La comète Hale-Bopp à l'interféromètre du Plateau de Bure : étude de la distribution du monoxyde de carbone

Florence HENRY

Thèse préparée sous la direction de Dominique Bockelée-Morvan

ARPEGES - LESIA

Plan de la présentation

- 6 Les comètes
- 6 L'interférométrie millimétrique
- 6 Les observations
- 6 Le modèle
- 6 Analyse des résultats
- 6 Conclusions et perspectives

Les comètes

Qu'est-ce qu'une comète?

La comète C/1995 O1 Hale-Bopp

- 6 Activité : 10^{31} mol/s, soit ~300 tonnes/s
- 6 Taille : \sim 40 km de rayon
- Composition : H₂O, CO (23%), CO₂ (6%), CH₃OH (2.4%), H₂S (1.5%), H₂CO (1.1%) + autres molecules organiques, soufrées, azotées
- 6 Jets : de multiples jets de gaz et de poussières
- 6 Rotation : période de 11.35h

La campagne d'observations de la comète Hale-Bopp

- Suivi de l'activités des espèces moléculaires : OH, CO, CS, H₂S, H₂CO, HCN, CH₃OH, CH₃CN et HNC (Biver et al., EMP, 2002) → → → → → [↑]
- Recherche de nouvelles molécules
 cométaires : SO, SO₂, HC₃N, NH₂CHO, HCOOH et HCOOCH₃ (Bockelée-Morvan et al., A&A, 2000)
- Observations en interférométrie
 millimétrique : CO, HCN, H₂CO, CS,
 CH₃OH, HNCO, HNC, H₂S et SO (Wink *et al.*, EMP, 1999)

L'interférométrie millimétrique

Principe de l'interférométrie millimétrique

- 6 Un interféromètre mesure, pour chaque couple d'antennes, le produit de corrélation des signaux reçus par chacune des deux antennes.
- Échantillonnage de la Transformée de Fourier (TF) V de la distribution de brillance B sur la plan du ciel : les visibilités.

$$\mathcal{V} = \mathrm{TF}\left(\mathcal{B}\right) \tag{1}$$

6 Effectuer la TF inverse pour obtenir la carte de la distribution de brillance.

$$\mathcal{B} = \mathrm{TF}^{-1}\left(\mathcal{V}\right) \tag{2}$$

- chaque couple d'antenne permet de mesurer 1 visibilité de coordonnées (u, v) par séquence d'observation.
- 6 *n* antennes $\Rightarrow \frac{n}{2}(n-1)$ points mesurés par séquence.
- Ia rotation de la Terre augmente la couverture du plan de Fourier.
- 6 propriété de symétrie de la TF.

- chaque couple d'antenne permet
 de mesurer 1 visibilité de
 coordonnées (u, v) par séquence
 d'observation.
- 6 *n* antennes $\Rightarrow \frac{n}{2}(n-1)$ points mesurés par séquence.
- Ia rotation de la Terre augmente la couverture du plan de Fourier.
- 6 propriété de symétrie de la TF.

- chaque couple d'antenne permet
 de mesurer 1 visibilité de
 coordonnées (u, v) par séquence
 d'observation.
- 6 *n* antennes $\Rightarrow \frac{n}{2}(n-1)$ points mesurés par séquence.
- la rotation de la Terre augmente la couverture du plan de Fourier.
- 6 propriété de symétrie de la TF.

- chaque couple d'antenne permet
 de mesurer 1 visibilité de
 coordonnées (u, v) par séquence
 d'observation.
- 6 *n* antennes $\Rightarrow \frac{n}{2}(n-1)$ points mesurés par séquence.
- la rotation de la Terre augmente la couverture du plan de Fourier.
- 6 propriété de symétrie de la TF.

Problème de l'inversion

L'échantillonnage des visibilités est discret donc :

- 1. il faut interpoler les visibilités pour estimer les valeurs manquantes
- 2. la brillance ne s'obtient pas directement par TF^{-1} des visibilités :

$$\mathcal{B}^{D} = \mathrm{TF}^{-1} \left(\mathcal{V} \cdot S \right) \tag{3}$$
$$= \underbrace{\mathrm{TF}^{-1} \left(\mathcal{V} \right)}_{\mathcal{B}} \otimes \underbrace{\mathrm{TF}^{-1} \left(S \right)}_{\text{lobe sale}} \tag{4}$$

 \mathcal{B}^D est l'image dégradée de la distribution de brillance et S est la fonction d'échantillonage des visibilités.

Problème : la déconvolution par $TF^{-1}(S)$ est une étape délicate qui peut introduire des artefacts.

Résumé

Les observations

Les observations au Plateau de Bure

6 Quand?

- du 6 au 22 mars 1997
- observation des transitions *J(2-1)* (230 GHz) et *J(1-0)* (115 GHz) de CO le 11 mars de 4h à 15h TU
- 6 Comment?
 - △ 5 antennes de 15m dans la configuration C1
 - △ 10 lignes de base de 25m à 150m

- Résolution spatiale : \sim 1.5" à 230 GHz et \sim 3.5" à 115 GHz

Résolution spectrale : 0.1 km/s pour les 2 fréquences

Les cartes interférométriques

- 6 CO J(2-1) dans la comèteHale-Bopp le 11 mars 1997
- 6 carte moyennée
 - sur la journée
 - sur les 25 canaux de vitesse

Les cartes spectrales interférométriques

Les spectres on-off

Évolution temporelle des cartes interférométriques

Évolution temporelle des cartes interférométriques

les centres photométriques C_i
 semblent tourner selon une ellipse こ
 dont le 1/2 grand axe est
 perpendiculaire à l'axe de rotation
 动 du noyau de la comète

Existence d'un jet de CO en rotation?

- 6 anisotropies spatiales et spectrales de la distribution de brillance
- variation temporelle du décalage spectral avec une période égale à celle de la rotation du noyau
- évolution temporelle des maxima de brillance autour d'une position
 centrale selon une direction perpendiculaire à l'axe de rotation du noyau

Mais

- 6 rapport signal/bruit limité pour les cartes d'évolution temporelle
- 6 couverture *uv* insuffisante
- o rotation de la forme du lobe

-> étudier directement les visibilités

Évolution temporelle des visibilités

Les spectres interférométriques

Les données de la raie CO J(1-0)

Le modèle

Principe et paramètres du modèle

Modélisation 3-d de l'atmosphère cométaire

- 6 modèle de Haser pour une molécule mère : vitesse d'expansion constante, distribution en $1/r^2$
- 6 modèle d'excitation (Biver, thèse, 1997) :

transfert du rayonnement optiquement mince

Principe et paramètres du modèle

- o une composante isotrope
- 6 un jet de forme conique
 - apportant une fraction f_{co} du CO de la coma
 - d'ouverture Ψ
 - émis depuis la latitude ℓ
- 6 rotation du noyau caractérisée par
 - une période P = 11.35h (Jorda *et al.*, EMP, 1999)
 - l'angle d'aspect θ_{ω} = 80° ± 10° *
 - \checkmark l'angle de position ap_ω = 210° \pm 10° *

*valeurs moyennes trouvées dans la littérature

Principe et paramètres du modèle

Paramètres de l'axe de rotation : θ_{ω} =80°, ap_{ω} =210°

Latitude du jet : ℓ =20°

Buts du modèle

- simuler les observations du CO du 11 mars
 - Ies spectres on-off
 - Ies spectres interférométriques
 - Ies visibilités
- 6 comprendre le comportement et reproduire leurs évolutions temporelles

Analyse des résultats

Ajustement de l'évolution temporelle des décalages spectraux on-off

Ajustement à une sinusoïde :

$$\Delta v(t) = \frac{\mathcal{A}}{2} \sin\left(\frac{2\pi}{P}(t - t_0)\right) + v_0$$

- *t*₀ est influencé uniquement par la longitude initiale du jet
- 6 \mathcal{A} augmente lorsque f_{co} augmente, Ψ diminue ou $|\ell|$ diminue

Ajustement de l'évolution temporelle des décalages spectraux on-off

6 le signe de v_0 est déterminé par ℓ et θ_{ω} :

 $\ell > 0^{\circ}$ et $\theta_{\omega} < 90^{\circ} \Rightarrow v_0 < 0$

6 ap_{ω} n'a aucune influence sur les paramètres \mathcal{A} , v_0 et t_0

Détermination des couples (f_{co} , Ψ) potentiels

- 6 Compétition entre f_{co} et Ψ pour \mathcal{A} et v_0 .
- 6 Pour chaque couple (θ_{ω}, ℓ) , il existe un couple (f_{co}, Ψ) qui reproduit simultanément v_0 et \mathcal{A} .

Détermination des couples (f_{co} , Ψ) potentiels

Jeux de paramètres reproduisant la courbe d'évolution temporelle des décalages spectraux on-off :

θ_{ω}	=	80°	$ heta_\omega$	=	80°	$ heta_\omega$	=	80°	$ heta_\omega$	=	70°
ℓ	—	10°	ℓ	—	20°	ℓ	=	30°	ℓ	—	10°
Ψ	=	12°	Ψ	=	18°	Ψ	=	33°	Ψ	=	20°
f_{co}	=	34%	f_{co}	=	35%	f_{co}	=	48%	f_{co}	=	36%

-> Contraindre d'avantage les paramètres par les autres observations

Étude de cas simplifiés : visibilités de jets dans le plan du ciel

Visibilités obtenues pour un jet rectiligne :

Étude de cas simplifiés : visibilités de jets dans le plan du ciel

-> les longues lignes de base sondent les régions internes de la spirale et les petites les régions plus externes

Visibilités des modèles potentiels

Simulation des visibilités

- 6 profil en $\sigma^{-1.18\pm0.01}$ non reproduit par les modèles
- 6 modulations reproduites. la meilleure simulation est déterminée par un test du χ^2 -- Data fit $\sigma^{-0.93\pm0.01}$

Modèle retenu : comparaison des cartes interférométriques

 ℓ = 20°, Ψ =18°, f_{co} =35%, θ_{ω} =80°, ap_{ω} =220°

Modèle retenu : comparaison des cartes interférométriques temporelles

Simulation des décalages spectraux interférométriques

Simulation des décalages spectraux interférométriques

- Accord pour les lignes de base 3-4 et 2-4, désaccord pour 1-5, 1-4 et 1-3.
- 6 Désaccord au niveau des amplitudes
 - une vitesse plus grande dans le jet réduit les différences
- 6 Désaccord au niveau des t_0
 - -> gradient de vitesse dans le jet?
 - jet conique et/ou structure en spirale trop simplistes?

Discussion

- 6 CO dans Hale-Bopp : ℓ = 20°, Ψ =18°, f_{co} =35%, θ_{ω} =80°, ap_{ω} =220°
- autres molécules observées au Plateau de Bure dans la comète Hale-Bopp :
 - HCN : $\Delta v < 0$, opposition de phase avec CO
 - $H_2CO : \Delta v < 0$, en phase avec CO pour la partie diurne
 - CS : déphasé par rapport aux autres, actif jour et nuit
- 6 Jorda et al., 1999 : 2 jets à hautes latitudes
- 6 Vasundhara & Chakraborty, 1999 : jets à des latitudes de +65°, +5° et -5°

poussières

6 Lederer & Campins, 2002 : jets de OH, CN et C₂ à des latitudes multiples

-> ces différences sont-elles normales?

Nature de CO dans la comète Hale-Bopp

Modèle dans le cas d'une source étendue

Modèle isotrope pour :

- 6 transfert de rayonnement optiquement mince
- $\leq \neq$ contributions de la source étendue au CO de la coma
- ightarrow = iongueurs d'échelle du parent de CO

2 contraintes :

6	la pente en $\sigma^{-1.18\pm0.01}$ ->		longueur d'échelle du parent à 1 UA.					
6	la position du point on-off	P_{ext}	2 000 km	4 000 km	10 000 km			
	sur la courbe d'évolution	0.00	-1.00	-1.00	-1.00			
	des visibilités	0.33	-1.09	-1.05	-1.02			
		0.50	-1.17	-1.10	-1.04			
		0.67	-1.30	-1.21	-1.10			
		1.00	-1.67	-1.74	-1.79			

Modèle dans le cas d'une source étendue

Modèle dans le cas d'une source étendue

Mais :

- 6 CO J(1-0) uniquement compatible avec CO nucléaire à 100% (pente $\sigma^{-0.78\pm0.05}$)
- 6 effets d'opacité sur la raie CO *J(2-1)* négligés

-> source nucléaire uniquement?

Conclusions et perspectives

- 6 identification d'un jet spiral de CO
- 6 calcul des paramètres tels que la position, l'ouverture et l'intensité
- 6 améliorations à apporter :
 - prise en compte des effets d'opacité
 - variation de la vitesse dans la coma
 - variation de la forme du jet
 - intégration des modèles hydrodynamiques de Crifo et al.
- futur : méthode d'analyse
 développée ici utilisable avec
 ALMA jusqu'en 2007 au
 moins.

Velocity shift [km s⁻¹]