
HAL Id: tel-00651088
https://theses.hal.science/tel-00651088

Submitted on 12 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metaprogrammed algorithmic skeletons :
implementations, performances and semantics

Noman Javed

To cite this version:
Noman Javed. Metaprogrammed algorithmic skeletons : implementations, performances and seman-
tics. Other [cs.OH]. Université d’Orléans, 2011. English. �NNT : 2011ORLE2021�. �tel-00651088�

https://theses.hal.science/tel-00651088
https://hal.archives-ouvertes.fr

���������	
����	���

�����������	
�������������������������

�����������	
������������	��
�������	
�������

�����

��������	���	�

�����
�����

�������	��	�	��
������
����

����	������	��	���
�	
�	�	�������
 �
!���"#��$"�%
 ��!%��$

����������	����������	�	��&�����"'��

����������	��������������	���������������	�	

����������� 	�����������	��	���������

�����
 "�"(%�
)��
*

+�% %�"�
�����,�� !��������� 	"�#������	
�������

��--������
*

+���"��
.����� $�%���	
�	���������	&�' 	"�#������	!����	(��)������

��$����
-���,���� *��������	!�������� 	"�#�����+	
�	!���

,,

���/
*

�%��$�"��
��.�� !��������� 	"�#������	
�������

�������
0�1��� !��������� 	-���������	-��������	"�#�����.�	$/����

��2!
+��1� $�%���	
�	��������� 	"�#������	!�������
	00

To my parents.

Acknowledgements

My praises to God for giving me the diligence and perseverance to endure the long
PhD journey. Only by His grace was I able to complete the degree requirements.

I would like to thank Fabrice MOURLIN and Susanna PELAGATTI for reviewing
this thesis and providing their valuable suggestions. I would like to thank Herbert
KUCHEN, Joël FALCOU and Sébastien LIMET for being members of the jury.

The thesis could never have been written without the helpful support of a number
of people to whom I would like to pay tribute. First and foremost I would like to
thank my supervisor Frédéric LOULERGUE who honoured me by becoming my thesis
director. I would like to express my gratitude for all his constant support, friendly
encouragement, great patience, invaluable advice, and excellent guidance. A part
from the technical work, I always found him willing to support me in every aspect.
Without him, it is simply impossible for me to complete my work.

I feel fortunate to work at LIFO. A great place full of wonderful people. I feel
proud to be a part of it. I am grateful to all the lab mates. Julien TESSON and
Matthieu LOPEZ deserve my special thanks as they made my life easy and help me
overcoming my language deficiency. I would like to thank my office mates Mustafa
BAMHA and Jean Jacque LACRAMPES for their great patience and support.

I had the privilege to work with Joel FALCOU several times and he inspired me
every time I met him. I pay my gratitude to him for boosting me towards the world of
C++ meta-programming.

Special thanks to Higher Education Commission, Pakistan who provide me the fi-
nancial aid to complete my work. A very special gratitude to Atta ur Rehman, founder
of HEC Pakistan for enabling fellows like me to pursue higher studies.

Last but not least, I would like to thank my very strong family support system.
These include my parents, my wife, my son and my siblings for their great love,
patience and sacrifice. I am truly blessed.

Noman JAVED

v

Contents

Contents vii

List of Figures ix

1 Introduction 1

1.1 Parallel Architectures . 2

1.2 Parallel Programming Models . 2

1.2.1 Architecture Oriented Models . 3

1.2.2 Object Oriented Models . 4

1.3 Parallel Algorithmic Models . 4

1.3.1 Network Models . 4

1.3.2 Parallel Random Access Machine . 5

1.3.3 Bridging Models . 5

1.4 Formal Models . 7

1.5 Criteria to Evaluate Programming Model 7

1.5.1 Criteria . 8

1.5.2 Assessment of Programming Models 8

1.6 Structured Parallelism . 9

1.7 Contribution and Structure of the Dissertation 10

2 State of the Art 13

2.1 Classification of Skeletons . 13

2.1.1 Data Parallel Skeletons . 14

2.1.2 Task Parallel Skeletons . 14

2.1.3 Control Skeletons . 14

2.2 Skeleton Libraries and Languages . 15

2.2.1 Contributions of Pisa Group . 15

2.2.2 Contributions of Herbert Kuchen . 19

2.2.3 BSP based Skeleton Libraries . 20

2.2.4 C++ based Skeleton Libraries . 21

2.2.5 Skandium . 22

2.3 Other High Level Frameworks . 22

2.3.1 Eden . 22

2.3.2 STAPL . 23

vii

2.3.3 HPC++ . 23

2.3.4 TBB . 23

2.4 Discussion . 24

3 OSL Design and Implementation 27

3.1 Data Parallel Skeletons . 28

3.1.1 Distributed Arrays . 28

3.1.2 Map Skeletons . 28

3.1.3 Communication Skeletons . 30

3.1.4 Reduce . 33

3.1.5 View Changing Skeletons . 33

3.2 A Prototype Implementation in BSML 35

3.2.1 Bulk Synchronous Parallel ML . 35

3.2.2 A Library of Algorithmic Skeletons 38

3.2.3 Heat Diffusion Simulation Example and Experiments 43

3.3 A C++ Implementation of OSL . 45

3.3.1 Distributed Arrays . 45

3.3.2 Skeletons . 47

3.4 Summary . 54

4 Programming with OSL 55

4.1 A First Example . 55

4.2 Heat Equation: A case study . 57

4.2.1 One Dimensional Heat Equation . 57

4.2.2 Two Dimensional Heat Equation . 60

4.3 Fast Fourier Transform . 61

4.4 Reduce and Map Over Pairs . 63

4.5 Sorting . 66

4.6 Experiments . 68

4.7 Summary . 69

5 Performance Prediction and Portability 73

5.1 Benchmarking the BSP Parameters . 74

5.2 Performance Prediction: A Case Study 75

5.3 Performance Portability . 77

5.3.1 Reduce by Using Gather and Broadcast 79

5.3.2 Reduce by Using All Gather . 79

5.3.3 Reduce by Tree Gather and Broadcast 81

5.3.4 Reduce by Tree All Gather . 81

5.3.5 Best Algorithm Selection . 82

5.3.6 Variance: A Case Study . 83

5.4 Summary . 84

6 Formal Semantics of OSL 87

viii

6.1 A Formal Programming Model . 87

6.1.1 Syntax . 88

6.1.2 Type System . 89

6.1.3 Operational Semantics . 89

6.2 Implementation in the Coq Proof Assistant 91

6.2.1 Distributed Arrays . 91

6.2.2 Syntax and Typing . 93

6.2.3 Big-Step Semantics . 95

6.3 Verification of a Heat Diffusion Simulation 98

6.4 Summary . 100

7 Conclusions and Perspectives 101

A Advanced C++ Programming Techniques 107

A.1 C++ Expression Templates . 107

A.2 Template Metaprogramming . 110

A.3 Move Semantics and Rvalue References 111

B A Short Introduction to The Coq Proof Assistant 115

C Machines used for testing OSL 119

C.1 Mirev . 119

C.2 Speed . 119

Bibliography 121

List of Figures

3.1 Distributed Array . 28

3.2 Map . 29

3.3 Zip . 29

3.4 Shift (right) . 30

3.5 Permute . 31

3.6 Gather . 32

3.7 Broadcast . 32

3.8 Balance . 33

3.9 Reduce . 33

3.10 GetPartition . 34

3.11 Flatten . 34

ix

3.12 Summary of BSML Primitives . 35

3.13 Skeletons of the Prototype Library . 38

3.14 Distributed Arrays for Heat Diffusion Simulation 43

3.15 Heat Diffusion Simulation . 44

4.1 Communications for Heat Diffusion . 61

4.2 One Step of Heat Diffusion Simulation in OSL 62

4.3 N-Body Simulation: Code Excerpt . 65

4.4 Regular Sampling Sort . 66

4.5 Heat Equation Timings (dt=1) . 69

4.6 Heat Equation Timings (dt=0.0001) . 70

4.7 FFT Timings . 70

5.1 BSP Parameters of the clusters . 76

5.2 One Step of Heat Equation . 76

5.3 Performance Prediction of the 1D Heat Equation 78

5.4 Gather and Broadcast . 80

5.5 All Gather . 80

5.6 Tree Gather and Broadcast . 81

5.7 Tree Gather in Pairs . 82

5.8 Variance Program . 84

5.9 Performance Portability of Variance . 85

6.1 OSL Typing Rules . 90

6.2 OSL Formal Programming Model . 92

6.3 OSL Syntax in Coq . 95

6.4 OSL Heat Diffusion Simulation in Coq . 99

x

1Introduction

Contents

2.1 Classification of Skeletons . 13

2.1.1 Data Parallel Skeletons . 14

2.1.2 Task Parallel Skeletons . 14

2.1.3 Control Skeletons . 14

2.2 Skeleton Libraries and Languages . 15

2.2.1 Contributions of Pisa Group . 15

2.2.2 Contributions of Herbert Kuchen . 19

2.2.3 BSP based Skeleton Libraries . 20

2.2.4 C++ based Skeleton Libraries . 21

2.2.5 Skandium . 22

2.3 Other High Level Frameworks . 22

2.3.1 Eden . 22

2.3.2 STAPL . 23

2.3.3 HPC++ . 23

2.3.4 TBB . 23

2.4 Discussion . 24

The computer systems has matured by passing through the ages of vacuum tubes,
transistors, integrated circuits, very large scale integration(VLSI) and the current gen-
eration systems. The trend towards Parallel computing dates back to 1950s with the
introduction of IBM 704. Gene Amdahl was one of the principal architect in that
project. Since then the parallel systems have passed through the various eras. The era
of shared memory multiprocessors based supercomputing (60s - 70s), the introduction
of new form of parallelism (Massively parallel processors MPP) in 80s by the Caltech
Concurrent Computation Project with 64 Intel 8086/8087 off the shelf microproces-
sors. The MPP’s were replaced gradually by the clusters in late 80s. And now the
parallel systems are developed enough to become pervasive and become a part of our
daily lives. At one end there are the parallel and distributed computers for high per-
formance computing and at the other end there are multi-core desktops, notebooks,

1

2 Chapter 1. Introduction

laptops and smart-phones. This evolutionary advancement is the result of the efforts
to solve the computationally intensive problems [95].

The chapter begins by giving a brief overview of today’s parallel architectures and
the most popular parallel programming models. As it is important to reason about
the parallel programs, either algorithmically or semantically, the chapter also discusses
parallel algorithmic models and formal models of parallel programs. The case for the
need of more structured approaches towards parallelism is established by the parallel
algorithmic models, and by assessing the widely used parallel programming mod-
els against some criteria. The chapter concludes by presenting the contributions and
structure of the dissertation and the work already published in this regard.

1.1 Parallel Architectures

Now the parallelism can be found in everywhere in the modern day machines and
at different levels. A number of flavours of machines falling in the different classes of
Flynn [66] are in use today. On one hand the vector machines like Cray Y-MP, Convex
C3880 based on the pipeline architecture are in use, while on the other hand there
are systems based on the RISC architectures like PowerPCs of which the most known
examples are the IBMs cell processor and the Blue Gene/L and the Blue Gene/P. Multi-
core clusters are now the most commonly used architectures for the high performance
computing. Machines based on the graphical processing units are now leading the
top500 list Tianhe-I crossing the peta-flops barriers. Other than these very powerful
machines there are reconfigurable architectures e.g FPGA (Field Programmable Gate
Arrays). The fully FPGA based computer is relatively new but hybrid computers
based on the CPU and FPGA are already present. One such example is Convey Com-
puter Corporation’s HC-1, which has both an Intel x86 processor and a Xilinx FPGA
coprocessor. The introduction of LG Optimus 2X based on Nvidia’s Tegra Processors
marks a new era of multi-core mobile computing. Android has announced its dual
core range in 2011 with Motorola Droid Bionic 4G and Motorola Atrix.

1.2 Parallel Programming Models

The software world has been very active through out the history of parallel com-
puting. It has played a vital role in the evolution of the parallel systems. The parallel
programs are harder to write as they have to take account of the communications and
synchronisations required between different tasks/processes. With the course of time
and the evolution of parallel hardware different parallel programming models have
emerged.

The section focuses on models that are very popular for parallel programming
which does not mean that there are really mainstream libraries as they are still com-
plex. It also examine other popular ways used with mainstream object-oriented lan-
guages for parallel and distributed computing.

1.2. Parallel Programming Models 3

1.2.1 Architecture Oriented Models

The commonly used programming models are models inspired by architectural con-
straints: shared memory programming takes it roots in the shared memory machines
while message passing takes its roots in the distributed memory machines. This is
probably the most widely used category of the programming models.

Shared Memory Programming

As the name implies, all the processor can simultaneously access a single memory
space where each memory location is given a unique address. The most commonly
used are POSIX threads or Pthreads [106] and OpenMP [108, 45].

Pthreads Pthreads are the Portable Operating System Interface for Unix (POSIX) stan-
dard for threads. Historically, every hardware vendor implemented their own
proprietary versions of the threads. Later a standard programming interface has
been specified and become a IEEE POSIX 1003.n standard where n is a number.
The Pthreads API provides the routines for thread Management (create, detach,
join), mutexes (create, destroy, lock and unlock mutexes), condition variables
and the synchronisation (read/write locks, barriers). These wide range of rou-
tines make the Pthreads library fairly comprehensive and offers enough control
to the programmer over the threads. This makes it a low level API for thread
programming where the programmer has to focus much on the thread specific
code rather than the high level application logic.

OpenMP The Open multi-processing is a C, C++ and Fortran API for shared memory
programming. It supports parallelism via the compiler directives and currently,
it is supported by all the major compilers. The OpenMP Architecture Review
Board (ARB) in 1997 release the first specification of OpenMP and now the latest
(July 2011) specification of the OpenMP is in the version 3.1. In contrast to
the Pthreads it offers a high level approach towards parallelism and abstracts a
lot of low level work. The section of the sequential code that is meant to run
in parallel must be preceded by a pre-processor directive that creates threads
working independently. The work between the threads can be shared with each
thread working on its part of code. To support the irregular parallelism, the
latest standards of the OpenMP now offers the notion of the tasks [125, 17]. This
extension offers more expressiveness but at the cost of a greater complexity.

Message Passing

A set of processes use their local memory for performing the computations. More
than one process can reside on the same physical machine. The processes commu-
nicate with each other by the exchange of messages. The framework exists in the
form of library calls for sending and receiving messages. A number of approaches
for such style of programming converges to Message Passing Interface(MPI) [122] in

4 Chapter 1. Introduction

mid 90s. MPI has matured enough since then to become the de facto standard for
the distributed memory machines. A number of implementations of MPI are available
covering majority of the features of MPI1 and MPI2.

With the advent of multi-core architecture and the graphical processing units, the
trend is now towards the hybrid style of programming. Hybrid programing is sup-
ported in multiple ways: Translating OpenMP programs [21] to MPI for the distributed
memory machines, using MPI for shared memory architectures [72, 117], but the most
promising approach in terms of computational and memory efficiency (but not in
terms of simplicity) is to mix MPI and OpenMP for the multi-core clusters [114]. The
intra-node operations are performed by the OpenMP and the inter-node communica-
tions are carried by the MPI.

1.2.2 Object Oriented Models

Threads and message passing programming [102] are possible with virtual machine
based object oriented languages such as Java. However for distributed memory ma-
chines preferred approaches for this king of language are more distributed oriented,
with a set of heterogeneous machines, rather that strictly parallel with more homoge-
neous nodes.

Other programming models are also maybe more popular with object oriented
languages such as Java: agents and actors [83]. Agents in particular may be well fitted
to program scientific computing applications [61, 62]. Actors are gaining popularity
with the growing popularity of the Scala language [73] which use actor as the main
model for shared memory parallel programming. Another abstraction to be noticed
for distribution and concurrency for Java is asynchronous distributed objects [42, 20].

1.3 Parallel Algorithmic Models

It is important to be able to reason about algorithms without reference to a partic-
ular implementation using a given programming language. As opposed to sequential
programming there is yet no agreement about an algorithmic model for parallel pro-
gramming.

1.3.1 Network Models

In the network models, the focus is on the topology of the interconnection network
of the parallel machine. There is a wide literature about algorithm design for specific
topologies such as meshes, hypercubes, butterflies. The direct communication is pos-
sible only with the directly connected processors. Other indirect communications are
routed along the path. The main strength of these models is the natural mapping of
some of the algorithms over the topologies, e.g. parallel prefix on a tree, PDE on a
mesh, and sorting or FFT on a butterfly. These models expose too much details of
parallelism and lack portability (algorithms can not be mapped over other topologies).

1.3. Parallel Algorithmic Models 5

1.3.2 Parallel Random Access Machine

PRAM is a natural extension of RAM introduced by Fortune and Willey [68]. It is
one of the earliest and best-known model of parallel computation. It consists of a
shared memory and a number of processors with their local memories. The processors
operate synchronously and are controlled by a common clock. Any location can be
accessed in a single instruction time. The PRAM is further classified in the following
subclasses:

EREW Exclusive Read Exclusive Write: Different locations in the shared memory can
be read by or written to exclusively by only one processor in the same clock
cycle.

CREW Concurrent Read Exclusive Write: Same locations in the memory can be read
by several processors but only written to exclusively by one processor in the
same clock cycle.

CRCW Concurrent Read Concurrent Write: Same locations in the memory can be
read by or written to by several processor in the same clock cycle.

PRAM is an over simplified model that ignores practical considerations like synchro-
nisation and communications. This results in unreliable predictions of the execution
costs. The complexity of a PRAM algorithm is given in terms of the number of time
steps and maximum number of processors required in any one of those time steps.

1.3.3 Bridging Models

Bulk Synchronous Parallelism

The Bulk Synchronous Parallel (BSP) model [134, 105, 121, 30] describes: an abstract
parallel computer, a model of execution and a cost model.

The BSP architecture. A BSP computer has three components: (a) a set of homoge-
neous processor-memory pairs, (b) a network allowing point-to-point inter processor
communications, (c) a global synchronisation unit that performs synchronisation bar-
riers.

Any general purpose parallel architecture can be seen as a BSP computer. For ex-
ample a shared memory machine could be used in a way such as each processor only
accesses a sub-part of the shared memory (which is then “private”) and communica-
tions could be performed using a dedicated part of the shared memory. Furthermore
in most cases the synchronisation unit is not a hardware unit but is rather emulated
by software.

The performance of the BSP computer is characterised by four parameters (includ-
ing the local processor speed) or three parameters (expressed as multiples of the local
processing speed): p the number of processor-memory pairs ; L the time required for
a global synchronisation ; g the time required for collectively delivering a 1-relation

6 Chapter 1. Introduction

(communication phase where every processor receives/sends at most one word), the
network can deliver an h-relation (communication phase where every processor re-
ceives/sends at most h words) in time g× h. These parameters can easily be obtained
using benchmarks [78].

The execution model.

A BSP program is a sequence of super-steps.
The execution of a super-step is divided
into (at most) three successive and logically
disjointed phases:

1. Each processor uses its local data
(only) to perform sequential compu-
tations and to request data transfers
to/from other nodes ;

2. The network delivers the requested
data transfers ;

3. A global synchronisation barrier oc-
curs, making the transferred data
available for the next super-step.

The cost model. The execution time of a super-step s is thus the sum of the maximal
local processing time, the data delivery time, and the global synchronisation time. It
is expressed by the following formula:

Time(s) = max
0≤i<p

w
(s)
i + max

0≤i<p
h
(s)
i × g+ L

w
(s)
i = local processing time on processor i during super-step s

h
(s)
i = max{h

(s)
i+ , h

(s)
i− }where h

(s)
i+ (resp. h

(s)
i−) is the number of words

transmitted (resp. received) by processor i during super-step s.
The execution time ∑s Time(s) of a BSP program composed of S super-steps is,

therefore, a sum of 3 terms:

W + H × g+ S× L where W =
S

∑
s=1

max
0≤i<p

w
(s)
i and H =

S

∑
s=1

max
0≤i<p

h
(s)
i .

In general, W, H and S depends on the number of processor-memory pairs, on the
size of data n, or on more complex parameters like data skew. The design of BSP algo-
rithms is therefore a trade-off in order to minimise execution time by jointly minimise
the number S of super-steps, the total volume H and imbalance of communication and
the total volume W and imbalance of local computation.

1.4. Formal Models 7

The LogP Model

LogP [53] is a more elaborate model in which processors communicates by point to
point messages. It predicts the time of network communication using a small set of
machine parameters. These are the latency(L), overhead(o) in sending or receiving a
message, the gap (g) between two consecutive messages, and the number of proces-
sors/memory modules P. According to LogP, the time of point to point communica-
tion can be estimated as: L+ 2o. The variants of the LogP model, like LogGP [13] ac-
counts the message size by introducing gap per byte G parameter, while the PLogP [85]
slightly changes the definitions of the parameters and the overhead of senders and re-
ceivers and the gap are parameterized by the message size. [28] presents a comparison
between the BSP and LogP models and concludes by preferring BSP over LogP.

1.4 Formal Models

To reason about the correctness of programs, possibly using interactive or fully
automated tools, it is necessary to have formal models of the programming models.

It is know from a long time that reasoning about programs with shared memory
is complex [109, 16]. Actually with the current multi-core processors, the hardware
optimisations are such that it is even very difficult to model the informal semantics
of the reference manual of processors such that the semantics corresponds to what is
informally described and also corresponds to what is actually observed when running
code on these processors [14, 118]. Therefore it seems very difficult to take into account
memory models when programming with shared memory programming models such
as Pthreads and OpenMP and be confident that the informally described memory
model is the actual one. Moreover there are many different extensions of Hoare
Logic [79] to reason about programs with pointers [110] and also several proposals
to reason in the presence of concurrency primitives. It does not seems reasonable to
require a user to use such formal notions for reasoning about her program. Still these
formal models are necessary to proof that the implementation of more high-level pro-
gramming models on top of low level ones are correct.

For message passing there exist work on the widely used MPI libraries [70, 71]: it
belongs to the model checking domain, which means some properties may be verified
automatically, but it is more difficult to verify a full correctness with respect to a
specification with some computational parts.

In both popular shared memory programming and message passing models, the
formal models are very complex.

1.5 Criteria to Evaluate Programming Model

Now when the parallelism is in the mainstream, the key challenge at this point in
time is the transition of the software industry towards parallel programming. To ad-
dress the transition challenge, it seems reasonable to assess the parallel programming
models according to a criteria.

8 Chapter 1. Introduction

1.5.1 Criteria

Programmability The model should be available in a form well known to the vast
community of sequential programmers. The idea is to free the sequential pro-
grammer from the burden of learning new tools/languages. The ideal is to
deliver the model in the form of library of widely used programming language
(C++, Java).

Portability With parallel machines coming in all flavours, the model should be
portable to different architectures.

Performance Although pure efficiency is an important measure and should be pre-
served, but it is not the main criterium in mainstream programming. It can be
traded off (not totally compromised) with the expressiveness and usability. In
fact like the sequential programming (Big O asymptotic notation) the first main
criterium related to the performance is the performance prediction. The sec-
ond one is the portability of performance. Only the portability of code is not
sufficient to guarantee the performance on changing architectures and data.

Proof of correctness As the parallelism is wide spread now and many of the critical
systems are based over the parallel programming models, programming model
should provide the proof of correctness to ensure the safety of the systems. Pro-
gramming libraries should have a clear semantics and the correctness of pro-
grams could be verified.

1.5.2 Assessment of Programming Models

The most commonly used parallel programming models 1.2 are evaluated in the light
of the criteria presented in the section 1.5. MPI and OpenMP are the two approaches
most widely used in today’s world. Although MPI and OpenMP have solved the issue
of code portability, and partially addressed the programmability they are unable to
predict the performance, can not guarantee the portability of performance and lacks
the verification mechanism.

In fact the MPI and OpenMP lies at two different extremes in terms of the expres-
sion of parallelism. In MPI programmer need to mention all the details of parallelism
while the simple constructions of OpenMP abstract almost everything from the pro-
grammer (it is no longer true for a more advanced use). Both the ways of expression
has advantages and drawbacks. The explicit expression of parallelism (MPI) gives on
one hand more control over the parallelism and much optimised program can be writ-
ten but the approach makes the life difficult for the programmer. The programmer
can not only concentrate on the business logic of the program, instead he needs to
focus on the ways the processes communicates there data and when and how they
can be synchronised. OpenMP on the other hand is much more expressive and with
negligible effort (in comparison to MPI) the programmer can express the parallelism

1.6. Structured Parallelism 9

in simple cases. But the programmer can not intervene to optimise his program, with-
out facing concurrent memory access problems that make the use of OpenMP closer
in complexity to MPI.

Another important issue with these models is that the programmer can not observe
the underlying pattern. They lack in providing a global view of the program which is
required to apply the optimisations other than the primitives (domain specific optimi-
sations).

1.6 Structured Parallelism

Limitations of the existing approaches to parallelism 1.5.2 create a need to express
the parallelism in a much structured manner and satisfy the criteria 1.5. Murray Cole
in [49] proposed such a structured model and named it "Parallel Algorithmic Skele-
tons". He states:

“The structured approach to parallelism proposes that commonly used patterns of
computation and interaction should be abstracted as parameterisable library func-
tions, control constructs or similar, so that application programmers can explicitly
declare that the application follows one or more such patterns”

This is important as the programmer can introduce the parallelism in a much ex-
pressive way without compromising the efficiency and even with a chance to apply
the domain specific optimisations.

Skeletons belong to a finite set of higher-order functions or patterns that can be run
in parallel. Usually the programming semantics of a skeleton is similar to the func-
tional semantics of a corresponding sequential pattern (for example the application of
a function to all the elements of a collection) and the execution semantics remains im-
plicit or informal. Thus the skeletons abstract the communication and synchronisation
details of parallel activities. To write a parallel program, users have to combine and
compose the existing skeletons.

Skeletons are not in general any parallel operations, but try to capture the essence
of well-known techniques of parallel programming such as parallel pipeline, master-
slave algorithms, the application of a function to distributed collections, parallel re-
duction, etc.

Since the introduction of skeletons a number of frameworks are developed but
most of them share the limitations of other programming models in satisfying the cri-
teria 1.5. Many of the skeleton frameworks are developed in the form of functional
languages because of the natural match between the skeletons and the higher order
functions of the functional programming. And this is the reason of their non accep-
tance in the sequential programmers community. The other frameworks that address
this issue fails to offer a mechanism for performance prediction, performance porta-
bility and proof of correctness.

10 Chapter 1. Introduction

It is to be noted that the skeletons are the programming model but not a cost
model to estimate the cost of the parallel programs. Several parallel cost models
exists in literature and among them one of the most accurate is the Bulk Synchronous
Parallelism (BSP) 1.3.3 as it not only counts the computations but also take account of
the communications and synchronisations. The advantage of BSP is that it can not only
be used to predict the performance but it also offers a way to port the performance.

So, together the parallel algorithmic skeletons and BSP constitutes a structured
approach to satisfy the limitations of the other models. The Orléans Skeletons Library
(OSL) offers a structured approach towards the systematic development of parallel
programs by combining the advantages of parallel algorithmic skeletons with the cost
model of the BSP.

1.7 Contribution and Structure of the Dissertation

The contribution of the thesis is the Orléans Skeleton Library or OSL, a library that
offers structured parallelism.

• OSL improves programmability by working with the latest standards (C++0x)
and libraries(Boost Libraries). It offers expressiveness both to the sequential
programmers and to the skeleton experts for the development of new skeletons.
The programmability of OSL does not come at the cost of efficiency.

• OSL accommodates non-evenly distributed arrays by adding few skeletons to its
arsenal.

• OSL follows the pure BSP model based performance prediction.

• OSL offers portability of performance by comparing the cost of the underlying
algorithms using the BSP cost formula.

• OSL comes with a formal programming model, allowing formal verification of
programs developed with OSL.

The work focusing on different aspects of the OSL has already been published in
the proceedings of the several conferences:

• Noman Javed and Frédéric Loulergue. OSL: Optimized Bulk Synchronous Par-
allel Skeletons on Distributed Arrays. In Y. Don, R. Gruber, and J. Joller, editors,
8th international Conference on Advanced Parallel Processing Technologies (APPT’09),
LNCS 5737, pages 436-451. Springer, 2009

• Noman Javed and Frédéric Loulergue. Parallel Programming and Performance
Predictability with Orléans Skeleton Library. In International Conference on High
Performance Computing and Simulation (HPCS), pages 257-263. IEEE, 2011

1.7. Contribution and Structure of the Dissertation 11

• Noman Javed and Frédéric Loulergue. A Formal Programming Model of Orléans
Skeleton Library. In Victor Malyshkin, editor, 11th International Conference on
Parallel Computing Technologies (PaCT), LNCS 6873. Springer, 2011

• Noman Javed, Frédéric Loulergue, Julien Tesson, and Wadoud Bousdira. Proto-
typing a Library of Algorithmic Skeletons with Bulk Synchronous Parallel ML.
In The 2011 International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’11), pages 520-526. CSREA Press, 2011

• Noman Javed and Frédéric Loulergue. Verification of a Heat Diffusion Simu-
lation written with Orléans Skeleton Library. In 9th International Conference on
Parallel Processing and Applied Mathematics (PPAM), LNCS. Springer, 2011, to ap-
pear.

The dissertation is structured in a way to present how OSL addresses the criteria
specified in section 1.5. Next chapter presents the review of the state of the art in
skeletal and other related high-level parallel programming frameworks and presents
their comparison along different axes. Chapter 3 explains in detail the parallel algo-
rithmic skeletons packaged in OSL, their prototype implementation using BSML to get
the insights in the semantics not obvious otherwise, and in the end presents in detail
the implementation in C++. Chapter 4 elaborates, with different example applications,
the process of application development with OSL. It also presents the comparison case
studies with other skeleton libraries. Follows a chapter 5 which explores the ability
of OSL to predict the performance of the applications. It presents the benchmark pro-
gram for the computation of machine parameters used in performance prediction and
also the performance portability. A case study application is presented to highlight
the portability of performance. Chapter 6 presents the formal programming model of
OSL and details the verification of an example developed with OSL. Conclusions and
perspectives are developed in chapter 7.

For the convenience of the reader, the appendix contains short chapters that re-
spectively introduce C++ advanced programming techniques (Chapter A) and the Coq
proof assistant (Chapter B).

2State of the Art

Contents

3.1 Data Parallel Skeletons . 28

3.1.1 Distributed Arrays . 28

3.1.2 Map Skeletons . 28

3.1.3 Communication Skeletons . 30

3.1.4 Reduce . 33

3.1.5 View Changing Skeletons . 33

3.2 A Prototype Implementation in BSML . 35

3.2.1 Bulk Synchronous Parallel ML . 35

3.2.2 A Library of Algorithmic Skeletons . 38

3.2.3 Heat Diffusion Simulation Example and Experiments 43

3.3 A C++ Implementation of OSL . 45

3.3.1 Distributed Arrays . 45

3.3.2 Skeletons . 47

3.4 Summary . 54

The chapter after introducing the basic skeletons presents the state of the art in the
domain. The literature covered in this chapter is not exhaustive, but the work is pre-
sented in terms of the evolution of the frameworks. Most of the skeleton frameworks
form the families as they are developed by the same group of people to overcome the
shortcomings of the previous ones, or to address some other challenges. Some of the
recent and active work is considered as well. The idea is to give insights in the state of
the art that influence the decision making for the design of OSL.

2.1 Classification of Skeletons

The Parallel Algorithmic Skeletons is a topic of continuous research since its in-
troduction by Murray Cole [49]. The major categories of skeletons evolved through
out these years are the data parallel, the task parallel and the control skeletons. The
skeletons introduced in the following classes do not form a complete set of skeletons
but are the very basic ones.

13

14 Chapter 2. State of the Art

2.1.1 Data Parallel Skeletons

The skeletons belong to this class work over some data structure. They abstract both
the computational and communication patterns. The main skeletons belonging to this
class are:

Map Map distributes the data among the participating processors. Each processor
applies the supplied function over its share of data. The function supplied to the
Map is the simple sequential function. The function is applied independently to
every element, hence no communication is needed during the execution of the
pattern. The result of the Map is a collection.

Zip Zip is the generalisation of the Map operating over two lists in place of one. The
supplied function takes two elements as its arguments one from each list.

Reduce Reduce applies the reduction operator over the input list. Unlike Map and
Zip, the result of the Reduce operation is a single element. While reducing the
list, the communications are needed after the computation of the local results.
The local results are then further reduced and broadcast if required.

Permute Permutes takes a function working over the index of the data. The function,
for each index, returns the destination index. The data is then communicated ac-
cordingly. Depending upon the permutation function the communications might
be needed.

Shift Shift is a specialisation of the permute, permuting the data one place to the right
or left. The boundary elements need to be communicated with the neighbouring
processors.

2.1.2 Task Parallel Skeletons

The task parallel skeletons distributes the tasks among the participating processors.
Each processor then executes the task assigned to it over the data. The data may be
distributed or it may be a stream of data.

Pipeline Pipeline, as the name implies, creates different stages each one correspond-
ing to a different task. The data is then streamed through these stages such that
the output of one stage becomes the input to the next one.

Farm Farm creates a pool of workers and divide the work among them. The results
from the workers are then merged back. The term is sometime used interchange-
ably with the divide and conquer skeleton.

2.1.3 Control Skeletons

The skeletons belonging to this category controls the execution in some ways. The
skeletons are applied to control the execution of the other skeletons.

2.2. Skeleton Libraries and Languages 15

For The iterative skeletons working in a similar fashion to its sequential counterpart
the traditional for loop.

If Controls the execution of some other skeletons based on the result of the condition.

2.2 Skeleton Libraries and Languages

2.2.1 Contributions of Pisa Group

The Pisa group is one of the oldest and the most active group in the skeletons re-
search. The contributions of the group are immense and almost all the later skeleton
frameworks are influenced by their work. The principle investigators belonging to the
group are Marco Danelutto, Susanna Pelagatti, Marco Aldinucci and Marco Vanneschi.
The foremost contribution of the group is P3L: Pisa Parallel Programming Language.
Though P3L influence the development of many of the frameworks its direct family
includes SkIE, Skelib, Eskimo, Lithium, ASSIST and Muskel.

P3L: 1992

P3L [111, 112, 18] is the parallel coordination language of the basic parallel paradigms
(skeletons/modules). Three types of modules are provided in the P3L language, the
sequential module, the main module and the parallel module. The former module
provides a structured way of the integration of the sequential code in P3L’s application.
The main module is the application starter. The parallel module is supported in the
form a set of basic parallel paradigms from task parallel to data parallel skeletons.
The parallel application is structured by the hierarchical composition of these basic
paradigms.

A P3L compiler [46] translates the high level program specification into a set of
implementation templates according to the target architecture. The compiler is sup-
ported with the template library, optimisation library, reduction library and a process-
template libraries for the generation of a portable and optimised code. The compiler
first translates the parallel specifications in a process network using the template li-
brary. The process network is then globally optimised using the optimisation rules
presented in the optimisation library. The optimised process network is then reduced
for further optimisations using the reduction library. The process network in than
scanned to extract the process template from the process-template library. This final
process network in then tuned and forwarded to generate the architecture specific
code.

The basic skeletons provided in P3L are the pipe, farm, reduce, map, loop and
seq. A comp skeleton is provided for the composition of the different data parallel
skeletons [56]. The target language of the P3L compiler is C.

16 Chapter 2. State of the Art

SkIE: 1998

SkIE (Skeleton-based Integrated Environment) [19] can be considered as the industrial
outcome of the advancement in P3L. The basic objective of the SkIE is to provide a
industrial standard heterogeneous environment for high performance computing ap-
plication development. Fast application development and good performance are the
key objectives of the industry. To achieve this the SkIE system is comprised of the
Graphical user interface (VisualSkIE), SkIE coordination language (SkIECL), debug-
ging and the performance analysis tools.

For rapid application development the integration of the sequential user code in
the languages like (C, Fortran and Java) is supported. The integration of the parallel
modules developed using standards like MPI and HPF are supported as well.

The application development in SkIE starts by specifying the parallel structure of
the application in VisualSkIE. This phase is followed by the global optimisation and
code generation phases in a similar fashion to P3L. During the debugging phase the
parallel part of the application is skipped as it has already been verified by the SkIE
implementors. The debugging of the sequential part of the user code is very much
similar to the sequential debugging and is carried out by the debuggers like xxgdb,
DDD. The performance analysis allows transparent inspection of the program. User
can inspect the problematic areas and bottlenecks in the code through the visualiser
of the performance data.

The skeleton set supported by SkIECL is same as of in P3L.

SKElib: 1999

The goal of the SKElib[57] is to provide the unix programmer with a familiar frame-
work to structure parallel applications in the form of skeletons. To achieve this goals
the skeletons in SKElib are implemented in simple C using TCP/IP Unix sockets to
implement inter-process communications. The other purpose of using TCP/IP unix
sockets is to accommodate the ad-hoc parallelism that can not be captured by the
skeletons.

The coordination language is no more needed and the skeletons are packaged
in the form of a library. The skeletons are declared and composed in the form of
simple C functions. The same idea of P3L and SKIE for template implementation
of the skeletons is used. The skeletons nesting is allowed. The call to skeletons are
evaluated by a call to a library function SKE_CALL. User functions to be executed
by the skeletons are the simple void C function with two parameters: the pointer to
input data and the pointer to output data. Processes are created by the SKE_CALL
function following the SPMD execution model. The optimisations can be performed
by explicitly providing the OPTIMISE flag to the SKE_CALL function.

SKElib is one of the first framework which contributes the skeleton parallelism in
the form of a library in C.

2.2. Skeleton Libraries and Languages 17

Eskimo: 2002

Eskimo: Easy SKeleton Interface (Memory Oriented) [6], is designed to address the
irregular problems and the dynamic data structures. It is the parallel extension of C
based on Shared address programming model targeted for beowolf clusters. The phi-
losophy behind the application design in Eskimo is to provide programmer with the
ability to co-design the data structure along with the algorithm. The other details like
process scheduling and the load balancing will be taken into account by the Eskimo
run-time.

The parallelism can be introduced in the form of asynchronous fork/join calls
called e-call/e-join. These primitive split the basic program control flow which will
later converge back to the main flow. e-call/e-join primitives enable the program-
mer to set up a dynamic and variable number of e-flows, an important feature when
dealing with dynamic data structures. The two e-flows coming out from an e-call
may be executed in parallel, interleaved or serialised in any order depending on the
algorithm, the input data and the system status. These e-flows are mapped to the
processes/threads by the Eskimo run-time. e-foreach/e-joinall are provided as a gen-
eralisations of the e-call/e-join. They can create and destroy an arbitrary number of
e-flows.

The Eskimo language is specifically designed for distributed memory architectures.
These architectures naturally supply a very efficient memory access to local memory
and a more expensive access to remote memory. Eskimo exposes to the programmer
two memory spaces: private and shared. All the variables belonging to a particular
e-flow are private and the shared variables, the containers like arrays and trees can be
shared among the e-flows. The global variables in the C language are not allowed in
Eskimo and should be implemented as shared variables.

e-foreach constructs introduce the data-parallelism (map and divide and conquer)
in Eskimo. Three variants of the e-foreach are provided to run through each element
of the shared container. Both form of the data parallelism can be freely interleaved. If
the application design doesn’t fit these two paradigms, programmer can accommodate
the ad-hoc parallelism by the free use of the e-call/e-join.

Lithium: 2002

Lithium offers the structured parallel programming in Java [58, 12]. It was the first
library of skeletons in Java. It was the first one based on the macro data flow imple-
mentation technique.

The skeletons provided by Lithium are pipeline, task farms, iterative and data
parallel skeletons. All the skeletons work on the data streams. It allows the nesting of
skeletons. The operational semantics of the skeletons are provided in [10]. The Java
RMI is used to distribute the computations among different processing elements. The
object orientation in Lithium make the debugging task of the functional application
by emulating it on a single machine. The architectural design of Lithium also allows
relatively easy extension of the skeleton set.

18 Chapter 2. State of the Art

The stream parallel optimisations are implemented in the Lithium [9]. Every
stream parallel computation can be transformed to a normal form with the better or
the same performance. The equivalence of the normal form and the non-normal form
is derived from the functional semantics of the skeletons. These functional semantics
are derived from the operational semantics of the skeletons. The performance relation-
ship between the raw form and the normal form is derived from a LogP like model
taking into account both the computation and the communication time. The nesting of
the data parallel computations with the stream parallel workers are optimised as well.
The optimisation regarding the minimisation of the resources is provided as well.

The skeleton program is processed to obtain the macro data flow (MDF). The data
flow (arcs of the MDF) can be derived by looking at the structure of the skeletons
nesting. The resulting graphs have a single MDF instruction getting the data from the
input stream and a single MDFi delivering the data items to the output stream.

ASSIST: 2003

The objective of the ASSIST [135, 7] framework is to provide an Invisible Grid like
platform [8]. The ASSIST provides a layered architecture to achieve this objective. At
the application layer level, the programmer is provided with a structured coordina-
tion language for the abstraction of parallel programs. ASSIST coordination language
programs are build of two specific parts: a module graph modelling the interactions
among the modules both sequential and parallel, and a set of modules. The mod-
ules can be programmed as sequential or parallel, the former are the procedure-like
wrappings of the C code and the later are instances of the ASSIST parmod (parallel
module). The compiler layer and the run-time layer compiles and generates the object
programs for the underlying grid layer. A Grid abstract machine layer (GAM) decou-
ples the compiler and run time layer from the actual Grid middleware used, providing
a suitable interface/API to the mechanisms used in the ASSIST framework for code
and data staging, remote commanding, communications and synchronisations, etc.
Globus grid and POSIX grid frameworks are supported. ASSIST can accommodate
heterogeneity in both the previous mentioned Grid frameworks.

Muskel: 2005

Muskel [11] is the Java based skeleton library derived from Lithium. The skeleton
set in Lithium was fixed and it is not easy to accommodate unstructured parallelism
or the creation of the new skeletons [55]. The Muskel is designed with the objective
of extensibility (addressing unstructured parallelism) in mind. Muskel is based on
the data flow model like Lithium. The source program is parsed into a data flow
graph representing the skeleton tree. For each of the input tasks, a copy of the data
flow graph is instantiated, with the task appearing as an input token to the graph.
The new graph is delivered to the distributed data flow interpreter “instruction pool”.
The distributed data flow interpreter fetches fire-able instructions from the instruction

2.2. Skeleton Libraries and Languages 19

pool and the instructions are executed on the nodes in the target architecture. User-
defined, possibly unstructured parallelism exploitation patterns can be programmed
by explicitly defining data flow graphs. These data flow graphs can be used in the
skeleton system in any place where predefined skeletons can be used, thus providing
the possibility of seamlessly integrating both kinds of parallelism exploitation within
the same program. User can add new skeletons by defining the data flow graphs for
these skeletons. The Muskel supports the stream parallel skeleton set of the Lithium.
The annotations and the aspect oriented techniques are used to provide the control of
the non functional features like code security, source to source optimisations etc to the
user.

The family clearly demonstrates the evolution of the skeletons with the passage of
time. SkIE enhances the ancestor (P3L) to provide a industrial outcome, Skelib omits
the need of a coordination language and becomes the first one to provide the skeletal
framework in the form of library. It further addresses the problem of learning new
language by supplying the library in the C language. Eskimo handles the irregular
parallelism and also becomes the first skeletal framework on shared memory architec-
tures. Lithium is the first one to provide skeletons in Java, exploit macro data flow,
and admits the formal specifications. ASSIST using its skeletons and coordination lan-
guage provides a platform for the development of the distributed high performance
applications over grids. The deployment of the applications is handled through the
known grid middle-ware. Muskel(a java library) enhances the Lithium to address the
unstructured parallelism.

The evolution of this family can be considered as the evaluation of these frame-
works in the prism of the Cole’s manifesto [50].

2.2.2 Contributions of Herbert Kuchen

The research begins with the development of Skil and matured in the form of Muesli.

Skil

The aim of the Skil (Skeletons Imperative Language) [34, 33, 36] is to provide efficient
implementation of the structured parallelism. Skil is an imperative language and it is
basically an extension of the C language with features from functional programming
to support skeletons. The skeletons are implemented in the form of the higher order
functions. Partial application of the functions is supported by implementing currying.
The arrays are used as the distributed data structures and the skeletons are imple-
mented for this data structure. Skeletons are implemented as polymorphic functions.
The polymorphism is implemented in the form of polymorphic type system using
type variables.

The skeleton set of the Skil consists of three categories of the skeletons: The skele-
tons related to the creation, destruction and the copying of the arrays, The data par-
allel computational skeletons like map, fold and the communication skeletons like

20 Chapter 2. State of the Art

permute, array-broadcast-part. The communication skeletons are mostly affected dy-
namic data structures like the arrays or variable size array [35]. The issue is addressed
by providing a language level support in the form of packing / unpacking of the data.
The performance of the Skil was demonstrated by developing different applications
emphasising on some aspects of the language.

Muesli

The goal behind this project is to integrate the existing work on the skeletons, as there
were many groups working in this area with their own approaches. The other is-
sue is that many of the frameworks are provided as an independent language or an
extension to the existing language. This is the problem with Skil as well. A com-
piler is needed to translate the Skil programs to the normal C programs. The issue
is addressed by implementing skeletons in the form of a library "Munster Skeleton
Library" using C++ [87]. To implement the skeletons in C++ the features from the
functional programming are required to be implemented in C++. The C++ template
mechanism is exploited to implement elegantly skeletons in the form of polymorphic
higher order functions. The partial application of the function in the form of currying
is supported as well [91, 86, 92]. The serialisation is implemented to cope the problem
of irregular structures. The integration of the task parallel and data parallel skeletons
is supported [89].

The underlying parallelism is implemented using MPI. The Distributed Arrays and
the Distributed Matrix are the basic data structures. The skeletons are defined for both
these data structures. The work on scalability of the skeletons and the domain specific
optimisations [88] is the part of the enhancement in the library. A multicore version of
the library is developed as well [47].

This family brings the skeletal parallelism to the C/C++ community. Features
from the functional languages like currying, higher order functions are implemented
in C and C++ to provide a natural transition towards skeletons in imperative/object
oriented languages. The features missing in these languages are the, lack of a cost
model which makes performance prediction difficult, performance portability and the
formal specifications of the model.

2.2.3 BSP based Skeleton Libraries

The section presents the work based on the performance prediction for the skeletal
frameworks using BSP model.

Skel-BSP

Skel-BSP [141] is the work of Andrea Zavanella focusing on the skeletons based on the
Bulk Synchronous parallelism model. The main objective of the thesis is to highlight
the performance portability of the skeletons using the BSP cost model. Both the data

2.2. Skeleton Libraries and Languages 21

parallel and stream parallel skeletons are provided in Skel-BSP. The skeletons are op-
timised both at the local level [120, 139, 142] and at the global level [140]. Global level
means optimising the combination of the skeletons. A. Zavanella used EdD-BSP an
extension of the pure BSP model. The Skel-BSP compiler choose the best implemen-
tation template of the skeleton among various templates, based on the performance
equations and the system parameters captured by the EdD-BSP model.

Skel-BSP is the very first to demonstrate the use of BSP to port the performance.
Skel-BSP optimises both the implementation of the skeletons and their combinations.
The other work regarding the performance prediction using BSP was done by Murray
Cole [51] and a VEC-BSP language was developed. Their approach is to statically
predict the performance using BSP and shape based methodologies. BSFC++ [54] is a
library for functional bulk synchronous parallel programming in C++. Although it is
not a skeleton library but it offers some of the collective operations. And as it is purely
based on the BSP model it can predict the performance of the application.

2.2.4 C++ based Skeleton Libraries

A number of skeletal frameworks exists, but in this section we present the three having
the similarities with OSL and developed with C/C++.

eSkel

It is a library of algorithmic skeletons in C built over MPI. eSkel [50] is designed to
ease integration of algorithmic skeletons programs within MPI code and to avoid to
put to many constraints on the user. Being closer to MPI, the signatures of eSkel’s
skeletons are more complicated than the signatures of other skeletons libraries. [23]
presents the second version of the library. In [22] explains the nesting and interaction
modes and compares the existing libraries with respect to these modes.

SkeTo

SkeTo [104, 63] is the C++ library of data parallel skeletons. The skeletons in SkeTo
are developed for matrices and trees in addition to the distributed lists. Moreover, the
skeletons for the variable length lists are provided as well [124]. The work for the
optimisation of the skeletons have been done along different axes. One such optimi-
sation is the proposition of the Diff skeleton [4] based on the diffusion theorem. The
Skeletons following a specific recursive form are translated to the Diff skeleton. The
efficient implementation of the Diff skeleton was provided. The latest research in the
development of the library was focused around the optimised implementation of the
library using the expression templates [103]. [84] presents the version of the library
for the multi-core systems.

22 Chapter 2. State of the Art

Quaff

Quaff [65] is one of the latest and best optimised libraries in the domain. It relies
heavily on the C++ meta-programming techniques for optimising its skeletons. Quaff
supports the stream parallel skeletons. It also provides the possibility of expressing
the data parallel skeletons through the farm skeleton. The composition and the nest-
ing of the skeletons is supported. The process network is generated and the tasks are
mapped to the process network using the production rules. The communication strat-
egy for each node is then generated. The Quaff can optimise the skeletons appearing in
some specific patterns. The optimisations are performed at compile time using meta
programming, thus decreasing the run-time cost of the algorithm. A formal model
for the Quaff skeleton system is presented in [64]. The article further describes the
implementation of the formal model in terms of C++ meta-programming.

2.2.5 Skandium

Skandium [98] is a skeleton library for multi-core systems developed in Java. The
shared memory algorithmic model of the Skandium is based on the skeletons like
Seq, Farm, Pipe, If, For, While, Map, Fork and D&C, and the muscles. The later
represents the sequential functions applied inside the body of the skeletons and are
used to implement the business logic. The Skandium is the successor of Calcium, a
library based on the research of Mario Leyton’s thesis work [96].

2.3 Other High Level Frameworks

The section presents some of the high level frameworks that are not the skeletons
but have similarities with the skeletons.

2.3.1 Eden

Eden [39, 40] is a parallel functional language which extends Haskell for the creation
and instantiation of the parallel processes. These extensions allow the easy definition
of skeletons as higher order functions. It supports parallel programming at two levels.
At process level by creating the processes through the recursive definitions and at the
higher level using the skeletons. Unlike most of the skeleton frameworks Eden sup-
ports irregular parallelism and its process model provides direct control over process
granularity, data distribution and communication topology. A run-time environment
is developed for communications and synchronisation. [100] presents the sum up of
the Eden project. The operational semantics of the Eden programming language are
detailed in [76]. The development with Eden is presented using a number of applica-
tions like FFT [24] and google map reduce [25] framework in Eden.

2.3. Other High Level Frameworks 23

2.3.2 STAPL

The goal of the STAPL [115, 15, 41] (the Standard Template Adaptive Parallel Library)
is to provide parallel version of the STL (Standard Template Library). The library is
designed to work on both the shared and distributed memory systems. The pContain-
ers(distributed data structure), views, pAlgorithms(parallel algorithms) are the paral-
lel counter parts of the STL containers, iterators and algorithms respectively. STAPL
provides the appropriate selection of the algorithm depending upon the system and
the data parameters [131]. This adaptivity in STAPL is based on the empirical tech-
niques based on the previously collected data regarding the system. The commu-
nications in STAPL are abstracted by ARMI (Adaptive Remote Method Invocation)
communication library [130]. It supports both the blocking RMI and non-blocking
RMI. ARMI can be used independently of STAPL by expressing fine grain parallelism
and mapping it to the underlying shared memory or message passing system. Low
level details like scheduling the incoming communications and aggregating outgoing
communications are handled by ARMI and can be tuned depending upon the param-
eters of the system. A number of applications like sorting and parallel protein folding
[132] presents the expressiveness of STAPL.

2.3.3 HPC++

High Performance C++ [82] is based on the same approach as STAPL. It consists of
classes and templates to support synchronisation, collective parallel operations and re-
mote memory references. It also includes the parallel implementation of the standard
template library. The HPC++ supports multi-threaded shared memory and SPMD
style of programming.

2.3.4 TBB

Intel threading building blocks [116] offers an expressive way of taking advantage of
multicore performance without being a threading expert. It is more than a threading
replacement in fact Intel TBB could be seen as a skeleton library: it offers a kind of
map, and also reduce and scan parallel algorithms. It provides many useful classes,
from different kinds of mutexes and atomic operations, through thread-safe, concur-
rent scalable containers and memory allocators, till sophisticated task scheduler. Pro-
grammers using TBB can turn the execution of loop iterations parallel by treating
chunks of iterations as tasks and allowing the TBB task scheduler to determine the
task sizes, number of threads to use assignment of tasks to those threads, and how
those threads are scheduled for execution. The task scheduler will give precedence to
tasks that have been most recently in a core with the idea of making best use of the
cache that likely contains the task’s data.

24 Chapter 2. State of the Art

2.4 Discussion

The skeletal frameworks and other well known higher level frameworks are pre-
sented in terms of evolution or in terms of relevance with our work. Many of them
have similarities with OSL and influence the design decisions of the OSL. eSkel [50] is
designed to ease integration of algorithmic skeletons programs within MPI code and
to avoid to put to many constraints on the user. Being closer to MPI, the signatures of
eSkel’s skeletons are more complicated than the signatures of other skeletons libraries.
SkeTo and Muesli share with OSL a number of classical data-parallel skeletons on dis-
tributed arrays. SkeTo is much richer in terms of the data structures and the skeletons
over them, SkeTo lacks performance prediction, performance portability and formal
model. Quaff is highly optimised with meta-programming techniques. However to at-
tain its very good performances, some constraints are put on the algorithmic structure
of the skeletons (that are mainly task parallel skeletons). Quaff is based on a for-
mal model. The performance prediction and performance portability are the lacking
features in the library.

One of the main strength of the BSP programming model is prediction of perfor-
mance [77]. Most of the research regarding the performance prediction of parallel
programs is based on the BSP programming model [78, 32]. VEC-BSP and Skel-BSP
are also based on (extensions of) the BSP model. Our approach differs from Skel-
BSP in several aspects. At global level, we consider the performance portability as an
optimisation problem. And by using distributed array and the expression templates
technique we do not need a transformation system as did by A. Zavanella. The other
difference is that SKEL-BSP library by A. Zavanella needs a dedicated compiler and
he implements a compiler to perform the transformation. We do not need any com-
piler. A. Zavanella follows an extension of BSP model while we use the pure BSP
model. In [99] the authors do not use the BSP cost model. Instead they calculate the
performance penalty or overhead of parallelisation for estimating the performance.

Another related area to the performance portability is automatic tuning. Most of
the work in the area is empirical and is focused on determining different parameters
to tune the collective communications. In [133] the authors focus on determining the
optimum parameters of the system. In [127] use performance tuning to improve the
performance. Their goal is to minimise latency for small message sizes and minimising
the bandwidth for large messages. Other studies that focus on automatic tuning for
MPI collectives are presented in [5, 107]. The main difference between all these studies
and ours is that they focus on the experimental determination of optimal parameters to
fine tune the collectives. This requires and lot of experimentation and computational
time. Further it lacks any mathematical foundations to predict the performance. A
much similar study to ours in terms of automatic tuning is conducted in [113]. It uses
the Hockney, LogP and PLogP models for the tuning of the application. The literature
on the parallel computational models reveals that the BSP is more realistic than all of
these models. That is why we base our study on BSP model.

Some other work focus on algorithmic skeleton libraries, to our knowledge none
is formalised and the properties of the semantics verified using a proof assistant. [60]

2.4. Discussion 25

presents a data-parallel calculus of multi-dimensional arrays, but it is a formal seman-
tics without any related implementation. The Lithium [12] algorithmic skeleton library
for Java differs from OSL as it is stream-based. [10] proposes in a single formalism
a programming model and a (high-level) execution model for Lithium. The skeletons
of [64] are also stream-based but the semantics is used rather as a guideline for the
design of the meta-programmed optimisation of the skeletons in C++.

The semantics of the Calcium library is described in [43] and further extended in a
shared memory context to handle exceptions [97]. In [43], the focus in on a program-
ming model semantics (operational semantics) as well as a static semantics (typing)
and the proof of the subject reduction property (the typing is preserved during evalu-
ation). In this work the semantics of the skeletons are detailed, but not the semantics
of what the authors call the “muscles” i.e. the sequential arguments of the skeletons
(the semantics of the host language of the library, in the particular case Java). The
set of skeletons of Calcium includes a set of task parallel skeletons, which contains,
among others, skeletons that give a sequential control but at the global level of all
the parallel program. These skeletons are parallel because their branches or bodies
are parallel (conditionals and while/for loops). In OSL we mix the skeletons with
the usual constructs of the host C++ language to write the sequential control flow
at the global level of the parallel program. The remaining skeletons in Calcium are
data-parallel skeletons including map, and divide-and-conquer skeletons. The map
skeleton, for example, is however different from our map. The OSL map is more simi-
lar to map functions in functional programming as it takes two arguments: a function
f to be applied to each element of the collection l which is the second argument. In
functional programming this collection is a list, in OSL it is a distributed array. In
Calcium the map skeleton takes two additional functions: one that describes how the
input collection is cut into pieces and another function that describes how the pieces
(obtained by applying f to the previous pieces) are combined together to form the
output collection.

To our knowledge, none of these semantics have be used as the basis of programs
proofs of correctness, but are rather formal reference manuals for the libraries. More-
over, none have been formalised using a proof assistant.

Program calculation [29, 80] is the usual way to prove the correctness of algorithm
skeletons programs (by construction), the proof being done “by hand”. However a new
algorithmic skeleton called BH as been implemented in Bulk Synchronous Parallel ML
(see section 3.2.1) and its implementation proved correct using the Coq proof assistant.
This BH skeleton is used in a framework for deriving programs written in BH from
specifications [69], and to extract BSML programs that could be compiled and run on
parallel machines. A heat diffusion simulation directly written in BSML (therefore not
at all in the algorithmic skeleton style) has also been proved correct and the BSML
program extracted from the proofs [126].

3
OSL Design and Implementation

Contents

4.1 A First Example . 55

4.2 Heat Equation: A case study . 57

4.2.1 One Dimensional Heat Equation . 57

4.2.2 Two Dimensional Heat Equation . 60

4.3 Fast Fourier Transform . 61

4.4 Reduce and Map Over Pairs . 63

4.5 Sorting . 66

4.6 Experiments . 68

4.7 Summary . 69

Orléans Skeletons Library(OSL) is a library of parallel algorithmic skeletons. The
library is implemented in C++ and the message passing interface (MPI) is used as
the communication mechanism. The skeletons in the OSL are based on the Bulk Syn-
chronous Parallelism (BSP) model. The OSL provides data parallelism through its
skeletons. The goals of the OSL are:
• To ease the programming of the parallel machines by abstracting the low level

parallelism details.

• To provide a library of pure C++ functions which can be executed by the stan-
dard compilers.

• To provide an extensible approach so that new skeletons can be added with ease.

• To stick the skeletons with a cost model making the prediction and portability of
performance possible.

• To provide a formal semantics making possible the verification of programs.

OSL is designed in a way to address the above mentioned goals. For the better
understanding of the design concepts and the implementation issues, the chapter starts
by presenting the implementation independent generic definitions of the skeletons
used in OSL, followed by the details of the prototype version implemented in BSML.
Finally the implementation of the latest version of OSL in C++ is presented.

27

28 Chapter 3. OSL Design and Implementation

3.1 Data Parallel Skeletons

The section presents the generic definitions of the skeletons packaged in OSL. The
data structure at which these skeletons are operating is considered to be distributed
among the processors as is the case in OSL. For the better comprehension, the data
structure which happens to be a distributed array is explained here first.

3.1.1 Distributed Arrays

The data structure to be operated by the data parallel skeletons is distributed array.
The array is evenly distributed among the processors. The uneven distribution of the
distributed array is possible depending upon the constructor or the acting skeletons
that may create in-balance. To ease the understanding of the readers, an almost evenly
distributed array is considered and is presented in the figure 3.1. The numbers from 0

to 16 in the figure represent the global index of the element, while the local index (not
mentioned here) always starts from zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P0 P1 P2 P3

Figure 3.1 – Distributed Array

3.1.2 Map Skeletons

All of these skeletons are the variants of the Map skeleton.

Map Map takes two arguments, a unary function f and a distributed array. It ap-
plies the function to every element of the distributed array and returns the resultant
distributed array. As Map applies the function to each element independently, there is
no need of communicating anything. The map skeleton is presented in the figure 3.2.

Zip Zip is an extension to the Map skeleton. It accepts a binary function and the two
distributed arrays. The application of the function to the input arrays is similar to that
of Map. Figure 3.3 represents the general schema of the Zip skeleton.

3.1. Data Parallel Skeletons 29

f

f f f f

P0 P1 P2 P3

Figure 3.2 – Map

f

f f f f

P0 P1 P2 P3

Figure 3.3 – Zip

MapIndex It passes to the function the global index of the element along with the
element itself.

ZipIndex Same as the MapIndex but it operates on two distributed arrays in a similar
fashion to Zip.

As all the skeletons in the Map family iterates the distributed array once, assuming
the function f having constant complexity c f , their BSP cost is in the order of C f ×

n
p

when the distributed array is evenly distributed. But in case where the processors
contain unequal number of elements the BSP cost is in the order of c f ×maxi ni, where i
is the index of the processor and ni means number of elements present at the processor
i. For the sake of simplicity, from now onwards we assume an equal distribution of
the elements.

30 Chapter 3. OSL Design and Implementation

3.1.3 Communication Skeletons

The skeletons presented here require at least a full super-step, with communications,
to be evaluated. Two of the communication skeletons change the indexes of the ele-
ments in the distributed array, without changing the number of elements per processor,
i.e. without changing the shape of the distribution. The balance and gather skeletons
do not change the indexes but change the distribution whereas the Bcast skeleton
changes both the content and the distribution.

Shift The shift skeleton (Figure 3.4) takes three arguments: the number d of elements
to be shifted (positive the elements are shifted to the right, negative they are shifted
to the left), a function f and a distributed array. As the shifting is not circular, the
function f is used to fill the holes at the beginning (resp. the end) of the distributed
array.

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.4 – Shift (right)

This skeleton requires communication as the first (resp. last) elements at each
processor need to be communicated to the left (resp. right) hand neighbour.

Assuming function f has a constant complexity c f , the elements have the same
size s, and each processor has at least |d| elements, the BSP cost of the evaluation of
an application of the shift skeleton is in the order of:

|d| × c f + (
n

p
− |d|) + s× |d| × g+ L

where n
p − |d| represents the local shifting of the array.

Permute The Permute skeleton (Figure 3.5) takes two arguments: a permutation
function f and a distributed array, where f : N → N and for every x in N there
exists a unique y in N and x, y ≥ 0 and < to the total length of the distributed
array. The function f is applied to the global index of each element for computing

3.1. Data Parallel Skeletons 31

the elements destination global index. The element is then communicated to the new
address. The skeleton involves communications depending upon the permutation
function. Figure 3.5 represents a special case where each processor communicates its
element with the other one with respect to the index of the elements.

Assuming function f has a constant complexity c f , the elements have the same size
s, processors having n

p elements and the function f choose hi elements for that need to

be communicated for processor i, the BSP cost of the application of such an instance
will be in the order of:

c f ×
n

p
+ s×max

i
hi × g+ L

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.5 – Permute

Gather Gather takes a distributed array as its argument, and gathers the data from
all the processors to the root processor (default to processor 0). The skeleton is usually
used to gather the results of some computational operations from the involved proces-
sors to the root processor. After the application of the Gather the distributed array is
no more evenly distributed, instead the root processor contains the whole array while
the sizes of the other become zero. Assuming each processor has n

p elements, and the

size of all the elements is same i.e. s, the BSP cost for the instance of the skeleton will
become:

(p− 1)× s×
n

p
× g+ L

where n is the total number of elements in the distributed array and p represents the
number of processors.

Broadcast Broadcast takes a distributed array as its arguments and communicates it
to all the processors. The broadcast operation is assumed to be carried out by the root
processor (processor 0). After the application of the broadcast the distributed array
becomes evenly distributed and its length changes as well. The new length of the

32 Chapter 3. OSL Design and Implementation

P0 P1 P2 P3

P0

Figure 3.6 – Gather

distributed array is p times the size of the partition of the root processor. Assuming
a distribution where root processor is holding n0 elements all of same size s, the BSP
cost can be captured by:

(p− 1)× s× n0 × g+ L

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.7 – Broadcast

Balance Balance accepts a distributed array as its argument. It re-balances the load of
the processors. In data parallel settings, the load can be defined as the number of data
elements a processor holds. The unequal distribution of the data may be introduced
by the application of GetPartition followed by one of Map skeletons using some filter
function and then Flatten it back. After the application of this skeleton every processor
holds equal number of elements as captured in figure 3.8.

3.1. Data Parallel Skeletons 33

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.8 – Balance

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.9 – Reduce

3.1.4 Reduce

Reduce Skeleton

It accepts a binary reduction operator f and a distributed array as input. It applies the
reduction operator f to the input distributed array. The result of the application of the
reduction operation is a single element. Every processor after reducing its local data
communicates the result to others. The results are then further reduced to get the final
result. Figure 3.9 represents one of the possible reduction algorithm. The final results
are then broadcasted to all the processors.

3.1.5 View Changing Skeletons

It is sometimes convenient to be able to expose the distribution of elements of a dis-
tributed array, and also to remove this exposure. This is done by two skeletons: Get-

34 Chapter 3. OSL Design and Implementation

Partition and Flatten. These two skeletons do not change neither the content, not the
distribution of the distributed array: They only change the view we have on the data.

GetPartition

GetPartition takes as argument a distributed array of type T. It exposes the distribu-
tion of the distributed array’s elements by transforming it to a distributed array of
type vector<T>. The new distributed array is of size p where p is the number of
processors. Each processor now holds one element of type vector<T>. Figure 3.10

demonstrates this change of view(type) by enclosing the elements in a rectangle.

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.10 – GetPartition

Flatten

It represents the inverse operation of the GetPartition and gives back the distributed
array its original type back i.e. from type vector<T> to type T as demonstrated in
the figure 3.11.

P0 P1 P2 P3

P0 P1 P2 P3

Figure 3.11 – Flatten

3.2. A Prototype Implementation in BSML 35

Primitive Type Description

≪ e ≫ t par if e : t 〈e, . . . , e〉
$this$ (within a local section) int i on processor i

v (within a local section) t (if v : t par) vi on processor i (if v = 〈v0, . . . , vp−1〉)
proj ’a par → int → ’a 〈v0, . . . , vp−1〉 7→ (fun i → vi)

put (int → ’a) par → (int → ’a) par 〈 f0, . . . , fp−1〉 7→ 〈fun i → fi0, . . . , fun i → fi(p− 1)〉

Figure 3.12 – Summary of BSML Primitives

3.2 A Prototype Implementation in BSML

The latest version of OSL aims at improving the safety of the library while pre-
serving its expressiveness. In this section we present the prototyping of the new OSL
library with a parallel functional programming language that follows the BSP model:
Bulk Synchronous Parallel ML [101, 38, 128]. Using such a language allows to focus
on the design of the underlying algorithms of the skeletons. There is no need to take
into account the C++ mechanisms that can be error-prone, while preserving the ability
to run the skeletons in parallel. Bulk Synchronous Parallel ML being currently imple-
mented as a library of the OCaml language [94, 44], the skeletons in BSML could be
mostly reused in the formal development using the Coq proof assistant [27, 129] (and
chapter B) and form the basis of a formal execution model of OSL.

I first give an overview of the programming with BSML (section 3.2.1), before
explaining the design and prototyping of the library of algorithmic skeletons in BSML
(section 3.2.2). An example application is implemented using this library and some
experiments are performed (section 3.2.3).

3.2.1 Bulk Synchronous Parallel ML

In BSML the parameters of the BSP machine can be accessed through 4 constants. The
number p of memory-processor pairs of the BSP machine is fixed during execution. p
is accessible to the programmer, it is named bsp_p. The other BSP parameters are re-
spectively bsp_g (network bandwidth), bsp_l (synchronisation time), and bsp_r which
is a measure of the processors computing power. All parameters, but bsp_p, can be
obtained by a benchmark program.

BSML is based on a distributed data-type called parallel vector. A parallel vector
has type ’a par and embeds p values of any type ’a at each of the p different processors
in the parallel machine. The nesting of parallel vectors is not allowed.

The p processors are labelled with natural numbers from 0 to p− 1. We use the
following notation for a parallel vector:

〈x0, x1, . . . , xp−1〉 : ’a par

or 〈xi〉i for short. This vector holds the value xi at processor i, with all xi of type ’a.
We distinguish this structure from a usual “sequential” vector of size p because the
different values, that will be called local, are blind to each other. It is only possible to
access the local value xi in two cases:

36 Chapter 3. OSL Design and Implementation

1. locally, on processor i (by the use of a specific primitive), or

2. after some communications.

These restrictions are inherent to the distributed memory parallelism. This makes
the parallelism explicit and the programs more readable. Since the BSML program
deals with a whole parallel machine and the individual processors at the same time, a
distinction between the levels of execution that take place is needed:

• Replicated execution is the default. Code that doesn’t involve BSML primitives
(nor, as a consequence, parallel vectors) runs on the parallel machine as it would
on a single processor. Every processor executes the replicated code at the same
time that leads to the same result everywhere.

• Local execution is what happens inside the parallel vectors, on each of their com-
ponents: the processor uses its local data to do computation that may be different
from the others.

• Global execution concerns the set of all processors together, but as a whole and
not as a single processor. Typical example is the use of communication primi-
tives.

BSML programs can be compiled in byte-code, native code or can be evaluated in
an interactive fashion using the BSML interactive loop. In this case, when one gives
an expression to the top-level, possibly a name, a type and the value of the expression
are returned. For example:

bsp_p;;

− : int = 4

is the prompt, bsp_p is the expression to evaluate, the answer is the second line,
giving the name of the value (here no name is given to the value), the type (int) and
the value (4). In the remaining of this section, our BSP machine will have 4 processors.

To build a parallel vector containing the same value at all the processors, one can
write ≪ e ≫ where e is a usual “sequential” OCaml expression. If the value of e is v

then the value of ≪ e ≫ is the parallel vector 〈 v , . . . , v , . . . , v 〉. For example:

≪ "THESIS" ≫ ;;

− : string par = <"THESIS", "THESIS", "THESIS", "THESIS">

There also exists a predefined parallel vector, the value named this, that contains
the value i at processor i:

this;;

− : int par = <0, 1, 2, 3>

The so-called local section notation ≪≫ can be used to access the local values of
a vector. Let us consider an expression e of type t par. Being an expression with a
parallel type, its value is a parallel vector 〈 v0 , . . . , vp−1 〉. Inside a local section, for all
processor i, the notation e represents at processor i the local value vi. In combination
with this we have a way to build parallel vectors with different values on the different
processors:

3.2. A Prototype Implementation in BSML 37

let hello = ≪ (string_of_int $this$)^":hello" ≫ ;;

hello : string par = <"0:hello", "1:hello", "2:hello", "3:hello">

OCaml is a higher-order functional programming language, so it is possible to build
parallel vectors of functions:

≪ (+) $this$ ≫ ;;

− : (int → int) par = < <fun>, <fun>, <fun>, <fun> >

Here (+) is the integer addition function in prefix notation, partially applied. At
processor i we have the function fun x → i + x.

The only way to obtain a sequential value from a parallel expression is the use of
the proj primitive. The type of this function is ’a par→ int→ ’a. Given a parallel vector,
it returns a function such that, applied to the processor identifier of a processor, it
returns the value of the vector at this processor. proj is often used at the end of a
parallel computation to gather the computed results. For example, if we want to
convert a parallel vector into a list, we write:

let f = proj hello in List.map f [0; 1; 2; 3];;

− : string list = ["0:hello"; "1:hello"; "2:hello"; "3:hello"]

A (almost) total exchange occurs when the proj function is applied to its first argument.
In BSML this ends the super-step. Note that the communication and synchronisation
phases occur only when proj is applied to its first argument. In the example further
applications of f do not imply additional communications and synchronisations.

Some values are considered to be an empty message (or to have size 0) and are
thus not communicated through the network, even if the yielded results may suggest
they were. It is the case for example for empty lists, the value None of the ’a option type,
etc. Thus the communication schema of proj may be not a full total exchange if some
of the values in the argument vector are values of size 0.

put is the comprehensive communication primitive: It allows any local value to be
transferred to any other processor. It is synchronous, and ends the current super-step.
Canonical use of put is

let com = put ≪ fun sendto → e($this$, sendto, x)≫

where expression e computes (or usually, selects) the data of vector x that should be
sent depending on the destination processor sendto. The return value of put is another
vector of functions. At a processor j the function, when applied to i, yields the value
received from processor i by processor j.

For example, the following shift function shifts a parallel vector circularly to the
right:

let shift v =

let vdst = ≪ ($this$+1) mod bsp_p ≫
and vsrc = ≪ (bsp_p+($this$−1)) mod bsp_p ≫ in

let shifted =

put ≪ fun dst→ if dst = $vdst$ then [v] else []≫ in

≪ List.hd ($shifted$ $vsrc$) ≫ ;;

38 Chapter 3. OSL Design and Implementation

make: int→ ’a→ ’a distArray

init: int→ (int→ ’a)→ ’a distArray

atRoot: (unit→ ’a array)→ ’a distArray

getPartition: ’a distArray→ ’a array distArray

flatten: ’a array distArray→ ’a distArray

map: (’a→ ’b)→ ’a distArray→ ’b distArray

mapIndex: (int→ ’a→ ’b)→ ’a distArray→ ’b distArray

zip: (’a→ ’b→ ’c)→ ’a distArray→ ’b distArray→ ’c distArray

zipIndex: (int→ ’a→ ’b→ ’c)→ ’a distArray→ ’b distArray→ ’c distArray

shift: int→ (int→ ’a)→ ’a distArray→ ’a distArray

permute: (int→ int)→ ’a distArray→ ’a distArray

balance: ’a distArray→ ’a distArray

reduce: (’a→ ’a→ ’a)→ ’a→ ’a distArray→ ’a

gather: ’a distArray→ ’a distArray

bcast: ’a distArray→ ’a distArray

Figure 3.13 – Skeletons of the Prototype Library

val shift : ’a par → ’a par = <fun>

shift hello;;

− : string par = <"3:hello", "0:hello", "1:hello", "2:hello">

A summary of BSML primitives is given in figure 3.12.

3.2.2 A Library of Algorithmic Skeletons

We implemented a prototype library of a new version of Orléans Skeleton Library in
BSML. We first describe the underlying data structure before detailing the main (but
not all) skeletons.

Distributed arrays

The data structure manipulated by the skeletons of our prototype library are dis-
tributed arrays. In BSML such a data structure could be implemented as a parallel
vector of arrays. However it is convenient, and more efficient, to store some additional
information rather than to compute on demand:

• the start index of each processor with respect to the global array: each processor
contains one array, but this array is a sub-array of the distributed array consid-
ered as a whole array; computing it from the parallel vector of arrays would
require communications,

• the global length of the distributed array: if it is not stored then a parallel reduc-
tion is needed to compute it from the parallel vector of arrays,

• the distribution: each processor knows the local length of the other local arrays
without having to communicate; we represent the distribution as an array of
integers of size bsp_p.

3.2. A Prototype Implementation in BSML 39

The type for distributed arrays is thus defined as:

type ’a distArray = {

data : ’a array par;

startIndex: int par;

globalSize : int;

distribution : int array;

}

globalSize and distribution are not parallel vector but have usual sequential types. This
makes clear that these fields cannot have a different value on two different processors.
On the contrary starIndex is a parallel vector: at each processor it contains the start
index of the local array in the global array. It is also possible to choose starIndex to be
the array of the start indices of all the local arrays. However, for all skeleton but one, it
is not necessary for a processor to know the start indices of other processors: therefore
it is better to save memory by having only one integer value per processor for starIndex

rather than having a replicated array of size p (than in practice is p integer values on
each processor).

An example of value, if we have 4 processors, is:

let da = init 11 string_of_int;;

val da : string distArray =

{data = <[|"0"; "1"; "2"|], [|"3"; "4"; "5"|],

[|"6"; "7"; "8"|], [|"9"; "10" |]>;

startIndex = <0, 3, 6, 9>;

globalSize = 11;

distribution = [|3; 3; 3; 2|]}

The set of skeletons provided to the user of the library is given in figure 3.13.
The three first skeletons are, if we take an object oriented programming terminology,
constructors of distributed arrays. make creates a distributed array of a given size
with the given value everywhere, init creates a distributed array of a given size with
its elements given by applying a function from indices to values, and atRoot builds
a distributed array from a sequential array at root processor. The two first functions
give an evenly distributed array whereas the third one returns a distributed array with
values only at processor 0. For the two first constructors, the startIndex, globalSize and
distribution fields do not need any communication to be computed as the distribution
is known from the global size when the array is evenly distributed (if the size is not
divided by the number of processors, the processors with a low process identifier may
have one additional element). For the third constructor, communications are required.

The getPartition and flatten skeletons

The getPartition and flatten skeletons are such that:

flatten(getPartition da) = da

40 Chapter 3. OSL Design and Implementation

Basically getPartition makes the distribution of the distributed array apparent, and is
mostly a change of point of view, that is inexpensive to compute: It just, at each
processor, puts the local array into an array of one element. However we wish the
flatten skeleton to be also inexpensive to compute. Therefore we would like to keep
the information related to the global size, start indices and distribution before the
getPartition to be able to restore them when there is a call to flatten. In order to do
that, we actually have a fifth field in the distArray type: partitioned, a boolean. When
this field is true this means that the globalSize, startIndex and distribution fields refers to
a distribution before a call to getPartition. The actual distribution could be computed
without any communication if we assume that it is a distribution obtained after a call
to getPartition: the global size is bsp_p, the startIndex is equal to this and the distribution
is such that there is one element per processor.

For example:

let pda = getPartition da;;

val pda : string array distArray =

{ data = < [| [|"0"; "1"; "2"|] |], [| [|"3"; "4"; "5"|] |],

[| [|"6"; "7"; "8"|] |], [| [|"9"; "10"|] |]>;

startIndex = <0, 3, 6, 9>; globalSize = 11;

distribution = [|3; 3; 3; 2|]; partitioned = true }

However, if other skeletons are applied to a partitioned distributed array, it is not
always guaranteed that the distributions can be updated without additional commu-
nications. In this case the startIndex, globalSize and distribution fields are replaced by their
actual values and the field partitioned is set to false. A call to flatten on a distributed ar-
ray that is not partitioned incurs communications: each processor contains an array of
arrays that is flattened to an array, and the sizes of these arrays are totally exchanged.
From these sizes the various fields can be computed (without new communications).

The map, zip and balance skeletons

The map skeleton does not change the distribution of a distributed array. However
if the distributed array is partitioned (i.e. its field partitioned is true), the startIndex,
globalSize and distribution fields still contain the values they had before the call to
getPartition. We call this set of fields and their values “the distribution before par-
titioning”. With a call to map, the distribution before partitioning is not guaranteed to
be preserved.

For example:

let da’ =

let f a = let l = Array.length a in Array.sub a 0 (l/2) in

map f (getPartition da);;

does not preserves the distribution of da. If the local sizes of da are even, the global
size of flatten da’ will be half of the one of da. Moreover the distribution depends on the
local application of the function f, so it is not possible to update the distribution before

3.2. A Prototype Implementation in BSML 41

partitioning without communication. Thus for an application of map we remove the
distribution information before partitioning (it requires no communication):

val da’ : string array distArray =

{ data = <[|[|"0"|]|], [|[|"3"|]|], [|[|"6"|]|], [|[|"9"|]|]>;

startIndex = <0, 1, 2, 3>; globalSize = 4;

distribution = [|1; 1; 1; 1|]; partitioned = false }

The mapIndex variant of map has the same properties. It benefits from having the
startIndex field.

The zip skeleton is a generalisation of the map skeleton to two distributed arrays.
As the map skeleton, the distribution is preserved, but the distribution before partition-
ing is not. There is also a problem that may occur with the zip skeleton. In functional
programming, this zip function exists and can be applied to two lists that have dif-
ferent sizes. The results will have the length of the smallest input list. However in a
distributed settings, this is not so easy as even same global sizes may correspond to
unaligned distributed arrays. Therefore to have a safe library, we check that the two
distributed arrays have the same distribution: if not, an exception, corresponding to a
programming error, is raised. This is not a limitation as we provide a balance skeleton.
This check does not imply any communication as the distributions are stored in the
field distribution.

The balance skeleton changes the distribution of a distributed array to an even
distribution: communications are required if the distributed array is not already evenly
distributed. It is to be noticed that partitioned arrays are actually evenly distributed
(there is one element per processor). Therefore the balance skeleton preserves the
distribution before partitioning.

The shift skeleton

The shift skeleton preserves distribution, but it does not preserve distribution before
partitioning: the sizes of the values generated by the replacement function are known
only locally to the processor where they are produced.

No communications are needed if d is 0 or |d| is greater than the global size of the
distributed array. In the first case shift is identity, in the second case the application
shift d f is equivalent to mapIndex f ′ where f ′ i x = f i.

The shift skeleton is easy to write when the distribution is even. It is a bit more
complicated for an arbitrary distribution, especially with “holes” in the distribution.
We will illustrate the different steps on the following distributed array for a shift with
3 as offset:

val da : string distArray =

{ data = < [|"A"; "B"|], [|"C"; "D"|], [||], [|"E"; "F"; "G"|] >;

startIndex = <0, 2, −1, 4>; globalSize = 7;

distribution = [|2; 2; 0; 3|]; partitioned = false }

It proceeds as follows.

42 Chapter 3. OSL Design and Implementation

At each processor, we compute the sub-array of elements to be communicated
(shifted) to other processors, information about distribution is necessary to do so. As
at each processor we have the starting index of the local array in the parallel vector
startIndex, we can compute locally the global destination index of each element to be
shifted to other processors: it is the current global index plus the offset. Then for each
element of this sub-array, we should compute the destination processor that corre-
sponds to this global destination index: (a) from the distribution array, we compute the
prefix sum of the distribution (the start indices) where the processors with no elements
have been filtered out, each value being paired with its corresponding processor. From
example, if the distribution is the one of da, we obtain: [|(0, 0); (1, 2); (3, 4)|] ; (b) then
using a binary search on this array it is possible to obtain the destination processor
(first component of the pair) for each global destination index in time O(log2 p) ; (c)
the values to be sent to the same processor are packed together.

With the distributed array da above, we obtain the following parallel vector:

− : (int ∗ string array) list BSML.par =

< [(1, [|"A"|]); (3, [|"B"|])], [(3, [|"C"; "D"|])], [], [] >

We use a variant of the BSML put primitive, that takes as input a parallel vector
of lists of pairs (destination, message) instead of a parallel vector of functions, for the
communications. At the end of this step we obtain the following parallel vector:

string array BSML.par = < [||], [|"A"|], [||], [|"B"; "C"; "D"|] >

Finally we perform a local shift whose replacement function either calls the global
shift replacement function or returns elements communicated in the previous step. In
the example, the global replacement function is called on processor 0 and 1 (for the
first element), and the elements are taken from the previous parallel vector of arrays
for processor 1 (second element), and processor 3 (for the 3 last elements):

shift 3 (fun i→ "Nothing") da;;

− : string distArray =

{ data = < [|"Nothing"; "Nothing"|], [|"Nothing"; "A"|],

[||], [|"B"; "C"; "D"|]>;

startIndex = <0, 2, −1, 4>; globalSize = 7;

distribution = [|2; 2; 0; 3|]; partitioned = false }

The permute skeleton

The permute skeleton takes as input a bijective function from 0 to the global size of its
distributed array argument. The permute skeleton is based on the same auxiliary func-
tions than the shift skeleton. For each element of the distributed array, we compute:
first its global destination index, obtained by applying the bijection f to the global in-
dex, then we compute the destination processor according to this global destination
index.

One concern with the permute skeleton is to check whether the function f is bijective
or not. One possibility is to perform the check independently on each processor,

3.2. A Prototype Implementation in BSML 43

applying the function to all possible indices: this would requires O(n) operations at
each processor, compared to the O(n

p) applications (if the distributed array is evenly

distributed) of f needed to compute the destination processor. This may be quite
costly if p ≪ n. Moreover, we have written the code in such a way that if f is not
bijective, no run-time error will occur but the global size of the obtained distributed
array will not be the same than the original size. Therefore we can perform a total
exchange of the local sizes, then compute the global size and compare it to the initial
global size to check if the function was actually a bijection (and raise an exception to
indicate the programming error if there is one). The additional cost of this check is
O((p − 1) × g + L). Thus we could dynamically determine, depending on the BSP
parameters of the machine, if the first version of the check is more expensive or not
than the second version of the check, and choose accordingly the best version. In the
current prototype only the second version is performed.

Unlike shift, it is possible with the permute skeleton to update both the actual dis-
tribution and the distribution before partitioning without additional communications.

3.2.3 Heat Diffusion Simulation Example and Experiments

The goal of this application is to give an approximate solution of the following partial
differential equation describing the diffusion of heat in a one dimensional bar of metal
of length 1:

δh

δt
− κ

δ2h

δ2x
= 0 ∀t, h(0, t) = l ∀t, h(1, t) = r (3.1)

where κ is the heat diffusivity of the metal, and l and r some constants (the tempera-
ture outside the metal). A discretised version of this equation is:

h(x, t+ dt) =
κdt

dx2
×

(

h(x + dx, t) + h(x− dx, t)− 2× h(x, t)
)

+ h(x, t) (3.2)

for a space step dx and a time step dt and with the same boundary conditions.
In sequential the temperature at the discretisation points in the metal bar is stored

in an array, and a loop is used to update this array when a new step time occurs. For
the OSL version, we use a distributed array for storing the values of h. If we consider
the equation 3.1 for the whole array h, and not element-wise, then the update of h is
is a linear combination of the distributed arrays in figure 3.14.

hr l h(dx, t) · · · h(1− 2dx, t)

hl h(2dx, t) . . . h(1− dx, t) r

h h(dx, t) . . . h(1− dx, t)

Figure 3.14 – Distributed Arrays for Heat Diffusion Simulation

Array hr (resp. hl) can be computed from array h using the shift skeleton with offset
1 (resp. −1) and with replacement function the constant function returning always l

44 Chapter 3. OSL Design and Implementation

��

��

��

��

��

���

���

���

�� ��� ��� ���

	

�

�
�
�

�����

��������������������
�����
���

���������
���

Figure 3.15 – Heat Diffusion Simulation

(resp. r). The linear combination of these arrays can be computed using the map and
zip skeletons. Thus if the temperature in the bar is represented by a distributed array of
floating point numbers, the update of the temperature is performed by the following
function:

(∗ step: float→ float→ float→ float→ float→
float distArray→ float distArray ∗)

let step kappa dt dx l r bar =

let barR = shift 1 (fun _→ l) bar

and barL = shift (−1) (fun _→ r) bar in

zip

(fun vI uI → (kappa ∗. dt)/.(dx∗.dx)∗.(vI−.2.∗.uI) +. uI)

(zip (+.) barR barL)

bar

Simulating the diffusion of heat in the bar of metal is then an iterative application
of the function step.

We ran two different versions of a one dimensional heat diffusion simulation:

• the above version written using the proposed prototype library,

• a version written in C++ using the OSL library (section 4.2), whose code uses
mostly the same skeletons than the first version.

The experiments were conducted on the SPEED parallel machine(for details see ap-
pendix C) of the university of Orléans: it is a shared-memory machine with 4 AMD
Opteron 6174 processors, each being a 12 cores processor. We set 106 discretisation
points for the bar of metal, and run 103 time steps. The timings are presented in
figure 3.15.

The version implemented using the prototype BSML implementation of OSL is
less efficient: this is due to the fact that quite many intermediate arrays are created.
However the difference is less than one order of magnitude: it is still reasonable to

3.3. A C++ Implementation of OSL 45

experiment parallel runs with this prototype. In a real implementation of the new
OSL library these intermediate copies are removed using the C++ expression templates
optimisation technique.

3.3 A C++ Implementation of OSL

The C++ version of OSL is developed by following the specifications obtained from
the prototype presented in the previous section.

3.3.1 Distributed Arrays

As in the prototype, the BSP parameters can be accessed using the constants including
bsp_p the number of processors of the BSP machine.

The data structure “Distributed Array” is implemented using a template class
DArray<T>. The ’T’ represents the type of the data. To keep the information about
the size, indexing and the distribution of the data among processors, DArray class is
supported with the following members:

Members

globalSize The total number of elements present in the distributed array.

localSize The number of local elements of the processor.

startIndex The global starting index of the data.

partitioned A boolean flag indicating whether there is a change in view of the data
in the distributed array or not. In case the data is partitioned the global size of
the data becomes the bsp_p and the local size becomes 1. The start index is the
bsp_id and the distribution is 1 for each element.

distribution The vector containing the number of elements present at each processor.

data The vector containing the local elements.

The DArray class is further supported with the getter and setter members for all
the above mentioned members of the distributed array.

46 Chapter 3. OSL Design and Implementation

Constructors

The constructors presented below are inspired from the make, init and atRoot

functions of the prototype version.

DArray(int globalSize) Instantiates the object by evenly partitioning the data among
the processors. The global size of the data is the one presented as the argument.
The even distribution is computed by calling a evenDistribution(gs)

function. The global start index is calculated by calling the method
evenDistributionStartIndex(gs, bsp_id) where bsp_id is the pro-
cessor identifier. Partitioned is set to false. The memory for the data is allocated
without initialisation.

DArray(int gs, T value) Initialises all the elements of the object by the same value.

template<typename F> DArray(F f, int gs) Every element is initialised by applying
the function object f to the corresponding global index.

template<typename F> DArray(F f) The f acts as a generator of the data. The size
of the data is known to the root processor (bsp_id = 0) on which the data is
generated using the function f. The global size is therefore broadcast to the other
processors. The start index of the root processor is zero while of the others is -1.
The local size of the root processor is equal to the global size of the data while
that of others is zero. The constructor is usually used when the input source of
the data is a file.

DArray (DArray<T>) The object is initialised with the elements of the distributed
array in arguments. The constructor is provided in two flavours: first creates a
copy of the given distributed array while the second is a move constructor that
moves the contents of the given distributed array, hence destroying the source
array. The move constructor is invoked when the source is a temporary. It is
the optimisation that is supported in the new standard of the C++ named C++0x
and is presented in detail in chapter A of the appendix.

operator=

The assignment operator is overloaded for addressing the two problems. The first one
is the assignment of a distributed array to another distributed array and the second
one is the initialisation of the resultant distributed array. The later is the result of
the evaluation of a skeleton expression. And this method acts as the starting point
of the evaluation of the OSL expressions. The OSL expressions are actually the calls
to the skeletons. The size and the distribution of the resultant array depends on the
operating skeletons. The method is also implemented in both the copy and move
flavours. The right flavour is invoked by the compiler depending upon the right hand
side expression.

3.3. A C++ Implementation of OSL 47

operator[]

The index operator is overloaded to access the elements of the data. The index here is
the local index of the data not the global index. The method is overloaded to return the
reference of the indexed element or the const reference to the indexed element. For
the safety purpose, user is recommended to access the elements of distributed array
through some skeleton.

3.3.2 Skeletons

The skeletons in OSL are data parallel skeletons. The skeletons can further be grouped
in three categories:

• the skeletons that independently operates on the every element of the distributed
array without any need of communication,

• the skeletons representing certain communication patterns,

• the skeletons that changes the view of the distributed array.

Map, MapIndex, Zip and ZipIndex belong to the first class of the skeletons. The
former two needs a function object and a distributed array as their arguments while
the later two needs two distributed arrays along with a function object. Both applies
the function object over every element of the distributed array(s).

Shift, Permute, Gather and Broadcast belongs to the second category. The skele-
tons perform no computation over the data. They are the pure communicating skele-
tons representing some pattern of the communication.

Reduce and Scan form another category of the skeletons that mix the computa-
tions and the communications.

Last class of the skeletons are the GetPartition, and the Flatten skeletons. They
change the view of the data. The former represents the local data of the processor in
the form of a single element vector containing the whole data. While the later do the
inverse to give the data its original view back.

Most of the specifications of the skeletons are finalised in the prototype. In this
section the focus will be on the C++ implementation of these skeletons. All the OSL
skeletons are represented by the template classes. To simplify the instantiation of
the skeleton classes and their composition, the generator functions are supplied. The
following listing presents the signature of a generic skeleton class and its generator
function.

template<typename F, typename Exp>

class SkeletonName

{

...

};

48 Chapter 3. OSL Design and Implementation

template<typename F, typename Exp>

SkeletonName<F, Exp> skeletonName(F f, const Exp& exp)

{

return SkeletonName<F, Exp>(f, exp);

}

Evaluation of skeletons expressions

Most of the skeletons in OSL follows the pattern presented in the previous section.
There are some exceptions, in which case the difference is in the return type of the
generator function. Instead of returning the instance of the skeleton they return the
instance of the distributed array. This difference is due to the different types of eval-
uations of the skeletons. In OSL the skeletons can be classified in three categories in
terms of their evaluation

• The skeletons that can be evaluated in terms of the expression templates. As a
result no temporary is created and the expressions containing such skeletons can
be evaluated in a single go (in one loop) following the principle of expressions
templates [136]. Map, MapIndex, Zip and the ZipIndex belong to this class of
skeletons. They can be termed as lazily evaluated skeletons.

• The skeletons that creates the temporaries. All the communicating skeletons
create temporary objects during evaluation. As these skeletons needs to com-
municate they can not be evaluated lazily. Hence they can not be embedded in
the expression template mechanism. In order to provide a uniform mechanism,
these skeletons are evaluated normally/eagerly and hence the generator function
of these skeletons returns the distributed array. Scan, Shift, Permute, Balance,
Gather, GetPartition, Flatten belong to this class of skeletons.

• The Reduce skeleton is the only one in this category as the result type of the
Reduce skeleton is a single element not a distributed array.

Map, MapIndex, Zip, ZipIndex

These skeletons belong to the first class of the skeletons and hence are evaluated lazily
following the mechanism of the expression templates. The principle of expression
template is: types represent terms of a kind of domain specific language, operators
are overloaded so to build the terms of this language, other operators such as = and
[] are used to launch the evaluation of these terms. The mechanism is explained in
detail in the section A.1 of the appendix A. To evaluate these skeletons in terms of the
expression templates the classes of these skeletons are provided with an overloaded in-
dex operator (operator[](int index)). The function object is applied to the indexed
element and the resultant element is returned. This method is called from the starting

3.3. A C++ Implementation of OSL 49

point of the evaluation (whether in the distributed array class or in some other skele-
ton). Hence the evaluation loop to call the skeletons index operator is present outside
these skeletons body. The code below presents the index operator of the Map skeleton.

typename F::result_type inline operator[] (int index) const

{

return f(exp[index]);

}

The other three skeletons follow the same approach. Some other methods are
required in order to implement the expression templates. These methods are added to
the skeleton classes and are presented below:

// returns the size of the partition of the current processor

inline int getLocalSize() const {

return exp.getLocalSize();

}

// returns the partition starting index of the current processor

inline int getStartIndex() const {

return exp.getStartIndex();

}

// return the size of expression/distributed array

inline int length() const {

return exp.length();

}

// return false indicating if getPartition

// is applied it is followed by some Map skeleton

inline bool getPartitioned() const {

return false;

}

// return the current distribution of the data

inline std::vector<int> getDistribution() const{

return exp.getDistribution();

}

It is noted that these methods are actually the getters of the distributed array.
They need to be present in all the expressions taking part in the expression template
mechanism.

GetPartition

GetPartition changes the view of the data. It does so by squeezing the whole data
partition into a single element vector, where the element of the vector represents the
whole data. The skeleton can be implemented by just assigning the pointer of the

50 Chapter 3. OSL Design and Implementation

original data to the new single element vector. But the skeleton is not implemented
in this manner for the safety reasons and for providing the uniform interface for the
uniform composition of the skeletons. The safety concern is that if instead of creating
a copy the original pointer is assigned and the source vector is used somewhere else,
there is a risk of getting the memory segmentation faults or data consistency issues.
The other reason is to support composition of this skeleton with some other skeleton
instead of the distributed array. In that case the skeleton acts as the starting point of
evaluation for the input skeleton expression. To achieve this two generator functions
are provided, one for the classic use of the skeleton over a distributed array and the
second for the skeleton expressions.

template<typename T>

DArray<vector<T> > getPartition(const DArray<T>& temp)

{

return GetPartition<DArray<T> >(temp)();

}

template<typename Exp>

DArray<vector<typename Exp::result_type> >

getPartition(const Exp& exp)

{

typedef typename Exp::result_type result_type;

return GetPartition<DArray<result_type> >(Evaluate<Exp>()(exp))();

}

The first generator function simply calls the overloaded parenthesis operator of
the GetPartition class. While the second one first evaluates the given expression and
then calls the same operator over the result of the expression. The reason for calling
the overloaded parenthesis operator is that unlike the first class of skeletons complete
evaluation lies inside the body of the skeleton. The implementation of the skeleton
is such that the getData() function of the input distributed array is called to ac-
cess the data and the copy of that data is assigned to the resultant distributed array
containing the whole partition as single element vector. The optimisations applied in
the implementation of the skeleton is the move semantics and the rvalue references
of the C++0x skeleton. Instead of copying the temporary created by the skeleton the
temporary object is moved to the final result, in this way saving a copy operation and
utilising the same memory resources. The move semantics are presented in detail in
section A.3.

Flatten

Flatten follows the same philosophy of the GetPartition skeleton. Two generator func-
tions are provided in the same way, and the copy operations are avoided by following
the move semantics. The result of the flatten operation is the normal distributed array

3.3. A C++ Implementation of OSL 51

with the updated distribution. If the partitioned member of the distributed array
is false, this means that the some other skeleton that can update the distribution is ap-
plied after the application of the GetPartition skeleton. Hence the distribution can not
be updated without communicating the new local sizes. The local sizes of the data is
exchanges using MPI all to all routine. Rest of the information can then be computed
at each processor on the basis of the new distribution.

Balance

The situation may arise when the data is not evenly distributed among the processors.
This may create a load unbalance. To re-balance the load among the processor Balance

skeleton is applied over the unbalanced distributed array. The processors containing
the major share of the elements need to communicate their elements to the less loaded
processors. A lot of algorithms exist in literature to balance the load. The precomputed
sliding algorithm [67] is used to balance the distributed array. The algorithm computes
the minimum number of exchanges required to balance the data. During the first step,
the possible load received by each processor (may be negative) from the right hand
neighbour is computed. The second step realises the load transfer towards the left.
And the third and the last step takes into account any transfers towards the right
side. After the application of the algorithm the load is evenly balanced among the
processors. In case the even balance is not possible the low rank processors contains
one more element than the higher rank processors. And this is how OSL distributes
data normally. A number of functions are required to make the skeleton work. These
are the trimming of the vector containing data, insertion of the new elements. The
trim from both the sides and the data insertion from both the ends are implemented
and optimised using the move semantics to ensure the efficiency.

template<typename T>

vector<T> trimLeft(vector<T>& vec, int no)

{

vector<T> res = std::move(vector<T>(

std::make_move_iterator(vec.begin()),

std::make_move_iterator(vec.begin() + no),

vec.get_allocator()

));

vec = std::move(vector<T>(

std::make_move_iterator(vec.begin() + no),

std::make_move_iterator(vec.end()),

vec.get_allocator()

));

return std::move(res);

}

template<typename T>

vector<T> trimRight(vector<T>& vec, int no)

{

52 Chapter 3. OSL Design and Implementation

vector<T> res = std::move(vector<T>(

std::make_move_iterator(vec.end()-no),

std::make_move_iterator(vec.end()),

vec.get_allocator()

));

vec = std::move(vector<T>(

std::make_move_iterator(vec.begin()),

std::make_move_iterator(vec.end()- no),

vec.get_allocator()

));

return std::move(res);

}

The data is passed as a reference to avoid the copying operation. The trimmed
elements are returned as a vector. As the new vector containing trimmed elements is
created inside the trim function, it is returned using the move to reuse the memory
resources and avoid the copy operation.

Shift

As the Shift skeletons also belongs to the second category of the skeletons, its im-
plementation follows the same pattern of the above presented two skeletons. The
skeleton handles various use cases to remain safe, shifting the partitioned distributed
array, both left and right shifting. It takes three arguments, the offset, the replacement
function and the distributed array to be shifted. If the offset is greater than the global
size of the distributed array, the shift operation becomes the application of the map
index. To shift the array normally towards left or right, the first thing that needs to be
computed is the destination processors and the elements to be communicated to the
destination processors. The procedure in C++ version is not similar to the procedure in
BSML, because for send operation in MPI the destination processors should be known,
in a similar way for the receive operation the source processors should be known as
well. So, using the binary search over the scanned distribution (start indexes) of the
processors both the destination and the source processors need to be determined. The
send buffer (a vector of vector buffer containing the elements to be send to the respec-
tive processors) is created using the destination processor ranks and is then commu-
nicated. Similarly the receive operation proceeds and collect the elements in a receive
buffer. The elements are then assigned to the locally shifted data. To optimise the local
shift, assignment of the received elements and boundary elements, several auxiliary
functions are developed. These are the append and prepend methods for joining two
vectors. These methods are optimised using the move semantics.

template<typename T>

vector<T> append(vector<T>& original, vector<T>&& elements)

{

auto elements_begin = std::make_move_iterator(elements.begin());

3.3. A C++ Implementation of OSL 53

auto elements_end = std::make_move_iterator(elements.end());

original.insert(original.end(), elements_begin, elements_end);

return original;

}

template<typename T>

vector<T> prepend(vector<T>& original, vector<T>&& elements)

{

auto elements_begin = std::make_move_iterator(elements.begin());

auto elements_end = std::make_move_iterator(elements.end());

original.insert(original.begin(), elements_begin, elements_end);

return original;

}

To avoid the copy operations and the creation of temporary vectors, the original
data is received as the simple reference while the elements that need to be added are
received as rvalue references. Then instead of copying, the elements are inserted using
the move iterators. The local shift operation follows the same approach

data = std::move(vector<result_type>(

std::make_move_iterator(data.begin() + offset),

std::make_move_iterator(data.end()),

data.get_allocator()

));

Permute

Permute is based on the same set of the auxiliary functions that are required for the
Shift skeleton. But contrary to the shift where the communication is uni directional i.e
either left or right, in Permute the messages can be bidirectional. So, in the implemen-
tation of the skeleton every processor sends a vector to the every other processor. The
vector may contain zero to ’n’ elements depending on the permutation function. An-
other issue is the arrangement of the data after reception. To fix the issue, the global
destination index of the data is communicated as well along with the data.

Gather

It is used to collect the local partitions of all the processors at the root processor.
Gather is implemented in the same manner as that of Permute and Shift. It changes
the distribution of the distributed array. The root processor which gathers all the data
now contains the total number of the elements i.e. global size of the distributed array,
while the other processors hold nothing. It further sets the partitioned flag to false.

54 Chapter 3. OSL Design and Implementation

Broadcast

The skeleton is used to broadcast the local partition of root processor to the others.
Its implementation is quite similar to the Gather. The global size of the data changes
to the total no of processors times local size of the root processors partition. Hence
the distribution of the distributed array is modified. It also sets the partitioned flag to
false. If there exists some data on the receiving processors, that data will be lost after
the broadcast operation.

Reduce

Different algorithms for the reduction skeleton are implemented and are presented in
detail in the chapter 5.

3.4 Summary

The chapter focuses on presenting the design of the OSL, a library of data parallel
skeletons developed in C++ and based over MPI for communication. The goals pre-
sented at the start of the chapter are addressed through several design choices and the
two implementations one in BSML and the other using C++. The base data structure
is a distributed array. The idea behind distributing the array a construction is to avoid
the scattering and gathering of the data with skeleton calls and keep the skeletons
clean. The information about the distributed array is captured by different members
of the distributed array to allow the safe programming (to avoid distribution incon-
sistencies and the resultant memory errors). The safe programming became a must
after the introduction of the new skeletons, the view changing skeletons. The OSL is
prototyped using the BSML to allow the reasoning about the skeletons in the func-
tional programming style which is not possible with C++. It helps in the evolution of
the formal programming and execution semantics. The C++ implementation focus on
the advanced C++ programming techniques like expression templates and the move
semantics to allow the development of an optimised version. The proceeding chapters
address the goals established in the beginning of this chapter.

4Programming with OSL

Contents

5.1 Benchmarking the BSP Parameters . 74

5.2 Performance Prediction: A Case Study 75

5.3 Performance Portability . 77

5.3.1 Reduce by Using Gather and Broadcast 79

5.3.2 Reduce by Using All Gather . 79

5.3.3 Reduce by Tree Gather and Broadcast . 81

5.3.4 Reduce by Tree All Gather . 81

5.3.5 Best Algorithm Selection . 82

5.3.6 Variance: A Case Study . 83

5.4 Summary . 84

To reduce the complexity of parallel program development OSL offers a structured
approach. The data is represented by instantiating the DArray class. The operations
on the data are executed through the calls to the OSL skeletons. The applications can
be developed using the different combinations of these skeletons. The chapter presents
several case studies each one elaborating the expressiveness from a different point of
view.

4.1 A First Example

The example demonstrates how a simple parallel program can be developed using
OSL. The objective is to increment every element of a distributed array. As every
element can be incremented independently, the program is embarrassingly parallel
and there are no communications involved. The program is an ideal candidate for
the application of Map skeleton. The first argument to the Map is a simple sequential
function object for incrementing a single element (simple sequential function object).
Once we have the required sequential function object and the data (as an instance of
distributed array), a call to the Map with these arguments will solve the problem.

55

56 Chapter 4. Programming with OSL

struct Initialize : Boost::function<int(int)>

{

int operator()(int i) const

{

return i;

}

};

struct Increment : Boost::function<int(int)>

{

int operator()(int i) const

{

return ++i;

}

};

int main()

{

DArray<int> darray(Initialize(), 100);

darray = map(Increment(), darray);

return 0;

}

The data in the example presented above is generated through an Initialize

function object. It takes as input an integer and returns the same integer. So the
darray contains elements from 0 to 99. Increment represents the sequential function
object for incrementing the element. And the distributed array containing data is
darray.

One important thing to note here is that the classes of the function objects are
inherited from the Boost::function. It is necessary for the calculation of the return
type of the result.

The code presented above is verbose. One can question the creation of such func-
tion objects when there are a lot already present in the standard libraries like STL. The
function object Increment can be replaced by an already existing STL function object
std::plus<int>. The call to map will become

darray = map(bind(std::plus<int>(), 1, _1), darray);

The expression bind(std::plus<int>(), 1, _1) binds the std::plus<int>()

function object with 1. It means it turns std::plus<int>() into a function object

4.2. Heat Equation: A case study 57

that adds one to its argument. The 1 represents the arguments that are passed during
the execution of the map skeleton.

The terms function objects/functors can be used interchangeably. These are the
first class functions that are represented in the form of the objects of the classes.

4.2 Heat Equation: A case study

The section presents two case studies. The aim of these case studies is twofold: to
demonstrate the extraction of the skeletal algorithm for a problem, and to demonstrate
how the application can be optimised.

4.2.1 One Dimensional Heat Equation

We remind (see section 3.2.3) that the simulation of one dimensional heat diffusion
could be performed by solving the following discretised equation:

u(x, t+ 1) = diffuse×
∆t

∆2
x

×
(

u(x + 1, t) + u(x− 1, t)− 2× u(x, t)
)

+ u(x, t)

In the code that follows, the initial temperature of the metallic line is fixed to
30 degree celcius. The temperature of the heat sources are 60 degree celcius. Now to
systematically extract the skeleton based algorithm from the equation presented above,
the first step is to think of the representation of the data. Data can be represented by a
simple distributed array of doubles initialised with a value of 30.0. So, the constructor
for creating the object is presented below

DArray<double> bar(Initialize(), length);

where length denotes the length of the bar i.e the number of elements of the
distributed array. Initialize() is the function object that initialises the elements of
the distributed array with the initial temperature 30 degree celcius. The code for the
Initialize() is presented below

struct Initialize : Boost::function<double(int)>

{

double operator()(int i) const

{

return 30.0;

}

};

58 Chapter 4. Programming with OSL

Once the creation and initialisation of the data is done, the next step is to focus
on the operations. From the equation of heat diffusion presented at the start of the
section, it can be observed that there are some simple addition and multiplication
operations. The operands of the addition operations are the arrays and the operands
of the multiplication are a constant and the array. The mapping of the parts of the
equation to the operation and then to skeletons are presented below:

1. u(x + 1, t): Shifting of the array towards left to access the right hand neighbour
of the element. The boundary value at the right ending point is the temperature
of the heat source. The operation can be represented by a shift operation.

right = shift(-1, Boundary(), bar);

where -1 represents the direction of the shift i.e left and the Boundary() inserts
the boundary value at the right end of the bar.

2. u(x− 1, t): Same as the previous step but to access the left hand neighbour i.e a
right shift operation.

left = shift(1, Boundary(), bar);

3. u(x + 1, t) + u(x− 1, t): Addition of the right hand and left hand neighbouring
elements. The operands of the addition are the distributed array created in the
last two steps. That kind of operation can be captured by a zip skeleton

neighboursum = zip(std::plus<double>(), left, right);

4. −2× u(x, t):Multiplication of the original data with -2. As the operation involves
only one array, it can be represented by a map skeleton

bar2 = map(bind(std::multiplies<double>(),-2,_1), bar);

5. u(x + 1, t) + u(x− 1, t)− 2× u(x, t): Represents the result of the addition of the
neighbouring elements with the negative double of the current data. Both the
sum of neighbouring elements and the negative double of current data are al-
ready calculated in the previous steps. Their addition is captured by zip skeleton

bar3 = zip(std::plus<double>(), neighboursum, bar2);

4.2. Heat Equation: A case study 59

6. diffuse× ∆t

∆2
x
×

(

u(x + 1, t) + u(x− 1, t)− 2× u(x, t): Represents the multiplica-

tion of the resultant array of the last step with the gamma.

diffusedbar = map(bind(std::multiplies<double>(),

delta_x*delta_x)/(diffuse*delta_t),

_1

),

bar3

);

7. diffuse× ∆t

∆2
x
×

(

u(x + 1, t) + u(x − 1, t)− 2× u(x, t)
)

+ u(x, t): Addition of the

original data with the diffused bar of the last step

bar = zip(std::plus<double>(), diffusedbar, bar);

The final result of a single time step is captured in the bar itself as during the next
iteration the operations are performed over the data of the previous iteration.

The complete code of the main heat equation algorithm during one time step is
presented below

right = shift(-1, Boundary(), bar);

left = shift(1, Boundary(), bar);

neighboursum = zip(std::plus<double>(), left, right);

bar-2 = map(bind(std::multiplies<double>(),-2,_1),bar);

bar3 = zip(std::plus<double>(), neighboursum, bar-2);

diffusedbar = map(bind(std::multiplies<double>(),

(delta_x*delta_x)/(diffuse*delta_t),

_1),

bar3);

bar = zip(std::plus<double>(), diffusedbar, bar);

The problem with the code presented above is that it is not efficient. The reason is
the creation of the temporaries during each operation. The elimination of temporaries
is supported in OSL, but the code has to be modified. Basically, the skeletons are
composed to eliminate the binaries. So, the composition of the above mentioned code
will eliminate the temporaries and the resultant code is much efficient. Another benefit
of the composition is the fusion of the loops. Every skeleton operation above proceeds
in O(n) steps. So, instead of looping 7 times, they can be fused in a single iteration

60 Chapter 4. Programming with OSL

bar = zip(std::plus<double>(),

map(bind(std::multiplies<double>(),

(delta_x * delta_x) / (diffuse * delta_t),

_1),

zip(std::plus<double>(),

zip(std::plus<double>(),

shift(1, Boundary(), bar),

shift(-1, Boundary(), bar)

),

map(bind(std::multiplies<double>(), -2, _1),

bar

)

)

),

bar

);

4.2.2 Two Dimensional Heat Equation

The section above presents the program for the heat diffusion in one dimension. In a
similar manner the two dimensional heat diffusivity problem can be presented by the
equation below:

u(x, y, t+ ∆t) =
γ∆t

∆s2

(u(x + ∆s, y, t) + u(x− ∆s, y, t)+
u(x, y+ ∆s, t) + u(x, y− ∆s, t)− 4u(x, y, t)

)

+ u(x, y, t)

The two dimensional region is parametrised by the width and the height pa-
rameters. It is represented by a one dimensional distributed array of length
(width×height). The systematic development skeleton based algorithm of the two
dimensional heat equation is presented below. The skeletons are extracted from the
equation presented above:

• Access to the neighbouring elements, as shown in figure 4.1, are done using the
shift skeleton: Left and right neighbouring elements are accessed using the shift

skeleton when the offset is 1 or −1, and the replacement value is a single value
rather than a function or functor. However in this two dimensional case the
shifting is incorrect: we have to use mapIndex to replace the values at left and
right boundaries by the one computed by the left and right boundary functions.
To access the top and bottom neighbouring elements, the array should be shifted
width times. This operation is done using again the shift skeleton.

• The multiplication of the element by the diffusivity and −4 is captured by the
map skeleton

4.3. Fast Fourier Transform 61

�

������

���	��

����������
�����������

���������������

����������������

Figure 4.1 – Communications for Heat Diffusion

• The addition of the neighbouring elements and the final addition operation is
performed by the zip skeleton.

The code snippet for one step of simulation of heat diffusion is presented in fig-
ure 4.2. As visible in the listing all the skeleton operations are composed in a single
expression. The composition of the skeletons in this manner triggers the expression
templates implementation of the skeletons which results in optimised performance.

During each step of the heat diffusion simulation, there are four synchronisation
barriers, corresponding to the four shift operations. The two calls to shift with 1
and −1 as offset both communicate one element to the neighbouring processor while
the two other calls to shift communicates width elements. Thus the BSP cost of the
algorithm can be captured by the following formula:

O(
n

p
) + (2× s× g) + (2× width× s× g) + 4× L

where s is the size of a single element.

4.3 Fast Fourier Transform

The current section and the next section presents the examples that use the skele-
tons developed using the existing ones. This section presents permutePartition a
skeleton developed using the code listed below:

flatten(permute(permute_fun, getPartition(data)));

62 Chapter 4. Programming with OSL

plate = zip(std::plus<double>(),

plate,

map(bind(multiplies<double>(), (diffuse*dt)/(ds*ds),_1),

zip(std::plus<double>(),

map(bind(std::multiplies<double>(), -4, _1),

plate

),

zip(std::plus<double>(),

mapIndex(rightBound,

shift(1,rightBound,plate)

),

zip(std::plus<double>(),

mapIndex(leftBound,

shift(-1, leftBound, plate)

),

zip(std::plus<double>(),

shift(-width, topBound, plate),

shift(width, bottomBound, plate)

)

)

)

)

)

);

Figure 4.2 – One Step of Heat Diffusion Simulation in OSL

where the permute_fun is the permutation function having the domain from 0 to
p− 1 where p represents the number of processors.

We borrow the implementation of FFT algorithm in terms of skeletons fromMuesli.
First step in FFT is to decompose the original n size data in n discrete signals in an
interlaced fashion. In case of sequential algorithm it takes log2 n stages. But in parallel
as the original n is already distributed among p processors, it takes log2 p stages. Next
step is to find the frequency spectra of 1 dimensional time domain signals. Frequency
spectra of 1 point signal is equal to itself. Last step is to combine n frequency spectra
in exact reverse order that time decomposition takes place. This process requires
log2 n− log2 p iterations in parallel.

First step of this algorithm can be implemented by creating a copy of the original
array and then calling mapIndex, permutePartition, mapIndex. Second step can
be implemented by mapIndex and third step can be implemented by zipIndex. In our
implementation we use the optimised OSL composition of second and third step:

int main (int argc, char *argv[])

{

osl::init(&argc,&argv);

DArray< double > bar(problemsize, 1.0);

init_complex initc(bar);

DArray<complex > bar_comp(initc,problemsize);

4.4. Reduce and Map Over Pairs 63

DArray<complex > bar_t(problemsize);

log2p = (int)log2(mysize);

log2size = (int)log2(problemsize);

for(int j = 0; j < log2p; j++){

bar_t = bar_comp;

bitcomplement bitcomp(log2p - 1 - j);

permutePartition(bitcomp,bar_t);

combine comb(j);

bar_comp = zipIndex(comb,bar_comp,bar_t);

}

for(int j = log2p; j < log2size; j++){

fetch fch(bar_comp,j);

combine cmbin(j);

bar_comp = zipIndex(cmbin,bar_comp,mapIndex(fch,bar_t));

}

// Outputting the result

osl::finalize();

}

cmbin and fch are function objects. In OSL we have not implemented currying
(which is implemented in Muesli). Thus in order to pass a curried function in OSL,
the programmer should create a function object encapsulating certain parameters via
the constructor. Then function object could act as a curried function.

4.4 Reduce and Map Over Pairs

This section presents an application to demonstrate the development of other skele-
tons using the existing ones. The N-Body simulation is an application that simulates
the motion of n points masses interacting under the presence of gravitational force.
Assuming a set of n points with mass mi, position ~pi(t), and velocity vi(t) as contin-
uous functions with respect to time t, with 0 ≤ i < n, the evolution of the system
is described by a set of differential equations which could be transformed into the
following discrete form with time step dt:

~pi(t+ dt) = ~pi(t) + ~vi(t)dt

~vi(t+ dt) = ~vi(t) +
~Fi(t)

mi
dt

~Fi(t) = γ ∑j 6=i

mimj(~pj(t)− ~pi(t))

|~pj(t)− ~pi(t)|3

where γ is the gravitational constant.
Thus, the problem of calculating the sum of the forces for all the particles is of the

order n2.
In our OSL implementation, the particles are partitioned among the processors,

with n
p particles per processor. To calculate the sum of the forces, each processor

communicates its particles with the others. This can be achieved in two ways:

64 Chapter 4. Programming with OSL

• By using an all to all communication, so that every processor gets the current po-
sitions and velocities of all the other particles, to be able to update the positions
and velocities of the particles it owns;

• By using a systolic loop, i.e in p− 1 steps (in a BSP setting, super-steps), where
at each step, each processor: (1) Computes the forces applied to the particles it
owns all the time by n

p other particles it owns at the current step (at the first

step the two sets of particles are equal); (2) Receives n
p new particles from its

left neighbour, and sends the n
p particles it was owning on the current step to its

right neighbour.

Both versions have the following BSP computational cost for one step of the sim-

ulation: O(n2

p). In the first version each processor receives n
p × (p − 1) particles,

thus the communication and synchronisation BSP cost is: O(n
p × (p − 1) × g) + L.

In the systolic version, at each step, each processor sends and receives n
p particles, and

there are p− 1 steps. Therefore the communication and synchronisation BSP cost is:
O((p− 1)× (n

p × g) + L).

The total exchange version would thus have a better performance. However the
advantage of the systolic version is that it allows a much smaller memory consumption
than the total exchange version. In the next sections we proceed with the systolic
version, its generalisation and the N-body problem specific optimisation.

We present now how to extract a skeletal implementation out of the generic de-
scription of the algorithm. Following are the main operations along with their skeleton
implementation for N-body simulation:

1. make a copy B of the original particles A,

2. for each Ai compute interactions with all Bj ; these interactions are captured
by rotating the copied partition implemented in terms of circular shift right (to
avoid the self computation of the force a boolean is used).

3. calculate force between two particles Ai and Bj,

4. sum all the forces applied to a particle Bi,

5. update the positions and the velocities of the particles.

The steps 2–4 can be optimised by composing them in the following way:

for(int i=0; i < A.getLocalSize(); ++i)

zip(sumF, force, zip(calcF, A, shift_rcl(true,B)));

The parallel version can be developed in the same way just by replacing the cir-
cular shift operation by a permutePartition. The permutePartition can be
implemented by a permute skeletons preceded by a getPartition and followed by a
flatten.

4.4. Reduce and Map Over Pairs 65

First we consider a systolic version: Two systolic loops are used to compute the
sum of the forces on each particle. The outer loop models the partition level force
computation while the inner loop represents the force computation between the pro-
cessor’s local particles and the received particles. Thus, the outer loop executes p− 1
times while the inner loop executes local size− 1 times. In each iteration of the inner
loop three operations are performed: (1) shifting the local particles circularly towards
right: a circular shift right function is written for this purpose; (2) computing the force
between the two particles by using zip skeleton; (3) add the newly computed force
to the previous one by a zip skeleton. A partial listing for calculating the force is
presented in figure 4.3. Once the force for each particle is calculated a zip skeleton
using a movement functor can be used to update the positions and velocities of all the
particles.

// true: avoids self computation of force

totalForce = computeLocalForce(particles,tmp,true);

for(int i = 1; i < bsp_p-1; ++i) {

// sends partition to the right neighbour

tmp = permutePartition(bind(permuteRight(),i,_1),tmp);

// computes local force

localForce = computeLocalForce(particles,tmp,false);

totalForce = zip(sumF,localForce,totalForce);

}

// update positions & velocities

particles = zip(bind(movement(),dt,_1,_2),particles,totalForce);

Figure 4.3 – N-Body Simulation: Code Excerpt

A second implementation relies on the implementation of a new skeleton: Darling-
ton [59] used RaMP (Reduce and Map over Pairs) for the computation of the sum of
the forces for each particle. This is actually a generalisation of the systolic version. As
this pattern may occur often in the parallel scientific applications, we added the new
skeleton RaMP to the OSL, not as a primitive skeleton but rather as a user-defined
skeleton. The RaMP skeleton requires a reduction operator, a binary function, and the
two expressions. The binary function is used to calculate the interaction between the
two expressions. The result is then reduced by the reduction operator. As in the case
of N-body the binary function is calcF to calculate the force between the particles
and the reduction operator is sumF for summing up the forces. The body of the RaMP
operator() is same as the one presented in systolic loop.

A third implementation improves the systolic version: As the force “applied” by
the body i to the body j is the opposite of the force applied by the body j to the body
i, it is of course possible to avoid computing these two forces. We did so by adding
circular shift left function at the inner level and permutePartition at the outer level.
The newly computed force by body i is sent back to the body j as follows:

66 Chapter 4. Programming with OSL

(∗ sort: (’a→ ’a→ int) → ’a distArray → ’a distArray ∗)
let sort cmp da =

let partitions = map (sortArray cmp) (getPartition da) in

let fstSamples = map getSamples partitions in

let sndSamples = bcast (map (compose getSamples (mergeArrays cmp))

(getPartition (gather fstSamples))) in

let pieces = flatten (zip (cut cmp) partitions sndSamples) in

flatten (map (mergeArrays cmp)

(getPartition (permute (fun i→ (i/bsp_p)+bsp_p∗(i mod bsp_p))

pieces)))

Figure 4.4 – Regular Sampling Sort

�� �� �� �� �� ��

�� � � � � �

�� � � � � �

�� � � � � �

�� � � � � �

�� � � � � �

�� � � � � �

�	
�
�������������

����	���������

������
�����	�����

����� ������
��	�
��

This reduces the inner loop iterations to local_size
2 and the outer loop iterations to

the
p
2 .

4.5 Sorting

All the previous applications are purely regular in nature. To show the expres-
siveness of our library in terms of capturing the unequal distribution of data, we
implement a parallel regular sampling sort [119]. We assume that there are at least
bsp_p-1 elements on each processor, that the array is evenly distributed among the
processors, and that the elements are distinct. It is not a limitation since elements could
be made distinct by transforming each element into a pair composed of the index of
the element in the distributed array and the initial value. Moreover the distributed
array can be evenly distributed using the balance skeleton. We begin by presenting
the implementation in BSML prototype of OSL.

4.5. Sorting 67

The comparison functions we use in this program are such that applied to two
values v1 and v2, the result is negative if v1 is smaller than v2, is zero if the values are
equal, and positive otherwise.

If we assume to have the following sequential functions, the parallel regular sam-
pling sort can be implemented as shown in figure 4.4:

• sortArray: (α → α → int)→ α array→ α array takes a com-
parison function and returns a sorted version of the array argument,

• getSamples: α array→ α array returns bsp_p-1 samples, regularly
taken from its array argument,

• mergeArrays: (α → α → int)→ α array array→ α array

takes a comparison function, and an array of sorted arrays, and it returns
the sorted array obtained by merging the input arrays,

• cut: (α → α → int)→ α array→ α array→ α array array

cuts the first array argument into pieces according to the samples of the second
array argument: there is one more piece than the number of samples

• compose is usual function composition.

The C++ version of the parallel sample sort is quite similar to the prototype version
presented above. The C++ code for the algorithm is presented below:

DArray<std::vector<int> > partitions;

partitions = osl::map(SortArray(), getPartition(da));

auto result =

flatten

(map(MergeSort(),

getPartition

(permute(PFun(),

flatten

(zip(Cut(),

partitions,

bcast(

map(bind(GetSamples(), da.length(), _1),

map(MergeSort(),

getPartition

(gather(

map(bind(GetSamples(),

da.length(),

_1),

partitions

))))))))))));

68 Chapter 4. Programming with OSL

4.6 Experiments

All the experiments were conducted on Mirev C. The MPI library used was Open
MPI 1.3. The compiler was GCC 4.2.3. All the examples were compiled using the
second level of optimisation.

In the experiments we used each core as a BSP processor. However the number of
processes by multi-core processor is balanced (separately on each part of the cluster:
for less than 64 BSP processors only the first half is used with a balanced number
of BSP processors on each physical processor. For more than 64 BSP processors the
second part of the cluster is also used. The BSP parameters are thus worsened when
p is increased since only one network card is used by several processors.

We also ran the examples written with two other libraries: SkeTo [104, 63] and
Muesli [90, 48]. For data-parallel operations on distributed arrays, OSL, SkeTo and
Muesli are very similar.

SkeTo offers data-parallel operations on other data structures: matrices and trees.
We used the public release1: 0.21. The SkeTo release contains the heat equation ex-
ample. It is not possible to program efficiently the FFT example since there is no
communication skeleton in SkeTo similar to permute_partition (the only available
communication skeletons are shift and gather skeletons).

Muesli offers data-parallel and task-parallel skeletons [89]. The set of skeletons op-
erate on the distributed arrays, distributed matrices and distributed sparse matrices.
In Muesli the size of distributed arrays should be a multiple of the number of proces-
sors. This constraint does not exist for OSL and SkeTo. There is no shift skeleton in
Muesli. The shift skeleton could be obtained by a composition of map and permute.
However the permute and fold skeletons and all their variants could not be used if
the number of processors is not a power of two. Thus heat equation example could be
executed with Muesli only for particular cases. The experiments were only performed
for the FFT example, included in the Muesli release2: 1.79.

We have compared the performances of our heat equation programs with SkeTo
for heat diffusion in copper. The program takes as input the length of the metal, ∆x,
the duration of the simulation, and ∆t the time step. We experimented on a 100mm
bar of copper and fix the time of simulation to 1 second. We have experimented
with both the oblivious and non oblivious versions of our program, where oblivious
synchronisation is the one in which the processors known in advance the number
of messages exchange during the super-step. The timings (average of 5 runs) are
presented in figures 4.5 and 4.6 for some input values. The oblivious version of OSL
always attain better performances than SkeTo. The non-oblivious version is closer to
SkeTo in term of performances. For only one iteration, the non-oblivious OSL version
is about 10 times faster than SkeTo for a large number of processors: it is due to our
optimised composition of skeletons. For 1000 iterations, OSL is still more than 40%
faster than SkeTo.

1http://www.ipl.t.u-tokyo.ac.jp/sketo
2http://www.wi.uni-muenster.de/pi/forschung/Skeletons/index.html

4.7. Summary 69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 8 16 24 32 40 48 56 64 72 80 88 96

T
im

e
 (

s
)

Processors

Num-dx: 100, dx: 0.00001, Num-dt: 1, dt: 1

OSL.Obl
SkeTo

OSL.Standard

Figure 4.5 – Heat Equation Timings (dt=1)

If for a given number of processors we examine the timings by varying the sizes
of distributed arrays, we could see that the performances follow the BSP cost given in
the previous section.

The FFT program takes as argument the size of the array. It should be a multiple
of the number of processors. The number of processors should be a power of 2. We
measured the performances of OSL FFT with both type of synchronisations and also
of the Muesli version of FFT. For small sizes, depending on the number of processors,
Muesli and oblivious OSL have similar performances but one may be slightly better
than the other. For large sizes, oblivious OSL have better performances than Muesli.
In figure 4.7, for 64 processors, OSL is more than 20% faster than Muesli.

4.7 Summary

The chapter presents the expressiveness of OSL using different case studies. Each
case study demonstrates the expressiveness of OSL in a specific way. The simulation of
heat equations presents the extraction of the skeleton programs from the mathematical
formulation of the problem. The FFT and Reduce and Map over Pairs present the
development of the new skeletons using the existing ones. The Reduce and Map over
Pairs also provides the insight towards the algorithmic optimisations of the problem
and how they can be expressed in terms of skeletons. The sorting problem deals with
the case of unequal distribution of the data and the communication of unequal number

70 Chapter 4. Programming with OSL

 0

 100

 200

 300

 400

 500

 600

 0 8 16 24 32 40 48 56 64 72 80 88 96

T
im

e
 (

s
)

Processors

Num-dx: 100, dx: 0.00001, Num-dt: 1, dt: 0.001

OSL.Obl
SkeTo

OSL.Standard

Figure 4.6 – Heat Equation Timings (dt=0.0001)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 8 16 24 32 40 48 56 64

T
im

e
 (

s
)

Processors

Size: 8388608

OSL.Obl
Muesli

OSL.Standard

Figure 4.7 – FFT Timings

4.7. Summary 71

of elements. The chapter concludes by presenting the experimental results obtained
while comparing OSL with some other skeleton libraries.

5Performance Prediction and

Portability

Contents

6.1 A Formal Programming Model . 87

6.1.1 Syntax . 88

6.1.2 Type System . 89

6.1.3 Operational Semantics . 89

6.2 Implementation in the Coq Proof Assistant 91

6.2.1 Distributed Arrays . 91

6.2.2 Syntax and Typing . 93

6.2.3 Big-Step Semantics . 95

6.3 Verification of a Heat Diffusion Simulation 98

6.4 Summary . 100

With the increase in architecture and software complexity, it becomes difficult to
develop the large scale parallel applications. The accurate modelling and prediction
of their performance is much complex than their development. The key contribut-
ing factors are taking account of the communications and the synchronisation details.
There are different theoretical models that claim to predict the performance of the par-
allel applications. A well established, conceptually simple and pragmatically accurate
model is the Bulk Synchronous Parallelism (BSP) as presented in chapter 1.

The performance of parallel application can not be modelled as a single parame-
ter, as is the case with the sequential applications. The high performance in parallel
programming is achieved by exploiting the features specific to the underlying archi-
tecture. Thus it is difficult to achieve a comparable performance on a different class of
architectures. The idea to achieve the high performance independent of the architec-
ture is termed as performance portability or performance tuning. The change of the
architecture in sequential computing affects the performance to a constant factor and
often negligible. But in case of the parallel computing it is extremely important as the
performance can be very poor with the change of architecture.

73

74 Chapter 5. Performance Prediction and Portability

Orléans Skeletons Library (OSL) follows a systematic approach to equip itself with
the performance prediction and performance portability features. The steps constitut-
ing the systematic approach of OSL are presented below in order:
• A BSP cost formula is assigned to every skeleton in OSL

• BSP parameters of the system are captured

• BSP cost of the application is estimated using the cost of the skeletons

• On the basis of the estimates of the different variants of a skeleton, the best one
is selected for performance portability

The rest of the chapter will focus on the above mentioned four steps. The BSP
costs of OSL skeletons are presented in the chapter 3. The benchmarking of the BSP
parameters is presented in the next section, followed by a case study of performance
prediction. The last section explains the mechanism of performance portability in OSL
using a case study application.

5.1 Benchmarking the BSP Parameters

In order to predict the cost of OSL programs we need to obtain the parameters
of the BSP system. A BSP system is characterised by four parameters: number of
processors p, the processor speed r, network permeability g and the synchronisation
overhead l. The number of processors are usually supplied by the user of the ap-
plication. There are various approaches of obtaining the BSP parameters on a parallel
machine. The principle work in this regard has been done by the authors of the Oxford
BSP Toolset [78], PUB library [31] and by Bisseling [30].

The Processor speed (r) The computation speed of an individual processor in a BSP
computer is usually determined by measuring the number of floating point operations
it can perform per second and is denoted by r. The other BSP parameters g and L are
represented as the multiples of r. So, this is the first parameter that need to be mea-
sured. Many tools exist for determining the flop rate of a processor like LINPACK [81]
and SPEC [75].

The Oxford BSP Toolset measures the average of the flop rates for a dot product
and dense matrix multiplication using an IJK loop. A program bspprobe is dedicated
for this purpose. The input data size is usually kept larger than the CPU cache size
to obtain a lower bound. The PUB library measures an approximation of r based on
measuring the time for memory copy operations.

The benchmark program of OSL (OSLprobe)is inspired by the work of the Bissel-
ing. The value of r is computed by the so called DAXPY operation (double precision
A times X plus Y).

5.2. Performance Prediction: A Case Study 75

Network Permeability (g) The parameter g, network permeability, is the time
needed to transfer one word of data under the condition of continuous traffic. The
Oxford BSP tool-set benchmark program measures g for two kinds of communica-
tions: a cyclic shift in which every processor sends and receives messages from exactly
one other processor, and an all-to-all exchange in which every processor sends and
receives messages from all the other processors.

Another approach for obtaining the parameters g and L is to measure commu-
nication times of full h-relations. Several supersteps are timed with an increasing h
relation. To become insensitive to the measurement error between different sizes of
h, it is better to perform a least square approximation. If communication time shows
approximately linear increase with the number of messages, the slope of the fitted line
gives g.

We estimate the value of g by circularly permuting the whole partition from a
processor to the other. In this way we achieve the full h-relation condition as every
processor sends and receives equal number of messages.

The synchronisation overhead (L) The value of L is determined along with the value
of g. The intersection of the slope line of g with the time-axis gives L.

OSL Probe A benchmarking program (oslprobe) is developed to capture the BSP
parameters of the system. The oslprobe uses the approaches presented above to deter-
mine the values of r, g and L.

The BSP parameters of the two clusters Mirev and Speed (see chapter C for details
of these machines) are presented in the figure 5.1

5.2 Performance Prediction: A Case Study

Once the BSP parameters of the system are known, they can be used to predict the
performance of the applications. A Heat Equation application is presented as a case
study to demonstrate the performance prediction capability of OSL. Heat Equation is
already explained in the chapter 4. The code of the heat equation is represented here
to avoid the back consulting.

Assuming the distributed array is evenly distributed among the processors: There
are two map, three zip, two shift skeletons and a copy operation for copying the results
that constitutes the computational cost of the algorithm. And the operations applied
by these skeletons have the same constant complexity: one floating point operation
(and we count the copy as one floating point operation). So the computational cost of
every skeleton is n

p , and the total computational cost of the algorithm becomes:

8×
n

p

76 Chapter 5. Performance Prediction and Portability

Machine p r g L

Mirev 1 889.04 1.17 145.46

2 888.92 223.39 30168.08

4 888.67 365.16 26132.6
8 887.21 451.8 29456.06

16 879.63 335.94 76851.26

24 863.96 156.36 115297.7
32 888.43 210.68 115005.6
40 888.11 247.11 110241.8
48 886.71 234.34 114350

56 885.40 230.37 116948

64 887.58 229.91 121424.2

Speed 1 1070.75 1.48 179.7
2 1079.12 44.78 7427.05

4 1069.2 44.15 7680.75

8 1070.51 45.14 8052.74

16 1058.11 44.64 8277.2
24 1056.41 47.62 7943.35

32 1058.34 54.74 7311.47

40 1058.64 47.46 8309.94

48 1059.62 48.12 8468.98

Figure 5.1 – BSP Parameters of the clusters

bar = zip(std::plus<double>(),

bar,

map(boost::bind(std::multiplies<double>(),

(diffuse*delta_t)/(delta_x*delta_x), _1),

zip(std::plus<double>(),

zip(std::plus<double>(),

shift(1, bfun, bar),

shift(-1, bfun,bar)),

map(boost::bind(std::multiplies<double>(), -2, _1),

bar))));

Figure 5.2 – One Step of Heat Equation

5.3. Performance Portability 77

There are two shift operations in the algorithm, contributing two barrier synchronisa-
tions in addition to the communication. Only one element is communicated to and
from each processor during the shift operation. So the communication and the syn-
chronisation cost of the algorithm becomes:

2× s× g+ 2× L

where s is the size of a single element which happens to be a double in this case. The
BSP cost of the whole algorithm is the sum of the computation, communication and
synchronisation costs. The BSP cost of heat equation is:

8×
n

p
+ 2× s× g+ 2× L

On the basis of this BSP cost formula the original cost of the heat equation can be
estimated by replacing the BSP parameters of the system.

The performance prediction results of the heat equation are presented in the fig-
ure 5.3

5.3 Performance Portability

A hard coded, single algorithm based implementation of the skeleton, is not suffi-
cient to guarantee the good performance on all systems. The factors creating the hur-
dles are the differences in the underlying system architectures, networks parameters
and the program parameters. To overcome the problem, the best suited algorithm/im-
plementation must be selected. This means for the same skeleton different versions of
the algorithm are implemented and the best one is selected following some criteria.
One such criteria is the BSP cost calculated in terms of the BSP parameters.

In the skeleton libraries, the performance portability can be applied at two levels.
At the global level the target for such optimisation is the transformation of a combi-
nation of skeletons to the other to minimise the BSP cost. In case of OSL, this type
of optimisation is not our primary concern, as with the OSL skeleton set same can be
achieved using the expression templates. At the local level, the skeletons can be opti-
mised according to the architecture. Every skeleton that can have multiple underlying
algorithms is the target of such an optimisation. In OSL reduce, scan and balance are
the candidates of such optimisation.

The current work deals with the optimisation of the reduce skeleton. The reduce

skeletons applies an associative binary reduction operator over the distributed array.
The distributed array is already distributed among the p processors.

The signature of the reduce skeleton in OSL is presented below:

<T> reduce(T ⊕(T,T), T id, DArray<T> t)

Every processor first reduces its local partition. This first step is purely computa-
tional and doesn’t involve any communication. The computed results are then shared
with other processors for the computation of the final result. Different patterns of
communication are possible at this step. We present the four different reduction algo-
rithms based on four different patterns of communication.

78 Chapter 5. Performance Prediction and Portability

 0
 8

 16
 24

 32
 40

 48
 56

 64 500

 600

 700

 800

 900

 1000

 0

 10

 20

 30

 40

 50

 60

 70

 80

time (s)

Performance prediction on mirev

time(E)
time(T)

Procs

Sizes

time (s)

 0
 8

 16
 24

 32
 40

 48 500

 600

 700

 800

 900

 1000

 0

 10

 20

 30

 40

 50

 60

 70

time (s)

Performance prediction on speed

time(E)
time(T)

Procs

Sizes

time (s)

Figure 5.3 – Performance Prediction of the 1D Heat Equation

5.3. Performance Portability 79

5.3.1 Reduce by Using Gather and Broadcast

After the computation of the local results, the results are gathered at the root processor.
Root processors then reduces the results to obtain the final result which is then broad-
cast to the remaining processors as presented in figure 5.4. The algorithm proceeds in
two super-steps. The computational phase of the first step is the local result compu-
tation. This phase is followed by the communication phase, in which all processors
submit their local results to the root processor. In this way the root processor receives
p− 1 messages. This gather operation is followed by a synchronisation barrier. So the
BSP cost of the first super-step is by assuming the cost of the reduction operator c⊕:

c⊕ ×
n

p
+ ((p− 1)× sizeo f (result)× g) + L

During the computational phase of the second super-step, only the root processor
computes the final result. All the other processors remain free. The root processor
then broadcasts the final result to all the other processors, which constitutes the com-
munication phase. Every processor receives one message and sends nothing except the
root processor which sends p− 1 messages. So the BSP cost of the second super-step
becomes:

c⊕ × p+ (p− 1× sizeo f (result)× g) + L

And the cost of the whole algorithm is the sum of the costs of the two super-steps

(c⊕ ×
n

p
+ c⊕ × p) + 2× ((p− 1)× sizeo f (result)× g) + 2× L

5.3.2 Reduce by Using All Gather

In the second version the results of the reduction of the local data are gathered by
all processors and every one computes the final result as shown in figure 5.5. Thus
the algorithm needs only one super-step to proceed. As every processor gathers the
results of the other processors, thus during the communication phase every processor
sends and receives p− 1 messages. Every processor, after synchronisation, computes
the final result. So, the BSP cost of this version becomes:

c⊕ ×
n

p
+ c⊕ × p+ ((p− 1)× sizeo f (result)× g) + L

In terms of the BSP cost, this version of the algorithm always outperforms the first
version. In terms of the processor cycles, this version consumes more. But as the
computations on every processors proceeds in parallel, this penalty has no effect on
the final BSP cost. As OSL is based over MPI, the all gather operations of the MPI is
used to collect the results. The real time performance of the all gather is not at par
with that of the gather of the first version as shown in the experimentation section.

80 Chapter 5. Performance Prediction and Portability

�� �� �� ��

���	
�������

��������

�

�

�
�
�

�
�
�

��
�

�

�
�
�

�
�
�

��
�

�

Figure 5.4 – Gather and Broadcast

�� �� �� ��

��

��

�
	
�

�
�
�

�

�

Figure 5.5 – All Gather

5.3. Performance Portability 81

�� �� �� ��

���	
��

��������

��

��

��

���	
��

������
���
���
��

Figure 5.6 – Tree Gather and Broadcast

5.3.3 Reduce by Tree Gather and Broadcast

In the third version the communication pattern is the tree like reduction which pro-
ceeds in log2 P steps. At each step, a neighbour processor is selected and the results
are communicated to it, which then reduces the results. At the end of the last step the
final result is calculated by the root processor, which then broadcasts the result to the
other processors, represented by figure 5.6.

The tree reduction version proceeds in log2 P+ 1 super-steps. During each super-
step after computing the local results one processor sends its result to its pair proces-
sor. Thus the maximum number of messages received or send by a processor is one.
The BSP cost of a single super-step is thus

c⊕ + sizeo f (result)× g+ L

.And there are log2 P such super-steps. The last super-step is the broadcast of the final
result to the other processors. So the BSP cost of the complete algorithm becomes

c⊕ ×
n

p
+ log2 P× c⊕ + log2 P× sizeo f (result)× g+ log2 P× L+ g+ L

This version outperforms the first two versions when the effect of g and L is small.

5.3.4 Reduce by Tree All Gather

The last version is the variant of the third one in which during each super-step both
pair processors gather the results 5.7. Every processor takes part in the computation

82 Chapter 5. Performance Prediction and Portability

�� �� �� ��

���	
����
����

��

��

���	
����
�����

����
���
���
��

Figure 5.7 – Tree Gather in Pairs

in all super-steps, so in the end there is no need for a broadcast operations. That is
why this version needs log2 P super-steps.

During each super-step of the last version, each processor sends and receives one
message from its pair processor, so the BSP cost of a single super-step becomes

c⊕ + sizeo f (result)× g+ L

In contrast to the third version, as all the processors takes part in computing and gath-
ering results, the broadcast operation at the end of log2 P super-steps in not needed.
So the version proceeds in log2 P super-steps and its total BSP cost is

c⊕ ×
n

p
+ log2 P× c⊕ + log2 P× sizeo f (result)× g+ log2 P× L

The limitation of this version is that it works only for the power of two number of
processors.

5.3.5 Best Algorithm Selection

The first step is to calculate the performance of all the reduction algorithms. The
performances of the algorithms depend on the input parameters of the program and
the underlying architecture. The input parameters are number of flops consumed by
the reduction operator and the size of the data. The parameters of the architecture are
actually the classic BSP parameters.

5.3. Performance Portability 83

Size of the data and the number of data elements are usually known at the runtime.
The number of flops consumed by the reduction operator are provided by the applica-
tion developer. The developer have to add a int numFlops() function to the reduc-
tion function object. A meta-function detects at compile time whether the numFlops
function is provided or not. If it is present, the performance of all the versions of the
reduce algorithm are compared and the best one is selected. Otherwise the default
reduction algorithm is applied. The advantage of implementing this strategy in the
form of metaprogramming is that it has no runtime cost. The code for the respective
case is generated at compile time.

The BSP parameters (p, g, L, r) of the underlying architecture are captured using
the benchmarking program called oslprobe as explained in the section 5.1.

Once all the parameters are known, the execution time of each algorithm is es-
timated by calculating the BSP cost of each algorithm. The best algorithm is then
selected for execution. The BSP costs of the algorithms can be calculated by estimating
the computational time, the communication time and the synchronisation time. The
computational time is estimated by counting the number of floating point operations
performed by the reduction operator, multiplied by the number of data elements, di-
vided by the BSP parameter r. The communication time is the product of maximum
number of messages sent or received by the processors and the network permeabil-
ity g. The synchronisation time is the time taken by the barrier to synchronise all
the processors i.e the parameter L. The total estimated time is the sum of the above
mentioned three.

Whenever in any application there is a call of such a skeleton, the best version of
the underlying algorithm is selected using the above mentioned strategy.

5.3.6 Variance: A Case Study

σ2 =
∑

n
i=1(xi − µ)2

n

The equation above presents the variance for n value. The variance is used as a
measure of how far a set of numbers are spread out from each other. As the purpose
of this toy application is to demonstrate the performance portability of OSL, the data
for the variance is considered as a matrix. By varying the size of the matrix(rows
and columns) the number of operation needed to calculate the variance can be varied.
Each column of the matrix is representing a unique attribute and the rows represent
the values about that attribute. So for each column of the matrix, the variance is
calculated. A wrapper class VarianceData is used to wrap the matrix data. It
defines a number of operations like sum, mean, scalarDifference and scalarProduct
which are used to calculate the variance.

The distributed array is instantiated by representing the Matrix data through the
wrapper class i.e. DArray<VarianceData<Matrix<double> > >. We use the de-
fault value constructor of the distributed array to instantiate. In this way every element
of the distributed array is an object of VarianceData holding a h× w matrix.

84 Chapter 5. Performance Prediction and Portability

Now to calculate the variance of the data, the first step is to sum up all the data
and then compute the mean of the data. The sum operation of the whole data can be
captured by the reduce skeleton. And this is the target skeleton of the performance
portability and is detailed in the next section. The reduction operator of the sum
operation is implemented in the form of a function object in the VarianceData class.
This function object is supplied with a numFlops() operation which is required for
performance portability calculation in the reduce skeleton. As the summation of two
matrices involve h× w operations, so this method simply returns h× w.

After summing up all the elements of the distributed array, the resultant matrix
is summed up and then mean of the data is calculated. This step involves no paral-
lelism and is a simple sequential operation. The next step is to compute the squared
difference between each data element and the arithmetic mean. These operations are
composed in a sequence of two map skeletons. The inner one calculating the difference
while the outer one squaring it up.

Another reduce skeleton is required to sum up the result of the preceding map

skeletons. The reduced result divided by the total number of data elements gives us
the variance of the data.

DArray<VarianceData<Matrix<double> > > dvm(length, m);

VarianceData<Matrix<double> > sigma=reduce(identity.sum,identity,dvm);

std::vector<double> meanVec = sigma.mean(length * rows);

dvm = map(boost::bind(&VarianceData<Matrix<double> >::square, _1, _1),

map(bind(&VarianceData<Matrix<double> >::scalarDifference,

_1, meanVec, _1),

dvm));

VarianceData<Matrix<double> > sigma2=reduce(identity.sum,identity,dvm);

std::vector<double> varianceVec = sigma2.mean(length * rows);

Figure 5.8 – Variance Program

The program is parametrised by the number of data elements, the height and the
width of the matrix. All the individual elements of the distributed arrays are matrices.
Thus by varying the height and width parameter the size of the program the size of
the matrix can be varied, in turn varying the number of floating point operations for
each element. The type of the matrix is double to get the same effect of floating point
operation.

The experiments are conducted in two ways: by varying the size of the elements of
the distributed array and by increasing the number of processors. The former increases
the number of floating point operations by the reduction operator, while the later is
used for the scalability 5.9.

5.4 Summary

The chapter presents the reasoning about the performance of the applications from
two axes: the performance prediction and the portability of performance. BSP cost

5.4. Summary 85

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 10 20 30 40 50 60

T
im

e
 (

s
)

Procs

Size: 10000, Rows: 100, Columns: 100

Performance Portable
Gather at Root

All Gather
Tree Gather

Tree All Gather

 4 8 12 16 20 24 28 32

Performance Portable
All Gather

Tree All Gather

Figure 5.9 – Performance Portability of Variance

model is used to predict the cost of the application. Every skeleton in OSL is assigned
a BSP cost. Thus the cost of the application can be predicted using the cost of the
individual skeletons. The strategy is implemented using the C++ metaprogramming
technique to capture the cost of the applied argument function of the skeletons. The
BSP cost is calculated using the BSP parameters of the systems benchmarked through
a probing program. The reduce skeleton is used to demonstrate the portability of
performance in OSL. The other skeletons like broadcast, gather and balance can also
benefit from the mechanism. The reason behind selecting reduce as the first to equip
with the ability is its wide range of applicability and the presence of both the com-
putations and the communications. In future versions of the OSL other skeletons will
also be equipped with this feature.

6Formal Semantics of OSL

It is important to have a formal semantics of the programming model of a language
or a library. A formal semantics offers an unambiguous reference manual for the
language and it may serve as a basis for the verification of programs.

In this chapter, formal semantics of OSL distributed arrays and skeletons are pre-
sented. In the first section, the semantics is presented in a classical way: the syntax,
a type system and an operational semantics of OSL are defined. In section 6.2, the
implementation of this formal semantics in the Coq proof assistant is presented. The
use of depend types gives for free the proof of type soundness with respect to the
operational semantics. This implementation in Coq also allows to evaluate OSL for-
mal programs. This is a very interesting form of reference manual that can allow the
co-testing of the formalisation and the implementations of OSL. In section 6.3, this
formal semantics forms the basis for the verification of an OSL application: the one
dimension heat diffusion simulation.

For convenience of the reader, a short introduction to the Coq proof assistant is
available in chapter B.

6.1 A Formal Programming Model

As in [43], we would like to model the semantics of our library without being
obliged to model the whole syntax of the host language. In this formalisation, the
syntax (and semantics) are parametrised by the underlying sequential language on
top of which OSL is built. This means no formal semantics of the C++ language is
given. Instead the syntax and semantics of the sequential language is assumed.

More formally, we assume:

• a set Es of expressions (elements of this set will be written sle), containing a
subset Vs of values (elements of this set will be written v and it includes values
of the form [v1, . . . , vn]);

• a set Ts of types (elements of this set will be written τs) that is supposed:

– to be closed by arrow, i.e if τ1 ∈ Ts and τ2 ∈ Ts then τ1 → τ2 ∈ Ts,

– to be closed by array construction, i.e if τs ∈ Ts then vector〈τs〉 ∈ Ts,

– to contain the type of integer values: int ∈ Ts,

87

88 Chapter 6. Formal Semantics of OSL

• a typing relation :s of Es × Ts that relates a well-formed and typed expression to
a type,

• an evaluation function ↓s of Es × V that relates an expression to its ultimate
simplification or value, such that:

– values evaluate to themselves, i.e ↓s is reflexive,

– if sle :s τs then there exists v such that ↓s (sle) = v,

– if sle :s τs and ↓s (sle) = v then v :s τs.

The next three sub-sections focus respectively on: the syntax of OSL programs, the
type system for OSL programs, and an operational semantics for OSL programs.

6.1.1 Syntax

The terms representing OSL programs are given by the following grammar:

e ::= se | pe
se ::= sle | se se | reduce(se, se, pe)
pe ::= pv | make(se, se) | init(se, se) | atRoot(se)

| map(se, pe) | mapIndex(se, pe) | zip(se, pe, pe) | zipIndex(se, pe, pe)
| shift(se, se, pe) | permute(se, pe) | balance(pe)
| bcast(pe) | gather(pe) | getPartition(pe) | flatten(pe)

An expression e could be either an expression se whose type is a sequential one, or
a parallel expression pe. A sequential expression could be either an expression of the
sequential language sle (possibly a value, a function), an application of a sequential
expression to another sequential expression (for example to be able to apply a sequen-
tial function to the result of a parallel skeleton expression ended by a call to reduce), or
an application of the reduce skeleton that takes as input a binary associative operator,
an identity value for this operator, and a distributed array to be reduced.

A parallel expression could be either a parallel value (the formalisation of a dis-
tributed array), either the building of distributed array using a constructor (I put here
only the constructors present in the BSML prototype but they model most of the C++
constructors as well), or a call to one of the skeletons.

A parallel value pv is of course a distributed array. A distributed array of size n
containing sequential value vi at index i will be written:

[v0 , . . . , vn−1]D

D is the distribution of the array, i.e. the number of elements on each processor.
D(i) denotes the number of elements at processor i. Elements are distributed in a
contiguous way: For example at processor 1, the sub-array is [vD(0); . . . ; vD(0)+D(1)−1].
The domain of D is {0, . . . , p − 1} where p is the number of processors of the BSP
machine. In the following we may consider sometimes for the convenience of notation
that D(−1) = 0.

6.1. A Formal Programming Model 89

6.1.2 Type System

The grammar for the types follows:

τ ::= τs | DA〈τs〉

We assume that a function of the sequential language taking two arguments of type
τ1 and τ2 respectively and returning a value of type τ has type τ1 → (τ2 → τ) also
written τ1 → τ2 → τ (functions are considered to be in curried form). DA〈τs〉 is the
type of a distributed array containing elements of type τs.

The type system for OSL is given in figure 6.1. The typing relation is written e : τ

for OSL expressions. These rules are classical and correspond roughly to the types of
the functions in the BSML prototype of OSL. For more readability, some expressions of
the sequential language that are supposed to be functions, operators, identity elements
for an operator, integers and arrays are respectively written f , ⊕, i⊕, n (or d) and a
instead of sle and variants.

6.1.3 Operational Semantics

Formal operational semantics for OSL are presented in this subsection. This seman-
tics models how the programmer should understand the skeletons, not how they are
implemented. That is why it is called a formal programming model.

This semantics, as the assumed operational semantics of the sequential language, is
a big-steps semantics: it relates OSL expressions to OSL values. In OSL the values are
either the values of the sequential language or distributed arrays of values as presented
in section 6.1.1.

This function is written

y and is defined in figure 6.2. The two constructors init and
make both returns evenly distributed arrays. Thus the specific distribution function En

(for evenly distributed global size n) is defined as:

En(i) =

{

(n/bsp_p) + 1 if i < n mod bsp_p

(n/bsp_p) otherwise

The En distribution is used in several other rules:

• In rule (6.28), the balance skeleton only changes the distribution. Initially it is an
arbitrary distribution D, and it becomes and even distribution En.

• In rule (6.29), the bcast skeleton creates a perfectly balanced distribution. If
the initial distribution is D, after the broadcast, each processor will hold D(0)
elements. Thus we obtain an even distribution of size p× D(0) where p is the
number of processors of the BSP machine.

• In rule (6.31), the getPartition skeleton returns one element per processor (each
element being an array). The distribution is thus Ep.

90 Chapter 6. Formal Semantics of OSL

sle :s τs

sle : τs
(6.1)

f : τ1 → τ2 se : τ1
f se : τ2

(6.2)

⊕ :s τ1 → τ1 → τ1 i⊕ :s τ1 pe : DA〈τ1〉

reduce(⊕, i⊕, pe) : τ1
(6.3)

n : int sle : τs

make(n, sle) : DA〈τs〉
(6.4)

n : int f : int → τs

init(n, f) : DA〈τs〉
(6.5)

sle : vector〈τs〉

atRoot(sle) : DA〈τs〉
(6.6)

f : τ1 → τ2 pe : DA〈τ1〉

map(f , pe) : DA〈τ2〉
(6.7)

f : τ1 → τ2 → τ3 pe1 : DA〈τ1〉 pe2 : DA〈τ2〉

zip(f , pe1, pe2) : DA〈τ3〉
(6.8)

f : int → τ1 → τ2 pe : DA〈τ1〉

mapIndex(f , pe) : DA〈τ2〉
(6.9)

f : int → τ1 → τ2 → τ3 pe1 : DA〈τ1〉 pe2 : DA〈τ2〉

zipIndex(f , pe1, pe2) : DA〈τ3〉
(6.10)

n : int f : int → τs pe : DA〈τs〉

shift(n, f , pe) : DA〈τs〉
(6.11)

f : int → int pe : DA〈τs〉

permute(f , pe) : DA〈τs〉
(6.12)

pe : DA〈τs〉

balance(pe) : DA〈τs〉
(6.13)

pe : DA〈τs〉

gather(pe) : DA〈τs〉
(6.14)

pe : DA〈τs〉

getPartition(pe) : DA〈vector〈τs〉〉
(6.15)

pe : DA〈vector〈τs〉〉

flatten(pe) : DA〈τs〉
(6.16)

Figure 6.1 – OSL Typing Rules

On the contrary, the atRoot constructor returns a distributed array that contains
elements only at root processor. Thus the specific distribution function Rn (for all at

6.2. Implementation in the Coq Proof Assistant 91

root of global size n) is defined as:

Rn(i) =

{

n if i = 0
0 otherwise

The Rn distribution is also used in the (6.30) rule for the gather skeleton. All skeletons
either return an evenly distributed array or keep the distribution of the input arrays
but the atRoot constructor and the gather skeleton.

The distribution of the output of the flatten skeleton may or may not be evenly
distributed. As opposed to all other skeletons the final distribution depends on the
values contained in the input distributed array. These values are sequential arrays thus
the final distribution of the concatenation of these arrays depend on initial distribution
and length of the sequential arrays. In rule (6.32), |a| denote the length of array a.

6.2 Implementation in the Coq Proof Assistant

The section deals with the modelling the programming model of OSL using the
Coq proof assistant. It starts by explaining how the modelling of the data structure of
distributed arrays and of the syntax is done. It then presents the big-step semantics
and its properties.

6.2.1 Distributed Arrays

First of all we need to model the parallel data structure of our OSL library: the dis-
tributed arrays. The content of a distributed array can be seen as a usual sequential
array plus the information about its distribution. In Coq we model the content of the
arrays by lists. The distribution is modelled by a data structure similar to lists but
with the size of the collection inside the type: vectors. A vector of type vector A n has
size n and contains values of type A. A distribution is a vector of natural numbers:
each natural number is the number of elements per processor. The size of a vector of
distribution is bsp_p, the number of processor of the BSP machine. bsp_p is strictly
positive. To cleanly formalise the fact that the syntax and semantics are parametrised
by the number of processors of the parallel machine, the semantics is a functor, i.e.
a module that takes as argument another module. This argument module has the
following type:

Module Type BSP_PARAMETERS.

Parameter lastProcessor : nat.

End BSP_PARAMETERS.

lastProcessor is supposed to be the processor identifier of the last processor. We then
define:

Definition bsp_p := S Bsp.lastProcessor.

92 Chapter 6. Formal Semantics of OSL

 y

(

[
v
0
,.
..
,
v
n
−
1
] D

)

=
[
v
0
,.
..
,
v
n
−
1
] D

(6
.1

7
)

 y

(

m
a

ke
(n

,s
le
)
)

=
[
↓
s
(s

le
)
,.
..
,
↓
s
(s

le
)
] E

n
(6
.1

8
)

 y

(

in
it
(n

,
f)

)

=
[
↓
s
(
f(
0
))

,.
..
,
↓
s
(
f(

n
−

1
))

] E
n

(6
.1

9
)

 y

(

a
tR

o
o

t(
sl
e)

)

=
[
v
0
,.
..
,
v
n
−
1
] R

n
if
↓
s
(s

le
)
=

[v
1
,.
..
,v

n
]

(6
.2

0
)

 y

(

m
a

p
(
f,
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
↓
s
(
f(

v
0
))

,.
..
,
↓
s
(
f(

v
n
−
1
))

] D
(6
.2

1
)

 y

(

z
ip
(
f,
[
v
0
,.
..
,
v
n
−
1
] D
,[

w
0
,.
..
,
w

n
−
1
] D
)
)

=
[
↓
s
(
f(

v
0
,w

0
))

,.
..
,
↓
s
(
f(

v
n
−
1
,w

n
−
1
))

] D
(6
.2

2
)

 y

(

m
a

p
In

d
e
x
(
f,
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
↓
s
(
f(
0,

v
0
))

,.
..
,
↓
s
(
f(

n
−

1,
v
n
−
1
))

] D
(6
.2

3
)

 y

(

z
ip

In
d

e
x
(
f,
[
v
0
,.
..
,
v
n
−
1
] D
,[

w
0
,.
..
,
w

n
−
1
] D
)
)

=
[
↓
s
(
f(
0,

v
0
,w

0
))

,.
..
,
↓
s
(
f(

n
−

1,
v
n
−
1
,w

n
−
1
))

] D
(6
.2

4
)

 y

(

s
h

if
t(
d
,
f,
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
↓
s
(
f
0
),
..
.,
↓
s
(
f
(d
−

1
))
,v

0
,.
..
,v

n
−
1
−

d
] D

if
d
≥

0
(6
.2

5
)

 y

(

s
h

if
t(
d
,
f,
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[v

d
;.
..
;v

n
−
1
;↓

s
(
f(

n
−

d
−

1
))
;.
..
;↓

s
(
f(

n
−

1
))
]

(6
.2

6
)

if
d
≤

0
 y

(

p
e

rm
u

te
(
f,
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
v

f−
1
0
,.
..
,
v

f−
1
(p
−
1
)
] D

(6
.2

7
)

 y

(

b
a

la
n

c
e
([

v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
v
0
,.
..
,
v
n
−
1
] E

n
(6
.2

8
)

 y

(

b
c
a

s
t(
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
v
0
,.
..
,v

D
(0
)−

1
;.
..
;v

0
,.
..
,v

D
(0
)−

1
] E

p
×

D
(0
)

(6
.2

9
)

 y

(

g
a

th
e

r(
[
v
0
,.
..
,
v
n
−
1
] D
)
)

=
[
v
0
,.
..
,
v
n
−
1
] R

n
(6
.3

0
)

 y

(

g
e

tP
a

rt
it
io

n
([

v
0
,.
..
,
v
n
−
1
] D
)
)

=
[

[v
0
,.
..
,v

D
(0
)−

1
] ,
..
.,
[v

j i
,.
..
,v

j i
+

D
(i
)−

1
] ,
..
.,
[v

j p
−
1
,.
..
,v

n
−
1
]]

E
p

w
h
er
e

j i
=

k=
i−

1

∑ k=
0

(D
(k
))

(6
.3

1
)

 y

(

fl
a

tt
e

n
([

a 0
,.
..
,
a n
−
1
] D
)
)

=
[

a 0
[0
],
..
.,

a 0
[n

0
−

1
],
a 1
[0
],
..
.,

a n
−
1
[n

n
−
1
−

1
]]

D
′

w
h
er
e

D
′ (
i)
=

∑
D
(i
−
1
)≤

k<
D
(i
)

|a
k
|

(6
.3

2
)

F
ig
u
re

6
.2

–
O
S
L

F
or

m
al

P
ro

gr
am

m
in

g
M

od
el

6.2. Implementation in the Coq Proof Assistant 93

This allows to instantiate the functor with a module containing a specific value for
lastProcessor in order to write examples and execute our semantics within Coq.

The type of distributed array is a record type:

Record distributedArray (A:Type) := mkDistributedArray {

distributedArray_data : list A;

distributedArray_distribution: vector nat bsp_p;

distributedArray_invariant:

List.length distributedArray_data = sum distributedArray_distribution

}.

This type contains the two fields already described: the content of the parallel
vector (distributedArray_data), and the distribution of this content on the processors
(distributedArray_distribution).

However there is a third field: a proof that the two fields form indeed a coherent
representation of a distributed array. The sum of the elements of the distribution
(computed using the function sum, omitted here) should be the length of the content
list.

Values of this type are a kind of inner representation of distributed arrays that the
user of the Orleans Skeleton Library could not used directly. She will be given a syntax
for writing OSL programs.

6.2.2 Syntax and Typing

The language of the Coq proof assistant can be seen as a pure functional programming
language plus the ways to express the logical properties. Therefore the sequential val-
ues and the functions of the host language (here C++) can be written as Coq values and
functions. In the case of functions we thus model only their input/output behaviour.
The typing and evaluation of Coq values and functions respect the assumption of
section 6.1, but for type vector〈τ〉 replaced by list τ. Of course the user of this formali-
sation should also choose the Coq type and values that corresponds the best to its C++
counterparts when she models a program. For example one could choose to represent
values of type int in C++ by values of type Z or nat in Coq.

The result of a computation, a value, could be either a usual sequential value, for
example the result of the application of the reduce skeleton, or a distributed array, for
example the result of the application of the map skeleton.

There are several ways of formalising the syntax of OSL programs. We shall illus-
trate this by two short examples dealing only with the construct for distributed arrays
and the map skeleton. The first solution follows:

Inductive expression :=

| DistributedArray: ∀A:Type, list A →expression

| Map : ∀A B, (A→B) →expression →expression

94 Chapter 6. Formal Semantics of OSL

To simplify the example, a distributed array is just modelled as a list of values. All val-
ues being typed in Coq, the constructor for this case of the inductive type expression

should also take as argument the type of the elements of the list. For the Map con-
structor, the first argument is the “muscle” argument, the function f to be applied to
each element of the distributed array, the second expression. Here again the input and
output types of the function should be given.

This grammar however models possibly ill-typed expressions of our language of
skeletons. It is possible to define the following Coq term:

Definition e : expression :=

Map string string (append "!") (DistributedArray nat [1;2;3]).

In Coq it is possible to indicate that some arguments may be implicit: it is the case
here for the types arguments of the two constructors Map and DistributedArray and we
could write:

Definition e : expression := Map (append "!") (DistributedArray [1;2;3]).

The expression e is well typed for Coq but it represents an ill-typed expression of our
skeleton language as the muscle function append operates on strings instead of natural
numbers. We could in Coq closely follow the syntax, type system and operational
semantics of section 6.1 and prove that the operational semantics we will define follows
the subject reduction property (i.e. it preserves the typing).

However there is another solution: we could model the grammar in such a way
that only well-typed (in the skeleton language point of view) expressions could be
modelled in Coq:

Inductive typedExpression (A:Type) :=

| TDistributedArray : list A →typedExpression A

| TMap: ∀B, (B→A) →typedExpression B →typedExpression A.

Here the grammar is typed. An expression of type typedExpression A represents an
expression whose value is a distributed array whose elements have type A. The ex-
pression e could not be defined in Coq as a typedExpression: the input type of the
muscle function in the Map constructor should be the type of the elements of the
second argument of Map.

Therefore by defining the operational semantics by a function or a relation that
relates only expressions that represent skeleton expressions of the same type, then we
have the subject reduction for free.

The syntax of OSL is actually a bit more complicated as we distinguish between
the expressions whose values have a sequential type and the expressions whose values
have parallel types, these two kinds of expressions being mutually recursive. The
whole syntax is in figure 6.3. In order to be able to apply a “sequential” program to
the result of the evaluation of a skeleton expression, we provide a SeqApply constructs.
The SeqValue constructors is simply used to provide “muscles” to the skeletons.

6.2. Implementation in the Coq Proof Assistant 95

Inductive seqExpr : Type →Type :=

| SeqValue: ∀A, A →seqExpr A

| Reduce: ∀A, seqExpr (A→A→A) →seqExpr A →parExpr A →seqExpr A

| SeqApply: ∀A B, seqExpr (A→B) →seqExpr A →seqExpr B

with parExpr : Type →Type :=

| ParValue: ∀A, distributedArray A →parExpr A

| Replicate: ∀A, seqExpr A →seqExpr nat →parExpr A

| Init: ∀A, seqExpr (nat→A) →seqExpr nat →parExpr A

| CreateAtRoot: ∀A, seqExpr (list A) →parExpr A

| Map: ∀A B, seqExpr (A→B) →parExpr A →parExpr B

| Zip: ∀A B C, seqExpr (A→B→C) →parExpr A →parExpr B →parExpr C

| MapIndex: ∀A B, seqExpr (nat→A→B) →parExpr A →parExpr B

| ZipIndex: ∀A B C, seqExpr (nat→A→B→C) →parExpr A →parExpr B →parExpr C

| Shift: ∀A, seqExpr Z →seqExpr(nat→A) →parExpr A →parExpr A

| GetPartition: ∀A, parExpr A →parExpr(list A)

| Flatten: ∀A, parExpr(list A) →parExpr A

| Permute: ∀A, seqExpr (nat→nat) →parExpr A →parExpr A

| Balance: ∀A, parExpr A →parExpr A

| Gather: ∀A, parExpr A →parExpr A

| Bcast: ∀A, parExpr A →parExpr A.

Inductive expr : Type →Type :=

| Seq: ∀A, seqExpr A →expr A

| Par: ∀A, parExpr A →expr (distributedArray A).

Figure 6.3 – OSL Syntax in Coq

The three first Coq constructors of the parExpr type are the usual OSL C++ class
constructors: we can build a distributed array by specifying its size and a value that
will be replicated everywhere (Replicate), or the content of the distributed array could
be specified by a function from array indices to values (Init). In these two cases, the
data is distributed evenly on the processors. The third constructor is used to build
a distributed array containing values only at the root processor (CreateAtRoot). The
other Coq constructors model the skeletons and their typing presented in sections 6.1.1
and 6.1.2.

6.2.3 Big-Step Semantics

For the formalisation of the big-step semantics of OSL, we define three functions, the
two first being mutually recursive:

• seqEvaluation: ∀A : Type, seqExpr A →result A

• parEvaluation: ∀A : Type, parExpr A →result (distributedArray A)

96 Chapter 6. Formal Semantics of OSL

• evaluation: ∀A : Type, expr A →result A

In addition to the semantics of section 6.1, we add the possibility for a program
to raise an error. In the previous section if there are problems the evaluation is just
not defined. Here it will be defined and will return a special kind of value: an error
message. To do so we use the technique of monadic programming [138].

The result type is used in a monadic style in order to model possible errors during
evaluation, without being too cumbersome to use compared to a solution with optional
values and pattern-matching. As in [93] for example, we use a convenient Coq feature
that allows to define notations:

Inductive result (A: Type) : Type :=

| Ok: A →result A

| Error: string →result A.

Definition bind (A B: Type) (r: result A) (g: A →result B) : result B :=

match r with

| Ok x ⇒g x

| Error msg ⇒Error msg

end.

Notation "’do’ X <− A ; B" := (bind A (fun X ⇒B)).

The bind function is used to first evaluate a result (it r argument): if it is not an
error then this value is passed as argument to the second argument that could used it
to produce a new result. If r is an error then this error is return without evaluating the
body of g.

With the do notation, the big-step semantics functions are quite readable. For
example the case for the evaluation of the reduce skeleton in the seqEvaluation function
is written as follows:

| Reduce A op neutral pe ⇒
do op <− seqEvaluation op;

do neutral <− seqEvaluation neutral;

do da <− parEvaluation pe ;

Ok(List.fold_right op neutral (distributedArray_data da))

We first evaluate the “muscles” of the skeletons. If one of these calls raises an error,
then the function immediately returns this error, otherwise it binds the obtained value
with the variable before the <− arrow and continues to evaluate the expression after
the ;.

The parEvaluation function produces values of type distributedArray. In order to
keep this function short, we defined auxiliary functions that transforms distributed
arrays. The parEvaluation function thus first recursively calls itself and seqEvaluation

on the arguments of the expression it evaluates, and obtains values, in particular in

6.2. Implementation in the Coq Proof Assistant 97

the parallel case, values of type distributedArray. Then it calls the appropriate auxiliary
function. For example:

| Replicate _ se se’ ⇒
do v <− seqEvaluation se;

do size <− seqEvaluation se’;

Ok (replicate v size)

The replicate function, and all the auxiliary functions, are defined using the Program

feature of Coq:

Program Definition replicate(A:Type)(value:A)(size:nat) : distributedArray A :=

mkDistributedArray

(List.map (fun index⇒value) (List.seq 0 size))

(evenDistribution size)

_.

Next Obligation.

autorewrite with length; rewrite sumEvenDistribution; trivial.

Defined.

For building a value of type distributedArray, we need three components:

• the content of the distributed array, in this case it is defined on the third line (we
apply a constant function to all the elements of a list of natural numbers, of the
specified size),

• the distribution, in this case it is defined on the fourth line, by a call to the
function evenDistribution,

• a proof that the content and the distribution are coherent.

The two first components are written very similarly to functional programs. For the
proof however, it is easier to use the interactive proof mode. Thus we do not give this
third component: we use the wild-card _ instead. Coq then generates proof obligations
that should be proved in order for the value replicate to be defined. The proof is here
quite simple because most of the work is done in the lemma sumEvenDistribution that
it itself proved using several other lemmas.

This replicate function could not directly raise an error. Few skeletons can: the zip

skeleton if the two parallel arguments do not have the same distribution, the permute

skeleton if the function in argument is not bijective, and the flatten skeleton if the
distribution of its argument is not one element (of type list) per processor.

By construction the type of the expressions are preserved during evaluation: we
have subject reduction for free.

evaluation, seqEvaluation and parEvaluation are functions. They can be applied to
OSL program examples in Coq. The results of such evaluations can be output. This
allows to design and implement automatic tests to check if the formal semantics and
the implementation are coherent. This can serve to debug both: the formal semantics

98 Chapter 6. Formal Semantics of OSL

may be erroneous because we were wrong in the modelling, or the implementation
may contain bugs.

6.3 Verification of a Heat Diffusion Simulation

We remind (see section 3.2.3) that the simulation of the one dimensional heat dif-
fusion could be performed by solving the following discretised equation:

u(x, t+ 1) = diffuse×
∆t

∆2
x

×
(

u(x + 1, t) + u(x− 1, t)− 2× u(x, t)
)

+ u(x, t)

The OSL program for one step of update is thus (see section 4.2.1 for a discussion
about the following code):

bar = zip(std::plus<double>(),

bar,

map(boost::bind(std::multiplies<double>(), (kappa∗dt)/(dx∗dx), _1),

zip(std::plus<double)(),

zip(std::plus<double>(),

shift(1, leftBound, bar),

shift(−1, rightBound, bar)),

map(boost::bind(std::multiplies<double>(), −2, _1), bar)))

where:

• std::plus<double>() is the addition on double precision floating point numbers of
the C++ standard library,

• boost::bind(std::multiplies<double>(), (kappa∗dt)/(dx∗dx), _1) is a function obtained
as partial application of the multiplication to the expression κdt

dx2
,

• leftBound and rightBound are the constant replacement functions that return re-
spectively l and r,

• and boost::bind(std::multiplies<double>(), −2, _1) is the function that multiplies
by 2.

For proving the correctness of the OSL heat diffusion simulation, we use the Coq
proof assistant and the formalisation of OSL programming model of the previous
section. We shall not present Coq source code, but we shall sketch the formalisation
and the proof in an informal manner.

As we do not rely on the properties of the arithmetic operators, we only assume
that we have a type number of numbers with usually operations +, −, ∗, /. When we
write (op) for an operator, we consider it has a binary function that can be partially
applied.

6.3. Verification of a Heat Diffusion Simulation 99

zip((+),

bar,

map ((∗) (/) ((∗) kappa dt) ((∗) dx dx),

zip ((−),

zip ((+), shift(1, leftBound, bar), shift(−1, rightBound, bar)),

zip ((+), bar, bar))))

Figure 6.4 – OSL Heat Diffusion Simulation in Coq

The formalisation of the OSL heat diffusion program, is therefore the expression
shown in figure 6.4, provided bar is a distributed array of numbers, kappa, dt and dx

are numbers, and leftBound and rightBound are constant functions from array index to
numbers.

The first step for the proof of correctness in the Coq proof assistant is to write
the specification of the function that computes a step of the heat diffusion simulation,
as indicated by equation (3.2) but with formally taking into account the boundary
conditions. We model the array of temperatures by a list of numbers. For this list
structure we have a function nth that takes as input an index i, a list, and a default
value d: it returns the value in the list at index i, if the index is valid, and it returns
the default value otherwise. It is a kind of array access but with the default value in
case the index is not valid. The specification could then be written, for non-empty
lists bar and valid indexes i (these conditions are omitted here but not in the formal
development):

∀κ dx dt l r bar i d,
nth i (step κ dx dt l r bar) d =
κ × dt/(dx× dx) ∗

(

(nth (1+ i) bar r)+
(if i = 0 then l else nth (i− 1) bar d)−
((nth i bar d) + (nth i bar d))

)

+
(nth i bar d).

The function step takes as argument the numbers κ, dt, dx, l and r as well as a list
of numbers bar and returns an updated list of numbers. For the parallel version of the
heat diffusion simulation, we can use the expression of figure 6.4 and the evaluation

function that models the OSL programming model as a big-step semantics. However
what we can obtain directly from these two components is a function that takes as
arguments the same numbers but a distributed array instead of a list and a returns
either a distributed array or an error message.

The first problem can be easily solved: we compose the obtained function with a
distributedArrayOfList function that takes a list and returns an evenly distributed array.

The second problem needs a proof that the evaluation of the expression of figure 6.4
will not raise an error. As a matter of fact, there is only one skeleton in this expression
that can lead to an error message: the zip skeleton in case its two distributed array

100 Chapter 6. Formal Semantics of OSL

arguments do not have the same distribution. We have a short lemma that states that
an evaluation of zip does not raise an error message when the two distributed arrays
have the same distribution, and this results is used together with the fact that the other
skeleton preserve distribution to prove that the evaluation of the OSL heat diffusion
program does not raise an error. From this proof we can build a function that evaluates
the expression of figure 6.4 and returns a distributed array.

The main theorem thus states that this last function follows the specification de-
fined above. The proof of this theorem proceeds as follows:

• the skeletons preserve the distribution, so the guards of the application of zip can
be removed,

• we then obtain for the content part of the result an expression similar to figure 6.4
but on the lists instead of the distributed arrays: using results on the commu-
tation of nth with other functions on lists such as map, this expression can be
simplified in such a way that the call to nth on the left hand side of the equation
is not on top, but rather copied inside the expression,

• finally with reason by cases on i: i is 0, i is the length of bar minus 1, or i is in
the middle. For each case the assumptions are enough to simplify both side of
the equation to the same expression.

All the Coq source code of this formalisation is available at:

http://traclifo.univ-orleans.fr/OSL.

6.4 Summary

Formal semantics of the programming model is an unambiguous reference for the
users of libraries or programming languages. Very often the formal semantics are
given only as text. In the case of OSL, both a hand-written formal semantics and a
mechanised one, using the Coq proof assistant, are provided.

Mechanising such a semantics offers the following benefits:

• The semantics is executable, thus it is possible to run a program using the im-
plementation of OSL and its formalisation, to test their conformance. This helps
to improve confidence in both the formalisation and the implementation.

• During the proofs, and even during the formalisation, the Coq proof assistant
helps to avoid forgetting subtle details.

• As the semantics of the host sequential language of OSL is considered as a black
box, it is very convenient to use the Coq functional language to model sequential
parts of OSL programs.

7Conclusions and Perspectives

Contents

A.1 C++ Expression Templates . 107

A.2 Template Metaprogramming . 110

A.3 Move Semantics and Rvalue References 111

Summary

The initial motivation of the work is to provide a platform to the sequential pro-
grammers for writing the parallel programs. The goal was to provide a infrastructure
satisfying the core limitations of the other parallel programming models, like pro-
grammability, portability, performance prediction and performance portability, and
the formal proof of correctness. The outcome of the research is OSL, a library of data
parallel skeletons developed in C++ based over the BSP model and using MPI as the
communication library. OSL provides a way to sequential programmers for develop-
ing their parallel programs just by choosing a limited set of skeletons. The skeletons
in OSL can be composed to further optimise the code. OSL can express parallelism
on non evenly distributed arrays through its unique skeletons getPartition and flatten.
Unbalanced distributed arrays could be made evenly distributed through a balance

skeleton. As the OSL is based over the BSP model, it is capable of accurately predict
the performance. It also provides a mechanism based on the BSP cost formula to port
the performance. The formal semantics of the skeletons in OSL are captured in Coq
and used for the proving the correctness of the programs developed with OSL.

Contribution of OSL in the Skeleton World

OSL being a skeleton library has contributed in several ways to the skeleton world.

• Improved programmability and improved interfacing with the existing stan-
dards. As the library is implemented using the latest C++0x standard, it offers
unique programmable features in comparison to the other skeleton frameworks.

101

102 Chapter 7. Conclusions and Perspectives

• OSL is the first library based over the pure BSP model. It does not use any
extension of the BSP.

• Performance prediction and performance portability feature is not the main con-
cern in most of the skeleton frameworks. OSL shares its interest of these aspects
with Skel-BSP.

• As the skeletons are the constraining ways of expressing parallelism, it is impor-
tant to offer a good trade-off between constraints and expressivity. OSL adds two
new skeletons to the arsenal of skeletons for changing the orientation of the data.
The change in orientation offers other views of the data and helps in expressing
irregular problems.

• OSL comes with a library for a proof assistant that provides a mechanism to
formally prove the correctness of the programs developed with OSL.

Limitations

OSL has certain limitations as well.

• The nesting of the skeletons is not supported. The reason for not supporting the
nesting is that, as the skeletons in OSL are based on BSP model, some of the
nesting yields combinations that do not follow the pure BSP model.

• There are skeletons that can benefit from the performance portability but the
feature is not still provided.

• The library can be made more efficient by adding the transformational optimisa-
tions.

Future Work

We believe that the skeleton parallelism has the potential to attract the masses of
the sequential programmers towards parallel programming. The research in OSL will
continue in several directions to make it a easy to use and performing framework.

Several real world applications will be developed with OSL. The parallelization of
a shallow water flow application of the Mapmo Lab of Université d’Orléans is the first
example in this regard.

Currently OSL is targeting only the cluster environment, the development of hy-
brid versions of OSL will start soon. The hybrid versions will be the OpenMP/MPI
version and the one with gpu programming.

The data structure at which OSL skeletons are operating is limited to the dis-
tributed arrays. The other data structures specially the addition of the irregular data
structures will be an important aspect of the upcoming work on OSL.

103

We believe that by adding full support of performance portability in OSL, we can
make it a framework capable of performing well on various architectures. There are
skeletons in OSL that can be equipped with this ability and some new skeletons can
be added as well. So, the performance portability will remain an important area of
research and development regarding OSL.

The PaPDAS1 project that is already started in 2011 is by some aspects and ex-
tension of the OSL project. In the PaPDAS project we are interested in providing
a framework to ease the development of parallel programs in a systematic way using
constructive algorithms, and to either execute very efficiently the obtained programs or
to compile these programs with a verified optimising parallel compiler. The method-
ology of the PaPDAS project is to rely on the structured model of skeletal parallelism.

A theory of program calculation could be designed in order to provide a sound
basis for a methodology of systematic development of correct parallel programs, as
well as supporting tools. Restricting the parallelism is also a mean to reduce the
semantic complexity of parallel programs. This makes possible the development of
a verified parallel compiler of an extension of C: Algorithmic Skeleton C. The ASC
language will be inspired by the OSL and SkeTo libraries.

The PaPDAS project also plans new versions of SkeTo and OSL, in particular we
shall implement hybrid OpenMP/MPI versions of our skeletons. I also aim at improv-
ing the OSL framework where every skeleton and the combination of the skeletons is
equipped with the performance portability. The balance, scan and bcast skeletons can
be equipped with the property. I shall also work on applications developed with OSL,
including a numerical simulation of water movement on land with colleagues for the
university of Orléans and INRA.

1http://traclifo.univ-orleans.fr/PaPDAS

Appendix

105

AAdvanced C++ Programming

Techniques

The section details some of the advanced C++ programming techniques applied in
the development of OSL.
• C++ Expression Templates:

• C++ Template Metaprogramming

• Move Semantics and Rvalue References

A.1 C++ Expression Templates

Traditional operator overloading for solving the mathematical expression suffers
from the following problems:

• Production of the temporaries.

• Multiple passes of the loop.

• Extra trips to the memory due to repetitive stores and loads.

• Cache thrashing

The answer to these problems is the Expression Templates technique introduced by
Todd Veldhuizen [136]. The technique is based on the templates and the operator
overloading. The expressions are encoded in the form of the templates. Operator
overloading is used to build the template object of the expression at compile time.
This template representation of the expression corresponds to the prefix order of the
expression. The evaluation of the expression is delayed until it is assigned to a con-
tainer (vector/array/matrix). The assignment operator in the container class evaluates
the expression by iterating through the index space. During each step the result of the
right hand side expression is assigned to the left hand side. In this manner the whole
expression evaluation is accomplished in a single loop. The resulting code is nearly

107

108 Appendix A. Advanced C++ Programming Techniques

efficient as its C’s counterpart. The temporaries are avoided, expression is executed in
a single pass and the operands are fetched from the memory only once.

The technique is explained by using an expression template array class. The but
is to construct the simple array arithmetic expressions. As described earlier the con-
tainer class should be provided with an overloaded assignment operator, for the lazy
evaluation of the expression. To represent the right hand expressions with a single
interface the need of a wrapper class is emerged. Specifically, Expr<T> is the wrapper
class and T is the original wrapped expression.

template <class A>

struct Expr {

operator const A&() const {

std::cout≪ ’’I am here !’’≪ std::endl;

return *static_cast<const A*>(this);

}

};

The cast operator in the Expr class delegates control to the derived class. The
container class Array<T> now can be inherited from the Expr class, providing its
class type as the template parameter of the Expr class i.e Expr<Array<T> >. This
design pattern is called “Curiously recursive template pattern” [52].

template<class T>

class Array : public Expr<Array<T> > {

public:

template <class A>

void operator = (const Expr<A>& a_) {

const A& a(a_);

for (int i = 0; i < n; ++i)

data[i] = a[i];

}

T operator[] (int i) const {

return data[i];

}

// other public or private members

};

Now, it is clear from the above code, why the wrapper class is needed. It differ-
entiates the expression templates expressions from all the other occurring at the right
hand side of the assignment operator.

What else should be wrapped inside the Expr wrapper? All the operators rep-
resenting the non leaf nodes of the expression trees are the valid expressions. The

A.1. C++ Expression Templates 109

operators can be be encoded in types using the templates, and wrapped inside the
Expr as follows

template <class A, class B>

class Add : public Expr<Add<A,B> > {

const A& a_;

const B& b_;

public:

Add(const A& a, const B& b) : a_(a),b_(b){}

double operator[](int i) const {

return a_[i] + b_[i];

}

};

Some important things to be noted here

• The operator class stores the references of the operands since the life time of the
expression objects lasts until the evaluation is completed.

• The operator class overloads the access operator[] for the evaluation of the
ith index by evaluating the corresponding expression objects.

• The inheritance of the operator class from the Expr using CRTP allows efficient
inheritance achieved at compile time and results in full inlining optimisation.

Operator overloading is used to represent expression objects.

template <class A, class B>

inline Add<A,B>

operator+(const Expr<A>& a, const Expr& b){

return Add<A,B>(a,b);

}

The drawbacks or limitations associated with this approach are

• Increased compilation time due to nested template types and inlining optimisa-
tions.

• Long and non-understandable error messages.

• Not every programmer is familiar with the templates (limited audience).

Because of the above mentioned drawbacks it is suggested [137] not to build the ex-
pression templates libraries from scratch. Some expression templates building frame-
works like PETE (Parallel Expression Templates Engine) and Proto are present and
help in writing easy, time saving and efficient code. A number of mathematical and
scientific libraries are developed using this. Some critiques on the traditional expres-
sion template techniques are presented [74] and improvements are suggested.

110 Appendix A. Advanced C++ Programming Techniques

A.2 Template Metaprogramming

Metaprogramming refers to the programs that represent or manipulate other pro-
grams. Classic examples are the interpreters, program generators and the compilers.
In the context of C++, the term refers to the mechanism based on the C++ template
system to perform computations at the compile time. In C++ it is not a planned and
designed feature, infact it is discovered as an accident and is first demonstrated by the
Erwin Unruh by his prime computation program.

#include<iostream>

template <int p, int i>

class is_prime {

public:

enum { prim = (p==2) || (p\%i) && is_prime<(i>2?p:0),i-1>::prim };

};

template<>

class is_prime<0,0> {

public:

enum {prim=1};

};

template<>

class is_prime<0,1> {

public:

enum {prim=1};

};

template <int i>

class Prime_print {

// primary template for loop to print prime numbers

public:

Prime_print<i-1> a;

enum { prim = is_prime<i,i-1>::prim };

void f() {

if (prim)

std::cout ≪ "prime number:" ≪ i ≪ std::endl;

a.f();

}

};

template<>

class Prime_print<1> { // full specialisation to end the loop

public:

enum {prim=0};

void f() {};

};

A.3. Move Semantics and Rvalue References 111

#ifndef LAST

#define LAST 18

#endif

int main() {

Prime_print<LAST> a;

a.f();

}

Although the program presented above is a metaprogram, but it is a value compu-
tational metaprogram. But mostly the usage and main power of the metaprogramming
is dedicated to the type based programming.

template<typename X, typename Y>

struct SameType

{

enum { result = 0 };

};

template<typename T>

struct SameType<T, T>

{

enum { result = 1 };

};

The program above outputs 1 if the two types supplied to the SameType as pa-
rameters are same. A lot of the basics like conditional constructs, looping constructs,
asserts, object generators, compile time containers and the relevant algorithms etc,that
can be used to build more sophisticated metaprograms are packaged in the form of
Boost metaprogramming library [3]. There are certain limitation of template metapro-
gramming as well like no error reporting mechanism, increase compilation times, al-
most unreadable source code and hence difficult to debug these programs.

A.3 Move Semantics and Rvalue References

Copying is one of the most expensive operation. It becomes a performance bot-
tleneck in the efficiency of the software if there are unwanted copy operations. There
are situations in which the unnecessary copy operations can be avoided. Consider the
code presented below:

std::vector<T> vec;

vec = create();

112 Appendix A. Advanced C++ Programming Techniques

create() is a factory function creating an instance of the std::vector<T>. The
created vector object is copied to the variable vec as return value before destroying
the local copy. This copy operation is useless as the locally allocated memory for the
object is never used. The operation can become much efficient if the vec variable
starts pointing the local memory of the object created in create() method. This
idea is called Moving and is supported in C++0x with the introduction of the Rvalue
references and the move semantics.

Contrary to the lvalues like named objects rvalues are the ones for which the
address can not be taken of. The examples of the rvalues are the unnamed temporary
objects. vec is the lvalue reference and the return temporary object of the create()
is the rvalue reference. Moving from lvalues is not safe because the original data in
the lvalue is lost. But moving from the rvalues is safe as they are the temporaries and
no data will be lost. Thus rvalues are used for the identification of the target of the
move operation.

In C++0x the move semantics can be implemented by implementing the move
constructor and move assignment operator.

class MemoryBlock

{

public:

// Copy constructor.

MemoryBlock(const MemoryBlock& other)

: _length(other._length)

, _data(new int[other._length])

{

std::cout ≪ ‘‘In MemoryBlock(const MemoryBlock&). length = ’’

≪ other._length ≪ ‘‘. Copying resource.’’ ≪ std::endl;

std::copy(other._data, other._data + _length, _data);

}

// Copy assignment operator.

MemoryBlock& operator=(const MemoryBlock& other)

{

std::cout ≪ ‘‘In operator=(const MemoryBlock&). length = ’’

≪ other._length ≪ ‘‘. Copying resource.’’ ≪ std::endl;

if (this != &other)

{

// Free the existing resource.

delete[] _data;

_length = other._length;

_data = new int[_length];

std::copy(other._data, other._data + _length, _data);

}

return *this;

}

private:

A.3. Move Semantics and Rvalue References 113

size_t _length; // The length of the resource.

int* _data; // The resource.

};

The code presented above is taken from the msdn Microsoft’s web page [1]. The
code contains a traditional copy constructor and a copy assignment operator.

// Move constructor.

MemoryBlock(MemoryBlock&& other)

: _data(NULL)

, _length(0)

{

std::cout ≪ ‘‘In MemoryBlock(MemoryBlock&&). length = ’’

≪ other._length ≪ ‘‘. Moving resource.’’ ≪ std::endl;

// Copy the data pointer and its length from the

// source object.

_data = other._data;

_length = other._length;

// Release the data pointer from the source object so that

// the destructor does not free the memory multiple times.

other._data = NULL;

other._length = 0;

}

// Move assignment operator.

MemoryBlock& operator=(MemoryBlock&& other)

{

std::cout ≪ ‘‘In operator=(MemoryBlock&&). length = ’’

≪ other._length ≪ ‘‘.’’ ≪ std::endl;

if (this != &other)

{

// Free the existing resource.

delete[] _data;

// Copy the data pointer and its length from the

// source object.

_data = other._data;

_length = other._length;

// Release the data pointer from the source object so that

// the destructor does not free the memory multiple times.

other._data = NULL;

other._length = 0;

}

return *this;

}

The above presented move constructor and the move assignment operator equip
the MemoryBlock class with the move semantics. The && operator represents the
rvalue reference. std is provided with a move function to properly handle the move
operation. The modified constructor is presented below

114 Appendix A. Advanced C++ Programming Techniques

MemoryBlock(MemoryBlock&& other)

: _data(NULL)

, _length(0)

{

*this = std::move(other);

}

The other details about the move semantics and the rvalue references can be found
in the articles [123, 2].

BA Short Introduction to The Coq

Proof Assistant

Contents

C.1 Mirev . 119

C.2 Speed . 119

The Coq proof assistant [129, 27, 26] is based on the calculus of inductive constructions.
This calculus is a higher-order typed λ-calculus. The Curry-Howard correspondence
is at the core of Coq: Theorems are types and their proofs are terms of the calculus.
The Coq system provides a language of tactics to help the user to build proof terms.

We illustrate quickly all these notions on a short example. We first define a new
inductive type, the type of natural numbers in the Peano style:

Inductive nat : Set :=

| O : nat

| S : nat →nat.

nat has type Set: it is similar to a usual data-type in a functional language.
We also define the plus recursive function on natural numbers:

Fixpoint plus (n1 n2:nat) {struct n1} : nat :=

match n1 with

| O ⇒n2

| S n ⇒S(plus n n2)

end.

In this recursive definition we should specify which argument is structurally decreas-
ing (n1 in the example). This is because all functions must be terminating in Coq. In
both definitions, we gave the type of the new name we wanted to define as well as a
term of this type. We then define a lemma:

Lemma plus_n_O : ∀n, plus n O = n.

Proof.

induction n.

115

116 Appendix B. A Short Introduction to The Coq Proof Assistant

(∗ case n=0 ∗) simpl. reflexivity.

(∗ case n>0 ∗) simpl. rewrite IHn. reflexivity.

Qed.

If we check (using the Check command of Coq) the type of expression, we would
obtain Prop. This definition is a proposition. It belongs to the logical realm. To define
plus_n_O we should not only provide a type, but also a term of this type: a proof of
the lemma. We could write directly such a term, but it is usually complicated. Coq
provides a language of tactics to help the user to build proof terms. In the top-level
of Coq, entering line beginning with Lemma activates the interactive proof mode. The
Coq proof assistant indicates that we should prove the following goal:

============================

forall n : nat, plus n O = n

We prove this goal by induction on n using the tactic induction n. The system
indicates now two goals to prove:

============================

plus O O = O

subgoal 2 is:

plus (S n) O = S n

The first one is proved using the definition of plus using the tactic simplwhich yields
the goal 0 = 0 and this case is ended by the application of the tactic reflexivity.
The second one is the inductive case:

n : nat

IHn : plus n O = n

============================

plus (S n) O = S n

After simplification, we obtain the goal S(plus n O) = S n. We solve it first by
rewriting plus n O in n using the IHn hypothesis and then we conclude by reflexiv-
ity. Actually, Coq has some automation. The plus_n_O lemma could be proved using
one tactic: auto.

Mixing logical and computational parts is possible in Coq. For example a function
of type A→ B with a precondition P and a post-condition Q corresponds to a con-
structive proof of type: forall x:A, (P x) → exists y:B → (Q x y). This
could be expressed in Coq using the inductive type sig:

Inductive sig (A:Set) (P:A→Prop) : Set := | exist: ∀(x:A), (P x) →(sig A P).

It could also be written, using syntactic sugar, as {x:A|(P x)}.
This feature is used in definition of the function pred:

Require Import Program.

Program Definition pred (n:nat | n<>O) : {q:nat|(S q)=n} :=

117

match n with

| O ⇒_

| S n ⇒n

end.

The specification of this function is: forall n : {m : nat | m<>O}, {q : nat | S q = ‘n}

where ‘n represents the natural number part of n (the other part being a proof that
this natural number is not zero). We define pred using the Program feature of Coq.
This feature allows the user to write a function with post-conditions as if there were
no post-condition. Program generates proof obligations to be proved to ensure that
the function result indeed meets the post-condition. Moreover in this example the
proof obligations are proved automatically by the system.

CMachines used for testing OSL

C.1 Mirev

Number of nodes 8

Processors per node 2

Cores per processor 4

RAM 16Gb
Total number of cores 64

Processor type AMD Opteron QuadCore 2376 2.3 GHz
Network Giga Ethernet (Cooper)

MPI Version Open MPI 1.4.2

C.2 Speed

Number of nodes 1

Processor per node 4

Cores per processor 12

Mémoire vive 64Gb
Total number of cores 48

Pprocessor type AMD Opteron Processor 6174 2.2 GHz
Network -

MPI Version MPICH 2

119

Bibliography

[1] How to: Write a move constructor. http://msdn.microsoft.com/en-us/
library/dd293665.aspx, 2010. Cited page 113.

[2] D. Abraham. Series of articles on move semantics. http://cpp-next.com/
archive/2009/08/want-speed-pass-by-value/, 2009. Cited page 114.

[3] D. Abrahams and A. G. Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley
Professional, 2004. Cited page 111.

[4] S. Adachi, H. Iwasaki, and Z. Hu. Diff: A Powerfull Parallel Skeleton. In The 2000

International Conference on Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA), volume 4, pages 425–527. CSREA Press, 2000. Cited page 21.

[5] F. Ahmad and Y. Xin. Automatic generation and tuning of mpi collective com-
munication routines. In Proceedings of the 19th annual international conference on
Supercomputing, ICS ’05, pages 393–402, New York, NY, USA, 2005. ACM. Cited
page 24.

[6] M. Aldinucci. Eskimo: Experimenting with Skeletons in the Shared Address
Model . Parallel Processing Letters, 13(3):449–460, 2003. Cited page 17.

[7] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The implementation
of ASSIST, an environment for parallel and distributed programming. In 9th Intl
Euro-Par 2003: Parallel and Distributed Computing, volume 2790, pages 712–721,
2003. Cited page 18.

[8] M. Aldinucci, M. Coppola, M. Danelutto, N. Tonellotto, M. Vanneschi, and
C. Zoccolo. High level grid programming with ASSIST. Computational Meth-
ods in Science and Technology, 12(1):21–32, 2006. Cited page 18.

[9] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc.
of the 11th IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS99), pages 955–962, 1999. Cited page 18.

[10] M. Aldinucci and M. Danelutto. Skeleton-based parallel programming: Func-
tional and parallel semantics in a single shot. Computer Languages, Systems and
Structures, 33(3-4):179–192, 2007. Cited pages 17 et 25.

121

122 Bibliography

[11] M. Aldinucci, M. Danelutto, and P. Dazzi. Muskel: An expandable skeleton
environment. Scientific International Journal for Parallel and Distributed Computing,
8:325–341, 2007. Cited page 18.

[12] M. Aldinucci, M. Danelutto, and P. Teti. An Advanced Environment Supporting
Structured Parallel Programming in Java. Future Generation Computer Systems,
19:611–626, 2002. Cited pages 17 et 25.

[13] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: incorpo-
rating long messages into the LogP model—one step closer towards a realistic
model for parallel computation. In ACM symposium on Parallel algorithms and
architectures (SPAA), pages 95–105. ACM, 1995. Cited page 7.

[14] J. Alglave, A. C. J. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Z.
Nardelli. The semantics of power and arm multiprocessor machine code. In
L. Petersen and M. M. T. Chakravarty, editors, Proceedings of the POPL 2009 Work-
shop on Declarative Aspects of Multicore Programming, DAMP 2009, Savannah, GA,
USA, January 20, 2009, pages 13–24. ACM, 2009. Cited page 7.

[15] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,
and L. Rauchwerger. Stapl: an adaptive, generic parallel c++ library. In Pro-
ceedings of the 14th international conference on Languages and compilers for parallel
computing, LCPC’01, pages 193–208, Berlin, Heidelberg, 2003. Springer-Verlag.
Cited page 23.

[16] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent programs.
Springer, 2nd edition edition, 1997. Cited page 7.

[17] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems, 20:404–418, 2009. Cited page 3.

[18] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: a struc-
tured high-level parallel language, and its structure support. Concurrency: Prac-
tice and Experiences, 7(3):225–255, May 1995. Cited page 15.

[19] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. Skie: a heterogeneous
environment for hpc applications. Parallel Computing, 25:1827–1852, 1999. Cited
page 16.

[20] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Programming, Deploying, Composing, for the Grid. In J. Cunha and O. F. Rana,
editors, Grid Computing: Software Environments and Tools. Springer, 2006. Cited
page 4.

[21] A. Basumallik, S.-J. Min, and R. Eigenmann. Programming distributed memory
sytems using openmp. In IPDPS, pages 1–8, 2007. Cited page 4.

Bibliography 123

[22] A. Benoit and M. Cole. Two fundamental concepts in skeletal parallel program-
ming. In The International Conference on Computational Science (ICCS 2005) , Part
II, LNCS 3515, pages 764–771. Springer Verlag, 2005. Cited page 21.

[23] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Flexible Skeletal Programming
with eSkel. In J. C. Cunha and P. D. Medeiros, editors, 11th International Euro-Par
Conference, LNCS 3648, pages 761–770. Springer, 2005. Cited page 21.

[24] J. Berthold, M. Dieterle, O. Lobachev, and R. Loogen. Parallel fft with eden
skeletons. In Proceedings of the 10th International Conference on Parallel Computing
Technologies, PaCT ’09, pages 73–83, Berlin, Heidelberg, 2009. Springer-Verlag.
Cited page 22.

[25] J. Berthold, M. Dieterle, and R. Loogen. Implementing parallel google map-
reduce in eden. In Proceedings of the 15th International Euro-Par Conference on Par-
allel Processing, Euro-Par ’09, pages 990–1002, Berlin, Heidelberg, 2009. Springer-
Verlag. Cited page 22.

[26] Y. Bertot. Coq in a hurry, 2006. http://hal.inria.fr/inria-00001173. Cited
page 115.

[27] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Springer, 2004. Cited pages 35 et 115.

[28] G. Bilardi, A. Pietracaprina, G. Pucci, K. T. Herley, and P. Spirakis. Bsp versus
logp. Algorithmica, 24:405–422, 1999. Cited page 7.

[29] R. S. Bird. Lectures on constructive functional programming. In M. Broy, editor,
Constructive Methods in Computing Science, number 55 in NATO ASI, Marktober-
dorf, BRD, 1989. Springer. Cited page 25.

[30] R. Bisseling. Parallel Scientific Computation. A structured approach using BSP and
MPI. Oxford University Press, 2004. Cited pages 5 et 74.

[31] O. Bonorden, B. Judoiink, I. von Otte, and O. Rieping. The Paderborn University
BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003. Cited page 74.

[32] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn Univer-
sity BSP (PUB) Library - Design, Implementation and Performance. In Proc.
of 13th International Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing (IPPS/SPDP), San-Juan, Puerto-Rico, April 1999. Cited
page 24.

[33] G. H. Botorog and H. Kuchen. Efficient parallel programming with algorithmic
skeletons. In Bougé et al. [37]. Cited page 19.

124 Bibliography

[34] G.-H. Botorog and H. Kuchen. Skil: an imperative language with algorithmic
skeletons for efficient distributed programming. In 5th Symposium on High Perfor-
mance Distributed Computing (HPDC-5), pages 243–252. IEEE Computer Society
Press, 1996. Cited page 19.

[35] G.-H. Botorog and H. Kuchen. Using algorithmic skeletons with dynamic data
structures. In Irregular’96, pages 263–276. Springer Verlag, LNCS 1117, 1996.
Cited page 20.

[36] G.-H. Botorog and H. Kuchen. Efficient high-level parallel programming. Theo-
retical Computer Science, 196:71–107, 1998. Cited page 19.

[37] L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors. Euro-Par’96 Parallel
Processing, number 1123–1124 in LNCS, Lyon, August 1996. LIP-ENSL, Springer.
Cited pages 123, 124 et 127.

[38] W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot. Functional Par-
allel Programming with Revised Bulk Synchronous Parallel ML. In K. Nakano,
editor, First International Conference on Networking and Computing (ICNC 2010),
2nd International Workshop on Parallel and Distributed Algorithms and Applications
(PDAA), pages 191–196. IEEE Computer Society, 2010. Cited page 35.

[39] S. Breitinger. Design and Implementation of the Parallel Functional Language Eden.
PhD thesis, 1998. Cited page 22.

[40] S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. P. na Marí. Eden– the paradise
of functional concurrent programming. In Bougé et al. [37]. Cited page 22.

[41] A. A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. G. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger. STAPL: stan-
dard template adaptive parallel library. In G. Haber, D. D. Silva, and E. L.
Miller, editors, The 3rd Annual Haifa Experimental Systems Conference (SYSTOR
2010). ACM, 2010. Cited page 23.

[42] D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer, 2004. Cited
page 4.

[43] D. Caromel, L. Henrio, and M. Leyton. Type safe algorithmic skeletons. In
16th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), pages 45–53. IEEE Computer Society, 2008. Cited pages 25

et 87.

[44] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications
avec Objective Caml. O’Reilly France, 2000. freely available in english at
http://caml.inria.fr/oreilly-book. Cited page 35.

[45] B. Chapman, G. Jost, and R. van Der Pas. Using OpenMP. MIT Press, 2008. about
OpenMP 2.5. Cited page 3.

Bibliography 125

[46] S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANA-
CLETO: a template-based P3L compiler. In Proc. of the Parallel Computing Work-
shop (PCW’97), 1997. Cited page 15.

[47] P. Ciechanowicz and H. Kuchen. Enhancing Muesli’s Data Parallel Skeletons
for Multi-core Computer Architectures. In IEEE International Conference on High
Performance Computing and Communications (HPCC), pages 108–113, 2010. Cited
page 20.

[48] P. Ciechanowicz, M. Poldner, and H. Kuchen. The Münster Skeleton Library
Muesli – A Comprenhensive Overview. Technical Report Working Paper No.
7, European Research Center for Information Systems, University of Münster,
Germany, 2009. Cited page 68.

[49] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1989. Available at http://homepages.inf.ed.ac.uk/mic/

Pubs. Cited pages 9 et 13.

[50] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for
Skeletal Parallel Programming. Parallel Computing, 30(3):389–406, 2004. Cited
pages 19, 21 et 24.

[51] M. Cole and Y. Hayashi. Static Performance Prediction of Skeletal Programs.
Parallel Algorithms and Applications, 17(1):59–84, 2002. Cited page 21.

[52] J. O. Coplien. Curiously recurring template patterns. C++ Rep., 7:24–27, February
1995. Cited page 108.

[53] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.
In Fourth Symposium on Principles and Practice of Parallel Programming, San Diego,
California, May 1993. ACM SIGPLAN. Cited page 7.

[54] F. Dabrowski and F. Loulergue. Functional Bulk Synchronous Programming in
C++. In 21st IASTED International Multi-conference, Applied Informatics (AI 2003),
Symposium on Parallel and Distributed Computing and Networks, pages 462–467.
ACTA Press, february 2003. Cited page 21.

[55] M. Danelutto and P. Dazzi. Joint Structured/Unstructured Parallelism Exploita-
tion in Muskel. In V. Alexandrov, D. van Albada, P. Sloot, and J. Dongarra,
editors, International Conference on Computational Science (ICCS 2006), LNCS.
Springer, 2006. Cited page 18.

[56] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for data parallelism
in p3l. In Proceedings of the Third International Euro-Par Conference on Parallel
Processing, Euro-Par ’97, pages 619–628. Springer-Verlag, 1997. Cited page 15.

126 Bibliography

[57] M. Danelutto and M. Stigliani. Skelib: Parallel programming with skeletons in c.
In Proceedings from the 6th International Euro-Par Conference on Parallel Processing,
Euro-Par 2000, pages 1175–1184, 2000. Cited page 16.

[58] M. Danelutto and P. Teti. Lithium: A Structured Parallel Programming Environ-
ment in Java. LLNCS 2330, pages 844–853. Springer, 2002. Cited page 17.

[59] J. Darlington, A. J. Field, P. G. Harrison, P. Kelly, D. Sharp, Q. Wu, and R. While.
Parallel Programming Using Skeleton Functions. In PARLE’93. Springer Verlag,
1993. Cited page 65.

[60] R. Di Cosmo, S. Pelagatti, and Z. Li. A calculus for parallel computations over
multidimensional dense arrays. Computer Language Structures and Systems, 33(3-
4):82–110, 2007. Cited page 24.

[61] C. Dumont and F. Mourlin. A mobile computing architecture for numerical
simulation. CoRR, 2007. Cited page 4.

[62] C. Dumont and F. Mourlin. Space based architecture for numerical solving. In
CIMCA/IAWTIC/ISE, pages 309–314, 2008. Cited page 4.

[63] K. Emoto, K. Matsuzaki, Z. Hu, and M. Takeichi. Domain-Specific Optimization
Strategy for Skeleton Programs. In A.-M. Kermarrec, L. Bougé, and T. Priol,
editors, Euro-Par 2007, Parallel Processing, 13th International Euro-Par Conference,
Rennes, France, August 28-31, 2007, Proceedings, LNCS 4661, pages 705–714.
Springer, 2007. Cited pages 21 et 68.

[64] J. Falcou and J. Sérot. Formal Semantics Applied to the Implementation of a
Skeleton-Based Parallel Programming Library. In C. H. Bischof, H. M. Bücker,
P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. J. Peters, editors, Parallel
Computing: Architectures, Algorithms and Applications, ParCo 2007, volume 15 of
Advances in Parallel Computing, pages 243–252. IOS Press, 2007. Cited pages 22

et 25.

[65] J. Falcou, J. Sérot, T. Chateau, and J.-T. Lapresté. Quaff: Efficient C++ Design for
Parallel Skeletons. Parallel Computing, 32:604–615, 2006. Cited page 22.

[66] M. J. Flynn. Very high speed computing systems. Proc. IEEE, 54(12):1901–1909,
1966. Cited page 2.

[67] C. Fonlupt, P. Marquet, and J.-L. Dekeyser. Data-parallel load balancing strate-
gies. Parallel Computing, 24(11):1665 – 1684, 1998. Cited page 51.

[68] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings
of the Tenth Annual Symposium on Theory of Computing (STOC). ACM, May 1978.
Cited page 5.

Bibliography 127

[69] L. Gesbert, Z. Hu, F. Loulergue, K. Matsuzaki, and J. Tesson. Systematic Devel-
opment of Correct Bulk Synchronous Parallel Programs. In The 11th International
Conference on Parallel and Distributed Computing, Applications and Technologies (PD-
CAT), pages 334–340. IEEE Computer Society, 2010. Cited page 25.

[70] G. Gopalakrishnan and R. M. Kirby. Formal Methods for MPI Programs. Elec-
tronic Notes in Theoretical Computer Science, 193:19–27, 2007. Cited page 7.

[71] G. Gopalakrishnan and R. M. Kirby. Runtime verification methods for MPI. In
IPDPS, pages 1–5. IEEE, 2008. Cited page 7.

[72] T. Y. H. Tang, K. Shen. Program transformation and runtime support for
threaded mpi execution on shared-memory machines. ACM Transactions on Pro-
gramming Languages and Systems, 22:673–700, 2000. Cited page 4.

[73] P. Haller and M. Odersky. Scala Actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202 – 220, 2009. Cited page 4.

[74] J. Hardtlein, A. Linke, and C. Pflaum. Fast expression templates. In International
Conference on Computational Science (2), pages 1055–1063, 2005. Cited page 109.

[75] J. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Computer Archi-
tecture News, 34:1–17, September 2006. Cited page 74.

[76] M. Hidalgo-Herrero and Y. Ortega-Mallén. An Operational Semantics for the
Parallel Language Eden. Parallel Processing Letters, 12(2):211–228, 2002. Cited
page 22.

[77] J. M. D. Hill, P. I. Crumpton, and D. A. Burgess. Theory, practice, and a tool for
BSP performance prediction. In Bougé et al. [37]. Cited page 24.

[78] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Programming Library.
Parallel Computing, 24:1947–1980, 1998. Cited pages 6, 24 et 74.

[79] C. A. R. Hoare. An axiomatic basis for computer programmation. Communication
of the ACM, 12(10):576–580, 1969. Cited page 7.

[80] Z. Hu, M. Takeichi, and W.-N. Chin. Parallelization in calculational forms. In
POPL’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 316–328. ACM Press, 1998. Cited page 25.

[81] A. P. J. Dongarra, P. Luszczek. The linpack benchmark: past, present and future.
Concurrency and Computation: Practice and Experience, 15(9):803–820, 2003. Cited
page 74.

[82] E. Johnson and D. Gannon. Hpc++: experiments with the parallel standard tem-
plate library. In Proceedings of the 11th international conference on Supercomputing,
ICS 97, pages 124–131. ACM, 1997. Cited page 23.

128 Bibliography

[83] D. Kafura and J.-P. Briot. Introduction to Actors and Agents. IEEE Concurrency,
6(2):24–29, 1998. Cited page 4.

[84] Y. Karasawa and H. Iwasaki. A Parallel Skeleton Library for Multi-core Clus-
ters. In International Conference on Parallel Processing (ICPP), pages 84–91. IEEE
Computer Society, 2009. Cited page 21.

[85] T. Kielmann, H. E. Bal, S. Gorlatch, K. Verstoep, and R. F. H. Hofman. Network
performance-aware collective communication for clustered wide-aera systems.
Parallel Computing, 27:1431–1456, 2001. Cited page 7.

[86] H. Kuchen. Implementing an object oriented design in curry. In WFLP, pages
499–509, 2000. Cited page 20.

[87] H. Kuchen. A Skeleton Library. In 8th International Euro-Par Conference, LNCS
2400, pages 620–629. Springer, 2002. Cited page 20.

[88] H. Kuchen. Optimizing sequences of skeleton calls. In Domain-Specific Program
Generation, pages 254–273, 2003. Cited page 20.

[89] H. Kuchen and M. Cole. The Integration of Task and Data Parallel Skeletons.
Parallel Processing Letters, 12(2):141–155, 2002. Cited pages 20 et 68.

[90] H. Kuchen and M. Poldner. On Implementing the Farm Skeleton. Parallel Pro-
cessing Letters, 18(1):204–219, 2008. Cited page 68.

[91] H. Kuchen and J. Striegnitz. Higher-order functions and partial applications for
a c++ skeleton library. In Java Grande, pages 122–130, 2002. Cited page 20.

[92] H. Kuchen and J. Striegnitz. Features from functional programming for a c++
skeleton library. Concurrency - Practice and Experience, 17(7-8):739–756, 2005.
Cited page 20.

[93] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009. Cited page 96.

[94] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The
Objective Caml System release 3.12. http://caml.inria.fr, 2010. Cited
page 35.

[95] E. Levin. Grand challenges to computation science. Commun. ACM, 32:1456–
1457, 1989. Cited page 2.

[96] M. Leyton. Advanced features for algorithmic skeleton programming. PhD thesis,
Université de Nice Sophia Anti Polis, OCT 2008. Cited page 22.

[97] M. Leyton, L. Henrio, and J. M. Piquer. Exceptions for algorithmic skeletons. In
P. D’Ambra, M. R. Guarracino, and D. Talia, editors, 16th International Euro-Par
Conference, LNCS 6272, pages 14–25. Springer, 2010. Cited page 25.

Bibliography 129

[98] M. Leyton and J. M. Piquer. Skandium: Multi-core Programming with Algorith-
mic Skeletons. In PDP, pages 289–296, 2010. Cited page 22.

[99] O. Lobachev and R. Loogen. Estimating Parallel Performance, A Skeleton-Based
Approach . In 4th workshop on High-Level Parallel Programming and Applications
(HLPP). ACM, 2010. Cited page 24.

[100] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel functional program-
ming in Eden. Journal of Functional Programming, 15(3):431–475, 2005. Cited
page 22.

[101] F. Loulergue, F. Gava, and D. Billiet. Bulk Synchronous Parallel ML: Modular Im-
plementation and Performance Prediction. In V. S. Sunderam, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, editors, International Conference on Computational
Science (ICCS), LNCS 3515, pages 1046–1054. Springer, 2005. Cited page 35.

[102] A. S. M. Baker, B. Carpenter. Mpj express: Towards thread safe java hpc. In Pro-
ceedings of the 2006 IEEE International Conference on Cluster Computing, September
25-28, 2006, Barcelona, Spain. IEEE, 2006. Cited page 4.

[103] K. Matsuzaki and K. Emoto. Implementing Fusion-Equipped Parallel Skeletons
by Expression Templates. In 21st International Workshop on Implementation and
Application of Functional Languages (IFL), LNCS. Springer, 2009. Cited page 21.

[104] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu. A Library of Constructive Skele-
tons for Sequential Style of Parallel Programming. In InfoScale’06: Proceedings of
the 1st international conference on Scalable information systems. ACM Press, 2006.
Cited pages 21 et 68.

[105] W. F. McColl. Scalability, portability and predictability: The BSP approach to
parallel programming. Future Generation Computer Systems, 12:265–272, 1996.
Cited page 5.

[106] B. Nichols, D. Buttlar, and J. Proulx Farrell. Pthreads Programming: A POSIX
Standard for Better Multiprocessing. O’Reilly, 1996. Cited page 3.

[107] R. Nishtala, N. Patel, K. Sanghavi, and K.Chakrabarti. Automatic tuning of
collective communication operations in mpi. 2003. Cited page 24.

[108] OpenMP Architecture Review Board. OpenMP Application Program Interface
version 3.0, may 2008. Cited page 3.

[109] S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic
approach. Communications of the ACM, 19(5):279–285, 1976. Cited page 7.

[110] M. Parkinson. The next 700 separation logics. In G. Leavens, P. O’Hearn, and
S. Rajamani, editors, Verified Software: Theories, Tools, Experiments, volume 6217 of
Lecture Notes in Computer Science, pages 169–182. Springer Berlin / Heidelberg,
2010. Cited page 7.

130 Bibliography

[111] S. Pelagatti. A Methodology for the Development and the Support of Massively Parallel
Programs. PhD thesis, Univ. Pisa, 1993. Cited page 15.

[112] S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis, 1998.
Cited page 15.

[113] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J. Don-
garra. Performance analysis of mpi collective operations. Cluster Computing,
10:127–143, June 2007. Cited page 24.

[114] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel program-
ming on clusters of multi-core smp nodes. In PDP, pages 427–436, 2009. Cited
page 4.

[115] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel
library (stapl). In LCR, pages 402–409, 1998. Cited page 23.

[116] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly, 2007. Cited page 23.

[117] G. S. R.L. Graham. Mpi support for multi-core architectures: Optimized shared
memory collectives. In Proceedings of the 15th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, pages 130–140. Springer-Verlag, 2008. Cited page 4.

[118] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: a
rigorous and usable programmer’s model for x86 multiprocessors. Commun.
ACM, 53(7):89–97, 2010. Cited page 7.

[119] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel
and Distributed Computing, 14:361–372, 1992. Cited page 66.

[120] D. B. Skillicorn, M. Danelutto, S. Pelagatti, and A. Zavanella. Optimising data-
parallel programs using the BSP cost model. In Europar’98, volume 1470 of
LNCS, pages 698–715. Springer Verlag, 1998. Cited page 21.

[121] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about
BSP. Scientific Programming, 6(3):249–274, 1997. Cited page 5.

[122] M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998. Cited page 3.

[123] B. Stroustrup. To move or not to move. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2010/n3174.pdf, 2010. Cited page 114.

[124] H. Tanno and H. Iwasaki. Parallel skeletons for variable-length lists in sketo
skeleton library. In H. J. Sips, D. H. J. Epema, and H.-X. Lin, editors, Euro-Par,
volume 5704 of Lecture Notes in Computer Science, pages 666–677. Springer, 2009.
Cited page 21.

Bibliography 131

[125] X. Teruel, C. Barton, A. Duran, X. Martorell, E. Ayguadé, P. Unnikrishnan,
G. Zhang, and R. Silvera. OpenMP tasking analysis for programmers. In Pro-
ceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative
Research (CASCON’09), pages 32–42. ACM, 2009. Cited page 3.

[126] J. Tesson and F. Loulergue. A Verified Bulk Synchronous Parallel ML Heat Dif-
fusion Simulation. In 11th International Conference on Computational Science (ICCS
2011), Procedia Computer Science, pages 36–45. Elsevier, 2011. Cited page 25.

[127] R. Thakur and W. Gropp. Improving the performance of collective operations in
mpich. In PVM/MPI’03, pages 257–267, 2003. Cited page 24.

[128] The BSML Development Team. The BSML Library version 0.5. http://

traclifo.univ-orleans.fr/BSML, august 2010. Cited page 35.

[129] The Coq Development Team. The Coq Proof Assistant. http://coq.inria.
fr. Cited pages 35 et 115.

[130] N. Thomas, S. Saunders, T. G. Smith, G. Tanase, and L. Rauchwerger. Armi: a
high level communication library for stapl. Parallel Processing Letters, 16(2):261–
280, 2006. Cited page 23.

[131] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchw-
erger. A framework for adaptive algorithm selection in stapl. In PPOPP, pages
277–288, 2005. Cited page 23.

[132] S. L. Thomas, G. Tanase, L. K. Dale, J. M. Moreira, L. Rauchwerger, and N. M.
Amato. Parallel protein folding with stapl. Concurrency and Computation: Practice
and Experience, 17(14):1643–1656, 2005. Cited page 23.

[133] S. Vadhiyar, G. Fagg, and J. Dongarra. Towards an accurate model for collective
communications. volume 18, pages 41–50, 2001. Cited page 24.

[134] L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM,
33(8):103, 1990. Cited page 5.

[135] M. Vanneschi. The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing, 28:1709–1732, 2002.
Cited page 18.

[136] T. Veldhuizen. Expression templates. pages 475–487, 1996. Cited pages 48 et 107.

[137] T. Veldhuizen. Techniques for scientific C++, 1999. Cited page 109.

[138] P. Wadler. Monads for Functional Programming. In J. Jeuring and E. Meijer, ed-
itors, Advanced Functional Programming, LNCS 925, pages 24–52. Springer, 1995.
Cited page 96.

132 Bibliography

[139] A. Zavanella. Optimising skeletal-stream parallelism on a BSP computer. In
Euro-Par, volume 1685 of LNCS, pages 853–857. Springer, 1999. Cited page 21.

[140] A. Zavanella. The skel-BSP global optimizer: Enhancing performance portability
in parallel programming. In Euro-Par, volume 1900 of LNCS, pages 658–667.
Springer, 2000. Cited page 21.

[141] A. Zavanella. Skel-BSP: Performance portability for skeletal programming. In
HPCN, volume 1823 of LNCS, pages 290–299. Springer, 2000. Cited page 20.

[142] A. Zavanella and S. Pelagatti. Using BSP to optimize data distribution in skeleton
programs. In HPCN, volume 1593 of LNCS, pages 613–622. Springer, 1999. Cited
page 21.

Ce document a ecrit a l’aide de texte GNU Emacs et du logiciel de composition
typographique LATEX2ε.

��������	
�

���
�������������������������

��� ������	
�� ��� � ����������� � ����	��� � ���� � �� � 	�������� � ����� � �� � �������������� ������������ ��� � ���
������������� � 	��	�������� � �� � �������� � ����� � ���������� � ��� ���� � �� � ��� � ��
������ � �� � ����������� � ��
������������������������	��������	
������������������������
�������������������	������������	�������������
�������������	�����������������
�������������	��������������������������������������	���������������� �������
��	���������������	�����������	���������������������������������
����� ��� � ������������������������� � ���	��������� ���������������	��!���� ����������������������!��� ������
	�������������������	�����������������

����������������������������� ���� �	��"�# � �������������	������� �!�����$� � ������������ � �� ���� ������ � �����
���������� � ���� � �� � ����������� � �� � �������� � ���� ������� � �� � ���������	�# � ������ ����� � �������� � ���
�����������������%�&�	
�����'(�) ������ ���� ��� �������� �������������������� ������� ����������� ������
�������������	
����#�������
������������%	��	�������#�� �
���	���������������������

����������*���������	��������� ���	��	�������������������������������!�!����
�����+������ ,�������
��!���&����+ ���+ ������������������!������������������������
�����������%����������������%�&�	
�������
+ ����������!�!����
���������������������-..������������������	
����������������������������	��������
��������������!���������	�	��������	������	����������!�������������!�!����
����������+ �������!��������
����������(�#� �� ���� ������!�������������������������� � �������������	������������������+ ������ �
�����������������������������!������������������	���������������������������������+ �������������� �
���������������������������-���������������������	���
��������*�������

���� � ����� / � ��������� � �������
������# � ����������� � �����%�&�	
����# � �������� � �� � �����!���� � ����
���������	��#�������������������#������	�������

����������������������������� ���������������������������
�������������������������

 ���	������������������������	
�������� � �����%��� �!��0������������	 ���������������������	��	������ �����
������!�������������������	
������
��������������� ,������������������������������
������	������������	
����
1���������
��	��,�������	���!����������
��
��%���������	������
���	���������������������������������������
��
��	
��������������#����������������	����#���	��+������
��������������������	������
���,�����������������������
��� � 	���������� � �� � �
� � ����� � �������	� � �� � ������� �
��
��%����� � ���	����� � �� � ���	������ � ������������
�����������2
�������	������	����������������������!&�	��!�����	���������
��������!����,���������

3
��������������������������������������#��
��������������������	��������	������������������������
������&�
�����������������
�������������������&�������������&�����������	�������������������	���������(��,� &�	
������ �
������������'(�)����������	
����������1���
��������������	�����0�!������������&0
��������������%�
�����
��� �
��������	��������#� �� �!�	�����	����	�� � ���� �
���������� �������������������� ����������� �
�����������
	����	����������
���������������������0��
��
����

2
�����	������ � �
���0��,� �� � �
��+������ ,���������!���&����+ ���+ ���������������� ��� �������������� �
�,������� � 0
�	
 � �����0 � �
� � (� � ����� � �� � �������� � 	����������� � + � � �� � � � ��!���& � ��� � -.. � 	�������& �
���	���-..���	
�������������������������	���	&��3��
�+ ��!�����
!�����������
��(�����������	�������#������������!����������&���������	���
�����������	�������
�������	������
!������������������
�������!����&�������������	���2
�����������������������+ �����������������������
��!��%
������������	������
��-��������������������(���������
�����������������
��	����	������������+ ���*���������
��������

!�"#�����/�1������
��	� ,�������#�!��,��&�	
������������������#����������	�������	��!����&����������!����&# �
��������������	�#������	������

$�%����������&'�����������(�������������&)������

