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Motivations and contributions

Q: Why dynamic correlations?

A: several empirical studies about stock market behaviors (Longin and Solnik
(1995, 1996 and 2001)) show that the hypothesis of constant correlations is not
realistic.

Q: The literature on multivariate GARCH Model is huge, so why another
model?
A: because only a little of them deals with regime switching.

Q: What is the goal?
A: a better understanding of the global dynamic of the correlation by introducing
new tools in the Markov-switching framework.

Q: Contributions
A: Using specification from Graphical models theory, we present new regime-
switching specification for dynamic correlation models.
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Dynamic Conditional Correlation models

@ Brief History:

e conditional correlations model is originally presented by Bollerslev (1990)
e extensions to dynamic case suggested by Engle & Sheppard (2001) ans Tse & Tsui
(2002)

@ Basic Framework
o assume that the stochastic process r; with K elements is generated by:
rt|-7'-t—1 ~ »C(O,Ht)

with F;_; denotes the information set generated by past observations
e L is ap.d.f. with mean equal to zero and conditional variance H; follows :

H[ = D(R;Dt
with D; = diag(hi/tz, e h}(/’ tz), a diagonal matrix of the standard deviation
o standardized residuals are expressed as ¢, = D, lr, which lead to:
E,_i[e€l] = D 'H,D; ' = R,

@ Huge literature: this specification has given rise to many extensions.
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What is graphical models theory?

@ Definition:
o “Graphical models are a marriage between probability theory and graph theory.”
Michael 1. Jordan
e oriented acyclic graph where valuations are probabilities
@ Applications
e hanwritting recognition, source separation, genetics, robot localization, etc.
o recently introduced in finance with applications in algorithmic trading
@ Framework:
o one of the simplest Graphical Model: the Hidden Markov Model (HMM)

@ In a HMM, each observation y, is linked to state of a hidden Markov chain s; via a
probability

o Many extensions of HMM have emerged for modeling complex structures:

O O ©
(a) HMM. (b) FACTORIAL HMM. (c) HIDDEN MARKOV

DECISION TREE.

6/42



MODEL WITH HIERARCHICAL HMM MODEI TH FACTORIAL HMM ) ITH HMDT

e MODEL WITH HIERARCHICAL HMM
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IME SWITCHING FOR CORREL.

@ Regime switching DCC model:

@ Deterministic transition (STAR): STCC of Silvennoinen and Terésvirta (2005)
o Stochastic transition (Markov-switching): RSDC of Pelletier (2006)

@ How can we modeling multiple switches?

o the idea is to intruduce more flexibility in the swithing mechanic
o STCC becomes DSTCC by introducing another transition around the first one

@ Q: Is it possible to do this in a Markov-Switching setup?
A: Yes! with the Hierarchical Hidden Markov Model...

o build a tree-like structure to introduce sub-regimes...
o ... in order to increase the granularity of the regimes:

granularity
regime 2.2
e _[
regime 2.1
regime 1.2
regime 1 —[
regime 1.1

primaries reg. secondaries reg.

initial

regime

o ... and having a state hierarchy.
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HIERARCHICAL HMM

o first proposed by Fine and al. (1998) to generalize the HMM model

@ idea: build a stochastic process with several levels by adopting a tree structure
to obtain an interlacing of regimes
e How? by using different types of states:
e emitting states: produce observations
o internal states: abstract states for building hierarchy
e exiting states: allow to quit a level of the tree

@ Graphically: HMM vs Basic HHMM vs Complete HHMM

1
ay
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‘WHAT 1S A HHMM?

e Formally, a HHMM can be represented as the process {J, Q; }ien with :

o {Vi}ien is the process followed by the observations
o {Q:}ien is a homogeneous first order Markov chain.

@ Each state of a HHMM ¢ at level d belongs to the set Q = {S,Z, £} where:

o S is the set of emitting states
o 7 the set of internal states
o & the set of exiting states

@ The dynamic of the hidden structure is driven by three probabilities:

0 ¢l = P[q;j i l¢¢*1] vertical probability to leads from a child (ch(k) to its parent

pa(k)
o = IP’[q;ijr"ll |¢?] vertical probability to lead from a parent state to its child
o AY = (a(i,j)) : is the matrix of horizontal transition matrix

@ The transition matrix is stochastic if for each sub-model depending of parent k:
S oallij)+e =land > wf=1
JEch(k) i€ch(k)
where i,j € ch(k) are two states with parents k.
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[SToTeY To)

@ Recall our objective: capture thinner nuances in the dynamics of the regime

e we use a HHMM to increase the granularity of the regimes with a 2-levels tree:

2 2 2
Lt an 3 T

@ We have two type of regimes:
e primary regime, defined by emitting states i} and i%
o secondary regime, defined by s%, i=1,..,4
o the primaries regimes are then the result of a combination of the secondarie’s
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‘WHAT 1S A HHMM?

@ mechanic of the model:
o The pair of emitting states (s?,s3) and (s, s3) define sub-HMM

o The link between these sub-models is provided by the abstract states i { and i%
o Like Silvennoinen & Terdsvirta (2007), the correlation process is bounded by four
states of constant correlations over time.

@ Transition matrix
o for the two sub-models:

2 2 2
i [B ] wan =[5 ]
a3 dxp Ay Ay

and verified constraints:

+a +e a? +a +e =
1 d 3 3
{ ”%2+“§2+e%—1 o { 34+“§4+e% 1

1 1
Al = [“11 ”%1}
i Ay

a}l +a%2 =1 anda%1 +a52 =1

o for the first level:

which verifies:
° 7"1‘2 probabilities, i = 1, ..., 4 must verify:
a4 i =land7n? + 73 =1
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@ Estimation: Multi-step estimation (Engle & Sheppard (2001))

@ idea: convert HHMM into a HMM representation

o Xie’s method: build the transition matrix by successive layers
@ vertical transitions are given by:

D
Ty = Hﬂ'jd, q= 0,...,QD —1
d=1
o each layer represents a level of the hierarchy:
D
71‘1(11/7‘1) = He;/iﬂ';i : a(q/da qd)
i=d

@ aggregation of these probabilities leads to the so-called hypertransition matrix:
D

Ald ) =>"d(d 9

i=1

@ allow the use of classical filtration tools (Hamilton, Kim) for ML estimation

13/42



RODUCTIO 1 WITH HIERARC!

o]
PLICATIONS

TH FACTORIAL HMM MODEL WITH HMDT

o Estimate correlations between exchange rate data

Plotted series:

@ 4 X 946 observations over the period
1/10/81 to 28/6/85

@ week-days close exchange rates against
US dollar for Pound, Deutschmark, Yen
and Swiss-Franc

Pound N Deutschmark
3
1.5]
25
! 200 400 600 800 2 200 400 600 800
Yen Swiss Franc
25
250/
2
200 200 400 600 800 15 200 400 600 800

Legend for estimated correlations:
@ in blue: HRSDC
@ inred: TVDSTCC

Estimated correlations:

Deutschmark/Pound

350 700
‘Yen/Pound

LA B —

| Mﬂﬁﬁ'\n“,‘—\. .

350 700
Yen/Deutschmark

Swiss Fr./Pound

350 700
Swiss Fr./Deutschmark
=

g

350 700
Swiss Fr./Yen

350 700
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o

1 FACTORIAL HMM

H HMDT

TIONS

Smoothed probabilities:

@ The model clearly identify two primaries
regimes...

@ ..which are clearly a combination of two
sub-regimes

@ decomposition of regime 1 exhibits a very
punctual sub-regime 1.2

e correlation are equals to zero
o extreme but briefly

@ capture small elements of the dynamics

@ provide a better understanding of the
dynamics

Primaries regimes:

regime 1
1
n
350 700
regime 2
' Y

VL

Secondaries regimes:

regime 1.1

350 00

L/

350

945

regime 1.2
1
(0 0 700 5is
regime 2.1
1
UEWV\ / l A U
"ﬂ 350 945
regime 2.2

InA

LA L
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MOTIVATIONS

e Existing models

o Pelletier *06, Billio et al. ’05, Hass-Mittnik-Paolella 08 (HMPO08)
o Drawback: in these models the covariance/correlation matrix are assumed to have
the same switching date.

@ Objective: introducing individual switching dynamic conditions for each
element of the correlation matrix.

@ Starting from HMP *08 models
o Recall the specification:
O, Q aj by O1,1—1
S Bl S Il IS TS T o N HON I
On,: Qn an by ON,i—1

o does not require approximations

o most natural approach for multi-regime GARCH

e K covariance processes evolve independantly which make easier the identification of
low- and high-volatility periods.

@ Tool: we use Factorial HMM model to introduce individual switch for the
elements of the correlation matrix.
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HAT 1S A FHMM

@ Origine: introduced by Gharamani & Jordan (Machine Learning, 1997)

o generalized the HMM approach by representing the hidden state in a factored
form

o Each hidden state is factored into multiple hidden state variables evolving in
parallel.

@ Each chain has similar dynamics to a basic hidden Markov model.
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Specification: we start from HMP 08 with diagonal specification
o lets, = (s}, ...,sM) with s/ a first order Markov chain
o the conditional covariance process of the standardized residuals can be written
as:
Q15 = Cy, + Ay e—1€6,1A}, + B, Qi—1,,,B;,
with:
A, = diag(aX} 1432y ens am)
and similarly:
B, = diag(bs} b, bxy)

Stationnarity conditions:
@ ajgajg +bigbig < lwithm=1,...Mandi=1,..K

o C,, symetric and positive definite and the initial covariance matrix to be positive
definite.
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ESTIMATION

Equivalent HMM representation:
e any FHMM can be converted in a HMM

@ equivalent relationship:

M
Plstir = iy ooy St = i]S} = Jy ooyt = J] = HP[sﬁ_] =ils" =]

m=1

o Assuming the M Markov chains has N states, our model has M transition matrix
of size N X N.

@ HMM representation given by: T = ®f”:1 P!
@ our M chain with N transition can be represented by a HMM with a N¥ x N¥
transition matrix

Estimation with ML:
@ Multi-step estimation of Engle-Shephard

@ allow the use of classical filtration tools (Hamilton, Kim)
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®00

‘We apply our model on daily dataset with Canadian dollar, Yen and Pound against
the US dollar from march 1999 to july 2009 (2697 observations).

CAN'S
2
15 B
s i
05
03/99 08/02 01/06 07/09
YEN
140
120 B
1001~ =
8o 08/02 01/06 07/09
POUND
08

99 08/02 01/06 07/09
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Comparaison of two models

e diagonal DCC a-la HMP ’08 with two regimes:

qls, 42 93, alg, 0 0 , al, 0 0 7/
Qt,s, = 45y, q6s; | + 0 a2, 0 €—1€6_1 0 a2, 0 +
0

qTs, 0 0 a3 0 a3y,
bly, 0 0 bly, 0 0 77/
002 0 | Qujy | O b2 O
0 0 b3 0 0 b3

e our FHMM specification with three chains of two regimes:

aly 0 0 aly 0 0
°t t
A !
Q125 =0023+ | © 22 0 e gy | O 2 0| +
o ! 0 0 a3 0 0 a3
1 t
bly 0 0 biy 0 0’
1 t
0 g 010 aas | 0 P2 0
0 0 b33 it 0 0 b33
53 53
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HMP: variance targeting is not feasable and each Q; ;, needs 7 parameters

FHMM-DCC: 8 intercepts matrix to estimate with HMM representation.

@ hint.: estimate the constants of the two extrem cases (all covariances are in
regime 1, and all are in regime 2), and then construct the six other intercepts.

o Let - -
qls}:l qzstlzl,;%:l 3 sl=1,3=1
) — 5 6
Q 1 2=1,9=1 = Pa—y 4 2;1 =1
L 3=
e Exemple:
qls}:l ‘12.;}:1,.\,3:7 93,1 L=1,3=1
) — 5 6
Qs}:],s%:Z,s?:] - e Sr2=2 E 2 =2, ‘1
q7s’3:1

black elements are coming from the constants of the two extrem cases. red
elements corresponds to the additional elements needed to define the intercept
in that case.

@ and so on for the others...
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STIMATED CORRELATI

@ Number of parameters for the correlations:

o HMP: 28
o FHMM-DCC: 42

o Estimated correlations:

HMP FHMM-DCC

cans e

A WMWM Aok U i AMWWWMM Ao

MY

0
i

Z
=
£
<

FoUNDIYE vENFOUND

%Wm "W Y . g Ty
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Comparing Smoothed probabilities

e W

HMP:

FHMM-DCC:

cansyrey

IR

e e Wi

caxs/rouD

.
osh
I
o e W

POUNDYEN

Mrh

W o Wi
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MOTIVATIONS

o Contribution: this paper presents a tree-structured dynamic correlation model

o Existing litterature

o Audrino-Barine-Audresi "06: rolling window averaged conditional correlation
estimator based on tree-structured GARCH
o Audrino-Trojani *05: tree-based model in two step:

o conditional variance are extracted with tree-structured GARCH
@ conditional correlations computed from standardized residuals and based on a second
tree-structured dynamic

o Dellaportas-Vrontos *07: study volatility and co-volatility asymmetries using a
sequence of binary decisions rules to exhibit multivariate thresholds.

e commun feature of theses approaches:

o all based on the idea of binary tree
o Time series are recurcively partionned using binary decisions
o deterministic approach

@ Objective: we propose en extension of the DCC based on a stochastic decision
tree linking univariate volatility and correlations.
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MODEL WITH HMDT

O@000

@ Origin: Hidden Markov Decision Tree (HMDT) has been proposed by Jordan,
Ghahramani and Saul (1997)

o HMDT = Factorial HMM + Coupled HMM

Factorial HMM Coupled HMM

Ste1

D,

'\
oo

@
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o Finally, a HMDT looks like:

o factorial decomposition provides a factorised state space.
@ hierarchy is done via a coupling transition matrix

@ input x;—; is optional
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@ Objective: study the relationship between univariate volatility and correlation
with a tree containing two levels.
o the first level discriminates between low/high volatility
o the second level discriminates between low/high correlations
@ Hidden structure of the first level
o we partition the space of the univariate conditional variance in two subspaces, low

and high variance,
o the k" time serie has a 2 X 2 transition matrix:

3 3
PE = { i 17522}
ve 1=pi1 P

o individual transition matrix can be aggregate to constitute the first level of the

decision tree:
K
Pyol = ® Pi/ol
i=1
o all the dynamics of the K univariate volatilities containing 2 states with a single
transition matrix of size 2K x 2K,
@ Hidden structure of the second level
e we partition the space of the univariate conditional variance in two subspaces, low
and high correlations,
o the decision step is represented by a 2-by-2 transition matrix:

Pcor = |: pél‘lc licpgz]
1=y P
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@ Global partition of the space: the partition of the space is represented by a
2K+ 5 2KF! transition matrix P:

P =Py @ Peor

@ Coupling matrix: using Abstract Markov chain
o attribute a weight to the decision related to the correlation given the decision of the
univariate volatility
e transition probability given by:

_ | e l-ex

@ Specification for volatilities and correlations
o Specification for univariate volatility: Haas et al. *04

hy ¢ wi oy By hy—1
. . 2
= . + . Yo + . ©
h}\;,x wN aN By hN,;—l
@ stationnarity condition implies o, + B, < 1 foreachn =1,...,N

o Specification for the correlations: Haas at al. "08
Q1,1 Q) ay by Q1,1—1
= |+ e+ | |0
Qb},r Qy ay by QN,.t— 1

@ stationnarities conditions imply the intercept €2, to be a positive definite matrix and
ap + b, < 1forn=1,...N.
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o]

@ ML estimation in one step:

M\'—‘

T
Z Klog(2m) + log(|Hi|) + yiH; 'y:)

o Equivalent HMM representation:
e conversion in regular HMM given by:

Preg - (onl ® Pcor) © (Pcoupl ® (LL/))

with ¢ a vector of ones of length 2K+1.

e convert a the K-variate problem with K 4 2 Markov chains in a problem with a
2K+1 5 2K+1 transition matrix.

o allows the use of Hamilton’s filter:

é _ (ét\t—l O nr)
i 1/(ét|t71 ©nr)

with gt‘t-‘rl = Preg X £t\t
o and Kim’s filter.

Remark: remains a strong optimization problem
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‘We apply our model on bivariate dataset futures prices on 10 year treasury bonds and
the S&P 500 from september 1994 to february 2003 (2201 observations).

10-year bond futures

oz 10/96 11798 01/01

SKP 500

1400

1200

1000

800

600

09/94 10/96 11/98 01/01 02/03
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sle] lelelelele]

@ Number of parameters:

o first level needs 8 for each series; 12 for the correlations; 2 parameters for the
coupling matrix
o total=30 parameters

o regular HMM representation: an 8-by-8 transtion matrix

@ With two series, the decision process can be summerized as:

{hvaf}

|
| | | |

{hfl,aw hf’,sp} {h?,m hi,sp} {hf,Byhf,SP} {hi,By hisp}

(R} (R} {R'} R} (R} R} (R} R}

with BD=bond and SP=SP500.

34/42



ODUCTIO A TIERARCHICAL HMM MODEL WITH FACTORIAL HMM MODEL WITH HMDT
0080000

Estimated correlations:

Representative smoothed probabilities:

Fintese
.
o o T o o
i
i — '
osh
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APPLICATION

@ The model clearly identifies three combinations of regimes:
Qo {htz’ B htl’ sps R!'}: normal volatility for bond, low volatility for S&P500 and positive
correlations regime.
(2] {htz’ B htz’ sp» B! }: normal volatility for bond, high volatility for S&P500 and positive
correlations regime.
(5] {htz’ B hrl’ sps R?}: normal volatility for bond, low volatility for S&P500 and negative
correlations regime.

e Estimated coupling matrix:
B 0.2522  0.1371
ol = 10,7478 0.8629

@ result means that in general, volatility is associated with negative correlations.
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@ Deepening of the relationship between first and second level:

e we extend the later specification by introducing a specific relation for all the
possible case a the first level.

@ graphical representation:

{hh Rt}

|
| | | |

{hil,Bﬁ h:‘.SP} {hil,Bﬁ hn{,SP} {hi,Bﬁ hi‘,SP} {hi,Bﬂ hi,SP}

Pl PZ P3 P4

R} R} (R} R} (R} R} (R} R}
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Estimated correlations:

S \
|
' I RAl |1 7
l\‘ I 1
iy
Representative smoothed probabilities:
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APPLICATION

o Comparing to the previous specification, the introduction of specific coupling
matrix increases the explanatory power of the model. Estimation of the model
exhibits six cases.

@ Strong probability of having positive correlation when:

e bond and S&P500 are in low volatility regime
o bond has low volatility and S&P500 has high volatility

@ Negative correlations:

e appears to be associated with a high volatility of the bond
e more significant when the S&P500 is in low volatility regime
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@ Our contributions are at the interface between graphical models and dynamic
correlations models

@ special case of RSDC increasing granularity of the regime, based on Hierarchical
HMM

© Markov-switching DCC where each elements of the correlation matrix have their
own switching dynamic, based on the Factorial HMM

@ Stochastic decision tree to study linkages between unvariate volatility and
conditional correlations, based on the Hidden Markov Decision Tree

@ Our results show that:

o classical Markov-switching seems to be sometimes too rigid
e introducing more flexibility shows new patterns in the dynamic of the correlations

@ Directions for further research:

e asymptotic theory
o develop more complex specifications
e improve estimation methods of these models
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