
HAL Id: tel-00647302
https://theses.hal.science/tel-00647302

Submitted on 1 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture de contrôleur mémoire configurable et
continuité de service pour l’accès à la mémoire externe
dans les systèmes multiprocesseurs intégrés à base de

réseaux sur puce
Hassan Hassan Khaldon

To cite this version:
Hassan Hassan Khaldon. Architecture de contrôleur mémoire configurable et continuité de service
pour l’accès à la mémoire externe dans les systèmes multiprocesseurs intégrés à base de réseaux sur
puce. Micro et nanotechnologies/Microélectronique. Université de Grenoble, 2011. Français. �NNT :
2011GRENT051�. �tel-00647302�

https://theses.hal.science/tel-00647302
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Micro et Nano Electronique

Arrêté ministériel : 7 août 2006

Présentée par

Khaldon HASSAN

Thèse dirigée par Pr. Frédéric PETROT et
codirigée par M. Marcello COPPOLA

préparée au sein du Laboratoire TIMA et STMicroelectronics
dans l'École Doctorale EEATS

Architecture De Contrôleur Mémoire
Configurable et Continuité de Service
Pour l’Accès à la Mémoire Externe
Dans Les Systèmes Multiprocesseurs
Intégrés à Base de Réseaux Sur Puce

Thèse soutenue publiquement le 2 septembre 2011
devant le jury composé de :

Mme. Lorena ANGHEL
Professeur, Grenoble INP (TIMA), Présidente

M. Gilles SASSATELLI
Directeur de Recherche, CNRS (LIRMM), Rapporteur

M. Sébastien PILLEMENT
Maître de conférence, Université de Rennes 1 (IRISA), Rapporteur

M. Yves MATHIEU
Professeur, Télécom ParisTech (LTCI), Examinateur

M. Amer BAGHDADI
Maître de conférence,Télécom Bretagne (LabSticc), Examinateur

M. Frédéric PETROT
Professeur, Grenoble INP (TIMA), Directeur de thèse

M. Marcello COPPOLA
Manager, STMicroelectronics, Co-encadrant

�

�

��������	
������������������

������������	���������

��������������������������

�������������	���� ����

����������
� ���!"�#�#��� $%��%

��������	
��
��

����������	
��	��

���
�����

���
���

�

�

��������	
	����	��
	��

To my loving parents

Hayat & Mohsen

who unconditionally supported me

all along my life

v

Acknowledgements

This work would not have been possible without the contributions of many people. I would

like to thank Mr. Marcello COPPOLA for the opportunity to carry out my master project in

STMicroelectronics in Grenoble, and then to start the PhD journey with his great team: Spi-

dergon ST Network-on-Chip Team. I would like to express my sincere gratitude to Pr. Frédéc

PETROT for being my academic advisor, and a role model as mentor and scientist.

I would like to thank Riccardo LOCATELLI, who was here from the very beginning and who

technically and scientifically supported me during the last 3 years. Special thanks to Giuseppe

MARRUCCIA, Valerio CATALANO, Michael SOULIÉ, Florentine DUBOIS and Déborah LALOMIA

for being exceptional colleagues at ST. They made my PhD life more exciting and left me lots

of unforgettable memories of this period. I would also like to thank all my colleagues in the

SLS group at TIMA Lab.

I would like to take this opportunity to extend my gratitude to all my friends in Syria and

France, especially to Rami AL BATAL and Yanal WAZAEFI.

Most importantly I would like to acknowledge the constant support and encouragement

of my family. My deepest gratitude and thanks to my parents Hayat and Mohsen for their love,

encouragement, and belief in me all along my life. My special thanks to my sisters Chourouk

and Soulaf, and my brother Iyas, who supported me a lot.

Finally my heartfelt thanks to Valeria MONGELLI for being the greatest girlfriend through-

out the long working hours and mood swings to finish the PhD.

vii

Abstract

T
HE ONGOING advancements in VLSI technology allow System-on-Chip (SoC) to inte-

grate many heterogeneous functions into a single chip, but still demand, because of

economical constraints, a single and shared main off-chip SDRAM. Consequently,

main memory system design, and more specifically the architecture of the memory con-

troller, has become an increasingly important factor in determining the overall system per-

formance.

Choosing a memory controller design that meets the needs of the whole system is a com-

plex issue. This requires the exploration of the memory controller architecture, and then the

validation of each configuration by simulation. Although the architecture exploration of the

memory controller is a key to successful system design, state of the art memory controllers

are not as flexible as necessary for this task. Even if some of them present a configurable

architecture, the exploration is restricted to limited sets of parameters such as queue depth,

data bus size, quality-of-service level, and bandwidth distribution.

Several classes of traffic co-exist in real applications, e.g. best effort traffic and guaranteed

service traffic, and access the main memory. Therefore, considering the interaction between

the memory subsystem and the interconnection system has become vital in today’s SoCs.

Many on-chip networks provide guaranteed services to traffic classes to satisfy the applica-

tions requirements. However, very few studies consider the SDRAM access within a system

approach, and take into account the specificity of the SDRAM access as a target in NoC-based

SoCs.

This thesis addresses the topic of dynamic access to SDRAM in NoC-based SoCs. We in-

troduce a totally customizable memory controller architecture based on fully configurable

building components and design a high level cycle approximate model for it. This enables

the exploration of the memory subsystem thanks to the ease of configuration of the memory

controller architecture. Because of the discontinuity of services between the network and the

memory controller, we also propose within the framework of this thesis an Extreme End to

ix

Abstract

End flow control protocol to access the memory device through a multi-port memory con-

troller. The simple yet novel idea is to exploit information about the memory controller status

in the NoC. Experimental results show that by controlling the best effort traffic injection in

the NoC, our protocol increases the performance of the guaranteed service traffic in terms of

bandwidth and latency, while maintaining the average bandwidth of the best effort traffic.

Key words: memory controller, SDRAM, NoC, MPSoC, performance analysis, traffic classes,

end-to-end protocol, modelling.

x

Résumé

L’
ÉVOLUTION de la technologie VLSI permet aux systèmes sur puce (SoCs) d’intégrer

de nombreuses fonctions hétérogènes dans une seule puce et demande, en raison de

contraintes économiques, une unique mémoire externe partagée (SDRAM). Par con-

séquent, la conception du système de mémoire principale, et plus particulièrement l’architec-

ture du contrôleur de mémoire, est devenu un facteur très important dans la détermination

de la performance globale du système.

Le choix d’un contrôleur de mémoire qui répond aux besoins de l’ensemble du système

est une question complexe. Cela nécessite l’exploration de l’architecture du contrôleur de

mémoire, puis la validation de chaque configuration par simulation. Bien que l’exploration

de l’architecture du contrôleur de mémoire soit un facteur clé pour une conception réussite

d’un système, l’état de l’art sur les contrôleurs de mémoire ne présente pas des architec-

tures aussi flexibles que nécessaire pour cette tâche. Même si certaines d’entre elles sont

configurables, l’exploration est restreinte à des ensembles limités de paramètres tels que la

profondeur des tampons, la taille du bus de données, le niveau de la qualité de service et la

distribution de la bande passante.

Plusieurs classes de trafic coexistent dans les applications réelles, comme le trafic de ser-

vice au mieux et le trafic de service garanti qui accèdent à la mémoire partagée d’une manière

concurrente. En conséquence, la considération de l’interaction entre le système de mémoire

et la structur d’interconnexion est devenue vitale dans les SoCs actuels. Beaucoup de réseaux

sur puce (NoCs) fournissent des services aux classes de trafic pour répondre aux exigences

des applications. Cependant, très peu d’études considèrent l’accès à la SDRAM avec une ap-

proche système, et prennent en compte la spécificité de l’accès à la SDRAM dans les systèmes

sur puce à base de réseaux intégrés.

Cette thèse aborde le sujet de l’accès à la mémoire dynamique SDRAM dans les systèmes

sur puce à base de réseaux intégrés. Nous introduisons une architecture de contrôleur de

mémoire totalement configurable basée sur des blocs fonctionnels configurables, et pro-

xi

Résumé

posons un modèle de simulation associé relativement précis temporellement et à haut niveau

d’abstraction. Ceci permet l’exploration du sous-système de mémoire grâce à la facilité de

configuration de l’architecture du contrôleur de mémoire. En raison de la discontinuité de

services entre le réseau sur puce et le contrôleur de mémoire, nous proposons également

dans le cadre de cette thèse un protocole de contrôle de flux de bout en bout pour accéder à

la mémoire à travers un contrôleur de mémoire multiports. L’idée, simple sur le principe mais

novatrice car jamais proposée à notre connaissance, se base sur l’exploitation des informa-

tions sur l’état du contrôleur de mémoire dans le réseau intégré. Les résultats expérimentaux

montrent qu’en contrôlant l’injection du trafic de service au mieux dans le réseau intégré,

notre protocole augmente les performances du trafic de service garanti en termes de bande

passante et de latence, tout en préservant la bande passante moyenne du trafic de service au

mieux.

Mots clés: contrôleur de mémoire, SDRAM, réseaux intégrés sur puce, multiprocesseurs,

analyse de performance, classes de trafic, protocole de bout-en-bout, modélisation.

xii

Contents

General Introduction xxv

1 Thesis scope . xxviii

2 Thesis organization . xxviii

1 Problem Definition 1

1.1 DDRn SDRAM concepts . 3

1.2 Memory controller concepts . 5

1.3 Quality of service in networks-on-chip . 7

1.4 Continuity of services in NoC-based systems . 8

1.5 Experiments . 8

1.5.1 Simulation environment . 9

1.5.2 Platform configuration . 9

1.5.3 Simulation & results . 11

1.5.4 Experiments summary . 15

1.6 Conclusion . 15

2 State of the Art 17

2.1 Memory controllers . 19

2.2 On-chip interconnects . 26

2.3 Combined interconnect-memory controller solutions 30

2.4 Conclusion . 33

3 Memory Controller Customizable Architecture 35

3.1 Introduction . 37

3.2 DDR3 SDRAM operations . 38

xiii

Contents

3.3 Design abstraction in system modelling . 41

3.4 Design approach . 41

3.5 Assumptions . 42

3.6 Front-end building components . 42

3.6.1 Memory mapping . 42

3.6.2 Generic queue . 43

3.6.3 Capture unit . 44

3.6.4 Insertion unit . 47

3.6.5 Generic arbiter . 51

3.6.6 Flow control . 53

3.6.7 Re-ordering unit . 55

3.6.8 Summary . 55

3.7 Examples of memory controller front-end . 56

3.7.1 Memory controller Alpha . 56

3.7.2 Memory controller Beta . 56

3.7.3 Memory controller Gamma . 57

3.7.4 Summary . 58

3.8 Back-end building components . 59

3.8.1 DDR3 SDRAM commands generator . 60

3.8.2 Memory manager . 60

3.8.3 Data handler . 61

3.9 DDR3 SDRAM model . 62

3.10 Conclusion . 62

4 Extreme End to End Flow Control Protocol for SDRAM Access 63

4.1 Introduction . 65

4.2 Credit-based flow control . 66

4.2.1 Analytical model for the end-to-end credit-based flow control 67

4.3 End to end flow controls . 68

4.4 Pressure on the memory system in modern MPSoCs 69

4.5 Guaranteed service traffic in the memory controller 71

4.6 Saturation risk of the requests queue . 71

4.6.1 Problem description . 71

4.6.2 Possible solutions . 72

4.7 EEEP: Extreme End-to-End Protocol . 73

4.7.1 Novel system approach . 73

4.7.2 EEEP principle . 73

xiv

4.7.3 EEEP mechanism . 75

4.7.4 Requests queue sizing method . 75

4.7.5 EEEP guarantees and limitation . 77

4.7.6 System modifications to support EEEP . 78

4.8 Conclusion . 79

5 Implementation of the Customizable Memory Controller Architecture 81

5.1 Development environment . 83

5.2 NED language overview . 84

5.3 Model structure in OMNeT++ . 85

5.4 General description of a building component . 86

5.5 Memory controller building components parameters 87

5.5.1 Memory mapping parameters . 88

5.5.2 Generic queue parameters . 88

5.5.3 Capture unit parameters . 88

5.5.4 Insertion unit parameters . 88

5.5.5 Generic arbiter parameters . 89

5.5.6 Re-ordering unit parameters . 89

5.6 EEEP components parameters . 89

5.7 Traffic generator . 90

5.8 Conclusion . 92

6 Experiments and Results 93

6.1 Memory system . 95

6.1.1 Memory controller architecture . 95

6.2 Standalone tests . 96

6.2.1 Memory controller configuration for standalone tests 96

6.2.2 Memory timing tests . 97

6.2.3 Priority and ageing mechanism test . 99

6.2.4 Summary . 102

6.3 EEEP tests . 102

6.3.1 Traffic modelling . 103

6.3.2 EEEP in a Spidergon NoC-based SoC . 103

6.3.3 EEEP in a 2DMesh NoC-based SoC . 107

6.3.4 EEEP in an irregular NoC-based SoC . 107

6.3.5 Analysis . 111

6.4 Conclusion . 112

xv

Contents

7 Conclusion and Perspectives 113

7.1 Conclusion . 115

7.2 Future work directions . 116

7.2.1 3D stacking - wide I/O memories . 117

7.2.2 More memory system information exploitation 117

7.2.3 Extreme End-to-End Protocol evolution 117

Appendixs 127

A Problem Definition: Simulation Platform 127

A.1 Spidergon STNoC building blocks . 128

A.2 Platform composition . 128

B Memory Controller Scheduling Algorithms 131

C List of Publications 137

D About the Author 139

xvi

List of Figures

1.1 Simplified architecture of a modern DDR SDRAM 4

1.2 Time to complete a series of memory references without (a) and with (b) access

reordering. 6

1.3 Simplified architecture of a memory controller 7

1.4 Off-chip memory access speedup for cache controller read requests when low-

priority IPs send read requests . 13

1.5 Off-chip memory access speedup of cache controller read requests when low-

priority IPs send write requests . 13

1.6 Off-chip memory access speedup/slowdown of cache controller write requests

when low-priority IPs send write requests . 14

1.7 Off-chip memory access speedup/slowdown of cache controller write requests

when low-priority IPs send read requests . 15

2.1 The logical view of SMC architecture, source [10] 20

2.2 Bandwidth optimized SDRAM controller architecture, source [80] 21

2.3 (a) Quality aware memory controller (b)MIS architecture, source [48] 22

2.4 Organization of the on-chip STFM memory controller, source [56] 24

2.5 Using Impulse to remap the diagonal of a dense matrix into a dense cache line.

The black boxes represent data on the diagonal, whereas the gray boxes repre-

sent nondiagonal data. Source [12] . 25

2.6 The Impulse memory architecture. Source [12] 25

2.7 Predator memory controller architecture, source [1] 25

2.8 Memory map interpretation when using Sonics IMT, source [72] 31

2.9 The proposed memory controller integrated in the slave-side network inter-

face, source [21] . 32

3.1 Generic architecture of a memory controller connected to SDRAM devices . . . 38

xvii

List of Figures

3.2 Simplified diagram of the DDR3 SDRAM FSM . 39

3.3 Examples of memory mapping . 43

3.4 Simplified architecture of the generic queue . 44

3.5 capture unit in conjunction with a generic queue 46

3.6 Insertion unit in conjunction with a generic queue 48

3.7 Generic arbiter connection with a generic queue 51

3.8 Generic arbiter connection with a generic queue including a capture unit 51

3.9 Ordering aspects in memory controllers . 55

3.10 Front-end model for the memory controller Alpha 57

3.11 Front-end model for the memory controller Beta 58

3.12 Front-end model for the memory controller Gamma 59

3.13 Back-end architecture . 60

4.1 The front-end and the back-end of a memory controller 65

4.2 Link level credit-based flow control . 66

4.3 Simplified NI architecture that supports the end-to-end credit-based flow control 67

4.4 Overview of TILEpro64 that includes 4 memory controllers, source [78] 69

4.5 SoC consumer portable design complexity trends, source ITRS [37] 70

4.6 Saturation risk of the requests queue in a memory controller 72

4.7 EEEP extend versus other flow controls extend 74

4.8 An overview of the EEEP implemented in a system 75

4.9 EEEP diagram for best effort traffic request packets 76

4.10 Memory controller modification to support EEEP 79

5.1 Model structure in OMNeT++: compound and simple modules, gates, connec-

tions . 85

5.2 The NED description of the generic arbiter . 86

5.3 The initialization method of the generic arbiter 86

5.4 The activity method of the generic arbiter . 87

5.5 The activity method of the generic arbiter . 90

5.6 The header of a stimuli file for the back-annotated generation mode 91

6.1 Architecture of the multi-port memory controller 96

6.2 Back-end log file: direction switching and bank preparation delay 98

6.3 Back-end log file: bank interleaving mechanism 98

6.4 Back-end log file: requests format . 99

6.5 Memory controller latency histogram for core1 and core2 100

6.6 Moving average bandwidth for core1 and core2 101

6.7 Spidergon NoC-based simulation platform (across last routing) 105

6.8 Performance variation when EEEP is activated in a Spidergon NoC-based SoC . 106

6.9 2DMesh NoC-based simulation platform (XY routing) 108

xviii

6.10 Performace variation when EEEP is activated in a 2DMesh NoC-based SoC . . . 109

6.11 irregular NoC-based simulation platform (source routing) 110

6.12 Performace variation when EEEP is activated in an irregular NoC-based SoC . . 111

A.1 Simplified architecture of the simulation platform 130

xix

List of Tables

1.1 DDRn SDRAM timing parameters description . 5

1.2 Traffic generator characteristics . 10

2.1 Main features of the state of the art memory controllers 26

2.2 Main features of the state of the art networks-on-chip providing QoS 29

3.1 DDR3 SDRAM state digram command definitions 39

3.2 DDR3 SDRAM timing parameters description . 40

3.3 Brief description of the generic queue model . 45

5.1 Memory mapping parameters . 88

5.2 Generic queue parameters . 88

5.3 Capturing unit parameters . 88

5.4 Insertion unit parameters . 89

5.5 Generic arbiter parameters . 89

5.6 Re-ordering unit parameters . 89

5.7 EEEP parameters . 90

5.8 Traffic generator, example of the constrained random configuration 91

6.1 Memory controller configuration for standalone tests 97

6.2 Samsung DDR3-800 SDRAM timing parameters 97

6.3 Traffic generators configuration in constrained random mode 102

6.4 Memory controller configuration for EEEP tests 103

6.5 Traffic generators configuration in constrained random mode for EEEP tests . . 104

A.1 Routing table of both request and response networks 129

xxi

List of Algorithms

1 Row hit same direction capture . 46

2 Row miss different bank capture . 47

3 Master data consistency insertion . 49

4 Bank splitting insertion . 50

5 Round-Robin, bandwidth scheduling . 52

6 Priority then Round-Robin scheduling with bandwidth limiter 54

7 Data consistency flow control . 54

8 Re-ordering unit . 55

9 Anticipation of the bank preparation commands 61

10 Highest priority capture . 132

11 Row hit opposite direction capture . 132

12 Global system data consistency insertion . 133

13 Priority-based insertion . 133

14 Direction grouping insertion . 134

15 Round-robin scheduling . 134

16 Initialize least-recently-used . 134

17 Least-recently-used scheduling . 135

18 Least-recently-used update . 135

19 Priority scheduling . 135

xxiii

General Introduction

xxv

F ROM the invention of the integrated circuit until now, the microelectronics industry

owes its success to the miniaturization of the transistor on silicon. For nearly 40 years,

this miniaturization has been the main factor that increasingly enabled the design of

more complex integrated systems. Nowadays, the enhancement of technology processes al-

lows the integration of complete systems into a single chip made of many processing engines

such as processors, graphic processing units, video decoders, audio decoders, and display

controllers. These systems are called: Multi Processor Systems on Chips (MPSoCs). They

are almost found in all electronic devices, especially in consumer electronics such as digital

cameras, games consoles, mobile phones and tablet computers.

The increasing integration density in these systems leads to an increasing number of pro-

cessing engines into a single chip, which in turn requires more efficient on-chip commu-

nication systems to inter-connect these processing engines. The history of interconnection

systems began with various bus-based systems. From single shared bus to complex hierar-

chical buses, these complex buses have rapidly shown a strong drawback not only of lack of

bandwidth but also of poor scalability with the MPSoCs size. The huge growth in the number

of processing engines in MPSoCs coupled with increasing requirements of high bandwidth

and low latency have led to a new scalable interconnection structure: Network-on-Chip. By

providing scalable performance and higher degree of communication parallelism, NoCs have

emerged as suitable interconnect structures for MPSoCs communication requirements.

The development of technology processes has also led to more efficient memory devices

with higher bandwidth and storage capacity. Double-Data Rate Synchronous Dynamic Ran-

dom Access Memories (DDR SDRAMs) were introduced as a cost-effective path for upgrad-

ing data bandwidth to memory, and have quickly become the memory of choice in consumer

electronics market. DDR SDRAMs have seen a drastic drop in price since 2001, bringing them

to price parity with conventional SDRAMs. For technology reasons related to the processes

of production, DDR SDRAMs are off-chip. They are often clustered in a memory subsystem

made up of off-chip memory devices connected to an on-chip memory controller. In order

to make cost-efficient systems, the designers always try to minimize the number of external

pins in a given system. This is why the memory subsystem is often unique and always shared

between processing engines, which access it through the network-on-chip.

The International Technology Roadmap for Semiconductors (ITRS) predicts that the num-

ber of processing engines in the system-on-chip consumer portable designs is going to reach

1000 processing engines in 2019. This emphasizes the increasing pressure on the shared

xxvii

General Introduction

memory system. Even if several memory systems do exist in the same chip, the ratio between

the number of processing engines and the number of memory systems is at least 10. Besides,

the traffic patterns that access the shared memory can no longer be deterministic because

they tightly depend on the applications run by the user. Therefore, the variety of processing

engines in modern MPSoCs leads to a mixture of traffic classes in the memory controller. This

mixture of dynamic traffic and high pressure make the task of the memory controller more

complex.

1 Thesis scope

This thesis deals with the shared SDRAM access in NoC-based MPSoCs. Many researchers

have focused either on network-on-chip services or on memory controller architectures. How-

ever, very few studies consider the access to the shared memory with a system approach: from

the initiators to the memory system through the routers of the network.

High performance access to the SDRAM is firstly related to the memory subsystem itself,

which is made up of SDRAMs modules and a memory controller, and secondly to an op-

timized sharing of the resource for the different traffic that targets it. As the shared external

SDRAM is often unique in a given system, the overall system performance is tightly correlated

with the memory subsystem performance.

Exploring the memory controller architecture in a given system helps the designer to find

the most appropriate architecture that meets the system requirements in terms of bandwidth

and latency. Therefore, we introduce in this work our customizable architecture of memory

controller, and provide the necessary tools to create and explore memory controller architec-

tures.

Furthermore, we highlight the negative impact on the overall system performance of the

service discontinuity between the network-on-chip and the memory subsystem, and we em-

phasize the importance of the service extension from the NoC to the memory controller. We

introduce then a way to couple the services of both network-on-chip and shared memory

subsystem through our extreme end-to-end protocol.

2 Thesis organization

The rest of the manuscript is organized as follows:

Chapter 1 "Problem Definition" provides an overview of the DDR SDRAM access through

networks-on-chip. It shows the memory controller task complexity, and how this complexity

puts a lot of constraints on the design and makes the architecture exploration of the memory

controller very difficult. It also shows the importance of the services coupling between the

network and the memory system, and emphasizes the continuity of the guaranteed service,

xxviii

2. Thesis organization

which can only be ensured by the joint use of architectural and protocol mechanisms.

Chapter 2 "State of The Art" presents the state-of-the-art design of networks-on-chip and

memory controller that have a relationship with the off-chip main SDRAM. A particular at-

tention is given to the reconfigurability of the memory subsystem design, to the services pro-

vided by the network, and to traffic classes that target the main memory subsystem. At the

end, a summary and synthesis of existing reviewed memory controllers and networks-on-

chip is provided.

Chapter 3 "Dynamic Memory Controller Customizable Architecture" presents our cus-

tomizable memory controller design. It begins by providing a detailed description of the

DDR3 SDRAM operations. It describes then our high-level building components library that

can model any known architecture of memory controller. These building components are cy-

cle approximate, and can precisely simulate all access delays to the shared memory system.

Chapter 4 "Extreme End to End Flow Control Protocol for SDRAM Access" presents our

novel end-to-end protocol for shared memory access through a multi-port memory con-

troller. It describes the novelty of this protocol, and the importance of the memory controller

state sharing with the network-on-chip.

Chapter 5 "Implementation of the Customizable Architecture of Memory Controller" gives

an overview of the development environment (OMNeT++), and describes our method of im-

plementation.

Chapter 6 "Experiments and Results" presents performance analysis of a memory con-

troller architecture modelled with our building components library. It also shows the eval-

uation of our extreme end-to-end protocol with three different NoC topologies: Spidergon,

2D-mesh, and irregular. A complete analysis of the shared memory access with our protocol

is given at the end of this chapter.

Chapter 7 "Conclusion and Perspectives" will wrap up the manuscript by summarizing

the major contributions of the thesis and proposing interesting research directions as future

work.

xxix

CHAPTER 1

Problem Definition

Contents

1.1 DDRn SDRAM concepts . 3

1.2 Memory controller concepts . 5

1.3 Quality of service in networks-on-chip . 7

1.4 Continuity of services in NoC-based systems 8

1.5 Experiments . 8

1.5.1 Simulation environment . 9

1.5.2 Platform configuration . 9

1.5.3 Simulation & results . 11

1.5.4 Experiments summary . 15

1.6 Conclusion . 15

1

1.1. DDRn SDRAM concepts

D DR SDRAMS stands for Double Date Rate Synchrounous Dynamic Random Access

Memory. These memory were introduced as a cost-effective path for upgrading data

bandwidth to memory and have quickly become the memory of choice in consumer

electronics markets. DDR SDRAMs have seen a drastic drop in price since 2001, bringing

them to price parity with conventional SDRAMs. For technology reasons related to the pro-

cesses of production, DDR SDRAMs are off-chip. They are always shared between IP compo-

nents, and accessed through an interconnect structure such as a bus or a network-on-chip

(NoC).

Revolutionary changes in memory speed, efficiency, size and costs were required in the

early 2000’s to support the CPUs enhancements. However, these enhancements were not

sufficient to fill the frequency gap between the CPU and the memory. The classical CPU-

DDR SDRAM case shows that the frequency gap between CPU and main memory eventually

offsets most performance gains from further improvements on the CPU speed. For instance,

a cache miss is equivalent to hundreds cycles for today’s CPUs, a time long enough for the

processor to execute hundreds of instructions. While the DDR SDRAM IO frequency has been

improving by 37% per year since 2001, the CAS1 Latency of SDRAM that fundamentally deter-

mines its overall performance has been only improving by 5% per year [75; 76; 77]. Hennessy

and Patterson showed that microprocessor performance has been improving by 55% per year

since 1987, which emphasizes the growing gap between CPUs speed and SDRAM access time

[35].

The requirements of MPSoCs2 for high bandwidth and low latency makes the DDR SDRAM

access become a bottleneck. The multi-threading technique used nowadays in multimedia

SoCs3 with heterogeneous cores increases the contention on the main memory system and

demands memory systems with more complex architecture and higher performance.

1.1 DDRn SDRAM concepts

DDR1, DDR2 and DDR3 are the three generations of DDR SDRAM which exist on the mar-

ket. DDRn SDRAM uses a double-data-rate architecture to achieve high-speed operation.

The double data rate architecture is essentially a 2n.w prefetch architecture with an interface

designed to transfer two data words per clock cycle at the I/O pins where w represents the

memory data bus width. A single read or write access for the DDRn SDRAM effectively con-

sists of a single 2n.w-bit wide, one-clock-cycle data transfer at the internal DRAM core and 2n

corresponding w-bit wide, one-half-clock-cycle data transfers at the I/O pins.

DDRn SDRAMs are three-dimensional memories with the dimensions of bank, row, and

column. Figure 1.1 shows a simplified architecture of modern DDRn SDRAM. Each bank is or-

ganized as a two-dimensional array of SDRAM cells, consisting of multiple rows and columns.

1Column Access Strobe
2Multi Processor System-on-Chip
3System-on-Chip

3

Chapter 1. Problem Definition

h
w

 A
d

d
re

s
s
 L

a
tc

h

d
 D

e
c
o

d
e

r B n k 0a

M m o r ye

A r a yr

B n k 0a

M m o r ye

A r a yr

B n k 0a

M m o r ye

A r a yr

B n k 0a

M m o r ye

A

Row

Address

Mux

B
a

n
k
0

 R
o

w

A
n

d A r a yr
A r a yr

Address

r

S e n s e A m p l i f i e r

o w b u f f e r

Address

Bank

Control

Logic
C o l u m n D e c o d e r

Data

Figure 1.1: Simplified architecture of a modern DDR SDRAM

It operates independently of the other banks and contains an array of memory cells that are

accessed an entire row at a time. When a row of this memory array is accessed (row activa-

tion) the entire row of the memory array is transferred into the bank’s row buffer. The row

buffer serves as a cache to reduce the latency of subsequent accesses to that row. While a row

is active in the row buffer, any number of reads or writes (column accesses) may be performed.

When the column access is completed, the cache row must be written back to the memory

array by an explicit operation bank precharge. This operation prepares the bank for the next

row activation command. Read and write commands can be issued with an auto precharge

flag resulting in an automatic precharge at the earliest possible moment after the transfer is

completed. In order to retain data, all row in the memory array must be refreshed period-

ically, which is done by precharching all banks and issuing a refresh command. The refresh

operation takes tRFC cycles and must be repeated every tREF cycles. Table 1.1 shows some

DDRn SDRAM nomenclatures.

A memory request falls into two different categories:

1. Row hit: The request is accessing the row currently in the row buffer. Only a read or a

write command is needed. This case results in the lowest bank access latency tCL.

2. Row miss: This category can be divided into two subcategories:

• Row closed: There is no row in the row buffer. An activate command needs to be

issued to open the row followed by a read or write command. The bank latency of

this case is tRCD + tCL as both a row access and a column access are required.
• Row conflict: The access is to a row different from the one currently in the row

buffer. The contents of the row buffer first need to be written back into the memory

4

1.2. Memory controller concepts

Table 1.1: DDRn SDRAM timing parameters description

Parameter Name Description
tCL Column access strobe Latency
tRCD Row to Column delay
tRP Row Precharge delay
tWR Write Recovery delay
tWTR Write To Read delay
tREF REFresh interval
tRFC ReFresh Cycle delay

array using the precharge command. The required row then needs to be opened

and accessed using the activate and read/write commands. This results in the high-

est bank access latency tRP + tRCD + tCL

Additional delays have to be considered when the last column access is a write opera-

tion. tWR defines the Write Recovery time, which is the minimum time interval between the

end of a write operation and the start of a precharge command. tWTR defines the Write To

Read turnaround time that represents the minimum time interval between the end of a write

operation and the start of a read operation.

To see the advantage of memory access scheduling, consider the sequence of six memory

operations shown in Figure 1.2a. Each reference is represented by the triple (bank, row, col-

umn). Suppose we have a memory system utilizing a DDR SDRAM that requires 4 cycles to

precharge, 3 cycles to access a row of a bank, and 4 cycles to achieve a read/write operation in

a column. Once a row has been accessed, a new column access can issue each cycle until the

bank is precharged. If these six references are performed in order, each requires a precharge

and a row access (if the row is not ready), and then a column access. These six references

require 59 clock cycles to be performed in order. If we assume that the system data consis-

tency will remain guaranteed when we perform the references in a different order, a total of

only 34 clock cycles will be needed. Figure 1.2b shows the out-of-order scheduling of the six

references.

Consequently, the order in which DDR SDRAM accesses are scheduled has a dramatic

impact on memory bandwidth and latency. Therefore, typical scheduling algorithms try to

increase the row hit ratio to optimize the memory system efficiency. This work is done by the

memory controller, which is the topic of the next subsection.

1.2 Memory controller concepts

The memory controller plays a principal role in the optimization process of the memory ac-

cess. It is the interface between the system and the memory modules. The common tasks

of a memory controller are memory mapping, request scheduling, command generation and

memory management. These tasks are mapped to the memory controller architecture. A typ-

ical architecture of a memory controller is showed in Figure 1.3. It is divided into two logical

5

Chapter 1. Problem Definition

(a) Without access scheduling (59 clock cycles)

(b) With access scheduling (34 clock cycles)

Figure 1.2: Time to complete a series of memory references without (a) and with (b) access reorder-
ing.

blocks called front-end and back-end [2].

• The front-end includes the memory mapping and the arbiter. The memory mapping

does the translation from the logical address space used by the requestors to the physi-

cal address space (bank, row, column) used by the memory. The arbiter role is to decide

what request will next access the memory. The choice can depend on one or more cri-

teria, e.g. the age of the request, the average bandwidth consumed by the requestor, the

priority of the requestor, the request direction (read or write), etc...

• The back-end includes the commands generator and the memory manager. After the

front-end arbiter has chosen the request to serve, the actual memory commands have to

be generated and sent to the memory. The commands generator is memory-technology-

dependent, and designed to target a specific SDRAM. It is programmed with the timings

for a particular memory device, and needs to keep track of the state of each memory

bank and ensure that no timings are violated. The memory manager guarantees the

proper behaviour of the memory and carries out several tasks such as initialization, re-

freshing and powering down.

The quality of service (QoS) in a memory controller refers to satisfying the initiators re-

quirements in terms of bandwidth and latency while optimizing the memory bus efficiency

and guaranteeing the data consistency. Moreover, the memory controller needs to obey all

6

1.3. Quality of service in networks-on-chip

Figure 1.3: Simplified architecture of a memory controller

SDRAM timing constraints to provide correct functionality. This makes the memory con-

troller task complicated and induces a lot of constraints on its design.

1.3 Quality of service in networks-on-chip

The huge growth in the number of embedded components and their need for higher band-

width and lower latency have led to a new scalable interconnect structure known as Network-

on-Chip (NoC). By providing scalable interconnect system and higher degree of parallelism in

comparison with previous on-chip communication systems, NoCs have emerged as suitable

interconnection solution for modern and future on-chip systems [27].

The quality of service (QoS) in a NoC refers to a resource reservation mechanism guar-

anteeing that special packets do not share the resources with other packets. These special

packets are called guaranteed service (GS) packets while the other packets are called best ef-

fort packets. Best effort is the basic service of a NoC and does not provide any kind of QoS.

Therefore, the latency of the packets cannot not be bounded and the throughput cannot be

guaranteed. The guaranteed service in a NoC fixes a minimum throughput threshold, and

a maximum latency and jitter threshold. In term of QoS, we can define two major types of

guarantees [64]:

• The hard QoS guarantees the maximum predictability of the network. It bounds and

constrains the latency, the throughput and the jitter. This kind of guarantees may be

achieved by reserving exclusive accesses to the resources for the guaranteed traffic.

• The soft QoS, which is less strict, guarantees the same metrics as the hard but has some

degree of unpredictability. This kind of guarantees may be achieved by mixing some

exclusive and non-exclusive accesses to the shared resources.

Although the network-on-chip provides QoS to several classes of traffic, it cannot ensure

the continuity of the QoS when the traffic is addressed to an off-chip memory device because

7

Chapter 1. Problem Definition

it crosses the boundary of the network. Neither the network nor the initiators are aware of

the memory controller status. We mean by the memory controller status the current acti-

vated rows in the SDRAM; the free slots in the buffers; the pressure on each memory bank

and the row miss rate after the accesses re-ordering. This lack of information in the network

emphasizes the discontinuity of the QoS between the initiators and the memory device.

1.4 Continuity of services in NoC-based systems

Whatever the type of the QoS that the network-on-chip provides, either hard QoS or soft QoS,

its continuity from the initiator to the target is essential to satisfy the requestors needs. A large

number of paths has been taken by researchers to reduce the system overhead. These paths

have been divided into two main approaches. The first one focuses on the memory devices

and their scheduler, whereas the second one takes into consideration the interconnect archi-

tecture. Recent studies show that memory-oriented approaches can reduce application time

execution [17; 58]. However, focusing on memory access alone is not enough. Even with zero

latency SDRAM access, the overhead of primary memory system would not be eliminated,

because transactions through a shared on-chip communication system such as a NoC still

require time.

The interconnect latency between a master and the memory subsystem becomes trickier

for latency-sensitive masters, e.g. a cache controller. Moreover, most of memory controllers

store requests before sending them to the SDRAM, which increases the transactions latency.

It makes sense to optimize the combination of external-memory controller and interconnect,

and shows the importance of a system approach to minimize the overall latency when using

a complex interconnection system such as a network-on-chip.

1.5 Experiments

Realizing the importance of a system approach to optimize external memory access in MP-

SoCs, we study in this section the interaction between the memory system and the network-

on-chip in an MPSoC platform. The platform in use is a part of an internal STMicroelectron-

ics design that includes a Spidergon STNoC and two commercial and well-spread memory

controllers. The platform in use is at RTL level and implemented in VHDL. The NoC in this

design represents the interconnect backbone that connects several clusters to the memory

subsystems. We focus on this platform because it represents a real case study and offers QoS

in both network-on-chip and memory system.

We aim, by running these simulations, at optimizing the latency-sensitive traffic sent by

the cache controller when it accesses the memory subsystems. Note that the latency-sensitive

traffic coexists with other classes of traffic sent by a DMA and a streaming IP.

Although we tried to optimize the off-chip memory access by programming the QoS in

8

1.5. Experiments

the system and by adding dedicated hardware in the network, the QoS continuity is still not

guaranteed when the traffic crosses the boundary of the network to enter into the memory

controller. This is what we are going to show in the following subsections.

1.5.1 Simulation environment

We use in this experiment the Spidergon STNoC [16] as an on-chip interconnect structure.

This interconnect is the backbone part of an STMicroelectronics design. Its role is to connect

several clusters with the memory subsystems. The necessary details about the simulation

platform are given in Annex A.

The QoS in Spidergon STNoC indicates the ways to manage bandwidth and latency to en-

sure a minimal requirement for each traffic flow. Arbitration is a critical part of the router,

since it determines the level of QoS support of the network and impacts router performance

in terms of critical path delay. As far as bandwidth is concerned, Spidergon STNoC supports

the Fair Bandwidth Allocator (FBA) QoS mechanism. It is an end-to-end service that guaran-

tees fair and programmable weighted bandwidth allocation on the top of a distributed net-

work [16].

The Network Plug Switch and the Router can implement two virtual channels through one

physical link with the necessary logical blocks for arbitration within a given channel, and be-

tween two channels (see Annex A.1 for more information about Spidergon STNoC building

blocks). The main advantage of the virtual channels (VCs) technique is a low wire area over-

head per additional virtual channel compared to the duplication of the physical link. This

stems from the fact that the traffic classes are multiplexed over the same long wires.

Economically viable SDRAMs are driven by single port memory controllers. Thus, we

make use of an industrial memory controller existing in the current the state of the art. The

memory controller offers QoS in term of latency for read transactions. Entries are arbitrated

with an algorithm that optimizes the efficiency of the memory data bus. To achieve optimum

memory bus efficiency entries might be arbitrated out of order from their arrival time. The

way to ensure QoS is by using priorities for read accesses that require low latency read data.

The QoS for read access is determined when the arbiter receives it, and it is based on the

requestor ID. No QoS exists for write accesses.

We aim at providing the same level of QoS to high-priority transactions such as cache

controller transactions in the network and the memory controller. We separate high-priority

transactions from other transactions by mapping them to a dedicated VC. In addition, we give

this VC the highest priority in NIs and routers through the network. Moreover, we program

the memory controller so as to minimize the stall time of transactions having high priority.

1.5.2 Platform configuration

As several configurations of each component are possible, we experimented what we feel the

most relevant ones in order to be able to evaluate the performance of the NoC and measure

9

Chapter 1. Problem Definition

the DDR1 SDRAM access latency when implementing virtual channels.

Traffic generators

Each traffic generator has an AMBA AXI interface with two separate channels for read and

write requests. The number of outstanding requests4 for each channel is configurable. The

traffic generator has the capability of generating constrained-random traffic in accordance

with a statistical distribution which determines the inter-transaction time. We have a full con-

trol over AMBA AXI bus parameters such as address range; transaction ID and burst length. A

preview of traffic generators characteristics is given in Table 1.2.

Table 1.2: Traffic generator characteristics

IP Name Data Rate Latency Jitter Burst Lengtha Issuing Capabilities

Cache Ctrl port0 low low low 32b 2 reads, 2 writes

Cache Ctrl port1 low low low 32 2 reads, 2 writes

DMA high tolerant tolerant 16→ 128a,c 2 reads, 2 writes

Streaming IP high tolerant high 16→ 128 2 reads, 2 writes

a In Bytes
b Corresponds to the cache line width
c Allowed burst sizes are : 16, 32, 64, 96, 128 bytes

The traffic balancing of all these generators is defined as 50% towards on-chip SRAMs,

and 50% towards off-chip DDR SDRAMs.

Memory subsystems

Two identical memory subsystems are connected to the NoC. Each one is made up of the

combination of a single port dynamic memory controller and two x16 DDR SDRAMs. The

memory controller is programmed after the reset signal. During this period we configure it

in specifying the maximal admissible latency value for each initiator (identified by its unique

source ID). Thus the memory controller will be able to schedule the requests according to

these maximum latency values.

The QoS in the memory controller indicates the ways to manage bandwidth and latency.

The latency guarantee of a flow is based on the flow ID, while the minimal bandwidth of a

flow is based on the flow ID and the memory bank status (row hit/miss). Within these exper-

iments, the Cache Controller read transactions latency must be less than 40 clock cycles.

4The number of outstanding requests is the maximum number of requests the traffic generator can send before
receiving any response

10

1.5. Experiments

Interconnect

We use in this simulation platform the Spidergon STNoC interconnect technology. We im-

plement two separated NoCs, one for requests and one for responses. In order to minimize

the number of buffers and thus the interconnect area, we only implement two channels on

the path between cache controller ports and memory subsystems (see Figure A.1). The chan-

nel splitters differentiate among cache controller transactions targets and map them to two

channels. The channel splitter can be activated or not:

• When enabled, it maps cache controller transactions towards off-chip memory subsys-

tems to channel 2 (ch2) that provides the highest QoS in the NoC, and all other transac-

tions to channel 1 (ch1).

• When disabled, it maps all cache controller transactions to one channel (ch1) with the

highest priority. DMA and streaming IP transactions are also mapped to ch1 but with

low priority.

Therefore, we are able to make a fair comparison of the external memory access latencies

when we use a separated channel for cache controller transactions only.

As we use a single port memory controller, we need a channel merger block to merge both

channels in one AMBA AXI bus when the channel splitter is enabled. Note that the routing

algorithm in the request network and the response network are symmetrical.

Service coupling of both Spidergon STNoC and memory controller

For the first configuration (only 1 channel), we prioritize all cache controller transactions

towards the memory subsystems by giving them the highest priority in the router arbiters,

and by choosing an arbitration algorithm based on packets priority.

For the second configuration (2 channels), we prioritize the cache controller transactions

towards the memory subsystems by mapping them to a dedicated channel ch2, and by con-

figuring the router arbiters so as to prioritize ch2 over ch1 without packets locking on ch1.

In this way, the high priority requests/responses on ch2 do not stall behind the other re-

quests/responses on ch1 on the same physical channel between routers (see Figure A.1).

For both platform configurations (one channel or two channels), we give the highest pri-

ority to all cache controller transactions.

1.5.3 Simulation & results

To evaluate the capabilities offered by the current memory controller, we measure the la-

tency of the cache controller accesses to the external DDR SDRAMs. We change the mapping

of its transactions through the interconnect and we measure the latency variation by means

of transactions spies. We do here an exploration job in order to evaluate the influence of the

burst length of DMA and streaming IP over cache controller transactions. The cache con-

troller is sending read&write requests to all slaves; DMA and streaming IP are also sending

11

Chapter 1. Problem Definition

read&write requests to all slaves. We select one range among four burst length ranges for each

experiment. The burst length ranges are: 16 to 32; 32 to 64; 64 to 96; and 96 to 128 bytes (see

section (1.5.2) for more information about the traffic generation).

For each burst range, we compute the memory access speedup when we use one channel

with QoS5 activated in the memory controller compared to the basic case when the QoS in

the memory controller is deactivated(see equation (1.1)). We perform a similar calculation

for the memory access speedup when we use two channels with activated QoS in the memory

controllers compared to the basic case when no QoS is provided in the memory controllers

(see equation (1.2)). When the QoS is deactivated in the memory controller, it becomes un-

able to cope with the requestors requirements, because it omits the request source ID. How-

ever, it continues to provide QoS in term of memory bus efficiency, and tries to increase the

row hit rate.

Speedup(1ch) = 100 ·
Lat

DMC_QoS_on
1ch − Lat

DMC_QoSoff

1ch

Lat
DMC_QoSoff

1ch

(1.1)

Speedup(2chs) = 100 ·
Lat

DMC_QoSon

2chs − Lat
DMC_QoSoff

1ch

Lat
DMC_QoSoff

1ch

(1.2)

Two speedup values are computed, one based on average latency and the other one based

on maximum latency. We monitor the round trip latency of cache controller reads and writes

in four different cases:

Cache controller read requests versus DMA and streaming IP read requests

Both low priority IPs DMA and streaming IP are sending read requests to external DDR SDRAMs.

Figure 1.4 shows the off-chip memory access speedup for this scenario. We can note that the

implementation of two channels is useful when the burst length of read requests increases.

The use of both channels guarantees a speedup of 37% for off-chip memory access based on

maximum latency, when the read request burst length crosses 64 bytes.

Cache controller read requests versus DMA and streaming IP write requests

In this case, the low-priority IPs DMA and streaming IP are issuing write requests. Figure

1.5 shows the off-chip memory access speedup for cache controller read transactions. The

speedup obtained in this case when we use two channels is more important than the pre-

vious case. Indeed, low-priority write transactions create contention on the physical links

connecting the routers req0 and req2 to memory subsystems. By using a second channel

5The definition of the memory controller QoS is given in section (1.5.2).

12

1.5. Experiments

��
��������

���� ��

���

���

���
���

�	� �
�

���

�
�

	�

�	�

�	�

�
�

��
�
�

�
�

��
�
�

�
�

��
�
�

�
�

��
�
�

���������������

������� �!����

�"��#���"

���������������

������� �!����

��"��#���"

���������������

������� �!����

��"��#�$�"

���������������

������� �!����

$�"��#�
��"

%&�'���#(������)����"&����!����

�
�
*

�
��
#
�
��
#
))�
��
�
�
�

�+
��
�
�
�
*
��
#
�
�
�

�
,
�
�

&
,

�-� ��.

Figure 1.4: Off-chip memory access speedup for cache controller read requests when low-priority
IPs send read requests

for high-priority requests, we can accelerate the memory access by bypassing the long write

requests.

The results of both previous cases were expected because the services provided by Spider-

gon STNoC and memory controllers are coupled. The following two cases show the impact

of low-priority transactions over the latency of cache controller transactions when the QoS is

not extended to the memory controller.

���

�� �� ��
�� ��

��

���

���

���

��

	
�

�
�

���
���

���

��

��

���

���

��

�

�

��

��

�

�

��

��

�

�

��

��

�

�

��

���������������

���� �����!��������"

�#�	
"

���������������

���� �����!������	
"

�#���"

���������������

���� �����!��������"

�#���"

���������������

���� �����!��������"

�#��
�"

$%�&���#'������(����"%����!�����

�
)
�
�
�
#
�
��
#
((�
��
*
�
�
+
�,
��
�
�
�
)
��
#
�
�

��
-
�
�
+
%
-

�.� ��/

Figure 1.5: Off-chip memory access speedup of cache controller read requests when low-priority
IPs send write requests

Cache controller write requests versus DMA and streaming IP write requests

As we mentioned previously, the dynamic memory controller we are using does not provide

any QoS in term of latency for write requests (the memory controller QoS in term of mem-

ory bus efficiency is still enabled). Even if we guarantee a maximum latency threshold for

13

Chapter 1. Problem Definition

write transactions through the request and the response network, they may be stalled in the

memory subsystem. Figure 1.6 shows the memory access speedup/slowdown. The memory

access speedup which is based on the latency average value is still positive. However, we can

not guarantee a maximum latency threshold for the high-priority write transactions.

As the arbiter tries to increase the memory bus efficiency, it prioritizes the requests that

increase the row hit rate in DDR SDRAMs banks. The address locality of the streaming IP is

very high because it accesses adjacent rows. For this reason the memory controller arbiter

schedules consecutive write requests coming from the streaming IP, and accessing the same

row. In consequence, some cache controller write requests must wait until the sequence of

requests crosses the row boundary, and can be scheduled at the next Activate Row command.

If we focus on the last burst length range (96→128 bytes) in Figure 1.6, we see that there

is no slowdown when we use 2 channels. This is explained by the fact that the memory con-

troller cannot schedule a write request while it does not receive the entire packet to write

(between 96 and 128 bytes). As the cache controller ports send 4-byte-write requests (see

table 1.2), their packets can bypass the long packets, and the memory controller entirely re-

ceives them before the low priority packets. So the number of high priority requests which

are ready to be scheduled will be grater in comparison with the other cases (low-priority burst

length 16→96 bytes).

��
�� ��

��

��
�� ��

��

��	�

����

���

��

�	�

	�

��

�

����

���

���

��

�

��

��

��

�

��

��

��

�

��

��

��

�

��

��

�������������������

 �����!��������"��#

�"

�������������������

 �����!������
�"��#

��"

�������������������

 �����!��������"��#

$�"

�������������������

 �����!������$�"��#

��	"

%&�'���#(������)����"&����!�����

�
*
�
�
�
#
�
��
#
))�
��

��
��
�+
��
�
�
�
*
��
#
�
�
�

�
,
�
�
-
&
,
.�
)#
/
-
#
/
�

�0� ��1

Figure 1.6: Off-chip memory access speedup/slowdown of cache controller write requests when
low-priority IPs send write requests

Cache controller write requests versus DMA and streaming IP read requests

This simulation scenario is a good example of the need of an extended QoS of service through-

out the request and response path between the masters and the DDR SDRAM devices. Al-

though the Spidergon STNoC ensures a maximum latency threshold for the cache controller

write requests, the low-priority read requests from DMA and streaming IP gain the upper

hand in the memory controller. Figure 1.7 shows how the cache controller write requests

14

1.6. Conclusion

are slowed down when low-priority IPs issue read requests towards the external DDRs. The

longer the burst length of low-priority read requests, the higher the stall time of high-priority

write requests.

In this case, the memory controller arbiter gives the priority to the DMA and streaming IP

read requests whenever it receives these read commands. So the 4-byte write requests of the

cache controller ports must wait for several arbitration cycles to be scheduled.

��

���
���

��

��������

��

����

���

��	�

�
�
���

��

��� �
�

����

����

��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�������������

�� !��"#�����

��$�%��$

�������������

�� !��"#�����

��$�%��$

�������������

�� !��"#�����

��$�%	�$

�������������

�� !��"#�����

	�$�%���$

&'�(��%)������*��$'���#�����

�
�

+
�

�
�

%
�

��
%

**�
�

,
��

��
-

��
�

�
�

+
��
%

�
�

�
.

�
�

"
'

.
/�

*%
0

"
%

0
�

�1� ��2

Figure 1.7: Off-chip memory access speedup/slowdown of cache controller write requests when
low-priority IPs send read requests

1.5.4 Experiments summary

From the previous experiments it is clear that the services provided by the network for the

cache controller traffic must be extended to the memory controller in order to ensure the

same QoS throughout the path between the cache controller ports and the memory devices.

Even if we map the cache controller traffic to a dedicated channel and we give this channel

the highest priority inside the network, we cannot be sure that the same level of QoS will be

guaranteed inside the memory controller. The impact of the QoS discontinuity is obvious

when the cache controller sends write requests to the memory subsystems while DMA and

streaming IP send read requests to the memory subsystems. Low-priority reads requests are

often scheduled before high-priority write requests.

The question arises here: what are the main modifications to apply to the memory con-

troller so that it can provide the appropriate level of quality-of-service?

1.6 Conclusion

In this chapter we provided an overview of the DDR SDRAM access through networks-on-

chip. We have also shown the importance of the service coupling between the network and

the memory system.

15

Chapter 1. Problem Definition

The task of a memory controller is complex because it has not only to obey all SDRAM tim-

ing constraints to provide correct functionality, but also to satisfy the initiators requirements

in terms of bandwidth and latency. This puts a lot of constraints on the design and makes the

exploration of the memory controller architecture very difficult. From a system perspective,

the impact of the memory controller architecture on the memory subsystem performance,

and consequently on the system performance, is very important. The continuity of the guar-

anteed service can only be ensured by the joint use of architectural and protocol mechanisms.

However, these mechanisms remain to be defined in the VLSI context within its constraints

in terms of area and power consumption.

Being able to explore the architecture of the memory controller and its arbitration algo-

rithms is essential to find an optimized architecture with the appropriate arbitration algo-

rithms. This emphasizes the importance of having a memory controller with a totally cus-

tomizable architecture. Such a customizable architecture allows us to study the interaction

between the memory system and the network-on-chip, and to measure the impact of the

memory controller on the overall system performance.

Another path that is worth considering is the use of some pieces of information related

to memory subsystem status in the network-on-chip. However, we should know what infor-

mation the memory controller has to share with the NoC in order to enhance the network

performance within the process of SDRAM requests scheduling.

Designing a memory controller with a totally customizable architecture for NoC-based

MPSoCs, and implementing features for DDR SDRAM access in the network-on-chip will

be addressed in this thesis with the aim of easing the architecture exploration of a dynamic

memory controller and optimizing the access to shared memories in NoC-based MPSoCs.

16

CHAPTER 2

State of the Art

Contents

2.1 Memory controllers . 19

2.2 On-chip interconnects . 26

2.3 Combined interconnect-memory controller solutions 30

2.4 Conclusion . 33

17

2.1. Memory controllers

R ECOGNIZING the importance of high performance off-chip SDRAM communica-

tion as a key to a successful system design, several memory controllers and on-chip

interconnection systems have been proposed. In this chapter, the state of the art

on the networks-on-chip and the memory controllers is analysed. The range of the analy-

sis is limited to the topics that provide guaranteed services. We separate the related work in

three categories: memory controllers, on-chip interconnects, and combined interconnect-

memory controller solutions. Principles of SDRAMs and memory controllers are given in

Chapter 1,sections (1.1) and (1.2) respectively.

2.1 Memory controllers

Existing SDRAM controller designs are either statically or dynamically scheduled, depending

on wich kind of systems they target. Statically scheduled memory controllers combine static

front-end arbitration with static scheduling of SDRAM commands in the back-end. The pre-

computed schedule in the back-end makes the design unable to adapt to changes in the be-

haviour of the requestors. As the static arbitration couples latency and allocated bandwidth,

it is not able to satisfy the requirements of latency-latency requestors with low bandwidth

requirements without wasting bandwidth. Conversely, dynamically scheduled memory con-

trollers combines dynamic front-end arbitration with dynamic back-end scheduling. These

controllers target high-efficiency and flexibility to fit in high-performance systems with dy-

namic applications whose behaviours may not be known up front [2]. We are addressing in

this section the dynamically scheduled memory controllers.

In order to improve the memory efficiency, a number of dynamic memory controllers use

information about memory state when scheduling. This consideration is typically done in

the back-end. However, some designs communicate memory state to the front-end arbiter,

which blurs the distinction between the two. Among the information about the memory state

that he front-end use we may mention the open row in each bank and the memory bus direc-

tion (read or write).

Rixner et al. [67] present a controller that privileges the requests which target an open row

in a bank. They show that none of the fixed policies studied provide the best performance

for all workloads and under all circumstances. However, the FR-FCFS (first-ready first-come-

first-served) policy exploits the locality within the 3-D memory structure (bank/row/column)

at best, and provides a 17% performance improvement on the whole set of applications. The

optimization mechanisms presented in this study became inevitable for any efficient design

of memory controller.

In addition to the open row policy some references use front-end priority-based arbitra-

tion to keep up with the requirements of latency-sensitive requestors. This kind of requestors

often correspond to processors that stall while waiting for a cache lines. Shao and Davis [71]

propose the burst scheduling access reordering mechanism which clusters memory accesses

to the same rows of the same banks into bursts to maximize bus utilization of the SDRAM

19

Chapter 2. State of the Art

device. Subject to a static threshold, memory reads are allowed to preempt ongoing writes

for reduced read latency, while qualified writes are piggybacked at the end of bursts to exploit

row locality in writes and prevent write queue saturation. Nevertheless, clustering memory

accesses to the same rows of the same banks could not be efficient for all traffic scenarios.

Many dynamic designs use rate regulator in the front-end to protect requestors from each

other. This is especially important in controllers with priority-based arbiters, since these are

often prone to starvation. Burchard et al. [10] present a real time streaming memory con-

troller (SMC) that uses a rate regulator in the front-end and considers the memory bus direc-

tion within the threads arbitration. The SMC has been designed to allow external SDRAM to

be accessed from a PCI Express network. A simplified architecture of the SMC is depicted in

Figure 2.1. They propose a fully parametrized credit-based arbitration algorithm. They also

propose the extension of the virtual channels (VC) provided by the PCIEx inside the SMC. As

they map one stream by VC, the maximum number of parallel streams accessing the SMC is

limited by the number of PCIEx VCs (eight VCs), which makes this architecture not scalable.

%+

��!

�.'�7�((�������

�����

+�����

��

����	��

�$%&�

�89 &������

:!4 :!� :!� :!
 :!� :!1 :!; :!<

����	�� ����	�
 ����	��

%+ %+ %+

Figure 2.1: The logical view of SMC architecture, source [10]

Macian et al. [52] propose an Embedded Hardware Manager which is composed of a set

of Service Managers, one per application. This design uses a rate regulator in addition to in-

formation coming from the back-end such as the open row in each bank and the memory bus

direction. Every Service Manager controls access to all shared resources for one application.

In case that certain requests had more stringent delay requirements, the service manager

could assign priorities to them. This design has been tested for a small number of applica-

tions (between 2 and 8). The capacity of the design to safely deal with overload has not been

estimated.

Heithecker and Ernst [34] present an SDRAM scheduler that supports several concur-

rent access sequence types with different requirements including predictable periodic real-

time sequences and cache accesses with a minimum latency objective. They manage to sig-

nificantly increase the system performance by combining the flow control and prioritized

scheduling that takes into account the memory state. This schedule has the capability to deal

with several classes of traffic such as hard real-time periodic traffic and random traffic.

Mutlu and Moscibroda [57] introduced the parallelism-aware batch scheduler (PAR-BS)

20

2.1. Memory controllers

as a high performance and QoS-aware DRAM scheduler. According to their evaluation, PAR-

BS significantly improves both fairness and system throughput in systems where DRAM is

a shared resource among multiple threads. PAR-BS provides thread-fairness and better pre-

vents short-term and long-term starvation through the use of request batching. Within a

batch, it explicitly reduces average thread stall times via a parallelism-aware DRAM schedul-

ing policy that improves intra-thread bank-level parallelism. This design uses a priority

scheduling in addition to a rate regulator and respects the row buffer locality in order to max-

imize the bus efficiency. It is advantage over other complex designs is the reconfigurability

and the simplicity of implementation.

Whitty and Ernst [80] present a bandwidth optimized SDRAM controller for a heteroge-

neous reconfigurable platform (Figure 2.2). This controller has two-stage buffered scheduler:

the request scheduler and the bank scheduler. The request scheduler uses a round-robin

arbitration policy for standard requests. High priority requests are served before standard

requests when priority levels are enabled. The bank scheduler performs a bank interleaving

to hide the bank access latency and bundles the requests to minimize stalls by read-write

switches. This memory controller provides QoS for several traffic types. Two priority levels

for memory access requests have been implemented in the interface via distinct access paths

for high and standard priority requests. This makes this design usable in general purpose

platforms.

�����������	

�	������������	

���	���
��������
�����

���������

��

��

��

��

������
��	������

��	�
��

!

!

"

"

��

��

��

�� �
�
"
��
��
�
"
�
�

#�
$
	�
�
�
�%

"�!���	��&��

"

!

��

��

"�������	

!��	�����	

��������������	��

��	��������

"�'���	�(��)

��	��(��)

�������

*$��+������)�)�	��,���������,�)��	��
+��	�����&�	���	��������������+�����	���

����	�
���	�

-������

!

-������

-���
���	�

Figure 2.2: Bandwidth optimized SDRAM controller architecture, source [80]

The following designs has a priority-based arbiter with a rate regulator in the the front-

end. They also exploit information about the memory state coming from the back-end (open

rows and bus direction). ARM [3] introduced the single port memory controller PL340 which

provides a QoS in term of latency for read requests only. A max-latency value is allocated to

each thread. When a read request spends more than its max-latency time in the arbitration

21

Chapter 2. State of the Art

queue, the scheduler sends it to the SDRAM to be executed in such a way that the memory bus

efficiency is still respected. The arbiter considers two types of hazards: Read After Read and

Write After Write. It prevents a read request from being executed while another read request

with the same ID is still waiting in the arbiter queue. A similar technique is used for write

requests. The negative point in this design is the mono-port interface with the interconnect.

In opposition to other design, this memory controller mixes all traffic classes at the input

point.

Lee et al. [48] presented a multi-layer quality aware memory controller that contains par-

titioned functionality layers to achieve high SDRAM utilization and meets requirements for

bandwidth and latency (see Figure 2.3). In the proposed design, channels are put into three

categories: latency-sensitive, bandwidth-sensitive, and don’t care. Latency-sensitive chan-

nels are given the highest priority in the memory controller. They also benefit from two

other services, preemptive service and column-access-inhibition service. The first service is

used to issue latency-sensitive accesses as soon as possible by suspending the processed ac-

cess from a bandwidth-sensitive or don’t-care channel. This indicates that preemptive ser-

vice may reduce the average bandwidth utilization. The second service is used to preserve

the data bus for latency-sensitive accesses by inhibiting issuing column-access commands

from bandwidth-sensitive and don’t-care channels, and therefore eliminates latencies re-

sulted from data bus congestion.

Figure 2.3: (a) Quality aware memory controller (b)MIS architecture, source [48]

The interference between threads that access the shared memory has been highlighted by

Zhu and Zhang [85]. They evaluated contemporary multi-channel DDR DRAM and Rambus

DRAM systems in simultaneous multi threading systems. Their study proves that increasing

22

2.1. Memory controllers

the number of threads tends to increase the memory concurrency and thus the pressure on

DRAM system; and that DRAM latency reduction through improving row buffer hit rates be-

comes less effective due to the increased bank contentions. They also show that thread aware

memory access scheduling schemes may improve performance by up to 30% on workloads

of memory-intensive applications. Mutlu and Moscibroda [56] introduced the concept of

stalltime fair memory scheduling (STFM) that provides fair DRAM access to different threads

sharing the DRAM system. The key idea that makes STFM work is that equal priority threads,

when run together, should experience equal amounts of slowdown as compared to when they

are run alone. The goal of the scheduler is to equalize the DRAM-related slowdown expe-

rienced by each thread due to the interference from other threads, without hurting overall

system performance. They show how STFM can be controlled by system software to control

the unfairness in the system and to enforce thread priorities. Figure 2.4 depicts the organiza-

tion of the STFM memory controller. Zheng et al. [84] studied memory scheduling schemes

for multi-core systems. They prove that scheduling schemes need to consider both the long-

term and short-term effects in order to well utilize both the processor cores and memory

system. Within their scheduling scheme, requests from threads that have higher memory ef-

ficiency and fewer pending requests have higher priority than requests from other threads. In

addition, reads and row buffer hits have higher priority than writes and row buffer misses, re-

spectively. Their simulation results show that for memory-intensive workloads the new policy

improves the overall performance by 10% on average and up to 17% on a four-core processor,

when compared with scheme that serves row buffer hit memory requests first and allowing

memory reads bypassing writes. Nesbit et al. [59] propose another memory scheduler pro-

viding QoS to improve system performance. It is based on concepts developed for network

fair queuing (FQ) scheduling algorithms and targets high performance Chip Multi Processors

(CMPs). The FQ memory scheduler allows arbitrary fractions of memory system bandwidth

to be allocated to an individual processor or a cluster of processors. It provides QoS to all of

the threads in all of the workloads running on a four CMP and improves system performance

by 14% on average. All previous studies deal with multi-core systems with multi-thread mem-

ory system. However, non of them considers the memory access process as a system manner.

They all focus on the memory controller architecture without tackling the manner that the

requests are brought to the memory system through the interconnect structure.

Depending on the traffic that accesses the shared memory, several important features

could be added to traditional memory controllers. Carter et al. [12] show a new memory

system architecture (Impulse) that supports application specific optimizations through con-

figurable physical address remapping and does intelligent prefetching at the memory con-

troller which reduces the effective latency to memory. Instead of fetching an entire cache line

from the DRAM, the memory controller can be configured by an application to export dense

shadow space alias that contains just the elements needed by the application(see Figure 2.5

and 2.6). This mechanism can only be useful in conventional systems, therefore, not in case

23

Chapter 2. State of the Art

DRAM Data Bus

REQUEST

BANK 0

Data

Buffer

Write

Requests. . .Requests

Thread 0 Thread N−1

Crossbar

BANK B−1

REQUEST

BUFFER

. . .
Memory Request

Buffer

Bank B−1Bank 0

Priority Assign. Priority Assign.

Bank B−1

SchedulerScheduler

Bank 0

. . .
Priority Assignment

Logic

. . .
Per−bank

Schedulers

DRAM Channel Scheduler

. . .

STFM

Registers

. . .

and Tshared

Requests

Thread 0

Requests

and Tshared

STFM Logic

and Update Logic

Slowdown & Unfairness Estimation

Thread N−1Thread 0

STFM

Registers

Read

Data

Buffer

On−chip Data Bus

DRAM Address/Command Buses (off−chip)

Thread N−1

Off−chip

BUFFER

Figure 2.4: Organization of the on-chip STFM memory controller, source [56]

of mixed traffic classes. Zhu et al. [86] present a workload independent approach by focusing

on optimizing fine grain priority scheduling. This mechanism splits a memory reference into

sub-blocks with minimal granularity, and maps sub-blocks from a reference into different

channels. All channels can be used to process a single cache line fill request. Sub-blocks that

contain the desired data are marked as critical ones with higher priorities and are returned

earlier than non-critical sub-blocks. Zhu et al. [87] propose a high performance SDRAM con-

troller optimized for high definition video application. They combine multiple access units

into one transaction to enable consecutive data transmission, which suits the characteristics

of video decoder accessing. Afterwards, they apply the scheduling strategy that finds and is-

sues the Activate / Precharge command as early as possible to allow the latency incurred to

be overlapped. The high definition video applications generate traffic with high-locality ad-

dresses, this is why combining multiple access unit into one transaction is possible without

creating row misses.

Akesson et al. [1] proposed a memory controller (Predator) that guarantees minimum

bandwidth and maximum latency bounds to the IPs using a novel approach to predictable

SDRAM sharing. This is accomplished by defining memory access groups corresponding to

precomputed sequences of memory commands with known efficiency and latency. Then, a

predictable arbiter is used to dynamically schedule these groups at run-time such that the

requirements of bandwidth and latency remain guaranteed for each IPs. Figure 2.7 depicts

a simplified architecture of the Predator. Although this architecture is extended to cover a

part of the network interface, it does not share any information between the network and

the memory controller in order to improve the overall system performance. Akesson [2] pre-

sented later a memory controller that offers bounds on both net bandwidth and the latency

of requestors at design time, which enables configuration settings to be automatically syn-

24

2.1. Memory controllers

Figure 2.5: Using Impulse to remap the diago-
nal of a dense matrix into a dense cache line.
The black boxes represent data on the diagonal,
whereas the gray boxes represent nondiagonal
data. Source [12]

Figure 2.6: The Impulse memory architecture.
Source [12]

thesized for a given set of requirements. The front-end uses predictable dynamic arbiters

in the class of Latency-Rate (LR) servers, which satisfies diverse latency requirements. The

command generator uses a hybrid approach based on memory patterns that is a mix between

static and dynamic command scheduling. Memory patterns are precomputed sub-schedules

that are dynamically combined at run-time, enabling the controller to accommodate traffic

that is not fully known at design time in a predictable fashion. The strength of this study is

the use of the predictable SDRAM access patterns notion and the principle of composable6

systems to bound the bandwidth and latency of the shared memory requestors.

S
D

R
A

M

Memory ControllerNetwork Interface

Arbiter

Memory
Mapping

Controller
Engine

R
e
q
u
e
s
t

Q
u
e
u
e
s

R
e
s
p
o
n
s
e

Q
u
e
u
e
s

write data

cmd

read data

p
e
n
d
in

g

re
q
u
e
s
t

logical addr

Generator
Command

physical addr

Figure 2.7: Predator memory controller architecture, source [1]

Lee and Chung [47] presented a scalable qos-aware memory controller. Even though this

memory controller is designed for IP packets, and could be difficult to implement within

the VLSI constraints, its architecture worth to be analyzed. The requests are stored in FIFOs

according to their QoS class, direction (read/write) and the memory bank they want to access.

6A system is considered composable if applications cannot affect each other’s behaviour in the value and time
domains [2]

25

Chapter 2. State of the Art

There is one FIFO for each class/direction/bank triplet. Bank arbiters selects requests from

each set of direction/bank FIFOs and forward the requests to the class schedulers. There are

only two class schedulers, one for each direction (read/write), they are based on the weighted

round robin algorithm. Class schedulers forward the requests to the direction arbiter, which

is a simple round robin arbiter. This arbiter is the last one in the memory controller front-end.

Table 2.1: Main features of the state of the art memory controllers

Ref. Main sched. scheme Mem state exploitation Rate Real time Prefetching
Priority RR row bus direction regulator guarantees

[67] X - X X - - -
[71] X - X X - - -
[10] X - X ? X X -
[52] - X X X X X -
[34] X - X X X X -
[57] X - X ? X - -
[80] X - X X X X -
[3] X - X X - - -

[48] X - X X X X -
[56] X - X X X - -
[59] X - X X - X -
[12] X - X ? X - X

[1] X - X ? X X -
[86] X - X X X ? -
[2] X - X ? X X -

[47] - X X X ? X -

X↔ provided - ↔ not provided ? ↔ not communicated

Some of the most important characteristics and properties of reviewed work are summa-

rized in Table 2.1. We can notice that all these previous studies focus only on the architecture

and QoS provided by memory schedulers and do not tackle neither the interconnect services

nor the manner in which the masters requests are brought to the memory system. Although

a few designs use back-end information in the front-end arbiter to efficiently schedule the

requests, none of these designs shares any information with the interconnect structure that

brings the requests to the memory controller. In addition, all previous designs are based on

fixed architectures that do not provide the designer with any degrees of freedom to explore

them.

2.2 On-chip interconnects

In the mid 90’s Hosseini-Khayat and Bovopoulos [36] presented an efficient bus manage-

ment scheme which allows the bus to support both continuous media transfer and regular

random transactions. The algorithm ensures that continuous streams can meet their real-

time constraints independently of random traffic, and random traffic is not delayed signifi-

cantly by continuous traffic except when the traffic load is very high . In the early 2000 the

applications needs in term of throughput have led the interconnection systems to the NoC

idea that was presented by Guerrier and Greiner [33], in which the support for these traffic

26

2.2. On-chip interconnects

classes is still required. In 2001 Dally and Towles [19] showed that using a network to re-

place global wiring has advantages of structure, performance, and modularity. The on-chip

network structures the global wires so that their electrical properties are optimized and well

controlled.

From 2001 on, a large number of Networks-on-Chip have been proposed. Some examples

are SOCBus [51], Octagon [43], QNoC [24], DSPIN [64], MANGO [7], Spidergon STNoC [16],

Æthereal [31; 30], Nostrum [54], ANoC [6], Arteris NoC [4; 65], Hermes [55; 53], Chain [5],

xPipes [18], QoS [26], SoCIN [82], Proteo [68] and Nexus [50].

Within the scope of this section, we are interested in NoC architectures which provide QoS

to several classes of traffic.

QNoC [24] has four type of service levels. Signaling for urgent short packets that have

the highest priority; Real-Time that guarantees bandwidth and latency for streamed audio

and video; Read/Write for short memory and register accesses; and Block-Transfer for long

messages such as DMA transfers. It combines multiple service levels (SL) with multiple equal-

priority virtual channels (VC) within each level. The VCs are assigned dynamically per each

link. A different number of VCs may be assigned to each SL and per each link .

The DSPIN [64] network-on-chip provides guaranteed service traffic by using VCs tech-

nique with a buffer per virtual channel. The advantage of this technique is a full separation

of the traffic classes. Two traffic classes are defined, Best Effort (BE) and Guaranteed Ser-

vice (GS) packets. Thus, when one traffic class is blocked the other is neither suspended nor

blocked. Consequently, the deadlock situations can be avoided.

MANGO [7] stands for Message-passing Asynchronous Network-on-chip providing Guar-

anteed services over OCP interfaces within a virtual channel approach. MANGO routers are

the nodes of 2D mesh. They has five ports where one is a local port. The router consists of

a BE router, a GS router and a link arbiter. The GS router is implemented as a non-blocking

switching module. Each output port has seven GS communications and one BE communica-

tion. The GS communications are multiplexed using the virtual channel within a buffer per

channel approach.

Spidergon STNoC [16] is a customizable on-chip communication platform that addresses

heterogeneous, application specific requirements of MPSoCs. It allows customizable pseudo-

regular or hierarchical topologies. As a programmable distributed hardware / software com-

ponent, Spidergon STNoC offers a set of services to design advanced application features

such as quality of service, security, and exception handling. Two virtual channels can be used

to map traffic classes. In addition, two arbitration stages are implemented. The first one is an

intra-channel arbitration, which arbitrates the packets going though the same channel. The

second one is an inter-channel arbitration, which arbitrates between channels going through

the same physical link.

The Æthereal NoC [31; 30] offers two types of service classes: guaranteed throughput

(GT), and best effort (BE). Data that is sent on BE connections is guaranteed to arrive at the

destination, but without minimum bandwidth and maximum latency bounds. End-to-end

27

Chapter 2. State of the Art

flow control is used to ensure loss-less data transfer. GT connections use virtual channels in

addition to time-division multiple access (TDMA) technique to give hard (worst-case) guar-

antees on minimum bandwidth and maximum latency. Both GT and BE connections use

source routing, i.e. the path to the destination is decided at the initiator NI.

Nostrum [54] NoC offers guaranteed bandwidth and latency service, in addition to the ba-

sic service of best-effort (BE) service to traffic classes. The guaranteed bandwidth is accessed

via virtual circuits. The virtual circuits are implemented using a combination of two concepts

that it is called Looped Containers and Temporally Disjoint Networks. The Looped Contain-

ers are used to guarantee access to the network - independently of the current network load

without dropping packets; and the TDNs are used in order to achieve several virtual circuits,

plus ordinary BE traffic, in the network. The switching of packets in Nostrum is based on the

concept of deflective routing, which implies no explicit use of queues where packets can get

reordered, i.e. packets will leave a switch in the same order that they entered it. To avoid cre-

ation of hot-spots, routers send back-pressure signal to notify their neighbours of congestion

ahead of sending packets.

ANoC [6] is an asynchronous NoC that uses two virtual channels (VCs) to provide best-

effort on the low-priority VC and real time guarantees on a high priority VC. Complete paths

are reserved for high-priority VC thus ensuring collision avoidance. If more simultaneous

real-time connections are required to share a part of a path, the topology of the NoC has to

be adapted to relax this condition. The data flow through the network is a wormhole routing.

This has been chosen due to the small number of buffers required per node and the simplicity

of the communication mechanism.

Arteris [4; 65] provides a commercial packet-switched NoC marketed as a bus replace-

ment for SoCs. The NoC addresses the needs of complex designs that require high perfor-

mance and a broad range of advanced interconnect features, such as QoS, multiple clock and

power domain support, error handling, firewalls and extensive debug features. Packets are

routed between network interfaces through a user defined topology. Not much is knowing

regarding the implementation of this NoC.

The Hermes [55; 53] NoC is an infrastructure used to implement low area overhead packet

switching NoCs, using mesh topology. It is quite classical in design (wormhole routing, credit

based flow control), and it is considered here as the first open source NoC design. This in-

frastructure was extended to implement virtual channels. Hermes NoC implements either

handshake or credit based flow control strategies. The VC implementation employs credit

based flow control, due to the advantages over handshake. More services have been imple-

mented in Hermes [11]. It consists in adding two kinds of QoS mechanisms: (1) priority with

the support of two priority levels, (2) connection supporting hard QoS through circuit switch-

ing.

One of the main concerns in networks-on-chip is to be able to reduce the latency of op-

eration and to increase the bandwidth. Weber et al. [79] outlined a simple QoS scheme that

28

2.2. On-chip interconnects

offers service guarantees to each initiator regardless of the other initiators’ offered traffic load.

Three levels of QoS are available for each initiator: priority (optimized for low-latency up to

maximal throughput); bandwidth (offering a guaranteed throughput); and best-effort (no ser-

vice guarantees). Grot et al. [32] propose a QoS scheme called Preemptive Virtual Clock (PVC)

specifically designed for cost and performance sensitive on-chip interconnects. There objec-

tives are to minimize area and energy overhead, enable efficient bandwidth utilization, and

keep router complexity manageable to minimize delay. They also aim at simplifying network

management through a flexible bandwidth reservation mechanism to enable per-core, per-

application, or per-user bandwidth allocation that is independent of the actual core/thread

count. PVC requires neither per flow buffering in the router nor large queue in the source

nodes. Instead, it provides fairness guarantees by tracking each flow bandwidth consump-

tion over a time interval and prioritizing packets based on the consumed bandwidth. Lee

et al. [49] present a new scheme called GSF (Globally Synchronized Frames) to implement

QoS for multi-hop on-chip networks. GSF provides guaranteed and differentiated bandwidth

as well as bounded network delay without increasing the complexity of the on-chip routers.

They quantize the time into frames and the system only tracks a few frames into the future

to reduce time management costs. Each QoS packet from a source is tagged with a frame

number indicating the desired time of future delivery to the destination. At any point in time,

packets in the earliest extant frame are routed with highest priority but sources are prevented

from inserting new packet into this frame.

We summarize the most important features of the previous networks-on-chip in Table 2.2.

Table 2.2: Main features of the state of the art networks-on-chip providing QoS

NoC reference Topology Flow Virtual Routing Services Other
control channels algorithm info.

Æthereal [31; 30] Mesh E2E and link level Yes static SR GT; BE TDMA
ANoC [6] Custom Flit handshake Yes static SR RT/LL ; BE Asynch.

Arteris [4; 65] Custom ready-valid No static SR PR based; BE -
DSPIN [64] Mesh CB Yes XY routing GS; BE Asynch.

Hermes [55; 53; 11] Mesh handshake; CB Yes XY routing BE;GS -
MANGO [7] Mesh handshake Yes static SR GS; BE Asynch.

Nostrum [54] Mesh hot potato Yes deflective GT/LL; BE TDMA
routing

QNoC [24] Custom CB Yes XY routing RT/LL; BE Asynch.
SSTNoC [16] Custom CB Yes static SR GT/LL; BE FBA

SR : Source Routing
RT : Real Time
LL : Low Latency
BE : Best Effort
E2E : End to End
PR : Priority
GS : Guaranteed Service
GT : Guaranteed Throughput
CB : Credit Based
FBA : Fair Bandwidth Allocation

We can extract the following conclusions about the reviewed networks-on-chip:

29

Chapter 2. State of the Art

• As it is seen all designs provide several levels of service to traffic classes. The continuity

of these services is only guaranteed inside the NoC, this emphasizes the need of service

coupling between the network and the targets.

• None of the previous NoCs have any mechanisms that use information coming from

the memory subsystem in order to efficiently arbitrate and forward the packet going to

the memory devices.

2.3 Combined interconnect-memory controller solutions

Few studies treat the off-chip memory system as a system matter, i.e. from the masters to

the memory devices through the interconnect structures. In this section, we analyze the state

of the art solutions that consider both network-on-chip and memory controller within the

dynamic memory access process.

Ipek et al. [38] presented a new approach to design memory controller that operates using

the principle of Reinforcement Learning (RL). The self-optimizing memory controller can

continuously adapt its SDRAM command scheduling policy based on its interaction with the

system to optimize performance. The proposed controller improves the performance of a

set of parallel applications, running on a 4-core CMP with a single channel DDR2 memory

subsystem, by 19% on average over a state-of-the-art FR-FCFS7 scheduler. This design has

only been evaluated in small CMPs, no information is given about its performance in bigger

chips with dynamic traffic.

Sonics [72] has developed algorithms for memory load balancing in a multi-channel mem-

ory system (Interleaved Memory Technology or IMT) along with an advanced memory sched-

uler to optimize SDRAM access. The global address space covered by a SonicsSX SMART

Interconnect address region may be partitioned into a set of channels. The channels are non-

overlapping and collectively cover the whole region (see Figure 2.8). The number of channels

for a region is a static value derived from the number of individual targets associated with

the region. The memory load balancing unit distributes application workloads over memory

channels through the interconnect. This solution requires fundamental modifications in the

on-chip communication structure.

Daneshtalab et al. [21] propose a novel network interface architecture within a dynamic

buffer allocation mechanism for the reorder buffer in order to increase the utilization and

overall performance. The master network interface contains a shared reordering unit be-

tween the request and response path. In the slave network interface, they implement a dy-

namic memory controller made up of a scheduler and a physical interface which allows the

slave network interface to be connected directly to the SDRAM DDR modules (see Figure 2.9).

They use a constrained-random traffic in order to evaluate the performance of their solution

in comparison with the baseline architecture. They prove that the utilization of memories is

7FR-FCFS : First Ready - First Come First Served

30

2.3. Combined interconnect-memory controller solutions

Figure 2.8: Memory map interpretation when using Sonics IMT, source [72]

improved by 22% and the average memory latency and average network latency are reduced

by 19% and 12% respectively.

A network congestion-aware memory controller has been presented by Kim et al. [44].

It is based on the global information of network congestion and performs congestion aware

memory access scheduling and congestion aware network entry control of read data. It prior-

itizes the productive requests from the uncongested area over unproductive ones. The unpro-

ductive requests come from the congested area and will only consume resource in memory

controller without contributing to the system performance improvement. The experimental

results obtained from a 5×5 tile architecture show an improvement of 18% in memory uti-

lization. Unfortunately, the authors do not tackle the starvation problem when one shared

memory system is in use.

Chen et al. [13] propose a micro-coded controller as a hardware module in each node

to connect the core, the local memory and the network on chip. The proposed controller is

programmable where the distributed shared memory functions (virtual to physical address

translation, memory access synchronization) are realized using microcode. To enable con-

current processing of memory requests from the local and remote cores, the controller fea-

tures two mini processors, one dealing with requests from local core and the other from re-

mote cores. In order to evaluate the performance of this controller, two applications, matrix

multiplication and 2D radix-2 DIT FFT, are mapped manually over the LEON3 processors.

When the system size increases from 1 node to 64 nodes, the speedup of matrix multiplica-

tion goes up from 1 to 52; and the speedup of 2D radix-2 DIT FFT from 1 to 48. However, these

31

Chapter 2. State of the Art

Figure 2.9: The proposed memory controller integrated in the slave-side network interface, source
[21]

benchmarks have especially predictable access patterns.

Jang and Pan [40] presented an NoC router with an SDRAM-aware flow control. It im-

proves the SDRAM utilization and latency, and decouples the Noc design cost from the num-

ber of SDRAM. The router arbiter schedules the packets to access SDRAM efficiently, the

packets arrive at the memory subsystem into the order that is more friendly to SDRAM oper-

ations. In consequence, the complexity of the memory decreases while the memory perfor-

mance is more improved. They analyzed the relation between the number of SDRAM-aware

routers in the NoC and the system performance and hardware cost. The experiments show

that the best choice is to replace three conventional routers to the SDRAM-aware routers.

They propose later an application-aware NoC design for efficient SDRAM access which in-

cludes a flow controller [41]. They show that if the length of data requested by applications is

neither the same as the length of data served by SDRAM nor a multiple of the length of data

served by SDRAM, unnecessary data may be accessed and then thrown away. Therefore, the

access granularity mismatch problem should be considered. They propose an SDRAM ac-

cess granularity matching (SAGM) NoC design, which is based on SDRAM access granularity.

SAGM splits a packet into short fixed-length packets and then schedules them by a specific

flow controller which provides various priority services with few penalties. Their experimen-

tal results show that the application-aware NoC design improves on average 32.7% memory

latency for latency-sensitive cores and on average 3.4% memory utilization compared to the

SDRAM aware flow control performance [40]. Nevertheless, the presented solutions require

additional and heavy hardware to be implemented in the network router, which negatively

impacts the network overhead.

Diemer and Ernst [22] proposed a flow control scheme to implement service guarantees.

It uses available buffer space to allow access of guaranteed throughput traffic (GT) during

idle times. In return, the best-effort traffic (BE) is prioritized over GT traffic as long as the GT

buffers are sufficiently filled. Unlike many flow control mechanisms, Back-Suction prioritizes

32

2.4. Conclusion

best-effort traffic whenever possible for optimal latency and throughput of general purpose

applications. The experimental evaluation has demonstrated an improvement of the BE la-

tency up to 32% over a standard prioritization scheme.

2.4 Conclusion

In this chapter, we presented the state of the art work on the SDRAM access through on-

chip interconnects. Many networks-on-chip and memory controllers have been proposed to

enhance the efficiency of the shared memory and meet the requirements of the processing

engines connected through the network.

Advanced memory controllers and arbitration policies are presented in [2; 10; 47; 56; 57;

84]. Even if some of these designs present configurable memory controllers, the architecture

exploration is restricted to limited sets of parameters such as FIFOs depth, data bus size, QoS

level and bandwidth distribution. Moreover, none of the previous work present a totally con-

figurable architecture to give the designer the liberty of exploring and adapting the memory

controller architecture to measure the impact of its architecture on the system performance.

Many networks-on-chip provide guaranteed service to traffic classes [24; 64; 7; 16; 30; 54;

6]. A few flow controllers and arbitration schemes take into consideration the specificity

of the SDRAM as a target [13; 41; 40; 72]. However, these solutions predict the state of the

SDRAM, and require heavy arbitration schemes in the routers. None of them use information

on the real memory state neither within its arbitration algorithms nor within the flow control.

In order to fill the gap of the state of the art solutions, the following chapters will detail

our contribution. Firstly, we will focus on the specification and the design of a totally cus-

tomizable architecture of memory controller which will be presented as a library of building

components. This library provides the designer of the memory system with the necessary

configurable components to build a specific memory controller with all required measuring

tools to evaluate its performance. Secondly, in order to make the network-on-chip knowl-

edgeable of the SDRAM state, we introduce a new flow control protocol between the net-

work and the memory controller. This protocol exploits the memory controller state within

its control policy and guarantees the extension of services from the network to the memory

controller.

33

CHAPTER 3

Memory Controller Customizable Architecture

Contents

3.1 Introduction . 37

3.2 DDR3 SDRAM operations . 38

3.3 Design abstraction in system modelling . 41

3.4 Design approach . 41

3.5 Assumptions . 42

3.6 Front-end building components . 42

3.6.1 Memory mapping . 42

3.6.2 Generic queue . 43

3.6.3 Capture unit . 44

3.6.4 Insertion unit . 47

3.6.5 Generic arbiter . 51

3.6.6 Flow control . 53

3.6.7 Re-ordering unit . 55

3.6.8 Summary . 55

3.7 Examples of memory controller front-end . 56

3.7.1 Memory controller Alpha . 56

3.7.2 Memory controller Beta . 56

3.7.3 Memory controller Gamma . 57

3.7.4 Summary . 58

3.8 Back-end building components . 59

3.8.1 DDR3 SDRAM commands generator . 60

3.8.2 Memory manager . 60

3.8.3 Data handler . 61

3.9 DDR3 SDRAM model . 62

3.10 Conclusion . 62

35

3.1. Introduction

M AIN memory system designs and optimizations have become an increasingly im-

portant factor in determining the overall system performance. Although reducing

directly the physical memory access latency is limited by the SDRAM technology

advancement and cost considerations, the advance of modern memory systems has provided

many opportunities to reduce the average latency for concurrent memory accesses [85]. The

performance of a memory system is tightly correlated with the performance of the memory

device and the memory controller. This is why the architecture of the memory controller has

a tremendous impact on the overall system performance. In this chapter we will introduce

a Memory Controller Customizable Architecture which is a totally configurable architecture

used to study the memory access process through on-chip interconnects. To the best of our

knowledge, such an architecture is the first of its kind.

3.1 Introduction

In the past few years, performance analysis of NoC-based SoCs has been done with focus

only on the network. The use of dump slaves that return responses either immediately or

with fixed delay has been recurring. However, such performance analysis is naive, and has

clear limitations because it does not include the shared SDRAM access latency, which makes

it incompatible with the evaluation of today’s SoCs.

Srinivasan and Salminen [74] present a model for an SDRAM with its controller. They

concentrate on the SDRAM device to provide a statistical model for the memory access la-

tency. They only consider the SDRAM timing constraints without taking into account the ar-

bitration phase in the memory controller front-end that precedes the memory device access.

Their model reflects more precise values of memory access latency compared to previous

models, but still does not include the total memory access latency which is due to the whole

memory subsystem, i.e. the front-end, the back-end and the memory device. Kumar et al.

[45] present a memory architecture exploration framework for SPRAM-Cache based mem-

ory architectures. Their framework allows the designer to determine multiple optimal de-

sign points to choose the best memory configuration. Nevertheless, the configuration of the

memory system is limited to the cache-size, cache-block size, cache associativity and main

memory size. Neither the aspect of real memory access latency nor the scheduling phases are

included in their framework, which makes the exploration of the memory architecture very

restricted.

We are going to introduce an innovative customizable memory controller architecture

based on fully configurable building components, and design a high level cycle approximate

model for it. Contrary to the state of the art architectures, our configurable architecture in-

cludes all aspects that play a role in the memory access latency, ranging from the FIFOs depth

in the interconnection interface, to the memory device timing constraints. Figure 3.1 shows

the principal building components of a memory controller and their instantiation in the

front-end and back-end. The front-end precisely simulates all delays related to the size of its

37

Chapter 3. Memory Controller Customizable Architecture

queues, arbitration policies, and response re-ordering aspect. While the back-end simulates

all delays due to the memory device timing constraints and the memory access granular-

ity. Consequently, our architecture covers all latency aspects inside the main shared memory

subsystem in a SoC, and enables real and precise performance analysis.

Figure 3.1: Generic architecture of a memory controller connected to SDRAM devices

This chapter is organized as follows: Section (3.2) introduces the complexity of the DDR3

SDRAM access and the memory timing constraints. Sections (3.3) and (3.4) deal with the sys-

tem level modelling and our design approach. In section (3.5) we express some assumptions

about the architecture design. In section (3.6), we design the cycle approximate building

components of the memory controller front-end. Here we provide a simple way to adapt ex-

isting mechanisms used in industrial memory controllers, and we also introduce some novel

algorithms. Three models of industrial memory controller front-ends are presented in sec-

tion (3.7). In section (3.8), we design a cycle approximate DDR3 SDRAM back-end. We finally

show, in section (3.9), a simple model for DDR3 SDRAM.

3.2 DDR3 SDRAM operations

DDRn SDRAMs are three-dimensional memories with the dimensions of bank, row, and col-

umn. Each bank is organized as a two-dimensional array of SDRAM cells, consisting of mul-

tiple rows and columns. It independently operates of the other banks and contains an array

of memory cells that are accessed an entire row at a time. When a row of this memory ar-

ray is accessed, the entire row of the memory array is transferred into the bank’s row buffer.

The row buffer serves as a cache to reduce the latency of subsequent accesses to that row.

While a row is active in the row buffer, any number of reads or writes may be performed.

The DDR3 SDRAM operations are driven by a memory manager which uses the finite state

machine (FSM) of each bank to schedule appropriately the commands to it.

Each bank has its own FSM, which drives all commands going to SDRAM module in a pre-

cise order. Figure 3.2 shows a simplified version of the state diagram of the DDR3 SDRAM.

We omit in this version the powering down, the calibration and the initializing states be-

cause they do not have any impact during the normal operating of the SDRAM. Table 3.1

38

3.2. DDR3 SDRAM operations

Figure 3.2: Simplified diagram of the DDR3 SDRAM FSM

Table 3.1: DDR3 SDRAM state digram command definitions

Abbreviation Function Short description
ACT Activate Open a row by copying it from the SDRAM matrix to the bank

buffer
PRE Precharge Close an open row by copying it from the bank buffer to the

SDRAM matrix
PREA Precharge All Close all open rows in all banks by copying them from the bank

buffer to the SDRAM matrix
Reada Read operation Read from an open row in a bank
Read Aa Read with Auto prechargec Read from an open row in a bank, and precharge the row upon

the completion of the read operation
Writeb Write operation Write in an open row in a bank
Write Ab Write with Auto prechargec Write in an open row in a bank, an precharge the row upon the

completion of the write operation
REF Refresh Refresh a bank for retaining the data in the memory matrix
a The READ operation is burst oriented, it can be either 4 or 8 transfers
b The WRITE operation is burst oriented, it can be either 4 or 8 transfers
c WRITE A and READ A commands are used when the row access policy is closed row. That means the open row will be closed

upon the termination of the read/write operation

39

Chapter 3. Memory Controller Customizable Architecture

shows the state diagram command definitions. Note that some transitions between states

are done upon the receiving of a command, e.g. the transition between the Bank Active state

and the Reading state. Other transitions are automatically done, e.g. the transition between

the Precharging state and the Idle state.

It is possible to interleave preparation commands (Precharge, Activate, and Refresh) to

multiple banks of the memory, thereby increase the effective bandwidth. At the beginning of

a read or write operation, a bank must first be activated based on the incoming address. This

does not affect other banks because banks are independent. At the same time, the accessed

row will become active and after that accesses to certain columns are possible. Hence, it takes

some time to read the first data but the consecutive ones come faster.

The transition between the states in the bank FSM shown in Figure 3.2 takes time. These

time values are the timing constraints of a DDR3 SDRAM, and they determine the latency

of the memory operations. We provide in Table 3.2 a detailed description of the timing con-

straints.

Table 3.2: DDR3 SDRAM timing parameters description

Parameter Description Examplea

tRL Read Latency: minimum READ command to first READ-DATA delay 5
tWL Write Latency: minimum WRITE command to first WRITE-DATA delay 5

tCCD Column to Column Delay: minimum READ to READ or WRITE to WRITE delay 4
tRAS Row Access Strobe delay: minimum ACTIVATE to PRECHARGE delay 14
tRCD Row to Column Delay: minimum ACTIVATE to internal READ or WRITE delay 6
tRC Row Cycle delay: ACTIVATE to ACTIVATE or REFRECH delay in a bank 21
tRP Row Precharge delay 6

tRTP Read To Precharge: minimum READ to PRECHARGE delay 4
tREFI REFresh Interval: average periodic interval for the REFRESH 1560
tRFC ReFresh Cycle delay 64
tWR Write Recovery: minimum delay between last WRITE DATA and PRECHARGE 15

tRTW Internal Read to Write delay = RL + tCCD + 2tCK - WL 6
tWTR Internal Write To Read delay 4
tFAW Time window in which at most 4 bank activation commands could be sent 20

a In clock cycles

As the row activation process correspond to copying an entire row from the memory ma-

trix in the row buffer in a bank, this operation consumes a lot of power, leading to a power

consumption peak in the memory module. For this reason, the DDR3 SDRAM standard

[77] limits the number of activation commands to 4 with a tFAW time window (time Four-

Activation Window). This time window depends on the row size (1KB or 2KB).

In order to retain data, all row in the memory array must be periodically refreshed. This

Refresh command is non persistent, so it must be issued each time a refresh is required. The

DDR3 SDRAM requires refresh cycles at an average periodic interval of tREFI. To allow for im-

proved efficiency in scheduling and switching between tasks, some flexibility in the absolute

refresh interval is provided. A maximum of 8 refresh commands can be postponed during

operation of the DDR3 SDRAM.

The SDRAM burst length (BL) denotes the minimum granularity at which SDRAM ac-

40

3.3. Design abstraction in system modelling

cesses are done. In other words, each access to the SDRAM must be BL number of transfers of

memory data. SDRAM BL, multiplied by the double width of the memory data bus, thus re-

turns the minimum number of bytes that are transferred per access. DDR3 SDRAM supports

a BL of four and eight [77]. As the DDR3 SDRAM is able to transfer data on both rising and

falling edges of the memory clock, a burst of 8 transfers takes 4 clock cycles.

3.3 Design abstraction in system modelling

One of the important issues in performance evaluation is the trade-off between the rapidity

in obtaining results and the accuracy of them due to different levels of abstraction. During

the design of a SoC, the system is modelled in several abstraction levels. Once the model

satisfies the constraints of an abstracter level, then it is refined toward a more detailed one.

From a performance-analysis point of view, a lower level of abstraction gives more accurate

results but causes more complexity in modelling and takes more time to simulate. Raising

the level of abstraction is on the basis of hiding unnecessary details of an implementation by

summarizing the important parameters into a more abstract model [27; 42].

Even though a higher level of abstraction can lead to ignore more details and consequently

to lose the accuracy of results, it provides faster performance results by enhancing critical

parameters like simulation speed, flexibility and time to develop. Ranging from functional to

cycle-accurate bit-accurate model, each level of abstraction introduces new model details. In

system modelling, the following levels of abstractions are usually considered:

• Transaction Level, structural models with atomic transactions;

• Cycle Approximate, includes the time notion and considers the transactions latency;

• Cycle Accurate Bit Accurate, includes the time notion and can accurately model the

timing properties by executing the finite state machines of the device.

3.4 Design approach

Creating a memory system model for performance analysis can hardly be done due to the

sheer complexity of the SDRAM controllers, and the need to adapt to newer SDRAM tech-

nologies as they emerge. In this chapter, we propose a modular approach relying on a set of

ad-hoc components with parameters that can be used to generate a highly abstracted SDRAM

controller and memory. The objective is to keep the abstraction level high enough to make

development easy, and at the same time, capture the critical parameters that significantly

influence the performance of the memory system.

We aim at designing a complete memory system made up of a customizable memory con-

troller and SDRAM devices. Thanks to the numerous parameters, this memory controller is

cycle approximate, and developed using a high level abstraction language. These compo-

nents are easy to interface with each other, which makes their instantiation simple with the

41

Chapter 3. Memory Controller Customizable Architecture

goal of building a given architecture of a memory controller. This architecture will have the

flexibility, scalability and the accuracy of a cycle approximate model.

Figure 3.1 on page 38 shows the principal building components of a memory controller

and their instantiation in the front-end and back-end.

This memory controller model is designed in the context of performance analysis through

simulations. It is not adapted to be used in the context of architecture validation or system

verification.

3.5 Assumptions

Throughout this chapter, we are going to show several algorithms which facilitate the com-

prehension of the behaviour of some building components. Some conventional notations are

used:

• The point operator . means a member of an object. The member can be a variable or a

method.

• All variable written in italic are locales variables, or arguments for a method.

• All variable written in sans serif are global variables or structures.

• We use sometimes for loops inside algorithms to highlight the fact that we scan all el-

ements inside a queue. These loops do not mean that we need several clock cycles to

scan the whole queue. This is done within one clock cycle in our model, using hardware

level parallelism.

3.6 Front-end building components

We provide here the description of the front-end building components of the configurable

architecture of memory controller.

3.6.1 Memory mapping

The purpose of memory mapping is to decode logical addresses into physical addresses. We

mean here by logical addresses the addresses that initiators send with their requests towards

the memory system. The physical addresses is the translation of the logical addresses in bank

number, row number, and column number format, which corresponds the 3D organization

of an SDRAM.

There are different kinds of memory mapping schemes with different properties. Most

used are:

• Row-Bank-Column (RBC), when the MSBs are the row bits, the LSBs are the column bits

and the middle bits are the bank bits.

42

3.6. Front-end building components

• Row-Column-Bank (RCB), when the MSBs are the row bits, the LSBs are the bank bits

and the middle bits are the column bits.

• Bank-Row-Column (BRC), when the MSBs are the bank bits, the LSBs are the column

bits and the middle bits are the row bits.

The column bits determine the row size (also called page size), which is 1KB or 2KB in

general purpose DDR3 SDRAMs. The row bits define the number of rows in each bank. The

bank bits determine the number of banks in the SDRAM device (8 bank in DDR3 SDRAM).

Figure 3.3 shows how a logical address can have several physical interpretations according to

memory mapping in use.

Figure 3.3: Examples of memory mapping

The RBC mapping has an advantage when the logical addresses are consecutive. A mini-

mum amount of rows need to be accessed, effectively reducing the number of row activations

and precharges. The RCB mapping helps to interleave the bank accesses in case of consecu-

tive logical addresses.

When a request passes through the memory mapping unit, its address is decoded and the

Bank/Row/Column triplet is added in a specific field. This information is necessary to help

the arbitration unit to schedule the requests and optimize the efficiency of the memory data

bus.

3.6.2 Generic queue

The generic queue model is used in all buffering stages in the memory controller and can be

used between two building blocks or inside a building block. It contains several independent

queues which can work in parallel. Their default behaviour is FIFO: we insert elements at the

back using store(), and remove them at the front using pop(). We developed this model as a

set of randomly readable/writeable queues. We can store and extract elements at any address

in the queues. These advanced mechanisms are helpful when the generic queue is used in the

arbitration unit.

The stored elements are objects that represent messages. The number of instantiated

queues is one of the constructor’s parameters. Figure 3.4 shows a simplified architecture of

the generic queue.

43

Chapter 3. Memory Controller Customizable Architecture

Figure 3.4: Simplified architecture of the generic queue

Before instantiating a generic queue we have to specify its length in addition to the num-

ber of the queues we want to implement. This model is able to watch the time that the el-

ements spend inside each queue, and react when the element’s age crosses the threshold of

maxAge clock cycles. The reaction may be the incrementation of the priority level of that ele-

ment for example. The ageing mechanism is a mean to prevent starvation problems for some

initiators. Table 3.3 summarizes the main features of the generic queue model.

3.6.3 Capture unit

Capture units are used in conjunction with a generic queue. Such a unit is used when the

queue contains requests that address the memory device. The capturing unit is aware of all

requests that the generic queue contains. Its role is to identify a request inside a queue and

to extract it according to several rules. This mechanism is often required in schedulers. The

use of capture unit in conjunction with a generic queue is shown in Figure 3.5.

Most schedulers in memory controllers need to know the priority of the requests that

should be scheduled. Other rules can be added to the capture process like row-hit same di-

rection, row-hit opposite direction, and row miss different bank. These rules can simplify the

task of the memory controller back-end by forwarding the requests in a friendly order to the

SDRAM access patterns.

Although these capture rules are already used in industrial memory controllers, very few

publications have described them. We detail in this subsection the behaviour of the capture

unit according to each rule. We also introduce by the end of this subsection a new rule called

row miss different bank.

44

3.6. Front-end building components

Table 3.3: Brief description of the generic queue model

Kind Name Description

Variables

int maxLength Maximum number of queue slots
int numOfQueues Number of implemented queues
bool ageing Ageing mechanism enable/disable
int maxAge The maximum age that an element may have be-

fore increasing its priority

Constructors

cGenericQueue(int L, int N) Basic constructor, implement N queues with L
queue slots

cGenericQueue(int L, int N, bool A,
int maxA)

Implement N queues with L queue slots, and en-
able the ageing mechanism

Methods

storeElement(int N, cObject* El) Insert the element El at the back of the queue
number N

insertElementAfter(int N, int M,
cObject *El)

Insert the element El in the queue number N after
the element number M

insertElementBefore(int N, int M,
cObject *El)

Insert the element El in the queue number N be-
fore the element number M

getElement(int N) Remove the first element from the queue number
N

getNthElement(int N, int M) Extract the element number M from the queue
number N and shift right all elements between
the back of the queue and slot number M+1

getNthElementPointer(int N, int
M)

Return the pointer of the element number M in
the queue number N

getLength(int N) Return the number of elements in the queue
number N

applyAgeing(int N) Increment the age of all elements in the queue
number N. If the element age is greater than
maxAge, increment then the priority of this ele-
ment (only if ageing == true)

getFreeRoomNumber(int N) Return the number of the free slots in the queue
number N

Highest priority capture rule

The idea here is to find the request in the queue which has the highest priority. If two or more

requests have the same priority, the nearest one to the queue head will be selected. This

process in detailed in Algorithm 10 in Annex B.

Row hit same direction capture rule

This rule avoids to switch the direction of the memory data bus between read and write.

The write to read delay and the read to write delay are not negligible. Therefore, minimiz-

ing the bus turnarounds number leads to higher memory bus efficiency. In addition to the

return of the appropriate request index in the queue, this process updates a global variable

(rowHitSameDirection) in the capture unit. Algorithm 1 describes this process.

Row hit opposite direction capture rule

The penalty of the bus turnaround is less than the row miss penalty. If we do not manage to

find a request that access an open row in the same direction (rowHitSameDirection=false),

45

Chapter 3. Memory Controller Customizable Architecture

Figure 3.5: capture unit in conjunction with a generic queue

Algorithm 1 Row hit same direction capture

local variables direction, lastDirection, bankIndex, row, lastRow,L, selectedRequestIndex;
L← genericQueue[queueIndex].getLength();
selectedRequestIndex← 0;
rowHitSameDirection← false

for (i = 0; i < L; i++) do
direction← genericQueue[queueIndex].getRequestPointer(i).getDirection();
bankIndex← genericQueue[queueIndex].getRequestPointer(i).getBank();
row ← genericQueue[queueIndex].getRequestPointer(i).getRow();
lastRow ← bankState[bankIndex].getLastRow();
lastDirection← bankState[bankIndex].getLastDirection();
if (row = lastRow and direction = lastDirection) then

rowHitSameDirection← true;
selectedRequestIndex← i;
break;

end if
end for

return selectedRequestIndex;

46

3.6. Front-end building components

we can favour the bus turnaround penalty rather than the row miss penalty. This process

also updates a global variable (rowHitOppositeDirection) in the capture unit. Algorithm 11 in

Annex B shows this process.

Row miss different bank capture rule

When we already know there is no request in the queue that accesses an open row in a bank,

we should close a row and open another one. As we have seen earlier, this is the highest delay

we can have due to a row miss. We propose here a simple and helpful method that minimizes

the row miss impact by avoiding to do two consecutive row misses in the same bank. Our

seeking process is shown in Algorithm 2.

Algorithm 2 Row miss different bank capture

local variables bankIndex, L, selectedRequestIndex;
L← genericQueue[queueIndex].getLength();
//we assume that rowHitSameDirection = false and rowHitOppositeDirection = false
selectedRequestIndex← 0;
for (i = 0; i < L; i++) do

bankIndex← genericQueue[queueIndex].getRequestPointer(i).getBank();
if (bankState[bankIndex].getIsLastReqRowMiss() = false) then

bankState[bankIndex].setIsLastReqRowMiss(true);
selectedRequestIndex← i;
break;

end if
end for

return selectedRequestIndex;

3.6.4 Insertion unit

Similar to the capture unit, the insertion unit is also used in conjunction with a generic queue.

The insertion unit is aware of all requests that the generic queue contains (in addition to the

request we want to insert). The necessary pieces of information which are required for the

insertion process are transferred to the insertion unit. Some of these pieces of information

are: the transaction source identification (TrSourceID), the priority(Pr), and the bank/row

that the request wants to access.

This unit can use one or more rules to insert a request. According to the chosen rule(s),

the insertion unit will determine the insertion position in the generic queue, and then will

forward it to the generic queue where it will be used by the insertElement() method. Figure

3.6 shows the insertion unit in conjunction with the generic queue.

Randomly readable and insertable queues have been subject to many publications. How-

ever, very few insertion techniques used in memory controllers have been published yet to

the best of our knowledge. Below, we present the most important insertion rules that a mem-

ory controller can use to increase the memory efficiency while guaranteeing the data consis-

tency. We also introduce a novel insertion rule that tries to maximize the bank interleaving

47

Chapter 3. Memory Controller Customizable Architecture

Figure 3.6: Insertion unit in conjunction with a generic queue

mechanism.

Global system data consistency insertion rule

The order in which read and write requests are processed in the memory controller is critical

to proper system behaviour. While reads and writes to different addresses are independent

and may be re-ordered without affecting the system performance, reads and writes that ac-

cess the same address are significantly related. If we have a read after a write to the same

address, then we reposition the read before the write, the read would return the original data,

not the changed data. Similarly, if the read was requested ahead of the write, but accidentally

positioned after the write, then the read would return the new data, not the original data prior

to being overwritten. These are significant data consistency mistakes.

This rule guarantees the data consistency for all masters communicating with the mem-

ory system. The principle is to preserve the order of the requests that access the same bank,

row, and column in the memory, and to determine the right insertion point according to this

rule. Algorithm 12 in Annex B describes this rule.

Master data consistency insertion rule

This rule guarantees the data consistency for one master that communicates with the mem-

ory system. The principle is to preserve the order of the requests coming from this master.

Algorithm 3 shows how to determine the right insertion point according to this rule.

Priority-based insertion rule

Priorities are used to distinguish important requests from less important requests. The inser-

tion algorithm will attempt to place higher priority requests ahead of lower priority requests,

as long as the data consistency is guaranteed. Higher priority requests will be placed lower in

48

3.6. Front-end building components

Algorithm 3 Master data consistency insertion

local variables existingTrID, newTrID,L, insertionPosition, lowerBoundary;
masterDataConsistencyLimit← 0;
lowerBoundary ← 0;
L← genericQueue[queueIndex].getLength();
newTrID ← newRequest.getTrID();
insertionPosition← L;
if (L = 0) then

masterDataConsistencyLimit← 0;
else

for (i = (L− 1); i ≥ lowerBoundary; i−−) do
existingTrID ← GenericQueue[queueIndex].getRequestPointer(i).getTrID();
if (newTrID = existingTrID) then

masterDataConsistencyLimit← i;
insertionPosition← (i+ 1);
break;

end if
end for

end if

return insertionPosition;

the queue. If one or more requests in the queue have the same priority as the new request,

the new request is inserted after them. Algorithm 13 in Annex B describes this process.

Direction grouping insertion rule

The memory suffers a small timing overhead when switching between read and write modes.

For efficiency, the insertion unit will attempt to place a new read request sequentially with

other read requests in a queue, or a new write request sequentially with other write requests.

Algorithm 14 in Annex B describes this process.

Bank splitting insertion rule

Before accesses can be made to two different rows within the same bank, the first active row

must be closed (precharged) and the new row must be opened (activated). Both activities re-

quire some timing overhead. We present here an innovative rule that attempts to insert the

new command into a queue such that preparation commands to other banks may execute

during this timing overhead. Algorithm 4 describes this novel insertion rule.

We presented until here the rules that the insertion unit can use. We would like to high-

light the fact that two or more rules can successively be used in order to define other more

sophisticated rules. To do this, the insertion position which is obtained by the application of a

rule must be used as lower boundary for the following rule. For example, if we want to insert a

request according to its priority, and then find the best insertion point to maximize the bank

interleaving, we should use the priority limit as lower boundary in the bank splliting rule.

49

Chapter 3. Memory Controller Customizable Architecture

Algorithm 4 Bank splitting insertion

local variables existingBank, newBank, existingRow, newRow,L, lowerBoundary;
lowerBoundary ← 0;
L← genericQueue[queueIndex].getLength()
newBank ← newRequest.getBank();
newRow ← newRequest.getRow();
insertionPosition← L;
if (L 6= 0) then

for (i = lowerBoundary; i < L; i++) do
existingBank ← genericQueue[queueIndex].getRequestPointer(i).getBank();
existingRow ← genericQueue[queueIndex].getRequestPointer(i).getRow();
if (newBank = existingBank and newRow 6= existingRow) then

insertionPosition← L;
//insert next to a command to different bank
for (j = L− 1; j > i; j −−) do

existingBank ← genericQueue[queueIndex].getRequestPointer(i).getBank();
if (newBank 6= existingBank) then

insertionPosition← (j + 1);
break;

end if
end for
break;

else if (newBank = existingBank and newRow = existingRow) then
//the address collision detector is disabled
insertionPosition← (i+ 1);
break;

else
insertionPosition← L; //insert at the end of the queue

end if
end for

end if

return insertionPosition;

50

3.6. Front-end building components

3.6.5 Generic arbiter

The scheduling block is the core of the memory controller. It is responsible for scheduling

the requests from the inputs according to specific arbitration policies. The architecture of

this arbiter is configurable in that we can choose the number of inputs and the arbitration

algorithm(s) we want to apply.

In a typical memory controller architecture, the arbiter is often connected to buffering

elements in order to schedule efficiently the requests. In our generic architecture, we use the

generic queue as a buffering element. Figure 3.7 shows the generic arbiter in connection with

a generic queue.

Figure 3.7: Generic arbiter connection
with a generic queue

Figure 3.8: Generic arbiter connection with a generic
queue including a capture unit

In order to minimize the overhead of bank conflict and the bus turnaround, some arbiters

do not just simply select one of their inputs, they go further through a look-ahead window in

the selected queue to schedule an entry that reduces the overhead. This is done in our model

by coupling the generic arbiter with the generic queue and the capture unit. Figure 3.8 shows

an example of this coupling when the input 1 is selected by the arbiter core. Note that only

one capture unit will be required to extract the right element from the selected queue inside

the look-ahead window.

Solving conflicts in architectures that include shared resources is a traditional task. Many

memory controller architectures have inherited techniques from several domains to arbitrate

requesters that want to access a shared resource. Among these arbitration policies we cite

round-robin and least recently used. We know that more sophisticated arbitration policies are

used in modern memory controllers. Nevertheless, very few policies have been subject to

publication.

The following subsections describe the scheduling policies that the generic arbiter sup-

ports. Some of them are traditional and easy to implement such as round robin, least recently

used, and priority. The remaining scheduling policies are more sophisticated and combine

several features in one algorithm.

51

Chapter 3. Memory Controller Customizable Architecture

Round-Robin scheduling policy

Round-Robin (RR) is one of the simplest scheduling algorithms, which assigns time slices to

each request in equal portions and in circular order, handling all requests without priority.

Round-robin scheduling is both simple and easy to implement, and starvation-free. Algo-

rithm 15 in Annex B shows an example of implementation of this arbitration.

Least-Recently-Used scheduling policy

LRU algorithm favours the least recently used inputs first. This algorithm requires keeping

track of what was used at each arbitration cycle. Algorithm 16, 17 and 18 in Annex B show the

initialization, the arbitration and the updating process of this arbitration policy.

Round-Robin then bandwidth scheduling policy

Fair bandwidth distribution is one of the basic function of an arbiter. The arbiter can mea-

sure the bandwidth that an input consumes during a time slice. If one of the inputs reaches

the maximum amount of data, the arbiter will not grant this input until the end of the cur-

rent time slice, and will favour another input that did not yet reach its maximum bandwidth.

The bandwidth-based arbitration is often coupled with other policies such as round robin.

Algorithm 5 shows the Round-robin then bandwidth arbitration.

Algorithm 5 Round-Robin, bandwidth scheduling

local variables inIndex, selectedInput;
inIndex← 0;
for (in = 0; in < inputsNumber; in++) do

inIndex← (lastSelectedInput+ 1 + in);
if (inIndex > inputsNumber) then

inIndex← (inIndex− inputsNumber);
end if
if (inputValid[inIndex] = true and inputBWOverflow[inIndex] = false) then

selectedInput← inIndex;
break;

end if
end for
lastSelectedInput← selectedInput;
updateInputBWOverflow(selectedInput);

return selectedInput;

Priority scheduling policy

Priority scheduling is one of the basic scheduling policies. In case of conflict, the input that

has the higher priority will win the arbitration. This algorithm is really simple and easy to

implement, but could create a starvation case for the inputs which have low priority.

52

3.6. Front-end building components

Priority then Round-Robin scheduling policy with bandwidth limiter

We present here a novel and simple arbitration policy that combines the priority policy with

the Round Robin policy and a bandwidth limiter. The priority scheduling process is firstly

activated. In case we have two (or more) inputs that have the same priority level, a Round

Robin scheduling will be used. The inputs that have exceeded their allowed bandwidth have

to wait until their average bandwidth becomes below the allowed threshold. We present our

arbitration policy in Algorithm 6. This algorithm is not starvation free because the Round

Robin policy is only used between the inputs that have the same priority level. In order to

avoid starvation situations, this algorithm must be used in addition to an ageing mechanism

that increments the priority of the requests every maxAge clock cycles.

Finally, when the generic arbiter selects one of its inputs according to the scheduling pol-

icy in use, it can forward a capture rule to the capture unit in order to extract a specified

request from this queue (see Figure 3.8). This is helpful if the arbiter needs to use informa-

tion coming from the bank-end such as open row in a bank and memory bus direction (read

or write).

3.6.6 Flow control

Flow controller determines how the memory controller resources are allocated. It regulates

the commands and data flow by monitoring the queue occupancy.

Stop and go flow control

This regulation is achieved by monitoring the load and store queue occupancy and asserting

specific signals in case the occupancy level becomes dangerous.

Data consistency flow control

For efficiency reasons, the elements might be arbitrated out of order from their arrival time.

In case we use a capture unit in conjunction with a generic queue, there is a chance that the

master data consistency is violated. The capture unit does not remember the last extracted

element from the queue. Therefore, one master elements could be extracted in a such order

that violates its data consistency, e.g a Read After Write or a Write After Read. In order to

prevent this scenario, we should check if the element we want to insert at the end of queue is

dependent on another element already queued. If there is a dependency, the new element is

not inserted until the dependency is removed. Algorithm 7 describes this flow control.

53

Chapter 3. Memory Controller Customizable Architecture

Algorithm 6 Priority then Round-Robin scheduling with bandwidth limiter

local variables pr, inIndex, selectedInput;
int inIndex← 0;
for (pr = maxPriorityLevel; pr ≥ minPriorityLevel; pr −−) do

samePriorityInputNumber← 0
for (in = 0; in < inputsNumber; in++) do

if (inputPriorityMatrix[pr][in] = 1) then
samePriorityInputNumber ++;
selectedInput← in;

end if
end for
if (samePriorityInputNumber = 1) then

break;
else if (samePriorityInputNumber > 1) then

//round robin arbitration
for (in = 0; in < inputsNumber; in++) do

inIndex← (lastSelectedInput+ 1 + in);
if (inIndex > inputsNumber) then

inIndex← (inIndex− inputsNumber);
end if
if (inputPriorityMatrix[pr][inIndex] = 1) then

if (inputValid[inIndex] = true and inputBWOverflow[inIndex] = false) then
selectedInput← inIndex;
break;

end if
end if

end for
break;
//we have to stop the priority loop because we are sure that samePriorityInputNumber 6= 0

end if
end for
lastSelectedInput← selectedInput;
updateInputBWOverflow(selectedInput);

return selectedInput;

Algorithm 7 Data consistency flow control

local variables existingDirection, newDirection, existingTrID, newTrID,L;
bool canSend;
canSend← true;
L← genericQueue[queueIndex].getLength()
newOpcode← newRequest.getDirection();
newTrID ← newRequest.getTrID();
if (L = 0) then

canSend← true;
else if (genericQueue[queueIndex].getCanStore()) then

for (i = 0; i < L; i++) do
existingTrID ← GenericQueue[queueIndex].getRequest(i).getTrID();
existingOpcode← GenericQueue[queueIndex].getRequest(i).getDirection();
if (newDirection = existingDirection and newTrID = existingTrID) then

canSend← false;
end if

end for
end if

return canSend;

54

3.6. Front-end building components

3.6.7 Re-ordering unit

Changing the order of the requests for efficient arbitration can be an issue for the masters that

cannot re-order the responses of their requests. For this reason, some memory controller

architectures include a re-ordering unit that puts the responses in the arrival order of their

requests to the memory system. An example of response reordering is shown in Figure 3.9.

(a) Without responses re-ordering (b) With responses re-ordering

Figure 3.9: Ordering aspects in memory controllers

The re-ordering unit can be instantiated on each port of the memory controller to reorder

the responses that must be sent back through this port. We propose a simple way to re-order

the responses by using a FIFO to store a copy of the incoming requests. We tag each copy

with a unique ID based on the source ID (srcID), the transaction (trID) and the port index

(portIDX). Algorithm 8 explains how our mechanism works.

Algorithm 8 Re-ordering unit

local variables L, inOrderID, portIndex, respToSendIndex;
L← responseQueue[portIndex].getLength();
inOrderID ← incomingTrOrder[portIndex].getRequestPointer(0).getUniqID();
for (i = 0; i < L; i++) do

if (responseQueue[portIndex].getResponsePointer(i).getUniqID() = inOrderID) then
respToSendIndex← i;
incomingTrOrder[portIndex].deleteRequest(i);
break;

end if
end for

return respToSendIndex;

3.6.8 Summary

Based on the analysis of many various architectures of memory controller, we presented in

this section the building components we have designed to model any real life memory con-

troller front-end. These components make it possible to build all architectures of industrial

memory controllers we came across, and give the designer the possibility to explore them by

tuning their parameters. The modelled front-end reflects all delay cycles that are due to the

buffering elements number, buffers depth, number of arbiters and scheduling policies.

55

Chapter 3. Memory Controller Customizable Architecture

3.7 Examples of memory controller front-end

Based on the building components we have designed in this chapter, we now model three

different architectures of industrial memory controllers. These memory controllers are well

spread and used in multimedia platforms, where a mixture of dynamic traffic accesses the

memory in an unpredictable way. As the back-end of these controller is SDRAM technology

dependent, we will only show the front-end models.

3.7.1 Memory controller Alpha

It is a mono-port memory controller with an arbitration unit based on a randomly-readable

queue. Hereafter the main features of this memory controller:

• Mono port interface with the interconnect system

• Separate read and write channels at the interface

• Mono port arbiter with randomly readable queue

• Multiple outstanding transactions

• Ageing mechanism to increase the priority of the oldest requests in the queue arbiter

• Out of order response sending

• Read After Read and Write After Write hazard detection

• QoS Mechanism based on the transaction identification, no QoS for Writes

• Scheduling policy:

1) Minimum latency timeouts
2) Priority
3) Open-row hits in the same direction
4) Open-row hits in the opposite direction

Figure 3.10 depicts the front-end modelled architecture of this memory controller.

3.7.2 Memory controller Beta

This memory controller has a multi-port interface, each port has its own priority level. Below

the main features of this memory controller:

• Multi-port interface with the interconnect system

• Each port has a priority level. All requests coming through this port have the same pri-

ority

• Separated read and write channels in each port

• Read/Write arbiter in each port (read requests have higher priority than write requests)

• Multiple outstanding transactions

• Early response sending. It sends the write response back to the master when the write

request is scheduled. It does not wait until the end of the write operation to send the

response back

56

3.7. Examples of memory controller front-end

Figure 3.10: Front-end model for the memory controller Alpha

• Ageing mechanism to increase the priority of the oldest requests in the placement unit

queue

• Out of order response sending

• QoS Mechanism based on the port priority and the memory bus efficiency

• Two arbitration stages:

1) Port arbiter based on the priority of each port
2) Placement logic unit, with commands ageing mechanism

• Placement policy:

1) Address collision / data consistency
2) Source ID collision
3) Priority
4) Read/write grouping

Figure 3.11 depicts the front-end modelled architecture of this memory controller.

3.7.3 Memory controller Gamma

Hereafter the main features of this memory controller:

• Two-port interface with the interconnect system: high priority port, and low priority

port

• The low-priority requests are stored inside queues according to the memory bank they

are addressed to. There are 4 queues per channel if the memory device contains 4 banks

(a total of 8 queues for the read and write channel together)

• Multiple outstanding transactions

57

Chapter 3. Memory Controller Customizable Architecture

Figure 3.11: Front-end model for the memory controller Beta

• In order response sending through a re-ordering unit only for low-priority masters

• Two arbitration stages:

1) The first arbiter is for low-priority read and write channels. It selects requests ac-

cording to a Least Recently Used policy between banks, then row hit inside the

selected bank, then direction grouping

2) The second arbiter uses a priority based policy for high and low priority arbitration

Figure 3.12 shows the front-end modelled architecture of this memory controller.

3.7.4 Summary

Thanks to the building components we previously provided, the designer of the memory sys-

tem can rapidly build a high-level model for a specified architecture. This architecture can

easily be reconfigured through the parametrization of the building components and their in-

terfacing with each other. This enables the memory controller design exploration.

58

3.8. Back-end building components

Figure 3.12: Front-end model for the memory controller Gamma

All building components, especially the generic arbiter, have been designed so as to be

easily updated and developed. For instance, if the designer needs more specific arbitration

algorithms, he can easily add it to the scheduling algorithms library.

3.8 Back-end building components

A cycle approximate model for the memory controller front-end is not sufficient to simu-

late accurately the memory access latency. Indeed, the masters requests pass through the

back-end before accessing the SDRAM devices. Therefore, a cycle approximate model for a

memory controller back-end is required to be able to simulate all delays that the requests

spend inside the memory system.

Our back-end model is compatible with the DDR3 SDRAM, which is the latest generation

of DDRn SDRAMs, and it is based on the JEDEC Standard [77]. It meets all DDR3 SDRAM pa-

rameters that come into the picture in a normal operating mode, and integrates all the states

of the bank’s FSM we have earlier shown in Figure 3.2 on page 39. According to our knowledge,

no high-level and cycle accurate model for memory controller back-end has been published.

We choose a simple and efficient architecture that includes a commands generator, a mem-

ory manager, and a data handler (see Figure 3.13). This back-end can easily be adapted to

support earlier generations of DDRn SDRAM. The adaptation will be done by matching the

bank’s finite state machine and the memory timing values.

After the front-end arbiters have chosen the request to serve, the command generator con-

59

Chapter 3. Memory Controller Customizable Architecture

Figure 3.13: Back-end architecture

verts the request into one or more memory commands. The memory manager guarantees the

proper behaviour of the memory and carries out several tasks such as initialization and re-

freshing. The role of the data handler is to ensure the data sending and receiving between

the back-end and the memory on the rising and falling edges of the clock.

3.8.1 DDR3 SDRAM commands generator

As we previously mentioned, the memory commands format is different from the front-end

format. Consequently, the back-end must format the requests coming from the front-end

and store them in a commands queue. For data consistency reasons, the order of the read and

write commands is definitive, no re-ordering process is allowed in this back-end. However,

the commands generator can send bank preparation commands (Prechage and Activate) in a

different order to hide a part of the row misses delay. All memory commands are sent to the

memory while respecting all DDR3 SDRAM timings that we have earlier shown in Table 3.2

on page 40.

Several industrial back-end use the bank interleaving technique to hide the bank prepa-

ration delays. However, no sophisticated bank preparation algorithm has been published.

We show our advanced algorithm for the anticipation of the bank preparation commands in

Algorithm 9. This algorithm intelligently determines the bank to prepare at each clock cycle

if needed. It increases the memory device efficiency by hiding the wasted clock cycles to pre-

pare a bank. So the commands generator will issue either a command from the commands

queue or a bank preparation command to the memory device while respecting the timing

constraints.

3.8.2 Memory manager

The memory manager keeps track of the operation of the memory device and guarantees its

proper behaviour. It carries out several tasks such as initialization, refreshing, and powering

60

3.8. Back-end building components

Algorithm 9 Anticipation of the bank preparation commands

global variables isThisBankRequested[], isThisBankBusy[], openRowInBank[]; //we store the open row
index for each bank
local variable bankToPrepare← (−1);
local variables bank0, row0; //bank and row for the first command in the queue
local variables bankn, rown; //bank and row for the nth command in the queue
bank0 ← queueOfCommands.getElementPointer().getBank();
row0 ← queueOfCommands.getElementPointer().getRow();
if (isThisBankBusy[bank0] = false) then

send(queueOfCommands.getElement());
isThisBankBusy[bank0]← true; //the FSM updates this tab when the operation is finished

else
bankToPrepare← bank0;

end if
if (bankToPrepare < 0) then

for (i = 0; i < lookAheadWindow; i++) do
bankn ← queueOfCommands.getNthElementPointer(i).getBank();
rown ← queueOfCommands.getNthElementPointer(i).getRow();
if (rown 6= openRowInBank[bankn] and isThisBankRequested[bankn] = false) then

bankToPrepare← bankn;
isThisBankRequested[bankn]← true;
break;

end if
end for

end if

return bankToPrepare;

down. The only task that impacts the efficiency of the memory during a normal operating is

the refreshing task. For this reason, we omit the other tasks of the memory manager in our

model.

DDR3 SDRAM requires refresh cycles at an average periodic interval of tREFI to retain

the stored data. This operation lasts for tRFC clock cycles. When a refresh command should

be sent to the memory, the memory manager sends a signal to the commands generator to

create and send a refresh command to the memory. The refresh command can be sent either

for one bank or for all banks.

3.8.3 Data handler

DDR3 SDRAM standard requires a Write Latency delay (tWL) between the moment when a

write command is sent and the moment when the write data are sent. Our back-end model

simulates this delay and sends write data twice each clock cycle. The Read Latency delay

(tRL) represents the delay in the memory device between the reception of a read command

and the issuing of the read data. This delay is modelled in our DDR3 SDRAM which is the

subject of the next section.

61

Chapter 3. Memory Controller Customizable Architecture

3.9 DDR3 SDRAM model

The real and simple function of this model is to simulate accurately the memory access la-

tency in case of read operation. Indeed, the write operation latency is already computed by

the back-end as it respects the memory timing constraint when it sends a write command

followed by the write data after tWL clock cycles.

When the memory receives a read command, it will return the data after tRL clock cycles.

The sent data is burst oriented as we mentioned earlier. The possible burst lengths are 4 and

8 transfers, with a rate of 2 transfers per clock cycle.

3.10 Conclusion

In this chapter, we introduced our design of a totally customizable memory controller based-

on fully configurable building components. This design is a high-level abstraction and cycle

approximate model, it can accurately simulate the memory access delays during a normal

operating regime.

Our components library covers both parts of the memory controller, i.e. the front-end

and the back-end. The front-end building components are easy to interface with each other,

which gives the designer of the memory system a high degree of freedom in designing and

exploring the memory controller architecture. The back-end is DDR3 SDRAM technology

compatible, and respects all DDR3 SDRAM timing constraints.

As the memory system performance became a key factor in the design of modern systems-

on-chip, modifying and exploring the shared memory system architecture became vital to

determine the best configuration according to the whole system requirements. Our totally

customizable memory controller meets the needs of the designers and offers the necessary

configurable components to build and develop high-level and cycle approximate model for

memory controller.

62

CHAPTER 4

Extreme End to End Flow Control Protocol for SDRAM Access

Contents

4.1 Introduction . 65

4.2 Credit-based flow control . 66

4.2.1 Analytical model for the end-to-end credit-based flow control 67

4.3 End to end flow controls . 68

4.4 Pressure on the memory system in modern MPSoCs 69

4.5 Guaranteed service traffic in the memory controller 71

4.6 Saturation risk of the requests queue . 71

4.6.1 Problem description . 71

4.6.2 Possible solutions . 72

4.7 EEEP: Extreme End-to-End Protocol . 73

4.7.1 Novel system approach . 73

4.7.2 EEEP principle . 73

4.7.3 EEEP mechanism . 75

4.7.4 Requests queue sizing method . 75

4.7.5 EEEP guarantees and limitation . 77

4.7.6 System modifications to support EEEP 78

4.8 Conclusion . 79

63

4.1. Introduction

M PSOC platforms face an increasing diversity of traffic requirements due to the

number of applications run by the user, which leads to the coexistence of the best

effort traffic and the guaranteed service traffic in the same platform. In this chap-

ter, we propose an Extreme End-to-End Protocol (EEEP) as a new end-to-end flow control

protocol to access SDRAMs through a multi-port memory controller in NoC-based MPSoCs.

Our protocol considers the memory access with a system approach. It smartly exploits the

occupancy rate of the requests queue in the memory controller within the policy of the traffic

injection at the master network interfaces level. By controlling the best-effort traffic injec-

tion, EEEP guarantees the bandwidth and the latency of the guaranteed service traffic while

improving them.

4.1 Introduction

Although the bandwidth problem has been solved inside MPSoC with the introduction of

Networks on Chip (NoCs), it has indeed led to a growing pressure on off-chip SDRAM accesses

that must provide higher bandwidth while keeping latencies low. An additional burden is that

current MPSoCs concurrently execute different applications coming from different applica-

tion classes. This imposes new challenges to the NoC, as it must accommodate applications

traffics with very different characteristics and requirements [23].

Figure 4.1: The front-end and the back-end of a memory controller

The memory controller is the interface between the interconnect and the memory mod-

ule. Figure 4.1 depicts a general architecture of a memory controller as introduced earlier.

The front-end is aware of the supported QoS in the interconnect, it schedules the requests in

a way to satisfy the masters requirements. The back-end is memory-technology-dependent,

it deals with the memory device and converts the interconnect requests into memory com-

mands.

In this chapter, we focus on the memory controller front-end to exploit the occupancy of

its requests queue in the implementation of our end-to-end flow control protocol. In section

65

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

(4.2), we provide on overview of the credit-based flow control with its two approaches, link

level and end-to-end. In section (4.4), we show the high pressure problem on memory sub-

system in today’s MPSoCs, and then we explain in section (4.6) the saturation problem of the

requests queue in the memory controller front-end. Section (4.7.2) introduces our extreme

end-to-end protocol as a solution to this problem. We present then a method for the sizing

of the requests queue, and we finally show the minor modifications in the system to support

our protocol.

4.2 Credit-based flow control

With the credit-based flow control, the sender keeps a count of the number of free queue slots

in the receiver [20]. This mechanism can be used either at the physical link level in a NoC or

with an end-to-end approach between two network interfaces.

The link level credit-basic flow control can be used between a network interface (NI) and

a router, or between two routers. The sender NI (or router) does not ever send more flits

than a receiver router (or NI) can receive in its input queue. Figure 4.2 shows an example

of the link level credit based flow control. The sender block maintains a detailed knowledge

of the number of queue slots that the receiver block still has available through the exchange

of credits. The sender block keeps track of the storage capacity in the receiver block with a

credit counter that is initialized with a value equal to the size of the corresponding queue,

and it is dynamically updated to track the number of available slots in the queue. Hence, the

sender block continuously transmits only a subset of the message packets that is guaranteed

to arrive inside the receiver block.

Figure 4.2: Link level credit-based flow control

Differently from the credit-based flow control that operates at the link level between a

pair of interconnected routers, the end-to-end credit-based protocol operates between two

NIs separated by multiple hops in the network. Figure 4.3 shows an example of NI architec-

66

4.2. Credit-based flow control

ture that supports the end-to-end credit-based flow control. With the end-to-end approach,

the sender NI also maintains a detailed knowledge of the number of queue slots that the re-

ceiver NI still has available through the exchange of the end-to-end credits. A credit can be

associated to either a packet or to a packet flit depending on the desired level of granularity.

The sender NI keeps track of the storage capacity in the receiver NI with a credit counter that

is initialized with a value equal to the size of the corresponding queue, and it is dynamically

updated to track the number of available packet slots in the queue. This protocol guaran-

tees that no fragment of a message can be blocked in the network due to the lack of space

in the receiver NI input queues. The receiver NI sends a credit back to the sender network

interface upon the generation of an empty slot in an input queue. Note that an end-to-end

credit-based flow control should be used in addition to a basic link-level flow control.

Note that for a given system, a NI that may send messages to N different NIs needs N

credit counters while if it can receive messages from M different NIs it needs M different

queues. This has a negative impact on the NI area overhead.

Figure 4.3: Simplified NI architecture that supports the end-to-end credit-based flow control

4.2.1 Analytical model for the end-to-end credit-based flow control

The sizing of network interface queues is one of the important issues when we use the end-

to-end credit-based flow control. Here, we will present a method to size the input queues in

a network interface that supports the end-to-en credit-based flow control.

To minimize the duration of a transaction between NIs, a sender NIs should be able to

67

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

generate a continuous flow of data flits, and the receiver NIr should be able to absorb and

process this flow. Hence, it is important to guarantee that the source NIs never runs out of

end-to-end credits. This performance requirement can be satisfied by properly sizing the

input data queues of the the receiver NIr. This requires to account for the round trip time

between a receiver NIr and all its possible peer sender network interfaces. The zero-load la-

tency θ measured in clock cycles that is taken by a flit to traverse the NoC from a given source

NIs to reach a given receiver NIr is equal to

θ(NIs, NIr) = ∆(NIs, NIr).R+ σ(NIs, NIr) (4.1)

Where ∆(NIs, NIr) is the distance in hops between the two NIs, R is the number of clock

cycles used by routers to process and forward a flit, σ(NIs, NIr) captures the aggregate num-

ber of wire pipeline stages across all links on the path between NIs and NIr. The zero-load

round-trip time taken by a flit to traverse the NoC from NIs to NIr and back is given by

Trt(NIs, NIr) = θ(NIs, NIr) + εr + θ(NIr, NIs) (4.2)

Where εr is the delay in clock cycles between the moment when the NIr queues an arriving flit,

and the moment when the NIr forwards it to its final destination, freeing therefore a queue

slot.

Putting all together, the input queue Qins of a given network interface NIr, receiving flits

from NIs, should be sized according to the equation

Qins = C + Trt(NIs, NIr) (4.3)

Where C is the number of credits carried by each credit packet.

Note that this queue size can ensure continuous transfer in case of zero-load network.

When the network becomes loaded, the transfer between two NIs may be discontinuous.

4.3 End to end flow controls

The ÆTHEREAL [28] and FAUST [25] NoCs use credit-based end-to-end flow control protocols.

The mechanism is similar to the one detailed in section (4.2).

The Connection Then Credit (CTC) flow control protocol proposes a micro-architecture of

the network interface (NI) that decreases the number of credit counters [15]. It uses a single

credit counter together with an output queue to send all the possible outgoing messages, and

a single pair of data-request queues that is shared across all possible incoming messages.

However, CTC requires the completion of a handshake procedure between any pair of cores

that want to communicate before the actual message transfer starts. This procedure increases

the total latency of the transactions.

68

4.4. Pressure on the memory system in modern MPSoCs

Radulescu et al. [66] present an end-to-end flow control for guaranteed service in addi-

tion to the basic link level flow control. Jafari et al. [39] propose a flow regulation to reduce

the delay and backlog bounds in SoCs. A prediction-based flow control is presented by Ogras

and Marculescu [60], it predicts the cases of possible congestion in the network, and controls

the packet injection rate at the sources of the traffic in order to regulate the total number of

packets in the NoC.

As the network-on-chip and the memory controller become correlated with each other

in most SoCs, several researchers propose micro architectures and methods to optimize the

performance of the memory subsystem, and thus the system performance. Paganini et al.

[63] develop a decentralized control system, where the sources adjust their traffic generation

rates based on the feedback received from the bottleneck links.

All previous flow controls we have seen until here consider only the state of the inter-

connect. The range of these flow controls is limited at the network interfaces level, without

tackling at all the state of the targets. Furthermore, none of them can ensure the continuity

of the services between the network and the main memory system.

4.4 Pressure on the memory system in modern MPSoCs

Today’s memory systems suffer from a very high pressure because of several factors. The

multi-threading technique used in MPSoCs increases the contention on the main memory

and demands memory systems with more complex architecture and higher performance.

The SDRAM system is often unique in the system-on-chip because of cost reasons. Even if

several memory systems exist in the same chip, the ratio between the number of cores and

the number of memory systems is at least 10. Figure 4.4 shows an overview of the multi-core

chip TILEpro64 [78], which has 4 memory controllers. The frequency gap between the CPU

MAC /
PHY

SerDes

GbE 0

GbE 1Flexible

I/O

Flexible

I/O

UART,

HPI, I2C,
JTAG, SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1DDR2 Controller 0

XAUI 1

MAC/
PHY

XAUI 0
Mac/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

0

XXAAUI 00
MacMac/
PPHY

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I L-1D

I-TLB D-TLB

MDN TDN

UDN IDN

CDN STN

Figure 4.4: Overview of TILEpro64 that includes 4 memory controllers, source [78]

69

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

and the memory is still increasing. The classical CPU-DDR SDRAM case shows that the fre-

quency gap between CPU and main memory eventually offsets most performance gains from

further improvements on the CPU speed. For instance, a cache miss is equivalent to hundreds

cycles for today’s CPUs, a time long enough for the processor to execute hundreds of instruc-

tions. While the DDR SDRAM IO frequency has been improving by 37% per year since 2001,

the CAS8 Latency of SDRAM that fundamentally determines its overall performance has been

only improving by 5% per year [75; 76; 77].

Another factor that emphasizes the pressure on the memory is the number of cores in

future systems-on-chip. If we have a look at the graph in Figure 4.5, we will see that the

number of processing engines in the SoC consumer portable designs is going to reach 1000

processing engines in 2019. The increasing number of processing engines in SoCs increases

the number of applications run by the user in parallel, which consequently leads to the co-

existence of several classes [8; 70]. This co-existence of several classes of traffic in the same

memory system complicates the task of the memory controller, especially that their memory

access patterns cannot be known in a predictable way, and they must be dynamically computed

in the memory controller.

Figure 4.5: SoC consumer portable design complexity trends, source ITRS [37]

8Column Access Strobe

70

4.5. Guaranteed service traffic in the memory controller

4.5 Guaranteed service traffic in the memory controller

In this framework, we mean by guaranteed service (GS) traffic, the traffic that has require-

ments in terms of bandwidth and latency. This traffic can be subdivided in two separate cat-

egories: latency-sensitive traffic such as CPU traffic, and bandwidth-sensitive traffic such as

display controller traffic. The bandwidth-sensitive traffic can also have requirements in term

of latency jitter, so the latency variation of its transactions must remain controlled. We define

the best effort (BE) traffic as all other traffic that does not have severe requirements, and can

be always served after the guaranteed service traffic.

We assume that the network-on-chip provides the necessary services to meet the require-

ments of the GS traffic. As for the memory controller, most designs provide several levels of

priority to distinguish the traffic classes. So the highest priority should be attributed to the

guaranteed service traffic. Quite the contrary, the BE traffic has the lowest priority. Several

levels of priority can be devoted to the GS traffic. In order to avoid starvation situations, addi-

tional mechanism can be implemented. A Round Robin intra-scheduling policy can be used

to arbitrate the requests in case of conflict between requests that have the same priority level.

The ageing mechanism is also a solution to avoid starvation problems. It consists in increas-

ing the priority level of the low-priority requests every maxAge clock cycles. So that these

requests do not stall for very long time behind the high-priority requests.

In order to be able to provide services to the GS traffic in the memory controller, the re-

quests should obviously be buffered in the requests queue. One additional guarantee that the

memory controller must provide to the GS traffic in absence of BE traffic is the appropriate

number of available slots in the requests queue. This number of slots should be determined

according to the number of outstanding requests of the GS traffic. When a new BE traffic is

accepted in the memory controller, we should guarantee that this traffic has the lowest pri-

ority level. However, the number of available slots in the requests queue for GS traffic can no

longer be guaranteed in presence of BE traffic.

4.6 Saturation risk of the requests queue

Shared resources pose a significant resource management problem in designing MPSoCs.

SDRAM is always accessed through a memory controller front-end, which has in most archi-

tectures a large queue to buffer the memory requests. The storage of the requests is necessary

for an efficient arbitration in order to increase the memory subsystem performance and re-

spect the quality-of-service (QoS) requirements of each master.

4.6.1 Problem description

Running several applications in parallel involves the generation of several categories of traffic,

which can interfere with each other while accessing the shared resources. A typical technique

71

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

to control the traffic is to give an appropriate QoS to each class of traffic according to the ap-

plications requirements. In this framework, we focus on two classes of traffic: guaranteed

service traffic (GS) and best effort traffic (BE). During several timing windows, the network

grants the BE traffic, and allows it to access the shared resource. If the shared resource is an

SDRAM, the BE traffic can use the whole requests queue in the memory controller as long as

none of the GS traffic accesses the SDRAM. As the SDRAM commands execution latency is

considerable, the saturation of the requests queue can subsequently prevent the GS traffic

from being received by the memory controller during dozens or even hundreds of clock cy-

cles. Therefore, the bandwidth and the latency of the GS traffic that accesses the SDRAM will

be dramatically impacted. Figure 4.6 describes the case where the best effort can saturate the

requests queue in a memory controller.

Figure 4.6: Saturation risk of the requests queue in a memory controller

4.6.2 Possible solutions

Several solutions to this problem do exist. However, they cannot all respect the VLSI9 con-

straints.

One of the obvious solutions to this problem is the extra-sizing of the requests queue in

order to be able to buffer every time all requests whatever their origin. In other words, this

solution considers the worst case as the normal operating regime. However, this solution is

not efficient in term of silicon area overhead as the worst case may be close for infinity.

Separating the BE traffic queue from the GS traffic queue could also be a solution. Nev-

ertheless, the dynamic sharing between the queues is not possible in this case, leading to a

waste of hardware resources.
9Very Large Scale Integration

72

4.7. EEEP: Extreme End-to-End Protocol

Our innovative solution consists in using one queue for requests and dynamically share it

between the BE traffic and the GS traffic. This dynamic sharing will be insured by applying a

new BE traffic injection policy in the NoC, which is based on the use of information about the

memory controller state.

4.7 EEEP: Extreme End-to-End Protocol

We build on the credit-based approach to develop our Extreme End-to-End Protocol (EEEP).

EEEP regulates the packets injection rate of BE traffic in the network when the packets are

sent to the memory controller.

4.7.1 Novel system approach

Our approach is different from the previously mentioned work in a number of ways:

First, we consider at once the NoC and the memory controller within a system approach:

from the master network interfaces to the last requests queue in the memory controller front-

end. We exploit the occupancy rate of this queue within the policy of the traffic injection at

the master network interfaces level. We prevent the BE traffic that addresses the memory

system from being injected in the network if there are no available slots for it in the requests

queue. Thus, we ensure that the BE traffic will not occupy more slots than necessary to obtain

the required average bandwidth, and therefore, we guarantee that the GS traffic is always

received by the memory controller.

Second, unlike the end-to-end credit-based protocol, EEEP needs neither additional que-

ues nor counters to be implemented in the slave network interfaces (see Figure 4.3 for more

details about the number of queues and counters in a NI that supports an end-to-end credit

based). Indeed, all the slave network interfaces which are connected to the multi-port mem-

ory controller interface target the requests queue. This convergence of paths of requests al-

lows us to cross the network boundary, and move the credits management from the slave

network interfaces to the memory controller. Consequently, only a few modifications in the

slave network interfaces are required to support EEEP.

Figure 4.7 shows a comparison between the extend of EEEP and other end-to-end flow

controls.

4.7.2 EEEP principle

The buffering of the commands in the requests queue in the memory controller front-end is

inevitable for efficient arbitration. As we mentioned earlier, EEEP uses the occupancy rate of

the requests queue within the SDRAM access policy to modify the traffic injection policy of

the masters that generate best effort traffic (BE).

73

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

Figure 4.7: EEEP extend versus other flow controls extend

The idea behind EEEP is the dynamic sharing of the requests queue between the BE and

GS traffic. Let us suppose that the GS traffic needs N slots, and the BE traffic uses the remain-

ing M slots (the queue depth is N + M). Whatever the load of the memory controller, EEEP

ensures that the GS traffic can always use at least M slots of the requests queue, and the BE

traffic can use at most M slots.

EEEP is used in addition to a basic link-level flow control. Our novel protocol guarantees

the availability of the necessary part of the requests queue in the memory controller front-

end to the GS traffic by tuning the packets injection rate of the BE traffic. The NIs that inject

BE traffic keep track of the remaining slots in the requests queue, and do inject any request in

the network before verifying that this request will not use any slot reserved for the GS traffic.

For each NI that injects BE traffic, a maximum number of slots in the memory controller

requests queue can be used. Even if this NI requires more slots during a period of time, EEEP

blocks its traffic until the release of one slot (which had been allocated to it) in the requests

queue. This mechanism is based on the end-to-end credits exchanging: the BE traffic NI

consumes EEEP credits when it targets the shared memory, and the memory controller sends

EEEP Credits back upon the release of one or more slots in the requests queue. Note that

EEEP is mono-directional, it can only be used on the request path of the BE traffic between

the NIs and the memory controller. Regarding the GS traffic, it only uses the link-level flow

control.

To summarize, EEEP ensures that the BE traffic does not use more queue slots than those

allocated to it and, consequently, guarantees the receiving of the packets of the GS traffic

in the memory controller. Moreover, if the GS traffic requires extra queue slots for a period

of time, it is allowed to use the available queue slots for the BE traffic. Figure 4.8 shows an

overview of the EEEP implementation in a NoC-based system.

74

4.7. EEEP: Extreme End-to-End Protocol

Figure 4.8: An overview of the EEEP implemented in a system

4.7.3 EEEP mechanism

We have to implement an EEEP Unit in each network interface (NI) that injects BE traffic. This

unit will count the number of available slots in the requests queue in the memory controller.

We have also to implement a Credits Generation Unit in the memory controller front-end to

generate the EEEP credits and send them back to the concerned NIs.

When a NI that uses EEEP has to send a BE traffic packet to the SDRAM, it checks first the

value of the EPPP Credits counter, and then the value of EEEP Credits Threshold. If the EPPP

Credits are validated (credits>threshold), the master NI checks the link-level flow control be-

fore it starts sending the packet flits to the router. The EEEP Credits counter is decremented

by one just after the packet header is sent. The utility of the threshold is to accumulate the

credits and to consume them in a bursty way. This allows to regulate the shape of BE traffic.

Figure 4.9 describes this mechanism in details for the BE request packets.

When the memory controller sends a response back through a slave NI, it sends an EEEP

Credit which will be written in the response packet header. This credit is going to inform

the master NI that it has one more available slot in the requests queue. As soon as the mas-

ter NI receives the response packet from the memory controller, its EEEP Credits counter is

incremented by one.

4.7.4 Requests queue sizing method

Unlike the end-to-end credit-based flow control, EEEP does not aim at ensuring continuous

data flow for BE traffic. In contrary, it tries to slow down the requests of the BE traffic with the

goal of guaranteeing the continuity and extending the services for GS traffic.

EEEP only controls the request path of the BE traffic towards the memory controller. When

the memory controller returns responses back with EEEP credits, it uses the link level flow

control that the network supports.

The sizing of the requests queue in the memory controller front-end is the most important

75

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

Figure 4.9: EEEP diagram for best effort traffic request packets

issue when we use the extreme end-to-end protocol. More precisely, the part of the requests

queue that should contain BE traffic requests. Remember that the requests queue is shared

between the GS traffic and the BE traffic, and we want to prevent the BE traffic requests from

using more queue slots than necessary to maintain its average bandwidth.

Based on the method introduced in section (4.2.1), we will present our method to size the

part of the requests queue which can be used by BE traffic requests. The zero-load latency θ

measured in clock cycles that is taken by a flit to traverse the network from a given source of

BE traffic NISn to reach the memory controller network interface NImc is equal to

θ(NISn , NImc) = ∆(NISn , NImc).R+ σ(NISn , NImc) (4.4)

Where ∆(NISn , NImc) is the distance in hops between the two NIs, R is the number of clock

cycles used by router to process and forward a flit, σ(NISn , NImc) captures the aggregate

number of wire pipeline stage across all links on the path between NISn and NImc. The zero-

load round trip latency taken by a flit to traverse the network from NISn to NImc and back is

given by

Trt(NISn , NImc) = θ(NISn , NImc) + θ(NImc, FErq) + εmc + θ(FErq, NImc) + θ(NImc, NISn)

(4.5)

Where θ(NImc, FErq) is the zero-load latency between the memory controller network inter-

face and the front-end requests queue. The εmc parameter represents the delay between the

moment when a request is placed and the moment when its response is sent back with credit.

Since εmc is unpredictable because it depends on the dynamic access patterns to the memory,

76

4.7. EEEP: Extreme End-to-End Protocol

we will fix it at tRL which corresponds to the optimal delay of a read operation.

We call DTIn the Diverted best effort Traffic Indicator which is the average number of

requests towards other targets in the system than the memory controller inside a given time

window (AV GotherReqn) , multiplied by the outstanding transactions number (outStandn) that

this source can support, divided by the average number of requests (AV GReqn) in the same

time window. So the diverted BE traffic indicator is given by

DTIn = ⌊outStandn ·
AV GotherReqn

AV GReqn

⌋ (4.6)

As BE traffic does not need to be fully smooth, a degree of freedom is added. We call DCben

the flow discontinuity factor that we associate with the BE traffic flow coming from the NISn .

Putting all together, the part of the requests queue where the BE traffic requests coming

from one NISn can be placed is given by

QSn = Cn + Trt(NISn , NImc)−DTIn −DCben (4.7)

Where Cn is the number of EEEP credits carried by the memory controller response packets.

Finally, the number of slots in the requests queue that can contain BE traffic requests for

all BE NIs in a system is given by

QSbe =

N∑

n=1

Cn + Trt(NISn , NImc)−DTIn −DCben (4.8)

Where N is the number of network interfaces in the system that inject BE traffic.

The number of queue slots determined by the equation (4.8) is a maximum limit. That

means the BE traffic requests can use at most this number of queue slots. If the GS traffic

requests need some extra queue slots during a time window, they can use the slots dedicated

to the BE traffic requests.

To summarize, if we have N master network interfaces that inject BE traffic, we will need

to implement N EEEP Units in these NIs, and only one EEEP Credits Generation Unit in the

memory controller.

4.7.5 EEEP guarantees and limitation

Whatever the load of the memory controller and the ratio between the BE and GS requests,

EEEP guarantees that the GS requests are always received and buffered in the requests queue

without stalling in the memory controller NIs because of lack of space in the requests queue.

77

Chapter 4. Extreme End to End Flow Control Protocol for SDRAM Access

The services provided by the memory controller to a kind of GS traffic can only be effec-

tive when its requests are stored in the requests queue. Therefore, the continuity of services

between the network and the memory subsystem can only be ensured by guaranteeing the

immediate admission of the requests in the memory controller. This is how EEEP guarantees

the service continuity for GS traffic between the master NIs and memory controller.

Note that we use the granularity of the packet for the EEEP, which corresponds to one

memory request. The longer the burst length of a request is, the more the request uses the

shared buffers in the memory controller. Indeed, a write request uses shared resources on

the request path in the memory controller (requests queue and write-data buffers), while a

read request only uses the requests queue on the request path, and the read-data buffer on

the response path. This version of EEEP does not take into account the BE requests size in

the credit allocation policy.

4.7.6 System modifications to support EEEP

A few modifications in the network-on-chip and the memory controller are required to sup-

port EEEP.

Master network interface

We add in the master network interface, which injects BE traffic, a counter to buffer the num-

ber of EEEP Credits that indicates the available slots for this master in the requests queue

of the memory controller front-end. We must also add a register to buffer the EEEP Credits

Threshold that is used to valid the EEEP Credits. If the EEEP Credits number is less than the

EEEP Credits Threshold, the EEEP Credits cannot be used.

Memory controller

We add a Credits Generation Unit in the memory controller front-end. This unit creates one

credit when a slot in the requests queue becomes vacant after the sending of a BE traffic

request.

Slave network interface

We add a side signal between the memory controller interface and the slave network interface

to transport the EEEP Credits. A simple mechanism will be required to add the EEEP credit(s)

in the response packet header (see Figure 4.10).

NoC protocol

We must reserve a field in the response packet header in order to send the EPPP Credits back

to the master network interface. This field is only one bit in most cases.

78

4.8. Conclusion

Figure 4.10: Memory controller modification to support EEEP

According to our estimation, the implementation of this protocol costs less than 4% of the

total silicon area of a given memory controller, and less than 1% for the NIs that support EEEP.

4.8 Conclusion

We presented in this chapter an Extreme End to End Protocol to access the memory subsys-

tem in MPSoCs through a multi-port memory controller. EEEP should be used for best ef-

fort (BE) traffic in addition to a link-level flow control. By controlling the injection of the BE

traffic in the network, EEEP increases the performance of guaranteed service traffic in terms

of bandwidth and latency, while maintaining the average bandwidth of the BE traffic. This

flow control protocol handles the SDRAM access within a system approach by considering

the memory controller state before injecting requests packets in the network. EEEP requires

neither additional queues nor counters in the slave network interface, because it is based on

the available slots in the requests queue in the memory controller front-end.

The novelty of this protocol consists of exploiting information coming from the memory

controller within the quality of service in the network-on-chip. Unlike other end-to-end pro-

tocols, EEEP crosses the boundary of the network and guarantees the continuity of services

from the master network interfaces to the memory devices.

79

CHAPTER 5

Implementation of the Customizable Memory Controller Architecture

Contents

5.1 Development environment . 83

5.2 NED language overview . 84

5.3 Model structure in OMNeT++ . 85

5.4 General description of a building component 86

5.5 Memory controller building components parameters 87

5.5.1 Memory mapping parameters . 88

5.5.2 Generic queue parameters . 88

5.5.3 Capture unit parameters . 88

5.5.4 Insertion unit parameters . 88

5.5.5 Generic arbiter parameters . 89

5.5.6 Re-ordering unit parameters . 89

5.6 EEEP components parameters . 89

5.7 Traffic generator . 90

5.8 Conclusion . 92

81

5.1. Development environment

I N ORDER to evaluate architectures making use of our generic memory controller, we

must provide virtual prototypes within a simulation environment. We thus rely on a

high-level cycle approximate simulator to implement our totally customizable mem-

ory controller architecture. The development environment should allow the implementation

through an object oriented language for development flexibility reasons. We are going to

show how to implement our customizable architecture.

5.1 Development environment

We use OMNeT++ as development environment to implement our customizable memory

controller. OMNeT++ is a discrete event simulation environment. Its primary application

area is the simulation of communication networks, but because of its generic and flexible

architecture, it is successfully used in other areas like the simulation of complex IT systems,

queuing networks or hardware architectures as well [62]. We opt for OMNeT++ as a develop-

ment environment for its performance and flexibility compared to other simulators from its

category such as NS2 and OPNET [81]. A quick overview of the simulation with OMNeT++ is

given below:

1) An OMNeT++ model is build from components (modules) which communicate by ex-

changing messages. Modules can be grouped together to form a compound module.

When creating the model, we need to map the system into a hierarchy of communicat-

ing modules.

2) We define the model structure in the NED language. We can edit NED files in a text

editor or in the graphical editor of the Eclipse-based OMNeT++ Simulation IDE.

3) The active components of the model (simple modules) have to be programmed in C++,

using the simulation kernel and class library.

4) We provide a suitable file to hold OMNeT++ configuration and parameters for the model.

A configuration file can describe several simulation runs with different parameters.

5) We build the simulation program and run it. We will link the code with the OMNeT++

simulation kernel and one of the user interfaces that OMNeT++ provides. There are

command line (batch) and interactive-graphical user interfaces.

6) The simulation results are written into output vector and output scalar files. We can use

the Analysis Tool in the Simulation IDE to visualize them. Result files are text-based, so

we can also process them Perl or other ways.

83

Chapter 5. Implementation of the Customizable Memory Controller Architecture

5.2 NED language overview

The user describes the structure of a simulation model in the NED language. NED stands for

NEtwork Description. NED lets the user declare simple modules, and connect and assemble

them into compound modules. Channels are another component type, whose instances can

also be used in compound modules. The NED language has several features which let it scale

well to large projects:

Hierarchical: the traditional way to deal with complexity is by introducing hierarchies. In

OMNeT++, any module which would be too complex as a single entity can be broken down

into smaller modules, and used as a compound module.

Component-based: simple modules and compound modules are inherently reusable,

which not only reduces code copying, but more importantly, allows component libraries to

exist.

Interfaces: module and channel interfaces can be used as a place-holder where normally

a module or channel type would be used, and the concrete module or channel type is deter-

mined at network setup time by a parameter.

Inheritance: modules and channels can be sub-classed. Derived modules and channels

may add new parameters, in-out ports (called gates in NED language), and (in the case of

compound modules) new sub-modules and connections. They may set existing parameters

to a specific value, and also set the gate size of a gate vector.

Packages: the NED language features a Java-like package structure, to reduce the risk of

name clashes between different models. NEDPATH (similar to Java’s CLASSPATH) was also

introduced to make it easier to specify dependencies among simulation models.

Inner types: channel types and module types used locally by a compound module can be

defined within the compound module, in order to reduce name-space pollution.

Metadata annotations: it is possible to annotate module or channel types, parameters,

gates and sub-modules by adding properties. Meta-data are not used by the simulation ker-

nel directly, but they can carry extra information for various tools, the runtime environment,

or even for other modules in the model. For example, a module’s graphical representation

(icon, etc) or the prompt string and measurement unit (nano second, etc) of a parameter are

already specified as meta-data annotations.

84

5.3. Model structure in OMNeT++

5.3 Model structure in OMNeT++

An OMNeT++ model consists of hierarchically nested modules which communicate with mes-

sages. OMNeT++ models are often referred to as networks. The top level module is the sys-

tem module. The system module contains sub-modules, which can also contain further sub-

modules, Figure 5.1 shows an example. The depth of module nesting is not limited, this allows

the user to reflect the logical structure of the actual system in the model structure.

���������	
��

����
�	���	
��

�����

��	
��

�����

��	
��

�����

��	
��

Figure 5.1: Model structure in OMNeT++: compound and simple modules, gates, connections

Modules that contain sub-modules are termed compound modules, as opposed simple

modules which are at the lowest level of the module hierarchy. Simple modules contain the

algorithms in the model and they are implemented by the user. Both simple and compound

modules in a given network are instances of module types. While describing the model, the

user defines module types and uses them to define more complex module types. Finally, the

user creates the system module as an instance of a previously defined module type. When

a module type is used as a building block, there is no distinction whether it is a simple or a

compound module. This allows the user to split a simple module into several simple mod-

ules (embedded into a compound module), or vice versa, aggregate the functionality of a

compound module into a single simple module, without affecting existing users of the mod-

ule type.

Modules communicate by exchanging messages. In an actual simulation, messages can

represent frames or packets in a computer network, jobs or customers in a queuing network

or other types of mobile entities. Messages are sent out and arrive through gates, which are

the input and output interfaces of a module. Input and output gates of different modules can

be interconnected. Each connection is created within a single level of the module hierarchy:

within a compound module, one can connect the corresponding gates of two sub-modules,

or a gate of one sub-module and a gate of the compound module.

Modules can have parameters. Parameters are used for two main purposes: to customize

simple module behaviour, and to parametrize model topology. Compound modules can pass

parameters or expressions of parameters to their sub-modules. Figure 5.2 provides the NED

85

Chapter 5. Implementation of the Customizable Memory Controller Architecture

description of a simple module (the generic arbiter).

The behaviour of each simple module is programmed in C++. This description could con-

tain several basic components coming from the simulator library. Interested readers may

have further information on this library in [61].

�

�

�������4�����$��������
��
������
����
�5�
��������	���������������
��������	��""���#������$%��
��������	����������'��$1�����
�
������������������)�*667*89���&'$:;<'������
��
��������5�
��������	�����=��������>����	�
���?��
��������������=�����'����
3�
�

�

Figure 5.2: The NED description of the generic arbiter

5.4 General description of a building component

All building components of the memory controller are based on the cSimpleModule class of

OMNeT++. This class provides what is necessary for exchanging and handling messages.

A typical C++ description of a building component consists in 3 principal parts: the ini-

tialization, the run-time behaviour, and the finishing. These parts are respectively repre-

sented by the initialize(), activity() and finish() functions. The headers of the previous func-

tions are provided in the cSimpleModule class. However, we still have to specify the content of

each of them.

The initialize method is invoked after OMNeT++ has set up the system (i.e. created mod-

ules and connected them according to the definitions), and provides a place for initialization

code. The initialization code deals with the module parameters reading (from the NED file to

the executable file), and the global variables assignment. Figure 5.3 shows the initialization

method of the generic arbiter.

�

�

��������	�
���
���
���	���������������

� ����	�
��������������������������
� ���	�	�������� !��������""���#������$%����
� �	�����	�������&���'�()���'"�&��*�+,�����������������
��������-.	�-��	/��� 0�������������������'��$1�������
� ��&�$��"��'��2��
� &�����'����2��
3�
�

�

�

Figure 5.3: The initialization method of the generic arbiter

The activity method is run in a coroutine. Coroutines are similar to threads, but are

86

5.5. Memory controller building components parameters

scheduled non-preemptively (this is also called cooperative multitasking). From one corou-

tine you can switch to another coroutine by a transferTo(otherCoroutine) call. Then this corou-

tine is suspended and (otherCoroutine) will run. Later, when (otherCoroutine) does a trans-

ferTo(otherCoroutine) call, execution of the first coroutine will resume from the point of the

transferTo(otherCoroutine) call. The full state of the coroutine, including local variables are

preserved while the thread of execution is in other coroutines. This implies that each corou-

tine must have its own stack, and transferTo() involves a switch from one process to another.

Coroutines are at the heart of OMNeT++, and the simulation programmer does not ever need

to call transferTo() or other functions in the coroutine library, nor does he need to care about

the coroutine library implementation. However, it is important to understand how the event

loop found in discrete event simulators works with coroutines. The clock of each module is

modelled in the activity method. The time unit is one of the module global variable which

are assigned during the initialization process. Figure 5.4 depicts the activity method of the

generic arbiter.

�

������������	�
���
���
������������
������	�����	
����
��������������������
������������������
�����������������������
����	����������������������
����
���� �!��������
�����

�	�����
�������� � �
�
�� ���������������"������#�"	��$%&	"'���������
�����
���� ������������
����������(����������
�����
���� ���������������
���� �������	
���������)*���

���������)*���	
������
���� ����
�+�,+�+��)*����������
������	
��'��������
���� �-�
���� ���!������	
�+������
�����-�
���-�

�

���������	

���	�������������	�
������������������	��������	��������������������������		�������������	�����������������	��������	�������������������� �����
����������������	�����������	���������!�����������	��������������������"������ ����

���	�����������������������������!��������������	�������������	�#��	���$�������%�����������������
����	�#���������

���	���	$����������������	�����������&�������������������	����������������������������������'����������������������	

���	���	$����		�������!�������������������������������		�������	�(���������������������������	��%(����������'�������
�

�

�

�

Figure 5.4: The activity method of the generic arbiter

The finish method is called when the simulation has terminated successfully, and its rec-

ommended use is the recording of summary statistics.

5.5 Memory controller building components parameters

Each building component of our customizable memory controller receives its parameters

through a NED file. The following tables show the parameters of each building component

with its description and values range.

87

Chapter 5. Implementation of the Customizable Memory Controller Architecture

5.5.1 Memory mapping parameters

Hereafter the parameters of the memory mapping unit. More details about this block are

given in section (3.6.1) on page 42.

Table 5.1: Memory mapping parameters

Parameter name Type Range Description
timeUnit double 1→ 10 relative clock cycle period
memAddressWidth int 32→ 128 Memory address space width in bits
bankBits int 2→ 4 Bank bits in the memory address
rowBits int 8→ 12 Row bits in the memory address
columnBits int 12→ 18 Column bits in the memory address
mappingScheme int 0→ 2 RBC, RCB and BRC mapping schemes
additiveLatency int 0→ 999 An additive delay that a request spends in this unit

5.5.2 Generic queue parameters

Below the parameters of the generic queue. More details about this block are given in section

(3.6.2) on page 43.

Table 5.2: Generic queue parameters

Parameter name Type Range Description
timeUnit double 1→ 10 relative clock cycle period
numOfQueues int 1→ 16 Number of queue inside the generic queue unit
maxLength int 1→ 64 Length of each queue in the generic queue unit
ageing bool true, false Activation of the ageing mechanism
maxAge int 1→ 500 Threshold in clock cycles from which the priority of each ele-

ment in the queue is incremented by 1
additiveLatency int 0→ 16 An additive delay that an element spends in the queue

5.5.3 Capture unit parameters

Table 5.3 shows the parameters of the capturing unit. More details about this block are given

in section (3.6.3) on page 44.

Table 5.3: Capturing unit parameters

Parameter name Type Range Description
lookAheadWindow int 1→ 64 The look-ahead window depth in the queue. This reflects the

number of queue slots that are observable by the capturing unit
capturingRule int 1→ 4 Several rules could be used consecutively

5.5.4 Insertion unit parameters

Hereafter the parameters of the insertion unit. More details about this block are given in

section (3.6.4) on page 47.

88

5.6. EEEP components parameters

Table 5.4: Insertion unit parameters

Parameter name Type Range Description
lookAheadWindow int 1→ 64 The look-ahead window depth in the queue. This reflects the

number of queue slots that are observable by the insertion unit
insertionRule int 1→ 5 Several rules could be used consecutively

5.5.5 Generic arbiter parameters

Below the parameters of the generic arbiter. More details about this block are given in section

(3.6.5) on page 51.

Table 5.5: Generic arbiter parameters

Parameter name Type Range Description
timeUnit double 1→ 10 relative clock cycle period
inputsNumber int 2→ 16 Inputs to be arbitrated
arbitrationScheme int 1→ 5 Scheduling algorithm to be used
additiveLatency int 0→ 16 An additive delay that a request spends to be scheduled

5.5.6 Re-ordering unit parameters

The parameters of the re-ordering unit are shown in Table 5.6. More details about this block

are given in section (3.6.7) on page 55.

Table 5.6: Re-ordering unit parameters

Parameter name Type Range Description
timeUnit double 1→ 10 relative clock cycle period
portsNumber int 1→ 16 Memory controller interface ports number
outstandingRequests int 1→ 64 Number of outstanding requests in the memory controller

through the same port
respQueueLength int 1→ 32 Maximum capacity of the response queue
additiveLatency int 0→ 16 An additive delay that a request spends to be scheduled

5.6 EEEP components parameters

The EEEP unit in the master network interface and the Credit Generation Unit in the mem-

ory controller also need to be parametrized. Table 5.7 summarizes the parameters that the

master network interface and the memory controller when the Extreme End to End Protocol

is enabled for the best effort traffic (BE).

The initial credits number of each master network interface depends on the requirements

of the concerned master in term of bandwidth. We explicitly omit the latency requirement

for those masters because they already generate BE traffic. The memory controller is aware of

the master network interfaces that inject BE traffic, and consequently sends the EEEP credits

back to these network interfaces.

89

Chapter 5. Implementation of the Customizable Memory Controller Architecture

Table 5.7: EEEP parameters

Parameter name Type Range Description
eeepEnabled bool true, false Enable or disable the EEEP mechanism for this NI
eeepInitialCredit int 1→ 16 The number of the initial credits for this NI. This value is related

to the number of queue slots allocated to each best effort NI. See
equation (4.7) on page 77

5.7 Traffic generator

Mapping multiple applications on available computational resources leads to interaction and

contention at various network resources. Consequently, taking into account the traffic char-

acteristics becomes of crucial importance for performance analysis and optimization of the

communication infrastructure, as well as proper resource management [9; 14; 46].

We build on the statistical distributions provided by OMNeT++ in order to create our traf-

fic generator. This generator has two modes to create stimuli. The first one is constrained

random traffic generation, and the second one is back-annotated traffic generation.

Figure 5.5: The activity method of the generic arbiter

In the constrained random mode, we have seven parameters to define in order to config-

ure the shape of the generated traffic:

1) Service cycle duration, the repetitive period of time in which we shape the traffic.

2) Activity window, a time window inside the service cycle, in which the traffic generator is

allowed to issue requests.

3) Activity delay, the delay time between the beginning of the service cycle and the begin-

ning of the activity window.

4) ITT, Inter Transaction Time, a delay between the current transaction and the next one.

5) Address, the address range(s) that the requests want to access.

90

5.7. Traffic generator

6) Size, the size of the transactions in bytes.

7) Direction, the direction of the requests (read/write).

Only the Service cycle duration parameter has a hard value that remains the same during the

simulation. All other parameters are based on statistical distributions supported by the sim-

ulator10. Figure 5.5 shows the signification of the previous parameters in the traffic shape.

Table 5.8 shows an example of the constrained-random configuration.

Table 5.8: Traffic generator, example of the constrained random configuration

Parameter Description
service cycle duration = 1000 The service cycle duration in clock cycles
activity window = uniform(100,500) For each service cycle, the activity window will

have have a random value between 100 and 500
clock cycles. This value is generated according to
the uniform distribution

activity delay = histogram((5,25),(20,75)) For each service cycle, the activity delay will be
25% 5 clock cycles, and 75% 20 clock cycles

ITT = uniform(1,50) The ITT inside the activity window will be be-
tween 1 and 50 clock cycles

address = histogram((uniform(1000,2000),40),(uniform(
5000,9000),60)

40% between 1000 and 2000, and 60% between
5000 and 9000

size = histogram((8,20),(16,20),(32,50),(64,5),(128,5)) 20% 8 bytes, 20% 16 bytes, 50% 32 bytes, 5% 64
bytes, 5% 128 bytes

direction = fixed(1) Only write requests

In the back-annotated mode, we use a stimuli file which includes the requests to gener-

ate. The requests represent the real behaviour a processing units if the stimuli file contains

the trace of an emulation system. In this mode, we keep the service cycle duration, active win-

dow, activity delay and ITTparameters within the generation policy, and we replace the address,

size and direction parameters with values provided in the stimuli file. The following figure de-

picts an example of a stimuli file for the back-annotated generation mode.

Figure 5.6: The header of a stimuli file for the back-annotated generation mode

10Among the statistical distributions we note: Uniform, Exponential, Normal, Erlang, Student, Cauchy,
Bernoulli, Binomial, Poisson and Histogram.

91

Chapter 5. Implementation of the Customizable Memory Controller Architecture

5.8 Conclusion

This chapter was devoted to the description of the implementation of our totally customiz-

able memory controller architecture in addition to the Extreme End to End Protocol. We chose

OMNeT++ as working environment not only because it can be used as high level and cycle

approximate simulator, but also because of its rich library of basic components on which we

built our customizable architecture. Furthermore, we use the statistical distribution func-

tions provided by the simulator to build our traffic generator which can nearly simulate the

real behaviour of several processing units.

The implementation of the building components under OMNeT++ makes them easy to

instantiate and to interface with each other. This makes the model flexible and allows the

memory system designer to explore the architecture in order to find the configuration that

meets the requirements of the concerned processing engines.

92

CHAPTER 6

Experiments and Results

Contents

6.1 Memory system . 95

6.1.1 Memory controller architecture . 95

6.2 Standalone tests . 96

6.2.1 Memory controller configuration for standalone tests 96

6.2.2 Memory timing tests . 97

6.2.3 Priority and ageing mechanism test . 99

6.2.4 Summary . 102

6.3 EEEP tests . 102

6.3.1 Traffic modelling . 103

6.3.2 EEEP in a Spidergon NoC-based SoC . 103

6.3.3 EEEP in a 2DMesh NoC-based SoC . 107

6.3.4 EEEP in an irregular NoC-based SoC . 107

6.3.5 Analysis . 111

6.4 Conclusion . 112

93

6.1. Memory system

E VALUATING the performance of MPSoCs became a hard task with the increasing

complexity of their architectures. The memory subsystem performance has rapidly

attracted the designer interest as most processing engines access it. In this chapter,

we are going to analyse the performance of a memory subsystem made up of a multi-port

memory controller with a DDR3-800 SDRAM model. We will start the evaluation by verifying

the memory timing constraints with several standalone tests. Then we will move on to test

our novel Extreme End-to-End Protocol within modern multimedia SoCs based-on different

network-on-chip topologies.

6.1 Memory system

We need a multi-port memory controller to evaluate the performance of our extreme end to

end protocol. This is why we opt for the memory controller Beta we showed in section 3.7.2 on

page 56. Depending on the type of experiment we will be working on, we will have to change

the configuration of the memory controller to meet the system requirements. This will be

notified, if necessary, in each subsection of this chapter.

6.1.1 Memory controller architecture

We remove the first arbitration stage between read and write requests inside each port be-

cause the interface we chose mixes together the read and write requests in the same channel.

So the only arbiter we use is the inter-port arbiter, which is a priority-based arbiter (see Figure

6.1). Each port has its own priority value, which ranges from the highest priority (pr0) to the

lowest priority (pr3).

When a request is selected by the port arbiter, it is forwarded to the placement unit to be

placed in the requests queue. The insertion rules are respectively: (1) system data consistency;

(2) master data consistency; (3) priority; (4) direction grouping. Once placed into the requests

queue, the relative order of the requests is constant.

When the status of the back-end allows to receive a new request, the front-end forwards

the request which is in the head of the requests queue to the back-end. Upon the receiving of

a request, the back-end converts it into DDR3 SDRAM commands, and buffers them inside

a memory commands queue. These commands will sequentially be sent to the memory de-

vice according to the DDR3 SDRAM timing. Note that this memory controller uses an early

response mechanism, which consists of sending the write response back to the master when

the write request is scheduled. It does not wait until the end of the write operation to send

the response back.

Figure 6.1 depicts the architecture of the memory controller we use for our experiments.

95

Chapter 6. Experiments and Results

Figure 6.1: Architecture of the multi-port memory controller

6.2 Standalone tests

The goal of these tests is to verify most important timing parameters of the memory con-

troller. We also show the impact of other parameters on the system performance such as port

priorities and ageing mechanism. We start these tests by configuring the memory controller.

6.2.1 Memory controller configuration for standalone tests

Table 6.1 shows the configuration of the memory. The choice of the queues depth is tightly

correlated with the kind of traffic that the memory controller will receive. For this set of stan-

dalone tests, we use two traffic generators that have an outstanding11 value of 4. So the max-

imum number of outstanding requests that we can have in the memory controller is 8 re-

quests. The write-data queue length should also have the capacity to store at least half of the

longest write request that the memory controller may receive. The longest write requests in

these preliminary tests is 128 bytes.

We configure the back-end in order to support DDR3-800 SDRAM timings. We use the

timing values of the Samsung DDR3-800 K4B4G0446A [69], which are summarized in Table

6.2. The definitions of these timing parameters have been presented in Table 3.2 on page 40.

11The outstanding parameter in a traffic generator represents the maximum number of requests that the gen-
erator can issue without receiving the response of the first request

96

6.2. Standalone tests

Table 6.1: Memory controller configuration for standalone tests

Parameter Value
Number of ports 2
Front-end data path width 8 bytes
Back-end data path width 4 bytes
Memory data bus width 4 bytes
Front-end & back-end & memory device frequency 400 MHz
Port FIFOs depth 2 slots
Arbitration scheme Priority then round-robin
Memory address space 32 bits
Memory mapping Row(17 bits) / Bank (3 bits) / Column (12 bits)
Placement unit requests queue depth 8 slots
Back-end ddr3 commands queue depth 4 slots
Write data queues depth 8 slots
Read data queue depth 4 slots
Write reponse queues depth 2 slots

Table 6.2: Samsung DDR3-800 SDRAM timing parameters

Timing Value Timing Value Timing Value
parameter [clock cycle] parameter [clock cycle] parameter [clock cycle]

tRAS 14 tRC 21 tRCD 6
tCCD 4 tRP 6 tRTP 4
tREFI 1560 tRFC 64 tRL 5
tWL 5 tWR 15 tWTR 4

tFAW 20 - - - -

6.2.2 Memory timing tests

We focus now on the duration of the back-end operations to execute the requests that the

memory controller receives. We are especially interested in: 1) the time penalty of row miss

and bus direction switching, 2) the bank interleaving mechanism, 3) the requests format.

Direction switching test

The goal of this test is to verify the access delays which are due to the memory bus switching

direction between read and write.

We send a set of stimuli through one traffic generator to Bank 0. The requests include

all cases of row hits/misses and read/write switching. In order to simplify the explanation of

the back-end delays, we only send read and write requests of 32 bytes. The left column in

Figure 6.2 represents the request of the traffic generator. By following the sequences in the

right column of the same figure, we verify that the back-end respects the timing constraints

of the DDR3-800 SDRAM.

Bank interleaving test

The idea behind this test is to verify and show that the back-end can interleave the bank

preparation commands in order to hide at maximum the bank preparation delays, i.e. the

97

Chapter 6. Experiments and Results

��	 ���	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��	 ���	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��� �	

 ! ��

"�#�$!

 �##���

����

�%#&�$

���

�%#&�$

���� ���

���	 ��
�������	�����
�����
�

��	 ���

���� ���

���� ��

��������������������

������������� ����
�
�����

"�#�$!	�$��
'�'��

�'#�

"�#�$!

��(%�
�

��		��������		��

��		��������		��

��		��������		��

��	��������		��

�$�))' 	*���$���$ "�#�$!	 ���$����$	&� �+���

��	 ����	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�

�,	 ���	 ����	�	 ���	�

,�	 ����	 ����	�	 ���	�

�,	 ����	 ����	�	 ���	�

���	 ���	 ����	�	 ���	�

���	 ����	 ����	�	 ���	�	

��-	 ����	 ����	�	 ���	�	

���	 ����	 ����	�	 ���	�

���	 ����	 ����	�	 ���	�

���	 ���	 ����	�	 ���	�

�--	 ����	 ����	�	 ���	�

������������� ����
�
�����

���	 ��

��	 ���

���� ���

��� ����� ����� ����
������

��	 ����

���� ���

��������������������

�����

�������� ���� ����
������

��	 ���

���� ���

��		��������		��

��	��������		��

��		��������		��

��	��������		��

��	��������		��

��	��������		��

Figure 6.2: Back-end log file: direction switching and bank preparation delay

��			��

��	�		��

���	 ���	 ����		 ���	

���	 ���	 ����	�	 ���	

���	 ����	 ����		 ���		

���	 ����	 ����	�	 ���		

�����	

�����

������

�������

����

� �!��

���

� �!��

������

��" �
�

���##$�	%�������� ������	����������	!���&���

��	�		��

��	�		��

��	��		��

���	 ����	 ����	�	 ���		

�'�	 (��)	 ����		 ���	

���	 (��)	 ����	�	 ���	

���	 ���	 ����		 ���	�

���	 ���	 ����	�	 ���	�

���	 ����	 ����		 ���	�	

���	 ����	 ����	�	 ���	�	

Figure 6.3: Back-end log file: bank interleaving mechanism

the delays due to Prechage and Activate commands. Figure 6.3 shows a sequence of read

requests that access bank 0 and bank 1 and create in both banks row misses. Note that at

the beginning, all banks are in the Idle state. For more details about the banks finite state

machines, please refer to Figure 3.2 on page 39.

Requests format

Here, we would like just to show how the memory controller interprets the cores requests and

formats them to fit in the DDR3-SDRAM commands granularity. Figure 6.4 depicts a set of

write requests ranging from 8 bytes to 128 bytes. These requests do not present any bank

conflict. According to the length of the request, the back-end will divide it into a set of WR_4

and WR_8 memory commands.

98

6.2. Standalone tests

��		�

��	��	��

���	 ���	 ����		 ���	

���	 ���	 ����	�	 ���	�

���	 ����	 ����		 ���		

���	 ����	 ����	�	 ���	�	

�����	

�����

 �!�"�

��!!���

����

�#!$�"

���

�#!$�"

 �!�"�

��%#�
�

�"�&&'�	(���"���" �!�"�	����"����"	$���)���

��	��	��

��	��	��

��	��	��

��	��	��			

��	**	���

���	 ����	 ����	�	 ���	�	

���	 ���	 ����	�	 ���	�

�*�	 ���	 ����	�	 ���	�

��	 ����	 ����	�	 ���	�	

���	 ����	 ����	�	 ���	�

���	 ���	 ����	�	 ���	�

�*�	 ����	 ����	�	 ���	�	

��	 ����	 ����	�	 ���	�	

���	 ����	 ����	�	 ���	�

�*�	 ���	 ����	*	 ���	�

���	 ����	 ����	�	 ���	�	

*��	 ����	 ����	*	 ���	�	

*��	 ����	 ����	*	 ���	�	

��	 ����	 ����	*	 ���	�	

���	 ����	 ����	*	 ���	�

Figure 6.4: Back-end log file: requests format

Four-activation window

As the row activation process correspond to copying an entire row from the memory matrix in

the row buffer in a bank, this operation consumes a lot of power, leading to a power consump-

tion peak in the memory module. For this reason, the DDR3 SDRAM standard [77] limits the

number of activation commands to 4 with a tFAW time window (time Four-Activation Win-

dow). As the DDR3-800 has a tFAW of 20 clock cycles, none of the examples shown in Figure

6.2, Figure 6.3, and Figure 6.4 violates this timing constraint.

6.2.3 Priority and ageing mechanism test

Here, we would like to highlight the impact of the port priority on the latency and bandwidth

of the initiator that accesses the memory controller through this port.

We keep the configuration of the memory controller as shown in Table 6.1, but we use two

traffic generators that represent two initiators. Both traffic generators use the constrained

random generation mode, and they have the same configuration (see Table 6.3).

We ran 3 simulations during 200k clock cycles, a time long enough to cover several refresh

intervals (more than 128 refresh intervals). In the first simulation, port1 and port2 have the

same priority. In the second simulation, we give to port1 the highest priority level pr0, and

the lowest priority level pr3 to port2. The ageing mechanism is disabled in the first two runs.

In the last simulation, we keep the port priorities as described previously, and we activate the

ageing mechanism with a maxAge of 10 clock cycles for the queued requests. Figures 6.5 and

6.6 show the latency histogram and the average bandwidth for both initiators.

The simulation results show that the memory controller latency and the average band-

99

Chapter 6. Experiments and Results

(a) Both cores have the same priority

(b) core1 has the highest priority (pr=0), and core2 has the lowest priority
(pr=3)

(c) core1 has the highest priority (pr=0), and core2 has the lowest priority
(pr=3). The ageing mechanism is activated with maxAge=10

Figure 6.5: Memory controller latency histogram for core1 and core2

100

6.2. Standalone tests

(a) Both cores have the same priority

(b) core1 has the highest priority (pr=0), and core2 has the lowest priority (pr=3)

(c) core1 has the highest priority (pr=0), and core2 has the lowest priority (pr=3). The ageing mech-
anism is activated with maxAge=10

Figure 6.6: Moving average bandwidth for core1 and core2

101

Chapter 6. Experiments and Results

Table 6.3: Traffic generators configuration in constrained random mode

Parameter Value Comments
outstanding 4 -
service cycle duration 1000 in clock cycles
activity window 1000 the whole service cy-

cle
activity delay fixed(0) -
ITT fixed(1) No additive delay be-

tween requests
address uniform(0x00000000,0x00004000) It covers all banks
size histogram((8,33),(32,33),(64,17),(128,17)) 33% 8 B, 33% 32 B,

17% 64 B, 17% 128 B
direction histogram((0,66),(1,33)) 66% read, 33% write

width are approximately the same for both initiators when we give the same priority level

to port1 and port2. When the memory controller ports have different priority levels, the re-

quests of core2 are always placed behind the requests of core1. This is why core1 has a tight

and picky latency histogram with an average latency of 70 clock cycles, and core2 has a large

and flat latency histogram with an average latency of 142 clock cycles (see figure 6.5b). A

trade-off between the performance of core1 and core2 can be obtained by using the ageing

mechanism. This mechanism increases the priority level of core2 requests every 10 clock

cycles. When the priority level of these requests become similar to core1 requests, all new re-

quests are placed behind them. This explains the difference between Figure 6.5b and Figure

6.5c.

6.2.4 Summary

In this section, we have verified most important timing parameters of the memory controller

we use in this chapter. We showed that these timing values are totally matched with the DDR3

SDRAM constraints. We tested then the influence of the port priority, coupled with the ageing

mechanism. We have shown that the ageing mechanism can avoid starvation situations for

the masters that have low priority. The rest of this chapter is devoted to the evaluation of our

Extreme End-to-End Protocol.

6.3 EEEP tests

We evaluate now the system performance variation when the Extreme End-to-End Protocol is

used for best effort traffic in multimedia SoCs. We use a set of traffic models for CPU, display

controller, video decoder, GPU and blitter. We map the system on three different NoC topolo-

gies: Spidergon 16, 2DMesh 4x4 and irregular. One main memory system is used for each

topology. It consists of the memory controller that we have shown in Figure 6.1, connected

to a model of the Samsung DDR3-800 SDRAM whose the parameters are shown in Table 6.2.

We show in Table 6.4 the configuration of the memory system we use in this section.

102

6.3. EEEP tests

Table 6.4: Memory controller configuration for EEEP tests

Parameter Value
Number of ports 4
Front-end data path width 16 bytes
Back-end data path width 8 bytes
Memory data bus width 8 bytes
Front-end & back-end & memory device frequency 400 MHz
Port FIFOs depth 4 slots
Port arbitration policy Priority then round-robin
Memory address space 32 bits
Memory mapping RBC, Row(17 bits) / Bank (3 bits) / Column (12 bits)
Placement unit requests queue depth 32 slots for Spidergon and 2DMesh, 20 slots for irregular
Back-end ddr3 commands queue depth 6 slots
Write data queues depth 24 slots
Read data queue depth 24 slots
Write response queues depth 4 slots

The sizing of the queues in the memory controller is based-on the kind of traffic that ac-

cesses the SDRAM. We take into account the maximum number of outstanding requests that

the memory controller can have, and the maximum length in bytes of each request when we

size the queues.

6.3.1 Traffic modelling

Based on the methodology presented by Srinivasan and Salminen [73], we model the traffic

of the system in order to test the extreme end-to-end protocol. We use our traffic generator

in constrained random mode (see section 5.7 for more details) to model the traffic of sev-

eral IPs such as CPU, GPU, video decoder, display controller and blitter. We summarize the

configuration of these traffic generators in Table 6.5.

Note that 80% of the system traffic is accessing the main memory subsystem, and 20% is

accessing other targets in the system.

6.3.2 EEEP in a Spidergon NoC-based SoC

We build a simulation platform made up of 4 CPUs, 3 GPUs, 2 display controllers, 4 video

decoders, and 3 blitters. These IPs are connected to a main memory system and other targets

through an ST Spidergon Network-on-chip. Figure 6.7 shows the simulation platform. The

description of the traffic injected by the initiators is given in Table 6.5. The configuration of

the memory system is shown in Table 6.4. We consider the blitters traffic as best effort traffic

(BE), and all other traffic as guaranteed service traffic (GS). We give the blitter traffic the lowest

priority in the network and the memory controller.

We activate the EEEP unit only in the blitter network interfaces, and allocate 3 slots for

each blitter in the memory controller requests queue. We test the protocol with 2 different

credit thresholds, 1 and 3. We compare the system performance when EEEP is enabled with

103

Chapter 6. Experiments and Results

Table 6.5: Traffic generators configuration in constrained random mode for EEEP tests

IP name Parameter Value

CPUs

outstanding 2
service cycle duration 1000
activity window 1000
activity delay fixed(0)

5-10% of system BW ITT uniform(20,60)
address uniform(0xC0000000,0xFFFFFFFF)
size fixed(64)
direction histogram((0,70),(1,30))

GPUs

outstanding 2
service cycle duration 4000
activity window 2000
activity delay uniform(0,1999)

10-15% of system BW ITT uniform(1,100)
addressc uniform(0x00000000,0x2FFFFFFF)
size histogram((128,50),(256,50))
direction histogram((0,66),(1,33))

Video decoders

outstanding 2
service cycle duration 3000
activity window 1000
activity delay uniform(0,999)

15-20% of system BW ITT uniform(1,80)
addressa uniform(0x30000000,0x5FFFFFFF)
size histogram((128,50),(384,50))
direction histogram((0,66),(1,33))

Display controllers

outstanding 3
service cycle duration 35000
activity window 10000
activity delay uniform(0,9999)

20-30% of system BW ITT uniform(1,25)
addressb uniform(0x60000000,0x8FFFFFFF)
size histogram((128,50),(384,50))
direction histogram((0,66),(1,33))

Blitters

outstanding 6
service cycle duration 4000
activity window 1000
activity delay uniform(0,1999)

15-20% of system BW ITT uniform(1,160)
addressc uniform(0x90000000,0xBFFFFFFF)
size histogram((128,50),(256,50))
direction histogram((0,66),(1,33))

a Read addresses per row are correlated. Write addresses per row are corre-
lated

b Read addresses for the display controller are correlated
c Read addresses are correlated. Write addresses are correlated

104

6.3. EEEP tests

Figure 6.7: Spidergon NoC-based simulation platform (across last routing)

105

Chapter 6. Experiments and Results

(a) EEEP credits=3, EEEP credit threshold=1 for the Blitters NIs

(b) EEEP credits=3, EEEP credit threshold=3 for the Blitters NIs

Figure 6.8: Performance variation when EEEP is activated in a Spidergon NoC-based SoC

106

6.3. EEEP tests

the case where only the link level credit-based flow control is used. Figure 6.8a and Figure

6.8b depict the simulation results.

The horizontal axe represents the processing engines in the platform with their measured

values for average latency, maximum latency, and average bandwidth. The vertical axe repre-

sents the variation of the bandwidth and latencies (average and maximum) between the case

when only the link-level flow control is used, and the case when EEEP is enabled for the blit-

ters traffic. The horizontal red line in the figures show the reference when only the link-level

flow control is used. Let us take the case of CPU0 in figure 6.8a as an example. Its average

latency is 0.94, which means that its average latency has been decreased by 6% when EEEP is

enabled for BE traffic. Its average bandwidth is 1.06, which means that its average bandwidth

has been decreased by 6% when EEEP is enabled.

When the EEEP threshold is 1, EEEP reduces the average latency of the guaranteed service

traffic by 8% on average and the maximum latency by 14% on average, while increasing the

bandwidth by 8% on average. This performance improvement is done while maintaining the

average bandwidth of the best effort traffic. The performance improvement of the GS traffic is

still guaranteed when the EEEP threshold is 3. However, the BE traffic bandwidth is no longer

guaranteed (loss of 12% on average). This is due to increasing average latency of the BE traffic

as it must wait for all EEEP credits before issuing any request packet.

6.3.3 EEEP in a 2DMesh NoC-based SoC

We keep here the configuration of the memory system as shown before, and we change the

topology of the network to 4x4 2DMesh. Figure 6.9 shows the simulation platform. Here

also we give the lowest priority to the blitter traffic in the network as well as in the memory

controller.

Figure 6.10a and Figure 6.10b show that EEEP decreases the average latency and the max-

imum latency of the GS traffic by 8% and 20% on average when the credit threshold is 1, and

by 7% and 17% respectively when the credit threshold is 3. It also increases the GS traffic

bandwidth by 8% and 6% when the credit threshold is 1 and 3 respectively. Similarly to the

Spidergon case, the threshold variation does impact the bandwidth of the BE effort traffic.

The BE traffic bandwidth is only maintained when the credit threshold is 1.

6.3.4 EEEP in an irregular NoC-based SoC

Now we change the requests queue size in the memory controller to 20 as the number of ini-

tiators has been decreased. The system is mapped on an irregular network, which is shown

in Figure 6.11. We also keep the service level for GS traffic, and BE traffic in the network and

the memory controller.

Figure 6.12a and Figure 6.12b show the performance variation for all masters. When EEEP

is enabled with a threshold of 1, it decreases the average and the maximum latency of the

GS traffic by 7% and 17% on average and increases the average bandwidth by 8%. When

107

Chapter 6. Experiments and Results

Figure 6.9: 2DMesh NoC-based simulation platform (XY routing)

108

6.3. EEEP tests

(a) EEEP credits=3, EEEP credit threshold=1 for the Blitters NIs

(b) EEEP credits=3, EEEP credit threshold=3 for the Blitters NIs

Figure 6.10: Performace variation when EEEP is activated in a 2DMesh NoC-based SoC

109

Chapter 6. Experiments and Results

Figure 6.11: irregular NoC-based simulation platform (source routing)

110

6.3. EEEP tests

(a) EEEP credits=3, EEEP credit threshold=1 for the Blitters NIs

(b) EEEP credits=3, EEEP credit threshold=3 for the Blitters NIs

Figure 6.12: Performace variation when EEEP is activated in an irregular NoC-based SoC

the threshold is 3, the average and maximum latency are decreased by 11% and 21%, and

the average bandwidth is increased by 11%. Contrary to the previous cases, the threshold

variation does not impact the bandwidth of the BE effort traffic.

6.3.5 Analysis

We have shown that our Extreme End-to-End Protocol improves the performance of GS traffic

in several NoC topologies. The average bandwidth of the BE traffic depends of two factors,

the EEEP credit threshold, and the number of hops between the blitters NIs and the memory

controller. In the Spidergon and the Mesh NoC platforms, there are several routers separating

the blitters NIs from the memory subsystem. Increasing the credit threshold means that the

blitters requests have to spend more time in the blitters NIs, waiting for the EEEP credits, to be

sent in a bursty way. This stalling time does not influence the GS traffic, however it could have

an important impact on the BE traffic bandwidth when the number of hops between the NIs

and the memory controller increases. The bigger the number of hops on the BE traffic path,

the less the BE traffic shape is peaky when it arrives at the memory controller. This is due to

the fact that BE traffic has the lowest service level in the network, so it could be split at each

111

Chapter 6. Experiments and Results

arbitration stage in the routers. To summarize, cumulating the EEEP credits in order to send

bursts of requests to the memory controller does not maintain the bandwidth of the BE traffic

when the number of hops on its path to the memory increases.

In an irregular topology, we have the choice to isolate the path of the BE traffic from the GS

traffic, minimizing thus the number of hops between the masters and the memory controller.

This is the case of the third simulation platform where the blitter traffic accesses the memory

controller through a devoted router. Here the BE traffic shape at the blitter NIs level and the

memory controller NI is almost the same. Consequently, the average bandwidth of the BE

traffic is still maintained when the credit threshold increases.

6.4 Conclusion

In this chapter, we first evaluated a memory subsystem made up of a multi-port memory con-

troller with a model for DDR3-800 SDRAM. We verified that the memory controller back-end

accurately simulates all memory device latencies. We tested then the whole memory sys-

tem and showed how the port priority can impact the bandwidth and latency of the requests

coming through it.

We evaluated then the performance of our novel extreme end-to-end protocol in MPSoC

platforms based-on three different topologies of network-on-chip. We proved that EEEP im-

proves the performance of the guaranteed service traffic (GS), while maintaining the average

bandwidth of best effort traffic. The simulation results show that EEEP reduces the average

latency of the GS traffic by 8% on average (14% at best), and increases its average bandwidth

by 8% on average (11% at best). These results prove that EEEP can guarantee the services for

high-priority traffic in any network-on-chip topology.

EEEP is the first end-to-end protocol that deals the memory access with a system ap-

proach, and uses information about the memory subsystem status in the traffic injection

policy at the master network interface level.

112

CHAPTER 7

Conclusion and Perspectives

113

7.1. Conclusion

T HE REQUIREMENTS of MPSoCs for high bandwidth and low latency makes the ac-

cess to the external DDR SDRAM become a bottleneck. The increasing number of

processing units in these systems, in addition to the multi-threading technique used

nowadays, increases the contention on the main memory system and demands memory sys-

tems with more complex architecture and higher performance. Recognizing the importance

of high performance off-chip SDRAM communication as a key to a successful system design,

we have focused on the configurability of the memory controller architecture, and proposed

a novel protocol for DDR SDRAM access through networks-on-chip. Here are presented a

brief summary of the entire dissertation and a list of some potential future directions of the

work.

7.1 Conclusion

The task of a memory controller is complex because it has not only to obey all SDRAM timing

constraints to provide correct functionality, but also to satisfy the initiators requirements in

terms of bandwidth and latency. This puts a lot of constraints on the design and makes the

architecture exploration of the memory controller very difficult. From a system perspective,

the impact of the memory controller architecture on the memory subsystem performance,

and consequently on the system performance, is very important.

Advanced memory controllers and scheduling policies are presented in [2; 10; 47; 56; 57;

84]. Even if some of these designs present configurable memory controllers, the architec-

ture exploration is restricted to limited sets of parameters such as FIFOs depth, data bus size,

QoS level and bandwidth distribution. Moreover, none of the previous work presents a totally

configurable architecture to give the designer the liberty of exploring and adapting the mem-

ory controller architecture. Though, the exploration of the memory controller architecture is

essential to measure its impact on the overall system performance.

Being able to explore the architecture of the memory controller and its arbitration algo-

rithms is essential to find an optimized architecture. This emphasizes the importance of

having a memory controller with a flexible and configurable architecture. We introduced

in Chapter [3] our design of a totally customizable memory controller based-on fully con-

figurable building components. This design is a high-level abstraction and cycle approxi-

mate model, it can accurately simulate the memory access delays during a normal operating

regime. Our components library covers both parts of the memory controller, i.e. the front-end

and the back-end. The modelled front-end reflects all delay cycles that are due to the buffer-

ing elements number, buffers depth, number of arbiters and scheduling policies. Moreover,

the front-end building components are easy to interface with each other, which gives the de-

signer of the memory system a high degree of freedom in designing and exploring the mem-

ory controller architecture. We show at the end of Chapter [3] three front-end architectures

modelled with our building components. Our customizable architecture is not restricted to

front-end part, we also introduce a back-end model, which is DDR3 SDRAM technology com-

115

Chapter 7. Conclusion and Perspectives

patible, and respects all DDR3 SDRAM timing constraints. It can be easily adapted to support

previous generations of DDR SDRAM, i.e. DDR1 and DDR2. These building components have

been designed to build all architectures of industrial memory controllers we came across.

The continuity of the guaranteed service between the NoC and the memory subsystem

can only be ensured by the joint use of architectural and protocol mechanisms. However,

these mechanisms remained to be defined in the VLSI context within its constraints in terms

of area and power consumption. Many networks-on-chip provide guaranteed service to traf-

fic classes [24; 64; 7; 16; 30; 54; 6]. A few flow controllers and arbitration schemes take into

consideration the specificity of the SDRAM as a target [13; 41; 40; 72]. However, these solu-

tions predict the state of the SDRAM, and require heavy arbitration schemes in the routers.

None of them use information on the real memory state neither within its arbitration algo-

rithms nor within the flow control. We should know what information the memory controller

has to share with the NoC in order to enhance the network performance within the process

of SDRAM request scheduling. We introduce in Chapter [4] the Extreme End-to-End Protocol

(EEEP) as new flow control protocol between the network and the memory controller. EEEP

should be used for best effort (BE) traffic in addition to a link-level flow control. By controlling

the injection of the BE traffic in the network, EEEP increases the performance of guaranteed

service (GS) traffic in terms of bandwidth and latency, while maintaining the average band-

width of the BE traffic. This flow control protocol handles the SDRAM access within a system

approach by considering the memory controller status before injecting request packets in the

network. EEEP requires neither additional queues nor counters in the slave network inter-

face, because it is based on the available slots in the request queue of the memory controller

front-end. The novelty of this protocol consists in exploiting information coming from the

memory controller within the quality of service in the network-on-chip. Unlike other end-to-

end protocols, EEEP crosses the boundary of the network and extends the quality of service

to cover both network-on-chip and memory subsystem. We evaluated the performance of

our novel protocol in multimedia SoCs based-on three different topologies of network-on-

chip. We proved that EEEP improves the performance of the GS traffic, while maintaining the

average bandwidth of BE traffic. The simulation results show that EEEP reduces the average

latency of the GS traffic by 8% on average (14% at best), and increases its average bandwidth

by 8% on average (11% at best).

7.2 Future work directions

This section discusses interesting future work and open issues in the context of this work.

116

7.2. Future work directions

7.2.1 3D stacking - wide I/O memories

3D integration enables stacking SDRAM on top of one or more logic layers and connecting

them with vertical wires called through-silicon-vias (TSVs) [29], thus removing the need to

go off-chip to access the memory. with the TSV technology, the number of connections to

the SDRAM can significantly increase. Removing the pin constraint has many benefits for

memory efficiency, since sharing wires between memory banks can be reduced (or removed).

Interesting future work involves investigating the benefits of the 3D stacking to the in-

crease of signals on the memory interface. The impact of 3D integration may go well beyond

the memory devices themselves and change the architecture of contemporary systems. In-

creasing the number of connections to memory enables wider memory interfaces and higher

peak bandwidths.

We believe that extending our customizable architecture of memory controller to model

any future architecture of memory system is important future work. However, we still have to

define how to adapt the existing building components and what kind of new components to

introduce.

7.2.2 More memory system information exploitation

We have shown earlier that exploiting the memory system status can help to access the shared

memory efficiently, and to extend the quality of service between the network-on-chip and the

memory subsystem.

Most memory controller architectures contain a request queue to schedule the requests

efficiently. We decided to exploit the request queue occupancy rate in the injection policy of

the best effort traffic in the network to guarantee and improve the services for the guaranteed

service traffic. However, we believe that other information on the memory status can be used

by the network-on-chip to improve and extend the network services in case of shared mem-

ory access. The future work in this direction is to specify what information about the memory

system should be shared with the network, and how the network will use these pieces of in-

formation to better access the main and shared memory.

7.2.3 Extreme End-to-End Protocol evolution

EEEP only exploits the request queue occupancy rate to control the injection of the best effort

traffic requests in the network. We use the granularity of the packet for the EEEP, which cor-

responds to one memory request. We are aware that the longer the burst length of a request,

the more the request uses the shared buffers in the memory controller. And this is available

for both paths, i.e. for write-data buffers and read-data buffer. One of the future work direc-

tions is to determine how EEEP can include the occupancy rate of the shared data buffer in

the memory controller front-end.

117

Chapter 7. Conclusion and Perspectives

We developed EEEP under the assumption that the memory controller front-end has only

one requests queue. However, few industrial memory controllers can have several requests

queues, which is the case of the memory controller Gamma we have shown in section[3.7.3].

This memory controller buffers the requests in several queues according to the memory bank

they are addressed to. Nevertheless, we wait for the future work to define how to adapt such

a protocol in order to cover all memory controller architectures.

118

Bibliography

[1] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable sdram

memory controller. In Proceedings of the 5th IEEE/ACM international conference on Hard-

ware/software codesign and system synthesis. CODES+ISSS ’07, pages 251–256, 2007.

[2] Benny Akesson. Predictable And Composable System-on-Chip Memory Controllers. PhD

thesis, 2010.

[3] ARM. Primecell dynamic memory controller pl340. Technical reference manual, 2007.

[4] Arteris. A comparison of network-on-chip and busses - white paper, 2005.

[5] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect. Micro,

IEEE, 22(5):16–23, 2002.

[6] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. An asynchronous noc archi-

tecture providing low latency service and its multi-level design framework. In Proceedings

of Asynchronous Circuits and Systems. ASYNC’05, pages 54 – 63, 2005.

[7] T. Bjerregaard and J. Sparso. Implementation of guaranteed services in the mango clock-

less network-on-chip. In Proceedings of Computers and Digital Techniques, volume 153,

pages 217–229, July 2006.

[8] Paul Bogdan and Radu Marculescu. Workload characterization and its impact on multi-

core platform design. In CODES+ISSS, pages 231–240, 2010.

[9] P. Bogdan and R. Marculescu. Non-stationary traffic analysis and its implications on mul-

ticore platform design. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 30, April 2011.

[10] Artur Burchard, Ewa Hekstra-Nowacka, and Atul Chauhan. A real-time streaming mem-

ory controller. In Proceedings of the conference on Design, Automation and Test in Europe.

DATE ’05, pages 20–25, 2005.

119

BIBLIOGRAPHY

[11] Everton Carara, Gabriel Marchesan Almeida, Gilles Sassatelli, and Fernando Ghem

Moraes. Achieving composability in NoC-based MPSoCs through QoS management at

software level. In Proceedings of the conference on Design, Automation and Test in Europe.

DATE ’11, March 2011.

[12] J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand, A. Davis, Chen-

Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: building a

smarter memory controller. Proceedings of the Fifth International Symposium On High-

Performance Computer Architecture, pages 70–79, Jan 1999.

[13] Xiaowen Chen, Zhonghai Lu, Axel Jantsch, and Shuming Chen. Supporting distributed

shared memory on multi-core network-on-chips using a dual microcoded controller. In

Proceedings of the conference on Design, Automation and Test in Europe, DATE’10, pages

39–44, 2010.

[14] Roopesh Chuggani, V. Laxmi, M. S. Gaur, Pankaj Khandelwal, and Prateek Bansal. A

traffic model for concurrent core tasks in networks-on-chip. In Proceedings of the Sixth

IEEE International Symposium on Electronic Design, Test and Application (DELTA), 2011.

[15] Nicola Concer, Luciano Bononi, Michael Soulie, Riccardo Locatelli, and Luca P. Carloni.

Ctc: An end-to-end flow control protocol for multi-core systems-on-chip. In Proceedings

of the Third IEEE International Symposium on Networks-on-Chip, NoCs’09, pages 193–202,

2009.

[16] Marcello Coppola, Miltos D. Grammatikakis, Riccardo Locatelli, Giuseppe Maruccia,

and Lorenzo Pieralisi. Design of Cost-Efficient Interconnect Processing Units: Spidergon

STNoC. CRC Press, Inc., Boca Raton, FL, USA, 2008.

[17] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contempo-

rary dram architectures. In Proceedings of the 26th International Symposium on Computer

Architecture, pages 222–233, 1999.

[18] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini. Xpipes: a latency

insensitive parameterized network-on-chip architecture for multiprocessor socs. In Pro-

ceedings of the 21st International Conference on Computer Design, pages 536–539, 2003.

[19] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection networks.

In Proceedings of the Design Automation Conference, pages 684–689, 2001.

[20] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[21] Masoud Daneshtalab, Masoumeh Ebrahimi, pasi Liljeberg, Juha Plosila, and Hannu Ten-

hunen. A low-latency and memory-efficient on-chip network. In Proceedings of the Fourth

120

BIBLIOGRAPHY

ACM/IEEE International Symposium on Networks-on-Chip, NoCs’10, pages 99–106, May

2010.

[22] Jonas Diemer and Rolf Ernst. Back suction: Service guarantees for latency-sensitive

on-chip networks. In Proceedings of the Fourth ACM/IEEE International Symposium on

Networks-on-Chip, NoCs’10, pages 155–162, May 2010.

[23] J. Diemer, R. Ernst, and M. Kauschke. Efficient throughput-guarantees for latency-

sensitive networks-on-chip. In Proceedings of ASP-DAC, pages 529–534, 2010.

[24] R. Dobkin, R. Ginosar, and I. Cidon. Qnoc asynchronous router with dynamic virtual

channel allocation. In Proceedings of the First International Symposium on Networks-on-

Chip, NoCs’07, pages 218–218, May 2007.

[25] Yves Durand, Christian Bernard, and Didier Lattard. Faust: On-chip distributed soc ar-

chitecture for a 4g baseband modem chipset. In Proceedings of Design and Reuse IP-SoC,

pages 51–55, 2005.

[26] F. Feliciian and S.B. Furber. An asynchronous on-chip network router with quality-of-

service (qos) support. In Proceedings. IEEE International SOC Conference, pages 274 – 277,

2004.

[27] Sahar Foroutan. An Analytical Method for Performance Evaluation of Networks-on-Chip.

PhD thesis, CEA-LETI, September 2010.

[28] Om Prakash Gangwal, Andrei Radulescu, Kees Goossens, Santiago Gonzalez Pestana,

and Edwin Rijpkema. Building predictable systems on chip: An analysis of guaranteed

communication in the Æthereal network on chip. In Dynamic and Robust Streaming In

And Between Connected Consumer Electronics Devices, Philips Research Book Series, pages

1–36, 2005.

[29] Philip Garrou, Christopher Bower, and Peter Ramm. Handbook of 3D Integration: Tech-

nology and Applications of 3D Integrated Circuits. Wiley-VCH, 2008.

[30] Kees Goossens and Andreas Hansson. The aethereal network on chip after ten years:

Goals, evolution,lessons, and future. In Proceedings of the Design Automation Conference,

DAC’10, June 2010.

[31] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal network on

chip: Concepts, architectures, and implementations. IEEE Design and Test of Computers,

22(5):414–421, Sept-Oct 2005.

[32] Boris Grot, Stephen W. Keckler, and Onur Mutlu. Preemptive virtual clock: a flexible,

efficient, and cost-effective qos scheme for networks-on-chip. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, Micro-42, pages 268–

279, 2009.

121

BIBLIOGRAPHY

[33] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip packet-switched in-

terconnections. In Proceedings of the conference on Design, Automation and Test in Europe,

DATE ’00, pages 250–256, 2000.

[34] S. Heithecker and R. Ernst. Traffic shaping for an fpga based sdram controller with com-

plex qos requirements. In Proceedings of the Design Automation Conference, DAC’05, pages

575–578, June 2005.

[35] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition, 2006.

[36] Saied Hosseini-Khayat and Andreas D. Bovopoulos. A simple and efficient bus manage-

ment scheme that supports continuous streams. ACM Trans. Comput. Syst., 13(2):122–140,

1995.

[37] International Technology Roadmap for Semiconductors, 2010.

[38] E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana. Self-optimizing memory controllers:

A reinforcement learning approach. In Proceedings of 35th International Symposium on

Computer Architecture, ISCA ’08, pages 39–50, June 2008.

[39] F. Jafari, Zhonghai Lu, A. Jantsch, and M.H. Yaghmaee. Optimal regulation of traffic flows

in networks-on-chip. In Proceedings of the conference on Design, Automation and Test in

Europe, DATE’10, pages 1621–1624, 2010.

[40] Wooyoung Jang and D.Z. Pan. An sdram-aware router for networks-on-chip. In Proceed-

ings of the Design Automation Conference, DAC’09, pages 800–805, July 2009.

[41] Wooyoung Jang and D.Z. Pan. Application-aware noc design for efficient sdram access.

In Proceedings of the Design Automation Conference, DAC’10, pages 453–456, 2010.

[42] S. Jayadevappa, R. Shankar, and I. Mahgoub. A comparative study of modelling at dif-

ferent levels of abstraction in system on chip designs: a case study. In Proceedings. IEEE

Computer society Annual Symposium on VLSI, pages 52–58, 2004.

[43] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for networking systems on

chips. Micro, IEEE, 22(5):36–45, sep/oct 2002.

[44] Dongki Kim, Sungjoo Yoo, and Sunggu Lee. A network congestion-aware memory con-

troller. In Proceedings of the Fourth ACM/IEEE International Symposium on Networks-on-

Chip, NoCs’10, pages 257–264, May 2010.

[45] T.S.R. Kumar, C.P. Ravikumar, and R. Govindarajan. Memory architecture exploration

framework for cache based embedded soc. In Proceedings of the 21st International Confer-

ence on VLSI Design, pages 553 –559, jan. 2008.

122

BIBLIOGRAPHY

[46] V. Laxmi, R. Chuggani, M.S. Gaur, P. Khandelwal, and P. Bansal. Traffic characterization

for multicasting in noc. In Proceedings of NORCHIP, 2010.

[47] Hyuk-Jun Lee and Eui-Young Chung. Scalable qos-aware memory controller for high-

bandwidth packet memory. In IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, volume 16, pages 289–301, March 2008.

[48] Kun-Bin Lee, Tzu-Chieh Lin, and Chein-Wei Jen. An efficient quality-aware memory

controller for multimedia platform soc. IEEE Transactions on Circuits and Systems for Video

Technology, 15(5):620–633, May 2005.

[49] Jae W. Lee, Man Cheuk Ng, and Krste Asanovic. Globally-synchronized frames for guar-

anteed quality-of-service in on-chip networks. In SIGARCH Comput. Archit. News, vol-

ume 36, pages 89–100, 2008.

[50] A. Lines. Asynchronous interconnect for synchronous soc design. Micro, IEEE, 24(1):32–

41, 2004.

[51] Dake Liu, Daniel Wiklund, Erik Svensson, Olle Seger, and Sumant Sathe. Socbus: The

solution of high communication bandwidth on chip and short TTM, 2003.

[52] C. Macian, S. Dharmapurikar, and J. Lockwood. Beyond performance: secure and fair

memory management for multiple systems on a chip. In Proceedings of the International

Conference on Field-Programmable Technology (FPT), pages 348–351, 2003.

[53] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual channels in networks on chip:

Implementation and evaluation on hermes noc. In Proceedings of the 18th Symposium on

Integrated Circuits and Systems Design, pages 178–183, 2005.

[54] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using looped

containers in temporally disjoint networks within the nostrum network on chip. In Pro-

ceedings of the Design, Automation and Test in Europe Conference and Exhibition, Date’04,

volume 2, pages 890–895, 2004.

[55] Fernando Gehm Moraes, Ney Laert Vilar Calazans, Aline Vieira de Mello, Leandro Heleno

Möller, and Luciano Copello Ost. Hermes: an infrastructure for low area overhead packet-

switching networks on chip. Technical report, 2003.

[56] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip mul-

tiprocessors. In Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-40, pages 146–160, Dec. 2007.

[57] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared dram systems. In Proceedings of the 35th Inter-

national Symposium on Computer Architecture, ISCA ’08, pages 63–74, 2008.

123

BIBLIOGRAPHY

[58] Chitra Natarajan, Bruce Christenson, and Fayé Briggs. A study of performance impact of

memory controller features in multi-processor server environment. In Proceedings of the

3rd workshop on Memory performance issues, WMPI’04, pages 80–87, 2004.

[59] K.J. Nesbit, N. Aggarwal, J. Laudon, and J.E. Smith. Fair queuing memory systems. In Pro-

ceedings of 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

39, pages 208–222, Dec. 2006.

[60] U.Y. Ogras and R. Marculescu. Prediction-based flow control for network-on-chip traffic.

In Proceedings of the Design Automation Conference, DAC’06, pages 839–844, 2006.

[61] OMNeT++ API Reference, http://www.omnetpp.org/doc/omnetpp41/api/, 2011.

[62] OMNeT++, http://www.omnetpp.org/documentation, 2011.

[63] F. Paganini, J. Doyle, and S. Low. Scalable laws for stable network congestion control. In

Proceedings of the 40th IEEE Conference on Decision and Control, volume 1, pages 185–190,

2001.

[64] Ivan Miro Panades. Design and Implementation of a Network-on-Chip with Guaranteed

Service. PhD thesis, Pierre et Marie Curie University - Paris VI, May 2008.

[65] John Probell. Routing congestion: The growing cost of wires in systems-on-chip. Tech-

nical report, Arteris, 2011.

[66] A. Radulescu, J. Dielissen, S.G. Pestana, O.P. Gangwal, E. Rijpkema, P. Wielage, and

K. Goossens. An efficient on-chip ni offering guaranteed services, shared-memory abstrac-

tion, and flexible network configuration. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 24(1):4–17, jan. 2005.

[67] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens. Mem-

ory access scheduling. In Proceedings of the 27th annual international symposium on Com-

puter architecture, ISCA ’00, pages 128–138, 2000.

[68] I. Saastamoinen, D. Siguenza-Tortosa, and J. Nurmi. Interconnect IP node for future

system-on-chip designs. In Proceedings of The First IEEE International Workshop on Elec-

tronic Design, Test and Applications, pages 116–120, 2002.

[69] Samsung. Samsung ddr3-800 K4B4G0446A. Technical report, 2010.

[70] A. Scherrer. Analyses statistiques des communications sur puce. PhD thesis, 2006.

[71] Jun Shao and B.T. Davis. A burst scheduling access reordering mechanism. In Pro-

ceedings of the 13th International Symposium on High Performance Computer Architecture.

HPCA’07, pages 285–294, 2007.

[72] Sonics. Sonics sx smart interconnect solution. Datasheet, 2008.

124

BIBLIOGRAPHY

[73] Krishnan Srinivasan and Erno Salminen. A methodology for performance analysis of

network-on-chip architectures for video socs. OCP IP, April 2009.

[74] Krishnan Srinivasan and Erno Salminen. A memory subsystem model for evaluating

network-on-chip performance, White Paper. 2010.

[75] Double data rate (ddr) sdram specification, May 2002.

[76] Double data rate (ddr2) sdram specification, January 2005.

[77] Double data rate (ddr3) sdram specification, April 2008.

[78] TILERA. Tilepro64. Available on line: http://www.tilera.com/sites/default/files/product-

briefs/pb019_tilepro64_processor_a_v3.pdf. Technical report, 2010.

[79] W.-D. Weber, J. Chou, I. Swarbrick, and D. Wingard. A quality-of-service mechanism for

interconnection networks in system-on-chips. In Proceedings of the conference on Design,

Automation and Test in Europe, DATE’05, pages 1232–1237, March 2005.

[80] S. Whitty and R. Ernst. A bandwidth optimized sdram controller for the morpheus re-

configurable architecture. In Proceedings of IEEE International Symposium on Parallel and

Distributed Processing, IPDPS 2008, pages 1–8, 2008.

[81] Xiaodong Xian, Weiren Shi, and He Huang. Comparison of OMNET++ and other simula-

tor for WSN simulation. In Proceedings of the 3rd IEEE Conference on Industrial Electronics

and Applications, ICIEA, pages 1439–1443, 2008.

[82] C.A. Zeferino and A.A. Susin. Socin: a parametric and scalable network-on-chip. In

Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings. 16th Symposium

on, pages 169 – 174, 2003.

[83] Fucen Zeng, Lin Qiao, Mingliang Liu, and Zhizhong Tang. A novel memory subsystem

evaluation framework for chip multiprocessors. In Proceedings of the 12th IEEE Interna-

tional Conference on High Performance Computing and Communications, pages 231–238,

2010.

[84] Hongzhong Zheng, Jiang Lin, Zhao Zhang, and Zhichun Zhu. Memory access scheduling

schemes for systems with multi-core processors. In Proceedings of the 37th International

Conference on Parallel Processing, ICPP’08, pages 406–413, Sept. 2008.

[85] Zhichun Zhu and Zhao Zhang. A performance comparison of dram memory system

optimizations for smt processors. In Proceedings of the 11th International Symposium on

High-Performance Computer Architecture, HPCA-11, pages 213–224, Feb. 2005.

[86] Zhichun Zhu, Zhao Zhang, and Xiaodong Zhang. Fine-grain priority scheduling on

multi-channel memory systems. In Proceedings of the 8th International Symposium on

High-Performance Computer Architecture, pages 107–116, Feb. 2002.

125

BIBLIOGRAPHY

[87] Jiayi Zhu, Peilin Liu, and Dajiang Zhou. An sdram controller optimized for high defini-

tion video coding application. In IEEE International Symposiumon Circuits and Systems.

ISCAS’08, pages 3518–3521, May 2008.

126

APPENDIX A

Problem Definition: Simulation Platform

127

Appendix A. Problem Definition: Simulation Platform

A.1 Spidergon STNoC building blocks

The Spidergon STNoC contains four different types of building blocks, which are:

• The network interface (NI), provides a hardware access point to external IP or processor

cores and the necessary hardware to implement a set of communication primitives and

low-level platform services.

• The router, responsible for implementing the network layer of Spidergon STNoC proto-

col stack. It must ensure a reliable packet transfer trough the on-chip network, accord-

ing to a proper QoS policy. From a very high-level perspective, a router is based on a

crossbar switch with a given number of input and output ports.

• The network plug switch (NPS), used to aggregate several NIs for accessing the network.

This component enables the connection of several network interfaces to the NI port of

a router.

• The physical link implements the physical layer of the Spidergon STNoC protocol. It

is responsible for connecting routers to each other, and also router to NIs. There are

several possible ways of implementing physical links, including combinations of syn-

chronous / asynchronous and serial / parallel links. In fact, the choice of physical link

technology involves trade-offs between many issues, such as clock distribution, amount

of on-chip wiring, and required chip area.

A.2 Platform composition

Figure A.1 shows a simplified architecture of the simulation platform. It is made up of:

• 4 traffic generators representing two cache controller ports; one DMA and an ARM pro-

cessor.

• 4 SRAMs and 1 ROM.

• 2 SDRAM DDR subsystems, made up of memory controller and Micorn DDR SDRAM

modules [?].

• A Spidergon STNoC, composed of two separated and symmetric networks, one for re-

quests and one for responses. Both networks contain 6 routers.

128

A.2. Platform composition

Table A.1: Routing table of both request and response networks

D
M

C
0

D
M

C
1

SR
A

M
0

SR
A

M
1

SR
A

M
2

SR
A

M
3

SR
A

M
4

Cache Ctrl 0 0 0-2 0-1 0-2-3 0-2-3 0-5-4 0-5

Cache Ctrl 1 2-0 2 2-1 2-3 2-3 2-3-4 2-0-5

DMA 1-0 1-2 1-0-5 1-2-3 1-2-3 1-4 1-4-5

Streaming IP 4-1-0 4-1-2 4-1 4-3 4-3 4 4-5

129

Appendix A. Problem Definition: Simulation Platform

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
	

��

�
�
�
��

�
�
�

�
�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
�
�
�
�
�
��

�
�
�����

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��
�
�

�
��
�
���
�

�
��
�
���
�

�
�
�

�
�
�

�
�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
��
�
�

�
��
�
���
�

�
��
�
���
�

�
�
�

�
�
�

�
�
�
�
�
�

�
	
�
�	
���

�
	
���

�
��
�

��
!
�

��

"
�
#

�
�
#
�
��

�
�
#
�
��

�
�
#
�
��

�
�
�
�
�
�
��

�
�
!
�

�
�
�

�
�
�

�
�
�
��
�
�

�
��
�
���
�

�
��
�
���
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
�
�
�
�
�
��

�
�
�����

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
	
�
�	
���

�
	
���

�
��
�

�
�

�
��
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
#
�
��

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
��
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
��

�
�
!
�

�
�
�

�
�
�

�
��
�

�
�

�
��
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
#
�
��

�
��
�
	

���
	
�
�
	�
�
�
�
�
�
�

�
��
�
	

���
	�

	�
�
�
�
�
�
��

�
�
�
�
	�
�
��

�

�
����

	�
�
��

�
�

�

�
	�
�
�
�

�

�
�
�	�
�
�
�

�

�
�
�

��
	�
��
�
	

���
�

!
�
�
��
�	�

�
�

��
	��
��
�"�
�
�
	

�
�#
�
	�
�
�

��
	��
��
�"�
�
�
	

�
�
�

�
��
�

�
��
�

"
$
�
�

��

�
�

	
$

�
	
�
�	
���

"
"
�
�%
�
&

"
"
�
�%
�
&

�
�

	
$
��

'
�
$
�
��

�
�

"
$
�
�

��

�
�

	
$

�
	
�
�	
���

"
"
�
�%
�
&

"
"
�
�%
�
&

�
�

	
$
��

'
�
$
�
��

�
�

�
�
$�
�
�%
	�

&
�
��
	'

�
�
�
�
��

Figu
re

A
.1:Sim

p
lifi

ed
arch

itectu
re

o
fth

e
sim

u
latio

n
p

latfo
rm

130

APPENDIX B

Memory Controller Scheduling Algorithms

131

Appendix B. Memory Controller Scheduling Algorithms

Algorithm 10 Highest priority capture

local variables priority, L, selectedRequestIndex, highestPriority;
L← genericQueue[queueIndex].getLength();
selectedRequestIndex← 0;
highestPriority ← 0;
for (i = (L− 1); i ≥ 0; i−−) do

priority ← genericQueue[queueIndex].getRequestPointer(i).getPriority();
if (priority ≥ highestPriority) then

highestPriority ← priority;
selectedRequestIndex← i;

end if
end for

return selectedRequestIndex;

Algorithm 11 Row hit opposite direction capture

local variables bankIndex, row, lastRow,L, selectedRequestIndex;
L← genericQueue[queueIndex].getLength();
selectedRequestIndex← 0;
rowHitOppositeDirection← false

for (i = 0; i < L; i++) do
bankIndex← genericQueue[queueIndex].getRequestPointer(i).getBank();
row ← genericQueue[queueIndex].getRequestPointer(i).getRow();
lastRow ← bankStatus[bankIndex].getLastRow();
if (row = lastRow and rowHitSameDirection = false) then

rowHitOppositeDirection← true

selectedRequestIndex← i;
break;

end if
end for

return selectedRequestIndex;

132

Algorithm 12 Global system data consistency insertion

local variables existingBank, newBank, existingRow, newRow, existingColumn, newColumn;
local variables L, insertionPosition, lowerBoundary;
systemDataConsistencyLimit← 0;
lowerBoundary ← 0;
L← genericQueue[queueIndex].getLength();
newBank ← newRequest.getBank();
newRow ← newRequest.getRow();
newColumn← newRequest.getColumn();
insertionPosition← L;
if (L = 0) then

systemDataConsistencyLimit← 0;
else

for (i = (L− 1); i ≥ lowerBoundary; i−−) do
existingBank ← genericQueue[queueIndex].getRequestPointer(i).getBank();
existingRow ← genericQueue[queueIndex].getRequestPointer(i).getRow();
existingColumn← genericQueue[queueIndex].getRequestPointer(i).getColumn();
if (newBank = existingBank and newRow = existingRow and newColumn = existingColumn) then

systemDataConsistencyLimit← i;
insertionPosition← (i+ 1);
break;

end if
end for

end if

return insertionPosition;

Algorithm 13 Priority-based insertion

local variables existingPr, newPr, L, insertionPosition, lowerBoundary;
priorityLimit← 0;
lowerBoundary ← 0;
L← genericQueue[queueIndex].getLength();
newPr ← newRequest.getPriority();
insertionPosition← L;
if (L = 0) then

priorityLimit← 0;
else

for (i = lowerBoundary; i < L; i++) do
existingPr ← GenericQueue[queueIndex].getRequestIndex(i).getPriority();
if (newPr > existingPr) then

priorityLimit← i;
if (i = lowerBoundary and lowerBoundary 6= 0) then

insertionPosition← (i+ 1); //insert after
else

insertionPosition← (i); //insert before
end if

end if
break;

end for
end if

return insertionPosition;

133

Appendix B. Memory Controller Scheduling Algorithms

Algorithm 14 Direction grouping insertion

local variables existingdirection, newDirection, L, lowerBoundary;
lowerBoundary ← 0;
L← genericQueue[queueIndex].getLength()
newOpcode← newRequest.getDirection();
insertionPosition← L;
if (L 6= 0) then

for (i = lowerBoundary; i < L; i++) do
existingOpcode← genericQueue[queueIndex].getRequestPointer(i).getDirection();
if (newDirection = existingDirection) then

insertionPosition← (i+ 1);
break;

else
insertionPosition← (L);

end if
end for

end if

return insertionPosition;

Algorithm 15 Round-robin scheduling

local variables inIndex, selectedInput;
inIndex← 0;
for (in = 0; in < inputsNumber; in++) do

inIndex← (lastSelectedInput+ 1 + in);
if (inIndex > inputsNumber) then

inIndex← (inIndex− inputsNumber);
end if
if (inputValid[inIndex] = true) then

selectedInput← inIndex;
break;

end if
end for
lastSelectedInput← selectedInput;

return selectedInput;

Algorithm 16 Initialize least-recently-used

for (i = 0; i < inputsNumber; i++) do
for (j = 0; j < inputsNumber; j ++) do

if (i ≤ j) then
LRUtab[i][j]← 0;

else
LRUtab[i][j]← 1;

end if
end for

end for

134

Algorithm 17 Least-recently-used scheduling

local variables sum,max, inputIndex, selectedInput;
max← 0
for (i = 0; i < inputsNumber; i++) do

sum← 0;
if (inputValid[in] = true) then

for (j = 0; j < inputsNumber; j ++) do
sum← (sum+ LRUtab[i][j]);

end for
if (sum > max) then

max← sum;
selectedInput← i;

end if
end if

end for

return selectedInput;

Algorithm 18 Least-recently-used update

for (i = 0; i < inputsNumber; i++) do
if (selectedInput = i) then

LRUtab[selectedInput][i]← 0;
else

LRUtab[selectedInput][i]← 0;
LRUtab[i][selectedInput]← 1;

end if

end for

Algorithm 19 Priority scheduling

local variables inIndex, selectedInput;
for (pr = maxPriorityLevel; pr ≥ minPriorityLevel; pr −−) do

for (in = 0; in < inputsNumber; in++) do
if (inputPriorityMatrix[pr][in] = 1) then

selectedInput← in;
break;

end if
end for

end for

return selectedInput;

135

APPENDIX C

List of Publications

Paper:

Khaldon Hassan, Frédéric Pétrot, Riccardo Locatelli and Marcello Coppola,

EEEP: an Extreme End to End flow control Protocol for SDRAM Access Through Networks

on Chip,

In the proceedings of the Fifth International Workshop on Interconnection Network Archi-

tecture: On-Chip, Multi-Chip,

ACM-Jan 2011.

Book contribution:

Khaldon Hassan and Marcello Coppola,

Off-Chip SDRAM Access Through Spidergon STNoC,

VLSI 2010 Annual Symposium,

Springer-Aug 2011.

137

APPENDIX D

About the Author

Khaldon HASSAN was born in Damascus, Syria in 1982. He received the

M.Sc. degree in Microelectronics from Grenoble Institute of Technology,

France in 2007. The master project was carried out at STMicroelectron-

ics in Grenoble, France on the topic of a comparative study of STMicro-

electronics interconnection systems from the synthesis point of view. In

March 2008, Khaldon HASSAN started the journey towards a Ph.D. de-

gree at the Grenoble Institute of Technology in collaboration with STMi-

croelectronics. He joined Schlumberger in 2011, and works as Electrical Engineer with the

Technology Group in Riboud Production Center in Clamart, France.

139

�
�
���������
�
�
�
�
�
	
�����������������������������
����������������������
������������ �������������

������������ ��������������������
��!����������������!���������� ��������������������!�
�� ������ ��� �
����� ���� � ��
��� �"#�$%� ����&�����!� ���� ������� ������� �����!� ���
����� ����� ������� �
�� ���
��������� � � �
�� ������� ���������!�
��� ������� �� �����������
��������� �������������������
�������������������� ������%�
�
�
������ ��������� ���������������� �
��������� �
�������� � �
���
���� ������� ��� �� ������'�
�����%� 	
��� ��&������ �
�� �'��������� � � �
�� ������� ���������� ���
��������!� ��� �
�� �
��
���������� � � ���
� �� ��������� ��� ���������%� ���
���
� �
�� ���
��������� �'��������� � � �
��
����������������������(������������� ���������������!�������� ��
����������������������������
��� ��� ��'����� ��� ��������� ��� �
��� ���(%�)��� � � ����� � � �
��� ������� �� �� ���������
���
��������!��
���'�� ���������������
����&���������
!������
������*�!�&�������� ��������������!�����������
������������%��
�
�������� �������� � � ��� ��� ����'���� �� ����� �����������!� �%�%� ����� ������� ��� ��� ��� 	
��������
����������� ��!������������
������������%�	
��� ���!������������
��������������������
��
���������������������
���������������������
�����������������������+������%�$�����
�
��� �����(�� �������� ���������� ��������� ��� ��� ��� �������� ��� ����� �� �
�� ������������
��&��������%�,������!������ ��������������������
���"#�$�����������
������������������
!�
�����(��������������
������� ������� ��
���"#�$����������������������-�������������%�
�
	
����
����������������
��������� �������������������"#�$���-�������������%�.�������������
�������� �������*����� ������� ���������� ���
��������� ������ �� ����� �� ��������� ��������
��������������������
��
������������������'������������ �����%�	
�����������
���'���������
� � �
�� ������� ���������� �
�(�� ��� �
�� ����� � � �� ��������� � � �
�� ������� ����������
���
��������%� /������� � � �
�� ������������ � � ��������� ������� �
�� �����(� ��� �
�� �������
���������!���� ����� �����������
�� �
�� �������(� � � �
��� �
����� ������������� ������ ����
������� ��������� ��� ������� �
�� ������� ������� �
����
� �� ����������� ������� ���������%� 	
��
����������������������������'������� ���������������
�����������������������������
��-��%�
)'���������� �������� �
��� �
��� ��� ���������� �
�� ����� � ���� ��� ��� �0������ �� �
��-��!� ����
�������������������
����� �������� ��
����������������������� ������������ ��������
����
������!��
��������������
�����������������
�� ��
�������� ������� ��%�
�
�
�
��������	� ������� ���������!� �"#�$!� -��!�$1���!� ��� ������� �������!� ��� ��� �������!�
�����������������!��������%�
�
�
�
�

��������	
	����	��
	��

