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AVANT PROPOS 

 

Le format de présentation de cette Thèse correspond à une 

recommandation de la spécialité Maladies Infectieuses et Microbiologie, 

à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de 

l’Ecole Doctorale des Sciences de la Vie de Marseille. 

Le candidat est amené à respecter des règles qui lui sont imposées et 

qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui 

permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, 

la partie introduction et bibliographie est remplacée par une revue 

envoyée dans un journal afin de permettre une évaluation extérieure de la 

qualité de la revue et de permettre à l’Etudiant de commencer le plus tôt 

possible une bibliographie exhaustive sur le domaine de cette thèse. Par 

ailleurs, la thèse est présentée sur articles publiés, acceptés ou soumis, 

associés d’un bref commentaire donnant le sens général du travail. Cette 

forme de présentation a paru plus en adéquation avec les exigences de la 

compétition internationale et permet de se concentrer sur des travaux qui 

bénéficieront d’une diffusion internationale.  

  

                                        Professeur Didier RAOULT 
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RESUME 
 

Les rickettsies sont  de petites bactéries à Gram-négatif associées à 

différentes espèces d'arthropodes. Leur nature intracellulaire stricte a 

longtemps été un obstacle à la compréhension des mécanismes 

moléculaires responsables de leur pathogénicité qui restent mal connus. 

L’adhésion bactérienne, qui est une étape clef de l’invasion des tissus de 

l’hôte, met en jeu les protéines rOmpA et rOmpB (rickettsial outer 

membrane proteins),  identifiées depuis longtemps comme des antigènes 

de surface majeurs des rickettsies. L’objectif de cette thèse a été de 

caractériser une autre adhésine potentielle de Rickettsia prowazekii 

récemment identifiée, soit Adr2. La stratégie mise en œuvre a été basée 

sur la production  d’anticorps monoclonaux spécifiques de cette protéine, 

dont une forme recombinante a été exprimée. Cet outil a permis, non 

seulement de localiser Adr2 à la surface des rickettsies, mais aussi 

d’apporter la preuve de son rôle dans le phénomène invasif puisque les 

anticorps anti-Adr2 diminuent significativement la cytotoxicité des 

rickettsies sur les cellules épithéliales.   

Un autre aspect de la pathogénicité que nous avons abordé concerne 

la mobilité des rickettsies du groupe boutonneux, fonction attribuée à la 

protéine RickA lorsque ce travail a été initié. La résolution des images 

obtenues par  immunofluorescence, ou par microscopie électronique après 

marquage immunogold, montrent que l’expression de RickA est non-

polarisée et  répartie sur la surface entière de Rickettsia conorii. 

   Enfin, plusieurs protéines recombinantes ont été utilisées dans des 

tests de screening sérologiques avec des sérums de patients infectés par 

diverses rickettsies, avec des résultats encourageants. 

L’ensemble de ces résultats contribue à une meilleure connaissance 

de la pathogénicité des bactéries du genre  Rickettsia.  
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ABSTRACT 
 

Rickettsiae are characterized by their strictly intracellular location, as 

Gram-negative bacteria growing only within the eukaryotic host cell 

cytoplasm. Accordingly, the molecular mechanisms responsible for 

invasive mechanisms are largely unknown. Adhesion is a key step for 

bacterial invasion of host tissues and involves the rickettsial outer 

membrane proteins rOmpA and rOmpB, known for a long time as major 

rickettsial cell surface antigens. The aim of this thesis was to gain a better 

understanding of another newly identified rickettsial adhesin from 

Rickettsia prowazekii, called Adr2. This task was achieved through the 

production of a monoclonal antibody (mAb) specific for the recombinant 

protein and that allowed localization of Adr2 at the bacterial cell surface. 

The inhibition of rickettsiae-induced cytotoxicity with this mAb 

confirmed the role of Adr2 in the invasion process.  

Considering the putative role of the actin-based motility in the 

pathogenesis of the spotted fever group rickettsiae (SFG), we then 

focused our second part of work on the localization of RickA, a protein 

specific for the SFG rickettsiae and thought to be responsible for bacterial 

motility. Immunofluorescence assay combined with a immunogold 

electron microscopy yielded good-resolution images and showed a non-

polarized expression of RickA that was found onto the entire bacterial 

surface of Rickettsia conorii. 

   Finally, twenty recombinant proteins targets were screened with 

sera of patients infected with various rickettsiae. We thus evidenced 

several putaive markers allowing to discriminate infection caused either 

by Rickettsia typhi or by Rickettsia conorii. 

On the overall, we believe that our results improve the knowledge 

about the pathogenicity of bacteria from the Rickettsia genus.  
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I.  GENERALITIES  

 

The genus Rickettsia includes bacterial obligate intracellular parasites 

associated with arthropods (tick, mite, flea, and lice) and that primarily 

target the microvascular endothelium. In the last two decades, new 

rickettsial pathogens have been associated with human illness around the 

world. Clinically, the common denominator in all rickettsioses is the 

development of increased microvascular permeability, leading to cerebral 

and non-cardiogenic pulmonary edema (Olano, 2005). Based on their 

antigenicity and intracellular actin-based motility, rickettsiae were 

initially classified into the typhus group (TG) including R. prowazekii and 

R.  typhi, and the spotted fever group (SFG) which includes more than 20 

different species among which R. conorii and R. rickettsii (Raoult and 

Roux, 1997).  

 

Within the last decade, the availability of complete genome sequences 

of several rickettsial species (Table 1), allowed to gain a better 

knowledge not only about their evolution, but also about their metabolic 

capacities and the molecular mechanisms involved in their pathogenicity 

(Walker 2007; Balraj et al., 2009). Accordingly, besides the TG and the 

SFG a third group including R. bellii and R. canadensis has emerged 

(Blanc  et al., 2007).  
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Table 1.  List of rickettsial genomes sequenced 

 

 

 

Strains Size (Mb) Genbank Reference
R. prowazekii  str. Madrid E 1,11 AJ235269.1 Andersson et al , 1998
R. conorii  Malish 7 1,27 AE006914.1 Ogata et al , 2004
R. typhi  str. Wilmington 1,11 AE017197.1 McLeod et al , 2004
R. sibirica  246 1,25 NZ AABW01000001 Malek et al , 2004
R. felis  URRWXCal2 1,59 CP000053.1 Ogata et al , 2005
R. bellii  RML 369-C 1,52 CP000087.1 Ogata et al , 2006
R. massiliae  MTU5 1,41 CP000683.1 Blanc et al , 2007
R. rickettsii  str. Lowa 1,27 CP000766.1 Hackstadt et al,  2008
R. peacockii  str. Rustic 1,3 CP001227.1 Felsheim et al,  2009
R. africae  ESF-5 1,29 CP001612.1 Fournier et al , 2009
R. prowazekii  Rp22 1,1 CP001584 Bechah et al , 2010
R. heilongjiangensis  054 1,3 CP002912.1 Duan et al , 2011
R. rickettsii  str. Sheila smith 1,26 CP000848.1 Unpublished
R. africae  ESF-5 1,27 NZAAUY01000001 Unpublished
R. akaris  str. Hartford 1,23 CP000847.1 Unpublished
R. bellii  OSU 85-389 1,52 CP000849.1 Unpublished
R. canadensis  str. McKiel 1,16 CP000409.1 Unpublished
R. japonica 1 In progress University of Tokyo
R. prowazekii  str. Madrid E vir 1,3 In progress BCM-HGSC
R. prowazekii  Nuevo Leon Amblyomma tick In progress BCM-HGSC
R. prowazekii Rp22 In progress Unité des Rickettsies
R. sbvaca  13-B In progress Unité des Rickettsies
R. raoultii In progress Unité des Rickettsies
R. sibirica  246 1 AABW00000000 University of Maryland
R. grylli 2 AAQJ00000000 TIGR
R. typhi B9991CWPP In progress Los Alamos National laboratory
R. typhi  TH1527 In progress Los Alamos National laboratory



 17

The advent of several complete rickettsial genome sequences also 

highlighted the genetic basis for metabolic differences as well as for 

common traits.  Thus, from a careful comparative bioinformatic analysis, 

it was established that rickettsiae contain five autotransporters called the 

surface cell antigen (Sca) family (Blanc et al., 2005). These proteins 

indeed possess 3 domains, a leader sequence that mediates transport 

across the cell membrane, a passenger sequence, and a transporter 

sequence that is inserted as a β-barrel into the outer envelope to transport 

the passenger sequence to the outer surface of the cell wall. In addition to 

the newly identified proteins Sca1, Sca2, and Sca3 that exist as split 

genes (interrupted into 2–4 open reading frames) in at least 1 Rickettsia 

species, this family includes Sca0, previously known as rOmpA and 

present only in the SFG while Sca5 (rOmpB) is present in all Rickettsia 

species. Sca4 (geneD) which shares sequence similarity, is not an 

autotransporter, because it lacks the transporter domain (Blanc et al., 

2005). 

As observed for other intracellular bacteria, rickettsia pathogenicity 

involves sequential steps starting with recognition and adherence to the 

host cells. This crucial step results in the invasion of the endothelial cells 

through induced phagocytosis. Rickettsiae then escape from phagosome 

into the cytosol, where replication takes place leading to direct cell 

damages and death (Balraj et al, 2009). In addition to opening the way for 

bioinformatic analysis, the advances in rickettsial genome sequencing, 

have contributed to improve the knowledge about the molecular 

mechanisms involved in the pathogenicity of these bacteria. Advances in 

the evaluation of the pathogenesis of rickettsial disease include 

identification of rickettsial adhesins, a host cell receptor, signaling 

elements associated with entry of rickettsiae by induced phagocytosis, 
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rickettsial enzymes mediating phagosomal escape, and host actin-based 

rickettsial cell-to-cell spread. 

Two putative rickettsial ligands recognized by host cell surface 

proteins were thus identified. One ligand corresponds to the C-terminal 

extremity of rOmpB called the β-peptide. Other putative ligands are 

proteins of unknown function encoded by the genes RC1281 and RC1282 

in R. conorii as well as by RP827 and RP828 in R. prowazekii and called 

Adr for rickettsial adhesins (Renesto et al., 2006).  The lysis of the 

phagosomal membrane that precedes rickettsia escape into the cytosolic 

compartment was shown to be mediated by the upregulation of genes 

coding for enzymes sharing a membranolytic activity, namely hemolysin 

C (tly C) and phospholipase D (pld) (Renesto P et al, 2003; Whitworth T 

et al, 2005). Historically, the actin-based motility was depicted as a major 

feature allowing to differentiating SFG and TG rickettsiae. Here again, it 

is the comparative analysis of R. prowazekii (TG) and R. conorii (SFG) 

genomes that allowed to identify RickA as a protein endowed for the 

capacity to a promote the polymerization of host cell cytoskeletal actin 

through the activation of Arp 2/3 (Ogata et al., 2001; Gouin et al, 2004), 

an hypothesis recently revisited (Balraj et al., 2008, Kleba et al., 2010). 

Availability of the genome sequences and proteomic approaches also 

favor the development of serological tools including monoclonal 

antibodies (mAbs) which are useful for immunofluorescence-based 

localization and to demonstrate the functional activity selected targets. 

Here, we summarized available data concerning the use of antibodies in 

the field of rickettsiae, either as diagnostic tools or in more basic resaech 

applications.  
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II.  AN OVERVIEW OF ANTIBODIES AS USEFUL TOOLS FOR 
DIAGNOSIS OF THE RICKETTSIOSIS AND THEIR CONTRIBUTI ON 
IN EXPLORATION OF RICKETTSIAL BIOLOGY  
 
II-1. Introduction 

Rickettsiae cause life-threatening rickettsioses which exist primarily 

in endemic and enzootic foci that occasionally give rise to sporadic or 

seasonal outbreaks. Rickettsial pathogens are highly specialized for 

obligate intracellular survival in both the vertebrate host and the 

invertebrate vector. While studies often focus primarily on the vertebrate 

host, the arthropod vector is often more important in the natural 

maintenance of the pathogen. The epidemiology of human diseases 

caused by rickettsiae is intimately related to the biology of the vector that 

transmits (Azad and Beard, 1998). 

Tick-borne rickettsioses are caused by bacteria belonging to the SFG. 

These zoonoses, which are among the oldest known vector-borne diseases 

include the well-known Rocky Mountain spotted fever (R. rickettsii) and 

the Mediterranean spotted fever (R. conorii). More recently, emerging 

SFG rickettsiosis were identified in differents countries and are caused by 

various species as R. japonica (Japan), R. conorii subsp. caspia 

(Astrakhan, Africa, and Kosovo), R. africae (sub-Saharan Africa and the 

West Indies), R. honei (Australia, Tasmania, Thailand), R. slovaca 

(Europe), R. sibirica subsp. mongolitimonae (China, Europe, and Africa), 

R. heilongjanghensis (China and the Russian Far East), R.vaeschlimannii 

(Africa and Europe), R. marmionii (Australia), and R. parkeri (United 

States). The last rickettsia is probably the best illustration, as R. parkeri 

was considered a nonpathogenic rickettsia for more than 60 years. 

Furthermore, the pathogenicity of R. massiliae has been recently 

demonstrated, 13 years after its isolation from ticks. Other recently 
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described rickettsiae, including R. helvetica strains (Europe and Asia) 

have been presented as possible pathogens (reviewed in Parola et al., 

2005). Rickettsiae are transmitted through the tick bite, which generally 

implies that the rickettsiae localize to the salivary glands of the tick. 

Therefore, the precise molecular mechanisms responsible for the 

adaptation of rickettsiae to different host conditions and for reactivation of 

virulence are unknown. 

In contrast to 15 or more validated and/or proposed tick-borne SFG 

species, only three named medically important rickettsial species are 

associated with insects. These insect-borne rickettsiae are comprised of 

two highly pathogenic species, R. prowazekii (the agent of epidemic 

typhus) and R. typhi (the agent of murine typhus), as well as R. felis, a 

species with unconfirmed pathogenicity (Gillespsie et al., 2009). These 

flea- and louse-borne rickettsiae are transmitted to humans through 

contamination of broken skin and mucosal surfaces by infected tick feces. 

Due to its survival in dried louse feces, R. prowazekii can also be 

transferred through aerosols (Bechah et al., 2008).  

In general, and athough the clinical presentations can vary with the 

causative agent, the SFG rickettsiosis syndromes are similar. Among 

common symptoms that typically develop within 1–2 weeks of infection 

are fever, headache, malaise, and sometimes nausea and vomiting. Most 

tick-transmitted rickettsioses are accompanied by a rash or an eschar at 

the site of the tick bite (Parola et al., 2005). The flea-borne disease 

induced by R. typhi present symptoms that are shared with other 

infectious diseases. Most symptoms are nonspecific and require further 

tests to make an accurate diagnosis (Bitam et al., 2008). Except for 

epidemic louse-borne typhus (Bechah et al., 2008), rickettsial diseases 

strike mostly as isolated single cases in any particular neighborhood. 
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Thus, diagnosis of rickettsial infections is often difficult. An history 

of exposure to the appropriate vector tick, louse, flea, or mite is helpful 

but cannot be relied upon. While many rickettsial diseases cause mild or 

moderate illness, epidemic typhus and Rocky Mountain spotted fever can 

be severe and may be fatal in 20%–60% of untreated cases.  

II-2.  Antibodies as tools in diagnosis of rickettsiosis 

Among the approaches developped to diagnose rickettiosis are the 

serologic diagnosis, the immunodetection of rickettsiae from blood or 

tissues and the isolation of bacteria. To date, laboratory diagnosis of 

rickettsioses is mainly based on various PCR assays and DNA sequencing 

which allows convenient and rapid identification of rickettsiae, even in 

non referenced laboratories (La Scola and Raoult, 1997).  

 

Serologic diagnosis 

Serological tests are the easiest methods for the diagnosis of tick-

borne rickettsioses. Historically, the rickettsial diagnosis was supported 

by the Weil-Felix test based on the detection of antibodies to various 

Proteus species which contain antigens with cross-reacting epitopes to 

antigens from members of the genus Rickettsia, with the exception of R. 

akari. With the development of techniques for growing rickettsiae, the 

complement fixation test was then adapted for the detection of antibodies 

specific for rickettsiae. A microagglutination test based on the detection 

of interactions between antibodies and whole rickettsial cells was also 

developped.  However, due to the requirement of high amounts of 

purified rickettsial antigens, not available commercially, this method not 

been widely used. Other techniques include the indirect hemagglutination 

and the latex agglutination tests that detect antibodies to an antigenic 
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erythrocyte-sensitizing substance used to coat erythrocytes or latex beads, 

respectively (reviewed in La Scola and Raoult, 1997).  

In the early 1980th, these methods were replaced by others, easier to 

handle and sharing higher sensitivity and specificity, like enzyme-linked 

immunosorbent assay (ELISA) that was first introduced for detection of 

antibodies against R.  typhi and R.  prowazekii (Halle et al., 1977) and 

later adapted to the diagnosis of Rocky Mountain spotted fever (Clements 

et al., 1983). The rickettsial immunofluorescence assay (IFA) adapted to 

a micromethod format is the test of choice for the serodiagnosis of 

rickettsial diseases (Philip et al., 1976). The micro-IFA allows 

simultaneous detection of antibodies against several rickettsial antigens 

starting with a drop of serum in a single well containing multiple 

rickettsial antigen dots.  It is considered as the “gold standard” technique 

and it is used as a reference technique in most laboratories. Western blot 

and line blot assays are also used in routine and is considered as powerful 

serodiagnostic tool for seroepidemiology (Raoult & Dasch, 1995).  

The drawback of ELISA, IFA and western blot, is that all these 

methods require laboratory platforms specialized for culture and 

purification of rickettsiae. Moreover, and while IFA is currently the test 

of choice for serologic diagnosis of rickettsial infection, cross-reactive 

antibodies between rickettsiae species are often observed, rendering 

difficult the serologic identification. 
 

Immunodetection of rickettsiae 

Biopsy specimens of the skin with a rash around the lesion, preferably 

petechial lesions, and tache noire specimens are the most common 

samples used. Immunodetection methods may also be used to detect 

microorganisms from their arthropod vectors. Slides are air-dried and 
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fixed in acetone before being treated with polyclonal or monoclonal 

antibodies conjugated with immunofluorescent labels. 

 

Isolation of rickettsiae 

In the past, only research laboratories that had biosafety level 3 

containment and personnel with extensive experience in cultivating 

rickettsiae were able to isolate these small and strictly intracellular Gram-

negative bacilli from clinical specimens. The centrifugation shell vial, 

technique, first developed for cytomegalovirus culture, was adapted for 

the isolation of R. conorii (Marrero and Raoult, 1989). This method, 

which has led to a significant increase of laboratories suitably equipped to 

isolate rickettsiae, allows detection 48–72 h post-inoculation. Isolation of 

rickettsiae is of great importance as the ultimate diagnostic goal is 

recovery of the bacterial agent from a tick or a patient (La Scola and 

Raoult, 1996).  

 

Molecular methods 

Molecular methods based on PCR and sequencing have enabled the 

development of sensitive, specific and rapid tools for both the detection 

and identification of rickettsiae in blood, skin biopsy specimens, and even 

ticks. Primer sets targeting various rickettsial genes have been described 

and can be used in any laboratory with suitable facilities (Brouqui et al., 

2004; Fournier et al., 2004). 

 

In summary, several diagnostic methods are used for rickettsia 

detection. In the specialized laboratories, shell vial culture, molecular 

biology and serodiagnostic with IFA or adsorbed western blot are used 

systematically. Because it is difficult to diagnose rickettsial infection 

early after infection occurs, administration of antibiotic treatment before a 
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definitive diagnosis is still made (Pelletier and La Scola, 2010).  

Preventive measures are complicated because of the lack of effective and 

safe rickettsial vaccines (Walker, 2007). To detect efficiently bacteria in 

clinical samples, we need to dispose of highly sensitive, specific and 

available detection tests. 

 

III-3. Antibodies as tools for physiopathological investigations  

From the first description of rickettsiae as human pathogens, the 

rickettsiosis remained poorly understood diseases. The use of antibodies 

was helpful to dissect some specific aspects of pathogenesis of these 

obligate intracellular microorganisms. A few examples are detailed 

below: 

 

-Role of rOmpA as a bacterial ligand 

This 190 kDa immunodominant surface-exposed protein is thought for 

long to be involved in adhesion of rickettsiae to host cells, based on the 

protective effect against rickettsial infections in animal models afforded 

by the recombinant truncated rOmpA or DNA plasmid encoding this 

protein (Mc Donald et al., 1987; Li and Walker, 1988; Vishwanath et al., 

1990; Sumner et al., 1995; Crocquet-Valdes et al., 2001). 

Immunoblotting and immunofluorescence assays confirmed the absence 

of rOmpA from R. rickettsii Iowa, as hypothesized from the comparative 

genomic analysis of R. rickettsii Sheila Smith (virulent) and Iowa 

(avirulent) strains that highlighted a deletion resulting in defect of rOmpA 

expression in the latter (Ellison et al., 2008).  
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-rOmpB mediates bacterial invasion and constitutes a protective antigen 

for SFG rickettsiae 

The mammalian receptor Ku70 was identified as involved in the 

rickettsial invasion process, a process where the rickettsial autotransporter 

protein  rOmpB,  intervenes  as bacterial  ligand (Martinez et al., 2005, 

Chan et al., 2009). In a recent paper, Chan et al. (2011) developed mAbs 

which specifically recognize a conformation present in the folded, intact 

rOmpB passenger domain. They demonstrated that such mAbs are 

sufficient to confer immunity in vivo. Analyses in vitro suggest that this 

protection involves a mechanism of complement-mediated killing in 

mammalian blood, a means of rickettsial clearance that has not been 

previously described.  

 

-Sca1 promotes adherence to nonphagocytic mammalian cells 

Bioinformatic analysis of SFG rickettsiae allowed to identify the Sca 

protein family, predicted as outer surface proteins (Blanc et al., 2005). 

However, very little is known about the function(s) of these Sca proteins, 

with the exception of Sca0 (rOmpA) and Sca5 (rOmpB). Western-blot 

and immunofluorescence staining were achieved on R. conorii using a 

polyclonal antiserum directed against the N-terminal portion of the Sca1 

passenger domain (amino acids 29 to 327). Data obtained demonstrated 

that Sca1 is present on the surface of R. conorii isolated from infected 

mammalian cells and involved in their adherence to host cells (Riley et 

al., 2010). 

 

-Evidence for the regulation of rOmpA expression 

During their life cycle, bacteria from the Rickettsia genus may adapt to 

diverse environments in the ticks and mammals. Their adaptation strategy 

most probably results from a selective gene expression, as depicted for 
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other tick-borne pathogens. Accordingly, it was observed, by RT-PCR and 

immunofluorescence assays, that rOmpA expression can undergo major 

changes. Thus, rOmpA is strongly detected when rickettsiae propagated 

within Vero cells while poorly expressed in bacteria collected from tick 

hemolymph (Rovery et al., 2006). Similarly, variation in rOmpA but not 

in rOmpB expression was also evidenced in R. massiliae during the 

Rhipicephalus turanicus life cycle (Ogawa et al., 2006). When inoculated 

from arthropod vectors to human beings, rickettsiae most probably exhibit 

a proteic profile different to that observed from bacteria grown in culture. 

Ex-vivo experiments aimed at characterizing this host-pathogen interaction 

should thus be analyzed with caution. 

 

-The phagosomal escape involves a  rickettsial phospholipase D 

As several other pathogens of the genus Listeria, Shigella and 

Mycobacterium, rickettsiae rapidly gain access to the cytosol of infected 

cells through phagosomal vacuole escape. While the involvement for a 

phospholipase A2 (PLA2) in the entry vesicle lysis was for proposed 

(Winkler and Miller, 1982), the completion of rickettsial genomes 

revealed the absence of PLA2-encoding gene. The first phospholipase 

identified within a rickettsial genome was the R. conorii phospholipase D 

(PLD). Its role as virulence factor was demonstrated through the capacity 

of anti-PLD antibodies to inhibit the cytotoxicity on endothelial cells 

(Renesto et al., 2003). 

These data are summarized Figure 1. 

 

 

 

 

 



 27

 

 

 

Figure 1 
Schematic representation of rickettsia physiopathology 

Rickettsiae express outer membrane proteins including rOmpA, 
rOmpB and Sca1 that are known to be involved in the binding to the host 
cells as it is also the case for Adr2. Their eukaryotic receptors were not 
yet identified, expect for rOmpB thought to interact with the membrane 
protein Ku70. The bacteria then invade human endothelial cells via the 
process of induced phagocytosis and rapidly escape from the phagosome 

into the host cytoplasm. Lysis of phagosome is mediated by bacterial 
membranolytic proteins namely phospholipase D (PLD) and hemolysin 
(tlyC). Thus, bacteria gain the cytosolic compartment and possibly the 
eukaryotic nucleus where they replicate. For rickettsiae exhibiting a 
motile phenotype, cell-to-cell spreading in which RickA was thought to 
play a role is observed while expressed over the entire bacterial surface 
(reviewed in Blaraj et al., 2009). 

Specific events for which experimental investigations were achieved 
using mAbs were pointed out in red. 
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II-4. Monoclonal antibodies – Generalities and future prospects 

Among the techniques employed by pathologists to diagnose and 

study infectious diseases there is a long history of the use of mAbs. MAbs 

are generated in vitro either by hybridoma technology or recombinant 

DNA techniques (Kohler and Milstein, 1975). Briefly, to produce mAbs, 

one removes B-cells from the spleen or lymph nodes of an animal that 

has been challenged several times with the antigen of interest (Figure 2). 

These B-cells are then fused with myeloma tumor cells (hybridomas) that 

can grow indefinitely in culture (myeloma is a B-cell cancer). Large 

amounts of mAbs can thus be produced. The antibodies from the different 

clones are then tested for their ability to bind to the antigen (for example 

with a test such as ELISA) or immuno-dot blot, and the most sensitive 

one is picked out. MAbs can be produced in cell culture or in live 

animals. When the hybridoma cells are injected in the peritoneal cavity of 

mice, they produce tumors containing an antibody-rich fluid called 

ascites. Production in cell culture is usually preferred as the ascites 

technique may be very painful to the animal.  

MAbs are homogenous immunoglobulins that, by definition, 

recognize one epitope and have markedly higher specific activity than 

polyclonal serum. Advantages of mAbs formulations are superior in 

homogeneity, constancy, pathogen specificity, low toxicity, enhancement 

of immune function. Advances in biotechnology have enabled the 

development of antibody-based drugs for use first in treating cancer, and 

recently, for treating infectious diseases. The efficacy of such antibodies 

has been demonstrated in various in vitro studies, animal models and 

clinical trials for a variety of both viral and bacterial pathogens.  

Some concrete and efficient applications concerning the fied of 

rickettsiae are described below. 
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Figure 2  

The different steps of the expression of monoclonal antibodies 
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In this work we first focused our interest on a better characterization of 

R. prowazekii adhesins thought to play a major role in adhesion and host 

cell invasion process. Two distinct adhesins, called Adr1 and Adr2, and 

which display a high sequence homology, were initially taken in 

consideration. However, for unexpected reasons, we failed to express the 

recombinant Adr1 (RP827) as a soluble protein. Only the rickettsial Adr2 

encoded by RP828 was cloned, expressed and purified in amount 

sufficient for immunizations. The production of mAbs was achieved 

through the fusion of mouse myeloma cells and spleen cells from RickA- 

immunized mice. Both sensitivity and specificity of the mAbs anti-Adr2 

were evaluated by western blot. Their efficiency to neutralize R. 

prowazekii entry into host cell was then investigated.  

In the second work, we also generated selective mAbs to gain further 

insights into cell-to-cell spreading, another major event of rickettsia 

pathogenesis. More specifically, our aim was to localize RickA in R. 

conorii. While this protein was found able to promote actin 

polymerisation (Gouin et al., 2004), its role in rickettsia motility has been 

the subject of debates (Balraj et al., 2008; Kleba et al., 2010). Based on 

the lack of peptide signal, its localization as a membrane protein is for 

long questionnable. Immunofluorescence and immune electron 

microscopy are the strategies displayed to carefully examine this aspect.  

In the last part of this work and based on the different potential 

rickettsial recombinant protein markers, we investigated the 

discrimination of infection between R. typhi and R. conorii by ELISA. 

These works were described in the 3 publications presented below. 
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Article 1 – Preamble 

 

Rickettsia prowazekii is the etiologic agent of epidemic typhus and 

Brill-Zinsser disease  (Bechah  et al.,  2008). This is a louse-borne human 

pathogen which has caused large outbreaks in situations where lack of 

hygiene and cold weather favour louse proliferation. Humans are exposed 

to R. prowazekii through direct contact with contaminated body louse 

feces. Rickettsia begins its life cycle in the human host by invading the 

endothelial cells via the process of induced phagocytosis. Then, it rapidy 

escapes from the phagosome into the host cytoplasm where it replicates 

and eventually causes the invaded cell to burst (Walker et al., 2007; 

Balraj et al., 2009).  

Understanding the molecular mechanisms responsible for R. 

prowazekii virulence is an important challenge. Using two dimensional 

polyacrylamide gel electrophoresis (2D-PAGE) combined with high 

throughput matrix-assisted laser desorption/ionization time of fight 

(MALDI-TOF) the first proteome reference maps of both R. conorii and 

R. prowazekii were established (Renesto et al., 2005). This achievement 

in turn led to the identification of two putative rickettsial ligands 

recognized by endothelial cells and called Adr1 and Adr2 (Renesto et al., 

2006).  

Recognition of and binding to the host cell is a key step for 

pathogenesis. This is particularly true when considering the fact that these 

strictly intracellular bacteria must enter host cells to replicate and survive.  

Here, in order to get better knowledge about the rickettsial Adr2 adhesin, 

we produced mAbs directed against this protein. For this purpose, the 

recombinant Adr2 protein from R. prowazekii was cloned, expressed and 

purified to immunize mice. The capacity of the anti-Adr2 mAb to inhibit 

rickettsiae-induced cytotoxicity was also investigated.  
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1. Introduction  

Rickettsia prowazekii is the etiological agent of epidemic typhus. This 

bacterium is an obligate intracellular parasite that grows freely within the 

cytoplasm of its eukaryotic host cell rather than in phagosomes or 

phagolysosome [1]. R. prowazekii can be isolated from shell vial cell 

cultures, which has replaced classic animal- and/or embryonated egg–

based culture methods [2, 3]. The pathogen exhibits a slow generation 

time (8–12 h), undergoes steady multiplication and lyses the host cell by 

releasing hundreds of infectious bacteria [3]. Understanding the 

mechanisms involved in this unique intracytoplasmic parasitism was the 

goal of current study. 

 Bacterial cell surface proteins are involved in host-parasite 

interactions and are targeted by the adaptive response of the host immune 

system [4]. Adhesion is a key step for bacterial invasion of host tissues, 

and adhesins are bacterial surface proteins that recognize receptors on 

host cells. The expression of various genes during adhesion can activate 

the pathogenic process [5]. Proteins as well as structural organelles on 

bacterial surface mediate adhesion. The bacterial components may be 

capsule, lipopolysaccharide, toxins and adhesins.  

The R. japonica rOmpB autotransporter proteins function in 

rickettsial adherence to and invasion of Vero cells [6]. These proteins 

belong to a large family of outer membrane proteins known as the surface 

cell antigen (Sca) family [7]. Rickettsial entry into the host cell is 

mediated by the rOmpB protein, which binds to the host cell receptor 

Ku70, a component of the DNA dependent protein kinase [8]. Cholesterol 

also acts as a membrane receptor for R. prowazekii binding [9-12]. The 

rOmpA protein is an immunodominant, surface-exposed autotransporter 
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present only in the rickettsial spotted fever group [12, 13] and may be 

involved in the initial adhesion of R. rickettsii to the host cell [14]. In the 

previous study, two putative rickettsial ligands recognized by host cell 

surface proteins were identified using high resolution 2D-PAGEcoupled 

with mass spectrometry [15]. The results showed that one ligand 

corresponds to the C terminal extremity of rOmp B called β-peptide, the 

second one being a protein of unknown function encoded by RC1281 in 

R. conorii. RC1281 is located downstream of its paralog, RC1282 [15]. 

Their orthologous genes in R. prowazekii are respectively RP827 and 

RP828 encoded proteins share striking homologies. They are respectively 

termed Adr1 and Adr2 for adhesion of Rickettsiae. Because of the 

presence of a signal peptide in Adr1 and Adr2 and their significant 

sequence homology with membrane proteins, they likely form a β barrel 

structure within the outer membrane, a location consistent with their 

putative function as adhesins. Adr1 and Adr2 are ubiquitously present 

within the Rickettsia genus and may play a critical role in their 

pathogenicity. However, the precise role of these proteins has not been 

investigated [15]. 

 First, our attention was to characterize the role of these two adhesins 

Adr1 and Adr2 in rickettsial entry mechanisms to the host cell. However, 

we failed expression of recombinant protein Adr1 (RP827) and only the 

rickettsial gene Adr2 (RP828) could be cloned, expressed and purified in 

the amounts sufficient for mice immunizations. We produced monoclonal 

antibody (mAb) anti-Adr2 which was used to determine the neutralizing 

effect of R. prowazekii entry into host cell. 
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2. Results 

2.1. Distribution of Adr1 and Adr2 within bacterial species 

The sequence similarities of the putative adhesins Adr1 and Adr2 for 

all studied rickettsial species are shown in Suppl. M1. Adr1 and Adr2 are 

conserved across all rickettsial species, and the highest sequence 

similarity was found between R. sibirica and R. africae Adr1 (98%) and 

between R. sibirica and R. rickettsii Adr2 (99%). The similarity between 

Adr1 and Adr2 sequences was about 40% among all rickettsial species. 

When comparing the rickettsial ORFs (Open Reading Frame) coding for 

Adr1 and Adr2 against the NCBI database, using the blastP software, we 

found that these proteins have homologs in other bacterial species (more 

than 30% amino acid sequence identity) (Fig. 1). These homologs were 

found predominantly among the α-proteobacteria, but were also identified 

in γ-proteobacteria such as Escherichia spp. and Salmonella spp. (Fig. 1). 

 

2.2. Identification of the rickettsial adhesins using the overlay assay 

To identify proteins expressed on the surface of R. prowazekii, an 

overlay assay was used. As illustrated in Fig. 2, this technique allows for 

the localization and identification of the rickettsial adhesins. Adr1 

(RP827) and Adr2 (RP828) have a theoretical molecular weight of 23 

kDa and 26 kDa, respectively. To further characterize the adhesins, the 

separation of the protein was carried out in 2D-PAGE and detected by 

silver staining. Following silver staining (Fig. 2A), intensely stained 

protein spots were excised from the gel, and matrix-assisted laser 

desorption ionization time of flight mass spectrometry (MALDI-TOF 

MS) was used for identification and analysis. A comparison of the 2D-

gel/MALDI-TOF MS analysis and the overlay assay demonstrated that 

the spots identified in both methods were the presumed adhesions in R. 

prowazekii, RP827 and RP828. Interestingly, we have missed 
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identification of RP827 in Rprowazekii and homolog of RP828 in R. 

conorii [15]. We identified RC1281 which shares sequence homology 

with RP827 and sca5 (β-peptide) respectively in R. conorii. Only RP828 

and β-peptide were identified in R. prowazekii. Moreover, we identified 

immunoreactive spot m1 which corresponds to prohibitin-2 (Mus 

musculus), but failed identification of other 2 immunoreactive spots m2, 

m3. Thus, this work completes and confirms previous results [15]. 

 

2.2.1. Cloning, expression and purification of rickettsial adhesins 

Initially, two R. prowazekii genes encoding Adr1 and Adr2 were 

selected for cloning and expression experiments by using Gateway 

technology (Invitrogen, Carlsbad, CA, USA). However, despite using 2 

different constructions (with N terminal Histag -DsbC and Histag-

thioredoxine fusion), we have successfully attempted the expression of 

only one protein of R. prowazekii. Thus, Adr2 was purified in soluble 

form in sufficient yield by a Nickel affinity chromatography (suppl. M2) 

for further experiments. In the case of two different Adr1constructions the 

cloning was successful, but expression of recombinant fusion proteins 

(Dsbc- Adr1, trx-Adr1 and trx-Adr2) in E. coli Rosetta (DE3) pLysS 

strain failed. The migration profile of the recombinant fusion protein is 

shown in Fig. 3A (Coomassie staining) showing DsbC-Adr2 fusion 

protein about 55 kDa, which corresponds to 26 kDa Adr2 protein in 

fusion with DsbC (28.4 kDa). The identity of recombinant protein Adr2 

was confirmed by western blot using an anti-His antibody (Fig. 3B) and 

by MALDI-TOF MS, respectively.  

The genes encoding: groEL and RP059 were subsequently cloned 

according to manufacturer’s instructions (Gateway Cloning 

Technology/Invitrogen Life Technologies). Then, expression of clones 

containing an N-His6 tag plus a fusion protein thioredoxin (TRX) [16] 
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that enhances expression of the fusion partner [17, 18] was performed as 

described below. The identity of these proteins was checked by MALDI-

TOF as described for Adr2. Purified recombinant proteins were used to 

generate mAbs included as controls in 137 neutralization assay (see 4). 

 

2.3. Production of monoclonal antibodies against Adr2 

Monoclonal antibodies (mAbs) were generated against the recombinant 

R. prowazekii Adr2. The antigenic profile of the recombinant protein was 

analyzed using western blots and silver staining. In a western blot, the 

monoclonal antibody obtained from immunized mice with R. prowazekii 

Adr2, recognized proteins at the positions corresponding to the theoretical 

location of Adr2 (Fig. 4A). The corresponding silver-stained spot was 

identified by MALDI-TOF MS (Fig. 4B) as Adr2 protein. 

 

2.4. Inhibition of R. prowazekii-induced cytotoxicity with anti-Adr2 

monoclonal antibody 

When R. prowazekii was pretreated for 20 min with increasing titers 

of anti-Adr2 monoclonal antibody and then added to L929 cells, cell 

cytotoxicity measured after 1h of incubation was 37% (dilution 1:100) 

and 40% (dilution 1:10), respectively. At the same time of sampling, 

inhibition of rickettsial entry assessed by rOmpB mAb was 53% (dilution 

1:10) and 33% (dilution 1:100), respectively (Fig. 5). The % of inhibition 

assessed by negative specificity controls was about 5% for both mAbs: 

groEL and RP059. However, the greatest value of inhibition was obtained 

for 8h sample with the % of inhibition for Adr2 about 50% (dilution 1:10) 

and 43% (dilution 1:100). Indeed, the values obtained for rOmpB were 

57% (dilution 1:10) and 43% (dilution 1:100). This inhibition was 

antibody concentration dependent for both Adr2 and rOmpB at 8h of 

incubation. Indeed, the % of inhibition was less than 10% for both 
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controls: GroEL and RP059. We observe decreased % of inhibition for 

both rOmpB and Adr2 at the time of sampling 24h, 120h and 168h and 

ranging from 38% to 18% (Adr2, dilution 1:10), from 36% to 8% (Adr2, 

dilution 1:100) and 48% to 36% (rOmpB, dilution 1:10), 42% to 17% 

(rOmpBdilution 1:100), respectively. No significant variation was 

observed for GroEL and RP059, except at 24h time of sampling, the 

inhibition was 20% for groEL. The negative control consists on 

uninfected cells incubated with buffer only and showed noisy background 

of non specific cytotoxicity which ranged about 30%. In addition, Adr2 is 

sufficient to mediate R. prowazekii entry into the cell at early stage of 

mammalian cell infection. 

 

3. Discussion 

In the present study, first, we selected in R. prowazekii genome the 

genes encoding for Adr1 (RP827) and Adr2 (RP828) based on previous 

work [15], sequenced and constructed the phylogenical tree showing the 

distribution of putative Adr1 and Adr2 within bacterial species including 

Rickettsiae, α- and γ-proteobacteria. Secondly, we identified in R. 

prowazekii proteome adhesins Adr1 and Adr2 and showed inhibition of 

R.prowazekii entry into the host cells by using monoclonal antibodies 

generated by mice immunization with recombinant fusion protein Adr2-

Dsbc, rOmpB [19], as well as with recombinant proteins TRX-GroEL 

(RP626) and TRX-spo0J (RP059), respectively. All examined Rickettsia 

spp. share these both adhesins (Suppl. M1). Previous studies reported 

other adhesins differentially expressed in Rickettsia like the surface cell 

antigen (sca) family proteins and the outer membrane proteins, rOmpA 

and rOmpB [14, 20]. These genes have been used to study the 

phylogenetic relationships between Rickettsia spp. The Adr1 and Adr2 

gene sequences show some heterogeneity between Rickettsia spp., in 
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accordance with the four distinct rickettsial groups (e.g., the spotted fever 

group, the typhus group, R. canadensis and R. bellii). A highly resolved 

phylogenetic tree at the group level was constructed using the RP828 

sequences (Fig. 1).We used overlay assays along with a proteomic 

approach to identify the adhesins [21]. From a crude extract, proteins 

were separated using 2D-PAGE with 6–11 strips (Fig. 2), which allowed 

for better resolution of the protein than the previously optimized 

conditions [15]. This approach allows for the localization and 

identification of the rickettsial adhesins using MALDI-TOF MS. Both 

RP827 and RP828 were detected. We observed the same pattern of results 

using the overlay assay, as seen in Fig. 2. Therefore, the protein 

identification was confirmed using both an overlay assay and western 

blot.  

The expression and purification of recombinant Adr2 (RP828) was 

performed as previously described [18]. Rickettsiae are obligate 

intracellular growth requirement of the bacteria poses a challenging 

obstacle to their genetic manipulation [22, 23]. Numerous expression 

vectors are available, and the choice of a vector depends upon the protein 

to be expressed [22]. We have tested two different constructions in our 

study: protein in fusion with DsbC and Trx, respectively. Only this DsbC 

-RP828 could be expressed in vivo. We have also chosen an improved E. 

coli strain for codon usage (Rosetta pLysS). Rare codons are not only 

strongly associated with low yield of protein expression due to ribosome 

stalling and abortive translation [24, 25], but also implicated in frameshift 

and amino acid misincorporation [26]. Despite all these efforts to 

overcome technical limitations, from both selected initially adhesins 

(RP827 and RP828), we have successfully attempted the expression of 

only RP828 in fusion with DsbC. The purification of a soluble RP828 in 

large amounts required for mice immunization, has also revealed a 
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difficult task, but finally achieved by using nickel affinity 

chromatography.  

BLAST and phylogenetic analyses demonstrated that RP827 and 

RP828 have homologs in other bacteria from different phyla. Some of 

these bacteria, such as Brucella spp. and Salmonella spp., are intracellular 

pathogens that bind to and enter the host cell. Adhesins have been shown 

to play a major role in the early steps of infection: they target a host cell 

receptor, allowing the bacteria to colonize or become internalized in the 

host cell. Thus, adhesins are mainly involved in interactions with the host 

cell to promote entry [27]. However, the inhibition of rickettsiae induced 

cytotoxicity with monoclonal anti-Adr2 antibody has showed a greatest 

impact on bacterial cell entry at 8h post- infection (around 50% of 

inhibition) and then decreased progressively to attempt 18% of inhibition 

at day 7. These, correlated to the inhibition of rickettsiae-induced 

cytotoxicity with monoclonal anti-rOmpB antibody. Thus, Adr2 is 

sufficient to mediate R. prowazekii entry into the cell at early stage of 

mammalian cell infection. However, the method used in this work 

allowed only global appreciation of this phenomenon and remains the 

focus on more detailed mechanisms of further studies. Thus, this result is 

expected if we consider rOmpA, rOmpB and RP827 are also involved in 

entry mechanisms of Rickettsiae into the host cell. Thus far, rOmpA 

(sca0) and rOmpB (sca5), have been shown to participate in adhesion of 

Rickettsiae to mammalian cells in vitro [8, 14, 20, 28]. Recently, 

Cardwell et al., [29] shown that Sca2 protein is sufficient to mediate 

adherence to and invasion of R. conorii infected cultured mammalian 

epithelial and endothelial cells. Inhibition (ca 30%) of these phenotypes 

with purified soluble Sca2 protein confirms that invasion of host cells is 

specifically mediated by Sca2 [29]. However, the % of protein sequence 

identity is about 25% for R. typhi, which is like R. prowazekii belongs to 
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Typhus group (TG) [29]. Its role within TG remains to be elucidated. The 

ability of R. prowazekii to induce internalization into mammalian cells is 

likely governed by numbered adhesin-receptor interactions which 

involved several partners as RP827, RP828, rOmpB proteins, Sca2 

protein (Fig. 6). Indeed, the identification of mammalian receptors 

involved in adhesins-mediated uptake of mammalian cells is should be 

undertaken in ongoing studies.  

Monoclonal antibodies against adhesins are an excellent tool to study 

these interactions between rickettsial adhesins and host mammalian 

receptors, may also be an efficient therapeutic agent to block binding to 

target cells and inhibit bacterial entry into the host cell. NadA-specific 

antibodies have been effective in the control of N. meningitidis [30]. 

Rickettsial surface proteins have been used to produce monoclonal 

antibodies that conferred protective immunity in guinea pigs and mice 

[14]. In addition, prophylactic vaccination with adhesins can prevent 

bacterial infection [31]. Despite that the monoclonal antibodies against 

RP828 produced in this study have not inhibited efficiently the 

adhesion/entry of Rickettsia to the host cell; however, the further 

orientations should focus on infectivity neutralization assays in vivo. 

Monoclonal antibodies may also be used to elucidate the Rickettsial 

physiological and pathological mechanisms. In Orientia tsutsugamushi, a 

monoclonal antibody was used to characterize its life cycle in endothelial 

cells [30]. Adr1 and Adr2 may act as broad-spectrum vaccine targets for 

all Rickettsia spp. since they are well conserved in the Rickettsia spp. 

examined. 
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4. Conclusion 

Adhesion and invasion are the crucial stages of obligate intracellular 

infection of host cells, and adhesins are critical in bacterial virulence. We 

shown that Adr2 is probably one of several factors involved in 

adhesion/entry of R. prowazekii into host cell. Further investigations 

involving Adr2 and other adhesins may lead to the development of 

antimicrobials to prevent the emergence and recurrence of infections. 

 

5. Materials and Methods 

5.1. Propagation of R. prowazekii and DNA purification 

R. prowazekii (URRPM22) was propagated at 32°C in monolayers of 

murine fibroblast L929 cell (ATCC CCL 1, European Collection of Cell 

Cultures 85011425) in Eagle’s minimum essential medium (MEM, 

Invitrogen, Paisley, UK) supplemented with 2% fetal bovine serum (FCS, 

Gibco) and 2% L-glutamine (Gibco). Total genomic DNA was extracted 

from infected cells using the QIAamp DNA Mini Kit (Qiagen, Hilden, 

Germany). 

 

5.2. Cloning 

The R. prowazekii RP827 , RP828, groEl, RP059 genes were 

amplified using primers designed for Gateway cloning (Table 1) and the 

Expand High Fidelity PCR System (Roche Diagnostics, Maylan, France). 

Genes were amplified with 30 cycles of denaturation for 30 sec at 94°C, 

annealing for 45 sec at 50°C and elongation for 2 min at 68°C, followed 

by termination for 5 min at 68°C in a PE 9600 thermal cycler (Applied 

bio systems, Courtaboeuf, France). The resulting PCR products were 

purified through PEG precipitation and inserted into the pDONR201 

vector (Gateway Cloning System, Invitrogen, USA) by the BP 
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recombination reaction, and according to the manufactureۥr s instructions. 

The products of the recombination reactions were transformed into 

competent DH5α cells and selected on LB-agar plates containing 

kanamycin (50 µg/mL). Clones were confirmed using sequencing and the 

dRhodamine Terminator Cycle Sequencing Ready Reaction Kit (Applied 

Biosystems, Foster City, Ca, USA). The second step of Gateway cloning 

was gene transfer into a destination vector (pDest17) by the LR reaction 

(Gateway Cloning System, Invitrogen, Carlsbad, CA, USA). The 

resulting expression plasmids were transformed into competent DH5α 

cells, selected on LB-agar plates with ampicillin (50 µg/mL) and 

confirmed by PCR. 

 

5.3. Expression and purification 

The expression and purification of recombinant proteins were 

performed as previously described [18, 32]. Briefly, the plasmids 

encoding Adr1 or Adr2, as well as groELand RP_059 were used to 

transform E. coli strain Rosetta (DE3) pLysS (Novagen, Madison, WI, 

USA). For expression of the recombinant proteins, bacteria were grown 

in the auto-induction medium ZYP5052 (1.4 liters) at 37°C for 4 h at 200 

rpm [33]. Following this incubation, the temperature was lowered to 

17°C, and the cells were pelleted after 18 h. The bacterial pellet was 

resuspended in lysis buffer (50 mM Tris, 300 mM NaCl, 10 mM 

imidazole pH 8.0, 0.25 mg/ml lysozyme and 1 mM PMSF) and frozen at -

80°C for at least 1 hour. After thawing the bacterial pellets and adding 

DNAse I (2µg/ml) and MgSO4 (20 mM), the lysed cells were centrifuged 

to separate the soluble fraction from the bacterial debris. The protein was 

purified using a nickel affinity column. For this purpose, the supernatant 

containing the recombinant protein DsbC-Adr2 was loaded on a 5-ml 

HisTrap crude nickel column (GE Healthcare, Chalfont St. Giles, UK) 
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equilibrated in buffer A (50 mM Tris pH 8.0, 300 mM NaCl and 10 mM 

imidazole) (Suppl. M2). The column was then washed with five volumes 

of buffer B (buffer A with 500 mM imidazole) to remove endogenous 

nickel-binding proteins. The protein was eluted with buffer C (buffer A + 

250 mM imidazole). The protein-containing fractions were pooled and 

stored in 50% glycerol at -20°C. The identity of the isolated protein was 

confirmed using mass spectrometry. 

 

5.4. Production of mAbs against Adr2 (RP828), rOmpB, groEL and stage 

sporulation protein (RP059) 

The monoclonal antibody (MAb) rose against rOmpB was produced 

as previously described [19]. The remaining MAbs were produced by 

inoculation of 6- to 8-week-old immunocompetent BALB/c mice 

(Charles River Laboratories, St. Aubin Les Elbeuf, France) with a total of 

25 µg of purified recombinant proteins Adr2, groEL, RP059 respectively, 

with CpG adjuvant, respectively, as described previously [34,35]. Three 

days after the last injection, the mice were euthanized, and the spleen was 

removed aseptically. Splenocytes were isolated and prepared for fusion 

with mouse myeloma cell line NS-1, as described [35]. Hybridoma clones 

were selected in RPMI medium (Invitrogen, Carlsbad, CA, USA) 

containing 15% FCS supplemented with HAT medium (Invitrogen, 

Carlsbad, CA, USA). Colonies were screened using an ELISA after 10 

days. The isotypes of the MAbs were determined with an ImmunoType 

Mouse Monoclonal Antibody Isotyping kit with antisera to mouse 

immunoglobulin M (IgM), IgA, IgG1, IgG2a, IgG2b, and IgG3 (Sigma 

ChemicalCo.). The antiserum was affinity- purified by use of 

MAbTrap™ Kit (GE Healtcare) according to the manufacturer’s 

instructions. Serum levels of of recombinant protein-specific IgG was 

determined by ELISA, as previously described [35]. The higher dilution 
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of each affinity- purified antibody recognizing the recombinant protein 

was estimated. In parallel, the protein content in eluted fraction was 

estimated by modified Bradford method (Bio-rad), as previously 

described [37]. The protein concentration in elution fraction was: 11.96 

µg/ml (Adr2), 8.39 µg/ml (rOmpB), 8.23 µg/ml (GroEL), 9.37 µg/µl 

(RP059) respectively. The specificity of mAbs raised against groEl and 

RP059 was assessed by immunoblotting (Suppl.M3). 

 

5.4.1 ELISA 

ELISAs was performed as previously described [36] with minor 

modifications. Microtiter plates were coated seperatly with 40 µg of each 

recombinant protein from this study in 100 µl of carbonate buffer 

overnight at 4°C. The coated wells were washed with phosphate buffered 

saline (PBS) containing 0.05% Tween 20 and blocked with 100 µl of 3% 

non-fat milk in PBS for 1 hr at room temperature (RT). Hybridoma 

supernatant (50 µl) was then added as a primary antibody and the plates 

were incubated for 1 hr at RT before washing with PBS supplemented  

with 0.1% Tween 20. Following the washes, 100 µl of goat anti-mouse 

biotin was added, and the plates were incubated for 1 hr at RT washed 

with 0.1% Tween 20 in PBS. The plates were then incubated with 

streptavidin for 1 hr and washed with 0.1% Tween 20 in PBS. Following 

this wash, 100 µl of ortho-phenylenediamine (OPD) was added, and the 

plates were incubated for 2–3 min at RT. After 10 min of incubation with 

OPD at room temperature, the reaction was stopped with 100 mL/well 

NaOH 1 M. Color development was assessed with a microplate reader 

(Multiskan EX, Labsystems, Thermo Fisher Scientific, Waltham, MA) at 

a wavelength of 490nm. Any samples exhibiting absorbance above or 

similar to the positive control was considered as positive. A positive 
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control consisted in polyclonal positive serum of R. prowazekii and a 

negative control consisted in pre-immune negative serum. 

 

5.5. Sample preparation for 2D-electrophoresis 

R. prowazekii RP22 was propagated in a confluent monolayer of 

murine fibroblast L929 cell line and purified on a renografin gradient as 

previously reported [37]. Purified bacteria were lysed by sonication in a 

solubilizing buffer (7 M urea, 2 M thiourea, 30 mM Tris, 4% w/v 

CHAPS) and centrifuged (10,000×g, 20 min, 4°C) to remove cell debris 

and unbroken cells. Soluble proteins were precipitated using the PlusOne 

2-D Clean-Up Kit (GE Healthcare, Chalfont St. Giles, UK). The final 

pellet was resuspended in solubilizing buffer, and the protein 

concentration was determined using the Bio-Rad DC Protein Assay. 

 

5.5.1. 2D electrophoresis and silver staining 

Immobiline DryStrips gels (13 cm, pH 6–11, GE Healthcare, Chalfont 

St. Giles, UK) were rehydrated overnight in 250 µl rehydration buffer (7 

M urea, 4% w/v CHAPS, 12 µl/ml DeStreak, 0.5% v/v immobiline pH 

gradient (IPG) buffer (GE Healthcare, Chalfont St. GilesUK) containing 

30 µg of solubilized proteins. IEF was carried out according to the 

manufacturer’s protocol (IPGphor II, GE Healthcare, UK). Prior to 

electrophoresis in the second dimension, the strips were equilibrated for 

15 min in equilibration buffer (30% v/v glycerol, 2% w/v SDS, 6 M urea, 

50 mM Tris-HCl, bromophenol blue, pH 8.8) containing 65 mM DTT. 

This step was then repeated using equilibration buffer supplemented with 

100 mM iodoacetamide. The strips were then embedded in 0.5% agarose, 

and the proteins were resolved by electrophoresis through a 10% SDS-

polyacrylamide gel (EttanTM DALT, GE Healthcare, Chalfont St. Giles, 

UK) at 5 W/gel for 30 min, followed by 17 W/gel for 4–5 h. Following 
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electrophoresis, the gels were silver-stained, and digital images were 

generated using transmission scanning (ImageScanner, GE Healthcare, 

Chalfont St. Giles, UK) to identify the proteins. Spots excised from the 

gel were identified using MALDI-TOF MS and a Bruker Ultraflex 

spectrometer (Bruker Daltonics, Wissembourg, France) as described 

previously [38]. 

 

5.5.2. Overlay Assay 

Overlay assays were performed as previously described [15]. R. 

prowazekii extracts (30 µg) were separated using 10% SDS-PAGE. Both 

silver staining and an overlay assay were then performed. Resolved 2D 

gels were transferred onto nitrocellulose membranes (Trans-Blot transfer 

medium, pure nitrocellulose membrane, Bio-Rad, Hercules, CA, USA) 

for 2 h using a semi-dry transfer unit (Hoefer TE 77, GE Healthcare, 

Chalfont St. Giles, UK). Membranes were blocked in PBS supplemented 

with 0.2% Tween 20 and 5% non-fat dried milk (PBS-Tween- Milk) for 

1.5 h. After blocking, the membranes were incubated for 1.5 h at 4°C 

with biotinylated Vero cells (1:100). The reactive spots were detected 

using peroxidase-labeled streptavidin (1:1000; Becton-Dickinson, San 

Jose, CA) and chemiluminescence (ECL; GE Healthcare, Chalfont St. 

Giles, UK).  

 

5.6. Western blot 

Following the transfer of rickettsial proteins, the nitrocellulose 

membranes were blocked in PBS-Tween-Milk for 1 h before incubation 

with the serum of a mouse immunized with recombinant Adr2 (1:100 

dilution in PBS-Tween-Milk). Following a1 h incubation, the membranes 

were washed three times for 10 min in 0.2% PBS-Tween-20 and probed 

with a 1:1000 dilution of a horseradish peroxidase–conjugated goat anti-
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mouse secondary antibody (GE Healthcare, Chalfont St. Giles, UK). The 

blots were washed with 0.2% Tween 20 in PBS, and chemiluminescence 

was used to detect protein bands (ECL, GE Healthcare, Chalfont St. 

Giles, UK). The resulting signal was detected on Hyperfilm ECL (GE 

Healthcare, Chalfont St. Giles, UK) using an automated film processor 

(Hyperprocessor, GE Healthcare, Chalfont St. Giles, UK). We used to 

work with freshly transferred proteins into the nitrocellulose membrane. 

We have never used twice the same membrane for Western blotting 

experiments. 

 

5.7. Inhibition of R. prowazekii-induced cytotoxicity on L929 cells 

L929 cells grown in MEM supplemented with 4% fetal calf serum 

and 2 mmol/L L-glutamine, in microtiter plates, were inoculated with 

3000 pfu of R. prowazekii/well [35, 39]. To examine whether Adr2 

monoclonal antibody could inhibit the cytotoxicity of R. prowazekii, 

bacteria purified on sucrose gradient were incubated for 20 min at 4°C, 

with increasing dilutions of antibody, before incubation with L929 cells 

[35]. After 1h, 8h, 24h, 120h (5 days) and 168h (7 days) of incubation at 

37°C in 5% CO2, the cell culture supernatant was removed, and cell 

monolayer were incubated for 1h at 37°C with 50 µl of neutral red dye 

(0.15% in saline [pH 5.5]). The viability of bacteria has been checked by 

inoculation of cell monolayer with the remaining cell culture supernatant. 

The same conditions were applied for specificity controls: (i) positive 

control performed with rOmpB mAb [19], which is known that rOmpB 

protein is involved in rickettsial entry [12], (ii) negative controls 

performed with mAbs raised against GroEL and RP059 which are most 

likely do not involved in cell cytotoxicity. Dye not absorbed by the viable 

cells was removed by 2 washes with PBS (pH 6.5). Finally, the dye 

absorbed by the cells was extracted by the addition of 100 µl of ethanol in 
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PBS (pH 4.2), and the optical density at 492nm was measured with a 

microplate reader (Multiskan EX, Labsystems, Thermo Fisher Scientific, 

Waltham, MA). At least three independent assays were performed. The 

results were expressed as a percentage of cytotoxicity obtained with R. 

prowazekii incubated with the buffer alone. The graphs were compiled 

with GraphPad Prisme software (version 3.0, GraphPad Software, San 

Diego, CA, USA). 
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Figure 1 
Distribution of Adr1 and Adr2 in bacterial species 
Rickettsial Adr1 (RP827) and Adr2 (RP828) ORFs were compared 
against the NCBI database using the BLASTP software, and homologs in 
other bacterial species were identified and it was shown in phylogenetic 
tree. 
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Figure 2 
Recognition of adhesins Adr1 and Adr2 using the overlay assay 
Rickettsial proteins were separated in the first dimension over a pH 
gradient (pH of 6–13) and then separated using SDS-PAGE in the second 
dimension. The 2D gel was silver stained for MS based identification of 
the spots (A) or transferred to a nitrocellulose membrane and subjected to 
an overlay assay (B). 
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Figure 3 
Purification of the rickettsial adhesin Adr2 
During the purification process, different fractions of the protein extract 
were separated using SDS-PAGE and stained with Coomassie blue (A). 
The identity of purified protein was confirmed using western blot with an 
anti-his antibody (B). T = Total, S = Soluble, W = Wash, E = Elution. 
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Figure 4 
 Specificity of monoclonal antibodies against Adr2 
Detection of rickettsial Adr2 (RP828) using monoclonal antibody 
obtained from immunized mice. The R. prowazekii protein sample was 
separated using 2D-electrophoresis and visualized using silver staining 
(B) or western blot with anti- Adr2 (RP828) monoclonal antibody (A) 
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Figure 5 
Inhibition of R. prowazekii MadridE-induced cytotoxicity with anti-
Adr2 monoclonal antibody 
R. prowazekii MadridE (3x103 bacteria per well) was pretreated for 20 
min with increasing titers of anti -Adr2 (RP828), anti-rOmpB, anti-groEL 
and anti-RP059 mAbs before infection on L929 cells at the sampling 
points post-infection: 1h, 8h, 24h, 120h (5 days) and 168h (7days). The 
percentage of remaining viable L929 cells was estimated by staining with 
neutral red at each time of sampling. To estimate the relative cytotoxicity 
levels, the cytotoxicity level of R. prowazekii MadridE pretreated with 
buffer alone was considered to be 100%. The negative control consists on 
uninfected stained L929 cells. The % of inhibition of rickettsial 
cytotoxicity was calculated for each mAb. 
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Figure 6 
Model of R. prowazekii interaction with mammalian cells 
The rickettsial entry to the host cell is likely governed by interactions 
between rOmpB and its receptor Ku70, most likely by the adhesins Adr1 
and Adr2, by unknown mechanism. Based on the model of SFG 
Rickettsiae, we can suppose that Sca2 is also involved in bacterial entry; 
however, Sca2 of TG shares only 25% of homology with SFG Sca2 
protein. Mammalian cholesterol is involved in bacterial interaction. 
Following rickettsia entry into host cells through induced phagocytosis, 
bacteria rapidely escape from the vacuole (possible role of PLD, TlyC) to 
gain the cytosolic compartiment and possibly the nucleus of mammalian 
cell where R. prowazekii replicates. The mechanism of cell-to-cell 
spreading for immobile TG Rickettsiae remains unknown. The rickettsial 
secretion system T4SS translocates effectors that should contribute to the 
intracellular survival of R. prowazekii.  
 
 
 



Table 1 
 
Gene Protein Strain Primers used
RP827 Dsbc-Adr1 MadridE/RP22 F:5'-GGGG ACA AGT TTG TAC AAA AAA GCA GGC Ttcgatcatgatatgaattgttctgtag -3'

R:5'-GGGG AC CAC TTT GTA CAA GAA AGC TGG GTC CTA catatcaaatcttaatcctgccattaag- 3'
RP828 DsbC-Adr2 MadridE/RP22 F:5'-GGGG ACA AGT TTG TAC AAA AAA GCA GGC Ttcgagtgcattgataatgaatgg- 3'

R:5'-GGGG AC CAC TTT GTA CAA GAA AGC TGG GTC CTAtataccaaatcttacacctactgtc- 3'
RP827 TRX-Adr1 MadridE/RP22 F:5' GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTACTTCCAGGGT-GATCATGATATGAATTGTTCTGTAGATTCA-3'

R:5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCttatta- CATATCAAATCTTAATCCTGCC- 3'
RP828 TRX-Adr2 MadridE/RP22 F:5' GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTACTTCCAGGGT-GAGTGCATTGATAATGAATGG- 3'

R:5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCttatta-TATACCAAATCTTACACCTACTGTC-3'

60 KD 
CHAPERONIN
(groEL) RP626 TRX-groEL MadridE F:5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTACTTCCAGGGT-ACAACGAAACTTATTAAACACG-3'

R:5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCttatta-GAAGTCCATACCACCCATGCCAC-3'
Stage 0 
sporulation
protein J (spo0J) 
RP059 TRX-spo0J MadridE F:5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTACTTCCAGGGT-GTGAAAAATAAAGGGCTAGGGC-3

R:5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCttatta- ATTTAATTTTGATAATATTAAAT-3'

 
 
 
 
 
 
 
 



Supplementary material 
Suppl.M1: Similarity of Adr sequences in Rickettsia spp. 
The sequences similarity of the putative adhesins Adr1 and Adr2 for all 
sequenced rickettsial species. 
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Suppl.M2: The sheet of Adr2 recombinant protein production 
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Suppl.M3: SDS-PAGE and corresponding Western blot performed 
with mAbs anti-groEL and anti-RP059. 
The recombinant protein (10µg) groEL and RP059 respectively were 
resolved on 10% acrylamide SDS-PAGE. The corresponding Western 
blot was performed with either anti-GroEL or anti-RP059 monoclonal 
antibody at the dilution 1:10. 
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 Article 2 – Preamble 
 
 
 

SFG rickettsiae are obligate intracellular pathogens able to manipulate 

the actin cytoskeleton, thus enabling cell-to-cell spreading during 

infection. The genomic comparison of motile SFG with the non-motile 

TG bacteria allowed  to evidenced that bacteria from the SFG, able to 

form actin comets and  to move in the cytoplasm, encode for a protein 

sharing a domain organization similar to the actin assembly-inducing 

protein  ActA, responsible for actin polymerisation in Listeria species 

(Ogata H et al., 2001). It was later demonstrated that the R. conorii 

RickA can effectively activate Arp2/3 and induce actin polymerization in 

vitro (Gouin et al., 2004, Jeng et al., 2004). The precise molecular 

mechanisms leading to RickA-mediated rickettsia motility were not 

elucidated. First, and based on the lack of peptide signal, its localization 

as a membrane protein was for long questionnable. In addition, and while 

bacterial factors involved in motility are usually polarized, in the case of 

RickA the polarization was not clearly determined (Carlsson and Brown, 

2006, Stevens et al., 2006). 

The aim of this work was thus to carefully analyze the localization of 

RickA, using R. conorii as model. Two approaches were used starting by 

immunofluorescence assays on infected cells. Localization was then 

refined by immunogold coupled to transmission electron microscopy 

analysis.  The results obtained were depicted in the paper presented 

above. 
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INTRODUCTION  

Rickettsiae are bacteria highly specialized for obligate intracellular 

existence in both mammalian cells and arthropod vectors (Raoult and 

Roux, 1997; Winkler, 1990). Historically, they have been classified into 

three groups based on immunological cross-reactivity and vector species: 

“spotted fever group” (SFG) with agents R. conorii, R. rickettsii and R. 

raoultii, the “typhus group” (TG) with R. prowazekii and R. typhi and the 

“scrub thyphus” (STG) (Raoult and Roux, 1997). However, this 

classification is probably simplistic, because some Rickettsia spp. do not 

conserved these criteria of classification (Merhej et al., 2009; Merhej and 

Raoult, 2010). For example, SFG rickettsiae are definied as living in 

ticks, but exceptions include R. akari (transmitted by mites) and R. felis 

(transmitted by cat and dog fleas) (Merhej et al., 2009; Merhej and 

Raoult, 2010). Recently, a “transitional group” including these 2 

rickettsial species (R. felis and R. akarii) has been proposed (Gillespie et 

al., 2007; Gillespie et al., 2010; Merhej et al., 2009). The SFG group 

bacteria, in contrast to TG, have the capacity to move from cell to cell 

and within the cells.  

Exploitation of the host-cell actin cytoskeleton is crucial for several 

microbial pathogens to enter and disseminate within cells, thus avoiding 

the host immune response (Carlsson and Brown, 2006; Stevens et al., 

2006).  

It was proposed that actin in rickettsial tails is nucleated by host Arp2/3 

complex and the bacterial proteins rickA (Balraj et al., 2008a; Gouin et 

al., 2004) and recently discovered Sca2 (Haglund et al., 2010). The 

rickettsial gene rickA of SFG Rickettsiae was identified through a 

comparative analysis of R. conorii and R. prowazekii genome (Ogata et 

al., 2001).  
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It encodes for a 517- amino acid protein rickA (Gouin et al., 2004; Gouin 

et al., 2005) which shares some similarities in its carboxy-terminal region 

with human WASP family proteins able to activate Arp2/3 in vitro 

(Gouin et al., 2004; Jeng et al., 2004). Because genetic manipulations are 

still difficult, the role of rickA in the motility of Rickettsiae has not been 

formerly demonstrated (Balraj et al., 2008b).  

Its function was in part supported by the absence of motility of R. 

peacockii, a strain for which rickA is disrupted by an insertion sequence 

IRSpeI (Simser et al., 2005). RickA activates the Arp2/3 complex in vitro 

and stimulated motility of rickA-coated beads in Xenopus extracts (Gouin 

etal., 2004; Jeng et al., 2004). Therefore, several points remain unclear. 

RickA was found to be expressed on the bacterial surface (Gouin et al., 

1999; Gouin et al., 2004), but the amino-acid sequence of rickA does not 

display any signal sequence or C-terminal motif that could act as a 

membrane anchor (Gouin et al., 2004). The experiences with rickA 

transfected cells designed to drive expression of the protein in the inner 

face of the plasma membrane, showed that rickA is a surface protein 

expressed on R. conorii involved in Arp2/3 activation and inducing actin 

polymerization (Gouin et al., 2004). It has been shown that rickA protein 

was expressed on the surface of R.conorii using immunofluorescence 

(IFA) (Gouin et al., 2004) and in R. raoultii by using monoclonal 

antibody through western blot (Balraj et al., 2008c).  

However, it is unknown how rickA is addressed to the bacterial surface 

and whether the type IV secretion system predicted by the genome 

sequence is involved in targeting to the surface (Gouin et al., 2004) 

(Figure 1). Indeed, the ultrastructural studies of fine structure of 

Rickettsiae by using electron microscopy were conducted in late 1980thies 

(Hase, 1985; Silverman et al., 1974; Silverman et al., 1978; Silverman, 

1991; Silverman and Wisseman, Jr., 1978) and aimed to compare the 
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physical conformation of the outer envelope of Ricketsiae by electron 

microscopy, revealed some differences within Rickettsiae from TG and 

SFG when compare to O. tsutsugamushi (Silverman et al., 

1978;Silverman and Wisseman, Jr., 1978). The TG and SFG Rickettsiae 

shared together with E. coli very similar configuration of the outer 

envelopes (Figure 2) (Silverman and Wisseman, Jr., 1978). However, 

together with O. tsutsugamushi, the SFG Rickettsiae possess additionally 

to “microcarpuscular layer”, the slime layer, external to the cell wall 

which is probably the locus of major group-specific antigens (Silverman 

et al., 1978). Based on the model of R. conorii surface expressed protein 

(Gouin et al., 2004), the aim of the present study was to demonstrate the 

surface localization of rickA protein in the R. conorii by using combined 

approaches: immunofluoresce assay using anti-rickA monoclonal 

antibody (Balraj et al., 2008c) and TEM analysis through immunogold 

labeling. 

 

MATERIALS AND METHODS 

Eukaryotic cell lines and bacterial strains 

R. conorii strain seven were propagated within murine fibroblast 

monolayers, L929 cell line (ATCC CCL 1) or African green monkey 

kidney cells (Vero cell, ATCC C1587) in Eagles minimum essential 

medium (MEM, Gibco, Invirtogen, Paisley, UK) supplemented with 4% 

foetal calf serum (FCS, Gibco) and 1% L-glutamine (Gibco) in 150 cm2 

tissue culture flasks at 32ºC as described (Balraj et al., 2008b). The 

rickettsiae were harvested when the Vero cells were engorged by bacteria 

(3 to 7 days), which corresponded to exponential phase of growth. 

Supernatant of infected rickettsial cell culture, containing rickettsiae and 

detached host cells, were collected and centrifuged at 200 x g for 10 min 

to eliminate cells and free rickettsiae were pelleted by 8000 x g for 10 
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min. This bacterial sample was used to prepare immunofluorescence 

assay (IFA) slides. Bacterial growth was monitored by Gimenez staining 

(Gimenez, 1964). Additionally, the quantification of bacterial DNA has 

been performed as internal control of replication. The standard curve used 

in routine diagnostic was applied for DNA quantification at the same 

sampling times as for monitoring by Gimenez staining. The specific 

primers to detect genomic DNA from R. conorii were used, coding for 

putative acetyltransferase F: 5’-TTG-GTAGGC- AAG-TAG-CTA-AGC-

AAA-3’ and R: 5’-GGAAGT- ATA-TGG-GAA-TGC-TTT-GAA-3’, 

sondeFAM-GCG-GTT-ATT-CCT-GAA-AAT-AAG-CCGGCA TAMRA 

(Bechah Y et al., 2011;Bechah et al., 2007). 

 

Immunofluorescence assay 

Anti-RickA monoclonal antibody was previously described (Balraj et al., 

2008c). Bacterial suspension was spotted on 18well slides using pin head 

nib and slides were air dried and fixed with 100% methanol for five 

minutes at room temperature (RT). Slides were incubated for 30 minutes 

at RT in humidified condition with mouse monoclonal anti-rickA 

antibody (1:100) diluted in PBS-Tween (0.1%) with bovine serum 

albumin (BSA 3%, Euromedex, France).  

After two times PBS-Tween (0.5%, 5 min each) washes, bound antibody 

were probed with antimouse IgG conjugated biotin (1:1000; Beckman 

Coulter Company, France) diluted in PBS-Tween (0.1%) with BSA (3%) 

for 30 minutes at RT. Further washing was performed in PBS-Tween 

(0.5%, 5 min each) for two times. Then slides were incubated with 

streptavidin conjugated to fluorescein isothiocyanate (1:500; Bioscience 

BD pharmingen, France) for 30 minutes at RT. After two washes with 

PBS-Tween (0.5%, 5 min each) slides were air-dried and cover slips were 

mounted on slides with DAPI (4, 6- diamidino-2- phenylindole, Prolong 
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Gold Antifade Reagent. Molecular Probes) from a ready to use solution 

and examined under an olympus BX-51 epifluorescence microscopy at X 

100 magnification for image analysis. A naive mouse serum was used for 

negative control. Table 1 summarized the controls that were used in this 

study. 

 

Transmission electron microscopy 

Transmission electron microscopy (TEM) analysis was conducted on 

L929 cells infected with R. conorii. A 125 cm2 flask infected with 

R.conorii for 96 h was carefully collected and pelleted by centrifugation 

before fixation in 2% glutaraldehyde (Electron Microscopy Sciences, 

Hatfield, PA, USA) and cacodylate buffer (0.1 M) overnight at 4°C. After 

washing with cacodylate buffer (0.1M), the samples were further fixed 

for 1 h at room temperature with 2% osmium tetroxide (0.1M), 

dehydrated in an ascending series of ethanol (30% to 100%) and 

embedded in Epon 812 resin (Electron Microscopy Sciences). Ultrathin 

sections (70 nm) were transferred on 300 mesh nickel Formvar/carbon 

grid (TAAB Laboratories, England).  

The grids were pre-treated twice with 50 mM NH4Cl in PBS (5min 

each). After washing with PBS for four times (5 min each), the grid were 

pre-incubated with solving solution I (PBS, BSA (1%), normal goat 

serum 1% (NGS, DAKO, Denmark), Tween20 (0.2%) for two times (5 

min each) in 2% osmium tetroxide (0.1M). The grids were incubated 

1h30 with monoclonal mouse anti-rickA antibodies (1:50) diluted in 

solving solution I. After washing 4 times (10 min each) with solving 

solution I, grids were incubated 90 mins with anti-mouse IgG biotinyled 

antibody (1:100, Beckman Coulter Company, France) diluted in solving 

solution I. Following gentle washing with BSA (0.1%) in PBS for two 

times (5 min each), the grids were pre-incubated two times (5 min each) 
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with solving solution II (PBS, Fish skin gelatine (0.01%), Aurion 

Immuno Gold Reagents & Accessories, Netherlands). The grids were 

incubated for 1h30 min with streptavidine (1:40) gold 10 nm conjugate 

reagent (Aurion Immuno Gold Reagents & Accessories, Netherlands), 

diluted in solving solution II. The specimens are washed with incubation 

solution II for two times (5 min each).  

Finally, the grids were washed in distilled water for 2 times (10 min each) 

and stained with uranyl acetate (3%, Prolabo, France) in water. Then, 

grids were allowed to dry at room temperature before examined on a 

Philips Morgagni 268D electron microscope (FEI Company, Limcil-

Brevannes, France). A negative control was carried out by using serum of 

naïve mice. 

 

Statistical analysis 

One hundred individual fields were taken and gold particles were counted 

for inner membrane (IM), outer membrane (OM) and space around 

rickettsia (ECS). We have performed one-tailed paired t-test (Graphpad 

Prism software). The graphs were also compiled in this software. 

 

RESULTS 

Detection and localisation of rickA in R. conorii 

As illustrated in figure 3A, fluorescence labelling of rickA was amplified 

using biotin-streptavidin conjugate and showed that the protein was 

expressed on the surface of R. conorii. In all negative controls (Table 1) 

there was no fluorescence intensity over the bacterial surface (Figure 3B). 

The distribution of RickA in R. conorii is shown in figure 4.  

The number of gold particles present within inner membrane (IM) and 

outer membrane (OM) were less when compared with the number of gold 

particles present outside of rickettsiae (ECS) but not statistically 
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significant. The ECS corresponds to the zone which is found outside of 

rickettsial organism sampled from supernatant of R. conorii culture. 

However, we found that the most significant difference (p=0.0024) was 

observed between the number of gold particles localized on IM and OM. 

The significant t-test (p=0.0316) was also observed for number of gold 

particles localized on OM in comparison with those of ECS. However, no 

significant difference was observed if we compare the number of gold 

particles localized on IM of the cell in comparison with those of ECS 

(p=0.2747). 

 

DISCUSSION 

The present study showed the surface expression of rickA in R. conorii 

using anti-rickA specific monoclonal antibody in IFA (Figure 3A). Our 

results skewed with the work of Gouin et al. who demonstrated that rickA 

is localized at the surface of the bacteria using IFA evidenced where actin 

polymerization occurs (Gouin et al., 2004). We can hypothesize that 

rickA found in ECS may be indirectly involved as a nucleation-promoting 

factor (NPS) which mediates actin nucleation (Figure 1). Actin is one of 

the most abundant proteins in eukaryotic cells and exists in two forms, 

ATP-bound monomeric (G) actin and ADP-bound filamentous (F) actin 

(Stevens et al., 2006). Polymerization of actin requires ATP hydrolysis 

and it is tightly regulated by monomer- and filament- binding proteins 

that also maintain the free monomer pool and mediate capping, cross 

linking, bundling or severing of actin filaments (Stevens et al., 2006).  

An initial nucleation step creates free barbed ends by uncapping or 

severing of filaments or de novo nucleation of monomers (Stevens et al., 

2006). This step is stimulated by cellular factors, as complex Arp2/3, 

which in turn, are activated by proteins known as NPFs such as Wiskott-



 79

Aldrich syndrome proteins (WASP family proteins) (Figure 1). In the L. 

monocytogenes model, the conformational changes of Arp2/3 complex 

induced by NPFs might allow these subunits to mimic barbed ends to 

serve as template for polymerization (Stevens et al., 2006). Surprisingly, 

Serio et al. did not identify a cellular actin nucleator (Arp2/3 complexe) 

in R. parkeri, suggesting that it is not required for actin-based rickettsial 

motility (Serio et al., 2010).  

Therefore, in the case of Rickettsiae, the molecular mechanism of actin 

assembly and organization, as well as the exact role of nucleation 

activators like rickA and sca2, is still obscure (Balraj et al., 2008a;Gouin 

et al., 2004; Haglund et al., 2010;Kleba et al., 2010; Serio et al., 2010). 

Both well conserved genes among SFG rickettsiae: R. conorii rickA 

(Gouin et al., 2004) and R. rickettsi sca2, a member of a family of large 

autotransporter proteins (Kleba et al., 2010), were reported to be required 

for motility and virulence. Indeed, when Sca2 was truncated by 

transposon insertion, the Sca2 mutant bacteria do not generate actin 

comet tails (Kleba et al., 2010). Probably, the sca2 N-terminus which is 

structural homolog of formin homology 2 domain, is involved in 

nucleation of unbranched actin filaments, processively associated with 

growing barbed ends, requires profiling for efficient elongation, and 

inhibits the activity of capping protein (Haglund et al., 2010). RickA 

includes proline-rich regions sharing the homology with WASP proteins 

and is considered as NPF. The surface localization of the rickA protein 

might allow its secretion and acting as NPF involved in actin 

polymerization. However, the contribution of rickA protein in this process 

has not been completely elucidated.  

Many questions remain unanswered: the mechanism of rickA secretion 

how is rickA targeted to the surface of host cell, as well as identification 

of other NPFs and the role of T4S (Figure 1). With respect to recent data, 



 80

the mechanism of actin-based motility is still under study and the 

rickettsial as well as host cell factors involved in this process remain to be 

determined. The recent work of Serio et al. (Serio et al., 2010) showed 

that numerous host cell proteins are involved in R. parkeri infection and 

actin-based motility (profiling, fimbrin/T-plastin, capping protein and 

ADF/cofilin) (Serio et al., 2010).  

Interestingly, Fimbrin/T-plastin and profiling are required for R. parkeri 

motility, but they are not indispensable for L. monocytogenes and S. 

flexenerii motility (Serio et al., 2010). The bacterial motility depends on 

bacterial species and can differ among SFG different strains and species. 

In this report we address only the question of rickA protein localization in 

R. conorii bacterium (Figure 1). IFA is commonly used technique to 

monitor the global expression of bacterial proteins. However, this 

technique is frequently performed in combination with other modern 

approaches which yielded better image resolution. Indeed, TEM enables 

the study of small details in the cell down to near atomic levels.  

The possibility for high magnifications has made the TEM a valuable tool 

in both medical and biological research (Robinson, 1986). TEM has been 

successfully applied to determine the subcellular localization of bacterial 

protein Hfq (Diestra et al., 2009) and the extracellular site evidence of 

virulent plasmid pYV harbored by Yersinia pseudotuberculosis (Simonet 

et al., 1990), as well as expression of IcsA and ActA on the surface of 

Shigella flexneri (Nhieu and Sansonetti, 1999), Listeria monocytogenes 

(Cossart and Kocks, 1994) and surface expression of rickA in R. raoultii 

(Balraj et al., 2008c). However, by using TEM, we demonstrated that 

RickA is widespread in R. conorii (Figures 4 and 5). It has been shown 

that other bacterial components like IcsA, ActA, or BimA are known to 

be responsible for intracellular motility and exhibit a polarized 

distribution (Goldberg and Theriot, 1995; Kocks et al., 1993; Stevens et 
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al., 2006). Such polarization was not observed for rickA which was found 

to be expressed over the entire bacterial surface in R. conorii in the study 

of Gouin et al. (Gouin et al., 2004) as in our study (Figures 3 and 4). 

Thus, our results skewed with the results of this group (Gouin et al., 

2004). 

 

CONCLUSION 

In conclusion, we have shown the global expression of rickA in R. conorii 

cell by using IFA approach (Figure 3). The results of TEM showed that 

gold particles were distributed over the entire surface of R. conorii. This 

result emphasizes the importance of disclosing the detailed mechanism of 

rickA secretion and it’s targeting to the host cell surface, and to determine 

the host receptors and factors involved in the dynamics of actin-tail 

formation and its motility inside the cell. For future prospects it will be 

suitable to fractionate the different bacterial compartments and to 

demonstrate the presence or absence of rickA in each compartment. 

Localization of proteins in cells has largely relied upon the use of specific 

antibodies. The results presented here show that anti-rickA monoclonal 

antibodies provided the same labeling pattern over almost the entire 

bacterial surface. 
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Table 1. The controls included in IFA experiments 
  +/- indicates whether the antibody added or not. 
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Figure 1  
Summary of rickA protein roles in rickettsial physiopathology  
rickA is involved in actin polymerization (transformation of monomeric 
actin G to filamentous actin F). An initial nucleation step creates free 
barbed ends by uncapping or severing of filaments or de novo nucleation 
of monomers. The complex of actin- relating protein (Arp) 2/3 involved 
in actin nucleation seems to be activated by nucleation-promoting factors 
(NPFs) as WASP proteins and rickA. However, the mechanism of actin 
polymerization in the model of Rickettsiae has not been completely 
elucidated. Several questions remain without response (grey boxes): (i) 
rickA protein secretion, (ii) how the Arp2/3 complex of actine is activated 
by rickA, (iii) There are other bacterial cofactors involved in actin 
polymerization, (iv) Is the T4S is involved in targeting rickA to the cell 
surface? (v) Is T4S is involved in host genes regulation? (vi) How 
Rickettsiae spread in the cell and from cell to cell? The question which is 
the object of this study concerns the rickA localization in R. conorii cell. 
To respond to this question, IFA and TEM were performed.  
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Figure 2  
 
A) Schema of the cell membrane and B) Model of rickettsial surface 
membrane assembly. a) Schematic model of TG and SFG Rickettsiae of 
the cell membrane, outer envelope (cell wall) and adjacent extracellular 
layers. Rickettsiae are characterized by a specific membrane structure. 
The outer envelopes of SFG Rickettsiae are as follows: 1)An outer leaflet 
(OM) with additional “microcorpuscular layer” (ML) and ended with 
external slime layer (SL), 2) The peptidoglycan layer (PS) is localized 
between the OM of the cytoplasmic membrane (CM) and the inner leaflet 
(IM) of the cell wall; (Adapted from Silverman et al., (Silverman and 
Wisseman, Jr., 1978) b) Surface membrane assembly of Rickettsiae. In 
the rickettsial assembly, the rickettsial body formed first, and the 
rickettsial envelope subsequently formed over the body (Hase, 1983). The 
previously proposed mechanism of rickettsiae assembly is as follow: 1. 
The body of nascent Rickettsia took a definitive form, a fuzzy material 
mainly composed of lipoproteins is formed over the body, and graduatly 
separate the emerging rickettsia from the surrounding cytoplasm. 2. The 
assembly of the rickettsial limiting membrane on the ricketsial surface 
along the fuzzy zone occurs in close association with ribosomes. 3. The 
surface ribosomes are associated with rickettsial plasma membrane, 
although the plasma membrane of the assembling rickettsia is difficult to 
recognize. 4. The short projections of membrane extended from the 
surface ribosomes into the fuzzy zone, and as rickettsial double 
membrane assembled, these projections of membrane, form the septa of 
membranewhich stay connected with the surface of ribosomes and the 
outer membrane (OM) across the periplasmic space (PS).  (Adapted from 
(Hase, 1985) and the image of ribosome has been freely available on 
internet:http://biology.kenyon.edu/courses/biol114/Chap05/RNA_riboso
mes.gif) 
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Figure 3 
Detection of surface expression of rickA protein by indirect 
immunofluorescence  
3A. Detection of RickA expression by IFA. Host cell-free R. conorii was 
fixed in methanol, incubated with rickA anti-mouse monoclonal antibody 
(1:100) followed by an anti-mouse biotin (1:1000), stained with 
streptavidin FITC (1:500) and visualized by epifluorescence microscopy 
(magnifications 100X), showed that rickA was expressed at the surface of 
R. conorii. 3B. the right panel corresponds to negative control. 
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Figure 4 
Localization of rickA (TEM)  
4A. TEM analysis performed on R. conorii cultured on L929 cells using 
rickA anti-mouse monoclonal antibody followed by biotin and with 
streptavidin gold (10 nm); the arrows indicates the distribution of rickA in 
R.conorii cells inner membrane (IM), outer membrane (OM) and 
extracellular space around rickettsies (ECS). 4B. Negative control 
performed using serum of naive mice.  
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Figure 5 
Histograms showing the distribution of gold particles in R. conorii   
Gold particles were counted for one hundred individual fields. The gold 
particles were localized in inner membrane (IM), outer membrane (OM) 
and extracellular space around rickettsies (ECS). A graph was plotted by 
using graphpad prism software.   
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Article 3 – Preamble 

 

 

While serology is the most used diagnostic method for rickettsial 

infections, the lack of specificity and sensitivity remain a major drawback 

(La scola and Raoult, 1997). Cross-reactions probably result from 

antigenically similar epitopes, but the possibility of co-infections can not 

be excluded. Many studies have reported great interest in using 

recombinant proteins rather than purified bacteria in immunodiagnosis. 

The aim of the present work was to propose an efficient diagnostic test, 

based on recombinant proteins, for the detection of R. prowazekii and R. 

rickettsii. To realize our purpose, 45 and 48 target genes of R. prowazekii 

and R. rickettsii were selected for recombinant expression using Gateway 

technology. The choice of targets was not arbitrary, but resulted from the 

large expertise of our laboratory in the field of rickettsiae. Twenty of the 

recombinant proteins obtained were screened by ELISA with sera of 

rickettsioses patients. Results obtained demonstrated a satisfactory 

performance allowing to select discriminating markers of R. typhi and R. 

conorii infection, respectively which may be useful for detection of 

rickettsiae in clinical samples.  
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Article 3 (in revision)    
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ABSTRACT 

Rickettsia is Gram-negative obligate intracellular bacteria that cause 

arthropod-borne diseases of humans, including typhus (R. typhi and R. 

prowazekii) and spotted fevers (R. conorii, R. rickettsii). Diagnosis of 

rickettsioses is usually based on diverse serological testing of patient 

serum. The diagnostic antigen used for indirect immunoflorescence assay 

(IFA) considered as the reference method is done with whole purified 

bacteria. Deficiencies of this antigen include (i) potential of 

crossreactivity within different rickettsial species, as well as with other 

pathogens, (ii) the difficulty to obtain sufficient amount of antigen due to 

the requirement for highly specialized laboratory platform in intracellular 

bacteria culture; (iii) finally, discriminate diagnosis of rickettsioses is still 

a great challenge, considering the fact that clinical picture is most often 

not specific. There is therefore a need for serodiagnostic tests 

improvements, especially for a test able to make discrimination between 

Rickettsia from typhus group (TG) from Rickettsia of spotted fever group 

(SFG). In this aim, we have cloned and expressed several proteins of R. 

prowazekii and R. rickettsii using GATEWAY approach. Then, 20 

recombinant protein targets were screened with sera of patients with 

rickettsioses by ELISA. We have identified several potential markers 

which allowed discriminating infection due to R. typhi with those caused 

by R. conorii. These antigens may be useful for the detection of 

Rickettsiae in clinical samples. 
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INTRODUCTION 

Members of the genera Rickettsia are fastidious bacterial organisms that 

are obligate intracellular parasites that reside in the cytosol of the host 

cells and in an arthropod host (La & Raoult, 1997; Socolovschi, 

Mediannikov, Raoult, & Parola, 2009). Rickettsiae have undergone 

evolutionary genome reduction as results of the loss of functions that are 

provided by the host, i.e., genes encoding metabolic enzymes.  

There are four Rickettsia species that frequently cause incapacitating, life 

threatening illness: Rickettsia prowazekii, R. rickettsii, R. conorii, and R. 

typhi. 

Actually, the clinical manifestations of most rickettsioses are 

characterized by a continuous spectrum gaped by appearance of some 

worldwide reemerging cases. However, some examples showed  

inconsistent clinical manifestations hardly correlated with geographical 

context, which makes clinical diagnosis uncertain. To date, laboratory 

diagnosis of rickettsioses is based on various PCR assays, DNA 

sequencing which allows convenient and rapid identification of 

rickettsiae, even in non referenced laboratories (La Scola& Raoult, 1997). 

However, the diagnosis of rickettsial illness is confirmed by serological 

testing (La Scola& Raoult, 1997). Several conventional methods were 

used in serology: historic Weil-Felix test (Weil & Felix, 1916; Eremeeva, 

Balayeva, & Raoult, 1994), the complement-fixation test (Shepard, 

Redus, Tzianabos, & Warfield, 1976), the microagglutination test (Fiset, 

Ormsbee, Silberman, Peacock, & Spielman, 1969) and the indirect 

hemagglutination test detects antibodies to an antigenic erythrocyte-

sensitizing substance (Anacker, Philip, Thomas, & Casper, 1979). Lately, 

these methods became obsolete and were replaced in the early 1980th 20 

by others easier to handle and guaranteed better sensitivity and 

specificity: (i) ELISA, first introduced for detection of antibodies against 
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R. typhi and R. prowazekii (Halle, Dasch, & Weiss, 1977) considered as 

highly sensitive and reproducible, allowing the differentiation of IgG and 

IgM, then extended to diagnosis of RMSF (Clements et al., 1983) and 

scrub typhus (Dasch, Halle, & Bourgeois, 1979; Crum, Hanchalay, & 

Eamsila, 1980), (ii) IFA in format of micromethod which is to date, 

considered as reference test (Philip, Casper, Ormsbee, Peacock, & 

Burgdorfer, 1976). The advantage of micro-IFA is the simultaneous 

detection of several antibodies to a number of rickettsial antigens in a 

single well with the same drop of patient serum. It allows isotyping of Ig: 

IgG, IgM and IgA which with detection of IgM provides a strong 

evidence of recent active infection, although the diagnosis may be  

compromised. Western blot and antigen adsorption has been also used in 

routine and is considered as powerful serodiagnostic tool for 

seroepidemiology, especially applied for doubtful cases and allows 

confirmation of serologic diagnosis obtained by conventional methods 

(Sompolinsky et al., 1986; Raoult & Dasch, 1989b; Raoult & Dasch, 

1989a; Raoult & Dasch, 1995). The drawback of ELISA, IFA and 

adsorbed western blot in routine, is that they require the laboratory 

platforms specialized in culturing of Rickettsiae and in antigen 

purification. However, the serologic evidence of infection occurs no 

earlier than the second week of illness for any of rickettsial diseases (La 

Scola& Raoult, 1997). In practical, several diagnostic methods are used 

for Rickettsiae detection. In the specialized laboratories, molecular 

biology, serodiagnostic with IFA and adsorbed western blot and shell vial 

 culture are used systematically. Because it is difficult to diagnose 

rickettsial infection early after infection occurs, administration of 

antibiotic treatment before a definitive diagnosis is made (Pelletier & La, 

2010). Preventive measures are complicated because of the lack of 

effective and safe rickettsial vaccines (Walker, 2007). To detect 
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efficiently bacteria in clinical samples, we need to dispose of highly 

sensitive, specific and available detection tests.  

The aim of the present work was to propose an efficient diagnostic test 

based on recombinant proteins for detection of R. prowazekii and R. 

rickettsii. To realize our purpose, first we have selected for in vivo 

expression 45 and 48 genes targets of R. prowazekii and R. rickettsii, 

respectively. From this selection, we have successfully attempt to express 

about 50% of targets using Gateway technology (Vincentelli R et al., 

2011). Finally, we have screened 20 of all these recombinant proteins by 

ELISA and selected discriminate markers of R. typhi and R. conorii 

infection, respectively which may be useful for detection of Rickettsiae in 

clinical samples. 

 

MATERIAL  & METHODS 

2.1) Choice of protein targets for cloning and expression 

  The choice of protein targets was defined according to previous studies 

showing an important role of rickettsial proteins which can be detected by 

human antibodies (Renesto et al., 2005; Renesto et al., 2006), as well as, 

proteins involved in physiopathological processes: RickA (Balraj et al., 

2008; Balraj, Nappez, Raoult, & Renesto, 2008), rOMPB, rOMPA, adr2 

(Renesto et al., 2006) which therefore offer opportunities for their 

application in medical diagnosis/vaccine and subsequent studies  

(Table1). This list of genes to be cloned was subsequently enlarged for R. 

prowazekii and R. rickettsii because of the low success rate. Indeed, in the 

first series of targets (13 target for R. prowazekii and 12 targets for R. 

rickettsii) to be cloned, respectively 6 and 3 clones have been obtained for 

these pathogens (SM1) (Vincentelli R et al., 2011). Since the cloning and 

protein expression of intracellular bacteria such as Rickettsiae cause 

problems in case of membrane proteins, insoluble and soluble form etc, 
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so we decided to select the majority of soluble target (SM1). The nucleic 

acid sequences of ORFs were extracted from genomic library (NCBI). 

The predicted signal peptide (http://bp.nuap.nagoya u.ac.jp / sosui / 

sosuisignal / SOSUIsignalDB /) sequence was removed. 

 

2.2) Construction and identification of recombinant expression 

plasmids  

DNA of R. prowazeki strain Madrid E and R. rickettsii strain Sheila Smith 

was extracted using commercially available kit (Qiagen, Chatsworth, CA) 

according to manufacturer’s instructions. Twenty targets were 

subsequently PCR amplified (Expand High Fidelity PCR System, Roche 

Diagnostics, Meylan, France) using specific primers containing at their 5’ 

and 3’ ends the respective attB1 and attB2 recombination sites. Each 

purified PCR product was transferred according to manufacturer’s 

instructions (Gateway Cloning Technology/Invitrogen Life Technologies) 

in a first recombination step (BP) into the pDONR201 vector to generate 

an entry clone used in a second recombination step (LR) with the 

destination Gateway vector pETG-20A to generate expression clones 

contain an N-His6 tag plus a fusion protein thioredoxin (TRX) (Canaan et 

al., 2004; Vincentelli R et al., 2011) that enhances expression of the 

fusion partner (Vincentelli et al., 2003; Vincentelli, Canaan, Offant, 

Cambillau, & Bignon, 2005; Vincentelli R et al., 2011). The resulting 

entry and expression clones were transformed into E. coli DH5α cells, 

and constructions were confirmed by DNA sequencing and PCR 

screening, respectively.  

 

2. 4) Expression and purification of recombinant proteins  

All steps of expression and purifications were performed as previously 

described (Sekeyova et al., 2010; Vincentelli R et al., 2011). Briefly, 
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expression vectors carrying the 20 targets were transformed into E. coli 

strain Rosetta (DE3) pLysS (Novagen). The growth conditions, induction 

and harvest was done as previously described (Vincentelli R et al., 2011). 

The bacterial pellet was resuspended in lysis buffer (50mM Tris-HCl pH 

8.0, 300mM NaCl, 0.1% Triton X-100, 1mM ethylenediaminetetraacetic 

acid [EDTA], 0.25 mg/ml lysozyme and 1mM phenylmethylsulphonyl 

fluoride [PMSF]) and frozen - 80°C for at least 1 hour. After thawing the 

bacterial pellets and the addition of DNAse I (2µg/ml) and MgSO4 (20 

mM) the lysed cells were centrifuged to separate the soluble fraction from 

the bacterial debris. The pellet was used for subsequent steps of 

purification. The proteins were purified by affinity chromatography based 

on the affinity of the Histidine tag (HHHHHH) with Nickel ions. The 

pellet fraction of the lysate was solubilised in buffer A (50mM Tris-HCl, 

300mM NaCl, 250mM Imidiazole pH 8.0) containing 8M GnHCl and 

centrifuged to separate the supernatant containing the recombinant 

proteins and pellet with the cellular debris. The solubilzed proteins were 

loaded on a Nickel affinity chromatography Histrap (GE Healthcare) and 

eluted in denaturant condition in the buffer B (buffer A + 6M urea, 

imidazole 250mM, pH 8.0). The fractions containing proteins were 

pooled and stored in 50% glycerol at -20°C. Total expression was 

visualized by SDS-PAGE according to standard protocols (Cleveland, 

Fischer, Kirschner, & Laemmli, 1977; Towbin, Staehelin, & Gordon, 

1992). The identity of recombinant protein was confirmed by mass 

spectrometry. 

 

2.5) ELISA 

Modified ELISA assay was performed as previously described (Sekeyova 

et al., 2010). Briefly, 96 well plates (immunolon4, vwr) were coated 

overnight at +4°C with purified recombinant protein (10 µg/ml, 100µl per 
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well) diluted in carbonate-bicarbonate buffer (15mM Na2CO3, 35mM 

NaHCO3, pH 9.6). The following steps were performed according to 

standard protocols (Sekeyova et al., 2010). The human sera were diluted 

1/1000 in PBST-milk. Alkaline phosphatase-conjugated goat anti-human 

IgG (whole molecule) (Sigma) (1/5000), alkaline phosphatase yellow 

para-nitro-phenyl phosphate (pNPP) (Sigma) were used as described 

(Sekeyova et al., 2010). The reaction was read with a microplate reader 

(Multiskan EX, Labsystems, Thermo Fisher Scientific, Waltham, MA) at 

a wavelength of 405 nm and data analysed by GraphPad Prism (San 

Diego, CA). A positive control consisted in positive serum with active R. 

typhi and R. conorii infection; a negative control consisted in negative 

serum. Each serum sample was tested at least in duplicate. The cut-off 

was determined as described (Sekeyova et al., 2010). Any samples 

exhibiting absorbance above the cut off value was considered as positive 

(Figure 1A&B). 

 

2.6) Human sera  

In this study, 10 patients sera (group R. typhi) with an infection due to R. 

typhi and 28 sera the patients diagnosed for active R. conorii (group R. 

conorii) infection diagnosed at the Unité des Rickettsies 

(Marseille, France) were included in this study after giving informed 

consent (Table2). The diagnosis was based on serology and PCR assays 

targeting (Socolovschi et al., 2009). A control group (group HBD) 

consists in 10 healthy blood donors. 

 

 

 



 103

3) RESULTS AND DISCUSSION 

Here, we describe the tools for detection of Rickettsiae in clinical samples 

using recombinant rickettsial proteins. In this aim, we produced 20 and 

23 recombinant proteins of R. prowazekii and R. rickettsii with 20 which 

we used for ELISA. Finally, we screen them for the best 

serodiagnosticmarkers for R. typhi and R. conorii discriminate 

serodiagnosis.  

 

Selection of genes targets for protein expression 

 Initially, 12 and 13 protein targets have been selected for cloning and 

expression of R. prowazekii and R. rickettsii, respectively (Table 1, SM1). 

However, the success rate of cloning and expression was very low (46% 

and 25%, respectively). Rickettsiae are obligatly intracellular bacteria, 

their genetic manipulation is strongly limited in these conditions 

(Renesto, Ogata, Audic, Claverie, & Raoult, 2005). The first attention 

was to choose the genes described as immunogenic for patient’s or 

immunized animal’s sera (Table 1, SM1). Consequently, the list of targets 

was enlarged taking care to remove highly hydrophobe-, membrane 

proteins of high MW known to be difficult to manipulate. This choice 

was determined by technical limitations and it is controversial when 

considering that the majority of immunogenic proteins are surface 

proteins, described as sca family proteins within rickettsial species, i.e., 

rOmpB ubiquitous in all Rickettsiae and rOmpA presents only in SFG 

group. 

Indeed, the genes sca5 (rOmpB) and rOmpA are also used in diagnosis by 

PCR (Parola, Paddock, & Raoult, 2005). They are the most reacting 

proteins in adsorbed western blot. This study opened the opportunity to 

screen for diagnostic usage other not yet known in clinics the protein 

targets (SM1). In the context of growing interest of synthetic gene 
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synthesis, optimization of sequence for codon usage which has been 

identified as the single most important factor in prokaryotic gene 

expression (Lithwick & Margalit, 2003). Therefore, the improved E. coli 

strain for codon usage (Rosetta BL21 pLysS) was used. However, an 

analysis of codon usage remains to be performed. Most frequently, the 

problems of protein expression occur after cloning showing mutation or 

another unknown phenomenon (Vincentelli et al., 2005). A low yield of 

expression may probably be due to their cellular toxicity or another of 

numbered parameters required for successful protein expression.  

 

ELISA a diagnostic tool for detection of rickettsioses  
Two species of the typhus group, R.typhi and R.prowazekii, are 

pathogenic for human beings. R. typhi causes murine typhus (MT), a flea-

transmitted disease that occurs in warm climates (Bechah, Capo, Mege, & 

Raoult, 2008). R. prowazekii is responsible for epidemic typhus (ET), a 

disease of cold months when poor sanitary conditions are conductive to 

lice proliferation (Bechah et al., 2008). ET was thought to be a sporadic 

disease (Bechah et al., 2008), but now is considered as a re-emerging due 

to its increasing prevalence during political conflicts associated with large 

human migration i.e. camps of refugees associated with breakdown of 

social conditions (Gillespie, Ammerman, Beier-Sexton, Sobral, & Azad, 

2009) and variation in ecology of rat-flea cycle of R. typhi infection in 

North and Central America, involves commensal rats, opossum, cat flea 

(Gillespie et al., 2009). Outbreaks of MT were reported in Africa, 

Australia, Thailand, China, Kuweit, Spain and Portugal, but it remains 

often unrecognized in Africa (Mouffok, Parola, & Raoult, 2008) and in 

South-West Asia (Niang et al., 1998; Watt & Parola, 2003). The cohort of 

patients infected by R. typhi in the present study is only n=10. 

Considering infection due to R. typhi as sporadic in Europe (Bechah et 
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al., 2008), our cohort represents 1 year collection of patients diagnosed in 

Rickettsial Diagnosis Reference Unit, Marseille, France. Almost all of 

our patients are imported MT from a travel from endemic zones (Parola, 

Davoust, & Raoult, 2005; Bitam et al., 2009). Even if prevalence of MT 

is worldwide, remains under diagnosed because of unspecific clinical 

symptoms. Not all (<50% of cases) of patients from our study presents 

rash (Table 2) considered as hallmark of rickettsial diseases often 

transient or difficult to observe. Athralgia, myalgia, or respiratory and 

gastrointestinal symptoms, as well as, neurologic signs may also occur. 

Thus, the clinical picture of MT can be confounded with other diseases 

(Azad, 1990). Moreover, the clinical features, such as fever, rash, 

regional lymphoadenopathy are commonly present in tick-borne 

rickettsioses, i.e. MSF caused in the Mediterranean area and Europe by 

R.conorii. The main clinical difference between MT and MSF is presence 

of coetaneous eschar following the tick bite in R. conorii infected 

patients. However, in the absence of eschar, the clinics of both, MT and 

MSF can be easily confounded. Serologic tests are the most frequently 

used and widely available methods for diagnosis of rickettsioses (La & 

Raoult, 1997; Shepard et al., 1976). However, the cross reactions 

between the different rickettsial species make discrimination difficult. 

Adsorbed western-blot is very helpful in diagnosis (SM2). In the present 

study, the results of western blot were decisive in establishment of 

diagnosis and were performed for the majority of patients diagnosed in 

our laboratory. When the non adsorbed WB doesn’t allow concluding, 

then adsorbed WB is performed (SM2). In some cases, WB performed on 

absorbed serum (SM2 (F, H)) hardly contributes to diagnosis. Finally 

diagnosis is based on clinics and several diagnostic tests. To facilitate the 

discrimination between R. typhi and R. conorii patients, we screened in 

this aim 20 recombinant proteins (10 of R. prowazekii (group typhus) and 
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10 of R. rickettsii (group MSF)). Four recombinant proteins were found 

to cross-react with both, sera infected with R. typhi and R. conorii (Table 

3). This result is not surprising because they belong to well conserved 

bacterial proteins: groEL, Adr2, murC and EF-Tu (Table 3). Adr2 is 

ubiquitously presents within Rickettsiae and acts as one of putative ligand 

recognized by host cell surface proteins. Rickettsial entry into the host 

cell is mediated by the rOmpB protein, which attaches to the host cell 

receptor Ku70, a component of the DNA-dependent protein kinase 

(Uchiyama, Kawano, & Kusuhara, 2006; Uchiyama et al., 2006). Several 

tested in this format recombinant protein were discriminate for diagnosis 

of infection due to R. typhi, despite their origin: targets from R. 

prowazekii (RP016, groEL, RP173), as well as, targets from R. rickettsii 

(PLD, Sca10, EF-Tu, A1G_00215) supporting already documented the 

cross-reactivity among Rickettsia species. Interestingly, among these 

targets we found Sca10 protein belonging to a large family of outer 

membrane proteins known as the surface cell antigen (Sca) family 

proteins and PLD involved in rickettsial adherence and invasion of Vero 

cells. However, these results may be underestimated considered a small 

cohort of R. typhi infected patients. Thus, it will be suitable to validate 

these diagnostic targets on larger study population. None individual 

protein could be enough discriminate for diagnosis of SFG, except three 

targets already used for diagnosis of both, MT and MSF: groEL, adr2 and 

EF-Tu .Considered the results, diagnostic test by ELISA can be 

interesting to use in routine, because of rapidity of its realization, low cost 

and possible development of high put screening which required only 

small amount of patient’s sera (less than 1µl). However, ELISA will be 

recommended to be use in parallel with IFA reference method and 

adsorbed western-blot which is more sensitive and allows an earlier 

diagnosis than IFA. The main drawback of adsorbed western blot is time-
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consuming, required large amount of both: patient’s serum samples and 

bacteria. Moreover, the specific choice of bacteria to be tested is based on 

patient’s anamnesis and the epidemiological data. Optimization of 

recombinant proteins based ELISA may be an interesting alternative for 

diagnosis of rickettsial diseases. 

 

Conclusion 

This study was designed for production of recombinant proteins useful 

for Rickettsiae detection in clinical samples. We have successfully cloned 

and expressed 43 rickettsial proteins. Finally, we selected several 

promising antigenic markers of R. typhi and R. conorii infection by using 

ELISA which can be alternative method for rickettsial diseases diagnosis. 

Despite interest of this test in clinical routine, the larger panel of sera 

should be tested before and not yet tested recombinant proteins remain to 

be screened.  
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Figure 1  
The reactivity of sera from patients infected by R. typhi, R. conorii, as 
well as sera from blood donors (control group) against the various 
recombinant proteins were tested by ELISA. The different recombinant 
proteins used as antigens are listed along the x axis (A. The recombinant 
proteins of R. prowazekii, strain MadridE; B. recombinant proteins of R. 
rickettsii strain Sheila Smith) The axis y shows the normalized results 
(unity of absorbance A405/cut-off measured for each antigen). The points 
of scatter which exhibit the value of report >1 are considered as positive. 
The cut264 off value was defined as mean ±1.5 SD of A405 value 
obtained with control group. 
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Table 1  
Orthologs of R.conorii in R.prowazekii and R.rickettsi-selection of 
protein targets for cloning and expression based on 
immunoproteomic studies 
 

 
 
Table 2 
 Base-line characteristics of the 48 subjects included in this study 
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Table 3 
 Test-operating parameters of 20 recombinant proteins included in 
the present study  
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Supplementary Material 
SM1 
Listing of all rickettsial ORFs selected for cloning and expression. The 
table is divided onto R. rickettsii and R. prowazekii targets. In grey is 
presented the first series of experiments targeting immunoreactive 
proteins.



 Protein name  locus_tag Strain Expression
&purificati
on 

ELISA peptide signal or THM 

1 
cell surface antigen  

A1G_00130 
 

RR Sheila Smith 
-  MNKLTEQHLLKKSRFLKYSLLASIAVGAAIPFE 

2 50S ribosomal protein L1  A1G_01020 (rplA) RR Sheila Smith -   
3 leucyl aminopeptidase A1G_01050 RR Sheila Smith -   
4 

 molecular chaperone DnaK 
A1G_01335 
(DnaK) 

RR Sheila Smith 
-   

5 hypothetical protein A1G_01695 A1G_01695 RR Sheila Smith -   
6 chaperonin GroEL A1G_05315 RR Sheila Smith -   
7 

elongation factor Tu 
A1G_05565 

RR Sheila Smith 
- tested MAKAKFERTKPHVNIGTIGHVDHGKTSLTAAITIVLAKTGGA

QA 
8 outer membrane protein B (cell surface antigen sca5) A1G_06030 RR Sheila Smith -  MAQKPNFLKKLISAGLVTASTATIVASFAGSAMGAAI  
9  F0F1 ATP synthase subunit epsilon  A1G_06755 (atpC) RR Sheila Smith + tested MNATILVKIITPLSIA  
10 

Maf-like protein  
A1G_06950 
 

RR Sheila Smith 
+   

11 hypothetical protein A1G_07045 A1G_07045 RR Sheila Smith +  MKKLLLIAAASTALLTSGLSFA 
12 hypothetical protein A1G_07050 A1G_07050 RR Sheila Smith -  MKKLLLIAATSATILSSSVSFA 
    3/12=25%   
13 outer membrane assembly protein (asmA)  A1G_02675 RR Sheila Smith -  THM : KYSLIIFISIILLLIVIPFFIPL 
14 asmA DOMAINE 1-705 aa A1G_02675 RR Sheila Smith +  THM : KYSLIIFISIILLLIVIPFFIPL 
15 hypothetical protein A1G_06970  (PLD) A1G_06970 PLD RR Sheila Smith + tested THM : NNKFIEISIAFILGIALGI 
16 

hypothetical protein A1G_02185   (VapB1) 
A1G_02185 
VapB1 RR Sheila Smith 

+ tested  

17 

hypothetical protein A1G_02180  (VapC1) 
AG1_02180 
VapC1 RR Sheila Smith 

+ tested THM1 : MGLIIDTAIIIALER 
THM2 : GQTYISPIVLTELLIGVDR 
THM3 : KCLAFIEYVKSLFTILPFGIEEV 

18 
hypothetical protein A1G_02181 (VapC2) 

AG1_02180 
VapC2 RR Sheila Smith 

+   

19 hypothetical protein A1G_07220  (VapC3) AG1_07220 vapC3 RR Sheila Smith -   
20 bifunctional N5-glutamine S-adenosyl-L-methionine-dependent 

methyltransferase/tRNA (m7G46) methyltransferase  A1G_07200 RR Sheila Smith 
+   

21 cell surface antigen-like protein Sca13  A1G_06915 Sca13 RR Sheila Smith + tested  
22 cell surface antigen-like protein Sca10  A1G_00295 Sca10 RR Sheila Smith + tested  
23 O-sialoglycoprotein endopeptidase  A1G_00390 RR Sheila Smith +   
24 cell surface antigen-like protein Sca8  A1G_01440 RR Sheila Smith +   
25 cell surface antigen-like protein Sca8  A1G_01445 RR Sheila Smith -   
26 scaffold protein  AG1_04120 RR Sheila Smith +   
27 O-antigen export system ATP-binding protein RfbE  A1G_00015 RR Sheila Smith +   
28 Mrp protein  A1G_00940 RR Sheila Smith +   
29 UDP-3-O- A1G_00045    RR Sheila Smith +   
30 UDP-N-acetylglucosamine acyltransferase  A1G_00035 RR Sheila Smith +   
31 dihydrofolate reductase  A1G_00215 RR Sheila Smith + tested  
32 folate synthesis bifunctional protein  A1G_00225 RR Sheila Smith +   
33 Sco2 protein precursor  A1G_00265 RR Sheila Smith +  THM : IIKIFIALAMITGIIFLCLLYSS  
34 soj protein  A1G_00540 RR Sheila Smith + tested  
35 stage 0 sporulation protein J  A1G_00545 RR Sheila Smith -   
36 

putative inner membrane protein translocase component YidC  A1G_00475 RR Sheila Smith 

-  THM1 : NIINLIAAIILSLSIIFGWQYFV 
THM2 : AIDFGWFYIITKPVFYAMNFFYG 
THM3 : NFGVSILIVTVIIKLLMFTLANK 
THM4 : AGCLPILVQIPVFFSIYKVLYVT  
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37 S-adenosyl-methyltransferase MraW  A1G_04755   RR Sheila Smith -   
38 penicillin-binding protein  A1G_04745 RR Sheila Smith -   
39 UDP-N-acetylglucosamine 1-carboxyvinyltransferase  A1G_04875 RR Sheila Smith -   
40 3-deoxy-D-manno-octulosonic-acid transferase  A1G_00700 RR Sheila Smith -  THM : YYALSFILLPVYFIIILIRLLIG 
41 antitoxin of toxin-antitoxin system  A1G_04925 RR Sheila Smith -  MAIFMTVITNRISNA  
42 peptidoglycan-associated lipoprotein precursor  A1G_06560 RR Sheila Smith -  MKTKITLAFLALCMLAGCN 
43 S-adenosylmethionine synthetase (adometK) A1G_06605 RR Sheila Smith -   
44 hypothetical protein A1G_05015  (RickA) A1G_05015 RR Sheila Smith + tested  
45  partie B-peptide de sca5 (A1G_06030) A1G_06030 RR Sheila Smith -   
 

 

 

 

23 
positive/45
=51% of  
expressed 
proteins 

10/23 tested 15/45 with PS or TM=33% of membrane proteins 

 R. prowazekii      
1 Cell surface antigen Sca1 (SPLIT GENE) RP016 RP Madrid E - tested MNKLTAQNLLKKSRFLKYSLLTSISVGAVMAIPVE  
2 Cell surface antigen Sca1 (SPLIT GENE) RP017 RP Madrid E -   
3  Cell surface antigen Sca1 (SPLIT GENE)190 KD ANTIGEN PRECURSOR 

(sca1) 
RP018 RP Madrid E 

-   

4 50S ribosomal protein L1 (rplA) RP137 RP Madrid E +   
5 Aminopeptidase A [EC:3.4.11.1](pepA) RP142 RP Madrid E + tested  
6 DnaK RP185 RP Madrid E -   
7 

groEL; 60 kD chaperonin RP626 RP Madrid E 
+ tested MAKAKFERTKPHVNIGTIGHVDHGKTSLTAAITIILAKTGGA

KA 
8 

Elongation factor EF-Tu (tuf) RP661 RP Madrid E 
+  MAKAKFERTKPHVNIGTIGHVDHGKTSLTAAITIILAKTGGA

KA 
9  ompB, sca5; Outer membrane protein rOmpB RP704 RP Madrid E -  MAQKPNFLKKIISAGLVTASTATIVAGFSGVAMGAAM  
10 atpC; ATP synthase epsilon chain [EC:3.6.1.14] RP800 RP Madrid E -   
11 maf; Nucleotide-binding protein implicated in inhibition of septum formation RP815 RP Madrid E +   
12 Unknow/ADR1 RP827 RP Madrid E -  MKKLLLIAATSTALLTSGISFA  
13 

 Putative outer surface protein/ADR2 RP828 RP Madrid E 
+ tested PS :MKKLLLIATASATILSSSVSFA  

THM : LLLIATASATILSSSVSFAECID 
    6/13=46%   
14 DNA repair protein RECN (recN)  RP182 RP Madrid E -   
15 patatin B1 precursor (pat1)  RP602 RP Madrid E -   
16 UDP-N-acetylmuramate--L-alanine ligase  RP247 murC RP Madrid E + tested  
17 ) 3-demethylubiquinone-9 3-methyltransferase  RP622 RP Madrid E + tested  
18 hypothetical protein RP631  RP631 RP Madrid E + tested  
19 adenylate kinase  RP638 RP Madrid E -  MIVIFLGPPG 
20 response regulator PleD  RP237 RP Madrid E -   
21 ) hypothetical protein RP673  RP673 RP Madrid E +   
22 UDP-3-O- lpxC RP254 RP Madrid E -   
23 hypothetical protein RP688  RP688 RP Madrid E -  THM :SYTQNLLSFKNIIGLMLIIFAGI  
24 hypothetical protein RP689  RP689 RP Madrid E +  SFKNIIGLMLIIFAGILFYAYIL  
25 hypothetical protein RP691  RP691 RP Madrid E -   
26 O-antigen export system ATP-binding protein RFBE (rfbE)  RP003 RP Madrid E -   
27 capsular polysaccharide biosynthesis protein CapD  RP333 RP Madrid E -   
28 SOJ protein (soj)  RP058 RP Madrid E -   
29 

stage 0 sporulation protein J (spo0J)  RP059 RP Madrid E 
+ tested  

30 
preprotein translocase subunit SecB  RP070 RP Madrid E 

-   
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43/93=46% iin total expressed proteins 
 
In bold and table in grey : first series of experiment, THM: transmembranary region; 

30 
preprotein translocase subunit SecB  RP070 RP Madrid E 

-   

31 
DOMAINE PFAM 447-768 omp1 RP160 RP Madrid E 

+ tested THM :KIISISKLTILLLTIFYYHISFA 

32 

minor teichoic acids biosynthesis protein ggab (ggab)  RP339 RP Madrid E 

+  MKQNIYSPLVSIIIPVYN 

33 
signal recognition particle protein  RP173 RP Madrid E 

+ tested  

34 hypothetical protein RP789  RP789 RP Madrid E +   
35 hypothetical protein RP527  RP527 RP Madrid E -   
36 

S-adenosyl-methyltransferase MraW  RP569 RP Madrid E 
+   

37 methionyl-tRNA synthetase  RP683 RP Madrid E -   
38 

preprotein translocase subunit SecA  RP0575 RP Madrid E 
-   

39 
DOMAINES Cterm 606-906 SecA RP0575 RP Madrid E 

+   

40 
) translation-associated GTPase  RP604 RP Madrid E 

-  MTLKLGIVGLPNVG 

41 thioredoxin reductase (trxB1)  RP445 RP Madrid E +  MKITTKVLIIGSGPAGLSAAIYTAR 
42 

peptidoglycan-associated lipoprotein precursor (pal)  RP771 RP Madrid E 
+  MKTKITLAFLALFMLAGCN 

43 HEAT shock protein (hsp22)  RP273 RP Madrid E -  MLKYIPAIFAIILSSNIA 
44 

outer membrane assembly protein (asmA)  RP347 RP Madrid E 
-  THM : KYSLIIFITIILLLIIIPFFIPL  

45 
DOMAINE asmA 1-711 aa RP347 RP Madrid E 

-   

46 
hypothetical protein RP819             (PLD) RP819 PLD RP Madrid E 

-  THM :FIAVSISFILGIALGIYVESTYY 

47 
S -adenosylmethionine synthetase metK  (adometK) RP777 RP Madrid E 

-   

48 
 ompB, sca5; Outer membrane protein rOmpB (sca 5 1353-1643, RP704, 
partie B-peptide) RP0688 RP Madrid E 

-   

 

   

20/48=42
% 

expressed 
proteins 

10/22 tested by 
ELISA 

17/48 with PS or THM=35% 

 

 

 



SM2 
On the left part of figure (A to D) are shown some examples of cases with 
R. typhi infections. 
On the right part of figure (E to H) are shown some examples of cases 
with R. conorii infections.  The graphs which display the results from IFA 
are shown on the right. On the axis X are shown the different rickettsial 
antigens screened with patient’s serum, on the axis Y, are shown the Ab 
titer IgG/IgM. 
The first WB corresponds to primary WB performed with not adsorbed 
serum of patients. The following WBs, if present, is performed with 
adsorbed by different rickettsial antigens (chosen according to the clinical 
context and results of primary WB) sera. 
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The Rickettsia genus is a group of obligate intracellular α- 

proteobacteria that includes human pathogens responsible for the typhus 

disease and spotted fevers, and which are associated with arthropods 

vectors (Raoult and Roux, 1997). Last ten years, the advent of whole 

genome sequencing has fundamentally improved research in rickettsial 

pathogenicity. The putative role of some proteins in critical steps of 

rickettsiae-host cell interactions was highlighted (Walker, 2007; Balraj et 

al., 2009). However, and while these post-genomic investigations 

contributed to gain a better knowledge about rickettsia pathogenicity, 

several points remain to be clarified.  

The aim of my thesis was to use mAbs as new specific tools to explore 

rickettsia pathogenicity. Indeed, and as reviewed in the Introduction 

section, antibodies can indeed be used not only for diagnostic, but also for 

experimental purpose. 

Our first objective was to further characterize rickettsial adhesins 

Adr1 and Adr2 from R. prowazekii. Because the failure to express 

recombinant Adr1 protein, we focused our investigations on Adr2. Using 

an overlay assay coupled with mass spectrometry, we first confirmed its 

role as a bacterial ligand recognized by host cell proteins. Recombinant R. 

prowazekii Adr2 was then expressed through fusion with Dsbc in E.coli, 

purified and concentrated, thus allowing production of specific mAbs, as 

shown by western blot assays. The capacity of mAbs to inhibit 

rickettsiae-induced cytotoxicity, firmly demonstrated the role of Adr2 as 

a virulence factor (Article 1). These findings led us to conceive some 

complementary investigations. Thus, and while we evidenced that 

inhibition of rickettsiae-induced cytotoxicity occurred in vitro, infected 

animal models could also be used to confirm these results and reinforce 

the crucial role played by Adr2. In this respect, anti-Adr2 mAbs could be 

intraperitoneally administered to mice prior the rickettsial challenge. 
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Non-challenged, anti-Adr2 treated and challenged, untreated mice will be 

used as controls. Body weight, physical behavior and dealth also be 

recorded both prior and post- infection (Chan et al., 2011). Another main 

concern to be addressed in the field of rickettsial entry, is to identify the 

eukaryotic proteins interacting with Adr2. Such investigations could be 

carried out by yeast two-hybrid approach. 

Exploitation of the host-cell actin cytoskeleton is crucial for several 

microbial pathogens to enter and to disseminate within cells, thus avoiding 

the host immune response. R. conorii has the capacity to use the actin-

based motility system for promoting cell-to-cell spreading (Teysseire et 

al., 1992). The RickA protein that contains a domain with homologies 

with WASP-family proteins was thought to function as a nucleation-

promoting factor that directly activates the Arp2/3 complex (Gouin et al., 

2004; Simser et al., 2005). From in vitro actin branching assay performed 

with recombinant RickA, the involvement of additional bacterial or 

eukaryotic factors in reorganizing Arp2/3 complex generated Y-branched 

networks into parallel arrays was also suggested (Jeng et al., 2004). 

Because genetic manipulations were unfeasible, the role of RickA in the 

motility of rickettsiae was not formerly demonstrated. Instead, some points 

remained  unclear. Thus, and while RickA was found to be expressed on 

the bacterial surface, both signal sequence and hydrophobic domain that 

are respectively required for secretion and membrane anchorage of this 

protein are lacking (Gouin et al., 2004). Moreover, experiments achieved 

on R. raoultii evidenced that the motile phenotype could be dependent on 

the host cells and unrelated to the level of RickA expression (Balraj et al., 

2008). The results obtained in our study (Article 2) confirm that RickA is 

expressed over the entire bacterial surface of R. conorii and do not exhibits 

a polarized distribution as other bacterial components known to be 

responsible for intracellular motility including IcsA, ActA or BimA 
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(Goldberg et al., 1993; Kocks et al., 1993; Stevens et al., 2005). Our data 

fit well with the recently published work of  Kleba et al. (2010). Indeed, 

these authors took advantage of recent development of mariner-based 

transposon systems for rickettsia transformation and demonstrated that 

Sca2 mutant does not produce actin comet tails, suggestive of its role in 

actin-based motility.  

The third part of my research focused on the serodiagnostic test 

improvement. In diagnostic approach, various methods were replaced by 

new method which is easier to handle and guaranteed better sensitivity 

and specificity. For this reason efficient diagnostic test based on 

recombinant proteins was started. Twenty recombinant proteins targets 

were screened with patient sera by ELISA. We believe that some of these 

markers could be helpful in discriminating the infection due to R. typhi 

and R. conorii from clinical samples (Article  3). While the number of 

studies involving engineering recombinant proteins is still low, they could 

offer an interesting alternative to improve the diagnosis of infection with 

these fastidious microorganisms.  

In conclusion, and while clearly experiments remain to be done, I 

believe that this work has to a better knowledge of the molecular 

mechanisms involved in rickettsia pathogenicity. 
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