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Introduction

In spite of over fifty years of theoretical and experimental studies, low-energy nuclear struc-
ture remains an open and challenging area of fundamental research. While extensive progress
has been made, an accurate and universal description of nuclei from first principles is still beyond
reach due to the intrinsic difficulties posed by the nuclear quantum many-body problem.

Theoretical treatment of the nuclear system

The complexity of the nuclear system implies that its description depend on the degrees of

freedom used to characterize it as well as on the knowledge of the interaction between them.
The first choice is to treat the nucleus as made of quarks exchanging gluons ans photons. Next,
the nucleus is treated as composites nucleons exchanging mesons. Eventually, nucleons can be
treated as point-like fermions interacting via many-body forces that simulate the exchange of
mesons. At the next level of description, dressed nuclear interactions, i.e. interaction renormal-
ized by medium effects, are used such that dressed fermions constituted the considered degrees
of freedom. The nucleus can also be described by clusters of nucleons or as a liquid drop.
Each approach has limitations, advantages and a domain of application. For instance, using
quarks, gluons and photons to assess the low-energy nuclear properties is not ideal as the typ-
ical energy scale at play is too small to excite or probe such degree of freedom individually.
Macroscopic approaches such as the liquid drop model [1, 2] can roughly explain bulk proper-
ties of nuclei but lack of predictive power and cannot describe elementary modes of excitations.
Microscopic techniques in which point-like nucleons are the degrees of freedom constitute the
tool of choice for a coherent description of all static and dynamical nuclear properties around
the MeV scale. In such an approach the aim is to solve the many-body Schrédinger equation

H|V;) = Ei|¥;) (1)

where E; constitute the energy spectrum of the nucleus and |V¥;) the corresponding N-body
wave-function. Still difficulties appear.

The nuclear interaction

First of all, and in opposition to systems governed by quantum electrodynamics (QED), the
strong interactions between point-like nucleons cannot be derived yet from a gauge theory of
interacting quarks and gluons, i.e. from quantum chromodynamics (QCD) that governs the
intrinsic structure of hadrons and their interactions. As a result, the inter-nucleon interaction
can only be effectively modeled in the low-energy domain, in terms of a very complicated struc-
ture [3, 4]. Nucleons are assigned to both spin and isospin SU(2) doublets, i.e. 4-component
fermions interacting in various configurations stemming from general invariances of the problem,
e.g. spin-orbit, tensor, quadratic spin-orbit... couplings. Beyond its complex structure, the two-
nucleon (NN) force presents bound (deuteron np in the coupled 3S;-3D; channels) and virtual
(di-neutron nn in the 'Sy channel) states. The associated large scattering lengths, together with
the short-range repulsion between nucleons closer than their classical hard sphere radii makes
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the nuclear many-body problem highly non-perturbative. Finally, a treatment of three-nucleon
(NNN) interactions in a theory of point-like nucleons is unavoidable, as has been quantitatively
confirmed by modern calculations such as (i) differential nucleon-deuteron cross-sections [5-7],
(ii) the under-estimation of the triton and light nuclei binding energies with NN forces only [§],
(iii) the Tjon line problem [9], (iv) the improper-saturation of symmetric nuclear matter [10-15],
or more generally the Coester line problem [16-18].

Recently, the development of chiral effective field theory (x-EFT) has made possible the con-
struction of reliable NN and NNN interactions, in connection with QCD [19]. The main benefits
of x-EFT are the formulation of the nuclear problem in terms of relevant low-energies degrees of
freedom while retaining the symmetry of the underlying theory, and the hierarchy, called power
counting, obtained that naturally explains why the N-body interaction is more important than
(N+1)-body interaction.

Progress toward controlled nuclear calculations has long been hindered by the highly non-
perturbative character of realistic nuclear interactions. Recently, y-EFT and Renormalization
Group (RG) methods [20-23] have promoted a different view point based on the fact that
the Hamiltonian (potential) is not an observable that can be fixed from experiment [24]. RG
methods thus proceed to a (unitary) transformation to decouple low-momentum modes from
high-momentum ones that are still present in any y-EFT-based interaction, such that nuclear
interactions become softer; i.e. they make the many-body problem more perturbative from the
outset.

The many-body problem

Most nuclei, i.e. nuclei with masses typically between 40 and 350, are by essence interme-
diates between few- and many-body systems. That is (i) ab initio techniques that describe the
interacting system in terms of basic two- and three-body vacuum nuclear forces find rapidly
their theoretical and computational limits, while at the same time (ii) finite-size effects play
a significant part, which prevents any statistical treatment. Furthermore, a unified view of
low-energy nuclear structure implies a coherent description of (i) small- and large-amplitude
collective motions, (ii) closed and open systems, that is a description of the structure-reaction
interface (fission, fusion, nucleon emission at the drip-line...), and (iii) stable and exotic systems,
e.g. systems with large isospin asymmetry. Finally, pairing correlations are essential to describe
low-energy bulk properties of nuclei, but their explicit treatment complexifies the formulation
of the many-body problem.

Different approaches

Microscopic techniques keep as much as possible a connection with initial vacuum two- and
three-body interactions. However, because the numerical complexity of the nuclear problem
increases exponentially with the number of nucleons, necessary approximations lead to models
that gradually lose the connection with vacuum forces as one goes from few- to many-body
systems by (i) restricting the Hilbert space in which nucleons evolve, (ii) approximating the
treatment of correlations, and/or (iii) using phenomenological corrections or full approximations
based on empirical assumptions and experimental data. For three- or four-nucleon systems,
essentially exact solutions of the Faddeev or Yakubowski equations can be found using realistic
forces [25-27]. Likewise, in the case of very light nuclei (A < 12) Green function Monte-Carlo
(GFMC) calculations [28-30] can describe the fully correlated few-body problem starting from
realistic two- and three-body forces, using the exact evolution operator, but are restricted to
local potentials and face already huge numerical challenges for '2C. Other ab initio methods
allow the treatment of nuclei up to A ~ 16 using vacuum NN and NNN forces, e.g. the no-
core shell model (NSCM) [31-34] that projects the interacting problem on a given model
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space defined through a harmonic oscillator basis. Coupled-cluster (CC) theory [35-39], which
constructs the correlated state from a product state using a cluster expansion of the exponented
n-particle n-hole operator, truncated to B-body operators (typ. B ~ 1 — 4), renders possible
calculations up to A =~ 50 around closed shells. The same is true about self consistent Green’s
function method [40] that is currently being extended to singly-open-shell nuclei [41]. Note
that all these methods, while giving essentially exact results, still use a truncation of some sort
while preserving an explicit connection with vacuum nuclear forces. To go to heavier systems,
an approximate treatment of both the interacting problem and the interaction is needed. For
instance, the configuration interaction (CI) model [42, 43], or shell model (SM), constructs
a model space within which valence nucleons interact through an effective interaction. FEven
though the latter is usually obtained as a microscopic G-matrix, certain combinations of its
matrix elements (monopolar terms...) are partly refitted on experimental data within a given
model space (sd, pf...). Proceeding this way, spectroscopic properties within the considered
model space are described with an excellent accuracy [42, 44].

Energy Density Functional method

Eventually, the theoretical tool of choice for the microscopic description of all medium- and
heavy-mass nuclei is the Energy Density Functional (EDF) method [45], often referred to as
7self-consistent mean-field method”. Based on relativistic or non-relativistic frameworks, it al-
lows a unified description of nuclei over the whole nuclear chart.

Historically, such a method has been first designed in a restrictive scheme and denoted as ”mean-
field” and ”beyond mean-field” methods. In-medium effects were re-summed through the use of
an effective potential that was qualitatively related to the Brueckner matrix [46]. The construc-
tion of effective potentials eventually led to the design of a more general EDF method, where
the energy density is constructed directly without any reference to an effective potential, which
allows a more flexible re-summation of correlations.

Nowadays, state-of-the-art calculations are based on empirical energy functionals (Skyrme, Gogny)
adjusted on experimental data, which raises the question of the predictive power of extrapolated
EDF results in the terra incognita.

Pathologies

While bulk correlations are subsumed into a suitable energy density functional, long-range
correlations associated with collective modes must be incorporated more explicitly, such that
two successive levels of EDF calculations coexist (i) the single-reference (SR) level followed by
an explicit configuration mixing within the (ii) multi-reference (MR) level. In particular, while
symmetries of the underlying nuclear Hamiltonian are broken at the SR level, the finiteness of
nuclei asks for their restoration at the MR level.

The beginning of the century witnessed an explosion of MR calculations, including the (some-
time combined) restoration of particle number, angular momentum, parity, linear momentum
and isospin. However, it was slowly realized that the "naive” implementation of the symmetry
restoration concepts within the context of the general EDF method is plagued with technical
and conceptual difficulties that generate spurious divergencies and steps.

At first, implicit numerical regularization schemes were used to generate ”"reasonable results” in
practical applications. However, it was realized later on that such divergencies are in fact the
visible precursor of finite un-physical contaminations related to non analyticities of the energy
kernel over the complex plane that cannot be bypassed using numerical tricks [47-49].

As a result, a method was formulated to meaningfully regularize, for any symmetry restoration
and configuration mixing calculation, EDF parameterizations that depend solely on integer pow-
ers of the one-body density matrices. Given that the large majority of modern parameterization
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of the nuclear does not fulfill such a property, challenging questions currently faced by practi-
tioners relate to whether (i) spuriosities that have been dealt with recently are the only ones or
whether it is necessary look for other constraints in order to make MR calculations well defined
within the general EDF context (ii) regularizable high-precision EDFs can be constructed, (iii)
a more general regularization method that tackle non-integer powers of the density matrices
can be designed, (iv) one must go back to using EDF kernels that derive from strict pseudo-
potentials displaying no dependence on the trial state (e.g. no density dependence) such that
problems are avoided in the first place, (v) one should rely on approximations of the full symme-
try restoration that may bypass the problem from the outset (e.g. Kamhlah, Lipkin), or whether
(vi) the formulation of the symmetry-restored EDF method can be guided by a first-principle
many-body theory such that problems are avoided in the first place.

The present work aims at tackling questions (i) and (iv) leaving the other questions for further
investigations.

Outline

The present document is organized as follows. A short introduction of the EDF formalism
is provided in CHAP. 1. CHAP. 2 is devoted to a review of the notion of symmetry breaking and
restoration on which the nuclear energy density functional method rely. Difficulties to formulate
the restoration of symmetries within the general energy functional framework will be pointed out.
Such problems serve as a motivation for the development of (i) new constraints to be applied
on the energy density, presented in CHAP. 2 and in Appendix E, and of (ii) a new Skyrme
pseudo-potential. Analytical developments of such pseudo-potential are discussed in CHAP. 3.
The associated infinite nuclear matter properties are derived in CHAP. 4. The optimization
procedure of the pseudo-potential free parameters is presented in CHAP. 5. Parameterizations
than obtained are used to compute INM and nuclei properties in CHAP. 6. Such results provide
information on the quality of the fitting procedure and on the relevance of the pseudo-potential
developed.




Chapter 1

Energy Density Functional method
in a nutshell

Abstract: The present chapter is a short introduction to the Energy Density Functional (EDF)
method [45]. It serves as a baseline for the more detailed and specific discussion provided in
CHAP. 2. The particular case for which the energy kernel is computed from a pseudo-potential
and the resulting specific differences with the more general case are stressed.
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1.1 Introduction

The most appropriate tool for the microscopic description of all medium- and heavy-mass nu-
clei is the Energy Density Functional (EDF) method, historically referred to as ”self-consistent
mean-field and beyond mean-field methods”. It is based on the use of product states and thus
resembles a particle, or more precisely quasi-particle, independent approximation. It however
allows the re-summation of many-body correlations through the use of an effective energy func-
tional.

1.2 Basic ingredients

1.2.1 Product states of reference

The EDF method originates from the picture of a nucleus as an ensemble of quasi-particle
moving independently in their self created mean field. It is not based on the manipulation of
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(an approximation to) the correlated exact N-body wave-function |¥). It however relies on the
use of product states of Bogoliubov quasi-particles labelled with collective labels g

@(9)) =[] 510) (1.1)

where {ﬁng)T} and {ﬁfﬂ)} denote quasi-particle creation and annihilation operators. Typically
g represents the value of the axial quadrupole moment, Euler angles denoting the orientation
of the deformed body, the value of the pairing gap, the angle in gauge space ... Quasi-particle
creation and annihilation operators relate to particle ones through

Bu = Z U,Lai + VJZ-CL}L , (1.2a)
Bl =" Viua; + Uyal (1.2b)

where {a;} denote any convenient single-particle basis and where U and V form a unitary
transformation of the Bogoliubov type [50].

1.2.2 Energy functional kernel

To re-sum the bulk of correlations using such simple product states, the existence of an
effective off-diagonal energy kernel is postulated

Elg.g] = E[(®(¢)];|®(g))] = Elpl?,wl?, 58] , (1.3)

that is a functional, in the mathematical sense, of one-body transition density matrices defined
through

o (@()lalail2(9))
= e (1.4a)
o {B(e)aail2(9))
7= e (14b)
\ (®(g)]alal|®(g))
9= e (142)

One-body transition density matrices 1.4 are calculated from a pair of product states as defined
in Eq. 1.1.

1.2.3 Skyrme example
In the case of quasi-local Skyrme EDF, the energy kernel takes the form

Blg'sgl = [ dr (07,7707, 7). (1.5)




1.3. Symmetry breaking and restoration

where £(p9(F), 799(7), 799(7),...) is a general function of a set of one-body local transition
densities [45]

EUEDSC GG (1.62)
99 = 3 [V (M] - [Veul?] o (1.6b)

o =13 {0 Vi) - V(@] wil® ) o7 (1.6c)

For instance, in the case of a bilinear functional up to second order in gradients, neglecting spin,
isospin and pairing for simplicity, one has

E°(p79(7), 99 (F), 77 (7)) (1.7)

hZ / = / 2 / / -/ -/

= 5 + OV (Vo)) + C7 ()0 () - 3707 - 30 )

m
where specific constraints have been imposed onto the functional form for it to be a scalar under
all transformations that leave the nuclear Hamiltonian invariant. For instance p99(7)799(7) and
J99(F) - 799(F) are correlated such that Galilean invariance is fulfilled. We refer the reader to
Refs. [51-53] for the formulation of such constraints.

1.3 Symmetry breaking and restoration

The nuclear EDF method relies heavily on the concept of spontaneous symmetry breaking
and (approximate) restoration. In that sense, it is intrinsically a two-step approach.

1.3.1 Single-Reference (SR-)EDF

At the single-reference (SR) level, one invokes the diagonal kernel E[¢’, g| only, i.e. one-body
density matrices are computed from a single product-state of reference |®(g)). The state |®(g))
may break as many symmetries of the nuclear Hamiltonian as it finds energetically favorable
and thus acquires finite order-parameters that we group under the generic notation |g| eiAr8(9).
The unknown quantity, i.e. the reference state |®(g)), is determined by minimizing the diagonal
energy kernel

ESR = Minjg(q)) { Elg. g] + Constl|@(9))]} . (1.8)

under a set of constrains, e.g. that the average particle number in |[®(g)) is the actual number
of particles in the nucleus under study. Minimization 1.8 gives rise to solving a Bogoliubov-
De Gennes-like eigenvalue equation, see SEC. 3.6. This first step incorporates static collective
correlations and thus provides a first approximation to observables such as binding energies,
charge radii, nucleonic density distributions and effective single-particle energies.

1.3.2 Multi-Reference (MR-)EDF

The multi-reference (MR) extension further includes correlations associated with quantum
collective fluctuations of the order parameter |g| ¢*A'8(9) associated with the various symmetries
of interest. In particular it treats collective vibrations and restores broken symmetries by mixing
configurations corresponding to several values of |g| and Arg(g), respectively (see F1G. 1.1). The
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Elp.x.k*;]9] ]

Figure 1.1: Schematic view of the energy landscape as a function of the phase and the
magnitude of the order parameter ¢ of a (possibly) spontaneously broken
Symmetry.

MR step thus invokes several product states {|®(g))} generated by constrained SR calculations.
The MR energy mixes off-diagonal energy kernels (EQ. 1.3) associated with the chosen set of
product states through

sy | Za 5715 El9 9] (2()]0(9))
I Sy T (0(g)]D(g)) ’

(1.9)

where coefficients fﬁrg( 9) associated to symmetries restoration are determined by the structure

of the symmetry groups (see CHAP. 2). As a results the minimization only provides coefficients
f|’;| associated to collective vibrations.

1.3.3 EDF power

Correlation energy Treatment Scale Vary with
Bulk Summed into EDF kernel | ~ 8 A MeV | A

Static collective Finite order parameter ¢ | <25 MeV | Aval, Gaeg
Dynamical collective | Fluctuations of ¢ < 5 MeV Aval, Gdeg

Table 1.1: Schematic classification of correlation energies as they naturally appear in
nuclear EDF methods. The quantity A,, denotes the number of valence
nucleons while G4ee characterizes the degeneracy of the valence major shell.

Given the efforts needed to better formulate the EDF method (see CHAPS. 2,5,6), one may
question the necessity to stick to such an approach rather than to use an (ab-initio) approach
that strictly computes the energy from a (state-/density-independent) Hamiltonian, e.g. through
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many-body perturbation theory. Although the breaking (up to a few tens of MeV) and the
restoration (up to a few MeV) of symmetries bring in both types of methods essential correlations
that vary rapidly with nucleon numbers, incorporating the bulk of correlations® (hundreds of
MeV) requires involved ab-initio calculations [55] that are still impractical for heavy open-shell
nuclei. The power of the EDF approach is to parameterize bulk correlations under the form of a
functional of one-body density (matrices) such that systematic calculations of heavy nuclei are
tractable. The success of the overall approach, based on the resummation of bulk correlations
into the EDF kernel and the further breaking and restoration of symmetries, relies on the
empirical decoupling of the different categories of correlations at play, i.e. on the different
scales that characterize them (see TAB. {1.1}), and on the fact that quickly varying correlations
with the filling of nuclear shells are explicitly accounted for through symmetry breaking and

restoration 2.

1.4 Pseudo-potential-based EDF method

A particular case of the EDF method is obtained when the energy functional kernel is derived
from an effective Hamiltonian

~3
Hpsendo = tha a; + QIZ zgklazajalak+3l > il mmalatala,ana + - (1.10)
ijkl ijklmn
where @z’jkl denote N-body pseudo-potential, i.e. effective interactions. Such particular case
might be denoted as a pseudo-potential-based EDF method. The off-diagonal energy kernel,
written Fplg’, g], used at each step of the method is then defined as

Enld, gl = (2(9)[Hpseudo|P(9)) = EH[Pf]g7 ing’ "ifjg ], (1.11)
which is a functional of one-body transition density matrices EQ. 1.4 as can be demonstrated by

using the generalized Wick theorem [56]. The SR energy EIS{R and the MR energy E,]CV[I? are still
obtained through Eq. 1.8 and EQ. 1.9, respectively, but using EQ. 1.11 as the energy kernel.

1.4.1 Skyrme example

Let us simplify the effective Hamiltonian 1.10 as

~28
pseudo Ztija aj +5 91 ngjkl a;a a’la’k ’ (112)
ijkl

where v?% is a simplified form of the two-body Skyrme pseudo-potential depending on the

reduced set of parameters {t1,t2} (see CHAP. 3 for a presentation of such Skyrme pseudo-
potential). Using EQ. 1.12 in EQ. 1.11 and applying the generalized Wick theorem provides

Bl g = / dr E5F (p79(7), T99(7), 399 (7)) (1.13)
with
EFE(p?9(7), T99(7), 399 (7)) (1.14)

= %Twm AVP (6pg’9(ﬂ>2+AT(pg'g( )T — () - 7 (7 )) )

where spin, isospin and pairing have been neglected for simplicity. One realizes that EqQ. 1.14
looks identical to EQ. 1.7. However, crucial differebnces exist between the two.

1. We take as a loose definition of bulk correlations the correlation energy computed beyond a genuine Hartree-
Fock approximation in terms of the vacuum (low-momentum [54]) nuclear Hamiltonian for nuclei that do not break
any symmetry besides translational invariance, i.e. doubly-magic nuclei.

2. As expected by EQ. 1.9, we have in mind to add the fluctuations of the magnitude of the order parameter.
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1.4.2 Specific difference with general case

In the pseudo-potential-based approach, the two functional coefficients AV? and AT are both
related to the free parameters {t1,t2} through
AVP = % + %2 and AT = ?1—72 — % . (1.15)
Contrarily, in the general EDF approach, the free parameters are the functional coefficients C'V?
and C7. As a result, those free parameters are not interrelated contrarily to AV? and A7. It
obviously comes from the fact that the functional has been postulated rather than derived as
the matrix element of an operator. It is only in the latter case that the antisymmetrization is
taken into account. Functional coefficients interrelations are in that sense a way for the energy
functional to respect the Pauli principle that is not fulfilled a priori in the more general EDF
method. Similarly, a density-dependent effective ”Hamiltonian” does not ensure an entirely
antisymmetrized energy functional since the density dependence does not itself derive from a
matrix element of an operator.

After this short introduction, the next chapter focuses in symmetry restoration and discusses

specific differences that exist in the general EDF framework as opposed to the pseudo-potential-
based EDF approach.
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Chapter 2

Breaking and restoring symmetries

Abstract: This chapter is devoted to a review of the notion of symmetry breaking and restora-
tion within the frame of the nuclear energy density functional method [57]. We focus on key
differences between pseudo-potential-based EDF and a more general implementation of the EDF
methods. In particular, we point to difficulties to formulate the restoration of symmetries within
the general EDF framework. The problems tackled recently in connection with particle-number
restoration serve as a baseline to the present discussion. Reaching out to angular-momentum
restoration, we identify an exact mathematical property of the energy density &M (]%) that
could be used to constrain energy density functional kernels. Consequently, we suggest possible
routes towards a better formulation of symmetry restorations within energy density functional
methods.

Contents
2.1 Introduction . . . . . . . . @ . @ i i i i e e e e e e e e e e 12
2.1.1 Spontaneous symmetry breaking . . . . ... ... o000 12
2.1.2  Pseudo-potential-based EDF method . . . . . .. .. ... ... ..... 12
2.1.3 General EDF method . .. .. ... ... ... ... ... .. ... 14
2.1.4 Density functional theory . . . . . . .. .. ... 0oL 15
2.2 Symmetry roup . . . ¢« ¢ v v v v v vt e e e e e e e e e e e e e e e e e e 15
2.3 Pseudo-potential-based EDF method .. .. ... ........... 17
2.3.1 SR-EDF step (symmetry breaking) . . . . . . .. .. ... ... .. ... 17
2.3.2 MR-EDF step (symmetry restoration) . . . . .. .. .. ... ... ... 17
2.3.3 Transfer operator . . . . . . . . . ... L 18
2.4 General EDF method . .. ... ... .. ... .. .00 0. 19
2.4.1 SR-EDF step . . . . . . . e 19
242 MR-EDF step. . . . . . . o e 19
2.4.3 Puzzling questions . . . . ... Lo o 20
2.4.4  Lessons learnt from particle-number restoration . . . . . . . . .. .. .. 20
2.5 Towards new constraints? . . . . ... .. ... ... 21

2.5.1 Mathematical property associated with angular-momentum conservation 21
2.5.2 Pseudo-potential-based EDF method . . . . . .. ... ... ... .... 22
2.5.3 General EDF method . . . ... ... ... ... ............. 22
2.6 Conclusions . . . . . . . i i i i i i e e e e e e e e e e e e e e e e e 23




12

Chapter 2. Breaking and restoring symmetries

2.1 Introduction

2.1.1 Spontaneous symmetry breaking

Symmetries are essential features of classical and quantal systems. For the latter in particular,
symmetries characterize the energetics of the system and provide transition matrix elements of
operators with specific selection rules. In nuclear systems for example, electromagnetic and
electro-weak decays display patterns associated with such selection rules.

On the other hand, certain emergent phenomena relate to the spontaneous breaking of those
symmetries [58]. In the thermodynamic limit, i.e. when the number of particles N and the
volume V' of the system go to infinity such that N/V remains constant, a state with lower
symmetry than the Hamiltonian can be rigorously used as an effective ground-state of the
system. Such a state is a linear superposition of nearly-degenerate eigenstates, i.e. it is a wave-
packet. In finite systems however, quantum fluctuations make such a wave-packet to relax into
the symmetry-conserving ground-state and cannot be ignored; i.e. the concept of spontaneous
symmetry breaking is only an intermediate description of the system that arises within certain
approximations and symmetries must eventually be restored. Still, it makes physical sense to go
through such an intermediate description as pseudo spontaneously-broken symmetries (i) relate
to specific features of the inter-particle interactions, (ii) characterize internal correlations and
(ii) leave clear fingerprints in the observed excitation spectrum of the system.

Invariance y NN Internal correlations | Excitation patterns
Spatial translation Short range Spatial localization | Surface vibrations
Gauge rotation S-wave attraction Pairing Energy gap
Spatial rotation Quad.-quad. component | Angular localization | Rotational bands

Table 2.1: Links between the spontaneous breaking of translational, rotational and
particle-number symmetries and features of the nuclear force, correlations
in the internal motion of nucleons and patterns in the excitation spectrum.

In atomic nuclei, several symmetries, if allowed, tend to break spontaneously in approximate
descriptions based on the mean-field concept. The most important ones relate to the invariance
of the nuclear Hamiltonian H under spatial translations and rotations as well as to the gauge
invariance associated with particle-number symmetry. As described in TAB. {2.1}, the sponta-
neous breaking of these three symmetries relates to the short-range and dominant quadrupole-
quadrupole terms of the nucleon-nucleon interaction as well as to its strong attraction in the
L = 0 partial-wave of relative motion. The latter in particular generates a S-wave di-neutron
(di-proton) virtual state at almost zero scattering energy that is the precursor of neutron (pro-
ton) Cooper pairs and superfluidity in the nuclear medium. Even though such symmetries must
be eventually enforced, their underlying breaking impacts the low-lying spectroscopy of finite
nuclei through the presence of surface vibrational excitations, rotational bands and a gap in
the individual excitations of even-even nuclei, respectively [50]. Parity and time-reversal are
other good symmetries of H that can be spontaneously broken, while isospin symmetry is only
approximate in the first place.

2.1.2 Pseudo-potential-based EDF method

As schematically shown in F1G. 2.1, quantum many-body methods separate into two cate-
gories as for the way symmetries are dealt with, i.e. (i) methods enforcing symmetries throughout
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Symmetries
Broken Not broken
(SR-EDF) (DFT)
Projection Correction

(MR-EDF) (Lipkin, Kamlah ...)

Figure 2.1: Schematic representation of the different strategies followed by many-body
methods regarding the treatment of symmetries, e.g. in Density Func-
tional Theory and nuclear Energy Density Functional approaches.

and (ii) those that explicitly single out the intermediate breaking of symmetries. Although hy-
brid approaches that allow the breaking of some symmetries while enforcing the others can be set
up, the present chapter focuses on the EDF method that strongly relies on the concept of sym-
metry breaking, i.e. a method whose philosophy, apart for computational constraints, is to allow
all symmetries to break spontaneously a priori. The breaking of each symmetry is monitored by
the magnitude and the phase of an order parameter g, such that the (approximate) energy is
independent of its phase as schematically shown in F1G. 1.1. This corresponds to the fact that
a spontaneous symmetry breaking is accompanied by the presence of a zero-energy Goldstone
mode. Of course, that a certain symmetry does break spontaneously usually depends on the
number of elementary constituents of the system under consideration. For example, while trans-
lational symmetry (strongly) breaks in all nuclei, particle-number symmetry tend to (weakly)
break in all but doubly-magic nuclei whereas rotational symmetry remains unbroken if either
the neutron number or the proton number is "magic” 1. F1G. 2.2 displays the correlation energy
incorporated in 2°Pu and '2°Sn ground-states energy through the spontaneous breaking of ro-
tational and particlenumber symmetries, respectively. Such symmetry breakings may account
for up to 20 MeV correlation energy out of about 2 GeV of binding energy, i.e. for about 2%,
which is much larger than the targeted accuracy on nuclear masses. Incorporating such correla-
tion energies through symmetry-conserving approaches, e.g. configuration interaction methods,
would necessitate tremendous computational efforts in such heavy open-shell nuclei.

As already stated, methods authorizing the breaking of symmetries at a certain level of ap-
proximation must eventually restore them in a second stage. In pseudo-potential-based EDF
methods, the single reference step relies on minimizing the average value of an effective Hamil-
tonian for a trial product state that does not carry good quantum numbers, i.e. which mixes
irreducible representations of the symmetry group of interest. Restoring symmetries amounts to
using an enriched trial state that does carry good quantum numbers. In terms of the schematic
”mexican-hat” picture of FiG. 1.1, this corresponds to incorporating zero-energy fluctuations
associated with the phase of the order parameter?. One typical approach used in the pseudo-

1. The fact that the neutron or proton number is magic is not known a priori but is based on a posteri-
ori observations and experimental facts. In particular, the fact that traditional magic numbers, i.e. N,Z =
2,8, 20, 28,50,82,126, remain as one goes to very isospin-asymmetric nuclei is the subject of intense on-going
experimental and theoretical investigations [59].

2. As discuss in CHAP. 1, and although it is not the focus of the present work, the restoration of symmetries
must be accompanied by the inclusion of collective quantum correlations associated with the fluctuations of the
magnitude of the order parameter, i.e. fluctuations along the radial coordinate of the ”mexican-hat”
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Figure 2.2: Energy gain from spontaneous symmetry breaking and symmetry restora-
tion as a function of the magnitude of the order parameter q. Left: break-
ing and restoration of rotational symmetry in the ground state of ?*°Pu as
a function of the axial quadrupole moment of the single-nucleon density
distribution (adapted from Ref. [65]). Right: breaking and restoration of
neutron-number symmetry in the ground state of 1?°Sn as a function of
the norm of the anomalous pair density (adapted from Ref. [66]).

potential-based MR-EDF method is to project out from the symmetry-breaking product state
the component that belongs to the intended irreducible representation [50]. F1G. 2.2 shows that
doing so for rotational and particlee-number symmetries adds a few MeV correlation energy to
the ground-state binding energy of heavy nuclei. This is still significant compared to the few
hundreds keV targeted accuracy on nuclear masses. As shown in FIG. 2.1, a variant consists of
performing the symmetry restoration only approximately such that the calculation boils down to
the minimization of a corrected diagonal energy kernel expressed in terms of a single symmetry-
breaking product-state. Typical examples are Lipkin [60, 61] or Kamlah approximate projection
methods [62, 63]. While it is likely that the strongly broken translational symmetry can be safely
treated through such approximate projection methods?, it is still unclear whether the same is
true for weakly broken symmetries such as particle number symmetry or rotational symmetry
in transitional nuclei.

2.1.3 General EDF method

The pseudo-potential-based EDF projection method and its variants is well formulated quan-
tum mechanically [50]. The goal of the present chapter is to discuss the general EDF counter-
part [45]. In the general framework, the MR-EDF step necessitates a prescription to extend
the SR energy functional? associated to a single auxiliary state of reference, i.e. a diagonal
energy kernel, to the non-diagonal energy kernel associated with a pair of reference states (see
SEC. 2.4.2). Constraints based on physical requirements have been worked out that limit the
number of possible prescriptions to do so [67]. In short, it requires the off diagonal EDF El[¢/, g]
kernel to be a functional of the bra (®(¢')| and of the ket |®(g)) as already alluded to in
EqQ. 1.3. Still, pathologies [68-70] of MR-EDF calculations have been recently identified and
corresponding cures [47-49] have been proposed. Besides the actual successes of nuclear EDF
calculations [45], the work of Refs. [47-49, 71] demonstrates that nuclear SR- and MR-EDF meth-

3. Such a statement is to be taken with a grain of salt for rather light nuclei [64].
4. The density-dependence of the effective Hamilton operator in more standard formulations.




2.2. Symmetry group

15

ods must be further constrained to become satisfactory many-body approaches to finite Fermi
systems. The first goal of the present chapter will be to reformulate, focusing on group-theory
considerations, concerns about MR-EDF calculations that have been dealt with in Refs. [47—
49, 71]. Our second objective will be to provide a new mathematical property that could be
used in the case of angular-momentum restoration to constrain the form of basic EDF kernels
at play.

2.1.4 Density functional theory

As the aim of the present chapter is to raise questions about the treatment of symmetries
within the nuclear EDF method, let us make a few relevant statements about Density Functional
Theory (DFT) [72-74] that provides a formal framework to obtain the ground-state energy and
one-body density of electronic many-body systems. It has become customary in nuclear physics
to assimilate the SR-EDF method, eventually including corrections a la Lipkin or Kamlah, with
DFT,i.e. tostate that the Hohenberg-Kohn theorem underlays nuclear SR-EDF calculations [75—
79]. This is a misconception as distinct strategies actually support both methods. Whereas the
SR-EDF method minimizes the energy with respect to a symmetry-breaking trial density(ies),
DFT relies on an energy functional whose minimum must be reached for a one-body density that
possesses all symmetries of the actual ground-state density, i.e. that displays fingerprints of the
symmetry quantum numbers carried by the underlying exact ground-state [80]. As a matter of
fact, generating a symmetry-breaking solution is problematic in DF'T, as it lies outside the frame
of the Hohenberg-Kohn theorem, and is usually referred to as the symmetry dilemma. To by-
pass the symmetry dilemma and grasp kinematical correlations associated with good symmetries,
several reformulations of DFT have been proposed over the years, e.g. see Refs. [81, 82], some
of which are actually close in spirit® to the nuclear MR-EDF method [81].

Recent efforts within the nuclear community have been devoted to formulating a Hohenberg-
Kohn-like theorem in terms of the internal density, i.e. the matter distribution relative to the
center of mass of the self-bound system [83, 84]. Together with an appropriate Kohn-Sham
scheme [84], it allows one to reinterpret the SR-EDF method as a functional of the internal
density rather than as a functional of a translational-symmetry-breaking density. This consti-
tutes an interesting route whose ultimate consequence would be to remove entirely the notion
of breaking and restoration of symmetries from the EDF approach and make the SR formula-
tion a complete many-body method, at least in principle. To reach such a point though, the
work of Refs. [83, 84] must be extended, at least, to rotational and particle-number symmetries,
knowing that translational symmetry was somewhat the easy case to deal with given the explicit
decoupling of internal and center of mass motions.

2.2 Symmetry group

Let us consider an arbitrary continuous compact group G = {R(g)} parameterized by r real
parameters g = {g;;¢ = 1,...,7} and whose transformations leave H invariant. We denote by
vg the volume of the group

vg E/gdm(g) , (2.1)

where m(g) is the invariant measure on G. Having in mind to deal more specifically with particle
number and rotational symmetries, we further consider G to be a Lie group, although this is
not mandatory. We thus introduce the set of infinitesimal generators C = {C;;i = 1,...,7}
that make up the Lie algebra and in terms of which any transformation of the group can be
expressed. The Casimir of the group built from the infinitesimal generators and a non-degenerate

5. But not in the technical details
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invariant bilinear form is denoted by A. We also denote by R(g) (C) a unitary representation
of R(g) (C) on the Fock space of quantum mechanics and by S (g) = (0% R(g) |©*%) the
matrix elements of the unitary irreducible representation labeled by . States |©*¢) span the
irreducible representation A whose degree is dy. They are eigenstates of the Casimir A and of a
chosen generator Cy

Aler) () |e*) (2:2)
ColOM) = gla)|0) |

where eigenvalues [(\) and g(a) are functions of labels A and a, respectively, with a running over
dy values.

Noticing that .S é‘b(O) = Jqp for all A\, the action of two successive transformations and the unitarity
of the representation can be both read off the following identity

> S (9S4 = D Sal—9)SA(9) = Sala—9) (2.4)

where —g and g—g¢’ symbolically denote the parameters of transformations R~1(g) and R~!(¢")R(g),
respectively. A so-called irreducible tensor operator Ta)‘ and a state |©*?) transform according
to

R9)T) R(g)™" = D T} Sp(9) (2.5)
b

R(g)|©*) = Y 10" S5(g) - (2.6)
b

The discussion below is conducted for the energy, i.e. for a scalar operator H belonging to
the trivial irreducible representation A = 0 characterized by Sga(g) = J4. However, such a
discussion can be extended to any irreducible tensor operator [85].

For nuclear structure, two groups are of particular importance as discussed in the introduc-
tion, i.e. SO(3) for rotations in the three-dimensional space and U(1) for rotations in the gauge
space associated with particle number. The group of spatial translations is also essential but
corresponds to a symmetry that is strongly broken in all nuclei and that does not need to be
exactly restored in practice. Consequently, TAB. {2.2} gather useful elements that characterize
U(1) and SO(3) such that the formulae given below for a generic compact Lie group can be
easily adapted to either of them.

g g dm(g) g {C} A o R(g) Sn(9) dy
U(1) ® dp 27 N N2 - eVe eimy 1
SO@3) | a, B,y sinpdadBdy 1672 J J?J, eied:miBly gmivl: Dl (Q) 27 +1

Table 2.2: Characteristics of SO(3) and U (1) relevant to the present study. The gauge
angle of U(1) is ¢ € [0,27] whereas Euler angles parameterizing SO(3)
are ) = («a,8,7) € [0,4n] x [0,7] x [0,27]. The one-dimensional irre-
ducible representations of U(1) are labeled by m € Z whereas the (2J41)-
dimensional ones of SO(3) are labeled by 2J € N and are given by the
so-called Wigner functions D7, (Q) [86], where (2M,2M') € Z? with
—2J < 2M,2M’ < +2J. For U(1), one has I(N) = N2, whereas for SO(3),
with the choice Cy = J,, one has I(J) = h?J(J + 1) and g(M) = M h.
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2.3 Pseudo-potential-based EDF method

The present section describes what we denote as a pseudo-potential-based EDF method
where energy kernels are explicitly and strictly computed as matrix elements of an effective
Hamilton operator that does not depend on the wave-function it is used with, e.g. H does not
depend on the density of the system, see CHAP. 1.

2.3.1 SR-EDF step (symmetry breaking)

The symmetry-breaking product state |®(g)) used at the SR level can be decomposed on
states with good quantum numbers according to

B(g) = > exal®) (2.7)
Aa

where Y, |exal? = 1 as we choose |®(g)) to be normalized. Using either EQ. 2.5 or EQs. (2.6,2.7),
one can easily prove that the average energy

(@(g)|H|®(g))
(@(g)|®(g))

is a scalar under all transformations of G, i.e. E}S}R is independent of g such that we can take
g = 0 for the reference state and omit the label altogether. However, such an energy cannot
be labeled by good quantum numbers (A, a), which is the fingerprint of the symmetry-breaking
character of the many-body state |®). In the present situation, one can use the standard Wick
theorem [87] to express the diagonal EDF kernel at play in EQ. 2.8 as a specific functional
Eulpij, kij, Ii;}] of the diagonal one-body density matrices (EQ. 1.4 with ¢ = g = 0) computed
from the symmetry breaking state |®), see SEC. 1.3.1.

EIS;IR = Min@(g» (28)

2.3.2 MR-EDF step (symmetry restoration)

To formulate the symmetry restoration, one needs to consider the off diagonal energy kernel
Egld', g]. In the pseudo-potential-based EDF method, such a kernel reads

—1(
Ealg.g) = 20 _Eg ),HR(Q)’@ : (2.9)
(B[R~ (g ) R(g)|®)

where the norm overlap kernel is N[¢',g] = (®|R7(¢')R(g)|®). The energy kernel at play
(EQ. 2.9) can be computed in this case using the generalized Wick theorem [56] such that
Euld., gl = Eglp?9,k99, k99 %], i.e. the off-diagonal energy kernel is expressed through the same
functional as the diagonal one except that diagonal one-body density matrices are replaced by
transition one-body density matrices 1.4 involving the two transformed product states R(g)|®)
and (®|R(¢'). Expanding |®) according to EQ. 2.7 and using EQ. 2.4, one obtains

Eulg gINlg' 9l = > cacnwEnSulo—d) (2.10)
Aab

Nlg'g] = > acnwSula—9g) (2.11)
Aab

where (@A |H \q))‘,“,> = E7) 0an daa are the symmetry-restored (MR) energies. Expressions 2.9
and 2.11 correspond to the double expansion over the volume of the group

Flg gl =Y > Fiww Suld) Saw(a) (2.12)
N abalt/
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applied to any function F[¢, g] = f[g — ¢'] that in fact only depends on the difference of the two
arguments. In such a case, the double expansion reduces to a single expansion whose coefficients

A are e?Lab = ¢}, o By and n)y, = ¢}, cxp for the functions of interest ey [g—g¢'| n[g—g'] and
nlg— 4], respectively. Given that coefficients fi‘b transform specifically under any member of
GO, the ratio of two such objects, e.g. EI)}, transforms as a scalar as it corresponds to the scalar
operator H.

Starting from Fyl¢’, g] and N[¢/, g], and given the orthogonality relationship

v
/gdm(g) S;‘ ( )S ’b’( ) = d—i 5)\>\/ 5aa’ 6bb’ , (2.13)

one can perform the integration

2
(2) [ [amte)im(a) 8468 @) Enld' ol Nl s) =y . (209

to extract the energy E}} associated with states |®**) spanning the irreducible representation
A7. Such a symmetry restoration stage is denoted as a multi-reference method in the sense that,
while the energy computed through EQ. 2.8 involves a single reference state |®), the extraction
of E7, involves the set of references states |®(g)) = R(g)|®) obtained from |®) through all
transformations of G. It is worth noting that EQ. 2.14 is a specific application of the general
expression given in EQ. 1.9 for the MR-EDF energy. In the present case the sums take the form
of continuous integrals and the weights fglf are fixed by the structure of the symmetry group.

2.3.3 Transfer operator

Within the pseudo-potential-based EDF approach EQ. 2.14 can actually be obtained by first
introducing the transfer operator [50]

%z—émw%mm@, (2.15)

to explicitly extract the many-body state with good symmetries

1
|@2) = o0 Py|®) (2.16)

from which EQ. 2.14 can be easily recovered through

<(I))\a|H|(I))\a>

A
By = <(1))\a|(1))\a>

(2.17)
When dealing with a non abelian group, one must actually consider an arbitrary linear com-
bination of states spanning a given irreducible representation such that mixing coefficients are
determined through the minimization of the resulting energy. This corresponds to considering
that the link between the symmetry-restored states of interest and the symmetry-breaking one
is in fact given by

[Py = ngbp VD) (2.18)

6. The corresponding law is easily obtained from the transformation of S, (g).

7. The fact that Exlg’, g] and N[g’, g] only depend on the difference g—g’ can be exploited to extract e}y 4,
through a single integral rather than through a double integral as in EQ. 2.14. The reason why we keep explicitly
two integrals here will only become clear in SEC. 2.5.1.
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rather than by EQ. 2.16, and to determining the {g*’} through the minimization of

<‘I)AQ|H|‘1>M> > 97 e H,bb'
<(I))\a|q))\a> be' g)\b* g>\b nbb, ’

Ey = (2.19)

with e;‘{ p defined by EQ. 2.14 and ”l);\b/ given by a similar equation for the kernel N[¢, g]. Such
a minimization leads to solving a Hill-Wheeler-Griffin equation [88, 89].

2.4 General EDF method

We are now interested in the general EDF formalism within which energy kernels are formu-
lated as functionals of one-body (transition) densities as defined by EQ. 1.4.

2.4.1 SR-EDF step

The general SR-EDF method [45] relies on computing the analog to the symmetry-breaking
average energy EST (EQ. 2.8) as the minimum of an a priori general diagonal functional
Elpl, ]} ,/f“fjg ]. As opposed to what was considered in SEC. 2.3, the diagonal kernel is not
computed as the average value of a genuine operator H. For actual parameterizations of the

nuclear EDF, we refer the reader to Ref. [45] and to CHAPS. 5,6.

2.4.2 MR-EDF step

By analogy to the pseudo-potential-based method, the off-diagonal energy kernel E[¢, g]
(EQ. 2.10) is naturally introduced over the volume of G through E[¢,g] = E[p99, k99, k99 *],
where E[p%9, k99, k99*] is the diagonal kernel. It is not be made clear that there is no Wick
theorem to justify in the general case such a choice as the kernel is not defined as the matrix
element of an operator. Such an off-diagonal kernel possesses an expansion similar to EQ. 2.10.
Consequently, one can extract

( ) //dm ) dm(9) Sca(9') Sa’(9) Elg', 9 N1g', 9] (2.20)

by analogy to EQ. 2.14. Whereas in the pseudo-potential-based method one could explicitly
demonstrate the identity 6;\{,(117 = Cy, C\b EI)}, this is not the case in the general EDF approach
as there no possibility to perform the equivalent to the derivation that started from EqQ. 2.9.
EQ. 2.20 simply corresponds to the application of expansion 2.12 to the function E[g’,g] over
the irreducible representations of the group, without any reference to a many-body state with
good quantum numbers. As a matter of fact, and contrarily to what is often stated [45], e;\b is
not computed from a projected state in the general MR-EDF method, i.e. the transfer operator
P -, cannot be factorized explicitly in EQ. 2.20. However, one can implicitly relate the MR-EDF
energy FE* to the projected state |®**) obtained from |®) as in EQ. 2.18. With this in mind, it
is natural and customary [45, 47] to define the symmetry-restored energy E* from e;\b through
the analog of EQ. 2.19, i.e.

N Zw "9 , (2.21)
Z g)\b* g)\b nbb

where the {g**} are determined through the minimization of E*.
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2.4.3 Puzzling questions

We have clarified in previous sections that general SR- and MR-EDF methods have been
empirically constructed by analogy to pseudo-potential-based SR- and MR-EDF methods. The
key difference with the latter is that the energy kernels at play in the general EDF method
are not defined as matrix elements of a genuine operator between product state. For the rest,
expressions utilized in both approaches, in particular regarding the extraction of the symmetry-
restored energy (EQs. (2.14,2.19) versus EQs. (2.20,2.21)), look totally alike. Still, puzzling
questions remain to be raised.

As mentioned in SEC. 1.2.3, one must require at the symmetry-breaking level that the SR
energy F[p99, k99, k99*] is a scalar under all transformations of G. Such a requirement has
led to formulating a set of constraints on the functional form of E[p%9, k99, k99*] [51-53]. The
next question one may ask is the following: are those constraints imposed on the energy kernel
E[p99,k99 k99%] at the SR level sufficient to making the general MR-EDF method described
in SEC. 2.4.2 well defined, in particular from a symmetry standpoint? In particular, one may
wonder whether the fact that the energy kernel E[¢, g], which is the key ingredient to the MR-
EDF calculation, is not computed as the matrix element of a (genuine) operator makes the
method ill-defined in any way?

As a matter of fact, a set of physical constraints to be imposed on E[¢’, g] have already been
worked out [67]. The facts (i) that the MR energy should be real, (ii) that the kernel E[¢’, g] only
depends on the relative value g — ¢’ of its arguments, (iii) that the SR-EDF should be recovered
from the Kamlah expansion and (vi) that the Random Phase Approximation based on the
SR-EDF E|[p%9, k99, k99*] should be recovered as a limit of the MR-EDF calculation [90], has
helped limiting the energy kernel E[¢’, g] to depend on transition densities only, e.g. E[¢’, g] =
E[p9'9, k99, 1599 %],

The aim of the present contribution is to elaborate further on the question raised above
and to discuss a path that could be followed to constrain more tightly the form of the kernel
E[qd', g] and thus MR-EDF calculations. References [47-49, 70] have already provided important
elements in the case of U(1), i.e. for particle-number restoration (PNR). Let us recall the main
outcome of those studies prior to formulating the problem to be addressed.

2.4.4 Lessons learnt from particle-number restoration

EQ. 2.10 applied to U(1) provides the Fourier decomposition

elplnlp] = D & EN MY (2.22)
NezZ

of the periodic function e[| nlp] over [0,27]. From a mathematical standpoint, the sum in
EQ. 2.22 runs a priori over all irreducible representations of the group, i.e. over both positive
and negative integers IN. From a physics point of view though, the label N denotes the particle
number of the physical system. Consequently, the sum should actually only run over positive
integers, i.e. one should find C?VEN = 0and EY = 0 for N < 0. In the pseudo-potential-
based EDF method, such a result is indeed obtained from the fact that Eg is computed as the
average value of H in |®%), the latter being zero [48] for N < 0. In the EDF context, however,
it was demonstrated [48, 49] that Fourier components c¢% E”Y may be different from zero for
N < 0, i.e. one usually obtains a non-zero symmetry-restored energy for negative particle
numbers! This problem was shown [48] to be related to unphysical mathematical properties
of e[¢]. Applying the regularization method proposed in Ref. [47], the cancelation of non-
physical Fourier components was recovered [48]. At the same time, components EV for N > 0
were modified by up to 1 MeV, which is of the same order as the root-mean-square error on
mass residuals reached by the best available particle-number-restored EDF mass fits [91]. This
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demonstrates the practical need of constraining further MR-EDF calculations in order to produce
fully reliable results.

2.5 Towards new constraints?

The example discussed above is particularly enlightening given that clear-cut physical ar-
guments can be used to argue that certain coefficients in the Fourier expansion of e[| n[y]
should be strictly zero, although they are not if one does not pay particular attention to it.
Recovering such physical features removes at the same time non-physical contaminations from
other coefficients of the expansion [48]. This proves that the MR-EDF method, as performed
so far, faces the danger to be ill-defined and that new constraints on the energy kernel E[¢’, ¢]
must be worked out in order to make the method physically sound. The regularization method
proposed in Ref. [47] that restores the validity of PNR can only be applied if the EDF kernel
E [,09/9 K99 99 *] is a polynomial of a transition density matrices [49], which is an example of
such a constraint.

For an arbitrary symmetry group, the situation might not be as transparent as for U(1).
Indeed, it is unlikely in general that certain coefficients of the expansion of E[¢’, g|N|¢', g] over
irreducible representations of the group must be zero based on physical arguments. The challenge
we face can be formulated in the following way: although expansion 2.12 that underlines the
general MR-EDF method is sound from a group-theory point of view minimum, mathematical
properties deduced from a pseudo-potential-based EDF method must be worked out and imposed
on the analytical form of the kernel E[¢’, g] to make eéb extracted from EQ. 2.20 physically sound.
The rest of the present contribution is dedicated to briefly introducing an example of such a
property in the case of SO(3), i.e. for angular momentum restoration, that could be used to
constrain the form of E[Q, Q. Details of such an analysis are reported in Appendix E.

2.5.1 Mathematical property associated with angular-momentum conserva-
tion

We omit spin and isospin for simplicity and consider the rotationally-invariant nuclear Hamil-
tonian H =T 4 V in which the central two-nucleon interaction

1 Lo
V= 3 //dmdrg v(|r1 — 7)) a;% a;ig U, Q7 (2.23)
is local, i.e. non-antisymmetrized matrix elements are defined as
<1 1771;227’_‘)2|V|1 ZF3;2ZF4> E’L)(|T_‘)1—T_‘)2|)(S(Fl —F3)5(F2—’F4) , (224)

and in which three-nucleon and higher many-body forces are disregarded for simplicity. None of
the conclusions drawn below would be modified by the inclusion of many-body forces or by using
a non-local two-nucleon interaction. Operator a; (a;) creates (annihilates) a nucleon at position
7. Considering an eigenstate |©5M) of L2 and L., as well as using center of mass R = (7| +73) /2
and relative coordinates ¥ = 7] — 7%, the potential energy reads as

L _ (@MM[v]eH) 1 5 [ = 2] LMLM
Vv [OIM]QLN) = 3 dR drv(r)pﬁf (2.25)

= /d}? VIM(R) | (2.26)

which defines a local potential energy density VM (ﬁ) in terms of the non-local two-body density

ALMLM (@M a;% a;% Uy, Gy QLM /(@M |@LM) - After tedious but straightforward

matrix Phx
e
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calculations (Appendix E), one can demonstrate that

VEN(R Z CafLro ULL’ (R)YD(R) | (2.27)

where the Clebsch-Gordan coefficient C'f]]\\/[/[ 1o carries the dependence on M while Y;™ denotes
spherical harmonics. The weight U[[?}L, (R) depends on the norm of R only and is related to a
reduced matrix element of the two-body density matrix operator recoupled to a total angular
momentum L’. The remarkable mathematical property identified through EQ. 2.27 states that
the scalar potential energy V'’ is obtained from an intermediate energy density VM (ﬁ) whose
dependence on the orientation of R is tightly constrained by the angular-momentum quantum
number of the underlying many-body state |©7M) i.e. its expansion over spherical harmonics is
limited to L' < 2L. Such a result is unchanged when adding the kinetic energy (density) to the
potential energy (density) such that we restrict ourselves to the latter for simplicity. Of course

the energy eventually extracts the coefficient of the lowest harmonic, i.e. V¥ = \/4x i de

2.5.2 Pseudo-potential-based EDF method

Since property 2.27 is general, it can also be obtained within the frame of the pseudo-
potential-based MR-EDF method presented in SEC. 2.3. Omitting again the kinetic energy for
simplicity and using EQs. (2.4,2.7,2.10,2.23), the pseudo-potential energy kernel reads

1 -
Val?, QN0 = S / dR di V(r) (O|RT () p2. R(0)|6) (2.28)
1
= 3 3y clechQNQDfm(Q’)Dﬁ;QNQ(Q) / AR d7 V(r)p [QLLlMlLQMQ ,
(LM}

where {L, M} denotes a sum over the six angular-momentum quantum numbers appearing in
the formula. Applying EQ. 2.14 to the above expression (EQ. 2.28) provides, thanks to the
orthogonality property 2.13, the result

2L +1)2 DE () DE (9
m?) CLK LK
1
_ 2/de V(r) pla (2.29)

so that EQs. (2.26,2.27) are recovered. To obtain such a result it is mandatory to use the
double-integral formulation of EQ. 2.14 rather than the more standard single-integral formulation
that takes advantage, from the outset, of the fact that Vy[Q', Q] and N[Q, Q] only depend on
the difference Q — €'. We thus insist on using the double-integral formulation in the present
discussion.

2.5.3 General EDF method

Let us now come back to the general EDF method formulation given in SEC. 2.4. The point
is to underline the fact that property 2.27 cannot be derived a priori given that the potential
energy part of the kernel E[Q), Q] is not explicitly related to the two-body density matrix in this
case. Taking a quasi-local Skyrme EDF as an example, although this can be easily adapted to
non-local EDF of the Gogny type, the energy kernel takes the form

E[Q/,Q] _ E[pQ’Q HQ’Q KQQ,*]

) )

/ B (YR, T2 R), FYUR), . | (2.30)
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where the set of one-body local transition densities are given in EqQ. 1.6 with ¢ = Q' and
g = €, such that constraints imposed at the SR level [51-53] are fulfilled (see SEC. 2.4.3).
Given such an EDF, there is no reason a priori that the energy density &M (E) extracted from
EQs. (2.20,2.21) displays property 2.27; i.e. the angular dependence of ELM(E) is likely to
display harmonics YLO,(}A%) with L' > 2L. One might argue that it is not an issue considering
that the symmetry-restored energy E eventually relates to the harmonic YOO(}A%) only. However,
a formalism that provides £ (é) with a spurious angular content will certainly also provide the
coefficient £X°(R) of the lowest harmonic with unphysical contributions. To state it differently, it
is likely that constraining the MR-EDF kernels £ [pQ/Q, KR O *] to produce an energy density
gLM (ﬁ) that fulfils the mathematical property 2.27 will impact at the same time the value of
the weight £F°(R), and thus the value of EL. To some extent, this is similar to the situation
encountered with U(1) where restoring the physical property that Fourier coefficients C?VEN
with NV < 0 should be strictly zero did impact the value of all non-zero Fourier coefficients [48].

2.6 Conclusions

We elaborate on key differences between pseudo-potential-based and more general implemen-

tations of the EDF method, and point to difficulties encountered when formulating symmetry
restoration within the general EDF approach. Furthermore, we identify in a pseudo-potential-
based framework a mathematical property of the energy density £LM (ﬁ) associated with angular
momentum restoration that could be used to constrain EDF kernels.
An alternative consists of sticking to a well-defined pseudo-potential-based EDF method to
construct EDF parameterizations. However, there does not exist at this point in time such a
parameterization of the EDF kernel that provides good enough phenomenology. The second
part of the present thesis is dedicated to building such a parameterization.







Chapter 3

A new Skyrme pseudo-potential

Abstract: The present chapter is devoted to the construction of a new EDF parameterization
that is safe by construction for MR-EDF calculations. The EDF kernel derives from a generalized
Skyrme pseudo-potential. The generalization consists in adding a three-body part, to the usual
density-independent two-body one, of the most general form up to second order in gradients.
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3.1 Introduction

3.1.1 Context

Most of the existing parameterizations of the energy density functional kernel have been con-
structed in the general EDF formulation context, for instance using a density-dependent effective
Hamiltonian. As a result and as discussed in CHAP. 2, existing parameterizations of the EDF
kernel are unsafe for MR-EDF calculations. This is problematic as MR-EDF calculations are
necessary to access extensive spectroscopic informations while restoring symmetries that are bro-
ken at the SR level. Parameterizations of the EDF adapted to such calculations are thus needed.

As discussed in CHAP. 2, the first way is to develop corrections to the EDF kernel. The

regularization method developed in REF. [47-49] gives the first step in that direction. Never-
theless, EDF's from which regularized MR-EDF calculations are done can still induce spurious
contributions at this symmetry restoration level. Indeed, as the symmetry breaking energy is
not computed from the average value of a genuine operator, one cannot ensure that all neces-
sary properties of the energy density associated with the symmetry restored energies are indeed
fulfilled, as explained in CHAP. 2. New corrections could be elaborated to limit further spurious
contributions. As of today, corrections are insufficient to consider self-interaction and ill defined
symmetry restoration issues as being fully under control.
The second way to perform safe MR-EDF calculations is to compute the EDF kernel as the
matrix element of strict pseudo-potential. In such a case the symmetry restored energies are
well-defined such that calculations are spurious contributions free. Indeed, the Pauli principle
is fully accounted for whenever the energy kernel is computed as an operator matrix element
rather than postulated under the form of a functional of one-body density matrices.

Unfortunately, such a procedure also has disadvantages. First, the analytical derivation of
the functional can be tedious and time consuming. The second disadvantage is that it is not a
priori sure that strict pseudo-potentials of manageable form are flexible enough to provide high-
quality EDF parameterizations. Few parameterizations have already been constructed within
the pseudo-potential-based EDF formulation in the past, and they did not provide good enough
phenomenology, as is the case of SIII parameterization [92]. As a matter of fact, the density
dependence of existing standard Skyrme or Gogny effective interactions was introduced at the
time to bypass such an apparent lack of flexibility. Thereby, the generalized pseudo-potential
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has to be rich enough but also simple enough so that the fit of its free parameters remains
bearable.

For this study, the pseudo-potential we aim at developping belongs to the Skyrme family. In

the general context, Skyrme EDF parameterizations are postulated and constructed directly by
taking all possible bilinear combinations of quasi-local densities, usually up to second order in
gradients, which respect a certain set of symmetry requirements [51-53]. Recent developments
have focused on increasing the power in densities [93, 94], i.e. considering bilinear, trilinear, ...
terms, while keeping up to two gradients or by increasing the number of gradients while keeping
bilinear terms only [95]. Similar developments are possible using pseudo-potentials. This has
been done recently by Raimondi et al. [96] regarding the second option. However, developments
regarding the first option still have to be done. In such a context bilinear functionals are obtained
from a two-body pseudo potential, trilinear ones using three-body pseudo potential, etc. The
number of gradients operators in each terms of the functional reflects the number of gradients
considered in the pseudo potential.
The two-body pseudo-potential without any density dependence, or with a gradient-less three-
body pseudo potential are known to be unsufficient to reproduce correctly the nuclear data. As
a consequence the pseudo-potential developed presently is a three-body Skyrme operator, up to
second order in gradients, added to the usual two-body one, giving rise to bilinear plus trilinear
terms in the density matrices. This chapter deals with the construction of the most general
three-body Skyrme pseudo-potential and the derivation of the corresponding energy functional
kernel.

3.1.2 Energy density functional
The pseudo Hamiltonian used in the present work takes the form
L <35k
pseudo tha aj + = 51 Z Ukla alak+ a0 Z vijklmnaTaTaLa A, (3.1)
ijkl ijklmn

~3Sk
ijklmn

~2Sk

where 0%l and 0 denote non-antisymmetrized matrix elements of two- and three-body

Skyrme effective pseudo-potentials. In EqQ. 3.1. {a;r», a;} denote creation and annihilation oper-
ators in an arbitrary single-particle basis. The SR energy functional kernel is obtained from the
average value of the pseudo Hamiltonian

<q)|ﬁpseudo|q)>

P="am)

(3.2)
where the reference state |®) is taken under the form of a Hartree-Fock-Bogoliubov product
state, CHAP. 1. Consequently, the SR-EDF kernel is obtained from an effective HFB problem

written in terms of a pseudo Hamilton operator. The energy can be calculated using Wick
theorem [87], see Appendix A.1, such that

Efin = Z<Z|t|J>Pji (3.3b)
i
1 Ca
B = 5 > (1410 Avalk 1) pri o (3.3¢)
ijkl
I, .. .
Egr = 1 Z@J’U%k«‘ln’kw Ky Kkl (3.3d)

ijkl
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1 Ca
Egf = 6 Z (i 7 k[0** Avas|l mn) pi; pmg prk (3.3¢)
ijklmn
1 o )
Eg’ = 1 > (05 k85 Avasllmn) 555 Kim pukc (3.3f)
ijklmn

where Ajs and Ajo3 are two- and three-body antisymmetrizers introduced hereafter in SEC. 3.1.5.
The Coulomb energy is here omitted for simplicity. The (diagonal or SR) one-body density
matrix and pairing tensor entering EQ. 3.3 are defined as

o (®ala;|®) ”
P = TRy (3.4a)
ngl@ (3.4b)

The normal density matrix is hermitian p;; = p7; while the anomalous density matrix is skew sym-
metric k;; = —Kj;. The SR energy kernel is computed from a local energy density &|p, *, k()
according to

B = [ drelpn nl(r) = [ dr (80,70 + 40 + 400 + €5 + €5 D)  (3)

where it as been separated into terms that are linear in p;;, bilinear in p;; and in k;;, trilin-
ear in p;; and bilinear in s;; times p;;. The remaining of the present document focuses on
EQs. (3.3b,3.3¢,3.3¢) only. Eventually, the approach proposed in the document is meant to be
extended to EQs. (3.3d,3.3f). It is simply because of a lack of time that there were excluded
from the present investigation. The computation of the energy functional consists in expanding
matrix elements fij, @fﬁ’fmn and @fﬁ’fmn and applying gradient operators on density matrices
expressed in coordinate®spin®isospin representation. For this purpose density matrices and
their corresponding quasi-local counter parts are now introduced.

3.1.3 Density matrices and quasi-local densities
3.1.3.1 Coordinate representation

First, the coordinate®spin®isospin representation is defined through

rlfoq) = 7liog) (3.62)
A9 h? /1 . - .
§4|Foq) = ?<§ + 1) |Foq) , 8.|Foq) = hol|Foq) , (3.6b)
oy R L )
T4 |foq) = 7<§ + 1) |Foq) , T.|Foq) = hq|foq) (3.6¢)

and constitute a continuous orthonormal direct-product basis of H1 = H; 7 ® H1,, ® Hi,r, with
7€ R? and o0,q € {+1/2,—1/2} . For spin and isospin parts, a shorthand notation is used as
in fact |o) = |1/20) and |¢) = |1/2¢). Orthogonality and completeness relations are written as

(Foql#'o'q) = 6 — ) Spor S0+ / 7SS For)(For| = 1y (3.7)

where 1, is the unity operator on H;.
Introducing, a complete orthogonal set of single-particle wave functions

(foqli) = ¢;(Toq) , (3.8)

1. The quantum number ¢ is sometimes referred to as a letter, i.e. n for neutrons and p for protons, or as a
number, i.e. +1/2 for neutrons and —1/2 for protons.
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creation and annihilation operators a'(7oq) and a(7oq) can be defined according to

D ¢i(izg) af . (3.9)

a(foq) = Z ©;(Foq) a; ; al(Foq)
i
One-nucleon states can eventually be written under the form of spinors

7q i) = @i(Fq) = pilfo=+1/2q)) 3.10

-
tPi(V”O——l/QQ)

3.1.3.2 Density matrix

The EDF will be expressed in terms of local one-body densities and their gradients. Such den-
sities are obtained from the normal one-body density matrix expressed in coordinate®spin®isospin
basis 2 through

(®la’ (7o’ q)a(Foq)|®)
([®)

= ¢;(foq) ¢} (7F'o'q) pl; (3.11)
i

pq(To, 7'o’) =

and from spin Pauli matrices

ax5<0 1) , 0y5<0_i> , azz<1 0). (3.12)
10 i 0 0—1

Starting from EQ. 3.11, a set of the non-local densities is first introduced by applying up to two
gradients and/or by folding the density matrix with a spin Pauli matrix

pa(™ ) = > ol (q) i) p; (3.13a)
ij

sew(7) = > @hFq) ovpi(Fa) pl; (3.13D)
ij

(7)) = Y Veu Ve ) (3.13¢)
nw

Ty ") = Y Vieu Vi usqu(® i) (3.13d)
nw

L { oL
Jau(T ') = ) (vﬁu - VF/,;L) pq(77") (3.13¢)
- i -
J‘LMV(Tﬂnl) = _5 (vﬁu - vf”,u) Sq7u(7a77a/) s (313f)

where ﬁf is the gradient associated with coordinate 7. Equation 3.13 provides non-local matter,
kinetic, spin kinetic, current and spin-current densities for a given isospin projection, respec-
tively.

3.1.3.3 Quasi-local densities

Thanks to the contact character of the Skyrme pseudo-potential to be used later on the
normal parts of the energy density functional, £} and 2}, are going to be functionals of the

2. Without proton/neutron mixing, so that p(foq, 7 o’q’) = 0 for ¢ # ¢'.
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following local densities

pal7) = pg(7,7) = D @}(7) 0i(70) pl (3.14a)
Squ(T) = 8qu(F,7) = ?w}(ﬁq) o, i(Tq) p; (3.14b)
74(7) = 74(7,7) = ;][W}(Fq)] Vi) ol (3.14c)
Ty u(7) = Ty (7, 7) ::Zj Vel (7q) o, Vipi(Fa) pl; (3.14d)
Jgu(F) = Jgu(F7) = —% 2]: {go}(fq) [Vupi(Fa)] — [Vupl ()] @i(fq)} ol (3.14e)
T (7) = Jg (7, 7) = —% > {¢}<Fq) ou [V,upi(70)] — [Vuel(7a)] 0w gpi(f’q)} Pl (3.14)

]
We further introduce the spin-orbit current as the pseudo-vector part of the spin-orbit tensor
o i LTS = = o .
Toa(7) = e Ty = =3 S {70 [V x FilFa)] - [Vel(Fa)] x & i) } ol (3.14g)
v ij

where greek indexes refer to cartesian components of a vector (u) or of a tensor (u,v).
All throughout this wprk, neutron and proton densities can be recoupled into isoscalar and
isovector densities according to

PO(7) = P"(F) + PP(F) (3.15a)
PLHF) = P(F) — PP(F) , (3.15b)

where (P',P?) € {(pt,pq); (81 8); (76 79)5 (T4, Ty)s (Gt G (T quuV)} with ¢ € {0,1} and ¢ €
{n,p}. Similarly local densities entering the anomalous part of the quasi-local functional are
obtained from the anomalous density matrix but are omitted here as pairing contributions to
the EDF kernel are not discussed in the present document.

3.1.3.4 Rules for applying Quasi-local densities rules

Gradient operators coming from Skyrme pseudo-potentials will have to be applied on non-
local density matrices pq(7,7’) and sq,,(7, 7). Rules have been derived that express the action
of specific combinations of gradients on such non-local densities in terms of combinations of
quasi-local densities (see EQ. 3.14) in order to facilitate the algebraic derivations [97, 98]. Those
rules are proven in Appendix A.2 and work identically for p, (7,7") or sq ,(7,7").

Defining
P, = { (-

=/
" (3.16)
S(I( ’F/

)
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the associated rules are

Ve Pl |, = %W’?Hiﬁ’ : (3.17a)

Vo Ple |, = %W’? —iJ? (3.17b)

V-V, Pl e = %APfi—If +iv-Je (3.17¢)

Voo Vo Plo| = SAPL-TE ¥ (317d)

Vo N Ple | = T (3.17¢)

DoewVen Ve P | = Y eawiVaT, (3.171)
N N

where
Pq (7) s 74 (7) 5 Jq 7u(77)>

3.18
$0.0(7) s Ty (7) s Ty (7)) (3.18)

(2.7 7,)

3.1.4 Gauge transformations

Skyrme forces are locally gauge invariant, which reflects the fact that its momentum depen-
dence has been introduced to simulate the finite-range effects of the effective interaction [99].
The gauge transformed one-body density matrix reads as

pi(Fo. 7o) = exp {i (6(7) = 6(7")) } p, (7o, 7o) . (3.19)

Galilean transformation is a special kind of local gauge transformation and represents invariance
of the system under a translational motion. Galilean transformation is obtained for ¢(7") = p-7/h.
Quasi-local densities EQ. 3.14 calculated from the gauge transformed density matrix take the
form

t/ar _ pt/a (3.20a)
T =T+ 27009 ,,6(7) + PV ko(7)V 16 (7) (3.20b)
tar _ gt +73’i/q V,.6(F) | (3.20¢)

where t/q denotes either isoscalar-isovector or neutron-proton indices.

3.1.5 Antisymmetrizer and exchange operators

Antisymmetrizer operators enforce the Pauli principle, i.e. the fact that two fermions cannot
be in the same quantum state. In the expression of the SR energy kernel, EQ. 3.3, antisym-
metrizer operators originate from the application of Wick theorem, see Appendix A.1. Antisym-
metrizers can be applied to the ket, the bra or both for an identical result. Two-body A5 and
three-body A123 antisymmetrisers are defined through

i)~ 15 . (3.21a)
i3 k) — G ik) — likg) — ki) + [kig) +]j ki) , (3.21b)

Az |i j)
Aoz |ij k)

ensuring that the result is null as soon as at least two single-particle states are the same. An-
tisymmetrizers can be written as functions of so-called particle-exchange operators P, that
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exchange particle x and y, so that

./412 = 1- P12 N (322&)
Aigs = 1= Pio — Pog — Pig+ PiaPos + Pi3Pas . (3.22b)

Although the three-particle antisymmetrizer could be written using a different choice of double
exchange operators, given that

Py Pig lijk) P3Py lijk) (3.23a)
P3Py WM = Pyl ’Uk> ) (3-23]0)
Py Py lik) = PigPylijk) (3.23¢)
Py Piglijk) = PyPglijk) (3.23d)

the choice made in EQ. 3.22b is kept throughout the rest of the document. In coordinate®spin®isospin

representation, one can introduce coordinate Pj,, spin P/, and isospin P[], exchange operators
according to

Plh|Fio1q1,Tyo2q2) = |Tho1q1,T102q2) (3.24a)
Py |Fio1q1,Tyo2q2) = |Fi02q1,Th01q2) (3.24b)
P1T2’7?10'1ql,7?20'2(p> = ’7?10'1(]2,7?20'2(]1> . (3.24C)

The total particle-exchange operator Py, = Py, Py, Pj, exchanging all three quantum numbers,
is equivalent to exchanging the particles.

3.1.6 Two-body spherical state and exchange operators

The two-body Hilbert space Hs is the tensor product He = H1(1) ® H1(2) of two one-body
Hilbert spaces. The direct product basis of Hy is obtained from those of #;(1) and #H;(2)
through

[1:7101qy, 2:T505G) = [1:7101q1) @ [2:T505G5) - (3.25)
The convention used in the following consists in writing non-antisymmetrized direct-product two-
body states without specifying the particle label. The first (second) set of quantum numbers is

associated to the first (second) particle. The same convention has been used for direct-product
three-body states.

3.1.6.1 Coordinate part

Two-nucleon states |7;0,q, 750545) can be written as |R7; 07q; 09q,) by introducing relative
and center of mass coordinates

—

— D2
2 7

=1

71+ 72
2

—

R 1—7T , P=pi+py , p=

(3.26)

, T

where P and P stands for center of mass and relatlve momenta. The total orbital angular-
momentum of the two—body system, defined as Lwt = 11 + lg is decomposed into a center-of-mass
and a relative part, Lwt = Ecom + L where

A~
—

Leom =R x P, L=7Fxp. (3.27)

In spherical coordinates, |r) = [rf¢) with r = |||, 0 < 6 < 7, 0 < ¢ < 27, where angles ¢
and ¢ provide the orientation of the relative position vector 7. The orbital angular momentum

operator L acts only on angular coordinates (6, ¢). Spherical harmonics

Y0, 0) = (06|LMy) (3.28)
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are the wave functions associated with eigenstates |LMp) of L2 and L, such that the angular
part of |[7) can be expanded according to

06) = > Y (0,¢)|LML) . (3.29)
LM,

When the two nucleons are exchanged, i.e. using P[, on the two-body state, 7 is changed into
—7, which is equivalent to changing 6 and ¢ into 7 — 6 and ¢ + 7. As YLML (m—0,p+m) =
(-1 YLM L(#, ¢), the exchange of the two particles introduces a phase (—1)”. Consequently, a
state |LMp) with L even is symmetric under the exchange of the two particles whereas a state
with an odd L is antisymmetric under such an exchange. Such a property makes the basis
|r, LM1,) of Hy 5 very suited to the construction of fully antisymmetrized states down the road.

3.1.6.2 Spin and isospin part

The two-nucleon spin operator is S =G +5. Eigenstates |SMg) of 52 and S, are expressed
in terms of non-antisymmetrized direct-product spin two-body states |01, 02) as

-1 ! 1>_||T¢T¢>>’ )
_|_
-1y = 1)

and have eigenvalues h? S(S + 1) and Mg for 52 and of Sz, respectively, with possible values
S =0or1and |Mg| <S. Asis customary, ”spin-up” and ”spin down” arrows have been used to
denote 0 = +1/2 and 0 = —1/2, respectively. The S = 0, or spin-singlet, state is antisymmetric
under the exchange of particles 1 and 2 while S = 1, or spin-triplet, states are symmetric. One
can define the spin-exchange operator through

-, 1 .
Pﬁ:52—155<1+&1-52) , (3.31)

such that PZ|SMg) = (—=1)175|SMg). |SMg) with S even, i.e. S = 0, is antisymmetric under
the exchange of the two particles whereas a state with an odd S, i.e. S =1, is symmetric under

such an exchange. The same conclusion holds for the isospin part, replacing S by f, i by 7:", S
and Mg by T and Mr, 1 by n and | by p, respectively.

3.1.6.3 Pauli principle

A physical two-body fermion state is antisymetrized according to %A12|7_”101q1 s To090)-

The application Of a parlicle eXChange operator on ‘hlS state pI'O\/ideS
Pr—A ‘7 0141, T909Qq > =——A ’7 0141 5 T909q > (3 32)
12 12 ) 12 I ) .
\/_ 1¥141 2Y 242 \/_ 19141 2099

as is easily proven, knowing the expression of A5, EQ. 3.22a, and using P;sPjs = 1. The same
property holds for three-body states. Such a property, rewritten P, P, P, = —1 when applied
on an antisymmetrized state, is a transcription of the Pauli exclusion principle. Following the
previous explanation, coordinate, spin and isospin exchange operators bring a phase (—1)L,

(=15 and (—1)'=T, respectively, such that

PLPLPL, =—-1 < (-)FD)PS-D)T=-1 & L+S+Tisodd.  (3.33)
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3.1.6.4 Partial-waves and coordinate exchange operator

As will be seen below, Skyrme pseudo-potentials are constructed from two-body incoming

and outgoing relative momentum operators, k and k’. The angular part of 925% (E, kK’ ) can be
expressed in terms of spherical harmonics, REF. [86]

ENES 4
@QSk(k,k/)_ ™

l
=g O YO0 0) (kK (3.34)

where (6, ¢) and (8',¢") are the incoming and outgoing relative angles, respectively. Inserting a
closure relation in EQ. 3.3¢ and neglecting spin and isospin for now, one has

1 I N N,
Egy, =3 / d{ diydity dity (7] 75| 0%5F Ava|7y 7y) p(7y, 7 ) p(7, 73)
1 oL SN _, . _
=3 / drdi’ dRAR'( R'r'0"¢" | %% (k, k") A2 | Rr 0 ¢ )p(R'F)p(RT) . (3.35)

Inserting EQ. 3.34 into EQ. 3.35 and using EQ. 3.29 as well as the orthogonality of spherical
harmonics, one sees that each term of decomposition 3.34 acts in a single partial-wave (L,M) of
decomposition EQ. 3.29. Consequently, interaction terms proportional to one spherical harmonic
select a unique partial-wave. Knowing that Pj, applied on a state |LMp) gives rise to phase
(=1)% or (=1)¥, one finds that

O2FE B o Y (07, 6)Y0,6) = L=L'=1 = P,=(1), (3.36)

such that the application of an exchange operator P/, is in fact predetermined by the partial-
wave selection associated with the interaction term in front of it. For central two-body contact
interactions up to second order in relative momenta, possible cases are

I 1
0** (k, k') oc { s X YgH(0,6))Y5(0,9) = Py =1 (3.37a)
kQ —|—k3l2
“2Sk (T 71 > 0%/n! M0 o
PR EY o Kk YO, NY20,6) =  Ph=-1. (3.37b)

The same reasoning holds if @251‘“(E, k' ) depends on higher powers of k and k'. The predetermi-
nation of P[, occurs only if the interaction has been separated in terms proportional to a single
spherical harmonics. Although such a feature remains in the three-body case, one has to be
careful because there are three different two-body states in a given three-body state.

3.1.6.5 Relative momentum, spin matrices and scalar product

The determination of partial-waves selected by the interaction has been performed in the case
of a contact interaction depending solely on relative incoming and outgoing momenta. Likewise,
the same determination is possible when the interaction depends also in spin matrices. For a
contact spin-orbit interaction

PR, K, 61, 50) =i (1 +52) K AR (3.38)

the dependence on spin Pauli matrices enforces that the triplet state S = 1 is selected such that
the further application of a spin exchange operator gives P{, = +1. The partial-wave selection
is slightly more complex, however the result is that the interaction acts in L = 1 P-wave such
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3.2 Linear functional

Having introduced various useful tools, we now proceed to the computation of the nuclear
EDF kernel, starting with the kinetic linear part Ezm. For such a purpose, EQ. 3.3b is reex-
pressed introducing one coordinate®spin®isospin closure relations on H;

Ep. = /dF'dF Z (F'o'qlt|F o q)py(Fo,7a’) , (3.39)

oo'q

. h?
where t = %VWVT(S(F — 7). Such that

h? R
q

3.3 Bilinear functional

The next part of the nuclear EDF to compute is the bilinear part Egz. To do so, EQ. 3.3c is
reexpressed introducing two coordinate®spin®isospin closure relations on Ho

1

Eféi = 9 /d(FUQ){<F1/U1/C]1 FéaéQ2|@25kA12|F1U1Q1 T502G2)

pus (7101, 70 1)pua (P2, 7503 } (3.41)

where / d(foq) encompasses the continuous and discrete sum of all spatial, spin and isospin

quantum numbers.

3.3.1 Construction of the pseudo potential

In the present part, we provide the procedure to construct the most general central part
of the two-body Skyrme pseudo potential 92°%. Such an operator is already well known and
has been widely used [97, 98, 100, 101]. Consequently, the present section serves as a warming

exercise in view of working out the three-body part of the pseudo potential.

3.3.1.1 Gradient part of the central pseudo potential

An essential object is the delta operator 5T1r2, describing an interaction between two nucleons
located at the same point. Its matrix element are defined as

(F1 73100, |71 7) = (7% — 71)8(7] — )87 — 7%) - (3.42)

Gradient operators provide the interaction with a dependence on the relative momentum of the
two nucleons. The gradient structure of the pseudo potential is thus constructed using incoming
and outgoing relative momenta

5 5 Y 1,
(Vi—=Vs) , k= +§(V1/ —-V3) . (3.43)

2 {

k
12 B

Operators /312 and ﬁi, act on the ket coordinates, while operator E{Q and 6{ denotes their

complex conjugate acting on the bra coordinates. Operator 61 acts on the coordinates of the
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first particle while 62 acts on those of the second particle. Matrix elements are defined as

VI (e = Nyl o
(P17 |ko|T1Ty) = Ortr Opgry = —§(VF1 — VF2)5(7°1, —7)0(7% — 75) (3.44a)

T | = = L s(ml
(Filkia|P7y) = #1521 Op e Opty) = +§(Vq - VHQ/)(S(H/ —7)d(Fy —73) ,  (3.44b)

where the shortcut notation ¢, = 0(7/ — 7;) has been introduced for the part accounting for
iy

the local character of these operators.

The most general gradient structure of the interaction is found by forming all possible scalars

from 212 and E{Q Invoking hermiticity, only three such scalars can be formed up to second

order, i.e. 1, E{QQ + E122 and Ell2 . Elz- As a result the most general form of the central part of the
interaction can be written as

. 20 1 PR X 2! 1 22145 oA N X 22 A
025k — [Pl{Q VS (PEVRE + RRPS ) 45 (PSR - Rag + By - R P })} br,ry +(3.45)

cent —

where Pg } remains to be specified to complete the construction and is discussed in the next
section. The hermiticity of the interaction requires to take particular attention on where those
operators Pg Y are placed.

3.3.1.2 Exchange operators

Fach term in EQ. 3.45 involves a series of exchange operators multiplied by a parameter
x;, overall denoted as Pg Y. The aim is to provide the various spin-isospin and partial-wave

channels with different weights. The most general structure for Pg Vs

Pg} = oo + x01 Py + 202 Py + w03 o Py
+$10P{2 + CEHP{QP{TQ + $12P{2P1T2 + $13P{2P102P172 s (3.46)
knowing that PLPYL = 1 for ¢ = r,s,t, as exchanging twice the complete set of quantum

numbers give back the initial two-body state. Such an operator is hermitian Pg - Pg } given

that qug = P[,. Equation 3.46 implies that Pg } could contain redundant informations, i.e. it is
possible that some parameters are correlated a priori such that only certain linear combinations
of parameters {z;} occur eventually in the functional. Such correlations have to be identified.

3.3.1.3 Reduction of the parameter space

The first correlation between parameters appear through the application of the Pauli prin-
ciple. As already explained in SEC. 3.1.6.3, the Pauli principle is equivalent to stating that
Pl Py, P, Aa]ij) = —Aizlij). Thus, the three exchange operators appearing in Pg} are corre-
lated and only two of them are independent, e.g. one can replace P by —P{,P,. As a result,
Pg Vs rewritten using all possible combinations of two of the three exchange operators, e.g. Py,
and PJ,, so that the second line in EQ. 3.46 is in fact fully correlated to the first one.

Such correlations seem to only affect the Pg } operators located to the right of gradient operators
in EQ. 3.45, given that the antisymmetrizer is only applied on the ket in the matrix element 3.3.
However the cyclic nature of the trace, i.e.

> (ij1OPulkl) pripi = Y _ (il Pr2Olkl) pripy; (3.47)
ijkl ijkl
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where O is an arbitrary operator, allows us to transfer the antisymmetrizer on the bra and
use the same reduction for those Pg } operators located to the left of gradients. Finally, as

Pli; ; operator has been made independent of P}, and acts only in spin-isospin coordinates, it
commutes with gradients operators such that the interaction can be rewritten as

0 S S 1 - 2] o
25k — [Pl{; by % <k1’22 + k:122> PEY 4k By PE T 6, (3.48)
The second correlation comes from the a priori knowledge of the result of applying coordinate
exchange operators in connection with terms whose spatial part acts in one specific partial wave
(see SEC. 3.1.6.4). The angular part of each term entering EQ. 3.48 is indeed proportional to
two spherical harmonics of same angular momentum, so that P}, = (—1)* with L = 0 for the
first two terms and L = 1 for the last one. Eventually, only a reduced form of Pg } needs to be
considered when applied on the right where the antisymmetrizer is as

Pli;}/lu = (zoo F z03) + (zo1 F z02) Pl + (zo2 F o1) Py + (o3 F oo) PPl , (3.49)

where EQ. 3.22a, Pjy = P}, P, PJ, and P}, = (—1)* = £1 have been used, to identify the further
correlations between parameters. Eventually, the most general form actually needed for the two
operators Pli;} at play in EQ. 3.48 is

PY =g+ a1 PG . (3.50)

3.3.1.4 Spin-orbit term

A spin-orbit term is to be added to the central one. It can be expressed in term of /%’2 and

kq coupled to spin matrices 1 and &2

5 |7 (3.51)

172 -
As for the central part, P%x} is expressed in term of exchange operators and reduced in a second
step. However, the spin structure of the spin-orbit interaction leads to an additional reduction

as the interaction selects S = 1 spin channel, so that PJ, = +1 and P%‘T} =z, see SEC. 3.1.6.4.

3.3.1.5 Final form of the two-body pseudo potential

The final form of the most general two-body pseudo potential up to two gradients is nothing
but the traditional Skyrme effective interaction. After renaming the remaining parameters one
has

0% =t (1 + 2 P) oy 1, (3.52a)
+ 2 b PR) (K +F) by, (3.52D)
4 to (14 22P%) kly - kg Or 1,y (3.52¢)
4 iWo (81 + o)kl A Kyy - (3.52d)

Other spin-gradient coupling structures are possible, i.e. tensor structure. However, the latter
has not been considered in the present study.
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3.3.2 Bilinear energy density functional

Once the pseudo potential is defined, the calculation of the energy functional can proceed
from Eq. 3.41. Using EQ. 3.31, the coordinate matrix elements of the operator EQ. 3.52 (using
EQ. 3.44) and rules EQ. 3.17, the energy functional is expressed in terms of one-body quasi-local
densities EQ. 3.14. The derivation is detailed in Appendix A.4. The bilinear energy density
functional EQ. 3.5 can be decomposed into two parts invoking quasi-local densities behaving
differently under time reversal transformation. The so-called time-even part reads

ggz,even = Z {Atpp? + A;frptTt + Atvpﬁpt : 6pt + Z AZ]Jt,uVJt,uV + AAtVJPt6 : j;} 5 (353)
t=0,1 0

whereas the time-odd part is

EGh odd = Z {Afgf + AT ST, + Z AYSV 180,V Sty + Al G+ A5,V x ft} . (3.54)
t=0,1 Qv

The relation between time-even two-body functional coefficients and those of the two-body
potential are given in TAB. {3.1}.

to  toxo t1 tixy to toxo Wy

A= +2 +0 +0 40 40 +0 40

Al = -t -3 +0 40 40 40 +0

Ay = -1 41 +0 40 40 +0 +0

A= L 40 40 40 40 +0  +0

A = 40 40 +3 +0 4+ +i 40

AT = 40 40 —& i +& +& +0

Al = 40 40 & +i +& 41 40

AT = 40 40 —-& +0 +& +0 +0

AP = 40 +0 4+ 40 -& —& 40
A = 40 40 —F -2 -4 L 0
AP = +0 +0 & +& -& -5 40
AYS = 40 +0 —-& +0 —g 40 40
A= +0 +0 -2 40 -& -1 40

Al = +0 +0 +& 4+ & -i 40

Al = 40 +0 +% -i -4 -3 +0

Al = +0 +0 45 +0 -5 40 40

Ay = 40 40 +0 40 +0 40 3
AV = 40 40 +0 40 +0 40 -1
A = 40 40 40 +0 40 40 -3
A= 40 40 40 +0 +0 40 -1

Table 3.1: Two-body functional (3.53,3.54) coefficients are expressed in terms of
pseudo potential parameters EqQ. 3.52.
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3.3.2.1 Galilean invariance
The fact that AY = —A7, where t € {0,1} and (7,.7) € {(T,j); (T, J)}, and that Ath =

AYY reflects the Galilean invariance of the functional. Indeed, the functional is gauge invariant

if
/
£ g =0 (3.55)

where £ g‘k is the Galilean transformed energy density. Using quasi-local densities transformation
EqQ. 3.20, the latter condition is equivalent to fulfilling

S Y (AT + A7) (2PETE V(i) + PEPEV 16(7) V()

t=0,1 (P, T.7)

+ 30 (457 - a77) (Fpu() - Vo) x 5(7)) =0 (3.56)

t=0,1

for (P, T,J) € {(,O,T, ;), (S, T, Jw/)} and ¢ being an arbitrary gauge function. The condition
is indeed fulfilled thanks to A7 = —A7 and AY7 = AY”.

3.4 'Trilinear functional

3.4.1 Introduction

Usually, density dependencies are added to the two-body Skyrme pseudo-potential (EQ. 3.52),

in order to account for medium effects. Such density dependencies do not embody quantum op-
erators such that the EDF kernel thus obtained does not derive strictly from a pseudo-potential.
Medium effects thus inserted lead to a breaking of the Pauli principle as the density dependence
does not derive from an antisymmetrized matrix element but is rather added by hand. The
three-body pseudo-potentiel aims at replacing such density dependencies by generating a safe
trilinear part of the EDF.
The first property a three-body operator 0123 should respect is the symmetry under the exchange
of any two particles, i.e. v35F = v3pF = v35F = v}k, Therefore, any three-body interaction
can be decomposed into three terms, each of them being symmetric only with respect to the
exchange of two of the three particles [102]

A3Sk — ~35k + ~3Sk + ~3Sk

T23 T U3t2 T V331 > (3.57)

where 123 means that the interaction is symmetric under the exchange of particles 1 and 2 only.
These three parts are formally identical but act on different particles. Two of these terms can
be rewritten in terms of the third one and a selection of two-body exchange operators, e.g.

35k = 35k + P23P121)

193 b PioPy3 + Pa3Prsvs

KPP (3.58)

123 123

As in the two-body case EQ. 3.32, the Pauli principle implies that

PmypyzAms’?”lUl% y T202d4> , 7°3U3Q3> = _ny-A123’7°1U1Q1 , T909qy , T303q3)

= A193|7 0141 , Th09Gs , T303q3) (3.59)

with z,y,z € {1,2,3}. The cyclic nature of the trace also stands in the three-body case

> (i§EIOPuyllmn) pripmjpnk =, (ijk| PayOllmn) pripmjpne Yo,y € {1,2,3} ,  (3.60)

ijklmn ijklmn
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such that the three-body antisymmetrizer can be applied on the left or on the right in EQ. 3.3e.
Taking into account the two latter properties, the EDF kernel derived from the three body
pseudo potential can be expressed using only one term from EQ. 3.57, i.e. EQ. 3.3e can be
rewritten as

1 -
Eg’llzp = 92 Z <Z]k|U123 Aisllmn) py; Pmj Pkn - (3.61)
ijklmn

As a result the construction of the three-body interaction only requires to specify vf%‘, although

the latter does not embody the complete interaction. Eventually, energy EqQ. 3.3e is reexpressed
introducing two coordinate®spin®isospin closure relations on Hg

1
ppp — =1 )=l 1 = 23Sk = = =
Eg = B} d(TUQ){<7’101QI 90942 7"303(13|U§3 Au23|7 0141 T509G2 T305343)

pus (701, 0] s (Fa0r2, 7308)pag (P, Thrd) | (3.62)

where / d(7foq) denotes the continuous and discrete sums over all spatial, spin and isospin

quantum numbers.

3.4.2 Construction of the pseudo potential

The procedure to construct the pseudo potential follows the same steps as in the two body
case. Let us first introduce the product of delta operators 5r1r35r2r3 whose matrix elements are

(L3730 1y Oy, P17 T3) = O(7) — 75)8(7y — 73)8(F] — 7)0(F — 7)8(75 —75) (3.63)
Using a condensed notation, vi’gf is written as
Ncent { } ~ ~
~3Sk _ Yorpys @
0753 = Z Gigy (P’ k' k) Or i Oryry (3.64)
plet

where exchange operators P55 contain a set of tree the parameters and play the same role
as in the two-body case, i.e. they provide various spin-isospin channels with different weights.

Functions G2123 depend on relative momentum operators Eé and kxy, where {x,y} denotes two

of the three particles, and on exchange operators ng }. Neent denotes the number of possible

terms eventually entering vi’gf

The two functions P1{23} and GZT23 are going to be determined for a central interaction. One
could have constructed the three-body Skyrme interaction by naive analogy with the two-body
case, i.e.

Neews = 3 (3.65a)
Py} = (ah +2iPp) (3.65D)

20 50045 21 2 23 5 5
GZ123(P1{23}a k' k) = [P1{23} ) P1{23} (k + km) ) P1{23} <k1/2 : k12>] ) (3.65¢)

as has been partially or entirely done in the few existing papers on the topic [103-105]. We are
however trying here to identify the most general (central) three-body pseudo-potential of the
Skyrme type.
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3.4.2.1 Gradient functions Gi—%

123
will be bilinear in operators l;:; ; and their complex conjugates. To obtain a central interaction, the

The first limit regarding G%.. is to be of second order in gradients. Therefore, the interaction

possible structures made out of gradient operators are limited to terms of the form Eij Ekl+Ez/] E,gl

and l;:;j . Eél, where i, j, k,1 € {1,2,3}. One has to determine on which particles the gradients can
act. The presence of a third particle suggests that new choices may appear, in addition to those
displayed in EQ. 3.65¢ where i = k = 1 and j = [ = 2. Taking into account the fact that 935%

123
has to be symmetric with respect to the exchange of particle 1 and 2, the number of new choices

is reduced. Indeed, possible combinations actually belong to interaction term 032% and #35%

~Sk
~ ~ ~ ~ vﬁQ. .

and k5 - k33 + kog - k{5 have to be considered. Eventually, taking P1{2x3} equal to identity for now,

five hermitian gradient structures are available

t =k =1and j =1=3 belong to Nevertheless, new choices such as Ew . E23 + E{3 . E2’3,

G}_%(/?,l?’) =1 (3.66a)
Gf—%(]?,l?’) = % {]?112 : ]?1/2 + ]212 : /212] (3.66b)
Gy ) = % [’?2'3 By + by /?13] (3.66¢)
G%g(]? k') = ’?12 : ’?1/2 (3.66d)
G%:s(;’;/) = % {]?23 : 1?1/3 + ;2/3 : 2;13] : (3.66¢)

Eventually, exchange operators Pl{;;} have to be incorporated taking into account the overall
hermiticity and the symmetry under the exchange of particles 1 and 2.

3.4.2.2 Exchange operators P1{;3}

The presence of a third particle allows many more combinations of exchange operators than
in the two-body case. All possible combinations of coordinate, spin and isospin two-particle
exchange operators determine the function P1{213}- Using the notations

Qq=1, =P, B=P3, Q=P , QG=PHPy, Q=P;bP;, (3.67a)

=1, Q5=P5, , Q=P , Q1 =P5; , Qf =PLPy; , Q¢ = PLPs; ,  (3.67b)

Q=1, Q=r,, =P, QU=ry, G=PLhPy, =Pl , (3.67¢)
one gets

6 6 6
ng} = ZZZ%]kQ:Q}T k> (3.68)

i=1 j=1 k=1

where z;;, denotes the different parameters which are multiplied by the different combinations
of spatial, spin and isospin exchange operators. Double exchange in EQ. 3.67 are limited to two

terms thanks to EQ. 3.23. Due to double exchange operators one can note that Py, # P1{2x3},

which is a crucial feature to keep track of in order to obtain a real energy functional. The use
of the Pauli principle, i.e. Py, Py Py Aios|llmn) = —Aqgs|lmn), with {zy} € {12,23,13} allows
one to rewrite

6 6
Pl{;s} = Z leij?QZ ; (3.69)

j=1 k=1

231 1327 c-8
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as the three exchange operators Py, Py, and P;, are reducible to only two. The simplest

choice has been made, i.e. write Pl{;3} as a function of spin and isospin exchange operators only.
Consequently, Pl{;3} commutes with gradient operators Eij and EZ’J which simplifies significantly
the algebra. Parameters x1;; are now renamed .

3.4.2.3 Gradient functions Gil—23 depending on P53

Gradient structures EQs. (3.66a,3.66b,3.66¢,3.66d) are composed of bilinear gradient oper-
ators which are individually symmetric under the exchange of particles 1 and 2. As a result
exchange operators Pl{;?j} and their hermitian conjugates that are combined with the latter
gradient structures, have to be symmetric under the exchange of particles 1 and 2 such that

interaction 35%

155 is. To do so, certain parameters xj; of Pl{;?: } have to be correlated such that

one obtains

PEY = wg0 + w01 Pl + oz (Pl + Pgh) + w3 (PLPS + PG PS)
+ z10Pl + 211 PR Py + w12 (P Py + PoPh) + 213 (PR PPy + Pls Py Pry)
+ @20 (P3 + P3) + zo1 (P Pf3 + P Pa3) + mo2 (P Pfs + P33 Pi3)
+ x93 (PR3 Pl3 + Pl3Py3) + xoa (Plp Py Pl + PlsPis Poy) + wos (Pl Py Pls + Pl Py Pr3)
+ @30 (PloPos + Pi3P3) + w31 (Plo Py Pog + Pl Ps Pog) + w30 (Pl P3Py + Py Pl3Pl3)
+ 233 (Py3 Pla Pas + Pl3Pl3Pos) + w34 (P P33 Pl Pig + Py Py P3 Pyg)

(

+ w35 (Pl3 Py Pl Pos + P Py Py Pas) (3.70)

In EQ. 3.66e, however, the bilinear gradient operators are not individually symmetric under the
exchange of particles 1 and 2. Consequently, using ng} does provide an interaction that is
symmetric under exchange of particle 1 and 2, but in fact correlates a priori parameters that
should not be correlated. For instance, one has

w02 (Pfy + PSy) ks - k{3 + E2,3'E13} =+ Zo2 [PE’)EQB'E{?, + P;?,EQ’?,-EB]
20y | Py Kis + Plykgs-Fis] , (3.71)

giving two terms that are separately symmetric under the exchange of particle 1 and 2, such that
they should be considered as being potentially independent from each other. As a result, one

has to treat differently the part of P. 1%13}

symmetric under exchange of particles 1 and 2, named Pg b and equal to

depending on exchange operators that are individually

Pli;} = zo0 + 201 P12 + 210 + 211 PR Py (3.72)

and the remaining part named ngj } and Pi{?g }
Pi;?)} = —|—.7J02Pf3 + 1‘03P102P§3 + 1‘12P103P1T2 + 1‘13P102P§3P1T2 + .%'20P1T3 + 1‘21P102P1T3 + 1’22P{%P{3
+ w23 Py3 Py + 004 PPy Py Py + wo5 Pls Ps Py + w30 Py Pog + w31 Py Py Pog + 230 P3Py Pg
+ w33 Py3 Py Pog + w34 Pio Pig Py Py + w35 Pis Py Py Py (3.73)
Pl{;z} = —|—.7J02P§3 + 1‘03P103P§3 + 1‘12P203P1T2 + 1‘13P103P§3P1T2 + .%'20P2T3 + 1‘21P102P2T3 + 1‘22P203P2T3
+ 203 P3Pa3 + w24 P3Py Py + w95 P Piy Pig + w30 Pi3 Pog + w31 Py P3Py + w32 Py Pl Prg
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Finally, our investigation leads to the following set of possible structures in the three-body
pseudo potential.

Gl =3 [P, + P! (3750
s E% B 1{53” Ky Ky + P }k12 /ﬁz] (3.75b)
G4 E% :ng” ]?2,3 ki3 + 1{23} k23 /ﬁg] (3.75¢)
G%g E% :P%H 2;12 : 2;1,2 + Pl{;g} k’1/2 : 2;12] (3.75d)
G%g Ei :P%M (’?23 : ]?1/3 + ]?2/3 k?13) + P{m } (’?2/3 : 1?13 + 1?23 . ;{3)] (3.75¢)
Gz Ei P1{§B2 U ]Agl/:s : ]?23 + P1{;3 U 722/3 : 7213 + P;{?)m;}%s : ’?13 + PE;}]%/:& : /?23] (3.75f)
Gl Ei P1{;3 Mk k13 k23 + P1{32} 2;2/3 : 2;13 + Pg;}%s : ]?13 + ng};{:& : 223] . (3.75g)

3.4.2.4 Reduction of the parameter space

Again, one is interested in finding correlations that exist a priori between the parameters

of the postulated pseudo-potential, in order to reduce the set to the necessary ones only. In
particular, correlations coming from properties of the angular part of interaction EQ. 3.75, are
more difficult to highlight in the three-body case. As before, two-body relative momenta give
information regarding which two-body partial-waves are selected by a given interaction term,
so that the coordinate exchange operator between the two particles can be replaced by =41.
However, in the three-body pseudo potential EQ. 3.75, three relative momenta associated with
the three possible pairs of particles are to be considered. In this situation, the action of a given
coordinate exchange operator can only be anticipated for interaction terms constructed solely
out of the relative momentum operators associated with that pair of particles, e.g. P[, is equal
to (—1)L only for Eqs. (3.66a,3.66b,3.66d), while P/, and Pj; cannot be trivially guessed for
EQs. (3.66b,3.66¢,3.66d,3.66e). The gradient-less term EQ. 3.66a still allows one to replace all
coordinate exchange operators by +1. For a mathematical proof of the present discussion, see
Appendix A.3.
As a result, the number of remaining parameters is still large. However, other correlations might
have not been identified yet. Even if it would be convenient to identify all correlations between
the parameters a priori so that the calculation of the functional is simplified, any correlation
for which that has not been possible can anyway become apparent when the energy functional
is computed. As the functional is computed via a computer software, SEC. 3.4.4.1, there is
no practical disadvantage in missing correlations in EQ. 3.70 in the first place as they will be
identified automatically in the end.

3.4.3 Parameters correlation study
3.4.3.1 Problematic

Let us now introduce the method used in the present study to identify non-obvious corre-
lations between parameters. First, let us remark that correlations already pointed out could
have been identified using the following method, such that all the previous discussion on how to
reduce the parameter space was only given for clarity.

One considers the EDF derived from the pseudo-potential and define the pseudo-potential pa-
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rameters vector U as well as the functional coefficients vector B through

U1 B1

-, U - B

U= ? , B = .2 , (3.76a)
Unp, Bm

where m denotes the number of functional terms and n the number of pseudo-potential param-
eters. Functional coefficients are related to pseudo-potential parameters through a real matrix

C11 e Cln
c=| @ e (3.77)
Cml -+ Cmn
following
B=CU , (3.78)

such that, functional coefficients B are linear combinations of pseudo-potential parameters U.
For instance, TAB. {3.1} provides the C' matrix for our final two-body interaction 3.52. Corre-
lations between parameters U are found by identifying linear combinations of U that appear in
all the functional coefficients. For instance, if n > m there is necessarily at least n — m linear
combinations of parameters that are not independent. In such a case the n parameters can be
reduced at least to m independent parameters. If n < m, it is still possible that the number of
independent parameters is eventually smaller than n, and their identification can be obtained
performing the singular value decomposition of C'.

3.4.3.2 Singular value decomposition

The singular value decomposition generalizes the eigenvalue decomposition for non-squared
matrices. Let us called M a general matrix of size m % n. Its singular values s are defined by

Mv=su and M'u=sv, (3.79)

where v and u are called right-singular and left-singular vectors of size n and m, respectively.
M is the conjugate transpose of M and is a n % m matrix. Consequently, there exists for M
the following decomposition

M=USV (3.80)

where U and V' are unitary m x m and n * n matrices, respectively, and where S is a diagonal
matrix of size m * n, e.g.

s1 ... O
: : s 0 0 0
S=1 0 ... s, form>n , S= T form<n . (3.81)
0 Sm 0
0O ... 0

The singular value decomposition of M can be related to the diagonalization of an auxiliary
matrix. Indeed, using EQ. 3.80 one has

MM'=Usvivsiut =u(sshut , (3.82a)
MM =VvStUtusvt = v(sts)vt | (3.82b)
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where SST and STS are two diagonal square matrices, providing the eigenvalue decomposition
of MM?' and MTM square matrices, respectively. As a result, U and V are also eigenvectors of
MM and MTM, respectively, while non-zero singular values of M are the square roots of the
(positive) non-zero eigenvalues of MMT and MTM.

3.4.3.3 Correlations

Correlations, i.e. redundant linear combinations of parameters, can be identified by extract-
ing right-singular vectors corresponding to zero singular values of matrix C' (EQ. 3.77). Denoting
0T = (09, ,00) one of the zero singular-value right-singular vector, one has

Cv’ =0, (3.83)

equivalent to the system of m equation

’U?Cil‘i_vgclg"_""’_vgcinzo s VZE{l,,m} s (384)
such that
nfva
cin:_z_écij , Vie{l,---,m} , (3.85)
— )
j=1""
0. Thus, one

where c¢;,, was chosen as a matrix element with non-zero component in vector v
column of the coefficient matrix is determined by the others. Consequently,

n
j=1
n—1 UQ

= Z cij(uj — v_f)un)
j=1 n
n—1

=> ey, Vie{l,-,m} (3.86)
j=1

such that instead of adjusting n parameters one has to adjust only n — 1 of them.

3.4.3.4 Final form of the pseudo potential

Investigating the structure of the EDF kernel obtained from EQs. (3.64,3.75), many cor-
relations between parameters have been identified using such a method. First gradient terms
EQ. 3.75¢ and EQs. (3.75e,3.75f,3.75¢g) are fully correlated to standard central terms 3.75b
and 3.75d, respectively. Second, exchange operators happen to be highly correlated, leaving
only room for the spin exchange operator P/, for terms EQs. (3.75a,3.75b), and spin exchange
operator P7, and P2+ Pg; for term EQ. 3.75d. A last reduction appears for gradient-less terms,
where the spin exchange operator term, xg; in EQ. 3.70 provides a null contribution to the EDF
kernel. The final form of the most general central three-body Skyrme-like pseudo potential is

~3Sk _ pluots
o3k — pluolg 5 (3.87a)
Liptwyt 7 )y =15 5
+3 [Pﬁ; Riy iy + PL km-km] BrirOrr, (3.87b)
Lipluty 7 fw)ypr =15 5
+3 [Pﬁ; Fip - Kiy + P k{Q-ku] SrirOrry (3.87¢)
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with
Pos = (3.88a)
Pht = [1 + ylpf’z} (3.88D)
PU) =y 1+ yo1 PRy + (PG + PSS)] (3.880)

where ug, u1, Y1, U2, Yyo1, Y22 denote the six remaining free parameters. The complete interaction,
EQ. 3.57, is obtained adding the analog @‘;’—gf and @%Sf terms. As it can be seen EQ. 3.87 and
EQ. 3.88 the final three-body pseudo-potential could not have been constructed in full "naive”
analogy with the two-body case. For this reason, three-body Skyrme pseudo potential already
used in the litterature [103, 105] do not constitute the most general three-body Skyrme-like

interaction but only a simplified version of the one developped in the present study.

3.4.4 Trilinear contribution to the EDF kernel

As for the two body case, the energy density functional EQ. 3.5 is obtained by computing
EQ. 3.62 starting from EQ. 3.87 and using EQs. (3.17,3.31,3.44). An example of such a derivation
is provided in Appendix A.4.

3.4.4.1 Formal computation

Unfortunately, the calculation of the trilinear functional is much more cumbersome than for
the bilinear. The number of terms in the antisymmetrizer Aj23 coupled to the number of new
exchange operators in the pseudo potential is responsible for that. Nevertheless, the intrinsic
difficulty of the calculation is the same. The fact that some coordinate exchange operators
cannot be simplified, represents the only one subtlety, as one has to take care of which non-local
density gradients applied. Finally, the main challenge of the calculation is to avoid inattention
mistakes, much more frequent when one has to manipulate thousands of terms. For this reason,
a formal calculation code has been developped. The program is based on shape recognition and
has been written in Linux shell programming. The main steps performed by the code follow
closely those of the derivation presented in Appendix A.4.

Input

The two inputs for the code are the gradient structure and the exchange operators ng}, that
have to be written in a file, respecting scrupulously a given format. For instance, if one would
like to determine the EDF kernel deriving from potential EQs. (3.87,3.88), the input has to read

ibetbbtelbbteabbelbtetbb el et bt
TERM NUMBER

0

GRAD

+3/12 ;

PX

a_0

HRERERE R R R R A A A R B
TERM NUMBER

1

GRAD
3/48k12uk12u;
PX

a_0
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a_l Ps12

BRRE AR R R A A A Rt R Bt
TERM NUMBER

2

GRAD
+3/48kp12ukl12u;
PX

a_0

a_l Psl2

a_2 Ps13

a_2 Ps23

In this input file one can identify three blocks separated by a line of character §. Each block has
three different parts

1. TERM NUMBER : labels the free parameters associated with a given potential term. Note
that a potential term can be given in more than one block. It has not been needed for
terms of potential EQs. (3.87,3.88).

2. GRAD : gives the gradient structure multiplied by the absolute factor. kp and k denotes

—22’1%23/ and QiExy operators respectively, x,y given by the two numeric numbers following,
here 1 and 2, and the last letter is the Cartesian index of the vector operators. The
absolute factor in front of the gradient structure includes various coefficients coming up in

the functional calculation
- % : coming from the definition of the energy EqQ. 3.3e

— 3 : due to the fact that @%gif has been used instead of 93%%, see EQ. 3.57
(—24)7™»(2i)"" : the absolute factors of definition EQ. 3.43, where n, and n are the

~

numbers of k' and k operators, respectively
}D{m}

— % : because the calculation of the functional is done for the input interaction times 53

and its hermitian interaction as expressed in EQ. 3.75
}D{m}

3. Px : displays operator ng}. Each line represents one term of 530 SO that one has to
add all the lines to have the complete exchange operator. Each term is multiplied by a
generic parameter, symbolized by a letter taken in {a,b,c,d,e, f} and an integer taken in
{0,1,2,3,4,5}. Possible exchange operators are P, , P2 , Pl than are represented in the

zyr Fxyr oy
input file by Prxy, Psxy, Ptxy, respectively.

Non-local energy functional

Once the input is read, the code first derives the non-local density matrix energy functional, i.e.

the functional depending on non-local densities EQ. 3.16 and on gradients, obtained through
the application of all exchange operators coming from Pgs} and Ajo3. Each combination of
exchange operators Py, , Py, and P;, gives a definite trilinear non-local energy functional, such
that rules are easily expressed, EQ. A.65 and TAB. {A.2}, and used in the code. The results
takes the form of a file where coefficients of each term of the non-local energy functional, that

depend on parameters given in input, are stored. The file is a list of
BR™{p_{12}s_{23}s_{31}} {113} = +1a2_0/1+1a2_1/2

where
— BR are coefficients coming from the part of the interaction where ng} is applied on the
right, whereas BL stands for those applied on the left. Thus, the functional is divided in
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two part one on which gradients applied are those given in input and with coefficient BR
and one on which gradients applied are the hermitian of those given in input and with
coefficient BL. In the case of interaction EqQ. 3.75, ng} can be applied on the right or on
the left equivalently because it do not depend on coordinate exchange operator, however
the code is able to treat ng} that depend on those.

— p and s stands for normal and spin densities obtained through spin exchange operators.

~ {xy} denotes the indexes of the density matrix coordinates 7 and 7). Remember that

even if Pgs}
in general.
— {xyz} denotes the isospin value of the three density matrices ¢, ¢, and g..
— The coefficient is expressed in term of parameters a2_y where a_y is the parameter given
in input and 2 the potential term label.
Thus, in this case the coefficient is the one in front of the non-local density matrix energy

functional term

does not depend on coordinate exchange operators A;s3 does such that = # y

Pq (F{’F2)§q1 (F2/’F3)§QS (Fé’Fl) ) (3'89)

coming from the application of ng} on the right, and with the gradient structure E{Q . 1212.

Application of the gradients

Once the non-local density matrix energy functional is obtained, gradients are applied to generate
the quasi-local functional, following rules laid out in SEC. 3.1.3.4. The result takes the form of a
list of three quasi-local densities times the non-local density matrix energy functional coefficients
of the term on which gradients have been applied, for instance

+ 3/24 BR{p{12}s{23}s{31}} {113} ({densT p 1 uu }) ({densP s 1 }) ({densP s 3 })

where
— densP, densT and densJ mean P, 7 and J in EQ. 3.18.
— p or s decide if (P, T,J) is equal to (p, T, ;) or (8§, T, Jw)-
— The integer that follow stands for the isospin.

Finally, that stands for the quasi-local functional term

Tq1 (F)glh () - Sqs (7) (3.90)

coming from the application of a part of the gradients on the density matrices EQ. 3.89.

Recombination

One must recombine many contributions to the quasi-local density functional. Indeed, the
application of gradients on a given term of the non-local density matrix energy functional can
generate the same quasi-local terms than those obtained starting from another term. The
recombination gives rise to two types of files,

1. one that contains the factorized quasi-local functional
B {Tp_-1s.1s2} ({densTpluu}) ({densPs1}) ({densP s 2 })

2. one that contains the quasi-local functional coefficients in terms of non-local density matrix
energy functional coefficients
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B{Tp.1 5152} = .. +3/24 BR{p{12}s{23}s {31}} {113} + ...

Rules SEC. 3.1.3.4 make appear imaginary and real term so that these two files are created for
the real and for the imaginary part of the functional, separately.

Coefficients calculation

The last step is the calculation of quasi-local functional coefficients in terms of potential pa-
rameters rather than in terms of non-local density matrix energy functional coefficients. For
this purpose, The previous output file, where the latter are expressed in terms of the former, is
used. One has to note that coefficients corresponding to the imaginary part of the quasi-local
functional must canceled.

Others functionalities
Others functionalities have been inserted in the code.

— The EDF is given in terms of neutron and proton quasi-local densities. For practical
reason, one would like to have the same functional in isoscalar-isovector representation
using EQ. 3.15. It can be done with the code such that the functional can be given in
both representations at will.

— The code also finds correlations between two pseudo-potential parameters. To find more
general correlations using the method explained in see SEC. 3.4.3, one must use a Mathe-
matica sheet given in output.

— Derivatives of the functional with respect to quasi-local densities are computed. This is
used to obtain one-body fields and Landau parameters, see SEC. 3.6 and CHAP. 4.

— Bulk properties of infinite nuclear matter are computed, see CHAP. 4.

— Inputs, the EDF in both representations, correlations between parameters, functional co-
efficients, infinite nuclear matter properties, one-body fields and Landau parameters are
written in a Latex file and compiled to generate a pdf file, see Appendix B and Appendix C.

Bilinear functional

To treat the entire functional in a consistent way, the code has been extended to also compute
the bilinear functional deriving from the traditional two-body Skyrme pseudo-potential. This
part works identically to the three-body one and possesses the same features.

3.4.4.2 Result

The trilinear Skyrme quasi-local energy density deriving from the three-body pseudo poten-
tial EQ. 3.87 is decomposed in its time-even part

T v = =
gbp’Z?even = Z {Btp[[)o]p? + Bt [PO]ptTt + Bt p[po]vpt : VPt + Z Bz;][pO]Jt,out,uu}
t=0,1 nv

+ Blolpilpmo+ By [0V 1 - Voo + > Biolpal T wJouw (3.91)
uv
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and its time-odd part

AEDY {Bf 00137 + Bl [pol8: - Te + Y BY *[p0]V stV st + Bl [polji - jt
t=0,1 v
+Bflp1)5: - Ty + Bl [oJsire + Y [BYs0.,)V Pt Vst
v

B 510V oV st + B ool o + B 151l Te]

+ Z €k [BySJ[SO,k]vust,VJt“u)\ + Bgs‘][sl,k]vust,ujﬂu)\} }
pvk

+B3o[p1]51 - 5o + BY, [01]Vus1,0 Visow + Blolpldt - jo + Big[51]51m0.  (3.92)

The trilinear functional has been written under the form of a bilinear functional with density-
dependent coefficients. That might seems disturbing as one starts from an actual three-body
pseudo-potential and not from a two-body one depending effectively on the density. It is in
fact possible to write the trilinear functional £777 under the form of the two-body one £PPlPol,
with scalar isoscalar density-dependent coefficients, plus an extra trilinear functional ££27  that
cannot be obtained from a density-dependent two-body potential

grer — grplpol 4 grrp

extra *

(3.93)

This means that, the Pauli principle is fulfilled not only thanks to the interdependence of func-
tional coefficients entering £7°17) but also thanks to the presence of 7. . The relation between
coeflicients of the time-even part of the trilinear functional and those of the three-body pseudo-

potential are given in TAB. {3.2}. For the time-odd part, see TAB. {3.3}. The trilinear functional

Uo Uy u1y1 u2 U2Y21  U2Y22

Bf = 4+ +0 40 40 40 40

Bl = —-% 40 +0 +0 40 40

Bl = +0 +3 40 48 +3 +3

Biy = +0 n tm R
Bl = +0 - -3 *m +15 1

By = 40 +4% 40 -2 & -3
B = +0 -& +3& +& +& +&
B’ = 40 -3 -% -~z —® s
Bf = +0 +3% - —m —§5 tm

By = 40 —% +% +3 0 +&
B/ = +0 +3 +0 -4 -+ -3

Table 3.2: Trilinear functional 3.91 coefficients expressed in terms of pseudo-potential
parameters, (EQ. 3.88). Functional coefficients are expressed without the

density dependence.

used in REF. [103], which was obtained starting from potential terms EQs. (3.87a,3.87b) without
any exchange operator, can be exactly recovered from our more general study. By contrast, the
one obtained in REF. [105], where the interaction EQ. 3.87 without parameter yoo was used,
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Uuo U1 U1y U2 U2Y21  U2Y22
By = -5 40 40 40 40 40
= +3 40 40 +0 40 40
i= —% 40 40 40 40 40
T __ 1 1 1 1 1
By = +0 -5 +3: tm  ti ts
- 40 +h -k & % b
By = +0 +& 40 —-& 40 40
Bl = 40 —% +0 43 +0 40
BTS — +0 _ 1 _1 _5 _1 _|_i
0o - 32 32 64 16 32
f- 0 % w0 &
Bl* = 40 +& +3 5 —15  tis
1 = 16 32 32 16 16

Vs _ 5 1 7 1
Bg® = 40 —1x +3m —m m tim
5 1 1 3
B = +0 +g -3 41 0 +g

Vs _ 5 7 1
Bvls = 10 -5 0 -5 —m T
s __ 5 1 5 1 5
Bovp = 0 -5 -3 tm tm  —m
s 5 5 1 1
Bovf = 40 -z 0 455 +3  tu
s 5 1 1 1
Blvop = 40 4+ 0 455+t
s 5 1 1 3
B = 40 +g 43 s 0 -
Js __ 1 1 5 1 5
BOS = +0 +E +E +§ +§ —1g
B = 40+ 40 45 +h +h
1 1 1 1
Big = 40 -5 +0 +xm  +y TR
Js __ 1 1 1 3
B{* = +0 & -+ +& 40 -3
3 3 3
By*” = +0 40 40 & 3t
VsJ __ 1 3 1 1
Bp™ = 40 40 g5 61 32 Tm
VsJ __ 1 3 1 1
By = +0 40 32 61 32 Tm
VsJ _ 1 3 1 1
By* = 40 40 32 61 32 Tm
Bj = 40 % 0 -% -5 %
S 1 1 5 1 7
Biy = 40 +3 -1 Ftm st
_ 1 1 7 1 5
Bi = 0 45+ “m s

Table 3.3: Trilinear Functional 3.92 coefficients expressed in terms of pseudo potential
parameters, (EQ. 3.88). Functional coefficients are expressed without the
density dependence.
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differs from our EDF and the one derived by Waroquier. In any case, only the time-even part
of the EDF kernel was provided in those two papers.

3.4.4.3 Gauge invariance

The gauge invariant condition is
/
gopv’ o = {gggp] 0, (3.94)
P/I—P

where Eggp " is the gauge-transformed energy density obtained using EQ. 3.19, while P/ — P

means that one makes the difference between the energy density computed in terms of gauge
transformed densities and the one computed from non-transformed densities. Condition EQ. 3.94
is fulfilled for a general trilinear functional if specific correlations between its coefficients are
indeed present. Whenever the EDF kernel is directly postulated and does not derive from a
pseudo potential, gauge invariant combinations are used to build the functional. For this reason,
we do not just check that functional EQs. (3.91,3.92) respects gauge invariance but also provide
generic gauge invariant combinations of trilinear functional terms.

Gauge-invariant combinations of trilinear terms are more complex to work out than usual bilinear
ones. Gauge transformation only affects densities 7' = (Tt,ﬁ) and J! = (j;g, Ji,u) following
EQ. 3.20. The fact that 7t — 7t and J! — J! depend on associated densities J¢ and P! in
addition to the gauge function ¢, implies that correlations only involve coefficients multiplying
densities 7% and J* of same spin and isospin character.

For a bilinear central functional the two densities are either both isoscalar or both isovector and
both scalar or both vector, such that each gauge invariant combination involves only two terms
of the functional. As a result condition EQ. 3.55 is equivalent to

ATTP A7 I =0, M (0 YP.T.T) e {(pm D) (5T Jw)} . (3.95)
PI—P
and is thus fulfilled whenever A7 = —AY.
For trilinear functionals, such combinations can involve many more terms as two isovector or
vector densities are always multiplied by an isoscalar or scalar density. Eventually condition
EQ. 3.94 gives rise to five independent gauge invariant conditions that read

[BS[PO]TOPO + B} [po) jopdo =0 (3.96a)
Iprp
[BOT[’O 01T0,.w50.0 + BG*[s0.4]7050,0 + B [p0] Jo o + By *[50.0)0,uJ0 1 =0 (3.96b)
Iprp
[Bf[po]ﬁm + Bolpalropr + Bilpoldt v + Bloloali o —0 (3.96¢)
Iprp
[BlT[pO]Tlv”slvV + B ls10]m081081,0 + B [p0]J1, I + B [51,0]jou 1 g =0 (3.96d)
lprp
[B%[pl]Toyusl,y + Bgl [pl]Tl,ySO,y + B{S[SQ,V]TLSLV (396@)
+Bi]0 (1)1, Jo s + Bi]s[SO,V]jl,MJLW + Bi]dq (1,091,000, =0
pr_p
VsJ -
ek B " (80,61 V 1150.0J0 1 =0 (3.96f)
pr_p

[ + e BY *7 [0,k V us1,0 10 + €k BYo (516 V 181,00,0 (3.96g)
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Vs
+euakBor™ [51,6] VusowJi,un =0,
pr_p

where repeated indexes are summed over. Those conditions have been classified in terms of
isospin and spin contents. Condition 3.96a involved all the functional terms with isoscalar den-
sities and without spin densities. As well, condition 3.96b involved all the functional terms with
isoscalar densities and with two spin densities. Condition 3.96¢ involved all the functional terms
with two isovector densities and without spin densities. Conditions (3.96d,3.96e) involved all
the functional terms with two isovector densities and two spin densities. The first one EQ. 3.96d
where the two isovector densities are the two spin densities, and the second one EQ. 3.96e where
only one spin density is an isovector density. Condition 3.96f involved all the functional terms
with three isoscalar spin densities. Finally, condition 3.96g involved all the functional terms
with three spin densities with two of them are isovector densities. Taking into account only
two-body density dependent part of the functional £#1?0] i.e. considering only functional coef-
ficients depending on pg, one has the usual two body conditions EQ. 3.95. The complexity thus
comes from the part that cannot be derived from two-body density dependent interaction, EL77. .
Correlations between functional coefficients resulting from conditions EQ. 3.96 are derived in

Appendix A.5 and read

Eq. 396a = BJ+B]=0 (3.97a)
2B + BJ* =0
EQ. 3.96b = QBOT + QB({ + B()’s -0 (3.97b)

Bl 4+ BJ*+ B + Bj* =0
2B], + Bl =0
EQ. 3.96c = 2B] +2B] + Bl, =0 (3.97¢)
BY + By + B{ + B{, =0
2B]5 + Biif =0
Eq. 3.96d = 2B] +2B{ + BJf =0 (3.97d)
BT + Bf§ + B + Bjf =
2B7* + B{*+ Bi§ =0
2Bl + B{y + B{§ =0

EQ. 3.96e = 3.97¢
2B, + By + B{* =0 B8
B, + Bl + B]* + B{, + B{* + Bf; =0

EqQ. 3.96g = BY-B}/ =0, (3.97f)

where the coefficients B, etc are those of functionals (3.91,3.92) from which the density depen-
dence have been removed.

3.5 Energy functional in MR-EDF methods

The energy functional proposed in the present study, is obtained adding the linear ki-
netic 3.40, bilinear (3.53,3.54) and trilinear (3.91,3.92) part. When derived from two- and three-
body pseudo potentials the functional coefficients are expressed in terms of pseudo-potential
parameters through TaBs. {3.1-3.2-3.3}.

In such a case the functional is safe for MR-EDF computation, as long as the pairing part is
not treated. Indeed, the pairing functional using the presently proposed two- and three-body
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pseudo potential, EQS. (3.52,3.87,3.88) has not been derived yet 3. Such a derivation is however
in progress.
Nevertheless, one may want to use a functional for which the constraints on coefficients, i.e.
their interdependence, are released except for those imposed by Gauge invariance, in which
case the regularization method proposed in REF. [47-49] has to be used to perform MR-EDF
calculations.

3.6 One-body fields

Once the bilinear and trilinear parts of the functional have been calculated, one must de-
rive the associated one-body fields necessary for the resolution of the Bogoliubov-De Gennes
equations. The equation of motion are determined self-consistently by minimizing

1
Elp. K] = 5 A (Tr{p} + Tr{p*}) - Tr{A(R2 - R)} , (3.98)
under the constrains that
Tr{p} = Tr{p"} = (B|N]®) = N, (3.992)
R?’=TR , (3.99b)

where EQ. 3.99a and EqQ. 3.99b are used such that (i) the particle number is equal to N, the
total number of nucleons (ii) |®) remains a Bogoliubov product state during the minimzation.

Minimization 3.98 leads to
Tr{H/éR} =0 (3.100)

where the Bogoliubov-De Gennes matrix has been introduced through

W=(hr"A A , (3.101)
—A* —h* 4 A

and the generalized density matrix through

R=( * " , (3.102)

whereas particle-hole and particle-particle (pairing) fields are respectively defined as

_0Elp, K] _0Ep, K]

B = RN L 3.103
J 5[)?]' J 5% ( a)
OE[p, K] SE[p, K]
ro= ’ A% = ’ 3.103b

3. It is important to note that such pairing functional will depend on the same set of free parameters than
functional (3.91,3.92).
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for j < i. Having the particle-hole Skyrme functional at hand EQs. (3.53,3.54,3.91,3.92), we can

obtain hj;, for j < through

L 6E Spg(7) | 0E O7y(F)
hi, = / dr e
g {%(T) opiy  O7q(F) i

08 0Jgu(T)
+ - :
; 6J g (T) 5ng

0  bsq.u(7)
+ Z ds

08 0T, u(T)
+ o
g 0T .u(7) 5!’?]'

0 6jgu(r)
+ — :
g 5]q,u(7”) 5ng

0  OFyu(T)
" Zu: 5Fq7u(7?) 51033‘ .

(3.104)

The functional derivatives of the densities, expressed in coordinate space, with respect to matrix

elements of the normal density matrix in configuration space read, for j <, as

5Pq(7?) Tr= o
= ¢;(7q) ¢i(Tq)
5,0% !
07, (T oo -
—q(q ) [Vei(Fg)] - [Vei(Ta)]
5pij
Tl —5{ el 00 Vi) = Vgl (7)o i(F0) §
08q,u(7) . B
5 p“ij = ol(7q) 0 i(7q)
5Tq7u(7?) = T/= = o
ng = v@j(rq) ou - Vei(rq)
0Jq.u(T) L tm = T =
7 —5{ 30 [Vuei(fg)] — [Vup;(Fa)] ¢i(g)}
0Fy (™) 1

Sl = V- 703(70)] VapilFa) + Vsl (70) V - FilFa) )

0 pgj 2

(3.1052)
(3.105b)
(3.105¢)
(3.105d)
(3.105¢)
(3.105f)

(3.105g)

The functional derivatives with respect to pgj*, for j < i, are obtained from the previous ex-
pression by performing the permutation ¢ <+ j since, because of the hermiticity of p, one finds

that

6pq(7) J t .
s = = > ol (Fq)eu(Tq)pl
5/)3]‘ 51033‘ %: g :

= @l (Fq)p;(Tq) ,

(3.106)

and similarly for the others densities. The functional derivatives of the EDF with respect to
local densities expressed in coordinate space lead to introducing local multiplicative potentials
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of the form

U,(F) = %, (3.107a)
B,(P) = %, (3.107b)
W (T) = % (3.107¢)
Squ(r) = %, (3.107d)
Cou(r) = 5ij(7?), (3.107¢)
Agu(r) = 555(7?) : (3.107f)
Dy () = 5Fj,i(?*)’ (3.107g)

The explicit expression of such multiplicative potential resulting from the bilinear and trilinear
functionals are provided by the code output, see Appendix B.3 and Appendix C.3. Finally,
matrix elements of the fields can be written as

= [l @) i) (3.108)

in order to introduce the complete particle-hole field expressed in coordinate space

ho(F) = = § - By(A)V + Uyl7) + 8,(7) -6 = ¥ - [Cy(7) - 6]V — L [A,79 -+ 9 - 4]

T < < < 1r=- = o - -
—§[Wq(f')®VU+VU®Wq(F)] —i[V-Dq(F)E-V—i—E-VDq(F)-V] . (3.109)

where all gradients act to their right on the fields and the wave-function whereas Pauli matrices
act to their right on the wave function only (the fields are not spinors). A shorthand notation for

tensor products has been used Z ® g =5 u A By, knowing that, for two vector @ and v, ww
denotes the tensor with cartesian components u,v,. The structure of field EQ. 3.109 is identical
of the one obtained for traditional Skyrme EDFs; the only difference being the expressions of
the multiplicative potentials 3.107.




Chapter 4

Infinite Nuclear Matter

Abstract: In the present chapter, the infinite nuclear matter (INM) properties associated with
the new Skyrme EDF derived in CHAP. 3 are presented. Most of the results are obtained using
the formal computation code and are thus given in the IXTEX output file created by the code
and reproduced for the bilinear (trilinear) part of the EDF in Appendix B (Appendix C).
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4.1 Introduction

4.1.1 Definitions

Infinite nuclear matter is a homogeneous medium without boundary where protons do not
interact via the Coulomb interaction. In the present case, and as is often done, pairing corre-
lations are omitted as well. Properties of infinite nuclear matter are often used to characterize
nuclear interactions. The four basic degrees of freedom characterizing homogeneous INM are
the scalar-isoscalar density pg, the scalar-isovector density pi, the vector-isoscalar density so,
and the vector-isovector density s;. They can be expressed through usual neutron and proton,
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as well as spin-up and spin-down densities in the following way

PO =Pnt T Pl + Pyt + Pl = P+ pp (4.1a)
P1 =Pt + Pl = Ppt = Ppl = Pn = Pp (4.1Db)
80 =Pnt = Pl Ppt = Ppl = S+ Sp (4.1c)
$1.=Pnt = Pnl = Ppt + Ppl = Sn = Sp (4.1d)

such that the inverse relationships read

1 1
pnT:Z<p0+p1+SO+51>:Z<1+I "’Ia"’IJT)pO ) (42&)
1
Pnl =7 (PO+P1—50—51>:Z<1+IT—IU—IJT)PO s (42b)
1 1
ppT—4<,00 1+50—51>=Z<1—IT+IU—IJT)PO ; (4.2¢)
1 1
pp¢_4(p0_p1_80+81>:Z<1—[T_Ia+lar)p07 (42d)
where
[T = Pl/PO ’ (438“)
Iy =s0/po (4.3b)
I;r = 51/,00 ) (43C)

are the relative isospin, spin, and spin-isospin excess, respectively (—1 < I; < 1). Degrees
of freedom 4.1 take specific values for the various types of infinite nuclear matter treated. In
symmetric nuclear matter one has I; = 0, whereas, in asymmetric nuclear matter I, # 0, in
polarized nuclear matter I, # 0 and in asymmetric polarized nuclear matter I,, # 0.

4.1.2 Matter density and Fermi momenta

Infinite nuclear matter being translationally invariant, nucleonic wave-functions take the
form

_3 -
@E(Faq) = (2m)" 2 exp(ik - 7) XoXq - (4.4)

where go = {n T,n |,p T,p |} and where x, and x, denote the spin 1/2 and isospin 1/2 parts
of the wave function. Starting from EQ. 4.4, quasi-local densities 3.14 can be calculated. In the
EDF approach of the nuclear matter the density matrix for one type of spin and isospin particle
pg]‘»’, is an heavyside function, i.e. is equal to 1 when \lgl < kpg4o and 0 otherwise where kp 4o is
the spin and isospin dependent Fermi momentum. Thus, the sum over all the state 7 and j in
EQ. 3.14 becomes an integral on p over the sphere of radius kr4,. The local density py, thus
reads

ol

puo = [ PE 00 py(ioa)
|k|<kp g

1\° -
:(—) / A3k
210 ) ik <kp 40
1 3
= G2 rae
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such that using EQ. 4.2 kg 4, related to spin, isospin and spin-isospin excess through

11 32 % % 1

anT — (67T )§ T?;T = <7> <1 + IT + Ia + IO'T) PS’ ) (463)

1

1 372\ 3 1

kF,ni = (67T2)%,02¢ = <%> <1 + IT - Ia - IO'T) SPS 9 (46b)
372\ 3 31

kaT - (67T )3 ot = <T> (1 - I’T + Ia IO”T‘) SPo?’ ) (460)
I 372\ 3 i

kapi = (67T2)3p;’¢ = <T> (1 — I -1, + IJT> 3[’8 . (46d)

Usually a total Fermi momentum kg is defined from the scalar-isoscalar density according to

po = Z / &P pi(Foq) pp(Foq)

‘<kF

such that one has not simply

kp £ Y krgo - (4.8)
oq

4.1.3 Kinetic density and Fermi momenta

Similarly

Tqo :/]g &k [ﬁgpz(f'aq)} . [V@E(Faq)]

‘<kF qo
kr
( ) / / / dk sin(0)d0de k*
27
whereas others quasi-local densities fulfill
Apgo = Vpgo = Ao = V8400 = Jgo = Jgoyw =0 - (4.10)
The kinetic density can also be calculated from the total Fermi momentum thanks to
3 2 5
T0O — 3 ﬁ k (411&)
3
= k% po (4.11b)

3 (3n2\ 3
:S<T> o (4.11c)
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Using EQs. (4.9,4.6), one relates spin-isospin kinetic densities to spin, isospin and spin-isospin
excess [106, 107]

2

3 /372\3® 5
T0 =Tt + Ty + Tt + Tpl = <7> ngé/%(IT,IU,IJT) : (4.12a)
2
3 (372\3 5
TL=Tut + Tal, = Tt~ Tpl = (T) ngé/?)’(IT,IU,IUT) : (4.12b)
3 /3q2\ %
T\3 5 (s
Ty =Tut = Tol + Tt — Tl = (T) ngé/g(IT,IU,IJT) : (4.12¢)
3 /3m2\3 5 (,r
Ty =Tut = Tol = Tot + Tl = <7> ngEf/g)(IT,IJ,IUT) , (4.12d)

where FO F() F©) and F) are defined through
1
F,Ef?)(fr, IO’7 IO”T‘) EZ [(1 + IT + Ia + IO’T)m + (1 + I’T - Ia - IO”T‘)m + (1 - IT + IO' - [ar)m
+ (=L = I+ )™ (4.132)

F(T) ITaIUaIUT = 1+IT+IO'+IO'Tm+ 1+IT_IO'_IO'Tm_ 1_IT+IO'_IO'Tm
m

FSQF,

(- — I, + L,T)m} , (4.13D)

Fygf)([r, IO’7 IO”T‘) [(1 + IT + Ia + IO’T)m - (1 + I’T - Ia - IO”T)m + (1 - IT + IO' - [ar)m

ANy

(-1 — I, + Im)ﬂ , (4.13¢)

FgT)(ITalJalo'T) = [(1 + IT + Ia + IO’T)m - (1 + I’T - Ia - IO”T)m - (1 - IT + IO' - [ar)m

Sy -

YL I+ Im)m} . (4.13d)
To calculate INM properties, derivatives of F-functions are also needed

oF\  gpl)  gplom)

- = mF),) 4.14
317- aIO’ 8[(77— mFm—l ) ( . a)
OFy OFY Ry .
oL oL. ~ or, Mmoo (4.14b)
Ry _oFy _ OF ()
oL oL. ~ oL~ M™m-1 (4.14c)
OFy _OFy _ oRy (o)
oL. o1, ~ o1~ w1 (4.144)

while their second derivatives are
02F) .
oIz =m(m—1)F, | (4.15)

for any 4,7 = 0,7, 0,07. Specific values are obtained for different values of m

F=1, F" =0, (4.16a)
FY =1, FY =1, (4.16Db)
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and for different types of INM

F©9(0,0,0) =1, (4.17a)
F(0,0,0) =0, (4.17b)
F$(0,1,0) = F{(0,0,1) =0, (4.17¢)
F{7(1,0,0) = F7(0,0,1) =0, (4.17d)
F{77(1,0,0) = F77(0,1,0) =0, (4.17¢)
F9(1,0,0) = £9(0,1,0) = £9(0,0,1) = 2! | (4.17f)
F((1,0,0) = F{9)(0,1,0) = F7(0,0,1) = 2™~ ! | (4.17g)
ED(1,1,1) = FR(1,1,1) = 4™ (4.17h)

where i = 7,0,0T.

4.2 Nuclear matter properties

Basic nuclear matter properties are computed in the present section, leaving out the deriva-
tion of the Landau parameters for the next section. The fact that most of the local densities
are zero in infinite nuclear matter implies that nuclear matter properties can be expressed in
terms of a limited number of functional coefficients. For the bilinear EDF the only linear combi-
nations of Skyrme parameters entering into account are Afj, A7, AT and A7, which are given in
TaB. {3.1}. For the trilinear functional only Bf, Bf, B], B] and B, given in TABs. {3.2-3.3}
are involved. Traditionally specific linear combinations of Skyrme parameters denoted as ©4 and
©, have been used for the bilinear functional instead of Aj and A7 [108]. They provide a more
natural separation into scalar and vector nuclear matter properties, as will be seen below. The
same reasoning can be done for the trilinear functional that leads to defining linear combinations
O35, O3, and Of,. All such linear combinations are given by

O, =16A7 = 3t1 + t2 (5 + 4xz3) | (4.18a)
©,=8(A4) —A]) =t1 2+ z1)+t2(2+x2) , (4.18b)
O35 =16B] = % [2u1 4 ug (5 + 4y21 + 2y22)] (4.18¢)
O30 =8 (B] — B[ — B],) Z [2u1 + up (34 2ya1 + dyan)] (4.18d)
4 =16B]) = —i [2u1 (1 —y1) +u2 (5 + 4dy21 + 14y22)| - (4.18e)

Note that all the results presented here, except for effective masses, can be found in Appendix B.4
and Appendix C.4 where they are expressed as a function of functional coefficients. All results
are derived automatically by the formal computation code. The contribution of the kinetic

energy to INM properties can however only be found in the present section. We also define for
2/3
3 2
the rest of the section cs = <%> and ¢, = (3772)2/3.

4.2.1 Symmetric infinite nuclear matter (SNM)

Symmetric nuclear matter is characterized by an equal number of protons and neutrons as

well as of spin up and spin down particles. Consequently, py = I, = 0 and I, = I, = 0.

Only two quasi-local densities p, and 7, subsist. Since N = Z, one has p, = p, = % po and
Tp = Tp = %TQ. The main quantity of interest for nuclear matter is its equation of state (EOS)
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providing the energy per particle of the nuclear fluid as a function of its density. For symmetric
nuclear matter a stable state exists such that a minimum energy is obtained for a finite density
psat- The binding energy per nucleon in SNM is obtained from EQS. (3.40,3.53,3.54,3.91,3.92)
and reads

E_& 3K 93 3 3. 4, 3 53, 3 8/3

1 E% =5 om P + 3 to po + Tg Y0 Po + 20 csOspy” + 20 csO3spy " (4.19)
The pressure of the fluid relates to the first derivative of the equation of state with respect to
the density and allows one to find pgat at which the fluid is stable. In SNM the pressure is

_ L,0E/A

=) 2 K 2/3 5/3 8/3
- dpo

3 3, 1 1
‘A:PO [3%0500 +§topo+§uopo+ﬁcs(95po +1—003935P0 . (4.20)

P

The equilibrium density psat is obtained as the solution of P(pgat) = 0.
The incompressibility of the nuclear fluid relates to the second derivative of the equation of state

with respect to the density and expresses the energy cost to compress the nuclear fluid. It is
defined as

18P 282E/A
LI Lty 4.21
00 0 8;)3 ( )

such that at equilibrium density one has

,0?E/A

h? 2/3
EngTpg

27 3 3
o CspPy T 5 Uo Pg + 3 Cs@spg/3 + 9 08933/)3/3 ) (4.22)

K.
o 8 8

6

PO=psat 5
which needs to be positive for the system to be stable against density fluctuations.
The energy of a nucleon in the nuclear medium is written as a kinetic term plus a momentum
dependent self-energy term coming from the interaction of this particle with all the others. This
individual energy can be rewritten as a kinetic energy with an effective mass. The neutron m},
and proton my; effective masses are thus for general isospin excess

_m_ %
2mi(l;) 07y
21

= 5+ 154600 + al-ATpo + Bipf + 4l BT + I Biopt

K2 1 1 1
= — 4+ — I [—6,- -
5 T 16®s,oo+q <16@s 8@v> Po

1 1 1 1 1
+ 1—6@33,03 +ql; (1_6@35 — g9 §v> Po + IEE 5005 (4.23)

where ¢ = 41, —1 respectively for neutrons and protons. In the particular case of SNM, i.e.
I, = 0, proton and neutron effective masses are equal to the so called isoscalar effective mass
mg, which is also defined through

m _2m 0 1 2m

A re — (0, O3.02) =1 , 4.24
mg 12 O 16 7z (Osp0+ Osop) =1+ #o (4.24)

where kg is the isoscalar enhancement factor.
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Figure 4.1: Equation of state for different value of I,. The square design the density
where the saturation point disappear

4.2.2 Asymmetric infinite nuclear matter (ANM)

Asymmetric nuclear matter is characterized by a number of protons that differs from its
number of neutrons; i.e. I #0. The equation of state of such a nuclear fluid is

2_32m F5/3(-[7'70 0) +§750,00+ 6U0Po—§t0(2$0+1)—77100—EUOI Po
0 5/3 3 5/3
¢:0:FL (I, 0,0) p) 550 (0,20, I, F{)(17,0,0) py/
3 0 8/3 3 T 8/3
+%cs@3sFé/;(I 0,0) o/ + 550 (3= 203) I F{3(17,0,0) p/
3
+ g €O I (1= I7) Fya(1-,0,0) p (4.25)
. . . oP
For I = 0 a saturation point can be found as the solution of — = 0. However, such a

0

saturation point no longer exists beyond a certain value of the isospinpasymmetry 0 <Iierit <1,
see F1G. 4.1. This critical point is obtained when the first and the second derivative of the
pressure cancel, see Appendix B.4.2 and Appendix C.4.2.

The symmetry energy is the analog of the incompressibility K., but with respect to the isospin
excess. The latter gives the stiffness of the EOS around the saturation point with respect to
a change of the density while the former provides the stiffness of the EOS with respect to a
non-zero isospin excess I.. It has to be positive for the saturation point of SNM to be stable.
The symmetry energy a, is obtained as the second derivative of the energy per particle with

respect to I, S = %828EI£A computed at I, =0
ar =8 o
:%zh—c pel? - éto(l—l—on)po— %Ung-i- 2—14%(295 —30,)p*
b o 0 (205, —305,) p3/" — e, Oh0Y" (4.26)
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Two more properties of asymmetric nuclear matter can be related to the difference between
neutron and proton radius [109], i.e. the skin thickness, in asymmetric heavy nuclei. Those are
the density-symmetry coefficient L

oS
L =3p—
p@p I,=0
2 K2 453 3 9 5 5/3
=3 9m cspo/ ~3 to (1 + 2x0) po — 3 uQ pg + Y cs (205 — 30,) po/
1 1
+ 5 ¢ (203 — 303,) ol 4 = Lo (4.27)

and the symmetry compressibility

0%S
K =9p>— =
sym p 8[)2 I+=0,p=po
2 712 2/3 27 5) 5/3
==35 cspo/ ry ug P2+ 13 s (20, — 3@U)p0/
5
+ 3 ¢s (2035 — 303,) pg/g + ¢4 gvpg/?’ . (4.28)

4.2.3 Pure neutron matter (PNM)

For I = 1, infinite nuclear matter is composed uniquely of neutrons. The EOS reads

E  3h 95 1 3 5/3 3 8/3
-2 T oto(1— + 2 - 4+ 2 -~ L (4.2
=2 CnPo 1 to (1 — o) po 05 (05 —0,) py 05 (O35 — O3,) py (4.29)

One can also compute proton and neutron effective masses in neutron matter, using EQ. 4.23

m _2m 08 12m 9

(), = = g | (00w (o —eu)et] . a0
my  2m 0E 12m , 9

<m*>p —ﬁa—Tp = 1+§ﬁ[@7}p0+ (03, +©3,) PO] . (4.30b)

4.2.4 Spin-isospin polarized nuclear matter (PANM)

The general case where I, I and I,, are not equal to zero, corresponds to the spin-isospin
polarized nuclear matter. The corresponding EOS is a function of more combinations of Skyrme
parameters. Consequently, it has not been derived in terms of © combinations and the result in
terms of functional coefficients can be found in Appendix B.4.4 and Appendix C.4.4.

4.3 Landau parameters

4.3.1 Introduction

Landau parameters are interesting quantities to compute for different reasons.

— It exists two sum rules that Landau parameters have to fulfill in order for the Pauli prin-
ciple to be valid [110]. These sum rules have never been used to constrain EDF to be
self-interaction free. It might thus be of interest to constrain parameters of the EDF,
when the latter does not strictly derive from a pseudo-potential, to respect those two sum
rules. In the present case where the EDF does derive from a pseudo-potential the two sum
rules have to be analytically respected.
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Sum rules can also be derived from the antisymmetry property of the scattering ampli-
tude, which is calculated from the residual interaction. The antisymmetry of the residual
interaction, to which Landau parameters are related, does not however ensure the anti-
symmetry of the observable scattering amplitude [111].

— Four of the Landau parameters, Fy, Fj, Gy and G, are also related to the stiffness, i.c.
second derivatives of the EOS with respect to density, isospin, spin and spin-isospin fluc-
tuations around the saturation point [107]

h2k2, 1R

K., =6 1+ F, = 1+ F/ 4.31
o) 2m6 ( + 0) 5 ar 3 2m8 ( + 0) ) ( a)

1 h%k3, 1 h2k?
== 1+G =——Fa4+aqgh . 4.31b
a’o' 3 ng ( + O) ) a’o"r 3 zms ( + 0) ( )

For the EOS of SNM to have a stable minimum, all such second derivatives have to be
greater than zero, such that Fy, Fj, Go and G, have to be greater than —1. Similarly the
four others Landau parameters, Fy, F|, G; and G are related to the four effective masses
characterizing nucleons in the four possible spin-isospin states

1 1

my = m(1l+ §F1) , mi=m(l+ §F1,) : (4.32a)
1 1

m, =m(l+ gGl) , mo.=m(l+ gG'l) . (4.32b)

Again, Fy, F{, G1 and G have to be greater than —3 in order to forbid negative effective
masses. Eventually, stability conditions exist for all Landau parameters that read

FF>—-Q20+1), F/>-Q2l+1),G>-020+1), G;>—(2l+1) . (4.33)

4.3.2 Definition

Landau parameters are calculated via the spin-isospin parts of the residual interaction in
infinite nuclear matter. The residual particle-hole interaction is defined in general through

0%E
res _ /= _/ =/ ! res| - — _
Vz‘j —<7"i0zqz'a7“jUjCIj|V |7’i0zqz',7"j0jqj'>= v v )
8pgj(rjaj’rjo-j)ain(rio-i’Tio-i)

(4.34)

and can be written in infinite nuclear matter, for momenta lying on the Fermi surface, as

Vi = Ng ' [Fi+ F{ miom; + Gy &5, + G} 6 &) 70 73] Plcost) (4.35)
l
2mg,
where coefficients Fy, F/,G; and G are Landau parameters, Ny = 2—};141: is a normalization
0

factor and 6 is an angle defined using the incoming p and outcoming p” momenta of the two
interacting particles. Those momenta are re-expressed using transfer momentum ¢ coming from
incoming and outcoming relative momenta

- 1, R o 1, ~
k=g@i—9) . K =500, (4.36)
thanks to ¢ = k' — k. Thus,
pi=aq , Pj=0G+q, (4.37a)
=% ., Pl=G+7, (4.37b)

and eventually ¢ - ¢y = ¢, ¢, cos f. All momenta have magnitude kp.
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4.3.3 Residual interaction

To make explicit the separation of the residual interaction in its four spin-isospin parts one
has to use the following chain rule

625 825 aQa aQb
—, — —, — — — — —, — ) (4‘38)
dpq, (Tj(aj{a Tjo-j)ap%(rilo-i,? 7;0;) %a: %b: 09,0Qy Opg, (7"]{0]{, Tjaj) Opq, (0], T;0;)

where Q; represents any quasi-local spin-isospin density and their derivatives

Q= {PO,P1,§0,§1,6P0,6P1aVpso,u,Vusl,u,ToaTl,fo,flafo,jl, Jo,jws Jl,uu} ; (4.39)

such that the sums run over all possible pairs of them.

4.3.4 Infinite nuclear matter

The number of derivatives to perform in EQ. 4.38 is large and equal to the binomial coefficient
(126). For the bilinear functional, most of them cancel because each term of the functional is
scalar-isoscalar and contains up to two gradients, e.g. the bilinear functional term py5y does
not exist such that the second derivative of the functional with respect to pg and 5y is zero.
As for the trilinear functional the presence of a third density allows for many more non-zero
second derivatives. However, knowing that the residual interaction will be used in SNM to
obtain the Landau parameters, one can anticipate that many second-order derivatives will be
zero. Indeed, in infinite nuclear matter the only two non-zero densities are pg and 7g, such
that second derivatives depending on any other density is eventually zero. As a result, non-zero
second derivatives are the same for both bilinear and trilinear functionals

PP = 32)2(;0 . VPP = 3512(;1 , (4.40a)
2 2
2 2
0= ({“)7('9085;)0 , VW= aflagpl ) (4.40c)
OTS = 3202;80 ’ VlTS = 3212;81 ’ (4.40d)
vy = 822;7.0 , V= 8;?125]'1 : (4.40¢)
. ngo = fgh , (4.40f)
2 2
W= 3V§()§Vpo W= 3V§1§Vp1 : (4.40g)
2 2
VOVSVS = 3Vi§VSQ ’ Vlvsvs = 3V51§V81 ' (4.40}1)

These quantities are provided by the code in Appendix B.4.5 and Appendix C.4.5. The next step
is to compute the derivatives of the quasi-local densities with respect to the non local density
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pq(F'o’, 7o ). First let us define

vean = _UE___ 0% 0% (1.41a)
Q4094 Ipy, (Tjo-jarjo-j) Opq, (Ti0, T;0;)
S A S | S—
0Q40Qy Opy,(Tio ], 7;0;) Opg,(To}, T;0,)
+ e 09y 09 (4.41b)
0Qa0Q Opy, (Tjo [, T;0;) Opg, (7o}, T;0;) 7
to re-expressed the residual interaction in infinite nuclear matter as
Vi;'es _ Z ij@;Qa + Z Z VianQb
Qa Qa Qp#Qa
=+ VP s Ve VR e
+VET VT gy s
VR ey
+ V;ijono + V;JVme + ‘/Z_]VsoVso + ‘/;jVSIVSI ’ (4‘42)

where each line of EQ. 4.42 corresponds to a different gradient structure and each column to a
different spin-isospin structure. Using EQ. 3.14, one has

90 _ 1
Ipq, (o], T0;)

050 -

Opg;(Flo}, 7o) ’

67'0 - -
=y = Vi Vi ;
Opq, (Ti0],T;0;)

dTy = =
Do (ol To Vi-V,d ;

pq;(Ti0],7;0;)

(9;'0 1 (= =
= =5\ Vi— V‘) )
Opq, (Ti0],T;0;) 2< ‘ ‘

8JO v 1 (= =, -
e = —<Vi'—Vi) i
ap(h’(rigi?rio-i) 2

v L

=/ p/O—* = (VZ/ + Vz) )
Opq, (Ti0],T;0;)

oV 80, - S\
Opq, (Ti0],T0;)

Eventually, contributions to EQ. 4.42 are
pOpO _ \7PP
vEm =g
VP VP o

S080 __ 78S = | =
Vz’j =Vo 0i-0j,

dp1

Opy, (Flo ! 7,)

17171

051

Opy, (7ol 70,)

17171

67'1

Opa (710} 7,07)

1717171

oT,

Opa (710 7,0,)

171717

Of1

Opa (Flol 7o)

1717171

01

Opa (Fiol 7o)

171717

56101

Opa (710, 7,07)

171717

8VM817V

apqi (77;-'0'-/ F‘U‘)

177171

S181 __ SS . ==
Vit =Vt ot 05,

Vi =V (VI 9+ V)

v]

ven =vim g, OTj(V-/-

= 0y

(4.43a)
(4.43b)
(4.43c)
(4.43d)
(4.43¢)

(4.43f)
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vl T 5, 3 (v; Y+ VIV (4.44g)
VT =il riomd;-65(V -V, + V)V (4.44h)
violo — i _Tl <W _ ﬁi) . (ﬁ = 6],) , (4.441)
VI =V o n 1 (V-9 (V- 9,) (4.44)
Vz‘}‘]OJO =VvJ7 g 5}% <§i’ _ 61) ) <_'j’ _ ﬁj) , (4.44k)
VIR =V momaia (V-9 (9 -9,) (4.441)
AGGIALL (W n @) : < V! + @) : (4.44m)
YTV _y e o <§Z/ n §i> : <§ - @.) 7 (4.44n)
YV Vs 5, g (W n ﬁi) : (6 i @) : (4.440)
yYaVs _yVsYs oong g, <§Z/ §i> . <§]’ + §j> , (4.44p)

4.3.5 Landau parameters

To evaluate the relation between gradients in EQ. 4.44 and angle 6 in EQ. 4.35 one has to
express gradients in terms of momenta (EQ. 4.37) using

— 7 =/ .7 — 700 =/

The various gradient structures read thus

= (F+qa+@E+aa) (4.46)
(W - ﬁl) (ﬁ; - ﬁj) = <EZ’ + ﬁ,) k] + /%'j)

— (2, *2+%*2+*1-q*+3-q*> , (4.46D)
(91+9) - (9;+9,) = (R -F) - (5 -F,)

=7 . (4.46¢)

Landau parameters are obtained taking the limit ¢ — 0 where the interaction only acts at the
Fermi surface. In this limit g1 = ¢o = kp, ¢4 - b = k:% cosf, and

(6 Y+ VLV, ) = 2k2, (4.47a)
(6 6) (_)j' v, ) = — 4k} cosf | (4.47D)
(6 ) (*]’ V. ) ~0, (4.47¢)
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such that using EQ. 4.35 one finds contributions to [ = 0 and [ = 1 only according to

By =No (V§¥ + 2k3 V(")

~No (2A” + 247 k% + 6BL po + 2B] 10 + 4B k%po) , (4.48a)
Fl =N, (VPP + 2/<:FV{’T>
No (2AP + 2AT k% + 2B? po + 2By 10 + 2B k%po) , (4.48D)
Go =Ny (VSS +2kZVE )
A (2A0 + 245 ki +2B§ po+2B§° 1o +2Bj k%p()) , (4.48¢)
Gl =Ny (VfS k2 )
No (QAS +2A7 K + 2B po + 2B7§ 70 + 2B k%p()) , (4.48d)
Fi =Ny (kFVo”)
0(2AJ k2 + 2B] k:F,o0> , (4.48¢)
FI =N, (k;pvﬂ)
0(2AJ k2 +2B1 k:F,o0> , (4.48f)
—
—No (249 k3 +2B] kkpo) (4.48g)
(i)
—Np (2,4{ k% + 2B} k%,oo) . (4.48h)

The final result is reproduced in terms of Skyrme parameters in TAB. {4.1}, after having used
EQ. 4.11b to replace 7y in terms of pg.

4.3.6 Sum rules on Landau parameters

The EDF from which the residual interaction derives, has been constructed from an anti-
symmetrized vertex, such that all particle permutations have been taken into account to ensure
Pauli-principle. In case the antisymmetrized vertex is a two-body pseudo-potential multiplied
by the two-body antisymmetrizer, taking two derivatives of the EDF with respect to non-local
densities gives back the original antisymmetrized vertex. In case a two- plus three-body antisym-
metrized pseudo-potential has been used, the residual interaction remains a two-body antisym-
metrized vertex. Consequently, the exclusion principle demands that residual interaction 4.35 is
antisymmetric under the exchange of incoming or outgoing particles, which is similar to asking
the two-body state to respect EQ. 3.33. Using EQ. 4.35 with p; = pj, such that in INM 6 = 0,
and requiring the latter property to hold for each spin-isospin channel, one obtains two sum
rules

Y F+F+G+G =0 (4.49a)
l
> F—3F - 3G+ 9G] =0 , (4.49D)
l
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/ ! /
fo fo 9o 90 fi f1 g1 91
3 _1 _ 1 _ 1

tO 4 4 1 1 +0 +0 +0 +0
torg | +0 —3 3 +0 40 40  +0 40
LR 03 1 _1  _1  _3 1 1 1
1RE B 8 8 B 3 8 3 8

2 1 1 1 1
t1$1kF +0 —1 1 +0 +0 1 -7 +0
k2|5 1 1 1.5 1 1 _1
2R B 8 8 8 3 8 3 B
2 1 1 1 1 1 1 1 1
towokp | 5 1 1§ T3 "1 "1 8
u g -3 2 3 40 40 40 +0

00 3 3 3 3

2 39 3 13 _13 _ 3 1 1 1
u1poky | 35 30 30 30 16 16 16 16

2 1 1 1 1
ulypokF +0 —10 10 +0 +O 3 -3 +O
2 | 39 1 1 1 15 7 7 7
UQPOkF 32 32 32 32 3% 32 32 32
2 | 39 1 1 3 3 1 1 1
ugy2a1pokp | 35 s 3 —d0 s 1 —1 T8
2 39 _31 3B _3 _3 _5 1 1
uy2200kE | 55 30 30 30 16 16 16 16

Table 4.1: Landau parameters expressed in terms of Skyrme parameters. Coefficients
fi, f|, g and g are nothing but Landau parameters Fy, F/, G; and G
divided by the normalization factor Nj.

where we have used that P;(1) = 1. EQ. 4.49a stands for the two-body spin and isospin-triplet
S =T =1, for which ¢; - 7; = 7, 07; = 1, while EQ. 4.49b stands for the two-body spin
and isospin-singlet S = T' = 0, for which ¢; - 6; = 7, 07; = —3. In both cases the relative
orbital angular-momentum of the two-body state is odd to fulfill the exclusion principle as the
contribution for p; = p; to this channel vanishes.

Sum rules 4.49 are fulfilled for Landau parameters derived from the two- plus three-body
pseudo-potential, see TAB. {4.1}. It is a check that the derivations of the EDF and of the
residual interaction are correct. In case the EDF derives from a two-body density-dependent
pseudo-potential, such that antisymmetry is not respected, sum rules 4.49 are not necessarily
fulfilled. This can be understood by separating the trilinear functional according to EqQ. 3.93.
Looking at TAB. {4.2}, one can see that EQ. 4.49 are not respected if using gprleol alone. The
conclusion drawn in SEC. 3.4.4.2 stands, i.e. the Pauli principle is fulfilled not only thanks to the

interdependence of the functional coefficients entering £°7170) but also thanks to the presence of
grep

extra*

4.3.7 Sum rules on particle-hole scattering amplitude

The residual interaction, also called particle-hole interaction, is not a physically observable
object in contrast to the scattering amplitude associated to the motion of a particle-hole pair
[111]. The latter is related to the former through an integral equation, such that the particle-
hole interaction can be seen as the irreducible vertex and the scattering amplitude as the total
vertex. In a perturbative approach the scattering amplitude has by definition the property of
antisymmetry with respect to the exchange of the two incoming our outgoing fermions [111,
112]. However, the antisymmetrized character of the residual interaction does not guarantee
the antisymmetry of the scattering amplitude, frequently broken in practice. In the iteration
process of the integral equation, reducible diagrams might appear without their Pauli principle
counterparts [111, 113]. It is due to the lack of complexity of the irreducible residual interaction
deriving, e.g. from the EDF. Inserting density dependencies in the pseudo-potential has allowed
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grelpo]
wpo | 2 -2 -2 -2 +0 40 40 +0
2 39 1 1 1 3 1 1 1
uipoky | 5 -8 —§ —s —is 16 16 16
2 1 1 1 1
ulylpokF +0 ~ 16 16 —|—O +0 3 -3 +0
2 39 1 1 1 15 7 7 7
uzpoky | 33 16 16 16 32 32 3 "3
2 39 1 1 3 1 1 1
ugynpokp | 5 s 5 t0 -y -1 -1 3
2 39 1 1 3 5 1 1
ugy2pokp | 35 —3 i 0 - -1 % ~1
ppp
gextra

wpoky | +0 -5 -3 -5 40 +0 +0 40
wiyipokp | 40 & —5 40 40 40 40 +0
ugpoky | +0 =35 - -5 40 +0 40 40
ugynpokp | 40— —5 -5 40 +0 40 40
usyoepokd | +0 % £ -3 +0 40 40 +0

Table 4.2: Landau parameters expressed in terms of three-body Skyrme parameters.
Results are separated into the contribution derived from £°PlP0l j.e. the part
of the trilinear functional obtainable from a two-body density-dependent
pseudo-potential, and the contribution derived from the remaining part
ELEL . (see EQ. 3.93).

extra

in some case to better account for such Pauli principle counterparts [111]. In this case however,
the residual interaction in itself is not antisymmetric anymore, necessarily implying that the
energy suffers from self-interaction.

Analog sum-rules to EQ. 4.49 are easily derived to verify the antisymmetry of the scattering
amplitude. First, the expansion in Legendre polynomials of the scattering amplitude is given by

Pij EN612[31+CZ TZ‘OTj—i-Dl &i'&j‘i‘El 5310_:] TZ‘OTj]Pl(COSH) . (4.50)
l

Knowing the integral equation that relates the scattering amplitude to residual interaction 4.35,
one obtains, in abscence of tensor terms, [111, 112, 114]

F F G| G
Cj=—1t Dy=—&— E, = lG;

20+1 + 2041 +onT

(4.51)

F
2041
The same reasoning as used in SEC. 4.3.6 provides sum rules for expansion coefficients of the
scattering amplitude

Z B +C+ D+ E =0, (452&)
l
> B, —3C,—3D,+9E, =0 , (4.52b)
l
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which can be rearranged as [114]

> B/ +3E =0, (4.53a)
l
2
Z 3B+ C,+D; =0 . (4.53b)
l

In a Born approximation, i.e. when the magnitude of Landau parameters entering EQ. 4.51
are negligible compared to 2 + 1, EQ. 4.52 gives back EQ. 4.49. However, Landau parameters
are not small in nuclear matter, such that physically speaking sum rule 4.49 cannot really be
justified starting from the scattering amplitude.
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Chapter 5

Optimization procedure

Abstract: The present chapter deals with the optimization procedure of free parameters. First,
a study of infinite nuclear matter properties from the newly derived trilinear EDF is performed
to significantly constrain the parameter space. The result of this preliminary study is taken into
account to establish the actual optimization procedure. In such a procedure, free parameters
are adjusted on both infinite nuclear matter and finite nuclei properties.
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5.1 Introduction

In CHAP. 3 the analytical form of the Skyrme pseudo-potential has been determined and
the energy functional arising from it derived. Such a pseudo-potential depends on a set of pa-
rameters that need to be optimized. Traditionally, the quality of the resulting parameterization
significantly depends on the fitting procedure, i.e. on the choice of fitted nuclear observables or
properties. One can of course greatly benefit from the experience acquired through past studies.
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5.1.1 Fitting protocol

The parameters optimization starts with the choice of nuclear properties that you expect to
be imperative for your EDF to reproduce, and of those that should play a significant but less
crucial role. In other words, one has to determine the weights of each considered property. The
fit can in fact be seen as an adjustment of parameters on an infinite number of nuclear properties
with weights varying from 0 to infinity. This underlines the first difficulty associated with the
determination of quantitative weights based on qualitative arguments, knowing that changing
such weights can change significantly the quality of the resulting parameterization. Additionally,
the adjustment is a time consuming operation whose cost increases with the number of proper-
ties to be adjusted.

The question is thus, which nuclear properties our nuclear pseudo-potential has to be adjusted
to, and with which weights, in order to reproduce and predict as many nuclear data as possible?
Two types of problem occur.

— First, the number of parameters could be small compared to the number of indispensable
properties the EDF should reproduce. The pseudo-potential is likely to be over-constrained
in this case such that requiring to better reproduce a given property inevitably deteriorates
other features. After years of study it appears that it has been the case for usual quasi
bilinear EDF's developed in the past, such that EDF parameterization fitted with a bias
towards a particular set of observables have to be used with great care when predicting
other types of properties.

— Second, the number of parameters could be large [94]. The main problem may then comes
from the time consuming character of the adjustment as well as from the difficulty to
find experimental data that can meaningfully constrain all parameters. Usually, one takes
into account analytical constraints on the parameters to reduce the size of the allowed
space. Such analytical constraints mostly come from infinite nuclear matter properties
but are in a limited number, see CHAP. 4. Increasing the number of parameters requires
the use of more non-analytical constraints such as nuclear masses and radii obtained using
time-consuming SR- or MR-EDF codes.

The optimization of the parameters might be more difficult at first for a new form of Skyrme EDF,
such as the one used here, given that terms might be correlated with each others through some of
the chosen fitted properties. Obtaining the best fit protocol, i.e. the best weights, necessitates to
perform extensive trial and error studies in order to understand how terms behave. The present
work displays the first step in that direction for the newly developped EDF form.

5.1.2 Least square method

Having selected the properties parameters should be fitted to, a method for the actual
optimization is to be chosen. In the present study, the optimization is performed using an
analog of the least square method that we briefly explain in the following.

First, consider a model describing a set of nuclear properties e;, themselves expressed in terms
of a set of parameters & = {x}} through

ei = fi(Z) (5-1)

where e; typically denote actual observables such as ground-state energies and charge radii of a
set of nuclei but may also denote a series of infinite nuclear matter properties. In the present
study the model is the Skyrme EDF developped in CHAP. 3, i.e. parameters ¥ are those of the
corresponding pseudo-potential.

Parameters Z are determined by means of a fit of the f;(Z) on experimental observables or known
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infinite nuclear matter properties e;. For this purpose, the least-square method minimizes a x?
deviation measuring the quality of the model, i.e.

2_% 2 with 2 _ fz‘(f)—ei 2 (52)
X = — Xi Xi — 7Az ) .

where ngps is the number of selected nuclear properties. The weights A 1 are those discussed
above, such that the smaller the weight A;l the smaller the impact of the associated e; on the
x? minimization, i.e. the larger f;(¥) — e; can be without impacting the y? value.

For potentially accurate models, 4; is to be taken as Ae; defined as the experimental uncertainty
associated with the measure of e;. Otherwise, as in our case, models are not accurate enough
and A; is larger than Ae; and chosen according to our intuition and expertise regarding the
accuracy expected from the model. If X? is lesser than 1, it means that our model reproduces
the experimental value e; with an uncertainty smaller than A;.

In the present case, the actual y? minimization is performed using a simplex algorithm called
Nelder-Mead method [115]. Eventually, the fitting procedure provides us with parameter values
%o that minimize the x? deviation, see F1G. 5.1 for a schematic representation. In the example

X2

L0 L

Figure 5.1: Minimization of x7 deviation represented schematically. For simplification,
the x? deviation is shown as a function of one parameter only.

of FI1G. 5.1, the x? deviation is minimized for a unique value of the parameter z;. For severals
observables f;, the minimum of each contribution to y? is likely to be obtained for different
values of that particular parameter, see F1G. 5.2. In such a case, the final value z;9 is the one
that minimizes the sum of all x?. The reasoning can be trivially extended to several parameters

Z={xy}.

The x? deviation of the least-square method traditionally has a statistical meaning. Presently,
we prefer to refer to the function to be minimized as the merit function although it does ressemble
a x? deviation (EQ. 5.2).
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Figure 5.2: X? deviation for severals observables f; as a function of a single parameter
ZTi.

5.1.3 Proposed fit strategy

In the present document, which represents a first step in a long term project direction, the
fitting procedure will not differ significantly from the traditional Saclay-Lyon protocol, from
which SLyX parameterization have been constructed [108].

In such an approach, INM properties are first used to provide analytical constraints on sev-
eral linear combinations of parameters. Ideally, one could analytically determine as many linear
combinations that there are pseudo-potential parameters. However, the situation is far from
the ideal one, essentially because several INM properties are not primordial to reproduce. As a
result, some of them are only used to give a zeroth-order determination of the parameters. The
latter are then re-adjusted on nuclear masses and radii. Parameters that cannot be predeter-
mined through INM properties are entirely adjusted on finite nuclei properties. It is significantly
more time consuming to adjust such parameters as there is no first guess for their value.

Adding a three-body pseudo-potential to a two-body one enhances the number of parameters
compared to usual (quasi) bilinear EDF's deriving from a density-dependent two-body potential.
It seems to imply that an enhancement of the Saclay-Lyon fit strategy is necessary. The three-
body pseudo-potential, EQs. (3.87,3.88), has six parameters and the two-body one, EQ. 3.52,
has seven, for a total of thirteen parameters. Usual (quasi) bilinear EDF parameterization, have
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nine parameters '. As a result, only four parameters are added to the usual parameter space.

It has been remarked that a large parameter space increases the difficulty of the fit and
that the optimal 7y can eventually lead to an EDF displaying instabilities in Hartree-Fock cal-
culations [94, 116, 117]. Adding four parameters might seem sufficient enough to enrich the
EDF without bringing unavoidable instabilities. In particular, a thorough study of our pseudo-
potential in infinite nuclear matter may allow us to avoid many instabilities. Last but not least,
let us stress again that the main objective of the presently developped pseudo-potential is not
to provide a better reproduction of nuclear properties at the SR level than provided by existing
EDF parameterizations, but rather to be safe for MR-EDF calculations.

5.2 Infinite nuclear matter

The present section is dedicated to performing a preliminary study that aims at constraining
pseudo-potential parameters by focusing on infinite nuclear matter properties. It allow us to
narrow down the size of the parameter space to be eventually explored.

5.2.1 Symmetric nuclear matter properties

The four main empirical properties of symmetric nuclear matter properties are

— the saturation density psa = 0,16 + 0,002fm > corresponding to the density of the nu-
clear matter in its equilibrium state. Its value has been obtained through electron elastic
scattering on heavy nuclei, which gives access to the charge distribution and thus to the
matter density of the system. The total density at the center of heavy nuclei is essentially
independent of the system, giving credit to the infinite nuclear matter concept and yielding
the value of pgat.-

— the energy per particle at saturation point. It corresponds to the leading term of Bethe-
Weizsdcker semi-empirical mass formula. Its value, %(psat) = —16,0+£ 0,2 MeV has been
extracted using such a mass formula to reproduce a large set of experimental nuclear
masses [118, 119].

— the incompressibility coefficient K, at saturation. Its value is K., ~ 230+ 20 MeV. For a
detailed discussion on how to access K, through the Isoscalar Giant Monopole Resonance
in doubly-magic nuclei, see [120-122].

— the isoscalar effective mass at saturation density that drives the density of states near the
Fermi energy and that is related to Quadrupolar Isoscalar Giant Gesonance energy. The
value thusextracted is mf ~ 0.85 + 0.05m [123, 124].

Eventually, the typical values for these four properties are

psat = 0.16 £ 0.002 fm 3 | (5.3a)
E
—(Psat) = —16.0+£0.2 MeV (5.3b)
my/m = 0.8540.05 , (5.3¢)
Koo = 230420 MeV . (5.3d)

FEmpirical values EQ. 5.3 allow the analytical determination of four linear combinations of pa-
rameters appearing in the SNM equation of state.

1. We are omitting tensor terms in the pseudo-potential altogether in the present study.




78

Chapter 5. Optimization procedure

5.2.2 Density-dependence and three-body potential

In the past, gradient-less three-body pseudo-potential have already been used to reproduce
nuclear properties and in particular SNM properties. As a matter of fact, Skyrme introduced in
combination with the two-body pseudo-potential [100]. It appeared at that time that three-body
contributions are essential to reproduce nuclear properties. Indeed, it provides a repulsive effect
canceling attractive two-body contributions at high densities, allowing the nuclear fluid to have
an equilibrium point at finite density. Eventually, results were in satisfactory agreement with
experimental data thanks to the SIII parameterization [92].

However, a gradient-less three-body pseudo-potential gives opposite contributions to time even
and time odd terms, see the first line of TABS. {C.1-C.2}. As a result, repulsive spin-independent
contributions imply attractive spin-dependent contributions and lead to a spin instabilities of
nuclear matter [125, 126]. This is the reason why it was proposed to replace the gradient-less
three-body pseudo-potential by a two-body on depending linearly on the scalar matter density.
For such a (quasi) bilinear EDF deriving from a density-dependent two-body pseudo-potential,

T6 a=1/6
1o | . n felia
\ a=112
a=1
0.9 |
g \ .
e
g 08 kv W : sir
0.7 | \ RATP
L
0.6
150 200 250 300 350 400
K. (MeV)

Figure 5.3: Correlation between the compressibility Ko, and the isoscalar effective
mass mf/m as a function of the a parameter which governs the density
dependence of the potential. Reprinted with permission from Chabanat
et al. [Nucl. Phys. A 627, 710 (1997)].

the parameters entering the SNM equation of state are tg, ©4 and t3, where t3 is the parameter
in front of the density dependence. Three parameters are not enough to reproduce the four
properties 5.3. Considering the energy per particle and the density at saturation as key properties
to reproduce, two linear combinations out of three are fixed. The last one determines the value
of the isoscalar effective mass and the incompressibility, such that choosing a value for the first
property determines the second. Possible values taken by K., and m are given by a set of
correlation curves in F1G. 5.3 that vary with the exponent « of the density dependent factor.
It can be seen that K, is always overestimated if using a linear density dependence as coming
from a gradient-less three-body potential. As a matter of fact, accessing correct values for both
K and mf required a lowering of the exponent of the density-dependent factor, e.g. o =1/6
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for SLyX [108], which we know now to be unsafe in MR-EDF calculations. It will be one of the
main objective below to see whether using a major general three-body pseudo-potential allows
us to overcome the two historical limitations of a gradient-less one, i.e. avoiding spin instabilities
and reaching empirically determined values of both m{ and K.

5.2.3 Critical density and inflection point

Using a complete central two- plus three-body pseudo-potential four linear combinations of
parameters appear in the SNM equation of state (EQ. 4.19), i.e. tg, up, ©5 and O3, defined in
EQ. 4.18. As a result, empirical values 5.3 can all be exactly reproduced if required. Such an
analytical determination of the four (combinations of) parameters leads to

to = —1266.602 MeV fm?® | (5.4a)
up = 7080.677 MeV fm6 | (5.4b)
0O, = 1605.779 MeV fm® | (5.4c)
O35 = —7749.113 MeV fm" . (5.4d)

However, difficulties appear when looking at the corresponding equation of state and the effective
mass as a function of density, see F1a. 5.4.

0.0 0.1 0.2 0.3 0.4

p (fm”™)

Figure 5.4: Binding energy per nucleon (lower panel) and effective mass (upper panel)
in symmetric nuclear matter as a function of the density. At p = 0.3fm™3
the equation of state begins to collapse such that the nuclear matter is
not stable anymore and a pole occurs for the effective mass.

— the equation of state is not stable with respect to an increase of the density, i.e. it is ener-
getically favorable for SNM to have an infinite density. Such an issue can be understood
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by looking at EQ. 4.19. The term corresponding to the highest power of p is negative when
using EQ. 5.4, as O3, is negative. The position of the inflection point of the equation of
state is now denoted as ping.

— a pole appears, for a critical value of the density hereafter denoted as p¢r, in the isoscalar
effective mass. Again, such a pole comes from the fact that O3, is negative such that the
denominator in EQ. 4.24 can be null.

Let us first remark that those patterns relates to the fact that we are adjusting parameters on
saturation properties and not on the behaviour of the equation of state at higher densities. Of
course it is impossible to adjust the parameters on the entire equation of state while keeping
acceptable incompressibility and an effective mass without pole. Looking at EQs. (4.21,4.24) it
becomes clear that the two unwanted features relate to the correlation that exists between the
incompressibility and the effective mass. Indeed, taking ©4 and O34 positive to a specific value
in EQ. 4.24 would imply a too large value of the incompressibility 4.21. The problem cannot
be avoided entirely, without deteriorating the density and energy per particle of the saturation
point. As a result, one has to take a negative value for ©s,. However, the position of the
singularity p.. can be obtained solving

h2
O350 + Osper +16 5 — =0, (5.5)

such that one can choose the position of the singularity in the effective mass by setting a relation
between O; and O3,. Having one parameter less, the four empirical values EQ. 5.3 can not be
reproduced exactly anymore. The approach used to study the impact of p¢; is to build a merit
function from SNM properties and minimize it, allowing such properties to differ slightly from
the empirical value 5.3. F1a. 5.5 shows the results when the value of p¢, is varied. Increasing
per generates an increase of K, and a decrease of m{j/m. Rejecting pe, and ping to large enough
value eventually returns parameterizations that are safe for the computation of nuclei. Indeed,
the part of the equation of state that actually impacts properties of finite nuclei is located near
the saturation point. Hopefully, it is possible to reject both p. and ping to two or three time
saturation density, see F1a. 5.5.

Choosing p.; = 0.48, SNM properties become

psat = 0.1606 fm =3 | (5.6a)

E
7 (Psat) = —15.901 MeV (5.6b)
my/m = 0.7045 , (5.6¢)
Ko = 255.496 MeV | (5.6d)
por = 048 fm™3 | (5.6¢)
pin = 0.363 fm ™2 | (5.6f)

with the corresponding values for the parameters

to = —1209.835 MeV fm? | (5.7a)
ug = 5273.114 MeV fm® | (5.7b)
O, = 1649.865 MeV fm? | (5.7¢)
O35 = —4877.187 MeV fm® . (5.7d)

The equation of state and the effective mass obtained with parameterization 5.7 are more satis-
fying than in F1G. 5.4 as is shown in F1G. 5.6.
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Figure 5.5: Saturation density, binding energy per nucleon at equilibrium, isoscalar
effective mass, incompressibility and position of the inflection point as
functions of the critical density.

5.2.4 Asymmetric nuclear matter and pure neutron matter

Thanks to symmetric matter properties 5.3, one has determined four among the thirteen
(combinations of) parameters of the two- plus three-body pseudo-potential. Linear combinations
of parameters, xg, ©,, O3, and O3,,, given in EQ. 4.18, can also be constrained using asymmetric
and pure neutron matter properties. Neutron matter equation of state, EQ. 4.29, is used to adjust
xg, ©, and Og,, thanks to a set of eighteen points from [127], such that

zo = 0.342224 (5.8a)
0, = 1267.587 MeV fm? | (5.8b)
O3, = —5052.235 MeV fm® . (5.8¢)

The result is shown in F1G. 5.7 where it can be seen that the obtained parameterization repro-
duces in a better way the equation of state compared to SLy4 parameterization. The additional
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Figure 5.6: Binding energy per nucleon (lower panel) and effective mass (upper panel)
in symmetric nuclear matter as a function of the density.
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Figure 5.7: Binding energy per nucleon in pure neutron matter with two different
scales.
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parameter ©4, can then be determined through the symmetry energy coefficient, EQ. 4.26, using
the empirical value

ar =32 MeV (5.9)

such that one obtains
Ly = 56.228 MeV fm® . (5.10)

Parameters tg, zo, ug, O, Oy, O35, O3, and Of, being determined, one can now check the evo-
lution of neutron and proton effective masses (EQ. 4.30) in pure neutron matter, see F1G. 5.8.
The evolution of the effective masses with the density is not linear, contrarily to traditional

m’,/m

0.5 _

—— Neutrons
------ Protons

0.0 : : : : :
0.0 0.05 0.1 0.15

p (fm™)

Figure 5.8: Neutron and proton effective masses in pure neutron matter.

functionals like SLy4. Furthermore, one observes that the sign of the neutron-proton effective
mass splitting is the one predicted by BHF and DBHF calculations below saturation density, as
opposed to many modern Skyrme EDF parameterizations [117].

5.2.5 Landau parameters

Thanks to symmetric, isospin asymmetric and pure neutron matter, eight out of thirteen
(combinations of) parameters have been tightly constrained analytically. The remaining ones
contributes to Landau parameters TAB. {4.1} for which experimental data are difficult to ex-
tract. For instance looking at EQ. 4.31, one can relate Fy Landau parameter to the nuclear
incompressibility whose value is not easily deducible from measurements [121, 122]. On the
other hand, there exists ab-initio theoretical data on which parameters could also be fitted [128].
Unfortunately, the present used pseudo-potential is not rich enough to allow for a fine adjust-
ment on such ab-initio data, which anyway have yet to be improved. Consequently we presently
constrain Landau parameters in a loose way, simply requiring the EDF to be stable against
infinite wavelength spin and isospin fluctuations, i.e. to fulfill conditions 4.33.

F1a. 5.9 shows the eight active Landau parameters as a function of density using param-
eterization EQs. (5.7,5.8,5.10) and taking all remaining linear combinations to zero. First, a




Chapter 5. Optimization procedure

e ~<
—

0.0 0.1 0.2 0.3 0.4 . .
-3 -3
p (fm”)

Figure 5.9: Landau parameters as a function of the density. The two dashed lines
represents the upper limits not to cross for [ = 0 and [ = 1 Landau
parameters, in order to avoid an instabilities area (EQ. 4.33)
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pole appears for each Landau parameter at p., and comes from the normalization factor Ny in
EQ. 4.48 which is a function of the isoscalar effective mass. For such a parametrization [ = 1
Landau parameters are rather safe with respect to instability condition 4.33, except for G; that
enters the instability area at twice saturation density. Fyj and G, follows the same behaviour.
Again it is not straightforward to decide if two times saturation density is sufficient to provide
safe parameterizations with respect to instabilities. The instability with respect to density fluc-
tuations and associated with Fy < —1 is physical and known as the spinodal instability. It
relates to the density interval where K, is negative [129, 130]. The spin instability associated
with Gg < —1 was discussed above and was expected to be hard to fulfill. It is due to the
attractive contribution of spin-dependent EDF terms deriving from a pure contact three-body
pseudo-potential [125]. One was hoping that adding gradient three-body terms would allow us
to avoid such instabilities. It appears to be difficult but can be improved upon in the final
determination of the parameters, see CHAP. 6.

5.2.6 Conclusion

The main result of the preliminary study is that our pseudo-potential cannot reproduce
saturation properties without displaying a singularity in the effective mass and a collapse of
the equation of state in symmetric nuclear matter. However, it was shown possible to control
those two features and determine or at least strongly constrain eight of the thirteen potential
parameters using a set of infinite nuclear matter properties and eventually obtain a decent
description of all essential properties of INM. Starting from such results, we now proceed to the
actual adjustment of new parameterization.

5.3 Adjustment based on nuclei and INM properties

The complete parameter optimization is performed via the minimization of the merit function

Xgot = X12NM + X2Nuclei : (511)
The minimum of yZ, is found through multiple SR-EDF calculations of semi-magic nuclei and
using a simplex algorithm.

5.3.1 Constrains from infinite nuclear matter properties

To find the best parameterization, it is convenient to reduce the size of the parameter space
in which the best parameterization should be. For this purpose, analytical infinite nuclear
matter constrains were used. The parameterization obtained in EQs. (5.7,5.8,5.10) or using
the same method but varying per, pina, Mg and Ko, are thus used as initial points for the
complete adjustment procedure. Obviously, INM constrains do not just provide the starting
parameterization but are also included in the merit function 5.11 to be minimized, following

Xt = X&nut + Xanat + XBau + Xfandan (5.12)

where each component of x#,; separates into N merit functions according to

N
=Y X7 (5.13)
i=1

N being the number of properties used in SNM, ANM, the number of points in the PNM EOS
or the number of Landau parameters.
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5.3.1.1 Symmetric and asymmetric nuclear matter

Merit functions related to SNM or ANM properties are expressed under the form

Xm = (fNM(f)—_eNMf (5.14)

ANm
, (5.15)

such that errors Axym have to be given to the code for each of the properties.
For SNM, exym values for E/A and pgy are given in EQ. 5.3. Contrarily Ko, and mg/m are
varied over a range of possible values. Indeed, choosing Ko, and mg/m determines pe, and ping.
A systematic study thus needs to be accomplished. A set of parameterizations is thus generated
for which
ep/a = —16.0 MeV | (
€pee = 0.16 fm ™ (5.16b
€mg/m = {0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81} ,  (5.16¢
ex., = {230, 240, 250, 260, 270} MeV , (5.16d

where all the combinations of €ms /m and er__ have been tried out. Corresponding parameteri-

zations will be denoted as
10*em8/m

S3Ly€Koo . (517)
Values for the associated errors are

Apja=016MeV | A, =0003fm™> | A, =0001 , Ag, =3MeV . (518)

Psat

For ANM, the property on which the pseudo-potential is adjusted is the symmetry energy
coefficient EQ. 4.26 whose value and error are

€q, =32MeV and A, =1MeV . (5.19)

5.3.1.2 Pure neutron matter

For the eighteen points of the PNM EOS the merit function takes the form

18 . Wir 2
Xbaw = Y <%(x’pi) — ET(M)) : (5.20)

— Apnm
=1

where EWT denotes the Wiringa EOS, see [127]. The chosen values for Apny are

Wir

Apny = 0.1 (pi) MeV for p; < 0.5fm™3 (5.21a)
Wir

Apnn = 0.2 ——(pi) MeV for p; > 0.5fm™2 . (5.21b)

5.3.1.3 Landau parameters

A constrain on Landau parameters is used to avoid instabilities (EQ. 4.33). For each Landau
parameters X; = {F}, F/,G;, G’ } and | = {0, 1}, the following expression X?Xz contributes to the
merit function X%andau

Xx;, = A
X
X%, =0 if X(@)>—(20+1)

)>2 it X,(%) < (20 +1)
= , (5.22)
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where Ax, is chosen to be

Ay, =103 . (5.23)

l

5.3.2 Nuclei observable

The second part of the merit function Xlz\ludei comes from nuclei observables. To chose the

best set of nuclei on which parameters are optimized, one has to ask two questions

— Which observables are practically accessible? Unlike INM properties, finite nuclei observ-
ables are not obtained as analytical expressions but through numerical means. It implies
that each evaluation of nuclei observables is time-consuming. However some of them are
faster to compute. For instance spherical, i.e. semi-magic or doubly magic, nuclei take only
a few seconds to evaluate, whereas deformed, i.e. open shell, nuclei are more numerically
demanding.

— Which observables the pseudo-potential should reproduce? SR-EDF method can only
safely address bulk properties of either spherical or well deformed nuclei, while MR-EDF
method gives natural access to properties significantly impacted by dynamical correlations.
Using only SR-EDF method for the optimization as we do here imposes to use bulk proper-
ties only. An alternative consists of performing the optimization on pseudo-data, i.e. data
from which theoretically computed dynamical correlations have been subtracted. Whereas
only one such fit has been performed so far [131], including MR correlations at the level
of the fit is part of our long term strategy but is not done here.

As a result of such considerations, the set of nuclei used in the present study is

40Ca, 8Ca, 5°Ni, 1009y, 1328y, 208py, (5.24)
such that X2Nuclei is decomposed into
Xructer = X3oca + Xisca + Xooni + Xhoogn + X2gn + Xoospp, - (5.25)
Observables used are binding energies and charge radii such that

A A 2 A A 2

X2 N 1 EfX — Eem}; i 1 TfX - 7aex}; (5 26)

AX - - A~ - A~ bl .
6 ARX 5 ANX

where 4X = {%0Ca, *®Ca, *Ni, 132Sn}, Eeyp and 1y, are experimental binding energies and
charge radii, whereas Ez and rz are the theoretical counterpart obtained from SR-EDF calcula-
tions. The factors % and é are normalization factors with 6 the number of binding energies and
5 the number of charge radii used in the protocol. The charge radius of °°Sn is unkown such
that only its energy contributes

100g, 100, \ 2
1 - - F
2 _ 1 z exp
X1oogn = 6 < Agosn ) . (5.27)
For 298Pb, neutron spin-orbit splitting
63]) = El/3p1/2 - 61/3})3/2 ) (528)

is added to the binding energy and the charge radius such that

208 p}, 208pp, \ 2 208 pp, 208pp, \ 2 208pp,  208p} 2
2 . 1 Ef - Eexp 1 Tz - 7neac]o 6310,9? 63p,e:1:p 5.99
X208pp, = 6 AZ5Pb + 5 A205Pb + A205Pb . (5.29)
E T

€3p
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Experimental values have been taken from [132] while associated errors are

ARG =0.800 MeV , A% =0.020 fn : (5.30a)
Ap© =0.200 MeV A =0.020 fm : (5.30b)
AN =0.800 MeV , AN = 0.020 fm 3 , (5.30c)
AS1 — 0,800 MeV 7 (5.30d)
Ay 5" =0.200 MeV , A, =0.020 fm 3 : (5.30¢)
AR =0200 MoV, AP =0.020 fm P, AZPP = 0.1 MeV (5.30f)

A remark has to be added about doubly-magic N = Z nuclei such as “°Ca, Ni and '9°Sn.
One knows that Wigner energy contributes to their binding. For that reason N = Z nuclei
binding energies have smaller weights than N # Z nuclei in the adjustment procedure. It would
of course be better to design pseudo-data subtracting Wigner energy to those binding energies.
However, such a strategy is not used here and necessitates a specific study of Wigner energy.

5.3.3 SNM properties and y? merit function

The x? merit function has now been introduced. As a first test, a preliminary set of param-
eterizations has been obtained fixing SNM properties, i.e. taking

Aga=0MeV | A, =0fm™> | Ay, =0 , Ay =0MeV , (5.31)

psat
instead of using EQ. 5.18. Values obtained for the merit function at the end of the optimization
following such a strategy are high and a good reproduction of nuclei is also impossible. Allowing
SNM properties to vary slightly improves those results tremendously as can be seen from thanks
Fia. 5.10. As a result, allowing SNM properties to vary is essential even if the range of allowed
variation is small.

5.3.4 Final parameterizations

For this preliminary work, four of the parameterizations obtained following the protocol
presented in this section have been selected. Their x? merit function are not too high and their
per DOt too low, see FIG. 5.10. Characteristics of the chosen parameterizations are given in
TAB. {5.1}. Furthermore, the (quasi) bilinear EDF parameterization SLy4 [108] will be used in
the following to perform comparison. SLy4 has been adjusted using a fitting procedure close to
the one presently used and is thus an appropriate reference point to assess the performance of
the new parameterizations.
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Figure 5.10: x? merit function (upper panel), pe, (lower left panel) and piua (lower
right panel) for different parameterizations. Blue curves corresponds to
parameterizations with strictly fixed value of SNM properties whereas
red curves correspond to allowing SNM properties to vary slightly.




S3LY}?C:L o/ SsLysgo  SaLysdy  SsLysfo  SsLySi
Per 0.464 0.431 0.383 0.383

Pinfl 0.362 0.333 0.289 0.327

X2 25.5642  24.9810 24.3528  25.1409

to | -1234.26 -1241.74 -1265.03 -1235.57
t1 623.21 632.87 669.63 593.02
ta | -217.33  -234.08 -271.87  -377.94
xo | 0.48484  0.47435 0.44137  0.43802
r1 | 0.66198  0.63208  0.54432  0.57900
To | -1.01933 -1.00591 -0.99620 -1.02459
up | 5589.27  5867.27  6422.56  6430.14
uy | -2544.53 -2929.Y8 -3751.15 -3237.15
y1 | 1.35482  1.36726 1.37316  1.65119
U2 587.17 486.50 473.80 469.10
Y21 | -1.05804 -1.61876 -1.61303 -1.61148
yoo | -0.87820 -0.99543 -0.89831 -0.91245
Wo 114.04 113.55 115.91 107.63

Table 5.1: Parameterizations used in the present study.



91

Chapter 6

Results and outlooks

Abstract: A set of parameterizations obtained through the fitting procedure described in
CHAP. 5 is used to compute INM and nuclei properties. Results provide information on the
quality of the fitting procedure and on the relevance of the pseudo-potential introduced in

CHAP. 3. Thanks to such a post-fit analysis, a hierarchy of possible improvements are proposed.
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6.1 Introduction

The parameterizations generated by the adjustment procedure are the best suited to re-
produced a set of fitted observables, given a set of allowed errors. Hopefully, other nuclear
observables are also well reproduced. The result of such a post fit analysis is a measure of the
quality of the pseudo-potential. Obviously it will strongly depends on the fitting procedure used,
i.e. the observables and the weights chosen. It is thus better to use various parameterizations,
obtained by slightly varying the fit procedure, to compute nuclear observables such that one can
eventually select the best one.

For this preliminary work we have chosen a small set of parameterizations, TAB. {5.1}. Nu-
clear properties tested here are limited to semi-magic spherical nuclei within SR-EDF approach.
The reproduction of deformed nuclei and the inclusion of dynamical correlations is postponed
to later; the latter being the main motivation behind the present use of a three-body pseudo-
potential, see CHAP. 2.
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6.2 Infinite nuclear matter properties

6.2.1 Symmetric nuclear matter

In symmetric nuclear matter the adjustment focused on properties of the saturation point
keeping control of the pole in the effective mass and the inflection point in the equation of state.
Saturation densities (TAB. {6.1}) of our trilinear EDF tend to be systematically lower than the

10e,,*

mg/m

SsLyey.. SsLytdy  SsLys3, SsLysSy SsLySi,  SLy4
E/A | -16.088 -16.087 -16.062 -16.079 -15.972

psat | 0.157  0.157  0.157  0.157  0.160

mg/m | 0710  0.730  0.760  0.810  0.695

Koo | 259.820 250208 230.049 249.894 229.901

per | 0464 0431  0.383  0.383 *

pin | 0362 0333 0.280  0.327 *

ko | 0408 0370 0316  0.235  0.440

Table 6.1: Saturation properties for different parameterizations.

empirical one 5.3a. Indeed, corresponding values always correspond to the targeted e, minus
the accepted error A, given in EQ. 5.18. This error has thus to be chosen not to large if
one wants to obtain an acceptable saturation density. Other SNM properties do not show such
tendency to reach the border of the allowed interval.

The energy per particle for our parameterizations is greater than the empirical starting point
while it is smaller for SLy4. This enhancement with respect to empirical value 5.3b might be
advantageous to reproduce a correct mass systematic. At least this happened to be necessary
for (quasi) bilinear EDFs [133, 134].

Symmetric nuclear matter EOS are shown in FI1G. 6.1 for the four test parameterizations as well
as for SLy4. Tested parameterizations only differ at high densities such that they should be used
with care to compute compact objects, e.g. neutron stars. On the other hand, we recall that
densities beyond about 2 pgat should be irrelevant for finite nuclei. Nevertheless, remedying such
a pathological high-density behavior might be accomplished by adding a repulsive gradient-less
four-body pseudo-potential. Indeed, such a pseudo-potential will provide the leading contribu-
tion to the high-density EOS, EqQ. 4.19.

It is of interest to extract the contributions to the four (effective) two-body spin-isospin chan-
nels [117] and compare then to recent ab-initio calculations based on chiral two- plus three-body
interactions [135]. However, the definition of such effective two-body channels is not straightfor-
ward when starting from three-body pseudo potentials and is postponed to a future work.

The isoscalar effective mass is shown in F1G. 6.2. Eliminating its pole is not straightforward.
A gradient-less four-body pseudo-potential will not change such a behavior while higher-order
density gradients will increase the number of such poles. The four test parameterizations display
a pole beyond 2.5 pgat, which should be safe. However, the existence of such a pole influences
the density profile of the isoscalar effective mass at lower densities, i.e. for p < pgat. How
much this impacts properties of finite nuclei remains to be characterized. The use of Skyrme
pseudo-potential requires to reject the associated critical density to high enough density.
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Figure 6.1: Symmetric nuclear matter equation of state for various Skyrme parame-
terizations. The range for the density axis is the one in which our methods
is approximately valid. However, high densities values of the energy per

particles are also given in the smaller window.
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Figure 6.2: Isoscalar effective mass as a function of density.
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6.2.2 Asymmetric and pure neutron matter
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Figure 6.3: Pure neutron matter equation of state.

Ab-initio pure neutron matter EOS is well reproduced with all the four parameterizations,
see F1G. 6.3. In the present study the ab-initio EOS from [127] is used to be consistent with
SLy4 that is used as a benchmark. More recent ab-initio EOS exist [136] and will be used in
the near future to further optimize our parameterizations.

The splitting of neutron and proton effective masses in PNM is shown in FIG. 6.4 while its
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Figure 6.4: Neutron and proton effective masses.

value at saturation density is listed in TAB. {6.2}. The sign of the splitting is in agreement
with ab-initio-calculations [137], contrary to modern (quasi) bilinear EDFs. The magnitude of
the splitting is inversely proportional to the isoscalar effective mass, knowing that best ab-initio
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10mg/m

SaLyy SaLydso  SsLyidy  SsLyigy SsLySyy  SLyd4
ar 31.623 31.746 31.998 32.240 32.004

mk/m 0.558 0.598 0.686 0.790 0.800
Am*/m 0.417 0.340 0.167 0.042 -0.186

Table 6.2: Symmetry energy coefficient, isovector effective mass and neutron-proton
effective mass splitting in PNM.

calculations predict a value of the order 0.3. Nevertheless, the pole in the proton effective mass
appears close to saturation density, in particular for parameterizations with the largest values
of the isoscalar effective mass.

The value of the symmetry energy coefficient a,, EQ. 5.9 is given in TAB. {6.2} for our four
parameterizations of interest. It seems that there is no strong constrains that prevent the
parameterizations to get a reasonable value of this coefficient.

6.2.3 Landau parameters

Landau parameters are shown in F1G. 6.5 and their value at saturation density are listed in
TaB. {6.3}. Let us remind that Landau parameters at saturation density contribute to x? merit

S3LY}?£L O™ | 5Ly, SsLyid, SsLyly SsLyll, SLy4
Fy -0.153 -0.164 -0.200 -0.072  -0.276
Fé 0.855 0.909 1.002 1.155 0.814
Gy -0.986 -0.998 -0.998 -0.998  1.385
G6 -0.326 -0.365 -0.417 -0.636  0.902
Fi -0.870 -0.810 -0.720 -0.570 -0.916
Fll 0.815 0.664 0.325 0.077 -0.395
Gy -0.002 0.074 0.284 0.194 0.0
G 0.667 0.690 0.724 0.851 0.0

Table 6.3: Landau parameters at saturation density.

function and are constrained to respect conditions 4.33. The latter has been designed mainly
to fulfill the spin instability condition, i.e. Gy > —1, which was expected to be problematic
for EDF deriving from a three-body pseudo-potential, see SEC. 5.2.5 and [125]. It is obvious
from TAB. {6.3} that the spin instability condition would not be fulfilled without a constrain
in the fit. Eventually, the instability occurs to close to saturation density and, contrary to our
original hope, three-body gradient terms do not really improve the situation compared to used
a simple gradient-less term. Adding a four-body gradient-less pseudo-potential might help and
is postponed to the near future.
Conclusions regarding other Landau parameters are the same as in SEC. 5.2.5. Eventually, the
adjustment on nuclei data does not change the qualitative behavior of Landau parameters as a
function of density, compare F1cs. (5.9,6.5).

Scattering amplitude sum rules presented in SEC. 4.3.7, can also be checked at saturation
density. As for the first writing of those sum rules, see EQ. 4.52 test parameterizations are far to




Results and outlooks

Chapter 6.

1
260
250

73
- = Sily 250

1

260

73
== S3Ly aso

6
230

1

6
230

81
- S3Ly 950
SLY4

1
- Sy

SsLy’

- Sily’

0.
SiLy’

- Sp,L_V8
SLY4

0.0

2
-4
2

96

1

Landau parameters for different parameterizations.

0.1

0.0

Figure 6.5




6.3. Nuclei properties

97

SsLyg '™ | SsLylo  SsLyfy  SsLydl,  SsLyll, SLy4
EQ. 4.52a | -71.630  -499.143  -500.334  -501.239 -0.652
EQ. 4.52b | -210.003 -1492.031 -1494.618 -1487.533  0.845
Eq. 4.53a | -1.222 1349 1596 -4.046 -0.278
EQ. 4.53b | -71.223  -458.693  -499.802  -499.891 -0.560

Table 6.4: Scattering amplitude sum rules EQS. (4.52,4.53).

the physical value as a result of the spin-instability. Indeed, Gf, = —1 is a pole of the scattering
amplitude Fy, which is why our parameterizations send back anomalously large values for the
sum rule. The first sum rule of the second writing, see EQ. 4.53a, is the only one where Fj
does not appear. As a result, the value obtained for our parameterizations, at least those with
low isoscalar effective mass, are rather good compared to others given in [111] but is still not as
satisfactory as for SLy4 parameterizations.

6.3 Nuclei properties
6.3.1 Pairing EDF

To compute semi-magic nuclei, a pairing functional need to be added to normal functional,
EQs. (3.40,3.53,3.54,3.91,3.92). The pairing functional coming from the two- plus three-body
pseudo-potential designed in CHAP. 3 has not been derived yet. As a matter of fact, it is
mandatory to derive it in order to obtain a safe parameterization for MR-EDF calculations
without the need for the regularization method developed in [47-49]. For this preliminary work,
a simple gradient-less bilinear surface pairing EDF is used that derives from the pseudo-potential

KK < p(é)
(% (o] = tpair 57’17"2 (1 — E) . (61)

The smooth cut-off [138] is used for the active pairing space, such that it includes roughly one
major shell, from 5 MeV above to 5 MeV below the Fermi level.

6.3.2 Fields and densities

Fields and densities obtained in '32Sn are reproduced in F1Gs. (6.6,6.7) and do not display
strong differences compared to those obtained from traditional (quasi) bilinear functionals. It
appears that trilinear functionals lead to smoother central fields and densities as well as to
spin-orbit fields and densities that are very slightly shifted towards the interior of the surface.

6.3.3 Binding energies

A systematic of binding energies is displayed in FiG. 6.8. The binding energy differences
between theory and experiment is shown as a function of mass number and isospin asymmetry.
Generally speaking, arches are greater for newly developed parameterizations. However the
wrong trend that tends to overbind small-A nuclei and underbind large-A nuclei is attenuated
for trilinear parameterizations thanks to the larger volume energy coefficient compared to SLy4
[134], which is a tendency of the trilinear parameterizations as previously discussed. However the
value of the energy per particle for trilinear parameterizations is larger than the one advocated
by Bertsch or Niksic [133, 134]. It seems that the ideal value for such functional is thus higher
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Figure 6.8: Energy differences between theory and experiment as a function of A and
N — Z. Isotonic and isotopic chains are joined by lines.

SsLy o ™/™ | S4LyTl  SsLyR, SsLylS, SsLydl, SLy4
Isotopic chains

Ap (MeV) 2.18 2.02 1.79 1.19  0.75

A‘E‘ (MeV) 2.74 2.61 2.42 2.01 2.63

op (MeV) 2.40 2.36 2.28 2.05 3.12
Isotonic chains

Agr (MeV) 0.73 0.63 0.47 0.05 -0.54

A‘E‘ (MeV) 1.63 1.56 1.46 1.38  1.67

op (MeV) 1.87 1.82 1.76 1.70  2.03

Table 6.5: Average of the theoretical and experimental energy differences and of their
absolute values, as well as rms deviations, for isotopic and isotonic chains.
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than for traditional (quasi) bilinear EDFs. Similarly, nuclei with large isospin asymmetry are
now as underbound as nuclei with small isospin asymmetry. Also the parameterization with the
largest value of the isoscalar effective mass SgLy%O reproduces the best experimental masses
with the smallest. This follows the trend seen with (quasi) bilinear parameterizations [139].

More quantitative comparisons can be performed by computing [140, 141] the average of errors

AE = <Eth. - Eexp.> ) (62)

as well as of the errors absolute value A‘ g| as well as the rms deviation

O'E:\/<(AE—AE)2> 5 (63)

for each parameterization, see TAB. {6.5}. The average error is smaller for SLy4 parameter-
ization than for trilinear EDF ones as a result of compensation effects induced by the wrong
mass trend mentioned above. On the other hand, A| g| and rms deviation are larger for SLy4.
Trilinear parameterizations are thus better to reproduce experimental binding energies, and
S3LySi, is the best of all. It also appears that isotonic chains are better reproduced for all four
parameterizations compared to SLy4.

6.3.4 Radii
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Figure 6.9: Difference of theoretical and experimental charge radius differences as a
function of A and N — Z.

The difference between theoretical and experimental charge radii is displayed in F1G. 6.9 as a
function of mass number and isospin asymmetry. In this case there is no difference between small
and large mass number or isospin asymmetry. However it can be seen that SLy4 systematically
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S3LY}(OOT o™ | SsLyly SsLyB, SsLylS SsLydl, SLy4
Isotopic chains

A,, (1072 fm) -1.0 -1.6 -14 1.8 1.7

Ay, (1072 fm) 1.8 2.2 2.0 24 1.9

or, (1072 fm) 1.8 1.9 1.9 1.8 22
Isotonic chains

A, (1072 fm) 0.5 0.0 0.1 -0.3 35

Ay, (1072 fm) 1.6 1.7 1.5 1.8 36

or, (1072 fm) 2.5 2.5 2.4 25 2.7

Table 6.6: Average of the theoretical and experimental charge radius differences and
of their absolute values, as well as rms deviations, for isotopic and isotonic
chains.

over-estimates charge radii, while trilinear ones under-estimate them. Even if adding dynamical
correlations will increase charge radii overall, it will not be sufficient in most cases to agree well
with experimental data [142]. Still it is more comfortable to underestimate experimental data
at the SR-EDF level.

Overall, all four trilinear parameterizations give rather similar results for charge radii. On a
more detailed level, SgLygéO appears to be the worst parameterization and SgLygéO the best. It
can be seen from the average of the errors and the rms deviation given in TAB. {6.6}. Trilin-
ear parameterizations are slightly better than Sly4. All three parameterizations behave very
similarly with no significant trend among them, i.e. the variation among the set is negligible
compared to the difference with SLy4.

6.3.5 Two-nucleon separation energies

Two-neutron and two-proton separation energies

Son(N,Z) = E(N —2,7Z) — E(N, Z) , (6.4a)
Sop(N,Z)=E(N,Z —2)— E(N,Z) , (6.4Db)

are presented in F1Gs. (6.10,6.11). Differences between parameterizations are insignificant com-
pared to differences with data. Theoretical and experimental separation energies differ the most
in tin and lead isotopes around magic shell gaps, showing that level density around Fermi level
is not large enough as a result of small effective masses and missing correlations [142]. Trilinear
functional parameterizations enhance slightly such a feature.

6.3.6 Pairing gaps

A measure of pairing correlations can be assessed through the extraction of pairing gaps.
The connection between finite difference mass formulae employed to extract the odd-even mass
staggering and theoretical gaps presently used is not straightforward [143—145]. A zeroth-order
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Figure 6.10: Isotopic chains separation energies.

comparison is obtained by displaying experimental three-point mass difference formula,

_ (=N
AB(N) = =5 [E(N —1,2) = 2E(N,Z) + E(N +1, Z)} , (6.52)
A7) = (_;)Z [E(N, Z —1)=2E(N,Z)+ E(N, Z + 1)} : (6.5b)

against theoretical spectral gaps at the Fermi energy calculated in even-even nuclei. Such a
comparison is shown in F1as. (6.12,6.13). Furthermore theoretical gaps presented in this study
do not take into account (i) time reversal symmetry breaking effects in odd nuclei, (ii) self
consistent blocking effects as well as (iii) dynamical pairing fluctuations, such that it is difficult
at this level to assess which parameterizations are performing best.

Trilinear parameterizations tend to generate smaller gaps, reflecting a smaller density spectrum
around the Fermi level. It has to be determined if this scattered spectrum is systematic and
global, even for parameterizations with large mg, or a local effect due to levels rearrangement.
Anti-pairing Coulomb effect is known to reduce proton pairing gaps with respect to neutrons
ones [146]. But theoretically proton gaps are also under-estimating experimental odd-even mass
staggering, due to the pairing functional structure. As a result of the neutron skin in heavy
nuclei, an isoscalar density dependence in the pairing functional, generates smaller proton gaps
than neutron ones. Adding an isovector density dependence to the pairing functional corrects for
this unwanted effect that is usually compensated for by using a stronger proton pairing strength
[147].

Eventually, the pairing functional we aim to develop will not be derived from a density-dependent
pseudo-potential but rather from the two- plus three-body pseudo-potential used for the particle-
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Figure 6.11: Isotonic chains separation energies.

hole part. This is necessary to avoid self-pairing effects and thus to perform safe MR-EDF
calculations [47-49].

6.3.7 Effective single-particle energies

Difficulties also arise regarding the definition and interpretation of single-particle energies.
Experimentally one accesses one-nucleon separation energies from two neighboring nuclei. In
EDF models, however, it is customary to discuss the shell structure in terms of the eigen-
spectrum of the one-body field h (EQ. 3.103). In case of magic nuclei and assuming a magic
core neither subject to rearrangement or polarization effects nor to any collective excitation
following the addition or removal of a nucleon, separation energies with eigen-states of the odd-
mass neighbors are equal to single-particle energies, Koopmans’ theorem is fulfilled [148]. This
highly idealized situation is modified by static and dynamic correlations, e.g. core polariza-
tion and particle-vibration coupling, that fragment the single-particle strength, and thus alter
one-nucleon separation energies. When the fragmentation is significant, the naive comparison
between calculated single-particle energies and experimental separation energies is not mean-
ingful anymore [149]. It is however possible to extract a posteriori from a strongly correlated
system an effective single-particle shell structure, from which correlations are to a large extent
screened out, as centroids of separation energies [150-152]. Such centroids are shown, within
SR-EDF method, to precisely correspond to eigenvalues of the one-body field h [153].

As a result, one should compared both experimental and theoretical separation energies, which
is difficult to compute for the theoretical part, or both experimental and theoretical centroids
of separation energies, i.e. effective single-particle energies, which is hard to assess from experi-
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Figure 6.12: Neutron theoretical spectral gaps against experimental evaluation of odd-
even mass staggering extracted through three-point mass formulas, for
isotopic chains.

ments. For the present discussion, experimental separation energies are compared to theoretical
single-particle energies. The effective single-particle shell structure of selected doubly-magic nu-
clei is discussed at the SR-EDF level, i.e. omitting core polarization effects. The single-particle
spectrum of tin isotopes is reproduced in F1G. 6.14, while selected spin-orbit splittings, defined
through [154]

Ael = 2l—}|—1 <€j:l—1/2 — ej:l+1/2) s (6.6)

and spin-orbit centroids, defined thanks to

S %szlﬂ/z + %liej:llﬂ ) (6.7)
are shown in F1G. 6.15 and F1G. 6.16, respectively. One observes that
— Spin-orbit splitting of pairs of levels located on opposite sides of the Fermi energy are
not safe at the SR-EDF level. The level that is below Fermi level, for such pairs, is
the so-called intruder state. Polarization effects entering in the core state energies affect
significantly such splittings [149]. Such pairs of single-particle states are indicated in red
in F1as. (6.15,6.16).
— Pairs of single-particle energies that are far from the Fermi energy are likely to relate to
a strongly fragmented strength, such that they are likely to have lost their single-particle
nature. Those pairs are indicated in blue in F1Gs. (6.15,6.16).
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Figure 6.13: Proton theoretical spectral gaps against experimental evaluation of odd-
even mass staggering extracted through three-point mass formulas, for
isotonic chains.

As a consequence, EDF calculations should overestimate empirical spin-orbit splittings for red
pairs, that are expect to be decreased by polarization effects. Looking at F1G. 6.15 we observe,
however, that all parameterizations give values that are already close to experimental ones, or
even smaller for trilinear parameterizations. On the other hand, spin-orbit splittings of blue
pairs, that are not expecting to be changed adding polarization effects, are in general too large
for all the parameterizations, but tend to be smaller for trilinear parameterizations compared
to (quasi) bilinear one. Consequences of such wrong trend has been discussed in [155]. Trilinear
parameterizations do not provide any improvement in that respect.

On this side, improvements might come from the inclusion of the spin-orbit three-body pseudo-
potential that could be adjusted to improve those particular features.

Differences between parameterizations for spin-orbit centroids are small, there is thus no
advantages or disadvantages to use trilinear or (quasi) bilinear parameterizations.

It appear that (F1as. (6.14,6.16))
Spin-orbit centroids of high-1 intruder states, such as wlg, v1h for 132Sn and 71h, v1i for
208Ph, are close to experiments
Spin-orbit centroids of states that are both above the Fermi level, such as 72d, v2f for
1328n and 72f, v2g for 2°8Pb, tend to be overestimated
Spin-orbit centroids of states that are both below the Fermi level, such as v2d for 32Sn
and 72d, v2f for 2°8Pb, are strongly underestimated.
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Figure 6.15: Relative theoretical-experimental differences of selected spin-orbit split-
tings. Red levels correspond to spin-orbit splitting that are on opposite
side of the Fermi energy, and thus not safe at the SR-EDF. Blue levels
correspond to spin-orbit splitting far from Fermi energy and thus do not
have a clear single-particle nature.

As a consequence intruder states are sometimes wrongly put above states below the Fermi level,
e.g. intruder state v1hyy )y is above v2dgz/5 and 3sy /o levels in tin isotopes, see F1G. 6.14. This
problem is shared by all standard mean-fields methods [155], which compromises the description
of entire mass regions.
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Breaking and restoration of symmetries

The first part of the present document reviews the notion of symmetry breaking and restora-
tion within the frame of the nuclear energy density functional (EDF) method (see CHAPS. 1,2).
Multi-reference (MR) EDF calculations are nowadays routinely applied with the aim of includ-
ing long-range correlations associated with large-amplitude collective motions that are difficult
to incorporate in a more traditional single-reference (SR), i.e. "mean-field”, EDF formalism [45].

In the present work, we elaborate on key differences between pseudo-potential-based and
more general implementations of the EDF method (see CHAPS. 1,2). In particular, we point
to difficulties encountered when formulating symmetry restoration within the EDF approach.
The analysis performed in Ref. [48] to tackle problems encountered in Refs. [68-70] for particle
number restoration serves as a baseline. Reaching out to angular-momentum restoration, we
identify in a pseudo-potential-based framework a mathematical property of the energy density
gLM (ﬁ) associated with angular momentum restoration that could be used to constrain EDF
kernels (see CHAP. 2 and Appendix E). Consequently, possible future routes to better formulate
symmetry restorations within the EDF method could encompass the following points.

— The fingerprints left on the energy density £ (E) by angular momentum conservation
in a pseudo-potential-based method could be exploited to constrain the functional form
of the energy kernel E[p, k,k*] when using a more general implementation of the EDF
method.

— The regularization method proposed in Ref. [47] to deal with specific spurious features of
MR-EDF calculations should be investigated as to what impact it has on properties of the
energy density XM (ﬁ) in the case of angular momentum restoration.

— Similar mathematical properties extracted from a pseudo-potential-based method could
be worked out for other symmetry groups of interest and used to constrain the form of
the EDF kernel.

Efforts in those directions are currently being made [85]. An alternative consists of sticking to
a well-defined pseudo-potential-based EDF method. However, there does not exist at this point
in time such a parameterization of the EDF kernel that provides good enough phenomenology.
The second part of the present thesis was dedicated to building such a parameterization.

Three-body Skyrme pseudo-potential

The second part of the present document deals with the development of a three-body Skyrme
pseudo-potential added to the usual two-body one (see CHAPS. 3,5,6).

First, the most general three-body Skyrme pseudo-potential was designed and the correspond-
ing EDF kernel was derived (see CHAP. 3). Second, the two- plus three-body pseudo-potential
parameters were fitted to nuclear observables following a procedure close to the one used in
the past to build Saclay-Lyon parameterizations of (quasi) bilinear functionals (see CHAP. 5).
Eventually, it seems possible to generate a parameterization that strictly derives from a pseudo-
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potential and that provides as good results as state of the art (quasi) bilinear functionals (see
CHAP. 6). This is of great interest in view of performing safe MR-EDF calculations.
Outlooks of the present work are numerous and can be summarized as follows.

Functional form

The analytical derivation of the EDF from the central three-body pseudo-potential has con-
stituted an important and non straightforward part of the present work. Further steps need to
be accomplished in that respect.

— The derivation of the pairing functional corresponding to the pseudo-potential developed in

CHAP. 3 is the most crucial part, as it is needed to perform fully safe MR-EDF calculations.
Such a derivation will follow similar steps as for the normal part of the EDF kernel, such
that minor improvements of the formal computation code should be sufficient to perform
this derivation.

— It is also necessary to derive the contributions of the three-body spin-orbit and tensor
pseudo-potentials to the EDF kernel. This is of interest in view of improving the pre-
dictions of the one-nucleon shell structure. The formal computation code is expected to
be more involved as one has to deal with the coupling between gradients and spin Pauli
matrices that characterizes such pseudo-potentials.

— The derivation of the EDF from a four-body gradient-less pseudo-potential is straightfor-
ward and has already been performed.

Fit procedure

In this preliminary study, we have produced trilinear parameterizations using the standard
Saclay-Lyon fitting procedure. In the future we aim at developing a more advanced fitting
procedure.

— First, one needs to study if a gradient-less four-body pseudo-potential allows a better
control of SNM critical and inflection densities, p.; and ping, as well as of spin instabilities,
the latter being the weak point of the trilinear parameterizations developed in the present
work.

— Modern INM EOS coming from ab-initio methods are also planned to be used, in particular
for PNM. It would be also interesting to see if the adjustment of the parameterizations
on effective two-body (S,T) channels and/or partial waves of the SNM EOS is possible.
However, this necessitates the extraction of the effective two-body vertex from our three-
body pseudo-potential.

— An analog study to the one performed in [117] on finite-size instabilities is necessary for
our trilinear parameterizations. This is underway. Eventually, the aim is to couple the
RPA code that accesses such instabilities to the adjustment procedure in order to reject
unstable parameterizations.

Other improvement