

Étude et implémentation d'une couche physique UWB impulsionnelle à bas débit et faible complexité

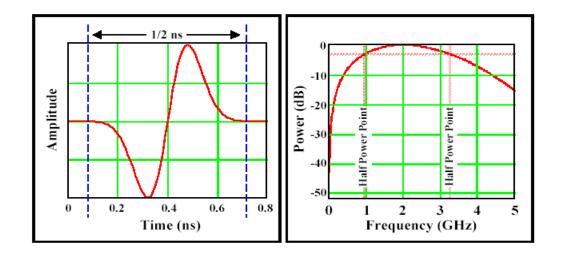
Jean Schwoerer

Directeur de thèse : Ghais El-Zein

Encadrement France Telecom R&D: Benoit Miscopein

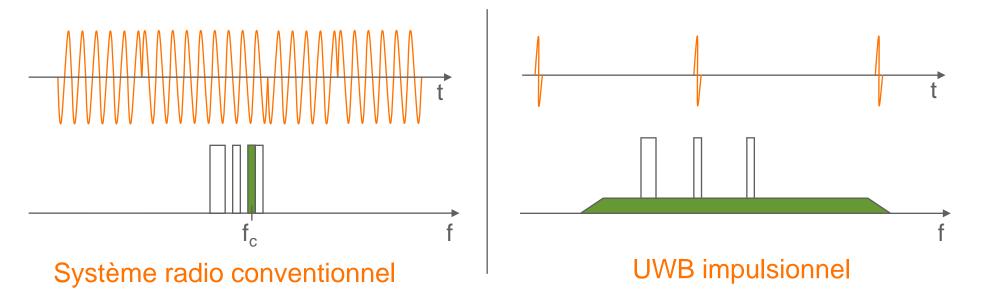
Encadrement IETR – INSA: Bernard Uguen

- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Démonstrateur
- Conclusion et perspectives



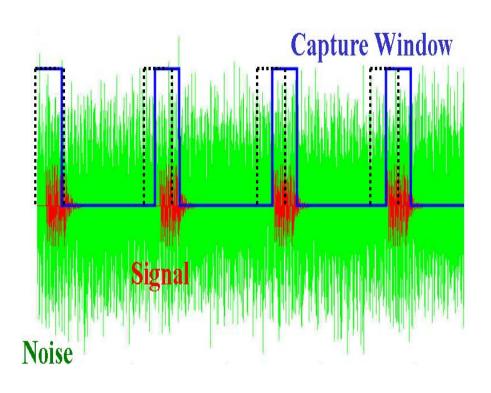
La radio UWB Impulsionnelle

→ Le concept :


- Émission d'impulsions de très courte durée (quelques centaines de ps) et de ce fait naturellement très large bande
- Pas de porteuse permanente
- Puissance moyenne très faible car rapport cyclique très faible

La radio UWB impulsionnelle

Une nouvelle manière de penser les radiocommunications


- Conventionnel : Émet une grande partie du temps sur une petite partie du spectre
- → UWB : Émet une petite partie du temps sur une grand partie du spectre

La radio UWB Impulsionnelle

Démodulation sur des fenêtres censées contenir une impulsion

Au lieu de filtrer une bande précise du spectre, on filtre un instant précis du temps

- Diminution du bruit.
- Diminution de la consommation
- Impose une synchronisation précise

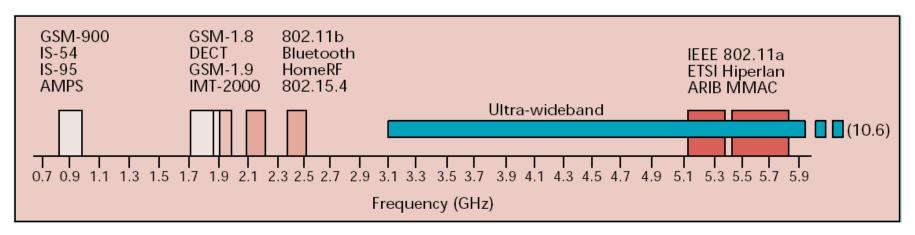
L'impulsionnel pour les applications à bas débit

→ Propriétés particulières de l'UWB impulsionnelle :

- Aptitude intrinsèque à une très faible consommation : inactif la plupart du temps
- Forte capacité intrinsèque de géolocalisation : proximité avec le RADAR
- Très simple interface radio donc potentiellement à faible coût

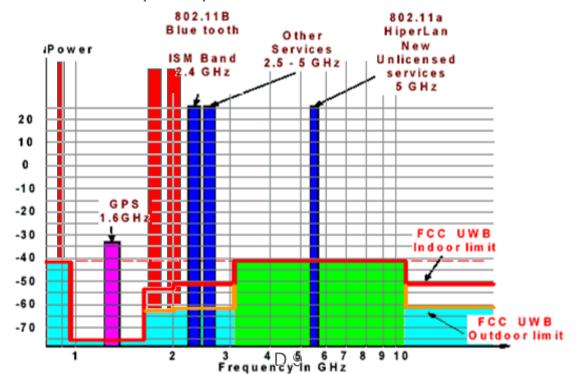
→ Applications envisagées :

- Liaison machine à machine
- Réseaux de capteurs autonome
 - Bâtiment intelligent
 - Surveillance environnementale
- Suivi de matériel ou de personne
- Étiquette électronique (RFID)


- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Démonstrateur
- Conclusion et perspectives

Réglementation

- Gestion du spectre
 - Très faible puissance rayonnée : l'UWB peut réutiliser du spectre déjà alloué.
 - Nécessité d'assurer la protection des services "licenciés" existants et à venir.
 - Risque de mettre un frein inutile au développement d'une nouvelle technologie prometteuse.
- → L'équilibre est délicat à trouver



Réglementation

- → Les États-unis ont autorisé l'UWB :
 - Ouverture de 7,5 GHz de bande : 3.1 à 10.6 GHz suivant un masque
 - Limite de DSP moyenne : -41,3 dBm/MHz et crête : 0 dBm/50 MHz
 - Puissance équivalente aux rayonnements parasites d'appareils électriques
- Europe et Asie :
 - •Études en cours
 - Démarches nettement plus "prudentes"

- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Démonstrateur
- Conclusion et perspectives

Problématique et démarche

→ Une problématique : la faisabilité de l'UWB

- Acquérir des certitudes par l'expérience face aux nombreuses promesses faites
- Acquérir la maîtrise des briques de base

Une orientation "circuit"

- Les premiers défis de la radio impulsionnelle sont au niveau circuit.
- La réalisation des blocs élémentaires n'est pas nécessairement triviale
- Le comportement des composants RF en régime non établi est peu connu

→ Une démarche : la réalisation d'une chaîne UWB-IR

- Réalisation en composants discrets d'origine commerciale
- Contrainte d'intégrabilité via un procédé micro-électronique à faible coût (CMOS)
- L'expérimentation permet de se confronter au réel

- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Démonstrateur
- Conclusion et perspectives

Une couche physique UWB-IR bas débit

Nos objectifs

- Débit brut : de l'ordre de 1 Mbit/s à 30 mètres avec un TEB de 1.10e-4
- Résolution : au moins 30 cm (géolocalisation)
- Faible consommation et faible coût : viser la simplicité

→ Limite de puissance, bande et rapport cyclique

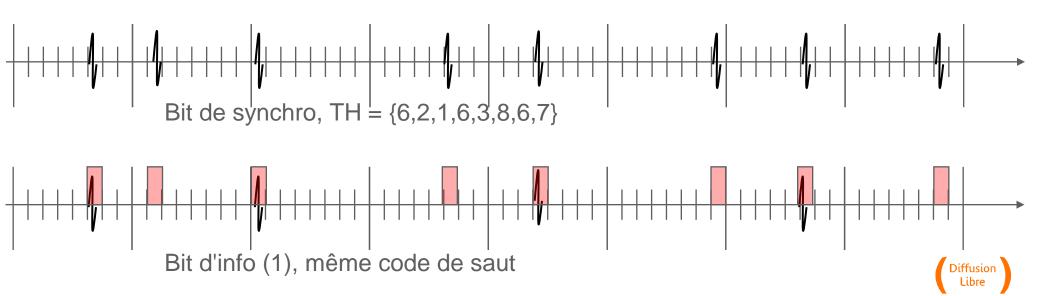
- La bande de 1 GHz donne une résolution de 1ns soit 30 cm
- La bande 1 GHz implique, d'après la réglementation américaine :
 - Pmoy maximale = -9,5 dBm (1,5 GHz de bande à -10 dB)
 - Pcrête maximale = 26 dBm
- Mais il y a une limite technologique estimée à 13 dBm (CMOS)
- La puissance crête max. impose un écart inter-impulsion minimal de 316 ns



Une couche physique UWB-IR bas débit

- Le canal UWB est souvent hostile
 - Forte atténuation en indoor
 - Nombreux trajets discernables.
 - Profondeur de 150 à 200 ns.
 - Décroissance de puissance exponentielle

Type de canal	# Trajets _{-10dB}	n
LOS Résidentiel	17	1,79
NLOS Résidentiel	37	4,58
NLOS Bureaux	60	3,07
NLOS Industriel	392	2,15


→ Un intervalle de garde est nécessaire

Définition d'une couche physique

- Les bits sont transformés mots de 8 bits orthogonaux Exemple: "1" -> "10101010" / "0" -> "01010101"
- → Les mots sont modulés en OOK (4 impulsions et 4 non-impulsions)
- → Les impulsions subissent un saut temporel (code 8-aire de longueur 8)
- Les paquets sont précédés d'une entête de synchro non modulée

Une couche physique UWB-IR bas débit - Bilan de liaison

Paramètres	Avec trajet direct (LOS)	Sans trajet direct (NLOS)
Bande (MHz)	1500	1500
Distance D (m)	30	30
Fréquence centrale FC (MHz)	4000	4000
Puissance moyenne TX (dBm)	-10	-10
Perte de propagation (dB)	74	91,3
Gain d'antennes RX (dB)	2	2
Puissance moyenne RX (dBm)	-82	-99,3
Puissance du bruit (dBm)	-84	-84
Figure de bruit RX (dB)	4	4
Niveau de bruit (dBm)	-80	-80
Rapport signal à bruit (dB)	-2	-19,3
Rapport signal à bruit (dB) nécéssaire	11,4	11,4
Gain de traitement (dB) minimum	13,4	30,7
Gain de redondance (dB)	9	9
Gain de fenétrage (dB)	22	22
RSB Décision (dB)	29	11,7

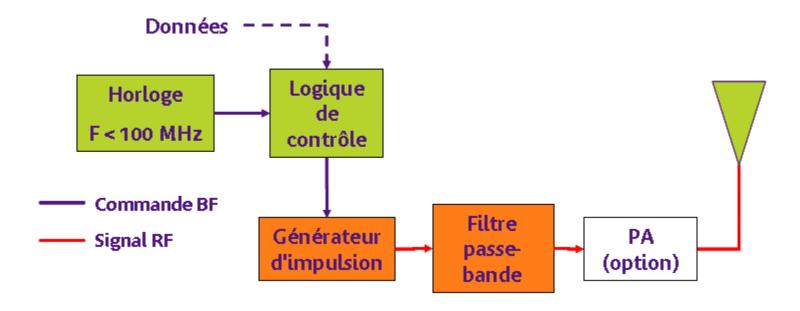
Une couche physique UWB-IR bas débit

Entête de synchronisation

- Le gain de fenêtrage n'est pas disponible (22 dB)
- •L'énergie de l'entête compense cette perte par :
 - Un symbole de synchronisation plus énergique (tout les chips sont à 1 soit 8 pulses par symboles au lieu de 4 → +3dB
 - La répétition de ce symbole : 64 symboles → +18dB
- Mais le RSB requis n'est pas nécessairement le même qu'en démodulation
- Un entête de 32 symboles (+15 dB) a donné de bons résultats en simulation

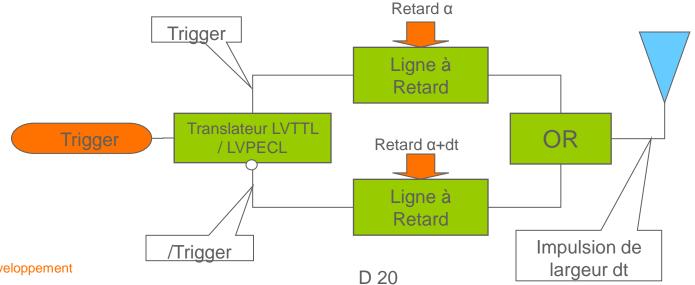
Adaptation au canal et à la réglementation

- Intervalle minimal entre deux impulsions : 60 ns
- Durée chip + modulation OOK : intervalle moyen de 320 ns


- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
- Conclusion et perspectives

Un émetteur très simple

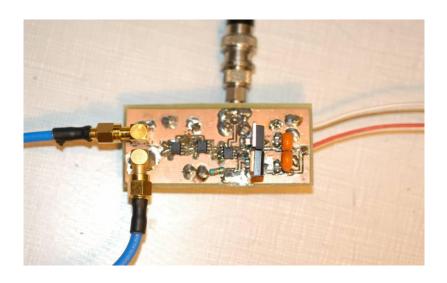
- → Démarche : simplifier à l'extrême
 - Réponse aux objectifs de bas coût et de faible consommation
 - Génération d'impulsions en bande de base
 - Pas de mélangeur ni VCO mais filtrage de l'impulsion
 - Logique de contrôle simple et fréquence d'horloge "raisonnable"

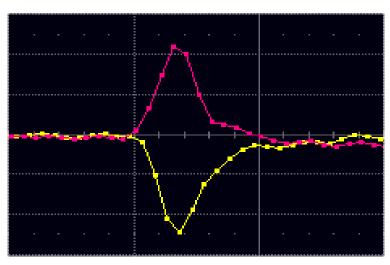


Production d'impulsion

- La diode SRD est un composant très utilisé pour la production d'impulsions
- C'est un composant AsGa donc peu intégrable

Solution retenue


- Production d'impulsions logiques via une porte logique et deux signaux légèrement décalés (dt)
- Utilisation de composants logiques ECL du commerce (Si bipolaire).



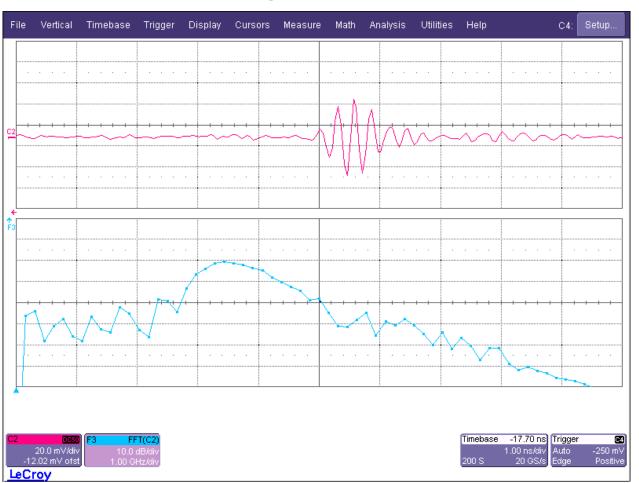
- Production d'impulsions : Réalisation d'un prototype
 - Pulse et antipulse : 300 ps et 200 mV sous 50 Ohms.
 - Bande passante à -10 dB (B) : 2 GHz
 - Pilotage facile via un front montant TTL (ne requiert pas d'horloge).
 - Perspectives sur l'intégration silicium d'un pulser.



- Formation d'un doublet
 - Recombinaison du pulse et de l'antipulse par un coupleur large bande
 - Suppression de la composante DC
 - Augmentation de la bande par un choix judicieux du retard

Doublet obtenu:

• Durée : 600 ps


• Bande : 3,5 GHz

• Niveau: 400 mVpp

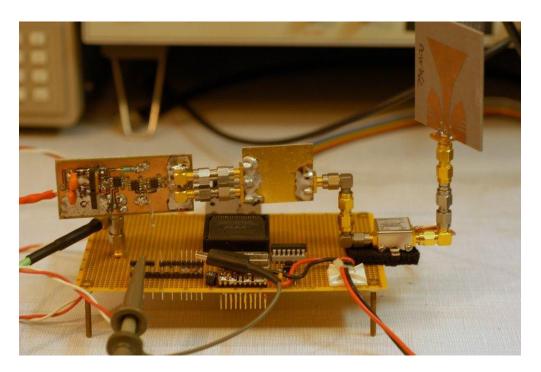
B

- Filtrage du doublet
 - Permet d'éviter les bandes interdites
 - Dissipe de l'énergie dans le filtre

Ondelette obtenue:

• Durée : 1 ns

• Bande : 1,5 GHz


Niveau: 100 mVpp

Pilotage du générateur

- Par un FPGA bas de gamme
 - Prend en charge de la modulation et le saut temporel
 - Un quartz à 50 MHz fournit l'agilité et la précision nécessaire
 - Écart type de l'erreur de position d'impulsion sur un symbole: 390 ps.
 - Dérive en fréquence : compensable par une poursuite sur le récepteur.
 - La complexité est très limitée (48 LE)

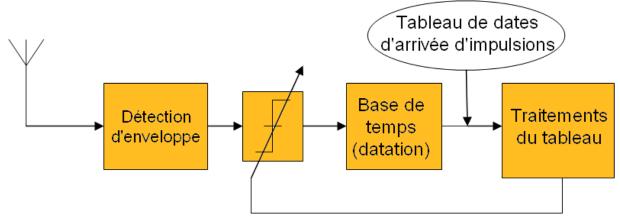
- → La radio impulsionnelle UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Étage frontal RF
 - Traitement "bande de base"
 - Démonstrateur
- Conclusion et perspectives

Méthode de détection des impulsions – État de l'art

Détection par corrélation :

- Timing très précis : Déclenchement à l'instant d'arrivée du pulse attendu => Marge d'erreur : +/- 70 ps
- Analogique : multiplieur + intégrateur + générateur de motif.
- Numérique : échantillonnage RF + traitement numérique

⇒ Système complexe


→ Collection d'énergie :

- Moins de contrainte sur la synchronisation : au lieu de chercher un pulse à un instant T, on l'attend à tout instant.
- Plus simple à implémenter
- Mais intégration de la réponse impulsionnelle du canal
 - Pas d'accès aux trajets individuels donc plus de localisation

Architecture de réception proposée

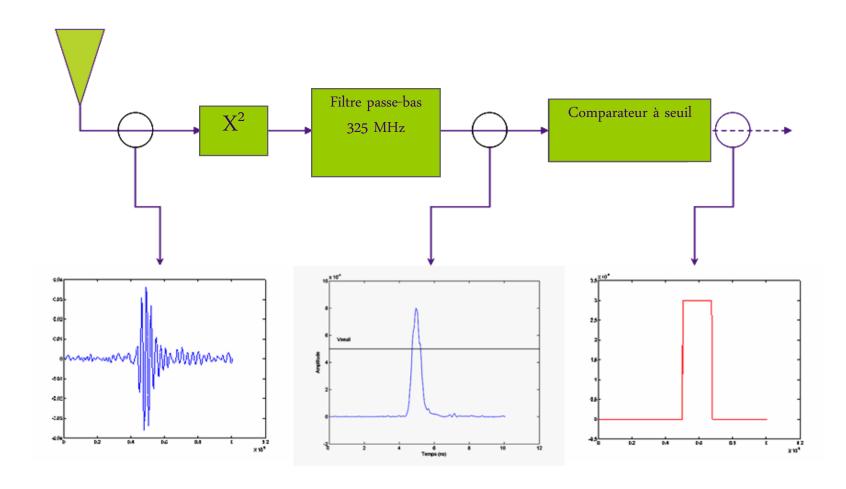
- Constat : L'information est codée dans le temps
 - L'amplitude n'a pas d'importance : seule compte la présence ou l'absence d'impulsion à un instant du temps ⇒ comparaison à un seuil de décision
 - Un tableau des dates d'arrivée d'impulsions contient donc toute l'information

Adaptation du seuil

- Nouvelle approche proposée
 - Détection d'enveloppe (RF) des impulsions (sans intégration)
 - Comparaison puis datation des arrivées d'impulsions
 - Traitement du tableau des dates d'arrivée d'impulsions

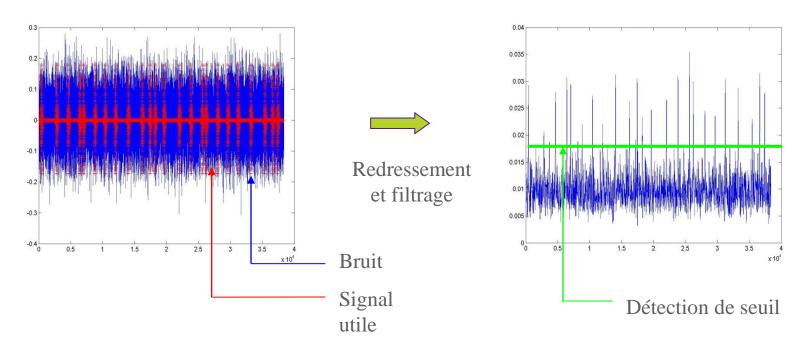
Architecture de réception proposée

- Avantages de l'approche proposée
 - Conservation de la discrimination trajet par trajet
 - Possibilité de localisation
 - Meilleurs performances multi-utilisateurs
 - Complexité réduite
 - Pas de numérisation du signal mais une simple comparaison
 - Quantité d'information traitée réduite au minimum
 - Pas de contrainte de temps une fois la liste de dates constituée
- Points sensibles :
 - Base de temps de résolution importante (1 ns)
 - Positionnement du seuil de décision



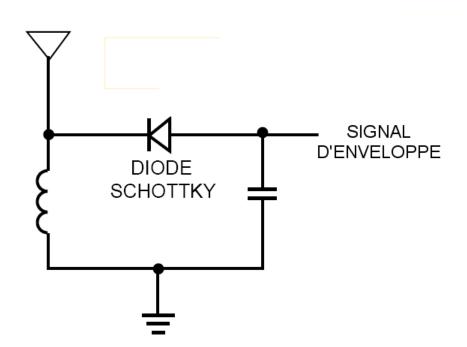
- → La radio impulsionnelle UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Etage frontal RF
 - Traitement "bande de base"
 - Démonstrateur
- Conclusion et perspectives

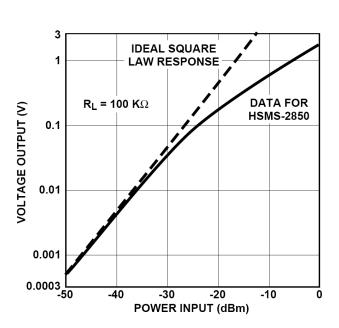
La détection d'enveloppe – Front end



La détection d'enveloppe - Front end

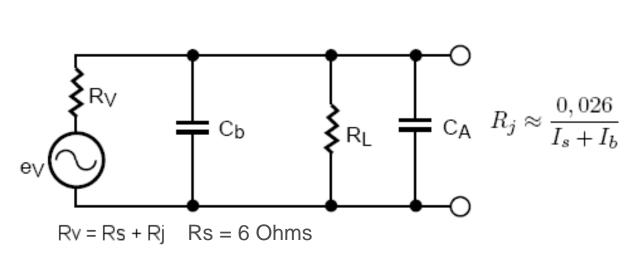
Illustration de l'intérêt de la détection d'énergie

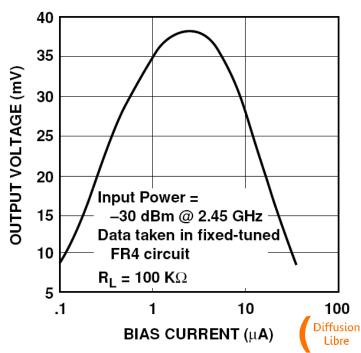

- Le filtrage passe bas diminue de la bande de bruit
- Permet aux impulsions de sortir du bruit



La détection d'enveloppe – Réalisation

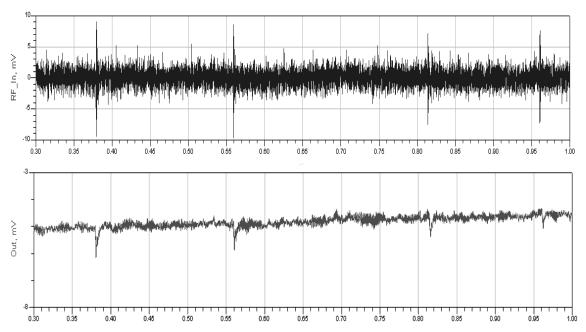
- → Détection d'enveloppe par diode Schottky:
 - Solution simple de faible coût et de consommation réduite
 - Couramment utilisée en bande étroite
 - Mais faible sensibilité tangentielle (-45 dBm en bande étroite)
 - Sélection d'une diode de la famille HMS-2860 (Agilent)

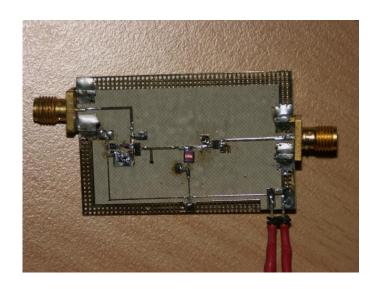



La détection d'enveloppe – Réalisation

Courant de polarisation lb:

- Rv et Cb forment un filtre passe bas.
- La largeur de bande de l'enveloppe nécessite d'abaisser l'impédance de sortie
 Rv du détecteur
- Diminuer Rj implique de s'éloigner du point de sensibilité optimale (lb = 3μA).
- Il en résulte une forte dégradation de la sensibilité : -25 dBm



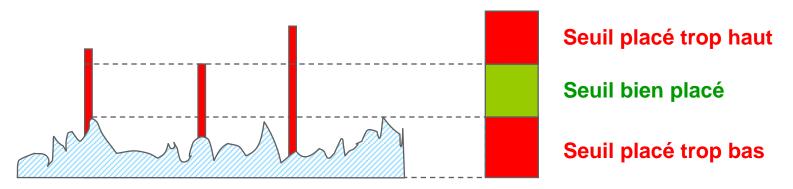

La détection d'enveloppe – Réalisation

→ Résultats :

- Le détecteur fonctionne
- Les fronts d'impulsions sont raides (facilite la détection)
- Mais la sensibilité est réduite (-30 dBm en simulation, -25 en mesure)

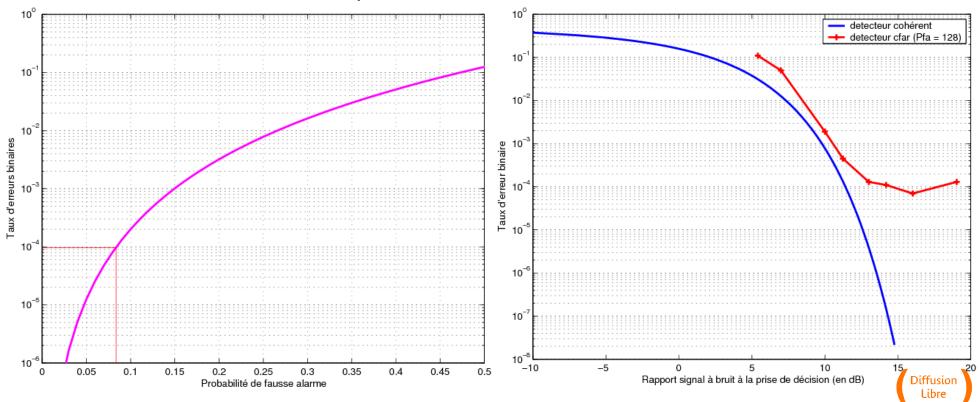
→ Détection de franchissement de seuil :

Faisable avec des composants d'origine commerciales (max 9600 par ex.)


- → La radio impulsionnelle UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Etage frontal RF
 - Traitement "bande de base"
 - Démonstrateur
- Conclusion et perspectives

Position du seuil de détection d'impulsions

- La position idéale du seuil est
 - Au-dessus du plus fort pic de bruit (risque de fausse alarme)
 - Au-dessous de l'impulsion la plus faible (risque de non détection)



- Mais la zone idéale (verte) peut ne pas exister (faible SNR)
 - Cela implique d'abaisser le seuil (introduit des fausses alarmes)
 - Le système doit pouvoir tolérer un certain nombre de fausse alarmes
 - Ce nombre fixe le plancher bas du seuil de détection
 - Les impulsions en dessous de ce seuil ne pourront plus être détectées

Position du seuil de détection d'impulsions

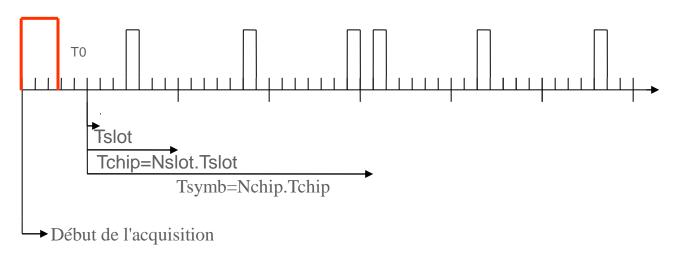
- → Le détecteur CFAR (Constant False Alarm Ratio)
 - Le seuil correspond à un taux de fausses alarmes fixé en fonction de ce que le système peut tolérer
 - Ce seuil est déterminé par une phase de calibration sur du bruit
 - Mais cela limite les performances en situation favorable

Acquisition de synchronisation - Principe

→ Objectifs:

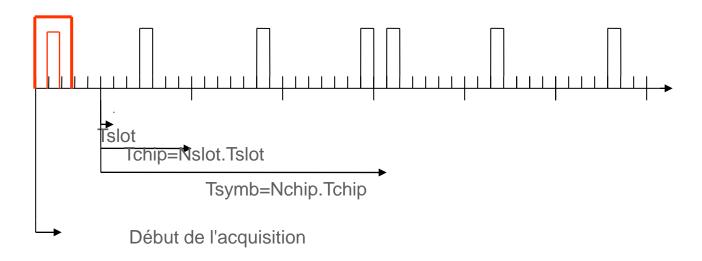
- Acquérir une référence de temps commune entre émetteur et récepteur
- Pouvoir placer les fenêtres de réception pour obtenir le gain de fenêtrage

Principe : Identifier la séquence de saut


- Les impulsions ont une puissance crête importante
- Dans l'ensemble des dates de franchissement de seuil, certaines d'entre elles correspondront à des impulsions
- Le tri des dates d'arrivée permet d'identifier la séquence de saut recherchée parmi l'ensemble des déclenchements

Acquisition de synchronisation - Principe

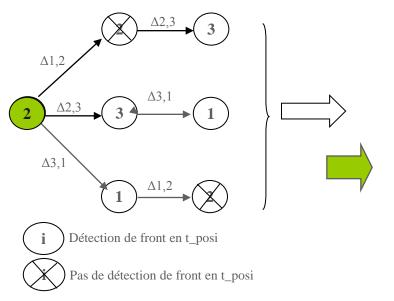
- Phase de synchronisation
 - Utilisation d'un motif de synchronisation en début de message (typiquement un mot constitué de '1' uniquement)
 - Connaissance de la séquence de saut temporel



IReptratibe deligition de la séquence saut

Acquisition de synchronisation - Principe

Phase de synchronisation
 Cas d'une fausse détection


Oléptkilisten tikakésila élentetri a toles filodes kénytéli életes financia identité pétit teleptét i teleptet i teleptét i teleptet i teleptét i teleptét

Acquisition de synchronisation – Modélisation

- Modélisation de l'arbre sous la forme d'une matrice
 - Les lignes représentent les branches (ou les hypothèses)
 - Les colonnes représentent les étapes de la séquence
 - La matrice est initialisée à 0
 - A chaque étape validée par une hypothèse, l'élément correspondant est incrémenté d'une unité

Нур. #	El. 1	El. 2	El. 3
1	1	0	1
2	1	1	1
3	1	1	0

 $\Delta i, j =$ écart connu a priori entre les positions i et j des pulses

Acquisition de synchronisation – Modélisation

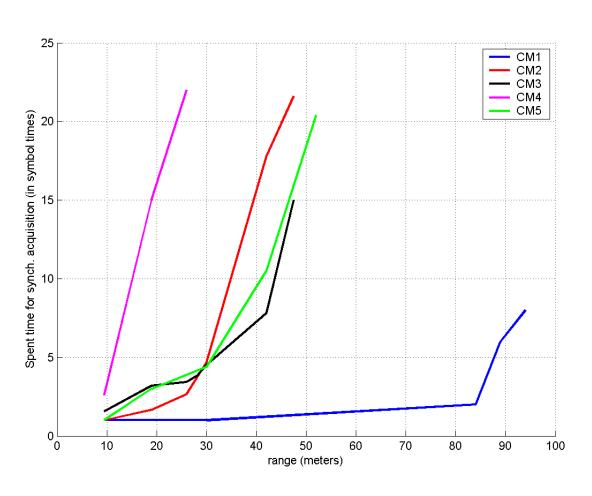
Critère de sélection

- Permet de valider une hypothèse et de déclarer la synchronisation acquise
- C'est l'hypothèse ayant le plus grand score et aucun élément nul

Critère de continuation

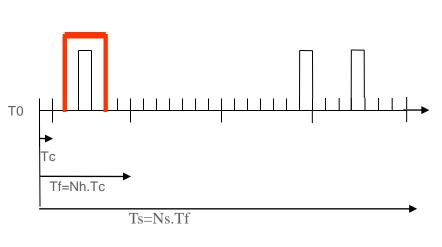
- Permet de conserver les données acquises pour le temps symbole suivant
- Amène un gain itératif au système
- Validé si une hypothèse a validé au moins la moitié de ses éléments

Critère d'abandon d'impulsion zéro


- L'impulsion zéro est considérée comme une impulsion de bruit
- Se produit si le critère de continuation n'a jamais été validé par aucune hypothèse en deux temps symbole

Acquisition de synchronisation – Résultats

Simulations sur les différents modèles de canaux



- Synchronisation acquise en moins de 32 temps symbole
- Performances liées à l'existence d'un trajet fort qui permet d'obtenir rapidement une impulsion zéro valide

Démodulation – Prise de décision

- Démodulation et décodage
 - Deux hypothèses possibles : H0 et H1
 - Comparaison "chip à chip" entre les chips reçus et les deux symboles existants (ET logique)
 - Chaque chip correspondant incrémente le score de l'hypothèse correspondante
 - Chaque erreur décrémente le score de l'hypothèse correspondante
 - Attribution d'un poids prédominant aux chips à "0"

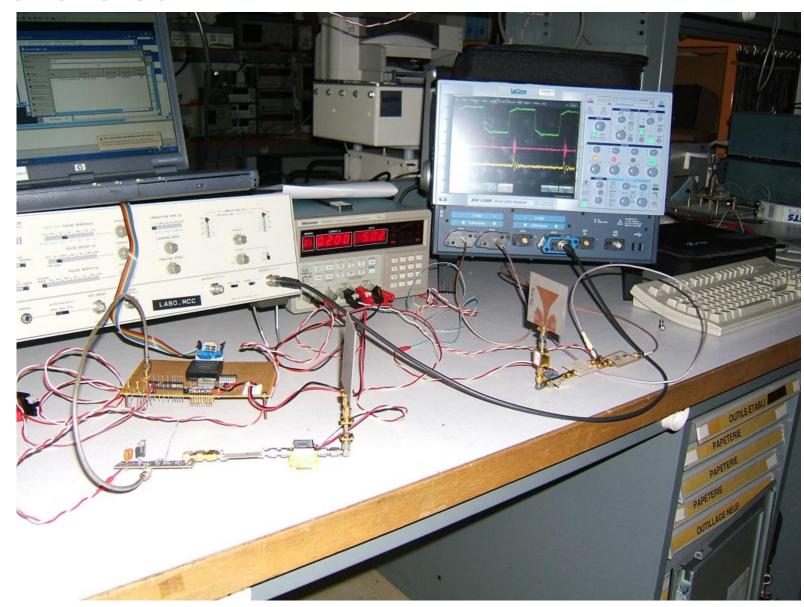
S"0"	S"1"	RX	Н0	H1
1	0	1	+1	-1
0	1			
0	1			
1	0			
Total				

Diffusion Libre

Plan de la présentation

- → La radio impulsionnelle UWB
- Problématique
- → Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Étage frontal RF
 - Traitement "bande de base"
 - Démonstrateur
- Conclusion et perspectives

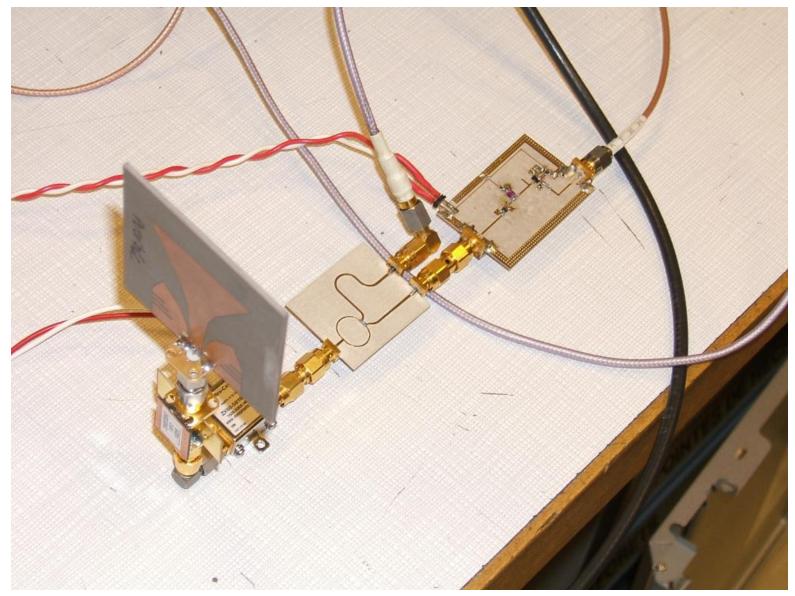
Démonstrateur



Paramètres de la manipulation

- Puissance crête : 7dBm
- Puissance moyenne : -15dBm (émission de trame permanente)
- Distance : 5m
- Débit brut : 780 kbit/s
- TX : plateforme UWB
- RX : Oscilloscope à échantillonnage et traitements implémentés C++

Démonstrateur



Démonstrateur

Résultats

- → Un des premiers prototype UWB en France, présenté lors des Journées de la Recherche 2004
- 7 brevets déposés ou en cours
- → 1 proposition en normalisation IEEE 802.15.4a (seul opérateur)
- → Participation au débat réglementaire européen (ECC TG3) pour les limitations de puissance UWB
- 2 publications dans des conférences internationales et 1 communication nationale

Plan de la présentation

- → La radio impulsionnelle UWB
 - Concept de la radio impulsionnelle UWB
 - Contexte réglementaire de l'UWB
- Problématique
- Prototypage et démarche expérimentale
 - Une couche physique UWB impulsionnelle bas débit
 - Système de transmission
 - Système de réception
 - Démonstrateur
- Conclusion et perspectives

Conclusion et Perspectives

Chaîne de transmission

- La possibilité de générer des impulsions UWB-IR avec une structure extrêmement simple est démontrée
- Le contrôle de ce générateur est également très simple
- La faisabilité d'un émetteur UWB-IR à très faible complexité est donc démontrée

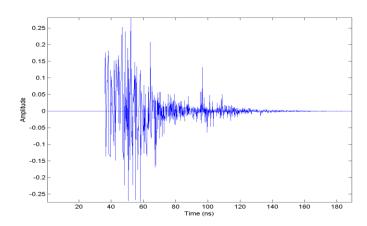
Chaîne de réception

- Une approche originale basée sur les dates d'arrivée des impulsions a permis de définir un récepteur à basse complexité.
- Toute la chaîne de traitement a été simulée puis testée en situation réelle.
- Il ne reste plus de verrou technologique identifié pour son implémentation

Conclusion et Perspectives

- → Ajustement de seuil
 - Études analytiques à mener pour gagner en performance
- Sur le plan implémentation
 - Amélioration de la sensibilité de l'étage frontal RF
 - Grand intérêt de la logique asynchrone pour l'implémentation des traitements en bandes de base
 - Quantification précise de la consommation
- Sur le plan réglementaire
 - La coexistence pacifique avec les systèmes à bandes étroites reste encore à organiser pour assurer un avenir à l'UWB

Questions



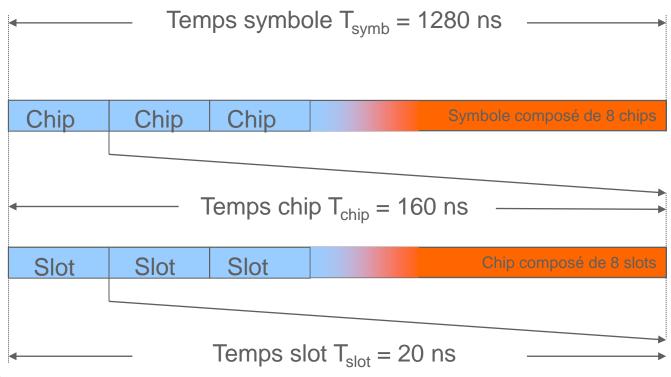
Back-up Slides

- Le canal UWB est souvent hostile
 - Forte atténuation en indoor
 - Nombreux trajets discernables.
 - Profondeur de l'ordre de 150 à 200 ns.
 - Décroissance de puissance exponentielle
- Un intervalle de garde minimum est nécessaire

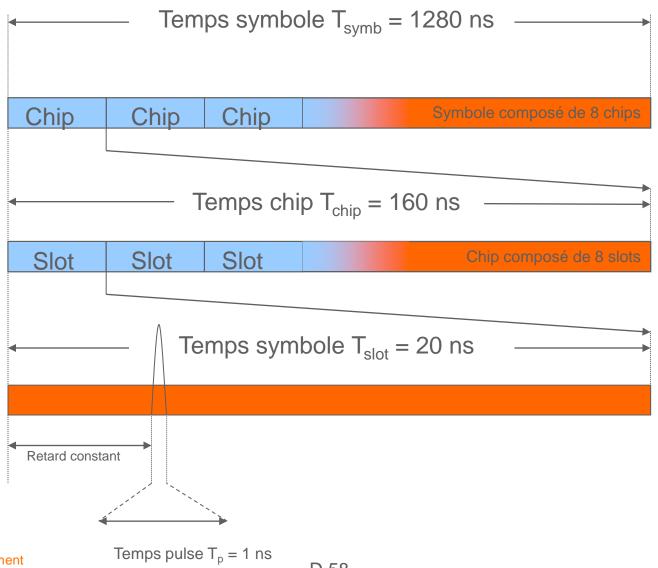
Type de canal	# Trajets _{-10dB}	# Trajets _{85%}	Γ (ns)	n
LOS Résidentiel	17	55	16,4	1,79
NLOS Résidentiel	37	115	18,5	4,58
LOS Bureaux	22	45	11,5	1,63
NLOS Bureaux	60	128	13,3	3,07
NLOS Industriel	392	1134	88,8	2,15

Diffusion Libre

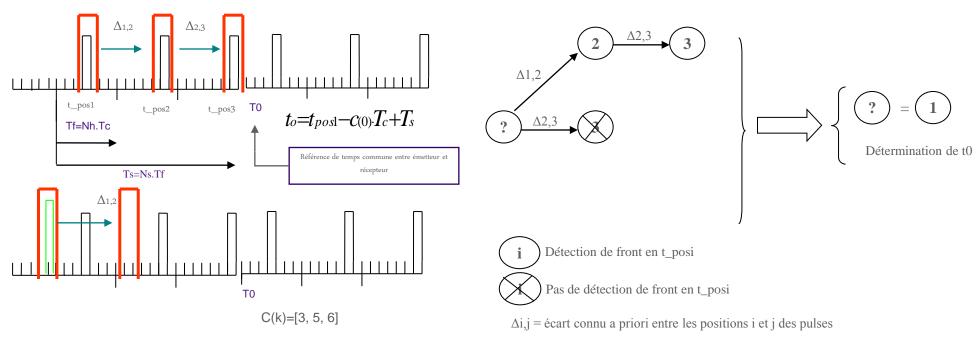
- Symbole et Chip
 - Chaque symbole est associé à 1 mot de 8 chips (redondances)
 - Chaque symbole comprend 4 chips de valeur "1" par mot (énergie identique)
 - Les symboles sont orthogonaux entre eux


Symbole binaire	Mot (8 chips)	
"0"	01101001	
"1"	10010110	

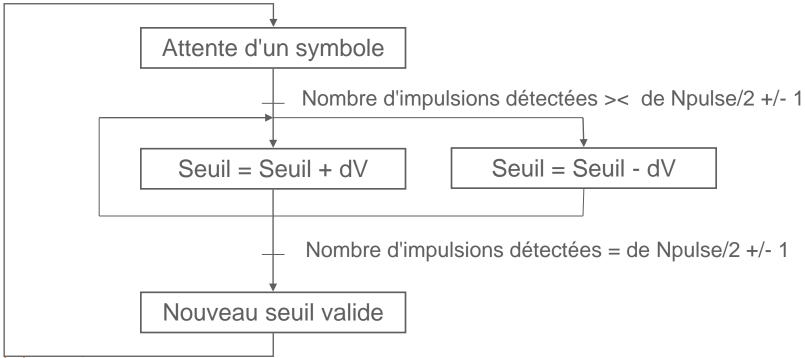
- Modulation des chips en On Off Keying (OOK)
 - Grande simplicité de mise en œuvre (TX et RX)
 - Simplifie la synchronisation
 - Performance acceptable (comparable à une PPM à énergie chip eq.)


Saut temporel

- Positionnement du pulse dans un slot par chip en fonction du code de saut
- Définition d'un temps chip de 160 ns soit 8 slots de 20 ns
- Limitation de la périodicité du signal afin d'aplanir le spectre
- Cohabitation de plusieurs pico-réseaux utilisant des codes différents



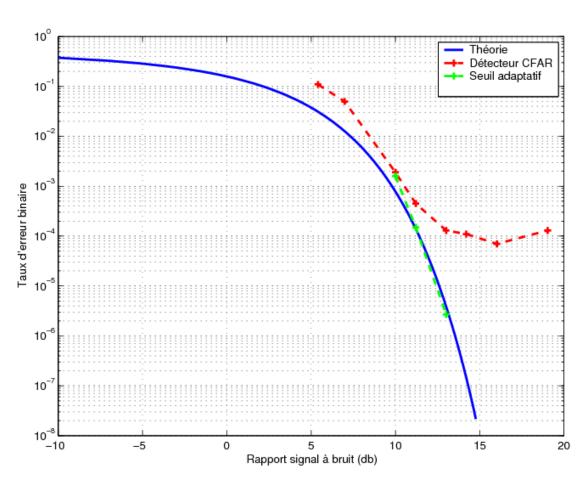
Acquisition de synchronisation - Modélisation


- Principe de la synchronisation
 - Mesure des instants d'arrivée des déclenchements correspondant aux dépassements de seuil
 - Comparaison avec les écarts théoriques entre les impulsions d'un symbole
 - Algorithme de sélection en parcours de branche dans l'arbre des possibles
 - Obtention d'une référence de temps commune entre émetteur et récepteur

Position du seuil de détection d'impulsions

- Mécanisme de seuil adaptatif
 - L'émetteur place des impulsions dans un chip sur deux.
 - Le seuil est ajusté pendant toute la communication afin d'obtenir une détection d'impulsion pour une fenêtre sur deux
 - Une double boucle permet de faire varier le seuil dans les deux sens
 - Des valeurs maximale et minimale empêchent le bouclage infini

Position du seuil de détection d'impulsions Mécanisme de seuil adaptatif



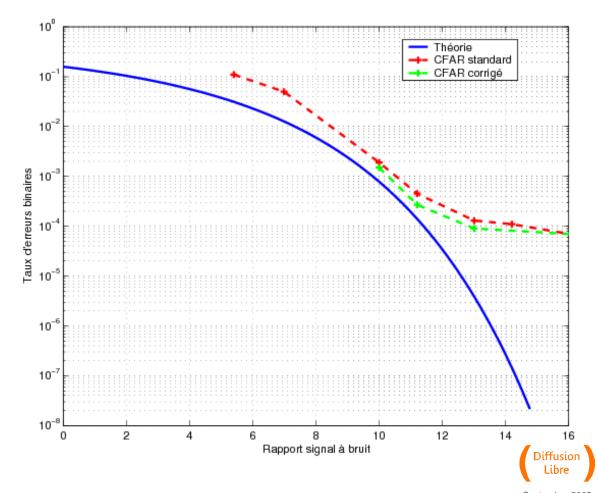
Système performant

- Disparition du plancher de TFB
- Meilleurs performances que le CFAR à même RSB

mais:

- Instable en cas de fort niveau de bruit
- Plus complexe que le CFAR (nombreuses itérations sur le même symbole)

Le CFAR, moins performant mais nettement moins complexe, présente un meilleur compromis.



Démodulation – Prise de décision

Compensation d'un seuil désadapté

- ➤ Un seuil désadapté déséquilibre les probabilités de fausses alarmes et de détections manquées
- Le nombre de d'impulsions détectées permet d'identifier ce déséquilibre (dans des conditions normales de bruit)
- ➤ Il est alors possible de pondérer le poids des chips à "0" et "1" en fonction de ce déséquilibre.
- ➤ Gain obtenu : de l'ordre de 1dB
- ➤ Ne permet pas d'effacer le plafond du CFAR

