

1 nm

Synthèse et caractérisation d'un acier ODS préparé par un procédé alternatif inspiré du broyage réactif Etude de l'influence des conditions de broyage et recuit

Mathilde Brocq

Service de Recherches de Métallurgie Physique CEA - DEN - DMN - SRMP

F. Legendre : encadrant CEA

G. Le Cäer : directeur de thèse

13/10/2010 - Soutenance de thèse

RNR-Na, réacteur à fission de Génération IV

Réacteur à fusion

Dans les **réacteurs nucléaires du futur**, conditions plus sévères dans le cœur du réacteur

 \rightarrow Hautes T°, irradiation

Pour gaines des RNR-Na : T~550 à 700°C ; 150 dpa

Développement de nouveaux matériaux de structure avec :

- Faibles activation et gonflement sous irradiation
- Conservation de ductilité et résistance au fluage thermique
- Résistance à la corrosion

→ Aciers ODS (Oxide Dispersion Strengthened) = candidat prometteur

Propriétés des aciers ODS

Acier ODS =

Matrice ferritique ou martensitique *Ex : Fe-14Cr-2W (% mass.)*

Résistance au gonflement sous irradiation

→ Structure cubique centrée

J.L. Seran, 2006, DT-DMN

renforcée par

une dispersion d'oxydes nanométriques Ex : oxydes d'yttrium, de titane

Résistance au fluage à hautes T°

Acier ODS =

Matrice ferritique ou martensitique *Ex : Fe-14Cr-2W (% mass.)*

Résistance au gonflement sous irradiation

Hayashi, 2008, Act. Mat.

Efficacité de l'ancrage dépend de la taille et de l'espacement des oxydes

renforcée par une

une dispersion d'oxydes nanométriques *Ex : oxydes d'yttrium, de titane*

Résistance au fluage à hautes T°

→Ancrage des dislocations par les oxydes nanométriques

Matrice ferritique ou martensitique *Ex : Fe-14Cr-2W (% mass.)*

Résistance au gonflement sous irradiation

 $\hat{\boldsymbol{\rho}}$

→ Structure cubique centrée

J.L. Seran, 2006, DT-DMN

Acier ODS =

renforcée par

une dispersion d'oxydes nanométriques *Ex : oxydes d'yttrium, de titane*

Résistance au fluage à hautes T°

→Ancrage des dislocations par les oxydes nanométriques

L. Hsiung, 2010

Bulles d'He piégées à l'interface métal/oxydes

Des candidats très prometteurs mais avec des propriétés variables d'un matériau à l'autre

Propriétés des aciers ODS

→ La nature des oxydes dépend de leur taille

→ Deux types de nano-oxydes : les amas et les oxydes stoechiométriques

13/10/2010 - Soutenance de thèse

Un procédé de synthèse complexe qui est mal compris et difficile à optimiser

 $\hat{\mathbf{e}}$

→ Aciers ODS = matériaux prometteurs pour le cœur des réacteurs nucléaires

MAIS

 $\hat{\mathbf{r}}$

→ Propriétés mécaniques différentes d'un matériau à l'autre
→ Procédé de synthèse mal maîtrisé (pas de contrôle des

caractéristiques des nano-oxydes)

➔ Cette étude consiste à

Synthétiser des aciers ODS :

- procédé alternatif (s'inspirant du broyage réactif)
- en faisant varier les conditions de synthèse

Objectifs :

- déterminer si nouvelle voie de synthèse prometteuse
- déterminer l'influence des conditions de synthèse sur les nano-oxydes.

Démarche expérimentale :

- caractérisation du matériau après chaque étape du procédé → broyage + recuit
- caractérisations multi-échelles et complémentaires

I. Synthèse et techniques de caractérisation

- II. Etude du système broyé $YFe_3 + Fe_2O_3$
- III. Synthèse d'un acier ODS par un procédé inspiré du broyage réactif et caractérisation multi-échelle.

IV. Etude de l'influence des réactifs de broyage sur les nano-oxydes

V. Etude de l'influence des conditions de broyage et de recuit sur les nano-oxydes

13/10/2010 - Soutenance de thèse

 $\hat{\mathbf{e}}$

Dissolution préférentielle de la matrice métallique et isolation des précipités > 15-20 nm

→ DC : caractérisation des précipités de 10-100 nm peu denses

→ SAT : caractérisation locale à l'échelle nanométrique

Ajustement de la section efficace à des modèles

- \rightarrow Rayon moyen, distribution de taille des précipités
- → Fraction volumique (si composition chimique ou magnétisme connu)

→ Ajouter équation section efficace

→ DNPA : caractérisation globale à l'échelle nanométrique

0 0.2 0.4 0.6 0.8

Vecteur de diffusion a (nm⁻¹)

I. Synthèse et techniques de caractérisation

II. Etude du système broyé $YFe_3 + Fe_2O_3$

III. Synthèse d'un acier ODS par un procédé inspiré du broyage réactif et caractérisation multi-échelle

IV. Etude de l'influence des réactifs de broyage sur les oxydes

V. Etude de l'influence des conditions de broyage et de recuit sur les nano-oxydes

Brocq et al., Acta Materialia, 58: 1806 (2010)

Réaction chimique visée : $2YFe_3 + Fe_2O_3 \rightarrow 8Fe + Y_2O_3$

$2YFe_3 + Fe_2O_3 \rightarrow 8 Fe + Y_2O_3$

→ Après broyage et recuit : matrice de Fe cubique renforcée par des précipités d'Y₂O₃ cubique

Grain de poudre **après broyage**

Pointe analysable par SAT

Grain de poudre **collé sur une pré-pointe**

Grain de poudre **usiné**

Ga ions Turr « Mask » Si

Focus Ion Beam (FIB)

Microscope optique + micromanipulateur

- Système bi-phasé :

(A)

	Fe phase (%at)	Y-O phase (%at)
Broyé	Fe + 1.5%Y + 3.5%O	Y/O~1 + ~15%Fe
Recuit	Fe + 0.2%Y + 1.4%O	Y/O~0.73 + 3%Fe

13/10/2010 - Soutenance de thèse

- Mise en place d'une méthode de préparation des échantillons pour la SAT adaptée aux poudres

- Broyage et recuit du système $YFe_3 + Fe_2O_3$: formation d'un système biphasé (Fe + Y_2O_3) et nanostructuré

- Le broyage créé un état métastable puis le recuit fait tendre le système vers l'équilibre.

æ

I. Synthèse et techniques de caractérisation

II. Etude du système broyé $YFe_3 + Fe_2O_3$

III. Synthèse d'un acier ODS par un procédé inspiré du broyage réactif et caractérisation multi-échelle

IV. Etude de l'influence des réactifs de broyage sur les oxydes

V. Etude de l'influence des conditions de broyage et de recuit sur les nano-oxydes

Brocq et al., JNM, to be published

→ Ensemble de techniques de caractérisation adaptées aux poudres et capables de détecter tous les types d'oxydes

Microsonde

(e)

→ Broyé : qq précipités de ~1 µm de Ti

→ Avec le recuit : nombre de précipités ↑

Dissolution chimique préférentielle + DRX

- \rightarrow Broyé : WC = contamination
- \rightarrow Recuit : oxydes de Ti et Fe
- \rightarrow Pas de Y₂Ti₂O₇ ou Y₂TiO₅

→ Formation de gros oxydes de Ti (même dans des conditions de synthèse contrôlées)

→ Pas d'oxydes stoechiométriques de Ti et Y

œ

Caractérisation des oxydes < 15 nm : sonde atomique tomographique

13/10/2010 - Soutenance de thèse

	Moyenne				Matrice				Amas			
at.%	ODS broyé		ODS recuit 800°C 5'		ODS broyé		ODS recuit 800°C 5'		ODS broyé		ODS recuit 800°C 5'	
Fe	82.65	±0.09	82.49	± 0.07	82.81	± 0.09	83.58	± 0.07	69.79	±2.3	63.32	±1.1
Cr	14.30	± 0.08	14.88	± 0.07	14.29	± 0.08	14.76	± 0.07	14.86	±1.8	16.85	± 0.81
\mathbf{W}	0.44	± 0.02	0.62	± 0.02	0.44	±0.02	0.62	± 0.02	0.19	± 0.2	0.63	± 0.18
Ti	1.28	±0.03	0.65	± 0.02	1.24	±0.03	0.33	± 0.01	4.00	±1.0	5.2	± 0.48
Y	0.54	± 0.02	0.47	± 0.01	0.48	± 0.02	0.21	± 0.01	5.37	±1.1	6.24	± 0.53
0	0.68	± 0.02	0.81	± 0.02	0.61	± 0.02	0.42	± 0.01	5.81	±1.2	7.64	± 0.58
С	0.12	± 0.01	0.08	± 0.01	0.12	±0.01	0.08	± 0.02	0	± 0	0.12	± 0.08
Ti+Y+O	2.49		1.93		2.33		0.96		15.17		19.08	

Nature des amas \rightarrow Enrichis en Ti, Y, O et Cr

 \rightarrow Très concentré en Fe

Evolution avec le recuit

 \rightarrow Appauvrissement de la matrice en Ti, Y et O

→ Léger enrichissement en Ti, Y et O + augmentation du nombre d'amas

- ODS broyé ≠ alliage FeCrW broyé : objets nm dans l'ODS broyé

- Avec le recuit, la taille est ~constante et la fraction volumique augmente

→La cinétique de germination des amas pendant le recuit est très rapide → Bon accord entre SAT et DNPA sur le rayon et la densité des amas

13/10/2010 - Soutenance de thèse

DNPA : hyp = amas non magnétiques

SAT : [Fe]_{amas} ~ 70 % at.

DNPA : hypothèse sur la nature des amas

Avec la composition chimique mesurée par SAT :

 $F_v(ODS broyé) = 28 \%$

F_v(ODS recuit) > 100 % !!!

SAT : artefacts de reconstruction

 \rightarrow [Fe]_{amas} surestimée

Fraction volumique théorique maximum

Si tous les atomes de Ti, Y et O précipitent : $F_v \sim 3 \%$

ODS R 800°C 5': **F**_v **= 4.3 %** (DNPA)

 \rightarrow Contradiction entre SAT et DNPA sur la composition chimique des amas

 \rightarrow Les amas contiennent du fer. Quelle quantité ?

\rightarrow 3 méthodes de calcul de la fraction volumique des amas

→ Composition des amas :
 ODS broyé = 40 à 55 % at. de Fe et ODS R800°C 5'= 20 à 35 % at.
 → Hypothèse de non-magnétisme des amas : valable
 → Artefacts de reconstruction par SAT

- Le procédé de synthèse inspiré du broyage réactif est efficace pour synthétiser un acier ODS

- Nouveau mécanisme de formation : la germination des amas commence pendant le broyage puis le recuit l'amplifie (+ enrichissement en solutés, début de croissance)

- Cinétique d'évolution très rapide au cours du recuit (même à T° de 400 ou 800°C)

- Combinaison de SAT et DNPA pour décrire la composition chimique des amas :

 \rightarrow Enrichis en Ti, Y, O et Cr

 \rightarrow ~50 % at. de Fe après broyage et 30 % at. après recuit

I. Synthèse et techniques de caractérisation

- II. Etude du système broyé $YFe_3 + Fe_2O_3$
- III. Synthèse d'un acier ODS par un procédé inspiré du broyage réactif et caractérisation multi-échelle

IV. Etude de l'influence des réactifs de broyage sur les oxydes

V. Etude de l'influence des conditions de broyage et de recuit sur les nano-oxydes

Caractérisation des gros oxydes : microsonde électronique

- Densité d'oxydes de Ti dépend :
 - \rightarrow [Ti] nominale
 - \rightarrow réactifs de broyage (Fe₂Ti ou FeCrWTi)
- Corrélation entre précipitation des oxydes de Cr et des oxydes de Ti

13/10/2010 - Soutenance de thèse

→ Composition nominale et conditions de synthèse identiques

Fe-14Cr-2W-0,25Ti-0,2Y-0,05O (% mass.)

Broyage : 144h, I = 2000 m.s⁻², Recuit : 800°C 5'

→ Réactifs de broyage de différentes formes

FeCrWTi + YFe₃ + Fe₂O₃ FeCrWTi + Y₂O₃ FeCrWTi + Y₂O₃ nm FeCrW + Fe₂Ti + YFe₃ + Fe₂O₃ FeCrW + Fe₂Ti + Y₂O₃

→ Pas d'influence de la forme des réactifs sur les caractéristiques des nano-oxydes

→ Le nouveau mécanisme de formation observé n'est pas dû aux réactifs YFe₃ + Fe₂O₃

 \rightarrow Choix : FeCrW + Fe₂Ti + YFe₃ + Fe₂O₃

œ

- Formation d'oxydes de Ti dépend de la composition nominale en Ti et des réactifs utilisés (FeCrWTi ou Fe_2Ti)

 A composition nominale et conditions de synthèse constante, la nature des réactifs de broyage n'a pas d'influence sur les caractéristiques des amas

→ Le nouveau mécanisme de formation n'est spécifique aux réactifs YFe₃ et Fe₂O₃

I. Synthèse et techniques de caractérisation

- II. Etude du système broyé $YFe_3 + Fe_2O_3$
- III. Synthèse d'un acier ODS par un procédé inspiré du broyage réactif et caractérisation multi-échelle

IV. Etude de l'influence des réactifs de broyage sur les oxydes

V. Etude de l'influence des conditions de broyage et de recuit sur les nano-oxydes

Evolution avec la durée de broyage : microsonde électronique

A. Mascaro, stage

ODS broyé 5h

BROYAGE → I = 2000 m.s⁻², vide, T° amb → Durée : 1 à 144h

Répartition de Ti

- 1. Réactifs (YFe₃, Fe₂Ti) se collent à la surface des grains de FeCrW
 - 2. Incorporation dans les grains de FeCrW
 - 3. Homogénéisation à l'échelle µm

→ Après 72h de broyage, répartition de Ti, Y et O homogène à l'échelle µm

13/10/2010 - Soutenance de thèse

13/10/2010 - Soutenance de thèse

Conditions de broyage de référence → I = 2000 m.s⁻², vide, T° amb

- I = 1000, 2000 ou 3000 m.s⁻²

→ Même état stationnaire, accélération de la cinétique quand I augmente

- T° = ambiante ou 150°C
 - Accélération de la cinétique + amplification de la germination quand T augmente
- Atmosphère : vide, argon ou air (résultats préliminaires)
 → Air : formation de nano-oxydes plus gros, de nature différente

→ Selon les conditions de broyage, formation des nanooxydes différente

- Des poudres différentes après broyage restent différentes après recuit

- Pour favoriser une dispersion fine d'oxydes, il faut que la germination des amas ait commencé pendant le broyage mais pas trop

→ Broyage suffisamment long et intense, faible échauffement

→ Conditions de broyage influencent les caractéristiques de la dispersion d'oxydes à l'état final

13/10/2010 - Soutenance de thèse

Influence de la durée et de la température du recuit

DNPA

→ Résultats en accord avec la littérature :

BROYAGE → I = 2000 m.s⁻², vide, T° amb, 144h RECUIT → T = 800 ou 1100°C, d = 5 ou 60 min

T = 800°C

- 0 à 5 minutes : germination rapide des amas

- 5 à 60 minutes : rayon et fraction volumique constants. Composition chimique ?

T = 1100°C

Germination progressive et croissance des amas

Alinger, Act. Mat., 2009 Hoelzer, JNM, 2007

→ T° et durée de recuit influencent fortement les caractéristiques des nano-oxydes

 \rightarrow T° de recuit à 800°C favorise une dispersion fine de nano-oxydes

- Deux étapes pendant le broyage : dissolution des réactifs puis germination des amas par diffusion

- Cinétique dépend : de l'intensité et de la température de broyage Etat stationnaire dépend de la température de broyage
- Si deux poudres sont différentes après broyage, elles le restent après recuit
 → Contrôle des conditions de broyage nécessaires pour maîtriser l'état final

- Pour obtenir une dispersion fine et dense de nano-oxydes, broyage suffisamment long et intense (\rightarrow début de germination) mais avec un échauffement limité (\rightarrow germination pas trop avancée)

Conclusion générale

- 1. Combinaison des techniques nécessaire pour caractériser les aciers ODS
- 2. Un procédé inspiré du broyage réactif permet de synthétiser un acier ODS
- 3. La germination des amas commence au cours du broyage et se poursuit avec une cinétique très rapide pendant le recuit
- 4. Pas d'influence de la forme des réactifs de broyage sur les caractéristiques des nano-oxydes
- 5. Contrôle des caractéristiques des nano-oxydes via les paramètres de broyage et de recuit

→ Mécanisme a priori applicable à tous les aciers ODS

1. Approfondir la description des amas

 \rightarrow SAT + DNPA après des recuits plus longs ; MET-HR

2. Poursuivre l'étude de l'influence des conditions de broyage et de recuit sur les nano-oxydes.

 \rightarrow Objectif : déterminer une gamme de conditions de broyage et de recuit permettant de former une dispersion fine et dense de nano-oxydes

→ Atmosphère de broyage ; évolution pendant le recuit en fonction de l'état après broyage

3. Synthèse d'un acier ODS en plus grande quantité

 \rightarrow Utilisation d'un autre type de broyeur

4. Approfondir l'étude de l'influence des réactifs de broyage

 \rightarrow Durée de broyage, contamination, contrôle de la composition nominale

5. Tests mécaniques

 \rightarrow Lien entre microstructure et propriétés mécaniques

Annexes

13/10/2010 - Soutenance de thèse

→ Réaction auto-propagée induite mécaniquement

Broyé 50 h, EDS, Fe, Y, O

→ Après broyage et recuit : matrice de Fe cubique renforcée par des précipités d'Y₂O₃ cubique