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ADAPTIVE GRAPH-BASED ALGORITHMS FOR CONDITIONAL ANOMALY

DETECTION AND SEMI-SUPERVISED LEARNING

Michal Valko, PhD

University of Pittsburgh, 2011

We develop graph-based methods for semi-supervised learning based on label propagation

on a data similarity graph. When data is abundant or arrive in a stream, the problems of

computation and data storage arise for any graph-based method. We propose a fast approx-

imate online algorithm that solves for the harmonic solution on an approximate graph. We

show, both empirically and theoretically, that good behavior can be achieved by collapsing

nearby points into a set of local representative points that minimize distortion. Moreover,

we regularize the harmonic solution to achieve better stability properties.

We also present graph-based methods for detecting conditional anomalies and apply

them to the identification of unusual clinical actions in hospitals. Our hypothesis is that

patient-management actions that are unusual with respect to the past patients may be

due to errors and that it is worthwhile to raise an alert if such a condition is encountered.

Conditional anomaly detection extends standard unconditional anomaly framework but also

faces new problems known as fringe and isolated points. We devise novel nonparametric

graph-based methods to tackle these problems. Our methods rely on graph connectivity

analysis and soft harmonic solution. Finally, we conduct an extensive human evaluation

study of our conditional anomaly methods by 15 experts in critical care.
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1.0 INTRODUCTION

1.1 MOTIVATION

If we want people to enjoy the benefits of machine learning, we should provide them with

algorithms that do not require much training time before they can be useful. Therefore,

we will investigate the algorithms that need only minimal feedback from the users. For

example, in semi-supervised learning we assume that only very few examples from the data

are labeled and we try to use the unlabeled examples to learn something about the structure

of the data. In the area of conditional anomaly detection and in particular in medicine, a

traditional approach is to ask experts to create a set of rules that would raise an alert if an

adverse event is encountered. Since a manual creation of rules is very time consuming, we

would rather like to learn what the adverse event might be from the collection of the past

data.

In this dissertation, we will take advantage of using a similarity graph as the data rep-

resentation. Similarity graphs help us model the relationship between the examples. How-

ever, graph-based algorithms, such as label propagation, do not scale well beyond several

thousand examples. We will address this problem by data quantization, where unlike other

approaches (k-means, subsampling) we consider the quality of the inference. Moreover, we

investigate an online learning formulation of semi-supervised learning, which is suitable for

adaptive machine learning systems when the data arrive in a stream.

Furthermore, we extend graph-based learning to conditional anomaly detection prob-

lem and apply it to clinical scenarios. Traditionally, anomaly detection techniques identify

unusual patterns in data. In clinical settings, these may concern identification of unusual

patients, unusual patient–state outcomes, or unusual patient-management decisions.
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Figure 1: Conditional vs. unconditional anomalies

Our ability to detect unusual events in clinical data may have a tremendous impact on

health care and its quality. First, the identification of an action that differs from an expected

or usual pattern of care can aid in detection and prevention of the potential medical errors.

According to the HealthGrades study (Wall Street Journal on July 27, 2004), medical errors

account for 200,000 preventable deaths a year. Second, the identification of anomalous

patient responses can help us to identify new promising treatments.

Typical anomaly detection methods used in data analysis are unconditional (with re-

spect to the context) and look for outliers with respect to all data attributes. In the medical

domain these methods would identify unusual patients, that is, patients suffering from a

less frequent disease or patients with unusual collection of symptoms. Unfortunately, this

does not fit the nature of the problem we want to solve in error detection: the identification

of unusual patient management decisions with respect to past patients who suffer from the

same or similar condition. To address this, we are developing a qualitatively new conditional

anomaly detection framework where the decision event is judged anomalous with respect to

the patient’s symptoms, state, and demographics.

The conditional anomaly detection is the problem of detecting unusual values for a sub-

set of variables given the values of the remaining variables. Figure 1 illustrates the concept

of conditional anomaly: Assume that the dosage of a drug is a linear function of the age.
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Figure 2: Disadvantages of nearest neighbor approach for conditional anomaly detection

Now imagine that we have a young patient that was given a higher dosage of a drug (Fig-

ure 1, top left). The amount of dosage is not unusual at all. Indeed, we have other patients

with the same or similar dosage. What is unusual is the dosage with respect to his age; the

patients that have similar ages were given lower dosages. We can say that this dosage was

conditionally anomalous given a patient’s age.

Throughout this dissertation, we build on label propagation on a data similarity graph,

which exploits the manifold assumption [Chapelle et al., 2006]. Unlike local neighborhood

methods based on the nearest neighbors, it respects the structure of the manifold and lets

us account for more complex interactions in the data. In other words, while the metric may

provide a reasonable local similarity measure, it is frequently inadequate as a measure of

global similarity [Szummer and Jaakkola, 2001]. Figure 2 illustrates a potential benefit of

label propagation, where the goal is to detect that the positive (+) example has an anomalous

label conditioned on its placement. The positive (+) label in 2b is more anomalous than the

one in 2a, but nearest neighbor (NN) would consider them equal, because in only considers

the points within the displayed circle. Moreover, the NN approach would find clustered (+)

anomalies in 2c normal because it ignores the data beyond the nearest neighbors.
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1.2 THESIS STATEMENT AND MAIN CONTRIBUTIONS

Although very popular, label propagation on a data similarity graph does not scale well

beyond several thousand of examples, due to the following reasons:

1. The computation of the similarity matrix and the label propagation are Ω(n2) where n is

the number of examples. Label propagation itself requires the computation of the n×n

matrix inverse or the solution of the system of n linear equations.

2. Current methods that reduce the size of the graph to form an approximate back-bone

graph do not link the construction of this graph to the final inference task.

3. Despite the usefulness of the online semi-supervised learning paradigm for practical

adaptive algorithms, there is not much success in applying this paradigm to realistic

problems, especially when data arrive at a high rate.

Next, the problem of conditional anomaly detection could be approached by

1. extending one-class (unconditional) anomaly methods (Section 4.4)

2. classification and claiming misclassified examples as conditionally anomalous (Section 4.5)

Both of these approaches suffer from the problems of isolated and fringe points described

in Section 4. In this dissertation we develop the methodology to address these problems.

We take a graph-based approach, because it is non-parametric, incorporates the manifold

assumption, and can also easily take advantage of unlabeled data. We present the following

main contributions:

• We show how to combine max-margin and semi-supervised learning to max-margin

graph cuts semi-supervised learning (Section 3.3).

• We show how to compute label propagation on a graph and the centroids of a backbone

graph jointly. (Section 3.4)

• We propose the online harmonic function solution and show how to compute its ap-

proximation efficiently (Section 3.5).

• We prove performance bounds for our online algorithm in a semi-supervised setting

on quantized graphs (Section 5.4).
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• We introduce non-parametric graph-based methods and show how they can handle

unconditional outliers (Section 4.6).

• We show how a soft harmonic solution on data similarity graphs can be used for

conditional anomaly detection (Section 4.6.2).

In addition, we test the conditional anomaly detection methods by comparing them to the

evaluations conducted with a panel of physicians and show the benefits of our methods

(Section 6.2.5.1). Based on the aforementioned contributions, we claim the following:

Our graph-based methods can perform online semi-supervised

learning with a constant per-step update and provable performance

guarantees. Moreover, they can detect conditional anomalies and

�lter unconditional anomalies.

1.3 ORGANIZATION OF THE DISSERTATION

• In Chapter 2, we outline the related work in anomaly detection (Section 2.3), semi-

supervised learning (Section 2.2), and graph quantization (Section 2.1).

• Chapter 3 presents new approaches for semi-supervised learning and the online semi-

supervised learning (Section 3.5).

• Chapter 4 presents novel methods for conditional anomaly detection.

• Chapter 5 presents the theoretical analysis of the methods from Chapter 3 and Chap-

ter 4. In particular, it presents the analysis of max-margin graph cuts (Section 5.2) and

the analysis of the online semi-supervised learning on quantized graphs (Section 5.4).

• Chapter 6 presents the experimental results on various synthetic and real-world datasets,

notably the face recognition video datasets and the medical datasets from University of

Pittsburgh Medical Center.

Parts of this dissertation have previously appeared in [Hauskrecht et al., 2007, Hauskrecht

et al., 2010, Valko et al., 2008, Valko and Hauskrecht, 2008, Valko and Hauskrecht, 2010,

Valko et al., 2010, Valko et al., 2011, Kveton et al., 2010b, Kveton et al., 2010a].
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2.0 RELATED WORK

In this chapter we review the relevant work on graph quantization, semi-supervised learn-

ing, and anomaly detection.

2.1 RELATED WORK IN GRAPH QUANTIZATION

Given n data points and a typical graph construction method, the exact computation of the

harmonic solution has space and time complexity of Ω(n2) in general due to the construction

of an n×n similarity matrix. Furthermore, exact computation requires an inverse operation

on an n× n similarity matrix which takes O(n3) in most practical implementations1. For

applications with large data size (e.g., exceeding thousands), the exact computation or even

storage of the harmonic solution becomes infeasible, and problems with n in the millions

are entirely out of reach.

An influential line of work in the related area of graph partitioning approaches the

computation problem by reducing the size of the graph, collapsing vertices and edges, par-

titioning the smaller graph, and then uncoarsening to construct a partition for the original

graph [Hendrickson and Leland, 1995, Karypis and Kumar, 1999]. Our work is similar in

spirit but provides a theoretical analysis for a particular kind of coarsening and uncoarsen-

ing methodology.

Our aim is to find an effective data preprocessing technique that reduces the size of the

data and coarsens the graph [Madigan et al., 2002, Mitra et al., 2002]. There are two types

of approaches widely used in practice for data preprocessing:

1The complexity can be further improved to O (n2.376
u ) by using the Coppersmith-Winograd algorithm.
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1. data quantization based methods, which aim to replace the original data set with a small

number of high quality ‘representative’ points that capture relevant structure [Goldberg

et al., 2008, Yan et al., 2009];

2. Nyström method based methods, which aim to explore low-rank matrix approximations

to speed up the matrix operations [Fowlkes et al., 2004]).

While it is useful to define such preprocessors, it is not satisfactory to simply reduce the size

of similarity matrix to speed up the matrix calculations. so that the related matrix operation

can be performed in a desired time frame.

What is needed is an explicit connection between the amount of data reduction that

is achieved by a preprocessor and the subsequent effect on the classification error. Some

widely used data preprocessing approaches are based on data quantization, which replaces

the original data set with a small number of high quality centroids that capture relevant

structure [Goldberg et al., 2008, Yan et al., 2009].

Such approaches are often heuristic and do not quantify the relationship between the

noise induced by the quantization and the final prediction risk. An alternative approach to

the computation problem is the Nyström method, a low rank matrix approximation method

that allows faster computation of the inverse. This method has been widely adopted, par-

ticularly in the context of approximations for SVMs [Drineas and Mahoney, 2005, Williams

and Seeger, 2001, Fine and Scheinberg, 2001] and spectral clustering [Fowlkes et al., 2004].

However, since the Nyström method uses interactions between subsampled points and

all other data points, storage of all points is required and thus, it becomes unsuitable for

infinitely streamed data. To our best knowledge, we are not aware of any online version of

Nyström method that could process an unbounded amount of streamed data. Additionally,

in an offline setting, the approaches based on the Nyström method have inferior perfor-

mance to the quantization-based methods, if both of them are given the same time budget

for computation. This was shown in an early work on the spectral clustering [Yan et al.,

2009].

Using incremental k-centers [Charikar et al., 1997] which has provable worst case bound

on the distortion, we quantify the error introduced by quantization. Moreover, using regu-

larization we show that the solution is stable, which gives the desired generalization bounds.
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An interesting method is introduced in [Aggarwal et al., 2003], which addresses context

drift, or evolution in the data streams. Clusters can emerge and die based on approximated

recency. But again this method is a heuristic and comes with no guarantees on the quality

of the quantization.

2.2 RELATED WORK IN SEMI-SUPERVISED LEARNING (SSL)

[Zhu et al., 2003] extend their previous work [Zhu et al., 2003] to Gaussian processes by

no longer assuming that soft labels are fixed to the observed data. Instead they assume

the data generation process x→ y→ t, where y→ t is a noisy label generation with process

modeled by a sigmoid. The posterior is not Gaussian and the authors use Laplace approx-

imation to compute p(yL,yU|tL). They discuss using different kernels for the learning of

graph weights, such as the tanh-weighted graph, and optimize it either by maximizing the

likelihood of labeled data or maximizing the alignment to labeled data.

[Fergus et al., 2009] use the convergence of the eigenvectors of the normalized Laplacian

to eigenfunctions of weighted Laplace-Beltrami operators to scale graph-based SSL to mil-

lions of examples. Assuming that the underlying distribution has a product form (which is a

reasonable assumption after a PCA projection), they estimated the density using histograms

for each dimension independently. Therefore, they only needed to solve d generalized eigen-

vector problems on the backbone graph, where d is the dimension of the data. Moreover,

they only used the k smallest eigenvectors and subsequently needed to solve only one k× k

least squares problem.

2.2.1 Semi-Supervised Max-Margin Learning

Most of the existing work on semi-supervised max-margin learning can be viewed as mani-

fold regularization of SVMs [Belkin et al., 2006] or semi-supervised SVMs with the hat loss

on unlabeled data [Bennett and Demiriz, 1999]. The two approaches are reviewed in the

rest of this section. Let l and u be the sets of labeled and unlabeled data respectively. As-
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sume that f is a function from some reproducing kernel Hilbert space (RKHS) HK , and ‖·‖K

is the norm that measures the complexity of f .

2.2.1.1 Semi-supervised SVMs Semi-supervised support vector machines with the hat

loss V̂ ( f ,x)=max{1−| f (x)| ,0} on unlabeled data [Bennett and Demiriz, 1999]:

min
f

∑
i∈l

V ( f ,xi, yi)+γ‖ f ‖2
K +γu

∑
i∈u

V̂ ( f ,xi) (2.1)

compute max-margin decision boundaries that avoid dense regions of data. The hat loss

makes the optimization problem non-convex. As a result, it is hard to solve the problem

optimally and most of the work in this field has focused on approximations. A comprehensive

review of these methods was done by [Zhu, 2008].

In comparison to semi-supervised SVMs, learning of max-margin graph cuts (3.7) is a

convex problem. The convexity is achieved by having a two-stage learning algorithm. First,

we infer labels of unlabeled examples using the regularized harmonic function solution, and

then we minimize the corresponding convex losses.

2.2.1.2 Manifold regularization of SVMs Manifold regularization of SVMs [Belkin

et al., 2006]:

min
f ∈HK

∑
i∈l

V ( f ,xi, yi)+γ‖ f ‖2
K +γufTLf, (2.2)

where f = ( f (x1), . . . , f (xn)), computes max-margin decision boundaries that are smooth in

the feature space. The smoothness is achieved by the minimization of the regularization

term fTLf. Intuitively, when two examples are close on a manifold, the minimization of fTLf

leads to assigning the same label to both examples.
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2.2.2 Online Semi-Supervised Learning

The online learning formulation of SSL is suitable for adaptive machine learning systems.

In this setting, a few labeled examples are provided in advance and set the initial bias of the

system while unlabeled examples are gathered online and update the bias continuously. In

the online setting, learning is viewed as a repeated game against a potentially adversarial

nature. At each step t of this game, we observe an example xt, and then predict its label

ŷt. The challenge of the game is that after it started we do not observe the true label yt.

Thus, if we want to adapt to changes in the environment, we have to rely on indirect forms

of feedback, such as the structure of data.

Despite the usefulness of this paradigm for practical adaptive algorithms [Grabner et al.,

2008, Goldberg et al., 2008], there is not much success in applying this paradigm to realistic

problems, especially when data arrive at a high rate such as in video applications. [Grabner

et al., 2008] applies online semi-supervised boosting to object tracking, but uses a heuris-

tic method to greedily label the unlabeled examples. This method learns a binary classi-

fier, where one of the classes explicitly models outliers. In comparison, our approach is

multi-class and allows for implicit modeling of outliers. The two algorithms are compared

empirically in Section 6.1.5. [Goldberg et al., 2008] develop an online version of manifold

regularization of SVMs. Their method learns max-margin decision boundaries, which are

additionally regularized by the manifold. Unfortunately, the approach was never applied to

a naturally online learning problem, such as adaptive face recognition. Moreover, while the

method is sound in principle, no theoretical guarantees are provided.

[Goldberg et al., 2011] combine semi-supervised learning and active learning in a uni-

fied framework. Unlike our work which builds on manifold assumption, they exploit cluster

(or gap) assumption, [Chapelle et al., 2006]. The authors present a Bayesian model for

this learning setting and use a sequential Monte Carlo approximation for efficient online

Bayesian update.
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2.3 RELATED WORK IN ANOMALY DETECTION (AD)

2.3.1 Unconditional Anomaly Detection

In this section we review previous approaches for traditional anomaly detection. Traditional

anomaly detection looks for examples that deviate from the rest of the data if they are not

expected from some underlying model. A comprehensive review of many anomaly detection

approaches can be found in [Markou and Singh, 2003a] and [Markou and Singh, 2003b].

[Scholkopf et al., 1999] proposed the one-class SVM, that only needs positive (or non-

anomalous) examples to learn the margin. The idea is that the space origin (zero) is treated

as the only example of the ‘negative’ class. In that way, the learning essentially estimates

the support of the distribution. The data that do not fall into this support have negative

projections and can be considered anomalous.

[Eskin, 2000] assumes that the number of anomalies is significantly lower than the

number of normal cases. The author defines a distribution for the data as a mixture of major-

ity (M) and anomalous distribution(A): D = (1−λ)M+λA. He then iteratively partitions the

dataset into the majority set Mt and the anomalous set At. At the beginning A0 =;, M0 = D.

At each step t, it is determined whether the case xt is an anomaly. xt is considered anoma-

lous if its displacement to the anomaly set (Mt = Mt−1 \ {x} and At = At−1 ∪ {x}) increases

the log-likelihood LL t−1 of the dataset by a predefined threshold c. If LL t −LL t−1 ≤ c, xt

remains marked as a normal case (Mt = Mt−1 and At = At−1). At the end, we get the final

partition of D into a normal set and an anomalous set.

The curse of high dimensionality is of concern in [Aggarwal and Yu, 2001]. The authors

search for the abnormal lower dimensional projections by dividing each attribute into the

equi-depth (the same range of f cases) ranges. Assuming statistical independence, each

k-dimensional sub–cube in this grid should contain the fraction of f k of total cases. The au-

thors then search for k-dimensional sub-cubes, where the presence of points is significantly

lower than expected. As the brute force search for projections is computationally infeasible,

the authors use genetic algorithms to perform the search.

In [Breunig et al., 2000], the authors expand k-distance (distance to the k nearest
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neighbor) to get the so–called reachability distance for the object O with respect to p as

reach_dist(O, p) = max(k_distance(p),dist(O, p)). Using this smoothed distance, they define

the local outlier factor (LOF), which expresses the degree of the considered object being an

outlier with respect to its neighborhood. LOF depends on MinPts, the number of nearest

points to define a local neighborhood. Although this is data-dependent, the authors propose

to calculate the maximum LOF for MinPts within a reasonable range (which was 30–50 in

their experiments) and threshold. The bigger the LOF the more anomalous the object is.

The authors give bounds for LOF and prove they are tight for important cases. For example,

LOF is close to one for objects within the clusters. A useful property of LOFs is that it works

well with cluster of different densities.

[Lazarevic and Kumar, 2005] applies a bagging approach to improve the performance

of local (nearest neighbor) anomaly detectors. In every round of the algorithm a subset of

features is selected and a local anomaly detector (such as LOF [Breunig et al., 2000]) is

applied. Every round produces a scoring of all data, which is at the end merged to get a final

score using either breadth-first or cumulative-sum approach.

[Syed and Rubinfeld, 2010] use a minimum enclosing ball approach to detect anomalies

in clinical data similar to the data that we use in this work. The authors learn a minimum

volume hypersphere that encloses the data for all patients. The anomaly score is defined

as the distance from the center. They showed that this unsupervised approach performed

similarly to the supervised approaches with prelabeled examples (Section 2.3.1.1).

[Akoglu et al., 2010] performs anomaly detection on weighted graphs when nodes do

not follow discovered power laws between the number of neighbors and the properties of

the local neighborhood subgraph (total number of edges, total weight, and the principal

eigenvalue of the weighted adjacency graph). The outlier score is defined as a distance

to the fitting line. To account for the points that fit the line but are far away from all

other examples, the authors combine their methods with a density based method, such as

LOF [Breunig et al., 2000].

[He et al., 2007] is a semi-supervised method that propagates the labels until a heuristic

stopping criterion is reached. Moreover, it uses unlabeled data to better estimate the prior

in the case that the empirical distribution is skewed from the true distribution.
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[Moonesignhe and Tan, 2006] use random walks to detect outliers. They build their sim-

ilarity matrix either by cosine similarity or by a number of shared neighbors after thresh-

olded cosine similarity. Anomalous nodes are identified as those with low connectivity. Con-

nectivity is calculated using the Markov chain with the similarity as a transition matrix.

Starting from the uniform connectivity assigned at step 0, connectivity is spread according

to the similarity matrix until convergence.

2.3.1.1 Approaches with prelabeled anomalies [Chawla et al., 2003] combine a boost-

ing scheme with SMOTE (Synthetic Minority Over-sampling TEchnique). They do that in

every iteration of smoothing. For continuous data, SMOTE generates a new sample by sam-

pling a data point and one of its k nearest neighbors and taking a random point on segment

between them in the space. For discrete data, a new point is created as a majority vote of the

k nearest neighbors for each feature. The authors show improvement with this method over

just smoothing, just SMOTE and applying SMOTE once before the boosting for a minority

class. The SMOTEboost approach generally improves recall but does not cause significant

degradation in precision, thus improving the F-measure.

[Ma and Perkins, 2003] use support vector regression to learn the underlying temporal

model (time event is modeled as a linear regression function of the previous events). A

surprise is defined as the value outside the tolerance range. Given the fixed length of the

event, a probability of number of surprises actually happing is calculated. When that is too

small, an anomaly is declared.

2.3.1.2 Rare category detection [Pelleg and Moore, 2005] aim to detect rare category

which presumably correspond to the interesting anomalies in a pool-based active learning

framework. After a human expert labels some examples, the Gaussian mixture is fit to the

data. Different hinting heuristics are then used to propose the new examples to be labeled by

the expert. The authors propose interleave heuristics which takes one example per mixture

a time with low fit probability, not taking to account any mixture weight. This heuristic

appears to be superior to the low-likelihood one (suggesting examples with the overall low

fit probability) and ambiguous one (suggesting examples with uncertain class membership).
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[He and Carbonell, 2008] attempt to detect rare categories in the data, assuming that

examples from the rare category are self-similar, tightly grouped, and we have some knowl-

edge about the class priors. The nearest neighbor based statistic is used to actively sample

points corresponding to points with the maximum change in the local density.

2.3.2 Conditional Anomaly Detection (CAD)

We start with a short summary of our work. In [Hauskrecht et al., 2007], we introduce the

concept of the conditional anomaly detection (CAD) and show its potential for the medical

records. For each case, we take its nearest neighbors and learn a Bayesian belief network

(BBN) or a naïve Bayes model (NB) from them. The cases with low class-conditional prob-

abilities were deemed anomalous. We discovered that while for BBN it was better to use

all the cases for learning, for a more restricted NB a small neighborhood was beneficial.

The main problem with learning the structure of BBN is that it does not scale beyond a

couple dozen features. In [Valko and Hauskrecht, 2008], we show the benefit of distance

metric learning for the selection of closest cases. We also use the softmax model [Mccullagh

and Nelder, 1989] to calculate the class-conditional probability of a probabilistic one near-

est neighbor (similar to [Goldberger et al., 2004]) for this purpose. In [Valko et al., 2008],

we introduce a new anomaly measure based on the distance from the hyperplane learned

by SVM [Vapnik, 1995] and perform the initial experiments on the PCP (Section 6.2.2)

dataset. We later conduct an extensive human evaluation study with a panel of 15 physi-

cians in [Hauskrecht et al., 2010]. Aside from our work which will be reviewed in more

detail in later chapters, we also describe other early work along these lines.

[Valizadegan and Tan, 2007] use the kernel based weighted nearest neighbor approach

to jointly estimate the probabilities of the examples being mislabeled. The joint estimation

is posed as an optimization problem and solved with Newton methods. A regularization is

needed to avoid one of the classes deemed to be completely mislabeled.

In [Song et al., 2007], a user defines a partitioning of the features into two groups: the

indicator features — those that can be directly indicative of an anomaly and the environ-

mental features, which cannot, but can influence the indicator features. The indicator (y)
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and the environmental (x) variables are modeled separately both as the mixtures of multi-

variate Gaussians (y∼U and x ∼V ). A mapping function is defined between those mixtures

as the probability of choosing a Gaussian for an indicator variable given an environmental

one p(Vj|Ui). The authors assume the following generative process for a datapoint 〈x, y〉: If

x is a sample from Ui then a die is tossed, according to p(Vj|Ui), to determine which Gaus-

sian from V will produce y and subsequently y is produced. Since it is not known, which Ui

the x was sampled from, the likelihood of fCAD(y|Θ, x) is computed as a weighted sum over

Gaussians Ui. The model is learned via EM, either directly — optimizing all parameters at

once (named as DIRECT), optimizing first parameters for Gaussians and then for the map-

ping function (FULL), or optimizing the indicator Gaussians, the environmental Gaussians

and the mapping function separately (SPLIT).

The work on cross-outlier detection [Papadimitriou and Faloutsos, 2003] is also related

to CAD. Papadimitriou and Faloutsos [Papadimitriou and Faloutsos, 2003] defined the no-

tion of the cross-outliers as examples that seem normal when considering the distribution

of examples from the assigned class, but are abnormal when considering the samples from

the other class. For each sample (x, y), they compute two statistics based on the similarity

of x to its neighborhood from the samples belonging to class y and samples not belonging

to class y. An example is considered anomalous if the first statistic is significantly smaller

than the second statistic. Unfortunately, the method is not very robust to fringe points

(Figure 5) [Papadimitriou and Faloutsos, 2003].

In his dissertation, [Das, 2009] aims to detect several kinds of individual and group

anomalies. The approaches relevant to this work are conditional and marginal methods

for individual record anomalies, ignoring rare values. For the data t and the subsets of

attributes (A,B,C) he computes the ratios of the form P(A,B)
P(A)P(B) for the marginal method

and P(A,B|C)
P(A|C)P(B|C) for the conditional method. The goal is to find unusual occurrences of the

attribute values. The records that have low ratios are considered anomalous. The normal-

ization of the joint probabilities by the marginal provabilities takes care of rare records,

because those also have small marginals. The dissertation describes several speedups to

compute the ratios for exponentially many subgroups to allow the methods to scale up.
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3.0 SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) is a field of machine learning that studies learning from

both labeled and unlabeled examples. This learning paradigm is suitable for real-world

problems, where data is often abundant but the resources to label them are limited. As

a result, many semi-supervised learning algorithms have been proposed in the past few

years [Zhu, 2008]. The closest to this work are semi-supervised support vector machines

(S3VMs) [Bennett and Demiriz, 1999], manifold regularization of support vector machines

(SVMs) [Belkin et al., 2006], and harmonic function solutions on data adjacency graphs [Zhu

et al., 2003].

SSL is very closely related to transductive inference (Chapters 24 and 25 in [Chapelle

et al., 2006]). In both approaches we have access to the unlabeled examples that we can

take advantage of. Traditionally in SSL, we want to use the unlabeled data to learn a

function f that can be later used to classify previously unseen examples. We present one

such approach where we combine the harmonic solution on a data similarity graph with a

max-margin inference in Section 3.3. In other scenarios, we may not need to learn such

a function. In this case, we can focus just on classifying the unlabeled examples at hand.

Even then, the prediction on unseen examples is still possible using out of sample extension

methods [Bengio et al., 2004].

In this dissertation we study graph-based methods for SSL, because they can model

complex interactions between the examples. However, graph-based methods (such as label

propagation) do not scale beyond several thousand examples unless we use parallel archi-

tectures. One of the solutions is to reduce the number of nodes and create a representa-

tive back-bone graph. Typically, one can downsample the data or use some quantization

technique (such as k-means) to come up with a smaller graph. Yet these approaches do
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not consider the quality of semi-supervised learning inference for this backbone graph. In

Section 3.4 we introduce a new objective function that lets us incorporate the quality of

inferences into the construction of the backbone graph.

Furthermore, in Section 3.5 we investigate an online learning formulation of SSL, which

is suitable for adaptive machine learning systems. In this setting, a few labeled examples

are provided in advance and set the initial bias of the system, while unlabeled examples are

gathered online and update the bias continuously. In the online setting, learning is viewed

as a repeated game against a potentially adversarial nature. At each step t of this game, we

observe an example xt and then predict its label ŷt. The challenge of the game is that after

it started we do not observe the true label yt. Thus, if we want to adapt to changes in the

environment, we have to rely on indirect forms of feedback, such as the structure of data.

When data arrive in a stream, the dual problems of computation and data storage arise for

any SSL method. We therefore propose a fast approximate online SSL algorithm that solves

for the harmonic solution on an approximate graph.

For all our methods, we introduce the regularized harmonic solution (Section 3.2) to

achieve better stability properties. With such regularization, we can control the confidence

of labeling unlabeled examples and discount the outliers in the data. In the following, we

start with some needed background in graph theory and then continue with the just men-

tioned approaches for SSL.

3.1 GRAPHS AS DATA MODELS

Many of the methods presented here are based on a graph representation of the data. Hav-

ing some data, we create a undirected weighted graph G = (V ,E) with set of vertices V

and set of edges E, associating every data point with a graph vertex. Next, we define a non-

negative weight function V×V →R such that wi j = w ji. In the case that {i, j} ∉ E(G), wi j = 0.

Let the similarity matrix W = {wi j} denote a matrix of all edge weights which encode how

similar the vertices are to each other. We define degree di of the vertex i as the sum of all

edges coinciding with i:
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di =
∑

j
wi j

and the diagonal matrix D with D ii = di. Let volume vol(G) of graph G be the sum of all its

weights:

vol(G)= vol(W)=∑
i

di =
∑
i, j

wi j

Now, let us define an unnormalized graph Laplacian L as

L(G)= L(W)= D−W

and the symmetric normalized graph Laplacian as

Lsym(G)= Lsym(W)= D− 1
2 LD− 1

2 = I −D− 1
2 WD− 1

2 .

It can be easily shown that for any h ∈Rn:

hTLh= 1
2

∑
i j

wi j(hi −h j)2.

3.1.1 Stationary Distribution of a Random Walk

Here we describe a way to compute a stationary distribution of a (non-absorbing) random

walk on the data similarity graph in a closed form. Let us define the random walk as follows:

In every step of a random walk, we jump from a node to its neighbors, proportionally to their

mutual weight:

P(xi → x j)=
Wi j∑
j′ Wi j′

Let D be the diagonal matrix with the sum of weights W on the diagonal: D ii =∑
j′ Wi j′ for

all i. The transition matrix of this random walk is P = D−1W . The approximation we use

here is that we estimate the class conditional probability with the proportion of the time

that the random walk spends in the evaluated example [Lee and Wasserman, 2010]. We

can calculate this proportion from the stationary distribution of this random walk [Chung,
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1997]. Let s be a row vector of the stationary distribution of a random walk with the transi-

tion matrix P. For a stationary distribution s, it has to hold that sP = s. Note that 1D = 1W ,

where 1 is all one row vector. It is easy to verify that

s = 1W
vol(W)

(3.1)

satisfies the definition:

sP = 1WP
vol(W)

= 1DP
vol(W)

= 1DD−1W
vol(W)

= 1W
vol(W)

= s

The equation (3.1) enables us to compute the stationary distribution in a closed form.

3.2 REGULARIZED HARMONIC FUNCTION

In this section, we build on the harmonic solution [Zhu et al., 2003]. Moreover, we show

how to regularize it such that it can interpolate between semi-supervised learning (SSL) on

labeled examples and SSL on all data. A standard approach to SSL on graphs is to minimize

the quadratic objective function

min
`∈Rn

`TL` (3.2)

s.t. `i = yi for all i ∈ l;

where ` denotes the vector of predictions. Using the notation from Section 3.1, this problem

has a closed-form solution:

`u = (Duu −Wuu)−1Wul`l ,

which satisfies the harmonic property `i = 1
di

∑
j∼i wi j` j (i ∼ j denotes that i neigbors j), and

therefore is commonly known as the harmonic solution.

Since the solution can be also computed as:

`u = (I −Puu)−1Pul`l ,
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it can be viewed as a product of a random walk on the graph W with the transition matrix

P = D−1W . The probability of moving between two arbitrary vertices i and j is wi j/di, and

the walk terminates when the reached vertex is labeled. Therefore, the harmonic solution

is a form of label propagation on the data similarity graph. Each element of the solution is

given by:

`i = (I −Puu)−1
iu Pul`l

= ∑
j:yj=1

(I −Puu)−1
iu Pu j︸ ︷︷ ︸

p(+1)
i

− ∑
j:yj=−1

(I −Puu)−1
iu Pu j︸ ︷︷ ︸

p(−1)
i

= p(+1)
i − p(−1)

i ,

where p+1
i and p−1

i are probabilities by which the walk starting from the vertex i ends at

vertices with labels +1 and −1, respectively. Therefore, when `i is rewritten as |`i|sgn(`i),

|`i| can be interpreted as a confidence in assigning the label sgn(`i) to the vertex i. The

maximum value of |`i| is 1, and it is achieved when either p+1
i = 1 or p−1

i = 1. The closer

the confidence |`i| is to 0, the closer the probabilities p+1
i and p−1

i are to 0.5, and the more

uncertain the label sgn(`i) is.

We propose to control the confidence of labeling by regularizing the Laplacian L as L+
γgI, where γg is a scalar and I is the identity matrix. Similarly to (3.2), the corresponding

problem

min
`∈Rn

`T(L+γgI)` (3.3)

s.t. `i = yi for all i ∈ l;

can be computed in a closed form

`u = (Luu +γgI)−1Wul`l . (3.4)

and we will refer to it as regularized HS. It can be also interpreted as a random walk on

the graph W with an extra sink. At every step, a walk at node xi may terminate at the sink

with probability γg/(di +γg) where di is the degree of the current node in the walk . There-

fore, the scalar γg essentially controls how the ‘confidence’ |`i| of labeling unlabeled vertices
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decreases with the number of hops from labeled vertices. The proposed regularization will

essentially drive the confidence of distant vertices to zero.

3.2.1 Soft Harmonic Solution

A related problem to (3.2) is when the constraints representing the fit to the data are en-

forced in a soft manner [Cortes et al., 2008]. In such a case, we are able to bound the

generalization error of the solution (Section 5.1). Moreover, the soft harmonic solution can

be used for label propagation in case of noise labels (Section 4.6.2). One way of enforcing the

fit constraints in a soft manner is by solving a following problem:

`? =min
`∈Rn

(`−y)TC(`−y)+`TK`, (3.5)

where K = L + γgI is the regularized Laplacian of the similarity graph, C is a diagonal

matrix such that Cii= cl for all labeled examples, and Cii = cu otherwise, and y is a vector

of pseudo-targets such that yi is the label of the i-th example when the example is labeled,

and yi = 0 otherwise. The appealing property of (3.5) is that its solution can be computed in

closed form as follows [Cortes et al., 2008]:

`? = (C−1K + I)−1y (3.6)

We will use soft harmonic solution (3.5) particularly in the theoretical analysis in Chapter 5.

Several examples of how γg affects the regularized solution are shown in Figure 3. Fig-

ure 3a shows an example of a simple data adjacency graph. The vertices of the graph are

depicted as dots. The bigger dots in the middle are labeled vertices. The edges of the graph

are shown as dotted lines and weighted as wi j = exp[−∥∥xi −x j
∥∥2

2 /2]. Figure 3b. shows three

regularized harmonic function solutions on the data adjacency graph from Figure 3a. The

plots are cubic interpolations of the solutions. The dark (or pink and blue) colors denote

parts of the feature space x where `i > 0 and `i < 0, respectively. The light (or yellow)

color marks regions where the confidence |`i| is less than 0.05. When γg = 0, the solution

turns into the ordinary harmonic function solution. When γg=∞, the confidence of labeling

unlabeled vertices decreases to zero. Finally, note that our regularization corresponds to in-
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(a) (b)

Figure 3: a. Similarity graph b. Three regularized harmonic solutions

creasing all eigenvalues of the Laplacian L by γg [Smola and Kondor, 2003]. In Section 5.2

we use this property to bound the generalization error of our solutions.

3.3 MAX-MARGIN GRAPH CUTS

In this part we present our algorithm that combines the harmonic solution with max-margin

learning to learn a classifier f from some reproducing kernel Hilbert space (RKHS). In the

scenarios, where we do not want to store all the examples in the dataset and perform the

inference transductively when the new data arrive, we may prefer to learn such f instead.

Our semi-supervised learning algorithm involves two steps. First, we obtain the regular-

ized harmonic function solution `∗ (3.4). The solution is computed from the system of linear

equations (Luu +γgI)`u = Wul`l . This system of linear equations is sparse when the data

adjacency graph W is sparse. Second, we learn a max-margin discriminator, which is con-

ditioned on the labels induced by the harmonic solution. The optimization problem is given

22



by:

min
f ∈HK

∑
i:
∣∣`∗i ∣∣≥εV ( f ,xi,sgn(`∗i ))+γ‖ f ‖2

K (3.7)

s.t. `∗ = argmin
`∈Rn

`T(L+γgI)`

s.t. `i = yi for all i ∈ l;

where V ( f ,x, y) = max{1− yf (x),0} denotes the hinge loss, HK , and ‖·‖K is the norm that

measures the complexity of f .

The training examples {xi} in our problem are selected based on our confidence into their

labels. When the labels are highly uncertain, which means that
∣∣`∗i ∣∣< ε for some small ε≥ 0,

the examples are excluded from learning. Note that as the regularizer γg increases, the

values
∣∣`∗i ∣∣ decrease towards 0 (Figure 3), and the ε thresholding allows for smooth interpo-

lations between supervised learning on labeled examples and semi-supervised learning on

all data. The trade-off between the regularization of f and the minimization of hinge losses

V ( f ,xi,sgn(`∗i )) is controlled by the parameter γ.

Due to the representer theorem [Wahba, 1999], the optimal solution f ∗ to our problem

has a special form:

f ∗(x)= ∑
i:
∣∣`∗i ∣∣≥εα

∗
i k(xi,x),

where k(·, ·) is a Mercer kernel associated with the RKHS HK . Therefore, we can apply

the kernel trick and optimize rich classes of discriminators in a finite-dimensional space of

α = (α1, . . . ,αn). Finally, note that when γg =∞, our solution f ∗ corresponds to supervised

learning with SVMs.

In some aspects, manifold regularization (Section 2.2.1.2) is similar to max-margin graph

cuts. In particular, note that its objective (2.2) is similar to the regularized harmonic func-

tion solution (3.3). Both objectives involve regularization by a manifold, fTLf and `TL`,

regularization in the space of learned parameters, ‖ f ‖2
K and `TI`, and some labeling con-

straints V ( f ,xi, yi) and `i = yi. Since max-margin graph cuts are learned conditionally

on the harmonic function solution, the problems (3.7) and (2.2) may sometimes have simi-

lar solutions. A necessary condition is that the regularization terms in both objectives are
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weighted in the same proportions, for instance, by setting γg = γ/γu. We adopt this setting

when manifold regularization of SVMs is compared to max-margin graph cuts in Section

6.1.3.

3.4 JOINT QUANTIZATION AND LABEL PROPAGATION

Graph-based semi-supervised learning methods do not scale well to large data sets, mainly

because their inference procedures require the computation of the inverse of an n×n matrix,

where n is the size of the underlying graph that is equal to the size of the dataset. A typical

solution to address this problem is to downsize the graph to a smaller backbone graph and

perform the inference on this reduced representation. The key challenge is to decide on what

elements should be included in the backbone graph. Typical solutions include sub-sampling,

clustering, or a Nyström approximation. However, these techniques do not consider the

quality of semi-supervised learning inferences for this backbone graph. We introduce a new

objective function that lets us incorporate the quality of inferences into the construction of

the backbone graph.

To reduce the computational complexity of (3.5), we replace all n nodes of the similarity

graph G with a set C = [c1, ...cm, ...,cm+k]T of (m+ k) ¿ n representative nodes to create a

backbone graph G̃. Notice that ci = xi for i = 1, ...,m. We want to find G̃ such that it is a

good representation of G in constructing the manifold. Let us assume for a moment that we

do know the best set of examples G̃. Then, Equation (3.5) becomes:

`? = argmin`∈Rn (`−y)TFC(`−y)+`TLC`. (3.8)

In general, C ∈R(m+k)×d can be obtained by fixing the first m labeled examples and choosing

k unlabeled points by subsampling the dataset, clustering or other means of quantization.

As mentioned earlier, the common approach is to select the set C first and only then perform

the inference (3.8). In this work, we will perform both the quantization and the inference

jointly by adding the quantization penalty of the elastic nets to the objective function in (3.8).

As we will see in Section 5.3, this simple joint approach will produce interesting properties.
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The new objective function is:

[`?, {c j}m+k
j=m+1]= argmin`∈Rn,{c j}m+k

j=m+1
(`−y)TFC(`−y)+`TLC` γq

(
(m+k)2

n

∑
xi∈K j

||c j − xi||2
)

(3.9)

where K j is the set of examples for which c j is the nearest centroid and γq is a cost param-

eter for the quantization penalty. We emphasize that we automatically consider all labeled

examples as a fixed part of C and the optimization to learn the representing centroids are

affected by the position of labeled examples. As we will see in Section 5.3, the above objec-

tive function has an interesting property: when optimized to find the centroids, it learns the

principle manifold.

Adding the quantization penalty makes the objective function non-convex and hence

difficult to optimize. To minimize (3.9), we propose to use an alternating optimization ap-

proach [Bezdek and Hathaway, 2002], where we alternate between 1) label propagation —

inferring labels l on G̃, and 2) quantization — selecting the set C for G̃. Starting with

random seeds of unlabeled examples (or the output of k-means algorithm) as the initial

centroids, we iterate the following steps.

3.4.1 Label Propagation

Once C is fixed, the labels can be computed by solving the following convex optimization

problem:

`? = argmin`∈Rn (`−y)TFC(`−y)+`TLC`

This problem has a closed form solution: `? = ((FC)−1LC + I)−1y (Section 3.2).

3.4.2 Quantization

To learn the centroids C when ` is fixed, first notice that:

`TLC`=∑
i, j

(
l i

ni
− l j

n j

)2

WC
i j
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where (ni = 1)m+k
i=1 for unnormalized graph Laplacian L = DC −WC [Luxburg, 2007] and

(ni =
√

di)m+k
i=1 for normalized graph Laplacian L = I−D−1/2WD−1/2 [Zhou et al., 2004]. Con-

sidering that (`−y)TFC(`−y) in (3.9) is not dependent on C, we have the following opti-

mization problem to learn C if we use the widely used Gaussian kernel1 as the similarity

function W :

{c j}m+k
j=m+1 = argmin{c j}m+k

j=m+1

∑
i, j

(
l i

ni
− l j

n j

)2

exp

(
−||c j − ci||2

2σ2

)
+γq

(
(m+k)2

n

∑
i∈K j

||c j − xi||2
)

(3.10)

To learn the centers by optimizing (3.10), we first approximate the exponential function

using Taylor expansion2:

exp

(
−||c j − ci||2

2σ2

)
≈ 1− ||c j − ci||2

2σ2 ,

This results in the following optimization problem:

{c j}m+k
j=m+1 = argmin{c j}m+k

j=m+1

−1
(m+k)2

∑
i, j

(
(l i − l j)2

2σ2

)
||c j − ci||2 +

γq

n

∑
i∈K j

||c j − xi||2 (3.11)

Taking derivatives of (3.11) with respect to (c j)m+k
j=m+1 and setting them to zero, we obtain the

following system of k linear equations for j = m+1, . . . ,m+k :

∑
i

ci
(l i − l j)2

(m+k)2σ2 + c j

(
2γq

|K j|
n

−∑
i

(l i − l j)2

(m+k)2σ2

)
= 2γq

n

∑
i∈K j

xi, (3.12)

where |K j| is the number of examples assigned to the center c j. In order to optimize the

system of linear equations in (3.12), we iterate between optimizing the centroids and the

assignment of the examples to the centroids, a strategy similar to k-means.

Notice that the labeled examples c1, .., cm affect learning the centroids by

1It is straightforward to apply similar derivation for other similarity functions.
2Notice we could also use the convexity of the exponential function to obtain an upper bound and have

a more rigorous derivation. However, the results are very similar and we omit the details to simplify the
description.
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1. absorbing some of the unlabeled examples that are close to the labeled examples and

do not need an unlabeled examples representative. In other words, in the quantization

process, we remove those examples that are very close to the labeled examples;

2. controlling the position of unlabeled centers through the first term in (3.12).

Algorithm 1 outlines the elastic-joint algorithm.

Algorithm 1 Quantized semi-supervised learning with principal manifolds
Inputs:

examples {xi}n
i=1

labels l, such that l i =±1 for labeled and l i = 0 for unlabeled examples
k: number of centroids and size of the G̃
regularizer γq for the quantization

Algorithm (elastic-joint):
randomly initialize the set of k centroids C
do until convergence

infer labels on the graph:
build a quantized data similarity graph G̃ on C
compute LC as the graph Laplacian of G̃
`? = argmin`∈Rn (`−y)TFC(`−y)+`TLC`

perform quantization
calculate C by solving the following system of linear equations for j = m+1, . . . ,m+k:∑

i ci
(l i−l j)2

(m+k)2σ2 + c j

(
2γq

|K j |
n −∑

i
(l i−l j)2

(m+k)2σ2

)
= 2γq

n
∑

i∈K j xi

Outputs:
predictions ŷ= |`?|

3.4.3 Final Inference Scheme for Unlabeled Examples

After solving the objective function in (3.9) using Algorithm 1, we need to infer the labels

of unlabeled examples from the labels of the centroids. The common approach in the litera-

ture [Chapelle et al., 2006, Delalleau et al., 2005] is to use the weighted k-NN. The label of

any new example x (including the unlabeled examples) is computed as follows:

ŷ=
∑m+k

i=1 W ′(x, ci)`i∑m+k
i=1 W ′(x, ci)

(3.13)

where W ′ is a symmetric edge weighting function, such as Gaussian kernel [Chapelle et al.,

2006]. We only use 1-NN for the inference, as we found that it produces the best results for

the proposed method and the baselines.
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Figure 4: Running time for different methods on the SecStr dataset

3.4.4 Time Complexity

Suppose Algorithm 1 takes T iterations to converge. Each iteration has two optimization

steps: 1) running SSL, and 2) constructing the backbone graph. Each run of the SSL algo-

rithm needs the computation of the inverse of a matrix of size n+ k that takes O
(
(m+ k)3).

Each run of the backbone graph construction iterates between two steps 1) assigning exam-

ples to centroids, and 2) solving the system of linear equations (3.11). The second step is the

major step and takes O
(
k3) which results in O

(
tk3) time complexity for t iterations. Since

(m+ k)3 ≥ tk3 for even a small number of labeled examples, the complexity of the proposed

method is O
(
T(m+k)3). In our experiments, we found that T is usually very small; i.e. less

than 10. Figure 4 shows the running time of different methods on SecStr dataset [Chapelle

et al., 2006] by changing the total number of unlabeled examples from 1000 to 10000. Differ-

ent quantization approaches are described in Section 6.1.4. We fixed the number of labeled

examples to m = 10, the number of centroids to k = 100, and varied the number of sam-

pled points N from the original 83679 examples. This plot clearly shows that the proposed

method scales very well with the large number of examples. Also note that we used the

k-means function in MATLAB, which seems extremely slow.
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3.5 ONLINE SEMI-SUPERVISED LEARNING WITH QUANTIZED GRAPHS

The regularized HS (Section 3.2) is an offline learning algorithm. This algorithm can be

made naïvely online by taking each new example, connecting it to its neighbors, and re-

computing the HS. Unfortunately, this naïve implementation has computational complexity

O(t3) at step t, and computation becomes infeasible as more examples are added to the

graph.

To address the problem, we use data quantization [Gray and Neuhoff, 1998] and sub-

stitute the vertices in the graph with a smaller set of k distinct centroids. The resulting

t× t similarity matrix W has many identical rows/columns. We will show that the exact HS

using W may be reconstructed from a much smaller k×k matrix W̃q, where W̃q
i j contains the

similarity between the ith and jth centroids, and a vector v of length k, where vi denotes

the number of points collapsed into the ith centroid. To show this, we introduce the matrix

Wq =VW̃qV where V is a diagonal matrix containing the counts in v on the diagonal.

Proposition 1. The harmonic solution (3.3) using W can be computed compactly as

`q = (Lq
uu +γgV )−1Wq

ul`l ,

where Lq is the Laplacian of Wq.

Proof: Our proof uses the electric circuit interpretation of a random walk [Zhu et al., 2003].

More specifically, we show that W and Wq represent identical electric circuits and, therefore,

their harmonic solutions are the same.

In the electric circuit formulation of W , the edges of the graph are resistors with the

conductance wi j. If two vertices i and j are identical, then by symmetry, the HS must

assign the same value to both vertices, and we may replace them with a single vertex.

Furthermore, they correspond to the ends of resistors in parallel. The total conductance

of two resistors in parallel is equal to the sum of their conductances. Therefore, the two

resistors can be replaced by a single resistor with the conductance of the sum. A repetitive

application of this rule gives Wq = VW̃qV , which yields the same HS as W . In Section 3.2,

we showed that the regularized HS can be interpreted as having an extra sink in a graph.

29



Therefore, when two vertices i and j are merged, we also need to sum up their sinks. A

repetitive application of this rule yields the term γgV in our closed-form solution.

We note that Proposition 1 may be applied whenever the similarity matrix has identical

rows/columns, not just when quantization is applied. However, when the data points are

quantized into a fixed number of centroids k, it shows that we may compute the HS for the

tth point in O(k3) time. Since the time complexity of computation on the quantized graph is

independent of t, it gives a suitable algorithm for online learning.

We now describe how to perform incremental quantization with provably nearly-optimal

distortion.

Algorithm 2 Online quantized harmonic solution
Inputs:

an unlabeled example xt
a set of centroids Ct−1
vertex multiplicities vt−1

Algorithm:
if (|Ct−1| = k+1)

R ← mR
greedily repartition Ct−1 into Ct such that:

no two vertices in Ct are closer than R
for any ci ∈ Ct−1 exists c j ∈ Ct such that d(ci,c j)< R

update vt to reflect the new partitioning
else

Ct ← Ct−1
vt ← vt−1

if xt is closer than R to any ci ∈ Ct
vt(i)← vt(i)+1

else
vt(|Ct|+1)← 1
Ct(|Ct|+1)← xt

build a similarity matrix W̃q
t over the vertices Ct

build a matrix Vt whose diagonal elements are vt
Wq

t =VtW̃
q
t Vt

compute the Laplacian Lq of the graph Wq
t

infer labels on the graph:
`q[t]← argmin``T(Lq +γgVt)`
s.t. `i = yi for all labeled examples up to time t

make a prediction ŷt = sgn(`q
t [t])

Outputs:
a prediction ŷt
a set of centroids Ct
vertex multiplicities vt
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3.5.1 Incremental k-centers

We make use of the doubling algorithm for incremental k-center clustering [Charikar et al.,

1997] which assigns points to centroids in a near optimal way. In particular, it is a (1+ ε)-
approximation with cost measured by the maximum quantization error over all points. In

Section 5.4.3, we show that under reasonable assumptions, the quantization error goes to

zero as the number of centroids increases.

The algorithm of [Charikar et al., 1997] maintains a set of centroids Ct = {c1,c2, . . . } such

that the distance between any two vertices in Ct is at least R and |Ct| ≤ k at the end of each

iteration. For each new point xt, if its distance to some ci ∈ Ct is less than R, the point is

assigned to ci. Otherwise, the distance of xt to ci ∈ Ct is at least R and xt is added to the

set of centroids Ct. If adding xt to Ct results in |Ct|>k, the scalar R is doubled and Ct is

greedily repartitioned such that no two vertices in Ct are closer than R. The doubling of R

also ensures that |Ct|<k.

Pseudocode of our algorithm is given in Algorithm 2. We make a small modification to

the original quantization algorithm in that, instead of doubling R, we multiply it with some

m > 1. This still yields a (1+ε)-approximation algorithm as it still obeys the invariants given

in Lemma 3.4 in [Charikar et al., 1997]. We also maintain a vector of multiplicities v, which

contains the number of vertices that each centroid represents. At each time step, the HS is

calculated using the updated quantized graph, and a prediction is made.

The incremental k-centers algorithm also has the advantage that it provides a variable

R, which may be used to bound the maximum quantization error. In particular, at any point

in time t, the distance of any example from its centroid is at most Rm/(m−1). To see this,

consider the following: As the new data arrive we keep increasing R by multiplying it by

some m > 1. But for any point at any time, the centroid assigned to a vertex is at most R

apart from the previously assigned centroid, which is at most R/m apart from the centroid

assigned before, etc. Summing up, at any time, any point is at most

R+ R
m

+ R
m2 +·· · = R

(
1+ 1

m
+ 1

m2 +·· ·
)
= Rm

m−1

apart from its assigned centroid, where R is the most recent one.
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3.6 PARALLEL MULTI-MANIFOLD LEARNING

Most of the SSL methods that exploit the manifold assumption (such as graph-based SSL

methods) assume that the data lie on a single manifold. A more plausible setting, however,

is that the data lie on a mixture of manifolds [Goldberg et al., 2009]. For example, in digit

recognition each digit lies on its own manifold in the feature space [Goldberg et al., 2009].

In this work, we use the multi-manifold idea from a different perspective. We assume

no or little interaction between the manifolds and learn the manifolds in parallel to achieve

a speedup in computation. The speedup is accomplished in two ways:

1. Assuming independence between the manifolds, we can solve several smaller problems

instead. For example, in the ideal case (Section 5.5), the similarity matrix will consist

of b block-diagonal blocks of the equal size. Therefore, to approximate the harmonic

solution (HS) on a graph with n nodes which takes O (n3) time, we can instead solve

b HS problems on b graph with n/b nodes, each taking only O ((n/b)3) and achieve a

polynomial speedup.

2. Using multi-core and/or multi-processor architectures, we can solve the smaller prob-

lems in parallel and achieve additional, potentially linear speedup, up to the number of

cores.

Assuming the independence of the manifolds may come with a cost in accuracy when the

manifolds are not independent. We study this theoretically in Section 5.5 and empirically

in Section 6.1.6, where we measure the trade-off between the computational speedup and

decrease in prediction accuracy.
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4.0 CONDITONAL ANOMALY DETECTION

4.1 INTRODUCTION TO CONDITONAL ANOMALY DETECTION

Anomaly detection is the task of finding unusual elements in a set of observations. Most

existing anomaly detection methods in data analysis are unconditional and look for outliers

with respect to all data attributes [Breunig et al., 2000, Akoglu et al., 2010, Markou and

Singh, 2003a, Markou and Singh, 2003b, Chandola et al., 2009]. Conditional anomaly de-

tection (CAD) [Chandola et al., 2009] is the problem of detecting unusual values for a subset

of variables given the values of the remaining variables. In other words, one set of variables

defines the context in which the other set is examined for anomalous values.

CAD can be extremely useful for detecting unusual behaviors, outcomes, or unusual

attribute pairings in many domains [Das et al., 2008]. Examples of such problems are

the detection of unusual actions or outcomes in medicine [Hauskrecht et al., 2007], invest-

ments [Rubin et al., 2005], law [Aktolga et al., 2010], social networks [Heard et al., 2010],

politics [Kolar et al., 2010], and other fields [Das et al., 2008]. In all these domains, the

outcome strongly depends on the context (patient conditions, economy and market, case cir-

cumstances, etc.), hence the outcome is unusual only if it is compared to the examples with

the same context.

In this work, we study a special case of CAD that tries to identify the unusual values

for just one target variable given the values of the remaining variables (attributes). The

target variable is assumed to take on a finite set of values, which we also refer to as labels,

because of its similarity to the classification problems. Therefore, we refer to conditional

anomalies as mislabelings [Valizadegan and Tan, 2007] or cross-outliers [Papadimitriou

and Faloutsos, 2003]. Our objective is to develop robust conditional anomaly methods that
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work well for high-dimensional datasets and let us capture various non-linearities in the

underlying space. This work is motivated primarily by clinical and biomedical datasets

and applications. These datasets are highly heterogeneous, and may include hundreds

of lab results of different nature, medications, and procedures performed during hospital

stay. In general, the distributions are multi-modal, reflecting many different patients’ con-

ditions [Hauskrecht et al., 2010].

4.2 DEFINITION OF CONDITIONAL ANOMALY

In general, the concept of (conditional) anomaly in data in the existing literature is some-

what ambiguous and several definitions have been proposed in the past [Markou and Singh,

2003a, Markou and Singh, 2003b]. Typically, an example is considered anomalous when it

is not expected from some underlying model. A number of anomaly detection methods have

been developed for this purpose (Section 2.3.1). The conditional anomaly detection (CAD)

problem (Section 2.3.2) is different, but equally useful in practice. It seeks to detect unusual

values for a subset of variables Y given the values for the remaining variables X . Since

in this dissertation we focus on CAD in one variable, we provide the definition for this case

only.

Intuitively, we can define a conditional anomaly as follows: Given a set of n past ob-

served examples (xi, yi)n
i=1 (with possible label noise), a conditional anomaly is any instance

i among recent m examples (xi, yi)n+m
i=n+1 for which yi is unusual. In this statement, we as-

sume that the past observed examples (xi, yi)n
i=1 are given. We do not assume that their

labels are perfect; they may also be subject to the label noise.

Let us motivate a formal definition of conditional anomaly by assuming that the yi is a

continuous variable and has a standard normal distribution:

yi|xi ∼ N (0, 1).

As the standard normal distribution is a unimodal distribution with zero mean, the most

anomalous values are the ones with the largest absolute value. Assuming a random sample
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of the size n, Y (n) = y1, y2, . . . yn, the extreme values for this distribution correspond to the

first and the n-th order statistic. The expected n-th order statistic for the standard normal

can be approximated as n →∞ as [Cramér, 1999]:

Y (n)
(n) ≈

p
2lnn (4.1)

Therefore, the more samples we have, the larger extreme values we are likely to see and the

less we should be surprised by them. This motivates our definition, which assumes some

probabilistic model of data (not necessarily normal) and depends on the sample size n:

Definition 1. Given any probabilistic model P and a random sample (xi, yi)n
i=1, a condi-

tional anomaly of the c-level in the value yi given xi is any instance i, such that P(yi|xi)=
O(e−cn).

It is not common that we would have access to such a model or that we would be able to

estimate the class conditional probabilities reliably (especially in high dimensions). There-

fore, in practice we may need to assess the anomalies otherwise (e.g., using human experts).

Not knowing the underlying model, which generates the (attribute, label) pairs, may

lead to two major complications illustrated in Figure 5. First, a given instance may be far

from the past observed data points (e.g. patient cases). Because of the lack of the support

for alternative responses, it is difficult to assess the anomalousness of these instances. We

refer to these instances as isolated points. Second, the examples on the boundary of the

class distribution support may look anomalous due to their low likelihood. These boundary

examples are also known as fringe points [Papadimitriou and Faloutsos, 2003]. We aim to

avoid both of those when we look for conditional anomalies.

4.3 RELATIONSHIP TO MISLABELING DETECTION

The work on CAD, when the target variable is restricted to discrete values only, is closely

related to the problem of mislabeling detection [Brodley and Friedl, 1999]. The objective in

this line of work is to 1) to make a yes/no decision on whether the examples are mislabeled,
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and 2) to improve the classification accuracy by removing the mislabeled examples. [Jiang

and Zhou, 2004] use an ensemble of neural nets to remove suspicious samples to create

a k-NN classifier. [Sanchez et al., 2003] introduce several k-NN based approaches includ-

ing Depuration, Nearest Centroid Neighborhood (NCN), and Iterative k-NCN. [Brodley and

Friedl, 1999] tried different approaches to remove the mislabeled samples, including single

and ensemble classifiers. Bagging and boosting are applied in [Verbaeten and Assche., 2003]

to detect and remove mislabeled examples. [Valizadegan and Tan, 2007] introduce an objec-

tive function based on the weighted k-NN approach to identify the mislabeled examples and

solve it with the Newton method.

While the objective of mislabeling detection research is to improve the classification

accuracy by removing or correcting mislabeled examples, the objective of CAD is different:

CAD is interested in ranking examples according to the severity of conditional anomalies

in the data. This is the main reason our evaluations of CAD in Chapter 6 measure the

rankings of the cases being anomalous, not the improved classification accuracy when we

remove them. Nevertheless, we do compare (Section 6.2) to the methods typically used in

mislabeling detection.

There are various solutions to implement the conditional anomaly detection. We con-

tinue by outlining two baseline approaches.

4.4 CLASS-OUTLIER APPROACH

The simplest approach is to use one of the unconditional anomaly detection methods: For

every possible class value y we learn a separate anomaly detection model My using only

the values of x attributes in the data. An example (xi, yi) is anomalous if xi is anomalous

in My=yi . We refer to this approach as the class-outlier approach. The anomaly detection

model My can be implemented with any unconditional anomaly detection model, such as the

one-class SVM [Scholkopf et al., 1999], local outlier factor [Breunig et al., 2000] and many

others [Chandola et al., 2009, Markou and Singh, 2003a, Markou and Singh, 2003b].

The class-outlier approach comes with some limitations. Such an approach detects
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Figure 5: Challenges for CAD: 1) fringe and 2) isolated points

anomalies with respect to its class label and ignores the examples from the other classes.

This may not work well for those examples for which x is away from all of the classes and

hence x is an anomaly itself. To illustrate this, let us assume we have two classes (−1 and

+1) and an example (x,−1), such that x is an anomaly in My=−1. The class-outlier approach

compares this example to all examples with the same label (−1) and declares it to be an

anomaly. However, the problem is when x is also an anomaly with respect to My=+1. In

such a case it is unclear whether y should be −1 or +1 and hence the conclusion stating that

(x,−1) is a conditional anomaly may be incorrect.

The other problem with class-outlier approach is that those methods often declare fringe

points (Figure 5) as anomalies. Fringe points [Papadimitriou and Faloutsos, 2003] are points

on the outer boundary of a distribution support for a specific class.

4.5 DISCRIMINATIVE APPROACH

Another approach to detect conditional anomalies is to estimate the posterior P(yi|xi) for

the observed example (xi, yi) and to use the posterior to measure how anomalous the data

example is [Song et al., 2007, Hauskrecht et al., 2007, Hauskrecht et al., 2010, Valko et al.,

2008]. According to Definition 1, an example is conditionally anomalous if the probability of
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the opposite label for this example is high. Various classification machine learning models

can be used to estimate the posterior from the past data. For example, one can use the

logistic regression model or generative probabilistic models such as probabilistic graphical

models that come with an immediate probabilistic interpretation. However, the output of

other classification models, such as SVM, can be modified and transformed to produce a

probabilistic output. For example, for the non-parametric Parzen window, the posterior

probability can be estimated by summing the kernel weights for all examples with the same

class label and by normalizing it with the sum of weights for all examples.

P(y= yi|xi)=
∑

yi=yj K(x j,xi)∑
j K(x j,xi)

We will assume y ∈ {−1,+1} from now on, but the generalization to the multi-class case is

straightforward. Without loss of generality, we assume that the testing example xi has

yi = +1. We want to compute P(yi 6= +1|xi) to see whether this quantity is not too high,

which would mean that yi is conditionally anomalous given xi. Using Bayes theorem we

get:

P(y 6= +1|xi)= P(xi|y=−1)P(y=−1)∑
c∈{−1,+1} P(xi|y= c)P(y= c)

(4.2)

Since we model both prior and class-conditional density, this is a generative model. In the

following we present a new discriminative method that uses random walks on the data

similarity graph. We then modify it to address the problem of isolated and fringe points.

4.5.1 CAD with Random Walks

The following method is an example of the discriminative approach. Let (xi, yi) be the new

example that we want to evaluate and P(xi|y = +1) and P(xi|y = −1) be the probabilities

we want to compute for (4.2). In this part we show how we can estimate P(xi|y) from

the similarity graphs constructed separately for each class. A similarity graph for a set of

examples is built by assigning each example to a node in the graph. The edges between the

nodes and their weights represent the similarities between the examples.

To explain our method, let us consider (again, without the loss of generality) the problem

of estimating P(xi|y =+1). First, we take all xi from the training set such that yi =+1 and
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Figure 6: Estimating class-conditional probabilities from two similarity graphs

form a similarity graph using these examples. We then add the new example xi pretending

that its label is y = +1. Let G y=+1 be the graph we get (Figure 6). In the following we

describe how we can use the stationary distribution of a random walk on G y=+1 and use the

local connectivity as an approximation for a density estimate [Lee and Wasserman, 2010]

for P(xi|y = +1). We do the same for P(xi|y = −1) and plug the both estimates into (4.2) to

get an estimate for P(y 6= +1|x).

The equation (3.1) enables us to compute the stationary distribution in a closed form and

ultimately allows us to compute (4.2) efficiently. Once we have the stationary distribution s

of the random walk on G y=+1 we approximate P(xi|y=+1) with si.

4.6 REGULARIZED DISCRIMINATIVE APPROACH

We now describe how to avoid detecting the fringe and isolated points using regularization.

Again, our approach considers both classes and y becomes an anomaly if its posterior proba-

bility given x is small. We stress again that in this work we are not interested in isolated or

fringe points. Let us consider the case of isolated points. Imagine the scenario that we get

such an anomaly (xa, ya). If we take the approach we just described, xa will be far from G y=c
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for all c. Intuitively, the posterior (4.2) compares the weighted likelihoods of xa given the

class, where weight is the class prior. If these likelihoods are estimated from the training

data (and possibly from a small sample size), the estimates of P(xa|y=−1) and P(xa|y=+1)

may become unreliable. Consequently, the relative difference between these likelihoods can

strongly favor one class. Our model would then become overly confident in that xa belongs

to that class. We illustrate this behavior in Section 6.2.4.3.

To alleviate these problems, we propose a new discriminative approach that penalizes

instances of x that are anomalies themselves. We do it by regularizing the model as follows:

P(y 6= +1|x)= P(x|y=−1)P(y=−1)
λ+∑

c∈{−1,+1} P(x|y= c)P(y= c)
(4.3)

Intuitively, λ is a placeholder for the ‘everything else’ class. We point out that this is differ-

ent from the Laplace correction, which is used to smooth out probability estimates derived

from the empirical counts1. First, this regularization is applied directly to Bayes theorem

and not to a probability estimate. Second, this regularization only changes the denominator

of the Bayes theorem and effectively creates the aforementioned ‘everything else’ class. The

λ is data dependent and can be set for example by cross-validation.

4.6.1 Regularized Random Walk CAD

We will refer to the recently proposed algorithm as the λ-regularized random walk CAD

algorithm (λ-RWCAD). Algorithm 3 displays the pseudo-code of the λ-RWCAD algorithm.

Notice that vol(W+) and vol(W−) are constants and can be precomputed. One of the benefits

of the λ-RWCAD algorithm is that it does not require us to store the whole n×n similarity

matrix. Moreover, the method requires only a nearest neighbor type of a computation, and

therefore it has O(n2) time and O(n) space requirements. For sparse representations of the

graph, the time is reduced to O(|E|), where |E| is the number of edges in the graph. On

the other hand, many other graph-based algorithms require quadratic space, and their time

complexity is related to the computation of the inverse of n×n matrix which is Ω(n2) and

O(n2.807) in most practical implementations2. Finally, modeling the data distribution with a

1P(y= k)= (Nk +λ)/(
∑

k Nk +Kλ), where K is the number of classes and Nk are the corresponding counts.
2The complexity can be improved to O(n2.376) by using the Coppersmith-Winograd algorithm.
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graph can be extended to online learning [Kivinen et al., 2002]. Unlike the label propagation

methods that require us to store the whole O(n2) weight matrix (O(|E|) when it is sparse)

for the future computations, our method requires only a summary statistic for each vertex,

which is O(n).

Algorithm 3 RWCAD that calculates the anomaly score
Inputs:

new example (xe, ye)
similarity metric K(·, ·)
vol(W+)=∑

yi=yj=+1 Wi j
vol(W−)=∑

yi=yj=−1 Wi j
regularization coefficient λ

Algorithm:
W+

ixe
= K(xi,xe),∀i positive

W−
ixe

= K(xi,xe),∀i negative

P(xe|y=+1)=∑
i W+

ixe
/
(
vol

(
W+)+2×∑

i W+
ixe

)
P(xe|y=−1)=∑

i W−
ixe

/
(
vol(W−)+2×∑

i W−
ixe

)
P(y 6= ye|xe)= P(xe|y6=ye)P(y6=ye)

λ+∑
c∈{−1,+1} P(xe|y=c)P(y=c)

Outputs:
P(y 6= ye|xe)

4.6.2 Conditional Anomaly Detection with Soft Harmonic Functions

In this section we show how to solve the CAD problem using label propagation on the data

similarity graph and how to compute the anomaly score. In particular, we will build on

the harmonic solution approach (Section 3.2.1) and adopt it for CAD in the following ways:

1) show how to compute the confidence of mislabeling, 2) add a regularizer to address the

problem of isolated and fringe points, 3) use soft constraints to account for a fully labeled

setting, and 4) describe a compact computation of the solution from a quantized backbone

graph.

The label propagation method described in Section 3.2.1 can be applied to CAD by con-

sidering all observed data as labeled examples with no unlabeled examples. The setting for

matrix C is dependent on the quality of the past observed data. If the labels of the past

observed data (or any example from the recent sample) are guaranteed to be correct, we set

the corresponding diagonal elements of C to a large value to make their labels fixed. Notice

41



that specific domain techniques can be utilized to make sure that the collected examples

from the past observed data have correct labels. We assume that we do not have the access

to such prior knowledge and therefore, the observed data are also subject to label noise.

We now propose a way to compute the anomaly score from (3.6). The output `? of (3.5)

for the example i can be rewritten as:

`?i = |`?i |×sgn(`?i ) (4.4)

SSL methods use sgn(`?i ) in (4.4) as the predicted label for i. For an unlabeled example,

when the value of `i is close to ±1, then the labeling information that was propagated to it

is more consistent. Typically, that means that the example is close to the labeled examples

of the respective class. The key observation, which we exploit here, is that we can interpret

|`?i | as the confidence in the label. Our situation differs from SSL, as all our examples are

labeled and we aim to assess the confidence of already labeled example. Therefore, we define

the anomaly score as the absolute difference between the actual label yi and the inferred soft

label `i:

si = |`?i − yi|. (4.5)

We will now address the problems illustrated in Figure 5. Recall that the isolated points

are the examples that are (with respect to some metric) far from the majority of the data.

Consequently, they are surrounded by few or no nearby points. Therefore, no matter what

their label is, we do not want to report them as conditional anomalies. In other words, we

want CAD methods to assign them a low anomaly score. Even when the isolated points are

far from the majority data, they still can be orders of magnitudes closer to the data points

with the opposite label. This can make a label propagation approach falsely confident about

that example being a conditional anomaly. In the same way, we do not want to assign a high

anomaly score to fringe points just because they lie on the distribution boundary. To tackle

these problems we set K = L+γgI, where we diagonally regularize the graph Laplacian.

Intuitively, such a regularization lowers the confidence value |`?| of all examples; however

it reduces the confidence score of far outlier points relatively more. To see this, notice (Sec-

tion 6.2.3.5) that the similarity weight metric is an exponentially decreasing function of
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the Euclidean distance. In other words, such a regularization can be interpreted as a label

propagation on the graph with an extra sink. The sink is an extra node in G with label 0

and every other node connected to it with the same small weight γg. The edge weight of γg

affects the isolated points more than other points, because their connections to other nodes

are small.

In the fully labeled setting, the hard harmonic solution degenerates to the weighted k-

NN. In particular, the hard constraints of the harmonic solution do not allow the labels to

spread beyond other labeled examples. However, despite the fully labeled case, we still want

to take the advantage of the manifold structure. To alleviate this problem we allow labels to

spread on the graph by using soft constraints in the unconstrained regularization problem

(3.5). In particular, instead of cl =∞ we set cl to a finite constant and we set C = cl I. With

such a setting of K and C, we can solve (3.5) using (3.6) to get:

`? = (
(cl I)−1 (

L+γg
)+ I

)−1 y =
(
c−1

l L+
(
1+ γg

cl

)
I
)−1

y. (4.6)

To avoid computation of the inverse,3 we calculate (4.6) using the following system of linear

equations:

(
c−1

l L+
(
1+ γg

cl

)
I
)
`? = y (4.7)

We then plug the output of (4.7) into (4.5) to get the anomaly score. We will refer to this

score as the SoftHAD score. Intuitively, when the confidence is high but sign(`?i ) 6= yi, we

will consider the label yi of the case (xi, yi) conditionally anomalous.

Backbone graph The computation of the system of linear equations (4.7) scales with com-

plexity4 O(n3). This is not feasible for a graph with more than several thousand nodes. To

address the problem, we use data quantization [Gray and Neuhoff, 1998] and sample a set

of nodes from the training data to create G. We then substitute the nodes in the graph with

a smaller set of k ¿ n distinct centroids, which results in O(k3) computation.

We improve the approximation of the original graph with the backbone graph, by as-

signing different weights to the centroids. We do it by computing the multiplicities (i.e. how

3due to numerical instability
4The complexity can be further improved to O(n2.376

u ) with the Coppersmith-Winograd algorithm.
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many nodes each centroid represents). In the following we will describe how to modify (4.7)

to allow for the computation with multiplicities.

Let V be the diagonal matrix of multiplicities with vii being the number of nodes that

centroid xi represents. We will set the multiplicities according to the empirical prior.

Let WV be the compact representation of the matrix W on G, where each node xi is repli-

cated vii times. Let LV and KV be the graph Laplacian and regularized graph Laplacian of

WV . Finally, let CV be the C in (3.5) with the adjustment for the multiplicities. CV accounts

for the fact that we care about ‘fitting’ to train data according to the multiplicities. Then:

WV =VWV

LV = L(WV )

KV = LV +γgV

CV =V 1/2CV 1/2

The unconstrained regularization (3.5) now becomes:

`V? =min
`∈Rn

(`−y)TCV (`−y)+`TKV` (4.8)

and subsequently (4.6) becomes:

`V? =
((

CV
)−1

KV + I
)−1

y

=
(
V−1/2C−1V−1/2(LV +γgV )+ I

)−1
y

=
(
(clV )−1 (LV +γgV )+ I

)−1
y

=
(
1/clV−1LV + clγg + I

)−1
y

With these adjustments the anomaly score that accounts for the multiplicities is equal to

|`V?−y|.
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5.0 THEORETICAL ANALYSIS

In this chapter, we analyze the methods proposed in Chapter 3 and Chapter 4. We will

analyze mostly:

• generalization errors induced by harmonic solutions on the graph,

• errors induced by quantization of the graph to accommodate online learning, and

• errors due to the online setting.

5.1 SOFT HARMONIC SOLUTION

In this section we prove a bound on the generalization error of our transductive learner.

The generalization error of the solution to the problem (3.6) (and also (3.5)) is bounded in

Lemma 1.

Lemma 1. Let `∗ be a solution to the problem:

min
`∈Rn

(`−y)TC(`−y)+`TQ`,

where Q = L+γgI and all labeled examples l are selected i.i.d. Then the inequality:

RW
P (`∗) ≤ R̂W

P (`∗)+β+
√

2ln(2/δ)
nl

(nlβ+4)︸ ︷︷ ︸
transductive error ∆T (β,nl ,δ)

β ≤ 2

[ p
2

γg +1
+

√
2nl

1−p
cup

cu

λM(L)+γg

γ2
g +1

]
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holds with probability 1−δ, where:

RW
P (`∗) = 1

n

∑
i

(`∗i − yi)2

R̂W
P (`∗) = 1

nl

∑
i∈l

(`∗i − yi)2

are risk terms for all vertices and labeled vertices, respectively, and β is the stability coefficient

of the solution `∗.

Proof: To simplify the proof, we assume that cl = 1 and cl > cu. Our risk bound follows from

combining Theorem 1 of [Belkin et al., 2004] with the assumptions |yi| ≤ 1 and
∣∣`∗i ∣∣≤ 1. The

coefficient β is derived based on Section 5 of [Cortes et al., 2008]. In particular, based on the

properties of the matrix C and Proposition 1 [Cortes et al., 2008], we conclude:

β= 2

[ p
2

λm(Q)+1
+

√
2nl

1−p
cup

cu

λM(Q)
(λm(Q)+1)2

]
,

where λm(Q) and λM(Q) refer to the smallest and largest eigenvalues of Q, respectively, and

can be further rewritten as λm(Q) = λm(L)+γg and λM(Q) = λM(L)+γg. Our final claim

directly follows from applying the lower bounds λm(L)≥ 0 and (λm(L)+γg +1)2 ≥ γ2
g +1.

Lemma 1 is practical when the error ∆T(β,nl ,δ) decreases at the rate of O(n
− 1

2
l ). This is

achieved when β=O(1/nl), which corresponds to γg=Ω(n
3
2
l ). Thus, when the problem (3.5)

is sufficiently regularized, its solution is stable, and the generalization error of the solution

is bounded.

5.2 ANALYSIS OF MAX-MARGIN GRAPH CUTS

5.2.1 When Manifold Regularization Fails

The major difference between manifold regularization (2.2) and the regularized harmonic

function solution (3.3) is in the space of optimized parameters. In particular, manifold reg-

ularization is performed on a class of functions HK . When this class is severely restricted,
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such as with linear functions, the minimization of fTLf may lead to results which are signif-

icantly worse than the harmonic function solution.

This issue can be illustrated on the problem from Figure 3, where we learn a linear

decision boundary f (x)=α1x1 +α2x2 through manifold regularization of linear SVMs:

min
α1,α2

∑
i∈l

V ( f ,xi, yi)+γ[α2
1 +α2

2]+γufTLf. (5.1)

The structure of our problem simplifies the computation of the regularization term fTLf. In

particular, since all edges in the data adjacency graph are either horizontal or vertical, the

term fTLf can be expressed as a function of α2
1 and α2

2. Therefore, for this particular problem

we have:

fTLf = 1
2

∑
i, j

wi j( f (xi)− f (x j))2

= 1
2

∑
i, j

wi j(α1(xi1 −x j1)+α2(xi2 −x j2))2

= α2
1

2

∑
i, j

wi j(xi1 −x j1)2

︸ ︷︷ ︸
∆=218.351

+

α2
2

2

∑
i, j

wi j(xi2 −x j2)2

︸ ︷︷ ︸
∆=218.351

. (5.2)

After we incorporate (5.2) to our objective function (5.2), we get (5.2) as an additional weight

at the regularizer [α2
1 +α2

2]:

min
α1,α2

∑
i∈l

V ( f ,xi, yi)+
(
γ+ γu∆

2

)
[α2

1 +α2
2]= min

α1,α2

∑
i∈l

V ( f ,xi, yi)+γ∗[α2
1 +α2

2], (5.3)

where γ∗ =
(
γ+ γu∆

2

)
. Thus, manifold regularization of linear SVMs on our problem can be

viewed as supervised learning with linear SVMs with a varying weight at the regularizer. In

other words, in this particular problem, the unlabeled examples only influence the solution

through the regularizer γ∗ on f (x). That means we can get the same f (x) for a different

γ∗ if the unlabeled examples were not present at all. Since the problem involves only two

labeled examples, changes in the weight γ∗ do not affect the direction of the discriminator

f ∗(x) = 0, because the margin is maximized by the hyperplane between them. Therefore,
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different settings of the regularizer only change the slope of f ∗ (Figure 7, second row). The

above analysis shows that the discriminator f ∗(x)= 0 does not change with γu. As a result,

all discriminators are equal to the discriminator for γu = 0, which can be learned by linear

SVMs, yet none of them solves our problem optimally. Max-margin graph cuts solve the

problem optimally for small values of γg. If we included more unlabeled examples, we could

get the error arbitrarily large, assuming our problems would consist of two coherent square-

shaped classes, as in 3. Figure 7 shows linear, cubic, and RBF decision boundaries, obtained

by manifold regularization of SVMs (MR) and max-margin graph cuts (GC) on the problem

from Figure 3. The regularization parameter γg = γ/γu is set as suggested in Section 2.2.1.2,

γ=0.1, and ε=0.01. The pink and blue colors denote parts of the feature space x where the

discriminators f are positive and negative, respectively. The yellow color marks the regions

where | f (x)| < 0.05.

A similar line of reasoning can be used to extend our results to polynomial kernels.

Figure 7 indicates that max-margin learning with the cubic kernel exhibits trends similar

to the linear case.

The notion of algorithmic stability can be used to bound the generalization error of many

learning algorithms [Bousquet and Elisseeff, 2002]. In this section, we discuss how to make

the harmonic function solution stable and prove a bound on the generalization error of max-

margin cuts (3.7). Our bound combines existing transductive [Belkin et al., 2004, Cortes

et al., 2008] and inductive [Vapnik, 1995] bounds.

5.2.2 Generalization Error

Our objective is to show that the risk of our solution f :

RP ( f )=EP(x)L ( f (x), y(x)) (5.4)

is bounded by the empirical risk on graph-induced labels:

1
n

∑
i

L ( f (xi),sgn(`∗i )) (5.5)
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Figure 7: Linear, cubic, and RBF decision boundaries for different methods
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and error terms, which can be computed from training data. The function L (y′, y)=1{
sgn(y′) 6= y

}
computes the zero-one loss of the prediction sgn(y′) given the ground truth y. P(x) is the dis-

tribution of our data. For simplicity, we assume that the label y is a deterministic function

of x. Our proof starts by relating RP ( f ) and graph-induced labels `∗i .

Lemma 2. Let f be from a function class with the VC dimension h and xi be n examples,

which are sampled i.i.d. with respect to the distribution P(x). Then the inequality:

RP ( f ) ≤ 1
n

∑
i

L ( f (xi),sgn(`∗i )) +
1
n

∑
i

(`∗i − yi)2+√
h(ln(2n/h)+1)− ln(η/4)

n︸ ︷︷ ︸
inductive error ∆I (h,n,η)

holds with the probability of 1−η, where yi and `∗i represent the true and graph-induced soft

labels, respectively.

Proof: Based on Equations 3.15 and 3.24 [Vapnik, 1995], the inequality:

RP ( f )≤ 1
n

∑
i

L ( f (xi), yi)+∆I(h,n,η)

holds with the probability of 1−η. Our final claim follows from bounding all terms L ( f (xi), yi)

as:

L ( f (xi), yi)≤L ( f (xi),sgn(`∗i ))+ (`∗i − yi)2.

The above bound holds for any yi ∈ {−1,1} and `∗i .

It is hard to bound the error term 1
n

∑
i(`∗i − yi)2 when the constraints `i = yi (3.3) are

enforced in a hard manner. Thus, in the rest of our analysis, we consider a relaxed version

of the harmonic function solution (Section 3.2.1). Lemma 1 and its proof can be found in

Section 5.1. Lemmas 1 and 2 can be combined using the union bound.
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Proposition 2. Let f be from a function class with the VC dimension h. Then the inequality:

RP ( f ) ≤ 1
n

∑
i

L ( f (xi),sgn(`∗i )) +

R̂W
P (`∗)+∆T(β,nl ,δ)+∆I(h,n,η)

holds with probability 1− (η+δ).

The above result can be viewed as follows. If both n and nl are large, the sum of
1
n

∑
i L ( f (xi),sgn(`∗i )) and R̂W

P (`∗) provides a good estimate of the risk RP ( f ). Unfortunately,

our bound is not practical for setting γg, because it is hard to find a γg that minimizes both

R̂W
P (`∗) and ∆T(β,nl ,δ). The same phenomenon was observed by [Belkin et al., 2004] in a

similar context. To solve our problem, we suggest setting γg based on the validation set.

This methodology is used in the experimental section.

5.2.3 Threshold epsilon

Finally, note that when
∣∣`∗i ∣∣ < ε, where ε is a small number,

∣∣`∗i − yi
∣∣ is close to 1 irre-

spective of yi, and a trivial upper bound L ( f (xi), yi)≤1 is almost as good as L ( f (xi), yi)≤
L ( f (xi),sgn(`∗i ))+ (`∗i − yi)2 for any f . This allows us to justify the ε threshold in the prob-

lem (3.7). In particular, note that L ( f (xi), yi) is bounded by 1− (`∗i − yi)2 + (`∗i − yi)2. When∣∣`∗i ∣∣< ε, 1− (`∗i − yi)2 < 2ε−ε2, we conclude the following:

Proposition 3. Let f be from a function class with the VC dimension h and nε be the number

of examples such that
∣∣`∗i ∣∣< ε. Then the inequality:

RP ( f )≤ 1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f (xi),sgn(`∗i ))+ 2εnε

n
+ R̂W

P (`∗)+∆T(β,nl ,δ)+∆I(h,n,η)

holds with probability 1− (η+δ).
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Proof: The generalization bound is proved as:

RP ( f ) ≤ R̂P ( f )+∆I(h,n,η)

= 1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f (xi), yi)+ 1

n

∑
i:
∣∣`∗i ∣∣<εL ( f (xi), yi) +

∆I(h,n,η)

≤ 1
n

∑
i:
∣∣`∗i ∣∣≥ε

[
L ( f (xi),sgn(`∗i ))+ (`∗i − yi)2]+

1
n

∑
i:
∣∣`∗i ∣∣<ε

[
1− (`∗i − yi)2 + (`∗i − yi)2]+

∆I(h,n,η)

= 1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f (xi),sgn(`∗i )) +

1
n

∑
i:
∣∣`∗i ∣∣<ε

[
1− (`∗i − yi)2]+ 1

n

∑
i

(`∗i − yi)2+

∆I(h,n,η)

≤ 1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f (xi),sgn(`∗i ))+ 2εnε

n
+

R̂W
P (`∗)+∆T(β,nl ,δ)+∆I(h,n,η).

The last step follows from the inequality 1− (`∗i − yi)2 < 2ε and Lemma 1.

When ε ≤ n
− 1

2
l , the new upper bound is asymptotically as good as the bound in Proposition

2. As a result, we get the same convergence guarantees, although highly-uncertain labels∣∣`∗i ∣∣< ε are excluded from our optimization.

In practice, optimization of the thresholded objective often yields a lower risk

1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f ∗(xi),sgn(`∗i ))+ 2εnε

n
,

and also lower training and test errors. This is a result of excluding the most uncertain ex-

amples
∣∣`∗i ∣∣<ε from learning. Figure 8 illustrates these trends on three learning problems.

In particular it shows the thresholded empirical risk 1
n

∑
i:
∣∣`∗i ∣∣≥εL ( f ∗(xi),sgn(`∗i ))+ 2εnε

n of

the optimal max-margin graph cut f ∗ (3.7), its training and test errors, and the percentage
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Figure 8: The thresholded empirical risk

of training examples such that
∣∣`∗i ∣∣ ≥ ε, on 3 letter recognition problems from the UCI ML

repository. The plots are shown as functions of the parameter γg and correspond to the

thresholds ε= 0 (light gray lines), ε= 10−6 (dark gray lines), and ε= 10−3 (black lines). All

results are averaged over 50 random choices of 1 percent of labeled examples.

Note that the parameters γg and ε are redundant in the sense that the same result is

often achieved by different combinations of parameter values. This problem is addressed in

the experimental section by fixing ε and optimizing γg only.

5.3 ANALYSIS OF JOINT QUANTIZATION AND LABEL PROPAGATION

In this section we analyze our method of jointly optimizing for the backbone graph and

the harmonic solution (Section 3.4) by showing its connection to the principal manifold ap-

proach. One interesting property of the objective function in (3.11) for learning the centroids

is that it has a similar form to the objective function of the elastic net model [Gorban and
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Zinovyev, 2009]. The elastic net is a well-known technique based on an analogy between

principle manifolds and an elastic membrane. It is a fast approximation of the principle

manifolds and produces results similar to Kohonen’s self-organized maps (SOM) [Haykin,

1994]. Given a set of initial centroids and a given connectivity between the centroids (just

like SOM), the elastic net has the following form:

U = γq
∑

i∈K j

||xi − c j||2 +
∑

i, j∈G̃
λi j||ci − c j||2 +

∑
i, j,k∈G̃

µi jk||ci + ck −2c j||2 (5.6)

where G̃ is the graph connectivity between centroids and is assumed to be given. The ob-

jective function of the elastic net model consists of three terms: the k-means term UY =
γq

∑
i∈K j ||xi − c j||2, the term UE =∑

i, j∈G̃ λi j||ci − c j||2 for stretching elasticity, and the term

UR = ∑
i, j,k∈G̃ µi jk||ci + ck −2c j||2 for bending elasticity. λi j and µi jk are the coefficients of

stretching elasticity of edge between nodes i and i and the coefficients of bending elasticity

of edge between nodes i, j, and k, respectively.

Notice that UY is equivalent to the quantization penalty (3.9) for γq = 1. Moreover, if we

set λi j = −(l i − l j)2/2σ2, then UE approximates `TLC`. Therefore, the objective function in

(3.11) is the Elastic net with no bending term and with stretching coefficients dependent on

the labels of the centroids; if the labels of two centroids are similar, the objective function

tries to keep them close to each other and if the labels of two centroids are different, the

objective function keeps them apart.

5.4 ANALYSIS OF ONLINE SSL ON QUANTIZED GRAPHS

In the rest of this section, W denotes the full data similarity matrix, Wo
t its observed portion

up to time t and Wq
t the quantized version of Wo

t . For simplicity, we do not consider the

compact version of quantized matrix. In other words, Wq
t is t× t matrix with at most k

distinct rows/columns. The Laplacians and regularized Laplacians of these matrices are

denoted as L,Lo,Lq and K ,Ko,Kq respectively. Similarly, we use `∗, `o[t], and `q[t] to refer

to the harmonic solutions on W , Wo
t , and Wq

t respectively. Finally, `∗t , `o
t [t], and `

q
t [t] refer

54



to the predicted label of the example xt.

In this section, we use a stability argument to bound quality of the predictions. We note

that the derived bounds are not tight. Our online learner (Figure 2) solves an online regres-

sion problem. As a result, it should ideally minimize the error of the form
∑

t(`
q
t [t]− yt)2,

where `q
t [t] is the prediction at the time step t (again, time is denoted in the square brack-

ets). In the following proposition we decompose this error into three terms. The first term

(5.7) corresponds to the generalization error of the HS and is bounded by the algorithm sta-

bility argument. The second term (5.8) appears in our online setting because the similarity

graph is only partially revealed. Finally, the third term (5.9) quantifies the error introduced

due to quantization of the similarity matrix.

Proposition 4. Let `q
t [t], `o

t [t], `
∗
t be the predictions as defined above and let yt be the true

labels. Then the error of our predictions `q
t [t] is bounded as

1
n

n∑
t=1

(`q
t [t]− yt)2 ≤ 9

2n

n∑
t=1

(`∗t − yt)2 (5.7)

+ 9
2n

n∑
t=1

(`o
t [t]−`∗t )2 (5.8)

+ 9
2n

n∑
t=1

(`q
t [t]−`o

t [t])
2. (5.9)

Proof: Our bound follows from the inequality

(a−b)2 ≤ 9
2

[
(a− c)2 + (c−d)2 + (d−b)2] ,

which holds for a, b, c, d ∈ [−1,1].

We continue by bounding all the three sums in Proposition 4. These sums can be

bounded if the constraints `i = yi are enforced in a soft manner [Cortes et al., 2008]. One

way of achieving this is by solving the related problem

min
`∈Rn

(`−y)TC(`−y)+`TK`,

where K = L + γgI is the regularized Laplacian of the similarity graph, C is a diagonal

matrix such that Cii= cl for all labeled examples, and Cii = cu otherwise, and y is a vector

of pseudo-targets such that yi is the label of the i-th example when the example is labeled,

and yi = 0 otherwise.
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5.4.1 Bounding Transduction Error (5.7)

The following proposition bounds the generalization error of the solution to the problem

(3.5). We then use it to bound the HS part (5.7) of Proposition 4.

Proposition 5. Let `∗ be a solution to the problem (3.5), where all labeled examples l are

selected i.i.d. If we assume that cl = 1 and cl À cu, then the inequality

R(`∗) ≤ R̂(`∗)+β+
√

2ln(2/δ)
nl

(nlβ+4)︸ ︷︷ ︸
transductive error ∆T (β,nl ,δ)

β ≤ 2

[ p
2

γg +1
+

√
2nl

1−p
cup

cu

λM(L)+γg

γ2
g +1

]

holds with the probability of 1−δ, where

R(`∗)= 1
n

∑
t

(`∗t − yt)2 and R̂(`∗)= 1
nl

∑
t∈l

(`∗t − yt)2

are risk terms for both all and labeled vertices, respectively, and β is the stability coefficient

of the solution `∗.

The proof can be found in Section 5.2.2. Proposition 5 shows that when∆T(β,nl ,δ)= o(1),

the true risk is not much different from the empirical risk on the labeled points which

bounds the generalization error. This occurs when β=o(n−1/2
l ), which corresponds to setting

γg =Ω(n1+α
l ) for any α> 0.

5.4.2 Bounding Online Error (5.8)

In the following, we will bound the difference between the online and offline HS and use it to

bound (5.8) of the Proposition 4. The idea is that when Laplacians L and Lo are regularized

enough by γg, the resulting harmonic solutions are close to zero and therefore close to each

other. We first show that any regularized HS can be bounded as follows:

Lemma 3. Let ` be a regularized harmonic solution, i.e. `= (C−1K+I)−1y where K = L+γgI.

Then

‖`‖2 ≤
p

nl

γg +1
.
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Proof: If A ∈Rn×n is a symmetric matrix and λm(A) and λM(A) are its smallest and largest

eigenvalues, then for any v ∈Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤λM(A)‖v‖2. Then

‖`‖2 ≤ ‖y‖2

λm(C−1K + I)
= ‖y‖2

λm(K)
λM (C) +1

≤
p

nl

γg +1
.

The straightforward implication of Lemma 3 is that any 2 regularized harmonic solutions

can be bounded as in the following proposition:

Proposition 6. Let `o[t] be the predictions of the online HS, and `∗ be the predictions of the

offline HS. Then

1
n

n∑
t=1

(`o
t [t]−`∗[t])2 ≤ 4nl

(γg +1)2 · (5.10)

Proof: We use the fact that ‖ ·‖2 is an upper bound on ‖ ·‖∞. Therefore, for any t

(`o
t [t]−`∗t )2 ≤ ‖`o[t]−`∗‖2

∞ ≤ ‖`o[t]−`∗‖2
2

≤
(

2
p

nl

γg +1

)2

,

where in the last step we used Lemma 3 twice. By summing over n and dividing by n we

get (5.10).

From Proposition 6 we see that we can achieve convergence of the term (5.8) at the rate

of O(n−1/2) with γg =Ω(n1/4).

5.4.3 Bounding Quantization Error (5.9)

In this section, we show in Proposition 7 how to bound the error for the HS between the full

and quantized graph, and then use it to bound the difference between the online and online

quantized HS in (5.9). Let us consider the perturbed version of the problem (3.5), where we

replace the regularized Laplacian Ko with Kq; i.e., Kq corresponds to the regularized Lapla-

cian of the quantized graph. Let `o and `q minimize (3.5) and its perturbed version respec-

tively. Their closed-form solutions are given by `o = (C−1Ko + I)−1y and `q = (C−1Kq + I)−1y

respectively. We now follow the derivation of [Cortes et al., 2008] that derives stability co-

efficients for unconstrained regularization algorithms. Instead of considering perturbation
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on C, we consider the perturbation on Ko. Our goal is to derive a bound on a difference in

HS when we use Kq instead of Ko.

Lemma 4. Let `o and `q minimize (3.5) and its perturbed version respectively. Then

‖`q −`o‖2 ≤
p

nl

cuγ
2
g
‖Kq −Ko‖F .

Proof: Let Zq = C−1Kq + I and Zo = C−1Ko + I. By definition

`q −`o = (Zq)−1y− (Zo)−1y= (ZqZo)−1(Zo −Zq)y

= (ZqZo)−1C−1(Ko −Kq)y.

Using the eigenvalue inequalities from the proof of Lemma 3 we get

‖`q −`o‖2 ≤ λM(C−1)‖(Kq −Ko)y‖2

λm(Zq)λm(Zo)
. (5.11)

By the compatibility of || · ||F and || · ||2 and since y is zero on unlabeled points, we have

‖(Kq −Ko)y‖2 ≤ ‖Kq −Ko‖F · ‖y‖2 ≤p
nl‖Kq −Ko‖F .

Furthermore,

λm(Zo)≥ λm(Ko)
λM(C)

+1≥ γg and λM(C−1)≤ c−1
u ,

where cu is a small constant as defined in (3.5). By plugging these inequalities into (5.11)

we get the desired bound.

Proposition 7. Let `q
t [t] be the predictions of the online harmonic solution on the quantized

graph at the time step t and `o
t [t] be predictions of the online harmonic solution at the time

step t. Then
1
n

n∑
t=1

(`q
t [t]−`o

t [t])
2 ≤ nl

c2
uγ

4
g
‖Lq −Lo‖2

F . (5.12)
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Proof: Similarly as in Proposition 6, we get

(`q
t [t]−`o

t [t])
2 ≤ ‖`q[t]−`o‖2

∞ ≤ ‖`q[t]−`o‖2
2

≤
( p

nl

cuγ
2
g
||Kq −Ko||F

)2

,

where we used (5.11) the last step. We also note that

Kq −Ko = Lq +γgI − (Lo +γgI)= Lq −Lo,

which gives us (`q
t [t]−`o

t [t])
2 ≤ ‖Lq −Lo‖2

F ·nl /(c2
uγ

4
g). By summing over n and dividing by n

we get (5.12).

If ‖Lq −Lo‖2
F =O(1), the left-hand side of (5.12) converges to zero at the rate of O(n−1/2)

with γg =Ω(n1/8). We show this condition is achievable whenever the Laplacian is scaled

appropriately. Specifically, we demonstrate that normalized Laplacian achieves this bound

when the quantization is performed using incremental k-center clustering in Section 3.5,

and when the weight function obeys a Lipschitz condition (e.g. the Gaussian kernel). We

also show that this error goes to zero as the number of center points k goes to infinity.

Suppose the data {xi}i=1,...,n lie on a smooth d-dimensional compact manifold M with

boundary of bounded geometry as defined in Definition 11 (Manifold with boundary of

bounded geometry) in [Hein et al., 2007]. Intuitively, the manifold should not intersect

itself or fold back onto itself. We first demonstrate that the distortion introduced by quan-

tization is small, and then show that small distortion gives a small error in the Frobenius

norm.

Proposition 8. Using incremental k-center clustering for quantization has maximum dis-

tortion Rm/(m−1)=maxi=1,...,n ‖xi −c‖2 =O(k−1/d), where c is the closest centroid to xi.

Proof: Consider a sphere packing with k centers contained in M and each with radius r.

Since the manifold is compact and the boundary has bounded geometry, it has finite volume

V and finite surface area A. The maximum volume that the packing can occupy obeys the

inequality kcdrd ≤ V + AcM r for some constants cd, cM that only depend on the dimension

and the manifold. For a sufficiently large k, r will be smaller than the injectivity radius

of M [Hein et al., 2007]. Moreover, if k is sufficiently large, then r < 1, and we have an
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upper bound r < ((V + AcM )/(kcd))1/d = O(k−1/d). An r-packing is a 2r-covering, so we have

an upper bound on the distortion of the optimal k-centers solution. Since the incremental

k-centers algorithm is a (1+ ε)-approximation algorithm [Charikar et al., 1997], it follows

that the maximum distortion returned by the algorithm is Rm/(m−1)= 2(1+ε)O(k−1/d).

We now show that with appropriate normalization, the error ‖Lq −Lo‖2
F = O(k−2/d). If

Lq and Lo are normalized Laplacians, then this bound holds if the underlying density is

bounded away from 0. Note that since we use the Gaussian kernel, the Lipschitz condition

is satisfied.

Proposition 9. Let Wo
i j be a weight matrix constructed from {xi}i=1,...,n and a bounded, Lip-

schitz function ω(·, ·) with Lipschitz constant M. Let Do be the corresponding degree matrix

and Lo
i j = (Do

i j −Wo
i j)/c

o
i j be the normalized Laplacian. Suppose co

i j =
√

Do
iiD

o
j j > cminn for

some constant cmin > 0 that does not depend on k. Likewise define Wq,Lq,Dq on the quan-

tized points. Let the maximum distortion be Rm/(m − 1) = O(k−1/d). Then ‖Lq − Lo‖2
F =

O(k−2/d).

Proof: Since ω is Lipschitz, we have that |Wq
i j −Wo

i j| < 2MRm/(m − 1) and |cq
i j − co

i j| <
2nMRm/(m−1). The error of a single off-diagonal entry of the Laplacian matrix is

Lq
i j −Lo

i j =
Wq

i j

cq
i j

−
Wo

i j

co
i j

≤
Wq

i j −Wo
i j

cq
i j

+
Wq

i j(c
q
i j − co

i j)

co
i j c

q
i j

≤ 4MRm
(m−1)cminn

+ 4M(nMRm)
((m−1)cminn)2

=O
(

R
n

)
.

The error on the diagonal entries is 0 since the diagonal entries of Lq and Lo are all 1. Thus

‖Lq −Lo‖2
F ≤ n2O(R2/n2)=O(k−2/d).

Here we showed the asymptotic behavior ‖Lq −Lo‖F in term of the number of vertices

used in the quantized graph. In Section 6.1.5.1, we empirically show that ‖Lq −Lo‖F van-

ishes quickly as the number of vertices increases (Figure 15). Moreover, with a fixed number

of vertices, ‖Lq −Lo‖F quickly flattens out even when the data size (time) keeps increasing

(Figure 14).
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5.4.4 Discussion

Our goal in this section is to show how much of regularization γg is needed for the error

of our predictions to reasonably decrease over time. We point out that in Proposition 1 the

lower bound for γg for reasonable convergence is a function of nl labeled examples. On the

other hand, in Propositions 6 and 7 those lower bounds are the functions of all n examples.

In particular, Proposition 1 requires γg =Ω(n1+α
l ), α> 0 for the true risk not to be much

different from the empirical risk on the labeled points. Next, Propositions 6 and 7 require

γg =Ω(n1/4) and γg =Ω(n1/8), respectively, for the terms (5.8) and (5.9) to be O(n−1/2).

For many applications of online SSL, a small set of nl labeled example is given in ad-

vance, the rest of the examples are unlabeled. That means we usually expect n À nl . There-

fore, if we regard nl as a constant, we need to regularize as much as γg =Ω(n1/4). For such

a setting of γg we have that for n approaching infinity, the error of our predictions is getting

close to the empirical risk on labeled examples with the rate of O(n−1/2).

5.5 PARALLEL MULTI-MANIFOLD LEARNING

In this section we analyze the approximation proposed in Section 3.6, when instead of com-

puting the harmonic solution (HS) on the whole graph, we

1. decompose the graph into several smaller subgraphs,

2. compute the HSs on the smaller graphs in parallel, and

3. aggregate the partial HSs.

In the ideal case, the similarity matrix has a block-diagonal (BD) structure, which cor-

responds to the graph with disconnected components. In this case, such an approximation

is exact. Since the harmonic solution for n nodes of the graph has computational complexity

of O (n3), the time savings can be significant (Section 5.5).

In the rest of this section we analyze the general case, when the similarity matrix does

not have BD structure. Intuitively, the closer the similarity matrix resembles BD structure,

the smaller decrease in prediction accuracy we expect.
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Again, if similarity and its Laplacian are BD, then HS calculated per block and as a

whole are identical (even with the regularization), because it can be rewritten as solving

two independent systems of linear equations. On the other hand, an impurity of BD struc-

ture can change HS a lot (think of the case when we merge blocks with labeled examples

from different classes). We continue by extending the analysis in Section 5.4 and follow

Proposition 7:

Lemma 5. Let `o and `q minimize (3.5) and its perturbed version, respectively. Then

‖`q −`o‖2 ≤
p

nl

cuγ
2
g
‖Kq −Ko‖F .

The proof is in Section 5.4.3. The question now is how to bound ‖Kq −Ko‖F or ‖Lq −Lo‖F if

the same regularization is used. Let Lbd denote general block-diagonal approximation of Lq,

where the entries outside the BD structure are ignored (ie. are assumed to be zero). Then

‖Lbd −Lo‖F ≤ ‖Lbd −Lq‖F +‖Lq −Lo‖F . (5.13)

Let dmax be the value of the maximum entry in Kq, which is ignored when the approximation

is performed. In general, for a BD setting, we can have n2/2 to n2 ignored entries. Therefore,

n
√

dmax/2≤ ‖Lbd −Lq‖F ≤ n
√

dmax. (5.14)

This approximation adds a factor of Θ(n) to the quantization bound (Section 5.4.3). To

maintain the overall convergence of O(n−1/2) we need to have γg =Ω(n3/8), along with the

discussion in Section 5.4.4.

5.6 ANALYSIS OF CONDITIONAL ANOMALY DETECTION

In this part we show that the weighed k-NN is a special case of λ-RWCAD for λ = 0 and

n →∞. Rewriting (4.2) we get:

P(y 6= +1|xi)= 1

1+ P(xi |y=+1)P(y=+1)
P(xi |y=−1)P(y=−1)

(5.15)
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x

Figure 9: Estimating the likelihood ratio from a single graph

Let us estimate P(xi|y = +1)/P(xi|y = −1) – conditional likelihood – in (5.15) also from a

stationary distribution of a random walk shown in Figure 9, where we connect the node rep-

resenting xi with all examples in the training set (from all classes) and define the likelihood

ratio as the ratio between the time spent in the nodes with the respective labels:

P(xi|y=+1)
P(xi|y=−1)

= #T(y=+1)
#T(y=−1)

, (5.16)

where #T(y = c) is the time spent in the nodes of class c during the random walk. Let

W , W+, W− be the weight matrices for all, just the positive, and just the negative nodes,

respectively. Combining (5.16) and (3.1), we get:

P(xi|y=+1)
P(xi|y=−1)

=
∑

j W+
jxi∑

j W−
jxi

(5.17)

which is equal to the weighted k-NN method. Now, let T+ = vol(W+) and T− = vol(W−) be

the sums of all weights in W+ and W−. Moreover, let T+
xi

, T−
xi

be the total edge sums of

the respective graphs including the node xi. The conditional likelihood of the λ-RWCAD for

λ= 0 can be derived combining (4.2) and (3.1) to get:

P(xi|y=+1)
P(xi|y=−1)

=
∑

j W+
jxi∑

j W−
jxi

× T−
xi

T+
xi

(5.18)

Equations (5.17) and (5.18) are the conditional likelihoods for the weighted k-NN and RW-

CAD for λ = 0, respectively. Notice that as the number of nodes increases, T−
xi

/T+
xi

ap-

proaches T−/T+, which is a constant. Therefore, the influence of one node (xi) in the ratio

becomes negligible. In that case, both methods will yield comparable results.
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6.0 EXPERIMENTS

This chapter presents the set of experiments we performed for semi-supervised learning

(SSL) and conditional anomaly detection (CAD). We present our SSL results in Section 6.1

and our CAD results in Section 6.2. We start each of these sections with the descriptions of

the data. We used medical, vision, the UCI ML repository, and synthetic datasets.

6.1 EVALUATIONS OF SEMI-SUPERVISED LEARNING MODELS

In this section we evaluate the predictive performance of our graph-based model on semi-

supervised tasks. Our goal is to demonstrate that graph-based methods can yield predictors

that outperform the current state-of-the-art methods. We continue with the description of

the datasets we used.

6.1.1 UCI ML Datasets

In this part we describe the datasets from the UCI ML Repository [Asuncion and Newman,

2011] that we used to test our semi-supervised algorithms. We used Digit, Letter, and Image

segmentation as the benchmark datasets to compare our max-margin graph cuts to manifold

regularization of SVMs. Moreover, we used Digit and Letter, due to their small size, to

compare the performance of our online semi-supervised algorithm on quantized graphs to

the performance of a full offline non-quantized harmonic solution. Finally, we used COIL,

Car, and SecStr as the benchmark datasets for large scale semi-supervised learning, as

suggested by [Chapelle et al., 2006].
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6.1.1.1 Digit recognition This dataset was preprocessed by programs made available

by NIST to extract normalized bitmaps of handwritten digits from a preprinted form. From

a total of 43 people, 30 contributed to the training set and the remaining 13 contributed to

the test set. 32x32 bitmaps are divided into non-overlapping blocks of 4x4, and the number

of on pixels are counted in each block. This generates an input matrix of 8x8, where each

element is an integer in the range 0–16. This reduces dimensionality and gives invariance

to small distortions.

6.1.1.2 Letter recognition The objective is to identify each of a large number of black-

and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet.

The character images were based on 20 different fonts and each letter within these 20 fonts

was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was con-

verted into 16 primitive numerical attributes (statistical moments and edge counts), which

were then scaled to fit into a range of integer values from 0 through 15.

6.1.1.3 Image segmentation The Segmentation dataset, created in 1990 by the Vision

Group, University of Massachusetts, consists of 2310 instances. Each instance was drawn

randomly from a database of seven outdoor images. The image, a 3×3 region, was hand-

segmented to create a classification for each pixel. The seven classes are brickface, sky,

foliage, cement, window, path, and grass. Each of the 7 images is represented by 330 in-

stances. The extracted features are 19 continuous attributes that describe the position of

extracted image, line densities, edges, and color values.

6.1.1.4 COIL The Columbia object image library (COIL-100) is a set of color images of

100 different objects taken from different angles (in steps of 5 degrees) at a resolution of

128×128 pixels [Nene et al., 1996]. We use the binary version of this dataset as preprocessed

by [Chapelle et al., 2006].

6.1.1.5 Car The Car evaluation data set classifies cars into four categories using 6 fea-

tures including buying price, number of doors, etc. We converted the Car dataset into a
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binary problem to classify first two vs. the second two car categories.

6.1.1.6 SecStr The SecStr is a benchmark data set designed by [Chapelle et al., 2006]

to investigate how far current methods can cope with large-scale application. The task is

to predict the secondary structure of a given amino acid in a protein, based on a sequence

window centered around that amino acid.

For the multi-class datasets we sometimes transformed them into a set of binary problems.

6.1.2 Vision Datasets

In this section, we describe several face recognition datasets that we recorded to evaluate

the performance of online semi-supervised learning algorithms on noisy real world data that

involve outliers.

The environment adaptation dataset consists of faces of a single person, which are cap-

tured at various locations, such as a cubicle, a conference room, and a corner with a couch

(Figure 10). The first four faces in the cubicle are labeled, and we want to learn a face recog-

nizer for all locations. To test the sensitivity of the recognizer to outliers, we augmented the

dataset with random faces. The office space dataset (Figure 10) is multi-class and involves

8 people who walk in front of a camera and make funny faces. When a person shows up on

the camera for the first time, we label four faces of the person. Our goal is to learn good face

recognizers for all 8 people.

Another vision dataset is a face-based authentication dataset of 16 people (Figure 11).

The people try to log into a tablet PC with their face, while being recorded by its embedded

camera. The data are collected at 10 indoor locations, which differ by backgrounds and

lighting conditions. In short, we recorded 20 10-second videos per person, each at 10 fps.

Therefore, our face-based authentication dataset contains a total of 16×20= 32000 images.

Faces in the images are detected using OpenCV [Bradski, 2000], converted to grayscale,

resized to 96×96, smoothed using the 3×3 Gaussian kernel, and equalized by the histogram

of their pixel intensities.

66



Office space

Environment adaptation

Figure 10: Snapshots from the environment adaptation and office space datasets

6.1.3 Max-margin Graph Cuts Experiments

The experiments with max-margin graph cuts are divided into two parts. The first part

compares max-margin graph cuts to manifold regularization of SVMs on the problem from

Figure 3. The second part compares max-margin graph cuts, manifold regularization of

SVMs, and supervised learning with SVMs on three UCI ML repository datasets [Asuncion

and Newman, 2011]. Manifold regularization of SVMs is evaluated based on the implemen-

tation of [Belkin et al., 2006]. Max-margin graph cuts and SVMs are implemented using

LIBSVM [Chang and Lin, 2001].

6.1.3.1 Synthetic problem The first experiment (Figure 7) illustrates linear, cubic, and

RBF graph cuts (3.7) on the synthetic problem from Figure 3. The cuts are shown for various

settings of the regularization parameter γg. As γg decreases, note that the cuts gradually

interpolate between supervised learning on just two labeled examples and semi-supervised

learning on all data. The resulting discriminators are max-margin decision boundaries that

separate the corresponding colored regions in Figure 3.

Figure 7 also shows that the manifold regularization of SVMs (2.2) with linear and cubic

kernels cannot perfectly separate the two clusters in Figure 3 for any setting of the parame-

ter γu. The reason for this problem is discussed in Section 5.2.1. Finally, note the similarity

between max-margin graph cuts and manifold regularization of SVMs with the RBF kernel.
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Figure 11: Face-based authentication dataset (left) and examples of labeled faces (right)

This similarity was suggested in Section 2.2.1.2.

Misclassification errors [%]
Dataset L Linear kernel Cubic kernel RBF kernel

SVM MR GC SVM MR GC SVM MR GC
1 18.90 30.94 15.79 20.54 25.96 17.45 20.06 17.61 16.01

Letter 2 12.92 28.45 10.79 12.18 18.34 10.90 13.52 13.10 11.83
recognition 5 8.21 27.13 5.65 5.49 18.77 4.80 6.81 8.06 5.65

10 6.51 25.45 3.96 4.17 14.03 2.96 4.95 6.14 3.32
1 7.06 9.59 6.88 9.62 5.29 8.55 8.22 6.36 7.65

Digit 2 4.87 7.97 4.60 6.06 5.06 5.09 6.17 4.21 5.61
recognition 5 2.97 3.68 2.29 3.04 2.27 2.36 2.74 2.29 2.19

10 1.70 2.86 1.59 1.87 1.60 1.74 1.68 1.75 1.35
1 14.02 11.81 10.27 23.30 12.02 14.10 14.02 11.60 9.51

Image 2 8.54 10.87 7.69 14.28 13.07 7.73 9.06 8.93 7.34
segmentation 5 4.73 7.83 4.49 8.32 8.79 7.17 5.87 5.43 5.31

10 3.30 6.26 3.28 3.65 6.64 3.60 3.84 4.81 3.73

Figure 12: Comparison of SVMs, GC and MR on 3 datasets from the UCI ML repository

6.1.3.2 UCI ML repository datasets The second experiment (Figure 12) shows that

max-margin graph cuts (3.7) typically outperform manifold regularization of SVMs (2.2)

and supervised learning with SVMs. In particular it shows the comparison of SVMs, max-

margin graph cuts (GC), and manifold regularization of SVMs (MR) on three datasets from

the UCI ML repository. The fraction of labeled examples L varies from 1 to 10 percent.
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The experiment is done on three UCI ML repository datasets: letter recognition, digit

recognition, and image segmentation. The datasets are multi-class and thus, we transform

each of them into a set of binary classification problems. The digit recognition and image

segmentation datasets are converted into 45 and 15 problems, respectively, where all classes

are discriminated against every other class. The letter recognition dataset is turned into 25

problems that involve pairs of consecutive letters. Each dataset is divided into three folds.

The first fold is used for training, the second one for selecting the parameters γ∈[0.01,0.1]nl ,

γu∈[10−3,103]γ, and γg = γ/γu, and the last fold is used for testing.1 The fraction of labeled

examples in the training set is varied from 1 to 10 percent. All examples in the validation

set are labeled, and its size is limited to the number of labeled examples in the training set.

In all experiments, we use 5-nearest neighbor graphs whose edges are weighted as wi j =
exp[−∥∥xi −x j

∥∥2
2 /(2Kσ2)], where K is the number of features, and σ denotes the mean of their

standard deviations. The width of radial basis functions (RBFs) is set accordingly to
p

Kσ,

and the threshold ε for choosing training examples (3.7) is 10−6.

The test errors of all compared algorithms are averaged over all binary problems within

each dataset and shown in Figure 12. Max-margin graph cuts outperform manifold reg-

ularization of SVMs in 29 out of 36 experiments. Note that the lowest errors are usually

obtained for linear and cubic kernels, and our method improves the most over manifold

regularization of SVMs in these settings.

6.1.4 Joint Quantization and Label Propagation Experiments

In this part, we evaluate the method we proposed in Section 3.4 that combines the creation

of a backbone graph with label propagation. The benefit of our algorithm comes when the

data lies on a low dimensional manifold. In this section, we show the 2 data sets when

this is the case. For data sets without a manifold structure or for the data sets where a

cluster assumption holds, the performance of our method is comparable to the case when

k-means is used as a preprocessing step. We compare our algorithm to several quantization

approaches:

1Alternatively, the regularization parameters γ, γu, and γg can be set using leave-one-out cross-validation
on labeled examples.
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1. random subsampling: We randomly sample k examples from the unlabeled data. Then

we apply SSL method on the selected samples.

2. k-means: We cluster the unlabeled data using k-means [Hastie et al., 2001] to get k

cluster centers and then apply SSL algorithms to get their labels.

3. elastic nets: We use elastic net [Gorban and Zinovyev, 2009] as a preprocessing to get k

cluster centers. We then apply SSL to get their labels.

4. elastic-joint: We apply the proposed algorithm in this dissertation to get both the cen-

troids and their labels.

5. full-soft: We apply SSL algorithm on the full set of examples as a reference point.

After obtaining the labels of the centroids using items 1-4 above, we apply the approximation

in Section 3.4.3 to get the labels for unlabeled examples.

6.1.4.1 Experimental setup We use a small subset of examples as labeled examples.

To see the sensitivity of the method on a different number of labeled examples, we try m =
2,10,20, and 50 as the number of labeled examples. To allow for the fair comparison between

the methods, we run all the algorithms on the same set of labeled examples. Moreover, all

the approximation methods are initialized with the same cluster centers (seeds) as the ones

that were drawn by random subsampling.

Finally, we fix all the parameters for the semi-supervised prediction in Equation (3.5) to

the same settings as follows. We create a 3-nearest neighbors similarity graph, and we use

the Gaussian kernel with the kernel width σ equal to 10% of the standard deviation of the

distances as suggested in [Luxburg, 2007].

For each of the methods we compute the regularized graph Laplacian, where we add

γg = 10−6 to the diagonal. For the diagonal matrix F of empirical weights we set f l = 10 for

the labeled and fu = 0.1 for the unlabeled examples. We set parameter γq in our method to

105. Finally, we vary the number of cluster centers as k = 15,20,25,30,60, and 90.

6.1.4.2 Results The results are shown in Figure 13 for the varying number of labeled

examples m and centroids k. Error bars show the 95% confidence intervals over 50 runs.
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The 5 compared methods are 1) subsample — random subsampling, 2) k-means as a pre-

processing, 3) our method: elastic-joint, 4) elastic net as a preprocessing, and 5) full soft —

harmonic solution using all unlabeled examples to create the full graph. For the Car dataset

and m = 2 unlabeled examples, our method outperforms the other baselines for the different

number of cluster centers up to k = 60, where all the methods achieved the performance of

the full non-approximated graph. For m = 10,20, and 50, all the subsampling methods are

comparable. For the COIL dataset, m = 2 of labeled examples was not sufficient for learn-

ing, as the classes are perfectly balanced and all the methods produced a trivial classifier

comparable to a random one, including the SSL on the full graph with all the examples.

For m = 10,20, and 50, our method significantly outperforms all the other approximation

methods. The result for SecStr (Figure 4) is similar for all the baselines. We utilize this

data set to show the time complexity of different methods. Notice that the same observation

and setup is used in [Chapelle et al., 2006].

6.1.5 Online Quantized SSL Experiments

The experimental section is divided into two parts. In the first part, we evaluate our online

learner (Figure 2) on UCI ML repository datasets (Section 6.1.1). In the second part, we ap-

ply our learner to solve two face recognition problems. In all experiments, the multiplicative

parameter m of the k-centers algorithm is set to 1.5 .

6.1.5.1 UCI ML Repository Experiments In the first experiment, we study the online

quantization error
∥∥Lq

t −Lo
t
∥∥

F and its relation to the HS on the quantized graphs Wq
t . This

experiment is performed on two datasets from the UCI ML repository: letter and optical

digit recognition. The datasets are converted into a set of binary problems, where each

class is discriminated against every other class. The similarity weights are computed as

wi j = exp[−∥∥xi −x j
∥∥2

2 /(2pσ2)], where p is the number of features and σ denotes the mean

of their standard deviations. Our results are averaged over 10 problems from each dataset

and shown in Figures 14 and 15.

In Figure 14, we fix the number of centroids at k = 200 and study how the quality of
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Figure 13: Coil and Car datasets from UCI ML Repository
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Figure 14: UCI ML: Quality of approximation as a function of time

our solution changes with the learning time t. The upper plots show the difference between

the normalized Laplacian Lo
t and its approximation Lq

t at time t. The bottom plots show

the cumulative accuracy of the harmonic solutions on W (light gray lines), Wo
t (dark gray

lines), and Wq
t (black lines) for various times t. Two trends are apparent. First, as time

t increases, the error
∥∥Lq

t −Lo
t
∥∥

F slowly levels off. Second, the accuracy of the harmonic

solutions on Wq
t changes little with t. These trends indicate that a fixed number of centroids

k may be sufficient for quantizing similarity graphs that grow with time. In Figure 15,

we fix the learning time at t = n and vary the number of centroids k. The upper plots

show the difference between the normalized Laplacian L and its approximation Lq
n. The

difference is plotted as a function of the number of centroids k. The bottom plots compare

the cumulative accuracy of the harmonic solutions up to time n on W (light gray lines), Wo
t

(dark gray lines), and Wq
t (black lines). Note that as k increases, the quantization error

decreases and the quality of the solutions on Wq
t improves. This trend is consistent with the

theoretical results in our work (Section 5.4.3).

6.1.5.2 Face recognition In the second experiment, we evaluate our learner on 2 face

recognition datasets: office space and environment adaptation. (Section 6.1.2).
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Figure 15: UCI ML: Quality of approximation as a function of number of centroids

The similarity of faces xi and x j is computed as wi j =exp
[−d(xi,x j)2/2σ2], where σ is

a heat parameter, which is set to σ = 0.025, and d(xi,x j) is the distance of the faces in

the feature space. To make the graph W sparse, we treat it as an ε-neighborhood graph

and set wi j to 0 when wi j < ε. The scalar ε is set as ε = 0.1γg. As a result, the lower the

regularization parameter γg, the higher the number of edges in the graph W and our learner

extrapolates to more unlabeled examples. If an example is disconnected from the rest of the

graph W , we treat it as an outlier and neither predict the label of the example, nor use it to

update the quantized graph. This setup makes our algorithm robust to outliers and allows

for controlling its precision and recall by a single parameter γg. In the rest of the section,

the number of centroids k is fixed at 500. More details are provided in Section 6.1.3.2.

In Figure 16, we compare our online algorithm to online semi-supervised boosting [Grab-

ner et al., 2008] and a k-NN classifier, which is trained on all labeled faces. The recognizers

are trained by a NN classifier (gray lines with circles), online semi-supervised boosting (thin

gray lines), and our online learner (black lines with diamonds). The plots are generated by

varying the parameters ε and γg. From left to right, the points on the plots correspond to

decreasing values of the parameters. Online semi-supervised boosting is performed on 500

weak NN learners, which are sampled at random from the whole environment adaptation
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Figure 16: Comparison of 3 face recognizers on 2 face recognition datasets

dataset (solid line), and its first and last quarters (dashed line). The algorithm of [Grab-

ner et al., 2008] is modified to allow for a fair comparison to our method. First, all weak

learners have the nearest neighbor form hi(xt) = 1{wit ≥ ε}, where ε is the radius of the

neighborhood. Second, outliers are modeled implicitly. The new algorithm learns a regres-

sor H(xt) = ∑
iαihi(xt), which yields H(xt)=0 for outliers and H(xt)>0 when the detected

face is recognized.

Figure 16a clearly shows that our learner is better than the nearest neighbor classifier.

Furthermore, note that online semi-supervised boosting yields results as good as our method

when given a good set of weak learners. However, future data are rarely known in advance,

and when the weak learners are chosen using only a part of the dataset, the quality of the

boosted results degrades significantly (Figure 16a). In comparison, our algorithm constantly

adapts its representation of the world. How to incorporate a similar adaptation step in

online semi-supervised boosting is not obvious.

In Figure 16b, we evaluate our learner on an 8-class face recognition problem. Despite

the fact that only 4 faces of each person are labeled, we can identify people with 95 per-

cent precision and 90 percent recall. In general, our precision is 10 percent higher than the

precision of the NN classifier at the same recall level.

75



Figure 17: Speedups in the total, inference, and similarity computation times

6.1.6 Parallel SSL

In this experiment, we demonstrate how to speed up the online HS on a graph using an ad-

ditional structure and parallelization (Section 3.6). Therefore, we perform our experiments

on an Intel Xeon workstation with six cores. The experimental setup is the same as in Sec-

tion 6.1.5. The number of labeled examples used for training models of Person 1 and 13

(from Figure 11) is 5 and 6, respectively. Figure 17 reports speedups due to decomposing

the online HFS on 300 vertices into nl smaller graphs of 50 vertices. The plots correspond

to Person 1 (red lines) and 13 (blue lines) in our dataset. The diamonds and circles mark

speedups that are obtained by the decomposition alone. We observe two main trends. First,

the decomposition alone yields a modest speedup of 35% on average. The speedup is due

to 15 times faster inference, which is a result of solving nl smaller systems of linear equa-

tions, each with 50 variables, instead of a bigger one with 300. Second, we parallelize the

online HS on the nl smaller graphs using OpenMP [OpenMP, 2008]. The problem is trivially

parallelizable because the graphs can be updated independently. Figure 17 shows that as

the number of used cores increases, the online HFS can be sped up more than two times on

average. The speedup is due to parallelizing the computation of similarities wi j , which at

this point consumes much more time than inference. Finally, note that the proposed decom-
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position has almost no impact on the quality of our solutions. For Person 1 and Person 13,

the loss in accuracy is 2.5% and 1%, respectively.

6.1.7 Conclusions

In this section, we have evaluated our algorithms for the semi-supervised learning tasks.

Max-margin graph cuts algorithm learns max-margin graph cuts that are conditioned on the

labels induced by the harmonic function solution. The approach is evaluated on a synthetic

problem and three UCI ML repository datasets, and we have showed that it usually out-

performs manifold regularization of SVMs. Next, we have evaluated our joint optimization

approach for graph quantization and label propagation. We have experimentally showed

that this approach can lead to a significant gain in classification accuracy over the compet-

ing quantization approaches. In the online SSL experiments we approximated a similarity

graph for a harmonic solution. This algorithm significantly reduces the expense of the ma-

trix computation in the harmonic solution, while retaining good control on the classification

accuracy. Our evaluation shows that a significant speedup for semi-supervised learning can

be achieved with little degradation in classification accuracy. We have further approximated

the computation by decomposing the graph into several smaller graphs, thereby performing

parallel multi-manifold learning. With such a decomposition we were able to speed up the

computation even more with almost no loss in accuracy.

6.2 EVALUATIONS OF CONDITIONAL ANOMALY DETECTION METHODS

In this section we present the experiments using the CAD methods from Chapter 4. In all

our experiments, we focus on the conditional anomalies in the class labels with respect to

the features. In general, in the whole field of anomaly detection and in medical domain es-

pecially, the evaluation is extremely challenging. Most of time, it is subjective. The most ve-

racious evaluations would have human experts judging the goodness of the methods. Since

this is a very expensive way, most researchers resort to some surrogate measures. In the
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area of mislabel detection, the most common surrogate measure is to change the labels of

a fraction of the dataset and observe how many of those were detected as mislabeled. The

problem with this measure is that the anomalies in the real life datasets are really sam-

pled randomly. We describe the data we use in Sections 6.2.1 and 6.2.2 and the algorithms

we use for the comparison in Section 6.2.3. We then provide two kinds of evaluations: the

evaluation when the ground truth is known or can be computed (Section 6.2.4) and then the

evaluation with human experts (Section 6.2.5).

6.2.1 Synthetic Datasets

We use two synthetic datasets for the evaluation of conditional anomaly detection methods

where we know or can compute the true conditional anomaly score.

6.2.1.1 Core dataset Inspired by [Papadimitriou and Faloutsos, 2003], we generate a

synthetic Core dataset, which consists of two overlapping squares from two uniform distri-

butions. We extend this dataset with two tiny squares (Figure 23, top left). These 2 tiny

squares may be considered anomalous, but not conditionally anomalous. The goal is to de-

tect 12 conditional anomalies that are located in the middle square (Figure 23, top middle).

We also use this dataset to demonstrate the challenges for conditional anomaly detectors,

namely fringe and isolated points.

6.2.1.2 Mixtures of gaussians We generated three synthetic datasets (D1, D2, and D3)

with known underlying distributions that let us compute the true anomaly scores.

We show the three datasets we used in our experiments in Figure 18. Each dataset

consists of an equal number of samples from the class +1 and class −1. The class densities

we use to generate these datasets are modeled with mixtures of multivariate Gaussians and

vary in locations, shapes, and mutual overlaps.
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Figure 18: The three synthetic datasets with known underlying distributions

6.2.2 Post-surgical cardiac patients (PCP)

For the evaluation of our conditional anomaly detection methods on the real world med-

ical data, we use the post-surgical cardiac patients (PCP) dataset. PCP is a database of

de-identified records for 4486 post-surgical cardiac patients treated at one of the Univer-

sity of Pittsburgh Medical Center (UPMC) teaching hospitals. The entries in the database

were populated from data from the MARS2 system, which serves as an archive for much of

the data collected at UPMC. The records for individual patients include discharge records,

demographics, progress notes, all labs and tests (including standard and all special tests),

two medication databases, microbiology labs, EKG, radiology and special procedures re-

ports, and a financial charges database. The data in the PCP database were cleaned, cross-

mapped, and stored in a local MySQL database with protected access. The cohort of the

patient data we use in this dissertation consists of 4486 patients that underwent cardiac

surgery from 2002 to 2007. The database is very heterogeneous and has many variables in

different formats. It has also a fair amount of missing data.

The EHRs were first divided into two groups: a training set that included 2646 patients,

and a test set that included 1840 patients. We use the time-stamped data in each EHR

to segment the record at 8:00am every day to obtain multiple patient case instances, as

2MARS stands for Medical Archival System, and it is a medical record system that has been storing clinical
and financial information from UMPC since 1980.

79



Dataset 

  

 

 

 

 

 

 

 

 

 

8:00                8:00                  8:00                 8:00 

 Case A 

 Case A-1 

 Case A-2 

 Case A-3 

actions 

actions 

actions 

EHR 

Patient instances 

Vector of patient state 
features 

Vector of patient 
management decisions 

Vector space 
representation of 
patient instances 

Figure 19: Processing of data in the electronic health record

illustrated in Figure 19: 1) segmentation of an EHR into multiple patient-state/decision

instances, and 2) transformation of these instances into a vector space representation of

patient states and their follow-up decisions. The segmentation led to 51,492 patient-state

instances, such that 30,828 were used for training the model, and 20,664 were used in the

evaluation.

To represent a patient state we adopt a vector space representation that is suitable for

machine learning approaches. In this representation a patient state is represented by a

set of features characterizing the patient at a specific point in time and their corresponding

feature values. Features represent and summarize the information in the medical record

such as last blood glucose measurement, last glucose trend, or the time the patient is on

heparin.

The features used in our experiment were generated from a time series associated with

different clinical variables, such as blood glucose measurement, platelet measurement, and

Amiodarone medication. The clinical variables used in this study were from the following

five sources:

1. Laboratory tests (LABs)

2. Medications (MEDs)
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3. Visit features/demographics

4. Procedures

5. Heart support devices

Altogether, our dataset consists of 9,223 different features. We now briefly describe the

features generated for clinical variables in each of these categories.

6.2.2.1 Visit/Demographic Features We only have 3 features in this category: age, sex

and race. These are static and the same for every time point we generate.

6.2.2.2 Lab features For the categorical labs, for example the ones with POS/NEG re-

sults, we use the following features: last value, second to last value, first value, time since

the last order, is the order pending, is the value known, and is the trend known. For the

labs with continuous or ordinal values we use a richer set of features, including features

as difference between the last two values, the slope of last 2 values, and their percentage

drop/increase. We use the same kind of features for the following pairs of lab values: (last

value, first value), (last value, nadir value), and (last value, horizon value). Nadir and hori-

zon values are the lab values with the smallest and the greatest value recorded up to that

point. Figure 20 illustrates a subset of features generated for labs with continuous values.

The total number of features generated for such a lab is 28. Some of the features here that

can be derived from Figure 20 are:

• Last value: A

• Last value difference = B-A

• Last percentage change = (B-A)/B

• Last slope = (B-A) / (tB-tA)

• Nadir = D

• Nadir difference = A-D

• Nadir percentage difference = (A-D)/D

• Baseline = F

• Drop from baseline = F-A
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Figure 20: Examples of temporal features for continuous lab values

• Percentage drop from baseline = (F-A)/F

• 24 hour average = (A+B)/2

6.2.2.3 Medication features For each medication we used four features: 1) an indicator

if the patient is currently on the medication, 2) the time since the patient was first put on

that medication, 3) the time since the patient was last on that medication, and 4) the time

since last change in the order of the medication.

6.2.2.4 Procedure features The procedure features capture the information about pro-

cedures, such as Heart valve repair, that were performed either in operating room (OR) or

at the bedside. In our data we distinguish 36 different procedures that are performed on

cardiac patients. We record four features per procedure: 1) the time since the procedure was

done the last time 2) the time since the procedure was done the first time 3) an indicator of

whether the procedure was done in the last 24 hours and 4) an indicator of if the procedure

was done.

6.2.2.5 Heart support device features Finally, we describe the status of 4 different

heart support devices: an extra-corporeal membrane oxygenation (ECMO), a balloon counter
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pulsation, a pacemaker, and other heart assist devices. For each of them we record a single

feature which describes whether the device is currently used to support the patient’s heart

function.

6.2.2.6 Orders/labels Labels in this case correspond to patient-management decisions.

In addition to feature generation, every patient-state example in the dataset that was gen-

erated by the above segmentation process was linked to lab order decisions and medication

decisions that were made for the patient within next 24 hours. Patient management deci-

sions considered were:

• lab order decisions with (true/false) values reflecting whether the lab was ordered within

the next 24 hours or not

• medication decisions with (true/false) values reflecting if the patient was given a medi-

cation within the next 24 hours or not.

A total of 335 lab order decisions and 407 medication decisions were recorded and linked to

every patient-state example in the dataset.

6.2.3 Algorithms for Comparison

In this section we review the CAD algorithms chosen for the comparison with our CAD

methods.

6.2.3.1 Discriminative SVM anomaly detection For the baseline method we use an

SVM based method [Valko et al., 2008, Hauskrecht et al., 2010], that computes an anomaly

score from the distance from the hyperplane. SVM [Vapnik, 1995, Burges, 1998] is a dis-

criminative method that learns the decision boundary as

wTx+w0 =
∑

i∈SV
α̂i yi(xT

i x)+w0,

where only samples in the support vector set (SV ) contribute to the computation of the deci-

sion boundary. To support classification tasks, the projection defining the decision boundary
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is used to determine the class of a new example. That is, if the value

wTx+w0 ≥ 0

is positive, then C(x) belong to one class, but if it is negative it belongs to the other class.

However, for conditional anomaly detection we use the projection itself for the positive class

and the negated projection for the negative class to measure the deviation:

d(y|x)= y(wTx+w0), where y ∈ {−1,1}

In other words, the smaller the projection is the more likely the example is anomalous. We

note that the negative projections correspond to misclassified examples.

6.2.3.2 One-class SVM As an example of a classical anomaly detection method con-

verted to the CAD method we compare to the one-class SVM [Manevitz and Yousef, 2002].

Originally proposed in [Scholkopf et al., 1999], the method only needs positive examples to

learn the margin. The idea is that the space origin (zero) is treated as the only example

of the ‘negative’ class. In that way the learning essentially estimates the support of the

distribution. The data that do not fall into this support have negative projections and can

be considered anomalous. In our scenario, we will learn one one-class SVM for each of the

classes and based on the test label (which is known) we calculate the anomaly score. The

more negative the score the higher the rank of the anomaly.

6.2.3.3 Quadratic discriminant analysis In the quadratic discriminant analysis (QDA)

model [Hastie et al., 2001], we model each class by a multivariate Gaussian, and the anomaly

score is the class posterior of the opposite class.

6.2.3.4 Weighted NN We also use the weighted k-NN approach [Hastie et al., 2001]

that uses the same weight metric W as SoftHAD, but relies on only on the labels in the local

neighborhood and does not account for the manifold structure.
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Figure 21: The weight matrix for 100 negative and 100 positive cases of HPF4 order

6.2.3.5 Parameters for the graph-based algorithms The similarity weights are com-

puted as

wi j = exp

[
−
||xi −x j||22,ψ

pσ2

]
,

where p is the number of features and ψ= (p×1) is a weighing of the features based on their

discriminative power. Including p in the weight metric allows us to control the connectivity

of the graph. Next, σ is chosen so that the graph is reasonably sparse [Luxburg, 2007]. We

follow [Valizadegan and Tan, 2007] and chose σ as 10% of the mean of empirical standard

deviations of all features. Based on the experiments, our algorithm is not sensitive to the

small perturbations of σ; what is important is that the graph does not become disconnected

by having all edges of several nodes with weights close to zero.

For the feature weights ψ for PCP data we used the univariate Wilcoxon (ROC) score

[Hanley and Mcneil, 1982], which is typically used for medical data [Hauskrecht et al.,

2006]. Since this score ranges from 0.5 to 1, we modify the score by subtracting 0.5 and

raising it to a power of 5 to make the differences between the weights larger. We use to

same metric for the weighted NN anomaly detection from Section 5.6. We vary the regular-

ization parameter as λ ∈ {10−5,10−9, . . . ,105}. Figure 21 illustrates this metric on a binary

classification task for the heparin induced thrombocytopenia (a life threatening condition

that may occur with prolonged heparin treatments). One hundred negative and one hun-
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dred positive cases and their mutual similarities are shown. We can see that the positive

cases are much closer to each other (bottom right part in Figure 21) than the negatives. For

the other datasets, we used a uniform ψ for all features.

6.2.4 Evaluation of CAD with Known Ground Truth

6.2.4.1 CAD on synthetic datasets with known distribution The evaluation of a

CAD is a very challenging task when the true model is not known. Therefore, we first eval-

uate and compare the results of different CAD methods on three synthetic datasets (D1, D2,

and D3) with known underlying distributions that let us compute the true anomaly scores

(Section 6.2.1.2). Then, we show the advantage of regularizing a discriminative approach

on a synthetic dataset. We will use a 2D synthetic dataset, where we can demonstrate the

ability to tackle fringe and isolated points as described in Section 4.6.

For each experiment we sample the datasets 10 times. After the sampling, we randomly

switch the class labels for three percent of examples. We then calculate the true anomaly

score as P(y 6= yi|xi), reflecting how anomalous the label of the example is with respect to

the true model.

Each of the methods outputs a score which orders the examples according to the belief

of the anomalous labeling. For each of the CAD methods, we assess how much this ordering

is consistent with the ordering of the true anomaly score. In particular, we calculated the

area under the receiver operating characteristic (AUROC), which is inversely proportional

to the number of swaps between the ordering induced by the evaluated method and the true

ordering.

Table 1 compares the AUROCs of the experiment for all methods for 1000 samples per

dataset. The results demonstrate that our λ-RWCAD method outperforms the weighted

k-NN, the one-class SVM, and the discriminative SVM with the RBF kernel3, and it is

comparable to our label propagation SoftHAD algorithm on D2 and D3. SoftHAD seems to

be the best choice overall because it takes advantage of both local and global consistency.

However, it is computationally more expensive.

3We also evaluated the linear versions of SVM and the one-class SVM, but the results were inferior to the
ones with the RBF kernel.
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Dataset D1 Dataset D2 Dataset D3

SVM RBF 58.4% (7.4) 49.3% (2.1) 51.7% (1.9)

1cSVM RBF 51.5% (0.8) 47.4% (0.6) 59.1% (0.6)

SoftHAD 82.8% (1.3) 63.9% (2.3) 63.5% (3.3)

weighted k-NN 64.3% (2.2) 45.6% (1.6) 62.5% (1.5)

λ-RWCAD 64.7% (0.8) 68.9% (1.1) 67.4% (1.9)

Table 1: Mean anomaly AUROC and variance on three synthetic datasets

In the next experiment we evaluate the scalability of the graph-based methods as we

increase the number of examples. All of the graph methods were given the same graph

(with the same weight matrix). Figure 22 compares the running times of these algorithms.

We see that while the running time of the SoftHAD algorithm becomes prohibitive once the

number of examples gets into thousands, our algorithm scales similarly to the k-NN method.

Figure 22 also shows the time spent in constructing the graph from the data, which is the

same among all the graph-based methods. Observe that both the weighted k-NN and our

λ-RWCAD algorithm take very little time over the necessary graph construction time to do

their calculations.

6.2.4.2 CAD on UCI ML datasets with ordinal response variable We also evaluated

our method on the three UCI ML datasets [Asuncion and Newman, 2011], for which an or-

dinal response variable was available to calculate the true anomaly score. In particular, we

selected 1) Wine Quality dataset with the response variable quality, 2) Housing dataset with

the response variable median value of owner-occupied homes, and 3) Auto MPG dataset the

response variable miles per gallon. In each of the datasets we scaled the response variable yr

to the [−1,+1] interval and set the class label as y := yr ≥ 0. As with the synthetic datasets,

we randomly switched the class labels for three percent of examples. The true anomaly score

was computed as the absolute difference between the original response variable yr and the
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Figure 22: Computation time comparison for the three graph-based methods

(possibly switched) label. Table 2 compares the agreement scores (over 100 runs) to the true

score for all methods on (2/3, 1/3) train-test split. The results in bold show when a method

significantly outperforms the rest. Again, we see that SoftHAD either performed the best or

was close to the best method.

Wine Quality Housing Auto MPG

QDA 75.1% (1.3) 56.7% (1.5) 65.9% (2.9)

SVM 75.0% (9.3) 58.5% (4.4) 37.1% (8.6)

one-class SVM 44.2% (1.9) 27.2% (0.5) 50.1% (3.5)

weighted k-NN 67.6% (1.4) 44.4% (2.0) 61.4% (2.3)

SoftHAD 74.5% (1.5) 71.3% (3.2) 72.6% (1.7)

Table 2: Mean anomaly agreement score and variance on 3 UCI ML datasets
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Figure 23: Conditional anomaly detection on a synthetic Core dataset

6.2.4.3 CAD on Core dataset with fringe points In this part we tested our CAD

method on the synthetic Core dataset (Section 6.2.1.1). Besides the one-class SVM (Sec-

tion 6.2.3.2), we also compared to the weighted k-NN described in Section 5.6 and to the

cross-outlier method [Papadimitriou and Faloutsos, 2003] described in Section 2.3.2.

In Figure 23, the training data consists of a bigger square of 100 uniformly distributed

points (blue ‘x’), a smaller square of 50 uniformly distributed points (red ‘+’), and 2 small

groups of points (3 points from each class). The testing dataset is twice as big sampled from

the same distribution. The big black dots display true conditional anomalies and the top

12 highest ranked conditional anomalies for 1) our λ-RWCAD method, 2) the discriminative

SVM anomaly detection, 3) the weighted k–NN, and 4) the one-class SVM learned for both

of the classes.

The cross-outlier method [Papadimitriou and Faloutsos, 2003] was able to find all of the

conditional anomalies in the middle square, but also declared many fringe points (points

at the outer boundary of the bigger square) as anomalous (see Figure 2, middle row in
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[Papadimitriou and Faloutsos, 2003]). Although the authors claim that the fringe points are

‘clearly different from the rest of the points’ [Papadimitriou and Faloutsos, 2003], we prefer

methods that only find anomalously labeled instances.

In Figure 23, we also show the top 12 highest scored anomalies from the 4 competing

methods. The discriminative SVM anomaly detection (Figure 23, bottom left) could only

detect the fringe points from the smaller square, since the anomaly score there corresponds

to the most incorrectly classified testing points. Next, the objective of the one-class SVM

is to detect the points with minimal support. In Figure 23, bottom right, we see that the

one-class SVM ranked with the highest score the fringe points of the smaller square and

one of the tiny squares. The weighted k-NN (Figure 23, bottom middle) detects half of the

true anomalies, but also falsely detects one of the tiny squares as anomalous. Our method

(Figure 23, top right) avoids such a mistake due to the regularization. Although the results

of our method do not completely match with the truth, the 3 points detected outside the

smaller square are in its vicinity.

6.2.4.4 Conclusions We showed how we use regularization to avoid the detection of iso-

lated and the fringe points. In general, the advantage of the CAD approach over knowledge-

based error detection approaches is that the method is evidence-based, and hence requires

little or no input from a domain expert.

6.2.5 Evaluation of Expert Assessed Clinically Useful Anomalies

6.2.5.1 Pilot study in 2009 The aim of the study [Hauskrecht et al., 2010] was to test

the hypothesis that clinical anomalies lead to good clinical alerts.

Learning anomaly detection models The training set was used to build three types of

anomaly detection models: 1) models for detecting unexpected lab-order omissions, 2) mod-

els for detecting unexpected medication omissions, and 3) models for detecting unexpected

continuation of medications (commissions).

Selection of alerts for the study The alerts for the evaluation study were selected as fol-

lows. We first applied all the above anomaly detection models to matching patient instances
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Figure 24: Histogram of alert examples in the study according to their alert score

in the test set. The following criteria were then applied. First, only models with AUC of

0.68 or higher (to limit the number of models to those with a good predictive performance)

were considered. This means that many predictive models built did not qualify and were

never used. Second, the minimum anomaly score for all alert candidates had to be at least

0.15. Third, for each decision, only the top 125 anomalies and the top 20 alerts obtained

from the test data were considered as alert candidates. This lead to 3,768 alert candidates,

from which we selected 222 alerts for 100 patients, such that 101 alerts were lab-omission

alerts, 55 were medication-omission alerts, and were 66 medication-commission alerts. The

cases were selected such that their alert scores cover the whole range of alert scores, biased

towards the more anomalous cases. Figure 24 shows the distribution of alerts in the study

according to the alert score.

Alert reviews. The alerts selected for the study were assessed by physicians with expertise

in post-cardiac surgical care. The reviewers 1) were given the patient cases and model-

generated alerts for some of the patient management decisions, and 2) were asked to assess

the clinical usefulness of these alerts. We recruited 15 physicians to participate in the study,

of which 12 were fellows and 3 were faculty from the Departments of Critical Care Medicine

and Surgery. The reviewers were divided randomly into five groups, with three reviewers

per group, for a total of 15 reviewers. Overall, each clinician made assessments of 44 or

45 alerts, generated for 20 different patients. The total number of alerts reviewed by all
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clinicians was 222 and included: 101 lab omission alerts, 55 medication omission alerts,

and 66 medication commission alerts. The survey was conducted over the Internet using a

secure web-based interface [Post and Harrison, 2008].

Alert assessments. The pairwise kappa agreement scores for the groups of three ranged

from 0.32 to 0.56. We use the majority rule to define the gold standard. That is, an alert

was considered to be useful if at least two out of three reviewers found it to be useful. Out

of the 222 alerts selected for the evaluation study, 121 alerts were agreed upon by the panel

(via the majority rules) as a useful alert.

Analysis of clinical usefulness of alerts. We analyze the extent to which the alert

score from a model was predictive of it producing clinically important alerts. Figure 25

summarizes the results by binning the alert scores (in intervals of the width of 0.2, as in

Figure 24) and presenting the true alert rate per bin. The true alert rates vary from 19% for

the low alert scores to 72% for the high alert scores, indicating that higher alert scores are

indicative of higher true alert rates. This is also confirmed by a positive slope of the line in

Figure 25, which is obtained by fitting the results via linear regression and the results of the

ROC analysis. All alerts reviewed were ordered according to their alert scores, from which

we generated an ROC curve. The AUC for our alert score was 0.64. This is statistically

significantly different from 0.5, which is the value one expects to see for random or non-

informative orderings. Again, this supports that higher alert scores induce better true alert

rates. Finally, we would like to note that alert rates in Figure 4 are promising and despite

alert selection restrictions, they compare favorably to alert rates of existing clinical alert

systems [Schedlbauer et al., 2009, Bates et al., 2003].

6.2.5.2 Soft harmonic anomaly detection For this experiment, we use the PCP dataset

(Section 6.2.2) and reuse the human expert evaluations from Section 6.2.5.1. We compute

the anomaly scores according to (Section 4.6.2)

Scaling for multi-task anomaly detection So far, we have described CAD only for a

single task (anomaly in a single label). In this dataset, we have 749 binary tasks that

correspond to 749 different possible orders of lab tests or medications. In our experiments,

we compute the CAD score for each task independently. Figure 26 shows the CAD scores
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Figure 25: The relationship between the alert score and the true alert rate

for two of them. CAD scores close to 1 indicate that the order should be done, while the

scores close to 0 indicate the opposite. The ranges for the anomaly scores can vary among

the different tasks, as one can notice in Figure 26. The scores for the top and bottom task

range from 0.1 to 0.9 and from 0.25 and 0.61, respectively. The arrow in both cases points

to the scores of the evaluated examples, both with negative labels. Despite the lower score

for the bottom task, we may believe that it is more anomalous, because it is more extreme

within the scores for the same task. However, we want to output an anomaly score, which is

comparable among the different tasks so we can set a unified threshold when the system is

deployed in practice. Another reason for comparable scores is that we can have, for instance,

2 models each alerting that a certain medication was omitted. Nevertheless, omitting one of

the medications can be more severe than the other (eg. antibiotics vs. vitamins). To achieve

the score comparability, we propose a simple approach, where we take the minimum and the

maximum score obtained for the training set and scale all scores for the same task linearly

so that the score after scaling ranges from 0 to 1.

In Figure 27, we fix γg = 1 and vary the number of examples we sample from the train-

ing set to construct the similarity graph, and also compare it to the weighted k-NN. The

error bars show the variances over 10 runs. Notice that both of the methods are not too sen-

sitive to the graph size. This is due to the multiplicity adjustment for the backbone graph
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Figure 26: Histogram of anomaly scores for 2 different tasks

(Section 4.6.2). Since we use the same graph both for SoftHAD and the weighted k-NN, we

anticipate that we are able to outperform the weighted k-NN due to the label propagation

over the data manifold and not only within the immediate neighborhood. In Figure 28, we

compare SoftHAD to the CAD using SVM with an RBF kernel for different regularization

settings. We sampled 200 examples to construct a graph (or train an SVM) and varied the γg

regularizer (or cost c for SVM). We outperform the SVM approach over the range of regular-

izers. The AUC for the one-class SVM with an RBF was consistently below 55%, so we do not

show it in the figure. We also compared the two methods with scaling adjustment for this

multi-task problem (Figure 28). The scaling of anomaly scores improved the performance of

both methods and makes the methods less sensitive to the regularization settings.

6.2.5.3 Conclusions In the evaluations with human experts on the real-world data, we

showed we can indeed learn clinically useful alerts. The results reported here support that

this is a promising methodology for raising clinically useful alerts. Moreover, we showed

that with label propagation on a data similarity graph built from patient records, we can sig-

nificantly outperform previously proposed SVM-based anomaly detection in detecting con-

ditional anomalies.

94



10 50 100 150 200
0.58

0.6

0.62

0.64

0.66

0.68

0.7

Graph Size: Number of Nodes

A
U

C
 o

f m
ul

ti−
ta

sk
 C

A
D

 

 

Soft Harmonic CAD CAD with weighted k-NN

Figure 27: Medical Dataset: Varying graph size

1000  100   10    1     0.1   0.01  0.001 0.0001 1e−005

0.58

0.6

0.62

0.64

0.66

0.68

0.7

regularization (γg for Soft Harmonic and cost c for SVM)

A
U
C

o
f
m
u
lt
i-
ta
sk

C
A
D

 

 
SoftHAD SoftHAD with scaling SVM (RBF) SVM (RBF) with scaling

Figure 28: Medical Dataset: Varying regularization

95



7.0 DISCUSSION

We have presented several algorithms for semi-supervised learning and conditional anomaly

detection. The algorithms are based on label propagation on a similarity graph built from

examples in a dataset. Label propagation on graphs is polynomial, but still a computation-

ally expensive method. Therefore, we focused on the approximation approaches for the cases

with large datasets and when the data arrive in a stream. The main contributions of this

dissertation to the field of machine learning are summarized below.

• We presented one of the first works on online semi-supervised learning. Despite a very

natural scenario, this setting has not been extensively studied in the past. To our best

knowledge this is the first work on online semi-supervised learning that comes with

theoretical guarantees. Moreover, we built a real-time system that works on noisy real-

world data.

• We introduced a label propagation method for conditional anomaly detection and applied

it to compute the anomaly score for the class labels. We presented a general framework

where the discriminative models need to regularized to decrease the effect caused by

isolated and fringe points in the data.

• We presented a new semi-supervised learning algorithm based on max-margin graph

cuts, which in some classes of learning functions can perform better than the manifold

regularization approach.

• We introduced a joint learning of the backbone graph and the label propagation and

show its relationship to the elastic nets. This is one of the first works, besides [Zhu and

Lafferty, 2005], that relates propagated labels and cluster centers.
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We also made contributions to the area of health informatics:

• The existing error detection systems deployed in hospitals are built entirely by human

experts. Although these systems are time-consuming and costly to build, they typically

do not cover all the specialties of medical care. The statistical anomaly detection ap-

proach for error detection, proposed and studied in this work, relies solely on data that

are extracted from existing patient record repositories and little or no expert input is

required. This reduces the cost of the approach and its deployment. Our most important

finding is that the alert systems can be learned from the past patient data instead of

creating rule-based alert systems that require expensive human time to tune and are

currently used in hospitals.

• We proposed a non-parametric method that can discover anomalies in clinical actions.

The common use cases are: 1) discovery of an omitted order of a lab test 2) commission

of a drug that has interactions with previously taken drugs 3) controlling overspending:

a detection of expensive actions that were not necessary, when the resources could have

been used better.

• We conducted an extensive study with the human evaluation of the alerts on the real

patient records, showing that the higher anomaly scores corresponded to the higher

severity of the alerts.

There are, however, some assumptions and limitation of our methods:

• We assume that the data can be modeled with pair-wise similarities between the nodes

and that such a model is meaningful.

• The similarity function between the graph nodes needs to be given or learned.

• Our methods are expected to perform well when the manifold assumption holds.

• In the approximation settings, when we create a summary graph (both online and in a

large scale setting), we assume that we can model the data well with a reduced number

of nodes.

Moreover, electronic health records (EHRs) are a necessary requirement for the successful

deployment of the conditional anomaly methods described here. With an increasing num-

ber of medical groups adopting EHR systems [Gans et al., 2005], more people will benefit
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from reduced medical errors. We imagine that the inclusion of our method into the existing

EHR systems will require no extra time from physicians. Our anomaly detection framework

serves more as background monitoring system that raises alerts only when the confidence of

an anomaly is high. Since our conditional anomaly methods produce a soft score reflecting

the confidence, the threshold for alerting could be adjusted. Nevertheless, the statistical

anomalies that our methods produce may not need to always correspond to useful alerts.

For instance, an omission of a routine lab test or administration of a vitamin may be a

significant statistical anomaly, but might not be worthy of physician’s attention.

We now outline some related open questions and research opportunities.

• Structured Anomaly Detection

In this dissertation we applied our conditional anomaly detection method to discover

unusual clinical actions. Although, we did it separately for each action, these actions

are not independent. For example, a clinician usually prescribes a set of drugs such

that:

– drugs with the same effect do not tend to be given at the same time.

– drugs with the opposite effect do not tend to be given at the same time.

– drugs with negative interactions do not tend to be given at the same time.

Therefore, we can form groups of drugs from which at most one is administered at the

same time. This additional information could be given a priori or learned from the data.

• Graph Parametrization: Despite the research in this area, the graph construction is still

not well understood. There are some rules of thumb, such as log(n) for the number

of neighbors, but a problem-specific calibration is usually needed. In particular, the

clinical data could benefit from the similarity measures (kernels) that would measure

the similarity of the conditions from the electronic health data.

• Multi-manifold Learning In our multi-manifold learning approach, we decomposed the

graph and kept updating each of the components independently in parallel. There can

be some benefit in accuracy if we allow the components to exchange some information.

• Concept Drift In this dissertation we were concerned with adapting to the distribution in

a short-term period. The problem of concept drift is concerned with long-term changes,
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such as when a face of a person changes as he or she grows older or when medical

practices change. One possible extension of our methods can be the online graph-based

learning with forgetting the history. For example, we can delete the graph nodes which

were added a long time ago and do not change the current prediction much if they are

removed.

We expect that future research will address these questions. We hope that online semi-

supervised learning will become more studied and used to address machine learning prob-

lems. We believe that our conditional anomaly detection methods will prevent some of the

adverse outcomes, especially in medicine.

This work was supported by the NIH grants R21 LM009102-01A1, R01 1R01LM010019-

01A1 and by the Mellon Foundation.
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