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Introduction






Chapter 1

Mountain forests: an unknown resource

1.1 Definitions

1.1.1 Mountain areas: a complex environment

Mountain areas are principally associated to the idea of a harsh environment due to topographic
or climatic constraints. However this general idea is expressed differently in the national def-
inition across European countries. A report about mountain areas in Europe [3] proposes a
unique reference based on altitude categories combined with slope and elevation range criteria
(table 1.1). This classification reflects the fact that even at lower altitudes, where climatic con-
ditions are milder, extreme topographic features (e.g. average slope or local variations) may also
qualify an area as mountain. In this document, this general definition of a mountain area is
adopted.

Table 1.1: Definition of European mountain areas (after [3])

Elevation Additional criteria
category (m)
> 2500 none

1500—2499 slope greater than 2 degrees within 3 km radius
1000—1499 slope greater than 5 degrees within 3 km radius or local elevation range
greater than 300 m within 7 km radius
300—999  local elevation range greater than 300 m within 7 km radius
0—299  standard deviation greater than 50 m for cardinal points

In mountain areas, rough and steep topography induces a high variability of factors affecting
vegetation and more particularly trees: soil type, water resources, exposure, temperature. Ex-
ternal stress factors such as snow and avalanches, erosion and rockfalls also have a high influence
on forests. The resulting ecosystems exhibit both diversity and complexity. Forests display a
great heterogeneity vertically and horizontally at local scale. At large scale, the climate varia-
tions linked with altitude gradient determine various vegetation belts characterized by different
ecosystems [240] (figure 1.1). Forest are located from downslope to the subalpine areas. In this
document, mountainous forests will refer not only to montane or subalpine areas, but also to
forests located in the hill area.
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altitude (m)

Figure 1.1: Vegetation belts in the external Alps (after [10, p. 158]).

1.1.2 Forest stands in mountainous areas

“A stand is a spatially continuous group of trees and associated vegetation having similar struc-
tures and growing under similar soil and climatic conditions” [239]. Due to the characteristics
of mountain forests, the delineation of homogeneous areas, both in terms of forest structure and
environmental conditions, is not straightforward. Moreover, in complex stands the intra-stand
variability may be of similar magnitude than inter-stand variability |26, p. 88]. The objective
of the selection of homogeneous areas implies scaling down to the level of small tree groups. A
study conducted to determined the optimal spatial resolution for the delineation of mountainous
forest stands from optical images showed that there is no specific resolution that allows a precise
pixel-level delineation of all stands [58]. Figure 1.2 displays two forested areas located in the
town of Villard-de-Lans, France. On figure 1.2a, five stands can be delimited, each one being
rather homogeneous. The extreme example is the young plantation at the bottom right. On
figure 1.2b, the forest is more heterogeneous and stand delineation is not so easy. A trade-off
between intra-stand variability and stand size has to be defined, depending on both the available
prior knowledge of the area and on inventory objectives.

(a) Homogeneous forest patches (b) Heterogeneous forest

Figure 1.2: Orthophotos of two forested areas around Villard-de-Lans (BD ORTHO ®).

In less complex environments, forests stands depend on growth conditions but also on the sil-
vilcultural operations that have modelled them through time. A simple example is the even-aged
plantation, where all trees in a given stand have the same age. Frontiers between adjacent stands
with different ages are well-delimited. In mountainous environments, silvicultural operations are
made at the tree [270] or tree group level [204], so that human interventions do not imply the
transformation of forests into a patchwork of homogeneous stands. Forests stands are organized
in units with continuous transitions that evolve differently depending on the local conditions.
Growth conditions and operational constraints thus prevent the regularization of structures but
allow the persistence of “irregular”, stratified stands [263, p. 95]. This heterogeneity poses a
double problem. A fine mapping of forest resources is required to optimize the silvicultural op-
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erations, but the mapping operation itself is all the more problematic since forests display high
variability.

1.2 Limits of current inventory methods

1.2.1 Field inventory

Exhaustive knowledge of a forest requires the full inventory of forest stands, which is all the more
labor-intensive and costly as forest accessibility is limited. In mountains the access network is
not dense and topographic conditions such as slope and terrain roughness make off-track moves
very difficult. Except for particular cases, such as harvesting planning in stands with high
economical value, full inventories are rarely implemented. Standard procedures are now sample-
based inventories, where plots distributed regularly or according to a stratified scheme over the
investigated area are inventoried [69]. Depending on the sampling intensity and on the variability
of forests, such procedures provide reliable forest attributes estimates at the compartment or
higher level, i.e. for areas larger than several hectares. Unfortunately, field data collection is
still laborious and difficult to implement in remote areas, and lacks in information on the spatial
distribution. Indeed, the scale of analysis is not sufficient for operational purposes, when tree
groups are considered. For an efficient forest management in mountainous areas, a finer mapping
of forest attributes is required, but is cost-prohibitive for large areas.

In the Rhone-Alpes region, more than 60 % of production forests (poplar plantations ex-
cluded) are located in areas with slope greater than 30 % (table 1.2). Figure 1.3 shows a map
of forests in the Rhone-Alpes region. They are mainly located in mountainous areas: Alps and
Jura mountains in the East, and Massif Central at the West of the Rhone valley. Therefore,
areas where the lack of spatial information represents a major restraint for forest management
accounts for a significant part of forest resources.

Table 1.2: Production forests (poplar plantations excluded) area and volume in Rhone-Alpes region, by
slope category (data from the French Forest Inventory, available at http://www.ifn.fr/spip/?rubriquel8,
accessed May 9", 2011)

Slope category (%) Area (x10% ha) Volume (x10° m?)

0-5 109+15 1644
5-15 138£16 2216
15—-30 279422 5348
30—50 448427 8610
> 50 462+26 90+9
unknown 38410 T3
total 1475431 274414

1.2.2 Remote sensing

With the growing number of operating sensors and commercially available data, numerous studies
have tested the possibility to map forest structure variation at fine scale by combining field data
with spectral imagery [123] or radar [295]. Despite the spatial resolution attained by recent
sensors and the possibility to estimate attributes at the tree level, the extraction of information
on the vertical and horizontal canopy distribution is not straightforward, as geometric information
is only indirectly assessed, e.g. by correlation methods. Besides, the variability of forest stands
in France makes the fully-automated retrieval of forest parameters from optical data a difficult
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TR
(a) Rhone-Alpes region (b) Forest areas (M red)

Figure 1.3: Forest areas in Rhone-Alpes region (category 31 of Corine Land Cover database, 2006 [5]).
Background is the digital terrain model (BD ALTI®).

task. Until recently, the French National Forest Inventory mainly used manual stereo photo-
interpretation for land cover classification and stand delineation, and quantitative estimates were
only based on field plots. At large scale (e.g. French administrative département or région), these
values are trustworthy, but they are not available at finer resolution.

1.3 Increasing stakes

Despite its harshness, the mountainous environment has been modeled by human activities for
centuries and forests still assume major functions regarding the local and global economy:

- timber production (figure 1.4a);

- outdoor recreation area for hiking, skiing ... (figure 1.4b);

- protection of human stakes against natural hazards (figure 1.4c);
- watershed protection;

- reservoir of biodiversity (figure 1.4d).

. »Fra'rjc' Fauriier

i

(a) Timber logging (b) Leisure area (c) Block stopped by tree (d) Glaucidium passerinum

Figure 1.4: Some services provided by mountainous forests: economic (a), social (b), protection (c) and
ecological (d).

In some rural areas, the wood sector still represents an important part of the economical
activity. Since the beginning of the 1980’s, mountain forest have been progressively neglected
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due to increasing labor costs and decreasing wood prices. As a result, many forests have been
continuously increasing their growing stock and have reached a development stage where stand
stability is in jeopardy. Besides, forests are now gaining consideration with the economic and
social requirements for local and renewable materials and energy [89].

Beyond the wood and paper industry, forest management is also a major tool for the preser-
vation of mountainous areas. During the second half of the nineteenth century, a broad af-
forestation program was undertaken by the French water and forest administration in order to
mitigate erosion and natural hazards in degraded areas. 150 years later, some stands reach a
stage at which their protective effect might decrease significantly. More generally, forest stands
ensure protection of human assets against natural phenomenons such as avalanches, rockfalls
and torrential floods. Their protective effect depends on the forest structure and varies with
development stages (figure 1.5). Forest attributes have to be precisely monitored so that their
protection effect is reinforced by silvicultural operations, or complemented by civil engineering
if necessary [10, p. 31|

At global scale, concerns about greenhouse gases and the loss of biodiversity are growing.
Mountainous forests now represent a major source of woody biomass. Besides, due to inherent
ecosystems diversity and to a lower human density, they are also natural habitats to numerous
plant (lady’s slipper orchid Cypripedium calceolus...) or animal species (e..g hazel grouse Bonasia
bonasia, Rosalia longicorn Rosalia alpina, Geoffroy’s bat Myotis emarginatus...) [10, p. 260].

This fragile equilibrium is constantly threatened or altered by economic and social changes.
To meet the increasing demands toward forest-related services while preserving the resilience
of mountain areas, methods that allow a cost-effective monitoring of forest parameters and
structures at relevant spatial resolution are needed.

exclusion
initiation g irregular
reinitiation
old growth
collapse

Figure 1.5: Spruce development stages in the northern Alps (adapted from [10, p. 61] and [263]).
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Chapter 2

Airborne laser scanning for forest
applications

2.1 A fast developing technique

2.1.1 History

Airborne laser scanning (ALS) is a remote sensing technique based on the measure of the flight
time of laser pulses emitted from an aircraft and reflected by objects located on the ground.
Its fast development during the two past decades has been made possible by the technological
advances of global positioning system, inertial navigation, and lasers. At the beginning, LiDAR
(Light Detection And Ranging) sensors boarded in aircrafts or satellites only operated on one-
dimensional (1D) profiles along the platform path. Sensors are now equipped with orientating
devices and are able to scan large swaths along the platform trajectory. By the end of the 1990’s,
the pulse repetition frequency of small footprint, commercial sensors was around 10 kHz [18], and
service providers were only emerging. Now, leading sensors achieve a pulse repetition frequency
of 300 kHz with the multipulse technology. Some countries have undergone a complete LiDAR
coverage (Switzerland, Denmark) and wall-to-wall mapping is under way in some others (Finland,
Sweden).

2.1.2 Principles

The main components boarded in the aircraft are:

global positioning system (GPS),
inertial measurement unit (IMU),
- laser emitter-receiver scanner,
storage device.

A laser pulse is fired toward the Earth in a direction given by the orienting device (oscillating
mirror, rotating prism). For vegetation and topographic mapping purposes, the laser wavelength
is usually around 1000 nm, which assures correct reflectance values for a broad range of materials.
Whenever the laser pulse is intercepted by an object, part of the energy is reflected toward
the receiver and recorded. When the object is not solid or too dense (e.g. tree branches)
a sufficient part of the laser beam may also continue its trajectory and be reflected by lower
elements, eventually the ground surface (figure 2.1). This characteristic of laser scanning is of
high importance as it allows to characterize the underlying 3D structure of the vegetation and
to accurately detect the soil surface even in dense canopy areas.

3

9
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second echo:
branches

first echo: treetop

last echo: ground

Figure 2.1: Principle of range measurement by airborne laser scanning.

The range to reflecting objects is computed as R = ¢ X % where t is the fly-around time
and ¢ the pulse speed in the atmosphere, assumed to be equal to the speed of light. On analog
scanners, t is determined in real-time by detecting the time when the leading edge of the reflected
signal reaches a given threshold [17]. Such systems are able to store one to several echoes for each
emitted pulse. They are called multi-echo laser scanners. In recent scanners, storage capacity
has been greatly increased so that the full waveform of the reflected pulse is digitized. The post-
processing of the data allows a finer detection (number and coordinates) and characterization
of objects located within the footprint of the laser pulse [116,307]. The footprint, which is the
surface illuminated by the laser beam, depends on the divergence of the laser and on the range.
Laser scanner with footprint size smaller than one meter are considered “small-footprint”. Their
range accuracy, which mainly depends on the width of the emitted pulse, is usually around
15 cm. The orienting device makes laser pulses sweep across the aircraft trajectory. Swath width
is determined by the flying altitude and the scanning angle. LiDAR data are usually acquired
in multiple, overlapping flying strips. A comprehensive description of relations and formulas for
airborne laser scanning is available in [17].

Back in the office, objects coordinates are computed with the information from the on-board
and ground-based components:

- range and pulse angle (laser emitter-receiver),
- plane trajectory (on-board GPS and ground reference stations)
- plane attitude: yaw, pitch and roll (IMU).

Further processing includes laser strip adjustment to correct for hardware calibration errors,
and detection of erroneous points: high points due to atmospheric noise and low points due to
multiple reflections. For a small-footprint laser scanner, accuracy of the final 3D point cloud
is typically 25 cm (planimetric) and 15 ¢cm (altimetric). Point density varies greatly depending
on acquisition parameters and desired applications, from one to more than one hundred points
per square meter. For small footprint lasers, the 3D point cloud contains precise geometric
information related to the objects which constitute the canopy cover. For large footprint lasers,
the coarser planimetric resolution is generally compensated by the full waveform digitization (e.g.
LVIS [25], SLICER [100,173| and spaceborne GLAS/ICESAT).
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2.2 Airborne laser scanning in forestry

2.2.1 First steps

The ability of LiIDAR sensors to detect ground surface even in forested areas was first used for
topographic purposes, mainly to derive accurate digital terrain models (DTM). However, the
accuracy of the geometric information about the vegetation structure quickly sparked interest
among the foresters. Following the development pace of the technology, forest stand parameters
were first estimated with LiDAR profiling altimeters [222], and then with laser scanners [223].
Height variables [187,222,223,226] and stand volume [223,227] were the first forest parameters
investigated but laser data also proved efficient for other stand parameters, such as leaf area
index, diameter and number of stems [173] or basal area [175].

At this time, large footprint LiDARs were mainly operated by NASA for research purposes,
but commercial small-footprint were becoming widely available thanks to topographic acquisi-
tions [200]. These first works showed the great potential for forestry applications, from stand
parameters estimation to land cover classification, wildlife management and habitat mapping [67].
Soon, pre-operational studies for large-scale stand attributes mapping were undertaken [199,205].

2.2.2 Fast development

In the early 2000’s, research on forest applications of airborne LiDAR developed considerably.
The existing methods, that had been principally tested on coniferous forests, were validated in
other contexts: with SLICER data over broadleaved forest [100], temperate deciduous, temperate
coniferous and boreal forest [174], with LVIS data on tropical rain forest [63,315]|, with small
footprint LIDAR on young forests [233| or northern hardwood forests [180].

The area-based method, which consists in the calibration of models linking quantiles of the
point cloud vertical distribution to forest variables, proved very convenient for the retrieval of
stand parameters such as height, mean diameter, stem density, basal area and volume [228,231],
or above ground biomass [181]. The method turned out to be efficient in various forest contexts
[233] and quite robust to the laser point density [122]. It was quickly implemented at operational
scale [231]. It was also successful in estimating tree properties e.g. total and crown height
[237], and also more complex stand patterns such as the Weibull parameters of the diameter
distribution [90].

Even tough this pragmatic approach adopted to predict forest parameters from laser-derived
quantiles proved efficient, further investigation of the waveform signal and its interaction with
the canopy was undertaken:

- simulation of LiDAR waveforms reflected by the canopy [285],
- decomposition of waveforms as sums of Gaussian components [116],
- modelling of waveforms with a time-dependent stochastic radiative transfer model [160].

Meanwhile, technological improvements in pulse repetition frequency soon allowed point cloud
densities sufficient for single tree delineation from small footprint LiDARs [136]. Most of the
studies relied on image processing techniques applied to canopy height models (CHM) [28,137,
168,252, 254] but some also tested point cloud processing [14,213] (figure 2.2). The methods
were rapidly improved in order to extract as much information as possible from the geometric
features of the delineated trees, e.g. crown diameter [255], length or volume. Researchers soon
faced the problem that suppressed trees were not easily detectable, hence the impossibility to
predict height or diameter distributions with this sole method. As a result, deriving stand-level
attributes from the aggregation of tree-level information remained problematic [190].

Whatever the approach, single-tree or area-based, concerns arouse about the sensitivity of
the algorithms to both the LiDAR acquisition parameters and the forest structure. Indeed
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Figure 2.2: Single tree reconstruction from Bayesian object recognition in the point cloud, image from [14].

the increasing number of different scanners and the various possibilities for planning a LiDAR
acquisition, altogether with the cost of LiDAR data, raised the issue of the optimization of
surveys. Some studies relied on real data to assess the influence of acquisition parameters on
estimated forest attributes, e.g. with LVIS data in tropical environments [64], or with small
footprint LiDAR (effect of sampling on height underestimation [88], effect of flying altitude [230]).
Simulations were also used as a convenient way to test several parameter combinations [120,319]
which would have been unaffordable in real-size experiments.

While some studies focused on the potential of LiDAR data alone for the retrieval of various
forest parameters, e.g. geometric information [121,297] or intensity information [180,184| for
species classification, others tried to take advantage of the synergy with optical sensors. Indeed
the spectral information is more relevant than ALS data for tree species identification [99, 136,
205|. Besides, the large-scale availability of optical spaceborne data is useful for wall-to-wall
mapping of forest attributes such as canopy height [130,205,317|. Indeed, LiDAR can be used as
a calibration or validation tool for the structural analysis of vegetated ecosystems with spaceborne
optical sensors [44]. Moreover, the combination of LIDAR and spectral data proved to be superior
to the use of any of them alone, e.g. for tree crown delineation [49].

The potential of LIDAR data for a broad range of ecological applications was quickly identified
[177], including its use in carbon content [131,250] or gross primary production [161] studies.

2.2.3 Diversification

At this stage a great part of exploratory analysis of LIDAR potential for forest applications was
done and basic methods had been tested on numerous datasets. Then LiDAR research expanded
to a wide range of applications and tackled large-scale related issues.

Investigations on waveform modelling [41,42,145,247|, calibration [35,158,307] and on the
forest /signal interaction [40,157,286] increased as more and more full waveform small footprint
scanners were commercially available. These methods allow a finer detection of echoes and
the extraction of calibrated attributes. Such information proved useful for species classification
[8,306]. Reversely, pseudo-waveforms can be reconstructed from multi-echo sensors data [218].
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The issue of tree species classification indeed turned out to be an important pre-requisite
for stand classification or species-specific attributes estimations. Some interesting results were
obtained with LiDAR data alone [27,59,121, 159, 209, 287, 300], by taking advantage of points
attributes, such as intensity [152,241|, backscatter coefficient [8,306] or directly from the full
waveform data [103,261]. Species classification was also facilitated by the synergy with spectral
data. The issue of deriving species-specific estimates received considerable attention [129], e.g.
for volume [224,243], stem number and diameter [244]|, or diameter distribution [253].

Synergies with other remote sensing data were also investigated. LiDAR was compared
[128,151,271] or used with radar data [133,186,221,275]. Comparison were also made with
multispectral data [49,248,305] and combined used of the data was tested [186,196,256|, even
at the single tree level [163,168,283], or with the underlying idea to combine LiDAR accuracy
with optical wall-to-wall cover [107,197,288,308|.

Indeed, the methods were increasingly used at operational scale, e.g. in Scandinavia [229,232],
England [309], Alaska [11]|, Denmark [225]. This raised the issue of the validity of models devel-
oped at smaller scales [97,102,176,188,281,291|. Several studies proposed or compared various
prediction methods [75,189,244]. At operational scale, the problem of the aggregation of stand pa-
rameters from single tree attributes remained unsolved. The estimation of tree distribution [195]
or the calibration of tree lists [182] have been tested as possible solutions, and alternative meth-
ods were proposed for the imputation of single tree attributes [299]. Some of them may be seen
as a convergence between the single-tree and the area-based approaches, the considered areas
being previously delineated single tree segments 30, 31].

2.2.4 Applications

The range of LiDAR applications kept broadening, applying to several scientific fields and dif-
ferent scale levels. Regarding land cover classification 32, 33|, LIDAR proved efficient for stand
delineation and forest classification [52,57] (figure 2.3a). Some studies focused on particular
ecosystems, such as riparian forests [15], or cottonwood [78 80|. LiDAR is generally a well-
suited tool to qualify the structure of forest stands [47,93,98,127,147,150,167,207,214,249,326],
but also of the understory [114,141,194]| or ground vegetation, e.g. with herb-rich forests [302].
Particular or general features of the forest can be detected or assessed with laser data, e.g. canopy
gaps [20,87,162,323], canopy fractional cover [126, 198, 274]|, forest maturity [313].

o LFl plots
Growing
stock
(m*ha™)
20

(a) Automatic stand delineation in the Black Forest (b) Stem volume map of Vorarlberg (Austria, image
(Germany, image from [57]) from [117])

Figure 2.3: Examples of operational applications of LIDAR remote sensing
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Such information is then useful for ecological applications such as dead standing biomass
assessment [153], habitat mapping [21,22,108,132,219|, particularly related to avian species [46,
96,109], or ecosystem studies (light interception [170], leaf area index [38,142,267,269,278,324],
forest pigment mapping 24|, pest control [48,266]).

Georeferenced data is of great interest for forest management. This includes risk manage-
ment, e.g. with forest fire modelling [265], and estimation of fuelwood |12, 73,183,264, 273] and
past damages [165,316,318]. Predicted stand parameters are also useful to quantify the forest
protection effect against rockfalls [210,211|. Silvicultors are of course interested in all stand
parameters introduced in the previous paragraphs (height, diameter, basal area, stem number,
volume. .. ). Economical analyses showed that the investment in LiDAR-based inventory proce-
dures are justified by better resource management [71,124,140]. At single tree level, the geometric
information (e.g. crown base [54,298|, 3D surface reconstruction [149], stem volume [53]) allows
a better allocation by the forest practitioner, and can be used as input for virtual training en-
vironments [85]. LiDAR data is also useful for short and long-term forest change detection.
Growth or harvesting operations [235,320,321], tree migration [236], pest infestation [48], dis-
turbance dynamics [303,304] can be precisely monitored. Studies also showed the possibility of
retrospective analysis of optical data [279,280,301].

Today’s context of global warming and all its implications in global carbon cycle and stocks
assessment have also oriented LiIDAR investigations. Several studies have addressed the issue of
biomass mapping [68, 86,143,290, 294,325].

2.2.5 Main achievements in mountainous or complex environments

After the first experiments on coniferous forests, a broader range of forest conditions was in-
vestigated. Single tree methods were tested on temperate deciduous trees, including coppice
individuals [28], heterogeneous mixed stands in boreal forest [193|, uneven-aged broadleaved
stands [163] or mixed stands [104]. Area-based methods were also tested in various conditions,
e.g. broadleaved [139], mixed [106,238|, mixed multilayered forest |[292]. In complex stands, such
as mixed deciduous ones, the forest structure was more difficult to characterize [112]. Additional
LiDAR-derived attributes were proposed to address this issue in multilayered forests [169].

Alpine environments were also investigated. The effect of footprint size and sampling density
[110], topographic factors [111] on individual tree delineation were evaluated. Major works
include the retrieval of canopy structure from LVIS data in montane forests [132], estimation
of tree heights in sugi (Cryptomerica japonica) plantations [289]. Single tree [104] and area-
based [106] methods were tested on forests stands located in Germany. Studies also tried to
define simple indices able to predict stand parameters at operational scale [117-119, 143, 272]
(figure 2.3Db).



Chapter 3

Objectives

If LIDAR-based inventories are now commonly used for commercial mapping of forest resources
in boreal forests, their operational development in areas where they would bring the most added-
value is still lagging. In France, a combination of several factors explains this lateness:

e the complexity of forest stands that prevents a simple transfer of methods developed in the
Scandinavian countries,

e the lack of geolocated field data required to test and calibrate the retrieval models,

e the absence of commercial or public entity willing to perform a large-scale test of LiDAR-
based inventory,

e the absence of concerted effort from the public authorities at various levels toward the
provision of consistent LiDAR datasets.

Meanwhile, there are high chances that this technology could solve several issues related to the
management of forest stands, particularly in mountainous areas where multiple aspects are at
stake.

This thesis aims at investigating the potential of LiDAR data for the retrieval of forest
parameters in mountainous forests, with a specific focus on three complementary aspects.

Due to the fast pace of scanner development and to the complexity of LiDAR surveys, there
is no standard procedure for the acquisition of ALS data for forestry applications, nor standard
LiDAR products. Chapter 4 introduces the main issues linked with acquisition settings, and
presents the workflow implemented to produce the ALS data used this work. Using airborne
laser scanning for the measure of geometric features of trees implies a change of point of view for
the pedestrian forester. Conventional tools used for field data collection must be questioned as
the point cloud is theoretically more accurate. The issues linked with the relevance of field data
protocols, emphasizing the constraints due to the mountainous environment, and the field data
used in this work are presented in chapter 5.

The single tree method requires less field data for model building, and produces information at
the tree level, which is of high added-value for operational use in mountain forest management.
Key issues are the robustness of detection algorithms regarding the forest structures and the
derivation of unbiased aggregated stand parameters. In this thesis, an algorithm based on local
maxima filtering is proposed, as well as a procedure for the automated assessment of detection
performance (chapter 6). With this framework, the sensitivity of the algorithm to parametriza-
tion and to forest structure is investigated (chapter 7). Finally, an unsupervised approach is
proposed for the parametrization of the algorithm (chapter 8).

Unfortunately, this method is not relevant for coppice stands where each tree is constituted of
multiple stems from a single stump (figure 3.1), or when the point cloud density is not sufficient
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to identifiy single trees. Therefore, the area-based method (chapter 9) has also been tested on
coppice stands, while tempting to address the some issues related to mountain environment:
variability of forest structures and lack of field data. The effect of training plot size on models
accuracy is investigated in chapter 10. Chapter 11 compares the retrieval accuracy of multiple
regression with a non-linear regression method based on support vector machines and addresses
the problem of taking advantage of the information of the point cloud with a limited number
of training data by testing dimension reduction techniques such as independent and principal
component analyses.

Figure 3.1: Common whitebeam (Sorbus aria) coppice.
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Chapter 4

Airborne laser scanning data

4.1 Acquisition and pre-processing

4.1.1 Acquisition parameters

LiDAR acquisition settings are more complicated than for an optical survey. Depending on the
laser scanner, but also on the type of aircraft, several parameters can be tuned by the operator to
obtain the desired ground sampling [17]. Along path point distance depends on scan frequency
and aircraft speed. Across path point distance depends on flying altitude, scan angle, scan and
pulse frequency. Footprint size depends on flying altitude and beam divergence. Final echo
density also depends on swath overlap. Those settings result in differences in the interaction
between laser pulses and the vegetation or ground. Several studies have tried to qualify or
quantify the way in which acquisition parameters influence the final laser data and its potential
for forest attributes extraction.

Due to the high cost of LIDAR data, many studies proposed to rely on simulations to op-
timize the acquisition parameters [94] or quantify the effect of a given parameter. Many works
investigated platform altitude [93,125,212,230], but also the question of footprint [13,110,125],
scan angle [120,212], slope [29] or point density [110,185,300]. The influence of acquisition pa-
rameters is enhanced in mountainous areas where topographic conditions make flight planning
more complicated and pulse interaction with the vegetation more variable, mainly because of
slope [110,246,282|. Season of acquisition also has a major effect as canopy interaction with
pulses changes between leaf-on and leaf-off conditions [238,242], even for coniferous stands.

Obviously, point density is one of the main factor regarding LiDAR potential for forest at-
tributes extraction. It directly affects the quality of the retrieved geometric information. Regard-
ing small footprint LiDAR, it is generally considered than area-based methods yield satisfying
results with point density around one point per square meter, whereas densities superior to ten
are required for single tree approaches. It is preferable to restrain scan angle, as in non-nadir
views the trajectory of a laser pulse is not vertical which leads to increased occlusion effects.

4.1.2 Processing

Once the data is acquired, several processing steps are required (figure 4.1). First, aircraft
trajectory and attitude during the acquisition are computed from the ground GPS reference
and the on-board GPS and IMU measurements. With full waveform data, echoes have to be
extracted from the raw files. Sensor coordinates of the echoes are then converted to georeferenced
coordinates with the previously calculated trajectory and attitude data.
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Figure 4.1: From raw acquisition data to georeferenced point cloud: processing steps.

Point clouds obtained from different flight strips are adjusted by matching overlapping areas
[172] and with the control surfaces acquired by GPS on the ground. As there is no guarantee
that LiDAR last echoes are reflected by the ground, terrain surface must be estimated before a
final classification of echoes into ground and non-ground points is edited. This task has received
considerable attention in the literature [6, 16,19, 36, 39,45, 72,74, 81,82, 138,146, 155, 164, 202,
206,260, 310,311,314]. This step is indeed crucial as altitude errors in the terrain surface will
propagate in forest attributes estimates. Algorithms often require an initial parametrization
and fail to handle areas where topography is highly variable [34|. A study pointed out the
fact that DTM accuracy is scarcely available in the literature, and that especially in forested,
rough terrain, evaluations of accuracy are likely to be rather optimistic [118]. Indeed, the low
penetration rate of the laser and the high variability of the terrain surface result in a ground
point density that is insufficient for correct terrain modelling.

4.1.3 Quality assessment

Quality assessment of the point cloud accuracy is generally performed by the data provider
thanks to control areas positioned on flat, homogeneous surfaces such as parking lots or roofs.
To evaluate the accuracy of the point cloud in forested areas with the same method, flat surfaces
are installed under the vegetation cover and georeferenced [213]. However, such approaches
are useful for point cloud adjustment, but do not really provide global evaluation of the DTM
accuracy. Indeed, it is influenced by both the original point cloud density and the classification
step. Due the limitations of GPS acquisition under forest cover, a comprehensive assessment is
difficult. One alternative is to compare DTM elevation to the GPS data acquired in non forested
areas, e.g. along the road network [118]. The same study reported that for gentle slopes (< 20%)
the root mean square error was below 20 cm, but increased for steep terrains. Similar values
were obtained with GPS data acquired directly inside forest plots [105], with standard deviations
around 0.3 m between reference and LiDAR data.

4.2 Quality requirement from the end-user perspective

Data quality, especially for full waveform sensors, is highly dependent on the processing steps that
are generally performed by the contractor (echo extraction, geolocation, adjustment, classification
and DTM computation). In mountainous areas, even adaptive filters for echo classification reach
their limits due to topographic complexity, and manual editing is too time-consuming to be
performed globally. Users must be aware of the precision level of the obtained data, and evaluate
if it matches their requirements. Indeed, for forestry applications, an altimetric precision of 0.5 m
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is still an improvement compared to field height measures whose precision is of metric order.

The research presented in this document focuses on the extraction of forest parameters from
the georeferenced and classified point cloud. Comprehensive evaluation of LIDAR data quality is
an interesting but full-time task. Therefore, the data provider was completely in charge of data
processing and quality assessment, except for a qualitative visual check of data located on the
reference field plots.

4.3 Airborne laser scanning datasets

4.3.1 Location

This work benefited from numerous LiDAR datasets acquired in the framework of other research
projects:

- PROVIALP, Protection de la viabilité alpine, projet n°165 Interreg III A ALCOTRA
(2005-2007) [4].

- IFP, Interreg Forét de Protection [2].

-  MANFRED, Interreg Alpine Space [1].

- CARRESS, Apport de la scannérisation aéroportée pour la caractérisation et la localisation
de la ressource forestiére, Cluster de recherche ENERGIES de la région Rhone-Alpes.

All areas are located in the Rhone-Alpes region, France (figure 4.2). The provider was always
Sintegra Photo (Meylan, France). Table 4.1 presents the LiDAR datasets.

Table 4.1: Areas covered by LiDAR acquisitions used in this work. Code for funding project.
1: PROVIALP, 2: IFP, 3: MANFRED, 4: CARRESS

Acquisition Area  Funding
Zone 1d date (km?)  project
Murianette Mur 2007 5.2 1
Vaujany Vau 2007 0.7 1
Chamonix Chm 2008 98.0 2,4
Chablais Chb  Aug. 24-26, 2009 100.0 2,4
Saint-Paul-de-Varces StP Aug. 27, 2009 8.6 2.4
Valdréme Val Sept. 20, 2010 6.2 3
Saint-Agnan-en-Vercors StA  Sept. 21-22, 2010  38.7 3

4.3.2 Acquisition parameters

All acquisitions were performed using a RIEGL LMS-Q560 sensor, except for a sub area of the
Chamonix acquisition, where a Leica ALS50-1T was used for the high altitude areas. The LMS-
Q560 was one of the first small footprint commercial full waveform scanner. The ALS50-II is
one the first multipulse laser scanner. Acquisition parameters are summarized in table 4.2. Last
acquisitions benefited from the experience gained during the first campaigns, in terms of both
sensor calibration and processing procedures. This resulted in a better accuracy and homogeneity
of the point clouds.

4.3.3 Processing procedure

The workflow implemented by the provider consists in the following steps:
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Figure 4.2: Location of airborne laser scanning surveys.

- computation of the aircraft path from the GPS and IMU data;

- echo extraction from the full waveform files with RiAnalyze;

- point cloud computation with RiWorld;

- flight strips adjustment with TerraSolid;

- point cloud automatic and manual classification with TerraSolid.

The procedure had to be adapted to the constraints of mountain environments. For example,
flight paths are oriented along contour lines so that flight height remains constant. Flight height
is also limited by the need to approximately follow contour lines that are quite sinuous in complex
terrain. To increase swath width at lower heights, and decrease the total number of flight strips
required for mapping of the whole area, scan angle is increased. However when terrain slope is
of the same magnitude that scan half-angle, laser pulses shot downslope range higher distances
before hitting ground, which leads to decreased position accuracy. Such points are excluded from

Table 4.2: LiDAR acquisition parameters for the covered areas. Scanner model code. 1: RIEGL LMS-
Q560, 2: LEICA ATLS50-T.

Area ID Mur Vau Chm StP Chb  Val  StA
Scanner 1 1 1 2 1 1 1 1
Pulse frequency (kHz) 200 200 200 85.6 120 120 170 170

Scan frequency (Hz) 111.1 73.3 1044 266 773 773 1114 1114
Half scan angle (°) 225 30 30 20 30 30 295 295
Flight height (m 050 500 550 2800 600 600 595 995
Footprint size (m) 03 03 03 06 03 03 0.3 0.3

Point spacing (m) 0.5 0.3 0.5 1 0.6 0.6 0.5 0.5
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the final datasets. When near vertical or overhanging cliffs are present, the point cloud is tilted
so that the 2D classification algorithm used in TerraScan [16] performs efficiently, and then tilted
back.

LiDAR data are delivered in ASPRS LAS format. The binary files contain the following
attributes for each point:

- coordinates (easting, northing, altitude or ellipsoidal height) in a given projection system,
usually Lambert 2 étendu or Lambert 93,

- intensity,

- position of the echo within the returns of the pulse (single, first of many, intermediate, last
of many) coded on two fields!,

- classification code,

- point source ID,

- GPS time'.

'"When the data is processed within TerraScan binary files, the original information about the absolute position
of the echo and the total number of returns for a given pulse is lost. Similarly, the GPS time is truncated which
makes it impossible to distinguish between successive pulses. Using LAS files in TerraScan allows to retain the
whole original information, which has been done for the Valdrome and Saint-Agnan datasets.
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Chapter 5

Field data

5.1 Introduction

5.1.1 A changing perspective

Diameter at breast height (DBH) is probably the easiest measurable dimension of a tree, and
therefore is used as a common and convenient proxy for other tree metrics [55|. Basal area
(planimetric area occupied by the horizontal section of one or several tree trunks at 1.30 m
height), is commonly used by silviculture practitioners to quantify the space occupied by trees
in a given stand, and their productivity. For a more accurate estimation of tree volume, or
to estimate site quality, tree height measures are required. Due to the difficulties linked with
tree height measures on the field, numerous height-diameter models have been proposed, and
calibrated for various forest conditions [293].

With airborne LiDAR acquisitions, tree heights are directly measured. The point of view of the
forester changes from a diameter-based to a height-based dendrometry. Some models originally
developed to predict height from diameter cannot be used in reversed way. This implies the
development and calibration of new models, with the LIDAR estimated height, but also other
LiDAR-extracted features, as variables [268].

5.1.2 An unexpected accuracy

LiDAR points planimetric and height accuracies are around 25 and 15 c¢m respectively. Such
values are close to or smaller than accuracy values for field measures of tree heights or global
positioning system accuracy for positions acquired below forest cover [148,220]. The availability
of such detailed information makes precision forestry at the tree or group of trees levels possible.
However, a point is reached where the tool to be evaluated has better precision than most of the
currently available reference tools.

5.1.3 Coregistration of specific field data

Even tough the geometric information is directly measured by airborne LiDAR, calibration of
models is still needed to refine height estimation or to predict other forest parameters. This
requires the availability of coregistered LiDAR and ground data, at the tree or stand level.
Unfortunately, field data that are routinely acquired, e.g. in the framework of French National
Forest Inventory (NFI), are not always directly usable. First, their geolocation may be missing
or too approximate to correctly match the LiDAR data, especially for single tree delineation
purposes. Second, many inventories are based on angle-count samples instead of fixed-radius
plots, which makes true correspondence of inventoried areas with LiDAR features impossible
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when trees are not mapped. However, some studies showed that such data could be used with
satisfactorily results [117,192|. Third, the number of plots is frequently too small within a
given ALS surveyed area, which makes the modelling and validation of algorithms difficult. For
example, the Chamonix dataset covers 100 km?2. 20 km? are forest area, which includes only six
plots from the French National Forest Inventory. They are fixed-radius plots with mapped trees,
unfortunately their coordinates are available with only 450 m accuracy, due to confidentiality
reasons. Therefore, testing the LiDAR data potential often implies the acquisition of specific
field data.

As a result, investigations on the operational use of LIDAR must take into account field data
requirements and constraints, and even question current inventory procedures in order to reach
a better synergy between remote-sensed and field data.

5.2 Field data collection in alpine environments

5.2.1 Geolocation
5.2.1.1 GPS acquisition in forested mountains

Precise coregistration of LIDAR and field data is a pre-requisite for successful exploitation of
LiDAR data. Unfortunately, the GPS signal acquisition in mountainous areas is quite erratic due
to the topographic mask. The number of visible satellites is reduced, and the probability is high
that they are aligned or grouped which results in a high positional dilution of precision (PDOP).
The acquisition periods with satisfactory accuracy are limited, especially in deep valleys, such as
Chamonix. The problem is enhanced for plots located on the ubac, as more satellites are usually
present in the southern part of the hemisphere, and for plots with dense canopy cover [148]. To
avoid bad precision under dense vegetation cover, one alternative is to acquire the GPS position
in a nearby cleared area and to locate the plot relatively to the GPS point [220]. This is possible
only if the relative positioning is itself accurate, i.e. points are located not too far apart and
positioning tools are adequate.

Another solution is to do without accurate GPS location and to position the point relatively to
some man-made or natural feature visible in the LIDAR data, such as remarkable rocks, buildings,
or previously installed targets [213]. However, the adjustment is then based on manual evaluation
and might be time-consuming. When trees have been mapped and their height measured, it is
also possible to directly match tree locations to features detected in the LiDAR data [60,61].

For the registration of our field data, the solution of relative positioning was excluded, based
on the following grounds.

- In complex environments, one cannot rely on the presence of a cleared area for better GPS
acquisition.

- One cannot rely on the existence of remarkable elements, as they might not be so easily
identified in the LiDAR data.

- Installation of targets is expensive and labour-intensive.

As one objective of this study is to evaluate single tree detection potential, ALS is not used to
geolocate the reference data (field tree maps). GPS signal is acquired directly on the field plots
by taking advantage of DTM availability to calculate of the elevation mask (see appendix B).
This information is then fed to GPS software to forecast the propitious acquisition periods.

5.2.1.2 Protocol for GPS acquisition

However, the elevation mask does not account for the vegetation mask that also lowers the number
of visible satellites and positioning accuracy, and one must be aware that under forest cover real
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position standard deviation is higher than announced by GPS post-processing softwares. The
study [220] reported mean position errors of 1.86 and 3.30 m for five minutes observation periods
in forest stands with basal area below 30 and above 45 m2.ha! respectively.

First trials with the available GPS equipment (Trimble Pro XRS receiver) revealed that
carrier phase processing is not possible in forested areas due to the impossibility of continuous
signal acquisition. Only pseudo range information is used, and the usual procedure is to acquire
300 positions on a one position per second basis, which ideally corresponds to five minutes of
continuous acquisition. Due to irregular reception, total acquisition time is frequently longer.
GPS data is then differentially post-processed using data from a fixed reference station located
in Valence (Drome) or Mogneneins (Ain). The position error €5 linked with distance to the
fixed station D is expected to be €post = 0.5 + % (half a meter plus 0.1 m for every additional
100 km of distance), which amounts to a maximum of 70 ¢m for plots that are located the further
away. Given this procedure and previous findings [148,220|, final position error is expected to
be around 1.5 to 5 m, depending on forest structure and local topography.

5.2.2 Mapping tools

The mapping equipment is also adapted to field work conditions. Due to the limited road access
network, equipment is sometimes carried for several hundred meters of climb, including off tracks.
Therefore, lightweight equipment is used. For tree mapping a clinometer and a compass mounted
on a tripod are used (figure 5.1). For distance measures hypsometers are used (VERTEX III and
IV), as they are more convenient than laser rangefinders when understory and bushes are present.
Hypsometers range is up to 40 meters in mature stands without understory, but are limited to a
few meters when bushes and small trees are dense. Given the instruments specifications, relative
position accuracy of trees is expected to be lower than 1 m for trees up to 40 m from the reference
point.

(a) Overview (b) Clinometer and compass

Figure 5.1: Tripod with clinometer and compass used for tree mapping.

5.2.3 Forest metrics

This section introduces the definitions of the main tree and stand parameters that are considered
in the document, as well as how they are estimated from field measures.
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5.2.3.1 Tree parameters

Diameter at breast height DBH is the diameter of a tree at 1.3 m vertical height from the
ground. In areas with slope, 1.3 m distance is measured upslope of the tree (figure 5.2a). As trees
are not actually perfect circles, in practice DBH is commonly estimated in two ways depending
on the used tool (figure 5.2b). With a caliper, it is estimated as the mean of two measures of
tree diameter taken at orthogonal directions d = dl;QdQ. With a ruban tape, it is estimated as
the diameter of the circle that has the same circumference ¢: d = ~. Diameter at breast height
d is the easiest measurable parameter for a tree, and is usually expressed in centimeters.

Total height Height is defined as the vertical distance between the ground level at tree stem
and the highest bud of the tree (figure 5.2¢). Contrary to DBH, measuring tree heights turns
out to be tricky, principally because of the difficulty to view the terminal bud of the tree from
a ground position. The literature also reports a tendency of LIDAR measures to underestimate
tree height [88].

= d: >
(a) Diameter at (b) Measures for diameter (c) Tree
breast height estimation height

Figure 5.2: Measure of the diameter and height of a tree.

Basal area The basal area g of a tree is the area of the horizontal section of the tree stem at
1.3 m height. In practice it is estimated from the DBH d or directly from the circumference c.
It is usually expressed in square meters (d and ¢ in centimeters).

wd? 2

_ __“ 5.1
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Stem volume The stem volume v of a tree depends on its diameter and height, but also on
its shape. The volume of a reference tree in a given stand is usually estimated from diameter
or height with specific allometric relationships. Here, the stem volume is computed according
to the Alpes du Nord formulas [70] for spruce (equation (5.2)) and fir (equation (5.3)). The
Algan formula [9] with a factor f = 12 is used for larch and with f = 8 for all other species
(equation (5.4)). Those are formulas commonly used by forest practitioners in the area. The
Alpes du Nord formulas have two inputs (height h in meters and diameter d in centimeters),
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whereas the Algan formula only relies on diameter. v is expressed in cubic meters.

d \?* d \?

—0.0111923 — 8.64751 x [ — 4764 = h 2
v =0.0111923 — 8.6475 ><<100> +0.476 69><<100) x (5.2)
d \* d \?

v = —0.0126441 — 6.98147 x (100> 1 0.44908 x <100> % h (5.3)

8+ f d d \? d\*
= — 312384 — 4.51 — 23. — ] —2. — 4
V= X [()3 38 51338 x (100> + 23.8866 x (100) 89769 x (10()) (5.4)

It is noteworthy that stem volume estimated for a single tree is not accurate, due to the high
variability of tree shape. Provided that the chosen allometric relationship is adapted to the
studied forest stand, the estimation of the global volume located in the stand will be trustworthy.

5.2.3.2 Stand or forest parameters

Consider a forest area with horizontal surface S (ha). Stand parameters are estimated from
the individual parameters of included trees. Those parameters are useful for forest management
operations (silviculture, harvesting) at different levels. Depending on the objectives and on the
scale of analysis, parameters are estimated for a stand or compartment (smallest management
unit) and up to the whole forest. One important value for deriving stand attributes from tree
parameters is the minimum size for a tree to be considered. It is generally based on DBH. For
inventory purposes, trees with DBH above 7.5 cm are usually considered. Larger values are used
for harvest planning (typically trees with an economical value, i.e. with DBH above 17.5 cm).
For specific purposes, such as the inventory of stands in the initiation of reinitiation stages,
smaller values may be used. In this study, a 7.5 cm threshold is used, except for the Saint-Paul
inventory (5 cm). For the next definitions, it is assumed that the chosen area includes Ny trees
which fulfill the DBH requirement.

Dominant height is defined as the mean height of the 100 trees with the largest diameters
per hectare. For a forest area with surface S where Np trees have been inventoried and their
height and diameter (hi,di)ie{lwa} measured, if trees are sorted according to decreasing order
of diameters, i.e. Vi € {1,..., Np — 1},d; > d;11, dominant height H is estimated as:

Ng
1
H=— h; ith Ng = 1,]100.5 5.5
N Do with Ns = mar (1 100.)) 5.

Stem density is the average number of trees per hectare:

N= (5.6)

Basal area, mean diameter, volume Basal area G (m?.ha'), mean diameter D (cm) and
stem volume V' (m3.ha™') for a given forest area are calculated from their counterparts of included
trees (g;,d; and v;) as:

p 1 1 &
G_S;gi D_]Vj‘;dz V_S;Ui (57)
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5.3 Datasets

5.3.1 Introduction

In this work two types of field data are used. Large stand plots are usually square plots larger
than 0.25 ha. Plots of 50 x 50 m? have been considered suitable for the description of “elemen-
tary stands” in mountainous forests [203, p. 104|. All trees are mapped and measured (height,
diameter and sometimes crown extension) so that the data can be used for simulations of stand
growth [50], silviculture experiments [203], real-size rockfall experiments [62] or training purposes
(marteloscopes).

Forest inventories consists in several small sample plots used as statistical descriptors of an en-
tire forest. Trees on each plot may be mapped but usually the interest variables are the stand
variables. Table 5.1 details the names and color codes used for encountered species.

5.3.2 Large stand plots

The general protocol for the full inventory of a selected stand consists in the following steps.

e Choice of plot location according to forest structure related to study objectives.

e Field delineation of plot boundaries. Square plots are usually aligned on contour lines, and
slope is taken into account. Plots corners, and also intermediate points are materialized by
markers. Those reference points are positioned iteratively in distance and azimuth. Field
delineation is qualitatively checked when closing the perimeter by measuring the distance
between the departure marker and its theoretical position estimated from the last marker.

e Tree measures and mapping. For each tree with diameter above the DBH threshold, DBH
and total height are measured. Tree positions are recorded in azimuth and distance to a
neighboring plot corner or intermediate marker. Additional reference points may be added
when all trees are not visible from the previously materialized points. In the absence of
bushes or low strata, all trees may be visible from a single point located near the center of
the plot.

e Geolocation of reference points using a GPS receiver.

e Back in the office, GPS positions are differentially corrected using the data from the nearest
permanent ground station (Valence or Mogneneins), and projected in the local coordinate
system. Depending on the position accuracy estimated by the Pathfinder software, refer-
ence points positions are determined from the GPS data or relatively to some neighboring
point with a more accurate position. Tree coordinates in the projection system are then
computed relatively to their reference point with their polar coordinates and taking the
grid declination (magnetic declination and convergence angle) into account.

The following information about each tree are also recorded.

- Species.
- Appearance: normal, broken stem, snag with branches, snag without branches.
- Other qualitative information, e.g. tilted or horizontal tree, presence of forks.

In non-intensively managed forest, non merchantable trees such as dead, forked or curved trees
can amount to a significant part of the total woody biomass. Their presence may decrease the
accuracy of estimates of commercial wood, or perturb single tree detection.

Information about large plots used in the study is displayed in table 5.2. Tree position
maps, digitial terrain models (DTM), canopy height models (CHM) and height histograms of
inventoried trees for each plot are gathered in appendix C.
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5.3.2.1 Murianette

The Combeloup plot is located in the Belledonne mountain, in the town of Murianette. This
50 x 50 m? area is located at 950 m above sea level, on a regular hillside oriented toward north-
west (figure C.1a). Trees with DBH above 7.5 cm were mapped in 2006 (figure C.1b). Height
and diameter measures were updated on Jan. 5" 2011 using a VERTEX iithypsometer and a
ruban tape. The stand has an irregular structure and is largely dominated by European beech,
with 90% of the 115 inventoried live trees (figure C.1c). Some large Norway spruce tree are also
present (5% of stems). Remaining stems are other deciduous trees or small silver firs.

5.3.2.2 Chamonix

Three 50x50 m? plots are installed in the Chamonix valley.

Orthaz3 plot is an irregular stand dominated by Norway spruce and located on a regular
hillside facing north-west, at 1200 m above sea level (figure C.2g). Its structure type according
to the Northern Alps typology [263] is E1: dense irregular stand with small trees. It was originally
established to test new silvicultural strategies designed to improve mountainous stands stability
and resilience [203], and was first inventoried in 1994 (figure C.2h). The area was divided into
squares with markers positioned every 12.5 m with a tape measure, a clinometer and a compass.
Trees with DBH larger than 7.5 cm had their positions to the nearest marker recorded with the
same instruments. Plot corners were georeferenced using a Trimble GPS Pro XRS receiver. On
June, 274 2009, the plot inventory was updated. DBH and tree heights were measured with a
tape and a Vertex III hypsometer. 148 live trees were inventoried, with a majority of Norway
spruce (92% of stems). Some silver firs (4%) are present, as well as large European larch trees
and a few broadleaved trees (figure C.2i).

Corruaz plot is also a stand dominated by Norway spruce, but it is located on a hillside
facing south-east, at 1240 m above sea level (figure C.2a), and small trees represent a larger
proportion than at Orthaz3. Hence its structure type is D3: coexistence of an upper stratum of
old-grown trees with an abundant lower stratum, and absence of intermediate trees. It was first
inventoried in the early 1990’s. In July, 2010, the whole plot was inventoried anew, according
to the protocol described in section 5.3.2 (figure C.2b). Norway spruce represents 84% of the
186 live trees (figure C.2c). Many deciduous species are present in the lower and medium strata
(16% of stems).

Moussoux plot is located in an area similar to Corruaz. It is a very dense Norway spruce
plantation (98% of stems) that now has an irregular structure. A few large European larch trees
(1% of stems) dominate the stand. It was first installed in 2001 and was inventoried anew in

2010 (figures C.2d, C.2e and C.2f).

5.3.2.3 Vaujany

The Vaujany plot is a study area initially used for real-size rockfall experiments [62], located
in the Belledonne moutain (45°12°07”N, 06°03’00’E, altitude 1275 m) on a 35° slope facing
west (figure C.3a). It is a mixed irregular stand with two strata: large silver fir trees and
a deciduous understory. In 2001 twelve markers were positioned in the hillside. They were
georeferenced using a Trimble GPS Pro XRS receiver. It is noteworthy that plot boundaries
were not previously delimited, which resulted in an irregular shape (figure C.3c). Trees with a
DBH larger than 7.5 cm had their positions to the nearest marker recorded with a clinometer
and a compass mounted on a tripod and with a laser rangefinder or a decameter. On May, 12t}
2009, the plot inventory was updated. DBH and tree heights were measured with a tape and a
Vertex III hypsometer.
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For the purposes of this study, the plot is divided into two subplots. In the upper part of
the study area (vaujanyha, 0.33 ha), 96 live trees were measured. Silver fir and European beech
are dominant (respectively 55 and 35% of stems). Sycamore maples are also encountered (7%),
as well as Norway spruce and European holly (figure C.3d). 92 live trees were inventoried in
the lower part (vaujanyba, 0.34 ha), with a majority of Silver fir (57%). European beech (16%)
and Norway spruce (14%) are also present. The remaining stems are sycamores (9%) and other
deciduous trees (figure C.3b). It is noteworthy that the rockfall experiments have cleared a great
part of trees with DBH smaller than 15 cm.

5.3.2.4 Chablais

In the Chablais valley, seven (.25 ha plots were established in March and July 2010 according the
protocol presented in 5.3.2. Digital terrain models, crown height models and height distributions
are displayed in figure C.4 for plots 1 to 4 and in figure C.5 for plots 5 to 8.

Plot chablaisl is located at 1304 m, at the top of a hill. It is a young, mixed stand of Norway
spruce, European beech and European mountain ash.

Plot chablais3 is a medium aged, irregular stand with an upper stratum of Norway spruce
and silver fir. Those two coniferous species also share the lower stratum with European beech
and other deciduous species. It is located on a west facing hillside with gentle slope (19°), at
1310 m above sea level.

Plot chablais4 is situated a few hundred meters away from plot chablais3. Terrain slope
is gentle and the area is crossed by a small intermittent stream near its north-east corner (see
DTM on figure C.4j). It is a mature, two-layered stand with an upper stratum of Norway spruce,
whereas the lower stratum is mainly constituted of silver fir and European beech.

Plot chablais5 is a very dense, regular stand of medium aged silver fir trees (see on figure C.5b
the closed and homogeneous canopy). A few European beech trees are also present. Due to
canopy closure and its location on a north-west facing slope of 28°, GPS acquisition turned out
to be particularly problematic.

Plot chablais6 is a young Norway spruce plantation located on the relatively flat upper part
of a hill, at 1150 m altitude. The stand has been thinned a few years ago (see on figure C.5e
that the canopy has more gaps than plot chablais5).

Plot chablais7 was once dominated by large coniferous trees that have been felled since. The
remaining lower and intermediate strata constituted by European beech and a few small Norway
spruce trees now represent the majority of stems. A few large coniferous trees are still present.
The plot is located at the footslope, in a rockfall deposit area (altitude 900 m, slope 23°). Terrain
surface is very rough due to the presence of big boulders on the plot (see DTM on figure C.5g).
Canopy cover is not very dense, and bushes and shrubs are abundant. Terrain classification may
have been perturbed by those features so that it is likely that LiDAR canopy height on this plot
is less accurate.

Plot chablais8 is located on an east facing hillside with 30° slope. It is constituted of deciduous
trees, mainly European beech, overwhelmed by a few Norway spruce trees.

Plot chablais2 is a particular case since it is a subplot of a 100 x 100 m? plot installed in
2000 in the Brevon forest. It is located in the valley bottom (800 m above sea level), in an area
subject to a slow landslide. Norway spruce was planted there from 1937 on, along with a few
deciduous trees (alder, ash, poplar). The inventory was updated in July, 2010. The plantation
is very dense, especially in the western part where trees are also smaller. It is noteworthy that
in the central part, several trees probably weakened during the 2003 drought, died during a bark
beetle invasion in 2005. Several snags are now present (x symbols in figure C.4f).
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5.3.2.5 Valdréme marteloscope

Valdrome is a one hectare plot, with rectangular shape (50 x 200 m?). It is situated across a west
facing hillside, under a small cliff (figure C.6a). It is an example of European black pine stands
planted during the afforestation program to mitigate erosion. The plot was installed following
the protocol described in section 5.3.2 except that heights were measured only on trees located
along three transects (western border, median of plot and eastern border). A total of 1026 trees
were inventoried, and 362 heights were measured (figure C.6b). Heights (h, in meters) for the
remaining trees are estimated from their diameter (d in cm) using the regression model calibrated
on the sampled trees: h = —9.4 + 8.66 x log(d). adj-R? for the model is 0.73. For the purpose
of this study, the marteloscope is divided in four subplots of 0.25 ha. All subplots exhibit a
regular structure (figures C.6¢, C.6d, C.6e and C.6f). The lower part of the hillside has better
site quality: trees have grown larger and the stand has been thinned. In the upper part trees are
smaller and stand is more dense.

5.3.2.6 Saint-Agnan-en-Vercors marteloscope

The Saint-Agnan marteloscope is located next to the Réserve Naturelle des Hauts-Plateaux du
Vercors. It was inventoried in July, 2010 for training purposes. It is a protection forest situated
at 1250 m above sea level, on a hillside oriented to the west, with 32° slope (figure C.7a). A forest
road crosses the middle of the plot along the north-south direction. The forest has an irregular
structure, and is mainly constituted of beech and silver fir, with a few spruce trees (figure C.7b).
For the purpose of this study, the marteloscope is divided in four subplots of 0.25 ha.

5.3.3 Forest inventories
5.3.3.1 Saint-Paul-de-Varces

The studied forest is located on a 4 km? hillside oriented to south-east (town of Saint Paul
de Varces, 45°04’17"N, 05°38’25"E)(figure 5.3). It is mainly constituted of coppice stands and
deciduous stands on poor quality sites, dominated by Italian maples and downy oaks. Downslope,
old chestnut coppice stands are frequent. Common whitebeam is present in all the area, especially
at the foot of cliffs. In thalwegs or in upper parts with better site quality, ash and beech are
common. Some areas have a dense understory of holly, common hazel or box. Altitude ranges
from 330 to 1270 m above sea level. High limestone cliffs overhang the area and rockfall events
are frequent. No major silvicultural or harvesting operations have been performed in the area
for more than fifty years.

From September to November 2009, 31 circular field plots were inventoried. Plots were
distributed every 400 m along the 550, 750, 950 and 1150 m height contours, resulting in an
irregular sampling scheme where horizontal distances between neighboring plots ranged from
180 to 412 m with a mean value of 302 m. Plot centers were georeferenced using a Trimble
GPS Pro XRS receiver. After differential correction with the Pathfinder® software, position
precision (95% confidence radius) ranged from 0.6 to 1.5 m. All live trees with diameter at
breast height larger than 5 cm and located within 10 m horizontal distance from the plot center
had their diameter measured with a tape. Their positions to the plot center were recorded using
a Suunto KB-14 compass and Suunto PM-5 clinometer mounted on a tripod, and a Vertex III
hypsometer. Maples (mainly Acer opalus), downy oak and common whitebeam represented
nearly 60 % of stems. Ten tree heights were also measured on each plot with the hypsometer.
Height sampling probability was proportional to stem basal area to ensure that dominant trees
would be represented. Forest parameters statistics are presented in table 5.3.



36 Chapter 5. Field data

Table 5.3: Forest stand parameters statistics (31 field plots)

Parameter Basal area  Stem density Mean diameter Dominant height
G (m2ha') N (ha'!) D (cm) H (m)

Mean 34.8 1735 14.5 15.6

Min 4.6 764 8.3 5.8

Max 59.7 2833 22.7 25.8

Std deviation 11.4 577 3.6 5.5

As site quality is rather poor in the area, average dominant height is only 15.6 m. Generally,
stands with high values for basal area, dominant height and mean diameter are located on a few
good quality sites in thalwegs with deep soil, such as the ash-dominated plot 14 with H = 25.8 m,
G =59.7m%ha'! and D = 21.6 cm. Small values are encountered on steep slopes at the bottom
of cliffs with rockfall activity. For example, plot 21 is located on a scree and has H = 10.3 m,
G = 4.6 m*>ha! and D = 8.3 cm. In such areas stem density is highly variable.

Figure 5.3: Shaded digital terrain model of the study area. +Red crosses are the locations of the sample
plots.

5.3.3.2 Chablais

In the Chablais valley eight large plots (50 x 50 m?) were installed, within an area covered by
a single LiDAR flight. Even tough those plots are not representative of the forest stands of the
whole area, they can be divided into several subplots that can be considered as sample plots for
algorithm testing. The higher number of subplots that are extracted must not hide the fact that
subplots from the same plot are likely to be similar because of spatial correlation.

The procedure for the division of plots is described hereafter. Consider a square plot of width
W that have to be split in i? subplots. Subplot borders are created by dividing each plot borders
in ¢ segments of equal length. Corresponding nodes of the segments are connected to construct
the subplot borders. If circular subplots are to be extracted, their center is positioned at the
center of the quadrants. Trees belonging to the new circular plot are extracted within the chosen
radius from the plot center. Figure 5.4 exemplifies the extraction of four circular plots from plot
chablaisb.
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Figure 5.4: Extraction of circular plots from the 50 x 50 m? plot chablais5. (a) Plot map. (b) and (c)
extracted circular subplots with radius 10 and 12.5 m respectively.
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Chapter 6

Introduction and methods

6.1 Single-tree approach

6.1.1 Overview

The capacity of airborne LiDAR sensors to accurately map the geometric shape of the Earth
surface, and to characterize the vertical structure of non-solid objects such as trees, theoretically
makes the extraction of forest information at the tree level possible. Indeed, the laser pulse is
reflected by all elements constituting a tree, from leaves to the trunk, and laser footprint size
(typically smaller than one meter) allows the laser beam to both reflect and penetrate inside the
canopy. With a sufficiently dense LiDAR sampling, trees — with a size in the order of magnitude
of a few meters — and even branches can be visually identified within a point cloud transect
(figure 6.1).
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Figure 6.1: Point cloud transect along a forested hillside (Vaujany, France). Points classified as ground
and vegetation are respectively in e red and e green. Transect width is four meters.

However, automatic tree delineation in the irregularly sampled, 3D point cloud is a complex
task. Therefore, most studies on single tree delineation relied on preliminary transformation of
the point cloud into raster images of the canopy height. The advantage of degrading the 3D
information of the point cloud into a 2D image is that image processing techniques have been
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subject to intensive research with the development of digital storage and processing. They are
now widely used in numerous domains such as medicine, biology, electronics, remote sensing of the
Earth surface or detection of faults in manufactured goods. .. In forestry, they have already been
used for the classification and segmentation of airborne or spaceborne optical images. With the
availability of high spatial resolution data, trees could even be delineated [51,65,66,95,201,251].

Numerous approaches have been tested to identify trees in LiDAR-derived images of the

canopy height. The basic idea is to detect features that are typical of trees. One of the simplest
method is based on the assumption that treetops will induce local maxima in the image. Local
maxima filtering is thus used for the detection of treetop candidates [137,254]. One issue is that
branches may also induce local maxima, and in the case of heterogeneous stands, it is difficult
to separate local maxima due to big branches from those due to small trees. This issue can
be treated with field information about the relationship between the height of a tree and the
size of its crown. It is then possible to adjust window size for local maximum detection to the
value of the considered pixel [43,254]. Once treetops are identified, trees can be segmented with
procedures derived from the watershed algorithm [43,104,115,137,156]. Indeed, limits between
adjacent trees can be assimilated to watersheds in the opposite of the canopy height image. How-
ever, the algorithm makes no assumption about tree shape. To improve segmentation results,
other criteria have to be taken into account, such as crown curvature or ellipsoid fit [137,156].
Assuming a round shape for tree crowns, an alternative or complementary tool to watershed
segmentation is the distance transform [166].
Approaches that simultaneously handle the problems of size and shape of trees have been pro-
posed, such as scale-space representation of the canopy height model and parabola fitting [252],
spatial wavelet analysis [77] or multiscale isotropic matched filtering [245]. Marked point pro-
cesses have been used on optical images |251].

The main drawback with such algorithms is that their detection performance highly depends
on the forest structure [76|, and parametrization is a crucial step, particularly with heteroge-
neous stands. To address this issue, strategies such as automatic assessment of localization and
adjustment of the smoothing criterion [277], or multiple attributes decision making based on
initial calibration [83] are possible.

Another limitation is that detection is performed on an image, which is a reduced version of the
whole point cloud. In particular, suppressed trees are hardly detected in the canopy height model
which is mainly defined by dominant or co-dominant trees. Several algorithms based on point
cloud processing have thus been proposed to improve the detection rate, such as Bayesian object
recognition |14], clustering [215] with several variants [171,262], voxel-based approaches [257,312]
or region growing algorithm with a Delaunay triangulation [7]. However, the initialization step
of point cloud algorithms is often based on local maxima detection in the canopy height image.

6.1.2 Objectives

As introduced beforehand, the advantages of using image processing techniques for single tree
detection are that they are well documented, available in commercial softwares and also faster
than point cloud processing algorithms, which turns out handy when millions of trees are ex-
tracted from LiDAR surveys of hundreds of square kilometers. However, their parametrization is
not straightforward as it will affect detection performance differently depending on forest struc-
ture, and also on LiDAR acquisition parameters. Manual tuning is time-consuming and also
site-specific, which makes it impossible for adaptive processing of large areas.

The objective in this part III is to design an automated procedure for single tree detection,
based on the training of the detection algorithm on reference data. The approach based on local
maxima is adopted as it is simple and fast. The idea is to build a training set of field plots
for which the detection performance has been tested for several parameter combinations of the
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algorithm. When trees are to be detected in a new survey, the LIDAR data is compared to
the training set and the algorithm parameters are set to the combination that yields the best
detection performance on the training plot that is the most similar to the new plot. The whole
workflow is implemented on 22 reference plots of mountain forest stands with various structures
and species (section 5.3.2).

To reach this objective, several components have to be combined:

- a treetop detection algorithm,

- an automated procedure for detection performance assessment,

- a set of reference field plots,

- a similarity criterion for the matching of new LiDAR data to reference plots.

The treetop detection algorithm and the evaluation procedure are presented in this chapter. The
results about the effect of algorithm parametrization on detection performance for the training
plots are presented in chapter 7. Finally the automated detection procedure is detailed and
discussed in chapter 8.

6.2 Local maxima extraction

6.2.1 Workflow and notation

The input data is the classified point cloud (easting, northing, altitude, classification). Each step
of the sequential procedure is detailed in the following sections:

- calculation of the raster images from the point cloud,
- artifacts removal with a non-linear filter,

- lowpass filtering with Gaussian kernel,

- maxima extraction with variable window size,

- maxima selection.

The output data is a list of selected maxima with their coordinates and height. Unless specified
otherwise, figures in the following steps display the example of plot chablais3, with 0.5 m spatial
resolution images. The displayed area is a rectangle of 68 x 70 m?, the corresponding image (or
matrix) is of size 136 x 140 pixels.

The following notations are adopted in the whole chapter. An image is defined as a function
f(z,y), where x and y are the spatial coordinates and f(z,y) the height or altitude of specified
objects of the Earth surface (terrain, vegetation) located at this point. The whole image is
composed of a finite number of pixels defined by their coordinates. Pixels are square and regularly
aligned. S, is the notation for the neighborhood of the pixel located at (z,y). In this study,
only square, centered neighborhoods are used. The figure axes are labelled in matrix coordinates,
i.e. the matrix line index appears on the reversed vertical axis, and the row index appears on the
horizontal axis. Pixels are colored according to their values, the correspondence is given by the
scale bar to the right of the image. For density images, values are in points per square meter.
For canopy height, terrain and surface models, the height or altitude values are in meters.

6.2.2 Image computation

6.2.2.1 Choice of image spatial resolution

The first step is to condense the information of the point cloud into regularly sampled images.
The general approach is to compute one image of the terrain elevation, based on points classified
as ground, and one of vegetation objects elevation with the other points. Choice of the spatial
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resolution is not straightforward as planimetric sampling is irregular and points are reflected at
different heights in the canopy. If d. is the mean echo density in the point cloud (points per square
meter), and if we consider that each pulse will be reflected r, = 3 times in average by forested
surfaces (i.e. three echoes at different heights will be extracted from each returned waveform), a

de
Tp

various factors affect local point density. The scanning pattern may induce more spaced pulses
at the edge of the swath. Platform changes in attitude or speed also affect the distribution of
points on the ground. Besides, higher densities are obtained where two acquisition strips overlap.

Figure 6.2a displays the point cloud density on the Vaujany plot. LiDAR acquisition was
performed at slow speed with a helicopter. Moreover, several strips overlap in this area so that
mean point density is very high (37.3 m™). This density is also highly variable, with a standard
deviation of 30.9 m2. Indeed, several acquisition effects are noticeable. Only one strip covers the
bottom right quarter which displays lower density despite being highly forested. On the upper left
corner, densities are also small but it is partly due to the fact that trees are sparse and only one
echo is recorded from one pulse sent on bare ground. Trees in this area are identifiable as patches
of higher point density. The flight direction (south-west to north-east) can be guessed from the
diagonal lines linked with the scanning pattern. Reduced speed of the aircraft, combined with
attitude changes, may explain the presence of very dense bands, particularly one in the upper
right quarter. Besides, crescent-like shapes might be due to the interaction of laser pulses with
only one side of a tree when they are fired at angles far from nadir.

pixel size of approximately res = seems appropriate for image spatial resolution. However,

Concerning our final objective of detecting trees, the requirement regarding point density is
that at a tree crown scale, i.e. several meters, there are enough points to characterize canopy
shape. This should be possible when local point density is approximately a few points per square
meter, which allows the calculation of images of submetric spatial resolution. The high differences
in LiDAR acquisition hardware and forest structures, as well as the high variability of point
density within small areas, are likely to make automatic choice of the resolution problematic.
Therefore, the adopted strategy is to test single tree detection with a wide range of spatial
resolutions and rely on spatial interpolation or on image processing techniques to tackle the
issue of pixels that do not hold any LiDAR information.

20 40 60 80 100 120 140 160 20 40 60 8 100 120 140 160
(a) Whole point cloud density (m-2) (b) Ground points density (m-2)

Figure 6.2: Image of point cloud density on the Vaujany plot (spatial resolution 1 m, values in points per
square meter). One should read “100 and above” instead of “100” in the scale bar of subfigure (a).

6.2.2.2 Digital surface model

The digital surface model (DSM) is the image of the elevation of objects located at the surface
of Earth (buildings, vegetation...). Computation of the DSM by bilinear interpolation of all
vegetation points over a regular grid leads to a noisy effect in vegetated surfaces (figure 6.3a).
Indeed, vegetation points located in the canopy are also considered, and act as attractors whereas
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the object of interest is the global shape or envelope of trees. A widely use method to avoid such
artifacts is to consider only the laser point with maximum altitude within each pixel. Then two
mains possibilities exist for the calculation of the DSM:

- affect to each pixel the altitude of the highest laser point (figure 6.3b), or
- compute the altitude at the center of each pixel by interpolation of laser points that are
maxima in their pixels only (figure 6.3c).

With the first possibility, pixels which do not contain any laser points have no value, but can be
filled by considering their neighborhood. The problem with filling empty pixels by interpolated
values is that the added information can not be separated from the information that really comes
from the point cloud. By interpolating maximum points, canopy appears somewhat shrunk
compared to the image obtained by only retaining the maximum value. In particular, the height
of treetops might be underestimated. However, comparison of the DSMs shows that mean
difference between the non-interpolated and interpolated images is only 0.12 m, with 1.17 m
standard deviation. Large differences are mainly located in areas with large height variation,
such as tree edges.

Besides, considering the height of the maximum point without taking its position in the pixel
into account might lead to over or underestimation of tree heights when the terrain altitude
(estimated at the center of the pixel) is subtracted in areas with significant slope. In the case of
a 30% slope, 0.5 m spatial resolution, and assuming plane ground surface, pixel height additive
error will be at most 0.11 m with a mean value of zero.

Such values are of the same order of magnitude as LiIDAR altimetric accuracy, and lower than
height measures performed on the field. Therefore, the method based on retaining the maximum
value for each pixel, without interpolation, will be used from now on. The issue of void pixels
will be addressed later on.
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Figure 6.3: Digital surface models of plot chablais3 (0.5 m spatial resolution).

6.2.2.3 Digital terrain model

The digital terrain model (DTM) is the image of ground elevation. Ground points account for a
very small proportion of the whole point cloud in forested areas. For example, on the Vaujany
plot, ground point density is only 1.3 m™ (whole point cloud: 37.3), and the standard deviation
1.8 m2. In particular, laser pulses are unable to reach the forest floor below large trees with
dense crowns, even in areas with high point density. Such areas are identifiable as the dark
blue patches in figure 6.2b. Ground point density is higher in areas where trees are more sparse
(bottom left quarter) or in unforested areas such as roads (lines along the left border and in the
bottom right corner). The low density of ground points has two origins. Either canopy is very
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dense and few pulses reach the ground, or pulses are actually reflected by the ground, but terrain
surface is so rough or so crowded by low vegetation that a very conservative strategy is adopted
for point classification. In both cases, the number of points classified as ground points is low and
terrain surface is only coarsely modeled.

Although the resulting ground point density is theoretically not sufficient to derived a DTM with
the same spatial resolution as the DSM, assumption is made that terrain aspect is locally plane.
The missing values will be interpolated so that terrain height is available to estimate tree height
by subtracting it to the DSM at treetop locations. The values of the DTM are calculated by
bilinear interpolation of ground points at the coordinates of pixel centers. The canopy height
model (CHM) is calculated as the difference between the DSM and the DTM (figure 6.4). One
must bare in mind the fact that in rough terrain, errors in the DTM will propagate into canopy
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Figure 6.4: Digital terrain model and crown height model of plot chablais3 (0.5 m spatial resolution).

6.2.2.4 Choice of DSM or CHM for maxima detection

At this stage, it is tempting to use the CHM for treetop detection. Indeed, the vegetation
height is directly accessible. However, the subtraction of the DTM to the CHM results in a
distortion of tree crowns in areas with steep slope. In particular, treetop position is shifted
toward downslope for trees with relatively flat or rounded tops (figure 6.5). The problem exists
for broadleaved trees, but also for some conifers, such as silver firs, whose tops tend to flatten
with age for dominant, mature trees. The order of magnitude of position shift is metric, so
that is is not crucial for forest inventory purposes, but it represents a additional error source
for automatic matching of field trees to detected treetops. In such cases the treetop height is
also over-estimated. To avoid this shifting effect, the DSM is used for local maxima detection.
The CHM is displayed for the convenience of visual analysis in the following figures and used
for a posteriori retrieval of treetop height. Anyway, preliminary tests showed that detection
performance was only marginally affected when the CHM is used for local maxima detection
instead of DSM.

6.2.3 Non-linear filters

The scanning pattern results in several artifacts in the DSM:

- void pixels where no laser points are present (insufficient sampling density, shading effect
of trees at non nadir angles),

- low pixels in tree crowns (the laser pulse enters inside the tree crown through gaps and is
reflected by low branches or leaves).
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(a) DTM (b) CHM

Figure 6.5: Deformation of tree crown due to the correction of vegetation height with terrain height. For
the round tree, height is overestimated and treetop position shifted (blue line).

As built-in image processing algorithms have no specific procedure to handle void pixels, the
values of the corresponding pixels in the DTM are affected to the DSM, which is equivalent to
setting them to zero in the CHM.

6.2.3.1 Median filter

The presence of low pixels in the DSM, or more precisely of zero values in the CHM can be
considered as impulse or “salt and pepper” noise. In this case, the median filter, which is an
order-statistic (non linear) filter, is particularly effective [92, p. 326]. The median filter replaces
the value f(z,y) by the median of the values of pixels located in a given neighborhood S;,,. Effect
of the median filter for different sizes of the neighborhood (defined by n where 2n+1 is the width
of the square window) is depicted in figure 6.6. In this case, the noise is removed even with an
application of the median on a small neighborhood (n = 1). Tree contours are also smoothed.
Trees that appear as stars in the CHM (characteristic of spruce branches, such as dominant
trees in plot chablais3, for example the tree at matrix coordinates 50,105) appear more rounded.
One disadvantage is that local maxima (possible treetops) also have their values replaced by the
median, which might lead to an under-estimation of height. Moreover, the “pepper-like” noise
in not uniformly distributed, as patches (shading effect of trees, as exemplified in the canopy
gap in the bottom-right of figure 6.3b) or lines (lower pulse density across platform trajectory)
might appear. The neighborhood must be expanded to satisfactorily filter such cases, but this
will result in a loss of information in other areas.

(a) Original image (b) Filtered n =1 (c) Filtered n = 2

Figure 6.6: Effect of median filter with different neighborhood size (square window of 2n+1 pixels width).

A solution for both aspects is the adaptive median filter. This filter acts in two steps. Con-
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sider a pixel (z,y) and its neighborhood Sg,. First the algorithm compares the median value of
Sgy to the minimum and maximum in this neighborhood. If the median is equal to one of those
value, it is likely that a majority of pixels in the neighborhood are actually noise pixels, and
therefore the neighborhood is increased and the analysis re-iterated. Otherwise the algorithm
proceeds to the second step. It is now the value at the considered pixel f(z,y) that is compared
to the minimum and maximum. If it is equal to one of them, it is likely that the pixel is indeed
noisy and it is replaced by the median value. Otherwise, its value remains unchanged.

The adaptive median filter has two advantages over the basic median filter: it adapts the neigh-
borhood until the supposed proportion of noisy pixels is low enough, and it replaces only the
noisy pixels. In our case, where only the “pepper-like” noise is present, the algorithm is modified
so that maximum values are not taken into account in the first step, nor replaced in the second
one. To take advantage of the adaptive neighborhood, void pixels in the DSM are not set to the
values in the DTM but to zero, contrary to other tested non-linear filters. Indeed, a patch of
void pixels in the DSM will be replaced by several different values from the DTM, as terrain is
generally not flat. The patch will not appear as a uniform, noisy area and the algorithm will not
increase the neighborhood.

Besides, this problem still exists for low values within the vegetation. For example within a
crown of height above 30 m, two adjacent pixels with values 21 and 22 m can be found. The
adaptive median algorithm will only correct the lower. It must be applied twice if both values
are to be corrected. Figure 6.7 displays the effect of one or two successive applications of the
adaptive median filter. With one iteration, most of low pixels are corrected. With two iterations
(figure 6.7¢), remaining low pixels within the star-shaped spruce crown have disappeared.
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(a) Original image (b) One application (¢) Two applications

Figure 6.7: Effect of adaptive median filter.

6.2.3.2 Morphological filters

Alternative tools for the removal of low pixels are provided by mathematical morphology. This
powerful theory has numerous applications for image processing problems. Operations in math-
ematical morphology are based on structuring elements (SE) i. In this study, only centered,
binary disks are used. This choice is driven by the fact that trees, which are the elements to be
highlighted in the image, are generally of circular shape. The two basic operations of mathemat-
ical morphology are erosion and dilation. In a gray-scale image, the erosion €’ (resp. dilation
%) of an image consists in replacing every pixel by the minimum (resp. maximum) value of its
neighborhood defined by the structuring element i. With these two basic operators, more com-
plex operations are defined. Closing ¢ of an image f consists in a dilation followed by erosion
with the same SE 1.

W(f) = €'(f)) (6.1)
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Its effects are to remove small holes and fill narrow gaps (figure 6.8). Even with a small struc-
turing element, holes are filled and maximum heights are not lowered (figure 6.8b). The discrete
approximation of a circle of five pixels width is actually diamond-shaped, which tends to produce
diagonal artifacts in the filtered image. Besides, some bridges appear where trees were previously
separated by narrow gaps, and bigger holes, possibly true canopy gaps, are reduced. The discrete
approximation SEffiSk of the disk structuring elements of size n used in the figures are:
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(a) Original image (b) Closing with SE{** (¢) Closing with SEg**

Figure 6.8: Effect of closing filter with disks of different sizes as structuring elements.

To avoid this tendency to over-fill the gaps, and more generally the degradation of original
shapes by the structuring element, the closing by reconstruction operator % can be introduced
as [276]:

Ve(f) = R}(éi(f)) with R} the geodesic reconstruction by erosion (6.3)

The advantage of reconstruction operators is that features smaller than the structuring element
are removed, but without altering the shape. Closing by reconstruction removes the unconnected
low features (figure 6.9). The low pixels are satisfactorily filled while the original shape is
preserved. However, some low pixels remain in the tree crowns.

6.2.4 Lowpass filter

The previous step of non-linear filtering mainly aims at removing the artifacts in the vegetation
model due to the acquisition parameters. The next step is to keep only the information related
to trees. Indeed, the final objective is to detect the treetops with a local maxima filtering.
A simplified frequential interpretation of a canopy-height or digital-surface model image is to
consider that:

very low frequencies are linked to terrain variations, provided that slope is constant a scale
smaller that the width of a tree (approx. 10 m period)
- low frequencies are linked to tree envelopes (2 m),

- medium frequencies to branches (0.5 m),

- and high frequencies to small branches, leaves and LiDAR noise (0.1 m).

Y
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Figure 6.9: Effect of closing by reconstruction filter with disks of different sizes as structuring elements.

The high frequency content is likely to induce several local maxima that will not correspond
to actual treetops. Under the strong hypothesis that branches, leaves and LiDAR noise can
be considered as a random noises with zero mean, one efficient way to remove them is linear
smoothing. Here discrete approximations of Gaussian lowpass filters are used. The discrete
approximation G, of a Gaussian kernel of parameter ¢ is convolved with the non-linear filtered
vegetation height image f to obtain the smoothed image f

f=fxG, (6.4)

Examples of Gaussian smoothing applied to the digital surface model previously filtered by the
adaptive median filter are displayed in figure 6.10. With o = 0.25 m (figure 6.10a), the effect is
barely noticeable. In particular, branches of the largest spruce trees are still remarkable, and low
pixels in the crown remain visible (matrix coordinates 50, 105). With ¢ = 1 m, small adjacent
trees that were identifiable as small yellow patches in the center of the image filtered by adaptive
median image (figure 6.7b) are merged into a single, banana-shaped blob (matrix coordinates
70, 60 in figure 6.10c). With o = 0.5 m, trees appear considerably less branchy but small trees
are preserved.

It is noteworthy that Gaussian smoothing does not handle the same type of noise as the previous
non-linear filters. Those two types of filter are complementary. For example, if a very low value
is present within a crown, the low-pass filter will only partially increase it, and will also lower
the nearby values. On the contrary, non-linear filters do not remove all the high-frequency noise,
even tough the median filter (and to a lesser extent, closing filter) has a smoothing-like effect
when employed on large windows.

6.2.5 Local maxima filter

Local maxima are detected by checking for each pixel (z,y) if its value is equal to the maximum
value in its neighborhood S.,. If f(x,y) is indeed a global maximum in Sy, the operation
is reiterated with a larger neighborhood. Here, considered neighborhoods are centered, square
windows of width 2n + 1 pixels, Sg,. During the sliding process of the variable size window, a
maxima image m is computed.

B 0 if f(z,y) < maxf(S; )
m(z,y) = { 2"2—"'1 if f(z,y) = maxf(S;‘z) and f(z,y) < ma:vf(Sg;l) (6-5)

where ma:vf(S;y) is the maximum value of f in the neighborhood S;y. The value of a pixel in m
is zero if this pixel is not a local maximum, and is otherwise equal to half the width of the largest
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Figure 6.10: Effect of Gaussian smoothing of the image filtered by adaptive median (figure 6.7b), with
different values for o (m). Spatial resolution is 0.5 m. Dark-blue frames in the filtered images mask the
border effects.

square window where it is global maximum. In this process, 8-adjacent maxima with equal height
may be extracted. In such cases, only one maxima among the maxima that are 8-connected is
retained. Results of maxima extraction on differently filtered images are displayed in figure 6.11.
Without lowpass filter (figure 6.11a), a high number of maxima is detected. Their number seems
more reasonable when a narrow Gaussian kernel is use for smoothing (figure 6.11b). However,
some false detections remain, mainly in non forested gaps (dark blue areas), but also in the form
of nearby maxima with a small value in m (compact groups of small squares). With ¢ = 0.5 m,
small maxima groups have disappeared. Unfortunately, many local maxima with small values
in m that where close to larger ones have also been removed, for example in the spruce tree at
matrix coordinates (50, 105), or near the silver fir at (70, 35).

20 40 60 80 100 120 140

(a) Adaptive median only (b) Adaptive median + o = 0.25 (c) Adaptive median + o = 0.5

Figure 6.11: Local maxima detected on images obtained by a combination of adaptive median filtering
and Gaussian smoothing. Background is the filtered image used for local maxima detection. Black
squares are the detected maxima. Symbol size is proportional to the value of pixels in m(x,y).

6.2.6 Maxima selection

To address the problem of the over detection of treetops, an additional procedure for maxima
selection is performed. It relies on two main assumptions:

- trees have a minimum height;
- the higher a tree, the bigger its distance to its neighbor of equal height.
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The maxima selection procedure is based on the mathematical transcription of those hypotheses
into two inequalities involving a minimum height and the relationship between a maxima height
hi(z,y) and its distance m(z,y) to the nearest higher pixel. h; is the canopy height model
calculated as the difference between the non-linear filtered DSM and the DTM. Even tough
the local maxima are detected on the smoothed DSM, the previous non-linear filtered DSM is
preferred for the extraction of maxima height as smoothed heights are generally decreased for
maxima pixels. In the end, a local maximum, with coordinates (x,y), which does not fulfil the
following inequalities, is discarded.

b)) > (6.6)

m(a:, y) = Mimin + Mprop X hl(xa y)

h mn
(Mamin, Mprop, Pmin) are the selection parameters. The final image of selected maxima mg(x,y)
is obtained by setting to zero the values in m(x,y) that do not comply with inequalities 6.6.
Figure 6.12 displays the result of maxima selection. The height threshold removes local maxima
in the low vegetation (dark blue areas in figure 6.12b). The threshold applied to m removes
maxima on the smallest neighborhoods (figure 6.12¢). Some of them might actually be treetops.

(a) No selection (figure 6.11b)

(¢) mprop = 0, Mmin =1 m

Figure 6.12: Effect of local maxima selection. Symbols are the same as in figure 6.11.

6.2.7 Extracted parameters

For each selected maxima — pixel (z,y) with mgs(z,y) > 0 — two values are available. ms(z,y) is
the distance to the nearest pixel that has higher value, and is of little interest once the selection
has been performed. h;(x,y) is the estimated height. An additional information about the alleged
tree is obtained by segmentation of the DSM to delineate tree boundaries. The limits between
adjacent trees can be determined using the watershed segmentation algorithm [92, p. 769]. This
morphological operation consists in determining areas where all pixels are connected to a single
minimum with a monotonically decreasing path. These areas are called the watersheds. Pixels
that divide two or more adjacent watersheds are the watershed lines. Each watershed in the
flipped-over DSM can be considered as the crown of the tree associated to the local maximum in
the DSM. Figure 6.13a shows the segments obtained by watershed segmentation of the smoothed
DSM. As each maximum induces a new watershed, the image is oversegmented. To obtain a
segmentation that is consistent with the selected maxima, the watershed algorithm is constrained
by previously determined markers: a local minima can not give birth to a new watershed if it
is not located on a marker. Here, markers are the selected maxima. Figure 6.13a displays the
segments obtained by marker-constrained watershed, and figure 6.13c displays the watershed
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lines on the CHM, as well as the selected maxima. After segmentation, an additional LiDAR
parameter is associated to each selected maxima: the area of its watershed a;, given by the
number of pixels within its segment multiplied by the pixel size in square meters.
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Figure 6.13: Tree delineation with watershed segmentation: (a) resulting segments, (b) result of seg-
mentation constrained by the selected maxima as markers and (c) watershed lines superimposed on the
CHM along with selected maxima (x, white crosses are the selected maxima located outside the field
plot mask). In (a) and (b) colors refer to segment numbers.

6.3 Performance assessment

The objective is to test the sensitivity of the detection algorithm to parametrization and to forest
structure. As numerous cases will be tested, it is not possible to manually check all detection
results. An automatic assessment procedure will not be able to handle all particular cases,
however it is much faster and will treat all cases consistently. The procedure used in this work
includes two aspects.

- An automated matching procedure to assess the detection rate. It is based on the 3D
distance between selected maxima and the positions of field treetops.

- A “score” value for the detection performance that takes both true and false positives into
account.

Those two aspects are presented in the following paragraphs.

6.3.1 3D matching procedure

To assess the accuracy of treetop detection, an automated matching procedure is performed. It
is based on the comparison of distances between selected maxima and the positions of treetops
alleged from the field inventory, and estimates the proportion of correctly detected trees. It
is assumed that GPS positioning planimetric error €y, is inferior to 1.5 m and that the slope
of a tilted tree si.ee is inferior to 14% (value determined by measures performed on the 26
highest trees in Vaujany). Height measures accuracy is estimated to be €, = 15%. Under these
asumptions, the limit matching distance between a selected maxima and a theoretical treetop
located vertically at h; meters above the GPS position of tree T is:

Amaz(ht) = €gps X 1/ 1+ Sfermm + Stree X (€, + 1) X Iy (6.7)

with Sterrain the terrain slope, set to 30%.
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To avoid border effects, the first step is to remove selected maxima that are not located
on the field plot. One option is to geolocate the field boundaries with a GPS and to exclude
maxima that do not fall inside the theoretical plot. Due to topographic constraints, real field
plot may be quite different from the plot defined by the GPS coordinates of its four corners.
Besides, the top of an inventoried tree may be located outside plot boundary because of tilt.
Therefore, the plot area is defined as the union of buffer disks created around each tree with
a radius proportional to tree height, and given by equation 6.7. The field plot mask is thus a
binary image (figure 6.14a). Possible holes in the buffer are filled by a closing operation with
six meter radius circular structuring element. Previous border is reconstructed by morphological
reconstruction. Final matrix of selected maxima on the field plot is obtained as the elementwise
product of the selected maxima image with plot mask image. Only those maxima are used during
the matching procedure.

1
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(a) Plot mask (b) Remaining maxima (¢) Remaining maxima and field
trees

Figure 6.14: Matching procedure. (a) Construction of plot mask (background image) from the reg-
ularization of tree buffers (circles). (b) Selected maxima located inside the buffer (black squares, size
proportional to pixel value in m) and (c) comparison with field trees (red circles, symbol size proportional
to height).

For each pair constituted of a tree T' and a maximum M of respective heights h; and h,,, a
matching index It 5/ is computed as the ratio of the distance dr ¢ between the assumed treetop
and the detected maximum, and dy,qz(he).

It = _drm
’ dmaac(ht)

The potential pair with the lowest matching index is validated and the lists of remaining maxima
and trees are updated before reiterating the procedure. Linking ends when all remaining values
of Ity are greater than 1. From this procedure, three cases can be distinguished:

(6.8)

- true positive (or correctly detected tree), when a selected maximum is successfully linked
to a field tree,

- false positive (or false alarm, commission error), when a selected maximum can not be
matched to any field tree,

- false negative (omission error), when a field tree can not be matched to any selected max-
imum.

Let Nrp, Nrpp, Npn be the numbers of true positives, false positives and false negatives respec-
tively. We have Npp + Npy = Np and Npp + Npp = Ny where Np is the number of field
trees and Njs the number of selected maxima. An example of result of automated matching
of selected maxima with field trees is displayed on figure 6.15. The fact that detected trees are
mainly dominant ones appears clearly on figure 6.15b.
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Figure 6.15: Result of automated matching (— red lines) between [] LiDAR selected maxima and x field
treetops (scales are in meter).

6.3.2 Optimality criterion

Effect of an algorithm parameter on detection performance can be displayed on a receiver op-
erating characteristic (ROC) curve, which is the plot of the true positives ratio versus the false
positives ratio. Here true and false positive ratios are defined as Rrp = ]\]fv and Rpp = NN—FTP.
Besides, for accuracy assessment a trade-off between the true and false positives ratios has
to be found. It is assumed that for every five additional true positives, one false positive is

tolerated. The detection score S is thus computed as:
S = (w X RFp)2 + (1 — RTP)Q with w =5 (69)

which corresponds to the squared Euclidean distance to the perfect match (Npp = 0 and Npp = Np)
with the false positives ratio weighted by a factor 5.
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Chapter 7

Exploratory sensitivity analysis

7.1 Material and methods

The global workflow for treetop detection on a plot is displayed in figure 7.1. Each step of the
algorithm is presented in the previous chapter.

Airborne laser scanner data
Point cloud
(coordinates, classification)

hl v
Local maxima detection

v

Training plot

Field trees Selected 1. DSM, DTM calculation
] maxima 2. Non-linear filtering
« coordinates . 4 3 Gaussian thi
« height . coprdlnates - Gaussian smoothing
« height 4. Local maxima extration
5. Local maxima selection

I [
v

Automatic matching  —|

False & true positives rates
Accuracy score

Figure 7.1: Workflow for treetop detection.

Field data The algorithm is tested on 22 plots from the following LiDAR acquisitions:

- Chamonix (three plots: Moussoux, Orthaz and Corruaz)
- Chablais (eight plots numbered from 1 to 8),

- Murianette (Combeloup plot),

- Vercors (Saint-Agnan marteloscope divided in four plots numbered from 1 to 4),
- Valdrome (marteloscope divided in four plots numbered from 1 to 4).

- Vaujany (rockfall experiment area divided in two plots: lower and upper part).

All plots are square plots of 0.25 ha, except at Saint-Agnan (rectangular shape: 40 x 62.5 m?)
and Vaujany (no particular shape, approximately 0.33 ha). The size of these training plots
is necessary to limit border effects during the matching process. Indeed, errors may occur at
plot borders due to poor GPS precision and stems being tilted. With bigger plots, the area to
perimeter ratio increases, which decreases the influence of border effects on detection score.

LiDAR data Acquisition parameters of LiDAR surveys are presented in table 4.2. Resulting
echo densities for the field plots are displayed in table 7.1.

o7
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Table 7.1: TiDAR echo densities (m2) of points classified as ground (G) and vegetation (V) for the 22
field plots.

Plot id G V Plot id G V Plot id G \Y

chablaisl 0.8 19.0 | combeloup 3.0 3.6 | stagnand 0.9 8.4
chablais2 1.1 10.7 | corruaz 04 6.0 | valdromel 1.9 8.5
chablais3 1.1 124 | moussoux 0.3 80 | valdrome2 1.7 7.5
chablais4 0.9 13.1 | orthaz3 0.5 87 | valdrome3 1.5 12.8
chablaisb 0.5 17.6 | stagnanl 09 9.9 | valdromed 1.6 14.0
chablais6 0.8 12.3 | stagnan2 1.1 119 | vaujanyba 1.4 37.8
chablais7 0.7 8.0 | stagnan3 0.7 8.7 | vaujanyha 0.8 20.7
chablais8 0.8 26.0

Tested parameters To assess the sensitivity of the detection algorithm to parametrization
and forest structure, for each training plot numerous combinations of parameters are tested.
The tested values for the spatial resolution of the DSM and DTM images are res € {%, %, %, %,
%, %,1, %} in meters. Preliminary tests with pixel width greater than 2 m showed that detection
potential is drastically limited for coarse resolutions.
The preliminary tests also showed that the interpolation method used for DSM calculation has
little effect on detection potential. Similarly, extracting the maxima on the DSM or on the
CHM yielded similar results. Based on those findings, the DSM is chosen as the basis image
for maxima extraction and it is calculated by retaining in each pixel the maximum height of
contained LiDAR points.
Non-linear filters are tested separately. Adaptive median is applied successively nggepe € {1,2,
3,4} times. Median and morphological filters are applied with filter size r,, € {0.25,0.5,0.75,
1,1.5,2, 3,4} in meters. Depending on the resolution res, discrete filter size is approximated to
the nearest integer number of pixels. 7, corresponds to the window half-width for the median
filter and to structuring element size (disk radius) for morphological filters.
Tested values for the Gaussian smoothing parameter are o € {0,0.1,0.2,0.3,0.4,0.5, 0.75,1,
1.25,1.5} in meters. Discrete approximations of the Gaussian distribution are used.
Criteria for the height threshold of detected maxima are hp,, € {0,2.5,5,7.5,10, 12.5,15} in
meters.
Tested criteria for the relationship between a maxima height and its distance to the nearest higher
pixel are (Mmin, Mprop) € {(0.5,0), (0.75,0), (1,0), (1.25,0), (1.5,0), (1.75,0), (2,0), (1.5,%),
(1’ 4710)7 (%’ 3710)7 (%’ 2715)7 (07 2710)}

For each plot, a total of 188160 combinations are tested. All computations are performed
using Matlab® and its Image Processing Toolbox.

7.2 Results

7.2.1 Detection performance

Due to some redundant discrete approximations of parameters, the final number of obtained
combinations is only 111720 for each plot. Table 7.2 presents the best detection results obtained
on each plot and the corresponding settings. True positives ratio ranges from 28.7 to 80.5 %. False
positives ratio is lower than 6.5 %. Scores are in the interval [0.06,0.54]. The best performance
is for plot chablais6, which is a recently thinned young spruce plantation on a flat area (Rypp =
80.5% with five false positives). Detection ratio is only 28.7% in Combleloup, with four false
positives.
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Pixel sizes for these best settings are always below 1/3 m, except for plot 2 in Saint-Agnan with
2/5 m. All non-linear filters are represented, save closing by reconstruction (adaptive median:
7, median: 6, closing: 7). On one plot, the best result is obtained without non-linear filtering
(orthaz3). Regarding other parameters (non-linear and Gaussian filters sizes, selection criteria),
no trend is remarkable.

The height distributions of detected and missed trees, as well as false positives is available in
appendix C.3.1 (figures C.8 and C.9). Dominant trees are generally well detected. The detection
rate decreases for smaller trees.

Table 7.2: Best detection results and corresponding algorithm parameters for the 22 tested plots. Non-
linear parameter n corresponds to the number of iterations of the adaptive median filter, or to the width
2n + 1 in meters of the window (median filter) or of the structuring element (closing filters).

Plot id res Non-linear filter o Nmin: Munin -~ Mprop  Brp  Rpp S Field

(m) Type n_ (m) (m) (m) (%) (%) trees
chablaisl 1/3 ad. med. 4 0.3 5 0 0.05 516 39 027 153
chablais2 1/5  closing 2 03 15 0.7 0 46.6 29 031 174
chablais3 1/4  closing 0.5 0.2 25 1 0 64.7 2.0 013 102
chablais4 1/3  closing 2 0.1 5 0.4 0.04 476 3.7 031 82
chablaisd 1/4  closing 0.75 05 15 0.7 0 55.9 2.1 021 145
chablais6 1/3 ad. med. 3 0.3 75 0.5 0 80.5 2.7 0.06 185
chablais7 1/5 closing 04 07 5 0 0.06 36.7 58 048 139
chablais8 1/4 median 1 0.1 10 0.5 0 459 3.7 033 109
combeloup 1/5 closing 1.4 03 10 2 0 28,7 35 054 115
corruaz 1/5 closing 08 0.1 10 0 0.05 317 27 048 186
moussoux  1/5 ad. med. 2 05 125 125 0 445 6.0 040 281
orthaz3 1/2  none 0 0.3 75 067 003 453 41 034 148
stagnanl 1/5  closing 0.8 04 10 0.5 0 55.1 3.8 024 78
stagnan2 2/5 ad. med. 1 05 15 1.5 0 479 0.0 027 94
stagnand 1/3 median 067 07 75 05 0 404 1.1 036 94
stagnan4 1/3  median 0.67 0.5 10 1.25 0 43.0 43 037 93
valdromel 1/3 median 0.67 0.2 10 0.4 0.04 677 3.0 0.13 198
valdrome2 1/4 ad. med. 4 04 125 1.5 0 67.1 4.0 0.15 149

valdrome3 1/5 ad. med. 4 0.4 125 04 0.04 589 53 0.24 265
valdrome4 1/5 median 0.2 0.2 10 0.4 0.04 582 6.5 0.28 400
vaujanyba 1/5 ad. med. 4 1 7.5 0.5 0 38.0 0.0 0.38 92
vaujanyha 1/3 median 1 0.5 75 125 0 385 2.1 0.39 96

In case of tied scores for a given plot, the following criteria are successfully considered until
only one result remains:

- lower false positives ratio,

- larger pixel width,

- median filter is used,

- closing filter is used,

- closing by reconstruction filter is used,

- window width for non-linear filtering is the biggest, or number of iterations for adaptive
median is the smallest,

- height threshold h,,;, is the largest,

- value for the distance threshold m,;, is the largest,

- value for coefficient m,.op is the largest.
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7.2.2 Estimation of tree parameters
7.2.2.1 Introduction

After the matching procedure of trees with maxima selected with the best setting, two lists are
obtained for each plot: the list of correctly detected trees with their parameters measured on the
field (height h and diameter d) and the list of corresponding selected maxima with their LIDAR
parameters (height h; and crown area a;). For trees on a given plot, linear regression models
are trained to fit relationships between the field parameters h and d and the extracted LiDAR
parameters h; and q;.

For the Valdrome plots, all heights have not been measured on the field. Only correctly
detected trees with a field value are used in the analysis.

7.2.2.2 Height estimates

Statistics of the difference between LiDAR height and the field measured height of the correctly
detected trees are shown in table 7.3. Mean difference is either negative or positive (-1.0 to
1.3 m). The distribution of h — h; is not symmetric about 0 (p < 0.05, two-sided Wilcoxon
signed-rank test) for thirteen plots. The highest biases are for plots chablais6 and orthaz3.
Standard deviation of differences ranges from 0.77 m to 2.2 m, respectively for plots chablais6
and combeloup. The root mean square of difference h — h; ranges from 1.0 to 2.2 m. Low values
are obtained in plots chablais3, chablaish and chablais?.

Linear regression models with field height as dependent variable and LiDAR height as inde-
pendent variable are fitted by ordinary least squares with the data of correctly detected trees on
each plot:

h=ao+ Bl with (a, 8) the model parameters (7.1)

Table 7.3 displays regression model parameters. Data points are very close to the 1:1 line
(figure C.10), and regression parameter (3 is close to 1, except for vaujanyba and some plots
in Saint-Agnan and in Valdrome where it is lower than 0.9. Values for adj-R? are above 0.8,
except in valdrome2 and valdrome3. Due to the fairly good correspondence between LiDAR
height and measured height, the root mean of squared residuals of regression models is only
slightly reduced compared to the root mean squared differences (respectively rmsr and RM S in
table 7.3). Improvement is mainly due to bias correction in plots with small variance of h — Iy
(e.g. plots chablais6, orthaz3 and chablaisl).

Plots of h as function of h; are displayed in the appendix C.3.2 (figures C.10 and C.11),
along with the obtained regression models. In certain plots, the heights of the tallest trees seem
overestimated (figure C.11, Saint-Agnan plots, valdrome2 and vaujanyba). However, Spearman
correlation coefficients p between h and h — h; indicate that significant relationships are found in
Chablais plots, combeloup, moussoux and three of the Valdrome plots, and are in fact positive
correlations. In these plots, tree heights are all the more underestimated as trees are tall.

7.2.2.3 Basal area estimates

Two types of regression models are tested for basal area retrieval from two LiDAR derived
parameters: height h; and segment area a;. The additive model is an ordinary least squares
multivariate linear regression, the multiplicative model is obtained by log-transformation of all
variables prior to applying the additive model.

g =a+ Bh+yaq (7.2)
g= ahfa? (7.3)
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Table 7.3: Correctly detected trees with field-measured height: statistics of the difference between ground
truth and LiDAR height (mean, standard deviation, root mean square, and Spearman correlation coef-
ficient p with measured height), and regression model between field height 4 and LiDAR height h;:
h = a+ Bh; (model parameters, adj-R? and root mean square residuals). Significance levels: *" p < 0.001,
“p<0.01, " p<0.05 °p<0.1. Significance levels in the “Mean” column correspond to the Wilcoxon

signed-rank test applied to h — h;.

Plot id Number Statistics of h — Iy Regression model parameters
of trees Mean Std dev. RMS P « B adj-R?  rmsr
chablais1 79 0.97"" 1.02 1.40 048" 035 1.05 0.93  1.00
chablais2 81 0.76™" 1.62 1.78 0.41" 0.12 1.02 0.86 1.61
chablais3 66 0.46"" 0.90 1.00 0.29° 0.17 1.02 0.97 0.88
chablais4 39 0.877" 1.34 1.59 0.28* 0.88 1.00 0.98 1.33
chablaisb 81 —0.05 1.11 1.10 0.30" 1.13 0.96 0.80 1.10
chablais6 149 127" 0.77 1.49 0.22" 1.82 0.96 0.85 0.77
chablais7 51 0.36" 1.19 1.23  0.30° —0.31 1.04 0.96 1.16
chablais8 50 —0.04 1.66 1.65 0.42" —-1.39 1.06 0.95 1.59
combeloup 33 —0.28 2.24 2,23  0.38" 1.03 095 0.79 2.20
corruaz 59 0.57"  1.50 1.59  0.00 1.50 0.95 0.95 1.45
moussoux 125 0.62" 1.76 1.86  0.39"" 0.56 1.00 0.83 1.75
orthaz3 67 1.317" 1.18 1.75  0.11 1.06 1.01 0.95 1.17
stagnanl 42 —0.98"" 1.45 1.74  0.24 227 0.87 0.86 1.35
stagnan?2 45 —1.03™" 1.89 2.13  0.07 526 0.75 0.72 1.64
stagnan3 38 —0.52 1.91 1.95 0.03 3.14 0.84 0.82 1.73
stagnan4 40 —0.16 1.69 1.67 —0.04 217 0.89 0.87 1.59
valdromel 45 0.91"" 1.09 1.41  0.28* 243 092 0.81 1.06
valdrome2 33 0.07 1.91 1.89 0.32* 6.16 0.71  0.52 1.73
valdrome3 52 0.15 1.49 1.49 0.11 4.76 074 0.70 1.30
valdrome4 96 0.39"  1.42 1.47  0.29" 200 0.89 0.77 1.38
vaujanyba 35 -0.91"  2.03 2.20 —0.10 220 0.89 0.89 1.88
vaujanyha 37 —0.50 1.91 1.95 0.10 1.12 094 0.92 1.85

The purpose here is not to develop new LiDAR-based allometric relationships for tree diameter
or basal area prediction. It is just to show that, whereas height prediction from LiDAR is
quite straightforward, derivation of other tree parameters is a far more difficult task in complex,
heterogeneous forests.

Table 7.4 displays the adj-R? coefficient for both types of models, when only LiDAR height is
used as variable and when crown area is also included as variable. adj-R? ranges from 0.06 to 0.80
when only h; is employed as variable in the additive model. On some plots, including a; increases
the degree of fit. In the first three plots of Valdrome, additive regression models with only h; are
poorly fitted, but the inclusion of q; greatly increases the adj-R2. Tmprovement is also noticeable
in plots chablaisl and stagnanl. With two LiDAR variables, best results for the additive model
are obtained for plots chablais1, chablais8, corruaz and chablais3, with adj-R?> 0.8.

With the multiplicative model, adj-R? values are generally better but similar trends are notice-
able. Minimum and maximum values are (0.06,0.93) and (0.36,0.93) for models without and
with a; respectively. The inclusion of a; yields a great improvement in all Valdréme plots, and
in chablais8. Obtained best fits are slightly better with adj-R? for chablais4, chablais8, Vaujany
plots, chablais3 and valdrome2 above 0.8.

It is noteworthy that Spearman correlation coefficient between the adj-R? value of the multi-
plicative model with two LiDAR variables and the stem density has a negative value (-0.62),
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significant at the p < 0.01 level. Correlation with other stand parameters (stand basal area and
dominant height) are not significant (p > 0.1).

Table 7.4: adj-R? of multiple regression models for the prediction of basal area with LiDAR variables
(height h; and crown area a; for correctly detected trees with field-measured heights).

. Number adj-R? of multiple regression model
Plot id B ~ 3
of trees g=a+pBh+vay g=a+ph g=ahjal g=ah
chablaisl 79 0.82 0.68 0.66 0.62
chablais2 81 0.32 0.32 0.40 0.40
chablais3 66 0.81 0.76 0.83 0.77
chablais4 39 0.64 0.58 0.93 0.93
chablaish 81 0.47 0.41 0.45 0.43
chablais6 149 0.37 0.35 0.66 0.59
chablais7 51 0.67 0.67 0.77 0.77
chablais8 50 0.82 0.80 0.86 0.77
combeloup 33 0.42 0.39 0.64 0.65
corruaz 59 0.81 0.80 0.72 0.73
MOouSSOux 125 0.38 0.38 0.57 0.57
orthaz3 67 0.71 0.64 0.79 0.77
stagnanl 42 0.62 0.49 0.56 0.47
stagnan?2 45 0.62 0.56 0.61 0.52
stagnan3 38 0.55 0.56 0.76 0.76
stagnan4 40 0.65 0.65 0.70 0.71
valdromel 45 0.66 0.37 0.45 0.44
valdrome?2 33 0.77 0.45 0.81 0.44
valdrome3 55 0.49 0.06 0.43 0.06
valdrome4 96 0.37 0.38 0.39 0.36
vaujanyba 35 0.69 0.70 0.84 0.85
vaujanyha 37 0.77 0.74 0.84 0.83

7.2.3 Sensitivity to parametrization

Due to the high number of combinations, only a graphical overview of the results is presented.
On the following figures, the monotonically increasing border of the point groups envelopes
(efficiency frontier) are represented in the (Rpp, Rpp) plane, with Rpp < 0.2 and Ryp > 0.2.
Each point represents a parameter combination, groups are constituted according to values of
a given parameter. The upper border of the different point groups indicates whether a given
parameter has limiting effect on detection performance. Obviously, this rough approach cannot
address the combined effects of parameters.

Regarding the trade-off between true and false detections, some general trends are noticeable.
With homogeneous stands, true positives ratio increases greatly when a few false positives are
tolerated. Then true positives ratio further increases slowly even if more false positives are tol-
erated. Example for this case is given by plot chablais6, which is a young spruce plantation. For
stands that are more heterogeneous, such as plot chablais5, chablaisl and chablais7 (figure 7.2a),
the observed ROC curve is more round. In heterogeneous stands, the ROC curve also seems
more flat for stands dominated by a few very large trees, such as plots vaujanyha, stagnanl or
chablais4 (figure 7.2b).

With pixel size smaller than approximately 0.5 meter, achieved detection performance is sim-
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Figure 7.2: Efficiency frontier for (a) plots with various heterogeneity or (b) heterogeneous plots domi-
nated by a few large trees.

ilar for each plot. For coarser spatial resolution, detection ratio appears all the more limited as
pixel size is big (figure 7.3a).

Different non-linear filters yield very similar results. However, closing by reconstruction is fre-
quently less efficient than closing or median filters. (figure 7.3b).

The size of the Gaussian kernel for lowpass filtering greatly affects the trade-off between false
and true positives ratios. For o above (.75 meter true positives ratio is bounded, but so does
the false positives ratio. Indeed, with 0 = 1 m, Rpp generally remains below 10%. For values
below 0.5 m, no general pattern is noticeable (figure 7.3c).
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Figure 7.3: Effect of parameters on the efficiency frontier of the detection algorithm for plot chablais3.

Effect of the height threshold really depends on the forest structure. On some plots, high
thresholds bound the true positives ratio. On plot chablaisl, which is a rather sparse, young
irregular stand, high thresholds remove small detected trees but other values have no noticeable
effect (figure 7.4a). On plots with a very high and homogeneous canopy cover, thresholding the
height values has non effect (figure 7.4b). In other cases, intermediate values for the threshold
help removing detected shrubs and while keeping small trees (figure 7.4c).

Effect of the distance threshold displays no general trend, showing that it might be only a
secondary aspect. On most plots however, selection based of values of my,;, greater than 1.5 m
result in lower detection performance.
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Figure 7.4: Effect of different values for the height threshold parameter h,,;, (m) on the efficiency frontier.

7.2.4 Sensitivity to forest structure
7.2.4.1 General considerations

Despite the low number of field plots, some trends appear when correlations between detection
performance and stand parameters are investigated. Table 7.5 present the Spearman rank corre-
lation coefficient p between stand parameters and the true positives ratio obtained with the best
setting for each plot. True positives ratio is positively correlated to coniferous tree proportion
(p < 0.05) but is negatively correlated with dominant height (p < 0.05). Correlation is signifi-
cant at the p < 0.1 level for stem density (p = 0.37). It is noteworthy that the null hypothesis
that dominant height and coniferous proportion are not correlated cannot be rejected (p = 0.7).
Plot chablais6 appears as an outlier and, when removed from the dataset, correlations are less
significant for dominant height and stem density.

Table 7.5: Spearman correlation coefficient p between the true positives ratio and forest stand parameters.
First row of the table displays results when all 22 plots are considered. Second row presents results for
all plots except the outlier chablais6. Significance level: * p < 0.1, " p < 0.05.

Basal Stem  Dominant Coniferous

Subset area  density height proportion
(all) 0.07 0.37° —0.45" 0.53"
(- chablais6) 0.19  0.33 —0.37° 0.53"

7.2.4.2 Cross-validation of optimal settings

Figure 7.5 displays boxplots of scores obtained on all plots for the settings optimized on each
plot individually, and with a global “average” setting. This setting is the parameters combination
that yields the lowest mean score on all plots, i.e. Sy = argmin(}_, Sf) with Sg the score
obtained on plot FP; with the setting s;. The obtained s,,;, consists in the following parameters:
computation of images of spatial resolution res = 0.4 m, filtering with one iteration of the
adaptive median filter, Gaussian smoothing with ¢ = 0.75 m, removal of maxima with height A
under Ay, = 5 m, and of maxima whose values in the maxima image do not satisfy m > 0.05 x h
(Mmin = 0 and mppop = 0.05).

For several settings, outlier scores are present (dots far outside the whiskers in figure 7.5a).
These values are mainly obtained on plot combeloup. Three settings turn out to yield very
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variable results: these are the optimal settings determined on plots valdrome4, chablais8 and
chablais6 (large boxes in figure 7.5a). The mean score with the average setting is 0.47 with
a standard deviation of 0.15. The minimum and maximal scores are obtained with the plots
that also yielded the minimum and maximum scores with the optimal setting, respectively plot
chablais6 and combeloup. The mean score with optimal settings is 0.30, with 0.12 standard
deviation.
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Figure 7.5: Boxplot of detection scores obtained on all 22 plots for the settings determined on each plot
individually, and for the average setting.

Figure 7.6 displays boxplots of scores obtained with all optimal settings for each plot. De-
tection score values are the same as in figure 7.5, except that they are grouped by tested plot
instead of tested setting. Many outliers are noticeable (figure 7.6a), which means that for all
plots some inappropriate settings exist. Such points corresponds to settings optimized for plots
chablais6, chablais8 and valdrome4, that have shown poor performance in the previous graph.
The combeloup plot gives the most variable detection results. The average setting detection
score is under the first quartile of detection scores for 15 plots (figure 7.6b). It is located above
the median for only four plots (chablais5, chablais8, valdrome3 and valdrome4).

Mean scores can be calculated plot-wise or setting-wise. Mean score for plot P; is S; =
+ >; 8] and mean score for setting s; is S§i = L 3.5, Figure 7.7 displays the scatterplot
of (S%,S;), i.e. the mean detection score obtained with all settings on plot i as a function of
the mean score obtained on all plots with the setting determined on plot 7. The mean value of
detection scores for plot combeloup, and to a lesser extent, plot stagnanl are high (7.9 and 3.7
respectively). However, the settings determined on these plots are quite robust as they yield mean
detection scores on all plots of 0.57 and 0.93 respectively. On the contrary, settings determined
on plots valdrome4, chablais8 and chablais6 give poor results with mean detection scores of 8.1,
6.0 and 5.9, but scores obtained on these plots with other settings are satisfactorily with mean
detection scores of 0.62, 0.59 and 0.52. Plot chablais3 lies in a intermediate position compared to
the two aforementioned groups. The remaining points are gathered in an area bounded by S; < 3
and S* < 2. Spearman rank correlation p between (S;) and (5%) is —0.63 (p < 0.01) if all points
are considered, and —0.56 (p < 0.05) if the six points mentioned previously are removed. This
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Figure 7.6: Boxplot of detection scores obtained with all settings for each plot. Scores obtained with the

average setting are displayed as x red crosses.

trend shows that plots where trees are not easily detected yield the most robust parametrization

when used for algorithm training.
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7.3 Discussion

7.3.1 Algorithm
7.3.1.1 Local maxima extraction

The local maxima extraction algorithm consists of numerous steps. For each one, several param-
eters have been tested, leading to a important number of tested combinations. However, results
indicate that the whole process could be somewhat simplified. Besides, some slight modifications
can be performed in order to make comparisons between parameter sets more meaningful.

Regarding resolution, it appears that even when LiDAR data is theoretically not dense enough
to compute images with small pixel size, good detection performance are obtained. This might
be linked with the fact that non-linear filters are successful in filling empty pixels. Then the
position of the treetop is estimated with better precision for images with finer spatial resolution.
This leads to a marginally better detection performance with the matching procedure based on
distances between the assumed treetop and the position of the local maximum. The information
originally contained in the point cloud is indeed better retained in finer grids. However, the
computational burden for processing such images is higher. If similar performance is obtained
with slightly coarser resolution, e.g. 0.4 or 0.5 m, working with such pixel size might be more
efficient in operational applications. Moreover, if delineation of trees which demands even more
CPU - is performed after maxima selection, an alternative for better estimation of tree position
and height would be to select the position of the highest LIDAR echo in the LiDAR point cloud
contained in the segment.

Regarding non-linear filters, it appears that filters that are the less conservative with shapes
(median and closing) yield better results that closing by reconstruction. This shows that in the
process of detecting treetops, fine details of tree crowns disturb the detection of the global shape
of trees. The case of the adaptive median filter is quite different, as it is quite conservative with
crown details but also adjusts the window size to the estimated noise level. This might explain
why it produces good results. However, for a more truthful comparison of non-linear filters,
similar window shapes should be used. Indeed, square windows are used for the filters based on
median, whereas disk structuring elements are used for closing filters. Given the shape of trees,
circular windows might be a better choice. This remark also stands for the window used for local
maxima detection. However this is likely to give only minor differences [258].

The additional selection based on minimum height proved useful, mainly in sparse stands. In
fact, detected maxima might really correspond to small trees or bushes. But as these plants are
not considered in the field inventory, or are not interesting to the forest manager, it is better to
remove them in order not to bias the detection performance or stand parameters estimates (e.g.
number of stems above a certain DBH).

Selection based on the relationship between the value in the maxima image m, which cor-
responds to the size of the window where the pixel is local maximum, and pixel height is
more difficult to interpret. Using criteria based on relationships between tree height and crown
width [43,258] seems more meaningful but requires prior knowledge of allometric relationships
and might not be able to handle the cases of trees with overlapping crowns. A selection based
only on the value in the maxima image (which occurs in fourteen of the best settings) might be
sufficient. Besides, this selection step might be considered redundant with the preceding filters
(non-linear and low-pass). To address the issue of selection of maxima depending on their height,
without using a complementary selection, height-dependent filters could be used. Indeed, it is
possible to adapt the size of the structuring element or of the smoothing linear kernel to the
value of pixel in the height image [156]. However it is likely that for optimal performance, the
stand structure will have to be taken into account to adjust the height-dependent window size.
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Finally it turns out that a better understanding of both tree crowns interaction in complex forests
and of LiDAR crown models is required to design improved local maxima extraction procedures.
Procedures could be simplified for better robustness, or adapted to various forest structures for
better handling of particular cases.

One example is that the criterion based on the value in the maxima image is not adapted
to tree crowns that are not symmetric. For example, in Valdréome, most of the crowns are flag-
shaped (figure 7.8). As trees have the same age, an upslope tree has a competitive advantage for
light with respect to its neighboring downslope tree. As a result, trees tend to bend over trees
located downslope, resulting in an asymmetric tree crown. For a given local maximum detected
in the DSM, the size of the window where it is maximum is very small and do not reflect its
crown size. An alternative it to use a relationship between the size of the segmented tree crown
and maximum height as selection criterion, but this requires an iterative approach.

Figure 7.8: Distance of treetop to the nearest higher crown. In this case of asymmetric, flag-shaped
crowns, this distance (red arrows) is not a good indicator of crown width.

7.3.1.2 Matching procedure

The final outcome of the workflow implemented previously heavily depends on the automated
evaluation of detection performance. However, it is obvious that numerous aspects might lead
to errors in the process. The first one is ground truth. Indeed, there are several types of error
during field inventories [69]:

- measure errors due to instruments,
- omission or double inventory of trees,
- measure and reporting errors due to operators.

Errors linked with instruments have already been presented in section 5.2. They are smaller
than the errors linked with trees tilt and geolocation, and are accounted for in the matching
buffer. Trees are rarely inventoried twice as they are usually numbered with chalk on their
stem. Some errors linked with erroneous reading or reporting of instruments measures might be
detected with careful checking of field data, e.g. values range, map of tree positions, height to
diameter relationship. Outliers might be due to false measures and should be checked by going
back to the field, which is not always possible. Besides some errors might remain unnoticed,
and lead to a wrong tree position or height. In such cases, the treetop with wrong position is
likely to be considered as a false negative. If the treetop is actually detected in its right position,
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a false positive is also considered, instead of a true positive. Similarly, omitted trees will lead
to no result or to a false negatives. However, experience with plots that have been inventoried
twice show that such errors are rare, and mostly restrained to small trees that are generally not
detected.

Second type of error is linked with the unknown position of the treetop. Indeed, it is the
tree stem position that is recorded, with precision directly linked to GPS data. However, when
a tree is tilted, the treetop projection on the ground might be located several meters away
from the stem. That is why the buffer approach is adopted, which allows to look for a selected
maximum inside a sphere centered on the assumed treetop position. The choice of the sphere
size (proportional to tree height) is designed to reach a trade-off between the possibility to refuse
a true positive (tree that is very tilted, with its treetop outside the buffer), and the possibility to
create an erroneous true positive by linking another nearby selected maximum to this tilted tree.
The setting that is adopted has been chosen with data from Vaujany, where trees are very tilted
toward downslope. Thus one can expect that very few true positives will actually be rejected, but
that matching with nearby maxima might occur. In such cases, either another true positive was
linked with the wrong treetop, or a false positive is considered as a true positive. A comparison
with results from external, manual matching for a subset of plots showed that such cases are also
rare.

The third type of error is due to border effects. To be consistent with the buffer approach
procedure, the plot boundaries are not calculated from the ground delineations, but from a 2D
buffer created around each field tree stem. When a tree has its stem outside the plot, but its
treetop inside the buffer (e.g. when a nearby big tree it tilted over a small tree located inside the
plot), it is likely to be detected as a false positive, whereas it should be a true positive. The two
trees detected as the black squares near matrix coordinates (35, 95) in figure 6.14¢ are examples
of how border effects lead to wrongly considered false positives. There might be between zero
and two false positives due to border effects in the tested plots. To mitigate this problem, the
construction of a 3D (grayscale) buffer might help removing false positives.

The fourth type of error is linked with the greedy nature of the matching algorithm. Indeed,
pairs are successively created based on the lowest matching index, and never changed, whereas
breaking one pair might make the creation of two other pairs possible (figure 7.9). To address this
issue, an optimization procedure based on simulated annealing [154] has been tested. However,
the choice of the energy function turned out to be complicated. Indeed, taking only the created
pairs as criterion leads to the matching of false treetops with nearby undetected field trees, given
the permissive size of the matching buffer. Taking the quality of matching into account with the
integration of a parameter linked to the distances between maxima and treetops in constituted
pairs was also tricky. In the end, the greedy matching algorithm is preferred as it is more simple
and will tend to underestimate detection performance, whereas the optimized procedure tended
to overestimate it. Besides, cases where the breaking of one pair would allow the creation of two
other pairs are also rare.

In order to be able to design automated matching procedures for algorithm testing, one has
to rely on simple assumptions. It is obvious that the adopted procedure could be refined, but
taking into account all particular cases occurring in complex forests would be an endless task, and
might involve challenging the field protocol. For example, snags (dead standing trees) are not
considered in the analysis, meanwhile trees that recently died and still have their small branches
will induce in LiDAR data a response similar to live trees. Besides, in the field inventory, all
individual stems at 1.3 m height are considered as trees. When coniferous trees have forks at
higher levels, this might lead to two separate crowns for one single tree. If two treetops are
detected, one will be considered false positive according to ground truth. Despite its limitations,
this matching procedure meets the requirement of comparing detection results quickly and in a
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Figure 7.9: Example of bad matching by the greedy algorithm. One of the field treetops (black arrows)
is linked (— red solid line) to the nearest detected maximum (x black cross). Untying them will make
matching of both trees with detected maxima possible (--- red dotted lines). Orange shades represent
the matching buffer limits.

stable way, which makes further analysis of detection performance possible.

For final detection performance comparison, a unified criterion is required. Here a trade-off
between the true positives and false positives ratios is proposed. It has been arbitrarily chosen in
order to limit false positives while allowing satisfactorily true positives ratio. For real applications
it is obvious that the criterion has to be adapted. The weight factor should be adjusted to take
the relative cost of false and true positives into account. Moreover, the number of trees might
also be weighted by a factor that reflects their value, such as tree height, in the absence of
reliable estimate of the basal area or volume. Such criteria depend on the users of remote-sensed
data and require further cost plus loss analyses, such as the study for evaluating the economical
opportunity of LiDAR inventories [124].

7.3.2 Detection performance
7.3.2.1 Detected trees

Comparison with detection results from the literature must be taken with care as there are as
many performance assessment procedures as published results. Main methods match detected
maxima based on the inclusion within field delineated crowns, or reversely, based on field trees
included in segmented tree crowns. In most cases, it is a 2D matching process, even tough a
height difference threshold is sometimes considered. The procedure based on the 3D distance
takes advantage of the fact that all tree heights have been measured. It is more conservative in
this regard, but it is more flexible regarding the position of the treetop. Moreover, forest struc-
tures are difficult to compare and LiDAR data is acquired with different parameters or sensors.
In sugi (Cryptomeria japonica) plantations in mountainous terrain, detection results (Rrp, Rpp)
of (0.74,0.03), (0.86,0.1) and (0.92,0.08) have been reported for steep slope, gentle slope and gen-
tle slope with rough terrain respectively [113]. These results are better than those obtained in
plots chablaisb and chablais6. Besides, sugi plantations were more dense than those two plots.

In richly structured forests in Bavaria [104], the global detection results for 29 plots were
(Rrp, Rrp) = (45.4,5.5) for all trees (n = 2584). Of our 3378 trees in the 22 plots, 51.5%
are detected with settings optimized for each plot, but only 34.7% if the average setting is used.
Corresponding false positives ratios are respectively 3.8 and 3.6%. The Bavarian study obtained
similar results regarding the facts that detected trees are mainly from the upper stratum and
that detection performance is lower for stands with high stem density or deciduous proportion.
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7.3.2.2 Parameter estimation

Height It is noteworthy that, compared to the 2D based matching procedure, the 3D approach
used here has the indirect effect of preventing large relative differences between the measured
and LiDAR heights of a correctly detected tree. Possible outliers are de facto considered as false
positives.

Underestimation of tree heights in coniferous stands has been commonly reported [88]. It is
explained by the small probability for a laser pulse to actually hit the treetop, or at least to
induce sufficient backward signal to accurately measure its position. When treetops are flat-
shaped, such as for broadleaved species or for ageing sliver fir trees, the underestimation is
expected to be less important. Here, a large value is obtained for plot chablais6. The terminal
shoot and the last whorl of young spruce trees are indeed very thin which might explain why
their height is not correctly reported by laser returns. All plots dominated by spruce display
an underestimation of tree height. Height underestimation in the Chamonix plots might also be
caused by the gap between the LIDAR acquisition (2008) and the measures (2009 and 2010). Plots
dominated by silver fir or beech show no or small overestimation. In the Bavarian study a mean
difference of 0.54 m, with a standard deviation of 1.44 m is reported for the difference between
measured and LiDAR height. These values are also similar to the ones presented in table 7.3. In
some plots (Saint-Agnan 1 and 2, vaujanyba), an overestimation is recorded. All these plots are
protection forests located in areas with altitude greater than 1200 m and slope greater than 30°.
Environmental factors lead to a tendency of trees to be tilted toward downslope. This results
in tree height overestimation by LiDAR, as reported in [113], and also in an underestimation of
field height (figure 7.10).

Figure 7.10: In slope areas, it is usually more convenient to measure tree height (red arrow) from an
upslope position. Unfortunately, if the tree is tilted downslope, height is underestimated (blue arrow),
whereas LIDAR data overestimates it (orange arrow).

Basal area Other studies mainly focused on the retrieval of diameter at breast height, which
is proportional to the square root of basal area. The Bavarian study [104] fitted regression
models with LiDAR height, crown radius and their squared values as independent variables.
adj-R2 of the models were 0.79 for deciduous trees and above 0.89 for coniferous trees. These
results are clearly better, which could be explained by different factors. First the investigated
relationship (i.e. diameter versus height, crown radius and their squared counterparts with an
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additive regression model) has a better fit. Second there might be important differences between
broadleaved and coniferous species which makes the use of two separate models more relevant.
Third, the watershed algorithm used for crown segmentation is not constrained by segment shape
or pixel height. Forest gaps will be integrated in the nearby trees, which erroneously increases
their crown area. Besides, in multi-layered forest, small trees are not detected but have crowns
that partially join crowns of larger, detected trees, which also increases the segment size.

7.3.3 Algorithm sensitivity
7.3.3.1 General considerations

Results show that for homogeneous, single-layer stands, optimal parametrization leads to better
performance than for complex stands. Indeed, trees have similar height, width and shape, so
that with an adapted setting treetops can be efficiently detected in every part of the plot while
limiting the amount of false positives. On the contrary, in complex plots, the variability of
shapes and tree arrangements makes optimization of detection parameters at the plot scale more
complicated. The trade-off between false and true positives leads to a setting that is more robust
but necessarily less efficient from the score criterion. In such stands, true positives ratio can
be increased if more false positives are tolerated. In homogeneous stands, gaining more true
positives is more difficult as deviations from the optimal parameters set lead to a lot of false
positives with relatively few additional true positives.

Two complementary aspects may explain why the true positives ratio is positively correlated
with coniferous proportion. First it has been reported in the literature that broadleaved trees
are less easily detected due to the irregular shape of their crowns. A single tree may have two or
more clearly separated local maxima, whereas in coniferous trees the apical dominance is highly
pronounced, and shape more regular, which makes algorithm parametrization easier. Second,
there might be a link between forest structures and coniferous proportion in our studied area.
Homogeneous stands are frequently coniferous plantations (e.g. chablaisb, chablais6, Valdrome
plots) whereas deciduous species in mountainous forests have often been considered less valuable
and restrained to the lower strata of multi-layered, complex stands.

The negative correlation of true positives ratio with dominant height might also be linked
with forest structure. Indeed, studied plots with high values of dominant height are mainly multi-
layered stands with a dominant stratum of large mature trees. Thus, dominant height value is
not related to an homogeneous cover of large trees but to an upper stratum that overwhelms
smaller trees, making them hard to detect on the DSM.

7.3.3.2 A few typical examples

Homogeneous stands chablais6 is the typical example of an homogeneous stand. In this
young spruce plantation, recently thinned, trees have the same height and crown size (fig-
ure C.5e). Crowns are also well delimited. The best true positives ratio is obtained on this
plot with 80.5%. False negatives are mainly due to border effects. The ROC curve (figure 7.2a),
is square-shaped, which means that once the majority of trees are correctly detected, additional
true positives require a important trade-off with false positives. The optimal parameter setting
is very specific to this forest structure, and yields poor results on other plots. chablais5 is also
a very homogeneous coniferous stand, but with higher canopy closure, so that achieved true
positives ratio is only 55.9%.

Dense stands valdrome3, valdrome4 and moussoux plots have stem densities higher than
1000 ha'. In the Valdrome plots, which are one-layered stands, true positives ratio of 58% are
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obtained, whereas in the irregular stand of moussoux, the value is only 44.5%. In both cases, the
high stem density leads to a pretty high number of false positives (> 5.3%). In the moussoux
plot, the bad detection score might also be explained by a lower LiDAR echo density. The
optimal setting obtained on plot valdrome4, which has N = 1600 ha!, performs poorly on plots
with lower stem density.

Broadleaved stands Plots combeloup, chablais7 and chablais8 have more than 80% broad-
leaved trees proportion. Bad detection score in combeloup is mainly due to the poor quality of
the LiDAR data. Acquisition was realised in leaf-off conditions, which results in a low proportion
of vegetation echoes. The resulting DSM is of poor quality (figure C.1b), it is likely that echo
extraction from the full waveform files was too restrictive. This shows that the choice of LiDAR
acquisition parameters and the quality of pre-processing is crucial regarding the potential of
final ALS data for forest parameters retrieval. In chablais7, the stand is complex as several
broadleaved trees are actually coppiced, and terrain surface is very rough. This may result in
additional errors in both LiDAR heights and field data. In plot chablais8, stand structure is
more homogeneous and a better detection performance is obtained, with 45.9% detection ratio.

7.4 Conclusion and perspectives

Whereas the estimation of tree height from LiDAR data is straightforward, retrieval of other
parameters is more complicated. Fitting correct models requires additional steps, such as: forest
structure stratification or species identification in order to apply specific models, extraction of
other relevant LiDAR metrics and testing new models.

With complex forest stands, parametrization has a major effect on detection performance.
Satisfactorily results can be obtained in any forest stand with an average setting. However, this
will greatly limit the detection performance for homogeneous stands where trees are theoretically
easily detected with an appropriate setting. When comparing the performance of settings opti-
mized for a given plot when used on the other reference plots, three main points are remarkable:

- homogeneous plots require a specific tuning of the algorithm,

- detection on complex stands requires an important trade-off between true and false posi-
tives,

- forest structure and species have a major influence on detection performance.

In operational applications, field data is usually rare, and manual delineation and parametrization
of the algorithm for small areas is not possible. An unsupervised alternative would be to take
advantage of available reference data, i.e. field plots with LiDAR data where the algorithm
parametrization are known, to automatically adjust detection parameters based on the similarity
between the new LiDAR data and reference plots. Indeed, for each plot, there is a setting
optimized for another plot that performs better than the average setting. This approach is
presented in the following chapter.
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Chapter 8

Unsupervised algorithm
parametrization

8.1 Method

8.1.1 Introduction

The simple local maxima detection algorithm presented in the previous chapter yields good de-
tection performance provided it is appropriately parametrized. Results obtained with an average
set of parameters are generally satisfactorily but are bonded for homogeneous cases where trees
are theoretically easier to detect. To deal with this sensitivity of algorithms to forest structure,
various approaches can be adopted. Parameters are generally based on prior knowledge about
forest structures, e.g. with crown diameter height relationships [43,258]. Some algorithms
automatically adjust the parameters in the course of the detection procedure, e.g. with multi-
scale approaches [245,252]. From the results of the previous chapter, it is noticeable that even
tough the optimal parameters set obtained with a given plot generally performs poorly when
applied on the others, there is frequently one or several of them that still performs better than
the average parametrization. When no information is available on a forest area covered by a new
LiDAR survey, it is not possible to rely on previous field knowledge of allometric relationships.
The proposed idea is to use the existing coregistered field and LiDAR data as training data in
a three step procedure. The training step, i.e. the determination of the best parameters setting
among all combinations for each training plot is first performed, as has been presented in the
previous chapter. Then the new data is compared to existing LiDAR datasets. Finally, the
optimal parameters set of the most similar reference dataset is used for treetop detection in the
new data.

To implement this workflow, a matching procedure based on LiDAR data is required. Due
to the complexity of comparing two 3D point clouds, two simple metrics are investigated. The
first one is the height distribution of points within the plot. It reflects the vertical structure of
the forest stand, which is alleged to be one important criterion regarding the potential for image
processing techniques to detect trees. The second one is an integrated spectral-energy description
of the canopy heigth model. It characterizes the spectral content of the surface model which is
the raw material for image processing techniques used for local maxima extraction.

75
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8.1.2 Point cloud metrics computation
8.1.2.1 Point cloud extraction

In the previous chapter, the single-tree based procedure did not require that field plots have
similar shape. It was possible to finely adjust the plot mask to inventoried trees in order to
minimize border effects. Here, the objective is to compare the point cloud in a given area to the
point clouds located in reference field plots. In order to be able to extract stand metrics based
on Fourier-transform techniques, square-shaped plots are preferred. Unfortunately, the real field
plot shape is never a perfect square, and its corner coordinates are not known with accurate
precision. Therefore, the proposed procedure is to automatically adjust a 50 m wide square to
the inventoried trees positions and to extract the included point cloud for further processing.

We consider a square plot were IV trees have been inventoried. Trees planimetric coordinates
in the current projected system are (z;,¥;)ic{1,..,N}- A rotation angle that approximately aligns
the plot with coordinate grids is estimated by finding the argument ap that minimizes the range
of the rotated coordinates (Xj,Yi)icq1,... N}:

X1 "N r1 Y ,
S B L) I
Xy Yy IN YN

ap = arg;nin(min(max(X) —min(X),maz(Y) — min(Y))) (8.2)

ap is estimated by applying a built-in optimization function of the R software based on simulated
annealing [154]. The rotation is applied to the LiDAR point cloud, as well as a translation of
vector 1 (max(X) —min(X), maz(Y) —min(Y). Considered LIDAR points are those located in
the quadrant of width 50 meters and centered on the new origin.

8.1.2.2 Height distribution

The vertical distribution of LiIDAR points is related to the vertical structure of the forest. The
underlying hypothesis is that detection performance in complex stands is linked to the presence
of multiple layers in the canopy cover. The height distribution of LiDAR points is expected to
reflect this vertical organization.

The normalized heights of selected LiDAR points are computed by subtracting the terrain
altitude at their orthometric coordinates. Terrain surface is estimated by bilinear interpolation
of points classified as ground points. The height distribution is computed as the frequency of
points that fall in height bins of 0.5 m width, starting from two meters height. Lower points are
not considered in order to remove the influence of ground, shrubs and bushes. For each plot, the
height distribution H is a vector of 83 values that correspond to the frequency of points in 83
height bins of 0.5 m width from [2,2.5] to [43,43.5[.

8.1.2.3 Module of the Fourier Transform of image

The raw data for the treetop detection is the the DSM. In section 6.2.4, the terrain and objects
in the DSM are interpreted in terms of frequency components. It is expected that the optimal
detection parameters depend on the arrangement and shape of trees, and on LiDAR acquisition
parameters. Forest structure and LiDAR parameters are related to the relative importance of
frequency contents of the DSM, which can be regarded as global texture patterns. The Fourier
spectrum is a widely-used tool for describing the frequency contents of images [92, p. 838].
Considering an image f of size (M, N), the 2D discrete Fourier transform (DFT) F and the
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corresponding spectrum S are given by:

M-1N-1

Fluw) = o= 30 3 fag)e oo i 2 = 1 (8.3)
z=0 y=0
S(u,v) = [F(u,0)| (8.4)

In order to avoid border effects, the DSM surface is calculated for the point cloud extracted
according to the procedure detailed in section 8.1.2.1. The DTM model of the area is subtracted
to the DSM in order to obtain the CHM, where the contribution of the terrain variations to the
frequency content is removed. The DFT is performed on the CHM. Simplifying the interpretation
of the obtained 2D spectrum is possible by converting the spectrum S(u,v) in polar coordinates
S(r,0). Indeed, in forest areas the texture patterns are assumed to be isotropic. Besides, the
directionality of patterns is of little importance for local maxima extraction. The function of
spectrum versus radius is obtained by integrating over the angle values in the range [0, 7], as the
spectrum if symmetric around the origin for images with values in R:

S(r) = Sp(r) (8.5)
6=0

In practice, (u,v) values are regularly spaced, but the values in the corresponding radii vector
(r) are not. S values at regular intervals (r;) are estimated by averaging the values of S(r) with
a Gaussian kernel:

a;S(r r—1;)?
S(r;) = Zii() with a; = exp <—<202Z)> (8.6)

The spatial resolution for the CHM is 0.5 meter. Its dimensions in pixels are 100 x 100. The

frequency resolution of the DFT is % m'. S is estimated for values r; = g5 with r; € [O, \@[

(figure 8.1c). The upper boundary corresponds to the maximum value of the radius (frequency)
along the diagonal of the spectrum image. o is set to % m.

The steps for the estimation of S(r;) are exemplified with plot chablais6 in figure 8.1. The CHM
at 0.5 m spatial resolution displays horizontal black lines. The aircraft trajectory was probably
oriented from the bottom to the top of the image. Flight speed was slightly too fast which
results in a pulse spacing wider along than across the platform track. With a spatial resolution
of 0.5 m lines of empty pixels appear on the CHM. These horizontal, almost periodic patterns
induce the vertical lines of energy in the spectrum (figure 8.1b). Otherwise, the energy is mainly
concentrated in the low frequencies. In figure 8.1c, values of S(r) appear as the red dots. They
are highly scattered, but the main features from the spectrum are present in the averaged curve.
High values are present from f =0 to 0.3 m™*. To avoid the major influence of the mean value,
the first coefficient, which corresponds to f = 0 is not considered in the following steps. For each
plot, the final spectrum S has 69 values that correspond to frequencies from 0.02 to 1.38 m
with 0.02 increment.

8.1.3 Nearest neighbor selection

For nearest neighbor selection, the Euclidean metric is used to compute the distance between
two plots P* and P, whose coordinates are (Pi)ieq1, n):

d(p*, Pb) = (8.7)

Here, (p;) in a given plot corresponds either to the height distribution H or to the spectrum S.
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Figure 8.1: Computation of the spectrum for plot chablais6. (a) CHM at 0.5 m resolution. (b) 2D
spectrum obtained by DFT. (c¢) 1D spectrum: red dots are all the points S(r), black line is the S(r;)
average curve.

8.1.4 Validation procedure

The validation procedure aims at comparing the detection performance of various possibilities
for algorithm parametrization. We consider a validation plot PY and a set T' of n training plots
(Pl)ie{l,m ke

The first possibility to parametrize the algorithm is to chose the setting sf“.n that yields the lowest
mean score on all training plots. This average setting is determined as sgm = argmin()_, Sg,j €
A) with Sg the score obtained on plot with the setting s;. The set A of 111720 combinations
tested in the previous chapter is considered for (s;)ic4. The detection performance score ob-
tained by using s;fm.n on the validation plot PV is numbered Sgyerage-

The second possibility is to apply the optimized setting obtained on a training plot that best
resembles the validation plot. The best-match training plot is the one with the minimum Eu-
clidean distance to the validation plot for the height distribution or the spectrum. The score
obtained by detecting trees on PV with the optimal setting of the plot with lowest distance for
the height distribution (resp. spectrum) criterion is numbered Sg_op: (resp. Ss—opt)-

For comparison purposes, the lowest score obtained on P” with the optimal setting (7,,¢) of the
training plots is also recorded. The setting is chosen as s:‘fpt = argmin()_, Sg,j € T,pt), and the
resulting score on P is S,p;. The score obtained with a randomly selected setting in 75, is also
recorded as Syandom-

To assess the influence of the number of training plots on the detection performance of each
of these parametrization alternatives, the following procedure is implemented. A validation plot
is sampled from the 22 reference plots. n training plots are sampled from the 21 remaining plots.
Values of Sqverage; SH—opt, Ss—opt and Syp; obtained with the proposed workflow are recorded.
The computation is repeated 10* times for each value of n in {5,6,--- ,21}.
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8.2 Results

8.2.1 Metrics
8.2.1.1 Height distribution

Figure 8.2 shows the height distribution of LIDAR points of the reference plots. It is noteworthy
that height distribution of points is quite similar to height distribution of trees in correspond-
ing plots (appendix C). For example, the homogeneous canopy cover in the single-layered plots
chablaish and chablais6é appears as sharp-peaked distributions in both cases (figure 8.2b). The
existence of two layers in plot chablais4 could explain the presence of two modes in the points
height distribution (figure 8.2a). Plot corruaz has more small trees than the other Chamonix
plots, which is reflected by the higher proportion of low LiDAR points (figure 8.2¢). The differ-
ences in the height distributions of the two plots of Vaujany and of the four plots of Saint-Agnan
are hardly noticeable (figures 8.2d and 8.2e). The distributions in the Valdrome plots reflect
the fact that all plots exhibit a single-layer, homogeneous structure, but with slightly different
dominant heights. They are all peak-shaped, but shifted along the height axis (figure 8.2f).

For low heights, the correspondence is not so straightforward, as small trees and bushes are
not inventoried. The very closed canopy in plot chablaish results in the absence of points near
the ground, whereas when canopy is less dense or presents gaps, low points amount to a larger
proportion. The combeloup plot is a extreme example, as points between 2 and 2.5 meters high
represent almost one fourth of the total. This might be explained by the fact that the LiDAR
survey was performed in leaf-off conditions, or by a bad pre-processing of the point cloud.
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Figure 8.2: Distribution of point cloud heights in the reference plots.
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8.2.1.2 Canopy height model spectra

Figure 8.3 displays the 1D spectra S(r;) of the reference plots. Frequencies that correspond
to tree envelopes are approximately in the range [0.05,0.5] m™' (period in [2,20] meters). Plot
chablais4 has an homogeneous upper layer of large trees which might explain why its spectrum
has the largest values for frequencies between 0.06 and 0.16 m™ (figure 8.3a). Plot chablais6 has
an homogeneous canopy of smaller trees, and the spectrum displays a table-like area between
frequencies 0.06 and 0.2 m™!, which might correspond to plantation spacing (figure 8.3b). Some
remarkable peaks occur in the spectra of moussoux and chablaisl plots at frequencies 0.42 and
0.66 respectively. This indicates periodic features that might be linked with aligned strips of void
pixels in the CHM caused by the scanning pattern. These lines are visible in the 0.5 m CHM of
plot moussoux (figure C.2e), but are barely noticeable for the CHM of chablaisl as their value
in the spectrum is more than ten times smaller (figure C.4b). The void pixels might also be
responsible for the high energy values in the very high frequencies of the spectrum of stagnan4.
In many areas, the 0.5 m CHM resembles a chess board at pixel level. Field plot are usually
aligned on contour lines in order to ease fieldwork. For the same reason, ALS survey flight paths
are aligned on contour lines. When the CHM is rotated to align the plot with image grid, the
scanning pattern is also aligned with the image grid, which enhances the resulting noise in the
CHM, as whole horizontal lines remain without information.
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Figure 8.3: 1D-spectra S(r;) the reference plots. Spectrum coefficients on the y-axis are log-scaled. x-axis
is labelled in absolute frequencies (m-").
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8.2.2 Unsupervised parametrization
8.2.2.1 Influence of training set size

Figure 8.4 displays the mean and standard deviation of score values obtained with the 10%
repetitions. Curves show that random selection of one of the settings from the training plots
results in an average score of 1.8, with a standard deviation of around 4.6. The theoretical score
obtained by the selection of the best setting in the available training plots yields mean values
lower that 0.46 with 0.20 standard deviation. These values decrease slightly when training set size
is increased and reach 0.38 & 0.16 for n = 21. The mean score obtained with the average setting
determined on the training plots starts from 0.73 and seems to decrease until n > 10 where it
remains quite stable around 0.60. The standard deviation of Syyerqge is more than halved when
the number of training plots increases from five to fifteen and then decreases more slowly to 0.5
for n = 21. Mean scores obtained with setting selection based on spectrum or height distribution
distances have mean values higher than those of the average setting, but with a faster decreasing
trend with the number of training plots. The improvement of the mean score with training set
size is better for the spectrum than for the height-based selection, with values decreasing from
1.51+4.21 to 0.58 £ 0.38 compared to 1.16 +2.13 to 0.64 + 0.50. Spectrum-based selection gives
better results than height selection for larger training set sizes (n > 11), but still produces worse
detection performance than the average setting. Both methods reach similar performance than
the average setting for the highest tested size of training set (n = 21). Standard deviation for
Ss_opt is even smaller than the one of Syyerage-

For each training set size, a Wilcoxon signed-rank test is performed to test the null hypothesis
that the distribution of the difference of scores obtained with two parametrization criteria is
symmetric (two-sided test). Distributions of Sep: and Syendom are significantly different from the
other distributions (p < 0.001). Distribution of Sg_, is significantly different from Syyerqge for
n e {5,---,20} (p < 0.001) and n = 21 (p < 0.05). Distribution of Sg_qp is also significantly
different from Sgyerage for small training sets (n € {5,---,19}, p < 0.001), but not for n = 20
(p=0.76) and n = 21 (p = 0.08).

Table 8.1: Mean and standard deviation values of detection performance scores (10* repetitions) for
different numbers of training plots n, and for the different parametrization criteria.

n ) 10 15 21

Ss—opt  1.5144.21 0.9942.49 0.72+0.93 0.58+0.38
St—opt  1.16£2.13 0.95£1.52 0.854+1.29 0.64%0.50
Sopt 0.46+0.20 0.41+£0.17 0.40£0.17 0.38+0.16
Saverage 0.73£1.38 0.624+0.84 0.5840.59 0.58+0.50
Srandom 1.77£4.53 1.79£4.73 1.824+4.72 1.76+4.36

8.2.2.2 Zoom on results for training set size n = 21

With 22 reference plots, results obtained with n = 21 correspond to a leave-one-out cross vali-
dation. Table 8.2 details the scores obtained on each plot when the algorithm is parametrized
with the n — 1 remaining ones. The selection of the best available setting is done only for plots
chablais3 and valdrome4 (both selection criteria), and chablais6 (height-based selection). The
average setting yields only one score above 1, for the combeloup plot. Height-based selection
gives four scores above 1 (for plots chablais2, chablais4, chablais7 and valdrome2), whereas it is

only the case for two plots (chablais7 and valdrome3) for the spectrum based selection.
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Figure 8.4: Mean and standard deviation values of detection performance scores (10* repetitions) as a
function of the number of training plots. Line colors correspond to the different parametrization criteria:
— black for spectrum distance Sg_,p:, — red for height distribution distance Sg_op, — blue for average
setting Sqverage, — green for theoretical optimal setting from training plots S,,; and — cyan for random
selection of setting from training plots S, andom-

8.3 Discussion

8.3.1 Extracted area

The extraction of metrics is based on the point cloud located in a 50 x 50 m? area centered
and aligned on the inventoried trees. In the case of plots with different shape (62.5 x 40 in
Saint-Agnan, irregular in Vaujany), the extracted area does not exactly match the field plot. For
example, in Saint-Agnan only 2000 of the 2500 m? (80%) are actually located inside the field plot.
As plots are adjacent, 250 m? (10%) are located in a neighboring plot, and the remaining 10%
are outside any inventoried area. Extracted point cloud for plots stagnanl and stagnan4 share
20% in common area, and so do plots stagnan2 and stagnan3. The approximation may have two
opposite effects. As the extracted metrics do not exactly correspond to the validation plot, the
selection of a similar stand in the training plots should be less efficient. On the contrary, as the
metrics are computed from a common area with an adjacent plot that may be included in the
training set, the chances that this plot is selected are enhanced. Due to the spatial correlation
in forests, the adjacent stands are likely to exhibit the same structure and will behave similarly
with respect to algorithm parameters. This second effect would be in favor of a better selection
of the parametrization. However, as only two pairs are concerned, the impact on the whole set
of simulations is likely to be only minor.

The approximation can be corrected for rectangular plots provided that an appropriate range is
then chosen for the values r; where the spectrum is estimated. For plots with irregular shape, a
rectangular shape is nevertheless required to perform the Fourier transform. A trade-off has to
be found between the amount of extracted area that lies within and without the plot limits. For
the height distribution no particular shape is required so that plot area could even be defined in
a similar manner as the plot mask (section 6.3.1).
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Table 8.2: Comparison of the detection score and corresponding setting for different parametrization
criteria. For each tested plot, the training is constituted of the 21 others.

Average Height selection Spectrum selection  Best in training set

Plot Saverage SH—opt setting SF_opt setting Sopt  setting
chablaisl 0.54 0.44 chablais6 0.48 chablais7 0.33 corruaz
chablais2 0.45 2.42  moussoux 0.60  stagnan4 0.36 chablais4
chablais3 0.34 0.21 corruaz 0.21  corruaz 0.21 corruaz
chablais4 0.39 1.21  vaujanyba  0.57  vaujanyha 0.38 chablais2
chablaish 0.39 0.39  chablais2 0.29  valdrome3 0.24 corruaz
chablais6 0.17 0.07 chablaisl 0.39  combeloup 0.07 chablaisl
chablais7 0.60 1.33  corruaz 1.90  chablaisl 0.65 orthaz3
chablais8 0.51 0.49  stagnan3 0.49  stagnan2 0.40 valdrome3
combeloup 2.93 0.96  vaujanyha  0.88  moussoux (.84 chablais2

corruaz 0.66 0.69  chablais3 0.61  orthaz3 0.54 stagnanl
Moussoux 0.58 0.61 stagnan2 0.75  combeloup 0.51 chablaisd
orthaz3 0.64 0.45  stagnan2 0.45  corruaz 0.38 stagnanl
stagnanl 0.36 0.39  stagnan2 0.39  stagnan2 0.27 chablais7
stagnan2 0.35 0.37  stagnanl 0.37  stagnanl 0.32 chablais7
stagnand 0.52 0.55  stagnan2 0.41  stagnan4 0.38 vaujanyha
stagnan4 0.48 0.48  stagnan3 0.61  chablais2 0.46 chablais7

valdromel 0.41 0.19  stagnan4 0.23  valdrome2 0.19 stagnan3
valdrome2 0.37 1.27  valdrome3  0.33  corruaz 0.22 stagnan4
valdrome3 0.49 0.36  valdrome2  1.39  valdrome4 0.30 moussoux
valdrome4 0.68 0.40 valdrome3  0.40  valdrome3 0.40 valdrome3
vaujanyba 0.50 0.53  chablais4 0.53  stagnan2 0.46 chablais7
vaujanyha 0.58 0.62  vaujanyba  0.57  stagnan2 0.56 chablaisb

8.3.2 Metrics

LiDAR metrics The proposed metrics reflect the vertical structure of the forest stand (height
distribution) and the texture of the canopy cover (spectrum of the CHM). Other metrics should
be considered in order to improve the description of the forest structure. Similarly to area-based
approaches adopted for stand parameter estimation, other height metrics could be considered. It
is possible to separate echoes according to their order of arrival within a given pulse (single, first
of many, last of many...) and compute corresponding height distributions. Simplified metrics
related to the height distribution (quantiles, mean and higher order statistics) might be sufficient.
Regarding the horizontal structure, other texture variables can be used to characterize the CHM,
such as co-occurrence matrices. Unfortunately, those 2D tools are applied to the CHM which
encompasses only a limited part of the information of the whole point cloud. The development
of 3D descriptors of irregular point clouds remains a challenging task.

LiDAR acquisition parameters FKEven tough the LiDAR acquisition parameters induce par-
ticular features in the CHM, which in turn are visible in the spectrum, it is likely that their
influence in the algorithm selection is limited. Meanwhile, algorithm parametrization would
probably benefit from taking them into account as LiDAR settings affect the interactions be-
tween pulses and the canopy, and hence the filter operations required for optimal detection of
treetops. To investigate this effect, reference data with a wider range of LiDAR settings is re-
quired, as well as data from other sensors. Indeed, in this study only data from the RIEGL
LMS-Q560 scanner are used and only one plot has a point cloud density lower than 6 m=2.
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Species information The other important aspect is the information about species, or at least
coniferous—broadleaved distinction. Indeed, previous results showed that detection performance
is linked to conifers proportion. Such information is not directly available in geometrical features,
but could be extracted from other attributes related to LiDAR points. Indeed intensity or
calibrated backscatter coefficient values can be used for species classification [180,184]. Another
possibility is the fusion with optical images as spectral data remains more efficient than LiDAR
data for species classification.

8.3.3 Nearest neighbor selection

For selection of a setting from the training plots, only the Euclidean distance was used. Other
distances could also be tested, such as the Bhattacharyya distance. Besides, the potential of the
two metrics was investigated separately. Combining both metrics, and maybe additional ones
might be more efficient. When combining different metrics, two main approaches are possible.
The first possibility is to apply different distances to each metric, and perform the final selection
based on weighted or fuzzy criteria. The other alternative is to feed simultaneously all metrics
to a most similar neighbor algorithm, which is a commonly used tool for forest inventories [208].

8.3.4 Reference data

The reference data only include 22 plots. Besides, all plots are not independent as ten of them
are actually extracted from bigger plots (Saint-Agnan, Valdrome and Vaujany). Subplots from
a single area are not independent due to spatial correlation of forest structures and LiDAR
acquisition characteristics. This may result in two opposite effects regarding the tested approach.
On the one hand, unsupervised selection of a good setting is easier for subplots when other
subplots from the same area are included in the training set. Indeed, table 8.2 shows that for
a training set size of 21, i.e. other subplots are systematically included in the training set, the
settings of Saint-Agnan and Valdrome plots are frequently chosen among other subplots from
the same area. On the other hand, the number of really independent plots in the training set is
lower which decreases the matching possibilities.

Even tough the trend suggests that for large training sets the setting selection based on
height or spectrum distributions would become more efficient than using an average setting,
results obtained for this limited reference should be handled with care. Indeed, the training sets
are not always and completely independent from the tested plot, and the mean score for the
average setting is greatly influenced by the bad result on plot combeloup.

8.4 Conclusion and perspectives

Detection performance, and height estimates obtained with the proposed algorithm are similar
to those from previous studies in mountainous environments. However, the results obtained with
the unsupervised parametrization of the algorithm are promising. This framework for algorithm
training represents an alternative to manual parametrization or to the development of complex
detection algorithms. Indeed, any algorithm that requires parametrization can be used within
the proposed workflow, provided that:

- parameters can be externally tested during the training step,
- the algorithm outputs the coordinates and height of the detected treetops to allow the
automated matching and assessment of detection performance.
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The nearest neighbor selection procedure still requires improvement, as other metrics and other
selection procedures should be tested. Besides, metrics to be considered might be adapted to a
given detection algorithm.

For operational applications, the framework is also quite flexible. The score criterion can
be adapted to reflect the end-user requirements regarding the trade-off between true and false
positives. The training set of reference plots can be build progressively from various datasets.

However, the issue of the aggregation of tree parameters into stand parameters estimates
remains challenging. More investigation is required to check if the information on the plot
selected from the training set proves useful to automatically assess the detection performance
for the tested plot. The problem of the optimal size of field plots should also be addressed, but
it is likely to be a complex task as it impacts different aspects of the approach: stand structure
assessment is scale-dependent and border effects in the matching process are enhanced for small
plots.



86

Chapter 8. Unsupervised algorithm parametrization




Part IV

Estimating stand parameters

87






Chapter 9

Introduction

9.1 Area-based methods

9.1.1 Overview

Even though the modelling of the interaction between the laser pulses and the elements consti-
tuting the forest cover remains a challenging task, it is clear that the laser reflections exhibit a
strong relationship with forest structure. The pragmatic approach based on the calibration of
empirical models between the statistical distribution of the laser echoes and forest parameters
quickly proved successful for the estimation of mean tree height [187,226], stand volume [227],
leaf area index [187], basal area [199] or stem density [233]. This approach was then formalized
into a two-step method designed to be used at operational scale by forest practitioners [228|.
The idea is first to calibrate empirical models with stand parameters as dependent variables
and selected laser metrics as independent variables, using a set of field plots as training data.
The models are then used to estimate stand parameters for all the area covered by LiDAR ac-
quisition. For such application, a LiDAR sampling rate around one pulse per square meter is
sufficient [90,228,231].

The method was soon tested and proved successful at operational scale [229,232]|. Various
other forest cases were investigated with similar methods, mainly in boreal conditions [90, 122,
191], including cases such as plantations [237|, young forest [233|, mixed forest [238], boreal
reserve |237]. It was then tested in other contexts, such as tolerant northern hardwood forests
[180,181] or in complex alpine environments [106].

As the interaction between laser pulses and the vegetation heavily depends on the stand
structure and species composition, some studies relied on prior stratification of forest types
before models are calibrated for each determined type, even within a small LIDAR acquisition.
Stratification can be based on prior knowledge of the area or on photo-interpretation [228].
Potential stratification criteria are based on factors affecting forest structure more or less directly,
e.g. stand age [228], management stage [180], coniferous broadleaved proportion [106,238], site
quality |228,232|, altitude [106]. In a study conducted in the Bavarian Forest National Park,
stratum-specific models generally had better prediction accuracy than general ones [106]. In
boreal forests, conifer models used on birch dominated stands yielded accurate height estimates
but poor results for stem number and volume [231].

As usual with LiDAR data, one of the other concerns is the sensitivity of the method to
acquisition parameters. The method was found to yield stable results, even for low point densities
or perturbation of acquisition conditions. In [122], prediction error remained almost constant
when density was reduced from 4.3 to 0.1 points per square meter. In [238], leaf-on and leaf-
off acquisition turned out to affect laser metrics in mixed stands. Besides, changing the sensor
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configuration had an effect on first pulse data. However, models trained with each dataset
separately, although different, had similar prediction accuracy. The method was also shown to
be robust against flying altitude variations [230].

If the procedure seems to be able to handle a broad range of forest structures and LiDAR
acquisition parameters, one key point is the field data used to train the models. Differences
in training datasets can lead to lower accuracies [122]. [234] emphasizes the fact that field data
should be a representative sample of encountered forest types in order to avoid systematic errors.
However, field data from different districts could be combined provided that they are affected to
the correct strata. Another study combining training data from two districts, one dominated by
pine and the other by spruce, nevertheless obtained a common regression model with satisfactory
prediction accuracy [232].

Most of the studies relied on ordinary least squares multiple regression to establish relation-
ships between laser metrics and forest parameters. A comparison of seemingly unrelated, par-
tial least squares and ordinary least squares regressions showed only minor discrepancies [234].
However, parametric methods reach their limits when dealing with a small number of field ob-
servations combined with high dimensional data. The non parametric k-most similar neighbor
method has been successfully tested for species-specific stand attributes estimation from laser
data [244]. In a comparison with k-most similar neighbor and artificial neural networks models
such as self organizing map and multilayer perceptron, support vector machines regression (SVR)
turned out to be one of the best suited method for prediction purposes [224].

9.1.2 Objectives

In French mountainous areas, many coppice stands are encountered in the hill and lower montane
belts. In such stands, each tree stump has several stems that are very close one to another
(figure 3.1). Such structures can not be easily characterized by single tree methods. Besides,
information at the tree level is not of utmost importance for the management of coppice stands.
Stand parameters such as stem density, dominant height and mean diameter are more interesting
to the forest practitioner. Therefore, the area-based method seems more appropriate for this
particular case. As no study of estimation of parameters of coppice stands from airborne laser
scanner data was available in the literature, the first objective of this chapter is to test the two-
step procedure [228] on mountainous coppice stands and to compare results to those obtained
for a mixed forest.

It was exposed in 5.2 that topographic constraints limit the productivity of both the inventory
and GPS acquisition. As collection of data on large plots is costly, the effect of sample plot size
on the prediction accuracy of LIDAR models must be quantified so that efficient procedures can
be designed. That is why the second objective is to assess the effect of sample plot size on the
training data and on the accuracy of resulting LIDAR models. Those two aspects will be treated
in chapter 10.

If the total number of field plots is limited by field constraints, the number of metrics that
can be extracted from the laser data is very important, and it is likely that several of them
are correlated. Dimension reduction methods are an alternative way to extract meaningful in-
formation from original variables into a limited number of components. The third objective is
thus to evaluate the effect of the choice of laser metrics on models accuracy, and consists in
two complementary aspects. One is to assess the influence of different numbers and types of
laser metrics in the models, including an entropy metric designed to input information about
the horizontal dispersion of the point cloud. The other is the relevance of dimension reduction
of the raw laser metrics prior to model training. Principal component analysis and independent
component analysis are tested.

Relationships between LiDAR metrics and forest variables might be non linear. As an alternative
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to ordinary multiple least squares regression, the fourth objective was to test a non linear regres-
sion method based on support vector machines. Those aspects will be handled in chapter 11.

For all these investigations, two areas are studied: the coppice dominated forest of Saint-
Paul-de-Varces, and the Chablais. Estimated forest parameters are basal area, stem density,
mean diameter, dominant height and stem volume (Chablais data only). General workflow and
methods are presented in this chapter.

9.2 General workflow

Figure 9.1 displays the global workflow implemented to estimate forest stand parameters from
airborne laser scanning data. From now on ordinary multiple least square regression and support
vector regression will be referred to as ols-MR and SVR respectively. All computations are
performed with the R software [259].

el Airborne laser scanning data
inventory classified point cloud
v Laser metrics extraction
Dependent height, density, entropy
variables
Stand parameters: Dimension reduction
+ dominant height « principal component analysis
» basal area  independent component analysis
o stem density
« mean diameter... | Independent variables
[ |
v
Regression models Accuracy
* £-SVR with radial and linear kernels > assessment
« least squares multiple regression « RMSE

Figure 9.1: General workflow for estimating forest stand parameters with an area-based method.

9.2.1 Point cloud extraction

We consider a set of Np field plots (Fj)jeq1,. v} Plots are of circular shape with radius 7,
and the coordinates of their centers (x;,v;)jeq1,.. N} are known. We also have the coregistered
laser point cloud with following information about each point: 3D coordinates, return position
category, ground or non-ground classification. Return position is factor variable which levels are:
s for single echoes (only one echo for a given pulse), f for first echoes and [ for last echoes. The
classification of laser points in such categories is directly known from the echo extraction process.
Classification into ground or non ground echoes results from the procedure implemented by the
LiDAR contractor (see 4.3.3).

For each plot j, laser points within r meters horizontal distance form the plot center are ex-
tracted (figure 9.2a). Their normalized heights are computed by subtracting the terrain altitude
at their orthometric coordinates. Terrain surface is estimated by bilinear interpolation of points
classified as ground points. Points with height lower than 2 m are excluded to avoid influence of
dense shrubs understory, as suggested by [228]. Three point groups are then constituted accord-
ing to return positions: single, first and last echoes (figure 9.2b). Many studies implementing
this methodology only relied on two points groups as their data was acquired with multi-echo
scanners with only first and last echo classes. Here single echoes are considered as a separated
group. Intermediate points, i.e. echoes occurring between the first and the last echoes, represent
less than a few percent of the total number and are not included in the analysis.
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(a) Original point cloud (b) Normalized point cloud

Figure 9.2: 3D view of the point cloud in plot 17 of the Saint-Paul-de-Varces inventory. In (a) points are
colored according to the classification: e ground or e vegetation. In (b) points are colored according to
their return position: e single, e first or e last.

9.2.2 Laser metrics

Several types of laser metrics can be extracted from the laser point cloud. Usual metrics mainly
consists in two categories [106,228]. Height metrics are the height quantiles, mean, relative
median, standard deviation and coefficient of variation. Density metrics are computed as the
proportion of laser points lying under given height thresholds. In more recent works, other
types of metrics have been added, such as higher order statistics or intensity-related metrics
[129]. Here only basic height and density quantiles are considered. Indeed, the number of
observations in our field data is limited, and considering too many independent variables may
not be parsimonious. For each group, nj height metrics and ng density metrics are calculated.
The height metrics include the minimum, maximum, mean and g-quantiles [134, definition 7| of
the height distribution (total: nj, = ¢+2). The density metrics are computed as the proportions
of points located below fractions (- ie{l,...ng) Of the maximum height of the point group in
each plot.

Usual metrics only reflect information about the vertical distribution of laser points. However,
information about the horizontal distribution of laser points may also be extracted from the point
cloud and could be particularly interesting in the case of heterogeneous stands. Entropy, which
is a statistical measure of randomness, is introduced at this point. A histogram estimator of
the entropy of the 2D distribution of laser points located in one or several height bins is used
(figure 9.3). The whole point cloud is horizontally divided in 2 m wide square pixels (s;) and
vertically divided in n. height bins of equal width (h;);e(1,... n.}- Only pixels which have more
than 90% of their area inside the plot circle are considered. For each height bin h;, the entropy
metric is computed as:

Rat1)

card(s; N hj)

card(hj) (9:1)

ej =Y pijlog(pi;)  with p;; =
7

A set of independent variables (v;)igq1,....n,} is thus composed of n, = 3 x (nj +ng) +ne laser
metrics. For example, the variables set (ny,ng,ne) = (6,3,3) has 30 laser metrics. For each of
the three point groups and each plot, six height metrics are calculated (minimum, first quartile,
median, third quartile, maximum and mean), and three density metrics (proportion of echoes
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(a) (b)

Figure 9.3: Example of the extraction of n. = 2 entropy metrics on plot 17 of Saint-Paul. The histograms
are the 2D horizontal distributions of points located (a) above and (b) below h = hm—;f, used to calculated
the entropy metrics. The plot has 10 m radius, pixel size is 2 x 2 m?.

below 25%, 50% and 75% of the maximum height of the group). Entropy metrics for the whole
point cloud are calculated for each plot as the entropies of the horizontal distribution of echoes
located in three height bins: [0, %[, [%, %[ and [%, h] with h the maximum height. The matrix
of extracted metrics N%nv consists of Ng observations of n, = 3 x 9 + 3 = 30 laser metrics.

9.2.3 Dimension reduction
9.2.3.1 Objectives

Concerning prediction models using laser data, one key issue to avoid over-fitted or complex
models is the selection of relevant laser metrics from the laser variables set. As mentioned
beforehand, the number of features that can be extracted from the point cloud is very important,
whereas the number of observations is often limited by labor-intensive field data collection. The
extraction of a high number of possibly correlated metrics puts up several issues. With ols-MR,
models with too many variables will tend to be over-fitted, and models will often fail to fulfil
the linear model assumptions. For non linear regression methods, accuracy may decrease as a
result of the curse of dimensionality. Therefore, it might be interesting to further process the
numerous laser metrics in order to obtain a reduced number of features while retaining as much
information as possible.

This process of dimension reduction (DR) can be implemented by selecting a subset of the
original features, or by mapping the original data in the high dimensional space into a new
feature space with lower dimension. For multiple regression most of the studies relied on stepwise
variable selection [106,228| or exhaustive comparison of combinations [122]. Principal component
analysis was also used both for laser metrics selection and for the extraction of a limited number
of components [178].

When regression models such as SVR have to be tuned by evaluating for several hyperparam-
eters combinations a prediction error, testing all possible combinations of laser metrics represent
a huge computational burden. Multi objective genetic algorithms (MOGA) can be used to per-
form global exploration while limiting the processing time compared to greedy alternatives [224].
However, in this last reference which compared different non linear regression models for the pre-
diction of stand variables, MOGA was used only with one reference method for feature selection.
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As a result, regression methods were compared on their ability to process a single set of features
that has been chosen optimal for one given reference method. This eludes the fact that different
methods may be able to take different advantage of the information included in the raw data.

In this work, a “brute-force” strategy is adopted since for ols-MR, all possible combinations
of a maximum of three variables (laser metrics or extracted components) are tested. This is
computationally possible thanks to the low number of observations and the fact that the number
of extracted laser metrics is also limited. For SVR, all extracted laser metrics are systematically
entered as input to the algorithm, but when DR is performed, different numbers of features are
used to fit the models.

9.2.3.2 Methods

Principal component analysis (PCA) is considered one of the most applicable DR method
[56]. It reduces dimensionality by extracting from the original data set uncorrelated components
which encompass the highest variance [144]. As our data include different variables (heights,
densities, entropies) the original data set is centered and standardized beforehand. The PCA is
then equivalent to an eigenanalysis of the correlation matrix.

Independent component analysis (ICA) extracts components that are also called latent
variables. Their calculation is based on maximization of the statistical independence of the
estimated components. An implementation of the FastICA algorithm [135] is used (R package
FastICA). ICA has already proved quite efficient for the reduction of laser metrics [129].

When the number of observations Ng is greater than the number of variables n,, PCA and
ICA are performed for dimension reduction. Subsets of dimension n, € {1, 2, 3, 4, 5, 6, 8, 10,
12, 14, 16, 18, 20, 22, 24} of the obtained principal and independent components are also used
as sets of independent variables, i.e. the matrix of extracted metrics is replaced by the matrix
of selected components during the model training step.

9.2.4 Regression models
9.2.4.1 Ordinary least squares multiple regression

Given a dependent variable (stand parameter) y and a independent variables set v = (v;)ie{1,... 0,1

the field observations (y;)jeq1,..., n,} and the matrix of extracted metrics NM are used as train-
F XNy

ing data to fit a multiple regression model by ordinary least squares:
Ny
y=>b+ Zai X U; with ((a)ieq1,...,n,}, ) the model parameters (9.2)
i=1

Models including a maximum of three variables are tested by exhaustive search among all the
possible combinations (package leaps). Models which do not fulfill the linear model assumptions
(package gvlma, which tests a linear model for skewness, kurtosis, link function and heteroscedas-
ticity) or including a variable with a partial p-value greater than 0.05 are discarded. For each
variables set the model with highest adjusted coefficient of determination (adj-R?) was selected.

9.2.4.2 Support vector regression

Support vector machines are a training approach based on the framework of statistical learning
theory. They have proved their robustness to dimensionality and generalization abilities [101].
Moreover non-linear relationships can be accounted for thanks to the kernel trick. Support
vector machines are now widely used in the field of remote sensing, mainly for the purpose of
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hyperspectral image processing [179], but also for continuous variables estimation [23, 37,216,
217,224,284, 322].

Datasets are also used to train an e-SVR. It is a common implementation of SVR which aims
at approximating a function f : y = f(z) that has at most e deviation from the actual targets
;. The solution has the form:

n ((@i)ieq1,...ny» B) parameters from the training process

f(z) = Z aik(z,x;) + B with ¢ k& a kernel function
=1 x; samples from the training set

(9.3)
The R package e1071 is used for fitting the e-SVR models.

9.2.5 Validation procedure

Due to the absence of external validation data, prediction accuracy is evaluated in cross-validation
by computing the root mean square error (RM SE) and its coefficient of variation CVgyyrsE.

Np
1 i the observed values
RMSE = | — (y; — §;)? with { % ,
Np & 1; the predicted values
= (9.4)

Np
CVrMmSE = 7RJ\{SE with §y = ]\}F Z Yj
7j=1

Two procedures are used for computing the cross-validated RMSE. Leave-one-out (LOO)
cross-validation consists in successively removing one observation from the training data, fitting
the model with the Nrp — 1 remaining ones and then predicting the value for the left-over plot
with the obtained model. When several subplots are extracted from a single plot, a “leave-one-
plot-out” cross-validation is performed, i.e. all subplots from a given plot are excluded of the
training data. This procedure aims at avoiding that the predicted value for a given subplot is
estimated with a model fitted to similar data, as it is the case when subplots are extracted from
one single homogeneous plot (e.g. plot 6 in Chablais).

200 repetitions of ten-fold cross-validation are also performed to estimate the standard devia-
tion of the RMSE. Ten-fold cross-validation relies on the same principle as LOO cross-validation
except that observations are first grouped in ten groups, and all observations from a given group
are removed from the training data before the model is fitted and then used to calculate their
predicted values. LOQO cross-validation is equivalent to a Npg-fold cross-validation but with a
ten-fold one the computational burden is lower and more combinations are possible for the sam-
pling of observations in the folds. When a ten-fold cross-validation is used, the fact that some
subplots may be extracted from the same plot is not taken into account.

During cross-validation procedure, the following rules are applied for successive model fitting.
For ols-MR, the variables selection procedure is not performed again. The coefficients of the
three (at most) previously determined variables in the model that yielded the best coefficient of
determination are fitted by ordinary least squares. For e-SVR, the model parameters C' (Cost)
and v for radial kernel are not tuned again. Their values are set to the previously determined
scalars.
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Chapter 10

Multiple regression models

The objective is to test the basic two-step method based on ordinary least squares multiple
regression for the prediction of stand attributes in a coppice forest and in a mountainous, mixed
forest, and to assess its sensitivity to training plot size.

10.1 Methods

The workflow described in figure 9.1 is implemented in a simplified procedure: no dimension
reduction is performed and only multiple regression models are fitted. It is applied to data
from Saint-Paul-de-Varces and Chablais. Field data (Np = 31 circular plots of 10-m radius and
Np = 32 circular plots of 12.5 m radius respectively) are described in section 5.3.3.1. Only
live trees are considered and minimum diameter is 5 cm in Saint-Paul-de-Varces and 7.5 ¢m in
Chablais, unless specified otherwise. The LiDAR data are presented in section 5.3. To evaluate
the effect of training plot size on prediction accuracy, plot radius is reduced by excluding trees
situated further than various distance thresholds before reiterating the procedure. Tested radii
are r € {5,5.5,...,10} for the Saint-Paul-de-Varces data and r € {5,5.5,...,12.5} for Chablais.
It is noteworthy that differences in field protocols may have an effect on results:

- trees above 5 cm DBH inventoried in Saint-Paul, 7.5 ¢cm in Chablais;
- inventory performed systematically from plot center in Saint-Paul, not in Chablais;
- all tree heights measured in Chablais, only for a sample in Saint-Paul.

Stand parameters The following stand parameters are computed for each plot j € {1,2,..., Nr}
and each radius r: basal area (G;: surface occupied by the horizontal section of tree stems at
1.30 m height), stem density (N7), mean diameter at breast height (D7), dominant height (H:
mean height of the 100 trees with largest diameters per hectare) and stem volume (V).

For the Saint-Paul-de-Varces data, dominant height is calculated for » = 10 m only, as the
field sampling scheme does not ensure that enough measured trees are included within each
radius. As all tree heights are not measured, the following procedure is applied for dominant
height calculation. If at least one of the three largest trees on the plot has its height sampled,
dominant height is calculated as the mean value of the available heights, or else dominant height
is estimated as the height of the largest sampled tree. Stem volume is not calculated for Saint-
Paul-de-Varces.

Wilcoxon signed-rank tests are performed to compare forest parameters observations obtained
with different plot sizes. Correlation between field observations statistics and plot radius is
evaluated by computing Spearman p.
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Table 10.1: Basal area (G), stem density (N), mean diameter (D), dominant height (H) and stem volume
(V) field observations statistics (mean, minimum, maximum and standard deviation) for plot radius
r € {5,7.5,10,12.5} of Saint-Paul-de-Varces and Chablais inventories (Np = 31 and 32 respectively).

Parameter , Saint-Paul-de-Varces Chablais
Mean Min  Max Sd Mean Min Max Sd
5 32.3 49 66.8 16.7 34.3 2.1 96.0 24.6
G (m*ha!) 7.5 34.6 4.7 90.1 15.9 30.8 51 85.1 17.9
10 34.8 4.6 59.7 11.4 32.3 4.8 79.2 18.5
12.5 Data not available 34.1 85 725 17.2
5 1668 382 3310 724 525 127 891 209
N (ha!) 7.5 1714 736 3112 560 502 226 1019 199
10 1735 764 2833 577 529 191 923 196
12.5 Data not available 538 244 917 169
5 14.5 8.9 30 4.6 26.4 83 64.0 12.0
D (em) 7.5 14.4 8.3 233 3.9 25.4  12.8 47.2 8.3
10 14.5 8.3 22.7 3.6 25.3 12.4 48.3 8.2
12.5 Data not available 25.9 13.3 423 8.3
5 . 23.5 8.3 387 8.9
H (m) 7.5 Data not available 250 101 387 7.8
10 15.6 5.8 25.8 5.5 24.6 12.2 39.2 7.3
12.5 Data not available 25.4 14.3  38.3 7.2
5 412 22 1483 396
V' (m3.ha'') 18'5 Data not available g?i gz 1282 282
12.5 398 56 1094 299

Laser metrics The laser metrics are calculated for each of the three point groups g: s single
echoes (only one echo for a given pulse), f first echoes and [ last echoes. They include only
np = 6 height metrics: minimum (hyp), first quartile (hg0.25), median (hg05), third quartile
(hg,0.75) and maximum (hg 1) values, plus mean height (hgmean), and ng = 3 density metrics:
proportion of echoes recorded below height thresholds corresponding respectively to 0.75, 0.5 and
0.25 of the maximum echo height recorded on the plot for this group (dg0.75, dg05 and dg.25
respectively). For each radius r, the variables set (v );cq1,.. 27} consists of N observations of
Ny, = 3 X 9 = 27 laser metrics.

10.2 Results

10.2.1 Influence of plot radius on field observations

Forest plots statistics for 5, 7.5, 10 and 12.5 m radii are displayed in table 10.1. Figure 10.1
presents boxplots of field observations of basal area, stem density and mean diameter depending
on plot radius. Graphical analysis shows that only basal area, mean diameter and volume have
data points outside the whiskers (except one value for stem density calculated on 7 m plot in
Saint-Paul). Besides, such values are mostly large values. Similarities between basal area and
mean diameter can be explained by the fact that for a plot with Np trees, the parameters basal
area (¢, mean diameter D and the sum of squared residuals to mean diameter are linked by the
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following relationship:

N Np
T Z 2 i 2 Z 2 .
G = E — dz = B <NT X D + £ 62-) Wlth (61' = dl — D)ie{l’...’NT} (101)

Volume is also quadratically linked with diameter [see equations (5.2), (5.3), (5.4)].

Otherwise, no remarkable trend can be distinguished. Wilcoxon signed-rank tests indicate
that the distributions of the observations differences (y,1 — yy2 with r1 # r2 and y, € {N", D"})
are not significantly asymmetric about 0 (p > 0.05). For basal area, there were six and one
cases with a significant value, out of a total of 120 and 55, for the Chablais and Saint-Paul data
respectively. For volume (resp. dominant height), 4 (resp. 40) out of 120 tests had a significant
value for the Chablais data. Dominant height values indeed greatly depend on the inclusion of a
few very large trees (only one for small radius plots). This effect is reduced for volume and basal
area where large trees have an important contribution to the value, but with all other trees taken
into account. For mean diameter, the importance of large trees is further reduced (no quadratic
effect) and that may explain why Wilcoxon tests are not significant.

Despite the low number of significant results, numerous statistics exhibit a correlation with
plot radius. Spearman correlation tests between stand variables statistics and plot radius are
presented in table 10.2.

Except for stem density in Saint-Paul, the standard deviation of stand parameters is negatively
correlated with plot radius. Indeed with larger plots, more trees are taken into account and
local spatial effects are averaged, hence a lower variability of estimates. In the coppice stands of
Saint-Paul, stem density is very high and stems were inventoried from 5 cm DBH. Even in small
plots, local effects are less pronounced as many trees are inventoried.

Besides, the interquartile range (IQR) is significantly correlated only for basal area (Saint-Paul),
and dominant height (Chablais). As exposed beforehand, dominant height values rely on a
limited number of trees, and so does basal area, to a lesser extent. In Saint-Paul, bigger trees
from seedling origin are usually found inside the multiple coppice stems. Such particular trees
have an important effect on total basal area. IQR is a non parametric measure of the variability of
a sample that is less sensible than standard deviation to extreme values. The fact that regarding
standard deviation almost all variables are correlated to plot radius, whereas IQR is not, shows
that the effect is mainly linked with outliers.

This remark about extreme values is confirmed by the fact that the minimum value is correlated
to plot radius for all variables. As could be expected, the correlation is positive, expect for basal
area and mean diameter in Saint-Paul. p for maximum values are all negative, but correlation
is significant only for stem density (Saint-Paul), basal area and volume (Chablais) and mean
diameter. The first quartile of all variables has a significant, positive correlation with plot radius
(except for mean diameter in Chablais), but the third quartile does not exhibit any particular
trend. This shows that lower values (minimum and first quartile) are more sensitive to plot
radius than large ones.

10.2.2 Influence of plot radius on multiple regression models

Selected multiple regression models for r € {5,7.5,10,12.5} are detailed in table 10.3. With
10 m radius plots in Saint-Paul-de-Varces, prediction accuracies (coefficient of variation of the
RMSE obtained by leave-one-out cross-validation) are respectively 19.4, 25.5, 14.3 and 19.4 %
for basal area, stem density, mean diameter and dominant height. For » = 7.5 m results slightly
improve for mean diameter and stem density (respectively 13.6 and 23.0 %), but are worse for
basal area (36.4 %). The lowest accuracies are achieved with 5 m radius: 32.9 % for stem density
and 36.7 % for basal area.
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Figure 10.1: Boxplots of field parameters observations: basal area G (m2.ha'), stem density N (ha),
(cm), dominant height H (m) and volume V' (m3.ha') depending on plot radius.
Subfigures (a)-(c) correspond to Saint-Paul-de-Varces data (StP), subfigures (d)-(h) to Chablais data

mean diameter D

(Chb).

Table 10.2: Spearman correlation coefficient p between field observations statistics and plot radius for
basal area (G), stem density (V) and mean diameter (D). Statistics are minimum (Min), first quartile
(Q1), median, third quartile (Q3), maximum (Max), mean, standard deviation (Sd) and interquartile
range (IQR). Significance levels: “p < 0.001, "p < 0.01, "p < 0.05 (two-sided test).

Area Min Ql  Median Q3 Max  Mean Sd IQR
Saint-Paul- G —0.68" 0.98"" 0.91"" -0.02 —0.31  0.85" —0.89"" —0.76""
de- N 0.847 090" 0.12 0.11 —0.76" 0.87"" —0.54 —0.60
Varces D —0.87"" 077"  0.75° 0.57 —0.93"-0.52 —0.98"" —0.14

H 0937 096" 0.43 0.15 —0.30 0.86™" —0.91"" —0.79""
G 0.89" 0.68" —0.36 0.14 —0.84"™" 0.50° —0.85"" —0.25
Chablais N 0.777 0.66™ 0.31 —0.04 —0.12 0.84"" —0.75" —0.44
D 0.88" 0.49 0.61" —0.21 —-0.73"—-0.37 —0.85"" —0.27
Vo 0.86™" 0.54° 059"  0.19 —0.877" 0.36 —0.75"" 0.02
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With Chablais data, prediction accuracies for 12.5 m plots are respectively 18, 23, 12.6, 11.7
and 30.4 % for basal area, stem density, mean diameter, dominant height and stem volume. For
basal area, stem density and volume, accuracy decreases considerably for smaller plots. For mean
diameter and dominant height, the effect is less pronounced.

Wilcoxon signed-rank tests indicate that the distribution of the differences between predicted
and observed values is not significantly asymmetric about 0 (p > 0.05) for any forest parameter.
It is noteworthy that laser metrics included in the models depend both on the forest parameter
and on training plot radius.

Table 10.3: Selected multiple regression models for radius r € {5,7.5,10}, and corresponding coefficient
of determination adj-R? and coefficient of variation of the RMSE computed by leave-one-out (LOO)
cross-validation and 200 repetitions of ten-fold cross-validation (mean =+ standard deviation).

) Para- . Laser metrics adj-R?  CVrmse  CVeusE
Stte  eter  Tadius in the model ({%) LOO (%) 10-fold (%)

) hso + hsi1+ hfmean 55.5 36.7 34.3+0.8

” G 7.5 hyo.s 46.0 36.4 36.24+1.1

§ 10 hfo2s+hyos+dsos 70.8 194 19.5+0.7

§ 9 hl,me(m + df70_75 + dl70.25 51.0 32.9 31.8+0.9

° N 7.5 hyo7s + hii + dioos 59.1 23.0 22.9£0.6

'_'5 10 hl,0.5 + df’0.25 58.0 25.5 25.7+1.5
£ 5 linear model assumptions not satisfied

= D 7.5 hyo+ hioos +diors 76.6 13.6 13.6+0.4

;}?3 10 hso.75 + hpors + dio.os 71.4 14.3 14.4+0.4

q 5,7.5 no relevant due to sampling scheme

10 hso5+ hios + hiors 73.1 19.4 19.540.6

) hf70_75 -+ hl,O -+ d3,0.5 67.9 44.0 44.5+1.4

a 7.5 hso.75 + ds0.25 + dios 79.5 29.4 30.4+1.4

10 hf70.5 + hmeans7 + d370.25 85.9 24.1 23.4+0.7

12.5 hyo7s + hiors + dso.25 90.6 18.0 16.34+0.4

5 h570.75 + hl70_75 + ds70_5 44.2 34.2 32.2+1.0

N 7.5 hio.5 + hsmeans + df0.25 67.6 25.3 24.5+0.7

10 hf,0.75 + df70,25 62.1 23.9 23.84+0.5

12.5 hso.5 4+ dfo.25 53.1 23.0 22.240.5

E 5 h370.75 + hf7[).25 + hf,().5 74.4 26.4 24.3+0.5

% D 7.5 hso.75 + hypos + diors 72.2 22.9 18.840.6

5 10 hi 1 50.3 27.3 23.9+0.6

12.5 hf70,25 + hl70,5 + ds,0.75 85.2 15.6 13.3+£0.4

) hso.75 +hyos +dfoos 92.9 11.0 10.9+0.3

H 7.5 hs0.25 + hso.5 + hso0.75 84.6 14.3 13.240.4

10 hio.75 + ds0.25 + dios 90.5 10.8 9.8+0.3

12.5 hios +dgos + dioa2s 91.0 11.7 9.5+0.4

5 hio+ hio7s + df’0.25 73.5 54.6 54.442.2

v 7.5 hsmean + ds,0.25 + dl,(),75 87.1 34.9 38.5+2.5

10 hso5+ hs1+ hsmean 86.8 31.1 32.5+1.1

12.5 hso + hs1+ hyo.75 91.0 30.4 24.4+0.8

Figure 10.2 displays boxplots of prediction accuracy of multiple regression models as a func-
tion of plot radius. At Saint-Paul-de-Varces, Spearman correlation coefficient p between predic-
tion accuracy (coefficient of variation of the RMSE calculated by LOO cross-validation) and
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plot radius is significantly different from zero for basal area only (p = —0.87, p < 0.001, two-sided
test). Stem density displays a similar decreasing trend but prediction accuracy increases again
when r > 9. For mean diameter the coefficient of variation of the RMSFE decreases when plot
radius increases from 6 to 7.5 m, and then remains stable around 14%.

With Chablais data, all correlations are significant if all radii are taken into account (G, N and
V: p<0.001, D: p<0.01, H: p < 0.05). However, when only radii between 5 and 10 m are
included in the analysis, the correlation remains significant only for basal area. This suggests
that the overall decreasing trend is somewhat driven by values obtained for larger plots.
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Figure 10.2: Boxplots of prediction accuracy (coefficient of variation of the RMSE calculated by 200
ten-fold cross-validations) for basal area G, stem density N, mean diameter D, dominant height H and
volume V' depending on plot radius. Subfigures (a)-(c) correspond to Saint-Paul-de-Varces data (StP),
subfigures (d)-(h) to Chablais data (Chb).

10.2.3 Prediction errors analysis for selected regression models

For the regression models obtained with the maximum radius of training plots in Saint-Paul
(r = 10) and Chablais (r = 12.5), a short analysis of prediction errors is performed. Regarding
the difference between values predicted by leave-one-out cross-validation and observed values,
Wilcoxon signed-rank tests indicate that the null hypothesis (the distribution of the differences
between predicted and observed values is symmetric about 0) can not be rejected.

Figure 10.3 plots the predicted values against the observed values for basal area, stem density,
mean diameter, dominant height and volume (Chablais only). For stem density in Saint-Paul,
one negative value is predicted. This outlier is obtained for plot 21, which is located on a scree
and displays large canopy gaps. For this plot, other stand parameters are better predicted (G:
1.5 for 4.6 m%ha!, D: 10.0 for 83 cm, H: 9.5 for 10.3 m). Otherwise, no clear trends are
remarkable, expect that stem density values in Chablais seems overestimated for intermediate
values, but underestimated for large ones. A similar pattern is hardly noticeable with stem
density estimates in Saint-Paul.
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Figure 10.3: Predicted values plotted against field values for basal area G (m2hal), stem density N
(ha'), mean diameter D (cm), dominant height H (m) and volume V (m3.ha'). Subfigures (a)-(d)

correspond to Saint-Paul-de-Varces data (StP), subfigures (e)-(i) to Chablais data (Chb). Predicted
values are estimated by leave-one-out cross-validation.

Table 10.4 presents prediction errors statistics. Bias is lower than 2.2 % in absolute value,
expect for stem volume with —5.5 %. The widest range of relative errors is also obtained
for volume with —81.3 to 60.2 %. The smallest is obtained for dominant height in Chablais
with —30.4 to 19.1 %. In Saint-Paul, the smallest range for relative error is obtained for mean

diameter. In coppice stands, where stems growing on stumps usually have the same age, diameter
distribution is less variable than in irregular stands.
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Table 10.4: Prediction errors statistics expressed in percentage of mean field value for basal area (G),
stem density (N), mean diameter (D), dominant height (H) and stem volume (V). Prediction errors are
estimated by leave-one-out cross-validation for the models described in table 10.3. Statistics are mean
(Bias), minimum (Min), maximum (Max) and standard deviation (Sd).

Area Radius Variable Bias Min Max Sd

Saint- 0.5 —-39.8 415 19.7
Paul- 10 2.1 —40.2 732 259

de- —-04 —294 273 145
Varces —-0.2 =37.0 475 19.8

0.8 =372 409 182
1.3 —-41.0 508 234
22 =369 316 15.7
-1.3 =304 19.1 118
—5.5 —=81.3 60.2 304

Chablais 12.5

STETzQRERb=zQ

10.3 Discussion

10.3.1 Accuracy of multiple regression models for stand parameter estima-
tion

The ALS method produces accurate estimates of forest stand parameters, showing that it is
suitable for mountainous forests such as coppice stands and complex, mixed forests. Results
obtained with 10 m radius training plots in Saint-Paul are consistent with those obtained with
34 deciduous plots located in the Bavarian Forest National Park (Germany) [106]. In this study
a multiple regression was also performed with forest parameters as dependent variables and laser
metrics as independent variables. Plot size was 20 x 20 m? which is close to the area of the circular
plots (314 m?2). Accuracy was similar for basal area (20.6%) and mean diameter weighted by
basal area (13.2%). Stem density also yielded the greatest error with 29.8%, whereas a better
result was achieved for dominant height with 8.1%.

In the same study, prediction accuracy was 44.0% for volume, 37.4% for basal area, 51.1% for
stem density, 6.3% for dominant height and 16.8% for mean diameter weighted by basal area when
all plots (coniferous, deciduous and mixed forest, Np = 108, size 20 x 20 m?) were considered.
Results obtained in Chablais with 12.5 m radius plots (491 m?) are better except for dominant
height, with respectively 30.4, 18.0, 23.0, 11.7 and 15.6. Results obtained with 11 m radius plots
(380 m?) are respectively 29.6, 21.4, 23.9, 9.1 and 16.9%), which suggests that accuracy differences
are probably linked to the wider range of forest structures in the Bavarian study, rather than
training plot size. Indeed, stands from valley bottom, montane slopes and subalpine areas were
altogether considered, whereas here a narrower range of altitude is considered (800-1330 m).

Another factor that may explain difference in prediction accuracy is the difference in metrics
extraction and selection. More metrics were extracted in the Bavarian study, but for only two
groups (first and last). Here the single echoes group is also considered, and metrics related to
this group are often included in the best models. Moreover, variable selection was based on a
stepwise selection. Some relevant metrics combinations might have been missed, whereas in this
study all combinations are tested. Besides, the better result obtained in the Bavarian study for
dominant height might be explained by the fact that height percentiles such as 90" or 95" have
been reported to better model dominant height than the maximum height. Indeed, such metrics
were often included in dominant height models whereas in our study maximum height metrics
are seldom used.
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10.3.2 Effect of plot radius on field observations

Comparison of field parameters values obtained with different radii show that the distributions of
differences are not significantly asymmetric about 0. However the mean and standard deviation,
as well as several distribution quantiles, are significantly correlated with plot radius for some of
the forest parameters.

In Saint-Paul the median and mean of basal area are positively correlated with plot radius.
Even tough special attention is paid to ensure that field inventories are not biased, operational
constraints and stand characteristics in that case may explain such patterns, e.g.:

- need for a small stable platform to install and operate the tripod;

- minimum distance to large tree trunks to ensure visibility from the tripod and acceptable
GPS signal;

- minimum distance to small trees and understory to unfold the 4 m GPS antenna;

- presence of compact groups of several stems in coppice stands.

The effect of the inclusion of a cleared area at the center of the plot to operate the mapping
instruments may result in the underestimation of the total basal area for small radii, because
the void area amounts to a significant portion of the plot. In Chablais where plot centers are
defined afterwards when large plots are divided in smaller circular plots, this effect should not
be observed. Indeed, the mean value of basal area is only slightly correlated (p = 0.5) and the
median is not (p = —0.36).

The extreme values are affected by plot radius. Indeed with small plots, the radius is of the
same order of magnitude as the elements of the forest stand: trees. Therefore, at such a small
resolution, stand parameters are highly variable. To avoid this nugget effect, [69] suggests that
plot size is chosen so that plots contain at least twelve trees. Minimum and first quartile values for
parameters other than stem density are highly correlated with plot radius since their are mostly
obtained in plots that have smaller trees and higher stem density. The local heterogeneity is
less important so that stand parameters estimates are less influenced by plot size. Maximum
values are obtained in plots with less but larger trees, so that stand parameters will vary greatly
depending on the inclusion of any additional tree when plot radius is increased.

10.3.3 Consequences on models accuracy

It is noteworthy that prediction accuracy also varies greatly with plot calibration radius (figure
10.2). As the distribution differences between observed and predicted values are not significantly
asymmetric about 0 for any of the plot radii, plot size may influence residuals variance or some
higher order statistics. This is consistent with the previous observation that the presence of
outliers in field observations is all the more likely since small plots exhibit wider range of forest
parameters. Such data points may affect the coefficient of determination and prediction accuracy
of multiple regression models.

These results are consistent with the findings of a study on the effect of plot size on stand
properties estimated by LiDAR conducted in coniferous boreal stands [91]. In mature forests,
RMSE for volume and basal area models decreased from around 25% to 14% when plot size
increased from 200 m? to 400 m?. With the Chablais data, RMSE for volume (resp. basal
area) decreases from 39.3 to 29.4% (resp. 28.5 to 22.8%) when plot radius increases from 8 to
11.5 m (plot area increases from 201 to 415 m?). Better overall accuracy in the boreal study
may be explained by the fact that models were calibrated after stratification, i.e. with more
homogeneous data. However both results show an important accuracy improvement when plot
size doubles from 200 to 400 m2. Such findings with real data are confirmed by comparisons of
models accuracy obtained for simulated plots of size ranging from 314 to 1963 m? |84|. RMSE
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for above ground biomass estimates of 60 simulated validation plots decreased from 47.1 to 38.5%
when plot radius increased from 10 to 15 m (plot area increased from 314 to 707 m?). As pointed
out in [91], it is noteworthy that for basal area and volume, plot size has more influence than for
dominant height.

Those two studies [84,91] also emphasize the fact that plot size effect is enhanced by GPS
positioning errors. For small radii, there are higher chances that the extracted point cloud is
only partially located within the actual field plot, resulting in erroneously fitted linear models.
However, the study on boreal forests reported that for plot position errors lower than 5 m, the
median of the mean prediction error for basal area, volume and Lorey’s height were similar.
Given the estimated precision of our GPS geolocation, coregistration error is likely to have a
small effect on models accuracy compared to plot size.

10.4 Conclusion and perspectives

With an area-based method, forest stand parameters such as dominant height, basal area, stem
density and mean diameter can be precisely estimated from airborne laser scanning data for
coppice stands and complex, mixed stands. Comparison of regression models obtained with plot
radii ranging from five to twelve meters show that prediction accuracy depends on calibration
plot size. Indeed, the spatial heterogeneity of mountainous stands results in a high variability of
stand parameter estimates obtained from small field plots. This variability affects linear regres-
sion models prediction accuracy, mostly because of the effect of outlier data points. This effect
is enhanced by biases in field data collection and approximate GPS coregistration.

Comparison with results obtained in previous studies suggests that model accuracy depends on
the extracted and selected metrics. However, laser scanner hardware improvements make addi-
tional information regularly available, so that the extraction of relevant features for prediction
models training might remain a perpetual task.

Accurate (sub-meter) positioning of plots would be problematic for Chablais data, and even
more for Saint-Paul. Thus it will be impossible to compare the effect of co-registration approx-
imation on models accuracy with respect to an ideally registered situation. However it would
be possible to simulate additional registration noise in order to quantify the available margin
regarding position accuracy and its possible dependence on plot size. Such information will be
valuable when designing operational protocols for airborne laser scanner based inventories.
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Support vector regression models

The objective of this chapter is triple:

- compare prediction models based on ordinary least square multiple regression (ols-MR)
and e-support vector regression (e-SVR);

- assess the effect of the use of different numbers and types of laser metrics on prediction
accuracy;

- assess the relevance of dimension reduction of laser metrics prior to model training.

11.1 Methods

The general workflow described in section 9.2 is tested on the data from Saint-Paul-de-Varces
and Chablais. The LiDAR data are presented in section 5.3. Field data are described in sec-
tion 5.3.3.1. Only live trees are considered and minimum diameter is 5 cm in Saint-Paul-de-Varces
and 7.5 cm in Chablais. Contrary to the chapter 10, all computations are done for 10 m radius
plots. Besides, models are not calibrated for volume and dominant height, but only for basal
area (G), stem density (N), mean diameter (D) and top height (#H, calculated as the height of
the tallest sampled tree on the plot).

ols-MR and e-SVR models are fitted. Regarding e-SVR, linear k(x, z) = (z,z) and radial-
basis k(x,z) = exp(—v||x — 2||?) kernels are tested. Hyper parameters C' and ~ are selected
by tuning over a range of pre-defined values and selecting the combination which yields the
lowest root mean square error in leave-one-out cross-validation. Cost parameter C' is a positive
constant that defines the trade-off between training error and model flatness. Tested values are
Ce (10i)i:_57_47._.73. The same range is investigated for radial kernel v parameter.

To evaluate the effect of the number and type of laser metrics on prediction accuracy,
variables sets obtained by combination of (ns,ng,n.) € ({0,4,6,8} x {0,1,2,3} x {0,1,2,3})
are tested. When the number of observations Np is greater than the number of variables
ny, PCA and ICA are performed for dimension reduction (DR). Subsets of dimension n, €
{1,2,3,4,5,6,8,10,12,14, 16, 18, 20,22,24} of the obtained principal and independent compo-
nents are also tested as sets of variables.

11.2 Results

11.2.1 Overview

Figure 11.1 and 11.2 provide an overview of prediction accuracy, depending on regression type,
on dimension reduction method and on the number and type of laser metrics, for the Saint-Paul
and Chablais data respectively.

107
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General remarks There is no clear common tendency across the different stand parameters.
Moreover, for a given parameter, results obtained for Saint-Paul and Chablais data are also quite
different. This suggests that optimized models are parameter- but also site-specific. For mean
diameter and top height, results obtained without height quantiles are far poorer than with four
or more height quantiles. This tendency is less pronounced for basal area, and stem density in
Saint-Paul. Stem density in Chablais is the only case where results without height quantiles are
similar or even better. With the Chablais data, accuracy obtained for radial kernel e-SVR used
on ICA variables mainly depends on the number of height metrics.

Basal area With Chablais data, poor results are obtained with less than four height metrics
in the variable set. Regarding ols-MR, dimension reduction of the variables set reduces accuracy,
particularly for ICA. Results obtained with PCA are intermediate and quite erratic. When no
dimension reduction is performed, accuracy is better. Accuracy values are similar whether four
or six height metrics are extracted. Results are improved when two or three density metrics are
added to the variables set. When eight height metrics are used, at least three density metrics
are needed to provide a further improvement of prediction accuracy.

For e-SVR, better and more stable results are achieved with prior dimension reduction of the
metrics set. Meanwhile, some good accuracy is obtained with a radial kernel for variables sets
(np,ng,ne) € ({4,6} x {3} x {1}). On the whole, linear and radial kernels display similar
accuracy, especially when ICA is employed. The main factor influencing accuracy is the number
of height metrics in the variables set. With n, = 4, ICA obtains slightly better results than
PCA. Accuracy decreases for both when nj, = 6, but is improved when np = 8, especially for
PCA. With variables sets reduced by ICA. accuracy seems less sensitive to the number of other
metrics.

With Saint-Paul data, trends are somewhat different. Results are similar when nj; = 0 but

when more metrics are included, ols-MR models accuracy generally increases more than for
e-SVR. When no dimension reduction is used, ols-MR accuracy improves when the number of
height metrics increases from four to six but then depends mainly on the number of additional
density metrics. Best results are obtained for (ny,ng) € ({6,8} x {1,3}). For (ns,nq) € ({6,8} x
{0,2}) an improvement is noticed when three entropy metrics are included. With n; = 4,
dimension reduction benefits to ols-MR models accuracy. The overall best results are obtained
with PCA for n;, = 8 and ng =€ {0,1}.
Overall, e-SVR accuracy is lower than with ols-MR, save for n, = 0. Except for a few cases,
e-SVR without dimension reduction and linear kernel e-SVR accuracy remains stable. Radial
kernel gives better accuracy. Results obtained with ICA are slightly poorer but seems less
dependent on the number of laser metrics.

Stem density With Chablais data, it is the only case where best accuracy is obtained without
any height quantiles. On the whole, linear kernel e-SVR yields poor results, whatever the di-
mension reduction. Radial kernel e-SVR gives better results, especially when no height quantiles
are extracted. Radial kernel used with ICA gives good and stable results when n; = 4, but
accuracy decreases when more height quantiles are extracted. With PCA or without dimension
reduction, radial kernel yields very variable results. Accuracy seems better when at least two
density metrics are present.
For ols-MR, accuracy obtained with ICA is poor, except for the case (ny, ng,n.) € {0} x {2,3} x
{1}. Best results are obtained without dimension reduction, especially when one entropy metric
is combined with at least two density metrics. Some good accuracies are obtained with PCA
when nj > 8.

With Saint-Paul data, linear kernel also gives poor results, especially with no dimension
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reduction of variables sets with ng = 1, and except for combinations of four or six height quantiles
with two density metrics. e-SVR models accuracy is poorer when no dimension reduction is
performed, even tough results are slighlty better when at least two density metrics are included.
With radial kernel, results obtained with ICA and PCA are similar and hardly dependent on the
number of laser metrics, save the above mentioned combinations. Besides, accuracy decreases
when the total number of metrics increases.

For ols-MR, dimension reduction does not allow any accuracy improvement. Good results are
obtained without dimension reduction when two density metrics are added to height quantiles.
Extracting three density metrics yields lower accuracy, whereas with only one density metric
combined to eight height metrics, accuracy is better, suggesting the existence of combined effects
of laser metrics of different types.

Mean diameter With both datasets, results are improved when height metrics are included in
the variables set. With Chablais data, accuracy obtained with ICA components displays similar
trends for e-SVR and ols-MR. Indeed, prediction errors are close and depend mainly on the
number of height metrics. Slightly better results are obtained with n;, = 6. Without dimension
reduction or with PCA, SVR accuracy is close to ICA results but more variable, except when
np = 4. Indeed, for variables sets based on four height metrics, PCA gives the better results
although the effect of the other metrics is not easily explainable. Regarding ols-MR, best results
without dimension reduction are obtained when one entropy metric is used. PCA yields similar
prediction errors.

With Saint-Paul data, e-SVR without dimension reduction gives poor results. Prediction

error obtained with ICA hardly depends on the included laser metrics and on the regression
method. Regarding e-SVR, linear and radial kernels yield similar accuracy. Results obtained
with ICA and PCA are fairly similar when n;, = 4, but accuracy tends to decrease (resp. increase)
for ICA (resp. PCA) when more metrics are included in the variable sets. However accuracy is
better for radial e-SVR with ICA for (ny,ng) € {6,8} x {0,2}.
For ols-MR, accuracy mainly depends on the number of height and density metrics. Results
with a higher number of height metrics are better, and are further improved when more than
two density metrics are added. However, accuracy for (ny,ng) = (6,2) is better than for (8,2).
Entropy metrics have no effect, save for the (np,ng,n.) = (8,1,3) and (4,3,3) cases, where
accuracy is respectively increased and decreased.

Top height With Chablais data, ols-MR models obtained without dimension reduction yield
almost the same prediction error (1.75 to 1.84 m). With ICA, ols-MR models are less accurate,
even tough RMSE decreases down to 2 m when nj = 8. With PCA, results are more variable
but better results are achieved (RMSE = 1.43 m). With e-SVR, accuracy achieved without
dimension reduction is poor and very variable, especially when no density metrics are included.
With PCA, results are better but also more variable, especially for linear kernel. With ICA,
radial and linear kernels display similar tendencies, the former being slightly more accurate.
Prediction error is globally linked to the number of height metrics, and is worse for n;, = 8.

With Saint-Paul data, ICA performed poorly for all methods, except for a few metrics com-
binations. For ols-MR without dimension reduction, accuracy is increased when at least two
density metrics are added to the height metrics. However when nj, = 4, increasing ny from two
to three results in higher error. When PCA is used some better results are achieved but they are
also more variable. For e-SVR, PCA combined with radial kernel yields good but highly variable
accuracy. When no dimension reduction is performed, error is higher, except for some particular
cases which include combinations of (ng,n.) € {2,3} x {3}.
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11.2.2 Best settings of each regression method

Comparison of regression methods Table 11.1 details the settings that allow the lowest
prediction error for each stand parameter and type of regression. For each case, the prediction
error (RMSE) obtained by leave-one-out cross-validation is printed, as well as the mean value
obtained with 200 ten-fold cross-validations. Values predicted by LOO cross-validation are plot-
ted against the field values in figure 11.3. When only the leave-one-out results are considered,
obtained accuracies for most cases are similar. e-SVR seems even more accurate for mean diam-
eter in Chablais and stem density in Saint-Paul. Indeed, error differences are lower than 1.6%,
except for mean diameter in Chablais (2.6% difference between radial e-SVR and ols-MR) and
stem density in Saint-Paul (6.5% difference between linear e-SVR and ols-MR). Some similarities
in the extracted metrics that yield the best accuracy for a given stand parameter are noticeable
with the Chablais data.

However, when looking at mean prediction error and its standard deviation estimated by

200 ten-fold cross-validations, ols-MR appears to be more robust. Indeed, standard deviation
for ols-MR is below 0.7% except for stem density in Chablais where ICA has been performed for
dimension reduction. For e-SVR, standard deviation value reaches 6.5 and even 10.9% for basal
area in Chablais (for this latter case, computation was particularly slow which might indicate
troubles during model fitting).
The location shift of the distributions of the RMSFE obtained in ten-fold cross-validation for
ols-MR and linear e-SVR is significantly different from 0 (Mann-Whitney test, p < 0.001),
except for stem density in Saint-Paul. The test is also significant for ols-MR compared to radial
e-SVR, except for dominant height in Saint-Paul. When linear e-SVR and radial e-SVR are
compared, location shifts are significantly different from 0 only for mean diameter, and for basal
area in Saint-Paul (p < 0.001). In all other cases, the null hypothesis that the location shift is
equal to zero cannot be rejected (p > 0.1). Standard deviation values are also higher for the
prediction error obtained by e-SVR, compared to those obtained by ols-MR, except for stem
density predicted on the Chablais data.

Comparison with the variables set (nj,ng4,n.) = (6,3,0) With the variables set (6,3,0)
without entropy metrics or dimension reduction, the obtained prediction errors for basal area,
stem density, mean diameter and top height are 23.3, 23.7, 27.3 and 6.4% for Chablais data,
and 19.4, 25.5, 14.3 and 12.6% for Saint-Paul '. By using different laser metrics and dimension
reduction methods, ols-MR models are improved by 0.2 to 3.5 points of percentage with respect
to the basic approach relying only on height and density metrics and multiple regression. The
higher improvement for mean diameter in Chablais is due to the fact that the original model
was particularly bad, probably because of the low number of tested models complying with the
linear model assumptions.

'Values are different from those presented in section 10.2 because top height is considered instead of dominant
height, and with the Chablais data RMSE is assessed by leave-one-out cross-validation whereas a “leave-one-
plot-out” cross-validation (see details in section 9.2.5) was used previously. RMSFE is lower when the second
procedure is employed with the Chablais data as in leave-one-out cross-validation, models are fitted with subplots
that are spatially correlated to the tested remaining subplot. As our objective is not to obtain absolute values
but to compare different methods, this effect is secondary. Meanwhile, support vector regression is less sensible to
outliers, so that it should theoretically be less affected than multiple regression by a leave-one-plot cross-validation.
It is also noteworthy that prediction error for top height is much lower than for dominant height.
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Table 11.1: Best prediction accuracy obtained with ols-MR and e-SVR (linear and radial kernels) and
corresponding variables sets, for basal area (G), stem density (N), mean diameter (D) and top height
(H). Values are the coefficients of variation of the RMSE obtained by leave-one-out (LOO) and 200
repetitions of ten-fold (10-F) cross-validations (mean +standard deviation).

Site Para- Regression CVeryuse CVruse Laser metrics Metrics or
meter method LOO (%) 10-F (%)  (np,ng,ne) components used
ols-MR 17.8 17.940.5 8,2,1 PCA 10,17,20
G linear e-SVR 18.6 21.04+4.3 6,3,3 none
radial «SVR 183  20.441.9 8,0,0 PCA 1-12
ols-MR 22.0 22.240.6 8,1, hyoer + hiosgs +dsos
E N linear e-SVR 15.5 22.844.3 6,2,0 none
Q,-" radial e-SVR 17.3 24.94+4.4 42,1 ICA 1-19/19
fg ols-MR 14.1 142404 8{13},3  huoss + dios + €0.661
0 D linear e-SVR 14.4 17.6+2.0 8,2,0 PCA 1-24
radial e-SVR 14.8 17.3+1.9 8,2,1 PCA 1-20
ols-MR 11.0 11.0+0.3 8,1,3 PCA 3,26
H linear e-SVR 10.1 20.14+6.5 6,3,2 ICA 1-24/24
radial e-SVR 9.4 11.6+2.2 4,1,3 PCA 1-10
ols-MR 215 21.6+0.7 8,2,2 PCA 18,9
G linear e-SVR 19.0 23.44+10.9 8,2,1 PCA 1-10
radial e-SVR 20.7 22.842.2 8,2,1 PCA 1-10
ols-MR 21.3 34.04+6.8 0,3,1 ICA 5,6,8/8
@ N linear e-SVR 22.3 22.6+0.6 0,3,1 PCA 1-6
= radial SVR ~ 21.0  22.0+1.4 0,1,2 ICA 1-2/2
=z 0ls-MR 158 16.040.4 81,1 PCA 7,20,22
© D linear e-SVR 13.1 25.44+4.5 6,3,3 ICA 1-28/28
radial e-SVR 13.0 26.1£5.5 6,3,3 ICA 1-28/28
ols-MR 5.2 5.240.1 433 PCA 7,10,12
H linear e-SVR 4.9 5.940.8 4,1,3 PCA 1-14
radial eSVR 5.4 6.1+0.7 6,3,0 PCA 1-16

11.3 Discussion

11.3.1 Influence of the number and type of laser metrics

Numerous studies have shown that the upper height quantiles are a good indicator of tree height.
This is exemplified by the fact that prediction accuracy for top height models is greatly improved
when height metrics are included in the variables set. Previous studies [122,228| showed that
dominant height and, to a lesser extent, mean diameter are correlated with the upper height
quantiles. This may explain why those stand parameters display similar tendencies regarding
prediction models: stability of results when enough height metrics are included in the variables,
and inefficiency of DR for ols-MR. Relationships between basal area or stem density and forest
structure are more complex, resulting in patterns that are more difficult to interpret. The case
of stem density in Chablais is an exception, as good accuracies are achieved without any height
metrics. Indeed, a great part of training field plots are irregular stands, where some high, mature
trees co-exist with a more or less dense lower stratum. With such structures, top height exhibits
lower correlation with stem density. On the contrary, in Saint-Paul, most plots are constituted
by even-aged coppice stands. In the absence of thinning or logging, height growth goes along
with a decrease in stem density as a consequence of stem exclusion, which may explain why
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height metrics are successful in predicting stem density.

Entropy metrics have little impact with Saint-Paul data. Indeed, coppice stands are very
dense and quite homogeneous at local scale, so that there is only little information to be extracted
from the horizontal distribution of points. On the contrary, in Chablais numerous stands are
irregular so that they display a high horizontal variability within a given plot. That may explain
why adding entropy metrics helps increase prediction accuracy for stem density or mean diameter.
The number of height bins for entropy computation also seems to be a major criterion as in
Chablais prediction accuracy is improved when entropy is calculated with the whole range of
height. In Saint-Paul, for top height the extraction of three entropy values benefits to e-SVR
models. This suggests that depending on the forest structure and on the forest parameter, the
relevant entropy information may be located within the totality or only parts or the point cloud.
In Saint-Paul, some broadleaved or coniferous trees originated from seedlings emerge from the
homogeneous coppice canopy in some plots. That may explain why entropy metrics are relevant
only when computed for selected height bins, whereas in Chablais all layers are heterogeneous.

Density metrics effect greatly depends on the forest parameter. For top height they have
nearly no influence. For the other forest parameters, they improve prediction accuracy, especially
for mean diameter in Saint-Paul. It is also noteworthy that depending on the site and on the
forest parameters, the number of extracted metrics also has an effect on accuracy. For example,
with basal area in Saint-Paul, ols-MR models without dimension reduction have better accuracy
with ng = 1 and ngy = 3 than with ng = 2, suggesting that the relevant information is in
the metric dg 5. On the contrary, with mean diameter in Saint-Paul, ols-MR models without
dimension reduction have better accuracy when more density metrics are included in the models,
which may be explained by the fact that more valuable information is extracted when more
height bins are considered.

Some combined effects are also noticeable. For example, ols-MR models without dimension
reduction display better accuracy when np = 6 and ng increases from one to two. However,
when nj = 8, accuracy decreases when the number of density metrics comes from one to two.
This could be linked to the fact that metrics of different type might encompass some redundant
information.

11.3.2 Influence of regression method

On the whole, ols-MR, performs better with raw laser metrics, whereas e-SVR yields better
accuracies with reduced sets of features. This might be linked with the fact that regarding
ols-MR a selection of the best model with at most three variables is performed, whereas the
whole variables set is used in the case of e-SVR. The training with a lower number of components
(from ICA or PCA) might make models more accurate than when the whole set of raw metrics
is used. Indeed, several SVR models that yield the best accuracy (table 11.1) are obtained with
sets with a lower number of components than originally included in the raw metrics.

Radial and linear kernels sometimes yield very similar results (mean diameter in Saint-Paul),
but e-SVR with radial kernel seems more robust to the dimension reduction method and to the
laser metrics. This could be expected as the radial kernel can account for non-linear relationship.
However, the small difference in achieved accuracy suggests either that relationships between laser
metrics (or extracted components) can be considered linear, or that radial kernel models might
actually be over-fitted.

This hypothesis of over-fitting might also explain why e-SVR models have performances
similar to ols-MR when only leave-one-out cross-validation results are considered, but are worse
both in terms of mean and standard deviation of RMSE when ten-fold cross-validations are
repeated. During the ten-fold cross-validation, hyperparameters are not tuned again, which
suggests that the model determined in LOO cross validation might actually be over-fitted. A
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better parametrization of the e-SVR algorithm might be attained by tuning the ¢ size of the
insensitive tube. Previous studies suggest that this value should be set according to the noise
level, which is unfortunately difficult to estimate.

11.3.3 Influence of dimension reduction

The fact that ols-MR performs better with raw laser metrics also suggests that most of the
valuable information lies within a limited number of metrics, and that this information is not
transferred to or usable within the components extracted with PCA or ICA. Indeed, PCA aims
at maximizing the amount of variance encompassed in the orthogonal components, but there
is no reason why the information related to the forest parameter should be linked to these
features. Indeed, the results obtained with PCA in table 11.1 seldom use the first components.
For example, upper height quantiles are correlated to some forest parameters, and the valuable
information that is originally present in one or two laser metrics might be diluted into several
components during dimension reduction. Concerning e-SVR, it has already been mentioned
that the results are better with dimension reduction. Moreover, using ICA is on the whole less
accurate but somewhat more robust than PCA.

Besides, using dimension reduction methods might turn out tricky in operational applications.
Laser metrics computed in a given location (e.g. plot) are independent from the rest of the data.
Meanwhile, PCA and ICA components for the laser metrics in a given plot will depend on the
number and location of other plots. If a trained model is to be applied for prediction purposes on
the whole LiDAR dataset (which is the objective of operational applications), laser metrics and
components have to be previously calculated for the whole area. The resulting computational
task might be problematic if several metrics combinations or number of components are tested.
Besides, it is all the more important for ICA since components are not ordered. As a result,
even if the transformation than extracts components from the raw data is similar whether the
whole data is considered or not, components selected for multiple regression may not come out
in the same place in two successive independent components analyses. This is probably why the
RMSFE estimated with ten-fold cross-validation in table 11.1 differs greatly from the LOO value
obtained with ols-MR for stem density in Chablais. The order of ICA components should not
matter here for e-SVR as all extracted component are systematically used in the fitting process.

11.4 Conclusion and perspectives

Upper height quantiles are generally the most important features, but additional relevant metrics
depend on both the forest structure and the forest parameter, which suggest that prior stratifi-
cation of the forest structure is a important requirement before accurate models are trained.
Finally the basic ordinary least squares multiple regression turns out to be the most accurate
and robust for forest stand parameters estimation in this study. e-support vector regression ob-
tained almost similar performance but results are less robust. Multiple regression seems to take
advantage of the selection of a few relevant metrics, such as those upper height quantiles. Sup-
port vector regression has trouble handling the whole raw metrics sets, and performs better on a
reduced number of components, mainly from PCA but with less success. Despite its theoretical
advantages, the radial kernel is only slightly superior to linear kernel.

Further research should focus on factors that may improve support vector regression. The first
possibility is to improve SVR model parametrization, for example by using a different formulation
of the algorithm, such as (v-SVR). In that case, the e parameter is replaced by the parameter
v, which affects the number of support vectors of the model, and might be easier to tune. The
second possibility is to adapt the dimension reduction technique. Indeed, feature selection has
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not been tested here. In a study where the same selected laser metrics were used in multiple and
support vector regression models, the latter was more accurate [224]. This suggests that feature
selection would be more adapted for model training than using the whole laser metrics or than
mapping them into a lower dimensional feature space.

Besides when more observations are available, linear model assumptions might be less frequently
fulfilled, so that non linear regression method such as radial kernel SVR will really be at their
advantage.
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Figure 11.3: Predicted values plotted against field values for basal area GG, stem density N, mean diameter
D and top height H for each model described in table 11.1. Subfigures (a-d) correspond to Saint-Paul-de-
Varces data (StP), subfigures (e-h) to Chablais data (Chb). Symbols correspond to the regression method:
+ ols-MR, o linear and e radial e-SVR. Predicted values are estimated by leave-one-out cross-validation.
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This thesis dealt with the use of airborne laser scanning (ALS) data to characterize forest
mountains. The aim was to improve methods used to derive forest information from small
footprint airborne laser scanning data and test them on stands located in the french Alps.

A prerequisite for these investigations was to address the issue of the field data required
to build and validate the models. Indeed, the accuracy of ALS data calls the protocols used
for reference data collection into question. Due to the constraints of fieldwork in mountainous
environments, a trade-off between accuracy and labor-intensity was adopted for the collection
of the field data. Finally, a total of approximately 5.7 ha of forest plots were fully calipered
within large plots (more than 0.25 ha). Plots represent a wide range of forest structures, from
monospecific coniferous plantations to mixed, multilayered stands. Moreover, 31 small plots
representing a total of 1 ha were inventoried in a coppice-dominated forest.

Single-tree approaches are designed to extract the information about the position and size
of individual trees. In mountain forests, the complexity of the horizontal and vertical structure
of stands makes the parametrization of detection algorithms difficult. Here, a method based on
unsupervised training was implemented.

1. A framework for the automatic assessment of detection performance was proposed. It is
necessary for the evaluation of different parametrization options, both at the training and
validation steps. It is based on the comparison of the position of the treetops detected in
ALS data and those measured on the field. Uncertainty in field and ALS data are taken
into account. A unique criterion that balances true detections with false positives is used,
which allows for a fast and consistent comparison of results.

2. The treetop detection algorithm itself consists in successive image processing filters (mor-
phological and low-pass) designed to remove undesired features from the digital surface
model derived from the point cloud. Treetop positions are extracted by local maxima fil-
tering and a final selection is performed, based on the relationship between treetop height
and distance to its neighbor. The sensitivity analysis showed that specific settings are
required to achieve optimal detection performance on homogeneous plots whereas on het-
erogeneous plots detection requires an important trade-off between true and false positives.
Globally, detection performance turned out to be very sensitive to parametrization and for-
est structures.

3. The unsupervised training approach aims at taking advantage of the existence of reference
data where the performances of the algorithm are known. In the case of new ALS data,
it is compared to the ALS data of the reference plots in order to decide which algorithm
setting is most relevant. For matching of the test data to the training data, two indices
have been tested separately: the vertical distribution of laser points, which reflects the
vertical structure of the forest, and the spectrum of the Fourier transform of the canopy
height model, which can been seen as a texture descriptor of the image used for treetop
detection. Cross-validations showed that when the training set size is large enough, detec-
tion performance with unsupervised training is similar to the one obtained with an average
setting of the algorithm.

This framework for unsupervised training is promising and can be applied to other detection
algorithms. However, larger training sets have to be tested in order to evaluate its limits. This
approach is a good example of the growing convergence between single-tree and area-based meth-
ods. Indeed, it can be seen as a most similar neighbor approach for the selection of (detection)
parameters according to area-based descriptors. Other descriptors (e.g. quantiles) or imputation
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techniques already used for area-based methods could be tested. Moreover, the size of the plots
makes the use of texture indices possible. Another perspective is to use the information from
the training data to improve the stand estimates derived from the attributes of detected trees.

The area-based method based on the calibration of regression models was successfully tested
on two datasets: a coppice forest and a mixed, complex forest.

1. Investigations on the effect of training plot size on ordinary least squares multiple regression
models showed that plot size has a major effect on model accuracy. Moreover, for small
plots, fieldwork constraints might be responsible for systematic biases.

2. Comparisons of e-support vector regression (SVR) and ordinary least squares multiple
regression showed that, even tough SVR models are sometimes more accurate, multiple
regression is more robust.

3. Depending on the forest parameter, but also on the study area, the ALS metrics selected in
the models varied greatly. Using principal component analysis and independent component
analysis for previous dimension reduction of the variables sets did not benefit to multiple
regression models accuracy, suggesting that the relevant information is not available in the
extracted features. Besides, those transformations are not space- and time-independent,
which makes them more difficult to use for operational applications.

Meanwhile, these findings have to be confirmed by testing the workflow with larger datasets, as
support vector regression might handle cases with non-linearity in a better way. Besides, SVR
may also be be more efficient when performed after a laser metrics selection.

As a final conclusion, the perspectives toward operational applications should be highlighted.
The results obtained with both approaches, single-tree and area-based, show that models are
highly dependent on the forest structures. Developing stratum-specific models requires all the
more field data. An alternative would be to include environmental factors in the models, such as
altitude and landform patterns, which can be computed from the ALS data as well. Efficient use
of ALS in forestry practices involves taking advantage of any available information by integrating
it into the whole workflow of forest inventory.
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Appendix B

GPS elevation mask computation with
digital terrain models

B.1 Motivations

In mountainous areas, periods with satisfactorily GPS signal quality are rare. Indeed, the topo-
graphic mask considerably limits the number of visible satellites and the signal quality (positional
dilution of precision, PDOP). Besides, moving in such environments is quite slow so that is it
time-consuming to both get back to a plot when previous GPS acquisition failed and to stand
waiting for a sufficient number of available satellites after other field tasks have been completed.

However, one can take advantage of prior knowledge of the plot location, even approximate,
and of the digital terrain model (DTM) to improve GPS acquisition productivity. Indeed, GPS
softwares can output forecasts of signal quality at any given location, based on the scheduled
satellite map [296, p. 190]. Such forecast can be refined by taking into account the elevation
mask effect on satellite availability (figure B.1). Such masks are determined on the field with a
compass and a clinometer, but in this appendix a quick way to roughly estimate it from DTMs
is proposed.

| e - - L1
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14:00 16:00 18:00 20

Figure B.1: Screenshot of the utility that displays the theoretical PDOP and number of available satellites
given the location and elevation mask. In that case, the total period of acquisition with six satellites and
a PDOP lower than four is only 40 non consecutive minutes for the whole daytime.
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B.2 Method

When a given field plot location L with coordinates (zr,yr) is already known, either because
a coarse GPS acquisition was made during a previous campaign, or because the sample plot
coordinates are chosen in the office, the 50 m DTM of BD Alti® (figure B.2a) is used to compute
a long-distance elevation mask of the topography. First zp, altitude of L, is estimated by bilinear
interpolation of the neighboring points of the DTM. Then the coordinates of the DTM pixel
centers (F;) are converted from the matrix Cartesian system (z;, y;, ;) to the spherical coordinate
system centered on L: (r;, 6;, p;). The pixel value is used as altitude for the corresponding pixel
center. A rough elevation mask M, = (0p),c(1..n} is computed by retaining for each azimuth
step the maximum value of the elevation angle of the pixel centers situated in this section S:

0p = maz(0;)p,es, with S, = {Pj\sz << %(]Z;_D} (B.1)
This rough mask does not account for the short-distance mask induce by high frequency
variations of the topography such as small cliffs. When a LiDAR DTM is already available
(figure B.2b), the same method is implemented to compute a short-distance elevation mask
My with a 1 m DTM extracted at 100 m around L. The final mask M is computed as the
elementwise maximum of M, and M. On the example of plot 8 in the Chablais (figure B.2c),
the complementarity of the two masks appears. The short distance mask does not account for the
mask due to the hillside situated across the valley (East-North-East direction). Long distance
mask underestimates the elevation occlusion due to upslope local topography.
With the above mentioned procedure, the estimated quality of GPS acquisition can be taken
into account when planning field campaigns, so that the productivity of geolocation is improved.
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Figure B.2: DTM and corresponding planimetric elevation masks for plot 8 in Chablais. Blue dotted
(resp. solid) line is the elevation mask computed with the 50 m (resp. 1 m) DTM. Black circles correspond
to 0, 30, 60 and 90 degrees elevation. Red circle is the 15 degrees elevation, which is a common default
setting for the lower elevation limit to take a satellite into account.



Appendix C

Description and detection figures for
large plots

C.1 Introduction

This appendix gathers the figures corresponding to large plots described in section 5.3.2.
For each plot, three figures are displayed for plot description:

- the digital terrain model (DTM) with tree positions,
- the canopy height model (CHM) with tree positions,
- the histogram of height distribution.

Spatial resolution of the DTM and CHM is one meter. Pixel color refers to the terrain altitude
(DTM) or vegetation height (CHM). Scale bar units are in meters. Trees positions are marked
as symbols whose size is proportional to tree height. Symbol colors in the images and bar color
in the histogram refer to tree species (see table 5.1). Symbol types refer to the appearance of a
tree: o normal, A broken stem, + snag with branches, x snag without branches. Only live trees
(normal and broken stem categories) are considered in the height distribution.

Two types of figures corresponding to detection results obtained with the best setting deter-
mined for each plot are also presented:

- the height histogram of true positives, false negatives and false positives,
- the scatterplot of field height as a function of LiDAR height, for true positives.

C.2 Description
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C.3 Detection results

C.3.1 Height histogram
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Figure C.8: Field height histogram for detection results: true positives (M green), false negatives (H red)
and false positives (M blue). For false positives, LIDAR height is used.
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Figure C.9: Field height histogram for detection results (continued from figure C.8).
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C.3.2 Field-LiDAR height scatterplots
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Figure C.10: Field measured height of correctly detected trees plotted against LIDAR height. Regression
model is indicated on the figures with the corresponding adj-R?2, root mean square residuals (rmsr) and
the number of detected trees. For Valdrome plots, only detected trees with field measures are considered.
Symbol colors refer to tree species (see table 5.1).
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Figure C.11: Field measured height of correctly detected trees plotted against LIDAR height (continued

from figure C.10).




Appendix D

Detection improvement by ellipse
modelling of tree crowns

D.1 Introduction

Motivations Single tree detection methods based on image processing techniques do not take
advantage of the ability of LIDAR remote sensing to retrieve information from the inside of the
canopy cover. Indeed, they are generally applied to the crown height model (CHM), which is
the upper envelope of the point cloud. However, in complex or multilayered stands, some trees
have mixed crowns or are completely over-topped by taller trees. In the CHM, such trees are
merged with other trees, or do not appear at all. Besides, the shape of the visible trees is altered
by those suppressed trees. In this appendix, a procedure for improving the delineation of trees
obtained by the image-based algorithm detailed in chapter 6 is presented. It relies on the the
construction of ellipses on the point cloud within previous segments. This work was done in
collaboration with Paula Mursa from the Military Technical Academy of Bucharest.

Material The method is tested on plot chablais4 (field plot description in section 5.3.2). In
this square plot of 0.25 ha, positions and heights of trees with diameter at breast height larger
than 7.5 ¢cm are known. Single tree detection is performed with the algorithm presented in
chapter 6. The adopted setting leads to the correct detection of 35 trees out of 82, with 2 false
positives. A marker-constrained watershed segmentation is then performed to delineate tree
crowns associated to each detected treetop (section 6.2.7). The input data for the algorithm
are the segments obtained by the watershed algorithm, and the LiDAR point cloud with point
coordinates and classification (ground, non ground). LiDAR points with relative height lower
than two meters are removed. Remaining points are affected to each corresponding segment
(figure D.1).

D.2 Methods and results

Assumptions The proposed algorithm is designed to improve tree detection of previous local
maxima filtering and watershed segmentation, based on the following statements:

- local maxima filtering only takes the distance to the nearest pixel with higher value into
account, which is in fact the distance to the nearest higher crown, and is not a good
indicator of the distance to the nearest higher tree,

- watershed segmentation only relies on the fact that the tree crown is monotonically de-
creasing from the treetop to ground, without any other constraint on shape.
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(a) Segmented trees (b) XY view of segment 43 (c) Perspective view of 43

Figure D.1: (a) Result of detection and segmentation of trees on plot chablais4. Numbers correspond
to segments id, black circles are the positions of field trees. Symbol size is proportional to tree height.
background image is the canopy height model of 0.5 m resolution, axes are labelled in pixels. (b) and
(c) view of the point cloud located inside segment 43. Only points higher than 2 m above ground are
considered.

The proposed algorithm is based on the assumption that tree crown slices at various heights are
concentric, successive ellipses.

Processing of main tree The highest point of the point cloud is identified. From now on, its
coordinates are considered as the fixed center H,,q.1(21,y1) of the tree (figure D.2a). The point
cloud (4, i, zi)ieq1,.. N} 18 split into n vertical bins (crown slices) of one meter width.

For each level [, starting from the top, an ellipse whose axes are aligned on the grid axes is
roughly fitted to the point cloud. The center of the crown slice [ is considered to be located at
(x1,y1) = %(azmml + Tmazls Ymin,l + Ymaz,l), With Tpmin = min(x;,i € 1). Corresponding ellipse
axes lengths are \/xmin,l + Tmaz, an \/ymin,l + Ymaz,l-

After the position of the slice center is computed, it is compared to the position of the original
center H a1 If they are separated by a distance larger than a threshold value d, the center
shift indicates that it is likely that another tree is present in this crown slice. In this case, the
iterations are interrupted and the algorithm follows a second procedure.

Processing in case of second tree The top of the second tree is considered to be the point
in [ with the largest distance to the fixed center H,,4,1 of the main tree, and is now recorded as
H a2 (figure D.2b).

On each level, centers of the ellipses for both trees will now be considered to be located at Hyqz1
and Hyapo. We still consider ellipses that are aligned on the coordinates axes. The preceding
procedure for ellipse axes estimation is used except that for the second tree, only points of the
half plane where it is located are considered. For the main tree, the points of the other half plane
are used (figure D.2c¢).

Results The algorithm allows the detection of five additional trees (table D.1) on the plot,
with two additional false positives. One additional tree is detected in the upper layer, and four
in the lower layer. These results are slightly less accurate than those obtained in a study that
investigated the improvement of watershed delineated segments by normalized cut segmentation
of the point cloud [262]. With a true 3D approach based on voxels, the results from watershed
segmentation (48% of true positives with 4% false positives) were improved to 60% true positives
with 9% false positives.
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(a) Positions of mobile center (b) Position of second tree (¢) Maximum crown extension of
trees

Figure D.2: Steps of crown splitting. (a) Ellipse center (red dot) on the fourth level is far apart from
the original fixed center (blue line). (b) Determined second treetop. (c) Estimation of the maximum
extension of trees in their respective half-planes, for each level.

Table D.1: Detected trees by height class for the local maxima algorithm and the additional ellipses
construction.

Height class (m) 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 Total
Detected (local maxima) 0 0 2 0 0 5 16 12 35
Detected (point cloud) 0 2 4 0 0 6 16 12 40
Inventoried 0 22 12 3 6 9 17 13 82

The crown of the main tree is also better modelled by the ellipses than with the sole watershed
segmentation, particularly when a second tree is detected (figure D.3).

D.3 Discussion and perspectives

Limits of the approach Figure D.4 presents typical cases where the algorithm succeeds or
fails in correctly detecting additional trees within watershed segments. Figure D.4a presents two
cases where the second tree is detected. The crown of the second tree is sufficiently separated
from the crown of the first one to induce a shift of the center of the crown slice at some given
level.

When the arrangement of tree crowns results in an almost symmetric segment crown, the presence
of a second tree remains unnoticed (figure D.4b). On the right side, the crown of the second tree
is completely fused in the crown of the other. On the left side, the small tree is well separated
from the dominant one, but the segment crown is globally symmetric due to the presence of low
branches on the other side of the main tree.

The last figure (D.4c) exemplifies false detection cases. On the left side, a false second tree will
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Figure D.3: Examples of modelled crowns of main trees.

be detected where the crown begins to be asymmetric. Trees will indeed develop a larger crown
on the side where they have no close neighbor [239, p. 71]. On the right side, point extraction
after the watershed segmentation results in an erroneous affectation of part of the crown of the
round tree to the lower part of the large tree. The algorithm will detect a second tree in this
segment.

Point cloud based approaches applied on single segments obtained from local maxima filtering
are indeed penalized by the fact that adjacent trees are not considered, whereas the shape of a
tree is greatly influenced by its neighbors. Due to the complexity of heterogeneous forests, even
with a more refined approach, the correct detection of additional trees requires a trade-off with
false detections.

MAd

) True positives ) False negatives (c) False positives

Figure D.4: Typical cases encountered by the algorithm.

Advantages The main output of this approach might finally be the modelling of the tree crown
of the dominant tree. Extracted parameters such as crown volume, length and area will be useful
to improve the models based on LiDAR height for tree diameter and volume estimation. Crown
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base height can be estimated by analysing the vertical point distribution, but the presence of
additional trees in the segment increases the error. Combining height distribution and crown
symmetry as proposed with this algorithm are likely to improve the modelling of tree crowns in
complex forests.

Algorithm improvement The tested algorithm showed that this approach is successful in
detecting additional trees and modelling the shape of dominant trees. However, it can still be
improved on several points.

The ellipse construction is based on points range along two axes, hence it is not rotation invariant.
With trees that are generally isotropic, a more robust method should be implemented, e.g. by
fitting ellipses with a least-squares algorithm on points located on the convex hull of each crown
slice. Slice width should also be automatically adapted in order to ensure that enough points
are included for computation.

The criterion for the presence of the second tree is only based on the distance between the
coordinates of the treetop and the center of the ellipse at each level. The distances to the centers
of the ellipses at the previous levels should also be considered.

The algorithm should also be tested on more field data, in order to test its performance on
various forest structures. Special attention should also be paid to the influence of LiDAR point
density on detection results.

Single tree detection in complex forests Detection algorithm can be improved by mak-
ing assumptions about forest features. However, additional criteria will allow the detection of
more trees, but also raise numerous particular cases that the algorithm will not handle correctly.
In complex forests, the variability of tree shapes and arrangements makes many simplifying
hypotheses about forest structures hazardous. Improving detection performance requires a com-
prehensive modelling of the interactions between laser pulses and the vegetation cover, which
implies taking both the real shape of tree crowns and the effects of scanning pattern into account.
An alternative is to automatically adapt algorithms to forest structures, e.g. with the training
approach presented in chapter 8. This last approach is likely to be more robust but less powerful
regarding the attained detection rate.
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Glossary

ALS Airborne Laser Scanning. 9, 12, 15, 26, 73, 80, 104, 121, 122

CHM Canopy (or Crown) Height Model: image of the vegetation height. 11, 30, 46, 47, 53, 58,
77,80, 83, 129, 141

CViryvse Coefficient of Variation of the Root Mean Square Error. 95

DBH Diameter at Breast Height: tree diameter measured at 1.3 m height. 25, 28 30, 33, 34,
67, 97, 99

DSM Digital Surface Model: image of the Earth surface altitude (including vegetation and
buidings). 44-48, 52, 58, 68, 72, 73, 76, 77

DTM Digital Terrain Model: image of the terrain altitude. 11, 20, 26, 30, 34, 45 48, 52, 58,
77, 127-129

GLAS/ICESat Geoscience Laser Altimeter System, carried on the Ice, Cloud and land Eleva-
tion Satellite. 10

GPS Global Positioning System. 9, 10, 19, 20, 22, 23, 26, 27, 30, 33 35, 53, 54, 57, 69, 90, 105
106, 127, 128

ICA Independent Component Analysis. 94, 107, 110 112, 114, 115
IMU Inertial Measurement Unit. 9, 10, 19, 22

IQR Inter Quartile Range. 99
LiDAR Light Detection And Ranging. 9-15, 19-21, 23, 25, 26, 28, 34, 36, 41-45, 49, 50, 53,

57, 58, 60, 61, 67-71, 73, 75, 76, 79, 83, 84, 89-91, 97, 105, 107, 115, 128, 129, 141, 144,
145

LOO Leave-One-Out (cross-validation). 95, 101, 112, 114, 115

LVIS Laser Vegetation Imaging Sensor. 10-12, 14
NASA National Aeronautics and Space Administration. 11
ols-MR Ordinary Least Squares Multiple Regression. 91, 93-95, 107, 110-115

PCA Principal Component Analysis. 94, 107, 110, 111, 114, 115
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PDOP Positional Dilution Of Precision. 26, 127
RMSE Root Mean Square Error. 95, 99, 101, 102, 105, 111, 112, 114, 115

SE Structuring Element. 48
SLICER Scanning Lidar Imager of Canopies by Echo Recovery. 10, 11

SVR Support Vector Regression. 90, 91, 93 95, 111, 114 116, 122
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Résumé

De nombreux travaux ont montré le potentiel de la télédétection par scanner laser aéroporté
pour caractériser les massifs forestiers. Cependant, 'application aux foréts complexes de mon-
tagne reste encore peu documentée. On se propose donc de tester les deux principales méthodes
permettant d’extraire des parameétres forestiers sur des données acquises en zone montagneuse et
de les adapter aux contraintes spécifiques a cet environnement. En particulier on évaluera d’une
part l'apport conjoint de la régression a vecteurs de support et de la réduction de dimension
pour l'estimation de parameétres de peuplement, et d’autre part 'intérét d’un apprentissage non

supervisé pour la détection d’arbres.

Mots-clés: Télédétection, scanner laser aéroporté, LiDAR, forét, vecteurs de support, ap-
prentissage non supervisé, inventaire forestier, détection d’arbre.

Abstract

Numerous studies have shown the potential of airborne laser scanning for the mapping of
forest resources. However, the application of this remote sensing technique to complex forests
encountered in mountainous areas requires further investigation. In this thesis, the two main
methods used to derive forest information are tested with airborne laser scanning data acquired
in the French Alps, and adapted to the constraints of mountainous environments. In particular,
a framework for unsupervised training of treetop detection is proposed, and the performance of
support vector regression combined with dimension reduction for forest stand parameters esti-
mation is evaluated.

Keywords: Remote sensing, airborne laser scanning, LiDAR, forest mapping, support vector
regression, unsupervised training, treetop detection.



