex with F (v) 6= ⊥.
To see that this strategy is winning take a play (v1,m1)(v2,m2) . . . respecting the strategy
where m1 = F (v1) 6= ⊥. Using the property above we get by induction on i that mi ≤L

F (vi). Hence, mi 6= ⊤ for every i, which means that the play is winning.
�

2.2.3.2 Lemma. After each iteration of the above loop we have F (v) ≥L Max (v) for all
vertices v.

Proof. The proof is by induction on the number of iterations. The statement is true at the
beginning when F (v) = ~n for every v. For the induction step we assume that F (v) ≥L

Max (v) holds for every v and we choose one v for which F (v) can be decreased.
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Suppose that we have chosen v ∈ VP and it is to be decreased. We need to show that
the new value of F (v) is still not smaller than Max (v). If Max (v) = ⊥ then we are done.
Otherwise, as Max (v) is a memory that still guarantees a win for the player P , we know
that v has a successor v′ with δu(Max (v),Ω(v)) ≤L Max (v′). Applying down function to
both sides we get:

Max (v) ≤L down(δu(Max (v),Ω(v)),Ω(v)) ≤L down(Max (v′),Ω(v))

The first inequality follows by the property: m ≤L down(δu(m, p), p) for every m ∈M(~n).
The second inequality follows from the monotonicity of down. The new value of F (v) is
not smaller than down(F (v′),Ω(v)). So we are done as

down(F (v′),Ω(v)) ≥L down(Max (v′),Ω(v)) ≥L Max (v)

The case for v ∈ VE is similar.
�

2.2.3.3 Corollary. At the end of the algorithm F (v) = Max (v).

Let us calculate the complexity of the algorithm. It cannot do more than than (|G| ·
n1 ·n3 · · ·nd) steps. This is because at each step the F value of some node is decreased and
the value of a node cannot be decreased more than n1 ·n3 · · ·nd times. The algorithm uses
linear memory, as it needs to store just the current values of F assignment. This matches
the best known upper bounds for solving parity games [108]. The known upper bound
presently known for the strategy improvement algorithm [179] is actually worse: (n/d)d

instead of (n/d)pd/2q.

2.2.4 Related open problems

Learning from the experience of discrete control synthesis theory, it seems to be a
good idea to compare strategies by comparing the sets of behaviors they allow. As we
presented above, there are parity games where there is no winning strategy that allows all
the behaviors of all possible winning strategies in the game. Given this, we propose a more
lax notion of permissive strategy which is a strategy that allows all the behaviors of all
memoryless strategies. We show that a permissive strategy exists for every game and that
the algorithm finding it has not worse complexity than currently known algorithms for a
simpler problem of deciding if there is any winning strategy from a given vertex. Actually,
the algorithm we obtain is exactly the signature improvement algorithm presented in [108].
Hence, we show that this algorithm computes more than just a set of winning vertices (and
some winning strategy).

There are at least two interesting open problems. The first concerns the size of per-
missive strategy. We have shown that for an ~n = (n1, . . . , nd) bounded game there is a
strategy with memory of size n1 · n2 · · ·nd. We don’t known whether there can be a mem-
ory of smaller size. Actually if there were a memory of size polynomial in n1+n2+ · · ·+nd
then it would give a PTIME algorithm for solving parity games. Our reduction to safety
games shows that the question about minimal memory is equivalent to the question about
automata on infinite words. The goal is to find a minimal automaton accepting all paths
that are admitted by some memoryless strategy in some ~n-bounded game.
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The other problem also concerns complexity. We have shown that a permissive strategy
in a game is defined by a function Max : V → (M(~n)∪⊥). This function is unique for a given
game. Hence, if we were able to check in PTIME that a given function F : V → (M(~n)∪⊥)
is exactly the Max function then we would show that solving parity games is in UP∩co-UP.
This would be interesting as the known arguments for UP∩co-UP bound are indirect and
go through discounted payoff games [107, 185].

2.3 Reasoning with games

Games are used in the following chapters to give semantics to automata. It follows that
many proofs require construction of winning strategies in some games under the hypothesis
that winning strategies exist in other games. In this section, we develop several tools that
help us doing so in a more uniform way. In other words, we aim at defining, within game
theory, a general vocabulary and proof techniques that can be used later when games are
used as a semantical tool in automata (and fixed point) theory.

More specifically, in this section, we study several notions of simulation relation be-
tween games that somehow extend in a back and forth way the standard notion of graph
simulations. They give sufficient condition to ensure the existence of winning strategies in
the simulated games from existence of winning strategies in the simulating games.

The simplest definition, called asynchronous simulation, extends a similar notion de-
fined in [31, 105] to infinite plays. Such an extension have also been considered in [159].

Later in this section, we also define a notion of synchronous simulation; being more sim-
ple to understand although weaker in its capacity to relate games, it is the most commonly
used proof techniques in the remainder of the text.

Last, we also define a most general notion called generalized simulation. It is strictly
more powerful than asynchronous simulation.

2.3.1 Asynchronous game simulations

Asynchronous game simulations are defined most conveniently by means of winning
strategies in what we called a simulation game product.

2.3.1.1 Definition (Simulation product). Given two games

G1 = 〈V G1
P , V G1

E , T G1
P , T G1

E ,AccG1〉 and G2 = 〈V G2
P , V G2

E , T G2
P , T G2

E ,AccG2〉

the simulation product G1 E⇋
P G2 is defined to be the game

G1 E⇋
P G2 = 〈VP , VE , TP , TE ,Acc〉

with set of P -positions V G
P = V G1

E ×V G2
P , set of E-positions V G

E = (V G1
P ×V G2

P )∪(V G1
E ×V G2

E ),
sets of moves defined as follows:

1. TP is the set of all pairs ((u1, u2), (v1, v2)) ∈ VP × VE such that either:

(a) (E,P ) → (P, P ) moves: (u1, v1) ∈ T G1
E and u2 = v2,

(b) or (E,P ) → (E,E) moves: u1 = v1 and (u2, v2) ∈ T G2
P ,

2. TE is the set of all pairs ((u1, u2), (v1, v2)) ∈ VE × VP such that either:
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(a) (P, P ) → (E,P ) moves: (u1, v1) ∈ T G1
P and u2 = v2,

(b) or (E,E) → (E,P ) moves: u1 = v1 and (u2, v2) ∈ T G2
E ,

and winning condition Acc as the set of all infinite words p ∈ V G
1 such that, given p1 =

view(π1(p)) and p2 = view(π2(p)) if p1 is winning for P then p2 is winning for P .
An asynchronous game simulation from the game G1 in position v1 to the game G2

in position v2 is a winning strategy in game G1 E⇋
P G2 from position (v1, v2). We write

G1, v1 E⇋
P G2, v2 when there is such a game simulation.

2.3.1.2 Lemma (Soundness). If G1, v1 E⇋
P G2, v2 and if v1 is winning for player P in

the game G1 (resp. v2 is winning for the player E in G2) then v2 is winning for the player
P in the game G2 (resp. v1 is winning for the player E in the game G1).

Proof. Assume G1, v1 E⇋
P G2, v2. By duality and game determinacy, it is sufficient to con-

sider only the case when v1 is winning for the player P in G1.
Let G1 E⇋

P G2 = 〈VP , VE , TP , TE ,Acc〉 be the simulation game product, let

ϕ : V ∗.VP → VE

with V standing for VP ∪ VE , be a (deterministic) strategy for the player P in G1 E⇋
P G2

winning from position (v1, v2).
Let σ1 be a (deterministic) winning strategy for the player in the game G1 from posi-

tion v1.

For every (deterministic) counter strategy τ2 for the player E in the game G2 we define
counter strategy σ1⊗τ2 for the player E in the game G1 E⇋

P G2 as follows: for every p ∈ V ∗

and every (u1, u2) ∈ VE :

1. (P, P ) → (E,P ) move:
if (u1, u2) ∈ V G1

P × V G2
P then σ1 ⊗ τ2(p.(u1, u2)) = (σ1(view(π1(p).u1)), u2)

2. (E,E) → (E,P ) move:
if (u1, u2) ∈ V G1

E × V G2
E then σ1 ⊗ τ2(p.(u1, u2)) = (u1, τ2(view(π2(p).u2)))

Observe that strategy σ1 ⊗ τ2 is deterministic.

We define then a (deterministic) strategy with (possibly infinite) memory σ2 for the
player P in the game G2 as follows. Memory M is defined to be P(V +), i.e. finite plays in
game G1 E⇋

P G2. Update function δu :M × V G2 →M and choice function c :M × V G2
P →

V G2
E are defined below, by induction over the length of plays the counter strategy allows,

in such a way that the following invariant is satisfied:

(I) for every counter strategy τ2 in the game G2, for every finite plays p2 ∈
σ2 ∗ τ2(v2), given p = δ∗u(p2) (the memory value after playing p2 following
strategy σ2), p ∈ ϕ ∗ (σ1 ⊗ τ2) and p2 = view(π2(p)).

This is done as follows. For initial memory m0, we put m0 = (v1, v2). Obviously,
invariant (I) is satisfied with p2 = v2.

Assume that, for a given counter strategy τ2 in the game G2, we have reached a play of
the form p2.u2 ∈ σ2 ∗ τ2(v2) with p2 ∈ (V G2)∗ and u2 ∈ V G2 , such that (I) is satisfied, i.e.
given δ∗u(p2.u2) of the form p.(u1, u2) with p ∈ V ∗ and (u1, u2) ∈ V , we have p.(u1, u2) ∈
ϕ∗(σ1⊗τ2)(v1, v2) and p2.u2 = view(π2(p.(u1, u2))). Now, two cases have to be considered.
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The first case, when u2 ∈ V G2
E , is easy. By definition of G1 E⇋

P G2, this implies that

u1 ∈ V G1
E (henceforth (u1, u2) ∈ VE . If τ2(p2.u2) is undefined, the induction is over (the

player E loses). Otherwise, given u′2 = τ2(p2.u2), by definition σ1⊗τ2(p.(u1, u2)) = (u1, u
′
2)

and we put δu(p.(u1, u2), u
′
2) = p.(u1, u2).(u1, u

′
2). Invariant I is still satisfied.

The remaining case, when u2 ∈ V G2
P , is more technical and detailed below.

Let p′ be a maximal play such that p.(u1, u2).p
′ ∈ ϕ ∗ (σ1 ⊗ τ2)(v1, v2) and such that

view(π2(p
′)) = u2, i.e. a maximal among the plays such that, from position (u1, u2), while

playing p′, no move is made on the G2 side of the game G1 E⇋
P G2.

We first claim that p′ is finite. Otherwise p.(u1, u2).p
′ is infinite and thus maximal in

ϕ ∗ (σ1 ⊗ τ2)(v1, v2). It follows that p.(u1, u2).p
′ is winning for the player P (since ϕ is

winning from position (v1, v2)) which contradicts the fact that view(π2(p.(u1, u2).p
′)) is

finite and thus loosing for the player P (since u1 ∈ V G1
P ) while view(π1(p.(u1, u2).p

′)) is
infinite and thus winning for the player P (since σ1 is winning from position v1).

We claim next that p′ ends in a position in VP . Otherwise, it ends in a position in
V G1
P ×V G2

P while σ1(view(π1(p.(u1, u2).p
′)) is defined (since σ1 is winning) henceforth σ1⊗

τ2(p.(u, v).p
′) is also defined which contradict the maximality hypothesis.

It follows that ϕ(p.(u1, u2).p
′) is defined (since ϕ is winning) and, moreover, given

u′2 = π2(ϕ(p.(u1, u2).p
′) we claim that (u2, u

′
2) ∈ T G1

P , i.e. ϕ defines a move in the G2 side
of the simulation game. In fact, if this is not the case, it means that ϕ defines a move in
the G1 side of the simulation game which, again, contradicts the maximality hypothesis.
Now, we put c(p.(u1, u2), u2) = u′2 and δu(p.(u1, u2), u

′
2) = p.(u1, u2).p

′.ϕ(p.(u1, u2).p
′). By

construction, this is a well defined move, and invariant I is still satisfied.

It remains to prove that σ2 as defined by m0, δu and c above is winning for the player
P from position v2. Let τ2 be a counter strategy and let p2 be a maximal play σ2 ∗ τ2(v2).

When p2 is finite, we claim that p2 ends in V G2
E . Otherwise, p2 ends in V G2

P with σ2(p2)
undefined. Since both σ1 and ϕ are winning for the player P this is impossible as shown
by the arguments above defining σ2 in this case.

When p2 is infinite, the invariant properties (I) tells us that there is a unique infinite play
p ∈ ϕ∗(σ1⊗τ2)(v1, v2) such that, for each finite prefix p′2 of p2, given p′ = view(π2(δu(p

′
2))),

p′ is a prefix of p with p2 = view(π2(p)). This tells us that p2 = view(π2(p)). Now, given
p1 = view(π1(p)) we know that both p1 is winning (by definition of strategy σ1 ⊗ τ2 with
σ1 winning) and p is winning (since ϕ is winning) henceforth, by definition of the winning
condition in G1 E⇋

P G2, p2 is also winning.

�

Remark. In the construction of strategy σ2 above, (some subgame of) the game G1 acts
like a automaton like device that keep all information needed for the player P to define/use
and win with strategy σ2. This implies, in particular, that even if σ1 is a memoryless
strategy, strategy σ2 may still require some memory.

Observe also that σ2 is not uniquely (nor even canonically) defined. In fact, in presence
of a simulation relation from G1 to G2, there are many ways to simulate plays in G2 by
means of plays in G1.
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2.3.2 Synchronous game morphisms and simulations

In this section, somehow, we extend the notion of graph morphisms to games. Doing
so, we recover a restricted notion of asynchronous game simulation called synchronous
simulation [5].

2.3.2.1 Definition (Synchronous game morphisms). Given two games

G1 = 〈V G1
P , V G1

E , T G1
P , T G1

E ,AccG1〉

and
G2 = 〈V G2

P , V G2
E , T G2

P , T G2
E ,AccG2〉

a P -morphism from G1 to G2 is a relation R ⊆ V G1 × V G2 such that:

1. R(V G1
P ) ⊆ V G2

P ,

2. R(V G1
E ) ⊆ V G2

E ,

3. T G2
E ◦R ⊆ R−1◦T G1

E , i.e. for every (u1, u2) ∈ R∩(V G1
E ×V G2

E ), for every v2 ∈ V G2
P such

that (u2, v2) ∈ T G2
E there exists v1 ∈ V G1

P such that (u1, v1) ∈ T G1
E and (v1, v2) ∈ R,

4. T G1
P ◦R−1 ⊆ R◦T G2

P , i.e. for every (u1, u2) ∈ R∩(V G1
P ×V G2

P ), for every v1 ∈ V G2
E such

that (u1, v1) ∈ T G1
P there exists v2 ∈ V G2 such that (u2, v2) ∈ T G2

P and (v1, v2) ∈ R,

5. R(AccG1) ⊆ AccG2 .

A game E-morphism from G1 to G2 is a P -morphism from G1 to G2.
A game PE-morphism is a P -morphism that is also an E-morphism.

Remark. Observe that a PE-morphism is a bisimulation relation.
Observe also that on E-deterministic games (resp. on P -deterministic games) P -morphisms

(resp. E-morphisms) are just standard graph simulations between the underlying game
graphs.

2.3.2.2 Lemma. If there is a P -morphism (resp. a E-morphism) R : G1 → G2 then, for
every position (v1, v2) ∈ R, G2, v2 E⇋

P G1, v1 (resp. G1, v1 E⇋
P G2, v2). In particular, if R

is a PE-morphism, v1 is winning for the player P in game G1 if and only if v2 is winning
for the player P in game G2.

Proof. By symmetry, it is sufficient to prove the P -morphism case. Let R : G1 → G2 be
a P -morphism. We define strategy ϕ in G1 E⇋

P G2 as follows. The initial positions we
consider are in R. Strategy ϕ is then defined almost positional in the sense that it only
depends on the last two positions reached in a finite play ending in a position P .

More precisely, for every position u = (u1, u2) ∈ R, we define ϕ as follows:

1. if (u1, u2) ∈ V G1
P × V G2

P , for every u′1 ∈ T G1
P (u1), we have (u2, u

′
1) ∈ T G1

P ◦ R−1 hence

(u2, u
′
1) ∈ R◦T G2

P ; in other words, there exists u′2 ∈ T G2
P (u2) such that (u′1, u

′
2) ∈ R, so,

after the (P, P ) → (E,P ) move (u1, u2) → (u′1, u2), we can define ϕ((u1, u2).(u
′
1, u2))

to be (u′1, u
′
2) and this is a well-defined (E,P ) → (E,E) move,

2. if (u1, u2) ∈ V G1
E × V G2

E , for every u′2 ∈ T G2
P (u2), we have (u1, u

′
2) ∈ T G2

P ◦ R

hence (u1, u
′
2) ∈ R−1 ◦ T G1

P ; in other words, there exists u′1 ∈ T G1
P (u1) such that

(u′1, u
′
2) ∈ R, so, after the (E,E) → (E,P ) move (u1, u2) → (u1, u

′
2), we can define

ϕ((u1, u2).(u1, u
′
2)) to be (u′1, u

′
2) and this is a well-defined (E,P ) → (P, P ) move.
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One can easily check that ϕ defined in such a way is a winning strategy in G1 E⇋
P G2. In

fact, from a position (v1, v2) ∈ R, by construction, a maximal finite play can only ends in
player E position and thus is winning for the player P . Otherwise, p is infinite, and, by
construction, given p1 = view(π1(p)) and p2 = view(π2(p)) we have p1 ∈ R(p2) hence if
p1 ∈ Acc1, p2 ∈ R(Acc1) hence p1 ∈ Acc2 hence p is winning for the player P .

�

The above construction suggest the following definition:

2.3.2.3 Definition (Synchr. game simulations). In the simulation game G1 E⇋
P G2

a game simulation ϕ is a synchronous game simulation when every (P, P ) → (E,P ) move
(resp. every (E,E) → (E,P ) move) made by the player E is necessarily followed by a
(E,P ) → (E,E) move (resp. a (E,P ) → (P, P ) move made by the player P .

We write G1, v1 P⇋
E
s G2, v2 the existence of a synchronous game simulation from posi-

tion (v1, v2).

In other words, a synchronous game simulation from the game G1 to the game G2, is
a simulation defined by the player P in the game G1 E⇋

P G2 where the player P always
answer to a player E move in a one of the component game by a move in the other
component game.

Notions of P -morphism and E-morphism capture synchronous game simulation in the
following sense.

2.3.2.4 Theorem. There is a synchronous game simulation

G1, v1 P⇋
E
s G2, v2

if and only if there is a game G and a position v ∈ G such that there is a P -morphism ϕP

from G1, v1 to G, v and a E-morphism ϕE from G2, v2 to G, v.

Proof. Take for the game G the subgame of G1 E⇋
P G2 induces by the synchronous simu-

lation relation relating v1 to v2. Then morphisms are defined by projections.

�

A simple application of PE-morphism is to solve regular games by means of a reduction,
described below, to parity games.

Let G = 〈VP , VE , T,Acc be a finite regular game. Since Acc is ω-regular, there exists a
finite deterministic parity automaton A = 〈Q, V G , q0, δ,Ω〉 such that L(A) = Acc.

Let define parity game A◦ G = 〈V ′
P , V

′
E , T

′,Ω′〉 by taking V ′
P = Q× VP , V ′

E = Q× VE ,
T ′ = {((q, u), (p, v)) ∈ (V ′

P ×V ′
E)∪(V ′

E×V ′
P ) : (u, v) ∈ T, p = δ(q, u)}, and Ω′(q, v) = Ω(q).

2.3.2.5 Theorem (Regular to parity cond.). A position v is winning for the player P
in the game G if and only if the position (q0, v) is winning for the player P in the game
A ◦ G.

Proof. Let R ⊆ V A◦G × V G defined as the set of pair {((q, v), v) : q ∈ Q, v ∈ V G}. One can
easily check that this is a PE-morphism hence Lemma 2.3.2.2 applies.

�
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2.3.3 Generalized game simulations

In this section, we want to generalize the notion of simulation so that it may relate
more positions in games. Though definable in the most general case of arbitrary games, this
notion is more easily definable on parity games where the possible restriction to positional
strategies considerably simplifies definitions and proofs.

2.3.3.1 Definition (Delayed game). Given a parity game G = 〈VP , VE , TP , TE ,Acc〉
we define the E-delayed game E(G) = 〈V ′

P , V
′
E , T

′
P , T

′
E ,Acc

′〉 as follows:

1. V ′
P = P(VE .VP ∪ VP .VE)/V

′
E ,

2. V ′
E = P(VP .VE),

3. T ′
P is the set of moves of the form (U, V ) ∈ V ′

P × V ′
E such that there is a mapping

c : U ∩ VE .VP → V such that, for every u1.v1 ∈ U ∩ VE .VP , (v1, c(u1.v1)) ∈ TP and
V = {v1.c(u1.v1) ∈ VP .VE : u1.v1 ∈ U ∩ VE .VP } ∪ (U ∩ VP .VE),

4. T ′
E is the of moves of the form (U, V ) ∈ V ′

E ×V ′
P such that U = U1∪U2, V = V1∪U2

with V1 ⊆ {v1.u2 ∈ VE .VP : u1.v1 ∈ U1, (v1, u2) ∈ TE},

5. and Acc′ is the the set of all infinite paths of the form p′ = U1. · · · .Un. . . . ∈ (V E(G))ω

such that, given the set tr(p′) of traces of p′ in G defined to be the set of (finite or
infinite) words of the form view(u1. · · · .un. · · ·) such that there is some u0 ∈ V G such
that for every i such that 0 ≤ i < |p′|, ui.ui+1 ∈ Ui+1, for every p ∈ tr(p′), either p
is finite and ends in a player E position, or p is infinite with p ∈ Acc.

The P -delayed game P (G) is defined by duality by taking P (G) = E(G).

2.3.3.2 Lemma. A position v is winning for the player P in a parity game G if and only
if for any/all u ∈ V G the position {u.v} is winning for the player P in the game E(G)
(equivalently the game D(G)).

Proof. By duality, we can only prove the result for E-delayed game.
First, one can check that relation R defined to be the set of pairs {({v′.v}, v) ∈ V E(G)×

V G : v′, v ∈ V G} is a P -morphism from the game E(G) to the game G. It follows that if
{v} is winning for the player P in the game E(G) then it is also winning for the player P
from position v.

In fact, from a position {v′.v} ∈ V
E(G)
P with v ∈ V G

P , the player P can only move in

the game E(G) to position of the form {v.u} ∈ V
E(G)
E with (v, u) ∈ TP . Therefore, from

position v ∈ V G
P , this move can be simulated in the game G by moving to position u. And,

similarly, from position v ∈ V G
E player E can only move in the game G to position of the

form u ∈ V G
E with (v, u) ∈ T G

E . Therefore, from position {v′.v} ∈ V
E(G)
E , this move can be

simulated in the game E(G) by moving to position {v.u}.

Conversely, assume there is a winning strategy σ for the player P from vertex v in
the game G. Since G is memoryless, we may assume that σ is positional. We define then
positional strategy σ′ in the game E(G) for the player P as follows: for every U ∈ V ′

P ,
given U1 = U ∩ VE .VP , we define σ′(U) to be the set V = {v1.σ(v1) ∈ VP .VE : u1.v1 ∈
U ∩ VE .VP } ∪ (U ∩ VP .VE).

We claim that σ′ is winning from position {u.v} for any u ∈ V G . In fact, let τ ′ be a
counter strategy for the player E.

We first show, by induction on the length n of p′ ∈ σ′ ∗ τ ′({u.v}) that
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(I) for every finite play p′ ∈ σ′ ∗ τ ′({u.v}, there is a (non deterministic) counter
strategy τp′ in the game G such that, for every p ∈ tr(p′):

– p ∈ σ ∗ τp′(v),
– if p′ is maximal in σ′ ∗ τ ′({u.v}) then p ends in a player E position,
– for every prefix p′1 of p′, for every p1 ∈ tr(p′1), τp′1(p1) ⊆ τp′(p1).

This is true for n = 1 since then p′ = U1 = {u.v} and p = v by taking τp′ equal to ∅

everywhere. If p′ is maximal, this means that U1 ∈ V
E(G)
E hence v ∈ V G

E .

Let then p′ = U1. · · · .Un ∈ σ′ ∗ τ ′({u.v}) and τp′ satisfying the induction hypothesis.

If there is a p ∈ tr(p′) that ends in a player P position, it means that, for every p
that ends in a player P position un, we know, by induction hypothesis, that p ∈ σ ∗ τp′(v),
hence σ(un) is defined since it is winning. It follows, by definition of E(G), that σ′(p′) =
Un+1 = σ′(Un). The induction hypothesis is satisfied with p′1 = p′.Un+1 with τp′1 = τp′ . In

fact, since Un+1 ∈ V
E(G)
P every trace p ∈ tr(p′1) ends in a player E position.

Otherwise, for every p ∈ tr(p′), play p ends in a player E position, hence Un ∈ V
E(G)
E .

By induction hypothesis, let τp′ be the counter strategy in the game G such that for every
p ∈ tr(p′), p ∈ σ∗τp′(v). If τ ′(p′) is undefined, we are done. Otherwise, let Un+1 = τ ′(p′) and
let p′1 = p′.Un+1. We define then τp′1 as follows: for every p ∈ (V G)+ we take τp′1(p) = τp′(p)
except when p ∈ tr(p′) where we take

τp′1(p) = τp′(p) ∪ {u′ ∈ V G
P : ∃v′ ∈ V G

E , p = p1.v
′, v′.u′ ∈ τ ′(p′) ∩ VE .VP }

One can check that τp′1 is well defined and satisfies the induction hypothesis. In particular,
for every p ∈ tr(p′.Un+1), either p ∈ σ ∗ τ(v) ⊆ σ1 ∗ τ(v), or p = p1.v

′.u′ with p1.v
′ ∈ tr(p′)

and v′.u′ ∈ τ ′(p′) ∩ VE .VP with (v′, u′) ∈ T G
E and thus, p ∈ σ ∗ τp′1(v).

We define then the counter strategy τ in the game G as the union of all τp′ for finite
p′ ∈ σ′∗τ ′({u.v}). It occurs that, for every maximal play p ∈ σ′∗τ ′(p′), for every p ∈ tr(p′):

1. if p is finite then, by definition of τ , p ∈ σ ∗ τp′1(v) for some finite prefix p′1 of p′ and,
thus, by construction, ends in a player E position,

2. otherwise, p is infinite and, since every finite prefix of p belongs to σ ∗ τ(v) we also
have p ∈ σ ∗ τ(v), hence p ∈ Acc since σ is winning for the player P .

It other words, strategy σ′ is winning from position {u.v} in the game E(G).
�

2.3.3.3 Corollary. In a E-delayed game E(G) (resp. in a P -delayed game P (G)) the
player P (resp. the player E) has a winning strategy from a position if and only if it has a
positional strategy.

Proof. Direct consequence of the construction above. This can also be explained by the
fact that in an E-delayed game (resp. P -delayed game) winning conditions are conjunc-
tion (resp. disjunction) of parity conditions henceforth Street conditions (resp. a Rabin
conditions).

�

2.3.3.4 Definition (Generalized simulation product). Given two games G1 and G2

the generalized simulation product G1 E⊢
P G2 is defined to be the game E(G1)E⇋

P P (G2).
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A generalized simulation from the game G1 in position v1 to the game G2 in position v2
is a winning strategy in game G1 E⊢

P G2 from position ({u1.v1}, {u1.v2}) for some positions
u1 ∈ V G1 and u2 ∈ V G2 .

We write G1, v1 E⊢
P G2, v2 when there is such a game simulation.

2.3.3.5 Lemma (Soundness). If G1, v1 E⊢
P G2, v2 and position v1 is winning for the

player P in the game G1 then position v2 is winning for player P in the game G2.

Proof. Immediate consequence of definitions, Lemma 2.3.3.2 and Lemma 2.3.1.2
�

Remark. In the remainder of the text, when building generalized simulation, we may omit
brackets on singletons, and, if there is no ambiguity, we may just keep target positions p2
in pairs of the form p1.p2.

2.4 References and notes

A lot more can be said about two player discrete games. This chapter does not intend
to cover the topic. For a more detailed presentation, one can see, in particular, Zielonka’s
paper[184], or Grädel, Thomas and Wilke tutorial volume [78].

We shall mention in particular that many algorithms have been proposed for solving
parity games [59, 131, 6, 162, 118, 108, 179, 142, 16, 30, 29, 76]. Zielonka’s presenta-
tion [184] not only provides one of the most elegant algorithm but also offers a very good
survey. Jurdzinski’s algorithm [108] is the best known algorithm. Vöge and Jurdzinski’s
proposal [179] seems better, but its theoretical complexity is unknown. It is a variant of
Jurdzinski’s algorithm [108] that is presented in section 2.2.

Simulation relations are considered not only in game, but also in the context of alter-
nating or non deterministic word or tree automata [5].

There is no doubt that extending game simulations could be made, following Gentzen
propositional sequent calculus (this is the purpose of the notion of generalized simulation re-
lation) and Kozen’s axiomatization of the mu-calculus proved complete by Walukiewicz [180].
These issues, which are open research directions, are discussed in Chapter 8.



Chapter 3

Alternating automata and fixpoint

calculus

In this chapter, we define a general notion of alternating tree automata adapted from
Muller and Schupp’s definition [136]. On arbitrary graphs, automata runs are defined in
terms of strategies in model checking games. Several operations and automata transforma-
tions or compositions are presented and semantically characterized. Last, the expressive
power of alternating automata is related with the expressive power of the mu-calculus.
Various invariance properties of the mu-calculus are obtained as corollaries.

Though this equivalence between fixed point calculus and alternating automata is
known for some time in various settings (see e.g. [139, 167, 58, 182, 27, 181]), the main
novelty here is, in the general setting of unranked and unordered tree, to give an induc-
tive proof of the equivalence between alternating automata and fixed point calculus. This
presentation extends and adapts the following publications [92, 93, 103, 94, 95]

3.1 Finite state alternating automata

In this section, we define a notion of finite state alternating automata on labeled graphs.
It generalizes Muller and Schupp’s notion of alternating automata [136, 137] on the binary
tree.

We define alternating automata and the class of graphs they recognized. The notion
of run of an alternating automaton on a graph is defined by means of strategies in some
parity game.

We explicit some simple properties of alternating automata. We give a simple equiv-
alence criteria and we prove closure under complementation, positive projection or (some
notion of) composition.

3.1.1 Alternating automata definition

3.1.1.1 Definition. A finite (parity) alternating automaton is a tuple

A = 〈Q,Σ, q0, δ,Acc〉

38
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with Q a finite set of states, Σ = P(Pred) the finite alphabet, q0 ∈ Q the initial state,
Acc ⊆ Q∞ a (regular) acceptance condition, and δ the transition specification function
that maps every state q ∈ Q to a fixed point formula δ(q) over the vocabulary Pred ∪ Q
such that states, now seen as unary predicate symbols, only occur positively in the formula
δ(q).

We say that the automaton A is a modal automaton (resp. a counting automaton) when
only modal formulas (resp. counting formulas) are used for transition specifications.

The Automaton A is also called a flat automaton when, for every state q ∈ Q, transition
specification δ(q) is a formula of the form q1, q1 ∧ q2, q1 ∨ q2, ♦kq1, �kq1, p or ¬p for some
state q1 and q2 ∈ Q or any constant predicate p ∈ Pred.

Let A be an alternating automaton and let M be a graph. For every v ∈ VM and
m : Q→ P(VM ), let 〈v,m〉M denote the P(Pred∪Q)-labeled graph obtained from graph
M just by changing root rM to be vertex v and interpreting any state q (seen as a unary
predicate) to be m(q).

3.1.1.2 Definition. The model-checking game G(A,M) of the automaton A reading graph
M is defined as follows:

– (Process positions) V
G(A,M)
P = Q× VM ,

– (Environment positions) V
G(A,M)
E = Q→ P(VM ),

– (Process moves) T
G(A,M)
P the set of all pairs ((q, v),m) ∈ V

G(A,M)
P × V

G(A,M)
E such

that 〈v,m〉M |= δ(q)

– (Environment moves) T
G(A,M)
E the set of all pairs (m, (q, v)) ∈ V

G(A,M)
E × V

G(A,M)
P

such that v ∈ m(q),
– (Initial position) rG(A,M) = (q0, r

M ),
– (Acceptance condition) AccG(A,M) the set of all infinite path w in G(A,M) such that
πQ(πVP

(w)) ∈ Acc.

Observe that, in the game G(A,M), it is only the priority of the positions of the player
P (the priority of states) that does matter on infinite plays.

3.1.1.3 Definition. We say that graph M is accepted or recognized by an automaton A
when the player P has a winning strategy in game G(A,M). The class of graphsM accepted
by A is denoted by L(A).

We say that the automaton A is equivalent to an automaton A′ (resp. equivalent to a
fixed point formula α) when L(A) = L(A′) (resp. when L(A) = {M :M |= α}).

Remark (Runs and accepting runs). With this definition of automata semantics, the
(more common) notions of runs and accepting runs of an automaton A on an input struc-
ture M can be recovered as follows:

– a run of the automaton A on structure M is a consistent strategy s for the player P
on the game G(A,M),

– an accepting run is a winning strategy.

3.1.2 Automata traces and unravelings

From every position (q, v) ∈ (Q × VM ), the player P can always choose to move to a
mapping m : Q → P(VM ) that is minimal w.r.t. inclusion. In fact, if the player P does
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so, he even increase its possibility to have a winning strategy since this just decreases the
possible answers from player E.

Considering the states that may occur during a play, this shows in particular that,
from a position (q, v), the set of states that do really matter are those which occurs in the
transition specification δ(q).

This observation leads to the definition of automata trace and automata unraveling.

3.1.2.1 Definition. A trace for an alternating automaton A is any finite or infinite se-
quence of state t = q1. · · · .qi. · · · such that, for every index i, state qi+1 occurs in transition
specification δ(qi). An infinite trace t is called accepting trace (resp. refusing trace) when
t ∈ Acc (resp. when t 6∈ Acc).

3.1.2.2 Definition. Let A = 〈Q,Σ, q0, δ,Acc〉 and A′ = 〈Q′,Σ, q′0, δ
′,Acc′〉 be two au-

tomata. We say that the automaton A is a partial unraveling of the automaton A′ when
there is a mapping f : Q→ Q′ such that:

1. f(q0) = q′0,

2. for every q ∈ Q, δ′(f(q)) is equivalent to the formula obtained from the formula δ(q)
by replacing every state q1 occurring in δ(q) by its image f(q1),

3. for every infinite trace t = q0.q1.q2. · · · in the automaton A, the sequence f(t) defined
to be f(t) = f(q0).f(q1).f(q2). · · · is a trace in the automaton A′ and it is an accepting
trace if and only if the trace t in A is accepting.

3.1.2.3 Lemma. If an automaton A is a partial unraveling of an automaton A′, then both
automata are equivalent.

Proof. Let f : Q → Q′ be a mapping witnessing the partial unraveling of the automaton
A into the automaton A′ and let M be a model. Mapping f is extended to marking as
follows. For every mapping m : Q → P(VM ), let f(m) : Q′ → P(VM ) be the mapping
defined, for every q′ ∈ Q′, by f(m)(q′) =

⋃
q∈f−1(q′)m(q). By applying condition 2 in the

definition of an unraveling, for every v ∈ VM and q ∈ Q, one has 〈v,m〉M |= δ(q) if and
only if 〈v, f(m)〉M |= δ′(f(q)).

It is an easy exercise to check that it induces a (functional) PE-morphism from the
game G(A,M) to the game G(A′,M) that relates positions (q0, r

M ) and (q′0, r
M ).

�

3.1.2.4 Lemma (Regular vs parity automata). For every alternating automaton

A = 〈Q,Σ, q0, δ,Acc〉

there exists an equivalent alternating parity automaton Ap = 〈Qp,Σ, qp,0, δp,Accp〉 equiva-
lent to the automaton A.

Proof. Since Acc is ω-regular, there is a deterministic ω-word automaton A′ = 〈Q′, Q, q′0,Ω
′〉

with parity condition that recognizes Acc. Let then define Ap = 〈Qp,Σ, qp,0, δp,Ωp〉 to be
the (parity) alternating automaton defined by Qp = Q×Q′, qp,0 = (q0, q

′
0), and, for every

(q, q′) ∈ Qp, δp(q, q
′) = δ(q)[(q1, δ

′(q′, q))/q1 : q1 ∈ Q] and Ωp(q, q
′) = Ω′(q′).

By construction, projection f from Qp to Q is a partial unraveling of the automaton
Ap into the automaton A hence, applying Lemma 3.1.2.3, the result.
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�

In the sequel, we often assume that alternating automata are parity automata. More-
over, we may assume, for every parity automaton A, possibly by decreasing ΩA by some
even number, that minΩA(QA) ∈ {0, 1}.

3.1.3 Closure under boolean operations

The class of languages recognizable by means of (finite) alternating automata is closed
under boolean operators as stated in the next Lemmas.

3.1.3.1 Lemma (Union and intersection). The union and intersection of any two
recognizable languages of graphs is recognizable.

Proof. Let A1 = 〈Q1,Σ, q0,1, δ1,Ω1〉 and A2 = 〈Q2,Σ, q0,2, δ2,Ω2〉 be two alternating au-
tomata. One can easily define the automata that recognizes L(A1) ∪ L(A2) and L(A1) ∩
L(A2) from the disjoint union of automata A1 and A2 just by adding a new initial state
q0 with δ(q0) = q0,1 ∨ q0,2 for union or δ(q0) = q0,1 ∧ q0,2 for intersection.

�

A very interesting property of alternating automata is that closure under complemen-
tation is also quite easy to show.

3.1.3.2 Definition (Dual automata). Given an automaton A = 〈Q,Σ, q0, δ,Ω〉 we de-
fine the dual automaton Ad = 〈Q,Σ, q0, δ

d,W d〉 by defining, for every state q ∈ Q, Ωd(q)
to be Ω(q) + 1 and, given Q = {q0, q1, · · · , qn}, the transition specification δd(q) to be the
formula the formula obtained from the formula ¬δ(q) by replacing every occurrence of every
state ofQ in the formula by its negation, i.e. to be the formula ¬δ(q)[¬q0/q0,¬q1/q1, · · · ,¬qn/qn].

Observe that, by construction, states still occur positively in the transition specifications
of the dual automaton.

3.1.3.3 Lemma (Complementation). For every automaton A on Σ-labeled graphs,
L(A) = L(Ad) where L(A) is the class of Σ-labeled graphs that are not accepted by the
automaton A.

Proof. Let A be an alternating automaton, let M be a model.

Assume first M ∈ L(A) we want to prove that M 6∈ L(Ad).
The key point of this part of the proof is the following fact: for every (q, v) ∈ Q× VM ,

m : Q → P(VM ) such that 〈v,m〉M |= δ(q) and md : Q → P(VM ) such that 〈v,md〉M |=
δd(q) there exists (q′, v′) ∈ Q× VM such that v′ ∈ m(q′) ∩md(q′).

In fact, if this is not true, then, for every state q′ ∈ Q, one have m(q′) ⊆ md(q′). Since
〈v,m〉M |= δ(q) and δ(q) is positive (and thus monotonic) in the states of Q, this implies
that 〈v,md〉M |= δ(q) hence, by definition of δd(q), 〈v,md〉M |= ¬δd(q) which contradicts
the hypothesis on md.

We then show that: in simulation the game G(A,M)E⇋
P G(Ad,M), for every pair

(q, v) ∈ Q × VM , for every marking md : Q → P(VM ) such that 〈v,md〉M |= δd(q), the
(P, P )-position ((q, v),md) is winning for player P .

The strategy for the player P is defined as follows: from a (P, P ) position ((q, v),md)
with md : Q → P(VM ) and (invariant) property 〈v,md〉M |= δd(q), the player E makes
a move to any position (m,md) with m : Q → P(VM ) such that 〈v,m〉M |= δ(q). Then,
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applying the previous fact, from the (E,P )-position (m,md) the player P can move to
a (E,E)-position (m, (q′, v′)) (with v′ ∈ md(q′)) such that, after the player E answer by
playing to any (E,P )-position (m,m′

d) with m′d : Q → P(VM ) such that 〈v′,m′d〉M |=
δd(q′) the player P can still answer by moving to the (P, P )-position ((q′, v′),m′d) (with
q′ ∈ m(v′)). Property 〈v′,m′d〉M |= δd(q′) is satisfied so the construction can be repeated.

This strategy is winning because the player P can always play and, in every infinite
plays, the sequences of states (hence sequences of priorities) encountered on both side of

the play in the game G(A,M)E⇋
P G(Ad,M) are the same (actually priorities on the right

side are increased by two which makes no difference). It follows that the left projection of
the play is winning for the player P if and only if the right projection is winning for the
player P .

Now, since the player P has a winning strategy from position (q0, r
M ) in G(A,M), this

fact implies, by Lemma 2.3.1.2, that M 6∈ L(A) since it implies that the player E has a
winning strategy from position (q0, r

M ) in G(Ad,M) (equivalently, for every md such that

〈rM ,md〉M |= δd(q0) player P has a winning strategy in G(Ad,M))

Conversely, let M /∈ L(Ad). We want to prove that M ∈ L(A). We could try to prove

that there is a simulation relation from (q0, v) in G(Ad,M) (from which the player P win)
to (q0, v) in G(A,M) (henceforth from which the player P will also wins). But it seems
that there is no such a simulation and we need to shift to generalized simulation and apply
Lemma 2.3.3.5.

Let G be the generalized simulation the game G(Ad,M)E⊢
P G(A,M). We claim that

for every pair (q, v) ∈ Q × VM , there is a winning strategy for the player P from the
(E,P )-position ((q, v), (q, v)).

The winning strategy is defined as follows: from the (E,P )-position ((q, v), (q, v)) the
player P move to the (P(P ), P )-position (Pq,v, (q, v)) where

Pq,v = {md : Q→ P(VM ) : 〈v,md〉M |= δd(q)}

Then - if possible, otherwise the player E looses and we are done - the player E moves to
any the (P(E), P )-position (s(Pq,v), (q, v)) for some mapping s : Pq,v → Q×VM such that,
for every md ∈ Pq,v, given (q′, v′) ∈ s(md), v′ ∈ md(q′). From this (P(E), P )-position, the
player P moves to the (P(E), E)-position (s(Pq,v),m) with marking m defined, for every
state q′ ∈ Q, by m(q′) = {v′ ∈ VM : (q′, v′) ∈ s(Pq,v)}.

Here, we have to check that this is a valid move. More precisely, we have to check
that 〈v,m〉M |= δ(q). If this is not the case, one has 〈v,m〉M |= ¬δ(q) or, equivalently,
〈v,m〉M |= δd(q) hence, by definition of Pq,v, m ∈ Pq,v. Let then (q′, v′) = s(m). By
definition of s, we have v′ ∈ m(q′). By definition of m, we also have v′ ∈ m(q′) which is
absurd.

Now, from the (P(E), E)-position (s(Pq,v),m) the player E move to any (P(E), P )-
position (s(Pq,v), (q

′, v′)) such that v′ ∈ m(q′). By definition of marking m, (q′, v′) ∈ s(Pq,v)
hence, from the (P(E), P )-position (s(Pq,v), (q

′, v′)) the player P can answer by moving
to the (E,P )-position ((q′, v′), (q′, v′)) which is a legal move and the contruction can be
repeated.

This is a winning strategy since, from every position ((q, v), (q, v)), either the construc-
tion stops before a player E move, or the construction built an infinite play such that the
sequence of states encountered on both side of the play are (almost) equal (as above).
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�

3.1.4 Automata contractions and expansions

We prove here a contraction/expansion lemma which, roughly speaking, tell us that,
under adequate technical conditions, any sub-automaton can be contracted into an equiv-
alent transition specification, and, vice versa, any fixed-point formula that occurs in the
transition specification of an automaton can be expanded into an equivalent alternating
(sub-)automaton.

The first step is to define a way to convert states into predicates and, vice versa, pred-
icates into states. This is achieved via the notion of F -equivalence and positive projection.

3.1.4.1 Definition (F -equivalence). Let A = 〈Q,P(Pred), q0, δ,Ω〉 be an alternating
automaton and let F ⊆ Q be a subset {f1, · · · , fn} of the set of states such that, for every
f ∈ F , δ(f) = ⊤, i.e. the states of F are terminal. Let also α(f1, · · · , fn) be a fixed point
formula where states f1, . . . , fn, seen as unary predicates, only occurs positively.

The Automaton A is called F -equivalent with the formula α(f1, · · · , fn) if for every
model M , for every V1, . . . , Vn ⊆ VM , the following properties are equivalent:

1. M |= α(V1, · · · , Vn),

2. there is a winning strategy for the player P in the game G(A,M) such that, given
M the set of moves m : Q→ P(VM ) the player P may play following this strategy
from position (q0, r

M ), one has, for each i ∈ [1, n], Vi =
⋃
{m(fi) : m ∈ M},

In other words, the automaton A is F -equivalent to the formula α(f1, . . . , fn) when it is
equivalent to the formula ∃f1 · · · fn.α(f1, . . . , fn), and, moreover, any accepting run does
define an adequate valuation for the sets fis.

The following lemma says that one can build an automaton F -equivalent to a formula
α(f1, · · · , fn) as soon as one has an automaton equivalent, in the usual sense, to the formula
α(f1, · · · , fn).

3.1.4.2 Lemma (Positive projection). Let α(f1, · · · , fn) be a formula where symbols
f1, . . . , fn only occur positively. Let A be an automaton over the alphabet P(Pred ∪ F )
equivalent to α(f1, · · · , fn) such that predicates of F only occurs positively in transition
specification. One can build an automaton A′ over alphabet P(Pred) which is F -equivalent
to the formula α(f1, · · · , fn).

Proof. Let A = 〈Q,P(Pred ∪ F ), q0, δ,Ω〉 be an automaton (with Q ∩ F = ∅ just to avoid
confusion) equivalent to the formula α(f1, · · · , fn).

We define the automaton A′ = 〈Q′,P(Pred), q′0, δ
′,Ω′〉 over alphabet P(Pred) from the

automaton A as follows. We put Q′ = Q ⊎ F , q′0 = q0, for every state q ∈ Q, δ′(q) = δ(q)
and Ω′(q) = Ω(q) and, for every state q ∈ F , δ′(q) = ⊤ and Ω′(q) = max{Ω(q) : q ∈ Q}.
In other words, the automaton A′ is built from the automaton A just changing by the
meaning of the symbols of F from unary predicates (in the automaton A) to states (in the
automaton A′).

Then it is easy to check that the automaton A is F -equivalent to the formula α(f1, · · · , fn).
�

We are now ready to define the contraction of an automaton.
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3.1.4.3 Definition (F -contraction). Let A = 〈Q,P(Pred), q0, δ,Ω〉 be an alternating
automaton and let F = {f1, · · · , fn} ⊆ Q be a subset of the set of states with q0 ∈ F .

For every state f ∈ F , let define the F -local automaton A[f, F ], from the state f to the
states of F , to be (equivalent to) the sub automaton of A induced by the states that are in
between the state f and the states of F . More precisely, A[f, F ] = 〈Q′,P(Pred), q0,f , δ

′,Ω′〉
where Q′ = Q ⊎ {q0,f} with q0,f a new state, for every q ∈ Q − F , δ′(q) = δ(q), for every
q ∈ F , δ′(q) = ⊤, and δ′(q0,f ) = δ(f) with Ω′ equals to Ω on all states of Q and equals to
Ω(f) on the initial state q0,f .

Assuming that for every f ∈ F , there is a fixed point formula αf (f1, · · · , fn) F -
equivalent to the F -local automaton A[f, F ], the F -contraction of the automaton A is
defined to be the automaton

C(A, F ) = 〈Qc,P(Pred), qc0, δ
c,Ωc〉

defined by Qc = F , qc0 = q0, and, for each f ∈ Qc, δ(f) = αf (f1, · · · , fn) and Ωc(f) = Ω(f).

Remark. Strictly speaking, there might be several F -contraction of the automaton A
since there might be many formulas F -equivalent to local automata A[q, F ] for q ∈ F .
However, all these F -contractions of A are obviously equivalent (even PE-isomorphic).

In the contraction construction, all states that do not belong to F are removed. This
means in particular that the priorities of those states has been lost. For this reason, in
general, the infinitary criterion is not preserved by this contraction process. The notion of
F -normed automata is a way to cope with this fact.

3.1.4.4 Definition (F -normal automata). An automaton A is F -normal when for ev-
ery trace q1.q2. · · · .qn such that, for every i ∈ {1, n − 1}, qi /∈ F and qn ∈ F , one has
Ω(qn) = min(Ω(q1), · · · ,Ω(qn)).

With this definition:

3.1.4.5 Lemma. If an automaton A is F -normal then the automaton A and any F -
contraction C(A, F ) of the automaton A are equivalent.

Proof. We observe first that if the automaton A is F -normal, then the dual automaton Ad

is also F -normal. Moreover, for every q ∈ F , for every formula αq with free variable in F ,
F -equivalent to A[q, F ], the formula αd

q defined to be ¬α[¬q/q : q ∈ F ] is F -equivalent

to Ad[q, F ]. It follows that the dual automaton of the F -contraction of (C(A, F ))d of the
automaton A is equivalent to the F -contraction C(Ad, F ) of the dual automaton Ad.

In other words, to prove Lemma 3.1.4.5, it suffices, by duality, to show that for very
model M , every F -normal automaton A, if M ∈ L(A) then M ∈ L(C(A, F )).

In fact, this will also imply that if M /∈ L(A) then, by duality Lemma 3.1.3.3, M ∈
L(Ad), hence M ∈ L(C(Ad, F )) = L((C(A, F ))d), and thus, again by duality Lemma,
M /∈ L(C(A, F )).

Given a model M , and an F -normal automaton A, we prove that if M ∈ L(A) then
M ∈ L(C(A, F )) by showing that the player P has a winning strategy ϕ in the simulation
game G(C(A, F ),M)E⇋

P G(A,M) from position ((q0, r
M ), (q0, r

M )).
More precisely, we show that the player P has a winning strategy from every (P, P )-

position of the form ((f, v), (f, v)) with f ∈ F .
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The player P moves to an (E,P )-position of the form (m, (f, v)) with 〈v,m〉M |= αf

with transition specification δC(A,F )(f) = αf F -equivalent to the local automaton A[f, F ].
Since all state predicates occurring in αf belongs to F we may assume that for every state
q 6∈ F , m(q) = ∅.

By F -equivalence Lemma 3.1.4.2, since 〈v,m〉M |= αf , there is a strategy σ2 for the
player P from position (f, v) in the game G(A[f, F ], 〈v,m〉M ) such that, for every counter
strategy τ2, every partial play p ∈ σ2 ∗ τ2(f, v), either p is winning for the player P or
eventually reach a position of the form (f ′, v′) with f ′ ∈ F and v′ ∈ m(f ′).

From position (m, (f, v)) in the game G(C(A, F ),M)E⇋
P G(A,M), we define strategy

ϕ to follow strategy σ2 in (the sub game in G(A,M) from position (f, v) isomorphic to)
local game G(A[f, F ], 〈m, v〉M ) stopping (if ever) only at positions of the form (f ′, v′) with
f ′ ∈ F . Since no move is made by the player P on the left side of the simulation game,
the player E always answer on the right side so this (partial) strategy for the player P on
game G(C(A, F ),M)E⇋

P G(A,M) is well-defined.

In the case this strategy stops, it stops to a position (m, (f ′, v′)) with v′ ∈ m(f ′) so
the player P can answer moving to position ((f ′, v′), (f ′, v′). Since f ′ ∈ F the construction
can be repeated.

The strategy ϕ defined in such a way is winning since every maximal play compatible
with ϕ is either winning on its right side, or it is infinite (on both side) and the sequence
of states occurring on the left side equals the sub-sequence of states of F that occurs on
the left side. Since the automaton A is F -normal, this guarantees that the two side of the
play are equivalently winning or loosing for the player P .

�

A construction dual to the contraction, called expansion, can be defined as follows.

3.1.4.6 Definition (S-expansion). Let A = 〈Q,P(Pred), q0, δ,Ω〉 be an alternating
automaton and let S = {s1, · · · , sn} ⊆ Q be a subset of the set of states. Assume that, for
every state s ∈ S, there is a (local) automaton

As = 〈Qs,P(Pred), qs,0, δs,Ωs〉

with Q ⊆ Qs, Q-normal and Q-equivalent to δ(s), and such that, for every q ∈ Q, δs(q) = ⊤
and Ωs(q) = Ω(q). Assume also that these automata are compatible one with the other in
the sense that, for every s1 and s2 ∈ S, every q ∈ Qs1 ∩Qs2 , the formulas δs1(q) and δs2(q)
are equivalent, and Ωs1(q) = Ωs2(q).

The S-expansion of A by {As}s∈S is defined to be the automaton

E(A, {As}s∈S) = 〈Qe,P(Pred), qe0, δ
e,Ωe〉

defined by Qe =
⋃

s∈S Qs, q
e
0 = q0, for every q ∈ Q − S, δe(q) = δ(q) and Ωe(q) = Ω(q),

for every q ∈ S, δe(q) = δq(qq,0) and Ωe(q) = Ω(q), and, for every q ∈ Qe −Q, given any s
such that q ∈ Qs, δ

e(q) = δs(q) and Ωe(q) = Ωs(q).

3.1.4.7 Lemma. The S-expansion E(A, {As}s∈S) of an automaton A is equivalent to the
automaton A.

Proof. Observe that, for every state state s ∈ S, the automaton A[s, S] is isomorphic
to the automaton As, and the automaton E(A, {As}s∈S) is S-normal. It follows that
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the automaton A is an S-contraction of the automaton E(A, {As}s∈S) so Lemma 3.1.4.5
applies.

�

3.2 Alternating automata and fixpoint formula

On a conceptual point of view, alternating automata can be seen as systems of fixed-
point equations [16]. In this section, we illustrate this fact by proving that both the classes
of graphs definable by means of counting (resp. modal) flat alternating automata and the
classes of graphs definable by means of counting (resp. modal) fixed-point formulas are the
same.

3.2.1 Basic alternating automata

Building an alternating automaton Aα equivalent to a fixed point formula α can be
done in a trivial way : the one state automaton At

α defined by At
α = 〈{{q0},Σ, q0, δ,Ω〉

with δ(q) = α and Ω(q) = 0 is obviously equivalent to the formula α. But this automaton
is not flat.

In this section, we go further by defining a notion of basic alternating automata. These
automata are called basic because there is one such automaton per connective of the fixed
point calculus. Moreover, they can be composed in order to build flat automata equivalent
to arbitrary fixed point formulas.

3.2.1.1 Definition (Basic alternating automata). Given any fixed formula α, we de-
fine the basic automaton Ab

α associated to the formula α to be the automaton

Ab
α = 〈Qb,P(Prop ∪V arα), q

b
α, δ

b,Ωb〉

defined as follows:

1. if α ≡ p (resp. α ≡ ¬p) then Ab
α has a single state qbα with δ(qbα) = p (resp. δ(qbα) =

¬p),

2. if α ≡ ♦kα1 (resp. α ≡ �kα1) then Ab
α has two states qbα and qbα1

with δb(qbα) = ♦kq
b
α1

(resp. δb(qbα) = �kq
b
α1

) and δb(qbα1
) = α1,

3. if α ≡ α1 ∨ α2 (resp. α ≡ α1 ∧ α2) then Ab
α has tree states qǫα, qbα1

and qbα2
with

δb(qbα) = qbα1
∨ qbα2

(resp. δb(qbα) = qbα1
∧ qbα2

), δb(qbα1
) = α1 and δb(qbα2

) = α2,

4. if α ≡ σX.α with σ = ν (resp. σ = µ) then then Ab
α has tree states qǫα, qbα1

and qbX
with δb(qbα) = qbα1

, δb(qbα1
) = α1[q

b
X/X], δb(qbX) = qbα1

with, for every state q ∈ Qb,
Ωb(q) = 0 (resp. Ωb(q) = 1),

with, for every state q ∈ Qb, Ωb(q) = 0 unless specified differently.

3.2.1.2 Lemma. For every fixed point formula α, the formula α and the automaton Ab
α

are equivalent, i.e. for every model M , M |= α if and only if M ∈ L(Ab
α).

Proof. LetM be a Σ-labeled graph. We have to prove thatM |= α if and only ifM ∈ L(Ab
α).

All cases but the fixed point cases are immediate consequences of the definitions. We only
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detail here the fixed point case. Moreover, by duality, it suffice to prove it for greatest fixed
point.

Assume α ≡ νX.α1 and assume M |= α. We want to show that M ∈ L(Ab
α). In order

to do so, let V = νX.αM
1 (X). By assumption, one has, in particular, rM ∈ V . We define

then a winning strategy for the player P in the game Ab ×M as follows.

From initial position (qα, r
M ) (resp. any position of the form (qX , v) with v ∈ V ) the

player P moves to mapping mrM (resp. mv) define, for every state q ∈ Qb by m(q) = ∅
if q 6= qα1 and m(qα1) = {rM} (resp. m(qα1) = {v}). We do have 〈rM ,mrM 〉M |= δ(qα)
(resp. 〈v,mv〉M |= δ(qα)). After this move, the player E can only move to position (qα1 , r

M )
(resp. (qα1 , v)) and we have 〈rM 〉M |= α1(V ) (resp. 〈v〉M |= α1(V )).

From any position of the form (qα1 , v) with v ∈ V , player P moves to mapping m
defined, for every state q ∈ Qb by m(q) = ∅ if q 6= qX and m(qX) = V . We do have
〈v,m〉M |= δ(qα1), because v ∈ V = αM

1 (V ). Then the player E can only move to a
position of the form (qX , v) with v ∈ V and the strategy is repeated as above.

Because Ω(qX) = 0. The strategy defined here for the player P is obviously winning.

Conversely, assume that the player P has a winning strategy from the position (qα, r
M )

in the game Ab ×M , and let W0 be the set of (winning) the player P position that are
reached when player P plays according to this strategy.

Because one has (qα, r
M ) ∈ W0 and δb(qα) = qα1 then one also has (qα1 , r

M ) ∈ W0.
Defining then set V to be the set of vertices v ∈ VM such that (qX , v) ∈ W0, and given
mapping m where the player P moves to, from position (qα1 , r

M ), one has m(qX) ⊆ V
hence, because αM

1 is monotonic, one also has rM ∈ αM
1 (V ).

Similarly, for every vertex v ∈ VM such that (qX , v) ∈ W0, because δb(qx) = qα1 one
has (qα1 , v) ∈W0, and then, following the player P next moves, one also have v ∈ αM

1 (V ).
This shows that V ⊆ αM

1 (V ) hence V ⊆ νX.αM
1 (X).

From the fact that rM ∈ αM
1 (V ) and by monotonicity of αM

1 , this shows that rM ∈
νX.αM

1 (X), that is M |= νX.α1(X).

�

3.2.2 From fixed point formulas to alternating automata

In this section, we built, for every fixed point sentence α, an equivalent alternating
automaton Aα that is flat: no fixed point occurs in transition specifications. This is done
by induction on the structure of the formula α, applying expansion lemma proved in
previous section.

3.2.2.1 Theorem. For every counting fixed point formula α with free variables in V arα,
there exists a flat alternating automaton Aα with same index such that, for every P(Pred∪
V arα)-labeled graphs M : M |= α if and only if M ∈ L(Aα).

Proof. We define the automaton Aα by induction on the syntactic complexity of the formula
α.

If α is an atomic formula, we define Aα to be the automaton Ab
α.

If α is a modality of the form ♦kα1 or �kα1, we define Aα to be the expansion
E(Ab

α, {Aqbα1
}) where Aqbα1

is the automaton Aα1 .
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If α is a conjunction or a disjunction of the form α1 ∧ α2 or α1 ∨ α2, we define Aα to
be the expansion E(Ab

α, {Aqbα1
,Aqbα2

}) where Aqbα1
and Aqbα2

are automata Aα1 and Aα2 .

If α is a greatest or a least fixed point of the form σX.α1(X), we define Aα to be
E(Ab

α, {Aqα1
}) where Aqα1

is an automaton qbX -equivalent with the formula α1[q
b
X/X].

Since Aα1 is equivalent to α1 the positive projection lemma (Lemma 3.1.4.2) ensures that
such an automaton can easily be built.

It remain to prove that, for every formula α, the automaton Aα is equivalent to α.
The case where α is atomic is proved by Lemma 3.2.1.2. The induction step is proved

by applying the Lemma 3.2.1.2 on the automaton Ab
α and the Expansion Lemma 3.1.4.7

that built the automaton Aα from the automaton Ab
α and the automata translating the

immediate subformula(s) of the formula α.
In order to check that Lemma 3.1.4.7 applies, we inductively check that the automaton

Aα has the following properties: for every state q ∈ Aα, the initial state qα does not occur
in δ(q), for every variable X that occur free and positively in the formula α, if X occurs
in δ(q) then it occurs positively.

In all cases but the case of least fixed point, automata Aα1 and Aα2 are Qb
α-normal.

In the case of the least fixed point µX.α1(X), if ever X occurs in α1 in the scope of
a greatest fixed point construction νY.α2(Y ) with priority Ω(qY ) = 0, the automaton Aα1

is not Qb
α-normal. Observe however that, in this case, this problem can be avoided just by

increasing by two all priorities of the states in the automaton Aα1 . Then, also in this case,
the Lemma 3.1.4.7 applies.

Observe that priority are increased only when necessary so the automaton Aα and the
formula α do have same index.

�

3.2.2.2 Corollary (Flattening). Every alternating automaton A is equivalent to a flat
alternating automaton A′.

Proof. One can first applies Theorem 3.2.2.1 to the (non flat) transition specification occur-
ring in the automaton A. One can then applies Lemma 3.1.4.7 to replace these transition
specifications by equivalent alternating flat automata.

�

Remark. The previous corollary is the starting point of many model-checking algorithms
for the modal mu-calculus. In fact, solving parity games or model checking mu-calculus
formulas are inter-reducible problems.

Observe that the automaton Aα, defined in the proof of Theorem 3.2.2.1 in an inductive
way by composing basic automata, can also be defined directly. Such a direct construction
may have some interest for algorithmic purpose.

The syntactic closure cl(α) of the formula α, i.e. cl(α) is the least set of fixed point
formulas that contains the formula α and closed under the following rules: if �kβ ∈ cl(α)
or ♦kβ ∈ cl(α) then β ∈ cl(α), if β ∨ γ ∈ cl(α) or β ∧ γ ∈ cl(α) then β ∈ cl(α) and
γ ∈ cl(α), and, if σX.β ∈ cl(α) for σ = ν or µ then β ∈ cl(α).

The Automaton Aα = 〈Q,Σ, q0, δ,Ω〉 can then be defined as follows:

1. the set of states Q is {qβ : β ∈ cl(α)}, i.e. one state per formulas of the closure cl(α)
of α,
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2. initial state q0 is qα,

3. transition function δ is defined, for every state qβ ∈ Q according to the structure of
the formula β:

(a) if β ≡ p (resp. β ≡ ¬p) then δ(qβ) = p (resp. δ(qβ) = ¬p),

(b) if β ≡ ♦kβ1 (resp. β ≡ �kβ1) then δ(qβ) = ♦kqβ1 (resp. δ(qβ) = �kqβ1),

(c) if β ≡ β1∧β2 (resp. β ≡ β1∨β2) then δ(qβ) = qβ1 ∧qβ2 (resp. δ(qβ) = qβ1 ∨qβ2),

(d) if β ≡ σX.β with σ = µ or ν then δ(qβ) = qβ1 ,

(e) and if β ≡ X then δ(qβ) = qβ1 where σX.β1 for σ = µ or ν is the binding
definition of variable X,

4. and, priority function Ω is defined, for every state qβ ∈ Q, by Ω(qβ) = Nα(X) when
β ≡ X and Ω(qβ) is the maximum of Nα(Y ) where Y ranges over the set of formula’s
variable.

In the sequel, we shall write G(α,M) the model-checking game of an automaton Aα

on a model M .

3.2.2.3 Corollary (From mu-calculus to MSO). For every n = 0, any formula α ∈
NCn can be translated into an equivalent formula in monadic Σn.

Proof. For n = 0, NC0 is just counting modal logic so nothing have to be done. Let n be
a strictly positive integer and let α ∈ NCn.

Observe that the formula ϕα defined in section 1.4 is not, in general, in monadic Σn.
In fact, fixed point constructions that generate monadic quantifiers in the translation may
occur in the scope of modalities that generate FO quantifiers. It follows that this theorem
is by no mean a trivial consequence of the mu-calculus semantic definitions.

The MSO formula we are looking for in monadic Σn follows from the observation
that, for arbitrary graph, the model-checking game G(α,M) is definable by means of an
existential monadic transduction [43] within graph M itself. In fact, graph G(α,M) can be
defined in FO out of |α| disjoint union of graph M . And these |α| copies can be defined by
means of |α| existential set quantifiers. Then, on the resulting monadic Σ1 defined model
checking game, the existence of a winning strategy can be defined by means of a Nn mu-
calculus formula αn in prenex normal form [33] which, in turn, can be translated into a
monadic Σn. Factorizing all monadic quantifiers in these two formulas build one on top of
the other, the resulting formula belongs to monadic Σn and is equivalent to the formula α.

�

3.2.3 From alternating automata to fixed point formulas

Now we want to translate back every alternating automaton to an equivalent formula.
More precisely, we prove the following theorem.

3.2.3.1 Theorem. For any counting (resp. modal) alternating automaton A there exists
an equivalent counting (resp. modal) fixed formula αA with same index.

Proof. We say that an automaton A = 〈Q,Σ, q0, δ,Ω〉 is a tree-shaped automaton with
back-edges when there exists a partial order ≤A over Q such that:

1. state q0 is the least element for order ≤A,
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2. given ≺A the successor relation induced by the order ≤A, for every state q ∈ Q, every
state q1 ∈ Q, if the state q1 occurs in δ(q) then

(a) (forward edge) q ≺ q1,

(b) or (backward edge) q1 ≤A q, and, in this case, for every state q2 ∈ Q, if q1 ≤A

q2 ≤A q then Ω(q1) ≤ Ω(q2) (i.e. state q1 has minimum priority on the “loop”
induced by the backyard-edge from q to q1.

Remark. Strictly speaking, the above definition is rather a definition of DAG-shaped
automata. It does suffice for translating alternating automata into formulas.

3.2.3.2 Lemma. Every finite alternating automaton is equivalent to a finite alternating
tree-shaped automaton.

Proof. Let A = 〈Q,Σ, q0, δ,Ω〉 be an automaton. We define an equivalent tree-shaped
automaton A′ = 〈Q′,Σ, q′0, δ

′,Ω′〉 as follows.
Set of states Q′ is defined to be the set of automata traces t of the form q0.q1. · · · .qn

such that, for every integer i and j such that 0 ≤ i < j ≤ n, if qi = qj then there is some
integer k such that i < k < j and Ω(qk) < Ω(qi) = Ω(qj).

One can check that the set of traces Q′ defined in such a way is closed under prefix
and is finite with a cardinal at most doubly exponential in the cardinal of Q.

For every trace t = q0.q1. · · · .qn ∈ Q′, every state q ∈ Q, we define update(t, q) to be
the shortest prefix q0. · · · .qi of t.q such that qi = q and, for every k such that i < k ≤ n,
Ω(qi) ≤ Ω(qk), i.e. the minimum priority encountered in the cycle from qi.qi+1. · · · .qn.qi is
the priority of qi. By definition, update(t, q) ∈ Q′.

For trace t, we define then δ′(t) to be the formula obtained from δ(qn) by replacing
every state q by trace update(t, q).

We also define Ω′(t) to be Ω(qn).

The Automaton A′ is finite and, by construction, tree-shaped. Moreover, mapping
f : Q′ → Q, that maps every trace of Q′ to its target witnesses the fact that the automaton
A′ is an unraveling of the automaton A. By applying Lemma 3.1.2.3, we conclude that
L(A) = L(A′).

�

Assume thus A is a finite tree-shaped automaton. We define, for every state q, by
induction on levels of states of A in order ≤A, from leaves to root, the formula αq as
follows: the formula αq is the formula obtained from formula δ(q) by:

1. replacing every state q1 occurring in δ(q) by formula αq1 if q ≺A q1, or by the formula
Xq1 if q1 ≤A q,

2. and if q appears in δ(q′) for some state q′ with q <A q′, i.e. if q is the target of a
back-edge from some state q′, taking the least (resp. the greatest) fixed point on the
variable Xq of the obtained formula when Ω(q) is odd (resp. even).

3.2.3.3 Lemma. The Formula αq0 is equivalent to A.

Proof. The Automaton A and the automaton Aαq0
(as defined for Theorem 3.2.2.1) are

isomorphic up to obvious contraction.
�

This conclude the proof of Theorem 3.2.3.1
�
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3.2.4 Invariance properties for the mu-calculus

In this section, we prove the invariance of modal (resp. counting) fixed point formulas
under bisimulation (resp. counting bisimulation).

The following lemma essentially says that the truth of modal or counting fixed point
formulas only depends on the underlying tree structures obtained by unraveling.

3.2.4.1 Lemma (Counting bisimulation invariance). Every fixed point formula α is
counting bisimulation invariant.

Proof. Let α be a modal or counting fixed point formula.
Applying Theorem 1.3.3.4 it suffice to show that for every model M , M |= α if an

only if T (M) |= α. Let M be model. Applying Theorem 3.2.2.1, there is a flat automaton
Aα = 〈Q,Σ, q0, δ,Ω〉 equivalent to the formula α so it suffices to prove that M ∈ L(A) if
and only if T (M) ∈ L(A).

Let M be a model and let t : V T (M) → VM the mapping that maps any path of V T (M)

to its target in VM . We extend t to markings by composition, i.e. for every marking m in
the game G(A, T (M)) we define t(m) to be marking t◦m. Then one can check that mapping
t, induces a (functional) PE-morphism from game G(A, T (M)) to the game G(A,M) that
maps initial position in G(A, T (M)) to initial position in G(A,M).

In fact, we essentially have to check that for every v ∈ V T (M), every state q ∈ QA, every
marking m : Q→ P(V T (M)), 〈v,m〉T (M) |= δ(q) iff 〈t(v), t◦m〉M |= δ(q). This immediately
follows from the fact that: 〈v,m〉T (M) and 〈t(v), t ◦m〉M are counting bisimilar and δ(q)
(in a flat automaton) is counting bisimulation invariant.

�

3.2.4.2 Lemma (Bisimulation invariance). Every modal fixed point formula is bisim-
ulation invariant.

Proof. The argument is essentially the same as above. Applying Theorem 1.3.3.6 it suffices
to show that, for arbitrary model M , M |= α if and only if Mκ |= α. Applying Theo-
rem 3.2.2.1, there is a flat modal automaton Aα = 〈Q,Σ, q0, δ,Ω〉 equivalent to formula α
so it suffices to prove that M ∈ L(A) if and only if ∈κ L(A).

Given the mapping t : VMκ

→ VM be the mapping from Mκ to M that maps every
expanded path p in Mκ to its target in M extended to markings by composition, one can
check that it induces an EF -morphism from the game G(A,Mκ) to the game G(A,M)
that maps initial position in G(A,Mκ) to initial position in G(A,M).

This essentially amount to check that for every v ∈ VMκ

, every state q ∈ QA, every
marking m : Q → P(VMκ

), 〈v,m〉Mκ |= δ(q) iff 〈t(v), t ◦m〉M |= δ(q). Again, this imme-
diately follows from the fact that: 〈v,m〉Mκ and 〈t(v), t ◦m〉M are now bisimilar and δ(q)
is bisimulation invariant.

�

3.3 References and notes

Relationship between automata and fixed point calculus are known for long. Park de-
fines for instance a unary mu-calculus [145] and proved it equivalent to Büchi word automa-
ton. A relationship between Rabin tree automata and mu-calculus formulas is first estab-
lished by Niwinski [139] and Emerson et al. [167, 58]. This correspondence is further studied
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and extended a lot more [171, 56, 14, 166, 59, 54, 103, 94, 181, 60, 140, 141, 183, 16, 28].
In this subsequent approaches, one may distinguish two approaches.
The first one, which goes back to Emerson et al. works [60, 54, 59, 56, 167, 58], aims at

proving, somehow by brute force, that fixed point formulas behave like alternating parity
automata. For this purpose, the notion of transfinite fixed point signatures, defined by
Street and Emerson [167] and used by many others [103, 181, 94, 108, 182], guarantees
the correctness of the translation of alternation of least and greatest nested fixed point
expression into increasing alternation of odd and even priorities.

One draw back of this approach is that it is powerful enough to prove, at the same time,
memoryless game determinacy of parity games, and even simulation theorem [59, 103, 94].
It follows that the underlying numerous concepts may increase the intrinsic conceptual
difficulty of these proofs.

The second approach, developed by Arnold and Niwinski [10, 140, 16], aims at proving
the equivalence in an inductive way. It leads to a proof that is somehow easier to follow
as it proceeds much more gradually. This approach has been followed by others like, in
particular, Wilke[183].

Aiming at presenting a modular version of this result, it is also the approach that
has been chosen here. Observe that the existence of memoryless strategy in parity game is,
strictly speaking, not necessary in the proof presented here since game determinacy suffices
to prove the correctness of complementation.



3.3. REFERENCES AND NOTES 53



Chapter 4

Bisimulation invariance in MSO

Classical logical systems such as monadic second-order logic (MSO) often play, in com-
puter science, the role of basic (assembly-like) languages into which programs - or rather
program specifications - can be described or translated. In concurrency, where programs
are often modeled as state/transition systems [85, 7, 127, 8, 9], monadic second-order logic
is generally considered as a sufficiently expressive logic. In particular, it subsumes most
specification languages such as LTL, CTL∗ [18, 56, 60] or fixed point languages [57, 110].

However, it is not full monadic second-order logic which is needed. In fact, when speci-
fying properties of programs, one is generally interested in the behavior of programs rather
than in the programs themselves. As program behaviors can be modeled by infinite trees -
trees obtained by unraveling program models - it appears that specifying program behav-
iors amounts to specifying languages of finite and infinite trees.

Moreover, in application, when programs are modeled by means of finite state systems,
it is important to check, on the finite models of programs, that their potential infinite
behaviors - their unravelings - are correct w.r.t. a given specification. In other words, a
program specification must define a class of graphs which is - at least - invariant under
unraveling [45]. The peculiar status of non-determinism even encourages to consider classes
of graphs which are invariant under bisimulation equivalence [85, 86, 127].

This leads to the study of the bisimulation (or counting bisimulation) invariant frag-
ment of monadic second-order logic, i.e. the set of MSO sentences whose classes of models
are closed under bisimulation. A first easy observation is that all specification languages
mentioned above are part of this fragment and, among them, the mu-calculus is the most
expressive language. A result of Walukiewicz and the author [104] shows that the mu-
calculus is even maximal in this respect, i.e. the bisimulation (resp. counting bisimulation)
invariant fragment of monadic second-order logic equals the modal (resp. the counting)
mu-calculus.

The purpose of this chapter is to prove this result and to give an overview of its
consequences.

4.1 Normalizing automata

In this section, we essentially prove that alternating automata are equivalent to non
alternating automata (which are defined semantically) and thus can be normalized to non

54
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deterministic automata (which are defined syntactically).

Applying this normalization results, we obtain as corollaries a solution to the emptiness
problem and the finite model property. They are studied in the last part of this section.

4.1.1 Functional runs and non alternating automata

The intuitive idea behind the notion of alternation in a given alternating automaton is
that, at some time, in a given vertex, one may have to run several copies of this automaton
in distinct states on the same subtree. In terms of model checking game, it means that at
least two positions of the form (q1, v) and (q2, v) with distinct states q1 and q2 are reached
in an accepting run. Preventing alternation to occurs amounts intuitively to saying that
every vertex is visited at most with one state. This is the idea of functional runs.

4.1.1.1 Definition (functional run). Let A = 〈Q,Σ, q0, δ,Acc〉 be an alternating au-
tomaton. Let M be a graph, and let ρ be a mapping from VM to Q.

We say that the mapping ρ is an functional run of the automaton A over the graph M
when the following conditions are satisfied:

– Initial condition: ρ(v) = q0,
– Local condition: for every v ∈ VM , one has 〈v, ρ−1 ∩ Succ(v)〉M |= δ(ρ(q)).

where ρ−1 ∩ Succ(v) is the mapping m : Q → P(VM ) defined, for each q ∈ Q, by m(q) =
ρ−1(q) ∩ Succ(v).

A functional run is accepting when no vertex is labeled by ⊥ and, moreover the following
condition is satisfied:

– Global condition: for every infinite path p ∈ (VM )ω of M , ρ(p) ∈ Acc.

A functional accepting run can be seen as a particular case of accepting run as stated
below.

4.1.1.2 Lemma. For every graph M , if there is a functional accepting run ρ : VM → Q
of a parity automaton A on M then M ∈ L(A).

Proof. Let ρ : VM → Q be an accepting functional run of the automaton A over graph M .
Let sρ be the memoryless strategy that maps every pair (q, v) ∈ Q× VM to the mapping
σρ(q, v) defined, for every q′ ∈ Q, by sρ(q, v)(q

′) = ρ−1(q′) ∩ Succ(v).

The fact that the strategy sρ is a winning strategy for player 0 follows easily from the
definition of functional accepting run.

�

Observe that, in general, the converse is false, i.e. there are automata for which the
existence of an accepting run does not implies the existence of a functional run. Take for
instance the alternating automaton Aα defined from the formula α ≡ ♦p ∧ ♦q.

Automata that satisfy, on trees, the converse of Lemma 4.1.1.2 are defined to be non
alternating.

4.1.1.3 Definition (Non alternating automata). An automaton A is non alternating
when, for every tree M , M ∈ L(A) if and only if there exists an accepting functional run
of A over M .

This definition of non alternation is semantic. We provide below an equivalent syntactic
definition.
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4.1.2 Non deterministic automata

Let CNT (Q) be the set of finite disjunctions of FO-formulas of the form

∃xd iff(x) ∧
∧

i∈{1,···,k}

T (r, xi) ∧ qi(xi) ∧


∀z.d iff(z, x) ⇒

∨

q∈Qz

q(z)




where x = x1, · · · , xk, possibly empty with k = 0, is a vector of distinct variables, for each
i ∈ qi, qi ∈ Q and Qz ⊆ Q, and d iff(x) is the predicate stating that all elements denoted
by variables in x are distinct, e.g. d iff(x) =

∧
1≤i<j≤k xi 6= xj .

4.1.2.1 Definition (Non deterministic automata). An automaton A non determin-
istic when for every state q ∈ Q, transition specification δ(q) is (equivalent to) a formula
of the form

δ(q) ≡
∧

a∈Σ

a(r) → ϕq,a

with for every a ∈ Σ, ϕq,a ∈ CNT (Q) and a(x) is the formula

a(x) ≡
∧

p∈a

p(x) ∧
∧

p/∈a

¬p(x)

Remark. Although not written with modality, formulas in CNT (Q) are equivalent to
counting modal formulas positive in predicate symbols of Q. This can be seen as a classical
exercise in logic. It is also a consequence of Courcelle’s results [42]. This implies in particular
that non deterministic automata are particular case of alternating automata.

4.1.2.2 Lemma. Counting non deterministic automata are non alternating.

Proof. Let A be an non deterministic automaton. We want to prove that A is non alternat-
ing. Let M be a Σ-tree and let σ be a winning strategy in G(A,M). We define a mapping
ρ : VM → Q first by taking ρ(rM ) = q0. We proceed then by induction on the depth of
vertex v ∈ VM with the following invariant property:

(I) There is a counter strategy τ in the game G(A,M) and a play p ∈ σ ∗
τ(q0, r

M ) that ends in position (ρ(v), v).

The invariant is satisfied at the root rM of M . Assume ρ(v) = q for some v ∈ VM . By
invariance property, and since σ is winning, the player E can move to marking m : Q →
P(VM ) such that 〈v,m〉M |= δ(q). By definition of non deterministic automata transition
specification (formulas of CNT (Q)), this means that there is a function f : Succ(v) → Q
such that f−1 ⊆ m and Tv,f |= δ(q). For each successor v′ of v we define then ρ(v′) = f(v′).
Since f is a mapping and f−1 ⊆ m, the player E can move to any pair (ρ(v′), v′) with
v′ ∈ Succ(v) which conclude the induction step.

The functional run is accepting since, for every infinite path from the root p ∈ (VM )ω,
ρ(p) is, by invariance property, the sequence of states that occurs in an infinite play in
σ ∗ τ(q0, r

M ) hence, because σ is winning, it belongs to Acc.

�

Conversely:
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4.1.2.3 Lemma. Every non alternating automaton is equivalent to a non deterministic
automaton.

Proof. Last, let A be a non alternating automaton. For every state q of A, for every a ∈ Σ,
it is an easy observation that there is a formula ϕq,a of CNT (Q) such that, for every depth
one Σ tree M and every mapping f : SuccT (rM ) → Q, one has 〈rM , f−1〉M |= δ(q) ∧ a(r)
if and only if 〈rM , f−1〉M |= ϕq,a.

It follows that the automaton A′ built from A just by changing the transition specifica-
tion δ to δ′ defined, for each q ∈ Q, by δ′(q) ≡

∧
a∈Σ a(r) → ϕq,a, is equivalent to A as far

as functional runs are concerned. But then, since the automaton A′ it non deterministic,
it is also non alternating (by Lemma 4.1.2.2) and thus (by definition of non alternation)
equivalent to A.

�

4.1.3 The simulation theorem

4.1.3.1 Theorem (Muller and Schupp [136, 137]). Every alternating automaton A
is equivalent (can be simulated by) a non alternating automaton An.

Moreover, if A is a parity automaton with, respectively, closed, open or Büchi infinitary
conditions, then we can choose An to be a parity automaton with, respectively, closed, open
or Büchi infinitary conditions, i.e. if ΩA(QA) equals {0, }, {1} or respectively {0, 1} then
we can choose An such that ΩAn

(QAn

) = ΩA(QA).

Proof. Let A = 〈Q, q0,Σ, δ,Ω〉 be an alternating parity automaton. We write Acc = {w ∈
Qω : lim inf Ω(q) is even}. By applying Corollary 3.2.2.2, we assume that the automaton
A is flat.

The Automaton An = 〈Qn, Qn
0 ,Σ, δ

n,Accn〉 is defined as follows:

1. set of state Qn is defined to be Qn = P(Q×Q×{0, 1})−Fn with Fn defined below,

2. set of initial state Qn
0 = {R : (q0, q0, 1) ∈ R},

3. transition specification δn defined, for every R ∈ Qn, by δn(R) defined to be the
formula obtained from the formula

∧
(q1,q2,x)∈R

δ(q2) after:

(a) replacing every subformula of the form �kq3 (or resp. ♦kq3) for some q3 ∈
Q, by the predicate �kD(q2,q3,1) (or resp. ♦kD(q,R),(q2,q3,1)), where D(q2,q3,1) ≡∨

(q2,q3,1)∈R′ R′,

(b) and, after the previous replacement have been performed (so that every remain-
ing state are not in the scope of modalities), replacing every remaining state
predicate q3 ∈ Q by ⊤ if (q2, q3, 0) ∈ R and ⊥ if (q2, q3, 0) /∈ R.

4. Accn is defined to be the set of all infinite path p ∈ (Qn)ω such that tr(p) ⊆ Acc,

where for every finite or infinite word p ∈ (Qn)∞, tr(p) is defined to be the set of all infinite
words t ∈ Qω, called trace of A on p, such that there is a sequence of integer {ji}i∈IN such
that, for every i ∈ IN :

1. 0 ≤ ji+1 − ji ≤ 1,

2. (t[i], t[i+ 1], (ji+1 − ji)) ∈ p[ji+1],
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and Fn ⊆ Qn, the set of forbidden states, is defined to be the set of all states R ∈ Qn such
that tr(R) ∩Acc 6= ∅.

Observe that, for every qn ∈ Qn, δn(qn) is a (counting) modal formula of modal depth
one so the automaton An is non deterministic.

4.1.3.2 Lemma (Validity). The Automaton An is equivalent to the automaton A.

Proof. Let M be a tree. Assume M ∈ L(A) and let σ be a positional winning strategy in
the game G(A,M) from the position (q, rM ).

We define ρ : VM → Qn as follows the smallest mapping (ordered by inclusion) such
that:

1. (q0, q0, 1) ∈ ρ(rM ),

2. for every q ∈ Q and v ∈ VM , if there is a counter strategy τ such that there is a
play p ∈ σ ∗ τ(q0, sr

M ) that ends in position (q, v) then, given m = σ(q, v) such that
〈v,m〉M |= δ(q), for every q′ ∈ Q, for every v′ ∈ Succ(v):

(a) if v ∈ m(q′) then (q, q′, 0) ∈ ρ(v),

(b) if v′ ∈ m(q′) then (q, q′, 1) ∈ ρ(v′).

One can check that ρ is an accepting functional run of An on M .

Conversely, assume there is a functional accepting run ρ : VM → Qn of the automaton
An on M , we define positional strategy σ for the player P as follows.

For every (q, v) ∈ Q × VM , provided, (q1, q, x) ∈ τ(v) for some q1 ∈ Q and x ∈ {0, 1}
- otherwise σ(q, v) is left undefined - we define m : Q → P(V ) to be the smallest (w.r.t.
inclusion) mapping such that, for every q′ ∈ Q, for every v′ ∈ Succ(v):

1. if (q, q′, 0) ∈ τ(v) then v ∈ m(q′),

2. if (q, q′, 1) ∈ τ(v′) then v′ ∈ m(q′).

One can check that σ is a winning strategy for the player P in the game G(A,M) from
position (q0, r

M ).
�

Proof of Theorem 4.1.3.1 (continued). It remain to prove that the automaton An is regular.

4.1.3.3 Lemma (Regularity). There exists a finite word automaton Ac on the alphabet
Qn, called the path automaton of A, such that L(Ac) = Accn.

Moreover, if the set Ω(Q) of priorities used in the automaton A equals to {1} or {0, 1}
respectively then one can build Ac in such a way that the set Ωc(Qc) of priorities used in
the automaton Ac equals to {1} or {0, 1} respectively.

Proof. Let A be the alphabet Qn.
We first define a parity automaton A′ = 〈Q′, q′0, δ

′,Ω′〉 that accepts all infinite words
of A∞ that contains a trace t ∈ Acc. Then we obtained Ac by determinization and com-
plementation of the automaton A′.

The automaton A′ is defined as follows (with ǫ-transition). The set of states Q′ is
defined to be Q, the initial state q′0 is q0, the (non deterministic) transition function δ′ is
defined, for every q ∈ Q and every R ⊆ Q×Q× {0, 1} by

δ′(q,R) = {q′ ∈ Q : (q, q′, 1) ∈ R}



4.1. NORMALIZING AUTOMATA 59

and

δ′(q, ǫ) = {q′ ∈ Q : (q, q′, 0) ∈ R}

and, for every q ∈ Q, Ω′(q) = Ω(q) + 1.

By construction of the automaton A′ one has L(A′) = Acc, i.e. the automaton A
recognizes the set of words of A∞ which contains traces that does not satisfies the parity
conditions Ω.

Then, we define the automaton Ac by determinization and complementation of the
automaton A′. Safra’s construction [157] says that determinization can be made in such a
way to ensures that |Qc| = O(|Q|!) and, if Ω(Q) = {1} or {0, 1} then Ωc(Qc) = Ω(Q).

�

Remark. When Ω(Q) = {0}, Acc = Qω and Accn = (Qn)ω so there is no need to build
the automaton Ac.

Proof of Theorem 4.1.3.1 (end).

If we require that the automaton An is a parity automaton then we can normalize it
applying Lemma 3.1.2.4 with ω-automaton Ac.

�

4.1.4 The emptiness problem and the finite model property

In this section, we prove that, given a non deterministic parity automaton A, the
problem of deciding if there is a model M ∈ L(A) - called the emptiness problem - linearly
reduces to solving a parity game SatA. Moreover, since positional strategies suffice to solve
parity games, this also show that every automaton that recognizes a graph, recognizes a a
finite one. This property is called the finite model property (see e.g. [59, 56, 167, 58] for
the modal case).

4.1.4.1 Definition (Satisfiability game). Let A = 〈Q,Σ, q0, δ,Acc
A〉 be a non deter-

ministic automaton.

Given (q, a) ∈ Q × Σ and R ⊆ P(Q × Σ), we say that pair ((q, a), R) is satisfiable
when there exists a depth one Σ-tree M and a mapping f : Succ(rM ) → Q such that
λM (rM ) = a and 〈rM , f−1〉M |= δ(q).

We define the satisfiability game graph SatA = 〈VP , VE , TP , TE ,Acc〉 to be the game
defined by putting VP = Q × Σ, VE = P(VP ). Set TP is defined to be the set of pairs
((q, a), R) ∈ VP ×VE such that pair ((q, a), R) is satisfiable. Set TE is defined to be the set
of pairs (R, (q, a)) ∈ VE × VP such that (q, a) ∈ R. Acceptance condition Acc is defined to
be the set {p ∈ (VP +VE)

ω : π1 ◦πVP
(p) ∈ AccA}, i.e. set of plays that induce an accepting

sequence of states.

Remark. When the automaton A is in normal form as in definition 4.1.2.1, for every state
q ∈ Q, we have

δ(q) ≡
∧

a∈Σ

a(r) → ϕq,a
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with ϕq,a a disjunction of formulas of CNT (Q). It follows that a pair ((q, a), R) is satisfiable
if and only if one of the disjunct occurring in ϕa, of the form

ϕ(q,a,R) ≡ ∃xd iff(x) ∧
∧

i∈{1,···,k}

T (r, xi) ∧ qi(xi) ∧


∀zd iff(z, x) ⇒

∨

q∈Qz

q(z)




is such that, for every i ∈ {1, . . . , k}, (qi, ai) ∈ R for some ai in Σ and, for every pair
(q′, a′) ∈ R, q′ ∈ {q1, · · · , qk} ∪Qz.

In other words, satisfiable pairs in SatA can just be read from the definition of transition
specification in A. One can even restrict to minimal w.r.t. inclusion.

4.1.4.2 Lemma (Emptiness). Let A be a non deterministic parity automaton. Lan-
guage L(A)) of graphs recognizable by the automaton A is non empty if and only if there is
some a ∈ Σ such that position (q0, a) is winning for the player P in the satisfiability game
SatrA.

Proof. Assume that L(A) 6= ∅. Since L(A) is closed under unraveling, we can assume that
there is some tree M ∈ L(A). Let then ρ : VM → Q be an accepting functional run of A
on M and let a0 = λM (rM ).

Strategy for the player P from position (q0, a0) is defined as a strategy with memory
σ = 〈VM ,m0, c, δu〉 with:

1. memory VM ∪ {⊥},

2. initial memory m0 = rM ,

3. choice function c : VM × VP → VE defined, for every v ∈ VM and (q, a) ∈ VP
by, c(v, (q, a)) = Rv with Rv = {(ρ(v′), λM (v′)) ∈ VP : v′ ∈ Succ(v)} when
(ρ(v), λM (v)) = (q, a) and c(v, (q, a)) = ⊥ otherwise,

4. and update function δu defined for every v ∈ VM by, for every R ∈ VE , δu(v,R) = v
and, for every (q, a) ∈ VP , δu(v, (q, a)) = v′ for some v′ ∈ Succ(v) such that (q, a) =
(ρ(v′), λM (v′)) and δu(v, (q, a)) = ⊥ otherwise.

One can check that σ is a well defined winning strategy for the player P from position
(q0, v0).

More precisely, one can check, by induction on the length of plays, that, for every
counter strategy τ , given play p = σ ∗ τ(q0, v0), one has δ∗u(m0, p) 6= ⊥ and, if p ends in a
position (q, v), then, given v = δ∗u(m0, p), one has (ρ(v), λM (v)) = (q, a).

Moreover, because ρ is an accepting functional run, 〈v, ρ−1 ∩ Succ(v)〉M |= δ(q). It
follows that pair ((q, a), Rv) is satisfiable, or, in other word, ((q, a), Rv) is a well defined
move in SatA.

Conversely, assume that the player P has a winning strategy σ in the game SatA from
a position (q0, a0) for some a0 ∈ Σ. In order to prove the lemma, we define a Σ-graph Mσ

proving that M ∈ L(A) by defining an functional accepting run ρ : VM → Q of A on Mσ.

Without lost of generality, we may assume that strategy σ is positional and, for each
(q, a) ∈ Q × a, σ(q, a) is minimal w.r.t. inclusion. Let then Vσ ⊆ Q × Σ be the set of the
player P positions that are reached from position (q0, a0) in plays of Beh(SatA, (q0, a0), σ).
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For each (q, a) ∈ Vσ, let ϕq,a,R with R = σ(q, a) be the formula of the form

ϕ(q,a,R) ≡ ∃xd iff(x) ∧
∧

i∈{1,···,k}

T (r, xi) ∧ qi(xi) ∧


∀zd iff(z, x) ⇒

∨

q∈Qz

q(z)




with R (minimal) of the form
⋃

i∈[1,k]{(qi, ai)} (see remark page 59) and let Vq,a be the set
Vq,a = {(qi, i, ai) ∈ Q× IN × Σ : i ∈ [1, k]}.

We then define Mσ = 〈VMσ , rMσ , TMσ , λMσ〉 as follows:

1. VMσ = {(q0, 0, a0)} ∪
⋃

(q,v)∈Vσ
Vq,σ,

2. rMσ = (q0, 0, a0),

3. TMσ = {((q, k, a), (q′, k′, a)) ∈ VMσ × VMσ : (q′, k′, a) ∈ Vq,a},

4. λMσ(q, k, a) = a.

We define then ρσ : VMσ → Q by, for every (q, k, a) ∈ VM , ρσ(q, k, a) = q.
One can easily check that ρσ is a functional accepting run of A on Mσ. The sat-

isfaction of initial and local conditions immediately follows from the construction. The
satisfaction of global condition follows from the fact that the mapping f : rM .(VM )∞ →
{(q, a0)}.(VE .VP )

∞ defined, for each path

p = (q0, k0, a0). · · · .(qi, ki, ai). · · ·

by
f(p) = (q0, a0).σ(q0, a0). · · · .(qi, ai).σ(qi, ai). · · ·

is a bijection between paths in Mσ emanating from the root rMσ in Mσ to plays in
Beh(SatA, (q0, a0), σ) with, obviously, for every infinite path p, ρ(p) ∈ AccA if and only if
f(p) ∈ AccSatA .

�

Observe that graph Mσ built above in finite. It follows:

4.1.4.3 Corollary (Finite model property). Every satisfiable mu-calculus formula α
has a finite model.

Proof. By Theorem 3.2.2.1 the formula α is equivalent to an alternating automaton Aα

which, in turn, applying Theorem 4.1.3.1, is equivalent to a non deterministic automaton
An

α. Then, following the above construction, L(An
α) 6= ∅ if and only if there is some finite

M ∈ L(An
α).

�

4.2 MSO and bisimulation invariance

In this section, we prove that over trees, alternating counting automata and MSO
sentences are equally expressive. As a corollary, this prove that the counting bisimulation
invariant fragment of MSO equal the counting mu-calculus. We also establish then that
the bisimulation invariant fragment of MSO equals the modal mu-calculus.

Remember that a class C of graphs is bisimulation closed (resp. counting bisimulation
closed) if whenever M ∈ C and M ′ is bisimilar (resp. counting bisimilar) to M then M ′ ∈ C.
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Then, a sentence ϕ is bisimulation invariant (resp. counting bisimulation invariant) if
the class of transition systems it defines is bisimulation closed (resp. counting bisimulation
closed).

The notion of bisimulation invariance (or counting bisimulation invariance) is extended
to arbitrary formulas ϕ(X1, · · · , Xn) with free set variables X1, . . . , Xn, by considering
such formulas as sentences on graphs built with set of predicate symbols Pred′ = Pred ∪
{X1, · · · , Xn}. Since fixed point formulas, which we will consider later, may have free set
variables, we implicitly consider this extension of graphs to Pred′ whenever there is no
ambiguity.

4.2.1 Counting bisimulation invariance

4.2.1.1 Theorem (Walukiewicz [181, 182]). A language of tree L is recognizable by
a counting alternating automaton if and only if it is definable in MSO.

Proof. By definition, any language of trees recognizable by an alternating automaton is
definable in MSO. It can even be shown that a monadic Σ3 (or monadic Π3) suffice to
express the existence of an accepting run on a tree.

It remains to show that every language of trees definable in MSO is recognizable by
an alternating automaton. For this, we proceed by induction on the syntactic structure of
MSO formulas. However, for convenience, we first define a “reduced” set of MSO formulas
which is still equivalent to full MSO as far as definability by sentence is concerned.

More precisely, consider the set of MSO formulas defined as the smallest set containing
the “atomic” formulas r(L), L ⊆ L′ and T (L,L′) for every symbol L and L′ ∈ Pred∪V ar
and closed under negation, disjunction and existential set quantification. The meaning of
these new “atomic” formulas is given by the fixed point formulas L, νX.((L ⇒ L′) ∧�X)
and νX.(�X ∧ (L⇒ (�L′))).

One can translate arbitrary MSO sentences into equivalent sentences of this reduced
set. In fact, other boolean connectives and universal quantification can be encoded with
disjunction, existential quantifier and negation. For FO-variable and FO-quantifiers, the
key idea is to use, instead, singletons and quantification over singletons. In fact, with
empty(X) ≡ ∀Y X ⊆ Y , we can specify that set X is a singletons with sing(X) ≡
¬empty(X) ∧ ∀Y, Y ⊆ X ⇒ (X ⊆ Y ) ∨ empty(Y ). Then, FO-quantifications can be simu-
lated by set quantifications, i.e. every formula of the form ∃xϕ(x) (resp. ∀xϕ) is equivalent
to the formula ∃Xsing(X) ∧ ϕ(X/x) (resp. ∀Xsing(X) ⇒ ϕ(X)).

It remains to prove that every MSO formula of this reduced set is equivalent, over trees,
to an alternating automaton.

We prove this result by induction on the syntactic complexity of these formulas (con-
sidering free set variables as constant predicates whenever needed). We know already that
(1) definability by fixed formulas implies recognizability by alternating automata, and (2)
fixed point formulas are closed under boolean connectives. It suffices to prove that the
class of recognizable languages is closed under projection which is, in language theory, the
counterpart of existential set quantification.

More precisely, let ΣX = P(Pred∪{X}) and let Σ = P(Pred). We define πX : ΣX → Σ
to be the projection that maps every letter a ∈ ΣX to πX(a) = a ∩ Pred ∈ Σ. The
mapping πX is extended to ΣX -graph by defining, for every ΣX -graph M , the projection
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πX(M) to be the ΣX -graph obtained from graph M just by changing the labeling function
λM : VM → ΣX to the labeling function λπX(M) : VM → Σ defined by λπX(M) = πX ◦λM .

We have to prove that:

4.2.1.2 Lemma (Projection). For every alternating automaton A on the alphabet ΣX

there is an automaton πX(A) on the alphabet πX(ΣX) = Σ such that, for every ΣX-tree
M , M ∈ L(πX(A)) if and only if πX(M) ∈ L(A).

Moreover, if the automaton A is a closed, open, weak or Büchi automata, then so is
the automaton πX(A).

Proof. By applying Theorem 4.1.3.1, we can assume that the automaton

A = 〈Q,ΣX , q0, δ,Ω〉

is non deterministic.

By definition of non deterministic automata, for each state q ∈ Q, δ(q) is (equivalent
to) a formula of the form

δ(q) ≡
∧

a∈ΣX

a(r) → ϕq,a

with for every a ∈ ΣX ,

a(x) ≡
∧

p∈a

p(x) ∧
∧

p/∈a

¬p(x)

and ϕq,a ∈ CNT (Q).

Let define δX(q) to be the formula

δX(q) ≡
∧

a∈Σ

a(r) →
∨

b∈π−1
X

(a)

ϕq,b

We then define the automaton πX(A) to be πX(A) = 〈Q,Σ, q0, δX ,Ω〉. We claim that,
for every ΣX -tree M , M ∈ L(A) if and only if πX(M) ∈ L(πX(A)).

In fact, one can easily show that for every mapping ρ : VM → Q, ρ is a functional
accepting run of A on M if and only if ρ is a functional accepting run of πX(A) on πX(M).

�

This concludes the proof of theorem 4.2.1.1. The fact that the automaton πX(A) can
be a closed, open, or, respectively, Büchi automaton when the original (non alternating
!) automaton A is closed, open or, respectively, Büchi follows the fact that simulating
alternating the automaton A by a non deterministic automaton An can be made, as stated
in Theorem 4.1.3.1, preserving these complexity of acceptance conditions.

�

4.2.1.3 Theorem (Walukiewicz [181], J. and Lenzi [99]). The counting bisimulation
invariant fragment of MSO equals the counting mu-calculus.

Proof. Let ϕ be a counting bisimulation invariant MSO formula. Applying Theorem 4.2.1.1
above, there exists a (counting) automaton Aϕ and thus, by applying Theorem 3.2.3.1,
a counting mu-calculus formula αϕ such that, for every tree M , M |= ϕ if and only if
M |= αϕ.
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Now, since both formulas ϕ and αϕ (applying Lemma 3.2.4.1) are counting bisimulation
invariant, it follows, applying Theorem 1.3.3.4, that formulas ϕ and αϕ are equivalent on
arbitrary graphs.

Conversely, all counting mu-calculus formulas are, by definition, definable in MSO so
we are done.

�

4.2.2 Bisimulation invariance

We are now ready to prove a theorem analogous to Theorem 4.2.1.3 with bisimulation
in place of counting bisimulation.

4.2.2.1 Theorem (J. and Walukiewicz [104]). The bisimulation invariant fragment
of MSO equals the modal mu-calculus.

Proof. The remainder of this section is dedicated to the proof of this theorem.

4.2.2.2 Definition (Counter saturated formulas). Let α be a counting or modal
mu-calculus formula α. We define the formula α̂, called the counter saturation of for-
mula α, to be the modal mu-calculus formula obtained from the formula α by replacing
every counting modality �i or ♦i by the corresponding non counting modality � or ♦.

The formulas α and α̂ are semantically related as follows.

4.2.2.3 Lemma (Saturation lemma). For every infinite cardinal κ, for every model
M , M |= α̂ if and only if Mκ |= α.

Proof. Let M be a model and let t : VMκ

→ VM be the mapping that maps ω-indexed
path of VMκ

to its target in VM . Let also Aα = 〈Q,Σ, q0, δ,Ω〉 be the (flat) automaton
defined in the proof of Theorem 3.2.2.1 for the formula α. By definition of α̂, the (flat)

automaton Aα̂ = 〈Q̂,Σ, q̂0, δ̂, Ŵ 〉 defined in the proof of Theorem 3.2.2.1 for the formula α̂
can also be defined from the (flat) automaton Aα as follows: there is a bijection f : Q→ Q̂
such that f(q0) = q̂0, for every q ∈ Q, δ̂(f(q)) equals to the formula f̂(δ(q)) obtained from
the formula δ(q) by replacing every counting modality by a non counting modality and
every state q by its image f(q), and Ω(q) = Ω̂(f(q)).

Then it is sufficient to prove that that there is a winning strategy for the player P in
the game G(Aα̂,M) if and only if there is a winning strategy for the player P in the game
G(Aα,M

κ).

It occurs that the bijection f : Q→ Q̂ that maps every state q ∈ Q to state f(q) = q̂ ∈
Q̂, and the saturating morphism g : VMκ

→ V that maps every κ-indexed path p ∈ VMκ

to its target g(p) ∈ VM , induce a PE-morphism R from G(Aα,M
κ) to G(Aα̂,M) that

suffice, applying Lemma 2.3.2.2, to prove the result.

The PE-morphism R is defined to be the union of the set of pair of the player P

positions the form ((q, p), (f(q), g(p))) ∈ V
G(Aα,Mκ)
P ×V

G(Aα̂,M)
P with (q, p) ∈ Q×VMκ

, and

the set of pair of the player E positions the form (m, g ◦m ◦ f−1) ∈ V
G(Aα,Mκ)
E ×V

G(Aα̂,M)
E

with m : Q→ P(VMκ

).



4.2. MSO AND BISIMULATION INVARIANCE 65

The fact that R is a PE-morphism essentially follows from the following property of f
and g. For every (q, p) ∈ Q× VMκ

, for every m : Q→ P(VMκ

), if

〈p,m〉Mκ |= δ(q)

then

〈g(p), g ◦m ◦ f−1〉M |= δκ(f(q))

and, for every m : Q̂→ P(VM ), if

〈g(p),m〉M |= δ̂(f(q))

then

〈p, g−1 ◦m ◦ f〉Mκ |= δ(q)

If δ(q) is a conjunction, disjunction or an atomic predicate then this is just obvious. If δ(q)
is a counting modality of the form ♦nq

′ or �nq
′ for some integer n (hence δ̂(f(q)) is of

the form ♦f(q′) or �f(q′)), then the claim follows from the fact that, for each successor
v′ ∈ Succ(v) with v = g(p) in the graph M , the vertex p in the graph Mκ has infinitely
many (hence more than n) successors of the form p.k.v′ with k ∈ κ.

�

4.2.2.4 Corollary (J. and Walukiewicz [104]). For every infinite cardinal κ, MSO
and the modal mu-calculus are equivalent on the class of κ-expansions of graphs.

Proof. On trees, MSO and the counting mu-calculus are equivalent (see Theorem 4.2.1.1).
Now, on κ-expansions of graphs, since κ-expansion, up to isomorphism, are involutive, by
Lemma 4.2.2.3, the mu-calculus and the counting mu-calculus are equi-expressive.

�

Remark. Starting from a non deterministic counting automaton Aα with transition spec-
ification built with formulas of CNT (Q) of the form

∃xd iff(x) ∧
∧

i∈{1,···,k}

T (r, xi) ∧ qi(xi) ∧


∀zd iff(z, x) ⇒

∨

q∈Qz

q(z)




where x = x1, · · · , xk, possibly empty with k = 0, is a we obtain, by saturation, the modal
automaton Aα̂ with transition specification built with formulas of MDL(Q) of the form

∃x1, . . . , xk.
∧

i∈{1,···,k}

T (r, xi) ∧ qji(xi) ∧ ∀z
∨

q∈Qz

q(z)

i.e. the formula obtained just by dropping the d iff predicates. The resulting normaliza-
tion of mu-calculus formulas was studied in [104, 95] where an satisfiability algorithm was
proposed. Although not in the non deterministic normal form - Aα̂ is even not non alter-
nating ! - , the automaton Aα̂ satisfies the emptiness lemma (Lemma 4.1.4). In fact, the
formula α̂ has a model if and only if the game SatAα̂

is winning for the player P from the
initial position.
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4.3 Applications

In this section we review several applications of the counting or modal bisimulation
invariance characterization theorems.

In particular, the uniform interpolation is shown to hold for the counting or modal
mu-calculus. This leads to a generalization of a result obtained by D’Agostino and Hollem-
berg [2, 90] characterization of the modal mu-calculus by means of bisimulation quantifiers.

4.3.1 Quantified fixed point formulas

We consider here fixed point calculus extended by set quantifiers.

4.3.1.1 Definition (Quantified fixed point formulas). We defined the set of quanti-
fied fixed point formulas as the set built from counting (or modal) fixed point connectives
- with same construction rules - and, additionally, existential (or universal) set quantifiers.

Semantics of quantified fixed point formulas is defined as for fixed point formulas by
means of a translation in MSO with the extra translation rule, given any quantified fixed
point formula α, any set variable X,

ϕ∃Xα ≡ ∃Xϕα(r)

and
ϕ∀Xα ≡ ∀Xϕα(r)

4.3.1.2 Lemma. Quantified counting (resp. modal) formulas are strictly more expressive
than counting (resp. modal) formulas.

Proof. For the modal case, consider, the formula

∃X((♦X ∧ Y ) ∧ (♦¬X ∧ Y ))

It states that the root has two distinct successors in Y . This property is not invariant under
bisimulation. It follows that, applying Theorem 4.2.2.1, it is not definable in the modal
mu-calculus.

Observe that it is however equivalent to the counting formula ♦2Y .
For the counting case, consider the diamond properties, defined by formula

∀X((�(�X)) ∨ (�(�¬X)))

It states that there is a single vertex at distance two from the root. This property is
not counting bisimulation invariant. It follows that, applying Theorem 4.2.1.3, it is not
definable in the counting mu-calculus.

�

4.3.1.3 Lemma. Quantified counting or modal fixed point formulas are equally expressive.

Proof. Generalizing the above example, one can check that counting modalities can be
simulated by quantified non counting modalities.

�

Remark. On trees, quantified counting fixed formulas are equivalent to MSO since this
is already true for the counting mu-calculus that is less expressive.

However, on graphs, the exact expressive power of quantified fixed point formulas is
unknown.
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4.3.2 Uniform interpolation and bisimulation quantifiers

He consider a weaker notion of set quantification that is first defined in semantical
terms by means of the notion of uniform interpolant.

4.3.2.1 Definition. We say that the modal (resp. counting) mu-calculus has the uniform
interpolation property, when, for every formula α(X) of the modal (resp. counting) mu-
calculus, there is a formula ∃BXα(X) of the modal mu-calculus (resp. a formula ∃CXα(X)
of the counting mu-calculus) called the uniform interpolant of α in variable X such that,
for every formula β of the modal (resp. counting) mu-calculus, if

|=Pred∪{X} β → α(X)

then

|=Pred β → ∃BXα(X) (resp. |=Pred β → ∃CXα(X))

4.3.2.2 Theorem (D’Agostino and Hollenberg [2]). The modal or counting mu-calculus
has the uniform interpolation property.

Proof. Consider first the counting mu-calculus. Let α be a counting fixed point formula.

If we were only considering trees, ∃Xα is the uniform interpolant of the formula α. By
Theorem 4.2.1.1 and Theorem 3.2.3.1, ∃Xα is equivalent, on trees, to a counting fixed point
formula ∃Cα(X) that, by counting bisimulation invariance, is, in the counting mu-calculus,
the expected uniform interpolant of the formula α in X.

Now, the case of the modal mu-calculus is similar. In fact, for an arbitrary infinite
cardinal κ, MSO and modal mu-calculus sentences, on the class of graph κ-expansion of
Σ-graphs. It follows that a similar proof can be made for the modal mu-calculus proving
thus, that the modal mu-calculus formula ∃BXα actually defined to be the saturation

∃̂CXα̂ is, in the modal mu-calculus, the uniform interpolant of the formula α in X.

�

In the sequel, quantifier ∃C (resp. ∃B) are called counting bisimulation (resp. bisimu-
lation) quantifiers. They really act like set quantifiers in the following sense.

4.3.2.3 Lemma. For every counting (resp. modal) fixed point formula α with free variable
X, every Σ-graph M , M |= ∃Cα (resp. M |= ∃Bα) if and only if there exists a model M ′

counting bisimilar to M (resp. bisimilar to M) such that M |= ∃Xα.

Proof. Take M ′ = T (M) for the counting bisimulation case and M ′ =Mκ for the bisimu-
lation case.

�

One may ask what is the expressive of the language built out modalities and bisimula-
tion (or counting bisimulation) quantifiers. It occurs that, in order to built an interesting
language, one also need transitive modalities (as in PDL).

4.3.2.4 Theorem (Hollenberg [90]). The modal (resp. counting) mu-calculus is equiv-
alent to the language obtained from the constant predicates and closed under boolean opera-
tions, modalities (resp. counting modalities), transitive modalities, and bisimulation quan-
tifier (resp. counting bisimulation quantifier).



68 CHAPTER 4. BISIMULATION INVARIANCE IN MSO

Proof. By transitive modalities, we mean modality �∗ interpreted as follows: �∗α ≡
µX.(α ∧�X).

On trees (resp. κ-expanded trees), counting bisimulation (resp. bisimulation) quantifiers
have equi-expressive power. It follows that it suffices to avoid fixed points expression in
the translation of basic MS formulas in the proof of Theorem 4.2.1.1.

But this is easy since the two formulas that were translated in fixed point expressions
are L ⊆ L′ that can be defined by �∗(¬L ∨ L′), and T (L,L′) that can be defined by
�∗(¬L ∨�L′).

�

Remark. In the modal case, the above language is called BQL and is the closure of PDL
by bisimulation quantifiers [90].

4.3.3 Temporal logics and mu-calculus

Another main application of the bisimulation invariance characterization is that it
shows that the modal mu-calculus is (essentially) the most expressive program logic since
(most) program logics are (1) bisimulation invariant and (2) translatable in MSO. Gen-
erally, points (1) and (2) are fairly easy to check while, for instance with program logic
like CTL∗ or worse ECTL∗ [49], a direct translation into mu-calculus formulas (or into
alternating automata) can be difficult to provide.

4.4 References and notes

Bisimulation invariance was first considered by Van Benthem in FO [20, 19]. Invariance
under unwinding was considered in the context of MSO on graph by Courcelle[45, 47].
The bisimulation invariance characterization of MSO was first established by the author
in collaboration with Walukiewicz [104]. The counting bisimulation case was first stated
in [99], but it follows from Walukiewicz’s characterization of MSO on trees by means of
non deterministic automata with counting [181, 182].

Using similar techniques, especially reusing the notion of κ-unravelings, Rabinovitch
and Möller [129] extend a result of Hafer and Thomas [82] about the expressive power of
CTL∗ on the binary tree. The study of guarded fixed point logics [79, 75, 74, 73, 76] also
led the authors to a bisimualtion invariance characterization result [87, 77].

Bisimulation invariance is also considered in the context of descriptive complexity [143].
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Chapter 5

More in the monadic hierarchy

In the previous chapter, we have shown that the bisimulation invariant fragment of
monadic second order logic equals the mu-calculus. In this chapter, we show that this
relationship is richer than expected: as announced in [99], the first levels of the bisimulation
invariant fragment of the monadic quantifier alternation depth hierarchy of MSO equal, one
by one, the first levels of the fixpoint alternation hierarchy of the mu-calculus [32, 11]. More
precisely, Van Benthem first shows that the bisimulation invariant fragment of first order
logic (FO, the 0th level of the monadic hierarchy) equals modal logic (the 0th level of the
mu-calculus hierarchy). This equality holds up to the level Σ2 of the monadic hierarchy [99]
and we show that it cannot hold higher in the hierarchy.

The purpose of this chapter is to give a clear and complete proof of these correspondence
theorems. They are extracted from the published presentation [99, 100, 101] of these results.
Observe that, by Corollary 3.2.2.3, we already know that for every n ∈ IN , the mu-calculus
levelsNCn andNn are included into monadic Σ1 (resp. the mu-calculus levelsMCn andMn

are included into monadic Πn). The question we aim at answering in this section is thus to
characterize the expressive power of the bisimulation (or counting bisimulation) invariant
fragments of the various levels of the monadic quantifier alternation depth hierarchy.

5.1 Monadic Σ1

Here, we consider the languages of trees which are closed in the topological sense.
We prove that the languages of finitely branching trees accepted by modal or counting
automata that are closed in the topological sense, are exactly those definable by means of
(counting or modal) fixed point formulas of the nu-level.

5.1.1 Monadic Σ1 and closed languages

More precisely, we prove the following theorem.

5.1.1.1 Theorem (J. and Lenzi [100]). For every language L of finitely branching fi-
nite and infinite trees, the following properties are equivalent:

1. L is definable by an existential MSO sentence which is bisimulation (resp. counting
bisimulation) invariant over graphs,

70
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2. L is definable by an FO-closed existential MSO sentence which is bisimulation (resp.
counting bisimulation) invariant over graphs,

3. L is definable in the nu-level of the modal (resp. counting) mu-calculus,

4. L is the projection of a locally testable tree language and L is bisimulation closed
(resp. counting bisimulation closed),

5. L is closed in the prefix topology and recognizable by a modal (resp. counting) finite
state tree automaton,

6. L is recognizable by a modal (resp. counting) finite state tree automaton of index zero.

The equivalence between (1) and (6) is a non trivial logical characterization of languages
of infinite trees recognizable in a naive sense: by means of finite state automata without
any infinitary criterion. Observe that for finite structures such as finite words, trees or
grids, recognizability by finite state automata is captured by full existential MSO [174].

FO-closed existential MSO mentioned in (2) is obtained from existential MSO by allow-
ing arbitrary FO quantifiers to be inserted among existential set quantifiers. This fragment,
considered in [4], is interesting because it is more robust and, over arbitrary graphs, strictly
more expressive than existential MSO. For instance, it is closed under FO transformations.
Yet, the equivalence between (1) and (2) shows that it behaves like existential MSO as
far as bisimulation invariance is concerned. This result contrasts with the non equivalence
observed over trees without the bisimulation invariance requirement [13].

The equivalence between (1) and (3) extends van Benthem’s result on FO and modal
logic [20], and refines the result obtained by Walukiewicz and the author with MSO and
full mu-calculus [104].

The equivalence between (3) and (6) is a classical result (see e.g. [103, 181] for the
arguments).

The equivalences between (4), (5) and (6) are easy generalization of known results in
the case of the binary tree (see e.g [132, 169]). Proofs are given here for technical reasons
and for completeness.

5.1.2 Recognizable closed languages

The following lemma asserts that the restriction to finitely branching trees is harmless,
in the sense that recognizable languages are characterized by the finitely branching trees
they contain.

5.1.2.1 Lemma (Emerson and Street [167]). Two recognizable languages of trees are
equal if and only if they contain the same set of finitely branching trees.

The first step in the proof of Theorem 5.1.1.1 is then given by the following statement.

5.1.2.2 Theorem (J. and Lenzi [99]). For every MSO-definable language L of finitely
branching Σ-labeled trees, the following properties are equivalent:

1. L is closed in the prefix topology (resp. closed in the prefix topology and closed under
bisimulation),

2. L is recognized by a counting (resp. modal) automaton of index zero.
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Proof. Let L be an MSO-definable language. Applying Theorem 3.2.2.1, there is a modal
or counting (depending on whether L is bisimulation closed or not) flat automaton A =
〈Q,Σ, q0, δ,Ω〉 such that L = L(A).

Without loss of generality, we may assume that every state q ∈ Q is productive, i.e.
for every state q there is at least one tree which is recognized from this state. We may
also assume that any transition is productive, i.e. for every state q, every a ∈ Σ such that
δ(q, a) = a(r) ∧ δ(q) is satisfiable, there is at least one (finitely branching) tree Tq,a such
that the root of Tq,a is labeled by a and there exists an accepting run of A with initial state
q instead of q0 over the tree Tq,a. Since non-productive states or transitions cannot occur
in an accepting run, all such states or transitions can be deleted from A without altering
the accepted language L(A).

Let then A = 〈Q,Σ, q0, 0, δ〉 be the automaton obtained from A just replacing the
priority function Ω with the constant function 0.

To prove the equivalence, it is sufficient to prove that (over finitely branching trees)
L(A) is the topological closure L(A) of L(A).

We prove first that L(A) is closed. As the prefix topology can be defined by a metric,
it is sufficient to show that if {Mn}n∈IN is a sequence of trees in L(A) which converges to
a tree M then M ∈ L(A).

For each n ∈ IN , let ρn be an accepting run of A over Mn. Considering the sequence
{〈Mn, ρn〉}n∈IN of P(Pred ∪Q)-labeled trees, we know that its induced skeleton sequence
converges (since {Mn}n∈IN converges). Applying Theorem 1.3.4.2 shows that it has a con-
verging subsequence. The limit of that subsequence must be of the form 〈M,ρ〉 where M
is the limit of {Mn}n∈IN and ρ is a run of A over M . Now, as A is of index zero, the run
ρ is accepting hence M ∈ L(A).

To continue the proof, we observe that the inclusion L(A) ⊆ L(A) is immediate as
L(A) ⊆ L(A) and L(A) is closed. It remains thus to show that L(A) ⊆ L(A).

Let now M be a finitely branching tree in L(A) and let ρ be an accepting run of A over
M . It is sufficient to show that there is a sequence {Mn}n∈IN of (finitely branching) trees
in L(A) which converges to M . For each n ∈ IN , let us define Mn as the tree obtained from
the finite tree Pn(M) by attaching, under each leaf v of Pn(M), the tree Tρ(v),λ(v) (with a
root labeled λ(v) and accepted by the automaton A from the initial state ρ(v)).

By construction, each tree Mn belongs to L(A) and the sequence (Mn)n∈IN converges
to M which concludes the proof.

Strictly speaking, in the case where A is a modal automaton, we must consider in
this proof runs over the κ-expansions Mκ

n of the Mns for κ = |Q| instead of runs on the
Mns themselves. However, this makes no difference in the argument as the κ-expansion
permutes with limits.

�

This theorem gives the equivalence between (5) and (6) in Theorem 5.1.1.1. In the
binary case, a very similar result is obtained by Mostowski [130].

Observe that, as a consequence of this proposition, we also have:

5.1.2.3 Corollary. Every MSO-definable language of trees which is closed in the prefix
topology is definable by means of an MS formula of the form

∃XX0(r) ∧ ∀xϕα(x,X)
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where X0 is one of the variables occurring in X, and α(X) is a depth one counting formula.

Proof. Let L be an MSO-definable language of trees closed in the prefix topology. Applying
Theorem 5.1.2.2, let A be a counting (or modal) automaton of rank 0 recognizing this
language. The formula of the desired form is then obtained as follows. It expresses the
existence of an accepting run of the automaton A with each variable Xq (one per state q)
in X encoding the set of vertices labeled by state q (with X0 encoding the initial state)
and ϕα(x,X) describing the (local) transition specification.

�

Following the standard terminology [171], this corollary can be restated as follows :
closed MSO definable languages of infinite trees are projection of locally testable languages
of trees. Here, by locally testable, we mean languages that are defined by universally
quantified local FO-formulas.

The corollary 5.1.2.3 proves that both (5) or (6) imply (4) in Theorem 5.1.1.1.

To conclude the proof of Theorem 5.1.1.1 it remains to prove that language of finitely
branching trees defined by bisimulation (resp. counting bisimulation) invariant formulas of
EMSO (1) or CEMSO (2) are recognizable and closed in the prefix topology (5).

In order to do so, we prove in Section 5.1.3, by applying Łos Theorem to existential
second-order logic (ESO), that classes of graphs definable in ESO are closed under ul-
traproduct. We also prove that the ultraproduct of any converging sequence of finitely
branching trees is counting bisimilar with its limit. And in Section 5.1.4 we apply this
result to EMSO and CEMSO as both are fragments of ESO.

5.1.3 Ultraproducts

Let I be a set. An ultrafilter over I is a set U ⊆ P(I) of subsets of I such that I ∈ U ,
∅ /∈ U , and U is closed under the following rules: for every A and B ⊆ I, if A ∈ U and
A ⊆ B then B ∈ U ; if A and B ∈ U then A ∩ B in U ; and either A ∈ U or I \ A ∈ U .
An ultrafilter U is principal if it contains a finite set, and non-principal otherwise. Observe
that a non-principal ultrafilter over I contains all co-finite subsets of I.

With the help of the axiom of choice (or the Zorn Lemma) one can prove [41] that if I
is an infinite set then there is a non-principal ultrafilter over I.

Assuming I is an infinite set, let U be an ultrafilter over I, and let {Mi}i∈I be an
I-indexed collection of FO-structures over some relational vocabulary τ . The ultraproduct
ΠU

i Mi of {Mi}i∈I modulo U is defined as the quotient of the product structure ΠiMi

under the congruence ≃U defined, for every u and v ∈ dom(ΠiMi) by u ≃U v when the set
{i ∈ I : ui = vi} belongs to U . This construction is motivated by the following theorem.

5.1.3.1 Theorem (Łos). For every FO sentence ϕ over the vocabulary τ , ΠU
i Mi is a

model of ϕ if and only if {i ∈ I :Mi |= ϕ} belongs to U .

As this holds for an arbitrary vocabulary τ , it leads to the following corollary.

5.1.3.2 Corollary. For every formula ϕ of existential second-order logic on the vocabulary
τ , if {i ∈ I :Mi |= ϕ} ∈ U then ΠU

i Mi |= ϕ.

Proof. By standard syntactic arguments, we can always assume ϕ is of the form ∃Rψ(R)
with ψ(R) a FO formula over the vocabulary τ ∪ {R}. For each i ∈ I, let Ri be any
interpretation of R over dom(Mi) such that Mi |= ψ(Ri) if and only if Mi |= ∃Rψ(R).
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Assuming that {i ∈ I :Mi |= ∃Rψ} belongs to U and considering ψ (resp. {〈Mi, Ri〉}i∈I) as
a FO sentence (resp. an indexed collection of FO-structures) over the vocabulary τ ∪ {R},
Łos theorem can be applied to show that the ultraproduct ΠU

i 〈Mi, Ri〉 satisfies ψ(R). It
follows that, given RU the congruence closure of ΠiRi, by definition of an ultraproduct,
ΠU

i Mi |= ψ(RU ) and hence ΠU
i Mi |= ∃Rψ(R).

�

5.1.3.3 Lemma (J. and Lenzi [100]). Let {Mn}n∈IN be a sequence of finitely branch-
ing Σ-labeled trees. Assume that {Mn}n∈IN converges to a limit M ∈ FBT (Pred). Let
U be a non-principal ultrafilter over IN . The two structures M and Reach(ΠU

nMn) are
isomorphic.

Proof. Let h be a strictly positive integer. We show that Ph(M) and Ph(Π
U
nMn) are

isomorphic.

Since M is the limit of {Mn}n∈IN , there is a number nh such that, for every n ≥ nh,
Ph(Mn) and Ph(M) are isomorphic. As Ph(M) is finite, there is also a FO formula ϕh such
that, given any model N , N |= ϕh if and only if Ph(N) is isomorphic with Ph(M). Then,
as U is non-principal, the co-finite set {n ∈ IN :Mn |= ϕh} belongs to U . By applying Łos’
Theorem, we get ΠU

nMn |= ϕh, and hence Ph(Π
U
nMn) |= ϕh, so it is isomorphic to Ph(M).

Since this holds for arbitrary h > 0, this implies in particular that Reach(ΠU
nMn) =⋃

h Ph(Π
U
nMn) is finitely branching and thus, the result now follows from Lemma 1.3.4.1.

�

5.1.4 Applications to bisimulation invariance

As EMSO and CEMSO are both fragments of ESO, we have:

5.1.4.1 Lemma (J. and Lenzi [100]). Let L be a language of finitely branching trees
definable by a bisimulation or counting bisimulation invariant EMSO or CEMSO sentence.
Then L is both recognizable and topologically closed.

Proof. As bisimulation invariance implies counting bisimulation invariance, we only need
to prove this Lemma for counting bisimulation invariant sentences.

Let ϕ be a EMSO or CEMSO counting bisimulation invariant sentence. Let L be
the class of (finitely branching) trees that satisfy ϕ. Since both EMSO and CEMSO are
fragments of MSO, L is recognizable by Theorem 3.2.2.1.

Now, let {Mn}n∈IN be a sequences of finitely branching trees in L that converges
towards a finitely branching tree M . In order to conclude the proof, we have to show that
M ∈ L.

In order to do so, let U be a non principal ultrafilter over IN , and let N be the ultra-
product ΠU

nMn. By Corollary 5.1.3.2 the class of models of ϕ is closed under ultraproduct
so N satisfies ϕ. By Lemma 5.1.3.3, we also have that the limit M of limit of {Mn}n∈IN is
isomorphic to Reach(N) hence counting bisimilar to N . Now, since ϕ is counting bisimu-
lation invariant, this shows that M |= ϕ, that is, M ∈ L.

�

In other words, Lemma 5.1.4.1 proves that both (1) or (2) imply (5) in Theorem 5.1.1.1.
As the implications from (4) to (1) and (1) to (2) are immediate for syntactic reasons, this
concludes the proof of our main Theorem.
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5.2 Monadic Σ2

In this section, we show that the bisimulation invariant fragment of the monadic Σ2

level of the monadic hierarchy equals the νµ-level of the mu-calculus hierarchy also known
as the Büchi level.

We shall also mention that, in the binary tree, the main result presented in this report
has already been announced by Lenzi [115] with quite a long and technical proof argu-
ment. Later a quite simpler argument, but for a slightly weaker result, has been given by
Skurczynski [165]. This last result is weaker since it handles monadic Σ2 formulas over
the binary tree with FO kernels (called principal formulas) that are weaker than arbitrary
FO-formulas as we are using here.

Still, in the following generalization of the binary case, we adopt several arguments from
Skurczynski work and, quite distinctly, we handle FO-formulas by means of topological
considerations obtaining thus a simple though presumably unknown yet automata theoretic
bound on the expressive power of FO logic on trees.

At last, one shall observe that the monadic Σ2 case does not follow (say by simple
inductive argument) from the former characterization of the bisimulation invariant frag-
ment of monadic Σ1 [100] and section 5.1. In fact, the monadic Σ1 kernel of a bisimulation
invariant monadic Σ2-formula is not necessarily invariant. And, over trees, the bisimulation
invariant fragment of monadic Σ1 is strictly weaker than full monadic Σ1 as illustrated, for
instance, by the formula ∃xp(x) that is not bisimulation invariant.

5.2.1 Monadic Σ2 and Büchi languages

5.2.1.1 Theorem (J. and Lenzi [101]). The bisimulation (resp. counting bisimulation)
invariant fragment of the level Σ2 of the monadic hierarchy equals the νµ-level of the modal
(resp. counting) mu-calculus hierarchy.

Proof. This results is proved through the remainder of this section.

�

Observe that the νµ-levelN2 (orNC2) of the modal (or counting) mu-calculus is known,
in various settings, to be as expressive as (modal) tree automata with Büchi conditions [139,
103].

This result refines Rabin’s own logical characterization of Büchi definable properties of
the binary tree as projections of weak MSO properties [153].

As a side result, we also prove and use the fact that the languages of trees definable
by first-order formulas (FO-formulas) are boolean combination of topologically closed de-
finable languages, i.e. boolean combination of languages of the µ-level of the mu-calculus
hierarchy [100].

The proof goes as follows. We successively show that every FO-formula over trees is
equivalent to a weak non deterministic automaton. By projection, this shows that this
holds as well for monadic Σ1 formulas. Then, by complementation and simulation à la
Muller and Schupp, we prove that every monadic Π1 formula is equivalent to a Büchi
automaton and thus, by projection again, every monadic Σ2 formula as well. Then, the
counter-saturation technique that has been developed in [104] (see also Lemma 4.2.2.3)
can be applied in order to conclude the proof.
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5.2.2 Weak alternating automata

Weak automata are obtained from Büchi automata by restricting the structure of au-
tomata. They play a fundamental role in the analysis of the expressive power of FO and
monadic Σ1 on trees. They have been used as a characterization of weak MSO (or the
alternation free mu-calculus) on trees [135, 15, 130, 111].

5.2.2.1 Definition. A Büchi alternating automaton A = 〈Q,Σ1 × Σ2, q0, δ,Ω〉 is called
weak automaton if there is a partially ordered set I and a partition of Q, Q =

⋃
i∈I Qi,

such that, given F = Ω−1(0), F is a union of some of the Qi’s, and for every q ∈ Qi,
δ(q) ∈ FOL+(

⋃
j≤iQj): this means that along plays, the index decreases, or remains the

same.

The sets Qi included in F are called the accepting components of the automaton. The
other Qi’s are called rejecting components.

5.2.2.2 Lemma. The tree languages definable by weak alternating automata are closed
under complementation.

Proof. Let A = 〈Q =
⋃

i∈I Qi,Σ, q0, F, δ〉 be a weak alternating automaton. We define the
automaton B to be the automaton

B = 〈Q =
⋃

i∈I

Qi,Σ, q0, Q \ F, δd〉

where δd(q) is the dual formula of δ(q): δd(q) = ¬δ(q)[¬q/q : q ∈ Q].

By Lemma 3.1.3.3, the automaton B recognizes the complement of the language recog-
nized by the automaton A. It remains to show that the automaton B is a weak automaton.
In general, the winning condition of the dual of a Büchi automaton shall be a co-Büchi con-
dition, i.e. the dual condition of the Büchi condition. However, the weakness assumption
makes Büchi and co-Büchi condition equivalent.

More precisely, in the model-checking game, a play is winning for the Marker with the
Büchi condition when infinitely many accepting states occur. By duality, a play is winning
for the Marker with the co-Büchi condition when finitely many non accepting states occur.
In general, this makes that Büchi automata are not closed under complement. However,
under the assumption of weakness, there cannot be an infinite alternation of accepting and
rejecting states in the model-checking games, so Büchi or co-Büchi criteria are equivalent.

We conclude the proof by applying Lemma 3.1.3.3.

�

5.2.2.3 Lemma. The tree languages definable by weak non deterministic automata are
closed under union and intersection.

Proof. Here we cannot first state that alternating weak automata are closed under boolean
connectives and then apply simulation theorem (Theorem 4.1.3.1) since the simulating non
deterministic automata will not be, in general, weak automata.

The idea is to show closure under union (or intersection) by means of an explicit parallel
product construction.

More precisely, given two weak automata A = 〈Q =
⋃

i∈I Qi,Σ, q0, F, δ〉 and B =
〈Q′ =

⋃
j∈J Q

′
j ,Σ, q

′
0, F

′, δ′〉. we define the automaton C = 〈Q × Q′,Σ, (q0, q
′
0), F

′′, δ′′〉
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where F ′′ = F ×Q′ ∪Q× F ′ for the union (resp. F ′′ = F × F ′ for the intersection), and,
given π1 and π2 the projections of the Cartesian product Q × Q′, the transition function
defined in such a way that, for each (q, q′) ∈ Q × Q′, each a ∈ Σ, a marking m satisfies
δ′′((q, q′), σ) if the projected marking π1(m) satisfies δ(q, σ) and the projected marking
π2(m) satisfies δ′(q′, σ).

The automaton C does functionally recognize the union (resp. the intersection) of the
languages functionally recognized by B and B. Moreover, it is a weak automaton with
Q′′ =

⋃
(i,j)∈I×J Qi ×Q′

j with I × J ordered with the product order.
�

5.2.2.4 Lemma. The tree languages definable by weak non deterministic automata are
closed under projection.

Proof. The construction given in the proof of Lemma 4.2.1.2 for non deterministic automata
just applies similarly to weak non deterministic automata.

�

5.2.2.5 Theorem (Muller et al. [137, 103, 94, 111]). Any alternating weak (resp. closed
or open) automaton A is equivalent to a non deterministic Büchi (resp. non deterministic
closed or open) automaton An.

Proof. The proof follows form Theorem 4.1.3.1 since weak automata are particular cases
of Büchi automata.

�

Remark. Over binary trees, this result follows from Muller and Schupp’s construction [137].
For the modal mu-calculus, it follows from the construction given in [103]. It relies on stan-
dard techniques presented in a quite general setting in [94, 16]. It has also been proved
again in the modal case with slightly different techniques in [111].

5.2.3 Proof of the monadic Σ2 case

In this section, we prove Theorem 5.2.1.1 by a series of lemmas that easily follows from
the results presented in the previous sections.

5.2.3.1 Lemma (From FO to non deterministic weak). On arbitrary trees, every first
order formula is equivalent to a non deterministic weak automaton.

Proof. In order to do so, applying Gaifman theorem, we first show that FO-formulas
define languages of trees that are finite boolean closure of closed languages in the sense of
the prefix topology. Then, in turn, classical results of automata theory ensure that these
languages are definable by means of non deterministic weak automata.

Let d be a positive integer. A FO-formula ϕ(x) with a single free variable x is called
basic d-local when all quantifications in ϕ(x) are relativized to vertices at distance at most
d from x, i.e. vertices reachable from x by a undirected path of length at most d.

5.2.3.2 Theorem (Gaifman [64]). Let ϕ be a FO-formula on trees. There exist d ≥ 0
such that ϕ is equivalent to a finite boolean combination of formulas of the form

∃x1 · · ·xn
∧

i 6=j

d(xi, xj) > d ∧ ϕi(xi)
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where ϕ1(x), . . . , ϕn(x) are basic d-local formulas and d(xi, xj) > d means that there is
no undirected path between xi and xj of length smaller than or equal to d.

Then we have:

5.2.3.3 Corollary (J. and Lenzi [101]). Every FO-definable language of tree is a finite
boolean combination of closed languages.

Proof. The negation of a formula ϕ of the form

ϕ ≡ ∃x1 · · ·xn
∧

i 6=j

d(xi, xj) > d ∧ ϕi(xi)

defines a closed language. In fact, assume there is a sequence of trees {Tn}n∈ω that converges
towards a limit T . If Tn |= ¬ϕ for every n ∈ ω then T |= ¬ϕ. Otherwise, if T |= ϕ there is
a finite depth h such that the satisfiability of ϕ is witnessed by vertices that belong to the
h-prefix of T . Since the sequence {Tn}n∈ω converges towards T , there is also an N such
that for every n ≥ N , Tn and T have isomorphic h-prefix hence Tn |= ϕ which contradicts
the hypothesis.

�

Now, we have:

5.2.3.4 Lemma. FO-definable closed languages are definable by means of finite closed non
deterministic automata. And, similarly, FO-definable open languages are definable by finite
open non deterministic automata.

Proof. The case of closed languages is proved in [100] and section 5.1. By complementation
lemma (see Lemma 5.2.2.2), this also shows that FO-definable open languages are recog-
nizable by means of open alternating automata. But then, the Simulation Theorem 5.2.2.5
shows that these languages are then recognizable by means of open non deterministic
automata.

�

Since closed and open non deterministic automata are special case of non deterministic
weak automata this, by applying also Lemma 5.2.2.3, concludes the proof of Lemma 5.2.3.1.

�

Remark. We could have given an explicit construction of such an automaton. In fact,
from Gaifman normal formal form, it is quite an easy exercise. Remind however that the
satisfiability problem for a FO-formula on tree is non elementary. Hence, the automaton
translation of a FO-formula is also non elementary.

Then we prove:

5.2.3.5 Lemma (From Π1 to weak). On arbitrary trees, every monadic Π1 formula is
equivalent to a weak automaton.

Proof. Since weak non deterministic automata are closed under projection
(Lemma 5.2.2.4) we know, by applying Lemma 5.2.3.1 that languages definable by monadic
Σ1 formulas are recognizable by means of alternating weak automata. Then, applying
Lemma 5.2.2.2 we conclude the proof.

�

Now we have:
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5.2.3.6 Lemma (From Σ2 to Büchi). On arbitrary trees, every monadic Σ2 formula
is equivalent to a Büchi automaton.

Proof. By applying Lemma 5.2.3.5, every Π1 formula is equivalent to a weak alternating
automaton. So, by applying Simulation Theorem 5.2.2.5, it is also equivalent to a non
deterministic Büchi automaton. Now, closure under projection (Lemma 4.2.1.2) concludes
the proof.

�

We prove then the analogous of Theorem 5.2.1.1 for counting bisimulation.

5.2.3.7 Theorem (J. and Lenzi [101]). The counting bisimulation invariant fragment
of monadic Σ2 equals the νµ-level of the counting mu-calculus.

Proof. Since any νµ-formula of the counting mu-calculus is equivalent to a (counting bisim-
ulation invariant) monadic Σ2 formula, it is sufficient to prove the converse.

Let ϕ be a monadic Σ2 formula counting bisimulation invariant.

First, by 5.2.3.6, we know that, over trees, the formula ϕ is equivalent to a Büchi
automaton. By applying Theorem 3.2.3.1 it is thus equivalent, over trees, to a νµ-formula
α of the counting mu-calculus.

Since both ϕ and α are counting bisimulation invariant, by Lemma 3.2.4.1, we conclude
that they are equivalent on arbitrary models.

�

For bisimulation invariance, we have:

5.2.3.8 Lemma (Saturation). For arbitrary infinite cardinal κ, on κ-expansions of trees
(resp. on trees), every monadic Σ2 formula is equivalent to a modal Büchi automaton (resp.
a counting Büchi automaton).

Proof. Let ϕ be a monadic Σ2 formula. By Lemma 5.2.3.6, over κ-expansions, the formula
ϕ is equivalent to a Büchi automaton. But, following Lemma 4.2.2.3, on κ-expansions,
Büchi automata are equivalent to modal Büchi automata.

�

Proof Theorem 5.2.1.1 (end). This concludes the proof of Theorem 5.2.1.1. In fact,
every modal (resp. counting) νµ-formula is equivalent to a bisimulation invariant (resp.
counting bisimulation) monadic Σ2 formula, it is sufficient to prove the converse.

Let ϕ be a monadic Σ2 formula bisimulation invariant.

First, by Lemma 5.2.3.8, we know that, over κ-expansions of trees, the formula ϕ is
equivalent to a modal Büchi automaton. By applying Theorem 3.2.3.1 it is thus equivalent,
over trees, to a νµ-formula α of the modal mu-calculus. Then, by Lemma 3.2.4.2 they are
equivalent on arbitrary models. The counting bisimulation invariant case is analogous.

�

5.3 Beyond monadic Σ2

After the two last characterization of the bisimulation invariant fragment levels of the
monadic hierarchy, one may ask if their is a similar correspondence for higher levels.



80 CHAPTER 5. MORE IN THE MONADIC HIERARCHY

5.3.1 Bisimulation invariance in monadic Σ3

5.3.1.1 Theorem (J. and Lenzi [99]). For each integer k > 2 there exists a bisimula-
tion invariant formula of monadic Σ3 that does not belong to the kth level of the mu-calculus
hierarchy.

Proof. From [32, 33], we know that, given an integer k, expressing the fact that a position
in an arbitrary parity game with sets of parity indices [0, k] is winning for the player P
cannot be done with any mu-calculus formula of the level Nk. From [11], we know that
this is still the case restricted to games of degree two.

Observe that in monadic second order logic, this set of winning positions may also be
difficult to define. In fact, it somehow requires, at least implicitly, to check the existence
of a (positional) strategy for the player P which is winning for every plays starting in the
distinguished position. And a positional winning strategy is defined are a peculiar set of
edges. In general, edge set quantification is not even definable in MSO.

Still we prove Theorem 5.3.1.1 by encoding any binary game G with priorities [0, k−1]
into a bisimulation closed class of game graphs CG (on a more complex signature), called
{l, r}-games, in such a way that the initial position in G is winning for player P if and
only if the initial position of any graph G′ ∈ CG is winning for the player P .

More precisely:

5.3.1.2 Definition ({l, r}-games). Given Predk defined by Predk = {pl, pr, p0, · · · , pk},
the class of {l, r}-games graphs with k-priorities is defined to be the class of P(Predk)-
graph M such that:

1. {pMl , p
M
r } is a partition of the set of vertices reachable from rM ,

2. {pM0 , · · · , p
M
k } is also a partition the set of vertices reachable from rM .

The game, from the initial position rM , is played by the player P and E as follows: from
any vertex u reachable from the root,

1. the player P chooses x ∈ {l, r},

2. the player E answer by choosing some v ∈ Succ
M (u) such that x ∈ λM (v),

and the play go on from the new position v.

An infinite play is thus a infinite path and parity conditions, encoded by the disjoint
predicates p0, . . . , pk, applies to define the winner.

Observe that the class of {l, r}-game with k + 1 priorities is bisimulation closed and
definable in N1.

Moreover:

5.3.1.3 Lemma. The class of {l, r}-game with k+ 1-priorities, such that the initial posi-
tion is winning for the player P , is definable in (the bisimulation invariant fragment of)
monadic Σ3.

Proof. Since {l, r}-games are (encoding of) parity games, one may only check the existence
of positional winning strategy. Now, for this, it suffice to select, by means of an existentially
quantified set X, all vertex from which the player P plays, say, l. Checking then that the
resulting strategy is winning amount to check that the minimal parity condition on any
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cycle reachable from the root when the player P follows the strategy given by set X is
even.

It shall be clear that this can be defined by means of a monadic Π2 formula. More pre-
cisely, we show that the converse property, stating that the strategy allows a non accepting
path, can be defined by the following monadic Σ2 property.

In fact, it amount to check that there is a singleton Px = {x} with odd priority
2n+ 1 ∈ [0, k] such that the following property holds

µY.♦XY ∨ (Px ∧ ♦XµZ.Pk≥2n+1 ∧ (♦Z ∨ Px))

with
♦XY ≡ (X → (♦Y ∧ Pl)) ∨ (¬X → (♦Y ∧ Pr))

and Pk≥2n+1 =
∨

k≥2n+1 Pk. More precisely, this N1 definable property check that there is

a path computable with the player P strategy defined by set X, from the source rM to x,
and then there is a cycle from x to x, again compatible with the player P strategy, that
only contains vertices of priority higher or equal than 2n+ 1.

�

Observe now that any binary game G with priorities [0, k] can be encoded into an
equivalent {l, r}-game G′, with two successors per vertex, one labeled by l, the other label
by r. Moreover, solving the game G equivalently amounts to solve the game G′ or even
any other {l, r}-game G′′ in the bisimulation class CG of G′.

Now, any fixed-point formula that define the class of winning {l, r}-games defines, when
restricted to these encodings, the class of (encoding of) winning binary games. Since this
formula can easily be translated into a fixed point formula with same complexity that solve
binary games, Arnold’s result [11] applies, telling us that this formula cannot belong Nk.

�

In other words, no other equivalence similarly relates levels of the mu-calculus hierarchy
with levels of the monadic hierarchy.

5.3.2 The monadic complexity of the mu-calculus

The question whether the mu-calculus is equivalent to the bisimulation invariant frag-
ment of monadic Σk, for some integer k > 2, remains, strictly speaking, open. However, the
following theorem, which is a consequence of the work of Courcelle [46] who shows that,
on a quite general class of graphs, this is already true with monadic Σ3.

5.3.2.1 Theorem (J. and Lenzi [99]). Over the class of graphs of bounded degree (or
bounded tree-width) every mu-calculus formula can be translated into a monadic Σ3 formu-
las.

Proof. The proof of Theorem 5.3.2.1 is also almost done. Indeed, from the proof of previous
lemmas it is clear that with one existential quantification over sets of edges the winning
position for the player P can be expressed as a monadic Σ3 unary predicate. But it also
follows from Lemma 3.2.2.1 that checking a fixpoint formula α on a graph M can be
done via checking the existence of a winning strategy in G(Aα,M). This model-checking
game can be defined, by means of monadic Σ1 transduction[43], on graph M itself. And,
if the input graph is of bounded degree (or bounded tree-width) then the resulting parity
game is also of bounded degree (or bounded tree-with). Now Courcelle shows that over
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graphs with bounded degree (or tree-width) quantification over edges can be “simulated”
by quantifications over vertices via, again, a monadic Σ1 transduction. Altogether, this
says that over graphs of bounded degree (or bounded tree-width) mu-calculus formulas
can be translated into monadic Σ3 formulas. This concludes the proof.

�
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Chapter 6

The finite model case

In 1974 R. Fagin proves that the properties of structures which are in NP are exactly
the same as those expressible by existential second order sentences, known also as Σ1

1

sentences, i.e. sentences of the form: there exist relations R such that ϕ, where R is a
relation symbol (possibly of high arity) and ϕ is a first order formula. This result gives
birth to an all research area : finite model theory.

In this research field, monadic Σ1 on finite graphs (also called monadic NP in this
context) is also studied. The reason is the belief that it can serve as a training ground for
attacking the “real problems” like whether NP equals co-NP. In fact, some NP -complete
decision problem on graphs are definable in monadic Σ1. And it is not hard to show [61]
that monadic NP is different from monadic co-NP. A much stronger result has even been
proved by Matz and Thomas [125]. They show that the monadic hierarchy, the natural
monadic counterpart of the polynomial hierarchy, is strict (a property is in the k-th level
of the monadic hierarchy if it is expressible by a sentence of monadic second order logic
where all the second order quantifiers are at the beginning and there are at most k − 1
alternations between second order existential and second order universal quantifiers).

In this chapter, we are interested in studying the bisimulation invariant fragment of
MSO on finite graphs. Though we do not obtain strong characterization as in the case of
arbitrary graphs, we still achieved several results that show that the situation on finite
graphs is radically different from the former situation.

We show that, on finite representation of words, the bisimulation invariant fragment of
monadic Σ1 equals the bisimulation invariant fragment of full monadic second order logic
and capture regular (words) languages. This work is a detailed version of a joint work with
Anuj Dawar [50]. This characterization extends to a counter-example of the property that,
in the finite, the bisimulation invariant fragment of monadic Σ1 would be equal to the
first level (NC1) of the counting mu-calculus, a result established for arbitrary finite and
infinite graphs in section 5.1.

Studying then the notion of tiling systems or, rather graph acceptors, that generalizes
the notion of automata on finite strings or trees [48, 173], we established various properties
for these devices when they recognize bisimulation closed classes of graphs. This is extracted
from a joint work with Anuj Dawar [50].

Last, we investigate some graph transformation that do provide separation results in
the boolean or FO-closure of the monadic alternation depth hierarchy. This is extracted

84
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from a joint work with Jerzy Marcinkowski [102].

6.1 On finite representations of words

In mathematical logic, an infinite word (an ω-word) is often encoded as a labeling of
the positive integers; the ith letter of the word being defined as the color of integer i − 1
in the encoding.

Now, everybody understands that if an infinite word is ultimately periodic (of the form
u.vω), then it can be encoded into a finite graph: a finite path (encoding prefix u) followed
by a cycle (encoding period v). As a consequence, any property of (ultimately periodic)
words can be rephrased and verified on the finite encodings of these words (called lassos
in the sequel).

Observe that, as opposed to the infinite case, finite representation of eventually periodic
words do have a distinguished vertex, the knot of the lasso, that can be used as sort of
a pivot in order to express words properties. The purpose of this section is to study the
related increase of expressiveness in logic.

6.1.1 MSO on finite encodings of words

Here, we study monadic second order logic on finite representation of ultimately periodic
words.

6.1.1.1 Definition. Given a language of infinite words L ⊆ Σω, let define the kernel of
language L to be to be the set of all ultimately periodic words of L,

kern(L) = {u.vω : u, v ∈ Σ+, u.vω ∈ L}

Our main result is:

6.1.1.2 Theorem (Dawar and J. [50]). A bisimulation closed class of finite unary graphs
C is definable by a MSO-sentence ϕ if and only if there is an ω-regular languages L ⊆ Σω

such that LC = kern(L).

Moreover, such a formula ϕ can always be choose in the monadic Σ1 level of the monadic
second order logic hierarchy.

In terms of descriptive complexity:

6.1.1.3 Corollary. Restricted to bisimulation invariant properties on finite unary graphs,
the monadic quantifier alternation depth hierarchy collapses to the level monadic Σ1.

We first show that for every regular languages of infinite words, there is an existential
monadic formula that defines, in the finite, the set of all graph encodings of the ultimately
periodic words of this language.

6.1.1.4 Theorem (Dawar and J. [50]). For every regular ω-language L ⊆ Σω there is
a monadic Σ1 formula ϕL such that for every finite unary graph M , M |= ϕL if and only
if wM ∈ L.

Proof. Let L be an ω-regular language.
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Observe first, that there is a nondeterministic finite Büchi automaton

AL = 〈Q, q0, δ, F 〉

that recognizes L and such that, for every infinite word of L of the form u.vω, there is an
accepting state q ∈ F such that, there is a path in AL from q0 to q reading u, and a cycle
in AL from q to q reading v. In fact, following [146], such an automaton can be taken as
the Büchi automaton one canonically build out of an ω-semigroup recognizing L.

Now, the formula ϕL can be defined as follows: there is a collection of disjoint sets
Xq, one per state q ∈ Q, such that: (i) r ∈ Xq0 ; (ii) for each q, for each vertex x ∈ Xq,
x has a single successor y and there is a state q′ ∈ δ(λ(x)) such that y ∈ Xq′ with
λ(x) = {p ∈ Pred : p(x)holds}; and (iii) any element with two predecessors in the union
of the Xqs belongs to some Xq with q ∈ F .

The formula ϕL defined in such a way (1) does check that there is a unique path from
the root, (2) necessarily defines on this path a labeling that is a run of the automaton AL,
and (3), since M is finite, there is a vertex on this path with two predecessors labeled by
an accepting state that ensures this run is accepting.

�

One may ask whether a converse of this theorem holds. More precisely, given an MSO-
formula ϕ, let Lϕ be the language of all infinite words encoded by the unary finite models
of ϕ, i.e.

Lϕ = {wM ∈ Σω :M |= ϕ,M unary and finite}

One may ask, for instance, if there is some ω-regular language L ⊆ Σω such that Lϕ =
kern(L); recall that, by construction, all words in Lϕ are ultimately periodic !

The answer is no; there are MSO-sentence ϕ on unary graphs such that Lϕ is not the
kernel of an ω-regular language. In fact, on the alphabet Σ = {a, b}, take the formula ϕ
that defines unary graphs such that, on the unique path from the root, there is a single b
on the cycle. One has Lϕ = {am.(b.an)ω ∈ Σω : m ∈ IN, n ∈ IN} but, by pumping lemma,
for every ω-regular language L such that Lϕ ⊆ L, there are some integers m, n and p > n
such that am.(b.an.b.ap)ω ∈ L henceforth Lϕ 6= kern(L).

We shall prove below that, provided the formula ϕ is counting bisimulation invariant
in the finite, the answer to this question becomes positive.

6.1.2 The monadic second order theory of lassos

The remaining of the proof of Theorem 6.1.1.2 is presented here. It goes through the
study, and characterization, of monadic second order logic on unary graphs that are canon-
ical coding of ultimately periodic words. These graphs are called lassos.

6.1.2.1 Definition (Lassos). A unary graph M is called a lasso when the root of M
has no predecessor and every other vertex but a single one (called the knot) has a single
predecessor while the knot vertex has two predecessors.

Observe that any finite unary graph if bisimilar to a lasso. Moreover, any lasso M is
completely characterized by the two non empty finite words u and respectively v (in the
alphabet Σ) that are described by the (acyclic) path emanating from the root to the knot
of M (excluding the knot) and respectively by the cyclic path emanating from the knot
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to itself (excluding it when returning to it). Writing Mu,v for such a lasso we do have
the following characterization of MSO on lassos. This characterization follows from the
Decomposition Theorem proved for MSO in [122].

6.1.2.2 Theorem (Shelah [163], Makowski and Rave [122]). For every monadic for-
mula ϕ, there exists a finite set of pairs of regular languages {(Ui, Vi) ⊆ Σ+ ×Σ+}i∈I such
that:

Mu,v |= ϕ iff (u, v) ∈
⋃

i∈I

Ui × Vi ((u, v) ∈ Σ+ × Σ+)

Proof. The mapping that maps every pair of non empty finite words (u, v) ∈ Σ+×Σ+ to
the lasso Mu,v is a FO-definable transduction. It follows, by Decomposition Theorem [122]
that there is a finite set of pairs of MSO-formulas {(ϕi, ψi)}i∈I over finite Σ-words such
that for every two words u and v ∈ Σ+,

Ku,v |= ϕ

if and only if there is some i ∈ I such that u |= ϕi and v |= ψi. By applying Büchi theorem,
for every i ∈ I, the MSO-formulas ϕi and ψi do define regular languages Ui and Vi. This
conclude the proof of the theorem.

�

Remark. In particular, Lϕ ⊆ kern(
⋃

i∈I Ui.(Vi)
ω), but the inclusion may be strict.

In fact, let ϕ be the formula that check, on the two letter alphabet Σ = {a, b}, that
cycles of lassos are uniformly colored. We do have Lϕ = (a + b)∗(aω + bω). But ϕ is also
characterized by the languages U = (a+ b)+ and V = a+ + b+ with U.V ω = (a+ b)ω.

On a more conceptual point of view, the inclusion may be strict for the following reason.

6.1.2.3 Lemma. Let U and V be two languages of finite non empty words and let w ∈
U.V ω. Word w is ultimately periodic if and only if there is u0 ∈ U and v1, . . . , vm, vm+1,
. . . , vm+n ∈ V such that

w = u0.v1. · · · .vm.(vm+1. · · · .vm+n)
ω

i.e. w = u.vω with u ∈ U.V + and v ∈ V +.

In particular, given some i ∈ I, u ∈ Ui.V
+
i and v ∈ V +

i , nothing ensures that Mu,v |= ϕ
(equivalently u.vω ∈ Lϕ).

So far, looking for the converse of theorem 6.1.1.4, we haven’t considered invariance
under counting bisimulation.

6.1.2.4 Theorem (Dawar and J. [50]). For every MSO-formula ϕ, counting bisimulation-
invariant on finite graphs and true only on unary graphs, there exists a finite set of pairs
of regular languages (Dt, Et) ⊆ Σ+ × Σ+ such that, for every lassos Mu,v :

Mu,v |= ϕ iff ∃r ∈ Dt.E
+
t , ∃s ∈ E+

t such that u.vω = r.sω

Proof. Let ϕ be a formula as above and let (Ui, Vi)i∈I be the regular languages obtained
by applying Theorem 6.1.2.2.

.
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6.1.2.5 Lemma. For every i ∈ I, every (u, v) ∈ Ui × Vi, there is a triple t = (j, r, s) ∈
I × Σ+ × Σ+ such that:

1. r.sω = u.vω (hence Mu,v and Mr,s are counting bisimilar),

2. for every n > 0, r.sn ∈ Uj and sn ∈ Vj.

Proof. Let i, u and v be as above. One has Mu,v |= ϕ. By invariance of ϕ, for each
integer k > 0, one also has Mu.vk,vk |= ϕ. Hence, applying Theorem 6.1.2.2 for each integer

k > 0 there is some ik ∈ I such that (u.vk, vk) ∈ Uik × Vik . Since this is true for infinitely
many k and I is finite, there is some j ∈ I such that j = ik for infinitely many k.

Moreover, since Uj and Vj are regular, this implies that there is some p > 0 such that
j = ip.n for every n > 0. We conclude the proof by taking r = u.vp and s = vp.

�

For every such a triple t = (j, r, s), called special, let define the languages

Dt = [r]Uj
.([s]Uj

∩ [s]Vj
)

and

Et = ([s]Uj
∩ [s]Vj

)

with the congruence class [w]L of a finite word w ∈ Σ+ with respect to a language L ⊆ Σ+

defined to be the set of words

[w]L = {w′ ∈ Σ+|∀u, v ∈ Σ∗, u.w.v ∈ L⇔ u.w′.v ∈ L}

By construction, since Uj and Vj are regular languages, then Dt and Et are also regular
languages. Also, even though there are infinitely many special triple, there are still finitely
many Dts and Ets. In fact, when L is regular there are finitely many (regular) languages
of the form [w]L for w ∈ Σ∗.

Moreover:

6.1.2.6 Lemma. For every special triple t = (j, r, s), r.s ∈ Dt, s ∈ Et, Dt.E
+
t ⊆ Uj and

E+
t ⊆ Vj.

Proof. Let t = (j, r, s) be a special triple as above.

Recall first that, for every u and v ∈ Σ+, every L ⊆ Σ+, we have [u]L.[v]L ⊆ [u.v]L. It
follows that:

Dt.E
+
t ⊆

⋃

n>0

[r.sn]Uj

and

E+
t ⊆

⋃

n>0

[sn]Vj

Moreover, we know that for every u ∈ Σ+ and L ⊆ Σ+, if u ∈ L then [u]L ⊆ L. So we
conclude the proof of the lemma by observing that, following Lemma 6.1.2.5, we do have,
for every n > 0, r.sn ∈ Uj and sn ∈ Vj .

�

Theorem 6.1.2.2 and Lemmas 6.1.2.5 and 6.1.2.6 conclude the proof of Theorem 6.1.2.4

�
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6.1.2.7 Corollary. For every MSO-formula ϕ, counting bisimulation-invariant on finite
graphs and true only on unary graphs, there exists a regular languages L such that Lϕ =
kern(L).

Proof. Take L =
⋃

t∈T Dt.(Et)
ω as given in Theorem 6.1.2.4.

Let us show first that Lϕ ⊆ kern(L). Let w ∈ Lϕ. By definition, there is u and v
such that u.vω = w and Mu,v |= ϕ. By applying Lemma 6.1.2.5, this means that there is
t = (j, r, s) such that u.vω = r.sω with r.s ∈ Dt and s ∈ Et hence w = r.sω ∈ Dt.E

ω
t .

Conversely, let w be an ultimately periodic word in L, i.e. w ∈ kern(L). By definition
of L, this means that there is a special triple t = (j, r, s) such that w ∈ Dt.(Et)

ω. By
applying Lemma 6.1.2.3, this means that w = u.vω with u ∈ Dt.E

+
t and v ∈ E+

t . By
applying Lemma 6.1.2.6, this means w = u.vω with u ∈ Uj and v ∈ Vj , hence Mu,v |= ϕ
and thus w ∈ Lϕ.

�

6.1.3 Application to bisimulation invariance in the finite

As a corollary, putting together the two theorem above:

6.1.3.1 Corollary. Every MSO-formula counting bisimulation invariant on finite unary
graphs is equivalent to a monadic Σ1 formula.

Moreover, since class of unary graphs equivalent to regular languages are definable, within
the class of unary graphs, in the (counting or modal) mu-calculus:

6.1.3.2 Corollary. The counting bisimulation invariant fragment of monadic Σ1 on finite
unary graphs is equivalent on finite unary graph to the mu-calculus Lµ.

Thus, in restriction to finite unary graphs, we get that monadic Σ1 is not only not
equivalent to N1 the first alternation level of Lµ, but it is equivalent to all of Lµ. This
result is rather unexpected since, on arbitrary (finite or infinite) unary graphs, the counting
bisimulation invariant fragment of monadic Σ1 only induces topologically closed regular
languages [100], i.e. languages definable by finite Büchi automata with only accepting
states. This is another striking illustration that finite model theory can be dramatically
different to the infinite variety.

Observe however that there is no hope to extend Corollary 6.1.3.2 to arbitrary finite
graphs.

In fact, the mu-calculus formula

µX.(p ∨ (¬p→ �X))

that defines the set of vertices from which there is a (directed) path to a vertex where p
holds, is bisimulation invariant but not definable by a mon. Σ1formula. Otherwise, this
would imply that directed reachability would also be definable in mon. Σ1and that is not
the case [3].

6.2 Monadic Σ1 on finite graphs

It is an open question whether a version of the expressive completeness result stated in
Theorem 4.2.2.1 is true if we restrict ourselves to finite structures. That is, is it the case
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that every sentence of MSO that is bisimulation-invariant on finite structures is equivalent,
again on finite structures to a sentence of modal mu-calculus ?

This statement has a weaker hypothesis and conclusion than the original theorem and
is therefore not a consequence of it. It has been the subject of much recent investiga-
tion. The corresponding finite versions of the equivalence between monadic Σ1 and N1 for
bisimulation invariant properties and of MSO and the counting mu-calculus for counting
bisimulation also remain open. One related result that is known to carry over into the
finite is the theorem of van Benthem[20] that every first-order definable property that is
invariant under bisimulation is definable in propositional modal logic. It has been shown by
Rosen [155] that this statement is still true when we restrict ourselves to finite structures.

This leads us to consider graph acceptors [173], which are known to capture monadic
Σ1 on finite structures. We show that when the properties concerned are bisimulation
invariant, simple graph acceptors suffice. More precisely, we show that if a sentence ϕ
of mon. Σ1 is invariant under bisimulation then there is a class of structures, including
representatives of all bisimulation classes, on which ϕ is characterized by a tree-like graph
acceptor of radius one (these terms are made precise below).

One might expect that this normal form could be further refined so that the tiles are
what we call forward looking. This would establish that bisimulation invariant properties
of mon. Σ1 can be expressed in N1. However, such a methodology would also yield the
result for the counting case, which is refuted by the counterexample obtained on unary
structures (see Corollary 6.1.3.2).

6.2.1 Graph acceptors

It is known[64, 161] that monadic Σ1 formulas can only define local properties. Indeed,
such formulas can be characterized by graph acceptors [173], which are a generalization of
automata operating on finite graphs rather than finite strings or trees.

6.2.1.1 Definition (k-local FO-formulas). Given a positive integer k, we say an FO-
formula ϕ is a k-local formula around a first-order variable x if it is equivalent to the
formula obtained from ϕ by restricting every quantifier in ϕ to the k-neighborhood of
x, i.e. replacing every subformula of the form ∀yψ (resp. ∃yψ) in ϕ by one of the form
∀y(d(x, y) ≤ k) → ψ (resp. ∃y(d(x, y) ≤ k) ∧ ψ). A local formula is one that is k-local for
some k.

Remark. Note for every modal (or counting modal) formula α of modal depth k, the
FO translation ϕα(x) is k-local around x. Indeed, it is k-local and forward-looking, in
that we can restrict the quantifiers to the directed k-neighborhood by replacing ∀yψ by
∀y(dd(x, y) ≤ k) → ψ, etc.

Adapting the terminology of Thomas [48, 173]:

6.2.1.2 Definition (graph acceptors). A graph acceptor A is a pair

A = 〈Q,ϕ(x)〉

where Q is a finite set of states, and ϕ(x) is a FO-formula local around x built on the
vocabulary of Σ-graphs extended with state predicates of Q.
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An accepting run of graph acceptor A on Σ-graph M is a mapping ρ : VM → Q
such that the Σ × Q-labeled graph 〈rM , ρ−1〉M satisfies the tiling constraint ϕ(x), i.e.
〈rM , ρ−1〉M |= ∀xϕ.

The set of finite graphs on which A has an accepting run is written L(A).

When the tiling constraint is k-local, we say that k is the radius of the graph acceptor.
When the tiling constraint is equivalent to a modal formula (with forward and backward
modalities), we say that the graph acceptor is tree-like. One can check that when no
backward modalities occur in the tiling constraint, a graph acceptor is just a closed (modal
counting) alternating tree automaton.

When a sentence is (counting) bisimulation invariant, its truth in a model only depends
on the submodels induced by the vertices reachable from the root. The following proposition
is a consequence.

6.2.1.3 Lemma. Every (counting) bisimulation invariant sentence ϕ of mon. Σ1 is equiv-
alent, on the class of finite structures, to a graph acceptor.

Proof. Immediate consequence of Theorem 3.4 in [161].

�

Remark. Defining graph acceptors that characterizes monadic Σ1, Thomas had to the
definition above some occurrence constraint [173], i.e. extra constraints stating that some
number of disjoint k-neighborhoods satisfies extra FO local properties. With the above
definition, following Schwentick and Barthelman result, we do only characterize properties
of monadic Σ1 that only depends on the subgraph of M connected to its source rM .

6.2.1.4 Lemma (Schwentick and Barthelman[161]). Every formula α of NC1 is equiv-
alent to a graph acceptor.

Proof. Let Aα be a closed flat automaton equivalent to α (as given, say, by Theorem 3.2.2.1).
For arbitrary graph M , one can express the existence of a positional winning strategy
(without infinitary condition since α ∈ NC1) on game G(Aα,M) by the existence of a
labeling ρ : VM → P(QAα) such that, for every v ∈ VM and every q ∈ ρ(v), one has
〈v〉M , ρ

−1 |= δAα(a). It suffices then to take for tiling constraint the formula ϕβ(x) where
β =

∧
q∈QAα δ

Aα(q). Since the automaton Aα is flat, the tiling constraint is 1-local (and
forward tree-like).

�

6.2.2 Bisimulation invariant graph acceptors

Now, our aim is to push the construction that transforms a (counting) bisimulation
invariant graph acceptor into a tree automaton as far as it can go on finite structures. We
show that any such graph acceptor is equivalent to a tree-like graph acceptor of radius 1
on a sufficiently rich class of graphs.

We say that a graph is k-acyclic when it contains no undirected cycle of length less
than k + 1. We first show that for every structure K and positive integer k, we can find
a k-acyclic structure that is counting bisimilar to K but contains no undirected cycles of
length smaller than k. The construction is similar to that of acyclic covers in [144].
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6.2.2.1 Definition (Powergraph). For a finite graph K = 〈V, r, E, {pK}p∈Pred〉 define
its powergraph 2K to be the graph 2K = 〈V ′, r′, E′, {pK

′
}p∈Pred〉 defined by V ′ = V × 2V

(where 2V denotes the set of maps V → {0, 1}), r′ = (r, 0), there is an edge E′ from a
vertex (v, f) to a vertex (w, g) whenever (v, w) ∈ E and g equals the function defined from
f by taking, for each u ∈ V , g(u) = f(u) when u 6= w and g(w) = 1− f(w), and with, for
each p ∈ Pred, pK

′
= {(v, b) ∈ V ′ : v ∈ pK

′
}.

6.2.2.2 Lemma. Graphs K and 2K are counting bisimilar and, if K is k-acyclic for some
k then 2K is 2k-acyclic.

Proof. (sketch) The mapping h : V ′ → V that maps each vertex (v, f) in 2K to the vertex
h(v, f) = v in K induces a counting bisimulation. Now, consider an undirected cycle in
the graph 2K. Along any edge from (v, f) to (w, g), f and g must differ in exactly one bit.
Thus, for the cycle to return to its starting point, all bits that are changed must flip at
least twice. This then maps via h to a cyclic path in K where all vertices occur at least
twice.

�

6.2.2.3 Corollary. For each positive integer k and every graph K, there is a k-acyclic
graph K′ counting bisimilar to K.

Proof. By iterating the powergraph construction.
�

Now, we obtain the following

6.2.2.4 Theorem. Every bisimulation invariant formula ϕ is equivalent, on k-acyclic
graphs, to a formula ϕ′′ of the form ϕ′′ ≡ ∃Y1 . . . ∃Ym∀xψ′ with ψ′ a 1-local tree-like
constraint.

Proof. Let ϕ be a counting bisimulation invariant monadic Σ1 formula. By applying
Lemma 6.2.1.3, we may assume that ϕ is a graph acceptor of the form ϕ ≡ ∃X1 . . . ∃Xl∀xψ
with ψ k-local.

We claim the following : let ψa be the k-local FO formula asserting that the k-neigh-
bourhood of x is acyclic. The formula ϕ is equivalent, over k-acyclic graphs, to the formula,
ϕ′ ≡ ∃X1 . . . ∃Xl∀x(ψ ∧ ψa). It is an immediate consequence of the definition.

The last argument is based on the observation that the Hintikka type (see [55]) of a
tree centered on a node c is completely determined by the atomic propositions that are
true at c and the Hintikka types of the subtrees rooted at the neighbors of c. Thus, by
introducing a fresh set of second-order quantifiers (logarithmic in the number of Hintikka
types), it is not difficult to build the formula ϕ′′.

�

As the constraint ψ′ is tree-like of radius 1, it can be described by a counting modal
formula with forward and backward modalities.

Remark. If this formula were equivalent to one without backward modalities, then one
could show that we can obtain a formula θ of NC 1 that is equivalent to ϕ on k-acyclic
graphs. As ϕ is invariant under counting bisimulation on finite structures by hypothesis
and θ by definition and since the class of k-acyclic graphs contains representatives of all
bisimulation classes on finite structures, it follows that θ and ϕ are equivalent on the
class of all finite structures. Thus, we would have proved that every formula of monadic
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Σ1 invariant under counting bisimulation is equivalent to a formula of NC 1. This would
contradict Corollary 6.1.3.2 since the class of graphs counting bisimilar to unary graphs is
definable by a monadic Σ1 formula.

6.3 Variation on FO-closures

An important part of research in the area of monadic NP is devoted to the possibility
of expressing different variations of graph connectivity. Already Fagin’s proof that monadic
NP is different from monadic co-NP is based on the fact that connectivity of undirected
graphs is not expressible by a sentence in monadic Σ1

1, while non-connectivity obviously is.
Then de Rougemont [51] and Schwentick [160] proved that connectivity is not in monadic
NP even in the presence of various built-in relations.

However, as observed by Kanellakis, the property of reachability (for undirected graphs)
is in monadic NP (reachability is the problem if, for a given graph and two distinguished
nodes s and t, there is a path from s to t in this graph). It follows that connectivity,
although not in monadic NP, is expressible by a formula of the form ∀x∀y∃2Pϕ. This
observation leads to the study of closed monadic NP [4], the class of properties expressible
by a sentence with quantifier prefix of the form (∃2

∗(∃∀)∗)∗, and of the closed monadic
hierarchy, the class of properties expressible by a sentence with quantifier prefix of the
form ((∃2

∗(∃∀)∗)∗(∀2
∗(∃∀)∗)∗)∗.

We present here an inductive and compositional technology for proving some non ex-
pressibility results for monadic second order logic. In particular, our technology gives an
alternative simple solution to all the technical problems described in the citation from [4]
above. But unlike the construction in [4], which is specific for first order/Boolean closure of
monadic NP, our technology is universal: it deals with first order/Boolean closure of most
monadic classes.

It also appears that - with minor modifications - the above inductive constructions can
also be applied inside Kozen’s mu-calculus [110]. This constitutes a first small step towards
trying to understand, over finite models, the (descriptive) complexity (in terms of patterns
of FO and/or monadic quantifiers’ prefix) of properties definable in the mu-calculus.

6.3.1 Monadic EF-games

All the structures we consider in this report are finite graphs (directed or not). The
signature of the structures may also contain some additional unary relations (“colors”) and
constants (s and t).

6.3.1.1 Definition. 1. A pattern of a monadic game (or just pattern) is any word over
the alphabet {∀, ∃, ∀2, ∃2,⊕}.

2. If w is a pattern then the pattern w (dual to w) is inductively defined as ∀v, ∃v, ∀2v,
∃2v or ⊕v if w equals ∃v, ∀v, ∃2v, ∀2v or ⊕v respectively. The dual of the empty word
is the empty word.

∀ and ∃ still keep the meaning of universal and existential first order quantifiers, while
∀2 and ∃2 are universal and existential monadic second order (set) quantifiers. As you will
soon see ⊕ should be understood as a sort of boolean closure of a game. We will use the
abbreviation FO for the regular expression (∀ + ∃).
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6.3.1.2 Definition. Let P and R be two relational structures over the same signature.
Let w be some pattern. An Ehrenfeucht-Fraïssé the game with pattern w over (P,R) is
then the following game between 2 players, called Spoiler and Duplicator:

1. If w is the empty word then the game is over and Duplicator wins if the substructures
induced in P and in R by all the constants in the signature are isomorphic. Spoiler
wins if they are not isomorphic.

2. If w is nonempty then:

(a) If w = ∃v (w = ∀v) for some v then a new constant symbol c is added to
the signature, Spoiler chooses the interpretation of c in P (R resp.) and then
Duplicator chooses the interpretation of c in R (P resp.). Then they play the
game with pattern v on the enriched structures.

(b) If w = ∃2v (w = ∀2v) for some v then a new unary relation symbol C is added
to the signature, Spoiler chooses the interpretation of C in P (R resp.) and then
Duplicator chooses the interpretation of C in R (P resp.) Then they play the
game with pattern v on the enriched structures.

(c) If w = ⊕v for some v then Spoiler can decide if he prefers to continue with
the game with pattern v or rather with v. Then they play the game with the
pattern chosen by Spoiler.

The part of the game described by item (a) is called a first order round, or pebbling
round. The part described by item (b) is a second order round, or coloring round.

6.3.1.3 Definition. We say that a property (i.e a class of structures) S is expressible by
a pattern w if for each two structures P ∈ S and R 6∈ S Spoiler has a winning strategy
in the game with pattern w on (P,R). If W is a set of patterns then we say that S is
expressible in W if there exists a w ∈W such that S is expressible by w.

The following theorem illustrates the links between games and logics. We skip its proof
as well known ( see for example [55] and [4]):

6.3.1.4 Theorem. The following statements hold:

1. Monadic NP is exactly the class of properties expressible by ∃2
∗FO∗;

2. The boolean closure of monadic NP is exactly the class of properties expressible by
⊕∃2

∗FO∗;

3. The first order closure of monadic NP is exactly the class of properties expressible by
FO∗ ⊕ ∃2

∗FO∗;

4. 2k-th level of the monadic hierarchy is exactly the class of properties expressible by
(∃2

∗∀2
∗)kFO∗;

5. 2k-th level of the closed monadic hierarchy is exactly the class of properties expressible
by (FO∗∃2

∗∀2
∗)kFO∗;

6. Closed monadic NP is exactly the class of properties expressible by (FO∗∃2
∗)∗;

The last theorem motivates:

6.3.1.5 Definition. A non trivial class of game patterns (or just class) is a set of game
patterns denoted by a regular expression without union over the alphabet {⊕, ∃2, ∀2, FO},
which ends with FO∗ and contains at least one ∀2

∗ or ∃2
∗
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In the sequel, every class of game patterns we consider is non trivial.
The techniques we are going to present are inductive and compositional. Inductive

means here that we will assume as a hypothesis that there is a property expressible by
some class of patterns W1 but not by W and then, under this hypothesis, we will prove
that there is a property expressible in the class V1W1 but not in the class VW where V1
and V will be some (short) prefixes. The word compositional means here that the pair of
structures (PVW , RVW ) (on which Duplicator has a winning strategy in a VW -game) will
be directly constructed from the pair of structures (PW , RW ) (on which Duplicator has a
winning strategy in a W -game). For this construction we do not need to know anything
about the original structures.

In the sequel, we will assume that all our structures are connected and that the signature
contains a constant s (for source). This is possible thanks to the following natural definition
and obvious lemma:

6.3.1.6 Definition. Let S be a property of structures (with the signature without con-
stant s). Then cone(S) is the property of structures (with the same signature, enriched with
constant s): For every x distinct from s there is an edge from s to x and the substructure
induced by all the vertices distinct from s has the property S.

6.3.1.7 Lemma. If S is expressible by w then cone(S) also is. If S is not expressible by
w then there is a pair of connected structures (P,R) (see Definition 6.3.1.8 below) such
that P has the property cone(S), R does not, and Duplicator has a winning strategy in the
w-game on (P,R).

�

Now we introduce some notations for graph operations. As we just mentioned we assume
that all the graphs we are dealing with are connected and have some distinguished node
s. Some of them will also have another distinguished node t (for target).

6.3.1.8 Definition. 1. Let U denote the graph containing just two vertices, s and t,
and one edge E(s, t).

2. If A is a set of graphs, then Σs
P∈AP (Σst

P∈AP ) is the union of all graphs in A with
all the s vertices identified (resp. and all the t vertices identified). We will use also
the notation Σs

cP (Σst
c P ) if A contains just c copies of the same structure P . If there

are only two elements, say P and R in A, then we write P+R (or P++R) instead of
of Σs

P∈AP (or Σst
P∈AP ).

3. If P is a graph with constants s and t then P.R (or PR for short) is the graph being
a union of P and R with t of P identified with s of R (so that s of the new graph is
the s of P and the t of the new graph is the t of R if it exists.

4. If A is a set of graphs then the graph Σs
P∈A(UP ) will be called a connected set of

graphs. If there are just two elements in A then we will call it a connected pair of
graphs.

Let us start with an obvious lemma, which would remain true even without the as-
sumption that the relations introduced during the second order rounds are unary:

6.3.1.9 Lemma. If the graphs P and R are isomorphic then Duplicator has a winning
strategy in the w-game on (P,R) whatever w is.

�
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The following Lemmas 6.3.1.10-6.3.1.12 are not much harder to prove that Lemma
6.3.1.9 but the assumption that games are monadic is crucial here:

6.3.1.10 Lemma. If Duplicator has winning strategies in w-games on (P1, R1) and on
(P2, R2) then he also has winning strategies in w-games on (P1+P2, R1+R2),
on (P1++P2, R1++R2) and on (P1P2, R1R2).

�

6.3.1.11 Lemma. For every structure P and pattern w there exists a number n such that
provided m ≥ n then Duplicator has winning strategies in the w-games on (Σs

mP,Σ
s
m+1P )

and (Σst
mP,Σ

st
m+1P )

Proof. Induction on the structure of w. Use the fact that for a structure P of some fixed
size there are only finitely many colorings of it, so if we have enough copies some colorings
must repeat many times.

�

6.3.1.12 Lemma. Let P be a connected pair of structures P1 and P2 and let R be a
connected pair of structures R1 and R2. Suppose for some (non trivial 1) class V there
exists v ∈ V such that Spoiler has a winning strategy on the v-games on (P1, R1) and on
(P1, R2). Then there exists w ∈ ∃V such that Spoiler has a winning strategy in the w-games
on (P,R).

Proof. The strategy of Spoiler is to take as his first constant the source of P1 in P . Duplica-
tor must answer either with the source of R1 or of R2, and so he must make a commitment
on which of the two structures is going to play the role of P1 in R now. The cases are sym-
metric, so let us assume he decides on R1. Then Spoiler uses his strategy for the v-game
on (P1, R1) to win the game. Actually, Spoiler must force Duplicator to moves only inside
the structures P1 and R1. This can achieved with one more coloring round (at any time
in the v-game) subsequently playing a w-game for some w ∈ V since V is non trivial. The
next remark makes this observation more precise.

�

Remark. After the first round, when Spoiler picks the source of P1 and Duplicator answers
by the source of R1, Spoiler must force Duplicator to restrict the moves of the remaining
game only to the structures P1 and R1. In other words, Spoiler needs to be sure that each
time he picks a constant inside P1 (R1) Duplicator actually answers with a constant inside
R1 (P1). This can be secured with the use of an additional coloring round: Spoiler paints
P1 (or R1, he is as happy with a ∃2 round as with a ∀2 one) with some color leaving the
rest of P unpainted. Duplicator must answer by painting R1 (P1) with this color, leaving
the rest of R unpainted. Otherwise, this will be detected by Spoiler with the use of the
final first order rounds. Notice that the additional coloring round can take place at any
moment of the game, and so that the strategy is available for Spoiler for some ∃V -game
since V is a nontrivial class of patterns.

1. see Definition 6.3.1.5
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6.3.2 A tool for the boolean closure

Let S be any property. Then, a connected pair of structures UP+UR will be called SS
if both the structures P and R belong to S, SS if exactly one of them belongs to S and
SS otherwise.

6.3.2.1 Definition. For a property S define bool(S) as the property: the structure is a
connected set of connected pairs of structures, and at least one of those pairs is SS .

6.3.2.2 Lemma. Suppose a property S is not expressible in class W , but both S and its
complement S are expressible in some other class V . Then bool(S) is not expressible in
⊕W but is expressible in ∃∃V .

Proof. Let us first show that there exists w ∈ V such that, provided P ∈ bool(S) and
R 6∈ bool(S), Spoiler has a winning strategy in the ∃∃w-game on (P,R). This will prove
that property bool(S) is expressible by ∃∃V .

First observe that if R is not a connected set of pairs then either the vertices of R at
distance less than 2 from s do not form a tree, or there is a vertex at distance 2 from s
whose degree is not 3, or R is not connected, or there is a vertex x at distance 2 from s
such that the structure resulting from removing x (and all the three adjacent edges) from
R has less than 3 connected components. In each of those cases Spoiler can win some game
in ∃V for every nontrivial V .

If R is a connected set of pairs then in his first move Spoiler takes as his constant the
source of some SS pair in P . Duplicator must answer by showing a source of some pair in
R. There are two cases: either Duplicator shows a source of some SS pair in R or a source
of some SS pair in R. In each of the two cases we may think that one pair of structures
has been selected in P and one in R. Spoiler can restrict the game to the two selected pairs
(see Remark 6.3.1). Then we use Lemma 6.3.1.12 to finish the proof.

Now we will show that whatever a pattern ⊕w is, where w ∈ W , there exist two
structures P ∈ bool(S) and R 6∈ bool(S) such that Duplicator has a winning strategy in
the ⊕w-game on (P,R). Let (P1, R1) be such a pair of structures that P1 ∈ S, R1 6∈ S and
Duplicator has a winning strategy in the w-game on (P1, R1). Let c be some huge constant.
Let R = Σs

c (U(UP1+UP1)+U(UR1+UR1)). So R is a connected set of 2c connected pairs,
c of them are SS and c are SS. Obviously, R 6∈ bool(S). Let P = R+U(UP1+UR1) be R
with one more pair, a SS one, so that P ∈ bool(S).

Now, if Spoiler in his first move decides to play the game w on P and R then re-
mark that P is Q1+Q2+Q3 where Q1 = Σs

c (U(UP1+UP1)), Q2 = Σs
c (U(UR1+UR1))

and Q3 = U(UR1+UP1) while R is Q4+Q5+Q6 where Q4 = Σs
c (U(UP1+UP1)), Q5 =

Σs
c−1 (U(UR1+UR1)) and Q6 = U(UR1+UR1). We know that Duplicator has a winning

strategies in w-games on (Q1, Q4) (by Lemma 6.3.1.9), on (Q2, Q5) (by Lemma 6.3.1.11)
and on (Q3, Q6) (by Lemma 6.3.1.10, since he has a winning strategy in a w-game on
(P1, R1)). So, again by Lemma 6.3.1.10 he has a winning strategy in w-game on (P,R).

If Spoiler decides in his first round to continue with w rather than w then take
Q1, Q2, Q3 as before but Q4 = Σs

c−1 (U(UP1+UP1)), Q5 = Σs
c (U(UR1+UR1)) Q6 =

U(UP1+UP1) and use the same reasoning, using the fact that Duplicator has a winning
strategy in the w-game on (R1, P1).

�
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6.3.3 A tool for first order quantifiers

Now the signature of our structures will contain additional unary relation symbol G
(for gate). For a given structure P , and for two its vertices x, y, such that G(y) holds let
Px,y be the structure consisting of the connected component of P −{x}, containing y as its
source. P − {x} is here understood to be the structure resulting from P after removing x
and all its adjacent edges. So Px,y could be read as ”the structure you enter from x crossing
the gate y”

6.3.3.1 Definition. Let S be some property of structures. Then reach(S) will be the
following property (of a structure P ): there is a path from s to t such that for every x
on this path it holds that (i) x 6∈ G and (ii) for every y such that E(x, y) and G(y) the
structure Px,y has the property S.

By a path from s to t we mean a subset H of the set of vertices of the structure such
that s, t ∈ H, each of s and t has exactly one adjacent vertex in H and each element of H
which is neither s nor t has exactly 2 adjacent vertices in H. The fact that H is a path is
expressible by FO∗.

6.3.3.2 Lemma. 1. Suppose a property S is not expressible in some class W . Then
reach(S) is not expressible in FO∗W ;

2. Suppose a property S is expressible in some class W . Then reach(S) is expressible in
the class ∃2∀∀W .

Proof.
1. First of all we will show that if S is not expressible in W , then also reach(S) is not

expressible in W . For a given w ∈W there are structures P and R such that P ∈ S, R 6∈ S
and Duplicator has a winning strategy in the w-game on (P,R). Consider a structure T
whose only elements are s, t, x, y, whose edges are E(s, x), E(x, t), E(x, y) and for which
G(y) holds. Let P0 be the union of T and P , with y of T identified with s of P . The s and
t of P0 are s and t of T . Let R0 be the structure constructed in the same way from T and
R. Then obviously P0 ∈ reach(S), R0 6∈ reach(S) and Duplicator has a winning strategy
in the w-game on (P0, R0). Notice that both P0 and R0 have the following property :

(*) (property of structure Q) if x is reachable from s or from t by a path disjoint from
G and if y is such that G(y) and E(x, y) then Qxy contains neither s of Q nor t of Q.

Now let P and R be structures, both satisfying (*) and such that P ∈ reach(S), R 6∈
reach(S) and Duplicator has a winning strategy in a w-game on (P,R). In order to prove
our claim it is enough (by induction) to construct structures (P1, R1) both satisfying (*) and
such that P1 ∈ reach(S), R1 6∈ reach(S) and Duplicator has a winning strategy in a ∀∃w-
game on (P1, R1). Let n be a huge enough constant. Define: R1 = (Σst

n (PR))++(Σst
n (RP ))

and P1 = R1++PP . Obviously P1 ∈ reach(S) and R1 6∈ reach(S) hold. Now will show a
winning strategy for Duplicator in a ∀∃w-game on (P1, R1). In his first round Spoiler selects
some constant in R1. Duplicator answers with the same constant in P1 (this is possible
since R1 can be viewed as a subset of P1). Now notice that after this first round R1 can
be seen as

RP++PR++(Σst
n−1(PR))++(Σst

n−1(RP ))

and P1 as
RP++PR++(Σst

n−1(PR))++(Σst
n−1(RP ))++PP
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where the constant selected in the first round is in the first RP++PR, both in R1 and in
P1. By Lemma 6.3.1.9 and Lemma 6.3.1.10 it is now enough to show that Duplicator has
a winning strategy in the remaining ∃w-game on (P2, R2) where

P2 = Σst
n−1(PR))++(Σst

n−1(RP ))++PP

and

R2 = Σst
n−1(PR))++(Σst

n−1(RP ))

Let Spoiler select some constant in P2.

If Spoiler selects a constant in Σst
n−1(PR))++(Σst

n−1(RP )) then Duplicator answers with
the same constant in R2 and then wins easily. The only interesting case is when Spoiler
selects his constant in PP . Suppose it is selected in the first P (the other case is sym-
metric). Then Duplicator answers by selecting the same constant in the P of some PR
in R2. Notice that P2 = Q1++Q2++(Σst

n−1(RP )) and R2 = Q3++Q4++(Σst
n−1(RP )), where

Q1 = PP , Q2 = Σst
n−1(PR)), Q3 = PR and Q4 = Σst

n−2(PR)), and where some constant is
already fixed in the first P of Q1 and in the P of Q3. Now the w-game remains to be played.
But since Duplicator has a winning strategy in the w-game on (P,R) he also has (by Lem-
mas 6.3.1.9 and 6.3.1.10) a winning strategy in a w-game on (Q1, Q3). By Lemma 6.3.1.11
he has a winning strategy in a w-game on (Q2, Q4) and so, again by Lemma 6.3.1.10 we
get a winning strategy for Duplicator in the ∃w-game on (P2, R2).

2. Suppose P ∈ reach(S) and R 6∈ reach(S). Spoiler, in his first move fixes a path in P ,
as in the definition of reach(S). Duplicator answers selecting a set in R. If the set selected
by Duplicator is not a path from s to t then Spoiler only needs some fixed number of first
order rounds to win. If it is such a path then there must be some x on the path, and some
y such that E(x, y), G(y) hold in R and Rx,y 6∈ S. Now Spoiler uses his two first order
universal rounds to fix those x and y. Duplicator answers with some two points z, t in P
such that E(z, t) and G(t) hold in P . But, since P ∈ reach(S) it turns out that Pz,t ∈ S,
so Spoiler can use rounds of the remaining w-game to secure a win (a trick from Remark
6.3.1 will be needed here to restrict the w-game to Px,y, Rz,t).

�

Remark. The role of predicate G is not crucial for the construction above. It could be
replaced by a graph gadget if the reader wishes to see P2 being a property of undirected
uncolored graphs.

Another way to avoid the unary relation G (as suggested by Larry Stockmeyer) is to
define reach(S) as: there is a path from s to t such that for every x on this path and every
y such that E(x, y) and y is not on this path, the structure Px,y has the property S.

6.3.4 Applications

As the first application of our toolkit we reprove the following result.

6.3.4.1 Theorem (Ajtai, Fagin and Stockmeyer [4]). There exists property P1 ex-
pressible in FO∗∃2

∗FO∗ but not in ⊕∃2
∗FO∗. There exists property P2 expressible in

∃2FO
∗∃2

∗FO∗ but not in FO∗ ⊕ ∃2
∗FO∗.
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Proof. Let Cted be the property of connectivity. It is well known that Cted is not
expressible in ∃2

∗FO∗ but both Cted and its complement are expressible in ∀∀∃2
∗FO∗.

now take P1 = bool(cone(Cted)) and P2 = reach(bool(cone(Cted))). Use Lemmas 6.3.2.2
and 6.3.3.2 to finish the proof.

�

A new result we can prove is that even if the hierarchy inside closed monadic NP
collapses, it does not collapse on a first order level:

6.3.4.2 Theorem (J. and Marcinkowski [102]). If there is a property expressible in
FO∗W but not in W , where W = (∃2

∗FO∗)k then there is a property expressible in
∃2FO

∗W but not in FO∗W .

Proof. This follows immediately from Lemma 6.3.3.2
�

Several similar results can be proved for the closed monadic hierarchy or reproved for the
monadic hierarchy (see [125] and [124] sections 4.4 and 4.5).

It is interesting to remark that the inductive constructions presented here are also
definable (with minor and insignificant variations) inside Kozen’s propositional µ-calculus
[110].

More precisely, given some unary predicates S, one may define in the µ-calculus the
new predicates that depend on S: Bool(S) = ♦(♦S ∧ ♦¬S) and Reach(S) = µX.(�(G⇒
S) ∧ (♦X ∨ T )) which almost denote the same constructions (here the “target” constant
t is replaced by the set of “possible targets” T and the “source” constant s is the implicit
free FO variable in any mu-calculus formula).

From Lemmas 6.3.2.2 and 6.3.3.2 (which extend to these definitions inside the mu-
calculus) and the fact that (the mu-calculus version of) directed reachability : dreach =
µX.(♦X ∨ T ) is not expressible in ∃2

∗FO∗ while both dreach and its complement are
expressible in ∃2∀∃2

∗FO∗, one has :

6.3.4.3 Corollary (J. and Marcinkowski [102]). There are properties R1 and R2 de-
finable in monadic µ-calculus such that R1 is expressible in FO∗∃2FO

∗∃2
∗FO∗ but not in

⊕∃2
∗FO∗ and R2 is expressible in ∃2FO

∗∃2FO
∗∃2

∗FO∗ but not in FO∗ ⊕ ∃2
∗FO∗.

Proof. Take R1 = Bool(dreach) and R2 = Reach(dreach) and apply Lemmas 6.3.2.2
and 6.3.3.2 to finish the proof.

�
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Chapter 7

Distributed games

Distributed infinite discrete games, as defined in [128], is a recent multiplayer extension
of discrete two player infinite games. It generalizes to infinite plays a related notion of
multiplayer games with partial information defined by Peterson and Reif [148, 147].

The main motivation for their introduction is to provide an abstract framework for
distributed synthesis problems, in which most known decidable cases [17, 112, 116, 120,
178, 150] can be encoded and solved uniformly [128].

In the present chapter, we review the definition of distributed synthesis problems,
distributed n-process games, and we show how these notions are related to each other.
We show that classical results from automata theory can be used efficiently to simplify
games. More precisely, we use alternating tree automata composition, and simulation of an
alternating automaton by a non-deterministic one, as two central tools for giving a simple
proof of a known decidable case : the pipeline case [128] also known, in the context of
Peterson and Reif finite games as hierarchical games [148, 147]. Last, we then provide new
complexity and decidability results on distributed games.

Many results presented here have been obtained with Julien Bernet [25] and shall be
part of his PhD thesis (in preparation) [24].

For convenience, we use in this chapter strategy trees (as defined in Section 2.1.2)
instead of strategies. In fact, it occurs that the notion of strategy tree much better suits
tree automata techniques on games and distributed synthesis.

7.1 Distributed synthesis

The purpose of distributed games is to provide a uniform setting into which distributed
synthesis problems can be encoded. We review in this section a definition of distributed
synthesis problem adapted from Pnueli and Rosner [150] 1 Our goal here is to give a zero
delay semantics to not necessarily acyclic distributed architecture. This generalizes most
of the cases previously presented in the literature[25, 62, 96, 128, 112, 120, 121, 150]

1. This approach extend the DEA master thesis of Xavier Briand made in 2001 under the supervision
of the author.

102



7.1. DISTRIBUTED SYNTHESIS 103

7.1.1 Sequential functions

Synthesis problems makes extensive use of sequential functions. We review here this
notion establishing also the equivalence with an alternative representation of sequential
functions that plays a fundamental role in synthesis with zero-delay and loop-back.

7.1.1.1 Definition (Sequential functions). A (deterministic) sequential function with
input alphabet A and output alphabet B is any mapping

g : A∗ → B∗

such that g(ǫ) = ǫ and there exists a mapping

f : A+ → B

called the kernel of g, such that, for every w ∈ A∗ and every a ∈ A, g(w.a) = g(w).f(w.a).

Remark. Since any sequential function g : A∗ → B∗ is completely defined by its kernel
f : A+ → B, we may write f∗ in place of g.

7.1.1.2 Definition (Finitely generated seq. functions). For all function f : A+ →
B, for all u ∈ A∗, let

fu : A+ → B

be the function defined, for all v ∈ A+, by fu(v) = f(u.v). A sequential function f∗ : A∗ →
B∗ if finitely generated when the set

{fu ∈ A+ → B : u ∈ A∗}

is finite. In this case, we also say that f has finite memory.

This definition is generally considered to be sufficient for distributed synthesis pur-
poses [150]. In fact, synthesizing an architecture component program amount to synthesize
the (finite memory) kernel of a finitely generated sequential function. Moreover, these
kernels can just be seen as complete B-labeled A-trees (with arbitrary value at the root)
and automata theory applies for giving solution to (some) distributed synthesis prob-
lems (on acyclic architecture) even with MSO specification of the expected global behav-
iors [112, 128, 25, 62].

However, in order to handle zero-delay and cyclic architecture, we need a more man-
ageable equivalent definition.

7.1.1.3 Definition. The functional kernel of a sequential function

f∗ : A∗ → B∗

is the mapping

Ff : A∗ → (A→ B)

defined, for every u ∈ A∗ and a ∈ A, by

(Ff (u))(a) = f(u.a)
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7.1.1.4 Lemma. The mapping that maps every (total) function f : A+ → B to the (total)
function Ff : A∗ → (A→ B) is one to one and onto.

Proof. The converse construction that maps any (total) function F : A∗ → (A → B) to
the (total) function fF : A+ → B defined, for every u ∈ A∗, a ∈ A by fF (u.a) = F (u)(a)
is obviously the inverse of the mapping f 7→ Ff .

�

In other words, every sequential function is (also) completely determined by its func-
tional kernel.

Remark. Specifying sequential functions, one may equivalently specifies their kernel or
their functional kernel. Actually, the translation from one formalism to the other is even a
FO-transduction. In particular, for every MSO formula ϕ specifying properties of (kernels)
of sequential functions, there is an MSO formula ϕ̂ such that, for every f : A+ → B, f |= ϕ
if and only if Ff |= ϕ̂. One can check that this also applies quite similarly to tree automata
(equivalent to MSO specifications [152]) with no increase in automata size.

The following example of a two-player game first us that sequential functions can be
seen as strategies in two player games.

7.1.1.5 Definition. Given two alphabets A and B, let define the A/B-game GA,B =
〈VP , VE , TP , TE , p0,Acc〉 to be the two player game defined by VE = (A → B), VP =
A∪{∗,⊥}, TP = (VP−{⊥})×VE , TE = VE×(VP−{∗}), p0 = ∗ ∈ VP and Acc = (VP+VE)

ω.

7.1.1.6 Lemma. The mapping that maps every (finite memory) strategy tree σ : (VP )
+ →

VE for player P in game GA,B to the (finitely generated) sequential function f∗σ : A∗ → B∗

defined, for every u ∈ A∗, every a ∈ A, by f∗σ(u.a) = (σ(∗.u))(a) is an onto mapping.

In other words, defining a finitely generated sequential function amounts to, equiva-
lently, defining a finite memory non blocking strategy for player P in game GA,B.

7.1.2 Distributed architectures

Adapted from Pnueli and Rosner’s definition [150], we define here a notion of architec-
ture where every process write on a single output channel but may read several input or
(other processes) output channels. As a result, notations are slightly different. This shall
however cause no particular difficulty.

Our purpose here is to give zero delay semantics to cyclic architecture as well. This is
a main (and non trivial) difference with Pnueli and Rosner’s presentation.

7.1.2.1 Definition. A distributed architecture D is defined as a tuple

D = 〈I, P, r, {Ac}c∈I∪P 〉

with finite set I of input channels, disjoint finite set P of processes and output channels
(every process write on one output channel and every output channel is written by one
process so we identify processes and output channels), reading mapping r : P → P(I ∪ P )
that maps every process p ∈ P to the set channel r(p) where process p read input values,
and, for every channel i ∈ I ∪ P , finite alphabet Ai of possible channel values. We always
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assume that all these sets are disjoint one from the other. We also always assume that
I ⊆

⋃
{r(p) : p ∈ P}, i.e. any input is read by at least one process.

Given architecture D, the dependency relation on processes is defined to be the least
transitive relation ≺D⊆ P × P such that, for every (p1, p2) ∈ P × P , if p2 ∈ r(p1) then
p1 ≺D p2.

We say that architecture D is an acyclic distributed architecture when relation ≺D is a
(strict) partial order relation. In this case, we write �D the induced order relation called
the dependency order.

In the sequel, for every set of channels C ⊆ I ∪P , we shall write AC = Πc∈CAc, i.e. AC

is the (product) alphabet of the (parallel) channels of C seen as a single bigger channel.

A typical example of distributed architecture is the pipeline architecture [150, 112].

7.1.2.2 Definition. A pipeline architecture is an acyclic distributed architecture such that
(1) dependency order �D is a linear order and, (2) for every process p, if I ∩ r(p) 6= ∅ then
r(p) = I (hence p is maximal in 〈P,�D〉 and henceforth greatest since �D is linear).

Adapted from Peterson and Reif, one can also define the hierarchical architecture.

7.1.2.3 Definition. A hierarchical architecture is a distributed architecture when (1) de-
pendency relation is total, (2) every pair of mutually dependent processes have the same
inputs, and (3) only maximal processes read I, i.e. for every process p1 and p2 ∈ P , (1)
either (p1, p2) ∈≺D or (p2, p1) ∈≺D, (2) if (p1, p2) ∈≺D ∩ ≺−1

D then r(p1) = r(p2) and (3)
if r(p1) ∩ I 6= ∅ then r(p1) = I.

Observe that a pipeline architecture is a hierarchical architecture. The converse is false
since, in particular, a hierarchical architecture is not necessarily acyclic.

7.1.3 Zero-delay semantics

Giving a zero-delay semantics to distributed architecture could be, in presence of loops,
a difficult task. However, with our hypothesis, there is no internal channel. This means
that the sequence of values that occurs on output channels are completely determined
by architectures global behaviors. And the question of defining global behaviors that are
realizable among architecture components follow quite easily. Formally:

7.1.3.1 Definition. A global behavior of distributed architecture D = 〈I, P, r, {Ac}c∈I∪P 〉
is defined to be any sequential function f∗ : A∗

I → A∗
P . We say that the behavior f∗ is

distributed when, for each process p ∈ P , there is a sequential function f∗p : A∗
r(p) → A∗

p

that computes the output defined by f∗ on channel p by reading all and only the inputs
on channels r(p).

More precisely, behavior f∗ is distributed when, for every input sequence uI ∈ A∗
I given

the output sequence uP ∈ A∗
P computed by f∗, i.e.

uP = f∗(uI)

given, for every channel c ∈ I ∪ P , the sequence uc ∈ A+
c of corresponding sequence of

values on channel c,i.e.

uc =

{
πAc(uI) if c ∈ I
πAc(uP ) if c ∈ P
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given, for every p ∈ P , the sequence ur(p) ∈ A+
r(p) of inputs red by process p, i.e. for every

k ∈ [0, |uI | − 1],
ur(p)(k) = (uc(k))c∈r(p)

the following equations must be satisfied: for every p ∈ P ,

up = f∗p (ur(p))

In this case, set {fp}p∈P is called a distributed realization of f . Observe that a distributed
global behavior f is completely determined by its distributed realization.

A distributed realization {fp}p∈P of global behavior f is called a finite distributed
realization when, moreover, for every p ∈ P , fp has finite memory.

7.1.4 Local criteria for distributed realization

The previous definition is not much manageable: we need a local criteria that will
tell us, given a distributed architecture D = 〈I, P, r, {Ac}c∈I∪P 〉, when a global behavior
f∗ : A∗

I → A∗
P will have a distributed realization.

7.1.4.1 Definition. Given a mapping F : AI → AP , called an global one-step behavior, we
say that F is locally realizable in D when there exists a set of mapping {fp : Ar(p) → Ap}p∈P ,
called a local realization of F , such that, for all a = (ac)c∈I ∈ AI , given (ac)c∈P = F (a),
one has, for each p ∈ P , ap = fp((ac)c∈r(p)).

This notion of one-step distributed realization leads us to a necessary and sufficient
condition for an architecture behaviors to be distributed.

7.1.4.2 Theorem (J. [97]). A global behavior f∗ : A∗
I → A∗

P of architecture D has
a distributed realization if and only if, for every u ∈ A∗

I , the mapping Ff (u) is locally
realizable.

Proof. By induction on the length of u.
�

In other words, computing a distributed realization of sequential function f∗ : A∗
I → A∗

P

of architecture D amounts to, for every u ∈ A∗
I , finding a local realization of the functional

kernel Ff of function f at position u. Observe that doing so, we defined, partially, functional
kernels of process behaviors.

7.1.5 Distributed synthesis problems

Now comes the general definition of distributed synthesis problems.

7.1.5.1 Definition. Given a specification ϕ - say defined in MSO - of global behaviors,
the (finite) distributed synthesis problem P = 〈D, ϕ〉 is to find a global behavior f that
satisfies ϕ and has a (finite memory) distributed realization.

Remark. In their presentation, Pnueli and Rosner distinguish internal channels, whose
behaviors are not mentioned in the global specification ϕ from external channels whose
behaviors can be explicitly described in ϕ. It shall be clear that Pnueli and Rosner approach
is essentially a subcase of the present one since nothing enforces the global specification ϕ
to speak about such or such channel.
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But this generalization comes with a price. It may require a more subtle analysis of
the specification ϕ. The idea in the present approach is to delay this analysis even further.
Distributed synthesis problems are encoded, in the next section, into distributed games
which behaviors, in turn, can/must be analyzed not only regarding the global specification
ϕ but also regarding the local constraints that can be specified about the behavior of such
or such process.

More generally, the distributed games approach aims at studying communication flows
(or even knowledge flows) at the semantic level - looking at the environment possible moves
- while, in Pnueli and Rosner’s settings, environment behaviors is already partially specified
at the syntactic level - in the shape of the given architecture -.

7.1.5.2 Theorem (Kupferman and Vardi [112]). The (finite) distributed synthesis prob-
lem for pipeline architecture and MSO specification is decidable and non elementary com-
plete.

Proof. Non elementary hardness follows from [147] and an non elementary decision algo-
rithm in given in [112].

�

Remark. In this case, it is also shown that existence of distributed realization coincides
with existence of finite realization.

7.1.5.3 Theorem (Pnueli and Rosner [150]). The finite distributed synthesis prob-
lem for architecture with two processes and LTL specification is, in general, undecidable
and Σ0

1-hard.

Remark. It is an easy observation but that is worth pointed out that every synthesis
problem 〈D, ϕ〉 can be simulated by a equivalent synthesis problem 〈D′, ϕ′〉 where A′ is a
totally disconnected architecture, i.e. every process has a single external input and a single
output. In fact, the synthesis problem 〈D′′, ϕ′〉 can be defined as follows. Every channel c in
the architecture D is duplicated in the architecture D′ into a channel cI that simulate the
inputs of channel c and a channel cO to that simulates the outputs of channel c. Then, the
specification ϕ′ only need to say that specification ϕ must hold when values occurring on
channels cI and cO are the same. This way, solving the synthesis problem 〈D′, ϕ′〉 one only
need to consider to the case when architecture D′ does behave implicitly like architecture
D.

This suggests that the definition of an architecture is, to some extent, arbitrary in the
sense that synthesis problems should be attacked directly at the semantic level by a direct
analysis of the implicit communication that may be forced into the specification ϕ.

One can also observe moreover that in the construction described above, the specifi-
cation ϕ′ can essentially be expressed from specification with extra FO connectives. This
tells us that standard restriction of the expressive power of the specification language, say
only handling FO formulas, will be of no help.

7.2 Distributed games

Distributed games are a special kind of multiplayer games with partial information [148,
147]. Roughly speaking, an n-process distributed game is an n + 1 player game played



108 CHAPTER 7. DISTRIBUTED GAMES

between n local cooperating process players that have their own view of the play against
an environment player that has a global view of the game but, eventually, restricted moves.

For instance, modeling a point to point communication between two processes, the
environment may be forced to either transmit the message or loose it. Then we knows
that communication through a fair loose/transmit point to point communication channel
can be solved by various process protocols such as the alternating bit protocol. In other
words, restricting the environment moves may help the team of processes to have a winning
strategy.

7.2.1 Distributed arenas

The worst case for the process team is when every moves of the environment player
is allowed, provided it is compatible with each local game that is played between himself
and the local process. This idea is modeled by the notion of free asynchronous product of
local two players arenas. Any other distributed games will be a sub-case of this worst case
essentially restricting the environment player capacity to move.

7.2.1.1 Definition (Free asynchronous product). Given two arenas

G1 = 〈V G1
P , V G1

E , T G1
P , T G1

E 〉

and

G2 = 〈V G1
P , V G2

E , T G2
P , T G2

E 〉

the free (asynchronous) product of G1 and G2 is defined to be the arena

G1 ⊗ G2 = 〈V G1⊗G2
P , V G1⊗G2

E , T G1⊗G2
P , T G1⊗G2

E 〉

defined as follows:
– environment positions : V G1⊗G2

E = V G1
E × V G2

E ,

– processes positions : V G1⊗G2
P = (V G1

E ∪ V G1
P )× (V G2

E ∪ V G1
P )− (V G1

E × V G2
E ),

– processes moves : T G1⊗G2
P is the set of all pairs (p, e) ∈ (V G1⊗G2

P × V G1⊗G2
E ) such that,

for i = 1 and i = 2 :
– either p[i] ∈ V Gi

P and (p[i], e[i]) ∈ T G1
P (the process i is active in p),

– or p[i] ∈ V Gi

E and p[i] = e[i] (the process i is inactive in p),

– and environment moves : T G1⊗G2
E is the set of all pairs (e, p) ∈ (V G1⊗G2

E × V G1⊗G2
P )

such that, for i = 1 and i = 2 :
– either p[i] ∈ V Gi

P and (e[i], p[i]) ∈ T Gi

P (the environment player activates the
process i),

– or p[i] ∈ V Gi

E and p[i] = e[i] (the environment player keeps the process i inactive).
This definition generalizes to n arenas G1, . . . , Gn. The resulting product is written

G1 ⊗ · · · ⊗ Gn.

Remark. The free asynchronous product of simple arenas is already, as we shall see soon,
a (simple case of) distributed arenas. Before defining arbitrary distributed arenas, let us
comment this definition.

We want to make n processes to play against a single environment player. In the product
G = G1 ⊗ · · · ⊗ Gn of n arenas G1, . . . , Gn, such a play can be defined as follows.
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From a global environment position e ∈ V G
E , the environment player selects a set of local

games by taking some I ⊆ {1, · · · , n} and moves to a process position p ∈ V G
P obtained by

choosing a local move in all selected local games. By definition of V G
P , observe that I must

not be empty (otherwise the resulting position will not belong to P ) hence the environment
player activates at least one (local) process.

From such a processes position p ∈ V G
P , for each i ∈ I, the process i answers the

environment player move by choosing a local move from p[i] in V Gi

P . Other processes remain
idle.

We want all processes to play according to their own local view of the (global) arena this
is why we will always allows all possible compositions of processes local moves. However,
one shall observe that if we also allow the environment player to play any composition of
local moves, the resulting global game will sound (forgetting asynchronism) like n local
games that are played independently from each other.

This remark leads us to the following notion of distributed arenas.

7.2.1.2 Definition (Distributed Arena). A distributed arena is a free asynchronous
product where the possible environment moves may have been restricted. More precisely,
given two arenas G1 an G2, a (two-process) distributed arena built upon the arenas G1

and G2 is any simple arena G = 〈V G
P , V

G
E , T

G
P , T

G
E 〉 with V G

P = V G1⊗G2
P , V G

E = V G1⊗G2
E ,

T G
P = T G1⊗G2

P , T G
E ⊆ T G1⊗G2

E .
These definitions extend to n-process distributed arenas.

Since a distributed arena is built upon n simple arenas, we need a definition to speak
about its local components:

7.2.1.3 Definition (Projection). Given a n-process distributed arena

G = 〈V G
P , V

G
E , T

G
P , T

G
E 〉

with V G
E = V G1

E × . . . × V Gn

E and V G
P = V G1 × . . . × V Gn − V G

E given a non empty set
I ⊆ {1, . . . , n}, define the canonical projection G[I] of G on I as the arena

G[I] = 〈V
G[I]
P , V

G[I]
E , T

G[I]
P , T

G[I]
E 〉

given by:

– V
G[I]
P = V G

P [I]− V G
E [I] (possibly smaller than V G

P [I]),

– V
G[I]
E = V G

E [I],

– T
G[I]
P = T G

P [I] ∩ (V G
P [I]× V GgE [I]),

– and T
G[I]
E = T G

E [I] ∩ (V G
E [I]× V G

P [I]),
In particular, for each i ∈ [1, n], we write G[i] for the ith projection of the game G.

Remark. Observe that an n-process distributed arena G as above can always be seen
as a distributed arena built upon the games G[1], . . . , G[n]. Moreover, in the same way
Cartesian product of sets is (up to isomorphism) associative, given an arbitrary non empty
set I ⊂ {1, . . . , n}, given I = {1, . . . , n} − I (non empty), the n-process distributed arena
G can, as well, be seen as a distributed arena built upon the two (distributed) arenas G[I]
and G[I].
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7.2.2 Distributed games and strategies

We define below distributed games and distributed strategies.

7.2.2.1 Definition (Distributed Games). A n-process distributed game G is a tuple

V G = 〈VP , VE , TP , TE , v0,Acc〉

where 〈VP , VE , TP , TE〉 is a n-process distributed arena, v0 ∈ VP is the initial position, and
Acc ⊆ (VE .VP )

ω is the (regular) winning infinitary condition.

A distributed game is a particular case of simple game. It follows that previous notions
of plays and strategies are still defined. However, in order to avoid confusion with what
may happen in the local arena a distributed game is build upon, we shall speak now of a
global play and a global strategy.

A play w ∈ (VE .VP )
+ is said to be active for the process i when w ends in a position

p ∈ VP such that p[i] ∈ VP [i].

7.2.2.2 Definition (Local and distributed Strategies). Given a n-tuple of local strate-
gies {σi : (VP [i])

+ → VE [i]}i∈{1,...,n}, the induced global strategy

σ1 ⊗ . . .⊗ σn : (VP )
+ → VE

is defined as follows: for every play of the form w.p ∈ (VP )
+, given the set I ⊆ {1, . . . , n} of

active processes in the global processes position p (i.e. I = {i ∈ {1, . . . , n} : p[i] ∈ VP [i]}),
define σ(w.p) = e by:

– e[i] = σi((w.p)[i]) when i ∈ I, i.e. when process i is active in position p,
– e[i] = p[i] when i ∈ {1, . . . , n} − I, i.e. when process i is inactive in position p.

(provided everything is well-defined, otherwise σ(w.p) is left undefined).
A global strategy σ : (VE .VP )

+ → VE is a distributed strategy if σ equals the compo-
sition σ1 ⊗ . . .⊗ σn of some n local strategies.

Note that global strategies are not always distributed. Moreover, there are distributed
games in which the processes have a winning strategy, but no winning distributed strategy.

From this, we can derive the following fact: distributed games are not determined, in
the sense that even when the environment player does not have a winning strategy, the
processes may not have a winning distributed strategy.

7.2.3 Synchronous vs asynchronous distributed games

Asynchronicity in distributed games is a very convenient characteristic to encode more
easily phenomena that do occur in distributed synthesis problems: a process may perform
a local action without the other processes even knowing that any action is performed. The
question we address here is what is the price to pay for such increase in expressiveness.

7.2.3.1 Definition (Synchronous distributed games). Given an n-process distributed
game G = 〈V G

P , V
G
E , T

G
P , T

G
E ,Acc〉 we say that G is synchronous when

T G
E ⊆ V G

E ×


 ∏

i∈[1,n]

V G
P [i]




i.e. the environment player moves always activate every process.
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Remark. Observe that in an n-process synchronous distributed games, one can restrict
the process positions to

∏
i∈[1,n] V

G
P [i] ⊂ V G

E without any change for plays starting in

such positions or environment In the sequel, a position in
∏

i∈[1,n] V
G
P [i] or V G

E is called a

synchronous position as opposed to positions in V G
P −

∏
i∈[1,n] V

G
P [i].

7.2.3.2 Theorem (Bernet and J. [24]). Every asynchronous distributed game G can
be simulated by a synchronous game Ĝ with (almost) same position in such a way that
there is a distributed finite memory strategy in the game G from synchronous position
p ∈ V G if and only if there is a distributed finite memory strategy in the game Ĝ from the

(copy of the) same position p ∈ V Ĝ.

Proof. Let G be an asynchronous n-process distributed game. We built an equivalent syn-
chronous game Ĝ from the game G as follows.

The first step is to make the asynchronicity explicit, i.e. every asynchronous move in
G from a local position ei ∈ V G

E [i] is mimicked in the game Ĝ by a move of process Pi in G

is put now in a distinguished copy êi ∈ V Ĝ
P [i] of the idle position ei. From position êi, the

process Pi can only move back to local position ei.

However, making the asynchronicity explicit gives new information to processes, i.e. a
process may now, for instance, count the number of successive environment player moves
that leave it idle.

The second step is thus to disable this counting (at least with finite memory strategy)
by adding, from every synchronous position e ∈ V G

E an environment move “asynchronous

everywhere” to ê ∈ V Ĝ
P defined, for every i ∈ [1, n], by ê[i] = ê[i].

Disabling, in winning condition, infinitely many successive move asynchronous every-
where ensures that the game Ĝ that is equivalent to the game G w.r.t. finite memory
distributed winning strategies as shown by pumping lemma arguments.

The detail of the proof is given in Julien Bernet’s PhD[24].

�

7.3 Tree Automata and Distributed Games

A special form of alternating automata, that fits especially our purpose of applying
automata techniques to distributed is also reviewed.

7.3.1 Tree automata for distributed games

Given two finite alphabets D and Σ, a Σ-labeled D-tree (also called D,Σ-tree) is a
partial function D∗ → Σ whose domain is closed under prefix operation. In the sequel,
elements of Σ are called labels and elements of D are called directions.

The following definition is a variation on Muller and Schupp’s original definition of
alternating automata [137]. Our goal is to have a tree-transducer like automata definition,
even for alternating automata.
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7.3.1.1 Definition (Alternating tree automata). A finite (D,Σ)-alternating tree au-
tomaton is a tuple:

A = 〈Q = Q∀ ⊎Q∃, D,Σ, q0, δ = δ∀ ∪ δ∃,Ω〉

where Q is a finite set of states, q0 ∈ Q∃ is the initial state, δ∀ : Q∀ × D → P(Q∃) and
δ∃ : Q∃×Σ → P(Q∀) are the transition functions, and Ω : Q∀ → ω is the parity condition.

An automaton A is a non deterministic automaton when |δ∀(q, d)| ≤ 1 (for every
q ∈ Q∀, d ∈ D).

7.3.1.2 Definition (Runs). A run of an automaton A = 〈Q,D,Σ, i, δ,Ω〉 over a Σ-
labeled D-tree t : D∗ → Σ is a Q∀-labeled (D × Q∃) tree ρ : (D × Q∃)∗ → Q∀ such
that:

– ρ(ǫ) ∈ δ∃(q0, t(ǫ)),
– for every w ∈ Dom(ρ), if ρ(w) = q, then for every direction d ∈ D such that
a = t(w[1].d) is defined, and for every existential state q1 ∈ δ∀(q, d), there exists a
universal state q2 ∈ δ∃(q1, a) such that ρ(w.(d, q1)) = q2.

A tree t is accepted by A if and only if there exists a run ρ of A over t such that for
every infinite branch w in ρ: statesρ(w) ∈ Acc. Denote by L(A) the language of all trees
that are accepted by A. The size of an automaton A is denoted by |A|.

Remark. Observe that these tree automata (both alternating and non alternating), if
slightly unusual, have the same expressive power as their standard counterpart, as in [137]
or in Chapter 3 in this text.

More precisely, given the automaton

A = 〈Q = Q∀ ⊎Q∃, D,Σ, q0, δ = δ∀ ∪ δ∃, Acc ⊆ Qω〉

one may assume, without lost of generality, that Acc only depends on states of Q∃. Then,
we define the alternating automaton

A′ = 〈Q′, D,Σ, q′0, δ
′,Acc′〉

with Q′ = Q∃, q′0 = q0, for each q ∈ Q′, Acc′ = πQ∃(Acc) and, for each q ∈ Q′,

δ′(q) =
∧

a∈Σ

a(r) →
∨

q′∈δ∃(q,a)

∀z


∧

d∈D

Td(r, z) →
∧

q′′∈δ∀(q′,d)

q′′(z)




The equivalence between the automaton A and the automaton A′ shall be a direct conse-
quence of definitions.

With this alternating automata definition, a definition actually closer to Muller and
Schupp original definition [136], simulation still holds:

7.3.1.3 Theorem (Muller and Schupp [137]). Every alternating tree automaton A is

equivalent to a non deterministic tree automaton A′, with |A′| ≤ 22
|A|

(with Muller accep-
tance condition).
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Since the runs of an automaton on trees are themselves trees, automata act as tree
transducers and can be sequentially combined.

7.3.1.4 Definition (Automata Composition). Given two tree automata

A1 = 〈Q1, D1,Σ1, q0,1, δ1, Acc1〉

and
A2 = 〈Q2, D2,Σ2, q0,2, δ2, Acc2〉

such that automaton A2 is non deterministic, D2 = D1 ×Q∃
1 and Σ2 = Q∀

1 , we define the
composition of A1 followed by A2 to be the automaton

A2 ◦ A1 = 〈T (Q), D1,Σ1, T (q0), T (δ), T (Acc)〉

defined as follows:
– T (Q∃) = Q∃

1 ×Q∃
2 ; T (Q

∀) = Q∀
1 ×Q∀

2 ;
– q0 = (q0,1, q0,2),

– (q′1, q
′
2) ∈ T (δ∀)((q1, q2), d) ⇔

{
q′1 ∈ δ∀(q1, d)
{q′2} = δ∀2 (q2, (d, q

′
1))

– (q′1, q
′
2) ∈ T (δ∃)((q1, q2), a) ⇔

{
q′1 ∈ δ∃(q1, a)
q′2 ∈ δ∃2 (q2, q

′
1)

– T (Acc) = {w ∈ T (Q)ω | w[1] ∈ Acc1 ∧ w[2] ∈ Acc2}

7.3.1.5 Theorem (Bernet and J. [25]). For every tree t : D∗
1 → Σ1, t ∈ L(A2 ◦ A1)

if and only if there exists an accepting run ρ : (D1 × Q∃
1)

∗ → Q∀
1 of A1 over t such that

ρ ∈ L(A2).

Proof. The proof, although tedious, is not complicated, and is therefore omitted here.
Observe that it is crucial that A2 is non-alternating ; nevertheless, by applying Theorem
7.3.1.3, one can always assume that is is the case.

�

7.3.2 Distributed games with external conditions

Our purpose here is to mix games and automata by allowing games infinitary conditions
to be defined by an arbitrary tree-automaton that specifies winning strategies. Strictly
speaking, this is no longer a game since the notion of winning play is lost. But, as we shall
see, this definition make sense when dealing with distributed games.

7.3.2.1 Definition (External Winning Condition). A game with external winning
condition is a tuple

G = 〈VP , VE , TP , TE , v0,A〉

where 〈VP , VE , TP , TE〉 is a game arena, v0 ∈ VE ∪ VP is the initial position, and A is a
(VP , VE)-tree automaton. In such a game, a strategy tree σ is winning (from initial position
v0) if, position v0, it is belongs to L(A). This definition extends to distributed games.

In the sequel, in order to avoid confusion, a game with a winning condition defined as
in section 7.2.1 is called game with internal winning condition.

For two player games, this definition does not bring much added value as illustrated
by the following lemma:
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7.3.2.2 Lemma. Every two player game G with external (non deterministic) condition A
is equivalent to a two player game A× G with internal condition with |A × G| = |G|.|A|.

Proof. Given a game G and an automaton A = 〈Q∀ ⊎ Q∃, P, E, q0, δ = δ∀ ∪ δ∃,Acc〉. We
assume that the initial position v0 belongs to V G

P . A similar construction can be made with
v0 ∈ V G

E .

The Game A× G is defined as follows:

– V A×G
P = Q∃ × V G

P ,
– V A×G

E = Q∀ × V G
E ,

– TA×G
P is the set of pair of the form ((q1, p), (q2, e)) ∈ V A×G

P × V A×G
E such that

(p, e) ∈ TG
P g and q2 ∈ δ∃(q1, e),

– TA×G
E is the set of pair of the form ((q2, e), (q3, p)) ∈ V A×G

E × V A×G
P such that

(e, p) ∈ TG
E g and q3 ∈ δ∀(q2, p),

– AccG = {w ∈ (V A×G)ω : πQ∀∪Q∃(w) ∈ Acc.

Then, one can easily check that there is a non blocking strategy σ from position v0 ∈ V G
P

such that σ ∈ L(A) if and only if their is a winning strategy from position (q0, v0) ∈ V A×G
P

in the game A× G.

�

Remark. In this construction, the player P in the game A×G build, in parallel, a strategy
σ in the game G and an accepting run of the automaton A on σ. Observe that it is essential
that the automaton A is non deterministic, otherwise nothing would ensure, in the many
copies of the automaton A running along the path of the strategy tree, that it is really the
same strategy tree that is built by the player P .

For distributed games, the above construction may not preserve distributed strategies
since viewing automata states may give them knowledge that were not known. Still, an
external winning condition on a distributed game G can be internalized at the price of
adding one more process.

7.3.2.3 Theorem (Bernet and J. [25]). For every n-process game G with external win-
ning condition, there exists a (n+1)-process game G′ with internal winning condition such
that G′[1, . . . , n] = G, and such that the processes have a (distributed) winning strategy σ
in the game G if and only if the processes have a (distributed) winning strategy of the form
σ ⊗ σ′ in the game G′.

Proof. (sketch) Let G = 〈VP , VE , TP , TE , v0,A〉 (where A = 〈Q∀ ⊎ Q∃, P, E, q0, δ = δ∀ ∪
δ∃, Acc〉) be a distributed game with external winning condition with initial condition
v0 ∈ V G

E . The case v0 ∈ V G
P is essentially the same up to minor initialization details.

The game G′ = 〈V ′
P , V

′
E , T

′
P , T

′
E , v

′
0,Acc〉 is defined as follows. The positions and the

winning condition are given by:

– V ′
P = (VE × (Q∃ × VE)) ∪ (VP × (Q∃ × {#})),

– V ′
E = (VE × Q∃) ∪ (VE × Q∀),

– v′0 = (v0, q0),
– Acc = {w ∈ (V ′

E .V
′
P )

ω | πQ∀∪Q∃(w) ∈ Acc}

and moves are (repeatedly) defined by: from an environment position (e, q) ∈ VE ×Q∃ (or
the initial position):
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1. first, the environment player (deterministically) moves to the process position
(e, (q, e)) ∈ VE × (Q∃ × VE),

2. then, the new (automaton) process locally chooses q′ ∈ δ∃(q, e), the other processes
stay idle, thus the play proceeds in G′, to the environment position (e, q′) ∈ VE ×Q∀,

3. then, the environment player chooses p ∈ TE(e) and q1 ∈ δ∀(q′, p), and the play
proceeds to the process position (p, (q1,#)) ∈ VP × (Q∃ × {#}),

4. finally, the processes 1 to n (on the game G) choose some e1 ∈ TP (p), the new
(automaton) process stays almost idle (he simply deletes the # sign), and the play
proceeds to the environment position (e1, q1) ∈ VE ×Q∃.

If ρ is an accepting run of A over tσ (for some strategy σ in G), one deduce from ρ a
strategy σ′ such that σ⊗ σ′ is winning in G′. Conversely, if σ⊗ σ′ is a winning strategy in
G′, one can infer an accepting run of A over tσ from σ′.

�

7.3.3 Distributed synthesis in distributed games

We prove here that distributed behaviors can be encoded as distributed strategies in
distributed games.

7.3.3.1 Definition. Let D = 〈I, P, r, {Ac}c∈I∪P 〉 with P = {1, . . . , n} an n-process dis-
tributed architecture. We define distributed game

GD = 〈VP , VE , TP , TE , p0,Acc〉

to be an n-process distributed game built from the free synchronous game G1 ⊗ · · · ⊗ Gn

where, for every p ∈ P = {1, · · · , n}, the game Gp is the game Gr(p),p defined in Sec-
tion 7.1.1.5 such that, following Lemma 7.1.1.6, encodes all possible behaviors of process
p as non blocking strategies.

The initial position is the process position p0 = ∗n = (∗, ∗, · · · , ∗), and environment
player moves are defined as follows.

We say an environment position e = (fp)p∈P ∈ VE =
∏

p∈P V
Gp

E is coherent when it is
the local realization of a one step architecture behavior Fe : AI → AP (see Section 7.1.4.1).
From a coherent position e ∈ VE witnessed by function Fe : AI → AP , the environment
player chooses an arbitrary a = (ai)i∈I and, given (ai)i∈P = Fe(b), moves to the position
for processes pe,a = ((aj)j∈r(p))p∈P ∈ VP . From an incoherent environment position e, the
environment player always moves to ⊥n = (⊥,⊥, · · · ,⊥) ∈ VP . The winning infinite plays
Acc are defined to be the set of all plays.

Intuitively, distributed behaviors of architecture D are encoded as distributed winning
strategies in the distributed game GD by enforcing every process p ∈ P to define, step by
step, in game Gp, the local behavior process p will have in architecture D, while the envi-
ronment player checks that these choices are compatible one with the other in such a way
that the resulting global behavior is well defined (and thus has a distributed realization).
Lemma 7.1.1.6 and Theorem 7.1.4.2 apply to ensure this construction is correct.

Formally:
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7.3.3.2 Theorem (Bernet and J. [24]). A distributed strategy σ = σ1 ⊗ · · · ⊗ σn is
winning in game GD if and only if the set {fσp}p∈P of the behaviors defined on local games
G1, . . . , Gn by strategies σ1, . . . , σn is a distributed realization of a sequential function
f∗σ : A∗

I → A∗
P .

In particular, strategy σ is finite memory if and only if the sequential function f∗σ is
finitely generated.

Proof. Let σ : V ∗
P → VE be a winning distributed strategy for the process team with

σ = σ1 ⊗ · · · ⊗ σn.

By definition, from every coherent position e ∈ VE there is one and only one mapping
Fe : AI → AP locally realized by e. Moreover, for every input value a ∈ AI , there is one
and only one position pe,a ∈ VP where environment player can move to and, moreover,
value a can be read in values stored in pe,a hence all positions {pe,a}a∈AI

are distinct one
from the other.

It follows that there is a unique mapping hσ : A∗
I → V +

P such that hσ(ǫ) = (∗, · · · , ∗)
and, for every u ∈ A∗

I , for every a ∈ AI , given e = σ(hσ(u)), one has h(u.a) = hσ(u).pe,a.

We define then the mapping Fσ : A∗
I → (AI → AP ) : the functional kernel of the

sequential function induced by strategy σ, by, for every u ∈ AI , Fσ(u) = Fe with e =
σ(hσ(u)).

By construction, Fσ is the functional kernel of a realizable behavior f∗σ of architecture
D. In fact, for every u ∈ A∗

I , the environment position σ(hσ(u)) is a local realization of
Fσ(u) since it is a coherent position hence Theorem 7.1.4.2 applies.

Moreover, for every u ∈ A∗
I , by construction of game GD, by Lemma 7.1.1.6 and by

definition of distributed strategies, one also has

Fσ(u) = (Fσp(πAr(p)
(hσ(u))))p∈P

where, for every p ∈ P , Fσp is the functional kernel of the (local) sequential function fσp

induced by the (local) strategy σp.

In other words, the set {f∗σp
}p∈P of the local behaviors induced by the local strategies

{σp}p∈P is a distributed realization of f∗σ .

Conversely, let f∗ : A∗
I → A∗

P be a distributed architecture behavior realized by some
set of local process behaviors {fp}p∈P .

Given, for every p ∈ Pred a non blocking strategy σp in game Gp that, following
Lemma 7.1.1.6, corresponds to behavior fp, it is not hard to see that the distributed
strategy σf = σ1 ⊗ · · · ⊗ σn is winning in the distributed game GD. In fact, this amounts
to showing that, following strategy σf , no incoherent positions are ever reached from the
initial position p0. This immediately follows form the fact that the set of local behaviors
{fp}p∈P is a distributed realization of the global behavior f .

�

We then show that any n-process distributed synthesis problem with zero-delay seman-
tics can be encoded into solving an n+ 1-process distributed game.

More formally:

7.3.3.3 Theorem (Bernet and J. [24]). For every n-process architecture

D = 〈I, P, r, {Ac}c∈I∪P 〉
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and specification ϕ of (kernel of) sequential function from A∗
I to A∗

P there is an n + 1-
process distributed game G〈D,ϕ〉 such that there is a (finitely generated) realizable behavior
for D that satisfies ϕ if and only if there is a (finite memory) distributed strategy for the
process team in game G〈D,ϕ〉.

Proof. The idea is, for Internalization Theorem 7.3.2.3 to extend game GD with an extra
player that will run a tree automaton on the process team distributed strategy σ in game
GD in order to check that it induces a behavior that also satisfies the specification ϕ. By
Theorem 7.3.3.2, the induced behavior will be (finitely generated and) distributed if and
only if the strategy for the process team is (finite memory and) distributed.

�

Example (Pipeline Example Continued). Assume we start from a pipeline architec-
ture D with set of process P = {1, · · · , n} linearly ordered by �D with 1 ≺D 2 ≺D · · · ≺D n.
Let G be the n-process distributed game encoding D as above.

One can check that, in distributed G, if the process i knows the strategy followed by
every process j for each j � i, then, from the initial position (∗, ∗, · · · , ∗), the process i can
deduce, at every step, the local positions of these processes.

For the process n, at the input of the pipeline, this tells us that the process n can behave
like an automaton that read every other process’ strategy before defining is own strategy in
such a way that, composed with the others, it will satisfied the external condition A. This
is the way Kupferman and Vardi [112] do use for solving the pipeline synthesis problem.
Since this property is preserved in the above encoding of pipeline architecture, we can
generalize it to distributed games themselves. This leads to the notion of game leader and
linear distributed game defined and studied in the next section.

7.3.4 Externalization with leader and application

The notion of leader defined below follows the intuition above. In fact, it provides a
local condition that is sufficient for such a global knowledge to be available to a process
player.

7.3.4.1 Definition (Leader). Given a 2-process game G = 〈VP , VE , TP , TE , p0,A〉, we
say that the process 2 is a leader when, for every environment position e ∈ VE , every
processes positions x and y ∈ VP such that both (e, x) ∈ TE and (e, y) ∈ TE ,

– if x[2] = y[2] then x[1] = y[1],
– if x[2] ∈ VE [2] or y[2] ∈ VE [2] then x = y.

Intuitively, the process 2 is a leader when, as soon as he knows a global environment
position then, after an environment move (or several consecutive moves if the process 2
stays idle for some time), the process 2 can predict, from his own position, the global
processes position of the game.

This local property has the following formulation when it comes to considering plays:

7.3.4.2 Lemma. Let G = 〈VP , VE , TP , TE , p0〉 be a 2-process arena with initial position
p0. For every strategy σ for the processes, the restriction of view2 to the plays that are
consistent with σ and active for the process 2 is one-to-one.
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Proof. Immediate from the definition.
�

Rephrased in a more useful way, this observation leads to the following result:

7.3.4.3 Lemma. For every 2-process game G = 〈VP , VE , TP , TE , p0,Ω〉 such that the pro-
cess 2 is a leader, there exists a (VP [1], VE [1])-automaton A2 such that for every strategies
σ on G, σ1 on G1, the following propositions are equivalent:

(1) there exists a strategy σ2 on G[2] such that σ = σ1 ⊗ σ2

(2) σ2 is an accepting run of A2 on σ1.

Proof. (sketch) We first give here a construction for A2 in the case both the process 1 and
the process 2 are always active in the positions for processes.

The Automaton A2 = 〈Q2, VP [1], VE [1], q0,2, δ2, Acc2〉 can be defined as follows:
– Q∀

2 = VE ; Q∃
2 = VP [2] ∪ {q0,2},

– δ∀2 (q, p1) = {p2 ∈ Q∃
2 : (q, (p1, p2)) ∈ TE} (q ∈ Q∀

2 , p1 ∈ P [1]),
– δ∃2 (p2, e1) = {q ∈ Q∀

2 : q[1] = e1 ∧ (p2, q[2]) ∈ TP [2]} (p2 ∈ Q∃
2 , e1 ∈ VE [1]) with

δ∃2 (q0,2, e1) = {e0[2]},
– Acc2 = Qω

2 .
The correspondence between runs of A2 on strategy trees in G[1] and strategy trees in G
easily follows from this construction, and from the fact that the process 2 is a leader in G.

In the case the process 2 may be inactivated by the environment player one can check
that, since the process 2 is a leader, the game G can be first normalized so that this no
longer happens.

In the case the process 1 may be inactivated by environment player, then the construc-
tion below can be extended, defining (quite easily though tediously) an automaton A2 with
ǫ-transition. However, the main arguments remain the same.

�

Since the previous result holds for arbitrary external condition and arbitrary strategies
in G[1] (even if G[1] is itself a distributed game), it follows:

7.3.4.4 Theorem (Bernet and J. [25]).
For every (n + 1)-process distributed game G = 〈VP , VE , TP , TE , p0,A〉 with non deter-

ministic external winning condition A such that the process (n+ 1) is a leader, there is a
(VP [1, n], VE [1, n])-automaton An+1 such that the following propositions are equivalent:
(1) the processes have a distributed winning strategy on G.

(2) the processes have a distributed winning strategy in
〈G[1 . . . n], p0[1 . . . n],A ◦ An〉.

Example (The Pipeline: End). We have already mentioned that, in the (n+1)-process
pipeline arena G, from any initial position, the process pn+1 is a leader. It follows that
Theorem 7.3.4.4 applies.

Moreover, observe that the resulting n-process game arena G[1 . . . n] is nothing but a
n-process pipeline arena. This says that Theorem 7.3.4.4 can be applied repeatedly till
the number of processes is reduced to one. Now, one can internalize the automaton, and
compute a winning strategy in the resulting simple game using Theorem 2.1.1.9.

Transposed on our more abstract setting, this can be expressed as the following corollary
of the theorem.



7.4. COMPLEXITY OF DISTRIBUTED GAMES 119

7.3.4.5 Theorem (Mohalik et al. [128], Bernet et al. [25]). For every n-process (n ≥
2) distributed game G such that for each i ∈ {2, . . . , n} the process i is a leader in G[1 . . . i],
the problem of determining whether the processes have a finite winning strategy is decidable.

Remark. At every step, the external condition we get from the composition is an alternat-
ing automaton that needs to be simulated by a non alternating one so that the composition
can be iterated. This means that the complexity of solving the pipeline architecture syn-
thesis problem by means of its encoding into a distributed game is a tower of exponents
of depth at least the number of components in the pipeline. This (bad) complexity was
expected, since this problem is non-elementary [150].

7.4 Complexity of distributed games

In general, solving distributed games - equivalently distributed synthesis problem [150]
- is undecidable [147]; However, with two distributed processes only playing against the
environment, the decidability problem was left open [128].

In this section, we show that two-process distributed game are undecidable. More-
over, we show that, depending on the infinitary winning condition, solving two-process
distributed is Σ0

1-complete for reachability conditions, Π0
1-complete for safety conditions,

and, more generally, the hierarchy induced by Mostowski’s weak infinitary conditions [132]
defines, level by level, complete problems for the arithmetical hierarchy. Last, we show that
distributed games with Büchi infinitary conditions or higher are Σ1

1-complete.

7.4.1 Tilings, quasi-tilings and two players games

In order to prove lower bounds results in next section, we will use finite and infinite
tilings [21, 83].

7.4.1.1 Definition. Let {n, s, w, e} be the four cardinal directions of the plan. Given a
finite set of color C with a distinguished color # called the border color, a tile is a mapping
t : {n, s, w, e} → C that assign to each cardinal direction a color C with the additional
requirement that t(s) 6= # and t(w) 6= #, i.e. color # will only be used to defined East or
North borders.

Given a finite set T of tiles, a tiling is a partial function m : ω × ω → T such that
dom(m) = [0,M − 1] × [0, N − 1] for some (M,N) ∈ ω × ω when m is a finite tiling or
dom(f) = ω × ω when m is an infinite tiling, such that: for all (i, j) ∈ dom(mσ), N/S-
compatibility: if (i, j + 1) ∈ dom(m) then m(i, j)(n) = m(i, j + 1)(s), E/W -compatibility:
if (i + 1, j) ∈ dom(m) then m(i, j)(w) = m(i + 1, j)(e), E-border condition: (i + 1, j) /∈
dom(m) if and only if m(i, j)(e) = #, and N -border condition: (i, j + 1) /∈ dom(m) if and
only if m(i, j)(n) = #.

7.4.1.2 Theorem (Berger [21], Harel [83]). Given a set of colors C and a set T of
tiles with a distinguished tile t0 ∈ T : (1) the problem of finding M and N and a finite
M × N -tiling m such that m(0, 0) = t0 is Σ0

1-complete, (2) the problem of finding an
infinite tiling m such that m(0, 0) = t0 is Π0

1-complete, and (3) the problem of finding an
infinite tiling m such that m(0, 0) = t0 and one given color , say red, occurs infinitely often
is Σ1

1-complete.
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7.4.1.3 Definition. A function m : ω × ω → T is a quasi-tiling when it satisfies N/S-
compatibility on every column, East border condition on every line, and Est/W -compatibility
on the first line but not necessarily the other conditions.

It occurs that, for every finite set of tile T and initial tile t0 ∈ T , there exists a two-
player game GT,t0 that encodes all quasi-tiling m : ω × ω → T as non blocking strategies
for player E. Formally:

7.4.1.4 Definition. Given a finite set of color C, a finite set of C-colored tiles T and an
initial tile t0, let GT,t0 = 〈VP , VE , p0, TP , TE ,Acc be the two player game defined by:

– VP = ({e, n} × T × {P}) ∪ {⊥} and VE = ({e, n} × T × {P}) ∪ {∗},
– TP is the set of all pairs of the form ((d, t, P ), (d, t′, E)) ∈ VP ×VE such that, if d = e

then t′(w) = t(e) and if d = n then t′(s) = t(n) and t′(e) = # if and only if t(e) = #,
– TE is the set of all pairs of the form (∗, (x, t0, P )) or ((x, t, E),⊥) plus all pairs of

the form ((d, t, P ), (d′, t, E)) ∈ VP × VE such that, if d = e then d′ ∈ {d, n} and if
d = n or t(e) = # and then d′ = n,

– p0 = ∗ and Acc = (VP + VE)
ω.

7.4.1.5 Lemma (J. [97]). For every non blocking strategy σ : V +
P → VE, in game GT,t0 ,

there is a unique quasi-tiling mσ : ω × ω → T such that, for all (i, j) ∈ ω × ω, (i, j) ∈
dom(mσ) if and only if there is counter strategy τ : V +

E → VP such that π1 ◦ πVP
(σ ∗ τ) =

ei.nj and (σ ∗ τ)(i+ j) = mσ(i, j).

Conversely, for every quasi-tiling m such that m(0, 0) = t0 there is a non blocking
strategy σm is game Gm,t0 such that mσm = m.

Proof. By construction, in every play, player E task is to chose, at every step, a direction
e or n and, when direction n has been chosen, or when the left border is reached, to
choose repeatedly direction n. It follows that every (blocking) strategy for player E that
avoids position ⊥ can be described by (1) choosing some (i, j) ∈ ω × × and (2) playing
the successive directions described by the word ei.nj - provided player P does not create
the East border. In front of player E, player P strategy just amounts to choose, for every
(i′, j′) ≤x (i, j) a tile ti′,j′ . It shall be clear that this choice is independent from (i, j) so we
can define mσ(i

′, j′) = ti′,j′ .

The fact that mσ is a quasi-tiling immediately follows from game GT,t0 definition. The
converse property is also immediate.

�

Remark. Observe that, in game GT,t0 , player P chooses to define a tiling bounded in the
East direction by choosing the first tile t such that t(e) = #.

7.4.2 completeness results

7.4.2.1 Theorem (J. [97]). The problem of finding a winning distributed strategy in a
2-process distributed game with safety condition is Π0

1-complete.

Proof. It shall be clear that solving a safety distributed game is Π0
1. It remains to prove

that it is also Π0
1-hard. In order to do so, we encode the infinite tiling problem into a safety

distributed game.
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Let T be a finite set of tile and let t0 ∈ T be a given initial tile. The idea is to build a
distributed game G from the free product GT,t0 ⊗GT,t0 with safety condition in such a way
that player E checks that (1) if a distributed strategy σ1⊗σ2 is non blocking then σ1 = σ2,
and (2) a distributed strategy of the form σ ⊗ σ is winning if and only if the quasi-tiling
mσ : ω × ω → T is a tiling of ω × ω (i.e. it satisfies moreover the E/W -compatibility
condition.

More precisely, we assume, without lost of generality, that in every position in game
GT,t0 there is a (fourth) additional component that count, modulo 2, the number of moves
performed by player E from the initial position ∗.

Environment moves are then restricted from the moves defined in game GT,t0 ⊗GT,t0 as
follows. From the initial position (∗, ∗) player E has only two kind of strategies: (1) player
E, at every rounds, plays synchronously in the same direction in both local games; in both
components, the number of player E moves are always equal modulo 2; relying on this
information, player E checks that Process players’ strategies are, on both side, equal; if
not player E moves to position (⊥,⊥), (2) player E first moves to the East, asynchronously,
in the second component only, and at every other rounds, plays synchronously in the same
direction in both local games; in both component, the number of player E moves are
distinct, modulo 2; relying on this information, player E checks that Process players local
strategies are compatible along the E/W axis, i.e. whenever tiles t1 and t2 are chosen
by players P1 and P2, player E checks that t1(e) = t2(w); if not, or, again, if any player
move to a tile that contains the border color #, and only in these cases, player E moves
to position (⊥,⊥). Additionally, in both cases, if ever a Process player choose a tile that
contains the border color #, then Environment also moves to position (⊥,⊥).

The winning condition for the Process team is to avoid position (⊥,⊥). This is a safety
condition.

Since players P1 and P2 stay unaware of the initial choice made by player E, a winning
distributed strategy is (1) to play the same strategy σ in both game, (2) to be sure that
the induced quasi-tiling mσ with mσ(t0) (see Lemma 7.4.1.5) also satisfies the E/W -
compatibility condition henceforth mσ is a solution of the encoded infinite tiling problem.

Conversely, for all infinite tiling m such that m(0, 0) = t0 one can check that σm ⊗ σm
is a winning distributed strategy.

�

In particular, solving distributed safety game is not in Σ0
1. Since checking that a given

finite memory strategy is distributed and winning is decidable, one also has:

7.4.2.2 Corollary. The problem of solving finite distributed safety games with finite-memory
distributed winning strategy is also undecidable.

7.4.2.3 Theorem (J. [97]). The problem of finding a winning distributed strategy in a
two-process distributed game with reachability condition is Σ0

1-complete.

Proof. Again, it shall be clear that this problem is Σ0
1. It remains to prove that it is Σ0

1-hard.
In order to do so, we encode into reachability distributed games the finite tiling problem.

The encoding is similar to the encoding in the proof of Theorem 7.4.2.1) except that
(1) player E now allows players P1 and P2 to play tiles that contains the border color #
and (2) the winning condition for Process team is to reach, at the end of every local play,
a tile t with t(n) = #.
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It shall be clear that there is a winning distributed winning strategy in the new (reach-
ability) distributed game G if and only if there is a finite tiling m such that m(0, 0) = t0

�

7.4.2.4 Theorem (J. [97]). For every integer n > 0, the problem of solving two-process
distributed weak game with Mostowski range [0, n − 1] (resp. [1, n]) is Π0

n-complete (resp.
Σ0
n-complete).

Proof. Observe first that a similar statement holds for Alternating Turing Machine with
infinite computation. Intuitively, alternation allows a machine to (1) guess the answer of an
oracle and, at the same time, to (2) start a computation of the oracle (or its complement)
that checks the guessing is correct. By construction, since no acknowledgment is expected,
the resulting infinitary conditions are weak in the sense of Mostowski[132].

For distributed games, we can proceed similarly by induction on n > 0 by means
of (encoding of) tiling systems. The ground case n = 1 is solved by Theorem 7.4.2.1 and
Theorem 7.4.2.3. The main technicality in building a Π0

n+1-complete (resp. Σ0
n+1-complete)

game is to transmit, from the safety (resp. reachability) calling distributed game, arguments
to the pair of called oracles (Σ0

n and Π0
n-complete). This can be achieved with tiling-like

encoding, forcing the current line of the calling distributed game to be the first line of
the called oracle (by means of adequate constraints on the possible player E moves). The
resulting infinitary condition is weak as in the case of Alternating Turing Machine.

�

7.4.2.5 Theorem (J. [97]). The problem of solving two-process (or more) distributed
game with Büchi condition (or higher) is Σ1

1-complete.

Proof. It shall be clear that solving arbitrary n-process distributed game is Σ1
1.

Conversely, from the encoding of the infinite tiling problem (see proof of Theorem 7.4.2.1),
the idea is to add in local game GT,t0 a non deterministic tree automaton [152, 78] that
checks that, given local strategy σ followed by player P , the induced quasi-tiling mσ (seen
as a a sub tree of the binary tree t : (e+ t)∗ → T ) uses infinitely many tiles with color red.

Such an automaton can be defined with Büchi acceptance criterion that, in turn, defines
the winning condition for every Process team.

�

Remark. As a conclusion, one may ask if similar results can be proved restricting to
synchronous distributed two player games. It turns out that the answer is yes. In fact this
can be proved by an encoding, in local games, of the two possible test equality or test e/w-
compatibility modes for player E. In this encoding, one has to ensure that neither player
P1 nor player P2 can read (or even deduce) what is the operating mode of player E. This
makes this encoding not trivial.

It is also probably the case, following for instance [72], that with variants of these unde-
cidable infinite distributed games, one can define similarly decidable classes of distributed
games that are complete for every level of the polynomial hierarchy and, possibly with
more processes, even higher. In fact, the finite M ×N tiling problem with bounded M and
N (given as inputs) in known to be NP -complete[83], and the pipeline distributed game
is known to be decidable but non-elementary complete [147].
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7.5 References and notes

Peterson and Reif [147, 148] initiate the research on multiplayer games of incomplete
information, considering finite games, and introducing the notion of hierarchical games.
Subsequent results on solving distributed synthesis (such as [150], [112]) essentially used
the same ideas and techniques, except in the fact that they consider infinite plays and/or
branching time specifications.

The relationships between distributed games (presented here), other (and more general)
versions of distributed games[66, 67], multi-player games with partial information [147,
148], distributed synthesis [150, 112, 128], control theory [17, 119, 120, 121, 22, 156, 117,
116, 154] and other true concurrent model based approaches such as MSCs [68, 69, 69]
need to be investigated further more. In particular, it is not clear at the moment how the
complexity lower-bounds obtained in Section 7.4 can be applied to these various settings.



Chapter 8

Perspectives

In this chapter, we are reviewing some open problems and potential research directions
that could be followed. On purpose, they are closely related with what is presented in this
report. Of course, plenty of other very interesting research problems could be stated in the
general field of logic, automata and games (even restricted to monadic second order logic).
For instance, among many other very interesting results and works in progress presented
in the GAMES network, recent advances in algebraic characterization of tree languages
sound very promising and potentially quite close to the underlying research objectives of
the work presented here.

8.1 Two player games

Whether parity games can be solved in PTIME or not, is, in this field, the very
hot problem. A better understanding of the mathematical properties of parity games and
winning strategies in parity games is also a related relevant issue.

Relational fixed point algorithm to define/compute winning positions. Except
Vöge and Jurdzinski’s algorithm whose complexity is unknown [179], it seems that all other
algorithms that compute the set of winning positions in parity games amount, more and
less implicitly, to define winning positions by means of monadic second order formulas.
By the Bisimulation Invariance Theorem 4.2.2.1, these formulas are, in turn, equivalent to
mu-calculus formulas, which, by strictness of the hierarchy [32], have arbitrary complexity.
In other words, on the conceptual point of view, solving parity games amounts, in these
approaches, . . . , to solve parity games. . .

One way to escape this reflexive point of view while staying at the symbolic level of
defining the set of winning positions by means of formulas, could be to consider fixed point
formulas on k-ary relations - say binary - that, provided their fixed point alternation depth
is bounded, are computable in PTIME. For instance, this could consist in defining, for
every integer n a canonical parity game Gn of size n such that, whenever a position is
winning in a parity game of size n, it can be related by a simulation relation (in Gn E⇋

P G
or even in Gn E⊢

P G) that would be definable by means of (relational) fixed point formula !

An attempt with a very special kind of synchronous simulation relation already leads
to the algorithm presented in section 2.2. Building more clever simulation could be tried !
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Complete proof systems for game. We have defined above several notions of simula-
tion relations. The reader who is familiar with proof theory may have noticed the similarity
between generalized simulation relations and sequent calculus. In fact, the player P po-
sitions can be seen as disjunctions, the player E positions can be seen as conjunctions,
and our definition of generalized simulation implements somehow Gentzen sequent calcu-
lus rules. As we have proved the soundness of our definition (see Lemma 2.3.3.5) one may
ask if there is some underlying completeness result to expect.

A first problem is to define what would be a valid sequent. A possible definition would
be to say that, given two tuples of positions x and y in (finite) parity games, a sequent
x ⊢ y is valid if, whenever there a winning strategy from all positions in x, then there
exists a winning strategy from at least one position in y. In fact, this definition would only
make sense by extending games with free variables so that positions in games would be
evaluated in propositional formulas with free variables.

With this definition, there is a chance that our generalized simulation relation is com-
plete in the sense that whenever a sequent x ⊢ y is valid then there is a generalized simu-
lation relation from x to y, i.e. the position (x, y) is winning in the underlying generalized
simulation game.

However, no local constraint in players moves in the game G1 E⊢
P G2 handle the winning

conditions.

Normalizing parity games. Looking for complete proof systems for games, one may use
Walukiewicz result on the completeness of Kozen’s axiomatization of the mu-calculus [180].
In fact, Kozen’s axiomatization handles locally, in inference rules, infinitary conditions
trough rules for handling least and greatest fixed point constructs. Moreover, positions
in finite parity games with free variables can be seen as systems of least and greatest
boolean equations. They are thus encodable in boolean mu-calculus formulas and, thus,
Walukiewicz’s completeness result applies.

However, in such an encoding there is both: (1) an unraveling of the finite parity
games - mu-calculus formulas are tree shaped - and (2) a normalization of priorities -
parity conditions are implicitly defined by the alternation of least and greatest fixed point
constructions.

In our definition of generalized simulation games, we only proposes a global transfer
condition. This weakness can be explained by the fact that priorities in parity games
are somehow quite arbitrarily spread on positions. There may even no hope to define a
complete set of inference rule that will, locally, by means of priorities comparison, guarantee
the global transfer condition to be fulfilled.

The underlying open problem could be the following : what are the possible priority
labeling of a given game that preserve winning plays ? Is there, among them, a canonical
labeling ? A positive answer to the latter may help to understand better the structure of
parity games and, possibly, will lead to a complete axiomatization of games sequents with
local handling of infinitary conditions.

In such an attempt, ω-semi-group theory [146] may help since it provides canonical
representation of the (regular) set of winning plays.
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8.2 Automata and finite graphs

There have been many proposals to extend the word or tree automata theory to finite
graphs. The fact that graph acceptors in their most general definition - with occurrence
constraints - do capture monadic Σ1 definable graph properties [173] is probably a good
point in favor of this particular extension. However, comparing mu-calculus formulas to
graph acceptors suggests that the question is still not settled on finite relational structure.
Surprisingly enough, it leads us towards an alternative proposed by Courcelle[42, 44].

Another related and more precise question is the following: are there MSO definable
properties, bisimulation invariant on finite graphs, that are not definable in the modal
mu-calculus ? This question remains open despite several attempts [144, 50]. Observe
that modal mu-calculus properties can be checked in PTIME while there are monadic Σ1

definable NP-complete problems. Solving this question could very well amount to showing
that there are NP hard problems definable in bisimulation invariant fragment of MSO in
the finite.

Extending graph acceptors with edge labeling. Lemma 6.2.1.4 and corollary 6.1.3.2
show that graph acceptors are expressive enough to capture the level NC1 of the counting
mu-calculus hierarchy but also expressive enough to capture formulas that are at least
NC2 ∩MC2 “hard” - since infinite word languages are Büchi ∩ co-Büchi “hard” - . On
the other hand, graph acceptors are not expressive enough to capture reachability that is
definable by means of a least fixed point in MC1 (even M1).

Observe that the definition of graph acceptor aims at extending to finite graphs the
notion of automata on finite strings or trees. One may note however that on strings or trees,
edge (resp. edge set) quantification is definable by means of vertex (resp. vertex set) quan-
tification - say in the directed case, coding every edge by its target vertex. This encoding
is no longer available on arbitrary graph. This suggests that the notion of graph acceptors
may be extended to graph acceptors with edge labeling, i.e. moving from existential MSO1

formulas to existential MSO2 formulas has defined by Courcelle[44].
Are these graphs acceptors with edge labeling expressive enough to capture not only

directed reachability but even, say, the alternation free mu-calculus ? The question of
characterizing the bisimulation invariant fragment of these extended graph acceptors may
also be simpler.

Graph acceptors with infinitary conditions. In the same way infinite tree automata
are defined by extending finite tree automata adding infinitary conditions - say regular
conditions or even parity conditions -, one may extend similarly graph acceptors by adding
a similar infinitary condition on infinite labeled paths.

This track was already investigated in collaboration with Dietmar Berwanger. It occurs
that: (1) only adding regular infinitary conditions to graph acceptors fails to capture the
counting mu-calculus, (2) only adding parity conditions to extended graph acceptors with
edge labeling fails to capture the counting mu-calculus, (3) adding both regular infinitary
condition to extended graph acceptors with edge labeling do capture - at least - the counting
mu-calculus.

The exact expressive power of these extended graph acceptors with (or without) regular
infinitary conditions remains to be understood.
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8.3 Distributed games

This research track is an attempt to pull down the many formalisms that deals with
discrete program synthesis into a common, minimalist, formalism. Today, it is just too new
an attempt to claim whether it should fail or succeed. Many things remain to be done.
Some research directions are listed below.

Universality of distributed games. What known and solved problems are encodable
and solvable within distributed games ?

Relationship with other theories. What tools, provided by other theories, e.g. au-
tomata theory, proof theory, concurrency theory, logic of Knowledge, are applicable - can
be imported - to distributed games ?

Applicability. What concrete software - or hardware - problems are encodable and/or
solvable in distributed games ?

Trying to answer these questions may lead to add structures or new concepts to the defini-
tion of distributed games in order to handle, for instance, arbitrary data, communication
- or knowledge - flows, etc. . .
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d-successor, 4

d-successors, 4

k-local formula, 91

synchronous, 124

Environement, 17

Process, 17

accepted, 3, 40

accepting, 56

accepting run, 3

accepting trace, 41

action, 4

acyclic distributed architecture, 106
alphabet, 1
asynchronous game simulation, 31

Büchi condition, 3
backward counting modalities, 12
backward modalities, 12
basic d-local, 79
basic automaton Ab

α, 47
behavior, 18, 20
binding definition, 13
bisimilar, 7
bisimulation closed, 11, 63
bisimulation invariant, 11, 63
branching degree, 5

canonical projection, 110
closed condition, 3
complete play, 18
congruence class, 89
contracted, 44
counting automaton, 40
counting bisimilar, 7
counting bisimulation, 7
counting bisimulation closed, 11, 63
counting bisimulation invariant, 11, 63

dependency order relation, 13
dependency relation, 106
determined, 19
deterministic, 3
deterministic strategy, 18
directed distance, 5
directed path, 5
direction, 4
directions, 113
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distributed architecture, 105
distributed arena, 110

139



140 INDEX

distributed game, 111
distributed realization, 107
distributed strategy, 111
distributed synthesis problem, 107

edge relation, 4
equivalent, 19
expanded, 44

finite distributed realization, 107
finite memory, 104
finite word, 1
finitely branching, 5, 9
finitely generated, 104
first order structure, 10
fixed point formula, 11
flat, 48
flat automaton, 40
forward looking, 91
forward modalities, 12
forward-looking, 91
free (asynchronous) product, 109
function view, 3
functional kernel, 104

game, 17
game arena, 17
game initial position, 18
game moves, 17
game positions, 17
game with external winning condition, 115
game with internal winning condition, 115
generalized simulation, 37
generalized simulation product, 37
global behavior, 106
global play, 111
global strategy, 111
graph, 4
graph acceptors, 91
graph embedding, 5
graph isomorphism, 5
graph morphism, 5
graph projection, 5

hierarchical architecture, 106

infinite product, 2

is accepted, 113
isomorphic, 5

kernel, 86, 104
Kleene star, 1

labels, 113
language of words, 1
lasso, 87
length, 1
length of path, 5
letters, 1
lexicographically smaller, 27
local formula, 91
local realization, 107
locally realizable, 107

memoryless strategy, 21
mixed product, 2
modal automaton, 40
model-checking game, 17, 40
MSO definable, 10
MSO-definable, 15
mu-depth, 14
Muller acceptance, 3
Muller game, 20
multi-modal, 15

non alternating, 56
non blocking strategy, 18
non deterministic, 57
non deterministic automaton, 113
not, 9
nu-depth, 14

one-step behavior, 107

parity condition, 3
parity game, 21
parity index, 21
partial play, 18
partial unraveling, 41
path, 5
permissive, 24
pipeline architecture, 106
play, 18
plays induced by strategies, 18
plays induced by strategy trees, 19
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positional strategy, 21
powergraph, 93
principal, 74

quantified fixed point formulas, 67
quasi-tiling, 121

recognized, 40
refusing trace, 41
regular game, 20
regular language, 1
regular strategy, 21
reverse direction, 5
root vertex, 4
run, 3

safety game, 22
satisfiability game, 17
saturating morphism, 7
sequential function, 104
simulation product, 31
skeleton, 9
skeleton graph, 4
solvable, 20
strategy, 18
strategy tree, 19
strategy with memory, 21
strictly saturating morphism, 7
structure domain, 10
subgraph induced, 5
subsumed, 19
successor, 4
successors, 5
synchronous, 112
synchronous game simulation, 34
synchronous position, 112
syntactic closure, 50

tiling, 121
trace, 41, 58
transition system, 4
tree, 6
tree-like, 91
tree-shaped, 51
tree-shaped automaton with back-edges, 51

ultrafilter, 74

undirected distance, 5
undirected path, 5
uniform interpolant, 68
unraveling, 5

vertices, 4

weak automaton, 77
well named, 13
winning for Environement, 18
winning for Process, 18
winning position, 19
winning strategy, 19
word prefix topology, 2


