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extranjero, mostrándome siempre un abanico de posibilidades para mi futuro.

A mi director en Francia, el Dr. Jacques Demongeot, por darme nuevos enfoques e
ideas en mi tabajo de investigación y por facilitarme las cosas en el extranjero ya sea
personalmente o a través de su secretaria, la srta. Céline Fontant. A los profesores que
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CHAPTER 1

Résumé

Dans la nature existent de nombreux exemples des systèmes dynamiques complexes:
systèmes neuronaux, communautés, écosystèmes, réseaux de régulation génétiques, etc.
Notre intérêt porte sur ces derniers qui sont souvent modélisés par des réseaux Booléens.

Un réseau Booléen peut être considéré comme un digraphe, où les sommets
correspondent à des gènes ou des produits de gènes, tandis que les arcs indiquent les
interactions entre eux. Un niveau d’expression des gènes est modélisé par des valeurs
binaires, 0 ou 1, indiquant deux états de transcription, soit activif, soit inactif, et ce
niveau change dans le temps selon certaines fonctions locales d’activation qui dépendent
des états d’un ensemble de noeuds (les gènes). L’effet conjoint des fonctions d’activation
locale définit une fonction de transition globale: ainsi, l’autre élément nécessaire dans
la description du modèle est une fonction de mise à jour, qui détermine quand chaque
noeud doit être mis à jour, et donc, comment les fonctions locales se combinent dans
une fonction globale. Comme un réseau Booléen avec n sommets possède 2n états
globaux, à partir d’un état de départ, et dans un nombre fini de mises à jour, le réseau
atteindra un point fixe ou un cycle limite appelés attracteurs et sont souvent associés à
des phénotypes distincts (états cellulaires) définis par les patrons d’activité des gènes.

Un réseau de régulation Booléen (REBN) est un réseau Booléen où chaque interaction
entre les éléments du réseau correspond soit à une interaction positive soit à une
interaction négative. Ainsi, le digraphe interaction associé à un REBN est un digraphe
signé où un circuit est appelé positif (négatif) si le nombre de ses arcs négatifs est
pair (impair). Dans ce contexte, diverses études existent sur l’importance des circuits
positif et négatifs dans le comportement dynamique de différents systèmes en Biologie.
En effet, le point de départ de cette thèse est basé sur un résultat disant que le nombre
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maximal de points fixes d’un REBN dépend d’un ensemble de sommets de cardinalité
minimale qui intersecte tous les cycles positifs (positive feedback vertex set) du digraphe
signé associé.

D’autre part, un autre aspect important des circuits est leur rôle dans la robustesse
des réseaux Booléens par rapport à différents types de mise à jour déterministe. Dans
ce contexte, un élément clé mathématique est le digraphe update qui est un digraphe
étiqueté associé au réseau dont les étiquettes sur les arcs sont définies comme suit: un
arc (u, v) est dit être positif si l’état de sommet u est mis à jour en même temps ou
après que celle de v, et négative sinon. Ainsi, un cycle dans le digraphe étiqueté est
dite positive (négative) si tous ses arcs sont positifs (négatifs). Cela met en évidence
que parler de “positif” et “négatif” a des significations différentes selon le contexte:
digraphes signés ou digraphes étiquetés.

Ainsi, nous allons voir dans cette thèse, les relations entre les feedback sets et la
dynamique des réseaux Booléens à travers l’étude analytique de ces deux objets
mathématiques fondamentaux: le digraphe signé et le digraphe update.

Mots clés: Digraphe update, mise à jour, feedback set, digraphe signé.
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CHAPTER 2

Abstract

In the nature there exist numerous examples of complex dynamical systems: neural
systems, communities, ecosystems, genetic regulatory networks, etc. These latest, in
particular are of our interest and are often modeled by Boolean networks.

A Boolean network can be viewed as a digraph, where the vertices correspond to genes
or gene products, while the arcs denote interactions among them. A gene expression
level is modeled by binary values, 0 or 1, indicating two transcriptional states, either
active or inactive, respectively, and this level changes in time according to some local
activation function which depends on the states of a set of nodes (genes). The joint
effect of the local activation functions defines a global transition function; thus, the
other element required in the description of the model is an update schedule which
determines when each node has to be updated, and hence, how the local functions
combine into the global one. Since a Boolean network with n vertices has 2n global
states, from a starting state, within a finite number of udpates, the network will reach
a fixed point or a limit cycle called attractors and are often associated to distinct
phenotypes (cellular states) defined by patterns of gene activity.

A regulatory Boolean network (REBN) is a Boolean network where each interaction
between the elements of the network corresponds either to a positive or to a negative
interaction. Thus, the interaction digraph associated to a REBN is a signed digraph
where a circuit is called positive (negative) if the number of its negative arcs is even
(odd). In this context, there are diverse studies about the importance of the positive
and negative circuits in the dynamical behavior of different systems in Biology. Indeed
the starting point of this Thesis is based on a result saying that the maximum number
of fixed points of a REBN depends on a minimum cardinality vertex set whose elements
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intersects to all the positive cycles (positive feedback vertex set) of the associated signed
digraph.

On the other hand, another important aspect of circuits is their role in the robustness
of Boolean networks with respect to different deterministic update schedules. In this
context a key mathematical element is the update digraph which is a labeled digraph
associated to the network and whose labels on the arcs are defined as follows: an arc
(u, v) is said to be positive if the state of vertex u is updated at the same time or after
than that of v, and negative otherwise. Hence, a cycle in the labeled digraph is called
positive (negative) if all its arcs are positive (negative). This leaves in evidence that
the terms “positive” and “negative” have different meanings depending on the context:
signed digraphs or labeled digraphs.

Thus, we will see in this thesis relationships between feedback sets and the dynamics of
Boolean networks through the analytical study of these two fundamental mathematical
objects: the signed (connection) digraph and the update digraph.

Keywords: Update digraph, update schedule, feedback set, signed digraph.
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CHAPTER 3

Introduction

In the nature there exist numerous examples of complex dynamical systems: neural
systems, communities, ecosystems, genetic regulatory networks, etc. These latter are
particulary of interest to us.

Basically, a genetic regulatory network corresponds to the interaction of a group of
genes and gene products of a cell or a group of cells, that origin diverse cellular functions
such as morphogenesis, metabolism, etc.

The discrete modeling of genetic regulatory networks was introduced by Kauffman
more than thirty years ago (Kauffman, 1969, 1973, 1993). The central hypothesis is
that the acquision of a specific cellular state (mobility, differentiation, proliferation,
change of shape, metabolic adaptation, etc.) is determined by the profile of activation
of a group of components that conforms a genetic regulatory network in the cell. This
interaction can be mathematically modeled by a Boolean network.

A Boolean network can be viewed as a digraph, where the vertices correspond to genes
or gene products, while the arcs denote interactions among them. A gene expression
level is modeled by binary values, 0 or 1, indicating two transcriptional states, either
active or inactive, respectively, and this level changes in time according to some local
activation function which depends on the states of a set of nodes (genes). The joint
effect of the local activation functions defines a global transition function. Thus, the
other element required in the description of the model is an update schedule, which
determines when each node has to be updated, and hence, how the local functions
combine into the global one (in other words, it must describe the relative timings of
the regulatory activities). Since a Boolean network with n vertices has 2n global states,
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from a starting state, within a finite number of udpates, the network will reach a fixed
point or a limit cycle, called attractor.

The attractors of a Boolean network are often associated to distinct phenotypes
(cellular states) defined by patterns of gene activity. A regulatory Boolean network
(REBN) is a Boolean network where each interaction between the elements of the
network corresponds either to a positive or to a negative interaction. Thus, the
interaction digraph associated to a REBN is a signed digraph where a circuit is called
positive (negative) if the number of its negative arcs is even (odd).

In this context, there are diverse studies about the importance of the positive
and negative circuits in the dynamical behavior of non-linear systems in Biology
(Demongeot, 1998; Demongeot et al., 2000; Kauffman, 1973; Thomas and D’Ari, 1990).
In fact, one has demonstrated that the positive circuits are necessary for the multi-
stationarity (Plahte et al., 1995; Snoussi, 1998; Gouzé, 1998; Cinquin and Demongeot,
2002; Soulé, 2003; Richard and Comet, 2007; Richard, 2009), whose biological meaning
can be differentiation and memory, and the negative circuits are a necessary condition
for the existence of stable regularities what in biology represents the homeostasis
(Snoussi and Thomas, 1993; Thomas et al., 1995; Demongeot et al., 2000; Aracena
et al., 2003). In addition, a simple result between the disjoint positive circuits and
the number of stable configurations has been established (Thomas and Richelle, 1988;
Thomas and Kaufman, 2001).

Indeed the starting point of this thesis is based on a result of Aracena (2001, 2008),
saying that the maximum number of fixed points of a REBN depends on a minimum
cardinality vertex set whose elements intersects to all the positive cycles (also named
a positive feedback vertex set) of the associated signed digraph.

On the other hand, in (Sontag et al., 2008) was shown that, as the number of
independent negative feedback loops increases, the number of limit cycles of the REBN
tends to decrease and its length tends to increase. In other words, the limit cycles in a
REBN are related with the minimum cardinality of a negative feedback vertex set. Both
decision problems of finding; a positive feedback vertex set and a negative feedback
vertex set, of minimum cardinality, where introduced in (Montalva, 2006) as PFVS
and NFVS respectively, where begins the study of the complexity of these problems.

Besides, PFVS and NFVS can be viewed as variants of the important classical decision
problem: Feedback Vertex Set (FVS) for digraphs, which is well-known to be NP-
complete (Karp, 1972) and for which there are many variants (some of them consider
weights on the vertices or on the arcs), almost all of them have been proved to be NP-
complete as well. Furthermore, feedback problems are fundamental in combinatorial
optimization, having many applications: circuit design, certain scheduling problems
and cryptography are some examples. For this reason, they have been extensively
studied (see (Festa et al., 1999) for a good survey).
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In consequence, as the study of complexity of PFVS and NFVS is a key feature in
the understanding of REBNs as well as an interesting theoretical problem, this thesis
starts deepening in these and other related problems.

On the other hand, another important aspect of circuits is their role in the robustness
of Boolean networks with respect to different deterministic update schedules. In this
context, some of the pioneering works were made by Robert (1986) and Goles (1986).
The choice of deterministic update schedules is given by the fact that information
processing performed in the living cell has to be extremely robust and therefore requires
a quasi deterministic dynamics. Another reason for determinism is the need to model
some periodical behaviors; when randomness is introduced, attractors become regions
of the phase space, but are no longer exact dynamical cycles. Both stochastic and
deterministic models are common in the biological literature, and a frequent strategy
is to consider a deterministic dynamics and look at its robustness under small random
perturbations.

The impact of perturbations of the update schedule on a Boolean network dynamics
have been greatly studied (Chaves et al., 2005; Elena et al., 2008; Ben-Amor et al.,
2008; Demongeot et al., 2008; Elena, 2009), mainly from a statistical point of view and
more recently, also from an analytical point of view (Salinas, 2008; Gómez, 2009).

Some analytical works on perturbations of update schedules have been made in a
particular class of discrete dynamical networks, called sequential dynamical systems,
where the connection digraph is symmetric or equivalently is an undirected graph and
the update schedule is sequential. For this class of networks, the team of Hansson,
Mortveit and Reidys studied the set of sequential update schedules preserving the
whole dynamical behavior of the network (2001), and the set of attractors in a certain
class of Cellular Automata (2005).

In (Salinas, 2008) were defined equivalence classes of deterministic update schedules in
Boolean networks according to the labeled digraph associated to the network (update
digraph) and whose labels on the arcs are defined as follows: an arc (u, v) is said to
be positive if the state of vertex u is updated at the same time or after than v, and
negative otherwise. Hence, a cycle in the labeled digraph is called positive (negative)
if all its arcs are positive (negative). This leaves in evidence that talk of “positive” and
“negative” has different meanings depending on the contex: signed digraphs or labeled
digraphs.

Besides, in (Salinas, 2008; Aracena et al., 2009) was proven that two update schedules
in the same class yield exactly the same dynamical behavior. Motivated by this result,
we study, from a mathematical point of view, the update digraphs and the number and
size of these equivalence classes associated to it. All this, in order to get an idea of the
possible different dynamics of networks according to the update schedule used. Such
a study represents the core of this thesis. In general terms, we found out that these
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concepts are closely related to the feedback arc sets of the connection digraph associated
to the network. These relations were reflected in combinatorial and structural aspects
relating the schedule classes of update digraphs with the feedback arc sets of their
connection digraphs.

In summary, we will see in this thesis relationships between feedback sets, as above
mentioned, and the dynamics of Boolean networks through the analytical study of two
fundamental mathematical objects: the signed (connection) digraph and the update
digraph.

3.1 Thesis contents

The work of this thesis consists in the study of feedback set problems in signed digraphs
as well as the study of the schedule equivalence classes associated to a network.

In chapter 2, we present the necessary terminology and notations to develop the
following chapters. We mainly grouped these concepts in three parts: graphs and
digraphs, feedback sets and Boolean networks.

In chapter 3, we continue with the study begun in (Montalva, 2006), where there
was proven that PFVS is NP-complete, leaving the complexity of NFVS as an open
problem. Thus, in this chapter is concluded the analysis of NFVS and we add the study
of the analogous versions for the arcs: the PFAS and NFAS problem, all them for the
general case. Next, we will study PFVS and NFVS for different families of signed
digraphs with additional constraints in the structure or in the same distribution of the
signs, for example, in special cases of applied interest such as Kauffman or monotone
networks. Although FVS, PFVS and NFVS are NP-complete for the general case, the
intuition is that there exists differences of complexity between them for certain cases.
We are interested in finding particular families of digraphs where the complexity of
these problems is different, and thus to understand better, how the structural properties
and sign distribution can determine the complexity of these problems.

The main results of the chapter can be summarized as follows:

• PFAS and NFAS are NP-complete for the general case.

• PFVS and NFVS are NP-complete for the following families of signed digraphs:
with the maximum in-degree of each vertex bounded by k ∈ N (in the trivial
case k = 1, both are P), with the in-degree of each vertex exactly equal to k ∈ N
(Kauffman’s networks) and with the incoming (or outgoing) arcs of each vertex
having the same sign (monotone locally REBN).
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• PFVS is P and NFVS is NP-complete for the family of signed cliques.

• PFVS is NP-complete and NFVS is P for the family of signed digraphs with at
most k ∈ N negative arcs.

• FVS is P (Lloyd et al., 1985) whereas PFVS and NFVS are NP-complete for the
family of cyclically reducible digraphs.

Some of this results were published in:

(1) J. Aracena, A. Gajardo, M. Montalva, On the complexity of feedback set problems
in signed digraphs, Electronic Notes in Discrete Mathematics 30 (2008) 249-254.

In chapter 4, we study combinatorial aspects of the equivalence classes of deterministic
update schedules that yield the same update digraph and thus the same dynamical
behavior of the associated Boolean network (see (Aracena et al., 2009) for more details).

Motivated by the above mentioned, we show a polynomial characterization of these
update digraphs, which enables us to determine the corresponding schedule equivalence
classes as well as a particular schedule in a class. We study the complexity of the
problem of finding a label function on the arcs of a digraph with at most k ∈ N
positive arcs such that the resultant digraph is update (DU problem), which enables us
to find bounds relating different types of feedback arc sets with the schedule equivalence
class of an update digraph.

On the other hand, we prove that the update digraphs are exactly the projections,
on the respective subdigraphs, of a complete update digraph with the same number of
vertices. The exact number of complete update digraphs is determined, which provides
upper and lower bounds on the number of schedule equivalence classes. We see how
while the number of equivalence classes increases, the number of feedback arc sets
decreases as well as a necessary and sufficient condition for the equality.

Finally, we show relations between the feeedback arc sets of a given digraph and
its schedule equivalence classes for particular families of digraphs such as complete
digraphs, acyclic digraphs and tournaments. Thus, we can find the number and size of
these sets in this families.

Let G be a digraph whose set of vertices is V (G) and set of arcs is A(G) and let
lab : A(G) → { -©, +©} be a label function of G. The main results can be summarized
as follows:

• A labeled digraph (G, lab) is update if and only if it has no circuit being a cycle
in (GR, labR) with at least a negative arc (forbidden circuit), where (GR, labR) is

14



the labeled digraph constructed from (G, lab) by changing the orientation of the
negative arcs and keeping the original labels.

• The problems of determining whether a labeled digraph is update and finding a
corresponding update schedule s are polynomial.

• If (G, lab) is an update digraph, then there exists a sequential update schedule sq
associated with (G, lab) if and only if (G, lab) has no positive cycle. In this case,
the schedule class associated to (G, lab) has size strictly greater than one if and
only if (GR, labR) is not a negative linear digraph.

• DU problem is NP-complete. Furthermore, from the proof we deduce that the size
of the set U(G) of schedule classes associated to a digraph G is upper bounded
by the size of the set FAS(G) of feedback arc sets of G and lower bounded by
the size of the set MFAS(G) of minimal feedback arc sets of G. Specifically,
|MFAS(G)| < |U(G)| ≤ |FAS(G)|.

• A subdigraph of an update digraph also is an update digraph. Besides, if G is

a connected digraph, then 2n−1 ≤ |U(G)| ≤ Tn, where Tn =
n−1∑
k=0

(
n

k

)
Tk with

T0 ≡ 1, is the exact number of schedule classes associated to a complete digraph
D of n vertices (eventually with loops), i.e., A(D) = V × V .

• If G is an undirected graph and G1 and G2 two orientations of G such that every
cycle of G1 is also a cycle of G2, then |U(G1)| ≤ |U(G2)| and |FAS(G2)| ≤
|FAS(G1)|. Moreover, |U(D)| = |FAS(D)| if and only if all circuits of a digraph
D are cycles.

• If G is a complete digraph, then (G, lab) is a non-update digraph if and only if
there exists a forbidden cycle of length either two or three in (GR, labR).

• If G is an acyclic digraph with |V (G)| = n, then |U(G)| ≤ n! and the equality
holds if and only if G is a tournament, i.e., an orientation of a complete undirected
graph. In this case all its schedule classes are of size 2k, for some k ∈ N ∪ {0}.

• If G is a digraph with |V (G)| = n, then F ⊆ A(G) is a minimal feedback arc
set of G if and only if (G, labF ) is an update digraph with a maximal number of
negative arcs, where labF (u, v) = +©⇔ (u, v) ∈ F .

Some of these results were published in:

(2) J. Aracena, E. Fanchon, M. Montalva, M. Noual, Combinatorics on update
digraphs in Boolean networks, Discrete Applied Mathematics 159 (6) (2011) 401-
409.

15



(3) J. Aracena, J. Demongeot, E. Fanchon, M. Montalva, On the number of update
digraphs and its relation with the feedback arc sets and tournaments, Discrete
Applied Mathematics, Ref. No. DA1309, submitted.

In chapter 5, we are motivated by an algorithm presented in (Schwikowski and
Speckenmeyer, 2002) that exploits a simple relation between minimal feedback arc
sets that allows generating all minimal feedback arc sets of a digraph G = (V,A) by
local modifications. They further show that the underlying technique can be tailored
to generate all minimal solutions for the undirected case and the directed feedback arc
set problem, both with a polynomial delay of O[|V ||A|(|V |+ |A|)], proving finally that
computing the number of minimal feedback arc sets is ]P-hard.

Thus, we explore a similar idea in the context of the update digraphs, generating local
transformations over an update digraph (G, lab) and studying structural properties of
the multidigraph HG associated to these transformations where the set of its nodes
is the set of update digraphs associated to G and the arcs represent some local
transformations between them (see definition 7.2, p. 68, for more details).

Next, we give algorithms for enumerating all the update digraphs associated with a
given digraph as well as for exactly determining all the update schedules associated to
it.

Finally, as an application example of the theoretical results obtained in this thesis,
we analyze the possible dynamics of the real genetic regulation network of the floral
morphogenesis of the plant Arabidopsis thaliana. For this, we consider the reduced
Mendoza and Alvarez-Buylla network which has two non-trivial strongly connected
symmetric components and whose asymptotic dynamics has the same attractors as the
original network (Demongeot, Goles, Morvan, Noual, and Sené, 2010). We compare
our numerical results with those obtained in the previous article.

The main results can be summarized as follows:

• The local transformations on update digraphs give us update digraphs and their
composition over a feedback vertex set of G without its orientations, is an update
digraph.

• If H = (G, lab) is an update digraph, then (H,H) ∈ A(HG) if and only if
(H ′, H) ∈ A(HG) where H ′ is another update digraph different to H. Besides,
(H,H) /∈ A(HG) if and only if |{i ∈ V (G) : s(i) ≥ s(j), ∀j ∈ V (G)}| > 1,
where s : {1, ..., |V (G)|} → {1, ..., |V (G)|} is an update schedule of G such that
s({1, ..., |V (G)|}) = {1, ...,m}, m ≤ |V (G)|, m being maximum.

• If H is a digraph, then HG is connected. Moreover, HG restricted to the
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reduced update digraphs is strongly connected, which means that it is possible
to enumerate with polynomial delay all update digraphs in this family.

From this chapter there is an article in preparation:

(4) J. Aracena, J. Demongeot, M. Montalva, Local transformations and enumeration
of update digraphs.

Finally, we discuss the results obtained in this thesis and propose open problems and
future lines of investigation in the chapter Conclusions.
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CHAPTER 4

Basic terminology and notations

In the sequel, for any integers a and b with a < b, we will denote:

[[a, b]] = {i ∈ Z : a ≤ i ≤ b},

[[a, b[[= [[a, b− 1]].

4.1 Digraphs and graphs

A directed graph (or just digraph) G consists of a non-empty finite set V (G) of
elements called vertices (or nodes) and a finite set A(G) of ordered pairs of distinct
vertices called arcs. We call V (G) the vertex (or node) set and A(G) the arc set
of G. We will often write G = (V,A) which means that V and A are the vertex set
and arc set of G, respectively.

For an arc (u, v) the first vertex u is its tail and the second vertex v is its head. We
draw G on paper by placing each vertex of V at a point and representing each arc
(u, v) by an arrow from u to v. An ordered pair (u, u) /∈ A is called a loop of G. The
above definition of a digraph implies that we do not allow it either loops or multiple
arcs, that is, pairs of arcs with the same tail and the same head. When multiple arcs
and loops are admissible we speak of multidigraphs. In the case of need of loops in a
digraph, it will be said explicitly. For instance, unless otherwise specified, G = (V,A)
is a digraph.
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A subdigraph of G is a digraph G′ = (V ′, A′) where V ′ ⊆ V and A′ ⊆ (V ′ × V ′)∩A.
We write G′ ⊆ G. If A′ = (V ′ × V ′) ∩ A, we say that G′ is induced by V ′ (we write
G′ = G[V ′]) and call G′ an induced subdigraph of G. If V ′ ( V ∨ A′ ( A, then
we write G′ ( G. We will often write G − U whose meaning depends of the nature
of U . Thus, if U ⊆ V , then G − U is the subdigraph of G induced by V − U , i.e.
G− U = G[V − U ]. If U ⊆ A, then G− U = (V,A− U).

LetG′ be a subdigraph ofG and B a non-empty finite set. If f : A(G)→ B is a function
on the arcs of G, then the function f restricted to G′, is a function g : A(G′) → B
such that for each a ∈ A(G′), g(a) = f(a). We write g = f |G′ .

G is a complete digraph if A = {(u, v) : u, v ∈ V ∧u 6= v}. A clique Kr of a digraph
G is a complete subdigraph of G where r = |V (Kr)|.

For a vertex v ∈ V , we use the following notation:

N+
G (v) = {u ∈ V : (v, u) ∈ A}, N−

G (v) = {u ∈ V : (u, v) ∈ A}

The sets N+
G (v), N−

G (v) and NG(v) ≡ N+
G (v) ∪ N−

G (v) are called the out-
neighbourhood, in-neighbourhood and neighbourhood of v, respectively. We
call the vertices in N+

G (v), N
−
G (v) and NG(v) the out-neighbours, in-neighbours

and neighbours of v, respectively.

A walk from a vertex v1 to a vertex vm in G is a sequence of vertices [v1, v2, . . . , vm] of
V such that ∀k ∈ [[1,m − 1]], (vk, vk+1) ∈ A(G) or (vk+1, vk) ∈ A(G). The vertices v1
and vm are the initial and terminal vertex of the walk. A walk is elementary if each
vertex in the walk appears only once with the possible exception that the first and last
vertex may coincide. A walk is closed if its initial and terminal vertices coincide. A
circuit is a closed elementary walk. A path [v1, v2, . . . , vm] of length m− 1 is a walk
such that (vk, vk+1) ∈ A for all k ∈ [[1,m − 1]]. A cycle is a closed elementary path.
In particular, a loop is a cycle of length one. If G has no cycle, G is called an acyclic
digraph. Note that a cycle is always a circuit but the converse is not always true.

G is said to be connected if there is a walk between every pair of vertices, and strongly
connected if there is a path between every pair of vertices. G′ is a strongly connected
component of G if G′ is a strongly connected subdigraph of G and is maximal for
this property, i.e. there is no other strongly connected component G′′ of G such that
G′ ( G′′.

Remark 4.1 All the previous definitions are analougous for multidigraphs.

An undirected graph (or a graph) G = (V,E) consists of a non-empty finite set
V = V (G) of elements called vertices (or nodes) and a finite set E = E(G) of
unordered pairs of distinct vertices called edges. We call V (G) the vertex (or node)
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set and E(G) the edge set of G. In other words, an edge {x, y} is a two-element
subset of V .

An orientation of G is a digraph G′ = (V ′, A) where V ′ = V , |E| = |A| and ∀{x, y} ∈
E, either (x, y) ∈ A or (y, x) ∈ A. G is a complete graph if ∀x, y ∈ V , x 6= y, then
{x, y} ∈ E. A tournament is a digraph consisting of an orientation of a complete
graph.

More terminology about digraphs and graphs can be found in (Bang-Jensen and Gutin,
1979; West, 1996).

4.2 Feedback sets

A vertex (An arc) set U ⊆ V (U ⊆ A) is a feedback vertex (arc) set of G if G− U
has no cycle, i.e. G−U is an acyclic digraph. U is said to be aminimal feedback vertex
(arc) set of G if U is a feedback vertex (arc) set of G and there is no other feedback
vertex (arc) set W ⊆ V (W ⊆ A) of G such that W ( U . U is said to be a minimum
feedback vertex (arc) set of G if U is a feedback vertex (arc) set of G and there is no
other feedback vertex (arc) set W ⊆ V (W ⊆ A) of G such that |W | < |U |. Major
details can be found in (Bang-Jensen and Gutin, 1979). More generally, the problem of
finding the minimum feedback vertex or arc set has many application in graph theory
as well as in pure mathematics, for example in (Karatkevich, 2001; Hawick and James,
2008; Vik, 2010; Cinkir, 2011).

Very close to these concepts, there are the classic decision problems FVS and FAS that
are NP-complete (Karp, 1972; Garey and Johnson, 1979) and whose definition is as
follows:

FVS (FAS). Given a digraph G and given t ∈ N. Does a feedback vertex (arc)
set U exist such that |U | ≤ t?

4.3 Boolean networks, update schedules and dy-

namical behavior

A Boolean network N = (G,F, s) is defined by:

• A digraph G = (V,A), with |V (G)| = n, called connection (or interaction)
digraph, where each node i ∈ V has an associated state x ∈ {0, 1}.
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• A global activation function F : {0, 1}n → {0, 1}n, defined by F (x) =
(f1(x), . . . , fn(x)), where fi : {0, 1}n −→ {0, 1} is called local activation
function whose value depends on the values of the in-neighbours of node i,
i.e., fi(x) = fi(xj, j ∈ N−

G (i)).

• An update schedule s of the vertices of G.

An update schedule on the vertices of G is a function s : [[1, n]] → [[1, n]] such that
s(V ) = [[1,m]] for some m ≤ n. A block of s is the set Bi = {v ∈ V : s(v) = i},
1 ≤ i ≤ m. The number of blocks of s is denoted by nb(s) ≡ m. If nb(s) = 1,
then s is said to be a parallel update schedule. In this case, we will write s = sp.
If s is a permutation over the set [[1, n]], i.e. nb(s) = n, s is said to be a sequential
update schedule. In all other cases, i.e. when 2 ≤ nb(s) ≤ n − 1, s is said to be a
block sequential update schedule. Frequently, s will be denoted by s = (j ∈ B1)(j ∈
B2) · · · (j ∈ Bnb(s)) or more compactly s = (Bi)

nb(s)
i=1 .

The iteration of a Boolean network N = (G,F, s) is given by:

xr+1
i = fi(x

l1
1 , . . . , x

lj
j , . . . , x

ln
n ), (4.1)

where lj = r if s(i) ≤ s(j) and lj = r+ 1 if s(i) > s(j). The exponent r represents the
time step.

This is equivalent to applying a function F s : {0, 1}n → {0, 1}n in a parallel way, with
F s(x) = (f s

1 (x), . . . , f
s
n(x)) defined by:

f s
i (x) = fi(g

s
i,1(x), . . . , g

s
i,n(x)),

where the function gsi,j is defined by gsi,j(x) = xj if s(i) ≤ s(j) and gsi,j(x) = f s
j (x) if

s(i) > s(j). Thus, the function F s corresponds to the dynamical behavior of the
network N . We will say that two networks N1 = (G,F1, s1) and N2 = (G,F2, s2) have
the same dynamics if F s1

1 = F s2
2 .

Since {0, 1}n is a finite set, we have two limit behaviors for the iteration of a network:

• Fixed Point. We define a fixed point as x ∈ {0, 1}n such that F s(x) = x.
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• Limit Cycle. We define a limit cycle of length p > 1 as the sequence
[x0, . . . , xp−1, x0] such that xj ∈ {0, 1}n, xj are pairwise distinct and F s(xj) =
xj+1, for all j = 0, . . . , p− 2 and F s(xp−1) = x0.

Fixed points and cycles are called attractors of the network.

4.3.1 Sign-definite functions

A Boolean function f : {0, 1}m −→ {0, 1} is increasing monotone on input i if

∀x ∈ {0, 1}m, xi = 0, f(x) ≤ f(x+ ei),

and decreasing monotone on input i if

∀x ∈ {0, 1}m, xi = 0, f(x) ≥ f(x+ ei),

where ei ∈ {0, 1}m denotes the binary vector with all entries equal to 0, except for entry
i, which equals 1. A Boolean function f : {0, 1}m −→ {0, 1} is said to be a sign-definite
function, also known as unate function (Anthony, 1987), if for each i = 1, . . . ,m, is
either increasing monotone or decreasing monotone on input i. Equivalently, a Boolean
function is sign-definite if it can be represented by a formula in disjunctive normal form
in which all occurrences of any given literal are either negated or nonnegated (Anthony,
1987).

A well-known example of non-sign-definite Boolean function is XOR, that is,
XOR(x1, x2) = x1x2 ∨ x1x2.

Given a sign-definite function f : {0, 1}m −→ {0, 1} we denote by I+(f) and I−(f) the
set of indices where f is increasing monotone and decreasing monotone respectively.

From definition, every sign-definite function f : {0, 1}m −→ {0, 1} satisfies the
following properties:

P1: For all vectors x, y ∈ {0, 1}m, with xi ≤ yi for all i ∈ I+(f) and xi ≥ yi for
all i ∈ I−(f), f(x) ≤ f(y).

P2: For all vectors x, y ∈ {0, 1}m, with xi = 0 for every i ∈ I+(f) and xi = 1 for
every i ∈ I−(f), f(x) = 0. Analogously, if xi = 1 for all i ∈ I+(f) and xi = 0 for
all i ∈ I−(f), then f(x) = 1.
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4.3.2 Regulatory Boolean networks

A Boolean network where each local activation function is a sign-definite function will
be called a Regulatory Boolean Network (REBN).

From now and later, we will suppose w.l.o.g. that a REBN has not constant local
activation functions; that is, for every function f there are vectors x, y such that
f(x) 6= f(y). And each local activation function fi really depends on the values of its
incident nodes, that is to say, j ∈ N−

G (i) if and only if

∃x ∈ {0, 1}m, fi(x1, . . . , xj = 0, . . . , xm) 6= fi(x1, . . . , xj = 1, . . . , xm),

where m = |N−
G (i)|. Notice that if fi is not a constant function, then |N−

G (i)| ≥ 1. It
follows that there exists at least one cycle in G (you can even have a loop).

Thus, for all i ∈ V (G), the set {I+(fi), I−(fi)} is a partition of the set N−
G (i). Hence,

for every REBN N = (G,F ) we can define a weight function
wF : A(G)→ {−1, 1} with

wF (i, j) = −1 if i ∈ I−(fj) and wF (i, j) = 1 if i ∈ I+(fj).

(G,wF ) will be called signed digraph of N . In Fig. 5.1, an example of the REBN is
depicted.
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CHAPTER 5

Positive and negative feedback
set problems

The problem of finding a minimum cardinality set of vertices that meets all the cycles
of a directed graph (digraph) is known as Feedback Vertex Set problem and denoted by
FVS. This problem was showed to be NP-complete by Karp (1972). There are many
variants of this classical problem, some of them consider weights on the vertices or on
the arcs. Almost all of them have been proved to be NP-complete as well (see Festa
et al. (1999) for a good survey).

We study the complexity of new variants: Positive Feedback Vertex Set problem
(PFVS) and Negative Feedback Vertex Set problem (NFVS). These problems are
defined on a signed digraph (G,w), that is a digraph G with signs −1 or +1 on the
arcs according to a sign function w. A cycle of (G,w) is called positive (negative) if it
has an even (odd) number of negative arcs. A positive feedback vertex set of (G,w) is
a set of vertices, which contains at least a vertex from every positive cycle in (G,w). A
negative feedback vertex set of (G,w) is similarly defined. PFVS (NFVS) consists in
finding a minimum cardinality positive (negative) feedback vertex set in a given signed
digraph.

Feedback problems arise in numerous applications: circuit design, certain scheduling
problems and cryptography are some examples (Festa et al., 1999). PFVS was
introduced in Aracena (2001), and is of fundamental importance in the modeling of
genetic regulatory networks by regulatory Boolean networks (REBN). The Boolean

1work published in: J. Aracena, A. Gajardo, M. Montalva, “On the complexity of feedback set
problems in signed digraphs”, Electronic Notes in Discrete Mathematics 30 (2008) 249-254.
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networks (BN) were first introduced by Kauffman as mathematical model to study the
dynamics of gene regulatory networks (Kauffman, 1969, 1993). A BN can be viewed
as a digraph, where the vertices correspond to genes or gene products, while the arcs
denote interactions among them. A gene expression level is modeled by binary values,
0 or 1, indicating two transcriptional states, either active or inactive, respectively. The
state of each element of the network is determined by the application of a Boolean
function to its inputs. The dynamical behavior of a BN is given by the update of
element values in a synchronous way. Since a BN with n vertices has 2n global states,
from a starting state, within a finite number of udpates, the network will reach a fixed
point or a limit cycle, called attractors. The attractors of a BN are often associated to
distinct cell states defined by patterns of gene activity. A REBN is a BN where each
interaction between the elements of the network corresponds either to a positive or to
a negative interaction. Thus, the interaction digraph associated to a REBN is a signed
digraph. Aracena proved that maximum number of fixed points of a REBN depends on
the minimum cardinality positive feedback vertex set of the signed digraph associated
(Aracena, 2001, 2008). On the other hand, the authors show in (Sontag et al., 2008)
that as the number of independent negative feedback loops increases, the number of
limit cycles of the REBN tends to decrease and its length tends to increase. In other
words, the minimum cardinality of a negative feedback vertex set is related to the limit
cycles in a REBN. In this way, the study of complexity of PFVS and NFVS is a key
feature in the understanding of REBNs as well as an interesting theoretical problem.

In Section 5.2, we prove that PFVS and NFVS are both NP-hard by the construction
of polynomial reductions from FVS to PFVS and NFVS. To show that all of these
problems are in NP, we prove that the problems of existence of positive and negative
cycles are both polynomial. This is achieved by showing their equivalence to the
problems Even Cycle and Odd Cycle respectively. It is easy to see that Odd Cycle is
polynomial (Hemaspaandra et al., 2004), hence any search algorithm in graphs can be
used to search cycles of odd length. Nevertheless, the complexity of the problem of
determining whether a given signed digraph has an even length cycle remained unknown
for several decades. In 1989, Vazirani and Yannakakis (Vazirani and Yannakakis,
1989) proved that Even Cycle is polynomially equivalent to the problem of testing
if a given bipartite graph has a Pfaffian orientation. This last problem was proved to
be polynomial only in 1999 by Robertson, Seymour and Thomas (Robertson et al.,
1999). Besides, in Section 5.2 we also consider PFVS and NFVS restricted to digraphs
where the number of incoming arc in each vertex is bounded by a constant k. We show
that for every k ≥ 2, PFVS and NFVS remains NP-complete like it was exhibited in
FVS (Garey and Johnson, 1979).

Since PFVS and NFVS are related to the number of attractors in REBNs, we considered
in Section 5.3, the complexity of these problems in two important families of digraphs
arises in the modeling of gene regulatory networks: Kauffman networks and locally
monotone networks. Despite the restricted structural characteristics of these digraphs,
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we show that both problems are NP-complete.

Allthough FVS, PFVS and NFVS are NP-complete, the intuition is that there exist
differences of complexity between them. In Section 5.4, we are interested in finding
particular families of digraphs where the complexity of these problems is different, and
thus to understand how the structural properties and sign distribution can determine
the complexity of these problems. Here, we defined the problems PFVS-Nk and NFVS-
Nk as the PFVS and NFVS problems restricted to the family of digraphs with at most
k negative arcs. We proved that NFVS-Nk is polynomial, while PFVS-Nk is NP-
complete. Besides, we show that for cyclically reducible digraphs, where it was showed
that FVS is polynomial (Lloyd et al., 1985), with a given sign function, PFVS and
NFVS are NP-complete.

5.1 Definitions and notations

Let G = (V,A) be a digraph. A function w : A −→ {−1,+1} is called a sign function
on the arcs of G. The couple (G,w) is called signed digraph. A signed subdigraph
of (G,w) is a couple (G′, w′) where G′ is a subdigraph of G and w′ = w|G′ . An arc
(i, j) ∈ A(G) will be called positive if w(i, j) = +1 and negative otherwise. We
will say that a path is positive if the number of its negative arcs is even, and negative
otherwise. A cycle C is called positive (negative) if the number of negative arcs in C
is even (odd) (see Fig. 5.1). A vertex (An arc) set U ⊆ V (U ⊆ A) is said a positive
feedback vertex (arc) set of a signed digraph (G,w) if (G−U,w|G−U) has no positive
cycle. Negative feedback vertex (arc) set is similarly defined. For a vertex v ∈ V ,
we denote by d−G(v) the number of in-neighbours of v, i.e. d−G(v) = |N−

G (v)|, and is
called the in-degree of v.

=
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Figura 5.1. Example of REBN. C1 = [1, 3, 2, 1] and C2 = [1, 2, 1] are negative and
positive cycles of the signed digraph of the network, respectively.
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5.2 Positive and negative feedback sets

The following decision problems were introduced in Aracena (2001) and Montalva
(2006):

PFVS (NFVS). Given a signed digraph (G,w) and given t ∈ N, does a positive
(negative) feedback vertex set U exist such that |U | ≤ t?

PFAS (NFAS). Given a signed digraph (G,w) and given t ∈ N, does a positive
(negative) feedback arc set U exist such that |U | ≤ t?

Positive (Negative) Cycle. Given a signed digraph (G,w), is there a positive
(negative) cycle in G?

Note that PFVS and NFVS are variant of FVS.

Given a signed digraph (G = (V,A), w) and a vertex (an arc) set U ⊆ V (U ⊆ A) we
can verify if U is a positive feedback vertex (arc) set by testing whether (G−U,w|G−U)
has or not positive cycles. Hence, if Positive Cycle is polynomial, then PFVS and
PFAS are NP. Analogously, if Negative Cycle is polynomial, then NFVS and NFAS are
NP.

Positive and Negative Cycle are closely related with the following known problems:

Even (Odd) Cycle. Given a digraph G, is there a cycle of even (odd) length
in G?

In this context, the following results were exhibited in Montalva (2006):

Proposition 5.1 Positive Cycle is polynomially equivalent to Even Cycle and
Negative Cycle is polynomially equivalent to Odd Cycle.

Theorem 5.1 PFVS is NP-complete and NFVS is NP.

In order to continue this study, we have obtained the following results:

Theorem 5.2 NFVS is NP-complete.
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Proof. Let us define now a polynomial reduction from FVS to NFVS. Given a
digraph G, we associate a signed digraph (G̃, w) obtained from G by associating a +1
sign to each arc of G and adding, for each arc of G, a two length path of negative
sign (see Figure 5.2). In this way, the signed digraph (G̃, w) has both a positive and a

negative cycle for each cycle of G, and every cycle of (G̃, w) corresponds to a unique
cycle of G.

+1

+1 −1

−1

+1

+1

+1

+1

+1

+1

−1

−1

+1

+1

−1
+1

−1
+1

(G,w)
~

G

Figura 5.2. For each cycle of G, the signed digraph (G̃, w) has both a negative and
a positive cycle.

Now, if we have a negative feedback vertex set for (G̃, w), it can be composed by

vertices from G and some new vertices of (G̃, w). But each new vertex can be replaced
by its unique incident vertex, which lies in the original vertex set, obtaining, in this
way, a set with the same or smaller number of vertices, which is a feedback vertex set
of G. Conversely, if U meets the cycles of G, it also meets the negative cycles of (G̃, w),
which ends the proof. 2

Observe that the reduction in the above proof works also to prove that FVS
polynomially reduces to PFVS.

Theorem 5.3 PFAS and NFAS are NP-complete.

Proof. It is enough to show that PFVS and NFVS polynomially reduce to PFAS
and NFAS respectively. Let us define the following reduction function: given a signed
digraph (G = (V,A), w), we define θ(G,w) = (GST , w̃), where (GST , w̃) is as follows:
for each vertex v ∈ V , (GST , w̃) has two new vertices vs, vt and a positive arc (vt, vs).
For each arc (x, y) ∈ A, (GST , w̃) has the arc (xs, yt) with the same sign that the arc
(x, y) (see Figure 5.3). In this way, there is a one to one relation between positive
(resp. negative) cycles of (G,w) and positive (resp. negative) cycles of (GST , w̃).

On the one hand, if S ⊆ V meets the positive (resp. negative) cycles of (G,w), then
S̃ = {(vit , vis) ∈ GST : vi ∈ S} meets the positive (resp. negative) cycles of θ(G,w).
On the other, if we have a positive (resp. negative) feedback arc set for θ(G,w),
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Figura 5.3. For each positive (resp. negative) cycle of (G,w), the signed digraph
(GST , w̃) has a positive (resp. negative) cycle and viceversa.

it can be composed by arcs of the form (xt, xs) or (xs, yt). In the first case, they
correspond to vertices in (G,w); in the second case, all the positive (resp. negative)
cycles that contain it, also contain the arc (xt, xs). Then we can change each arc of the
form (xs, yt) by (xt, xs). The vertices in (G,w) associated with these arcs constitute
a positive (resp. negative) feedback vertex set for (G,w). We have simultaneously
proved that the function θ is a polynomial reduction from PFVS to PFAS and from
NFVS to NFAS. 2

We also consider the complexity of PFVS and NFVS in signed digraphs with in-degree
bounded by a constant. The following problems present constraints on the incoming
arcs of each vertex, but the analysis is analogous when the constraints are on the
outgoing arcs.

PFVS-k (NFVS-k). Given a signed digraph (G,w) with maximum in-degree
bounded by k and given t ∈ N. Does a positive (negative) feedback vertex set U
exist such that |U | ≤ t?.

Note that PFVS-1 and NFVS-1 are P, because in this case all the cycles of (G,w) are
pairwise disjoints. The analogous problem, for unsigned digraphs (FVS-k) has already
been studied, and it was proved that for k ≥ 2 it is NP-complete (Garey and Johnson,
1979). In fact, it is not difficult to see that the in-degree of any network can be reduced
by adding enough new vertices, as Figure 5.4 shows for the case where the digraph is
signed. Here, a signed digraph (G,w) is reduced to a new signed digraph (G′, w′) where
all its vertices have at most 2 incoming arcs. The new arcs (vr−2, v) and (vi, vi+1) are all
positive for i = 1, ..., r− 3, while the arcs (w1, v1),(w2, v1),...,(wr−1, vr−2) have the sign
of (w1, v),(w2, v),...,(wr−1, v) respectively. In this way, PFVS (NFVS) polynomially
reduces to PFVS-2 (NFVS-2).

Consequently, we have the following Theorem:
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Figura 5.4. With this local transformation, the in-degree of each vertex v with
d−G(v) = r > 2 is reduced, the signs of the cycles do not change and the minimum
feedback vertex set is not modified. If a cycle of the new signed digraph is covered by
some vertex vi, it is also covered by v.

Theorem 5.4 PFVS-k and NFVS-k are both NP-complete for every k ≥ 2.

5.3 PFVS ans NFVS in families of digraphs with

applied interest.

One of the most interesting applications of BNs is the study of dynamical properties
of large-scale regulatory systems. The basic idea is to generate random BNs with
local properties, for example networks with a fixed number k of incoming arcs in
each node of the network (this kind of BNs is known as Kauffman’s networks). By
determining the attractors and trajectories in the state space, one can investigate the
relationships between this kind of local properties and the global dynamics of the
networks. Numerical simulations have shown that for low k and certain choices of local
transition functions, BNs exhibited highly-ordered dynamics (Kauffman, 1993).

On the other hand, since the number of fixed points is related to the minimum
cardinality positive feedback vertex set (Aracena, 2001, 2008), it is interesting to study
the complexity of PFVS and NFVS in signed digraph with a fixed number k of incoming
arcs in each vertex of digraph. In this way, we define the following problems:

PFVS=k (NFVS=k). Given a signed digraph (G,w) with in-degree exactly
equal to k and given t ∈ N, does a positive (negative) feedback vertex set U exist
such that |U | ≤ t?.
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In Section 5.2 it is shown that PFVS and NFVS are NP-complete in the family of
signed digraphs where the in-degree of each vertex is at most a constant k ≥ 2. Next,
we use these results to prove the NP-complexity when the in-degree of every vertex is
exactly k.

Theorem 5.5 PFVS=k and NFVS=k are NP-complete for every k ≥ 2.

Proof. If we have an arbitrary digraph G, from the last paragraph, we know how
to transform it into a graph G′ with in-degree less than or equal to k with the same
minimum feedback vertex sets. We can eliminate the vertices with in-degree 0, since
they do not participate in any cycle. Thus, we only need to modify the graph in order
to augment the in-degree of the vertices with positive in-degree.

The following is a method to increase the in-degree of a vertex in one unit. Let v be
a vertex with k in-neighbours: w1, w2,.., wk. Let us add a new vertex v′, k new arcs
(wi, v

′), each with the same sign as (wi, v), the positive arc (v
′, v) and the negative arc

(v, v′) (see Figure 5.5).
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Figura 5.5. All the paths from wi to v in the new digraph have sign si. Every positive
cycle that passes by v′, also passes by v.

This reduction adds a cycle: vv′v. But it is negative and its arcs cannot participate in
any other cycle, thus the number of vertices of the minimum positive feedback vertex
set is not modified. Let us remark that if we want to go from a vertex with only one
in-neighbour to a vertex with k in-neighbours, we will need to add 2k−1 new vertices. If
we want a digraph with equal negative feedback vertex set, we use the same reduction
but assigning a +1 to the arc (v, v′). 2

We remark that the same construction does not work for digraphs without signs. To
our knowledge, it is an open problem to know whether the FVS problem is or not
NP-complete in the family of digraphs with in-degree equal to k.

Another interesting class of REBNs, from a theoretical and biological point of view,
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is the family of locally monotone REBNs. In these networks, the Boolean function
associated to each element is (increasing or decreasing) monotone. Hence, the
interactions of each element with its input elements are either all positive or all
negative. Therefore, the interaction digraph of a locally monotone REBN is a signed
digraph where the incoming arcs of each vertex have the same sign. Despite of the
structural constraints of these networks, NP-completeness is obtained within this class
as well. In fact, any signed digraph can be transformed into a signed digraph with
these characteristics, adding new vertices and arcs and without changing the number
of vertices of the minimal feedback vertex sets. It is enough to separate, for each vertex
v, the positive and negative arcs by connecting them to two new intermediary arcs, as
Figure 5.6 shows. Then, we can establish the following Theorem:
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Figura 5.6. Two new vertices are added in order to separate the positive and negative
incoming arcs of v. Every cycle that passes by v+ or v−, also passes by v, and the sign
of the cycles is conserved.

Theorem 5.6 PFVS and NFVS are NP-complete in the family of sign digraphs where
the incoming arcs of each vertex have the same sign.

It is easy to see that the previous theorem also is true when the constraints are on the
outgoing arcs.

5.4 Differences between FVS, PFVS and NFVS

In the most of the graph families that we have studied, FVS, PFVS and NFVS resulted
to have the same complexity. Nevertheless, one could think that PFVS and NFVS may
have a higher complexity because they are defined over a more complex object (a sign
graph). For example, it would be not surprising that PFVS and NFVS were NP-
complete in the family of signed cliques. But this is not true. Finding a digraph family
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where FVS, PFVS and NFVS have different complexity was not easy.
In this section we give some examples.

Remark 5.1 Observe by simple inspection that all signed cliques (K3, w
′) of a signed

clique (Kn, w) with n ≥ 3 have a positive cycle. Moreover, the only ones without
negative cycles are showed in Figure 5.7 and denoted by K1

3 and K2
3 . For this reason,

if F is a positive feedback vertex set of a signed clique (Kn, w), then:

|F | =

{
n− 2, if (Kn, w) has a negative cycle of length 2,

n− 1, in other case

a)

+1

+1

+1 +1
+1+1

b)

−1
−1 −1

−1

+1

+1

Figura 5.7. a) K1
3 . b) K

2
3 .

On the other hand, an odd number of negative arcs in a signed clique (Kn, w) shows
the existence of negative cycles, because we can always find a cycle of length two with
different signs in each one of its arcs.

Remark 5.2 Let (Kn, w) be a signed clique with n ≥ 3 without signed cliques like K1
3

or K2
3 , and let F be a minimum (minimal) NFVS of (Kn, w). Then,

|F | =

{
n− 2, if (Kn, w) has a positive cycle of length 2,

n− 1, in other case

In fact, by Remark 5.1, each signed clique (K3, w
′) of (Kn, w) has a negative cycle.

Hence, |F | > n − 3 and |F | = n − 1 only when all two length cycles of (Kn, w) are
negative.

Proposition 5.2 Let (Kn, w) be a signed clique with n ≥ 3. Then,
(Kn, w) has no negative cycle if and only if each signed clique (K3, w

′) of (Kn, w) has
no negative cycle.
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Proof. ⇒) It is straigthforward.

⇐) Let (Kn, w) be a signed clique with n ≥ 3 such that each signed clique (K3, w
′) of

(Kn, w) has no negative cycle.

Let us prove the result by induction on the length l of a signed cycle C in (Kn, w).

Basis step, l=2. Every two length cycle C = a, b, a is contained in some signed clique
(K3, w

′) and by hypothesis, (K3, w
′) has no negative cycle. Therefore, C is positive.

Induction Hypothesis. Every signed cycle C in (Kn, w) such that |V (C)| ≤ l, l ≤
n− 1, is positive.

Let C ′ = x, v, y, ..., x be a signed cycle of (Kn, w) such that |V (C ′)| = l + 1, l ≤ n− 1
(see Figure 5.8).

yx

v

P

C’

C

Figura 5.8. The cycle C ′ = x, v, y, ..., x in G of length l + 1 is decomposed in the
paths P ′ = x,w, y and P . Similary, C ′ consists of the arc (x, y) and P .

Since Kn is complete and by induction hypothesis, there exists a positive cycle C =
x, y, ..., x of length l in (Kn, w). That minds the path P from y to x must have the same
sign as arc (x, y). Then, there are two possibilities. First, if the path P is positive,
also is (x, y) and comparing the signed clique formed in x, w and y with the only
signed cliques K3 without negative cycles (i.e. cliques type K1

3 or K2
3 , see Remark

5.1), necessarily w(x, v) = w(v, y), i.e. the path P ′ = x, v, y is positive with which the
signed cycle C ′ formed by the positive paths P and P ′ also becomes positive. Second, if
the path P is negative, also is (x, y) and doing the same above comparison, necessarily
w(x, v) = −w(v, y), i.e. the path P ′ = x, v, y is negative. Hence, the cycle C ′ formed
by the negative paths P and P ′ also becomes positive. 2

In this way, to find a minimum (minimal) NFVS of a signed clique (Kn, w) is equivalent
to find a maximum (maximal) signed clique of (Kn, w) without negative cycles, i.e.
composed only by signed cliques of type K1

3 or K2
3 . On the other hand, it is known
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that the problem of finding a maximum (maximal) clique in an undirected graph,
denoted by MAX-CLIQUE, is NP-complete (Karp, 1972). Thus we have the following
Theorem:

Theorem 5.7 PFVS is polynomial and NFVS is NP-complete for the family of signed
cliques.

Proof. PFVS is P. In fact, due to Remark 5.1, in every signed clique with n ≥ 3
vertices, at least n − 2 vertices are necessary to cover all the positive cycles. Thus,
by checking all sets with n− 2 and n− 1 vertices, we can obtain a minimum positive
feedback vertex set. This last can be checked in O(n2) iterations.

NFVS is NP for the family of signed cliques. This is a direct consequence of the
polynomial complexity of the Negative Cycle Problem.

MAX-CLIQUE polynomially reduces to NFVS for the family of signed cliques. In fact,
let us define the reduction function as follows: given an undirected graph G, we define
θ(G) = (G′, w), where (G′, w) is a signed clique with |V (G)| vertices in which each arc
{a, b} of G is replaced by two positive arcs (a, b) and (b, a). If {x, y} /∈ A(G), then
the positive arc (x, y) and the negative arc (y, x) are in A(G′) (see Figure 5.9). In this
way, a given clique K of G is transformed into a signed clique (K ′, w′) of (G′, w) with
all their arcs being positive (i.e. without negative cycles), both K and (K ′, w′) having
the same number of vertices.

+1

+1

−1

−1θ

(G’,w)G

+1

+1

+1+1+1+1 +1
+1

Figura 5.9. Each clique K of G is transformed into a signed clique (K ′, w′) of (G′, w)
with all their arcs positive.

On the other hand, a signed clique (K ′, w′) of (G′, w) without negative cycles has only
positive arcs due the definition of reduction θ, consequently corresponds to a unique
clique K of G. 2

In order to have a negative cycle in a given signed digraph, negative arcs are necessary.
Moreover, we can assert that the number of vertices of a minimum negative feedback
vertex set is bounded by the number of negative arcs of the digraph. But this is not
the case for positive cycles. The PFVS problem is NP-complete for digraphs with no
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negative arcs. This suggests that limiting the number of negative arcs have a different
effect on the complexity of NFVS and that of PFVS. In order to precise this idea, let
us consider the following decision problems:

PFVS-Nk (NFVS-Nk). Given a signed digraph (G,w) with at most k negative
arcs and given t ∈ N, does a positive (negative) feedback vertex set U exist such
that |U | ≤ t?

Proposition 5.3 NFVS-Nk is polynomial and PFVS-Nk is NP-complete.

Proof. It is easy to see that PFVS-Nk is NP-complete because considering the family
of signed digraphs without negative arcs (i.e. with k = 0), we can polynomially reduce
FVS to PFVS-Nk by defining w as a constant sign function that assigns +1 to every
arc of a given digraph G.

On the other hand, NFVS-Nk is polynomial because if k ≤ t, the answer to the decision
problem is yes. If k > t, it is enough to consider all the

(
n
t

)
subsets U ⊆ V (G) of t

vertices and to verify whether some of them is a negative feedback vertex set; since(
n
t

)
≤ nt ≤ nk this task has polynomial complexity in the input size. 2

Consequently, even if PFVS and NFVS are NP-complete; there exist some families of
digraphs where NFVS is easier than PFVS. In a similar way, there is a family where
FVS is simpler than PFVS and NFVS.

In (Lloyd et al., 1985) the concept of Cyclically Reducible digraph is introduced and
they proved that FVS is polynomial over this family. We prove that PFVS and NFVS
are NP-complete in this case.

Definition 5.1 Given a digraph G, we say that node z is deadlocked if there is a
(possibly trivial) path in G from z to some node y that lies on a cycle. The associated
graph of node x with respect to G, A(G, x), consists of node x and all nodes of G
that are not deadlocked if x is removed from G. A D-sequence of a digraph G is a
sequence of nodes (y1,...,yk) such that each of the graphs A(Gi−1, yi) have at least one
cycle, where G0 = G and Gi = Gi−1 −A(Gi−1, yi) for 1 ≤ i ≤ k. Such a D-sequence is
complete if the graph Gk (as defined above) is acyclic.
G is cyclically reducible if and only if there exists a complete D-sequence for G.

The following result was exhibited in (Lloyd et al., 1985):

Proposition 5.4 Let G be a digraph. Then, there is a cyclically reducible digraph G′

such that G is a subdigraph of G′.
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Proof. We can construct G′ by doing the following for each node x in G: create
a new two length directed cycle containing x and a new vertice x′ (see Figure 5.10).
Graph G′ is cyclically reducible, since the nodes that were originally in G (in any order)
form a complete D-sequence of G′ for each node x originally in G, A(G, x) contains
both x and x′ and has therefore at least one directed cycle. 2

Let us consider the following problems:

PFVS-CR (NFVS-CR). Given a signed digraph (G,w), where G is cyclically
reducible and, given t ∈ N, does a positive feedback vertex set U exist such that
|U | ≤ t?

Theorem 5.8 PFVS-CR and NFVS-CR are NP-complete.

Proof. In fact, similar to the proof of Proposition 5.4, for each vertex x in a signed
digraph (G,w), we can create a new vertex x′, a positive arc from x to x′ and a negative
(positive) arc from x′ to x (see Figure 5.10).
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Figura 5.10. Polynomial reduction from PFVS to PFVS-CR.

The result is a signed digraph (G,w) with the same cycles of G plus |V (G)| new two
length negative (positive) cycles. Thus, the minimum positive (negative) feedback
vertex set of (G,w) is equal to the minimum positive (negative) feedback vertex set of
(G,w). Consequently, we have defined a polynomial reduction from PFVS (NFVS) to
PFVS-CR (NFVS-CR). 2
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CHAPTER 6

Combinatorics on update digraphs
in Boolean networks

Boolean networks (BNs) are the most simple model for genetic regulatory networks, as
well as for other simple distributed dynamical systems. Despite their simplicity, they
provide a realistic model in which different phenomena can be reproduced and studied,
and indeed, many regulatory models published in the biological literature fit within
this framework (Kauffman, 1969; Thomas, 1973; Shmulevich et al., 2003).

A BN is defined by its connection digraph, its local activation functions, and the
type of update schedule used, which may range from the parallel update, the most
common (Kauffman, 1969; Thomas, 1991), to the sequential update, passing through
all the combinations of block-sequential updates (which are sequential over the sets of
a partition, but parallel inside each set).

The impact of perturbations of the update schedule on a Boolean network dynamics
have been greatly studied (Chaves et al., 2005; Elena et al., 2008; Ben-Amor et al.,
2008; Demongeot et al., 2008; Elena, 2009), mainly from a statistical point of view and
more recently, also from an analytical point of view (Salinas, 2008; Gómez, 2009).

Some analytical works on perturbations of update schedules have been made in a

2work published in: J. Aracena, E. Fanchon, M. Montalva, M. Noual, “Combinatorics on update
digraphs in Boolean networks”, Discrete Applied Mathematics 159 (6) (2011) 401-409.

3work submitted in: J. Aracena, J. Demongeot, E. Fanchon, M. Montalva, “On the number of
update digraphs and its relation with the feedback arc sets and tournaments”, Discrete Applied
Mathematics, Ref. No. DA1309.
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particular class of discrete dynamical networks, called sequential dynamical systems,
where the connection digraph is symmetric or equivalently an undirected graph with
a sequential update schedule. For this class of networks, the team of Hansson,
Mortveit and Reidys studied the set of sequential update schedules preserving the
whole dynamical behavior of the network (2001), and the set of attractors in a certain
class of Cellular Automata (2005).

In (Aracena et al., 2009) was defined equivalence classes of deterministic update
schedules in BN’s according to the labeled digraph associated to the network (update
digraph). It was proven that two update schedules in the same class yield exactly the
same dynamical behavior.

We focus on the update digraphs and the number and size of equivalence classes of
update schedules associated to a BN.

The main reason for our interest in update digraphs schedules is two-fold. On one hand,
we wish to build a better understanding of the objects we are dealing with. On the
other hand, we are interested in the relationships that exist between the architecture
of the connection digraph of a discrete network and the robustness of its dynamics
through the study of the equivalence classes of deterministic update schedules defined
by its associated updated digraphs.

6.1 Definitions

Let s be an update schedule of the vertices of a digraph G = (V,A) with |V | = n.
We denote Sn the set of update schedules over [[1, n]]. Besides, we denote by
Ps = {B1, ..., Bnb(s)} the partition over [[1, n]] induced by s.

As mentionned in (Demongeot et al., 2008), the number of update schedules associated
to a digraph of n vertices is equal to the number of ordered partitions of a set of size
n, that is

Tn =
n−1∑
k=0

(
n

k

)
Tk,

where T0 ≡ 1.

Let G be a digraph. A function lab : A(G)→ { -©, +©} is called a label function of G.
An arc a ∈ A(G) such that lab(a) = +© is called a positive arc and an arc a ∈ A(G)
such that lab(a) = -© is called a negative arc. A cycle C in G such that ∀a ∈ A(C),
lab(a) = +© is called a positive cycle and a cycle C in G such that ∀a ∈ A(C),
lab(a) = -© is called a negative cycle. Labeling every arc a ∈ A(G) by lab(a), we
obtain a labeled digraph denoted by (G, lab).
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Let s an update schedule of V (G), we define the label function labs : A(G)→ { -©, +©}
in the following way :

∀(j, i) ∈ A(G), labs(j, i) =

{
+© if s(j) ≥ s(i)

-© if s(j) < s(i).

The labeled digraph (G, labs) is named update digraph. In this context, we say
that s has the maximum number of blocks if for each update schedule s′ such that
(G, labs′) = (G, labs), then nb(s′) ≤ nb(s) (see example in Fig. 6.1).

+
+

+
2

1
4

3

Figura 6.1. A digraph G = (V,A) labeled by the function labs where ∀i ∈ V =
{1, . . . , 4}, s(i) = i. In this case s has the maximum number of blocks.

6.2 Preliminary results and motivations

The following result, given in (Aracena et al., 2009) for Boolean networks, holds:

Theorem 6.1 Let N1 = (G,F, s1) and N2 = (G,F, s2) be two Boolean networks that
differ only in the update schedule. If (G, labs1) = (G, labs2), then N1 and N2 have the
same dynamics.

We define equivalence classes with respect to labeled digraphs: if s is an update schedule
of the vertices of a digraph G, we write [s]G the set of update schedules s′ such that

s
G∼ s′, that is

[s]G = {s′ : (G, labs) = (G, labs′)}.

An equivalence class, [s]G, is a set of update schedules that all yield the same labeled
digraph, and consequently by Theorem 6.1, the same dynamics on networks.

In this work we study update digraphs and the equivalence classes of their update
schedules. More precisely, Section 6.3 deals with the characterization of update
digraphs. Sections 6.4 and 6.5 focus on the size and the number of equivalence classes
of update schedules.

40



6.3 Characterization of update digraphs

In this section, we study the relation
G∼ and the labelings of a given digraph G. First,

we give a characterization of the label functions lab : A(G) → { -©, +©} that indeed
correspond to label functions induced by update schedules. Then, we examine update
schedules s which satisfy lab = labs. The section ends with some observations that
where made to help to determine the number of [·]G classes. First, let us give some
additional definitions.

Definition 6.1 Let lab : A(G) → { -©, +©} be a label function of a given digraph
G. The labeled digraph (G, lab) is said to be an update digraph if there exists an
update schedule s such that lab = labs, that is ∀a ∈ A(G), lab(a) = labs(a). We
denote by U(G) = {lab : A(G) → { -©, +©}| (G, lab) is an update digraph}. An update
digraph (G, lab) has a maximal number of negative arcs if there is no label function
lab∗ ∈ U(G) with strictly more negative arcs that lab, and where lab(u, v) = -© implies
lab∗(u, v) = -© , for every (u, v) ∈ A(G) (see example in Fig. 6.2).

a)

2
+

1

+

3
b)

2
+

1

3

Figura 6.2. a) A labeled digraph (G, lab) which is an update digraph with maximal
(but not maximum) number of negative arcs. b) A labeled digraph (G, lab′) which is
not an update digraph.

The goal of this section is to determine the subset of labeled digraphs which are update
digraphs.

Definition 6.2 Let (G, lab) be a labeled digraph and G′ a subdigraph of G. We
define the projection of (G, lab) onto G′ as being the labeled digraph (G′, labG′), where
labG′(a) = lab(a), ∀a ∈ A(G′).

Definition 6.3 Let (G, lab) be a labeled digraph. G′ is said to be a positive strongly
connected component of (G, lab) if G′ is a strongly connected induced subdigraph
of G with all its arcs positive in (G, lab) and is maximal for this property. If
V (G) = {x}, then G is a positive strongly connected component of (G, lab) called
trivial component. We will say that (G, lab) is reduced if it has no positive strongly
connected component not trivial.
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Note that the fact that (G, lab) is an update digraph is independent of the presence
or absence of positive strongly connected components, because the images s(i) of the
vertices i by an update schedule in a positive strongly connected component are equal.
For our study, they can thus be replaced by one unique vertex.

Definition 6.4 Let (G, lab) be a labeled digraph. We define the labeled reoriented
digraph associated to (G, lab), and write (GR, labR), to refer to the labeled digraph in
which all negative arcs are inverted:

• V (GR) = V (G).

• A(GR) =
{(u, v)| (u, v) ∈ A(G) ∧ lab(u, v) = +©}
∪ {(u, v)| (v, u) ∈ A(G) ∧ lab(v, u) = -©}.

• ∀(u, v) ∈ A(GR), labR(u, v) =

{
-© if (v, u) ∈ A(G) ∧ lab(v, u) = -©,

+© otherwise.

A forbidden cycle in (GR, labR) is a cycle containing a negative arc. A forbidden circuit
in (G, lab) is a circuit that represents a forbidden cycle in (GR, labR).

An example of labeled reoriented digraph is shown in Fig. 6.3.

a)

ba

c

+
+

b)

ba

c

+
+

Figura 6.3. a) A labeled digraph G = ({a, b, c}, A). b) (GR, labR) where the arcs
drawn in dotted lines are the ones that have been inverted.

Let (G, lab) be a labeled digraph. We can determine if it is reduced in time O(|A|) with
an algorithm that searches for strongly connected components of a digraph associated
to (G, lab) without its negative arcs. We also can get (GR, labR) in time O(|A|).

Definition 6.5 Let (G, lab) be a labeled digraph and P a path in (GR, labR), we denote
by l−(P ) the number of negative arcs of P . Thus, for every v ∈ V (G) we define the
set Pv of paths in (GR, labR) ending in v, and we denote L−(v) = max

P∈Pv

l−(P ) and

L−(GR, labR) = max
v∈V (G)

{L−(v)},

is the number of negative arcs of a path with the maximum number of negative arcs
over all paths in (GR, labR).
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Theorem 6.2 A labeled digraph (G, lab) is an update digraph if and only if (GR, labR)
does not contain any forbidden cycle.

Proof. (⇒) Let us suppose that (GR, labR) contains a forbidden cycle
C : v1, . . . , vp = v1 such that (vj, vj+1) is a negative arc. Then any update schedule
s such that (G, lab) = (G, labs) must satisfy s(vj) > s(vj+1). It must also satisfy
s(vj) ≤ s(vj+1) since there exists in (GR, labR) a path from vj+1 to vj. Thus, we end
up with a contradiction.

(⇐) Let L = L−(GR, labR). Observe first that, if P = [v1, . . . , vk] is a path in GR such
that l−(P ) = L with {(vi1 , vi2), (vi3 , vi4), . . . , (vi2L−1

, vi2L)} the set of negative arcs of P
where j > k ⇒ ij > ik, and s is an update schedule such that (G, lab) = (G, labs) then

s(vi1) > s(vi2) > s(vi4) > s(vi6) > · · · > s(vi2L),

which implies max{s(v)| v ∈ V (G)} ≥ L+ 1. Besides,

∀ i = 1, . . . , k, L−(vi) = l−(v1, . . . , vi) and L−(v1) = 0.

Let s : V (G)→ [[1, L+ 1]] with

s(v) = L− L−(v) + 1, ∀v ∈ V (G).

We observed above that s(V (G)) = [[1, L + 1]], meaning that s is an update schedule
of V (G). To check that s is also an update schedule satisfying (G, lab) = (G, labs), we
must show that ∀a = (u, v) ∈ A(GR), s(u) > s(v) ⇔ labG(u, v) = -©. This follows
from the fact that (u, v) being an arc of GR, it necessarily holds that L−(v) ≥ 1+L−(u)
when labG(u, v) = -©. 2

We notice that if (G, lab) is a labeled digraph, the forbidden cycles of (GR, labR)
correspond to what we will refer to as alternating circuits of G. That is, they coincide
with walks of G, C = v0, v1, . . . , vk, where v0 = vk and either (vi, vi+1) ∈ A in which case
labG(vi, vi+1) = +© or (vi+1, vi) ∈ A in which case labG(vi+1, vi) = -© (or vice versa).
Among these alternating circuits, are in particular circuits such that ∀i ∈ [[0, k − 1]],
lab(vi, vi+1) = -© as well as sub-graphs containing two vertices u and v, a walk from u
to v negatively labeled and another walk from u to v positively signed.

Incidentally, let us notice that, as a consequence of Theorem 6.2, if a = (u, v) ∈ A(G)
is an arc not belonging to any circuit, then the fact that (G, lab) is an update digraph
or not is independent of lab(a).

Algorithm 1 finds an update schedule corresponding to a given reduced labeled digraph
as described in the proof of Theorem 6.2. It is adapted from the famous algorithm by
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van Leeuwen (1990), giving a topological order on a digraph without cycles. For a
given reduced labeled digraph (G, lab), algorithm 1 works on the labeled reoriented
digraph (GR, labR) without forbidden cycles. It returns in time O(|V |+ |A|) an update
schedule s such that (G, lab) = (G, labs) and

nb(s) = min{nb(s′) | s′ is an update schedule of G}.

Algorithm 1 Update schedule associated to a labeled digraph.

Require: (G = (V,A), lab) a reduced labeled digraph such that (GR, labR) has no
forbidden cycle.
ValMax← table of size |V (GR)| in which are stored the maximal possible values of

s(v), v ∈ V (GR).
n← |V |;
H ← GR;

for v ∈ V do
ValMax[v] = n;

end for

while ∃v ∈ V, NH(v) = ∅ do
s(v)← ValMax[v];
for (v, w) ∈ A(H) do
if (w, v) ∈ A(G) is a negative arc then
ValMax[w]← min{ValMax[w], s(v)− 1};

else
ValMax[w]← min{ValMax[w], s(v)};

end if
delete the arc (v, w) from H;

end for
end while

smin ← min{s(v | v ∈ V )};
for v ∈ V do
s(v)← s(v)− smin + 1;

end for

Figure 6.4 shows the different steps of the algorithm that returns an update schedule
associated to an arbitrary possible labeled digraph (not necessarily reduced).

Corollary 6.1 The following problems can be solved in polynomial time.

1. Determine whether a labeled digraph (G, lab) is an update digraph,
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Figura 6.4. a) A labeled digraph G = ({1, . . . , 5}, A). b) (GR, labR). The arcs drawn
in dotted lines are negative-arcs. The others are positive-arcs. c) and d) are the first
two steps computed by algorithm 1 after the while loop. e) The update schedule s
such that (G, lab) = (G, labs).
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2. Given (G, lab) an update digraph, find an update schedule s such that (G, lab) =
(G, labs).

Indeed, according to Theorem 6.2, a labeled digraph (G, lab) is an update one if and
only if, in (GR, labR) no negative-arc belongs to a strongly connected component. Thus,
the first part of Corollary 6.1 holds since the strongly connected components of a
digraph can be identified in polynomial time. For the second one, an update schedule
s such that (G, lab) = (G, labs) can be constructed by using the algorithm 1 whose run
time is also polynomial.

On the other hand, given a non-update digraph, it is natural to ask which modifications
we can do to obtain an update digraph. For this, we introduce the concept of update
feedback arc set as follows.

Definition 6.6 Let (G = (V,A), lab) be a labeled digraph. F ⊆ A is an update arc
set of G if (G− F, labG−F ) is an update digraph (see Fig. 6.5).

Definition 6.7 We define the Update Arc Set problem as follows:

UAS: Let (G = (V,A), lab) be a labeled digraph and k ∈ N. Is there F ⊆ A with
|F | ≤ k such that F is an update arc set of G?

Proposition 6.1 UAS is NP-complete

Proof. It is easy to see that FAS can be polynomially reduced to UAS, where the
reduction consists to label with -© all arcs of G. 2

Proposition 6.2 Let (G = (V,A), lab) be a non-update digraph and F ⊆ A a minimal

update arc set of G. Then (G, lab
F
) is an update digraph, where for each a ∈ F ,

lab
F
(a) = -©⇐⇒ lab(a) = +© and lab

F
(a) = lab(a), ∀ a ∈ A− F .

Proof. Let (G = (V,A), lab) be a non-update digraph and F ⊆ A a minimal update
arc set of G. Then by definition of minimal update arc set, for each a ∈ F there is a
forbidden circuit Ca such that A(Ca) ∩ F = ∅ and by definition of F , (G− F, labG−F )
is an update digraph. Thus by projection theorem ((G− F ) ∪ {a}, ˜lab(G−F )∪{a}) is an
update digraph (because Ca is a forbidden circuit when the label of a is lab(a)). 2
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Figura 6.5. a) A non-update digraph (G, lab) where C = [a, c, b, a] with A(C) =
{(a, c), (b, c), (b, a)} is a forbidden circuit. The set U = {(a, c), (b, c)} is an update arc
set of (G, lab) which is not minimal. The set Umin = {(a, c)} is a minimal update arc

set of (G, lab). b) The non-update digraph (G, lab
U
) obtained from (G, lab) by changing

the labels of U . c) The update digraph (G, lab
Umin

) obtained from (G, lab) changing
the labels of Umin as in Proposition 6.2.

6.4 Size of the equivalence classes [·]G

Let us now consider the following question : given a digraph G and an update schedule
s, does there exist any update schedule s′ 6= s such that (G, labs) = (G, labs′) ? That
is, what conditions need to be satisfied in order for |[s]G| > 1 to hold?

Corollary 6.2 Let (G, lab) be a reduced update digraph with |V (G)| = n and L =
L−(GR, labR). Then, ∀m ∈ [[L, n − 1]], there exists an update schedule s such that
nb(s) = m+ 1 and (G, lab) = (G, labs).

Proof. We show the result by induction on m.

If m = L, the result was proved in Theorem 6.2.

If L = n−1, the proof is done. Otherwise, let m ∈]]L, n−1]]. By induction hypothesis,

there exists an update schedule s = (Bi)
nb(s)
i=1 such that (G, lab) = (G, labs) and nb(s) =

m. Since m < n, there exists i∗ ∈ [[1, n − 1]] such that |Bi∗| > 1. Notice that
∀(u, v) ∈ (Bi∗ × Bi∗) ∩ A(G), labs(u, v) = +©. Besides, because there are not cycles in
(GR, labR), there exists w ∈ Bi∗ such that {v ∈ Bi∗| (w, v) ∈ A(GR)} = ∅. Hence, let
us define s′ as follows:
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s′(v) =

{
s(v) + 1 if s(v) ≥ s(w) and v 6= w,

s(v) if s(v) < s(w) or v = w.

Hence obviously, s′(V (G)) = [[1,m + 1]], i.e. s′ in an update schedule of V (G), and
(G, lab) = (G, labs′). 2

Corollary 6.3 Let (G, lab) be a reduced update digraph and L = L−(GR, labR).
Then, |[s]G| ≥ |V (G)|−L, where s is an update schedule such that (G, lab) = (G, labs).

Proposition 6.3 Let (G, lab) be an update digraph. The following assertions are
equivalent:

(a) There is a sequential update schedule sq such that (G, lab) = (G, labsq).

(b) (G, lab) has no positive cycle.

(c) (G, lab) is reduced.

Proof. (a)⇒ (b) Straightforward.

(b)⇒ (c) Let (G, lab) be an update digraph without positive cycles. Then (G, lab) has
no positive strongly connected component, i.e. (G, lab) is a reduced update digraph.

(c)⇒ (a) Let (G, lab) be a reduced update digraph. By Corollary 6.2, ∀m ∈ [[L, n−1]],
there exists an update schedule s such that nb(s) = m + 1 and (G, lab) = (G, labs).
In particular, for m = n − 1, there exists an update schedule sq such that nb(sq) =
(n− 1) + 1 = n (i.e. sq is a sequential update schedule) and (G, lab) = (G, labsq). 2

Remark 6.1 In particular, if (G, lab) is a labeled acyclic digraph, then there is always
a sequential update schedule sq such that (G, lab) = (G, labsq).

Corollary 6.4 Let (G, lab) be a reduced update digraph with |V (G)| = n. Then, there
exists s1 6= s2 sequential update schedules such that (G, lab) = (G, labs1) = (G, labs2) if
and only if the longest path in (GR, labR) has at most n− 2 arcs.

Proof. Let (G, lab) be a reduced update digraph with |V (G)| = n. Then, by
Corollary 6.2, there exists sequential update schedule sq, such that (G, lab) = (G, labsq).

⇒) If the longest path in (GR, labR) has n − 1 arcs, then sq is the only sequential
update schedule compatible with the path, because for every other sequential update
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schedule s there is (u, v) ∈ A(G) such that labsq(u, v) 6= labs(u, v) and consequently,
(G, lab) = (G, labsq) 6= (G, labs).

⇐) Let s1 = sq = (v1) · · · (vn), vi ∈ V (G), ∀i ∈ [[1, n]]. Hence, ∀(vi, vj) ∈ A(G),
i, j ∈ [[1, n]],

i < j ⇔ labs1(vi, vj) = -©

On the other hand, A(GR) = {(vj, vi) : j > i ∧ (vj, vi) ∈ A(G) ∨ (vi, vj) ∈ A(G), i, j ∈
[[1, n]]} and since the longest path in (GR, (labs1)R) has at most n− 2 arcs, necessarily
there exists i ∈ [[1, n]], such that (vi+1, vi) /∈ A(GR), this implies the existence of
another sequential update schedule s2 6= s1 which changes the block Bi = {vi} by the
block Bi+1 = {vi+1} of s1 and vice versa, i.e. s2 = (v1) · · · (vi−1)(vi+1)(vi)(vi+2) · · · (vn),
such that (G, lab) = (G, labs1) = (G, labs2). 2

Corollary 6.5 Let (G = (V,A), labs) be a reduced update digraph. |[s]G| > 1 if and
only if (GR, labR) is not a negative linear digraph.

Proof. If (GR, labR) is not a negative linear digraph, i.e. it has not a directed path
of length |V | − 1 with all its arcs negative, then L ≤ |V | − 2. Thus, by Corollary 6.3,
|[s]G| > 1, where (G, lab) = (G, labs).

Conversely, if G is a negative linear digraph with p = [u1, . . . , u|V |] a directed path of
length |V | − 1 with labG(ui, ui+1) = -©, ∀i = 1 . . . , |V | − 1, then there only exists one
update schedule s which satisfies (G, lab) = (G, labs). 2

As a consequence, |[sp]G| > 1 if and only if G is not strongly connected.

6.5 Number of update digraphs

In the previous section, given a labeled digraph (G, lab), we were interested by the
existence of update schedules s such that (G, lab) = (G, labs). And when there did
exist such update schedules, we wanted to know how many there were.

In the present section, given a digraph G, we would like to determine how it can be
labeled into an update digraph, that is, which are the label functions lab of G such
that (G, lab) is indeed an update digraph. In particular, here, we focus on the number
of equivalence classes [·]G (rather than on their sizes).

Definition 6.8 Let G be a digraph. We denote by NU(G) = {lab :
A(G) −→ { -©, +©} : (G, lab) is a non update digraph}, FAS(G) = {F ⊆
A(G) : F is a feedback arc set of G}, NFAS(G) = {F ⊆ A(G) :
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F is a non feedback arc set of G}, and MFAS(G) = {F ⊆ A(G) :
F is a minimal feedback arc set of G}. Note that

|U(G)| = |{[s]G | s is an update schedule over V (G)}|

We define the size of a labeled digraph (G, lab) by the number of its positive arcs.

We define the following problem :

DIGRAPH

UPDATE (DU)

problem:



Input: A digraph G = (V,A) and an integer k;

Question:
Does there exist a label function

lab : A→ { +©, -©} such that (G, lab)
is an update digraph and its size

is at most k ?

Theorem 6.3 DIGRAPH UPDATE is NP-complete.

Proof. We are going to prove Theorem 6.3 by reduction to the FAS problem which
is remembered below and known to be NP-complete (Garey and Johnson, 1979):

FAS problem:


Input: A digraph G = (V,A) and an integer k;

Question: Does there exist a feedback arc set F of

G such that |F | ≤ k ?

The reduction function we use to map an instance of FAS to an instance of DU is
simply the identity. Next, for a given instance (G, k) we show that there exists a label
function lab such that (G, lab) is an update digraph of size at most k if and only if
there exists a feedback arc set F of G such that |F | ≤ k.

(⇒) Let lab be a label function such that (G, lab) is an update digraph of size at most
k and let F = {a ∈ A(G)| lab(a) = +©}. Then, F is a feedback arc set of size |F | ≤ k.
G′ = (V,A−F ) cannot contain any cycle since otherwise it would be negative cycle of
(G, lab) which is not possible in an update digraph.

(⇐) Let F be a minimal feedback arc set of G such that |F | ≤ k. Let a ∈ F . If every
cycle of G containing a contains as well another arc of F , then F − {a} is a feedback
arc set of G smaller than F . This contradicts the minimality of F . Thus, for every
a ∈ F , there exists a cycle of G containing a and no other arc of F . Now, let us define
the label function lab as follows:

∀a ∈ F, lab(a) = +© and ∀a ∈ A− F, lab(a) = -©.
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Note that because there are no cycles in G′ = (V,A−F ), there are not negative cycles
in (G, lab). Suppose, however, that (G, lab) is not an update digraph. In (G, lab),
there must thus be an alternating circuit (see Theorem 6.2 and the remarks made
after) containing both positive and negative arcs. In other words, there is a forbidden
cycle in (GR, labR). The positive arcs in this cycle belong to F . Let a ∈ A(G) be such
a positive arc belonging to the forbidden cycle and to F . From the discussion above,
we derive that there exists a cycle Ca of G that contains a and no other arc of F . All
the arcs of Ca that are not a are thus negative in (G, lab). Concatenating the negative
arcs of the alternating circuit and of all cycles Ca (a being an arc of F in the forbidden
cycle) we obtain a cycle in G′ = (V,A(G)− F ) (see Fig. 6.6 below)

−

+

+

+a

Ca

Figura 6.6. A forbidden cycle in (GR, labR) with, surrounding it, the negative cycles
Ca mentioned in the proof of Theorem 6.3. Arrows in full line represent arcs, arrows
in dashed lines represent paths.

which contradicts F being a feedback arc set of G (as well as the fact that (G, lab) has
no negative cycles). 2

Corollary 6.6 Let G be a digraph. Then,

|MFAS(G)| < |U(G)| ≤ |FAS(G)|

Proof. From the above proof, we can deduce that

|MFAS(G)| ≤ |U(G)| ≤ |FAS(G)|

i.e. the function g : MFAS(G) → U(G) such that F → g(F ) = labF is injective.
But for the label function labp such that labp(e) = +©, ∀e ∈ A(G) there is no pre-
image F ∈ MFAS(G) such that g(F ) = labp, because the only possibility would be
F = A(G), but a minimal feedback arc set F ′ has the property that each of its arcs
meets a cycle that contains no other arc of F ′ and this is impossible with F = A(G).
Therefore, |MFAS(G)| < |U(G)|. 2
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An example of digraph G where the number of update digraphs is distinct of the
number of feedback arc sets and minimal feedback arc sets is shown in Fig. 6.7. For
this digraph, |MFAS(G)| = 3, |FAS(G)| = 11 and the number of associated update
digraphs is six.

a)

G:
a

bc b)

+

−

− −

a

c b

c)

+

+

+−

a

c b

d)

+

+

− −

a

c b

Figura 6.7. a) A digraph G. b) An update digraph, where {(b, c)} is a minimal
feedback arc set. c) An update digraph, where {(a, b), (b, c), (c, b)} is a feedback arc
set but not minimal. d) A non update digraph, but {(b, c), (c, b)} is a feedback arc
set.

6.5.1 Extensions and projections of update digraphs

We see how the property of update digraph can be inherited into local structures such
as subdigraphs. Thus, add or remove labeled arcs of a given update digraph leads to
keep the property of being an update digraph.

Theorem 6.4 Let G be a digraph and G′ a subdigraph of G. If (G′, lab′) is an update
digraph, then there exists a label function of A(G) lab such that (G, lab) is an update
digraph and labG′ = lab′.

Proof. If (G′, lab′) is an update digraph we will show that for all
a = (u, v) ∈ A(G)− A(G′), either (G′+ a, lab+a ) or (G

′+ a, lab−a ) is an update digraph,
where V (G′ + a) = V (G′) ∪ {u, v}, E(G′ + a) = E(G′) ∪ {a} and lab+a and lab−a are
defined by lab+a (e) = lab−a (e) = lab(e),∀e ∈ A(G′), lab+a (a) = +© and lab−a (a) = -©.

Let us suppose that there exists a = (u, v) ∈ A(G) − A(G′) such that neither
(G′ + a, lab+a ) nor (G′ + a, lab−a ) are update digraphs. Then there exists a forbidden
cycle C1 : x1 = u, x2 = v, x3, . . . , xp = u with lab+a (xj, xj+1) = -© in the reoriented
labeled digraph ((G′ + a)R, (lab

+
a )R). In the same way, there exists a forbidden cycle

C2 : y1 = v, y2 = u, y3, . . . , yq = v in the reoriented labeled digraph ((G′+a)R, (lab
−
a )R).
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Hence, the sequence of nodes x2 = v, . . . , xj, xj+1, . . . , xp = u = y2, . . . , yq = v in the
reoriented labeled digraph (G′

R, lab
′
R) contains a cycle including the arc (xj, xj+1) (see

Fig. 6.8), that is a forbidden cycle. Thus (G′, lab′) is not an update digraph, which is
a contradiction.

Therefore, if A(G)−A(G′) = {a1, . . . , ar}, then by induction we can prove that for all
k in {1, . . . , r} there exists a label function labk of the arcs of G

′+a1+ . . .+ak such that
(labk)G′ = lab′ and (G′ + a1 + . . .+ ak, labk) is an update digraph. In particular, there
exists a label function lab in G such that (G, lab) is an update digraph and lab′ = labG′ .
2

C2

xj

xj+1

R

u v

C1

−

G

Figura 6.8. Scheme of the forbidden cycle in (G′
R, lab

′
R) mentioned in the proof of

Theorem 6.4.

Note that if (G, lab) is an update digraph and lab′ = labG′ , then (G′, lab′) is also an
update digraph by Theorem 6.2. Therefore, the update subdigraphs are the projections
of the update digraphs.

Now, we see how the number and size of the equivalence classes are bounded by a
function that depends on the number of update schedules Tn for a given digraph G
such that |V (G)| = n.

Corollary 6.7 Let G be a connected digraph of n > 1 vertices. Then,

2n−1 ≤ |U(G)| ≤ Tn

where Tn =
n−1∑
k=0

(
n

k

)
Tk.

Proof. From Theorem 6.4 for all digraphs G and subdigraphs G′ of G,

|U(G′)| ≤ |U(G)|
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On other hand, the connected digraph of n vertices with the least number of arcs,
i.e. n− 1, is an oriented tree. In this case, all labeling functions on the digraph yield
an update digraph. Thus, there are 2n−1 update connected digraphs with the least
number of arcs. In the same way, the connected digraph of n nodes with the great
number of arcs, equal to n2 (including the arcs (u, u)), is a complete digraph. In this
case, each label function on a complete digraph defines a total preorder on the vertices.
Besides, it is well known that the number of total preorders on a set of n elements is
Tn defined as in the statement of this Theorem. Thus, Tn is the maximum number of
update connected digraphs with n vertices. 2

Remark 6.2 If G is a complete digraph with |V (G)| = n, then |U(G)| = |Sn| = Tn

and consequently |[s]G| = 1 for every s ∈ Sn because for every pair of update schedules
s1, s2 with s1 6= s2 there exist i, j such that s1(i) < s1(j) and s2(i) ≥ s2(j), i.e.
labs1(i, j) 6= labs2(i, j). Besides, if G is a reduced digraph, the above mentioned result
and Corollary 6.5 imply that the reoriented update digraph (GR, (labs)R) is a negative
linear digraph.

Definition 6.9 Let G be a digraph. We define PG = {[s]G : s ∈ Sn} and denote
PG - PG′ ⇔ ∀ [s]G′ ∈ PG′ , ∃[s̃]G ∈ PG, [s]G′ ⊆ [s̃]G. We denote PG � PG′ ⇔ PG 6=
PG′ ∧ PG - PG′.

Proposition 6.4 If G ( G′, then PG � PG′, where V (G) = V (G′) = n.

Proof.

PG � PG′ ⇔ PG 6= PG′ ∧ PG - PG′

⇔ PG 6= PG′ ∧ ∀ [s]G′ ∈ PG′ , ∃[s̃]G ∈ PG, [s]G′ ⊆ [s̃]G.

It is easy to see that for all s ∈ Sn, [s]G′ ⊆ [s]G, i.e PG - PG′ .

On the other hand, G ( G′ ⇒ ∃(a, b) ∈ A(G′)− A(G).
Let s, s′ ∈ Sn be such that s(a) = s(b) = s′(a) = 1, s′(b) = 2, s(c) = 2 and s′(c) = 3,
∀c ∈ V (G)− {a, b}. Then [s]G′ 6= [s′]G′ but [s]G = [s′]G, i.e PG 6= PG′ . 2

Corollary 6.8 Let G be a digraph and G′ ( G where V (G) = V (G′). Then
|U(G′)| < |U(G)| and |FAS(G′)| < |FAS(G)|.

Proof. By Proposition 6.4, PG � PG′ , i.e |PG| < |PG′| but |PG| = |U(G)|. Hence,
|U(G′)| < |U(G)|.

On the other hand, the function g : FAS(G′)→ FAS(G), F ′ → g(F ′) = F ′ ∪ (A(G)−
A(G′)), is evidently injective and well-defined. Thus, |FAS(G′)| ≤ |FAS(G)|. But
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for a given (a, b) ∈ A(G) − A(G′), F = A(G) − {(a, b)} ∈ FAS(G), however, there is
no F ′ ∈ FAS(G′) such that g(F ′) = F . Hence, g is not surjective and in this way.
|FAS(G′)| < |FAS(G)|. 2

6.5.2 Feedback arc sets and update digraphs

As we saw at the beginning of this section, there are links between feedback arc sets
and update digraphs. Next, we exhibit some additional results showing increasing and
decreasing monotone properties for |U(G)| and |FAS(G)| respectively, where G is a
given digraph.

Theorem 6.5 Let G be an undirected graph and G1 and G2 two orientations of G such
that every cycle of G1 is also a cycle of G2. Then |U(G1)| ≤ |U(G2)| and |FAS(G2)| ≤
|FAS(G1)|.

Proof. Let G, G1 and G2 as in the hypothesis of the Theorem. In particular, note
that:

∀(u, v) ∈ A(G1), (u, v) ∈ A(G2) ∨ (v, u) ∈ A(G2)

We define the function f : NU(G2) −→ NU(G1), lab→ f(lab) = lab′ by:

lab′(u, v) =

{
lab(u, v), if (u, v) ∈ A(G1) ∩ A(G2),

lab(u, v), in other case.
, ∀(u, v) ∈ A(G1)

where lab : A(G1) −→ { -©, +©} is defined by:

lab(u, v) = +©⇔ lab(v, u) = -©

f is well defined. First, note from definition of lab′ that (G2)R = (G1)R. In this
way, if C is a cycle in ((G2)R, labR) with some negative arc, then C is also a cycle in
((G1)R, lab

′
R) with some negative arc (see Fig. 6.9).

In fact, suppose on the contrary that C is a cycle in ((G1)R, lab
′
R) with all its arcs

positive. This is possible if and only if C is a cycle in (G1, lab
′) with all its arcs positive

and by hypothesis of the Theorem, C is also a cycle in (G2, lab) with all its arcs positive,
which is a contradiction. Therefore, lab ∈ NU(G2)⇒ f(lab) = lab′ ∈ NU(G1).

On the other hand, it is easy to see from the definition of lab′ that f is injective.
Therefore, |NU(G2)| ≤ |NU(G1)| and consequently |U(G1)| ≤ |U(G2)|.

Finally, if F ⊆ A(G1) is a non feedback arc set of G1, then F ′ = {(u, v) ∈ G2 : (u, v) ∈
F ∨(v, u) ∈ F} is a non feedback arc set of G2. Therefore |NFAS(G1)| ≤ |NFAS(G2)|
and consequently |FAS(G2)| ≤ |FAS(G1)|. 2
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Figura 6.9. Proof idea for Theorem 6.5. a) An undirected graph G. b) Two
orientations G1 and G2 of G and the injection f . Observe that |U(G1)| = 18 < 20 =
|U(G2)| and |FAS(G2)| = 27 < 32 = |FAS(G1)|. c) The labeled reoriented digraph
((G2)R, labR) associated to (G2, lab). d) The labeled reoriented digraph ((G1)R, lab

′
R)

associated to (G1, lab
′).

Proposition 6.5 |U(G)| = |FAS(G)| if and only if all circuits of G are cycles.

Proof. ⇒) By counter-reciprocal, let us suppose that G has a circuit C which is
not a cycle. We will prove that |U(G)| < |FAS(G)|. We know from proof of Theorem
6.3 that given (G, lab) an update digraph, {a ∈ A(G) : lab(a) = +©} is a feedback
arc set of G induced by the function lab, and thus |U(G)| ≤ |FAS(G)|. We will show
that there is another feedback arc set F ′ ∈ FAS(G), but F ′ is not induced by any
element of U(G). Indeed, there exists a label function lab′ such that the circuit C is a
forbidden circuit of (G, lab′) with at least a positive arc and a negative arc in C. Let
F ′ = A(G)− {a ∈ A(C) : lab′(a) = -©}. It is easy to check that F ′ ∈ FAS(G) but F ′

is not induced by any element in U(G).

⇐) Let us suppose that all circuits of G are cycles. We want to prove that |FAS(G)| ≤
|U(G)|.

We define the following function TG : FAS(G) −→ U(G) such that for each feedback
arc set F ∈ FAS(G), TG(F ) is the label function:

TG(F )(a) =

{
+©, if a ∈ F,

-©, if a /∈ F
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Then, TG(F ) ∈ U(G). Indeed, if there exists a forbidden circuit C in (G, TG(F )), there
is at least an arc a ∈ A(C) such that TG(F )(a) = +©. Since, if for all a ∈ A(C),
TG(F )(a) = -©, then A(C)∩F = ∅, which contradicts the fact F ∈ FAS(G). Besides,
there exists a′ ∈ A(C), TG(F )(a′) = -©. Hence, C is a circuit in G which is not a cycle,
which is a contradiction. Therefore TG(F ) is well-defined and obviously injective. 2

6.6 Complete digraphs and Tournaments on up-

date digraphs

In the previous sections we showed bounds on the number and size of equivalence classes
of update schedules associated with a given update digraphG and relationships between
the sets U(G) and FAS(G). In this section we will restrict to classical families such
as acyclic digraphs, complete digraphs and tournaments, in order to know accurately
the number and size of its schedule equivalence classes.

Also we will show how the number of negative arcs of an update digraph (G, lab) is
related to feedback arc sets in these families.

Proposition 6.6 Let (G, lab) be an update complete digraph with at least one negative
arc. Then, ∀x ∈ V (G), ∃y ∈ V (G) such that lab(x, y) = -© or lab(y, x) = -©.

Proof. Suppose on the contrary that ∃x ∈ V (G), ∀y ∈ V (G), lab(x, y) = +© and
lab(y, x) = +©. By hypothesis, G is a complete digraph and it has a negative arc
(r, s) ∈ A(G), then in the clique x, r and s there is a forbidden cycle which contradicts
the fact that G is an update digraph. 2

Proposition 6.7 Let G be a complete digraph. Then, (G, lab) is a non update digraph
if and only if there exists a forbidden cycle of length either two or three in (GR, labR).

Proof. ⇐) Is straightforward.

⇒) Let (G, lab) be a complete non update digraph. Then, there exists a forbidden
cycle CR with a negative arc and of smallest length in (GR, labR). Let suppose that
the length of CR is strictly greater than three.

Let C be the forbidden circuit associated to CR in G. If C has a path of the form (a, b),
(b, c) +©-labeled, then necessarily (a, c) also is positive in G because otherwise, if (a, c)
is negative in G, then there would exist a forbidden cycle C ′ of length three smaller
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than CR in GR. Analogously, if C has a path of the form (a, b), (b, c) -©-labeled, then
necessarily (a, c) is negative (see Fig. 6.10, a) and b)).

Therefore, we can suppose that C does not have two consecutive arcs with the same
label. But when lab(b, a) = -© and lab(b, c) = +©, necessarily the arc (c, a) is negative
in G (i.e (a, c) is negative in GR), because on the contrary, there would exist a forbidden
cycle C ′ of length three smaller than CR in GR (see Fig. 6.10, c) and d)).

In this way, it is always possible to reduce the length of the forbidden cycle CR up to
obtain a length of three. 2
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Figura 6.10. Proof idea of Proposition 6.7. a) When the arcs (a, b) and (b, c) are
positive in C, then necessarily (a, c) also is positive in C. b) When the arcs (a, b) and
(b, c) are negative in C, then necessarily (a, c) also is negative in C. c) If lab(b, a) = -©
and lab(b, c) = +© in C, then necessarily lab(c, a) = -©. d) If lab(a, b) = -© and
lab(c, b) = +© in C, then necessarily lab(a, c) = -©.

Theorem 6.6 Let G be an acyclic digraph with |V (G)| = n. Then,

(a) |U(G)| ≤ n!.

(b) |U(G)| = n!⇔ G is a tournament.

(c) If G is a tournament, then for each update schedule s of G, |[s]G| = 2k, for some
k ∈ N ∪ {0}.

Proof. (a) Let G be an acyclic digraph with |V (G)| = n and let lab ∈ U(G).
Then, by Proposition 6.3, there is a sequential update schedule sq such that (G, lab) =
(G, labsq). Therefore, since the number of different sequential update schedules is n!,
we have that:

|U(G)| ≤ n!
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(b)⇐) Let G be a tournament with |V (G)| = n and let s1, s2 be two different sequential
update schedules, then by tournament definition there is (i, j) ∈ A(G) such that
labs1(i, j) 6= labs2(i, j). Since every sequential update schedule sq defines a different
update digraph (G, labsq) and the number of different sequential update schedules is
n!, we have that:

|U(G)| ≥ n!

and due to (a), we conclude that |U(G)| = n!.

⇒) Let G be an acyclic digraph with |V (G)| = n and |U(G)| = n!. Suppose on the
contrary that G is not a tournament, then necessarily there exist u, v in V (G) without
arcs between them (two arcs between them are not possible because G is acyclic) which
implies that there are two different sequential update schedules with the same update
digraph. This contradicts the fact that |U(G)| = n!. Therefore, G also is a tournament.

(c) Let T be an acyclic tournament. By induction on m = |V (T )|.

Basis Step, m=2. There are two posibilities: the equivalence class of the parallel
update schedule sp, where it is easy to see that |[sp]T | = 21 = 2, and of the sequential
update schedule sq /∈ [sp]T , where clearly |[sq]T | = 20 = 1.

Induction Hypothesis. T acyclic tournament with m ≤ n − 1. Hence, for each
update schedule s over V (T ), |[s]T | = 2k, for some k ∈ N ∪ {0}.

Let G be an acyclic tournament with |V (G)| = n. First, note that the
proof of (b) implies the existence of a bijection f : U(G) → {s ∈ Sn :
s sequential update schedule on V (G)}. Let (G, labs) be an update digraph with
sequential update schedule s = (i1)(i2) · · · (ij)(n)(ij+1) · · · (in−1), where {i1, ..., in−1} =
{1, . . . , n− 1}.

Let G′ = G − {n}. Clearly, G′ is an acyclic tournament with |V (G′)| = n − 1 and
s′ = (i1) · · · (ij)(ij+1) · · · (in−1) is the sequential update schedule such that (G′, labs′)
is the labeled subdigraph of (G, lab) induced by {i1, . . . , in−1}. Defining Sdif = {s∗ ∈
[s′]G′ : s∗(ij) = s∗(ij+1)−1} and Seq = {s∗ ∈ [s′]G′ : s∗(ij) = s∗(ij+1)}, we can see that
if Seq 6= ∅, then |Sdif | = |Seq| = 2k−1 for some k ∈ N∪ {0} (note that always Sdif 6= ∅).

There are the following 6 cases:

Case 1. labs(ij, n) = -© and labs(ij+1, n) = labs(ij+1, ij) = +© (see Figure 6.11 a)).
To obtain all the elements of [s]G, for every s∗ ∈ Sdif it is enough to generate s1
and s2 in [s]G where s1(p) = s2(p) = s∗(p), ∀p ∈ V (G′) such that s∗(p) ≤ s∗(ij);
s1(n) = s2(n) = s∗(ij) + 1 and s2(q) = s1(q) − 1 = s∗(q), ∀q ∈ V (G′) satisfying
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s∗(q) ≥ s∗(ij+1). In this way, |[s]G| = 2 · |Sdif | = 2k for some k ∈ N ∪ {0}.

Case 2. labs(n, ij) = labs(ij+1, n) = labs(ij+1, ij) = +© (see Figure 6.11 b)).
To obtain all the elements of [s]G, for every s∗1 ∈ Sdif we generate s1, s2 and s3 in
[s]G where s1(p) = s2(p) = s3(p) = s∗1(p), ∀p ∈ V (G′) such that s∗1(p) ≤ s∗1(ij);
s1(n) = s3(n) = s2(n) + 1 = s∗1(ij) + 1 and s2(q) = s3(q) = s1(q) − 1 = s∗1(q),
∀q ∈ V (G′) satisfying s∗1(q) ≥ s∗1(ij+1). And for every s∗2 ∈ Seq we generate s4 ∈ [s]G
defined by s4(p) = s∗2(p), ∀p ∈ V (G′), p 6= n and s4(n) = s∗2(ij). Therefore, |[s]G| =
3 · |Sdif |+ |Seq| = 3 · 2k−1 + 2k−1 = 2k+1 for some k ∈ N ∪ {0}.

Case 3. labs(ij, n) = labs(ij, ij+1) = labs(n, ij+1) = -© (see Figure 6.11 c)).
Here, for each s∗1 ∈ Sdif we generate s1 ∈ [s]G where s1(p) = s∗(p), ∀p ∈ V (G′) such
that s∗(p) ≤ s∗(ij); s1(n) = s∗(ij) + 1 and s1(q) = s∗(q) + 1, ∀q ∈ V (G′) satisfying
s∗(q) ≥ s∗(ij+1). Therefore, |[s]G| = |Sdif | = 2k−1 for some k ∈ N ∪ {0}.

Case 4. labs(ij, n) = labs(ij, ij+1) = -© and labs(ij+1, n) = +©.

Case 5. labs(n, ij) = labs(ij+1, ij) = +© and labs(n, ij+1) = -©.

Case 6. labs(n, ij+1) = labs(ij, ij+1) = -© and labs(n, ij) = +©.

Cases 4, 5 and 6 are similar to case 1. 2
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Figura 6.11. Proof idea of Theorem 6.6. a) Case 1. b) Case 2. c) Case 3.

Observe that the assertion (c) of Theorem 6.6 is not true for tournaments in general
(see Fig. 6.12 as an counterexample).

Proposition 6.8 Let G be an acyclic tournament. Then, all arcs of an update digraph
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Figura 6.12. An update digraph (G, labs) where |[s]G| =
|{(a)(b)(c), (a)(b, c), (a, b)(c)}| = 3.

(G, lab) are negative if and only if there exists sequential update schedule sq such that
(G, lab) = (G, labsq) and |[sq]G| = 1.

Proof. Let G be an acyclic tournament. First, observe that every acyclic digraph
(G, lab) with all its arcs negative is an update digraph.

⇒) Let (G, lab) with all its |A(G)| =
(
n
2

)
arcs negative. Hence, by Proposition 6.3 there

exists a sequential update schedule sq such that (G, lab) = (G, labsq). Now, suppose
that there exists another update schedule s 6= sq such that s ∈ [sq]G. If s is a sequential
update schedule, then since (G, lab) is a tournament and s 6= sq, necessarily there are u,
v in V (G) such that s(u) < s(v) and sq(u) > sq(v). Thus, (G, labs) 6= (G, labsq) which
contradicts the assumption s ∈ [sq]G. If s is an update schedule but not sequential,
then there is a block Bi, 1 ≤ i ≤ nb(s) < |V (G)| such that |Bi| > 1, i.e., there exist
u, v in Bi such that the arc between them is positive in (G, labs), but the same arc is
negative in (G, labsq). Again a contradiction. Therefore, |[sq]G| = 1.

⇐) Let sq = (v1)(v2) · · · (vn) be a sequential update schedule such that (G, lab) =
(G, labsq), |[sq]G| = 1 and V (G) = {v1, . . . , vn}. Since (G, lab) is an update tournament,
for every pair of vertices vi, vj in V (G), there is only one arc between them, either
the negative arc (vi, vj) or the positive arc (vj, vi) with i, j ∈ {1, ..., n}. Observe that
∀i = 1, . . . , n− 1, the negative arc (vi, vi+1) is in A(G), since otherwise there would be
another update schedule s 6= sq, s = (v1)(v2) · · · (vi−1)(vi, vi+1)(vi+2) · · · (vn) such that
(G, lab) = (G, labsq) = (G, labs), which contradicts that |[sq]G| = 1 (see Fig. 6.13 a)).
Besides, for every i 6= j ∈ {1, . . . , n} such that j > i + 1, the negative arc (vi, vj) is
in A(G) because if there exists the positive arc (vj, vi), by the above mentioned, we
would have the existence of the negative arcs (vi, vi+1), (vi+1, vi+2),...,(vj−1, vj) which
implies the existence of a cycle (see Fig. 6.13 b)). A contradiction because G is acyclic.
Therefore, all arcs of (G, lab) must be negative. 2

Remark 6.3 Let G be a complete digraph with |V (G)| = n and F a minimal feedback
arc set of G. Then, |F | =

(
n
2

)
and talk of minimum feedback arc set is equivalent to

talk of minimal feedback arc set. In fact, suppose that |F | >
(
n
2

)
, then necessarily there

exist u, v ∈ V (G) such that {(u, v), (v, u)} ⊆ F . Since F is minimal, there exists path
P1 = u1, ..., uk with u1 = v, uk = u which does not contain any arc of F (in particular
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Figura 6.13. Proof idea of Proposition 6.8. a) Case j = i + 1. If there is a positive
arc from the Bi+1 to Bi, it is possible to construct a new update schedule s 6= sq
with block B′

i = Bi ∪ Bi+1. b) Case j > i + 1. There is necessarily a cycle (vi, vi+1),
(vi+1, vi+2),...,(vj−1, vj), (vj, vi).

the arc (v, u)), for some k ∈ [[3, n]] and ui ∈ V (G), ∀i ∈ [[1, k]]. Analogously, there
exists path P2 = v1, ..., vj with v1 = u, vj = v which does not contain any arc of F
(in particular the arc (u, v)), for some j ∈ [[3, n]] and vi ∈ V (G), ∀i ∈ [[1, j]]. Thus,
joining the paths P1 and P2, we deduce the existence of a cycle which does not contain
any arc of F , a contradiction, because F is a feedback arc set. Hence |F | ≤

(
n
2

)
. On

the other hand, |F | ≥
(
n
2

)
because G has

(
n
2

)
cycles of length two.

Lemma 6.1 Let G be a complete digraph with |V (G)| = n. Then, F is a minimal
feedback arc set of G if and only if G′ = G− F is an acyclic tournament.

Proof. ⇒) Let F be a minimal feedback arc set of G, then G′ = G− F represents
an acyclic digraph. Besides, G′ is a tournament. In fact, suppose on the contrary that
G′ is not a tournament, i.e. there is a pair of vertices a, b in V (G′) such that (a, b),
(b, a) /∈ A(G′). That minds {(a, b), (b, a)} ⊆ F and since F must have at least one arc
for each pair of vertices of V (G), we have that |F | ≥

(
n
2

)
+ 1, which is a contradiction

because by Remark 6.3, |F | =
(
n
2

)
.

⇐) Let G′ be an acyclic tournament, then F = A(G) − A(G′) is a minimal feedback
arc set of G, because |F | = |A(G)− A(G′)| =

(
n
2

)
. 2

Theorem 6.7 Let G be a digraph with |V (G)| = n. Then, F ⊆ A(G) is a minimal
feedback arc set of G if and only if (G, labF ) is an update digraph with a maximal
number of negative arcs, where labF (u, v) = +©⇔ (u, v) ∈ F .

Proof. ⇒) Let G be a digraph with |V (G)| = n and F a minimal feedback arc set
of G. Then G− F is an acyclic digraph and (G, labF ) is an update digraph (see proof
of Theorem 6.3 for more details).
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Moreover, suppose on the contrary that there exists a label function lab with strictly
more negative arcs than labF , where labF (u, v) = -© ⇒ lab(u, v) = -©, (u, v) ∈ A(G)
and such that (G, lab) is an update digraph. Then F ′ = {(u, v) ∈ A(G) : lab(u, v) =
+©} is a feedback arc set of G and verifies that F ′ ( F , which contradicts the minimality
of F . Hence, (G, labF ) is an update digraph with maximal number of negative arcs.

⇐) Let labF be a label function for which (G, labF ) is an update digraph with maximal
number of negative arcs, F ⊆ A(G). We know that F is a feedback arc set of G because
(G, labF ) is an update digraph, which implies that G− F is acyclic.
Now, suppose on the contrary that F is not minimal, i.e, there exists a minimal feedback
arc set F ′ ( F of G and consequently a label function labF ′ with which (G, labF ′) also
is an update digraph but having the same negative arcs that (G, labF ) and other more.
This contradicts the maximality of (G, labF ). Therefore, F is a minimal feedback arc
set of G. 2

Proposition 6.9 An update digraph (G, lab) with maximum number of negative arcs

has at least |A(G)|
2

negative arcs.

Proof. Let (G, lab) be an update digraph and na(G, lab) = |{(u, v) ∈ A(G) :
lab(u, v) = -©}| the number of negative arcs of (G, lab).

If G is an acyclic digraph, then (G, lab) with all its arcs negative is an update digraph,
i.e. na(G, lab) = |A(G)|.

If G has a cycle, then let sq1 = (v1)(v2) · · · (vn) and sq2 = (vn)(vn−1) · · · (v1) two
sequential update schedules with vi ∈ V (G), ∀i ∈ [[1, n]]. Then, ∀i, j ∈ [[1, n]] such
that (vi, vj) ∈ A(G),

labsq1 (vi, vj) = -©⇔ labsq2 (vi, vj) = +©

Thus, since (G, lab) has the maximum number of negative arcs, it must satisfy

na(G, lab) ≥ max{na(G, labsq1 ), na(G, labsq2 )} ≥
|A(G)|

2
. 2

Corollary 6.9 Let (G, lab) be a complete labeled digraph with |V (G)| = n. Then,
(G, lab) is an update digraph with a maximal number of negative arcs if and only if the
graph induced by the negative arcs is an acyclic tournament.

Proof. By Theorem 6.7 we have that (G, lab) is an update digraph with a maximal
number of negative arcs if and only if F is a minimal feedback arc set of G, where
F = {(u, v) ∈ A(G) : lab(u, v) = +©}. By Lemma 6.1, F is a minimal feedback arc set
of G if and only if G′ = G−F is an acyclic tournament, i.e., the graph induced by the
negative arcs of (G, lab) is an acyclic tournament. 2
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Corollary 6.10 Let (G, lab) be an update complete digraph. Then, (G, lab) has the
maximal number of negative arcs if and only if the update schedule associated to (G, lab)
is sequential.

Proof. Let (G, lab) be an update complete digraph.

⇒) By Corollary 6.9, the digraph induced by the negative arcs is an acyclic tournament
T which by Proposition 6.8 has a sequential update schedule sq such that (T, lab|T ) =
(T, labsq |T ) and |[sq]T | = 1. Hence, it is easy to see that (G, lab) = (G, labsq).

⇐) Let sq = (v1)(v2) · · · (vn) a sequential update schedule such that (G, lab) =
(G, labsq). Hence, all the negative arcs of (G, lab) are of the form (vi, vj) with j > i
and i, j in {1, ..., n}, i.e. the digraph induced by the negative arcs of (G, lab) is an
acyclic tournament which implies again by Corollary 6.9 that (G, lab) has the maximal
number of negative arcs. 2

Corollary 6.11 Let G be a complete digraph with |V (G)| = n. Then, |MFAS(G)| =
|{lab : (G, lab) is an update digraph with the maximal number of negative arcs}| = n!.

Proof. It is easy to see that the number of acyclic tournaments of n vertices is n!.
Then, the Corollary follows from Lemma 6.1 and Theorem 6.7. 2

Proposition 6.10 Let (G, lab) be an update digraph with a maximal number of
negative arcs. Then, there is no positive cycle.

Proof. Let (G, lab) be an update digraph with maximal number of negative arcs,
i.e, there is no positive arc that can be changed by a negative arc holding the property
of update digraph. Let s be an update schedule such that (G, lab) = (G, labs) and
suppose on the contrary that there is a positive cycle C, then there exists (i, j) ∈ A(C)
such that s(i) = s(j). Defining s′ by:

s′(k) = s(k), ∀k, s(k) < s(i).

s′(i) = s(i)

s′(k) = s(k) + 1, ∀k 6= i, s(k) ≥ s(i).

we have that labs(u, v) = -© ⇒ labs′(u, v) = -©, but labs(i, j) = +© 6= labs′(i, j) which
contradicts the maximality of (G, lab). 2
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Remark 6.4 In general, the necessary condition of Proposition 6.10 is not sufficient.
As a counterexample, we can consider the update digraph H2 of Fig. 7.3 and observe
that H2 satisfies the hypotheses of the Proposition and in addition, it does not have
positive cycles. Nevertheless it is not any of three update digraphs with maximal number
of negative arcs: H5, H6 or H7. Also H2 is a counterexample for the families of
update strongly connected digraphs and update tournaments with cycles. Even in acyclic
digraphs (such as acyclic tournaments), the sufficient condition does not hold. We can
consider as a counterexample a simple labeled digraph (G, lab) composed by only one
positive arc (a, b) which is obviously an update digraph, without positive cycles, but not
maximal. However, the following Proposition shows that in update complete digraphs,
the necessary condition of Proposition 6.10 is also sufficient one.

Proposition 6.11 Let (G, lab) be an update complete digraph with |V (G)| = n. Then,
(G, lab) has a maximal number of negative arcs if and only if (G, lab) has no positive
cycle.

Proof. ⇒) Direct from Proposition 6.10.

⇐) Let (G, lab) be an update complete digraph without positive cycles with |V (G)| =
n, i.e. all its cycles of length two have only one negative arc. Since a complete digraph
has

(
n
2

)
cycles of length two, (G, lab) has at least

(
n
2

)
negative arcs, but this is the

maximum number of negative arcs that an update complete digraph can have. 2
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CHAPTER 7

Enumeration of update digraphs
and equivalence classes

In the previous chapter, we have studied bounds for the cardinality of update digraphs
associated with a given digraph as well as bounds for the size of its associated
equivalence classes.

In this chapter, we will see how through local transformations on update digraphs we
can obtain other update digraphs, all in a polynomial time, being this one, one of the
principal motivation to study the above mentioned. Also we will study properties
associated with these transformations and the associated multidigraphs generated
from them, where speaking in simple terms, the vertices of these multidigraphs are
update digraphs and its arcs are defined depending on the existence or not of some
transformation that allows us to transform a vertex to another.

We finish this chapter by giving an exact algorithm for enumerating all the update
digraphs associated to a given digraph as well as an exact algorithm for determining
all the update schedules associated to a given update digraph. Both use a special
property that allows us to find all the elements of interest without repetition.

4work in preparation: J. Aracena, J. Demongeot, M. Montalva, “Local transformations and
enumeration of update digraphs”.
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7.1 Some transformations on update digraphs

In the proof of Theorem 6.3, we see that if F ⊆ A(G) is a minimal feedback arc set
of a digraph G, then (G, labF ) is an update digraph where ∀e ∈ A(G), labF (e) =
+© ⇔ e ∈ F . For this reason, study the minimal feedback arc sets of a digraph
can help us to understand better the update digraphs. In this context, Schwikowski
and Speckenmeyer (2002) present an algorithm that exploits a simple relation between
minimal feedback arc sets that allows for generating all minimal feedback arc sets
of a directed graph G by local modification. They further show that the underlying
technique can be tailored to generate all minimal solutions for the undirected case and
the directed feedback arc set problem, both with a polynomial delay of O(|V ||E|(|V |+
|E|)), proving finally that computing the number of minimal feedback arc sets is ]P-
hard. This is used as motivation for the results that follow. We begin with a simple
proposition that allows us later, to define local transformations on update digraphs.

Proposition 7.1 Let (G, lab) be an update digraph, then ∃x ∈ V (G),
[∀w ∈ N−(x), lab(w, x) = +©] ∨ [∀y ∈ N+(x), lab(x, y) = +©].

Proof. Suppose on the contrary that ∀x ∈ V (G), ∃w ∈ N−(x), ∃y ∈ N+(x),
lab(w, x) = lab(x, y) = -©, in this way, there exists a succession of vertices {vi}i∈N of
V (G) such that lab(vi, vi+1) = -©. Then there would be a cycle with only negative
arcs, i.e. a forbidden circuit in (G, lab), which is a contradiction. 2

Proposition 7.1 was the motivation for the next definition

Definition 7.1 Let G be a digraph and UG = {G} × U(G). For all x ∈ V (G), we
define the functions T i

x : UG → UG such that (G, lab)→ T i
x(G, lab) = (G, labix), i = 1, 2

where labix : A(G)→ { -©, +©} is defined as follows (see Figure 7.1):

lab1x(u, v) =


-©, if v = x,

+©, if u = x,

lab(u, v), in other case

lab2x(u, v) =


+©, if v = x,

-©, if u = x,

lab(u, v), in other case

Observe that T 1
x and T 2

x are polynomial time computable functions for all x ∈ V (G).
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Figura 7.1. Local effect of T 1
x and T 2

x over a vertex x of a given labeled digraph yields
the properties P1 and P2 respectively.

Proposition 7.2 Let (G, lab) be an update digraph. Then T 1
x (G, lab) and T 2

x (G, lab)
are update digraphs for each x ∈ V (G).

Proof. Let (G, lab) be an update digraph and x ∈ V (G). Then, there is no forbidden
circuit in (G, lab). If T i

x(G, lab) is not an update digraph, then there exists necessarily
a forbidden circuit containing x. But this is impossible due the definition of T i

x(G, lab).
2

Definition 7.2 Let G be a digraph without loops and I = {1, 2}. We denote HG the
multidigraph associated to G, defined by:

V (HG) = {(G, lab) : (G, lab) is an update digraph} and,

A(HG) = {(H,H ′) ∈ V (HG) × V (HG) : H = (G, lab) ∧ H ′ = T 1
x (G, lab), x ∈

V (G)}.

Let be (G, lab) an update digraph. A vertex H ∈ V (HG) such that N−
HG

(H) = ∅ is said
to be a root vertex of HG (see Fig. 7.3).
x ∈ V (G) has the property P1 (resp. P2) if lab(v, x) = -© (resp. lab(v, x) = +©),
∀v ∈ N−

G (x) and lab(x, y) = +© (resp. lab(x, y) = -©), ∀y ∈ N+
G (x) (see Fig. 7.1).

Observe that:
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1.- If (G, lab) is an update digraph with loops, then each loop is necessarily positive.
Thus, we can define HG for update digraphs with loops considering that T 1

x , x ∈ V (G),
is applied on (G, lab) without its loops and later put positive arcs on its loops.

2.- If G is a complete digraph with n = |V (G)|, then |V (HG)| = |Sn| = Tn =
n−1∑
k=0

(
n

k

)
Tk, i.e. for each (G, lab) update, ∃! s ∈ Sn such that (G, lab) = (G, labs).

3.- T i
x ◦ T j

x = T i
x, ∀(i, j) ∈ I × I.

4.- Similary we can define HG in terms of T 2
x , x ∈ V (G) without changing the analysis

that follows.

Corollary 7.1 Let (G, lab) be a labeled digraph and F = {v1, ..., vk}, k ∈
{1, ..., |V (G)| − 1} a feedback vertex set of the undirected multigraph associated to G,
i.e. G without its orientations. Then (G, labF ) = T ik

vk
◦ · · · ◦ T i2

v2
◦ T i1

v1
(G, lab) is an

update digraph, where ij ∈ {1, 2}, ∀j ∈ {1, ..., k}.

Proof. Suppose on the contrary that there exists a forbidden circuit C in (G, labF ).
Since F is a feedback vertex set of the undirected multigraph associated to G, there
exists p = max

i∈{1,...k}
{i : vi ∈ V (C)}, then by T

ip
vp definition, there is no cycle in (GR, labR)

that contains vp, i.e. C is not a forbidden circuit, which is a contradiction. 2

Remark 7.1 In particular, Corollary 7.1 says that applying T i
x, i ∈ I to all vertices

x of a given labeled digraph (G, lab) gives us a new labeled digraph (G, lab′) which is
update.

Proposition 7.3 Let H ≡ (G, lab) be an update digraph. The following are
equivalent:

(a) H is a non root vertex of HG.

(b) There exists H∗ ∈ V (HG), H
∗ 6= H such that (H∗, H) ∈ A(HG).

(c) There exists x ∈ V (G) having the property P1.

(d) (H,H) ∈ A(HG).

Proof. (a) ⇒ (b). H non root vertex of HG implies that N−
HG

(H) 6= ∅, i.e. there
exists H1 ∈ N−

HG
(H) such that (H1, H) ∈ A(HG). If H1 = H, then (H,H) ∈ A(HG)
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and T 1
x (H) = H for some x ∈ V (G). Let H∗ = T 2

x (H), then x has the property
P1 in H and the property P2 in H∗ which implies that H∗ 6= H. Finally, T 1

x (H
∗) =

T 1
x (T

2
x (H)) = T 1

x (H) = H, i.e. (H∗, H) ∈ A(HG).

(b) ⇒ (c). (H∗, H) ∈ A(HG) ⇒ T 1
x (H

∗) = H, for some x ∈ V (G), i.e. x ∈ V (G) has
the property P1.

(c) ⇒ (d). x ∈ V (G) with property P1 implies that H = T 1
x (H) (by definition of T 1

x ),
i.e. (H,H) ∈ A(HG).

(d)⇒ (a). (H,H) ∈ A(HG)⇒ N−
HG

(H) 6= ∅, i.e. H is a non root vertex of HG. 2

Proposition 7.4 Let (G, lab) be an update digraph with |V (G)| = n. Then (G, lab) is
a root vertex of HG if and only if for all update schedule s such that (G, lab) = (G, labs)
and with maximum number of blocks, the partition Ps = {B1, ..., Bk} associated to s
for some k ≤ n, satisfies |Bk| > 1.

Proof. ⇒) Let (G, lab) be a root vertex of HG, then (G, lab) is an update digraph
and consequently, there exists update schedule s such that (G, lab) = (G, labs). We
assume w.l.o.g. that s has maximum number of blocks and Ps = {B1, ..., Bk}. Suppose
on the contrary that Bk = {x}, i.e. |Bk| = 1 for some x ∈ V (G). By definition of
Bk, ∀y ∈ N−(x), labs(y, x) = -© and ∀z ∈ N+(x), labs(x, z) = +©. This implies that
x has the property P1 in (G, labs). Then, by Proposition 7.3, (G, labs) = (G, lab) is
a non root vertex of HG. Contradiction. Therefore, for all update schedule s such
that (G, lab) = (G, labs), with maximum number of blocks and associated partition
Ps = {B1, ..., Bk}, |Bk| > 1.

⇐) Let (G, lab) be a labeled digraph and suppose that for all update schedule s with
maximum number of blocks, the partition Ps = {B1, ..., Bk} associated to s for some
k ≤ n, is such that (G, lab) = (G, labs) and |Bk| > 1.

If k = 1, then (G, lab) has all its arcs positive and ∀x ∈ V (G), x belongs to a
positive cycle (in other case there would exist another update schedule s′ 6= s such that
(G, lab) = (G, labs′) and such that nb(s′) > nb(s), contradiction). Then, ∀x ∈ V (G), x
has not the property P1. Thus, by Proposition 7.3, (G, lab) is a root vertex of HG.

If k > 1, then suppose on the contrary that another update digraph (G, lab′) is such
that T 1

x (G, lab′) = (G, lab) (eventually (G, lab′) = (G, lab)), for some x ∈ V (G). By
definition of T 1

x , x does not belong to any positive cycle of (G, lab). Since ∀y ∈ Bk,
y belongs to a positive cycle of (G, lab) (reasoning similarly to case k = 1), the above
mentioned necessarily implies that x /∈ Bk and consequently x has the property P1 in
(G, lab). But this would implies that there exists another update schedule s′ 6= s with
associated partition Ps′ = {Z1, ..., Zr}, for some r ∈ [[k, n]] and such that Zr = {x},
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i.e. |Zr| = 1 which is a contradiction. Therefore, every update digraph (G, lab′) is such
that T 1

x (G, lab′) 6= (G, lab), ∀x ∈ V (G), i.e. (G, lab) is a root vertex of HG. 2

Corollary 7.2 Let G be a digraph. If H ∈ HG is a root vertex, then H is not a
reduced digraph.

Proof. Direct from Propositions 6.3 and 7.4. 2

Remark 7.2 The necessary condition of Corollary 7.2 is not sufficient (see Fig.7.2 as
an counterexample).

w
+

vu

+

+

Figura 7.2. An update digraph (G, lab) which is not reduced nor a root vertex of HG

because T 1
w(G, lab) = (G, lab).

Proposition 7.5 Let G be a digraph. Then HG is connected.

Proof. In fact, for each (G, lab) ∈ HG there exists an update schedule s with a
maximum number of blocks such that (G, lab) = (G, labs) and an associated partition
Ps = {B1, ..., Bk}, k ≤ |V (G)|. Hence, there exists an update schedule s′ with
associated partition Ps′ = {B′

1, ..., B
′
k, B

′
k+1} and maximum number of blocks such

that T 1
x (G, labs) = (G, labs′), for some x ∈ Bi such that |Bi| > 1. This process can be

repeated up to obtaining a partition Ps′′ induced by a sequential update schedule s′′.
On the other hand, for H ∈ HG with parallel update schedule associated, there exists
a path that finish in each update digraph of HG that has a sequential update schedule
in its equivalence class. 2

Remark 7.3 In general, given a digraph G, then HG is not a strongly connected
digraph (see Fig. 7.3). However, as we will see, this property is achieved when HG

is restricted to the reduced update digraphs.

Theorem 7.1 Let G be a digraph. Then, HG restricted to the reduced update digraphs
is strongly connected.

Proof. Let G be a digraph and H1 = (G, lab1) a reduced update digraph. Then
by Proposition 6.3, H1 has no positive cycle and there exists a sequential update
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Figura 7.3. The digraph HG associated to the digraph G which is a cycle. For G,
there are seven different update digraphs named H1,...,H7 respectively which are the
vertices of HG and only H1 is a root vertex. The arcs of HG are obtained from direct
aplication of T 1

k over Hj, where k ∈ {x, y, z} and j ∈ {1, ..., 7}.
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schedule s1 such that H1 = (G, labs1). Similarly, if H2 = (G, lab2) is another reduced
update digraph, then there will exist a sequential update schedule s2 6= s1 such that
H2 = (G, labs2).

On the other hand, let s = (v1) · · · (vn) be a sequential update schedule with vi ∈ V (G),
∀i ∈ [[1, n]]. Observe from the definition of T 1

x , x ∈ V (G) that, ∀vi ∈ V (G), i ∈ [[1, n]],
T 1
vi
(G, labs) has an associated sequential update schedule,

s∗i =

{
(u1) · · · (uk−1)(uk+1) · · · (un−1)(vi) if uk = vi ∧ k ∈ [[1, n− 1]].

s1 if un = vi.

such that T 1
vi
(G, labs) = (G, labs∗i ) and again by Proposition 6.3, (G, labs∗i ) is reduced.

Thus, if s = (v1) · · · (vn) with vi ∈ V (G), ∀i ∈ [[1, n]], then there exists a succession
of vertices of HG such that H1 = (G, labs1), H

∗
2 ≡ T 1

v1
(H1), H

∗
3 ≡ T 1

v2
(H∗

2 ),..., and
H∗

n+1 ≡ T 1
vn(H

∗
n) = H2, i.e. there exists a path in HG from H1 to H2. Reasoning

analogously to the above, there exists a path in HG from H2 to H1. Therefore, HG

restricted to the reduced update digraphs is strongly connected. 2

Remark 7.4 From the above proof we can deduce that HG restricted to reduced update
digraphs is equivalent to HG restricted to update digraphs with a sequential update
schedule in its equivalence classes. Therefore, we can enumerate with a polynomial-
delay the equivalence classes containing a sequential update schedule. In particular,
this could be useful for enumerating, for example, the different sequential dynamical
systems with fixed local functions on their vertices (Mortveit and Reidys, 2001).

Remark 7.5 If G is acyclic, then HG is strongly connected.

Corollary 7.3 Let G be a complete digraph and let H ′
G be the subgraph of HG induced

by V (H ′
G) = {H ∈ HG : H has a maximum number of negative arcs}. Then H ′

G is
strongly connected.

Proof. Let H ∈ H ′
G. By corollary 6.9, the graph induced by the negative arcs of H

is an acyclic tournament which has associated an unique sequential update schedule
sq. Hence, by definition of T i

x(H) for some x ∈ V (G), i ∈ I, we obtain a new sequential
update schedule s′q that differs from sq only in the update of vertex x (s′q(x) = n in
T 1
x (H) and s′q(x) = 1 in T 2

x (H)). Consequently, s′q has an associated new update
complete digraph H ′ with a maximum number of negative arcs. In this way, ∀H1, H2 ∈
H ′

G, there is a path from H1 to H2, i.e. H
′
G is strongly connected. 2

Proposition 7.6 Let G be a complete digraph with n = |V (G)|. Then, the number of
root vertices in HG is:

In =
n−2∑
k=0

(
n

k

)
(Tk − kTk−1), n ≥ 2 and T−1 ≡ 0.
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Proof. First, note that by Remark 6.2, |V (HG)| = |U(G)| = Tn because G is a
complete digraph.

Let s be an update schedule for G, A = {i ∈ V (G) : s(i) = 1}, B = V (G) − A and
suppose w.l.g that |A| = n− k and |B| = k, k ∈ {0, . . . , n− 1}.

If k = 0, then (G, labs) is a complete digraph with all its arcs positive, i.e. there is no
vertex with property P1 or P2 and consequently by Proposition 7.3, (G, labs) is a root
vertex of HG.

If k ∈ {1, . . . , n − 2}, then s(u) < s(v), for all (u, v) ∈ A × B. Hence, again by
Proposition 7.3, (G, labs) is a non root vertex of HG if and only if there exists w ∈ V (G)
such that s(v) < s(w), ∀v ∈ N−

G (w)∩B, because in this way, w will have the property
P1. There are

(
n
k

)
kTk−1 different ways of obtaining the above mentioned for each

k ∈ {1, . . . , n− 2} (see a) of Figure 7.4).

If k = n − 1, we have that |A| = 1, then [v ∈ A ⇒ s(v) < s(w), ∀w ∈ N+
G (v) =

V (G) − {v}], i.e. the vertex v ∈ A has the property P2 and again by Proposition
7.3, (G, labs) is a non root vertex of HG. In this case, there are

(
n

n−1

)
Tn−1 different

combinations to obtain an update digraph (see b) of Figure 7.4).

Therefore:

In = |V (HG)| − |{v ∈ V (HG) : v is a non root vertex of HG}|

= Tn −

{
n−2∑
k=1

(
n

k

)
kTk−1 +

(
n

n− 1

)
Tn−1

}

=

{
Tn −

(
n

n− 1

)
Tn−1

}
−

n−2∑
k=1

(
n

k

)
kTk−1

=
n−2∑
k=0

(
n

k

)
Tk −

n−2∑
k=1

(
n

k

)
kTk−1

=
n−2∑
k=0

(
n

k

)
(Tk − kTk−1), with T−1 ≡ 0.

2

Proposition 7.7 Let be G a complete digraph. Then, for all H ∈ HG there exists a
path from a root vertex of HG to H of length at most 1.

Proof. Let H ∈ HG. If H is a root vertex, then it is straightforward. If H is not
a root vertex, let be P = {B1, ..., Bk} a partition of V (G) associated with the only
update schedule s of H. Then by Proposition 7.4, |Bk| = 1, i.e. Bk = {x} for some
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Figura 7.4. Proof idea from Proposition 7.6. a) Case k ∈ {1, . . . , n− 2}. There are(
n
k

)
different ways to obtain A and B, for each one of them there are

(
k
1

)
= k different

ways to obtain w and for each one of them there are Tk−1 different update digraphs.

This give us a total number of
n−2∑
k=1

(
n

k

)
kTk−1 update digraphs non root vertices of HG.

b) Case k = n − 1. Since A has only the vertex v, there are
(
n
1

)
=

(
n

n−1

)
different

ways to choose such vertex and for each one of them there are Tn−1 different update
digraphs. This gives us a total number of

(
n

n−1

)
Tn−1 update digraphs non root vertices

of HG.
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x ∈ V (G) (see Fig. 7.5), then the partition P ′ = {B′
1, ..., B

′
k−1} with B′

i = Bi for
all i = 1, .., k − 2 and B′

k−1 = Bk−1 ∪ Bk associated to an update schedule s′, verifies
that H ′ = (G, labs′) 6= H (because G is complete), H ′ is a root vertex of HG (because
|B′

k−1| > 1 and by Remark 6.2 and Proposition 7.4) and T 1
x (H

′) = H. 2

y x B kB k−1B k−2B1

+

y xB k−2B1

+
B kUB k−1

+

P

P’

Figura 7.5. Proof idea from Proposition 7.7. All negative arcs of the form (y, x) in
H = (G, labs) with the associated partition P become positive in H ′ = (G, labs′) with
the associated partition P ′.

Remark 7.6 In general, Proposition 7.7 is not true for digraphs. A counterexample
is the subdigraph G′ of G in Fig. 7.2 formed only by the arc (w, v). In this case, HG′

would have only two vertices, being none of them a root vertex of him.

7.2 EUD algorithm (enumerating update digraph)

The following is an algorithm for determinating every update digraph from a given
digraph.

Algorithm 2 EUD

Require: G = (V,E) a digraph.
UD ← DigraphUD(∅,∅,V );

Definition 7.3 Let G = (V,A) be a digraph and C,D ⊆ V . We define the subgraph of
G asociated to C and D by G(C,D) = G[C ∪D]. Also we define lab(C,D) : A(G(C,D)) −→
{ +©, -©} by:

lab(C,D)(u, v) =

{
-©, u ∈ C ∧ v ∈ D,

+©, otherwise
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Algorithm 3 DigraphUD

Require: U,A,B subsets of vertices of a digraph G.
UD ← ∅;
if U = A = ∅ then
UD = UD ∪B;
for A0 ⊂ B such that A0 6= ∅ with decreasing size do
B0 = B − A0;
UD = UD ∪DigraphUD(∅, A0, B0);

end for
end if

if mover(U,A) = 0 then
if mover(A,B) = 0 then
UD = UD ∪ (U(∗)A)(∗)B;

end if
if |B| > 1 then
for A1 ⊂ B such that A1 6= ∅ with decreasing size do
B1 = B − A1;
UD = UD ∪DigraphUD(U(∗)A,A1, B1);

end for
end if
return(UD);

end if

Algorithm 4 mover

Require: U,A subsets of vertices of a digraph G.
if U = ∅ then
return(0);

else
if ∃H ⊆ A such that (G(U,A), lab(U,A)) = (G(U∪H,A−H), lab(U∪H,A−H)) then
return(1);

else
return(0);

end if
end if
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Proposition 7.8 Let G be a digraph with |V (G)| = n and let P = {Z1, ..., Zk},
k ∈ [[1, n]], be a partition obtained of EUD algorithm such that (G, labP ) is its associated
update digraph. Then, (G, labP ) is repeated if and only if it is possible to move vertices
from Zk−1 to Zk−2 or from Zk to Zk−1.

Proof. ⇒) Let P = {Z1, ..., Zk} be a partition obtained from EUD algorithm, k ∈
[[1, n]] and let (G, labP ) be its associated update digraph such that it is repeated,
i.e. (G, labP ) has already been obtained from another partition P ′ = {W1, ...,Wt},
t ∈ [[1, n]]. Suppose on the contrary that it is not possible to move vertices from Zk−1

to Zk−2 and from Zk to Zk−1. This implies that it is not possible to move vertices
from Zk−2 to Zk−3, because in contrary case, the algorithm EUD would have stopped
before, without P as output, which contradict what has been said in the beginning.
Continuing recursively with this argument, we deduce in general that it is not possible
to move vertices from Zi to Zi−1, ∀i ∈ [[2, k]].

Let w ∈ Wi be the first element such that w /∈ Zi, by comparing the elements of Wi

with the elements of Zi, for i ∈ [[1,min{k, t}]]. This implies that Wj = Zj, ∀j < i,
because in contrary case, that would imply that P was obtained from EUD algorithm
before P ′, which would be a contradiction. Hence, in P , necessarily w ∈ Zp, for some
p > i. Since it is not possible to move vertices from Zp to Zp−1, then necessarily
∃y ∈ Zp−1 for which the arc (y, v) is negative for some v ∈ Zp such that there exists
a path from w to v (eventually v = w) because in contrary case, we might move the
set {w} ∪ {v ∈ Zp : there is a path from w to v} ⊆ Zp to Zp−1 which would be a
contradiction. But if the arc (y, v) is negative for some v ∈ Zp such that there exists
a path from w to v, necessarily v ∈ Wi and this would imply that necessarily y ∈ Wr,
for some r < i, which would contradict that Wr = Zr.

⇐) Is straightforward. 2

7.3 EC algorithm (equivalence class)

The following is an algorithm for determinating all the elements of an equivalence class
[s]G associated to a reduced update digraph (G, labs).

EC algorithm works recursively, through the subroutine PART, checking all possible
partitions of V (G) that generate the same update digraph (G, labs).
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Algorithm 5 EC

Require: A digraph G and a update schedule s such that (G, labs) is a reduced update
digraph.
if (GR, (labs)R) is a negative linear digraph then
S ← s.

else
S ← PART(V )

end if

Algorithm 6 PART

Require: V ′ ⊆ V subset of vertices of a digraph G = (V,E) and an update schedule
s such that (G, labs) is a reduced update digraph.
S ← ∅;
if V ′ = ∅ then
return(∅);

else
A← {v ∈ V ′ : ∃u ∈ V ′ such that (u, v) ∈ E and s(u) < s(v)};
for W ⊆ V ′ − A such that W 6= ∅ do
if compatibility-test(W,V ′ −W ) = 1 then
S = S ∪W (*)PART(V ′ −W );

end if
end for

end if
return(S)

7.4 Experimental analysis

In this section, we will apply some theoretical results and algorithms developed on the
equivalence classes of the different deterministic update schedules associated to a given
update digraph. Specifically, we will analyze the possible dynamics of a real genetic
regulation network of the floral morphogenesis in the plant Arabidopsis thaliana. We
will consider the reduced Mendoza and Alvarez-Buylla network which has two non-
trivial strongly connected symmetric components and whose asymptotic dynamics has
the same attractors as the original network (see (Elena, 2009; Demongeot et al., 2010)
for more details). Thus, we will focus on work with the subdigraphs G and F depicted
in Fig. 7.6, where the states of the network at time t, xi(t) ∈ {0, 1}, i = 1, ..., 7 are
defined as follows:
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Algorithm 7 compatibility-test

Require: A,B ⊆ V subsets of vertices of a reduced update digraph (G = (V,E), lab).
if B = ∅ then
if A has no negative arc in G then
return(1);

else
return(0);

end if
else
if exists positive arc (u, v) ∈ G such that u ∈ A and v ∈ B then
return(0);

else
if exists negative arc (u, v) ∈ A ∪B such that v ∈ A then
return(0);

else
return(1);

end if
end if

end if

x1(t) = H(−2x3(t− 1)− 2x2(t− 1)− 1), x5(t) = x7(t− 1),
x2(t) = H(−2x4(t− 1)− 2x1(t− 1)− 2), x6(t) = x7(t− 1),
x3(t) = x4(t− 1), x7(t) = H(x5(t− 1) + x6(t− 1)− 1),
x4(t) = x4(t− 1), H(x(t)) = 1 if x(t) > 0 and

H(x(t)) = 0 if x(t) ≤ 0.

The principal idea is to observe all their possible dynamics when we use the T4 = 75
and T3 = 13 different update schedules for each one of them, respectively. But this
will be done reducing the computational work thanks to the Theorem 6.1 that allows
us to consider only one update schedule for each equivalence class (which represents a
different update digraph).

We remark that all the following calculations are realized using the algorithms given
in this chapter.

We begin the analysis with the smaller component in Fig. 7.6: F . There are T3 = 13
different update schedules that can be grouped into nine different equivalence classes as
it is showed in Table 7.1, each one of them yielding the same update digraph according
to Theorem 6.1. These update digraphs are showed in Fig. 7.7.

The attractors of this networks are the fixed points: 000 and 111. Besides, only for
the parallel update schedule (associated to F1) there is a limit cycle [001, 110]. This is
coherent with the results showed in (Elena, 2009; Demongeot et al., 2010).
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5

7
4

321
6

Figura 7.6. The subdigraph of the reduced Mendoza and Alvarez-Buylla network
composed by two connected components: G (left side) and F (rigth side). The
vertices 1,...,7 represent the following genes of the plant Arabidopsis thaliana involved
in its floral morphogenesis: AGAMOUS (AG), APETALATA 1 (AP1), TERMINAL
FLOWER 1 (TF1), EMBRYONIC FLOWER 1 (EMF1), APETALATA 3 (AP3),
PISTILLATA (PI) and BURST FORMING UNIT (BFU), respectively.

[s1]F [s2]F [s3]F [s4]F [s5]F [s6]F [s7]F [s8]F [s9]F
(5,6,7) (6)(5,7) (5,7)(6) (6,7)(5) (6)(7)(5) (7)(5,6) (5)(6,7) (5,6)(7) (5)(7)(6)

(7)(5)(6) (5)(6)(7)

(7)(6)(5) (6)(5)(7)

Table 7.1. The different equivalence classes associated to F .
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Figura 7.7. The update digraphs F1,...,F9 associated to the equivalence classes of
s1,...,s9 are showed in the sub-figures a),...,h) respectively.

On the other hand, we can see that the equivalence classes associated to sequential
update schedules have update digraphs without positive cycles according to Proposition
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6.3. Furthermore, due to Theorem 7.1 and the results related in Remark 7.4, the
subdigraph of HF induced by the update digraphs above mentioned is strongly
connected (see Fig. 7.8).
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Figura 7.8. The subdigraph of HF induced by the update digraphs with a sequential
equivalence class associated, F5, F6, F8, F9, is strongly connected due to Theorem 7.1.

Furthermore, without knowing the dynamical behavior produced for each update
schedule, we could know which dynamics is more robust in terms of the size of these
equivalence classes. In this context, for example, the dynamics associated with the
parallel update schedule in F1 would be less robust than the dynamics associated with
the update schedules in F6 or F8 (see Table 7.1).

The different dynamics of F are showed in Tables 7.2 and 7.3.
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State Sched. 1 Sched. 2 Sched. 3 Sched. 4 Sched. 5
s1(5) = 1
s1(6) = 1
s1(7) = 1

s2(5) = 2
s2(6) = 1
s2(7) = 2

s3(5) = 1
s3(6) = 2
s3(7) = 1

s4(5) = 2
s4(6) = 1
s4(7) = 1

s5(5) = 3
s5(6) = 1
s5(7) = 2

000 000 000 000 000 000
001 110 110 100 010 010
010 000 000 000 000 000
011 110 110 100 010 010
100 000 000 000 000 000
101 110 111 100 010 111
110 001 000 011 101 000
111 111 111 111 111 111

Table 7.2. Dynamics associated to F1,...,F5.

State Sched. 6 Sched. 7 Sched. 8 Sched. 9
s6(5) = 2
s6(6) = 2
s6(7) = 1

s7(5) = 1
s7(6) = 2
s7(7) = 2

s8(5) = 1
s8(6) = 1
s8(7) = 2

s9(5) = 1
s9(6) = 3
s9(7) = 2

000 000 000 000 000
001 000 110 111 100
010 000 000 000 000
011 000 111 111 111
100 000 000 000 000
101 000 110 111 100
110 111 000 000 000
111 111 111 111 111

Table 7.3. Dynamics associated to F6,...,F9.
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N5 Dynamics
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N8 Dynamics
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Analogously to what was done for F , the computational experience showed that there
are twenty equivalence classes (i.e. twenty update digraphs) associated to G, but only
six different dynamics where found, each one of them with three fixed points: 0011,
0100 and 1000. Also appears a limit cycle [0000, 1100], but only in two of these six
different dynamics (one of them is the parallel equivalence class), which is coherent
with (Elena, 2009; Demongeot et al., 2010).

On the other hand, there are fourteen sequential equivalence classes which represent a
strongly connected component in HG. The smaller and bigger equivalence class of G
have one and twelve elements each one, respectively.

Finally, we can combine the attractors of G and F to determine the attractor of the
reduced Mendoza and Alvarez-Buylla network as in (Elena, 2009; Demongeot et al.,
2010).
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CHAPTER 8

Conclusions

Along this thesis we saw relationships between the feedback sets and the dynamics
of Boolean networks from two different points of view: the signed digraphs and the
update digraphs. Next, we will expose some conclusions of this work grouped in the
following sections.

8.1 Feedback sets and signed digraphs

We have made progress studying the complexity of feedback set problems, work begun
in (Montalva, 2006). We saw for the general case, that PFVS and NFVS problems
are NP-complete (also their versions with arcs, PFAS and NFAS). Unfortunately, this
complexity continues being kept when we add additional constraints in the structure
or in the same distribution of the signs, for example in special cases of applied interest
such as Kauffman or monotone networks. Nevertheless, under certain restrictions,
we could have separated the complexities of FVS, PFVS and NFVS, for example in
the families of complete digraphs, signed digraphs with at most k negative arcs and
cyclically reducible digraphs, observing that structural properties and sign distribution
can determine the complexity of these problems.

In particular, since the maximum number of fixed points of a REBN depends on a
minimum positive feedback vertex set (Aracena, 2001, 2008), we can think that if we
have such structural property or sign distribution that makes PFVS (or NFVS), for
example polynomial, then in a way, the dynamical properties of the network should be
simpler of study.
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8.2 Feedback sets and update digraphs

Here, we have developed the central part of this thesis. One of the important aspects
to remark is how the structural properties of the connection digraph of a network is
related to the feedback sets and the update digraphs associated to it.

More precisely, we have observed monotone increase and decrease properties of the
number of update digraphs and of the feedback arc sets associated to the connection
digraph when its number of cycles increase (Corollary 6.8, Theorem 6.5 and Proposition
6.5). That allows us to have a general idea about all the different dynamics, bounded
by the size of the set of feedback arc sets (Corollary 6.6 and Proposition 6.5).

On the other hand, it is easy to see that there is also a decreasing monotone property
in the average size of the equivalence classes associated with the connection digraph,
specifically, while more equivalence classes has the connection digraph, smaller is the
average size of these equivalence classes. In this case, we have given necessary and
sufficient conditions to ensure that the size of an equivalence class should have more
than one element as well as we have proved different results related with the itself
structure of the update schedules.

Furthermore, similarly to the precedent section, we have introduced new decision
problems related to the update digraphs such as DU and UAS problems. Beyond
of knowing their complexity, we have seen in a natural way that they are related with
problems type feedback, specifically with the FAS problem.

Was observed that the property of being update digraph is invariant under removal of
its arcs (Theorem 6.4) and allows us to understand better the update digraphs from
that with biggest number of arcs: the complete digraph. Moreover, we saw that the
maximum number of negative arcs in an update complete digraph is represented by an
acyclic tournament with all its arcs negative. Therefore, we have paid special attention
in these digraphs and how they are related to the update digraphs obtaining different
results of combinatorial type, using graph theory and giving algorithms for determining
the update digraphs as well as the update schedules associated to them.

Finally, we have studied relationships within the same update digraphs, through
of simply local transformations, in order to better understand the structure of the
multidigraph generated by these transformations. Thus, from the knowledge obtained,
different enumeration algorithms were developed for the update digraphs and their
associated update schedules.
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8.3 Open problems

In this section, we list some open problems which are basically of three different kinds:
complexity and algorithms, combinatorics and dynamics of REBNs.

1. To find more families of networks where the principal decision problems; PFVS,
NFVS, PFAS and NFAS could be polynomial.

2. To know for which values of k, PFVS-k would be NP-complete, since for the
extreme cases k = 1 and k = n was proven to be polynomial.

3. To prove the following conjecture:

Conjecture: Let G be a connected digraph with n > 1 vertices. Then, |[s]G| ≤
2 · Tn−1 for every update schedule s.

This conjecture has been established because we have seen that the update
digraph with the bigger equivalence class seems to be one with all its arcs positive
and with only one vertex pointing to all others n− 1 vertices (or having a single
vertex that is pointed by all others). Such digraph has 2 · Tn−1 update schedules
associated to it (see Fig. 8.1).

1

2

3

n

+

+

+ 1

2

3

n

+

+

+

Figura 8.1. Two update connected digraphs having equivalence classes associated of
size 2 · Tn−1.

4. Giving a digraph G, to study the structure of HG restricted to non-reduced
digraphs as well as the families of digraphs G having HG strongly connected.

5. Since we know the relationship between the positive feedback vertex set and the
number of fixed points of a network, it is interesting to study the influence of the
negative feedback vertex set on the dynamical properties of the network.

6. To develop efficient approximation algorithms for each of the recently studied
decision problems: PFVS, NFVS or their versions with arcs.

89



7. To study the number of update digraphs associated to digraphs which do not
contain tournaments as well as to characterize the size of its equivalence classes.

8. To study the relationships between update digraphs and signed digraphs. In
particular, to see how is related the positive and negative vertex set of a signed
digraph to the update digraphs.

9. To study decomposition of feedback sets for digraphs in terms of the positive and
negative feedback vertex sets of a signed digraph.

10. To analyze how the changes in the sign of a signed digraph are related to the size
of the positive and negative feedback arc sets.
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