
HAL Id: tel-00640725
https://theses.hal.science/tel-00640725

Submitted on 14 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed data management with access control :
social Networks and Data of the Web

Alban Galland

To cite this version:
Alban Galland. Distributed data management with access control : social Networks and Data of
the Web. Other [cs.OH]. Université Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112178�.
�tel-00640725�

https://theses.hal.science/tel-00640725
https://hal.archives-ouvertes.fr

Thèse de Doctorat en Informatique

École Doctorale d’Informatique de Paris-Sud (Paris 11)

Distributed Data Management with Access Control
Social Networks and Data of the Web

Gestion de Données Distribuées
avec Contrôle d’Accès

Réseaux sociaux et données du Web

Alban GALLAND (INRIA Saclay & LSV ENS Cachan)

28 septembre 2011

Jury

Serge ABITEBOUL DR INRIA Saclay (directeur)
Bernd AMANN Prof. Univ. Pierre et Marie Curie (rapporteur)
Nicole BIDOIT Prof. Univ. Paris Sud
Maurizio LENZERINI Prof. Univ. Rome (rapporteur)
Philippe RIGAUX Prof. CNAM
Marie-Christine ROUSSET Prof. Univ. Grenoble

ii

Résumé

La masse d’information disponible sur le Web s’accroit rapidement, sous
l’afflux de données en provenance des utilisateurs et des compagnies. Ces
données qu’ils souhaitent partager de façon controllée sur le réseau et qui
sont réparties sur de nombreuses machines et systèmes différents, ne sont
rapidement plus gérables directement par des moyens humains. Nous
introduisons WebdamExchange , un nouveau modèle de bases de connais-
sances distribuées, qui comprend des assertions au sujet des données, du
contrôle d’accés et de la distribution. Ces assertions peuvent être échangées
avec d’autres pairs, répliquées, interrogées et mises à jour, en gardant la
trace de leur origine. La base de connaissance permet aussi de guider
de façon automatique sa propre gestion. WebdamExchange est basé sur
WebdamLog , un nouveau langage de règles pour la gestion de données
distribuées, qui associe formellement les règles déductives de Datalog avec
négation et les règles actives de Datalog¬¬. WebdamLog met l’accent sur
la dynamicité et les interactions, caractéristiques du Web 2.0. Ce modèle
procure à la fois un langage expressif pour la spécification de systèmes
distribués complexes et un cadre formel pour l’étude de propriétés fonda-
mentales de la distribution. Nous présentons aussi une implémentation de
notre base de connaissance. Nous pensons que ces contributions forment
une fondation solide pour surmonter les problèmes de gestion de données
du Web, en particulier dans le cadre du contrôle d’accès.

Mots clefs

Distribution, Controle d’Accès, Réseaux Sociaux, Gestion de Données du
Web, Datalog Distribué

iii

iv

Abstract

The amount of information on the Web is spreading very rapidly. Users as
well as companies bring data to the network and are willing to share with
others. They quickly reach a situation where their information is hosted on
many machines they own and on a large number of autonomous systems
where they have accounts. Management of all this information is rapidly
becoming beyond human expertise. We introduce WebdamExchange , a
novel distributed knowledge-base model that includes logical statements
for specifying information, access control, secrets, distribution, and knowl-
edge about other peers. These statements can be communicated, replicated,
queried, and updated, while keeping track of time and provenance. The
resulting knowledge guides distributed data management. WebdamEx-
change model is based on WebdamLog , a new rule-based language for
distributed data management that combines in a formal setting deductive
rules as in Datalog with negation, (to specify intensional data) and active
rules as in Datalog¬¬ (for updates and communications). The model pro-
vides a novel setting with a strong emphasis on dynamicity and interactions
(in a Web 2.0 style). Because the model is powerful, it provides a clean
basis for the specification of complex distributed applications. Because it
is simple, it provides a formal framework for studying many facets of the
problem such as distribution, concurrency, and expressivity in the context
of distributed autonomous peers. We also discuss an implementation of a
proof-of-concept system that handles all the components of the knowledge
base and experiments with a lighter system designed for smartphones. We
believe that these contributions are a good foundation to overcome the
problems of Web data management, in particular with respect to access
control.

Keywords

Distribution, Access Control, Social Network, Web Data Management,
Distributed Datalog

v

vi

Contents

Acknowledgement xi

Résumé en Français xiii

1 Introduction 1

2 Motivating Example 5

3 State of the Art 11

3.1 Distributed Information Systems 11
3.1.1 Distributed systems 11
3.1.2 Distributed Databases 12
3.1.3 Data on the Web . 13
3.1.4 Peer-to-Peer Systems 14

3.2 Access control . 15
3.2.1 Principles of access control 15
3.2.2 Access control for distributed systems 16
3.2.3 Access control for XML 17
3.2.4 Access control policies 18
3.2.5 Other problems related to access control 19

3.3 Distributed Datalog . 19

4 A rule based language for Web data exchanges 21

4.1 The model . 23
4.1.1 Informal presentation 23
4.1.2 Formal model . 26

4.2 Discussion . 31
4.2.1 Too much synchronization 31
4.2.2 Too little local control 31
4.2.3 Delegation and complexity 32
4.2.4 Peer life and delegation 32

vii

viii CONTENTS

4.2.5 Multicasting . 32
4.2.6 Database server replication 33
4.2.7 Rule updates and rule deployment 33

4.3 Expressivity . 33
4.3.1 Traces and simulations 34
4.3.2 Expressivity results . 35

4.4 Convergence of WebdamLog 40
4.4.1 Positive WebdamLog 40
4.4.2 Strongly-stratified WebdamLog 48

4.5 Optimization . 58
4.5.1 Differential technique 58
4.5.2 Seed-based delegation 58
4.5.3 Query-subquery and delegation 59

4.6 Conclusion . 60

5 A data model for Web data exchanges 61
5.1 The general model . 64

5.1.1 Informal presentation 64
5.1.2 Formal model . 68

5.2 Access control . 75
5.2.1 Informal presentation 75
5.2.2 Formal model . 77
5.2.3 Properties . 82
5.2.4 Physical implementation 86

5.3 Distribution . 88
5.3.1 Informal presentation 88
5.3.2 Formal model . 89
5.3.3 Physical implementation 90

5.4 Four policies of interests . 91
5.4.1 @home . 91
5.4.2 @friend . 93
5.4.3 @host . 94
5.4.4 @host-DHT . 95

5.5 Conclusion . 99

6 The WebdamExchange System 101
6.1 Architecture . 101

6.1.1 System Architecture 101
6.1.2 Data model . 102
6.1.3 Rich Peer Architecture 103
6.1.4 iOS Architecture . 104

CONTENTS ix

6.2 Peer Modules . 105
6.2.1 Communication . 105
6.2.2 Security . 107
6.2.3 Manager . 108
6.2.4 Storage . 108

6.3 Demonstration . 109

7 Other works 111
7.1 Corroboration . 111
7.2 Recommendation . 112
7.3 Active XML Artifacts . 113

8 Conclusion 115

x CONTENTS

Acknowledgement

I would like to thanks the people I worked with during these three years,
my advisor Serge Abiteboul, my co-authors Sihem Amer-Yahia, Émilien
Antoine, Meghyn Bienvenu, Pierre Bourhis, Kristian Lyngbaek, Amélie
Marian, Bogdan Marinoiu, Neoklis Polyzotis, Marie-Christine Rousset
and Pierre Senellart and the members of my teams Gemo, Leo, Dahu and
Webdam .

More generally, I thank the members, researchers as supporting staff,
of my laboratories, Institut National de Recherche en Informatique et Au-
tomatique de Saclay – Île-de-France, the Laboratoire de Recherche en In-
formatique of Université Paris-Sud 11 and the Laboratoire Spécification et
Vérification of the École National Supérieure de Cachan. I thank as well
the members of the DBWeb team, who welcomed me at Telecom ParisTech
each time I wanted to come. I have also a special though to my previous
teachers, in particular to my master professors in École Polytechnique,
Télécom ParisTech and Université Pierre et Marie Curie (Paris 6)) and to
my previous advisors, in particular Christian Boitet and Sihem Amer-Yahia.
I thank my colleagues from the Conseil Général de l’Industrie, de l’Énergie
et des Technologies, who help me seconding at INRIA. I also thank my
family and friends for their support throughout this thesis preparation.

Last but not least, I thank the numerous proof readers of this thesis, in
particular my reviewers, Bernd Amann and Maurizio Lenzerini, for their
helpful comments.

xi

xii ACKNOWLEDGEMENT

Résumé en Français

Le volume d’informations présentes sur le Web ne cesse de s’accroitre.
Les utilisateurs comme les compagnies veulent en effet partager leurs
données, qui se trouvent distribuées sur les nombreuses machines qu’ils
possèdent ou sur les comptes qu’ils possèdent dans des systèmes externes.
En particulier, l’émergence du Web 2.0 et des réseaux sociaux a permis aux
utilisateurs de partager encore plus de données privées. La gestion de cette
information dépasse rapidement l’expertise humaine. Les informations
manipulées par les utilisateurs ont de nombreuses facettes : elles concer-
nent des données personnelles (photos, films, musique, mails), des données
sociales (annotations, recommandation, liens sociaux), la localisation des
données (marque-pages), les informations de contrôle d’accès (mots de
passe, clés privées), les services Web (moteur de recherche, archives), la
sémantique (ontologies), la croyance et la provenance. Les tâches exécutées
par les utilisateurs sont très variées : recherches par mots clef, requêtes
structurées, mise-à-jour, authentification, fouille de donnée et extraction de
connaissances. Dans cette thèse, nous montrons que toute cette information
devrait être modélisée comme un problème de gestion d’une base de con-
naissance distribuée. Nous soutenons aussi que Datalog et ses extensions
est une base formelle sûre pour représenter ces informations et ces tâches.
Ce travail fait partie du projet ERC Webdam [Web] sur les fondations de
la gestion des données du Web. Le but de ce projet est de participer au
développement de fondations formelles unifiées pour la gestion de données
distribuées, le manque actuel de telles fondations ralentissant les progrès
dans ce domaine.

Contributions

Les contributions de cette thèse sont les suivantes :

• Nous introduisons WebdamExchange, une nouvelle base de connais-
sances distribuée qui contient des assertions logiques pour représen-

xiii

xiv RÉSUMÉ EN FRANÇAIS

ter les données, le contrôle d’accès, les secrets, la distribution et les
connaissances sur les autres pairs. Ces assertions peuvent être com-
muniquées, répliquées, interrogées et mises-à-jour, en traçant le temps
et la provenance. La base de connaissance guide la gestion des don-
nées distribuées. La complexité de la gestion moderne et distribuée
des données nous semble nécessiter un tel modèle, qui permet de
représenter dans le même modèle formel des concepts jusqu’alors
étudiés en isolation. Nous démontrons la généralité et la flexibilité
de WebdamExchange, en montrant comment des protocoles de distri-
bution et de contrôle d’accès très différents peuvent être représentés
dans notre modèle.

• Nous présentons WebdamLog, un nouveau langage à base de règles
pour la gestion de données distribuées qui combine dans un cadre
formel les règles déductives de Datalog avec négation pour la défini-
tion des faits intensionnels et les règles actives de Datalog ¬¬ pour
les mises-à-jour et les communications. Le modèle met un accent fort
sur la dynamique et les interactions typiques du Web 2.0. Ce modèle
est à la fois suffisamment puissant pour spécifier des systèmes dis-
tribués complexes et suffisamment simple pour permettre une étude
formelle de la distribution, de la concurrence et de l’expressivité dans
un système de pairs autonomes.

• Nous mentionnons aussi une implémentation d’un démonstrateur
qui gère les concepts essentiels de la base de connaissance ainsi que
d’un démonstrateur plus simple pour téléphones.

Nous pensons que ces contributions forment une bonne base pour
résoudre les problèmes fréquemment rencontrés dans l’échange de données
sur le Web, en particulier pour les réseaux sociaux.

Motivation par l’exemple

Nous introduisons ici brièvement un exemple qui sera utilisé par la suite
pour illustrer la thèse. Imaginons un groupe d’escaladeurs qui souhaitent
organiser des sorties régulières à Fontainebleau. Alice, membre de ce
groupe, pourrait avoir accès à une liste des rochers qu’elle a déjà grimpés,
stockée sur son iPhone. Bob, un autre membre, pourrait avoir créé une
carte Google pour localiser les circuits d’escalade. La liste des membres du
groupe pourrait être disponible sur Facebook. La liste de tous les rochers
avec leur cotation pourrait être stockée dans un fichier Excel sur un réseau

xv

pair-à-pair. D’autres données pourraient être disponibles via des services
Web, comme la météo ou le calcul de trajets. Pour organiser les sorties, Alice
doit trouver où sont stockées ces données, quelles sont les informations
d’authentification nécessaires pour y accéder, et intégrer ces données à
sa propre base de connaissance. Bien sûr, toutes ces données pourraient
être stockées sur un système unique, qui en assurerait la cohérence, la
distribution et l’accès. Néanmoins, nous pensons personnellement qu’il
serait préférable de décrire ces différentes données dans un formalisme
unique, qui constituerait une base de connaissances distribuée. Avec notre
modèle, les utilisateurs peuvent distribuer leurs données sur plusieurs
hôtes, tout en gardant le contrôle sur leur accès. Ils peuvent aussi naviguer
et intégrer ces données de façon transparente.

Les principales difficultés soulevées par ce scénario concernent le con-
trôle d’accès, la distribution et la manipulation des données. En effet, pour
des données personnelles, le contrôle d’accès est fondamental et Alice et
ses amis peuvent définir des politiques de sécurité très diverses. La cohabi-
tation de ces politiques doit être permise pas le système, et le modèle doit
permettre de vérifier leur sécurité globale. S’il n’est pas toujours possible
d’empêcher certains comportements comme l’échange de données par des
pairs corrompus, il est important de tracer la provenance des données
pour repérer au plus vite ces comportements. La gestion de la distribution
est aussi fondamentale sur le Web, ce dernier favorisant l’éclatement des
données et la multiplication des protocoles d’accès. Enfin, il est important
de fournir les moyens d’éditer, de naviguer et d’interroger les données si
nécessaire. L’utilisateur doit pouvoir localiser les données auxquelles il a
un droit d’accès, mais aussi déléguer des tâches à d’autres pairs s’il ne peut
les exécuter lui-même.

Résumé de l’état de l’art

Cette thèse correspond à deux domaines importants de l’informatique,
les systèmes de données distribués et le contrôle d’accès. Les systèmes
distribués [ÖV99, AMR+ar] sont des logiciels qui servent à coordonner les
actions de plusieurs ordinateurs, à travers l’envoi de messages. Ils sont
caractérisés par les notions de consistance, de fiabilité, de disponibilité, de
passage à l’échelle et d’efficacité. Dans le cas des bases de données, le sys-
tème consiste en un ensemble de plusieurs bases de données, logiquement
liées, distribuées sur un réseau d’ordinateur. La distribution est transpar-
ente pour l’utilisateur : le résultat d’une requête ne dépend pas a priori
du pair sur lequel elle a été posée. Sur le Web, la distribution est une

xvi RÉSUMÉ EN FRANÇAIS

composante de base de l’organisation du système. Le développement d’un
langage commun, XML, et des autres standards, a facilité l’expansion des
échanges. Enfin, les systèmes pairs-à-pairs, structurés ou non, représentent
l’aboutissement d’importants efforts de recherche en matière de distribu-
tion dans lesquels les nœuds ont des comportements extrêmement variés
et flexibles.

Le contrôle d’accès est un moyen de restreindre l’accès à des ressources
à un nombre limité d’utilisateurs ou a des conditions particulières. Il est
important de pouvoir authentifier l’utilisateur (prouver son identité), au-
toriser (calculer les actions permises) et vérifier a posteriori que l’exécution
était correcte. Le contrôle d’accès est globalement divisé en deux classes
: le contrôle d’accès par capacité et le contrôle d’accès par listes. Dans le
premier, une donnée supposée infalsifiable, l’accréditation, par exemple un
mot de passe ou une clé de sécurité privée, est utilisée pour accéder à une
ressource. Dans le second, les utilisateurs peuvent accéder à une ressource
si leur identité est dans la liste correspondante. En ce qui concerne le con-
trôle d’accès distribué, la plupart des travaux [WABL94, MKKW99, JSS97,
KFJ03, BFG07, GN08, MZZ+08, Aba09] se concentrent sur l’authentification
des utilisateurs et sur les méthodes à base de capacité.

Le langage que nous présentons dans la section suivante est basé sur
Datalog [AHV95]. Des versions distribuées de Datalog ont déjà été pro-
posées [Hul89, NCW93, Hel10, GW10]. En général, un programme positif
est distribué sur plusieurs pairs après une phase de compilation. Nous
nous intéressons à un déploiement beaucoup plus dynamique, et nous
introduisons en particulier la notion de délégation.

Un langage logique pour l’échange de données sur

le Web

Ce travail a été réalisé en collaboration avec Serge Abiteboul, Meghyn Bienvenu,
Marie-Christine Rousset et Emilien Antoine. Il est introduit dans [ABGR10] et
présenté en détail dans [ABGA11].

La gestion d’information distribuée est un problème important, en par-
ticulier sur le Web. Des langages Datalog ont donc été proposés pour le
modéliser. Nous introduisons ici un nouveau modèle, dans lequel des
pairs autonomes échanges des messages et des règles (délégation). Nous
étudions en particulier les conséquences sur l’expressivité de la déléga-
tion. Nous proposons aussi des restrictions du langage qui garantissent sa
convergence.

xvii

Modèle

Considérons un pair Alice-iPhone, avec la relation calendar correspondant
au calendrier de l’iPhone et la relation Roc14members correspondant à la
liste des membres du club d’escalade Roc14. Voici des exemples de faits :

at Alice-iPhone:
calendar@Alice-iPhone(rockclimbing, 06/12/2011, Fontainebleau,

Alice-iPhone).
Roc14members@Alice-iPhone(Bob, agenda, Bob-laptop).

La règle suivante ajoute les entrées relatives à l’escalade du calendrier
d’Alice dans ceux des autres membres de Roc14 :

at Alice-iPhone:
$calendar@$peer(rockclimbing, $date, $place, Alice-iPhone) :-

calendar@Alice-iPhone(rockclimbing, $date, $place, Alice-iPhone),
Roc14members@Alice-iPhone($name, $calendar, $peer)

Il faut noter que les pairs et le nom des messages sont traités comme des
données. La règle génère le nouveau fait suivant :

agenda@Bob-laptop(rockclimbing, 06/12/2011, Fontainebleau,
Alice-iPhone)

Le fait décrit un message envoyé d’Alice-iPhone à Bob-laptop. Ce fait ex-
tensionnel est consommé par Bob-laptop lorsqu’il le lit. Comme dans les
bases de données déductives, le modèle distingue entre faits extension-
nels et faits intensionnels. Par exemple, la relation Roc14members peut être
intensionnelle et définie ainsi :

at Alice-iPhone:
intensional Roc14members@Alice-iPhone(string, relation, peer)

Roc14members@Alice-iPhone($name, $relation, $peer) :-
contact@Alice-iPhone($name, $relation, $peer),
group@Alice-iPhone($name, Roc14)

La sémantique du système est basée sur une sémantique locale, standard et
sur l’échange de faits et de règles. Intuitivement, un pair donné calcul un
nouvel état depuis son état courant en consommant ses faits locaux et en
déduisant à partir de ces faits et de la sémantique locale les faits qu’il doit
envoyer aux autres et à lui-même, ainsi que les règles qu’il doit déléguer
aux autres. Un exemple de délégation est le suivant. Considérons la règle
suivante :

xviii RÉSUMÉ EN FRANÇAIS

at Bob-laptop:
confirm@$peer(rockclimbing, $date, $place,Bob) :-

calendar@Bob-laptop(rockclimbing, $date, $place, $peer),
checkAvailability@Bob-iPhone($date);

L’effet de la règle, étant donné le fait généré à l’intention de Bob-laptop, est
d’installer la règle suivante sur l’iPhone de Bob :

at Bob-iPhone:
confirm@Alice-iPhone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-

checkAvailability@Bob-iPhone(06/12/2011);

Lorsque l’iPhone de Bob exécute cette règle, en supposant que confirm@Alice-
iPhone est extensionnel, il envoie le message suivant à Alice si checkAvail-
ability@
Bob-iPhone(06/12/2011):

confirm@Alice-iPhone(rockclimbing, 06/12/2011, Fontainebleau, Bob)

Si confirm@Alice-iPhone est intensionnel, c’est la règle suivante qui est en-
voyée

at Alice-iPhone:
confirm@Alice-iPhone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-

Sans rentrer dans les détails formels, il est intéressant d’étudier l’impact
de la délégation sur l’expressivité du langage. En plus du langage général,
note WL, on peut distinguer deux sous-langages. Le premier, SWL, re-
streint la délégation aux vues. Le second, SWL, interdit complètement la
délégation. Enfin, il est intéressant de considérer les variantes autorisant
les étiquetages temporels, notés WLt, VWLt et SWLt respectivement. Les
différences d’expressivité sont résumées sur la figure 1. Les inclusions sont
strictes, à l’exception de celle de VWLt dans VWLt qui reste indéterminée.

Un autre point d’intérêt est la convergence du langage en fonction de
l’ordre d’exécution des pairs. En règle générale, le résultat du calcul est a
priori différent pour deux ordres d’exécution différents. Néanmoins, on
peut isoler des cas monotones ou fortement stratifiés qui assurent la conver-
gence, et ont une sémantique comparable à celle du cas où on centraliserait
naturellement l’ensemble des règles et faits initiaux.

xix

WLt

WL SWLt = VWLt

VWL

SWL

Figure 1: Expressivité des variantes de WL (les inclusions sont strictes
quand l’arc est en gras)

Un modèle de donnée pour l’échange de données

sur le Web

Ce travail a été réalisé en collaboration avec Serge Abiteboul, Neoklis Polyzotis et
Amélie Marian. Il est présenté en détail dans [AGP11].

Sur le Web, le partage d’information se généralise, et les contraintes de
gestion de données, en particulier de contrôle d’accès, s’accentuent. Le
modèle que nous introduisons, WebdamExchange, permet de définir et
partager l’information avec du contrôle d’accès dans un environnement dis-
tribué. Le modèle décrit une base de connaissance distribuée, qui contient
des données et des connaissances sur les autres pairs, le contrôle d’accès,
la localisation, la provenance des informations et en général toute sortes
de connaissances utilisables directement par l’application, comme les on-
tologies. Elle contient aussi des règles qui définissent le comportement des
pairs. Les principaux avantages de cette approche sont les suivants :

• Large spectre : le modèle permet de décrire des situations très dif-
férentes, allant du scénario centralisé au scénario le plus distribué,
avec des pairs de confiance ou potentiellement malveillants, avec des
informations en clair ou encryptées, ou des scénarios combinant ces
différents cas

• Modèle formel : comme le modèle est formel, il peut être utilisé pour
la vérification des systèmes ou pour le raisonnement automatique.

• Contrôle de la qualité : comme notre modèle prend en compte la
provenance et le temps, ce qui permet d’améliorer le contrôle de la
qualité de l’information.

xx RÉSUMÉ EN FRANÇAIS

La version du modèle présentée ici focalise sur le contrôle d’accès, représenté
par des capacités (secrets et indices) et par des listes, ainsi que sur la distri-
bution.

Modèle

WebdamExchange est bâtit sur WebdamLog. La notion de principal est
étendue au principal virtuel, comme un utilisateur ou un groupe. Les
relations sont aussi généralisées par un modèle semi-structuré. La no-
tion élémentaire de WebdamExchange est l’assertion, un bloc de donné
indépendant dans l’authenticité peut être vérifié. Par exemple, l’assertion :

Alice-iPhone states climbingSite@roc14={“id”:“&cuvier”, ...}
requester Alice at 18/12/2010

signifie que Alice-iPhone a crée localement une nouvelle version du docu-
ment climbingSite@roc14. Dans le cadre du contrôle d’accès, cette assertion
est annotée par une preuve d’authentification du principql roc14, qui dé-
montre que Alice-iPhone et Alice peuvent écrire au nom de roc14. La prove-
nance est aussi enregistrée via la mention du producteur Alice-iPhone et
du demandeur Alice. Enfin, l’assertion est annotée par une étiquette tem-
porelle. Le demandeur utilise une instruction pour déclencher la fabrication
de l’assertion par le producteur. Cette instruction est authentifiée par le
demandeur.

Le modèle comporte un jeu complet d’assertion et les instructions
correspondantes pour les collections, les capacités (par exemple les clés
publiques et privées), les listes de contrôle d’accès et la localisation. Ces
assertions peuvent être échangées entre pairs, en les encapsulant dans des
couches d’authentification qui capture la provenance. Enfin, des règles sur
le modèle de celles de WebdamLog peuvent être utilisées à la fois comme
connaissance échangée dans le système ainsi que pour décrire le système.

L’implémentation physique du contrôle d’accès est basé sur différents
types d’assertion de capacités, qui représente soit les clés RSA, soit des
mots de passes par exemple, permettant de décrire les différentes situations
rencontrées sur le Web. De même, les assertions de localisation permettent
de décrire les différents types de distribution.

Propriétés et scénarios

La correction (les messages sont bien formés), la sûreté (l’accès aux données
est réservé aux ayant-droit), la complétude (l’accès à toutes les données est

xxi

possible) et la consistance (l’accès aux données ne dépend pas du pair) sont
les propriétés fondamentales du droit d’accès. Garantri ces propriétés est
difficile en général. Dans des scénarios particuliers comme @home (toutes
les données sont stockées sur un pair de confiance), @friend (toutes les
données sont stockées chez les ayant-droits), @host (toutes les données
sont stockées encryptées sur un pair), @host-dht (toutes les données sont
stockées encryptées sur une DHT), on peut néanmoins garantir certaines
de ces propriétés sous certaines conditions.

Le système WebdamExchange

Ce travail a été réalisé en collaboration avec Serge Abiteboul, Neoklis Polyzotis,
Amélie Marian, Emilien Antoine et Kristian Lyngbaek. Il est présenté en détail
dans [AGP11] et [AGL+11].

Nous avons implémenté un système WebdamExchange, comme preuve
de concept de notre modèle. Ce système supporte le modèle de donnée
de WebdamExchange, avec différents types de capacités (RSA, URL, mot
de passe). Les pairs principaux du système sont programmés en Java et
communique via des services Web. Ils peuvent aussi interagir avec le Web,
en particulier avec des sites comme Facebook ou des systèmes comme
Pastry. Ils peuvent aussi communiquer avec des clients logiciels légers, qui
permettent à une application de réseau social pour les escaladeurs ou un
iPhone de communiquer avec le système.

La démonstration de ce prototype est basé sur le scénario présenté
précédemment. Il permet à des escaladeurs d’échanger des données sur le
Web sans se soucier de l’hétérogéinité du contrôle dáccés et de la distribu-
tion de leur données.

Conclusion

Dans cette thèse, nous avons présenté successivement un langage pour la
gestion de données distribuées, avec une sémantique claire permettant la
délégation de tâche, un modèle de donnés pour une base de connaissance
intégrant des informations de distribution et de contrôle d’accès, et un
système basé sur les contributions précédentes.

Il reste néanmoins de nombreux points ouverts, en particulier en ce
qui concerne la non-monotonie, l’intégration de données, la gestion de
la croyance, l’apprentissage automatique ou les données intensionnelles.
Globalement, ce travail illustre qu’il est devenu indispensable de fournir un

xxii RÉSUMÉ EN FRANÇAIS

moyen de gérer les données hétérogènes, qui soit à la fois efficace et flexible.
Le travail présenté contribue ainsi à permettre au programmeur de se con-
centrer sur le développement de nouvelles applications et fonctionnalités
en s’appuyant sur un modèle robuste et expressif.

Chapter 1

Introduction

The amount of information on the Web is spreading very rapidly. Users as
well as companies bring data to the network and are willing to share with
others. They quickly reach a situation where their information is hosted on
many machines they own and on a large number of autonomous systems
where they have accounts. Management of all this information is rapidly
becoming beyond human expertise. In particular, the emergence of Web
2.0 and social network applications has enabled more and more users to
share sensitive information over the Web. The information they manipulate
has many facets: personal data (e.g., pictures, movies, music, emails),
social data (e.g., annotations, recommendations, contacts), localization
information (e.g., bookmarks), access information (e.g., login, keys), Web
services (e.g., legacy data, search engines), access rights, ontologies, beliefs,
time and provenance information, etc. The tasks they perform are very
diverse: search, query, update, authentication, data extraction, etc. We
argue in this thesis that all this should be viewed in the holistic context of
the management of a distributed knowledge base. Furthermore, we also
propose that datalog (and some extensions) forms the sound formal basis
for representing such information and supporting these tasks. This work
is part of the ERC project Webdam [Web] on the foundations of Web data
management. The goal of the project is to participate in the development
of unified formal foundations for distributed data management, since
the current lack of such foundations is hindering progress in Web data
management.

Contributions

The contributions of the thesis are as follows:

1

2 CHAPTER 1. INTRODUCTION

1. We introduce WebdamExchange , a novel distributed knowledge-base
model that includes logical statements for specifying information,
access control, secrets, distribution, and knowledge about other peers.
These statements can be communicated, replicated, queried, and up-
dated, while keeping track of time and provenance. The resulting
knowledge guides distributed data management. We argue that the
complexity of modern distributed data management requires the sup-
port of such a model capturing many facets of this management, that
are typically considered in isolation. We demonstrate the generality
and flexibility of the WebdamExchange model by showing that very
different and common schemes of access control and distribution can
be specified in the model.

2. We present WebdamLog , a new rule-based language for distributed
data management that combines in a formal setting deductive rules
as in Datalog with negation, (to specify intensional data) and active
rules as in Datalog¬¬ (for updates and communications). The model
provides a novel setting with a strong emphasis on dynamicity and
interactions (in a Web 2.0 style). Because the model is powerful, it
provides a clean basis for the specification of complex distributed
applications. Because it is simple, it provides a formal framework for
studying many facets of the problem such as distribution, concurrency,
and expressivity in the context of distributed autonomous peers.

3. We also mention the implementation of a proof-of-concept system
that handles all the components of the knowledge base and some
experiments with a lighter system designed for smartphones.

We believe that these contributions form a good foundation to overcome
problems commonly encountered for Web data exchange, in particular for
Social Networks.

WebdamExchange

Of course, there have already been lots of works on the specification and
sharing of information in a distributed environment. See Chapter 3. In
particular, ontologies are often considered to handle the heterogeneity of
vocabulary and data organization of different participants. Although on-
tology statements can naturally be handled in our knowledge-base and
fit nicely with our rule-based language, we are mostly concerned with

3

different kinds of heterogeneity: that of the policies adopted for distribu-
tion and access control. A major challenge was to abstract away many
details of the existing technology while preserving the essence of these two
aspects. To prove that we succeeded, we demonstrate the generality and
the flexibility of the WebdamExchange model. More precisely we discuss
how very different and commonly found schemes can be captured in the
model using fundamental pieces of knowledge it includes.

Since such different schemes can all be described in the WebdamEx-
change model, our work opens the way for addressing applications that
combine them as well as other natural ways of managing distributed infor-
mation in arbitrarily rich ways, which is the reality of today’s Web. The use
of a formally defined knowledge base simplifies the verification of desir-
able properties of applications (e.g., prevention of information leaks) and
the monitoring of the global information system. Also, because the model
includes time and provenance information, the quality of data can better
be controlled, and diagnoses are easier to perform in case of malfunction.

WebdamLog

The management of our knowledge base, in particular the specification of
the different policies, is a challenging problem. Because of the complexity of
the management of modern distributed information, there has been a recent
trend towards using high-level Datalog-style rules to specify applications in
a Web setting. WebdamLog is in this spirit. It is a new model for distributed
computation where peers exchange messages (i.e., logical facts) as well as
rules. The model is specially well adapted to the WebdamExchange model,
that is deeply rooted in this formal ground.

The model provides a well founded support for reactions to changes in
evolving environments using delegation, a special mechanism we introduce
to install rules on other peers. In particular, it generalizes remote materialized
view and allows a peer to delegate work to other peers, in an ActiveXML
style. The model therefore opens a new avenue for the specification of data
exchanges between autonomous peers, that we illustrate with different
examples. We also study the impact of delegation and time on expres-
sivity. Finally we study two sub-languages that guarantee some form of
convergence.

4 CHAPTER 1. INTRODUCTION

Organization

The thesis is organized as follows. We first motivate further this work with
an illustrative example in Chapter 2. We propose a summary of the state of
the art in Chapter 3. In Chapter 4, we present WebdamLog , a rule-based
language to support the distributed knowledge base. In Chapter 5, we
present WebdamExchange , a distributed knowledge base model to handle
heterogeneous access control and distribution policies. In Chapter 6, we
also discuss an implementation of the WebdamExchange system. We finally
briefly review some others research works we achieved during our thesis
in Chapter 7. We conclude in Chapter 8.

Chapter 2

Motivating Example

In this chapter, we introduce a motivating example. This example is used as
the Ariadne’s thread of this thesis. Let us imagine a group of rock-climbers
who want to organize regular outings in the Fontainebleau forest (in France,
close to Paris).

Today’s world

Some of these rock-climbers maintain data on the bouldering area in the
forest. The group may have a blog where members describe the last outings.
Alice may have a list of the rocks she has already climbed available through
an application on her iPhone. Bob may have created some Google maps that
describe access to the bouldering areas. Some data may also be available
on a peer to peer network, for example an Excel file with the list of all the
rocks and their difficulties. Other data are delivered through Web-services,
for example weather forecasts for a given GPS position.

Suppose Alice wants to organize outings in Fontainebleau. She connects
to the Web from her smartphone. She first looks in a social network server,
such as Facebook, and finds which members of her rock-climbing club
of Paris 14th district, Roc14, live near Fontainebleau and publish Web
pages or documents on rock-climbing. She then wants to perform some
full text “search” on these data. Since the data is distributed in a very
heterogeneous way, this simple task therefore induces a large number of
knowledge management tasks: localizing resources, finding whether she
has access to them, using or obtaining some secrets (password or encryption
keys) to access them, accessing data and indexes, and integrating this
external data to her own knowledge base.

Alice of course is also facing problems of data extraction and data

5

6 CHAPTER 2. MOTIVATING EXAMPLE

integration. There are numerous works on these topics, and we rather
focus on a less obvious but as difficult problem: how does Alice access this
distributed data, that reside in heterogenous system? Indeed, part of the
data is managed by a blog application, part is on Alice’s iPhone, part is
on a P2P network, that all have different kinds of distribution protocols.
Furthermore, some of the data may have restricted access. For example,
only members of the group, identified by an account with a login and a
password, are allowed to post on the group’s blog. Moreover, distribution
and access control can not be considered totally separately. For example,
Bob may also control access to his maps by distributing the private url
of the maps to his friends only. Observe that Web users already see data
location and secret keys as information, e.g., Delicious or Mozilla Sync.

One may argue than a unique trusted peer, such as Facebook, should
be in charge of all the data. We personally believe that a better solution
would be to describe these different data as statements in the same uni-
versal knowledge base and perform some distributed reasoning on this
knowledge base to help support data management tasks. Using our model,
called WebdamExchange , the users are able to use different systems to host
their data, with different access control policies. They use the WebdamEx-
change model to transparently navigate and integrate their information
while keeping total control on their data.

Ideal world

Let us now describe the motivating example further, by abandoning the
current real world of the Web for an ideal world.

Suppose Alice uses the WebdamExchange system on a regular basis.
The data of Alice is distributed using different schemes (See Figure 2.1).
Alice hosts some picture on her laptop which is a real WebdamExchange
peer. She hosts her list of contacts on her smartphone, that communicates
with the WebdamExchange system using a client application installed on
the smartphone. Of course, the data on her smartphone are usually not
accessible from the Web and her laptop is not running all the time, so
she also replicates her data on an untrusted DHT, SomeDHT. She also
has a favorite social network Website, Facebook, and stores her profile
information on this trusted peer, using a wrapper.

Some of the friends of Alice are also part of the WebdamExchange
system, and their data are distributed using similar schemes. Since they
are interested in some of her data, that they frequently use, they replicate it
locally. Indeed, this unstructured P2P distribution is natural since people

7

G igiPC

G igi
Alice

G eorgePC

G eorge
AliceSom eDHT

BobPC

BobAlice

F acebook

Alice

AliceL aptop

Alice G eorge

F riends

AlicePhone

Alice

DHT -Peer1

Alice
DHT -Peer2

DHT -Peer3

Alice
DHT -Peer4 Integration L ayer

Alice states profile@ Alice isStored@ F acebook

F acebook states profile@ Alice = T1

Alice states rocherR eine@ Alice = T2

Alice states

rocherR eine@ Alice

= (T2 encrypted

for reader@ Alice)

Alice states

readKey@ roof

Alice states G eorge isW riter@ roof

Figure 2.1: The distribution of Alice’s data

prefer to store data they care about and to interact mostly with friends.
Some of the friends of Alice still use old-fashionned systems, like Blogs

or Facebook, to share their data. Their data are available for the WebdamEx-
change system using special wrappers, and they access the WebdamEx-
change system using a client Web GUI or by letting WebdamExchange
update data of their favourite systems.

Recall that Alice wants to organize outings in Fontainebleau, with mem-
bers of Roc14, without worrying about issues such as access control and
distribution. The goal of WebdamExchange is to automatically manage
these problems. In particular, Alice is able to query the whole system
(even the part accessed using wrappers) as a unified view. The system
automatically is in charge of the execution of the query, by finding the
localization of the data and the needed credentials, and checking access
rights. In particular, some peers automatically send subtasks to other peers,
using a rule based language called WebdamLog .

Alice also wants to be able to deploy easily specific applications. For
example, she wants to create a collaborative calendar where users may
propose outing dates. This collaborative calendar uses rules that compute
the best outing dates. It checks availability of the users without disclosing
their calendar and composes carpooling groups. Alice needs to delegate
part of the work of the application, for example to enforce that the calendars
are not disclosed. WebdamExchange will clearly ease the writing of such

8 CHAPTER 2. MOTIVATING EXAMPLE

application, since it is based on WebdamLog , a rule-based distributed
language with delegation.

Challenges

The scenario described above raises several difficulties. We are particularly
interested by the following ones.

Access control The management of access control is the most critical re-
quirement. In order to protect her data, Alice specifies different kinds
of access rights, in particular read, write, append, remove, own rights.
The system should not permit illegal operations on the data. Unfortu-
nately, it is not possible to prevent people from misbehaving outside
of the system, e.g., a user may illegally send confidential data to an-
other user. But we want to detect illegal operations resulting from
such kinds of behavior whenever it is possible. To do so, the system
needs to keep a full trace of the provenance, and support distributed
monitoring.

Distribution As already discussed, an important problem on the Web is
the wide dispersion of the data. In particular, the data is spread
between different peers, using different distribution schemes. In our
example, Alice uses different schemes at the same time. She also uses
peer that are outside of the WebdamExchange realm. A real system
may even be more complex. Alice may have data on several social
network Websites (Facebook, Linked-In, MySpace). She may have
several personal computers (at home, at work) and several mobile
devices (smartphone, tablet). In such a highly distributed setting, the
system has to provide a unified view of the access control and the
localization of the data. It also has to automatize as much of the work
as possible.

Data manipulation In this setting, providing a way to edit, navigate and
query data is clearly necessary. The user should be able to localize
all the data she has access to and to ask global structured queries to
the system. The user also needs to delegate some tasks she cannot
perform herself. A rule-based language such as WebdamLog is a
sound foundation for such a need.

There is already a large amount of work on access control and dis-
tributed data management. In the next chapter, we discuss the state of the

9

art insisting on the shortcomings that WebdamExchange and WebdamLog
fix at least in part.

10 CHAPTER 2. MOTIVATING EXAMPLE

Chapter 3

State of the Art

This thesis is mostly related to two important domains of computer sci-
ence, distributed information systems and access control. Indeed, we are
interested in building a distributed knowledge-base system that is aware of
distribution and access control policies. We discuss next these two domains.

3.1 Distributed Information Systems

Distributed information systems are now a well developed area of com-
puter science, covered by a large number of reviews and books. See,
e.g., [ÖV99, AMR+ar]. In the next discussion, we discuss the most essential
notions for this thesis. We first present general properties of distributed
systems, then review successively database, Web data and peer-to-peer
distributions.

3.1.1 Distributed systems

[AMR+ar] defines a distributed system as some software that serves to
coordinate the actions of several computers. This coordination is achieved
by exchanging messages, i.e., pieces of data conveying information. The
system relies on a network that connects the computers and handles the
routing of messages.

Distributed systems are characterized by the following desirable prop-
erties:

• consistency [DHJ+07] denotes the ability of a distributed system to
give the same answer to a client regardless of the server it is connected
to.

11

12 CHAPTER 3. STATE OF THE ART

• reliability [Bir05] denotes the ability of a distributed system to deliver
its services even when one or several of its software or hardware
components fail,

• availability denotes the ability of a distributed system to limit as much
as possible the latency due to the replacement of a faulty component.

• scalability [MMSW07] denotes the ability of a distributed system to
continuously evolve in order to support a growing amount of tasks
and data. In general, one is interested by linear scalability, i.e., a
growing of the system resources proportional to that of the tasks and
data.

• efficiency denotes the ability of a distributed system to minimize the
response time (when the first item is delivered) and to maximize the
throughput (the number of items delivered by unit of time)

One is typically facing a trade-off between these properties. In particular,
the CAP theorem [GL02] states that a distributed system cannot provides si-
multaneously consistency, availability and arbitrary message loss. This last
result is of particular importance for us, since we aims at providing some
precise security results for our system, but also consistency guarantees.

3.1.2 Distributed Databases

[ÖV99] defines a distributed database as a collection of multiple, logically
interrelated databases distributed over a computer network. A distributed
database management system (distributed DBMS) is then defined as the
software system that permits the management of the distributed database
and makes the distribution transparent to the users. It provides a shared
structure among the data, and an access via a common interface. Dis-
tributed DBMSs are intended to provide data independence, network
transparency, replication transparency and fragmentation transparency.
Indeed, distributed DBMSs improve reliability by replicating components,
thereby eliminating single points of failure, while letting the user ignore
distribution issues.

[ÖV99] describes the architecture of a distributed DBMS by characteriz-
ing the autonomy of local systems (tight integration, semi-autonomy and
total isolation), their distribution (no distribution, client-server or peer-to-
peer) and their heterogeneity (homogeneous or heterogeneous system).

An important component of the design is the placement of data, that
can be investigated along three orthogonal dimensions [LM75]: level of

3.1. DISTRIBUTED INFORMATION SYSTEMS 13

sharing (no sharing, data sharing, data and program sharing), access pat-
tern (static or dynamic) and level of knowledge on access pattern (partial
or complete information). The main issues for placement of data is the
type of fragmentation (horizontal [CNP82] or vertical [NCWD84, SW85])
and allocation [DF82, CL82] of these fragments to sites in the network. The
main difficulties are to define a replication policy that enforces reliability
with a good efficiency, to manage failure of nodes and recovery, and to
synchronize transactions.

Since we are mostly interested by systems where servers are highly
independent, we refer the reader to [ÖV99] for more details on distributed
databases.

3.1.3 Data on the Web

With the development of Internet [RFC74] and HTML [W3C99a], the Web [BLC90]
rapidly became an essential way of data distribution. This position was
further strengthen by the development of XML [W3C08a], that highly eases
exchange and integration of data. The World Wide Web Consortium, that
is in charge of promoting and developing XML usage, proposed a wide
range of standards for typing [W3C04], querying [W3C10] or transform-
ing [W3C99b] XML. There is now a large number of books discussing
aspects of Web’s data. See, e.g., [AMR+ar, ABS00].

As his founder Tim Berners-Lee foresaw, the Web is also developing
a layer of semantics on top of XML, using ontology languages such as
OWL [W3C09] to facilitate data integration. More formal analysis of these
languages can be found in [AH08, AvH08]. Integration also benefits of the
large amount of work on mediation. See [AMR+ar] for a survey.

Finally, the development of Web-services gave a basic infrastructure for
distributed Web data management. This infrastructure is based on XML
standards such as SOAP [W3C07a], WSDL [W3C07b] and UDDI [OAS04]
and does not aims at providing complex functionality. Nevertheless, addi-
tional standard are used to express services workflows, e.g., BPEL [OAS07]
and orchestration of services, e.g WSCL [W3C02a]. Some models such as
ActiveXML [ABM08] aim at providing a clean model for intensional data
(e.g., obtained by service calls) on the Web and distributed data intensive
applications. Rules are used in ActiveXML, e.g., in [ASV09], but they are
different of the one used in WebdamLog , that we will present further,
because the data are XML trees.

To summarize, the Web is now a standard way of sharing and managing
data. Our work, as part of the Webdam Project [Web], aims at providing

14 CHAPTER 3. STATE OF THE ART

better foundations for two kinds of data management problems, distribu-
tion and access control. Our model is therefore as close as possible of the
Web organization and data and our implementation largely relies on the
standard models and tools afore-mentioned.

3.1.4 Peer-to-Peer Systems

A peer to peer (P2P) network (See, e.g., the surveys in [TS04, Wal03]) is
a large network of nodes, called peers, that are both clients and servers
and that agree to cooperate in order to achieve a particular task. It is a
particular kind of distributed systems which assumes that the organization
of the nodes is loose and flexible. Indeed, the peers are assumed to be
highly autonomous, choosing when they participate to the network and
how much resource (CPU, memory, ...) they provide to the system. It is
also often assumed they use an overlay network, i.e., a graph of connections
laid over a physical infrastructure, e.g., the Internet.

A general search technique on this kind of networks is flooding: a peer
disseminates its request to all its friends, that flood in turn their own friends.
One may also use other forms of gossipping, for example by choosing
randomly only one friend to propagate the request. This kind of P2P
networks are called unstructured. There are more structured ways for
searching for information in the network (structured P2P networks), such
as distributed hash tables or distributed search trees. We are particularly
interested in this thesis by describing these different distribution policies in
a unified framework. So we briefly discuss next the main structured P2P
network technologies.

Distributed Hash Tables The hash table is a particular kind of index
structure, that associates a key to a location in constant time. In addition
to the search operation, the index supports insertion and deletion of new
entries. A main difficulty of the hash table technology is to choose the
trade-off between space and collision. Indeed, two keys may get the same
location and the collision has to be managed, usually by chaining this data.
When too much collisions occur, the hash table is usually dynamically
redistributed. One efficient way to do so is linear hashing [Lit80, LNS96],
that allows a linear growth of the table. The mapping of a hash table to a
cluster of machine is relatively straightforward, and is largely improved by
methods such as consistent hashing [KLL+97, DHJ+07]. In particular, some
XML databases have been successfully deployed on top of distributed hash
table [AMP05, AMP+08].

3.2. ACCESS CONTROL 15

Distributed search trees The main problem of hash tables is that they
do not support range queries or nearest-neighbors searches. This is a
well-known limitation that justifies the coexistence, in centralized systems,
of hash tables and tree indexes. This kind of structure can also be dis-
tributed by carefully placing parts of the index on the peers [LNS94, KW94],
for example using routing tables [JOV05] or special kind of meta-data
tablets [CDG+08].

3.2 Access control

3.2.1 Principles of access control

Access control provides the means to control access to resources in a given
computer-based information system. Access control allows some authority
to decide who can do what on some particular pieces of information. The
entities that can perform actions in the system are called principals. Access
control includes authentication (who is the principal), authorization (what
can be done by the principal) and audit (correctness of what has been done
by the principal). It may also include measures such as physical devices,
including biometric scans, digital signatures, encryption, social barriers...

Access control models used by current systems tend to fall into one of
two classes: those based on capabilities and those based on access control lists
(ACLs). In a capability-based model, holding an unforgeable reference or
capability to a resource provides access to the resource. For example, hold-
ing a decryption key is the condition to access the content of a document.
Access is granted to another party by transmitting such a capability over a
secure channel. To revoke access, the capability used to protect the resource
has to be changed, since it is not possible to un-send a capability. In an
ACL-based model, a principal’s access to a resource depends on whether
its identity is on a list associated with the object. Access is granted and
revoked by editing the list, which may have its own ACL. We are interested
by both kinds of models and the WebdamExchange model captures them
both.

A security policy is a definition of what it means to be secure for a system.
The security policy addresses constraints on functions and flow among
them and constraints on access to resources by principals, in particular by
programs, external systems and adversaries. These formal policy models
can be categorized into the core security principles of: confidentiality (the
data is only accessed by principals who have access), integrity (the data can
fully be accessed by principals who have access) and availability (the data

16 CHAPTER 3. STATE OF THE ART

can always be accessed by principals who have access). The protection of a
system is the enforcement of a security policy by organizational policies or
security mechanisms. Given a security policy, a particular implementation
can be secure or insecure.

For operating systems In operating systems, principals are usually users,
groups of users or processes (or, in most evolved cases, users using a
process). The access control is usually defined with ACLs, the simple case
of Unix providing read, write and execute right to a user, a group and other
principals respectively. It corresponds to the rather limited ❝❤♠♦❞ shell
command. More developed languages have been proposed to define more
refined policies, e.g., [HRU76]. It is important to note that for some of these
languages, the security of a system given a policy may be undecidable.

For databases A possible approach to access control, specific to databases,
is based on views, used as protection mechanisms. See, e.g., [FSW81,
HKM78]. Also, the data manipulation language (such as SQL) may be
directly used to define the privileges (insert, delete, update and read) of
users and groups. The authorization are stored as particular tables or views
of the database.

With respect to authorization control in classical DBMS, distributed
DBMSs have to provide remote user authentication, management of dis-
tributed authorization rules and handling of views and user groups. See,
e.g., [WL82]

3.2.2 Access control for distributed systems

Distributed file systems is another major field of research for access control.
Early works [WABL94, MKKW99] considered primarily authentication of
users and servers in a distributed system. In [WABL94], a logic is used
to validate chains of authentication in a distributed setting without con-
sidering data. In [MKKW99], self certification of pathnames is used to
authenticate servers, with the remaining of key management handled out-
side of the file system, under the responsibility of agents.

Another important branch of work is the numerous logical access con-
trol policy languages for distributed systems proposed recently, e.g., [JSS97,
KFJ03, BFG07, GN08, MZZ+08, Aba09]. The work of [BFG07] and [Aba09]
are probably the closest to our work. [BFG07] proposes a declarative au-
thorization language where policies and credentials are expressed using
predicates defined by logical clauses. Access requests are mapped to logical

3.2. ACCESS CONTROL 17

authorization queries, and access is granted if the query succeeds against
the current database of clauses. [Aba09] uses also a logical description of
the policy, with statements that are semantically mapped to logical clauses
as well. WebdamExchange language is highly inspired from this work,
in particular borrowing denotation and syntax. The original language
of [Aba09] introduces interesting new features and formalism for authenti-
cation, as principal composition and delegation. These notion are mostly
orthogonal with access control authorization. So we choose to concentrate
first on integration of distribution in the language and gave up the most
advanced features. Nevertheless, the original language can be mapped to
Datalog, so we are confident in the fact that WebdamExchange on top of
WebdamLog can be easily upgraded with these authentication features.

Based on the idea of separating key management and data manage-
ment, a large numbers of systems have been proposed to share file in
a P2P network. See, e.g., [KBC+00, RD01, REG+03]. The focus of these
works are generally on distribution and caching, limiting security issues
to encryption and external key management. For example, the system
described in [RD01] uses the PASTRY routing substrate, replica diversion
and caching to balance query load. In [REG+03], a distributed routing
index not constraining data placement is used. Redundancy, cryptography
and monitoring are used to build the storage system on an untrusted in-
frastructure. By contrast with these approaches, WebdamExchange covers
both key and data management and different kinds of data distribution.

3.2.3 Access control for XML

There is also a large amount of work on defining an access control language
for XML, e.g., [DdVPS02, Bry05, MTKH06, FM07]. Extending the issues
encountered with standard databases, the problem is mostly to properly
take in account the specific granularity of XML. Indeed, one may want to
give access to sub-parts of XML trees. A typical example is the following.
Suppose given an XML document with some “store” element, containing
“book” and “employee” elements. Suppose each book has a “price”, “de-
scription” and number of book in “stock” elements. A client should be able
to access the book prices and descriptions, without seeing the employees
or the stock. It corresponds to granting access to the sub-trees rooted at
“/store/book”, while preserving the paths to these nodes, but not the sub-
trees rooted at “/store/book/stock”. The languages are then usually based
on access paths, with different kinds of choices regarding how to grant or
revoke access to the node itself, the path to the node, and the sub-tree, and

18 CHAPTER 3. STATE OF THE ART

how to manage conflicts in policy.
Based on works on enforcing access control on distributed systems using

cryptography [CGI+99, RR02], the work presented in [MS02, MS03, AW08]
proposes a way to enforce some particular kind of access control policies
for XML by encrypting parts of the document and by inserting special
meta-data containing encryption of keys.

In WebdamExchange , the granularity for access control is the document.
This is to simplify, since one could clearly consider other granularities.

3.2.4 Access control policies

In this section, we are mentioning interesting aspects of specific access
control policies. We are particularly interested in access control policies
related to personal data, since users have a huge need for privacy and
control over these data, that is far from fulfilled by current systems.

Hippocratic database Hippocratic databases [AKSX02] are systems that
respect a certain number of principles, in particular purpose specification,
limited collection, i.e., data accessed should be limited to the minimum
necessary for accomplishing the specified purpose, and limited retention,
i.e., data should be retained only as long as necessary for the purpose fulfill-
ment. It has been designed with personal data management in mind. Some
proposals have been made to formalize [LAE+04] and implement [JSAV09]
such databases. Hippocratic databases are of particular interest to illustrate
how complex the definition of a security policy can be, and how far current
approaches are to meet the needs.

ActiveXML-based There have been some preliminary works on man-
aging personal information using ActiveXML, e.g., [SHLX03, ABCM04,
AAB+04, Kim10] These works illustrate, on the example of an electronic
patient record, how ActiveXML can be used to automatically manage
distributed information with respect to security and access control. Web-
damExchange follows this line of work, that aims to addressing in a uni-
form way distributed query processing and security. In [ABCM04], access
control is enforced by special service calls and a simple query rewriting
mechanism. One of the important novelty of WebdamExchange compared
to that work is that it allows the system to use standard cryptography
methods as well, in order to enforce access control.

3.3. DISTRIBUTED DATALOG 19

Social networks WebdamExchange was initially motivated by the idea of
implementing a social network in P2P. To the best of our knowledge, there
are few works on the topic, but the topic clearly became more active recently.
For example, [KGG+06] proposed a distributed identity management with
access control based on the social network of users. In particular, it uses the
standard Friend-Of-A-Friend (FOAF) [BM10] representation of the social
network. An access control policy model based on the social network and
trust has also been proposed by [AVM07]. These two works illustrate well
specific needs of social network, in particular with respect to transitive
closure on graphs. On another direction, [FAZ09] proposes a language
for social network access control and uses it to analyze Facebook security
policy.

Finally, [BSVD09] proposes an implementation of a social network based
on a distributed hash table and partially addresses privacy. In general, such
approaches, that focus on particular kind of policies, are clearly comple-
mentary to ours.

3.2.5 Other problems related to access control

There is a large number of problems related to access control. One is
protection of anonymity, i.e., to forbid an opponent to guess who edited or
read a data. See, e.g., [CKGS98, CSWH01].

There is also an important line of works about security in statistical
database. See, e.g., [YC77, Bec80, FJ02]. In particular, an adversary may
try to guess some data he has not access to, by using a set of queries and
some external knowledge. There are two main methods to avoid that
problem. One is to monitor queries and refuse to answer a query if it
will provide forbidden information (interface control). Another one is to
slightly modify the database or the answer to the query (data swapping
and multidimensional transformation) to have as little impact as possible
on the aggregated answers but to give no information on single rows.

3.3 Distributed Datalog

To support WebdamExchange , we will use the WebdamLog language. Note
that this language participates in the renewed interest in datalog. See, e.g.,
[Dat10]. Datalog has been the subject of a large amount of work in the
database community. Some of it is reviewed in [AHV95]. To our knowl-
edge, the first attempts to distribute Datalog on different peers are [Hul89]

20 CHAPTER 3. STATE OF THE ART

and [NCW93]. The first distributes a positive Datalog program on dif-
ferent machines after a compilation phase. The second adapts classical
transformations of positive programs based on semi-joins to minimize
distribution cost. Perhaps the work closest to the WebdamLog model
is [AAHM05] that adapts query-subquery optimization [Vie86] to a variant
of positive distributed Datalog. We are also interested by negation, in
particular by stratified negation [CH85], and by active rules in the style of
Datalog¬¬ [AV91]

We believe that the most interesting usage of Datalog-style rules for
distributed data management came recently from the Berkeley and U. Penn
groups. They used distributed versions of Datalog to implement Web
routers [LHSR05], DHT [LCH+05] and Map-Reduce [ACC+10] rather ef-
ficiently. By demonstrating what could be efficiently achieved with this
approach, these works were essential motivations for our own. The most
elaborate variant of distributed Datalog used in these works is presented
in [LHSR05, CCHM08] and formally specified in [NR09, PRS09]. In these
papers, the semantics is operational and based on a distribution of the pro-
gram before the execution. In view of issues with this model, a new model
was recently introduced in [Hel10], based on an explicit time constructor.
We found the semantics of negation together with the use of time in that
model rather unnatural. In particular, time is used as an abstract logical
notion to control execution steps and the future may have influence on the
past. As a consequence, we found it difficult to understand what appli-
cations are doing as well as to prove results on their language. However,
we have been influenced by this line of work, and other recent works such
as [GW10].

Chapter 4

A rule based language for Web
data exchanges

This work has been carried out in collaboration with Serge Abiteboul, Meghyn Bien-
venu, Marie-Christine Rousset and Émilien Antoine. It is introduced in [ABGR10]
and presented in [ABGA11].

The management of modern distributed information, notably on the
Web, is a challenging problem. Because of its complexity, there has recently
been a trend towards using high-level Datalog-style rules to specify such
applications. We introduce here a model for distributed computation where
peers exchange messages (i.e., logical facts) as well as rules. The model
provides a novel setting with a strong emphasis on dynamicity and interac-
tions (in a Web 2.0 style). Because the model is powerful, it provides a clean
basis for the specification of complex distributed applications. Because it
is simple, it provides a formal framework for studying many facets of the
problem such as distribution, concurrency, and expressivity in the context
of distributed autonomous peers.

As mentionned in the previous chapter, there has been renewed interest
in studying languages in the Datalog family for a wide range of applications
ranging from program analysis, to security and privacy protocols, to natu-
ral language processing, or multiplayer games. For references, see [Hel10]
and the proceedings of the Datalog 2.0 workshop [Dat10]. Here, we are
concerned with using rule-based languages for the management of data
in distributed settings, as in Web applications [ABM04, ASV09, FMS09]
and [ABGR10], networking [LCG+06, LMO+08, GW10] or distributed sys-
tems [LCG+09]. The arguments in favor of using Datalog-style specifi-
cations for complex distributed applications are the familiar ones. See,
e.g., [Hel10].

21

22CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

A main contribution of this work is a new model for distributed data
management that combines in a formal setting deductive rules as in Data-
log with negation [CH85] (to specify intensional data) and active rules as in
Datalog¬¬ [AV91] (for updates and communications). There have already
been a number of proposals for combining active and deductive features in
a rule-based language; see [LLM98, Hel10] and our discussion of related
work. However, there is yet to be a consensus on the most appropriate such
language. We therefore believe that there is a need to continue investigat-
ing novel language features adapted to modern data management and to
formally study the properties of the resulting new models.

The language we introduce, called WebdamLog , is tailored to facilitate
the specification of data exchange between autonomous peers, which is
essential to the applications we have in mind. Towards that goal, the new
feature we introduce is delegation, that is, the possibility of installing a
rule at another peer. In its simplest form, delegation is essentially a remote
materialized view. In its general form, it allows peers to exchange rules,
i.e., knowledge beyond simple facts, and thereby provides the means for
a peer to delegate work to other peers, in Active XML style [ABM08]. We
show using examples that because of delegation, the model is particularly
well suited for distributed applications, providing support for reactions to
changes in evolving environments.

A key contribution is a study of the impact of delegation on expressivity.
We show that view delegation (delegation in its simplest form, allowing
only the specification of materialized views) strictly augments the power of
the language. We also prove that full delegation further increases it. These
results demonstrate the power of exchanging rules in addition to facts.

A message sent from peer p, received at peer q, that starts some task
at q, introduces a kind of synchronization between the two peers. Thus,
time implicitly plays an important role in the model. We show that when
explicit time is allowed (each peer having its local time), view delegation
no longer increases the expressive power of the language.

Because of their asynchronous nature, distributed applications in Web-
damLog are nondeterministic in general. To validate our semantics for
deductive rules, we study two kinds of systems that guarantee a form
of convergence (even in presence of certain updates). These are positive
systems (positive rules and persistence of extensional facts) and strongly-
stratified systems (allowing a particular kind of stratified negation [CH85]
for restricted deductive rules and fixed extensional facts). We also show that
both types of systems essentially behave like the corresponding centralized
systems.

4.1. THE MODEL 23

Organization

The chapter is organized as follows. We introduce the model in Section 4.1,
first by means of examples and then formally. In the following section,
we discuss some key features of the model and illustrate them with more
examples. In Section 4.3, we compare the expressivity of different variants
of our model. In Section 4.4, we discuss the convergence of WebdamLog
systems and compare the semantics to the “centralized semantics”, for the
positive and strongly-stratified restrictions of the language. In Section 4.5,
we mention an implementation and optimization techniques. The final
section concludes with directions for future work.

4.1 The model

In this section, we first illustrate the model with examples, then formalize
it. More examples and a discussion of key issues will be provided in the
next section.

4.1.1 Informal presentation

We introduce with a first example the main concepts of the model: the
notions of fact that captures both local tuples and messages between peers, of
extensional and intensional data, and of (WebdamLog)) rule.

Consider a particular peer, namely Alice-iPhone, with the relation calen-
dar that gives the calendar entry that Alice entered from her iPhone and the
relation Roc14members that gives the list of member of the Roc14 climbing
group and how to send them calendar invitation (on which servers, with
which messages). Examples of facts are:

at Alice-iPhone:
calendar@Alice-iPhone(rockclimbing, 06/12/2011, Fontainebleau,

Alice-iPhone).
Roc14members@Alice-iPhone(Bob, agenda, Bob-laptop).

The following rule, called [Send-Invitation] , is used to include rockclimbing
entries from Alice’s agenda into the agendas of other members of the group,
and in particular into Bob’s agenda:

at Alice-iPhone:
$calendar@$peer(rockclimbing, $date, $place, Alice-iPhone) :-

calendar@Alice-iPhone(rockclimbing, $date, $place, Alice-iPhone),
Roc14members@Alice-iPhone($name, $calendar, $peer)

24CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

Observe that peer and message names are treated as data. The two previous
facts represent pieces of local knowledge of Alice-iPhone. Now consider the
new fact generated by the rule:

agenda@Bob-laptop(rockclimbing, 06/12/2011, Fontainebleau,
Alice-iPhone)

This fact describes a message that is sent from Alice-iPhone to Bob-laptop.
As in deductive databases, the model distinguishes between extensional

relations that are defined by a finite set of ground facts and intensional
relations that are defined by rules. So for instance, the relation Roc14members
on Alice-iPhone may be intensional and defined as follows:

at Alice-iPhone:
intensional Roc14members@Alice-iPhone(string, relation, peer)

Roc14members@Alice-iPhone($name, $relation, $peer) :-
contact@Alice-iPhone($name, $relation, $peer),
group@Alice-iPhone($name, Roc14)

Observe that it is defined using extensional relations.
As usual, intensional knowledge is defined by rules such as the previous

one, that we call deductive rules. Other rules such as the [Send-Invitation]
rule, that we call active, produce extensional facts. Such an extensional fact
m@p is received by the peer p (e.g., Bob-laptop and Alice’s iPhone). During
its next phase of local processing, this peer will consume these facts and
produce new ones. By default, any processed fact disappears. Facts can
be made persistent using persistence rules, illustrated next on the relation
calendar@Alice-iPhone:

at Alice-iPhone:
calendar@Alice-iPhone($name, $date, $place, $peer) :-

calendar@Alice-iPhone($name, $date, $place, $peer),
¬ del.calendar@Alice-iPhone($name, $date, $place, $peer)

The rules state that a fact persists unless there is explicitly a deletion mes-
sage (e.g., del.calendar).

Delegation by example

In the model, the semantics of the global system is defined based on local
semantics and the exchange of messages and rules. Intuitively, a given
peer chooses how to move to another state based on its local state (a set of

4.1. THE MODEL 25

personal facts and messages received from other peers) and its program. A
move consists in (1) consuming the local facts, (2) deriving new local facts,
which define the next state, (3) deriving nonlocal facts, i.e., messages sent
to other peers, and (4) modifying their programs via “delegations”.

The derivation of local facts and messages sent to other peers are both
standard and were illustrated in the previous example. The notion of
delegation is novel and is illustrated next. Consider the following rule,
installed at peer Bob-laptop:

at Bob-laptop:
confirm@$peer(rockclimbing, $date, $place,Bob) :-

calendar@Bob-laptop(rockclimbing, $date, $place, $peer),
checkAvailability@Bob-iPhone($date);

where calendar@Bob-laptop, checkAvailability@Bob-iPhone and confirm@Alice-
iPhone are all extensional. Its semantics is as follows. Suppose that agenda@
Bob-laptop(rockclimbing, 06/12/2011, Fontainebleau, Alice-iPhone) holds, then
the effect of this rule is to install at Bob-iPhone the following rule:

at Bob-iPhone:
confirm@Alice-iPhone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-

checkAvailability@Bob-iPhone(06/12/2011);

The action of installing a rule at some other peer is called delegation. When
Bob-iPhone runs, if checkAvailability@Bob-iPhone(06/12/2011) holds, it will
send the message confirm@Alice-iPhone(rockclimbing, 06/12/2011, Fontainebleau,
Bob) to Alice-iPhone.

Now suppose instead that confirm@Alice-iPhone is intensional. When
Bob-iPhone runs, if checkAvailability@Bob-iPhone(06/12/2011) holds, the effect
of this rule is to install at Alice-iPhone the following rule:

at Alice-iPhone:
confirm@Alice-iPhone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-

The intuition for the delegation from Bob-laptop to Bob-iPhone is that there
is some knowledge from Bob-iPhone that is needed in order to realize the
task specified by this particular rule. So, to perform that task, Bob-laptop
delegates the remainder of the rule to Bob-iPhone. The delegation from Bob-
iPhone to Alice-iPhone is somewhat different. Peer Bob-iPhone knows that
confirm@Alice-iPhone (an intensional fact) holds until some change occurs.
As Alice-iPhone may need this fact for his own computation, Bob-iPhone will
pass this information to Alice-iPhone in the form of a rule (since as a fact, it
would be consumed).

We next formalize the model illustrated by the previous example.

26CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

4.1.2 Formal model

Alphabets

We assume the existence of two infinite disjoint alphabets of sorted constants:
peer and relation. We also consider the alphabet of data that includes in
addition to peer and relation, infinitely many other constants of different
sorts (notably, integer, string, bitstream, etc.). It is because data includes peer
and relation that we may write facts such as those in the birthday relation.
Similarly we have corresponding alphabets of sorted variables. An identifier
starting by the symbol $ implicitly denotes a variable. A term is a variable
or a constant.

A schema is an expression (Π, E , I , σ) where Π is a (possibly infinite)
set of peer IDs; E and I are disjoint sets, respectively, of extensional and
intensional names of the form m@p for some relation name m and some
peer p; and the typing function σ defines for each m@p in E ∪ I the arity
and sorts of its components. Note that because I ∩ E = ∅, no m is both
intensional and extensional in the same p. Considering Π to be infinite
reflects the assumption that the set of peers is dynamic and of unbounded
size just like it is the case on the Web.

Facts and rules

Given a relation m@p, a (ground) (p-)fact is an expression m@p(u) where u
is a vector of data elements of the proper type, i.e., correct arity and correct
sort for each component. For a set K of facts and a peer p, K[p] is the set of
p-facts in K. The notion of fact is central to the model. It will be the basis
for both stored knowledge and communication. For instance, in the peer
p, if we derive the extensional fact r@p(1, 2), this is a fact p knows. On the
other hand, if we derive the extensional fact s@q(2, 3), this is a message
that p sends to q.

A (WebdamLog) rule is an expression of the form

Mn+1@Qn+1(Un+1) :- (¬)M1@Q1(U1)...(¬)Mn@Qn(Un)

where each Mi is a relation term, each Qi is a peer term and each Ui is a
vector of data terms. We also allow in the body of the rules, atoms of the
form X = Y or X 6= Y where X, Y are terms.

We require a rule to be safe, i.e.,

1. For each i, if Qi is a peer variable, it must be previously bound, i.e., it
must appear in U j for some positive literal Mj@Qj(U j), j < i.

4.1. THE MODEL 27

2. Each variable occuring in a literal ¬Mi@Qi(Ui) must be previously
bound to a positive literal.

3. Each variable in the head must be positively bound in the body.

Remark 4.1 (Unguarded peer). Observe that we treat differently peer and
relation names. By (1), a peer variable has to be previously positively
bound. We insist on (1) so that we control explicitly to whom a peer sends
a message or delegates a rule.

Note also that because of (1), the ordering of literals is relevant. One
could define a variation of the language, namely peer-unguarded Web-
damLog by not imposing Constraint (1) and considering all orderings
of the body literals (with the negative ones seen implicitly after all the
others). When deriving new facts, we simply consider first the positive
literals and never consider a literal if its peer is not instantiated.

We say that a rule is deductive if the head relation is intensional. Other-
wise, it is active. Rules live in peers. We say that a rule in a peer p is local
if all Qi in all body relations are from p. It is fully local if the head relation
is also from p. We will see that the following four classes of rules play
different roles:

Local deduction Fully local deductive rules are used to derive intensional
facts locally.

Update Local active rules are used for sending messages, i.e., facts, that
modify the databases of the peers that receive them.

View delegation The local but not fully local deductive rules provide some
form of view materialization. For instance, this rule results in provid-
ing at q a view of some data from p:

at p : r@q(U) :- (¬)r1@p(U1), ...(¬)rn@p(Un)

General delegation The remaining rules allow a peer to install arbitrary
rules at other peers.

Peer and relation variables provide considerable flexibility for designing
applications. However, observe that because of them, it may be unclear
whether a rule is (fully) local or not, deductive or active. Using atoms such
as Q = p, Q 6= p for some constant peers and similarly for relations, one
could remove the ambiguity and distinguish the nature of the rule. We
omit the formal details. Note that in a real system, one can wait until a rule

28CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

is (partially) instantiated at runtime to find what its nature is, and decide
what should be done with it.

The semantics of WebdamLog is based on autonomous local computa-
tions of the peers. We consider this first, then look at the global semantics
of WebdamLog systems.

Local computation

A local computation happens at a particular peer. Based on its set of facts
and set of rules, the peer does the following: (1) some local deduction of
intensional facts, (2) the derivation of extensional facts that either define its
next state or are sent as messages, and (3) the delegation of rules to other
peers.

(Local deduction) For local deduction, we want to rely on the semantics
of standard Datalog languages. However, because of possible relation
variables, WebdamLog rules are not strictly speaking proper Datalog¬

rules, since the relation names of atoms may include variables. So, to
specify local deduction, we proceed as follows. We start by grounding the
peer and relation variables appearing in the rules. More precisely, for each
rule

Mn+1@Qn+1(Un+1) :- (¬)M1@Q1(U1)...(¬)Mn@Q1(Un)

of peer p, we consider the set of rules obtained by instantiating relation
variables Mi with relation constants and peer variables Qi with peer con-
stants. To ensure finiteness, we only use constants from the active domain
of the peer, that is, that appear in some fact or rule in the peer state. We can
now deal with pairs m@p of relation and peer constants as normal relation
symbols in Datalog. Since for local deduction, we are only interested in
fully local deductive rules, we will remove rules with a relation m@q for
q 6= p or an extensional relation in the head. We must also remove rules
that violate the arity or sort constraints of σ. The remaining rules are all
fully local deductive rules which belong to standard Datalog.

Now, given a set I of facts and a set Pd of fully local deductive rules
(defined as in the previous paragraph), we denote by P∗

d (I) the set of facts
inferred from I using Pd with a standard Datalog semantics. For instance, in
absence of negation, the semantics is, as in classical Datalog, the least model
containing I and satisfying Pd. When considering negation, one can use any
standard semantics of Datalog with negation, say well-founded [Prz90] or
stable [GL88]. For results in Section 4.4.2, we will use a variant of stratified
negation semantics [CH85].

4.1. THE MODEL 29

(Updates) Given a set K of facts and a set Pa of local active rules, the
set Pa(K) of active consequences is the set of extensional facts v(A) such that
for some rule A :- Θ of Pa and some valuation v, v(Θ) holds in K, and
v(A), v(Θ) obey the typing and sort constraints of σ. This is the set of
immediate consequences. Note that it does not necessarily contain all facts in
K.

Observe that for deductive rules, we typically use a fixpoint (based on
the particular semantics that is used), whereas for active rules, we use the
immediate consequence operator that is explicitly procedural.

(Delegation) Given a set K of facts and a set P of (active and deductive)
rules in some peer p, the delegation γpq(P, K) of peer p to q 6= p is defined
as follows.

If for some deductive rule M@Q(U) :- Θ in P, there exists a valuation
v such that vΘ holds in K, v(Q) = q, and the typing constraints in σ are
respected, then

vM@vQ(vU) :-

is in γpq(P, K).
If for some active or deductive rule

A :- Θ0, (¬)M@Q(U), Θ1

in P (where Θ0, Θ1 are sequences of possibly negated atoms), there exists a
valuation v satisfying σ such that vΘ0 contains only p-facts, vΘ0 holds in
K, and vQ = q(6= p), then

vA :- (¬)M@vQ(vU), vΘ1

is in γpq(P, K).
Nothing else appears in γpq(P, K).

Observe that we do not produce facts that are improperly typed. In
practice, a peer p may not have complete knowledge of the types of some
peer q’s relations. Then p may “derive” an improperly typed fact. This
fact will be sent and rejected by q. From a formal viewpoint, it is simply
assumed that the fact has not even been produced. Similarly, a peer may
delegate an improperly typed rule, but that rule will never produce any
facts, and so can safely be ignored.

We are now ready to specify the semantics of WebdamLog systems.

30CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

States and runs

A (WebdamLog) state of the schema (Π, E , I , σ) is a triple (I, Γ, Γ̃) where
for each p ∈ Π, I(p) is a finite set of extensional p-facts at p, Γ(p) is the
finite set of rules at p, and Γ̃(p, q) (p 6= q) is the set of rules that p delegated
to q. For p ∈ Π, the (p-)move from (I, Γ, Γ̃) to (I′, Γ′, Γ̃′) (corresponding to
the firing of peer p) is defined as follows. Let Pp be Γ(p) ∪ (∪qΓ̃(q, p)), Ppd
be the set of fully local deductive rules in Pp and Ppa the set of local active
rules in it. Then the next state is defined as follows:

• (Local deduction) Let K = P∗
pd(I(p)).

• (Updates) I′(p) = Ppa(K)[p]; and
(external activation) I′(q) = I(q) ∪ Ppa(K)[q] for each q 6= p.

• (Delegations) Γ̃′(p, q) = γpq(Pp, K) for each q 6= p; and
Γ̃′(p′, q′) = Γ̃(p′, q′) otherwise.

A (WebdamLog) system is a state (I, Γ, Γ̃) where Γ̃(p, q) = ∅. We will
speak of the system (I, Γ) (since Γ̃ is empty). A sequence of moves is fair if
each peer p is invoked infinitely many times. A run of a system (I, Γ) is a
fair sequence of moves starting from (I, Γ).

Observe that I(p) is finite for each peer and that it remains so during
a run, even if the number of peers is infinite. Note also that deletions are
implicit: a fact is deleted if it is not derived for the next state. We recall that
facts can be made persistent using persistence rules of the form

r@p(U) :- r@p(U),¬del.r@p(U)

In the following, such a rule for relation r@p will be denoted persistent r@p.

Remark 4.2 (Fact and rules). It is important to observe a difference between
the semantics of facts and rules. Observe that, if we visit twice peer p in a
row, the fact-messages that p sends to q accumulate at q. On the other hand,
the new set of delegations replaces the previous such set. Moreover, when
we visit q, the messages of q are consumed whereas the delegations stay
until they are replaced. These subtle differences are important to capture
different facets of distributed computing, e.g., for capturing materialized
views or for providing the expected semantics to extensional / intensional
data.

4.2. DISCUSSION 31

4.2 Discussion

In this section, we present examples that illustrate the interest of our model
for distributed data management, and make key observations about differ-
ent aspects of the model.

We first consider two serious criticisms that could be adressed to the
model, namely too much synchronization and too little local control. We
show how both issues can be resolved.

4.2.1 Too much synchronization

Observe that moves capture some form of asynchronicity and parallelism.
The peer that fires is randomly chosen and does (atomically) some pro-
cessing. However, there is still some form of synchronization, that may be
undesired. When we process peer p, messages from p to some peer q are
instantaneously available in q. This is impossible to guarantee in practice.
In a standard manner, when a more precise modeling is desired, one can
introduce a peer acting as the network between p and q. Instead of going
instantaneously from p to q, the message goes instantaneously from p to
networkpq, waits there until networkpq is fired, then goes instantaneously
to q, and similarly for delegations. This captures more realistically what
happens in practice, and does not require changing the model.

4.2.2 Too little local control

In the model we have defined, nothing prevents a peer p from modifying
another peer q’s relations or accessing q’s data using delegation. In realistic
settings, one would want a peer to be able to hold private information,
which cannot be modified or accessed by another peer without its permis-
sion. This can be easily accomplished by extending the model with local
relations. These relations can only appear in p’s own facts and rules (i.e.,
I(p) and Γ(p)), but not in any rules delegated to p (in practice, this means
p would simply ignore any delegations using one of its private relations).

To illustrate, suppose that we want to control the access to a relation
r@p of peer p. We create for this purpose two local relations read@p($r, $q)
and write@p($r, $q) that store who can read/write in p’s relations. Note
that the read and write relations are local, i.e., only p can specify the access
rights in p. Relations r@p and del.r@p must also be local so that p control
access to them. To obtain relation r@p, a peer q sends a message get@p(r, q).
The following rule controls whether q will receive the data it requested:

32CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

at p: send@$q($r,$x) :- get@p($r,$q), read@p($r,$q),
$r@p($x)

Insertions in r@p (or deletions using del.r@p) are treated similarly. Access
control is at the center of the work around WebdamExchange , described in
Chapter 5.

We next consider two subtleties of delegation.

4.2.3 Delegation and complexity

Consider the rule:

at p: m@q() :- m1@p($q,$x), m2@$q($x)

If there are 1000 distinct tuples (pi, 0) such that m1@p(pi, 0) holds, then
we have to install rules in 1000 distinct peers. So delegation is inherently
transforming data complexity into program complexity.

4.2.4 Peer life and delegation

It is very simple in the model to consider that peers are born, die or hi-
bernate. We simply have to insist that p can be fired (p-move) only if p is
alive and not hibernating. We can assume that messages and delegations to
dead peers are simply lost and that for hibernating ones, they are buffered
somewhere in the network. A subtlety is that (with this variant of the
model), if a peer dies without cleanly terminating, delegations from this
peer are still valid. In practice, the system may realize that a particular peer
is no longer present and terminate its delegations.

We conclude this section with three examples that illustrate different
aspects of the language, communications, persistence services, and rule
updates.

4.2.5 Multicasting

We can simulate channels, i.e., m-n communications with the following
rules:

at q: persistent channelsubscribe@q
channel@$p($m,q,$s) :- channelsubscribe@q($p,$m),

$m@q($s)

4.3. EXPRESSIVITY 33

The rules at peer q allows him to support channels. A peer p can subscribe
to receiving all the messages from the channel m hosted by q by sending
channelsubscribe@q(p, m) to q. Then, whenever someone sends a message
m@q(s), p will receive channel@p(m, q, s).

4.2.6 Database server replication

The following rule allows a database server to replicate relations from many
peers:

intensional export@db(relation,peer)
at db: persistent tobeexported@db

export@db($r,$p,$x) :- tobeexported@db($r, $p),
$r@$p($x)

If a peer p wants his relation r@p to be stored at db, then p simply needs
to send db the message tobeexported@db(r, p). Now, export@db(r, p, $x) is
a copy of r@p($x).

4.2.7 Rule updates and rule deployment

Observe that (to simplify) we assumed that the set of rules in a run is fixed,
i.e., Γ(p) is fixed for each p. It is straightforward to extend the model to
support addition or deletion of rules. Furthermore, one might want to be
able to control whether a particular rule is deployed on a particular peer.
To illustrate this point, consider the two rules:

at p: persistent server@p
f@$p($u) :- server@p($p), f1@$p($u1),...,fn@$p($un)

Sending the message server@p(q) results in installing

at q: f@q($u) :- f1@q($u1),...,fn@q($un)

Note that if we send the message del.server@p(q), the rule is removed.

4.3 Expressivity

In this section, we study the expressive power of WebdamLog and of
different languages that are obtained by allowing or restricting delegations.
We also consider the expressive power of timestamps. More precisely, we
consider the following languages for rules:

34CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

• WL (WebdamLog): the general language.

• VWL (views WL): the language obtained by restricting delegations to
only view delegations.

• SWL (simple WL): the language obtained by disallowing all kinds of
delegations.

At the core of view delegation, we find the maintenance of materialized
views. To maintain views, we will see that timestamps turn out to be useful.
More precisely, for time, we assume that each peer has a local predicate
called time (with time(t) specifying that the current move started at local
time t.) The predicate < is used to compare timestamps. Note that each peer
has its separate clock, so the comparison of timestamps of distinct peers
is meaningless. To prevent time from being a source of nondeterminism,
for t1, t2 two times at different peers, we have: t1 6< t2 and t2 6< t1. The
languages obtained by extending the previous languages with timestamps
are denoted as follows: WLt, VWLt, SWLt.

4.3.1 Traces and simulations

To formally compare the expressivity of the above languages, we need to
introduce the auxiliary notions of trace and simulation.

Let r = (I1, Γ1, Γ̃1), ...(In, Γn, Γ̃n), ... be a run. Let M be a set of predicates
and I a set of facts. Then ΠM(I) is the set of facts in I with predicates in
M. The M-trace of the run r for a set M of predicates is the subsequence
of πM(Ii1), ..., πM(Iin)... obtained by starting from πM(I1), ..., πM(In)... and
removing all repetitions, i.e., deleting the (k + 1)th element of the sequence
if it is identical to the kth, until the sequence does not contain two identical
consecutive elements. Given an initial state S and a set of predicates M, we
denote by M-trace(S) the set of M-traces of runs from S. In some sense, it is
what can be observed from S when only facts over M are visible.

Let α be a set of peers. An initial state S = (I, Γ) can be α-simulated by
an initial state S′ = (I, Γ′) if Γ(p) = Γ′(p) for all p ∈ α and S and S′ have
the same M-traces, where M is the set of relations of S. In other words,
from the point of view of what is visible from S, S′ behaves exactly like S.
The set of peers α is meant to capture the part of the system (one or more
peers) that we want to keep strictly identical.

Now, we say that a language L can be simulated by a language L′, de-
noted L ≺ L′, if there exists a translation τ from programs in L to programs
in L′ such that for each initial state (I, Γ) (with programs in L) and for each
α, (I, τ(Γ)) α-simulates (I, Γ) where τ is defined by: for each peer p,

4.3. EXPRESSIVITY 35

• if p ∈ α, τ(Γ(p)) = Γ(p).

• otherwise, τ(Γ(p)) = τ(Γ(p)).

Clearly, in the previous definition, the peers in α are not part of the
simulation, they behave exactly as originally. In some sense, they should
not even be aware that something has changed.

4.3.2 Expressivity results

The expressive power of the different languages are compared in Figure
4.1. The containments are strict except for that of VWLt inside WLt where
the issue remains open.

WLt

WL SWLt = VWLt

VWL

SWL

Figure 4.1: Expressive power of the rule languages (the inclusion is strict
when the arc is in bold)

Our first result states that view delegation cannot be simulated by
simple rules.

Theorem 4.3 (No views in SWL). VWL 6≺ SWL.

Proof. Intuitively, the difficulty is that the system may visit an arbitrary
number of times the same peer p before visiting another peer q. Then q sees
all the messages from p at the same time and ignores in which order they
were received.

Formally, consider a VWL system (I, Γ) consisting of three peers pα, p, q.
There are two facts that hold in the initial state: true@pα(), true@p().

The set of active rules Γ(pα) maintain the peer pα in a permanent flip-
flop between two modes:

at pα : r@p() :- true@pα()
f alse@pα() :- true@pα()
del.r@p() :- f alse@pα()
true@pα() :- f alse@pα()

36CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

Note that pα keeps inserting then deleting the same proposition in p, namely
r@p(). Peer p uses the following four rules:

at p : r@p() :- r@p(),¬del.r@p()
true@p() :- f alse@p()
f alse@p() :- true@p()
s@q() :- r@p()

The first active rule maintains relation r@p. The next two active rules
maintain p in a flip-flop between two modes. The last rule is a view
delegation rule. It is because of this latter rule that the system is in VWL
but not in SWL.

Finally peer q has one active rule:

at q : true@q() :- s@q()

Suppose for a contradiction that there is a pα-simulation of this system
in SWL, via some program translation function τ. As the set of peers is
finite (namely 3), the initial state (I, τ(Γ)) is finite. Thus, it includes a finite
set of relation names and constants. This means that there is a finite number
of distinct messages that can be sent during a run of this system. Now let
r1 be any run of (I, τ(Γ)) such that the initial segment of activated peers is
as follows: pα, then p, then pα, then p, etc., n times (for n to be fixed later in
the proof), and then q. Let I, I1, I2, ..., I2n−1, I2n, I′ be the trace of r1. Because
of the two flip-flops, the trace has this size and it is clear from it which peer
has been activated at each step.

Consider a second run r2 which is defined like r1 except that this time
we visit pα and p, n + 1 times, then q. Let I, I2, I3..., I2n−1, I2n, I2n+1, I2n+2, I′′

be the trace of r2.
Observe that while p and pα are being activated, q is simply accumulat-

ing messages. Recall that the set of messages that q may accumulate is finite.
Thus we can choose n large enough so that I2n+2(q) = I2n(q). Suppose that
I′(q) contains true@q. Then because the set of messages at q is the same in
the second run, I′′(q) also contains true@q, a contradiction because the last
iteration in pα, p must have removed r@p. A similar contradiction occurs if
true@q is not produced. Thus such a simulation does not exist. ✷

Next we separate VWL and WL.

Theorem 4.4 (No general delegations in VWL).
WL 6≺ VWL.

Proof. (sketch) Intuitively, peer q will use a general delegation to ask peer
p to do something that is beyond the capability of the rules in p. This is

4.3. EXPRESSIVITY 37

not trivial because p may perform very complex operations with arbitrarily
many complex rules. However, it turns out that there is a limit to what p
can do. To prove it, we use the fact that with formulas using a bounded
number k of variables, one cannot check whether a graph has a clique of
size k + 1 (when an ordering of the nodes is not available).

Formally, consider a WL system (I, Γ) that consists of three peers pα, p, q.
Intuitively, peer pα sends a sequence of updates to a graph that is originally
empty and is stored at p. To do that, pα has a persistent relation that stores
a sequence of updates. More precisely, pα has a set of tuples of the form:
upd@pα(i, o, a, b) where i in [0,m] for some m and there is a single tuple for
each i, o in { ins, del }, and a, b are data elements in a very large fixed set Σ

(the identifiers of the graph g.) Peer pα also has a persistent relation next
containing the tuples: [0, 1], ...[m − 1, m]. Finally, pα has the fact now@pα(0)
in its initial state. The program of pα consists of the following active rules:

at pα : g@p($x, $y) :- now@pα($i), upd@pα($i, ins, $x, $y)
del.g@p($x, $y) :- now@pα($i), upd@pα($i, del, $x, $y)
now@pα($j) :- now@pα($i), next($i, $j)

Now p has the following active rule for maintaining the graph g :

at p : g@p($x, $y) :- g@p($x, $y),¬del.g@p($x, $y)

Finally, peer q has a rule delegation to p:

at q : clique@q() :- ∧16i,j6ng@p($xi, $xj), $xi 6= $xj

which essentially requests p to send a message if there exists an n-clique in
g@p. Peer q also has a flip-flop rule:

at q : true@q() :- f alse@q()
f alse@q() :- true@q()

Originally true@q() holds.
Suppose for a contradiction that there is a pα-simulation of this system

in VWL. Consider the run of (I, Γ) beginning with a very long sequence
q(pα)∗p(pα)∗...p where each time p is called, the graph oscillates between
“there is a clique” and “there isn’t”. Note that the first time q is called, it
installs the delegation.

Let k be the number of variables and constants that appear in a rule in
τ(Γ(p)). As the rules in p have less than k symbols, they can only evaluate
formulas in FOk. Choose n > k, so that formulas in FOk cannot check
for the presence of an n-clique in a graph. Choose also the set of mode
identifiers Σ large enough. (Recall that the translation for the rules of p is
independent from the program of q and pα.) So, it is not possible for p to

38CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

evaluate whether there is a clique. So q has to be called before each clique
message to check the existence of a clique. Note that it is possible to do so:
p pretends it has not been called and waits until q is called; then q sends a
secret message to p to tell p whether there is a clique.

This is “almost” a simulation except that q has a bounded memory that
depends essentially on Σ. Now consider a very long sequence of the WL
system that never calls q. If the sequence is long enough, its simulation in
VWL will visit twice the same state. Then by pumping, one can construct
an infinite run of the VWL simulating system such that the flip-flop of q is
never activated. This corresponds to a simulation of an unfair run of the
WL system, a contradiction. Thus there can be no VWL simulation of the
above WL system. ✷

We now consider timestamps. The next result compares the expressive
power of WL and WLt.

Theorem 4.5 (Timestamps). For a finite number of peers,

1. WL is in PSPACE;

2. SWLt over a single peer can simulate any arbitrary Turing machine;

3. Thus, SWLt 6≺ WL and (a fortiori) WLt 6≺ WL.

Proof. (sketch) For (1.), consider a fixed schema over a finite number of
peers. Let (I, Γ) be an initial instance of size n = |I| + |Γ|. Let (Ii, Γ, Γ̃i) be
an instance that is reached during the computation. Because the schema is
fixed, the number of facts that can be derived is bounded by a polynomial
in n, and each fact is also of bounded size. So, |Ii| can be bounded by a
polynomial in n. Similarly, the size of Γ̃i can be bounded by a polynomial in
n, since a rule that is delegated is essentially determined by an instantiation
of an original rule and a position in it. Thus we can represent (Ii, Γ, Γ̃i) in
polynomial space in n. Hence, WL is in PSPACE.

Now consider (2.). Let M be a Turing Machine. We can assume without
loss of generality that it is deterministic and that it has a tape that is infinite
only in one direction. The SWLt system that simulates it is as follows.
Its initial instance encodes the initial state of M. More precisely, it has a
relation input, with initial value

{ input(0,1,a1), input(1,2,a2), ... input(n−1,n,an) }

where a1a2...an is the input of M. It also has a relation tape that is originally
empty.

First, the SWLt system copies the input on its tape using the timestamps
t0, t1, t2... to identify tape cells. More precisely, it constructs,

4.3. EXPRESSIVITY 39

{tape(t0,t1,a1,s0),tape(t1,t2,a2,⊥),...,tape(tn−1,tn,an,⊥)}

where s0 is the start state of M. Using rules from SWLt, it is straightforward
to simulate moves of M. The only subtlety is that at each step of the
iteration, the tape is augmented so that there is no risk of reaching its limit.
The fact that the cells are denoted with timestamps guarantees that no two
cells will have the same ID.

Now, given the encoding of a word w, one can simulate the computation
of TM on w. Thus (2), so (3). ✷

Note that the converse of (1) holds: any PSPACE query over an ordered
database can be computed in SWL (hence WL) with a single peer. This
can be shown by proving how to simulate in SWL with a single peer,
the language Datalog¬¬ that can express all PSPACE queries on ordered
databases [AV91].

Next we see how to use timestamps to simulate view maintenance.

Theorem 4.6 (Views with timestamps). VWLt ≈ SWLt.

Proof. (sketch) We illustrate with an example the simulation of view dele-
gation by a program with timestamps.

Consider a VWL system with an extensional relation s@q and the de-
ductive rule at p: r@p(U) :- s@q(U) that specifies that r@p is a view of s@q.
The simulation of the view delegation in SWLt is as follows.

at q : persistent past@q
aux@p(U, $t) :- s@q(U), time@q($t)
past@q($t) :- time@q($t)
obsolete@p($t) :- past@q($t)

at p : intensional r@p
persistent aux@p, obsolete@p
r@p(U) :- aux@p(U, $t), ¬ obsolete@p($t)

Then the value of r@p is that of s@q when q was last visited, i.e., r@p is a
copy of s@q at the last visit of q.

The above simulation is straightforwardly generalized to arbitary VWL
systems, from which we obtain the desired VWLt ≈ SWLt. ✷

It is still open whether WLt 6≺ VWLt.

40CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

4.4 Convergence of WebdamLog

Systems that converge to a unique state independently of the order of
computation, i.e., some form of Church-Rosser property, are of particular
interest. In this section, we consider two kinds of such systems: the positive
and the strongly-stratified WebdamLog systems. Indeed, we show that
such systems continue to converge even in presence of insertions of facts or
rules. Finally, we show that for these two classes of systems, the distributed
semantics can be seen as mimicking the centralized semantics.

4.4.1 Positive WebdamLog

Clearly, negation may explain why a system does not converge. However,
the following example shows that even in absence of negation, convergence
is not guaranteed because the order of arrival of messages matters:

Example 4.7. Consider the rules:

at q: extensional r1@q, r2@q, r@q
persistent r@q
r@q() :- r1@q(), r2@q()

at q1: r1@q() :-
at q2: r2@q() :-

If we process the peers according to the order q1, q, q2, q, q1, . . ., then r@q is
never derived. If we consider instead the order q1, q2, q, q1, q2, q, . . ., then
r@q is derived and remains forever. The absence of convergence here is in
fact a desired feature of the model: the extensional relations model events,
so their arrival times matter.

On the other hand, note that, as we will see, if in the example r1@q and
r2@q were intensional, the system would converge.

We now introduce the restricted systems we study in this section. A
WebdamLog state or system is positive if the following holds:

1. Each of its rules is positive (no negation); and

2. Each extensional relation m@p is made persistent with a rule of the
form m@p(U) :- m@p(U).

We will see that because of these restrictions, the states in runs of pos-
itive systems are monotonically increasing. For positive systems with a
finite number of peers, there are only finitely many possible states, so
monotonicity implies that runs converge after a finite number of steps. We

4.4. CONVERGENCE OF WEBDAMLOG 41

will also show convergence for positive systems with infinitely many peers,
except that in this case, we may converge only in the limit. This motivates
the following somewhat complex definition of convergence.

A run S0, S1, S2, . . . converges to a possibly infinite state S∗ = (I∗, Γ∗, Γ̃∗)
if for each finite S′ ⊆ S∗, there exists kS′ such that for all k > kS′ , S′ ⊆ Sk
and if for each finite S′ 6⊆ S∗, there is kS′ such as for all k > kS′ , S′ 6⊆ Sk. We
say a system S converges if all its runs converge to the same state.

The following theorem states the convergence of (possibly infinite)
positive systems.

Theorem 4.8 (Convergence). All positive WebdamLog systems converge.

Lemma 4.9. Suppose I1(p∗) ⊆ I2(p∗), Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆

Γ̃2(q, p∗)∀q 6= p∗. Let Pa,i (resp. Pd,i) be the set of local active (resp. fully local
deductive) rules in Γi(p∗) ∪ ∪q 6=p∗ Γ̃i(q, p∗). Then if there is no negation in the
rules, we have Pa,1(K1) ⊆ Pa,2(K2) and

γ1(p∗, q)(Pa,1, K1) ⊆ γ2(p∗, q)(Pa,2, K2)∀q 6= p∗

where Ki = P∗
d,i(Ii(p∗))).

Proof. (of Lemma 4.9) Since Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆ Γ̃2(q, p∗)
for all q 6= p∗, it follows that Pa,1 ⊆ Pa,2 and Pd,1 ⊆ Pd,2. Together with
I1(p∗) ⊆ I2(p∗), and in absence of negation, we obtain Pa,1(P∗

d,1(I1(p∗))) ⊆
Pa,2(P∗

d,2(I2(p∗))). Likewise, γp∗q(Pa,1, P∗
d,1(I1(p∗))) ⊆ γp∗q(Pa,2, P∗

d,2(I2(p∗))).
✷

Proof. (of Theorem 4.8) In fact, we will prove that the result is true for a
simple update I′, Γ′, since the result is then easy to generalize. Consider a
positive WebdamLog system (I0, Γ0, Γ̃0). Let r = (I0, Γ0, Γ̃0)(I1, Γ1, Γ̃1)

(I2, Γ2, Γ̃2) . . . be a run for this system. It follows from the definition of
moves that Γi = Γj for all i, j > 0 and that delegated rules are sub-rules of
these sets so have no negation. So (Ii, Γi, Γ̃i) is positive for every i > 0. We
show by induction on i that Ii(p) ⊆ Ii+1(p) and Γ̃i(p, q) ⊆ Γ̃i+1(p, q) for all
i and all peers p, q, i.e., the states in the run increase monotonically. Using
this property, it is easy to show that r converges to the (possibly infinite)
state (I∗, Γ0, Γ̃∗) where I∗(p) = ∪i Ii(p) and Γ̃∗(p, q) = ∪iΓ̃i(p, q). The base
case (i = 0) for our induction is straightforward. If the first move is a p∗-
move, then by the definition of move, we have I0(q) ⊆ I1(q) for all q 6= p∗.
For peer p∗, we use the fact that I0(p) contains only extensional p-facts
and that Γ0(p) contains persistence rules for all extensional relations of p.

42CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

We thus obtain I0(p∗) ⊆ I1(p∗). As for delegations, we have Γ̃0(p, q) = ∅

for all p, q (since (I0, Γ0, Γ̃0) is initial), hence Γ̃0(p, q) ⊆ Γ̃1(p, q) for all
peers p, q. Suppose next that the claim holds for all i < k. Let p∗ be the
peer whose move takes (Ik, Γk, Γ̃k) to (Ik+1, Γk+1, Γ̃k+1). Using the same
argument as in the base case, we obtain Ik(p) ⊆ Ik+1(p) for all peers
p. According to the definition of moves, Γ̃k(p, q) = Γ̃k+1(p, q) whenever
p 6= p∗. Thus, the only interesting case is when p = p∗ and Γ̃k(p∗, q) 6= ∅.
In this case, we must have visited peer p∗ previously. Let j be such that
the last p∗-move took (Ij, Γj, Γ̃j) to (Ij+1, Γj+1, Γ̃j+1). Since our last visit
to p∗ was at timepoint j, Γ̃j+1(p∗, q) = Γ̃k(p∗, q). By repeatedly applying
the IH, we obtain Ij(p) ⊆ Ik(p) and Γ̃j(p, q) ⊆ Γ̃k(p, q) for all peers p, q.
In particular, we have Ij(p∗) ⊆ Ik(p∗), Γj(p∗) = Γk(p∗), and Γ̃j(p∗, q) ⊆

Γ̃k(p∗, q). Applying Lemma 4.9, we get Γ̃j+1(p∗, q) ⊆ Γ̃k+1(p∗, q), which
yields the desired Γ̃k(p∗, q) ⊆ Γ̃k+1(p∗, q), and completes our proof of the
monotonicity claim.

Now consider two runs r1 = (I0,1, Γ0,1, Γ̃0,1)(I1,1, Γ1,1, Γ̃1,1)(I2,1, Γ2,1, Γ̃2,1) . . .
and r2 = (I0,2, Γ0,2, Γ̃0,2)(I1,2, Γ1,2, Γ̃1,2) (I2,2, Γ2,2, Γ̃2,2) . . . for the system
which converge respectively to (I∗1 , Γ∗

1, Γ̃∗
1) and (I∗2 , Γ∗

2, Γ̃∗
2). We will prove

by induction on i > 0 that for every state (Ii,1, Γi,1, Γ̃i,1) of r1, there is
j > 0 such that Ii,1(p) ⊆ Ij,2(p) and Γ̃i,1(p, q) ⊆ Γ̃j,2(p, q) for all peers
p, q. This, together with monotonicity property in the previous paragraph,
yields the desired (I∗1 , Γ∗

1, Γ̃∗
1) = (I∗2 , Γ∗

2, Γ̃∗
2). The base case (i = 0) is triv-

ial since (I0,1, Γ0,1, Γ̃0,1) = (I0,2, Γ0,2, Γ̃0,2) (as they are both runs for the
same system). For the induction step, suppose the claim holds for i 6 k,
and consider (Ik+1,1, Γk+1,1, Γ̃k+1,1). Let p∗ be the peer whose move takes
(Ik,1, Γk,1, Γ̃k,1) to (Ik+1,1, Γk+1,1, Γ̃k+1,1). By the IH, we can find j such that
Ik,1(p) ⊆ Ij,2(p) and Γ̃k,1(p, q) ⊆ Γ̃j,2(p, q) for all p, q. As r2 is a fair
run, we can find l > j such as (Il+1,2, Γl+1,2) results from a p∗-move.
Since states are monotonically increasing in r2, Ik,1(p) ⊆ Ij,2(p) ⊆ Il,2(p)

and Γ̃k,1(p, q) ⊆ Γ̃j,2(p, q) ⊆ Γ̃l,2(p, q) for all p, q. Using Lemma 4.9,
Ik+1,1(p∗) ⊆ Il+1,2(p) and Γ̃k+1,1(p, q) ⊆ Γ̃l+1,2(p, q) for all peers p, q. ✷

The previous theorem is still true if one allows the peers to insert facts
and rules. One can show that the system will reach a stable state that does
not depend on the points of insertion.

Theorem 4.10 (Updates). Given two positive WebdamLog systems (I,Γ) and
(I′,Γ′), for any run of the system (I,Γ), if for a given step, I′ is added to the current
set of facts and Γ′ to the current set of rules, then the modified run converges to

4.4. CONVERGENCE OF WEBDAMLOG 43

the convergence state of (I ∪ I′,Γ ∪ Γ′).

Proof. Let (I0,1, Γ0,1, Γ̃0,1), (I1,1, Γ1,1, Γ̃1,1)... be a run of (I,Γ); k a point of inser-
tion; (Ik,1′ , Γk,1′ , Γ̃k,1′) the state (Ik,1 ∪ I′, Γk,1 ∪ Γ′, Γ̃k,1); and r1 = (I0,1, Γ0,1,
Γ̃0,1), (I1,1, Γ1,1, Γ̃1,1)...(Ik−1,1, Γk−1,1, Γ̃k−1,1), (Ik,1′ , Γk,1′ , Γ̃k,1′), (Ik+1,1′ , Γk+1,1′ ,
Γ̃k+1,1′)... the modified run of the system. For ease of reference, we will de-
note by (Ii,1′ , Γi,1′ , Γ̃i,1′) any state i > 0 of this run. We show (i) that there is
a run r2 = (I0,2, Γ0,2, Γ̃0,2), (I1,2, Γ1,2, Γ̃1,2)... of the system (I ∪ I′,Γ ∪ Γ′) such
that for each i > 0, Ii,1′ ⊆ Ii,2, Γi,1′ ⊆ Γi,2 and Γ̃i,1′ ⊆ Γ̃i,2, and (ii) that there
is a run r3 = (I0,3, Γ0,3, Γ̃0,3), (I1,3, Γ1,3, Γ̃1,3)... of the system (I ∪ I′,Γ ∪ Γ′)
such that for each i > 0, Ii,3 ⊆ Ii+k,1′ , Γi,3 ⊆ Γi+k,1′ and Γ̃i,3 ⊆ Γ̃i+k,1′ . This
is sufficient to prove the result since r2 and r3 are both runs of the same
positive system, and thus must converge (by Theorem 4.8) to the same
state. Since the states of r1 are sandwiched between those of r2 and r3,
convergence of both r2 and r3 to a single state implies convergence of r1 to
this same state.

Let us consider the first assertion. We select a run of the system (I ∪ I′,
Γ ∪ Γ′) with exactly the same sequence of peers as the modified run r1. For
i = 0, the desired inclusions clearly hold. Now suppose i > 0. Suppose
Ii−1,1′ ⊆ Ii−1,2, Γi−1,1′ ⊆ Γi−1,2 and Γ̃i−1,1′ ⊆ Γ̃i−1,2. Using Lemma 4.9, if
i 6= k, we have the desired inclusions for timepoint i. If i = k, we have,
using Lemma 4.9, Ik,1 ⊆ Ik,2, Γk,1 ⊆ Γk,2 and Γ̃k,1 ⊆ Γ̃k,2. Since I′ ⊆ I0,2
and Γ′ ⊆ Γ0,2, and since the run of (I′,Γ′) is monotonic (by Theorem 4.8),
I′ ⊆ Ik,2 and Γ′ ⊆ Γk,2. Finally, since Ik,1′ = Ik,1 ∪ I′, Γk,1′ = Γk,1 ∪ Γ′ and
Γ̃k,1′ = Γ̃k,1, we have the result for i = k.

Now consider the second assertion. We choose a run r3 of the system
(I ∪ I′, Γ ∪ Γ′) with exactly the same sequence of peers as the sub-run r1
started from the timepoint k, i.e., if peer p moves at timepoint i + k in r1,
then it is p who moves at timepoint i in r3. It is clear that desired inclusions
hold for i = 0, since the runs of (I,Γ) are monotonic. Let i > 0. Suppose
Ii−1,3 ⊆ Ii+k−1,1′ , Γi−1,3 ⊆ Γi+k−1,1′ and Γ̃i−1,3 ⊆ Γ̃i+k−1,1′ . Using Lemma
4.9, we obtain directly the desired inclusions for i. ✷

The previous theorem is straightforwardly extended to a series of up-
dates. However, as illustrated by the following example, a more liberal
definition of updates which also allows deletion of facts or rules in a system
would compromise convergence.

Example 4.11. Consider the system defined as follows:

at p: extensional@p, intensional r@p

44CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

r@q() :- r@p()
r@p() :- s@p()
s@p() :- s@p()
s@p().

at q: intensional r@q
r@p() :- r@q()

This system converges to a state where I∗(p) = {s@p()}, Γ̃∗(p, q) =

{r@q():-}, Γ̃∗(q, p) = {r@p():-} Then removing the fact s@p() or the rule
r@p():- s@p() after the convergence will not change Γ̃ whereas Γ̃ would be
empty were the fact or the rule removed before beginning a run.

The previous example illustrates the difficulty of managing non-monotony.
If we remove a fact or a rule, we need to remove as well all facts or rules
that were deduced using this fact. This could be achieved using view
maintenance techniques. We leave this for future work.

To further ground our semantics, we show that for positive systems,
our semantics correspond to the standard centralized Datalog semantics.

Centralized semantics

In the positive case, we can compare with a “centralized” semantics, in
which all facts and rules are combined into a single Datalog program. Such
a comparison would not make sense in the general case since our semantics
too closely depends on the order in which peers fire.

We associate to a positive WebdamLog state (I, Γ) the set ∪p(I(p) ∪
Γ(p)) composed of the facts and rules of all peers. We can transform this set
of facts and rules into a standard Datalog program by first instantiating the
variable relations in the rules (as was done for local computation) and then
removing those rules that violate the typing constraints in σ. We denote by
c(I, Γ) the Datalog program thus obtained.

Figure 4.2: Link with centralized semantics

4.4. CONVERGENCE OF WEBDAMLOG 45

The following theorem (illustrated by Figure 4.2) demonstrates the
equivalence, for the class of positive systems, of our distributed semantics
and the traditional fixpoint semantics of Datalog. The result deals only
with systems with finitely many peers to avoid having to extend Datalog
to infinitely many relations.

Theorem 4.12. Let (I, Γ) be a positive system with a finite number of peers that
converges to (I∗, Γ∗, Γ̃∗), and let Mmin be the unique minimal model of the Datalog
program c(I, Γ). Then

Mmin = ∪pP∗
p,d(I∗(p))

where Pp,d is the set of fully local deductive rules in Γ̃∗(p) ∪ ∪qΓ∗(q, p).

Proof. Let S0 = (I0, Γ0, Γ̃0) be a positive initial state with a finite number of
peers which converges to the (finite) state S∞ = (I∞, Γ∞, Γ̃∞). Let Mmin be
the unique minimal model of the Datalog program c(I0, Γ0). Given a run
(I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . ., we use Pp,d,i (resp. Pp,a,i) to refer to the
set of fully local deductive (resp. local active) rules in Γi(p) ∪ ∪qΓ̃i(q, p).
For ease of reference, we denote by Fi the set of facts ∪pP∗

p,d,i(Ii(p)). Our
aim is to show that Mmin = F∞.

First direction: F∞ ⊆ Mmin

Consider the run r = (I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) Let pi be the
peer whose move takes the state (Ii, Γi, Γ̃i) to (Ii+1, Γi+1, Γ̃i+1). We will show
by induction on i that (a) P∗

pi,d,i(Ii(pi)) ⊆ Mmin, (b) Ppi,a,i(P∗
pi,d,i(Ii(pi))) ⊆

Mmin, and (c) Mmin |= Γ̃i+1(pi, q) for all q 6= pi. Because of the monotonicity
of states in r (cf. proof of Theorem 4.8), it follows from (a) and our definition
of the sets Fi that F∞ ⊆ Mmin. Consider first the base case (i = 0). For (a),
we note that I0(p0) ∪ Γ0(p0) ⊆ c(I0, Γ0) and ∪qΓ̃0(q, p0) = ∅ (since (I0, Γ0)
is an initial state). We can thus deduce that P∗

p0,d,0(I0(p0)) ⊆ Mmin. For (b),
we use (a) and the fact that Pp0,a,0 ⊆ Γ0(p0) (as there are no delegations in
the first time step). For (c), we first note that rules in Γ̃1(p0, q), are known
to be of one of two types. The first type of rules are of the form

vA :- vM@vQ(vU), vΘ1

where A :- Θ0, M@Q(U), Θ1 is a rule in Pp0,a,0 and v is a valuation such that
vΘ0 holds in P∗

p0,d,0(I0(p0)) and vQ = q(6= p0). In this case, the fact that
P∗

p0,d,0(I0(p0)) ⊆ Mmin ensures that vΘ0 holds in Mmin. Since we also have
Pp0,a,0 ⊆ c(I0, Γ0), all rules in Pp0,a,0 must holds in Mmin, which means the
partially instantiated rule vA :- vM@vQ(vU), vΘ1 must also be satisfied by

46CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

Mmin. All other rules in Γ̃1(q, p0) are of the form vA :- where A :- Θ is a
rule in Pp0,a,0 and v is a valuation such that vΘ holds in P∗

p0,d,0(I0(p0)) and
vA = r@q(u) for some r ∈ I . Again, the fact that P∗

p0,d,0(I0(p0)) ⊆ Mmin

means that vΘ holds in Mmin, and the fact that Pp0,a,0 ⊆ c(I0, Γ0) means
that vA :- must hold in the minimal model Mmin.

For the induction step, suppose our claim holds for i 6 k. Let j be such
that pj = pk+1 and pj′ 6= pk+1 for all j < j′ < k + 1, or 0 in the case where
pj has never been visited. Then it follows from our definition of moves and
runs that

Ik+1(pk+1) ⊆ Ij(p) ∪
⋃

j<l<k+1

Ppl ,a,l(P∗
pl ,d,l(Il(pl)))

It follows then from part (b) of the IH applied to timepoints j, j + 1, . . . , k
that Ik+1(pk+1) ⊆ Mmin. Part (c) of the IH applied to the timepoints in
which a peer q 6= pk+1 was last visited gives us Mmin |= ∪qΓ̃k+1(q, pk+1).
Together with the fact that Γk+1(pk+1) = Γ0(pk+1) ⊆ c(I0, Γ0), we obtain

Mmin |= Ppk+1,a,k+1 ∪ Ppk+1,a,k+1

Parts (a) and (b) of our claim follow directly. Now for part (c), consider
some rule in Γ̃k+2(pk+1, q). First consider the case where the rule is of the
form

vA :- vM@vQ(vU), vΘ1

where A :- Θ0, M@Q(U), Θ1 is a rule in Ppk+1,a,k+1 and v is a valuation
such that vΘ0 holds in P∗

pk+1,d,k+1(Ik+1(pk+1)) and vQ = q(6= pk+1). We
know P∗

pk+1,d,k+1(Ik+1(pk+1)) ⊆ Mmin from part (a), so vΘ0 must hold in
Mmin. This together with the fact (from above) that Mmin |= Ppk+1,a,k+1

means the partially instantiated rule vA :- vM@vQ(vU), vΘ1 must also be
satisfied by Mmin. Suppose instead our rule is of the form vA :- where
A :- Θ is a rule in Ppk+1,a,k+1 and v is a valuation such that vΘ holds in
P∗

pk+1,d,k+1(Ik+1(pk+1)) and vA = r@q(u) for some r ∈ I . We again utilize
the fact that P∗

pk+1,d,k+1(Ik+1(pk+1)) ⊆ Mmin and Mmin |= Ppk+1,a,k+1, which
give vΘ ⊆ Mmin and hence Mmin |= vA :-.

Second direction: Mmin ⊆ F∞

We proceed by induction on the depth of proof trees for facts in Mmin. The
base case is when the proof tree of a fact r@p(u) ∈ Mmin has depth 0, i.e., it
appears explicitly in c(I0, Γ0). There are two possibilities: either r@p(u) ∈
I0(p) or the rule r@p(u) :- appears in some Γ0(q). In the former case,

4.4. CONVERGENCE OF WEBDAMLOG 47

monotonicity (cf. proof of Theorem 4.8) ensures that r@p(u) ∈ I∞(p) ⊆ F∞.
In the latter case, if r@p is extensional, then r@p(u) will be sent to p the
first time q is visited and will remain at p by monotonicity. If r@p is an
intensional relation name and q = p, then r@p(u):- belongs to Pp,d,∞. If
q 6= p, then r@p(u):- will be delegated to p every time q is visited, and
hence will belong to Γ̃∞(q, p), and hence to Pp,d,∞. In all cases, we obtain
r@p(u) ∈ ∪pP∗

p,d,∞(I∞(p)) = F∞.
For the induction step, suppose that all facts in Mmin with proof trees

of depth at most k appear in F∞. Consider some fact r@p∗(u) with a proof
tree of depth k + 1. Then there must exist some rule

α = Mn+1@Qn+1(Un+1) :- M1@Q1(U1)...Mn@Qn(Un)

in ∪pΓ(p) and some valuation v such that

r@p∗(u) = vMn+1@vQn+1(vUn+1)

and for all 1 6 j 6 n, the fact

sj@qj(tj) = vMj@vQj(U j)

possesses a proof tree of depth at most k. Consider some run r = (I0, Γ0, Γ̃0),
(I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . . of (I0, Γ0). Applying the IH, we obtain sj@qj(tj) ∈
F∞ for all 1 6 j 6 n. It follows that we can find some index m such that
sj@qj(tj) ∈ Fm for all 1 6 j 6 n. Because all runs of (I0, Γ0) converge to the
same state, we can assume without loss of generality that it is a qj-move
which takes the state (Im+j−1, Γm+j−1, Γ̃m+j−1) in r to the state (Im+j, Γm+j,
Γ̃m+j), for all 1 6 j 6 n. We aim to show that r@p∗(u) ∈ Fm+n, hence
r@p∗(u) ∈ F∞. We first remark that for all peers p, the set P∗

p,d,m(Im(p))

can only consist of p-facts. This is because I0(p) contains only p-facts (by
definition), only p-facts are added to Ii(p) (by definition of moves), and
Pp,d,m consists of only deductive rules in p, i.e., rules using intensional
p-relations. It follows then that sj@qj(tj) ∈ P∗

qj,d,m(Im(qj)) for all 1 6 j 6 n.
The safety condition implies that the term Q1 equals a peer constant q1. We
can suppose that at timepoint m, α ∈ Γm(q1).

Then it is q1’s move. If α is fully local deductive for q1, then p∗ and all
of the qj must be equal to q1. This means that sj@qj(tj) ∈ P∗

q1,d,m(Im(q1))

for all j, and so r@p∗(u) ∈ P∗
q1,d,m(Im(q1)). Thus, r@p∗(u) ∈ Fm, and by

monotonicity of states, r@p∗(u) ∈ Fm+n. Next consider the more interesting
case where α is not a fully local deductive rule for q1. Let l be the maximal
index such that qj = q1 for all 1 6 j 6 l. Then we have sj@qj(tj) ∈

48CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

P∗
q1,d,m(Im(q1)) for all 1 6 j 6 l. If l = n, then r@p∗(u) ∈ Im+1(p∗), and

so again, by monotony, r@p∗(u) ∈ Fm+n. If instead we have l < n, then
delegation comes into play. Specifically, let v′ be the minimal sub-valuation
of v such that v′Mj@v′Qj(v′Uj) = sj@qj(tj) for all 1 6 j 6 l. Note that by
the safety condition, Ql+1 must now be instantiated to ql. It follows that
the rule α′

v′Mn+1@v′Qn+1(v′Un+1) :-
v′Ml@v′Ql(v′Ul)...v′Mn@v′Qn(v′Un)

must belong to Γ̃m+1(q1, ql). By monotony, α′ ∈ Γ̃m+l−1(q1, ql), and sj@qj(tj)
∈ Fm+l−1 We can thus repeat the same procedure to ql when at timepoint
m + l − 1 it is its turn to move. We will either finish (in which case the fact
r@p∗(u) is derived and preserved) or continue via delegations to the next
peer, and so forth, until the final peer is treated and the fact r@p∗(u) has
been produced. We thus find the desired r@p∗(u) ∈ Fm+n. ✷

4.4.2 Strongly-stratified WebdamLog

With negation, convergence is not guaranteed in the general case as illus-
trated by the following example.

Example 4.13. Consider the program that is stratified in the sense of Data-
log with stratified negation:

intensional s@p, r@p, r@q
at p: r@q() :- r@p()

r@p() :- ¬s@p()
at q: r@p() :- r@q()

s@p() :-

Any run of this system that begins with p converges to a state where p
delegates r@q():- to q and q delegates r@p():- and s@p():- to p. On the other
hand, runs that begin with q converge to a state where p delegates nothing
to q and q delegates s@p():- to p.

As already mentioned for the non-monotone updates in the previous
subsection, one may adapt methods of view maintenance to solve the
problem. We develop in this section an alternative in which syntactic
restrictions prohibit circles of wrong deductions, without having to deal
with the complexity of view maintenance in presence of belief revision.
Note that most of the examples of the paper belong to (or are easily adapted
to) this restricted class.

4.4. CONVERGENCE OF WEBDAMLOG 49

A stratification σ′ is an assignment of numbers to relations, i.e., to pairs
r@p. If σ′(r@p) = i, we say that r@p is in the ith stratum. The stratification
is strong if for each i, all the relations in the ith stratum refer to the same
peer. Given a strong stratification σ′, an instantiated rule is σ′-stratified if all
relation names of positive body atoms appear in a stratum smaller or equal
to that of the head relation and all relation names of negative terms belong
to a strictly smaller stratum. Note that a stratification for Example 4.13
would not be strong because r@p and r@q have to be in the same stratum,
although they belong to different peers.

In our setting, we see a strong stratification σ′ of I as an extra compo-
nent of the system’s schema. The strong stratification works much like the
typing constraint σ in that it tells us whether a particular rule instantiation
is legal. Specifically, a peer is only allowed to use instantiated rules which
are σ′-stratified. Observe that our use of stratification is in the spirit of clas-
sical Datalog with stratified negation, namely preventing cycling through
negation. However, the way stratification is enforced is somewhat different.
In the centralized context, one analyzes the program and checks for the
existence of a stratification. In the distributed case, this is not possible
because no one has access to the entire program. Also, the use of relation
and peer variables makes such a computation even less conceivable. So,
instead, one assumes that a stratification is imposed and the computation
is such that it prevents deriving facts with rule instantiations that would
violate the strong stratification.

There is a subtlety with strong stratification arising from general delega-
tion. Indeed, we will see that the result does not hold for WL. So the next
result deals simply with view delegation, i.e., the language VWL. One of
the advantages of VWL is that at the time a rule is delegated, it is possible to
check that it does not violate the strong stratification. We consider systems
with finitely many peers, where the extensional facts are constant and only
the intensional delegations vary. Formally, a WebdamLog system is said to
be strongly-stratified if for some strong stratification σ′:

1. its local computation is constrained by the stratification σ′.

2. Each extensional relation m@p is made persistent with a rule of the
form m@p(U) :- m@p(U) and these are the only active rules in the
system1. We say the system is purely intensional.

Observe that, by Condition (2), the set of extensional facts is constant
whereas it was increasing for positive systems. So Condition (2) here is

1Technically speaking, if we want to use variable or peer relations in the rule heads,
then we must forbid instantiations which yield extensional relations in the heads.

50CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

more restrictive than for positive systems. Thus, strictly speaking the two
classes are incomparable. Clearly, it would be interesting to consider classes
that would include both.

We are now ready to present our results, following the same logic as in
the previous section.

Theorem 4.14 (Convergence). All strongly-stratified VWL systems over a finite
number of peers converge.

Proof. Let us first remark that deductive rules in SWL can only be of two
types: fully local deductive or local deductive. This means that the only
types of rules that can be delegated to a peer p are fully instantiated body-
less rules of the form r@p(u) :- . The general idea of the proof is as follows.
Given a run, we will prove that for each stratum, there is a state after which
the stratum has converged. A similar argument will prove that the limit is
the same for each run.

Consider a σ′-stratified system (I0, Γ0) with rules in VWL and a finite
number of peers. Let r = (I0, Γ0, ∅)(I1, Γ1, Γ̃1)(I2, Γ2, Γ̃2) . . . be a run of this
system. For simplicity, in what follows, we use Pp,d,i to refer to the set of
fully local deductive rules in Γi(p) ∪ ∪qΓ̃i(q, p).

First, we can show by induction that for all i > 0, every state (Ii, Γi, Γ̃i)
is intensional, Ii = I0, and Γi = Γ0. The base case i = 0 is immediate.
For the induction step, suppose we have the result for i < k and consider
state (Ik, Γk, Γ̃k) resulting from a p-move. From the IH, we know that
(Ik−1, Γk−1, Γ̃k−1) is intensional, and so the only active rules in Γk−1(p) and
∪qΓ̃k−1(q, p) are persistence rules for p’s extensional predicates. We also
have Γk = Γ0 from the definition of runs. In particular, this means that Γk(p)
contains persistence rules for each of p’s extensional predicates. This means
that p copies its extensional facts (Ik(p) = Ik−1(p)) and does not send any
extensional facts to other peers (Ik(q) = Ik−1(q) for q 6= p). We thus have
Ik = Ik−1 = I0. Finally, we note that (Ik−1, Γk−1, Γ̃k−1) contains no other
active rules besides persistence rules, which means that all delegations will
involve deductive rules.

Given the strong stratification σ′, let us prove that for each stratum i,
there is a timepoint ti > 0 such that after each t > t′, the restriction of
Γ̃t to rules with head in strata less or equal to i is the same as the one of
Γ̃ti . Let us start with the first stratum, call it 0. Suppose that p∗ is the peer
associated with this stratum. Let t0 be the first occurrence of a p∗-move after
visiting all the other peers. Such a timepoint must exist since the number
of peers is finite (this is assumed in the statement of the theorem) and the
run is fair. We claim that t0 has the desired properties. Consider some

4.4. CONVERGENCE OF WEBDAMLOG 51

timepoint t > t0 in which it’s peer q’s turn to move and some delegation
appearing in Γ̃t+1(q, p∗). We remark that because we only have VWL rules,
the delegation must be of the form r@p∗(u):-. To produce this delegation,
there must be a rule in Γt(q) = Γ0(q) of the following form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and some valuation v satisfying the typing σ and stratification σ′ such
that: vMn+1@vQ(vUn+1) = r@p∗(u), each positive body fact vMi@q(vUi)
belongs to P∗

q,d,t(It(q)), and each negated body fact ¬vMi@q(vUi) is such

that vMi@q(vUi) is not in P∗
q,d,t(It(q)). We note however that because v

satisfies the strong stratification, we are at peer q 6= p, and the head relation
r@p is in the lowest stratum, all relations vMi@q must be extensional. As
the extensional facts of each peer are the same at each timepoint (see above),
it follows that this delegation is produced at each and every visit to q, and
in particular the very first visit to q, which occurs before t0. Thus, this
delegation already appears in Γ̃t0(q, p∗). A very similar argument shows
that every delegation concerning stratum 0 which appears in Γ̃t0(q, p∗) also
appears in Γ̃t(q, p∗) for all t > t0.

Now let us consider higher strata. Suppose our claim holds for strata
up to and including k. This means we can find a timepoint tk such that for
all t > tk, the restriction of Γ̃t to rules with head in strata less or equal to k is
the same as the one of Γ̃tk . Again, we use p∗ to refer to the peer associated
with the stratum of interest (here k + 1). Set tk+1 equal to the timepoint
after tk in which we first visit p∗ after having visited all other peers at least
once since timepoint tk. Consider some timepoint t > t0 in which q moves
and produces some delegation in Γ̃t+1(q, p∗). Again, because we only have
VWL rules, we know this delegation must be of the form r@p∗(u):-. To
produce it, there must be a rule in Γt(q) = Γ0(q) of the following form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and some valuation v satisfying the typing σ and stratification σ′ such
that: vMn+1@vQ(vUn+1) = r@p∗(u), each positive body fact vMi@q(vUi)
belongs to P∗

q,d,t(It(q)), and each negated body fact ¬vMi@q(vUi) is such

that vMi@q(vUi) is not in P∗
q,d,t(It(q)). Because v satisfies the strong strat-

ification, we are at peer q 6= p, and the head relation r@p is in the lowest
stratum, we know all body facts vMi@q(vUi) must either be extensional

52CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

or intensional but in a lower stratum (6 k). We have already seen that ex-
tensional facts are fixed throughout the run. Since t > tk+1 > tk, we know
that all delegations for strata less than or equal to k are fixed and equal to
those found at timepoint tk. It follows that this delegation is produced at
each and every visit to q following timepoint tk, and hence in the visit to
q between timepoints tk and tk+1. Thus, this delegation already appears
in Γ̃tk+1(q, p∗). We can similarly show that all delegations stratum k + 1
delegations in Γ̃tk+1(q, p∗) are also found in Γ̃t(q, p∗) for all t > tk+1.

We now prove that all systems converge to the same limit. In fact, we
can straightforwardly extend the previous proof by adding to the claim
that each stratum k + 1 converges to the same value on all runs. In the
base case, we use the fact that the extensional facts are the same in all runs.
This means delegations for the first stratum will be the same for all runs.
For later strata, we use the fact that the delegations at level k + 1 are fully
determined by the delegations in previous strata. ✷

This result does not hold if we allow general delegation instead of view
delegation. This is because with general delegation, a peer p may delegate
a partially instantiated rule to q. As the relation and peer terms of the
rule may contain variables, peer p may not be able to decide whether the
rule is σ′-stratified, and neither will q (or later peers) as they do not know
which relations p used to launch the delegation. So enforcement of the
stratification is not straightforward. This is illustrated by the following
example.

Example 4.15. Consider the following program:

intensional m@p, s@q, r@q
at p: m@p($x) :- m@p($x), r@q($x)

m@p($x) :- r@q($x), ¬s@q()
at p’: s@q() :-
at q: r@q(a) :-

Consider a run that starts by firing p, q, then p. Then the rule m@p(a):- is
delegated by q to p and will remain forever. Now, consider a run that starts
by firing p′. Then q will know s@q():-. from the beginning and will never
delegate m@p(a):-.

Convergence also holds for strongly-stratified VWL systems in the
presence of insertions as well as deletions.

Theorem 4.16 (Update). Let (I,Γ) be a VWL system with strong stratification
σ′ over a finite number of peers. Consider (I+,I−, Γ+,Γ−) where I+, I− are sets
of extensional facts and Γ+,Γ− are sets of deductive rules. For each run of the

4.4. CONVERGENCE OF WEBDAMLOG 53

system (I,Γ), if for some k a given state (Ik,Γk, Γ̃k) is replaced by (Ik ∪ I+ \ I−,
Γk ∪ Γ+ \ Γ−, Γ̃k), then the modified run converges to the convergence state of the
σ′-stratified system (I ∪ I+ \ I−, Γ ∪ Γ+ \ Γ−).

Proof. First, it is straightforward to show that (I ∪ I+ \ I−,Γ ∪ Γ+ \ Γ−)
respects the constraints of intensional states. Let us recall from the proof of
Theorem 4.14 that until the insertion point k, Ik = I and Γk = Γ. So at the
end of the timepoint k, the state is indeed (I ∪ I+ I−, Γ ∪ Γ+ \ Γ−, Γ̃k). Then
observe that the proof never used the fact that Γ̃ was initially empty, except
to prove that the initial state was intensional. So the proof applies as it is
and gives the desired result. ✷

This theorem can obviously be generalized to any sequence of updates.
The final theorem of this section shows that the set of facts computed by
a σ′-stratified system corresponds to the set of facts in the minimal model
of a centralized version of the system. As in the previous section, we
associate a σ′-stratified WebdamLog system (I, Γ) with the set ∪p(I(p) ∪
Γ(p)) composed of the facts and rules of all peers. We then transform this
set of facts and rules into a standard Datalog program by instantiating the
variable predicates in the rules and removing rules which violate the typing
constraints σ or the strong stratification σ′. We use cs(I, Γ) to refer to the
resulting Datalog program.

Theorem 4.17 (Centralized). Let (I, Γ) be a σ′-stratified system with a finite
number of peers and rules in SWL, which converges to (I∗, Γ∗, Γ̃∗), and let Mmin
be the unique minimal model of the Datalog program cs(I, Γ). Then

Mmin = ∪pP∗
p,d(I∗(p))

where P∗
p,d is the set of fully local deductive rules in Γ̃∗(p) ∪ ∪qΓ∗(q, p).

Proof. Let S0 = (I0, Γ0, Γ̃0) be a strongly stratified VWL system (with strong
stratification σ′) which converges to the finite state S∞ = (I∞, Γ∞, Γ̃∞). As
the rules in the Datalog program cs(I0, Γ0) are stratified with respect to σ′

(by construction), we can be sure that there is a unique minimal model
of cs(I0, Γ0). We use Mmin to denote this minimal model. Given a run
(I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . . of our system, we use Pp,d,i to refer
to the set of fully local deductive rules in Γi(p) ∪ ∪qΓ̃i(q, p). For ease of
reference, we denote by Fi the set of facts ∪pP∗

p,d,i(Ii(p)). Our aim is to show
that Mmin = F∞.

We first note that the desired equality holds if we consider only exten-
sional facts. This is because the only rules with extensional heads in Γ0 are

54CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

extensional persistence rules. Thus, the extensional facts in F∞ are precisely
the original extensional facts ∪p I0(p). The Datalog program cs(I0, Γ0) will
contain these extensional facts, and will not contain any rules to create new
extensional facts, so the extensional facts in Mmin will be exactly ∪p I0(p).

It thus remains to show the equality for intensional facts. The proof will
proceed by induction on the strata of facts. In what follows, we will use
the integers 0, 1, 2, . . . to label the strata, with 0 being the lowest stratum.
Also, given a set S of facts, we denote by S[i] the set of facts whose relations
belong to strata lower than or equal to i.

Base Case: Mmin[0] = F∞[0]

First direction (F∞[0] ⊆ Mmin[0]). Let us consider some intensional fact
r@p(u) from stratum 0 which belongs to F∞, and hence more precisely to
P∗

p,d,∞(I∞(p)). We know that the set Pp,d,∞ consists of fully local deductive

rules from Γ∞(p) = Γ0(p) and delegated body-less rules ∪qΓ̃∞(q, p). More-
over, we have seen in the proof of Theorem 4.14 that each body-less delega-
tion with head relation in stratum 0 from a peer q results from evaluating
the extensional q-facts present in the initial state using the instantiation of a
local rule in Γq which respects σ and σ′. As the extensional q-facts in Mmin
are precisely those found in the initial state, and all well-typed rules from
Γ0(q) respecting σ′ can be found in cs(I0, Γ0), it follows that the delegated
rule is entailed by Mmin. Thus, all (well-typed and properly stratified) in-
stantiations of rules in Pp,d,∞ with heads of stratum 0 are entailed by Mmin,
and so are all extensional facts in I∞(p). It follows that the fact r@p(u) must
belong to Mmin.

Second direction (Mmin[0] ⊆ F∞[0]). Consider some intensional fact r@p(u)
from stratum 0 which belongs to Mmin. The proof proceeds by induction
on the depth of the proof tree of r@p(u). The base case is when r@p(u) has
depth 0, i.e., it appears explicitly in cs(I0, Γ0). There are two possibilities:
either r@p(u) ∈ I0(p) or the rule r@p(u) :- appears in some Γ0(q). In the
former case, we know from the proof of Theorem 4.14 that I∞ = I0, so
we must have r@p(u) ∈ F∞. In the latter case, as we are in an intensional
system, the rule r@p(u) :- must be deductive. Either this rule appears in
Γ0(p) (hence Γ∞(p)) or it will be delegated to p by another peer q at every
visit to q, and thus will appear in Γ̃∞(q, p). In both cases, the rule must
belong to Pp,d,i, hence r@p(u) ∈ P∗

p,d,i(Ii(p)) ⊆ F∞. Now suppose the proof
tree of fact r@p(u) has depth d + 1, and we already have the result for
facts of stratum 0 with proof trees of depth at most d. Let β be the rule

4.4. CONVERGENCE OF WEBDAMLOG 55

in cs(I0, Γ0) which was used for the last step of the proof of r@p(u). As
(I0, Γ0) is an intensional VWL system, it follows that all rules in (I0, Γ0) are
of one of two types: persistence rules for extensional predicates, or local
deductive rules. Thus, the rule β must be of the form

vMn+1@vQ(vUn+1) :-

(¬)vM1@q(vU1), (¬)vM2@q(vU2), ...(¬)vMn@q(vUn)

for some rule ρ

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

in Γ0(q) and some valuation v which respects the typing constraints σ and
the strong stratification σ′, and is such that vMn+1@vQ = r@p. Note in
particular that this means that each of the (ground) relations vMj@q must
be extensional or belong to the same stratum (0) as r@p. If there are any
facts from the stratum 0 in the body, then they must use a relation with
peer p, and so we would have q = p (since only local deductive rules are
permitted). Otherwise, if q 6= p, then only extensional relations may be
used in the body. Also note that all atoms in the body which belong to
stratum 0 must not be negated. We know that the rule β was used to derive
the fact r@p(u). This means that there must be a second valuation v′ such
that v′vMn+1@v′vQ(v′vUn+1) = r@p(u) and each literal (¬)vMi@q(v′vUi)
is either extensional and satisfied by the set of extensional facts or a positive
atom of stratum 0 which has a proof tree of depth at most k. As F∞ and
Mmin agree on all extensional facts, all extensional literals (¬)vMi@q(v′vUi)
are satisfied by P∗

q,d,∞(I∞(q)). For the remaining body atoms, we use the

IH to infer that each atom vMi@q(v′vUi) of stratum 0 belongs to F∞, and
more specifically to P∗

q,d,∞(I∞(q)). If q = p, then we can use the rule ρ

in Γ∞(p) = Γ0(p) together with the valuation v′′ = v′v and the facts
vMi@p(v′vUi) ∈ P∗

p,d,∞(I∞(p)) to obtain r@p(u) ∈ P∗
p,d,∞(I∞(p)). If q 6= p,

then we know from above that each vMi@q(v′vUi) must be an extensional
fact and it must belong to P∗

q,d,∞(I∞(q)). It follows that q must delegate

the rule r@p(u) :- to p. The fact that the run has converged to (I∞, Γ∞, Γ̃∞)

means that this delegation must appear in Γ̃∞). It follows that r@p(u) :-
belongs to Pp,d,i, hence r@p(u) ∈ P∗

p,d,i(Ii(p)) ⊆ F∞.

Induction Step: show Mmin[k + 1] = F∞[k + 1] assuming Mmin[k] = F∞[k]

56CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

First direction (F∞[k + 1] ⊆ Mmin[k + 1]). We suppose that F∞[k] ⊆ Mmin[k].
Let us consider some intensional fact r@p(u) from stratum k + 1 which
belongs to F∞, and hence to P∗

p,d,∞(I∞(p)). We know that the set Pp,d,∞

consists of fully local deductive rules from Γ∞(p) = Γ0(p) and delegated
body-less rules from ∪qΓ̃∞(q, p). As for the delegated rules, note that if
s@p(w):- appears in Γ̃∞(q, p), there must exist a rule in Γ∞(q) = Γ0(q) of
the form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and a valuation v satisfying the typing σ and strong stratification σ′ such
that: vMn+1@vQ(vUn+1) = s@p(w), each fact vMi@q(vUi) appearing pos-
itively in the body belongs to P∗

q,d,∞(I∞(q)) (and hence to F∞), and each

negated fact ¬vMi@q(vUi) in the body does not appear in P∗
q,d,∞(I∞(q))

(nor a fortiori in F∞). Because v respects the strong stratification σ′, and
q 6= p, we know that every relation vMi@q is either extensional or must
belong to a stratum k or less. From the IH, we know that Mmin and F∞

agree on all intensional facts appearing in strata up to and including k,
and we have seen earlier in the proof that the same is true for extensional
facts. It follows that each fact vMi@q(vUi) appearing positively in the body
belongs to Mmin, and each negated fact ¬vMi@q(vUi) in the body does
not appear in Mmin. Moreover, we know that the instantiated rule used
to produce the delegation is entailed by Mmin. Thus, we have that Mmin
entails the delegation s@p(w):-. Thus, all (well-typed and properly strati-
fied) instantiations of rules in Pp,d,∞ whose head relations are in strata at
k + 1 are entailed by Mmin. Moreover, we know that only (well-typed and
stratified) instantiations of rules in Pp,d,∞ with head relations in stratum
k + 1 or lower are used in the production of r@p(u). Finally, we know that
all extensional p-facts in I∞(p) = I0(p) belong to Mmin. It follows that the
fact r@p(u) belongs to Mmin.

Second direction (Mmin[k + 1] ⊆ F∞[k + 1]). Consider some intensional fact
r@p(u) ∈ Mmin from the stratum k + 1. As σ′ provides a stratification of
cs(I0, Γ0), it is possible to find a proof tree for r@p(u) whose leaves use only
(negations of) facts in Mmin belonging to strata 6 k. We will thus again
proceed by induction on the depth of such a proof tree. The base case is
when the proof tree for r@p(u) has depth 0, i.e., it appears explicitly in
cs(I0, Γ0). We can then proceed as in the base case for stratum 0. Suppose
next that we have already shown the result for intensional facts in Mmin

4.4. CONVERGENCE OF WEBDAMLOG 57

belonging to stratum k + 1 and having proof trees from facts in strata 6 k
of depth at most d. Consider r@p(u) ∈ Mmin from the stratum k + 1 with a
proof tree of depth d + 1. Let β be the rule in cs(I0, Γ0) which was used for
the last step of the proof. As we saw earlier, β must be of the form

vMn+1@vQ(vUn+1) :-

(¬)vM1@q(vU1), (¬)vM2@q(vU2), ...(¬)vMn@q(vUn)

for some rule ρ

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

in Γ0(q) and some valuation v which respects the typing constraints σ and
the strong stratification σ′ and such that vMn+1@vQ = r@p. It follows that
each (ground) relation vMi@q is either extensional or an intensional relation
which belongs to a stratum lower than or equal to k + 1. We also know
that β was used to derive the fact r@p(u), which implies the existence of a
second valuation v′ such that v′vMn+1@v′vQ(v′vUn+1) = r@p(u) and each
literal (¬)vMi@q(v′vUi) is either (i) a (possibly negated) extensional fact
which is satisfied by Mmin, (ii) a (possibly negated) intensional fact from
some stratum 6 k which holds in Mmin, or (iii) a non-negated intensional
fact from stratum k + 1 with a proof tree of depth at most k. We know from
earlier in the proof that F∞ and Mmin agree on extensional facts. This means
that every non-negated extensional fact vMi@q(v′vUi) belongs to F∞ (more
precisely P∗

q,d,∞(I∞(q))) and every negated extensional fact ¬vMi@q(v′vUi)

does not belong to P∗
q,d,∞(I∞(q)).

For intensional facts from lower strata (k or less), we use the induction
hypothesis (from the initial induction over strata) to obtain F∞[k] = Mmin[k].
From this we can deduce that an intensional fact vMi@q(v′vUi) of stratum
6 k which appears positively in the body of our rule must belong to F∞

(or more specifically P∗
q,d,∞(I∞(q))), and if it appears negatively in the rule,

then it will not belong to P∗
q,d,∞(I∞(q)).

Finally, if we have a non-negated intensional fact vMi@q(v′vUi) from
stratum k + 1 with a proof tree of depth at most k, then using the (local) IH,
we obtain vMi@q(v′vUi) ∈ F∞, and hence vMi@q(v′vUi) ∈ P∗

q,d,∞(I∞(q)).
If we are in the case where p = q, then we can use the rule ρ in Γ∞(p) =
Γ0(p) together with the valuation v′′ = v′v and the facts vMi@p(v′vUi) ∈
P∗

p,d,∞(I∞(p)) to obtain r@p(u) ∈ P∗
p,d,∞(I∞(p) ⊆ F∞). If q 6= p, then be-

cause we respect the strong stratification, we know that each vMi@q(v′vUi)

58CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

must be either an extensional fact or an intensional fact from a stratum
6 k. In both cases, we have shown above that vMi@q(v′vUi) belongs
to P∗

q,d,∞(I∞(q)) when vMi@q(v′vUi) appears positively in the rule, and

vMi@q(v′vUi) does not belong to P∗
q,d,∞(I∞(q)) when it is appears nega-

tively. Thus, the body of the rule is satisfied by P∗
q,d,∞(I∞(q)). It follows that

q must delegate the rule r@p(u) :- to p. The fact that the run has converged
to (I∞, Γ∞, Γ̃∞) means that this delegation must appear in Γ̃∞). It follows
that r@p(u) :- belongs to Pp,d,i, hence r@p(u) ∈ P∗

p,d,i(Ii(p)) ⊆ F∞. ✷

4.5 Optimization

To make the approach feasible, we have to rely intensively on some known
optimization techniques. We briefly mention them next and see how they
fit in the WebdamLog picture.

4.5.1 Differential technique

Consider a peer p who has the rule s@q(x, y) :- r@p(x, y) with s@q an
extensional relation. Suppose that r@p is a very large relation that changes
infrequently. Each time we visit p we have to send to q the current version
of r@p, say a set Kn of tuples. This is a clear waste of communication
resources. It is preferable to send the symmetric difference of r@p, i.e., send
a set of updates ∆ with the semantics that Kn = ∆(Kn−1), since q already
knows Kn−1. If s@q is intensional, we face a similar issue; it is preferable to
send the new set of delegation rules as ∆ rather than sending the entire set.

4.5.2 Seed-based delegation

Consider again the rule:

at p: m@q() :- m1@p($x), m2@p’($x)

Now suppose that m1@p(ai) holds for i = [1..1000]. We need to install 1000
rules. However, in this particular case, we can install a single rule at p′ and
send many facts:

at p’: m@q() :- seedr,1,p@p’($x), m2@p’($x)
at p’: seedr,1,p@p’(ai). (for each i)

Note that it now becomes natural to use a differential technique to maintain
delegation. In particular, if the delegation from p to q does not change,

4.5. OPTIMIZATION 59

there is no need to send anything. If it does, one needs only to send the
delta on seedr,1,p@p′. Observe that we have replaced the task of installing
and uninstalling delegation rules by that of sending insertion and deletion
messages in a persistent extensional (seed) relation that controls a rule.

4.5.3 Query-subquery and delegation

Consider the following example of a rule in Bob’s iPhone, where photosAlice@Bob-
iPhone is intensional:

at Bob-iPhone: photosAlice@Bob-iPhone($X,$Y) :-
photos@picasa(Alice,$X,$Y)

This rule says that to find the photos of Alice, one needs to ask Picasa. The
formal semantics says that we install the following [Upload] rule at Picasa:

at Picasa: photosAlice@Bob-iPhone($X,$Y) :-
photos@picasa(Alice,$X,$Y)

which will result in uploading in Bob-iPhone all the photos. However,
observe that this has no effect on the state since photosAlice is only inten-
sional. This uploading may therefore be considered a waste of resources.
An optimizer may decide not to install the [Upload] rule at Picasa, i.e., not
ask Picasa to upload anything. Now suppose that Bob asks his iPhone for
the photos of Sue:

query@Bob-iPhone($X) :- photosAlice@Bob-iPhone($X, Sue)

where query is an extensional predicate. Now obtaining photos from Picasa
changes the state. So the optimizer will install on Picasa the rule:

at Picasa: photosAlice@Bob-iPhone($X,Sue) :-
photos@picasa(Alice,$X,Sue)

Observe that the optimizer performed some form of resolution in the
spirit of query-subquery [Vie86] or rewriting in the Magic Set style [BMSU86]
(see also [AHV95]). Indeed, the entire management of delegation can be
optimized using these techniques. Note that strictly speaking this may
change the semantics of applications: the derivation of some facts may take
a little longer than if we had installed all the delegations in advance.

60CHAPTER 4. A RULE BASED LANGUAGE FOR WEB DATA EXCHANGES

4.6 Conclusion

We have introduced a new Datalog-style language for distributed data
management. The main novelty is the notion of delegation that allows a
peer to install rules at other peers. We have studied the expressivity of the
language and of restrictions. We have also studied convergence properties
for fragments of the language.

One should observe that the power of delegation critically depends on
the exact definition of the model. The situation would be different, for
instance, if we were to consider an asynchronous version of the model in
which messages between peers are not instantaneous. A natural direction
for future work is the extension of our study of the power of delegation
and related issues (e.g., possibility of electing a leader) to different variants
of the model.

As another possible direction for future work, Active XML considers
intensional data of a very different form, namely functions that may be
included in documents and are defined intensionally. It would be interest-
ing to investigate the relationships between these two kinds of intensional
data.

Perhaps one of the most exciting direction of work open by WebdamLog
is the possibility to describe Web data management tasks in a well-defined
language. Indeed, we believe that one needs such a distributed rule-base
language to focus on the most fundamental and common algorithms of
distributed data management, by abstracting away most specific imple-
mentation details. This opens new well-founded avenues to tackle the
apparent heterogeneity of the Web. It is of particular interest for access
control and distribution management, as we illustrate in the next chapter
while introducing WebdamExchange .

Chapter 5

A data model for Web data
exchanges

Part of this work has been carried out in collaboration with Serge Abiteboul, Neoklis
Polyzotis and Amélie Marian and presented in [AGP11].

With the Web, notably social networks and Web 2.0 applications, the
sharing of information is generalizing. Users bring data to the network
and are willing to share with others, but also wish to control what portions
of the data can be viewed or updated by others. Users would also like to
access and update information if desired and entitled to. This is the setting
of the present chapter, namely the specification and sharing of information with
access control in a distributed environment. We wish to do so with a similar
level of security as in centralized systems, but we also want to leverage and
accommodate the wide variety of systems already available on the Web.

Many studies have investigated the problem of distributed information
management with access control. See, e.g., [MKKW99, REG+03, RD01,
WABL94]. Similar to some of the previous studies, our approach, which we
term WebdamExchange , uses a distributed knowledge base as its founda-
tion. However, the originality of WebdamExchange is that the knowledge
base unifies a wide range of information relevant to data management with
access rights. Specifically, the knowledge base contains logical statements
and rules to encode:

1. data (as in databases),

2. knowledge about other peers (e.g., replication of their data or trust in
it),

3. access rights, and credentials (e.g., cryptographic keys pair or lo-
gin/password),

61

62 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

4. localization information (where to find some particular data)

5. rules describing the policy of each peer,

6. the provenance of the information using time and trace of communi-
cation, and

7. possibly other kinds of knowledge that we will not discuss here such
as ontologies, ontology mappings, beliefs, trust, etc.

The approach allows reasoning holistically about pieces of data, e.g.to
determine from where they can be retrieved or who has some particular ac-
cess right on them. Moreover, the “logic” of participants may be described
declarativly using rules, which facilitates the development of distributed
Web applications.

We illustrate these ideas with our motivating example. Recall that user
Alice is organizing a rock-climbing outing in Fontainebleau, and wishes
to put together an application for the event that she will share with the
members of her rock-climbing group, Roc14. Part of the data she needs is
the list of the group members, which is stored on Facebook. To promote
the event, she also wants to use pictures from previous outings, which
the group members store on public sites, such as Picasa or Flickr, private
Websites and in an untrusted DHT that group member Bob set up. Finally,
some information she will need can be obtained from public Web-services,
e.g., she might use Google maps to obtain location information for boulder-
ing areas in Fontainebleau. Using existing technology, Alice will have to
use many different tools and APIs in order to check what data is available
and from which Web-services, whether she has access to it and finally de-
termine how to retrieve it. In contrast, the same task can be performed in
WebdamExchange by issuing a declarative query that requests the needed
data. WebdamExchange will process the query over the unified knowledge
base, thus dealing with the thorny issues of distribution and access rights.
For instance, the knowledge base provides all information about obtaining
(from Facebook) the list of group members, finding where each member
stores outing pictures and getting the data using proper credentials. Note
that WebdamExchange has to perform this reasoning in an extremely het-
erogeneous setting, where systems, access controls and ontologies (data
organization) may vary widely across members of the group.

From a formal viewpoint, the system consists of a set of peers, each
with its own database and its own logic. The database contains logical
facts capturing information such as documents, access control, credentials,
localization, but also replicas of other peers’ information. A peer logic is

63

expressed in datalog-style rules. We build on the WebdamLog language,
presented in the previous chapter. We extend the language in a number of
ways, notably by introducing the notion of principal (e.g., the group Roc14)
which is common in security.

The holistic approach proposed by WebdamExchange brings several
distinct advantages:

Large spectrum Because the model is general, it can capture very different
scenarios ranging from centralized systems (such as central servers) to
massively distributed systems, with peers ranging from fully trusted
to totally untrusted, providing encrypted or clear information. Fur-
thermore, it can capture scenarios combining the previous cases,
which are the reality of today’s Web, in arbitrarily rich ways.

Formal model Because the model is formally defined, we can prove (or
disprove) desirable properties for a system described with our model,
such as soundness (data is only acquired legitimately) and com-
pleteness (all legitimate data may be acquired). This is in the spirit
of [Aba09] that uses logic to describe access control protocols. Also,
peers may perform automatic reasoning using the knowledge base to
obtain information on data, localization and access control.

Quality control Because our model addresses provenance and time, we
can better control the quality of data. This is in-line with recent works
on data provenance, e.g., [BT07]. We view time and provenance not
as gadgets but as essential components of a solution for properly
supporting access control in a distributed setting, in particular for
detecting who is responsible for misuses of the system.

Overall, the thesis is that with all the information managed in a dis-
tributed knowledge base, and with reasoning, we can automate the man-
agement of the distributed information. In particular, we describe in details
the management of access control and distribution, introducing special
kind of knowledge and the corresponding rules.

Access control For access control, we consider three kinds of knowledge
statements, namely access right, secret, and hint. Using these state-
ments, we show how to describe an access control mechanism based
on asymmetric cryptographic keys and one based on Web HTTP ac-
cess, controlled by login/password. We show in particular how to
exchange information between peers that are trusted or untrusted, in
clear or encrypted.

64 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

Distribution For distribution, we use localization knowledge statements.
Using these statements, we show how to manage data in different sce-
narios of data distribution, from centralized servers such as Facebook,
to P2P communities organized around DHT or gossiping, possibly
with replication.

Organization

The chapter is organized as follows. In Section 5.1, we present the general
WebdamExchange model. Section 5.2 deals with access control, and Section
5.3 with distribution. In Section 5.4, we propose some general policies. We
conclude in Section 5.5 with perspectives on future work.

5.1 The general model

5.1.1 Informal presentation

We consider autonomous peers exchanging data using messages. For this,
we build on the distributed datalog language, WebdamLog , discussed in
the previous chapter. We introduce two extensions of WebdamLog that
are essential for WebdamExchange , namely virtual principals and semi-
structured data.

Virtual principal

The WebdamLog language is tailored to physical peers such as Alice’s
iPhone or Bob’s laptop, capturing data exchange between them. In Web-
damExchange , we call principal an entity that owns data and has access
right delegations on the data of other principals. A peer is such a physical
principal. WebdamExchange also supports virtual principals, e.g., a user
such as Alice, or a group such as Roc14. Contrary to a peer, a virtual princi-
pal has no storage or processing resources, relying on peers for that. The
notion of virtual principal is primarily used to specify and manage access
rights. Essential issues are who stores the data of a virtual principal, and
who has read/write access to them. Typically, physical principals will store
and process data for virtual principals. They may also temporarily create
avatars of virtual principals. For instance, an avatar of Alice is created on
her iPhone when she wants to access and update data from this device.

The idea of the extension is as follows. Besides facts of the form
r@p(u1,...,un) where p is a peer, we have facts r@q(u1,...,un) where q is a

5.1. THE GENERAL MODEL 65

virtual principal. Such a fact is stored on a physical peer p as an external
fact, i.e.,

says@p(r,q,u1,...,un).

where says is a reserved relation name. When a relation about a virtual
principal is used in a rule, the peer “resolves” it (using rules) to replace it
by the external relations.

Note that the basic WebdamLog model is strongly typed. On the other
hand, an external relation needs to store tuples of arbitrary arity. We next
turn the model into a semi-structured data model, which fixes this typing
issue.

Semi-structured data model

Another problem we have to face on the Web is that the data is naturally
semi-structured. For instance, a climbing site may be recorded in Roc14 as
follows, using the standard syntax of JSON:

climbingSite@Roc14:{
“id”:“&cuvier”,
“Name”:“Cuvier”,
“ClimbingSiteType”:“Bouldering area”,
“Circuit”: [{“idref”:“circuit@Roc14&cuvier-orange”},

{“idref”:“circuit@Roc14&cuvier-blue”},
{“idref”:“circuit@Roc14&cuvier-red”}]

“GoogleMapsURL”:“...” }

This fact is representing the Cuvier bouldering area that includes 3 circuits,
orange, blue and red. The number of circuits may depend on the size of the
bouldering area. Brackets denote collections and ampersands denote refer-
ences. Note that &cuvier-orange identifies a document within the domain of
the circuit relation of Roc14.

To simplify data management, we extend WebdamLog with the notions
of a document and a collection. A document is a coherent, self-contained
piece of data, modeled by an XML-like tree. For example, we may have
the following document ♣✐❝t✉r❡✶❅❇♦❜ containing a jpeg picture, using the
JSON syntax:

picture1@Bob = {“Name”:“picture1”, “Type”:“jpeg”, “byteStream”:“...”}

66 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

A document corresponds to a relation that contains the different versions
of the document at different points in time. A document update therefore
corresponds to adding a new version to the relation.

A collection consists of a map of data values. Collections are also used
for access control and localization (specifically, we employ collections of
access control and where statements respectively, which we will define later).
The most basic collection is a collection of document references, which is
a list of references to documents. Collections are updated by adding or
removing data values. For example,

pictures@Roc14 += picture1@Bob

adds a reference to the previous document to the collection of pictures of
Roc14.

The standard request to a document or a collection is to ask for its “cur-
rent” version, i.e., the last version of the document or the consolidated list
of references of the collection. These notions raise the issue of consistency
that is particularly critical for collections of access rights. For instance, it
is important to decide whether a peer requested an update to a document
“before” or “after” it obtains the right to perform such an update. Distribu-
tion greatly complicates the issue. We will discuss more precisely this issue
in Section 5.1.2.

Statements, instructions and external knowledge

In WebdamLog , there is no difference between a fact and a message. More
precisely, if a peer p derives a fact r@p(u1,...,un), this is a fact to store; if p
derives r@q(u1,...,un), for q 6= p, this is a message to send to q. The message
is automatically accepted by q as a new fact. However, in our current
setting, we want to allow the peer to process the fact based on its own logic.
In this fashion, q sees the message as a request to insert the fact, but it may
decide to not actually insert it in its local knowledge base.

We next detail this important distinction between an insertion instruc-
tion and the (actual logical) statement that may result from it. The following
statement may for instance be installed by Alice-iPhone:

Alice-iPhone states climbingSite@Roc14={“id”:“&cuvier”,...}
requester Alice;

In other words, Alice-iPhone created a fact of the relation climbingSite@Roc14
(and typically stored it in its database). It is important to understand who
the participants in such a fact are: Alice-iPhone performed the statement;

5.1. THE GENERAL MODEL 67

Roc14 owns this piece of data; Alice requested this update. This last informa-
tion is used to trace the provenance of the fact. Such a complicated model
is necessary because it is very typical on the Web to have a principal (Alice)
who has the right to state a fact of another principal (Roc14) but has to rely
on another principal (Alice’s iPhone) to perform this task.

How did we get there? Typically, Alice made the following instruction:

Alice requests climbingSite@Roc14 = {“id”:“&cuvier”, ...}
to Alice-iPhone;

to her iPhone. Another example of an instruction is

Bob requests get climbingSite@Roc14&cuvier to Alice-iPhone;

which is an instruction of Bob to Alice’s iPhone for some data. If Alice’s
iPhone can prove that Bob is entitled to have this data, it can send it to
him. So, a peer may want to exchange statements and messages previously
received from other peers. For this, we introduce another class of messages,
external knowledge, that can contain statements, instructions or external
knowledge. For example, Alice-iPhone may answer Bob’s instruction using:

Alice-iPhone says Alice-iPhone states
climbingSite@Roc14= {“id”:“&cuvier”, ...}
requester Alice to Bob;

It means that Alice-iPhone sent this statement to Bob. We say that Alice-
iPhone performed the communication and that Bob received it. One may also
want to exchange rules. For example:

Alice-iPhone says Alice-iPhone states
climbingSite@Roc14:{...} :- climbingSite@Alice:{...}
requester Alice to Bob-laptop;

means that Alice-iPhone installed in the laptop of Bob a view machinery to
copy Alice’s data to Roc14.

The model allows capturing provenance information. Indeed, each
message may contain information about the principals who sends it and
who receives it, and the message is authenticated accordingly. When a
message is transmitted from one peer to another, this information is pilled
up, forming a chain of external knowledge of the following form:

Pn says . . . (P2 says (P1 says (P1 states . . .) to P2) to P3) . . . to Pn+1

68 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

If we want to trace the full communication of the system, the peers must
only accept instructions and well-formed chains of external knowledge.

We should also mention that timestamps are also attached to messages.
Indeed, we have shown previously that timestamps have an important
impact on the expressive power of WebdamLog . We timestamp knowledge
as follows:

Alice-iPhone states climbingSite@Roc14={“id”:“&cuvier”,...}
requester Alice at 06/12/2011 14:00:00

In WebdamExchange , the timestamps are local to the performer, here Alice-
iPhone. There is no global clock a priori.

5.1.2 Formal model

Alphabets and Schemas

We assume the existence of two infinite disjoint alphabets of sorted constants:
principal and relation. We also consider the alphabet of data that includes in
addition to principal and relation infinitely many other constants of different
sorts (integer, string, bitstream,. . .). Similarly, we have the corresponding
alphabets of sorted variables, implicitly denoted by their first symbol $.

A schema is an expression (K, Π, Π′ E , I , σ) where K is the set of
keywords, that are special constants of the model; Π is a (possibly infinite)
set of physical principal constants and Π′ is a (possibly infinite) set of
virtual principal such as Π ∩ Π′ = ∅; E and I are disjoint sets, respectively,
of extensional and intentional names of the form m@p for some relation name
m and some principal p; and the typing function σ defines for each m@p
in E ∪ I the sort of its content. We do not describe in details the typing
language here, but any kind of typing of semi-structured data, such as DTD
or XML-Schema, could be used. We use a JSON syntax in the following.
The system uses an equivalent XML syntax.

Statements

A (JSON) term is defined by the following regular expression:

term ::= label:value | {}
label ::= constant | $variable
value ::= constant | $variable | {term (,term)*} | label:[{term} (,{term})*]

Given a relation rel@owner and a physical principal performer, a ground
relation fact, or rel-statement is an expression of the form:

5.1. THE GENERAL MODEL 69

performer states rel@owner:{term}

where term is a term without variables, of the proper type according to
σ(rel@owner). The rel-statements are not persistent by defaults and are
consumed as soon as they are read. Acknowledgements are particular
kinds of relation statements of the form:

performer states ack:{value:bool,type:ackType,content:{term}}

where bool is true or false, depending of the success of an operation, ackType
is in the set of acknowledgement type (a subset of K) (Communication,
Security, Storage . . .) and term is a term. Here, owner is implicitly equals to
performer.

Given a document doc@owner, a physical principal performer and a prin-
cipal req, a ground document fact, or doc-statement is an expression of the
form:

performer states doc@owner={term} requester req at time

where term is a term without variables, of the proper type according to
σ(doc@owner) and time is the current time of the performer when it created
the statement. A document is implicitly persistent and there is implicitly
only one valid version of a document. This statement means that the valid
version of the document doc@owner was set to doc@owner:term when it was
performed.

Given a collection coll@owner, a physical principal performer and a prin-
cipal req, a ground collection fact, or coll-statement is an expression of one of
the form:

performer states coll@owner:{keyTerm}+={valueTerm} requester req at time
performer states coll@owner:{keyTerm}-={valueTerm} requester req at time

where keyTerm and valueTerm are terms without variables, of the proper type
according to σ(coll@owner) and time is the current time of the performer
when it created the statement. A collection is implicitly persistent. The
statements means that valueTerm has been added or removed as a value
of the collection for the key keyTerm. For a given set of coll-statement C
about the same collection coll@owner, one can compute the corresponding
collection by

1. removing from C the coll-statement performer states coll@owner:{keyTerm}
+= {valueTerm} requester req at t1 if the coll-statement performer states
coll@owner: {keyTerm}-= {valueTerm} requester req at t2 also appears in C

70 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

2. for the remaining positive coll-statement, grouping them by their key
terms keyTerm1, keyTerm2 and build:

coll@owner:{
keyTerm1:[valueTerm1-1,valueTerm1-2,. . .],
keyTerm2:[valueTerm2-1,valueTerm2-2,. . .],

. . . }

In its general form, a collection can in particular capture an index, that
maps a key (e.g., a keyword or a tag) to a set of references. We will also
see that it can be used to model access control list and localization. One of
the simplest way of using a collection is as a list of document references.
The key is the empty term {} and the values are document references. It
corresponds to the previous example of the pictures collection of Bob.

Remark 5.1. The documents and collections are presented here as a prim-
itive concept of the model. In fact, they can be represented using rel-
statement, and the specific way to manage them can be simulated using
rules, as will be discussed later. They are so important that we use some
specific notation to distinguish it.

Instructions and External Knowledge

Given a document doc@owner and two physical principals performer and
target, a doc-instruction is an expression of the form:

performer requests doc@owner=term to target

Given a collection coll@owner and two principals performer and target, a
coll-instruction is an expression of one of the form:

performer requests coll@owner:{keyTerm}+={valueTerm} to target
performer requests coll@owner:{keyTerm}-={valueTerm} to target

These instructions mean that performer asks target to create the correspond-
ing statement on its behalf. If target chooses to execute the instruction and
create the statement, we say it factifies the statement.

Finally, given a document doc@owner or a collection coll@owner and a
key term keyTerm and two principals performer and target, a get-instruction is
an expression of the form:

performer requests get doc@owner to target
performer requests get coll@owner to target
performer requests get coll@owner:{keyTerm} to target

5.1. THE GENERAL MODEL 71

Instructions are particular forms of knowledge communicated from
a principal, the performer, to another principal, the target. It is usually
added to the database of the target. Nevertheless, there is a main difference
with WebdamLog : in WebdamExchange , one only exchanges special kind
of facts: local data has to be nested in special facts to be sent. Given
two physical principals performer and target, an external knowledge is an
expression of the form:

performer says fact to target

where fact is a local statement, or an instruction or an external knowledge
from another peer stored by the performer. An external knowledge of that
form is well-formed if performer is the performer of fact for a nested statement
or the target of fact for a nested external knowledge or instruction. We
say that a chain of external knowledge is well-formed if all the external
knowledge of the chain are well-formed.

Rules

A fact pattern is a statement or an external knowledge with terms that
may contain variables or an expression $f//pattern where $ f is a variable
representing a statement or an external knowledge and pattern is an internal
pattern of this fact. It corresponds to the descendant operator of classical
tree languages. A (WebdamExchange) relation rule is an expression of the
form

rel@p:{term} :- (¬) fact1, . . . , (¬) factn

where term is a JSON term and each f acti is a fact pattern. We also allow in
the body of the rules atoms of the form X = Y or X 6= Y where X and Y
are constants or variables. We require a rule to be safe, i.e.,

1. For each statement f acti, if the performer is a variable, it has to be
previously bound.

2. For each external knowledge f acti, if the target is a variable, it has to
be previously bound.

3. Each variable occurring in a literal (¬) f acti must be previously bound
in a positive literal.

4. Each variable in the head must be positively bound in the body

A relation-rule statement is an expression of the form:

72 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

performer states rule

where performer is a physical principal and rule is a relation rule.
The relation rules are extended to document and collection rules as

follow:

(doc@p={term} requester req at t) :-
(¬) fact1, . . . , (¬) factn

(coll@p:{keyTerm}+={valueTerm} requester req at t) :-
(¬) fact1, . . . , (¬) factn

(coll@p:{keyTerm}-={valueTerm} requester req at t) :-
(¬) fact1, . . . , (¬) factn

A (WebdamExchange) general rule is an expression of the form

factn+1 :- (¬) fact1, . . . , (¬) factn

where each f acti is a fact pattern. We also allow in the body of the rules
atoms of the form X = Y or X 6= Y where X and Y are constants or
variables. We require a rule to be safe.

A (WebdamExchange) external rule is an expression of the form

performer says rule to req

where performer and req are two principals and rule is a general rule. The
semantics of the facts and rules are explained in the next section, through a
reduction to WebdamLog .

Interpretation of WebdamExchange in WebdamLog

From the notations, one may think that the link with WebdamLog is
through relation names. In fact, the link is more subtle, due to the virtual
principals. The extensional facts of the WebdamLog model are restricted
to states, requests and says. A statement performer states . . . is interpreted
as states@performer(. . .), and an external knowledge performer says . . . to
target or performer requests . . . to target as says@target(performer, . . .) and re-
quests@target(performer, . . .) respectively. Recall that we ask per f ormer and
target to be physical principal. It is now clear why it is important. In fact,
the performer can be a peer, a wrapper or an avatar. A target is in general
a peer. It can also be a wrapper or an avatar as long as the peer creating
the external knowledge can directly contact it. If it is not the case, then we
suppose that the external knowledge is lost.

The interpretation of document and collection statements depends of
the consistency model. It is a subtle problem due to distribution. For

5.1. THE GENERAL MODEL 73

example, Bob-laptop may perform an update on the data of Alice without
Alice-iPhone being aware of the change. Moreover, Alice-iPhone may create
a different update on its own. Then, when the update of Bob-laptop and
Alice-iPhone are received by a peer (e.g., Alice-iPhone), the peer needs to
be able to resolve the conflict. This is a serious issue when access control
are updated. In a distributed setting, it is important that the resolution
of the conflict itself is consistent i.e., two different parts of the system
resolve the same conflict in the same way. So, obtaining the “current” doc-
statement or set of coll-statements is an issue. The distributed systems
literature provides a host of techniques for different consistency models.
Any well-founded consistency model can usually be expressed with our
rules. Depending of the choice of the consistency model, one will choose
the rules to use for the simulation.

Let us illustrate with an example. Suppose that we have a predicate
after@p(fact1,fact2) that provides a total order in the revision history (fact1
happens after fact2) and that does not depends on the peer p where it is
called. For instance, supposing that the clocks of the peer are perfectly
synchronized and infinitely precise, this predicate enforces that the times-
tamp of fact1 is older than the one of fact2. One can similarly use a global
timestamping or revision identifier management, which can be centralized
or distributed. The document are interpreted using rules of the form:

(at local)
persistent db@local
db@local(docId:$doc, owner:$p, content:$term, fact:$f) :-

$f[@local]//_ states $doc@$p={$term} requester _ at _
del.db@local(docId:$doc, owner:$p, content:$term, fact:$f) :-

db@local(docId:$doc, owner:$p, content:$term, fact:$f),
db@local(docId:$doc, owner:$p, content:_, fact:$f2),
after@local($f, $f2)

where _ are unamed variables and $f[@local]//_ states $doc@$p={$term} re-
quester _ at _ means that there is a local fact $ f (a statement performed by
local or an external knowledge or instruction whose target is local) which
contains this statement. For example, the fact $ f could be

states@local(docId:doc, owner:p, content:term, requester:req, time:t)

or

says@local(perf:perf, fact:{perf states doc@p=term requester req at time})

The collection are similarly interpreted using the following rules:

74 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

(at local)
persistent db@local
db@local(collId:$coll, owner:$p, key:$keyTerm, value:$valueTerm, fact:$f) :-

$f[@local]//_ states coll@p{keyTerm}+={valueTerm} requester _ at _
del.db@local(collId:$coll, owner:$p, key:$keyTerm, value:$valueTerm, fact:$f) :-

db@local(collId:$coll, owner:$p, key:$keyTerm, value:$valueTerm, fact:$f)
$f2[@local]//_ states coll@p{keyTerm}-={valueTerm} requester _ at _
after@local($f2,$f)

Interpretation of rules

Then the interpretation of WebdamExchange rules in WebdamLog is rel-
atively straightforward in absence of access control. The relation-rule
statement

performer states rel@p:{term} :- (¬) fact1, . . . , (¬) factn

is interpreted as the WebdamLog rule:

states@performer(rel@p:{term}) :-
(¬) trans-fact1, . . . , (¬) trans-factn

where each trans-facti is the transformation of f acti in WebdamLog . A
relation-rule statement inside an external knowledge is interpreted by
extracting the relation-rule and replacing the performer by the current
peer. This interpretation is naturally extended to document and collection
rules. The general rules are directly interpreted as WebdamLog rules by
converting the facts themselves and installation of an external rule is a
direct application of that interpretation.

Programs and Policies

The behavior of a peer is governed by a program, i.e., a set of local or
delegated rules. The program is in charge of managing the knowledge
base. These rules deal with statements and high level tasks such as localize
information, obtain it, verify it, etc, specified using instructions. Note that
some rules are specific to the particular peer the program is running on. For
instance, a powerful laptop and a smartphone will typically have different
rules for specifying caching, because they do not have the same storage
capacity or network bandwidth. The state of a peer consists of a set of
consistent statements, its personal knowledge and the facts it received from
other peers and did not process yet. Note that the personal knowledge of

5.2. ACCESS CONTROL 75

a peer typically includes statements about other principals. A move of the
peer’s program consists in:

• inserting/deleting facts in its knowledge base;

• sending facts to other peers;

• receiving asynchronously facts that had been inferred by other peers.

Given a principal, the policy of the principal is the sub-part of the pro-
grams of all peers that has an effect in the management of the knowledge
of this principal. For instance, recall the example in the introduction where
Alice wants to search blogs on different machines. The task is specified as
an instruction, that activates some high level rules. Based on the policies
of the different friends, the execution of the high level rules leads to the
activation of different policy rules for the different blogs. Note that the
discovery of new principals may naturally lead to discovering new policies.
The corresponding rules have to be loaded before the task is performed.
For instance, if Lila uses some exotic system she developed with some
experimental access control mechanism and Alice adds Lila to her list of
friends in Alice-laptop, the query results in integrating the rules of Lila’s
access control policy to the program of Alice-laptop peer.

To support the claim that the WebdamExchange approach allows han-
dling a wide variety of situations encountered on the Web, we consider
in more detail access control and distribution. In both cases, we intro-
duce generic statements and briefly discuss how they may be supported
in different Web contexts. Moreover, installation of an external rule, or
of a relation-rule statement inside an external knowledge, is not a sim-
ple task in the context of access control. Indeed, one wants to enforce
access control policies in the rules. So we will discuss the interpretation of
WebdamExchange with access control at the end of the next section.

5.2 Access control

5.2.1 Informal presentation

In WebdamExchange , the access control granularity is at the level of the
principal. A principal gets some particular access right to all the data of
another principal. For example, Alice may be in the own access control list
of the Roc14 group. She may then delegate this right to Alice-iPhone and
Alice-laptop. In general, the access control policies are not able to prevent

76 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

malicious principals to misbehave. But if enough information is recorded
(notably provenance), the system is able to identify malicious peers.

Logical representation

In a standard way, access control in WebdamExchange is based on access
control lists and credentials. For example, the following statement specifies
that Alice-iPhone delegates the write right to Bob on Roc14:

Alice-iPhone states writer@Roc14+=Bob requester Alice at t

We also use the notion of credentials, which consist of two abstract dual
notions, namely hint and secret. Concretely, hints and secrets depend on
the particular means of enforcing access control. For example, in the case
of RSA cryptography, the hint is an RSA public key and the secret the
corresponding RSA private key. Based on these abstract notions, the model
is general enough to match a wide range of scenarios found on the Web.
Alice-iPhone may specify the creation of a pair of hint and secret for write
right of Roc14 as follows:

Alice-iPhone states writeHint@Roc14{} requester Alice at t
Alice-iPhone states writeSecret@Roc14{} requester Alice at t

where writeHint and writeSecret are keywords of the
language. A principal who can create statements to enforce access policies
(access control and credentials) essentially has delegation power. We choose
to authorize this action with the strongest access right of our model, the
own right.

The hint ans secret are mostly use to provide an authentication mecha-
nism. For example, in the case of RSA cryptography, Alice-iPhone signs
the previous statements with the owner secret of Roc14, to prove that she
indeed has the right to delegate access on Roc14. Bob may check the sig-
nature with the corresponding hint. The hint and secret may also be used
to provide a protection mechanism. For example, in the case of RSA cryp-
tography, Alice-iPhone may encrypt the content of a document of Roc14
with the read hint of Roc14, if she does not trust intermediate peers. Then
only principals with the read secret of Roc14 are able to read the document
content. Since protection is not mandatory, we use a special logical form to
make it explicit. For instance,

climbingSite@Roc14={...} encrypted for reader@Roc14

means that the content of the document climbingSite has been encrypted
with the read hint of Roc14.

5.2. ACCESS CONTROL 77

Physical interpretation

The logical form abstracts the physical interpretation of the credentials. For
example, one may use RSA cryptography, or login and password. Given a
set of algebraic properties on the physical interpretation (the most impor-
tant one being symmetry/asymmetry), one may define policies without
going into the details of the physical interpretation. It is important to keep
in mind that the model is designed to support most of the security protocols.
The model is particularly well suited for RSA cryptography, but we also
consider symmetric cryptography and login/password authentication.

5.2.2 Formal model

Identity

The principals of the standard WebdamExchange model already have a
globally unique identity. It is of most importance to enforce that this identity
is unique and unforgeable on the context of access control. It means that
the system always distinguishes between two different principals, and in
particular that one is not able to create a principal which looks like an
existing one. We will explain how to enforce this property when discussing
physical interpretation.

Access rights

The extension of the standard WebdamExchange model is as follow. We
introduce a special list of keywords for access rights: own, write, append,
remove, read, readAcc, readWhere, writeWhere. They are organized following
the hierarchy of Figure 5.1. The own right is used for authentication of per-
formers and granting/revoking access rights. The own right also transmits
the access rights of a principal: if p is owner of q and q has a right r on q’,
then p has also the right r on q’. The write right grants the right to edit basic
documents and collections. The append and remove rights grant the right
to append and remove elements of a basic collection respectively. The read
right grants the right to read basic documents and collections. The readAcc
right grants the right to read the list of access control. The readWhere and
writeWhere rights will be introduced in the section on distribution.

We also add a special keyword for principals, allPrincipal, which can be
used for granting a right to all principals.

78 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

own

write

append remove read

readAcc writeWhere

readWhere

Figure 5.1: The hierarchy of rights in WebdamExchange

Statements for access control

Given a right keyword right, a physical principal performer and three prin-
cipals owner, req and principal, an access control list ground fact, or acc-
statement is an expression of one of the form:

performer states righter@owner+=principal requester req at time
performer states righter@owner-=principal requester req at time

The statements mean that the principal principal has been granted or re-
voked the right access right on the principal owner. The acc-statements are
clearly special kinds of coll-statements. In particular, they are implicitly
persistent and the corresponding instructions are straightforward. The
main difference is that one need the own right to perform them and the
readAcc right to read them.

Given a right keyword right, a physical principal performer and two
principals owner and req, hint and secret ground facts, or hint-statement and
secret-statement are expressions of the following forms respectively:

performer states rightHint@owner requester req at time
performer states rightSecret@owner requester req at time

The statements mean that a new fresh value has been set for the hint or the
secret of owner. The hint-statement and secret-statement are clearly special
kinds of doc-statements. As for acc-statement, they are implicitly persistent,
the corresponding instructions are straightforward and one needs the own
right to perform them. The hint statements can be read by every principals.
The secret statements can be read by the owners of principals who have the
corresponding access right.

5.2. ACCESS CONTROL 79

Protection

Finally, given a right keyword right, a principal principal and a data rel@owner:{term},
the protection (or encryption) of the data is an expression of the form:

rel@owner:({term} encrypted for righter@principal)

It means that the content of the relation (the term term) has been encrypted
such that one needs the right secret of principal to decrypt it. If the creden-
tials are asymmetric, one needs only the corresponding hint to perform the
encryption. If the credentials are symmetric, then one needs the secret to
perform the encryption. Usually, one uses the secret corresponding to the
right needed to read the statement. For instance, it would be the read secret
for a doc-statement. For a secret-statement, it would be the own secret of a
principal who has the corresponding access right.

Interpretation of statements

The presence of access control clearly changes the basic interpretation of
WebdamExchange . Indeed, one cannot let anyone create a fact or install
a rule. We provide a basic interpretation model. Of course, more refined
ones can be easily developed from that model.

Authentication is at the basis of credential-based access control. So
the knowledge of WebdamExchange with access control is authenticated.
In particular, checking a statement or an external knowledge is a local
operation that is systematically executed before accepting a fact. A ground
statement is valid if it is authenticated with a secret whose owner is the
owner of the statement and whose right is higher or equals to the right
needed to create this statement. The secret is checked with respect to the
local database of the peer doing the verification. If the secret is asymmetric,
one uses the hint to validate the secret. If the secret is symmetric, then the
peer needs the secret for the validation. For instance, the statement

Alice-iPhone states climbingSite@Roc14={“id”=“&cuvier”,...}
requester Alice at t;

is authenticated with the write secret of Roc14. It can be checked using the
write hint (or secret if there is no hint) of Roc14. Note that secrets and hints
may change (concurrently). The process fails if one uses some secret with a
different version of the hint, which highlights consistency requirements.

Authentication is also used to verify provenance for instruction and
external knowledge. These messages are authenticated with the own secret
of their performer. The receiver can check the identity of the performer

80 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

and later prove that it indeed received the message. An instruction is
valid if it is authenticated with the own secret of its performer. An external
knowledge is valid if it is well-formed, if its internal fact is valid and if it is
authenticated with the own secret of its performer. A physical principal p
only accepts valid external knowledge or valid instructions from which it
is the target. If it receives a fact f that is unvalid, it sends the following fact
to the performer perf of the external knowledge:

p says p states ack:{value:false,type:Security,content:f} to perf

Of course, it signs it with its own secret.
If the instruction is valid, the peer decides if it executes it or not using

rules which checks that the performer of the instruction has indeed the
right to execute it. For example, with a get instruction, we may use a rule
of the form:

(at local)
local says $f to $client :-

_[@local]//$client requests get $docId@$owner to _
[@local]// states reader@$owner += $client requester _ at _
$f[@local]//_ states $docId@$owner=_ requester _ at _

where local is the name of the peer executing the rule and [@local] means
that the data is searched in the local database of this peer. The meaning
of the rule is as follows. If the (local) peer receives an instruction for a
particular document $docId@$owner (that may be nested in a fact), the
peer checks that the client has the read right (looking for the corresponding
statement, that may be nested in a fact). Then, if this is the case, it finds
the statement (that may be nested in fact $f) and sends back $f (using the
says literal). One may also use intentional rules to check the access right
and obtain the data, depending on the policy of the principal $owner. The
peer also stores the instruction, so that it can later prove that the requester
indeed requested the data.

Remark 5.2 (Role of the different principals). The notions of owner, per-
former, target and requester should now be clear in our model. The notions of
owner is used to check that the update was valid. The notions of performer
and target are used to check the validity of a provenance chain. The notion
of performer of an instruction is also used to decide whether an update
should be performed or not. Finally, the requester is used to link two chains
of provenance without having to carry the whole history. A performer

5.2. ACCESS CONTROL 81

must be able to provide the valid chains of provenance of data used to
perform a statement, in particular the corresponding instruction.

Interpretation of rules

The treatment of rules is somewhat more complex. In fact, deciding wether
a rule has to be accepted by a peer or not depends at least of the fact that is
produced and of the facts that are read. Globally, one expects the principal
that created the rule, to have the right to perform the produced fact and
to read the fact in the body. Indeed, if a principal can read the body and
perform the fact, it may do the operation locally, even if it may be less
efficient. So it is not gaining any access right by installing the rule. How
these properties are checked may depend on the policy. Not checking them
may lead to security leaks. The problem is that in general, one may ignore
which kinds of facts are in the rule and who are their owner. The basic
interpretation is the following. We suppose that we only allow document
and collection rules. So any rule will be of the kind:

perf states rel@p:{term} :- (¬) fact1, . . . , (¬) factn

Then it is easy to check if the performer of the rule statement has the right
to perform the relation, using the same authentication scheme than for
ground statements. Next, the peer can easily check that the performer of
the statement rule has read access to the content of facti when this one
contains a nested statement that has its owner instancied. If a fact contains
a statement whose relation owner $owner is not instancied, then the peer
modifies the rule by adding at the end a pattern of the kind:

// states writer@$owner += perf requester _ at _

where _ denotes an unamed variable , $owner is the variable corresponding
to the variable in the owner variable of the fact and perf is the performer of
the rule statement.

The previous interpretation guarantees that the rules that are accepted
respect access control specification. But one may want to restrict further
the delegated rules that are accepted by a peer, for example to avoid being
overloaded by undesired tasks. One may of course ask an administrator
to authorize each rule installation, but it is far from the dynamicity we
have in mind. So we may also consider pattern-based rules acceptance: the
administrator of the peer defines positive or negative rules patterns, and
the rules are filtered accordingly. It is very similar to the usage of view to
enforce access control in database. We believe this is a most interesting
direction of research, that is left for future work.

82 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

5.2.3 Properties

A wide variety of scenarios may be considered to share information in a
distributed setting. Given a scenario, a global policy specifies how real par-
ticipants (users or peers) behave and how the information corresponding
to each participant (real or virtual) is stored and found. In this section, we
are interested in controlling that the data is correctly used in any given
system. In particular, we introduce desirable properties systems should
guarantee, namely completeness, consistency, and soundness. We also discuss
how control can be performed to detect illegal behaviors.

Well-formed

We assume that the systems we study manage only well-formed knowledge.
This means that only facts legally authenticated (with time and provenance)
are considered, which can be verified by checking signatures. Strictly
speaking, a server may record some non well-formed fact. This may be the
case because the fact is encrypted and the server does not have the key to
decrypt and verify. However, such a pattern is eventually detected before
the fact is used when someone with access rights decrypts it. Since non
well-formed knowledge is never used and is eventually discarded, we may
as well consider without loss of generality that it is not present.

Soundness

Since we are primarily interested in systems where principals may store
information for others and serve it, we focus here on data-privacy that states
that a principal can read (in clear) only the contents of documents it has
access to according to access rights. Note that one could also consider
stronger forms of privacy that would require that one has limited access to
access rights knowledge (right-privacy) or that one does not even know of
the existence of a document that one is not entitled to read (docId-privacy).
We define a system as (data-privacy) sound if, when used legally, it guaran-
tees data-privacy. Note that this implies in particular that a principal can
not acquire a key it should not hold.

To guarantee soundness, we can use the following general rule:

Definition 5.3 (sound-rule). A peer is allowed to perform a statement only
if it has a proof that the requester has the right to request that statement.
When sending knowledge to another principal, the content of the state-
ments is encrypted with the read access-right secret of its owner, unless the
sender has a proof that the recipient has the right to access the information.

5.2. ACCESS CONTROL 83

A system is monotone if it only allows adding knowledge, i.e., it dis-
allows statements that would revise previous knowledge. In particular,
documents cannot be updated, access rights cannot be revoked and items
can be appended to collections but not removed. We next state that mono-
tone systems respecting sound-rule are sound.

Theorem 5.4. When all principals in a monotone well-formed system respect
sound-rule, the system is guaranteed to be sound.

The proof of the result is by induction and uses the fact that when all
principals in a monotone well-formed system respect the sound-rule, no
illegal update may occur. One can in fact show a stronger result, namely,
that if some principals do not obey the rule, (i) their coalition will not
gain more information than the union of the information they legally have
access to and (ii) as soon as they distribute illegal information outside their
coalition, it is possible to detect their misbehavior. Of course, one may
want to consider non-monotone systems. The issue is then to be sure that
one gets all relevant information including information that may invalidate
previous access rights. This leads to considering other desirable properties
of such systems, namely completeness and consistency.

Completeness and consistency

The guarantee to have access to all the relevant knowledge is essential. For
instance, a peer serving the documents for a principal p needs to know the
list of all principals that can read p and for that be aware of all read access
revocations.

We say that a system is complete if each principal can realize an instruc-
tion (read or update) it is entitled to and in case of a read instruction, get
the complete answer. This is clearly a nontrivial property to guarantee in a
distributed setting. It includes a number of facets.

awareness First, a principal p should be able to find which principal q
owns information, p has some right on.

reachability Then p has to be able to find where and how to send a partic-
ular query/update instruction concerning q. Note that reachability
takes a particular flavor when granting some access to all princi-
pals. The system should provide some form of global query facility
to actually find information, in the style of querying public data in
Facebook.

84 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

denial-free Also, a peer receiving a legal instruction within its competency
should be willing to serve. More precisely, a peer refusal to serve
(because of failure or out of malevolence) should not prevent from
actually realizing a read instruction (read-denial-free) or an update in-
struction (update-denial-free). To guarantee the denial-free properties,
we can rely on trusted servers. Otherwise, if peers may potentially
be unreachable or possibly malevolent, we have to rely on replica-
tion and on guarantees that is probabilistic in nature (based on the
probability of error and illegal behavior).

consistency Finally, if the system uses replication, different principals
serving the same information should be consistent in the sense of
distributed databases. For a given query, at a given time, one should
get the same answer everywhere. There may be several writers and
replicas for the same information. To perform an update with a guar-
antee of consistency between the replicas, one has to update them
all in an atomic operation, a very hard requirement in a distributed
setting. In particular, one has to guarantee that the corresponding
access right will not be updated during the operation. To support
consistency control, one could rely on concurrency control mecha-
nisms provided by participating systems. One could also develop
light (but provably correct) concurrency control solutions adapted to
particular applications. One could also not care (often the solution
adopted on the Web) and rely on ad hoc conflict resolutions. Observe
that this would possibly generate delays in the propagation of up-
dates (a rather imprecise notion since there is no universal clock in
the system). The management of concurrency control in our setting is
a challenging and interesting research directions.

Verifying legality

We discussed properties of systems when all participants behave legally,
e.g., obey the sound-rule. But in most applications, in particular social
networks, it is very likely that some principals will not behave legally, out
of malevolence or errors. For instance, Betty may transmit some document
d of some principal Alice to someone who does not have read access to it, a
violation of the sound-rule. If this remains within a a group of misbehaving
users who are collaborating, nothing can be done about it. Now Betty may
send d to George, a honest user, who does not have read access to Alice.
She may also send him the write key of Alice, allowing George to update
Alice data illegally, but in good faith. Indeed, even if Betty is the owner

5.2. ACCESS CONTROL 85

of Alice, she has to add George as a reader/writer before sending data or
keys to him. We would like to detect this kind of illegal behaviors as soon
as some illegal knowledge reaches an honest peer.

We briefly discuss two issues related to (i) who verifies and (ii) how.
First consider who performs the verification. One may require that anyone
can verify whether some data is transmitted to someone legally or whether
some credential was used legally. This clearly imposes that access rights
are fully disclosed. One can alternatively rely on some authority to perform
the verification. This authority should know all the access rights and all
peers should report all their activity to it. This notion of authority (even if
supported in a distributed manner) is very far from a social network spirit.
One may impose that the exchange of any information about principal p be
reported to ptrusted (an “avatar” of p or a system that p trusts for verifica-
tion). Lastly, one can rely on each principal to verify how information in
this principal is handled.

We now consider how verification may be performed. One can request
systematic checking or reporting. One can then detect immediately any
illegal fact or instruction. One can alternatively check or report either
randomly or when suspecting an illegal operation. Because we keep prove-
nance information, a principal who wants to check a particular statement
can trace “backward” its origin and find who behaved illegally.

Access rights delegation

It is critical for verification to be able to compute who has a given access
right on a particular principal. Consider for instance the question who
has write access to Alice’s principal. Three kinds of principals have to be
considered: (i) whoever is given explicitly write access to her principal;
(ii) whoever has higher access right (here own) on Alice; and (iii) whoever
owns a principal who has write access to Alice, and this recursively. Note
that answering such questions is also typically important in practice. For
instance, Alice may want to ask the query “who can see my profile?” Note
that the transfer of rights via ownerships of (iii) leads to some recursive
query processing. The fact that access rights are somewhat not clearly
“visible” may be seen as a weakness in terms of data control. One may want
to impose the primitive-only rule that states that access rights are granted
only to primitive principals, i.e., principals who are forbidden to be owned
by someone else. Any attempt to claim that one owns a primitive principal
is then viewed as an illegal statement. A natural case of primitive principals
are users. One can consider relaxation of the primitive-only rule to allow
primitive principals to have avatars, e.g., Alice-iPhone. The primitive-only

86 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

rules clearly simplify verification.

5.2.4 Physical implementation

In WebdamExchange , a specific access-control physical implementation
is fully defined by specifying (i) how to use a secret to authenticate a
statement and access to protected data (ii) how to use a hint to check the
authentication and protect a statement. To illustrate, we next show how two
very different and standard such implementations, one using cryptography
and the second using login/password, can be used in our model based on
hints and secrets.

RSA cryptography

For this implementation, the credentials are a pair of asymmetric RSA cryp-
tographic keys. The identity of a principal is defined by an immutable own
hint (an RSA public key). We also use in the system a login for readability.
The corresponding secret (an RSA private key) is used for authentication. A
user typically finds the identity that actually corresponds to the real princi-
pal, he wants to communicate with, by external means (e.g., by exchanging
it by mail) or via other principals, he already trusts. This problem of linking
identity to real entities is not specific to our model. Having the identity of a
principal is equivalent to having its own hint. Since the key is immutable,
this hint never changes.

The creation of a hint/secret pair results in generating an RSA public
key to be used as the hint and an RSA private key as the secret. From
an implementation point of view, the RSA keys are part of the statement
serialization. The system uses such keys for authentication and protection.
For authentication, the data is signed using the private key. Everyone can
verify the signature with the public key. For example, suppose given the
following facts:

Bob requests get climbingSite@Roc14&cuvier to Alice-iPhone;
Alice-iPhone says Alice-iPhone states

climbingSite@Roc14={“id”=“&cuvier”, ...}
requester Alice at t to Bob;

The instruction is signed with Bob’s own private RSA key while the exter-
nal knowledge is signed with the own private RSA key of Alice-iPhone.
The internal statement is signed with the write public RSA key of Roc14.
Symmetrically, one can use the credentials to protect the data and enforce
read access control. For example,

5.2. ACCESS CONTROL 87

climbingSite@Roc14={...} encrypted for reader@Roc14

means that the content of the fact has been encrypted using the read RSA
key of Roc14. More precisely, the content is encrypted with a fresh DES
symmetric key, that is in turn encrypted with the read RSA public key of
Roc14. So only someone with the private key will be able to decrypt the
data.

When access rights are revoked, the signed or encrypted data become
obsolete. New keys (i.e., new hint and secret) have to be generated and the
new data constructed, distributed and substituted to previous data.

On the Web

We now discuss how to enforce access control using totally different kinds
of credentials. More precisely, we consider the access control enforced
using URL and login/password credentials, that are typical on the Web.

For login and password credentials, one needs the notion of author-
ity. It is a peer that is able to check the password for a given login. For
Websites, we define the identity of these peers by their URL. We consider
that any data received from a connection to that URL is authenticated by
the peer. It means that we trust the DNS system to route properly our
connections. Some wrapping software is used to have the Website behave
as a WebdamExchange peer with typically degraded functionalities. For
instance, the provenance information may not be recorded on the Website.
Recent hacks of DNS servers have shown limitations, so one may prefer
to only trust Websites using Web certificates. Since Web certificates are
usually based on RSA cryptography, one may use the RSA implementation
previously presented to handle them.

Many Websites have no interesting access control, i.e., anyone can read
the data and no one can update it. On Web 1.0 Website, the edition (and
some time read access) of data may nevertheless be controlled using a
login/password authentication, for example base on a .htaccess file. This is
generalized with Web2.0. With social network Websites, there is now an
important trend towards even more complicated access control, but still
based on login/password authentication. We model this authentication
by creating a virtual principal login@server, that the user and the server
owns. The (own) secret of this principal is its password. Since a password is
symmetric, there is no corresponding hint. So this secret is directly used by
the user to authenticate its instructions on this virtual principal, by adding
the secret to the serialization of the fact. Of course, this fact has to be kept
by trusted peers only (in fact, it should be kept only by owner of the virtual

88 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

principal). The data of the virtual principal is authenticated by the server,
or more precisely by the fact that they are found on the Website.

The most recent systems, such as OpenId or Facebook, also use token-
based three-party authentication. The user is redirected by the application
to the service, and requests a first token for this application using its cre-
dentials (login/password). Then, the users is redirected by the service to
the application site. The application can then use the first token to request
the authentication token to the service using its credentials (an id and a
long chain of bits, which is nothing else than a password). A complete
description of this scheme in WebdamExchange would be an interesting
topic of research. For now, we only consider that the token is a kind of
password for the user.

Remark 5.5 (More on URL-based authentication). We quickly introduced
URL-based authentication. It has other interesting properties. When
using URL-based authentication, the identity of a principal is defined
using a (folder) URL. Each fact in this folder (or more precisely each
page or file) is by definition authenticated by this particular principal.
With that method, a natural way of delegating ownership is inclusion
of URLs. For example, if the URL of Alice (as an user of Facebook) is
http://facebook.com/Alice/ (she is hosted by http://facebook.com/),
then we will consider that http://facebook.com/ owns Alice, since it usu-
ally has full access to Alice URL content. This kind of delegation is com-
pleted by redirection. If Alice uses an HTTP redirect in her folder to another
URL, say http://Alice.com/, then we will consider that http://Alice.com/
has a write delegation for Alice. Both types of delegation cannot express
more than one delegations. So one may use an hybrid model of Web-
damExchange , where the implicit data (such as URL or redirection) is
completed by regular statements found in the folder, for example access
control statements.

5.3 Distribution

5.3.1 Informal presentation

In this section, we consider distribution. As we did for access control,
we illustrate that a wide range of standard situations found on the Web,
from very simple to very sophisticated, can be handled with the model.
Distribution is captured by a particular collection statement, namely where.
These statements specify on which peers some particular data may be

5.3. DISTRIBUTION 89

found. For example, to specify that the list of members of the group Roc14
may be found in the Facebook group of Roc14, one can use the fact:

Alice-iPhone states
where@Roc14:{member} +=http://facebook.com/Roc14
requester Alice at t

The URL http://facebook.com/Roc14 is understood by the “wrapper” of Face-
book as a denotation for that Facebook group. Localization collections
are updated as other collections by appending or removing hosts. The
language introduces new rights for controlling who can decide where such
data may be kept and found, namely, readWhere and writeWhere rights.

The primary use of localization statements is to enable the localization
of a principal’s data. For instance, Bob typically has some basic information
about Alice that states where to look for information about her, perhaps
a Web page where she puts some basic information. Starting from that,
Bob is then able to learn that she keeps her list of friends on Facebook, her
pictures on Picasa with a backup on her laptop, her music on her TV box at
home with a copy on Bob’s laptop, etc. So, just with an entry point (i.e., a
kind of extended vCard, or electronic business card) Bob can find all the
information he needs from her (and he has access to).

Again, the main advantage of our approach is that the system can handle
the heterogeneity of the Web. In the same manner that hint/secret enabled
using data protected by different access control protocols, the logical form of
localization information abstracts away various communication protocols.

5.3.2 Formal model

Given two physical principals performer and host, a principal req and a rela-
tion rel@owner, a ground localization fact, or where-statement is an expression
of one of the form:

performer states where@owner:{rel}+=host requester req at time
performer states where@owner:{rel}-=host requester req at time

The statements mean that the relation rel (usually a document or a collection
id) of the principal owner is stored (or not stored anymore) on the principal
host. The where-statement are clearly special kinds of coll-statements. In
particular, they are implicitly persistent. The main difference is that one
needs the writeWhere right to perform them and the readWhere to read them.
The instructions corresponding to the statements are straightforward.

90 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

We also introduce a special list of keywords, allStatements, allDocuments,
allCollections that can be used as relation names to localize a bunch of
statements.

To localize data, the policies usually use the following kind of rule:

(at local)
local says $f to $server :-

$f[@local]//_ requests get $docId@$docOwner to _
[@local]// states where@$docOwner{$docId} += $server requester _ at _

Intuitively, the rule specifies that if an instruction is received locally (the first
fact of the rule), one should find where it is located (using the second fact of
the rule) and contact the corresponding server (using the says constructor).
Of course, the rules for distribution interact with the rules for access control.
When an instruction is received at the local peer, the above rule is used
to obtain the data from a server that has them. Then the access control
rule is used to determine whether the data can be sent to this particular
client. Observe that the localization information may be already available
at the peer or that the local peer may have to use other rules to obtain it,
depending on the policies of the principal. Observe also that the rules may
typically be more complex, e.g., one might want to check that the client
actually has access to the data before trying to obtain it or choose between
different replicas of the same data.

The where-statements do not really change the interpretation of Web-
damExchange . It is another meta-data used for data management, that can
be used in rules, but which does not change the semantics of the model or
the other rules.

5.3.3 Physical implementation

The physical implementation of the direct communication protocols are
abstracted away by the localization statements, similarly than for access
control. Most of the communication we model is between WebdamEx-
change peers, using a special Web-service. But WebdamExchange peers
can also communicate with others principals using wrappers (e.g., for Web
peers) or avatar interfaces. When a message is sent to a principal, the peer
chooses the appropriate means of sending the data.

The wrapper for standard Websites is based on HTTP protocol. The
pages of the Website are considered as documents. The localization state-
ments specify the root URL as host for all the data of a given Website. The
instructions to the Website principal are translated by the wrapper as GET

5.4. FOUR POLICIES OF INTERESTS 91

(for query instruction), POST (for write instructions), PUT (for append
instructions) and REMOVE (for remove instructions) HTTP requests. Re-
turning to our original example, i.e., Alice’s iPhone searching for pictures
of rock-climbing outings belonging to members of Roc14, the first phase
is to find where they store these pictures and to correctly interact with the
Websites that stores this pictures, such as Picasa or Flickr. Of course, one
may build specific wrappers for special Websites. For example, one may
build special wrappers for Flickr, Picasa and Facebook. For blogs, one can
also consider the RSS feed of a blog as a collection of documents.

There is a large number of others communication protocols (SSH, FTP,
POP, or specific protocols such as the one of PastryDHT) that can be han-
dled similarly. In particular, we discuss in the next section how to make
localization more dynamic, for example in the case of gossiping or struc-
tured P2P.

5.4 Four policies of interests

We further illustrate the WebdamExchange model by discussing how it
can support four very different scenarios of data management. These four
scenarios are graphically represented in Figure 5.2. Information on trusted
peers is represented in white and encrypted data on untrusted ones in grey.
The data of principal P1 is marked in bold. With @home and @host policies,
all its data is in a single place. With @friend and @host-DHT, it is possibly
replicated on several peers.

5.4.1 @home

In the @home scenario, each principal, say Alice, is owned by a single
trusted peer, say Alice-host, that hosts the information about her data and
access rights. Only the hosting peer can provide data and perform updates
for the principal. At the limit of @home, one finds systems where a single
peer is “trusted” by everyone and manages the information of everyone
(such as Facebook). Encryption is not needed because it is assumed that
the host recognizes the principal, which is typically realized using some
login procedure then secured communications, e.g., via HTTPS.

For each principal for which it stores information, the knowledge base
of the host includes particular statements. For example, Alice may choose
to use the host Alice-host, for example a social networking site. This system
has the secrets of Alice and all her information. In particular, Alice-host has
the statements:

92 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

PC-P4

P4

PC-P5

P5

Trusted Server

P3P2

P1

Netw ork

@hom e

U ntrusted Server

Netw ork

@host

P1 P2 P3 P4

PC-P1

P1
P2

P3

PC-P4

P1
P4

PC-P3

P3
P1

PC-P2

P1 P2

@friend

D HT-Peer1

Netw ork

@host-dht

D HT-Peer2 D HT-Peer3

P1
P1

P1

Figure 5.2: Four distribution scenarios

(0) Alice-host states ownSecret@Alice requester Alice at t
(0’) Alice-host states ownHint@Alice requester Alice at t
(0”) Alice-host states where@Alice:{allStatements} += Alice-host

requester Alice at t
(0”’) Alice-host states owner@Alice +=Alice-host requester Alice at t

The first two statements record the identity of Alice, the third declares that
Alice stores her data on Alice-host and the fourth that Alice fully trusts
Alice-host with her data. (The real Alice may distinguish between this
principal Alice and others for information she holds elsewhere, so Alice
here should be interpreted as Alice in Alice-host.) Alice-host also stores
statements of the form:

(1) Alice-host states writer@Alice += Bob requester Alice at t

that grant access rights to friends of Alice (so that, for example, Bob can
updates data of Alice or George can read her data).

Now, Alice-host stores the data statement of Alice, for example of the
form

(2) Alice-host states profile@Alice := [...] requester Bob at t

for some document profile of Alice that has been updated by Bob. To update
the data, principals such as Alice or Bob send update instructions to the

5.4. FOUR POLICIES OF INTERESTS 93

principal, that check they are in the access control list before performing
the update, and similarly for get instructions.

The host also stores external localization information for its hosted
principals. For instance, if Alice “knows” Bob, then Alice-host stores the
“business card” of Bob, with the principal identity and hosting peer. This
business card is in fact the hint and localization statements:

(3) BobHost says Bob-host states ownHint@Bob requester Bob at t to Alice-host
(3’) Bob-host says Bob-host states where@Bob:{allStatements}+= Bob-host

requester Bob at t to Alice-host

For example, Alice-host stores that all statements of Bob can be found
on Bob-host, e.g., the personal computer of Bob. From that, if a user of
Alice-host asks any instruction on data of Bob, Alice-host forwards the
instruction to Bob’s computer.

5.4.2 @friend

The @friend scenario is an extension of the previous one, based on the
fact that people prefer to interact with friends only and are more willing
to store data they care about on their machine. Like in @home, a user of
@friend has a primary host that handles her information. But she also
replicates her data on the hosts of trusted friends. For example, Alice
will both store data on his personal computer and on the computer of
her friend Bob. Each host now stores both knowledge for the principal it
hosts and for the friends of this principal. The external knowledge may be
organized as a cache, with a caching strategy such as Least-Recently-Used.
Updates to the information of a principal have to be propagated to the
different hosts that maintain this information. The host of a principal is the
primary copy for its statements. It appears in its localization statements
and is in charge of propagating corresponding updates. For instance, the
other peers only remember that the computer of Alice is a primary copy
of any of her document and they send any corresponding update to it.
To retrieve a document d@q, a peer p first looks locally, then asks some
friends in a gossip manner. The specification of such a basic behavior is
easy using our language. To answer a particular query using gossiping,
it is important to choose properly who to ask: who is more likely to have
the information, to be the specialist, to be trustworthy, etc. By making
localization a component of reasoning for answering queries, we simplify

94 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

the task. Some kind of routing data structure may also be used to increase
efficiency, by introducing more precise localization statements if necessary.

The main improvement of that method is that the availability of the
data is better, even if some hosts temporarily leave the network, e.g., be-
cause the host is a smartphone and lost data connection. Clearly, to serve
an instruction, a host always has to verify that the requester has the cor-
responding right (following the sound-rule spirit). Observe that @friend
uses no encryption since everything is founded on trust. We now turn to
scenarios where host are not trusted.

5.4.3 @host

In @host, one particular untrusted peer, called host, serves all the infor-
mation. So all information is fully available but encryption is used to
protect against misuses of the system. Observe that this policy is very well
adapted to the RSA access control implementation and does not really fit
with symmetric implementation.

Each principal, e.g., Alice, publishes in host:

(0) Alice says (Alice states ownHint@Alice requester Alice at t) to host
(0’) Alice says (Alice states writeHint@Alice requester Alice at t) to host
(0”) Alice says (Alice states readHint@Alice requester Alice at t) to host
(0”’) Alice says (Alice states Alice where@Alice:{allDocuments}+= host

requester Alice at) to host

so that Alice is now publicly known. (Observe that none of this data is
encrypted). To give read right to Bob, Alice publishes in host the following
statement:

(1) Alice says (Alice states reader@Alice += Bob requesterAlice at t) to host
(1’) Alice says (Alice states readSecret@Alice encrypted for owners of Bob

requesterAlice at t) to host

The first statement is used to help the host filter instructions. It is not
really mandatory, but it makes the global system more efficient. The second
statement provides to Bob, the read key of Alice, that he needs to read
documents published by Alice in host. Note that the secret is encrypted
so that only Bob has access to it. Now, some peer Sue (assuming proper
credentials) publishes data about Alice in host with statements of the form:

(2) Sue says (Sue states profile@Alice =
([data] encrypted for readers of Alice)) to host

5.4. FOUR POLICIES OF INTERESTS 95

Before accepting such a statement, the host checks that Sue is indeed a
writer of Alice, and check that the signature of the statement is done using
the write hint of Alice. The first step is not mandatory, but increases the
efficiency of the system since checking a signature is relatively time con-
suming. The fact is encrypted such as only readers of Alice are able to read
the actual data. Now, Bob can obtain the value of profile@Alice from host,
by sending the corresponding instruction. It will get the fact

(3) host says Sue says (Sue states
profile@Alice = ([data] encrypted for readers of Alice)) to host to Bob

It can decrypt it using the read secret of Alice and verify its validity by
checking the own signature of host and Sue and the write signature of the
statement. Similar techniques are used for delegating other rights. Observe
that this scheme only protects the secrecy of data. One could consider more
complicated schemes for protecting the secrecy of meta-data as well.

Main issues with @host are availability and performance. In particular,
if host is down, all the information becomes unavailable. Note also that
a malevolent host cannot forge data but may perform denials of services
by returning fail() for some data it has, and denials of updates as well by
sending old version of the data instead of the most recent one. Indeed,
Alice has to suppose that the peer is willing to serve her data, even if she
does not trust it to read and write it. We explore next some solutions based
on replication to avoid these limitations.

5.4.4 @host-DHT

To “fix” issues raised by the @host system, we use replication. More pre-
cisely, we propose a variant of @host, called @host-DHT, that is based
on the DHT technology (See, e.g., [TS04]). An interesting work based on
declarative specification of a DHT has been proposed in [LCH+05]. One
may want to similarly specify it using WebdamLog . We are more interested
in using standard DHT such as Pastry. Then, one can naturally define the
where-statements using standard DHT functions as in:

(at DHT)
DHT states where@$owner:{$rel} += $host requester DHT at t :-

[@DHT]// states relation@$owner+={“relId”:$rel},
hash@DHT($rel@$owner, $host)

The rule specifies that the peer DHT adds $host to the list of hosts of
the relation $rel of $owner if hash@DHT($rel@$owner, $host) holds. The

96 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

evaluation of the hash@DHT predicate is supported using a standard Web-
service of the DHT, i.e., the classical localization service of the DHT that
takes a key as input and returns the address of a peer that has the desired
information.

@host-DHT is exactly used as @host except that the information is now
distributed among the DHT peers and replicated α times. Each statement is
published in the DHT. Observe that we are using the DHT peers as stores
and not only as indexes. Like for @host, the DHT peers serve instructions
that are properly authenticated. For instance, the document profile@Alice
is published by sending the following statements to the corresponding
peers, for i in [1..α]:

(0DHT) Alice says (Alice states ownHint@Alice requesterAlice at t) to peeri,

where peeri is determined using the localization information provided by
the DHT discussed earlier. The parameter α is used to manage replication.

We have an extra cost due to replication. In particular, when one revokes
some read right, one has to select a new read secret and republish each replica
of each document of the principal. We will see next in more details how
replication allows avoiding denial of services, relying on the fact that a
majority of the DHT peers are honest. This leads to substantially more
complicated schemes that those discussed so far. However, it is interesting
to note that we can still support these more complicated schemes with our
model, at the price of slightly more complicated rules (not shown here).

The first idea is to send each instruction (query or update) to all the
hosting peers in charge of the corresponding statement. Note that it is
easy to obtain the set of hosting peers, using the localization statements.
Consider queries, the same authentication mechanism as for @DHT allows
verifying all the answers we get. Note that there may be conflicts in these
answers. With respect to update, note that the peers of the DHT are usually
not able to factify statements. So, if a principal can not factify the fact
itself, it publishes the corresponding instruction on the DHT (with the
data properly encrypted) and waits for some principal to perform it. The
requirement to send all statements or instructions to all peers in charge may
be computationally too demanding for many applications. It multiplies by
α (the replication factor) the number of these facts. Typically, one can use
less, say α′ << α, if the first peers who are asked return the same answer.

Another equivalent counter measure that can easily be modeled using
rules and provenance is to accept only messages that have gone through
a certain number of peers in charge of storing this relation. An honest
peer compares the content of the incoming message (which contains the

5.4. FOUR POLICIES OF INTERESTS 97

instruction fact and the corresponding fact after the first peer of the chain)
to the data it stores and transmit valid messages to another peer which is
not in the chain of message yet, until α′ peers has been encountered. If the
peers in charge of a relation are randomly chosen, for example using a hash
function as in a DHT, one can give a precise bound on the probability for
the adversary to succeed in a denial of update. It has also the interesting
property of helping peers of the DHT to synchronize. But the overhead
may still be considered too high.

We consider how this can be avoided using two different mechanisms,
time-to-live, very adapted to document updates, and consensus, better tai-
lored to collection updates. Time-to-live relies on the temporal information
that is managed in the model and on some basic comparison functions.
Consensus requires aggregate functions to count the number of peers who
are in agreement and check whether the quorum is reached.

Time-to-live

This method uses an additional kind of meta-data that is provided by the
performer of some fact, named time-to-live (TTL). Intuitively, the values in
this field indicates how long the statement is considered valid starting from
the time it was performed. As soon as the TTL has expired, this piece of
information is considered stale. So, the data has to be republished regularly,
either in push mode or in pull mode when someone detects that the TTL of
some requested information expired.

TTL can be understood as a signed right to distribute some information
during a certain period of time but not as a proof of validity of this infor-
mation during all that time. For instance, Alice can give George her email
and claim it is valid for a month. Nothing prevents her from changing it in
the meantime. Still George is able to exhibit the old email and prove that
it has been legitimately acquired. George can choose a trade-off between
freshness and query load, since he can always ask Alice for the freshest
information.

The notion of TTL suffers from a common issue in distributed process-
ing: the absence of a global clock. The TTL is a reference to a starting
point of time on some machine and to some time interval on that specific
machine. It is not a guarantee of global truth. Although TTL may be used
also for collections by considering snapshots of the collection, this is not
well adapted to rapidly changing large collections because for each new
item in the collection, we have to republish the entire collection. We next
describe a complementary techniques that is better adapted.

98 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

Consensus

Assuming that the DHT peers are in majority honest, one can have a
certification of validity for a snapshot of a collection, by consensus of peers.
More precisely, we use group authentication. Intuitively, the peers in charge
of the collection engage in a consensus phase as follows. One of them,
randomly chosen each time (the leader) contacts the other peers in charge of
a particular information (the partners) and initiates a consensus phase. The
leader sends to the partners the list of updates to the collection since the
last consensus, say γ. Each replies with a list of updates to the collection
that complements γ. The leader builds a consolidated list of updates. Note
that, since the data is encrypted, we have to assume that one still sees in
each collection update, the Id of the collection, the nature of the operation
and the time of the update. This consolidated list of updates is sent to
each partner. If the partner agrees with it (it includes the updates that
this particular partner submitted), the partner signs this list and sends the
signature to the leader with a TTL annotation. If the leader has enough
signatures (say more than a fixed threshold agreed upon in advance), the
leader sends to each partner the list of signatures with a TTL and each
partner commits the new consensus snapshot of the collection. Observe
that a leader who correctly implements the protocol gets signatures from
all the honest peers. Otherwise the consensus phase fails, the honest peers
detect the failure, and one initiates a new round of consensus.

Now, each time a principal asks for the content of a collection, it is given
the consolidated list of updates and the corresponding signatures. The peer
also send to it the update statements which are not in the consolidated list.
This method guarantees that after enough time, the updates are committed,
meaning that the update are in all the consolidated list that the principals
would accept. Note that this even works if update instructions are also sent
to only some peers (and not all) in charge, at the cost of some delay in the
propagation of updates. The update is only seen globally after the next
successful round of consensus.

Remark 5.6. A peer in charge of a collection already has the collection
updates (if update instructions are sent to all). So instead of exchanging
information they already have, one can use Bloom filters to compare sets
of update signatures. It then suffices to exchange deltas. It is interesting
to revisit the issue of signing the consolidated list of updates to reach the
same snapshot of the collection. To do that, one can build the list of updates
ordered by append time and sign this list. Alternatively, one can think of
the collection as a list of separate append/remove operations ordered by
the time of the operation. Signing each one separately would again possibly

5.5. CONCLUSION 99

lead to update denial. On the other hand, if one signs each together with its
index in the collection and the size of the collection, this prevents update
denial. The advantage is that one provides to users the delta with what they
already know and not resend the entire collection.

To conclude this section, let us recall that our main goal here was not to
propose new schemes for managing information in a distributed environ-
ment but to illustrate how to use our model to support a wide variety of
such schemes. In this section, we delved into rather complex techniques
such as TTL and consensus. Both the information these techniques need to
record (TTL or required size of consensus) as well as the information the
peers have to exchange can be seen as WebdamExchange knowledge.

5.5 Conclusion

We presented a model for Web data management with access control and
distribution that captures a variety of protocols found on the Web. This
illustrates the versatility of WebdamExchange to describe very different
kinds of systems. This unique setting allows expressing very different secu-
rity policies, very different distribution policies, as well as other essential
aspects for distributed data management ignored in this paper, such as
translating from the ontology of one peer to that of another.

The WebdamExchange language is based on an extension of Web-
damLog . The goal is to be able to reason about such programs or at
least with portions of them. Indeed, proving general properties of datalog
programs is in general undecidable but there are cases such as monadic
or non-recursive programs where some reasoning is feasible. Reasoning
is very useful for a number of reasons, and open interesting directions for
future work:

• One can optimize tasks in particular by avoiding useless commu-
nications. An open issue is whether standard datalog optimization
techniques are adapted to such a setting or whether there is a need
for new ones.

• One may be able to prove formal properties of policies. We discussed
example of interesting properties of policies, such as soundness, com-
pleteness and consistency. We think that WebdamExchange provides a
sound foundation for analyzing these properties

• Finally, one can reason on the programs of physical principals and
some traces of a run of the system, to understand what happened,

100 CHAPTER 5. A DATA MODEL FOR WEB DATA EXCHANGES

and possibly diagnose why some instructions failed or who violated
some access control law.

We also need to understand how the rules can be specified for a particu-
lar participant. A human participant is very likely to be reluctant to writing
rules. So, we have to define ways of selecting some from existing libraries
and perhaps customizing them.

Chapter 6

The WebdamExchange System

Part of this work has been carried out in collaboration with Serge Abiteboul, Neoklis
Polyzotis, Amélie Marian, Émilien Antoine and Kristian Lyngbaek and presented
in [AGP11] and [AGL+11].

We implemented the WebdamExchange system as a proof of concept of
the model. The system fully supports the WebdamExchange data model,
in an XML format. The system also uses three different kinds of credentials
(RSA, URL-based, login/password). The WebdamExchange system is
based on a core of WebdamExchange peers, that can interact with Web
peers and iOS peers. Special kinds of Web peers such as blogs, Facebook
and PastryDHT are supported. Finally, we demonstrated a social network
application on top of the WebdamExchange system [AGL+11], based on
the motivating example.

6.1 Architecture

6.1.1 System Architecture

The system is currently composed of three kinds of peers:

• the rich peers are the main peers of the system, and have most of the
advanced functionnalities of the model: they manage all different
kinds of credentials and communication protocols with other peers.

• the client peers are virtual peers of the system, that communicate
with rich peers using their avatar interface. The relation is assymetric,
since clients can reach peers but peers cannot reach clients. A client is
supposed to have few computation capabilities or storage capacities.
It can be for example a Web interface or an iPhone.

101

102 CHAPTER 6. THE WEBDAMEXCHANGE SYSTEM

• the poor peers are some servers of the Internet with degraded Web-
damExchange functionnalities, such as standard Websites or Pastry
DHT peers. The rich peers communicates with them via wrappers,
that translate the various protocols and data of poor peers in the
WebdamExchange model.

The data of the system follow the WebdamExchange model. We use an
XML serialization of this model with extensions concerning authentication
and encryption, discussed next. At the time this thesis is written, the system
is not based on a WebdamLog system. The WebdamLog development is
still in an early stage. So the system does not support exchange of rules
and most of the behavior is hard-coded. Nevertheless, the system has been
designed to inter-operate nicely with the WebdamLog system, as soon as
this one will reach a mature level of development.

6.1.2 Data model

The data model of the WebdamExchange system is a direct translation in
XML of the WebdamExchange model. We use Java XML Binding (JAXB)
technology to construct a direct equivalence between Java classes, used fo
computation, and the XML representation, used for communication and
storage. It would be tedious to discuss the precise implementation of the
data model. Indeed, the pdf documentation of the data model generated
automatically by ❞♦①②❣❡♥ from our Java code is more than 300 pages long!
One can note the use of:

facts These capture acknowledgements, various kinds of statements and
instructions, and external knowledge. Basic data is represented as
String or as XML. The unstructured documents such as pictures are
represented as byte streams. We also have different kinds of contents
for secrets and hints, depending of the type of credentials.

principals We support different kinds of principals (for different kinds of
peers), with a complex interface inheritance to capture the different
facets of principals: computation power, kind of credentials, kind of
communication protocol.

annotation The annotations are data that can be added to any kind of facts
to capture authentication. There are different kinds of annotation
contents depending of the kind of credentials. More generally than
in the standard data model, we authorize an unbounded number of
annotations for the same fact (using for example different principals

6.1. ARCHITECTURE 103

or credentials). This is useful in complex scenarios. For example,
suppose that a data, authenticated with a password, has to be send
to an untrusted peer. We have to remove the authentication since it
contains the password, that should not be disclosed to the untrusted
peer. But a trusted intermediary principal may guarantee the validity
of internal facts via an RSA signature. If the final target of the fact
trusts the intermediary peer, then it can trust the fact without getting
the initial password-based authentication.

protection The protections are encrypted data that are used at the place of
regular data. There are different kinds of protection contents depend-
ing of the kind of credentials. We authorize an unbounded number of
protection in the same fact, for example for different principals.

6.1.3 Rich Peer Architecture

The rich peer is implemented in Java and includes:

• a Java representation of the data model, annotated using XML Binding
technology to facilitate serialization and deserialization in XML.

• a set of tool classes, for RSA and DES cryptography, for special kinds
of data representations such as XML or JSON, for accessing Websites
such as Blogs and Facebook and for interacting with Pastry API.

• four interacting modules, namely, Communication, Security, Manager
and Storage that are described in Section 6.2.

The peers have a communication module, with a Web-service interface,
to communicate with other rich peers. They use special communication
module called avatars to communicate with clients and wrappers to com-
municate with poor peers. The messages coming from the communication
module go through a security module. It is the responsibility of that mod-
ule to verify the authentication of incoming data (e.g., by checking the
RSA signatures) and unprotects incoming data (e.g., by decrypting their
content). It is also its responsibility to authenticate outgoing data (e.g., by
signing them) and protect them if requested (by encrypting their content).
The peers use RSA cryptography for authentication and protection of their
data and use special security modules to manage other kinds of credentials.

All the reasoning is performed by the manager module that is respon-
sible for applying access control and distribution policies. In general, the
policy of the manager determines (among other responsabilities) whether

104 CHAPTER 6. THE WEBDAMEXCHANGE SYSTEM

Figure 6.1: WebdamExchange Peer Architecture

an instruction is accepted or not and whether a fact is encrypted or not.
The facts are stored in an XML database.

The modules of the rich peer are described in more details in Section 6.2.

6.1.4 iOS Architecture

We implemented a client peer running on the Apple iPhone (simarly iPad or
other iOS devices), in Xcode. The policy of this peer is extremly restricted,
since it relies on an avatar interface provided by a rich peer, that is executing
most of the complex tasks. This development was meant to illustrate two
aspects. First, it shows how to integrate data from a personal device into
the global (distributed) information system, when the device is often but
not always available on the network. In particular, we consider that the
device provides a data store, both from the data of the user accessible on the
iPhone and of the data stored by the application in the SQL-like memory of
the iPhone. Second, it illustrates how a peer may need to delegate some of
its work to other peers.

We also wanted to show how an iPhone user can manage his own secret
data or several iPhone users interact privately, without having to trust
any other machine or system than their personal devices. However, we
encoutered numerous problems with cryptography and key management
on the iPhone, restricting largely the autonomy of the peer. These problems

6.2. PEER MODULES 105

seem to be particular to iOS. A smartphone with Android or Windows
operating systems may not raise such issues.

6.2 Peer Modules

In this section, we describe the main modules of a rich peer.

6.2.1 Communication

The Communication module handles communications with other peers
through (SSL-secured) Web-services. This module also manages commu-
nication with poor peers such as standard HTTP server. In particular, it
includes wrappers to legacy data, e.g., a wrapper to the Facebook graph
API. The communication module is composed of plug-ins for different
kinds of communications, and a routage layer, that chooses the correct
module to activate for outgoing communications and transmit outcoming
communications to the security module.

Web-service

The first plug-in of the communication module is a standard Web-service to
communicate with other rich peers. Communication is direct and symmet-
rical (i.e., any peer can contact any other peer it knows about). It provides
one operation :

❊①t❑♥♦✇ r❡❝❡✐✈❡❋r♦♠P❡❡r✭❊①t❑♥♦✇ ❡①t✮

This operation allows another peer to send an external knowledge to the
peer, which then replies with another external knowledge. Since the whole
process is done using the Web-service and the standard XML serialization,
one can easily interoperate with our system using another programming
language or operating system, thereby equiping it with the flexibility that
is essential for the kinds of applications we have in mind. We also re-
strict the Web-service to this simple form to avoid painfull development
of client interface, which may not be automatized in every programming
languages. The Web-service is build in Java using Java Web-service anno-
tations. It is currently deployed on Apache Tomcat 6.0.29, using the Java
Machine 1.6.0 (18-b18) of Sun Microsystems, on a Linux machine of INRIA
(http://cendrillon.saclay.inria.fr:8090/WebdamExchange/).

106 CHAPTER 6. THE WEBDAMEXCHANGE SYSTEM

Avatar

A second plug-in of the communication module is a more complex Web-
service to communicate with an avatar hosted on the peer. It gives to a
virtual principal the means to create a transient simple peer with nonpersis-
tent storage, communicating directly with the peer the principal is logged
on. From the WebdamExchange system point of view, the avatar behaves
as if the user was actually physically participating using the user’s own
private key. The interface of the Web-service provides operations to:

• create an avatar given some own RSA credentials. The avatar returns
a token that is used for further authentication. In our implementation
the credentials of the principal are not transmitted to the hosting
peer. Note that it would nonetheless be unsafe to use an untrusted
peer to host an avatar, since one can not guarantee that the peer
implementation is the one we developed.

• send messages to the peer. The main functionnality of the avatar is
to provide the RSA cryptography support for the virtual principal
(signature and encryption). In particular, the avatar takes care of
signatures of the principal, so the instructions and statements can be
sent unsigned. After this local step, the incoming facts are transmitted
to the hosting peer, which can process the data as if the data came
from an external rich peer.

• to get the messages that have been stored by the peer on the avatar.
Indeed, the communication is not bidirectionnal, since the peer can
not reach the client. So the avatar stores the data sent by the peer to
the client and the client has to look-up for new messages regularly.

We also built a simple client, that provides locally the interface of the
avatar’s Web-service, and a more sophisticated one, that abstracts away
the Web-service interface by providing one method for each kind of state-
ments and instructions, that takes care of building the data, sending it and
checking the result. In particular, it hides the authentication part and the
verification of signatures. This client is used for the communications of our
Web GUI with the rest of the system. We implemented a similar version of
the client for the iPhone.

Wrappers

The other plug-ins of the communication are called wrappers. They are
used to initiate communications and fetch data from servers which are not

6.2. PEER MODULES 107

real WebdamExchange peers, such as standard Websites. We have devel-
opped a wrapper for Websites, with or without login/password htaccess
authentication. This wrapper considers a site as a principal authenticated
by its URL and a page of the site both as a document, identified by the local
part of its URL, and as a collection of hypertex references (the references
found on anchor tags). We also have a special wrapper for blogs (that can
interpret an RSS feed as a natural collection).

We also constructed a wrapper for Facebook. This wrapper manages
the three-partites authentication scheme to get a token, that is considered
as the authentication credential of the user. It then interprets the Facebook
graph as documents (for nodes) and collections (for set of edges).

Finally, we constructed a wrapper for the Pastry DHT, that can store
the data on the DHT (using the reference of the statements as a key) and
lookup statements on the ring.

6.2.2 Security

The Security module isolates all the security operations from the rest of
the code, making it easier to control this most sensitive part of the system
e.g., by supporting it in a separate smartcard, following ideas of [AAB+10].
The role of this module is to authenticate and decrypt facts going in and
out of the peer. The basic security module has different plug-ins for the
different kinds of credentials. For each operation on the fact (signature,
verification of signature, encryption, decryption), the fact is routed to the
proper plug-in, that executes the corresponding operation.

For an incoming fact, the module tries to decrypt all the protection and
tries to check all the signatures (adding a boolean tag to the annotation
depending of the result). The manager module then decides from the
boolean what to do with the fact. For an outcoming fact, the module tries to
perform the authentication of any partial annotation. The manager module
adds some annotations with only the references to the credentials to use
for the authentication, and the security module gets these credentials and
decides how to enforce the authentication from it. Following the same idea,
it performs all the partial protections.

The main plug-in is managing the RSA encryption and signature op-
erations. They are enforced using standard protocols and libraries. In
particular, we use SHA1withRSA for signature, RSA/ECB/PKCS1Padding
and DESede for encryption, and PKCS8, x509 and DESede for key serializa-
tion. We use the XML standard for encryption (XML encryption [W3C02b])
and signature (XML signature [W3C08b]) to serialize the corresponding

108 CHAPTER 6. THE WEBDAMEXCHANGE SYSTEM

data.
The security module similarly includes plug-ins for access by login and

password and for authentication based on Web URL and certificates.

6.2.3 Manager

The Manager module is in charge of driving the system policies, i.e., running
the program of the peer. For now, the program is in Java; so it handles
only a finite set of policies. The current version uses class inheritance to
manage properly the different policies and provides already an abstract
level of reasoning. Typically, the manager first checks the provenance
of the data and signatures, and decides to accept the data or not. The
manager may accept extended signatures, from principals which are not
the expected ones with respect to the WebdamExchange model but that
have the corresponding right by delegation. Then the manager stores the
data using the storage module for tracing provenance. If the data is an
instruction, the manager then decides if it has to execute the instruction
or not. If the manager decides to execute the instruction, it checks if it
can perform the fact locally. If it cannot, it tries to find another peer able
to manage the instruction, using localization statements and the manager
transmits the fact to that peer. If a peer sent a message to another peer that
is not accepted (i.e., if the peer receives a negative acknowledgement), it
tries to understand from the acknowledgement the cause of the problem,
and if possible to solve the problem (for example by sending a missing hint
if a signature verification failed).

6.2.4 Storage

The Store module is in charge of local data management, i.e., storing logical
statements and the history of messages. Within this module, storage and
query processing are supported by an embedded native XML database.
We use eXist, that is easy to deploy on a Tomcat server. But this particular
store can easily be substituted with another XML database. The storage
is organized by data references, with a structure giving access to the last
valid consolidated version of the data, a trace of provenance of that data
for further exchanges, and a complete trace of the history of the data and
of the instructions concerning this data.

6.3. DEMONSTRATION 109

6.3 Demonstration

A demonstration of the system has been presented at ICDE [AGL+11]. The
goal was to illustrate the WebdamExchange system by deploying a Social
Network on top of the system. The application was based on the example
presented in Chapter 2. We developed a special GUI to let the user man-
ages rocks and friends. This GUI communicates with the system via the
extended version of the WebdamExchange client. It is mostly designed for
displaying and manipulating the profile information of the user (basic in-
formation about the user and a list of rocks in Fontainebleau), but does not
reason on the data and meta-data. A user can create new rocks, bookmark
rocks of other users and share this data with other users. To simplify the
interface, we provided three levels of access control for each of the data
(public (everyone can read the data), friend (the user was able to choose
friends among the list of user he knew) and private (no one except the user
can see the data)). Except for interface issues, letting the user create more
groups would not be a difficulty. The application also fetchs events from
Facebook and displays it on the profile. This specific development was
mind to illustrate how the WebdamExchange system can nicely interoper-
ate with other systems. We also developed the corresponding version of
the application for the iPhone, also supported by our extended version of
the client. The system was deployed on different peers (server of INRIA,
laptop, iPhone), and the user was able to choose which one he trusted
to store its data, and to find data of friends stored on other peers of the
system.

110 CHAPTER 6. THE WEBDAMEXCHANGE SYSTEM

Chapter 7

Other works

In this chapter, we present some works we participated in, in the context
of distributed or social data management, that do not correspond to the
precise focus of the thesis. We only briefly sum up them and refer the reader
to the corresponding articles for more details.

7.1 Corroboration

The Web provides an interface to access a wide variety of information
and viewpoints from individual Web sources that have different degree of
trustworthiness based on their origin or bias. A most daunting problem
when trying to answer a question is which answer to trust among the
ones reported by different Web sources. This happens not only when no
true answer exists, because of some opinion or context differences, but
also when one or more conflicting answers are reported. Such conflicting
answers can arise from disagreement, outdated information, or simple
errors.

In [GAMS10], we consider each Web source as a separate view over the
data. To accurately answer a question in the presence of conflicting infor-
mation, a natural approach is to simply count the number of occurrences of
each answer, i.e., the number of views reporting each answer. This simple
voting strategy performs well in many scenarios but is easily misguided
in a Web environment where many sources can either malignantly collude
to propagate false information, or naively replicate outdated or wrong
data. The quality of the views should then be taken into account when
corroborating answers to identify the best answer to a query. Without a
priori knowledge on the quality, or trustworthiness, of views, or on the
correctness of answers, we are left with a recursive definition: a correct

111

112 CHAPTER 7. OTHER WORKS

answer is returned by many trusted views and a trustworthy view returns
many correct answers.

We propose fixpoint computation techniques that derive estimates of
the truth value of facts reported by a set of views, as well as estimates
of the quality of the views. We first introduce a probabilistic data model
for corroboration that takes into account the uncertainty associated to
facts reported by the views, as well as the limited coverage of the views.
Our main contribution consists in three algorithms, namely COSINE, 2-
ESTIMATES and 3-ESTIMATES, that estimate the truth values of facts and
the trust in sources. They all refine these estimates iteratively until a
fixpoint is reached. Their particularities are as follows: COSINE is based on
the cosine similarity measure that is popular in Information Retrieval; 2-
ESTIMATES uses two estimators for the truth of facts and the error of views
that are proved to be perfect in some statistical sense; 3-ESTIMATES refines
2-ESTIMATES by also estimating how hard each fact is, i.e., the propensity
of sources to be wrong on this fact.

We presente an experimental evaluation of the algorithms with respect
to two baseline algorithms, VOTING and COUNTING, as well as a method
from the literature, TRUTHFINDER [YHY07], over both synthetic and real-
world data. Our results show that our three algorithms are able to predict
correct truth values better than the baseline algorithms in cases where
views have various degrees of trustworthiness. Furthermore, we show
that in general, 3-ESTIMATES provides better estimates than the other two,
which demonstrates the interest of taking into account the hardness of facts.

7.2 Recommendation

In [AYGSY08], we develop a recommendation system called x.qui.site that
is based on the social tag graph. This graph consists of user and item nodes
connected by tagged edges. We pursue this line of work in [AAYG+10].
Our goal is twofold: extract knowledge from this rich social information
by clustering social data based on affinity (i.e., proximity in the social
network), and provide better query support and navigation on the seman-
tically enriched data. In [AAYG+10], we introduce a general data model
where data of interest is captured by a social tag graph. An essential aspect
of extracting knowledge from a social tag graph is the identification of
groups of users, items and tags. The clustering of these objects is based on a
distance called affinity that defines object proximity. It is used for building
expressive queries in a QBE (query-by-example) style. Of course, there
are important differences between various applications, and due to that,

7.3. ACTIVE XML ARTIFACTS 113

we rely heavily on different clustering distance measures. However, the
thesis of this work is that knowledge extraction, in the applications we are
focusing on, shares such a large number of features that it is worth devel-
oping a general model capturing them and generic knowledge extraction
tools to support it. We also introduce a dynamic tag-based navigation that
relies on the incremental graphical construction of queries, facilitating the
common tasks one would like to perform in such an environment: consider
only portions of the tags (e.g., those by your friends, or those from last
week), filter or cluster objects according to certain criteria, get descriptions
of objects or groups of objects, zoom on some aspects of interest.

Independently of the previous works, but in the same topic, we wrote a
chapter on recommendation systems [Gal11] in the Webdam book [AMR+ar].

7.3 Active XML Artifacts

Active-XML artifacts (Axart in short) provide a data-centric approach of
workflows. We introduce this artifact model to capture data and workflow
management activities in distributed settings in [ABGM09]. The model is
built on Active XML, i.e., XML trees including Web-service calls. The model
captures the essential features of business artifacts as described informally
in [NC03] or discussed in [HNN09]. The main idea of business artifacts is
to represent the workflow as data rules involving queries on the documents.
In particular, it eases the verification of temporal properties for the systems.

Active-XML artifacts present the following facets that, in our opinion,
have to be captured by an artifact model:

State An artifact is an object with a universal identity (e.g., URI). Its state
is self-describing (e.g., XML data) so that it may be easily transmitted
or archived. It has a host that is a peer or another artifact.

Evolution An artifact is created, evolves in time (possibly space), hiber-
nates, is reactivated or dies according to a logic that is specified
declaratively. Its evolution may be constrained to obey some laws,
e.g., some workflow.

Interactions An artifact interacts with the rest of the world via function
calls (e.g., Web-services) both as a server and a client. An artifact
provides for communications, storage and processing for the artifacts
it hosts.

114 CHAPTER 7. OTHER WORKS

History As in scientific workflows, an artifact has a history with time and
provenance information that may be recorded and queried.

We also propose a demonstration of the AXART system in [ABMG10].
The system is a distributed platform for collaborative work that harnesses
the power of the model. It is illustrated with an example taken from
the movie industry. The demonstration scenario considers both standard
workflow process and dynamic workflow modifications, based on two
extension mechanisms: workflow specialization and workflow exception.
The workflows, modeled using artifacts, are supported by the AXART
system by combining techniques specific to active documents, like view
maintenance, with security techniques to manage access rights.

The AXART system has several interesting characteristics: the simplicity
of the interaction with the user, the dynamic modification of the workflow,
and the use of artifacts in a distributed environment. The dynamic modifi-
cation of the workflow and the management of the access rights are new
with respect to previous works.

Chapter 8

Conclusion

Let us revisit my journey towards this thesis. My work at Yahoo! Research
and on Corroboration was a natural gateway in the realm of Social Net-
works. The needs of such applications guided us towards sketching out
the main features of WebdamExchange . To support the reasonning on
this model, we were lead designing a language for distributed datalog
with exchange of rules. This brought to studying theoritical issues about
expressivity and semantics WebdamLog . Finally, we returned to Social
Network applications by enriching WebdamExchange with WebdamLog
and developing the corresponding system.

From the social network stage, one may try to find new features that
will correspond to new properties of our supporting models. One may for
example consider the following natural extensions. From a technical point
of view, our holistic knowledge-base model would also need to integrate
these extensions, that have so far been studied apart.

Non-monotonicity One could consider negation in heads of rules. For
instance, someone may state that Bob is not an expert in rock climbing.
This may contradict the statement of someone else who states that
he is. Clearly, such inconsistencies are frequent on the Web and a
comprehensive model for Web data management should take this
into account.

Data integration A general issue is how a principal integrates knowledge
from other principals. In particular, it may adapt them to its context
and own way of representing knowledge, which leads to the fields
of data exchange [Kol05] and data integration [HZ96]. Ontologies
can be used to structure a participant’s vocabulary and to translate
knowledge between the vocabularies of different participants in a

115

116 CHAPTER 8. CONCLUSION

distributed environment, cf. e.g., [ACG+06]. Some simple ontology
statements, like predicate inclusions (e.g., Photo ⊑ Document), can
be straightforwardly handled by our proposed framework. However,
other important ontological constructs, like existential restrictions
(Parent ⊑ ∃hasChild) that may introduce incomplete information,
are not supported. Extensions of datalog in this direction have been
considered, see [CGL09].

Beliefs Peers may also decide that they do not fully believe what they per-
form or the information that they received. This leads to the field of
(perhaps contradicting) beliefs, e.g., [GBKS09], possibly with probabil-
ities [AKSS09]. The statements that are handled in WebdamExchange
could be interpreted as beliefs by a participant or a group of partic-
ipants. The degree of confidence may be captured, for instance, by
extending the statement with a special value. The fact

Alice states where@Bob(album)+=Bob-iPhone
with probability 72% . . .

would mean that the Alice believes that the album of Bob can be
found on Bob’s iPhone with a reasonable probability (72%).

Machine learning This work leads naturally to reasoning about knowl-
edge [FHMV03]. Sue may for instance know that Bob is a good friend
of Alice and that he probably replicates the pictures of Alice. Then
to get these pictures, she may decide to ask him instead of going to
the server. Reasoning about who knows what is an essential com-
ponent of answering queries in this kind of systems. Note that such
reasoning may also be used to acquire knowledge violating secrecy;
see, e.g., [FJ02].

Intensional data Finally, Active XML considers intensional data of a very
different form, namely functions that may be included in documents
and are defined intensionally. It would be interesting to investi-
gate the relationships between the intensional data supported by our
model and this other kind of intensional data.

The system stage also questions our ability to optimize the execution
of our model’s semantics, in particular to reach scalability. There are nu-
merous technical challenges to make the approach feasable. It is specially
true for evaluation of WebdamLog . But one may also consider problems
at the level of WebdamExchange . For example, query evaluation in the

117

context of encrypted data may be extremely inefficient, the basic idea being
to get all the possible data, decrypt it, and look at this data locally. One
may consider querying encrypted indexes. This is in particular interesting
for keyword-based queries; see, e.g., [CM05]. We have extended the model
with collections, the essential ingredients for supporting indexing. More
work is clearly needed in that direction.

Finally, we may also retain the central point of interest of this thesis:
distribution of heterogenous data on heterogenous systems. Each stage considers
a different facet of the problem, providing new original problems and
solutions. Heterogenous data means that identifier and schema may change
from one system to another (think of WebdamLog), or that the data may
have various semantics and usage of the data (think of the different kinds
of data in WebdamExchange). This last point is an important direction for
future research, that is already a topic of investigation by other members of
the Webdam project, using ontologies or probabilities. Indeed, we provided
a global semantics to our system for some of the data, but interpreting data
of other systems using our model or providing further semantics to content
of document would benefit from more automatic reasoning. Heterogenous
system means that they may be completely different and never be intended
to communicate (think of poor peers in WebdamExchange) or that their
behavior is different (think of peers executing their own set of rules in
WebdamLog). In a world, such as the Web, where systems are specialized
(mailer, search engines, social networks. . .), it is imperative to provides
means of supporting heterogenous data management that are both efficient
and flexible to ease interoperability, letting the programmer concentrate on
creating new applications and functionnalities from building blocks.

118 CHAPTER 8. CONCLUSION

Self references

Conferences

[ABGA11] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Emi-
lien Antoine. A rule-based language for web data management.
In Principles of Database Systems, 2011.

[ABGM09] Serge Abiteboul, Pierre Bourhis, Alban Galland, and Bogdan
Marinoiu. The AXML Artifact Model. In 2009 16th International
Symposium on Temporal Representation and Reasoning, pages 11–
17, Washington, DC, USA, July 2009. IEEE.

[GAMS10] Alban Galland, Serge Abiteboul, Amélie Marian, and Pierre
Senellart. Corroborating information from disagreeing views.
In WSDM ’10: Proceedings of the third ACM international confer-
ence on Web search and data mining, pages 131–140, New York,
NY, USA, 2010. ACM.

Workshops

[AAYG+10] Serge Abiteboul, Sihem Amer-Yahia, Alban Galland, Amelie
Marian, and Pierre Senellart. Birds of a tag flock together. In
Third Annual Workshop on Search in Social Media, 2010.

[ABGR10] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and
Marie-Christine Rousset. Distributed datalog revisited. In
Datalog 2.0 Workshop, 2010.

[AGP11] Serge Abiteboul, Alban Galland, and Neoklis Polyzotis. A
model for web information management with access control.
14th International Workshop on the Web and Databases, 2011.

119

120 BIBLIOGRAPHY

Demonstrations

[ABMG10] Serge Abiteboul, Pierre Bourhis, Bogdan Marinoiu, and Al-
ban Galland. Axart: enabling collaborative work with axml
artifacts. Proc. VLDB Endow., 3:1553–1556, September 2010.

[AGL+11] Emilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie
Marian, and Neoklis Polyzotis. Social networking on top of
the webdamexchange system. In International Conference on
Data Engineering, pages 1300–1303, 2011.

[AYGSY08] Sihem Amer Yahia, Alban Galland, Julia Stoyanovich, and
Cong Yu. From del.icio.us to x.qui.site: recommendations in
social tagging sites. In Jason Tsong Li Wang and Jason Tsong Li
Wang, editors, SIGMOD Conference, pages 1323–1326, New
York, NY, USA, 2008. ACM.

Book Chapter

[Gal11] Alban Galland. Putting into practice: recommendation methodolo-
gies. In Web Data Management and Distribution [AMR+11], pages
365–374. Cambridge University Press, 2011.

External references

[AAB+04] Serge Abiteboul, Bogdan Alexe, Omar Benjelloun, Bogdan
Cautis, Irini Fundulaki, Tova Milo, and Arnaud Sahuguet. An
electronic patient record on steroids: distributed, peer-to-peer,
secure and privacy-conscious. In VLDB ’04: Proceedings of the
Thirtieth international conference on Very large data bases, pages
1273–1276. VLDB Endowment, 2004.

[AAB+10] Tristan Allard, Nicolas Anciaux, Luc Bouganim, Yanli Guo,
Lionel Le Folgoc, Benjamin Nguyen, Philippe Pucheral, Indra-
jit Ray, Indrakshi Ray, and Shaoyi Yin. Secure Personal Data
Servers: a Vision Paper. Proceedings of the VLDB Endowment,
3(1), 2010.

[AAHM05] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo.
Diagnosis of asynchronous discrete event systems: datalog to
the rescue! In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
PODS ’05, pages 358–367, New York, NY, USA, 2005. ACM.

[Aba09] Martín Abadi. Logic in Access Control (Tutorial Notes). In
Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design V, volume 5705,
chapter 5, pages 145–165. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[ABCM04] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, and Tova
Milo. Active XML, Security and Access Control. In SBBD,
volume 4, pages 13–22, 2004.

[ABM04] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive
active XML. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
PODS ’04, pages 35–45, New York, NY, USA, 2004. ACM.

121

122 BIBLIOGRAPHY

[ABM08] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active
XML project: an overview. The VLDB Journal, 17(5):1019–1040,
August 2008.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the
Web: from relations to semistructured data and XML. Morgan
Kaufmann Pub, 2000.

[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, and Russell Sears. Boom analytics:
exploring data-centric, declarative programming for the cloud.
In Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 223–236, New York, NY, USA, 2010. ACM.

[ACG+06] Philippe Adjiman, Philippe Chatalic, Francois Goasdoué,
Marie-Christine Rousset, and Laurent Simon. Distributed rea-
soning in a peer-to-peer setting: Application to the semantic
web. J. Artif. Intell. Res. (JAIR), 25:269–314, 2006.

[AH08] Dean Allemang and James A. Hendler. Semantic web for the
working ontologist: modeling in RDF, RDFS and OWL. Morgan
Kaufmann, 2008.

[AHV95] Serge Abiteboul, Rick Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[AKSS09] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre
Senellart. On the expressiveness of probabilistic XML models.
The VLDB Journal, 18:1041–1064, October 2009.

[AKSX02] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and
Yirong Xu. Hippocratic databases. In VLDB ’02: Proceedings of
the 28th international conference on Very Large Data Bases, pages
143–154. VLDB Endowment, 2002.

[AMP05] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda. Con-
structing and Querying Peer-to-Peer Warehouses of XML Re-
sources. In Semantic Web and Databases, pages 219–225. 2005.

[AMP+08] Serge Abiteboul, Ioana Manolescu, Neoklis Polyzotis, Nicoleta
Preda, and Chong Sun. XML processing in DHT networks.
In ICDE ’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 606–615, Washington,
DC, USA, 2008. IEEE Computer Society.

BIBLIOGRAPHY 123

[AMR+ar] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-
Christine Rousset, and Pierre Senellart. Web Data Management.
Cambridge University Press, 2011 (to appear). ❤tt♣✿✴✴✇❡❜❞❛♠✳
✐♥r✐❛✳❢r✴t❡①t❜♦♦❦.

[ASV09] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static anal-
ysis of active XML systems. ACM Trans. Database Syst., 34,
December 2009.

[AV91] Serge Abiteboul and Victor Vianu. Datalog extensions for
database queries and updates. Journal of Computer and System
Sciences, 43(1):62–124, August 1991.

[AvH08] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer, 2nd Edition (Cooperative Information Systems). The MIT
Press, 2 edition, 2008.

[AVM07] Bader Ali, Wilfred Villegas, and Muthucumaru Maheswaran.
A trust based approach for protecting user data in social net-
works. In CASCON ’07: Proceedings of the 2007 conference of
the center for advanced studies on Collaborative research, pages
288–293, New York, NY, USA, 2007. ACM.

[AW08] Martín Abadi and Bogdan Warinschi. Security analysis of
cryptographically controlled access to XML documents. J.
ACM, 55(2):1–29, 2008.

[Bec80] Leland L. Beck. A security machanism for statistical database.
ACM Trans. Database Syst., 5:316–3338, September 1980.

[BFG07] Moritz Becker, Cedric Fournet, and Andrew Gordon. Design
and Semantics of a Decentralized Authorization Language. In
CSF ’07: Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium, pages 3–15, Washington, DC, USA, 2007.
IEEE Computer Society.

[Bir05] Kenneth P. Birman. Reliable Distributed Systems: Technologies,
Web Services, and Applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[BLC90] Tim Berners-Lee and Robert Cailliau. World-
WideWeb: Proposal for a hypertexts project.
http://www.w3.org/Proposal.html, November 1990.

http://webdam.inria.fr/textbook
http://webdam.inria.fr/textbook

124 BIBLIOGRAPHY

[BM10] Dan Brickley and Libby Miller. Foaf vocabulary specification
0.98. http://xmlns.com/foaf/spec/, August 2010.

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jef-
frey D. Ullman. Magic sets and other strange ways to im-
plement logic programs (extended abstract). In Proceedings
of the fifth ACM SIGACT-SIGMOD symposium on Principles of
database systems, PODS ’86, pages 1–15, New York, NY, USA,
1986. ACM.

[Bry05] Jery Bryans. Reasoning about XACML policies using CSP. In
SWS ’05: Proceedings of the 2005 workshop on Secure web services,
pages 28–35, New York, NY, USA, 2005. ACM.

[BSVD09] Sonja Buchegger, Doris Schiöberg, Le H. Vu, and Anwitaman
Datta. PeerSoN: P2P social networking: early experiences and
insights. In SNS ’09: Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, pages 46–52, New York,
NY, USA, 2009. ACM.

[BT07] Peter Buneman and Wang C. Tan. Provenance in databases.
In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pages 1171–1173, New
York, NY, USA, 2007. ACM.

[CCHM08] Tyson Condie, David Chu, Joseph M. Hellerstein, and Pet-
ros Maniatis. Evita raced: metacompilation for declarative
networks. Proc. VLDB Endow., 1(1):1153–1165, 2008.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Trans. Comput. Syst., 26(2):1–
26, June 2008.

[CGI+99] Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni
Naor, and Benny Pinkas. Multicast security: a taxonomy and
some efficient constructions. In INFOCOM ’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, volume 2, pages 708–716 vol.2,
1999.

BIBLIOGRAPHY 125

[CGL09] Andrea Cal‘ı, Georg Gottlob, and Thomas Lukasiewicz.
Datalog±: a unified approach to ontologies and integrity con-
straints. In Proceedings of the 12th International Conference on
Database Theory, ICDT ’09, pages 14–30, New York, NY, USA,
2009. ACM.

[CH85] Ashok K. Chandra and David Harel. Horn clause queries and
generalizations. The Journal of Logic Programming, 2(1):1–15,
April 1985.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. J. ACM, 45(6):965–981,
1998.

[CL82] Shi-Kuo Chang and An-Chi Liu. File allocation in a dis-
tributed database. International Journal of Parallel Programming,
11(5):325–340, October 1982.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy Pre-
serving Keyword Searches on Remote Encrypted Data. In
Applied Cryptography and Network Security, pages 442–455. 2005.

[CNP82] Stefano A. Ceri, Mauro Negri, and Giuseppe Pelagatti. Hori-
zontal data partitioning in database design. In Proceedings of
the 1982 ACM SIGMOD international conference on Management
of data, SIGMOD ’82, pages 128–136, New York, NY, USA, 1982.
ACM.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore
Hong. Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. In Hannes Federrath, editor, De-
signing Privacy Enhancing Technologies, volume 2009 of Lecture
Notes in Computer Science, chapter 4, pages 46–66. Springer
Berlin / Heidelberg, Berlin, Heidelberg, March 2001.

[Dat10] Datalog 2.0. http://www.datalog20.org/, 2010. Oxford Univ.

[DdVPS02] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano
Paraboschi, and Pierangela Samarati. A fine-grained access
control system for XML documents. ACM Trans. Inf. Syst.
Secur., 5(2):169–202, 2002.

126 BIBLIOGRAPHY

[DF82] Lawrence W. Dowdy and Derrell V. Foster. Comparative
Models of the File Assignment Problem. ACM Comput. Surv.,
14(2):287–313, June 1982.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: amazon’s highly available key-value store.
In Proceedings of twenty-first ACM SIGOPS symposium on Oper-
ating systems principles, volume 41 of SOSP ’07, pages 205–220,
New York, NY, USA, 2007. ACM.

[FAZ09] Philip Fong, Mohd Anwar, and Zhen Zhao. A Privacy Preser-
vation Model for Facebook-Style Social Network Systems. In
Michael Backes and Peng Ning, editors, Computer Security –
ESORICS 2009, volume 5789 of Lecture Notes in Computer Sci-
ence, chapter 19, pages 303–320. Springer Berlin / Heidelberg,
Berlin, Heidelberg, 2009.

[FHMV03] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning about knowledge. The MIT Press, 2003.

[FJ02] Csilla Farkas and Sushil Jajodia. The inference problem: a
survey. SIGKDD Explor. Newsl., 4:6–11, December 2002.

[FM07] Irini Fundulaki and Sebastian Maneth. Formalizing XML ac-
cess control for update operations. In SACMAT ’07: Proceedings
of the 12th ACM symposium on Access control models and technolo-
gies, pages 169–174, New York, NY, USA, 2007. ACM.

[FMS09] John Field, Maria C. Marinescu, and Christian Stefansen. Re-
actors: A data-oriented synchronous/asynchronous program-
ming model for distributed applications. Theor. Comput. Sci.,
410:168–201, February 2009.

[FSW81] Eduardo B. Fernandez, Rita C. Summers, and Christopher
Wood. Database Security and Integrity. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1981.

[GBKS09] Wolfgang Gatterbauer, Magdalena Balazinska, Nodira Khous-
sainova, and Dan Suciu. Believe it or not: adding belief anno-
tations to databases. Proc. VLDB Endow., 2(1):1–12, 2009.

BIBLIOGRAPHY 127

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In ICLP/SLP, pages 1070–
1080, 1988.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, June 2002.

[GN08] Yuri Gurevich and Itay Neeman. DKAL: Distributed-
Knowledge Authorization Language. In CSF ’08: Proceedings
of the 2008 21st IEEE Computer Security Foundations Symposium,
volume 0, pages 149–162, Washington, DC, USA, 2008. IEEE
Computer Society.

[GW10] Stéphane Grumbach and Fang Wang. Netlog, a rule-based
language for distributed programming. In PADL, pages 88–
103, 2010.

[Hel10] Joseph M. Hellerstein. The declarative imperative: experiences
and conjectures in distributed logic. SIGMOD Rec., 39(1):5–19,
2010.

[HKM78] David K. Hsiao, Douglas S. Kerr, and Stuart E. Madnick. Pri-
vacy and security of data communications and data bases. In
Proceedings of the fourth international conference on Very Large
Data Bases - Volume 4, VLDB’1978, pages 55–67. VLDB Endow-
ment, 1978.

[HNN09] Richard Hull, Nanjangud Narendra, and Anil Nigam. Facili-
tating Workflow Interoperation Using Artifact-Centric Hubs.
In Luciano Baresi, Chi-Hung Chi, and Jun Suzuki, editors,
Service-Oriented Computing, volume 5900, chapter 1, pages 1–
18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman.
Protection in operating systems. Commun. ACM, 19(8):461–471,
1976.

[Hul89] G. Hulin. Parallel processing of recursive queries in distributed
architectures. In Proceedings of the 15th international conference
on Very large data bases, VLDB ’89, pages 87–96, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

128 BIBLIOGRAPHY

[HZ96] Richard Hull and Gang Zhou. A framework for supporting
data integration using the materialized and virtual approaches.
In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD inter-
national conference on Management of data, pages 481–492, New
York, NY, USA, 1996. ACM.

[JOV05] H. V. Jagadish, Beng C. Ooi, and Quang H. Vu. BATON: a bal-
anced tree structure for peer-to-peer networks. In Proceedings
of the 31st international conference on Very large data bases, VLDB
’05, pages 661–672. VLDB Endowment, 2005.

[JSAV09] Mohamed Jawad, Patricia Serrano-Alvarado, and Patrick Val-
duriez. Protecting Data Privacy in Structured P2P Networks.
In Abdelkader Hameurlain and A. Tjoa, editors, Data Manage-
ment in Grid and Peer-to-Peer Systems, volume 5697 of Lecture
Notes in Computer Science, chapter 8, pages 85–98–98. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2009.

[JSS97] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian.
A Logical Language for Expressing Authorizations. In SP
’97: Proceedings of the 1997 IEEE Symposium on Security and Pri-
vacy, pages 31+, Washington, DC, USA, 1997. IEEE Computer
Society.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwin-
ski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, Chris Wells, and Ben Zhao.
OceanStore: an architecture for global-scale persistent storage.
In ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operat-
ing systems, volume 28, pages 190–201, New York, NY, USA,
December 2000. ACM.

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Joshi. A Policy Lan-
guage for a Pervasive Computing Environment. In In IEEE
4th International Workshop on Policies for Distributed Systems and
Networks, pages 63–74, 2003.

[KGG+06] Sebastian Kruk, Sławomir Grzonkowski, Adam Gzella,
Tomasz Woroniecki, and Hee-Chul Choi. D-FOAF: Distributed
Identity Management with Access Rights Delegation. In Ri-
ichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia, edi-
tors, The Semantic Web – ASWC 2006, volume 4185 of Lecture

BIBLIOGRAPHY 129

Notes in Computer Science, chapter 15, pages 140–154. Springer
Berlin Heidelberg, 2006.

[Kim10] Il-Gon Kim. Static Verification of Access Control Model for
AXML Documents. In Guozhu Dong, Xuemin Lin, Wei Wang,
Yun Yang, and Jeffrey X. Yu, editors, Advances in Data and Web
Management, volume 4505 of Lecture Notes in Computer Science,
chapter 71, pages 687–696. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and
random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, STOC ’97,
pages 654–663, New York, NY, USA, 1997. ACM.

[Kol05] Phokion G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS ’05: Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 61–75, New York, NY, USA, 2005.
ACM.

[KW94] Brigitte Kröll and Peter Widmayer. Distributing a search tree
among a growing number of processors. In Proceedings of the
1994 ACM SIGMOD international conference on Management of
data, SIGMOD ’94, pages 265–276, New York, NY, USA, 1994.
ACM.

[LAE+04] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ra-
makrishnan, Yirong Xu, and David DeWitt. Limiting disclo-
sure in hippocratic databases. In VLDB ’04: Proceedings of the
Thirtieth international conference on Very large data bases, pages
108–119. VLDB Endowment, 2004.

[LCG+06] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E.
Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrish-
nan, Timothy Roscoe, and Ion Stoica. Declarative networking:
language, execution and optimization. In SIGMOD, pages
97–108, 2006.

[LCG+09] Boon T. Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan,

130 BIBLIOGRAPHY

Timothy Roscoe, and Ion Stoica. Declarative networking. Com-
mun. ACM, 52(11):87–95, November 2009.

[LCH+05] Boon T. Loo, Tyson Condie, Joseph M. Hellerstein, Petros Ma-
niatis, Timothy Roscoe, and Ion Stoica. Implementing declar-
ative overlays. SIGOPS Oper. Syst. Rev., 39(5):75–90, October
2005.

[LHSR05] Boon T. Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu
Ramakrishnan. Declarative routing: extensible routing with
declarative queries. SIGCOMM Comput. Commun. Rev., 35:289–
300, August 2005.

[Lit80] Witold Litwin. Linear hashing: a new tool for file and table
addressing. In Proceedings of the sixth international conference
on Very Large Data Bases - Volume 6, pages 212–223. VLDB
Endowment, 1980.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On
Active Deductive Databases: The Statelog Approach. In
Burkhard Freitag, Hendrik Decker, Michael Kifer, and Andrei
Voronkov, editors, Transactions and Change in Logic Databases,
volume 1472 of Lecture Notes in Computer Science, pages 69–+.
Birkhäuser Basel, 1998.

[LM75] K. Dan Levin and Howard L. Morgan. Optimizing distributed
data bases: a framework for research. In Proceedings of the May
19-22, 1975, national computer conference and exposition, AFIPS
’75, pages 473–478, New York, NY, USA, 1975. ACM.

[LMO+08] Changbin Liu, Yun Mao, Mihai Oprea, Prithwish Basu, and
Boon T. Loo. A declarative perspective on adaptive manet
routing. In Proceedings of the ACM workshop on Programmable
routers for extensible services of tomorrow, PRESTO ’08, pages
63–68, New York, NY, USA, 2008. ACM.

[LNS94] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider.
RP*: A Family of Order Preserving Scalable Distributed Data
Structures. In Proceedings of the 20th International Conference on
Very Large Data Bases, VLDB ’94, pages 342–353, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 131

[LNS96] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider.
LH* a scalable, distributed data structure. ACM Trans. Database
Syst., 21(4):480–525, December 1996.

[MKKW99] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and
Emmett Witchel. Separating key management from file system
security. SIGOPS Oper. Syst. Rev., 33(5):124–139, December
1999.

[MMSW07] Maged Michael, Jose E. Moreira, Doron Shiloach, and
Robert W. Wisniewski. Scale-up x Scale-out: A Case Study
using Nutch/Lucene. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8,
2007.

[MS02] Gerome Miklau and Dan Suciu. Cryptographically Enforced
Conditional Access for XML. In Fifth International Workshop on
the Web and Databases (WebDB, 2002.

[MS03] Gerome Miklau and Dan Suciu. Controlling access to pub-
lished data using cryptography. In VLDB ’2003: Proceedings of
the 29th international conference on Very large data bases, pages
898–909. VLDB Endowment, 2003.

[MTKH06] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and
Satoshi Hada. XML access control using static analysis. ACM
Trans. Inf. Syst. Secur., 9(3):292–324, 2006.

[MZZ+08] William R. Marczak, David Zook, Wenchao Zhou, Molham
Aref, and Boon T. Loo. Declarative Reconfigurable Trust Man-
agement. In Conference on Innovative Data Systems Research
(CIDR), 2008.

[NC03] Anil Nigam and Nathan S. Caswell. Business artifacts: An
approach to operational specfication. In IBM Systems Journal,
vol. 42, no. 3, pages 428–445, 2003.

[NCW93] Wolfgang Nejdl, Stefano Ceri, and Gio Wiederhold. Evaluating
recursive queries in distributed databases. IEEE Transactions on
Knowledge and Data Engineering, 5(1):104–121, February 1993.

[NCWD84] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie
Dou. Vertical partitioning algorithms for database design.
ACM Trans. Database Syst., 9(4):680–710, December 1984.

132 BIBLIOGRAPHY

[NR09] Juan Navarro and Andrey Rybalchenko. Operational Seman-
tics for Declarative Networking. In Andy Gill and Terrance
Swift, editors, Practical Aspects of Declarative Languages, vol-
ume 5418 of Lecture Notes in Computer Science, chapter 6, pages
76–90–90. Springer Berlin / Heidelberg, Berlin, Heidelberg,
2009.

[OAS04] OASIS. Uddi version 3.0.2.
http://uddi.org/pubs/uddi_v3.htm, October 2004.

[OAS07] OASIS. Web services business process execution language ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html, April 2007.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1999.

[PRS09] Juan A. Pérez, Andrey Rybalchenko, and Atul Singh. Cardi-
nality Abstraction for Declarative Networking Applications.
In CAV ’09: Proceedings of the 21st International Conference on
Computer Aided Verification, pages 584–598, Berlin, Heidelberg,
2009. Springer-Verlag.

[Prz90] Teodor C. Przymusinski. The well-founded semantics coin-
cides with the three-valued stable semantics. Fundam. Inform.,
13(4):445–463, 1990.

[RD01] Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. SIGOPS Oper. Syst. Rev., 35(5):188–201, 2001.

[REG+03] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon,
Ben Zhao, and John Kubiatowicz. Pond: The OceanStore Pro-
totype. In FAST ’03: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, pages 1–14, Berkeley, CA, USA,
2003. USENIX Association.

[RFC74] RFC675. Specification of internet transmission control pro-
gram. http://tools.ietf.org/html/rfc675, December 1974.

[RR02] Indrakshi Ray and Indrajit Ray. Using Compatible Keys for
Secure Multicasting in E-Commerce. In IPDPS ’02: Proceedings

BIBLIOGRAPHY 133

of the 16th International Parallel and Distributed Processing Sympo-
sium, pages 327+, Washington, DC, USA, 2002. IEEE Computer
Society.

[SHLX03] Arnaud Sahuguet, Rick Hull, Daniel Lieuwen, and Ming
Xiong. Enter Once, Share Everywhere: User Profile Manage-
ment in Converged Networks. In Conference on Innovative Data
Systems Research (CIDR), 2003.

[SW85] Domenico Sacca and Gio Wiederhold. Database partitioning in
a cluster of processors. ACM Trans. Database Syst., 10(1):29–56,
March 1985.

[TS04] Stephanos A. Theotokis and Diomidis Spinellis. A survey of
peer-to-peer content distribution technologies. ACM Comput.
Surv., 36(4):335–371, December 2004.

[Vie86] Laurent Vieille. Recursive axioms in deductive databases: The
query-subquery approach. In Proc. 1st Int. Conf. on Expert
Database Systems, pages 179–193, 1986.

[W3C99a] W3C. Html 4.01 specification.
http://www.w3.org/TR/html401/, December 1999.

[W3C99b] W3C. Xsl transformations (xslt) version 1.0.
http://www.w3.org/TR/xslt, November 1999.

[W3C02a] W3C. Web services conversation language (wscl) 1.0.
http://www.w3.org/TR/wscl10/, March 2002.

[W3C02b] W3C. Xml encryption syntax and processing.
http://www.w3.org/TR/xmlenc-core/, December 2002.

[W3C04] W3C. Xml schema part 0: Primer.
http://www.w3.org/TR/xmlschema-0/, October 2004.

[W3C07a] W3C. Soap version 1.2 part 1: Messaging framework (second
edition). http://www.w3.org/TR/soap12-part1/, April 2007.

[W3C07b] W3C. Web services description language (wsdl) version 2.0
part 1: Core language. http://www.w3.org/TR/wsdl20/,
June 2007.

[W3C08a] W3C. Extensible markup language (xml) 1.0.
http://www.w3.org/TR/REC-xml/, November 2008.

134 BIBLIOGRAPHY

[W3C08b] W3C. Xml signature syntax and processing (second edition).
http://www.w3.org/TR/xmldsig-core/, June 2008.

[W3C09] W3C. Owl 2 web ontology language document overview.
http://www.w3.org/TR/owl2-overview/, October 2009.

[W3C10] W3C. Xquery 1.0: An xml query language (second edition).
http://www.w3.org/TR/xquery/, December 2010.

[WABL94] Edward Wobber, Martín Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating system. ACM
Trans. Comput. Syst., 12(1):3–32, 1994.

[Wal03] Dan Wallach. A Survey of Peer-to-Peer Security Issues. In
Mitsuhiro Okada, Benjamin Pierce, Andre Scedrov, Hideyuki
Tokuda, and Akinori Yonezawa, editors, Software Security —
Theories and Systems, volume 2609 of Lecture Notes in Computer
Science, chapter 4, pages 253–258. Springer Berlin / Heidelberg,
Berlin, Heidelberg, June 2003.

[Web] ERC grant Webdam. http://webdam.inria.fr/.

[WL82] Paul F. Wilms and Bruce G. Lindsay. A database authorization
mechanism supporting individual and group authorization.
In Distributed data sharing systems: proceedings of the Second
International Seminar on Distributed Data Sharing Systems, page
273, June 1982.

[YC77] C. T. Yu and F. Y. Chin. A study on the protection of statistical
data bases. In Proceedings of the 1977 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’77, pages
169–181, New York, NY, USA, 1977. ACM.

[YHY07] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with
multiple conflicting information providers on the web. In KDD
’07: Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1048–1052, New
York, NY, USA, 2007. ACM.

	Acknowledgement
	Résumé en Français
	Introduction
	Motivating Example
	State of the Art
	Distributed Information Systems
	Distributed systems
	Distributed Databases
	Data on the Web
	Peer-to-Peer Systems

	Access control
	Principles of access control
	Access control for distributed systems
	Access control for XML
	Access control policies
	Other problems related to access control

	Distributed Datalog

	A rule based language for Web data exchanges
	The model
	Informal presentation
	Formal model

	Discussion
	Too much synchronization
	Too little local control
	Delegation and complexity
	Peer life and delegation
	Multicasting
	Database server replication
	Rule updates and rule deployment

	Expressivity
	Traces and simulations
	Expressivity results

	Convergence of WebdamLog
	Positive WebdamLog
	Strongly-stratified WebdamLog

	Optimization
	Differential technique
	Seed-based delegation
	Query-subquery and delegation

	Conclusion

	A data model for Web data exchanges
	The general model
	Informal presentation
	Formal model

	Access control
	Informal presentation
	Formal model
	Properties
	Physical implementation

	Distribution
	Informal presentation
	Formal model
	Physical implementation

	Four policies of interests
	@home
	@friend
	@host
	@host-DHT

	Conclusion

	The WebdamExchange System
	Architecture
	System Architecture
	Data model
	Rich Peer Architecture
	iOS Architecture

	Peer Modules
	Communication
	Security
	Manager
	Storage

	Demonstration

	Other works
	Corroboration
	Recommendation
	Active XML Artifacts

	Conclusion

