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Chapter 1

Introduction

The exceptional properties of synchrotron light sources have been and increasingly are
exploited in very different disciplines, from archaeology to chemistry, from material
science to biology, from medicine to physics. Among these properties it is important
to mention the high brilliance, continuum spectrum, high degree of polarization, time
structure, small source size and divergence of the beam, the last resulting in a high
transversal coherence of the produced radiation.

This high transversal coherence of the synchrotron sources has permitted the develop-
ment of new techniques [1], e.g. phase contrast imaging [2, 3], X-ray photon correlation
spectroscopy[4, 5] and coherent X-ray diffraction imaging (CXDI) [6, 7].

The importance of X-ray coherence is striking if considering that the words coherence
or coherent appear approximately 200 times in the so-called “ESRF Science and Tech-
nology Programme - 2008 - 2017”1, where the future challenges and necessary upgrades
of the ESRF are presented.

Therefore, it is of primary importance for many applications that the optical elements
preserve this property, disturbing as little as possible the wavefront. At the same time
it is fundamental to have methods able to characterize the coherence of the radiation.
Many different methods to characterize the coherence of hard X-rays have been inves-
tigated and they make use of, e.g. a wedge-shaped silicon crystal and measuring the
visibility of the Pendellösung fringes, [8], a Fresnel biprism composed of two diamonds
[9], a round fiber or slits [10], a system of double slits [11], a double pinhole [12] or a

1available at http://www.esrf.eu/AboutUs/Upgrade/documentation/purple-book/
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1. INTRODUCTION

Material Be C* Si Ge
Atomic Number 4 6 14 32
Absorption coefficient µ at 8 KeV [cm−1] 1.8 7.5 141 402
Conductivity, κ at 297 K [W cm−1 K−1)] 1.93 23 1.5 0.64
Expansion Coefficient, α at 297 K [10−6 K−1] 7.7 1.1 2.4 5.6
Figure of merit, κ

µα at 297 K [KW] 140 2780 4.4 2.8

Table 1.1: Figures of merit for different material for X-ray optics [17]

double-grating interferometer [13]. We have been using two other methods, one based
on the partial Talbot effect, [14] and another based on a system of bi-lenses [15].
With the new fourth generation sources, e.g. the X-ray free-electron lasers (XFEL),
the coherence of the beam will be pushed even further since the radiation produced
will be transversally almost fully coherent, reaching a degree of transverse coherence of
95%, [16]. At the same time, the heat-load on the optical elements will also increase
considerably, especially for machines such as the European XFEL. Different solutions
are proposed to overcome the heat-load problem at the E-XFEL. One is to use mirror
optics which will allow to de-focus the beam and to have an enlarged footprint on the
monochromator, therefore reducing the heat load. Another solution, in the case when
beam expansion is not possible or not desirable, is to use diamond crystals.
In fact, among all the outstanding properties that diamond exhibits, three in particular
make this material ideal for use as optical elements in light sources such as synchrotrons
and X-ray free-electron lasers (XFEL):

• thermal conductivity at room temperature (23 Wcm−1K−1);

• low expansion coefficient at room temperature 1.1× 10−6 K−1;

• low linear absorption coefficient for X-rays (7.5 cm−1 at 8 keV);

The combination of these three properties is summarized in a figure of merit, obtained
dividing the conductivity by the absorption and expansion coefficients. In tab.1.1 are
compared the thermal properties of the most used materials for X-ray optical elements,
showing that diamond is by orders of magnitudes the best material.
There are three principal issues that could impede the success of diamond as X-ray op-
tical elements: the crystal perfection, the size and the processing technologies. Natural
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diamonds are not suitable for two reasons: they possess a higher number of defects
and greater strain due to the complicated growth process inside the Earth; and the
cost is also prohibitive, since they are mostly used in jewellery. In contrast, synthetic
diamonds seem to have the necessary characteristics.
Recently, two more possible applications of diamond crystals have been reported. The
first is to use diamonds as element in an X-ray free-electron laser oscillators (XFELO)
[18], by using high X-ray reflectivity of diamonds. The second is to use a diamond
crystal between two undulators for generating highly monochromatic X-rays through
the so-called self-seeding effect, [19].
My thesis work will consist essentially of three parts:

• characterization of high quality crystals foreseen as X-ray optical elements, in
particular those made out of diamond;

• study of the temperature dependent behavior of the domain in periodically poled
ferroelectrics crystals, which are possible only thanks to the coherence of the
beam

• diamond related results, obtained in the framework of external collaborations

More specifically, in chapter 2, I will introduce the necessary theoretical basis of syn-
chrotron radiation generation, some notions of the kinematical and dynamical theories
of X-ray diffraction and an introduction to the formalism describing coherence.
The experimental techniques used will be presented in chapter 3: high resolution X-
ray diffraction, X-ray diffraction topography, grazing incidence diffraction and X-ray
reflectivity.
In chapter 4, I will show the results obtained with diamond crystals of different crys-
talline quality using the characterization techniques presented.
Chapter 5 will be dedicated to the results obtained from polishing tests of high quality
silicon crystals and beryllium windows.
In chapter 6 I will present an example of applications that make use of the transversal
coherence of a synchrotron beam: the investigation by coherent X-ray section topogra-
phy of ferroelectric domain behaviour as a function of temperature in periodically-poled
Rb:KTP.

3



1. INTRODUCTION

Chapter 7 will be a short introduction to studies which are not directly related with
the main topic of my thesis but that have in common diamond as the material and
X-ray topography as the characterization technique used.
Finally, in chapter 8 I will draw conclusions and comment on the outlook for the future.

4



Chapter 2

Theoretical basis

In this chapter, I introduce the theoretical basis necessary to understand the experimen-
tal techniques used and the data obtained in the rest of the thesis. Firstly, some of the
properties of synchrotron radiation are presented, together with a historical overview.
Afterwards, the fundamentals of kinematical and dynamical theories of X-rays diffrac-
tion are summarized. Finally, the necessary formalism to describe the phenomenon of
coherence is introduced.

2.1 Synchrotron radiation

2.1.1 Short historical overview on synchrotron radiation

Synchrotron radiation is an electromagnetic wave generated by the acceleration of rel-
ativistic charged particles (moving at relativistic velocity) on curved trajectories in
magnetic fields. An historical review of synchrotron radiation is available in [20]. I
present here the more important events.

In 1898, Alfred Liénard published a paper in‘L’Éclairage Électrique’ entitled ‘Champ

électrique et magnétique produit par une charge électrique concentrée en un point et

animée d’un mouvement quelconque’ where he derived, directly from Maxwell’s equa-
tions, the so-called Liénard-Wiechert potentials. By using this potential, Liénard was
able to calculate the energy lost by electrons moving in a circular trajectory in a ho-
mogeneous magnetic field. This theory can be considered the basis of synchrotron
radiation, which was experimentally discovered about 50 years later.

5



2. THEORETICAL BASIS

The first observation, fig.2.1, of radiation emitted by relativistic charged particles, took
place on the 24th April 1947, at the General Electric Research Laboratory, where a 70
MeV electron synchrotron was in use [21]; the radiation was thus called synchrotron
radiation. The bright spot visible in the picture (visible thanks to a transparent vacuum
chamber and a mirror) was bluish-white when the energy of the electrons was 70 MeV,
and changed to yellow at 40 MeV, red and weaker at 30 MeV and disappeared below 20
MeV. This phenomenon is related to the fact that the critical energy of the radiation
is proportional to the energy of the electron beam.

Figure 2.1: The General Electric 70 MeV synchrotron; the synchrotron radiation light is
indicated by the arrow.

Initially, this radiation, produced by the bending magnets (magnetic dipoles), was a
nuisance for high energy physicists, because it limits the maximum energy achievable by
the accelerated particles, especially for light particles such as electrons and positrons.
In fact, the first synchrotrons were designed exclusively for particle physics. Starting
from the 1970’s, a parasitic use of the synchrotron radiation began; those were the
so-called first generation sources, e.g. SURF - USA, Frascati - Italy, INS - Japan,
DESY - Germany, ACO - France.
The first storage ring designed for using synchrotron radiation, second generation
source, was the Synchrotron Radiation Source in Daresbury - UK, followed by oth-
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2.1 Synchrotron radiation

ers (NSLS - USA, Photon Factory - Japan, BESSY - Germany, LURE - France).
The next step, that brought the synchrotron community towards the third generation
machine, was the idea of adding, in the straight sections of the ring, so-called Insertion
Devices (ID). Inside the insertion devices, the electrons (or positrons) follow a peri-
odic undulating trajectory in the magnetic field produced by a number of permanent
magnets with alternating pole directions. This results in emitted beams much more
intense than that from a single magnetic dipole. The European Synchrotron Radiation
Facility, France, with its 6.04 GeV storage ring, was the first third-generation high en-
ergy synchrotron in the world (1994), quickly followed by the 7 GeV Advanced Photon
Source, USA in 1996, the 8 GeV Spring8 in Japan in 1997 and only recently (2009) by
Petra III, Germany with an energy of 6 GeV. These synchrotrons are, up to now, the
four high energy synchrotron radiation sources in the world.
The next step is the fourth generation sources: these are light sources which exceed
the performance of third generation synchrotrons by at least one order of magnitude
in an important parameter such as brightness, coherence or pulse duration [22].There
are three general categories [23]:

Storage Ring Based [24], where very low emittance is achieved in a much bigger
circumference and by increasing considerably the number of bending magnets
[25]. The newest PETRA III synchrotron sits between the old third generation
sources and the new fourth generation.

Energy Recovery Linac ERL which is also based on obtaining an electron beam
with a very small emittance. This is achieved by having the electrons circulating
only once into a transport loop where the different undulators for the production
of X-rays are installed. In order to accelerate the electrons, a linear accelerator is
used. The main problem with this scheme is the large amount of energy needed
to accelerate the electrons, that are then damped after one circuit of the ring.
This difficulty has been overcome by the concept of energy recovery. After one
circuit, the electrons enter the linac again, but this time out of phase with the RF
cavities. In this way the electrons are decelerated by the linac and they return
most of their energy to the cavities themselves [26]. At the moment there are two
main projects to build ERL for light sources: one is at Cornell University, USA
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2. THEORETICAL BASIS

and the other is at the High Energy Accelerator Research Organization KEK,
Japan.

X-ray Free Electron Laser XFEL which can be considered in a simplistic way as
a very long undulator, [27]. The photons produced inside this undulator will
interact with the electrons themselves. This organizes the electrons inside the
bunches into microbunches, that are periodically separated by a period length
equal to the undulator fundamental harmonic. The bunched electrons produce
coherent radiation. This effect is called Self-Amplified Spontaneous-Emission and
is at the basis of X-ray lasing. The first such machine, the Linear Coherent Light
Source, (LCLS), was inaugurated in 2009 in Stanford, USA, using part of the
already existing linear accelerator. The next will be the Spring-8 Compact SASE
Source, Japan in 2011, followed by the European-XFEL, Germany in 2015.

2.1.2 Synchrotron radiation properties

Some of the main properties of synchrotron radiation at a third generation light source
are briefly described here. First of all, three quantities that are important for charac-
terizing and comparing different synchrotron sources are introduced: flux, brightness
and brilliance, [28].
Flux is defined as the number of photons per second in 0.1% of the spectral bandwidth.
The brightness is the flux over the emission angle. The brilliance is the brightness
divided by the source area. As a formula:

brilliance = # photons
[s] [mrad2] [mm2] [0.1% bandwidth]

(2.1)

In order to have a very high brilliance, it is therefore important to have a very high flux,
very well collimated, coming from a small source. All these properties are achieved at
third generation synchrotrons.
The high flux derives directly from the total power radiated by an accelerated relativistic
particle on a circular path:

P = 2
3
e2c

R2 β
4γ4 (2.2)

where R is the radius of the circular path, e the charge of the electron, c the speed of
light, β is the ratio between the speed of the particle and the speed of light and γ is the

8



2.1 Synchrotron radiation

Lorentz factor. It increases for high speed particles (therefore, high energy synchrotron)
and for small radii of curvature. Remembering that γ = E

m0c2
, it is possible to see that

the emitted power strongly decreases with the mass of the particle. This is the reason
why only electrons and positrons are used in synchrotron light sources.

The high collimation of the photon beam is the result of the Lorentz transformation
of the power emitted by accelerated relativistic particles. In the frame of the moving
electron, the power distribution is the same as the pattern of an oscillating electric
dipole. In the laboratory frame, the intensity distribution is transformed into a forward-
peaked distribution, with semi-opening angle ≈ 1

γ , fig.2.2.

90°

detector

electron
frame 

laboratory
frame 

Figure 2.2: The effect of relativity on the angular distribution of the emitted beam.

The source size of the photon beam is given by the convolution of the sizes (σx,y)
and divergences (σ′x,y) of the electron beam with the intrinsic radiation characteristics
of a single particle. The emittance (defined as the product of size and divergence
of the electron beam) is therefore an important parameter. In a synchrotron, the
horizontal emittance is larger than the vertical emittance. This is due to larger betatron
oscillations in the plane of the ring. These oscillations are caused by the fact that the
electrons, by emitting photons, lose a part of their energy, therefore changing the orbit
radius. The energy lost by the electrons is recovered in the Radio Frequency (RF)

9



2. THEORETICAL BASIS

cavities. The vertical emittance is produced by the small inaccuracy in the magnetic
fields or alignment of the magnetic quadrupoles.
The emittance of a beam is proportional to the square of the energy of the stored
electrons and to the third power of the bending angle (in the approximation of small
bending angles), [29]. This has important consequences, e.g. for the new light source
Petra III. The storage ring used is bigger than any existing one, with a circumference of
2304m. Therefore the bending angles are much smaller and consequently the emittance
is smaller, ≈ 1 [nm rad] compared to the 3 − 3.9 [nm rad] values for Spring8 and the
ESRF.
Moreover, the small source size and the possibility of having long source-to-sample
distances play a major role also in another important property of third generation
synchrotrons: i.e. the high degree of transversal coherence. This point will be discussed
later in the chapter, 2.3.
As previously mentioned, the main characteristic of third generation synchrotron is the
presence of insertion devices in the straight sections. This results in an increase in the
brilliance of the radiation produced compared to that from a bending magnet.
The idea of using insertion devices in order to increase the brightness comes from
theoretical work by Ginzburg in 1947, [30] and Motz in 1951, [31]. In 1953 Motz
and co-workers verified this idea experimentally , building an undulator that produced
radiation with a wavelength varying from millimeters to hundreds of nm using a linear
accelerator at Stanford University. The idea was to make the electron oscillate rapidly
in the orbit plane using an array of permanent magnets. This device was inserted in the
straight section of the Chasman-Green cell and for that reason they are called Insertion
Devices (ID).
Two different types of ID are used: wigglers and undulators. In a wiggler, the amplitude
of the oscillations is rather large and the cones of the emitted radiation do not superpose.
Therefore, the intensities of the radiation fields are added incoherently. This results in
an increased photon flux by a factor 2N, where N is the number of magnetic dipoles. If
the oscillations are small enough, then it is possible to add the radiation fields emitted
by the electron coherently: this is the case for an undulator. To define what is meant
by “small enough”, a dimensionless parameter is used:

K = eB0λu
2πmc
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2.1 Synchrotron radiation

where λu is the spatial period of the oscillations and B0 is the maximum magnetic field.
For a wiggler K � 1, whilst K ≈ 1 for an undulator.

Figure 2.3: The different types of radiation in synchrotron facilities: a) bending magnet;
b) wiggler; c) undulator

The radiation emitted by an undulator is more collimated in the horizontal direction,
with an aperture that is 1/(γ

√
N), fig.2.3. Another important undulator characteristic

is the fact that the interference produced by adding coherently the electromagnetic
fields gives a “quasi-monochromatic” wave (also called pink beam) and the presence of
higher harmonics. This is just the opposite of what happens with a wiggler, where
the incoherent sum gives a broad spectrum or white beam. There is no sharp border
between these two devices. Depending on parameters there is a continuous transition
between those limiting cases.
The very high brilliance is one of the main properties of synchrotron radiation. Just as

11



2. THEORETICAL BASIS

a term of comparison, the brilliance of an X-ray tube is about 10 orders of magnitude
smaller than the brilliance for an undulator at the ESRF. Other important properties
of the radiation produced at third generation sources are the high degree of polarization
(σ-polarized in the plane of the orbit, slightly elliptical out of it), and the pulsed struc-
ture, allowing e.g. stroboscopic studies of acoustic vibrations in LiNbO3 piezoelectric
crystals, [32].

2.2 X-ray diffraction

The first X-ray diffraction experiment was performed in 1912 by Friedrich, Knipping
and Laue [33]. The idea that the X-ray would be diffracted by a crystal came to Laue
during a meeting he had with Ewald [34], whose thesis subject was “To find the optical
properties of an anisotropic arrangement of isotropic resonators”. During this meeting
von Laue asked Ewald: “what is the distance between such resonators”. Ewald’s answer
was: “about one thousandth of the wavelength of light”. From previous work done by
Sommerfeld, the wavelength of the radiation was also supposed to be of that order
of magnitude and Laue immediately realized that, if crystals were made of a periodic
array of atoms, they should diffract 1.

Two main theories exist in order to explain the diffraction of the X-ray by a crystal:
the kinematical and the dynamical theories of X-ray diffraction.

2.2.1 Kinematical theory of X-ray diffraction

The basis of the kinematical theory was given in the first paper written after the
discovery of diffraction, [33]. It states that the amplitude diffracted by the crystal is
simply the sum of the amplitudes of the waves diffracted by each atom, considering
the phase shifts due to the different optical paths but neglecting the interaction of the
incident wave with the crystal itself and is equivalent to the first Born approximation
in scattering theory. This means that the amplitude of the incident wave is constant
inside the crystal, which is a clear violation of the conservation of energy. Therefore

1the history of Laue’s discovery of X-ray diffraction by crystals is available from the International
Union of Crystallography website, at the following address www.iucr.org/__data/assets/pdf_file/
0010/721/chap4.pdf
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2.2 X-ray diffraction

the kinematical theory is valid only as an approximation; the relevant approximations
will be shown later.
Following Authier and Malgrange [35], we describe a crystal as a three dimensional,
infinite, periodical array of electron densities ρ0(r) multiplied by a shape function y(r),
that takes into account the finite size of the crystal (y(r) = 1 inside and 0 outside the
crystal). The amplitude of the diffracted wave is:

A(∆K) =
∫ ∞
−∞

ρ0(r)y(r)e−2πi∆K·r dτ (2.3)

where ∆K is the diffraction vector defined as the difference between the incoming and
diffracted wavevectors 1, ∆K = Kh −Ko. The integration is over all space and dτ is
a volume element. The amplitude A(∆K) can be considered as the Fourier transform
of the electron density distribution. By defining the structure factor as:

Fh =
∫ ∞
−∞

ρ0(r)e2πih·r dτ (2.4)

with h being the reciprocal lattice vector, we can rewrite the amplitude as:

A(∆K) = 1
V

∑
h

FhY (∆K − h) (2.5)

where V is the volume of the unit cell, Y (∆K − h) is the Fourier transform of the
shape of the crystal and the summation is over all the reciprocal lattice vectors h. It
is important to notice that Y (∆K − h) is proportional to the volume of the crystal
itself, i.e. for larger and larger crystals the diffracted amplitude will diverge. This is, of
course, not possible since it violates the conservation of energy. The kinematical theory
is therefore only a first order approximation, valid for thin crystals. In order to define
what is thin, it is necessary to introduce a more general theory, i.e. the dynamical
diffraction theory.

2.2.2 Dynamical theory of X-ray diffraction by a perfect crystal

The main purpose of this section it is not to give a full description of dynamical theory;
many excellent books, e.g. [36, 37], and papers, e.g. [38], are already available on the
matter. The idea is simply to introduce a few concepts that will be used in the rest of

1I follow the crystallographic definition of wavevector k = 1
λ

, omitting the factor 2π
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2. THEORETICAL BASIS

the thesis. There are three different classical approaches to the dynamical diffraction
theory for perfect crystals (not taking into consideration the more general quantum field
theoretical approach). The first is the one proposed by C. G. Darwin [39]. His theory
assumes that at every lattice plane, two waves are generated: a partially transmitted
wave S and a partially reflected wave T , similarly to the optics of classical light at plane
interfaces. It is possible to express this by writing the following recurrent formulae [37]

Sn = iqTn + (1− iq0)e−iφSn+1 (2.6a)

Tn+1e
iφ = (1− iq0)Tn − iq̄e−iφSn+1 (2.6b)

where:

q = Ndhklλre|Fhkl|
sin θB

φ = dhkl
λ

with N is the number of scattering unit per unit volume, dhkl is the interplanar spacing
of the lattice plane with Miller index hkl, λ the wavelength, re the classical electron
radius, Fhkl the structure factor, θB is the Bragg angle; q0 and q̄ follow the same
expression as q but replacing Fhkl with F000 and Fh̄h̄h̄, respectively.
The second theory was proposed by P.P. Ewald [40]. In his theory, Ewald, had a
microscopic approach: he supposed that the crystalline lattice is formed of a three-
dimensional array of electric dipoles. When excited by an external electromagnetic
field, each dipole radiates a spherical wave. These spherical waves radiated by each
dipole will also excite the other dipoles, producing what Ewald called a wavelet. He
then used Hertz vector potentials to describe the electromagnetic field inside the crystal.
I will not enter into details of this formulation.
The third and most commonly used formulation was made by M. von Laue [41]. Laue
used a macroscopic approach based on Maxwell’s equations in a medium with a periodic
dielectric constant. This is the theory followed by Batterman and Cole [38] and part of
the formulation I will use follows from this paper. Ewald’s and Laue’s theories have been
proved to be equivalent if the same physical model is chosen for the electromagnetic
resonators, i.e. point dipoles or atoms [42].
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2.2 X-ray diffraction

The problem, as stated by Laue, is to solve Maxwell’s equations in a medium with a
periodic dielectric constant. The dielectric susceptibility in such a medium is defined
as

χ(r) = 1− reλ
2

πV

∑
h

Fhe
−2πih·r. (2.8)

Fh are the complex and wavelength dependent structure factors, defined as:

Fh =
∑
n

(f + ∆f ′ + i∆f ′′)n e2πih·rn (2.9)

where f is the atomic scattering factor, ∆f ′ and ∆f ′′ are the Hönl corrections to the
atomic scattering factor and are necessary to include the effects of anomalous dispersion,
rn is the position of atom n and the summation is over all atoms in the unit cell.
In order to solve Maxwell’s equations, we use as Ansatz for the electric and magnetic
fields a sum of triply periodic plane waves (Bloch waves):

A = e2πik0·r
∑
h

Ahe
2πih·r ≡

∑
h

Ahe
2πikh·r (2.10)

where A can be one of the four fields (E, D, B or H). The two definitions are equivalent
if we consider that kh = ko + h, but they give two explicit views:

• sum of plane waves with periodically modulated amplitude

• wavefield of infinite plane waves with different wavevectors kh

By solving Maxwell’s equation with this Ansatz, we obtain for the electric field E

K2Em − k2
mEm[⊥km]

K2 +
∑
n

Pmnχm−nEn = 0 (2.11)

that is a homogeneous system of equations of infinite order. The m and n are two
reciprocal lattice points, km are the wavevectors in the crystal, K is the wavector in
the vacuum, Em[⊥km] is the component of Em perpendicular to km and Pmn is the
amplitude polarization factor defined as the scalar product of the polarization unit
vector em and en.
The system of infinite equations has non-trivial solutions if and only if the determinant
is equal to zero. It is possible to make some qualitative considerations in order reduce
the number of equations to a finite number:

15



2. THEORETICAL BASIS

• the second part of the system of equations is approximately constant (due to the
conservation of energy)

• Em[⊥km] is, to a good approximation, equal to Em

• if K2 ≈ k2
m then this implies that Em is large

With these simple considerations, it appears clear that only waves with wavevectors
(reciprocal space points) that end close to the Ewald sphere are strong waves.
In the case of X-rays with not too high energies and/or not for crystals with large
cell parameters like protein crystals, the radius of the sphere is quite small and by
consequence often only two lattice points are close to the Ewald sphere. In this case,
the system of equations becomes of order two, and the indices m and n take the value
o (for the direct beam direction) and h (for the diffracted beam)


[K2(1 + χo)− k2

o ]Eo +K2P ohχh̄Eh = 0

K2P ohχhEo + [K2(1 + χo)− k2
h]Eh = 0

(2.12)

where P oh is the polarization factor and is equal to 1 for electric vectors perpendicular
to the plane of incidence (σ polarization) and cos 2θB for electric vectors parallel to the
plane of incidence (π polarization). Imposing the condition that the determinant needs
to be equal to zero to obtain non-trivial solutions, we obtain the dispersion relation

(k2 − k2
o)(k2 − k2

h) = K4(P oh)2χhχh̄ (2.13)

where k = K2(1+χ0) is the average wavevector in the material. The solution of 2.13 is
a complex surface in reciprocal space. A section of the real part of this complex surface
is shown in fig.2.4, plotted in red. The points o and h are reciprocal lattice points,
and the vector h is the reciprocal lattice vector. In all the dispersion surface drawings
I will consider only the σ polarization, being the synchrotron radiation σ polarized in
the plane of the orbit.
The considerations so far apply to an infinitely extended crystal. For a finite crystal
we have to apply boundary conditions for the wavevectors and for the amplitudes. For
the wavevectors, the continuity of the tangential components is required; the boundary
condition for the amplitudes will be discussed later on, sec.2.2.2.3.
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2.2 X-ray diffraction

The continuity of the tangential components of the wavevectors can be graphically rep-
resented by plotting on the dispersion surface fig.2.4 the vector normal to the surface
of the crystal ne passing through the excitation point M, which is the common extrem-
ity of the incident and diffracted wavevectors in vacuum. This vector intersects the
dispersion surface at four points, called tiepoints which are indicated by A1 to A4 in
fig.2.4. The intersections of the circles with radius K (wavevector in the vacuum) and
k (average wavevector in the medium) are called Laue (La) and Lorentz (Lo) points
respectively.

h o

La

Lo

K
k

A1

A2

A3

A4

ne

M

h

ne

Ko

Kh

kh

ko

Kh

Ko

Ko

Figure 2.4: Section of the real part of three dimensional complex dispersion surface for
the two beam case and one polarisation. M is the excitation point, A1 to A4 are the
tiepoints. In the inset: direct space representation.

The only wavefields that may be strong are the whose tie points are close to the Lorentz
point. It is possible to make an approximation, i.e. to ignore all the terms above the
second order in 2.13. These approximations are valid except for “extreme diffraction
conditions” (grazing incidence, grazing exit diffraction, or Bragg angle close to 90◦).
With this approximation, the dispersion relation can be written as

ξoξh = 1
4K

2(P oh)2χhχh̄ (2.14)
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2. THEORETICAL BASIS

where ξo and ξh are (k−ko) and (k−kh), respectively. This is a second order equation,
and, in terms of the dispersion surface plotted in fig.2.4, is equivalent to considering
only the tiepoints A1 and A2, i.e. the solutions close to the Laue and Lorentz points.
Fig.2.5, shows a close-up of this region. Due to the fact that the radius of the circles
(spheres) is large compared to the difference between the wavectors in vacuum and
the average wave vectors in the material, it is possible to approximate them with
straight lines (planes), indicated with Th and To for the sphere of radius k. We can
see that, in the two-beam case, each tiepoint corresponds to a wavefield, composed of
two plane waves, one with wave vectors directed towards h and the other towards o.
The dispersion surface consists of two branches: the one closer to the Laue point (the
crossing point of the two spheres of radius the wavevector in the vacuum K) is often
called the α branch, while the other, further from the Laue point is called the β branch.

La

Lo

A1

A2

ξo
(1)

2θB

towards otowards h

½Kχ0 α

βkh
(α)

ko
(β)

ko
(α)

kh
(β)

ξh
(1)

ξh
(2)

ξo
(2)

To

Th

ne

MM’

A’1

A’2

ne

Kh

h

Kod

Ko

Ψh Ψo

Figure 2.5: Zoom of the region around the Laue and Lorentz point, Laue case

These wavefields are coherent because they were all produced by one incoming plane
wave. They will interfere inside the crystal producing two different interference effects.
The first one is produced by wavevectors that have the same tiepoints but different
directions. This interference will produces a standing wave field whose periodicity is

18



2.2 X-ray diffraction

the lattice plane distance, when the Bragg condition within the crystal is fulfilled. De-
pending on the branch of the tiepoint, the maxima of the standing wave field are either
between or on the lattice planes. This leads to large differences in the photoelectric
absorption and results in the so-called anomalous absorption, discovered by Borrmann
in 1941 [43] (therefore it is also called Borrmann effect) and explained by Laue in 1949,
[44] and by the same Borrmann in 1950, [45].
The second interference effect is produced by wavefields with the same direction but
different tiepoint. Since the relative length differences between the wavectors are small
(≈ |χo|K ≈ 10−5104µm−1), the beating frequency Λ of the interference field is of the
order of tens of µm. This effect is called Pendellösung effect. The maximum value of
Λ corresponds to the case that the surface normal passes through the Lorentz point,
shown in fig.2.5 with the dashed arrow passing through M’ (since in this case the length
differences will be the smallest). This value is called Pendellösung distance Λ0 and is
defined as

Λ0 = λ
√
γo|γh|

P
√
χhχh̄

(2.15)

γh and γo are the cosines of the angles Ψh and Ψo (see the inset in fig.2.5) defined
between the normal to the surface and the diffracted and incident wavevectors respec-
tively. It is possible to show that γh and γo are equal to

γo = sin(α+ ϑB) γh = sin(α− ϑB) (2.16)

where α is the angle between the diffracting lattice planes and the surface of the crystal
and is called asymmetric angle. It is equal to zero for symmetric Bragg case and 90◦

for the symmetric Laue case.
The Pendellösung distance Λ0 is also used to distinguish the range of applicability of
the kinematical theory of diffraction by introducing the parameter A = πt/Λ0, where t
is the thickness of the crystal. The approximations used in the kinematical theory hold
in the case A� 1, i.e. thin crystal.

2.2.2.1 Bragg and Laue cases

In the coplanar diffraction one distinguishes between two main scattering geometries:
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2. THEORETICAL BASIS

the Bragg case (or reflection geometry), where the diffracted beam exits from
the entrance surface;

the Laue case (or transmission geometry), where the diffracted beam is directed
towards the inside of the crystal and it exits from the opposite surface.
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Figure 2.6: of the region around the Laue (La) and Lorentz (Lo) points, Bragg case.

By comparing fig.2.5 and fig.2.6 it is evident that one of the main difference between
the two geometries is that, in the Bragg case, only wavefields with tiepoints on the same
branch of the dispersion surface are excited at a particular angular position, while in
the Laue case the excited wavefields have their tie-points on both dispersion surfaces.
One of the consequences of this is that, for the Bragg case, there is a range of excitation
points such that there is no intersection of the normal to the surface with any of the
real part of the dispersion surfaces. This implies an imaginary solution resulting in an
interference total reflection range. The width of the total reflection range is

wh =
2|P |√χhχh̄

sin 2θB

√
|γh|
γo

(2.17)
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2.2 X-ray diffraction

a) Laue b) Bragg

Figure 2.7: Areas of influence in the Laue and Bragg geometries, symmetrical cases.

and its real part is often called the Darwin width. Another consequence of the different
geometries is the different area of influence [46], see fig.2.7. An X-ray beam from a
point (or line) source impinges on the crystal. The intensity which is diffracted outside
the crystal is influenced by every point inside the area shown in red. In the Laue case,
this is the whole Borrmann triangle. In the Bragg case the situation is slightly more
complicated; the area is in good approximation determined by the penetration depth
(in the direction perpendicular to the surface) and by the width of the first maximum
of the influence function of diffraction (in the parallel direction).
The penetration depth is the depth at which the intensity inside the crystal falls to 1/e
of the incoming intensity. In Bragg diffraction, this is a function of ∆θ (the difference
between the angle of incidence and the Bragg angle) and is plotted in fig.2.8 for a Si 111
symmetric reflection, E= 14.413 keV. For angles far away from the interference total
reflection range, the penetration depth tends asymptotically towards tabs

tabs = 2
µ0
(

1
γ0

+ 1
γh

) (2.18)

which is controlled only by the linear absorption coefficient µ0 and by the geometry.
In the region of interference total reflection, the absorption is dominated by extinction.
In the middle of this region, it assumes the smallest value, and is equal to

text = <Λ0
2π (2.19)
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where Λ0 is the Pendellösung length defined in 2.15 (in the Bragg case it is also called
extinction distance).
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Figure 2.8: Penetration depth ze in a Si111 crystal at 14.413 keV in a symmetric reflection
geometry. The dashed horizontal line shows the penetration depth due to absorption, the
vertical one the position of the kinematic Bragg angle. In the Bragg range the penetration
depth is dominated by extinction.

As a result of anomalous transmission, the curve is asymmetric. The absorption is larger
in the higher angle region than in the lower angle region. Even though the experiments
carried out by Borrmann were in transmission geometry the physics behind them is the
same in the reflection case. The lower angle side of the curve is produced by wavefields
that belong to the α branch of the dispersion surface, whilst the higher angle side are
created by the β branch and which undergo anomalous absorption.

2.2.2.2 Asymmetric reflections

From formula 2.17, it is possible to see that one of the possible ways to act on the width
of the reflection is to change the ratio between the direction cosines. The asymmetry
factor b is defined as as

b = γh
γo

(2.20)
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2.2 X-ray diffraction

By comparing the insets in fig.2.5 and fig.2.6 it is possible to see that γo is always
positive whereas γh is positive in the Laue case but is negative in the Bragg case. In
the case of the symmetric reflections, the value of b is either +1 or -1. Consider now
an asymmetric Bragg case in grazing incidence, i.e. the angle between the incoming
beam and the surface is smaller than the angle between the diffracted beam and the
surface (the inverse result would be obtained for a grazing exit case).
The dispersion surface for such a geometry is shown in fig.2.9. In the case of a divergent
monochromatic wave with divergence wo, the diffracted wave will have a divergence of
wh. The relationship between the two divergences will simply be:

wh = bwo (2.21)

The Liouville theorem tells us that phase space is conserved. Therefore, if we consider
the incoming beam to have a finite size Lo, then the size of the diffracted beam must
be such that woLo = whLh which implies that Lh = Lo
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interference total 
reflection

ne
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ko

Figure 2.9: Section of the real part of a three dimensional complex dispersion surface for
the two beam case, asymmetric reflection. In the bottom right, a sketch of an asymmetric
reflection in real space.
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This property of asymmetric reflections is very important and will be used in the rest
of the thesis, e.g. to reduce the angular instrumental function at ID18, 3.1 or to obtain
X-ray topographs in the quasi-plane wave approximation 4.2.2. Nevertheless, equation
2.21 is an approximation valid only for monochromatic waves. In the real case of
polychromatic radiation there is an additional term to be considered. ∆θout is defined
as the divergence of the diffracted beam and ∆θin as the divergence of the incoming
beam. The relation between the two is given by the following formula:

∆θout ≈
γo
γh

∆θin + ∆λ
λ

(
1− γ2

h

) 1
2 −

(
1− γ2

o

) 1
2

γh
(2.22)

From this formula and from the definition of the direction cosines 2.16 it is possible
to see that, in the case of polychromatic radiation, there is always an increase of the
divergence due to the contribution of the second term in the equation, except in the
symmetric Bragg case where this term is zero.
This also has an important consequence for coherence-preservation optics. With only
one crystal, the only way not to increase the divergence of the beam, and therefore not
to diminish the coherence of it, is by using symmetric Bragg reflections. With any other
geometry, it is necessary to use more than one crystal in a non-dispersive configuration
in order not to spoil the coherence of the beam.
Concerning the penetration depth in the case of asymmetric reflections, there will be
two different asymptotes for the lower and higher angle sides of fig.2.8. For example,
for grazing incidence geometry, the penetration depth will be smaller at lower incidence
angles and greater at higher incident angles, and vice-versa for grazing exit.

2.2.2.3 Reflectivity curves in Bragg case

The boundary conditions for the wavectors allow fixing the possible wavefields excited
by the incoming beam. By introducing the boundary conditions for the electric fields it
is possible to determine the absolute values of the intensities of the diffracted and trans-
mitted waves, and not only their ratios. The reflectivity curve of a crystal is defined as
the ratio between the incident and the diffracted beam intensities. We will discuss only
the Bragg case, since this is the geometry we used in the High Resolution Diffraction
(see 4.2.1). For a plane and parallel crystal plate the boundary conditions at the two
surfaces are the continuity of the tangential component of the electric field. Since the
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2.2 X-ray diffraction

index of refraction is very close to 1, it is possible to approximate the continuity of the
tangential component with the continuity of the electric field vector itself. By imposing
these boundary conditions it is possible to obtain the formula for the reflectivity curve,
which is presented in the Zachariasen [36] (see also [47] for the complete derivation in
the Laue case), but also in a slightly more compact form in [48]:

Rh(∆θ) = (2.23)
|b|P 2|χh|2(sin2 (av) + sinh2 (aw))

Q+ U sinh2 (aw)− V sin2 (av) + 1
2
√
U2 − |q|2 sinh |2aw|+ 1

2
√
V 2 − |q|2 sin |2av|

with
z = 1− b

2 χ0 + b sin(2θB)∆θ q = bχhχh̄ v + iw =
√
q + z2

a = πk0
t0
γ0

Q = |q + z2| U = Q+ |z|2 V = Q− |z|2

where t0 is the crystal thickness.
This formula is valid for any thickness of the sample. It is possible to obtain a simplified
formulation by considering a semi-infinite crystal. By following [38, 49], we introduce
the normalized angular coordinate η:

η =
−b∆θ sin(2θB)− 1

2χ0(1− b)
|P oh|

√
|b|√χhχh̄

(2.24)

The term normalized angular coordinate come from the fact that, for these coordinates,
the region of interference total reflection goes from -1 to +1.
∆θ0 is the complex refraction correction. This is the difference between the Bragg angle
calculated with the kinematical theory and the middle of the reflection range and is
defined by

∆θ0 = − χ0(1− b)
2 sin(2θB) (2.25)

Only in the Laue symmetric case (b=1) the refraction correction is zero.
In a semi-infinite crystal the wavefields which propagate inside the crystal are absorbed
before reaching the exit surface. In this approximation it is possible to neglect one
wavefield and to obtain a simplified formula for the reflectivity curve

Rh = |b|
∣∣∣∣∣χhχh̄

∣∣∣∣∣
∣∣∣∣η ±√(η2 − 1)

∣∣∣∣2 (2.26)
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where the signs are chosen in such a way that Rh → 0 for η →∞. With this formulation
it is very easy to understand what is happening to the reflectivity as a function of the
normalized angular coordinate: for |η| < 1 the reflectivity curve, in the case of zero
absorption, is exactly equal to one whilst |η| > 1 it decays to zero (for |η| � 1 it decays
as 1

η2 .
In fig.2.10 are presented examples of reflectivity curves for semi-infinite crystals in the
case of zero absorption and in a “real” case, that is the 111 reflection of silicon at 14.413
keV.
Fig.2.11 shows a comparison between the reflectivity curves obtained using the general
formula 2.24 and the approximated one for semi-infinite crystals, 2.26.
It is possible to see that increasing the thickness results in two effects: an increase in
the period of the oscillations and a decrease of their amplitudes. In this particular case,
for thicknesses larger than 500µm, the calculations obtained using the two formulations
are almost equivalent, with discrepancies that are of the order of 3×10−4. Therefore, in
the case of “thick” samples, i.e. the silicon crystals described in this thesis, the simpler
formulation has been preferred whilst for the low absorbing diamonds the more general
formulation has been used.
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Figure 2.10: Comparison between reflectivity curves with and without absorption. The
case with absorption is a Si 111 reflection at 14.413 keV. The x-scale on the bottom is the
normalized coordinate range η whilst the one on the top is the angular deviation from the
Bragg angle, ∆θ.

Si 111 � 14.413 keV - thickness 20 Μm

Si 111 � 14.413 keV - thickness 100 Μm

Si 111 � 14.413 keV - thickness 500 Μm

"Thick" Si 111 � 14.413 keV
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Figure 2.11: Reflectivity curves of various thicknesses calculated using equation 2.24
(red, blue, green) compared to the one for semi-infinite crystals, 2.26 (black).
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2. THEORETICAL BASIS

2.3 Coherence

The notion of coherence is widespread in many areas of physics, from optics to quantum
mechanics, from neutron to X-ray scattering [50]. I will briefly introduce here the main
concepts of coherence of light. A light source is said to be coherent if it has the
possibility of forming interference fringes. This is possible if the phase difference of
the electromagnetic field between all pairs of points inside a region is constant with
time. In the case of perfectly coherent light, this region extends to the entire space. For
partially coherent light, it has finite size. It is common to define two different coherence
lengths that determine this region: the longitudinal and transverse coherence lengths,
fig.2.12.

λ1

λ2

LL

λ

Δλ

λ1 λ2

aLT

L

S

Sample

a) b)

Figure 2.12: a) the longitudinal coherence, related to the bandwidth of the source; b)
the transverse coherence, related to the angular source size of the source.

The longitudinal coherence length (also called temporal coherence length) is related
to the non-monochromaticity of the source. Every source produces wave trains whose
length is finite. This is equivalent (via Fourier transform) to saying that every source
produces radiation which has a certain spectral bandwidth. The longitudinal coherence
is defined as:

ll = λ2

∆λ (2.27)
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2.3 Coherence

It is possible to measure the longitudinal coherence length by using, for example, a
Michelson interferometer. If the optical path length between the two rays is equal to
or larger than the transverse coherence length, no interference is recorded.
The transverse coherence length (also called spatial coherence length) is related to the
fact that the source size has a finite extension is space. The transverse coherence length
is defined as:

lt = λL

S
(2.28)

where L is the distance from the source and S is the source size. The effect of an
extended source size is that, in a Young’s double slit experiment, if the distance between
the slits is equal to or larger than the longitudinal coherence length, no interference is
recorded.
The coherence of light can also be treated, in a more general way, as the study of
the randomness of the light through a more statistical approach. See [51] for a more
complete description. It is possible to define the mutual coherence function as:

Γ12(τ) =< V1(t+ τ)V ∗2 (t) > (2.29)

where V1 and V2 represent the electromagnetic field at positions P1 and P2, respectively,
and τ is the time delay at which the correlation between the fields is calculated. If the
two points coincide we obtain Γ11(τ), that is the self-correlation function; if the delay
τ is set to zero, Γ11(0) is simply the intensity I0. The normalized version of the mutual
coherence function is the complex degree of coherence, which is defined as:

γ12(τ) = Γ12(τ)√
I1I2

(2.30)

The quantity γ12(τ) has values between zero and one. If it is equal to zero (or one),
the radiation is incoherent (or coherent). For all other values, the radiation is partially
coherent. If we assume the light to be quasi-monochromatic, i.e. the spectral bandwidth
is small compared to the frequency of the radiation, we find that the visibility of the
fringes is proportional to the complex degree of coherence. In the case I1 = I2, the
visibility is equal to the complex degree of coherence. This is an important conclusion,
which is used to determine the degree of spatial coherence of an X-ray beam after an
optical element, by using either the Talbot effect [14] or an interferometer based on
refractive bi-lenses [15].
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2. THEORETICAL BASIS

The wavefront can be perturbed by imperfections in the optical elements. For example,
low quality beryllium windows [52] create speckles that deteriorate the wavefront [53].
Wang et. al. [54] simulated the effect of roughness in beryllium window and measured
a decrease of the spatial coherence for rms values above 0.15 µm. The requirements on
the roughness become more stringent in the case of a mirror; due to the grazing angle
of incidence, the maximum acceptable roughness is of the order of 0.15 Å.
In the case of monochromator crystals, vibrations can cause an increase of the vir-
tual source size. As an example, this has been measured by Diaz et al. [13] using a
double-grating interferometer and comparing a channel-cut monochromator with a dou-
ble crystal monochromator. The results showed that vibrations of the double crystal
monochromator results in an increased effective source size.
In our analysis we decided to work with a simpler approach to coherence in diffraction,
and we always separate the transverse and longitudinal coherence lengths. A more
complete approach on the preservation of the coherence in diffraction was done by
Yamazaki and Ishikawa [55]. It requires solving the linear time-dependent Takagi-
Taupin equations the result obtained is that the temporal coherence and the spatial
coherence of the beam mix in X-ray diffraction and that the coherence is modified in
the direction of the diffraction vector.

30



Chapter 3

Experimental techniques

In this chapter I will present the X-ray experimental techniques used to characterize the
different samples, basing myself especially on books written by the following authors:
Bowen and Tanner [56], Authier, [37], Als-Nielsen and McMorrow [57], Daillant and
Gibaud [58] and Holý, Pietsch and Baumbach [59]. Each technique has different char-
acteristics, such as sensitivity to bulk and/or near-surface defects, local or integrated
information, strain sensitivity etc. Therefore, the combined use of complementary tech-
niques is very useful and results in a deeper understanding of the crystal quality.

3.1 High Resolution X-ray Diffractometry

3.1.1 Introduction

High Resolution X-ray Diffractometry (HRXRD) includes the measurement of rocking
curves of a sample, i.e. the ratio of the diffracted and the incident intensities as a
function of the angular deviation of the sample from the Bragg angle. The term high
resolution is referred to the condition of having a small resolution area in the reciprocal
space, i.e. a small divergence of the beam and a small spectral width. HRXRD is one
of the standard methods of characterizing the quality of crystals. It is widely applied,
for example, to the study of epitaxial structures of compound semiconductors, where
performances of the devices are strongly correlated with the quality of the epilayers,
e.g. GaAs and AlAs/GaAs on silicon [60] or AlxGa1−xN/AlN/GaN [61]. It has been
demonstrated that in the case of large mismatch between the different layers it is
possible to resolve the presence of a single buried monolayer [62].
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3. EXPERIMENTAL TECHNIQUES

In our case, we used HRXRD to characterize the quality of crystals foreseen for use as
X-ray optical elements. We assume that the presence of defects in the crystals (or on
their surfaces) gives rise to a broadening of the rocking curve. This broadening may
be well below an arc second. We had two different situations. In the first we wanted
to study the quality of the surface of silicon crystals after different surface treatments
whilst in the second we were interested in the contributions to the rocking curve from
bulk and surface defects in synthetic diamonds.
In the first case, we used an X-ray tube with a simple double crystal configuration
using an asymmetrically cut silicon monochromator (to obtain a good collimation) was
enough to obtain the desired resolution. The obtained results will be shown in chapter
5.
For the second condition, due to the impossibility of having a perfect reference diamond
crystal to be used as monochromator, an extraordinary effort was made to reduce the
instrumental function as much as possible, both in angular and in wavelength spread.
This has been achieved by using the Inelastic Scattering beamline ID18, 3.1. The energy
of the X-ray beam was 14.413 keV, which corresponds to the 57Fe nuclear resonance
transition.

Si (111)

Si (111)
CRL

Si (111)

diamond (400)

ID18

detector
Si (0 0 4)

Si (0 0 4)Si (10 6 4)

Si (10 6 4)

|b| ≈ -1/16.6

slits

Figure 3.1: ID18 experimental configuration used for High Resolution X-ray Diffractom-
etry.

We assume the experimental rocking curve of a high quality single crystal to be the
result of the convolution of three curves, see fig.3.2: the reflectivity curve defined in
2.2.2.3, the instrumental broadening/apparatus function, which takes into account all
contributions from the optical elements that condition the beam impinging on the
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3.1 High Resolution X-ray Diffractometry

sample and the broadening due to defects, which is the effect produced by the presence
of bulk and surface defects. Thanks to the very high monocromaticity of the beam
delivered at ID18 (∆λ

λ ≈ 10−7), we can concentrate only on the angular convolutions,
ignoring the wavelength spread.

reflectivity curve
(theoretical)

apparatus
function

rocking curve 
(experimental data)
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broadening 
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=

Figure 3.2: Pictorial example of a rocking curve assumed to be the convolution of three
distinct curves: the reflectivity curve, apparatus function and a function describing in an
integral way the broadening due to defects. Experimental data were obtained on a high
quality IIa HPHT crystal, 400 reflection, E=14.413 keV.

Therefore, in order to be able to isolate the function describing the broadening due to
defects, it is necessary to determine the apparatus function with high precision.

3.1.2 Determination of apparatus function.

It is possible to describe the effect of the instrumental broadening with a convolution
integral:

e(t) =
∫ −∞
∞

f(τ)i(t− τ)dτ def= (f ∗ i)(t) (3.1)

The function f(t) represents the theoretical function one is attempting to measure;
the function e(t) is the measured curve, that is a weighted average by the function
i(t) of the true curve f(t). The instrumental broadening can be either calculated or
measured experimentally. We decided to follow both methods and to compare the
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3. EXPERIMENTAL TECHNIQUES

results obtained. The calculation of the instrumental broadening has been made by
using a program written by Franco Cembali, an external collaborator. This program
calculates the instrumental broadening by taking into account all the optical elements
present at the beamline (slits, monochromators, Compound Refractive Lenses - CRL).
In fig.3.3 the calculations of the angular instrumental function after each crystal are
plotted.

Angular instrumental function after each crystal

1st crystal

2nd crystal3rd crystal

4th crystal

5th crystal
6th crystal

7th crystal-2

0

2Θ @"D

0.0

0.5

1.0

R @a.u.D

Figure 3.3: The angular instrumentation function calculated after each crystal of the
configuration shown in 3.1.

The curve obtained (corresponding to the curve after the 7th crystal in figure 3.3) has
a FWHM of 0.037 arc seconds. It is important to highlight the fact that this estimation
is done without taking into consideration any imperfection in the system. It is therefore
to be considered as a theoretical lower limit of the real instrumental function.
In order to measure experimentally the apparatus function it would be necessary to
sample the incoming beam with a δ-shaped curve, obtaining in response the instrumen-
tal function itself, as it is possible to see from 3.1 and from fig.3.2. This is of course
impossible, but it is possible to approach the situation. Firstly, one has to use a crystal
(analyser) the perfection of which is such that we can ignore the broadening due to
defects. Secondly, by measuring the incoming beam with different reflections with de-
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3.1 High Resolution X-ray Diffractometry

creasing Darwin widths of that “perfect” sample, in our case of silicon, it is possible to
approach step by step a δ function. The analysis for this experimental determination of
the instrumental function has been developed in two independent ways: in the first, the
instrumental broadening has been modelled by a curve with free parameters and fitted;
in the second, direct deconvolution algorithms have been used. One of the most serious
problems in both methods has been simply the fact that the instrumental broadening
by the optical system installed at the beamline ID18 is indeed very small, thanks to
its high beam collimation and energy resolution. To extract tiny broadenings from a
series of measured rocking curves is quite a complicated task.

3.1.2.1 Model and fit approach

The instrumental function has been described by the sum of a Gaussian and a Lorentzian
function (similar to a pseudo Voigt, often used in the description of the diffraction peak
shape, for example by Ida et al. [63]):

app(∆θ) = AL
2
π

ω2

4 ∆θ2 + ω2 +AG
1√
2πσ

e−
∆θ2
2σ2 (3.2)

where AL and ω are the area and the FWHM of the Lorenztian, respectively, and AG,
σ are the area and standard deviation, respectively, of the Gaussian.
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Fraunhofer 40 Μm
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Si 555

Figure 3.4: Comparison of the Si 555 reflectivity curve, E=14.413 keV, with the Fraun-
hofer diffraction from rectangular slits opened respectively 200 µm and 40 µm.
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3. EXPERIMENTAL TECHNIQUES

The code was written in Mathematica [64] and uses the Global Optimization 6.0 pack-
age (Loehle Enterprises, Naperville, IL, USA) to minimize the difference between ex-
perimental data and the convolution of the instrumental function with the theoretical
reflectivity. Due to the large number of convolution integrals required in this proce-
dure, the code is quite slow and has problems in dealing with curves with more than
≈ 250 points. The first result we obtained during the analysis of the data was the
dependence of the apparatus function on the size of the vertical slits. The Fraunhofer
diffraction from the slits becomes important in such a high resolution experiment of
sub-arcseconds distortions, fig.3.4.

The first attempt to solve this problem was to include the Fraunhofer diffraction from
the slits as an additional broadening of the theoretical reflectivity curve. The results
were not satisfactory, above all for slits opened less than 100 µm. We supposed that
other effects (such as diffuse scattering, small angle scattering or not ideal shape profile
of the slits) dominate for narrow apertures. Since these effects are more complicated
to simulate, we decided to include the diffraction from the slits into the apparatus
function. So we worked with three different apparatus functions for the three slits size
used: 700 µm, 200 µm and 40 µm.

Another problem was that different sets of parameters may give similar goodnesses of
fit. An example of this is visible in fig.3.5; three fitting functions, shown in fig.3.5.b)
(together with the respective parameters), fit equally well the experimental data col-
lected, fig.3.5.a) (the inset shows a zoom in the region indicated). This problem was
solved by comparing the results obtained for the different fit parameters with a broader
scan (in this case ±25 arc seconds), fig.3.5.c),d) and e) which could not be analyzed
directly due to the limit on the maximum number of points the fitting code accepts.
In this particular case, the best solution is the one shown in fig.3.5.e), corresponding
to the blue fit parameters.

Finally, a series of instrumental broadening functions was obtained for the different
reflections used, namely 111, 333, 444 and 555 symmetric Bragg reflections. By ex-
trapolating the results obtained towards a “zero-width curve”, e.g. for the 200 µm slits
size 3.6, we obtained the final three instrumental broadening functions for the different
vertical slits sizes used during the experiment, shown in fig.3.7.
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3.1 High Resolution X-ray Diffractometry
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Figure 3.6: Extrapolation of the instrumental broadening towards a “zero width” curve,
slits size 200 µm. The points represent the values of the FWHMs for the instrumental
broadening corresponding to the different reflections (111, 333, 444 and 555).
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Figure 3.7: Plot of the final apparatus functions obtained for the three different vertical
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20%, 2%).
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3.1 High Resolution X-ray Diffractometry

3.1.2.2 Direct deconvolution methods

A problem with every deconvolution algorithm is that, in general, equation 3.1 need not
have any solution at all [65]. In fact, the presence of statistical noise in the experimen-
tal data makes the equation irreversible, and the deconvolution becomes an ill-posed
problem. To overcome this problem approximations are always necessary. I wrote a
code using Mathematica that uses two different algorithms: the Burger-Van Cittert
algorithm, [66] and the Richardson-Lucy algorithm, [67, 68], in order to deconvolve the
instrumental broadening. The theory of the two methods, together with some results
and limitations, are presented in Appendix A.

3.1.2.3 Comparison of the results obtained.

In fig.3.8 the results obtained with all the different methods and for a slits size of 200 µm
are presented. This is also the slits size that gave the best results when analyzing the

Si333 Van Cittert

Si444 Van Cittert

Si555 Van Cittert

Fit model

Direct calculation

Si333 Richardson-Lucy

Si444 Richardson-Lucy

Si555 Richardson-Lucy
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Figure 3.8: Comparison of the instrumental broadening functions obtained with the
different methods.

diamond crystal. The reason for this is simply because for the wider slits the footprint
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3. EXPERIMENTAL TECHNIQUES

on the sample was ≈ 1.5 mm for the 400 reflection and ≈ 3.4 mm for the 111 reflection,
therefore measuring at the same time the high and low quality regions of the crystal.
For the narrower slits, the Fraunhofer diffraction from the slits covers the “broadening
due to defects” effects we are interested in measuring.
As discussed previously, the direct calculation of the instrumental broadening is the
narrowest curve, giving a theoretical lower limits in the case no imperfections are present
in the system. The results obtained with the Van Cittert deconvolution algorithm
depend strongly on the different theoretical reflections, i.e. a much wider curve is
obtained when deconvolving the Si 333 rocking curve respect to the one obtained from
the Si 555. This effect is not present in the results obtained using the Richardson-Lucy
algorithm, where the apparatus functions obtained are not influenced by the width of
the reflectivity curve. Finally, the results obtained with the model-and-fit approach
compare well with the direct deconvolution result, and therefore are the ones used for
the rest of the analysis.
Recently we performed a last experiment in order to obtain an even more accurate
estimation of the apparatus function. This was done by using a different energy (23.880
keV, corresponding to the nuclear resonance of 119Sn) in order to be able to excite
even higher order reflection, 777, 888 and 999 together with the quasi-forbidden 222
reflection. The idea behind the experiment was the same of the previous one, i.e
approaching a δ-shaped function in order to be able to record only the instrumental
broadening function. The FWHM for the allowed reflections, 777, 888 and 999 are
respectively 0.063”, 0.062” and 0.033” whilst for the 222 forbidden reflection I obtained
a value of 0.025” by using the experimentally determined structure factor by Alkire et
al. [69] of 1.456. Fig.3.9 shows the comparison of the experimental data obtained with
the different reflections together with the apparatus function obtained for a slits size of
200 µm. This graph demonstrates that, even though the theoretical curves are narrower
and narrower, the experimental rocking curve is almost constant, i.e. we are directly
measuring the apparatus function. Moreover the agreement between the experimental
data and the apparatus function determined previously is very good, considering that
the experimental conditions for the two cases were not the same.
To conclude, we are confident that the apparatus function determination is accurate
and will allow a correct estimation of the the broadening due to defects for the diamond
samples.
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3. EXPERIMENTAL TECHNIQUES

3.2 X-ray topography

X-ray topography is an imaging technique based on diffraction and described by the
dynamical diffraction theory. It is used in the characterization of crystal defects and
macroscopic deformations. The first topographic experiments were made in reflection
geometry by Berg in 1931 [70] and Barrett in 1945 [71] and in transmission geometry by
Ramachandran in 1944, [72], (who also was the first to use the name topography for this
technique). Bond and Andrus [73] were the first to use a double crystal configuration
followed by Lang [74], when for the first time individual dislocations became visible in
X-ray topographs. It must be remarked that the name is somewhat misleading, because
it suggests this technique to be surface sensitive (the Greek origin of the name is in fact
topo-, “place”, and graphia, “writing”, and is often used to represent surfaces shapes
and features), whereas it is often used to probe the bulk of a crystal. In fact, it is the
topography of the crystal lattice planes that is examined. An alternative name for the
technique is X-ray diffraction imaging.
A spatially extended X-ray beam, impinging on the crystal is diffracted and the diffracted
beam/beams is/are recorded on a two dimensional detector (e.g. a photographic film
or a CCD camera) giving a 2D image/images of the crystal.
Different X-ray topography techniques have been developed. It is possible to classify
them depending on three basic elements [75]: 1) the source geometry and character-
isitics, together with the eventual optical elements (slits, other crystals, etc...); 2) the
sample properties and geometry, e.g. transmission or reflection; 3) the detector, to-
gether with possible optical elements. We can define:

Limited beam techniques: the size of the incoming beam is reduced in order to
avoid the overlap of too many Borrman triangles (see 2.7) generated at the en-
trance surface of the crystal. As a rule of thumb the beam needs to be much
narrower than the base of the Borrmann triangle, e.g. in the symmetrical Laue
case, is equal to 2t sin(θB), where t is the thickness of the crystal. Typical values
of 10 to 20 µm are used. The beam can be limited either in one or two direc-
tions, obtaining respectively section and pin-hole topographs. An advantage of
these techniques is, in the case of section topography, the possibility of spatially
separating on the detector intensities arising from different depths in the crystal.
Moreover, a section topograph of a low absorbing perfect crystal will show Kato
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3.2 X-ray topography

fringes, [76] produced by the interference between the wavefields created from the
two different branches of the dispersion surface. This is a manifestation of the
Pendellösung effect explained in section 2.2.2 in the case of incoming spherical
waves. The fringes are very sensitive to lattice distortion, as shown e.g. by Patel
[77] in the study of oxygen precipitation in silicon. In the framework of this thesis,
section topography was the technique used for the visualization of ferroelectric
domains in chapter 6.

Extended beam techniques: the size of the incoming beam is larger than in the
limited beam techniques. At a synchrotron the distance from the source to sam-
ple can be large, the size of the beam (especially at wiggler or bending magnet
beamlines) can go up to few cm, e.g. at ID19 or BM05. In the laboratory, the
size of the beam is small; one way to obviate this problem has been found by
Lang, [78]. A narrow beam (typically of the order of 100-250 µm) impinges on
the sample, which can translate synchronously with the detector. In this way,
the image of the entire crystal can be recorded. This method is called Lang or
traverse topography. The characterization of high quality crystals was done using
extended beam techniques at different beamlines, (see chapters 4.2.2 and 5).

Integrated wave techniques the angular source size is larger than the width of the
reflectivity curve of the crystal, defined in 2.17 and/or the energy bandwidth
of the incident beam is larger than the Darwin width defined in energy scale,
wλh = λwh cot θB. Concerning the angular source size, in a laboratory source it
is in general bigger than the angular acceptance of the crystal; at a synchrotron
beamline, it could be smaller than the crystal acceptance e.g. at ID19 the diver-
gence of the beam is ≈ 0.05 arc seconds. Regarding monochromaticity, in both
laboratory and synchrotron configurations, it is possible to be in integrated wave
conditions. Examples of integrated wave techniques are Lang topography, white
beam topography, and in some cases, monochromatic beam topography.

Monochromatic plane wave techniques: contrary to integrated wave conditions,
the angular source size and the energy bandwidth are smaller than the reflectivity
curve width in angular and energy space respectively. Special effort is needed
to obtain these conditions, but the strain sensitivity achieved is much higher
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3. EXPERIMENTAL TECHNIQUES

compared to integrated wave techniques. Moreover, the quantitative analysis
of monochromatic plane wave topographs is easier than for the integrated wave
techniques.

After defining the different types of techniques, the sources of inhomogeneities in the im-
ages is now discussed. Defects inside the crystal produce long range strain fields which
distort the perfect lattice structure. This leads to local differences in the diffracted in-
tensity and consequently to “contrast” in the image at the detector. Following Baruchel
and Härtwig [79] it is possible to distinguish three types of contrast:

Structure factor contrast due to differences in the phase or modulus of the structure
factor. This contrast is fundamental to the visualization of ferroelectric domains
in chapter 6;

Orientation contrast arises when different parts of the crystal are misoriented with
respect to one another. If the misorientation in a given part is larger than the
beam angular source size (or the equivalent wavelength spread is larger than the
bandwidth of the incident beam), then the misoriented part will not satisfy the
Bragg condition and will not diffract, and a loss of intensity is registered by the
detector (fig.3.10a). If the wavelength spread of the incident beam is sufficiently
large (e.g. white beam), then all misoriented parts will diffract, because there
will always be a wavelength to fulfil the Bragg condition in the misoriented part.
Consequently, differently oriented parts of the crystal will diffract in different
directions. Thus, the images of these different crystal regions (e.g. different
grains) may separate or overlap, if the sample to detector distance is large enough,
leading to local losses or gains of intensity (fig.3.10b). This type of contrast can
occur also around lattice defects like dislocations, as shown by Dudley et al. [80].

Extinction contrast is produced by the local variations of the scattering power, e.g.
around a defect. In order to interpret this contrast it is necessary to use the dy-
namical diffraction theory for deformed crystal. The parameter that describes the
effect of the distortion of the lattice on diffraction is the effective misorientation
δθ:

δθ(~r) = θ(~r)− ϑperfect
B = − λ

sin 2ϑB
∂(~h · ~u(~r))

∂sh
(3.3)
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3.2 X-ray topography

loss loss gain

a) b)

Figure 3.10: Misorientation contrast. a) the misorientation in the middle part is larger
than beam divergence and/or equivalent wavelength spread b) the misorientation is smaller
than beam divergence and/or equivalent wavelength spread

where ~h is the undistorted reciprocal lattice vector, ~u(~r) is the displacement field
vector and ∂/∂sh is the differentiation along the diffracted beam direction. It is
the angular departure of the locally deformed part of the crystal from the Bragg
angle of the reference perfect lattice. It is also possible to rewrite the effective
misorientation as a function of the local variation in lattice parameter ∆d/d and
of the rotation of the lattice planes ∆ϕ as:

δθ = ∆d
d

tanϑB + (nt · ng)∆ϕ (3.4)

where nt and ng are the unit vectors normal to the incidence plane and parallel to
the defect misorientation axis, respectively. This equation permits the derivation
of a powerful tool for characterizing defects, the contrast extinction rule. A defect
whose displacement vector field is perpendicular to the diffraction vector gives no
contrast on the image. It is possible to define three different types of images
produced by the extinction contrast in the case of integrated wave (see fig.3.11):

• the direct image, consisting of additional intensity that originates from re-
gions with an effective misorientation larger than the Darwin width of the
perfect crystal, 2.17. It is visible under the conditions of integrated wave
(or section topography) and low absorption (µ0t . 2). It arises from the
kinematical diffraction of the X-rays that are outside the wavelength range
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3. EXPERIMENTAL TECHNIQUES

(∆λ/λ = cot θBwh) participating in the dynamical diffraction in the perfect
crystal.

• the dynamical image, consisting of dips in the intensity. This is due to the
disruption of the transmission created by the defect (it can be imaged as a
shadow produced by the defect). This contrast is the predominant in case
of high absorption (µ0t & 6), since the direct image is completely absorbed.

• the intermediate image, produced by the interference between the wavefields
existing in the crystal and a new wavefield created by interbranch scattering
in the region of the defect itself. This interference produces an oscillatory
contrast. This contrast is visible only in the case of low and intermediate
absorption (µ0t . 6).

defect

di
i

dy

Figure 3.11: Extinction contrast: formation of the three types of image around a defect:
(di) direct, (i) intermediate and (dy) dynamical images.

All the topography experiments in this thesis were carried out at synchrotron radiation
sources. The properties of synchrotron radiation, such as high intensity, continuous
spectrum, narrow angular collimation and small source size, opened new possibilities
compared to conventional sources, see Tanner and Bowen [81] for a review. These
include:
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3.2 X-ray topography

• shorter exposure time, allowing real time experiments, [82], [83],[84] and [85].

• the possibility of having larger sample-to-film distances whilst maintaining mi-
crometer image resolution, allowing room for bulky apparatus such as cryostats
[86],[87] and furnaces [88]. Moreover, the possibility of changing the sample-
to-film distance gives the possibility of studying focusing/defocusing effects for
dislocations [89], dynamic deformation such as vibrations [90] and static defor-
mation, e.g. created in a bonded wafer [91]. I have also used this possibility
to determine the bending radius of diamonds bent by femtosecond laser ablation
[92].1

• the very simple possibility of collecting more than one topograph at the same
time in a short time, allowing e.g. the determination of the type of dislocations
present in a crystal and the associated Burgers vector from one single exposure
[93].

Two techniques using a wide and homogeneous beam are often employed for synchrotron
X-ray topography: white beam topography (single crystal) and monochromatic beam
topography (double crystal), 3.12.

Figure 3.12: Schema of the two techinques used: a) white beam topography, b) monochro-
matic beam topography

White beam topography is the easiest to set up. In principle, little orientation of the
sample is necessary. Using the continuous spectrum coming from a bending magnet or

1this publication together with others that arise during my work at the ESRF but that are not
part of the main subject of the thesis will be presented in chapter 7.
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3. EXPERIMENTAL TECHNIQUES

a wiggler, different lattice planes diffract at their corresponding Bragg angles, selecting
different energies from the incident beam. The first white beam topography at a syn-
chrotron was done at by Tuomi et al. in 1974 [93]. Numerous diffraction spots, also
called Laue spots, are recorded by the detector. Each one is a topograph corresponding
to a different diffraction vector. Due to the large energy bandwidth, this technique
is sensitive to variations of lattice plane orientation but not to changes of d-spacing.
Parts of the crystal with different d-spacings will diffract with a different wavelength
but in the same direction and with the same intensity onto the detector. Moreover, all
parts of the crystal diffract, including strongly misoriented regions. Some drawbacks
include the heat load in case of highly absorbing material, leading to deformations and
sometimes even the destruction of the sample (a possible solution is the use of a chopper
or to some extent filters to remove the softer X-rays, [94]) and the limited sensitivity
for weak distortions (the sensitivity to effective misorientation in this technique is in
the order of 10−3 – 10−6 radians).
Using in addition a monochromator crystal (or a system of several crystals) that
diffracts the radiation coming from the source in a narrow energy band, it is possi-
ble to obtain higher strain sensitivity, e.g. by working on the flanks of steep rocking
curves. This technique is called double crystal or monochromatic beam topography.
In order to avoid artefacts on the topographs that are not due to the sample, the
monochromator crystals must be of very high quality. It is possible to distinguish two
different configurations for monochromatic beam topography: the non-dispersive (+n,-
n) and the dispersive (+n, ±m) configurations, where n and m represent two different
reflections and the signs are defined according the DuMond notation [95].
The difference between the two arrangements (in the synchrotron case) is shown in
fig.3.13. The source produces a divergent and polychromatic beam which impinges on
the crystal at a range of angles (e.g. ≈ 0.3 µrad at BM05). For each angle there is
a wavelength satisfying the Bragg condition. All the different wavelengths that are
diffracted by the first crystal impinge on the second crystal at different angles. If the
second crystal is of the same material as the first, set in a way that the same reflection
is excited and with antiparallel diffraction vectors, then all the wavelengths diffracted
by the first crystal are diffracted by the second, and the arrangement is said to be
non-dispersive (fig.3.13a). All other configurations are dispersive, i.e. the two crystals
are made of different materials and/or different reflections are used or from the same
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source detector

1st crystal

2nd crystal

a)

λ1
λ2
λ3

1st crystal

2nd crystal 
(different material/reflection)

λ1

λ3

λ2

b)

Figure 3.13: Example of two different configurations: a) non-dispersive (+n,-n), b) dis-
persive (+n,-m).

material and same reflection but with no antiparallel diffraction vectors (fig.3.13b). As
a result, only radiation inside a narrow local band fulfils the Bragg condition at the
second crystal and, consequently, only a narrow image appears on the film and one of
the advantages of X-ray topography using a synchrotron source is lost.
The main advantage of non-dispersive schemes is that the rocking curve obtained is nar-
rower and has steeper flanks compared to the dispersive curve. Recording topographs
on the flanks of the rocking curve allows high strain sensitivity since, in this region, a
small change in the effective misorientation gives rise to large changes in the recorded
intensity. The main drawback is that very few kinds of crystal are available with suf-
ficiently high quality, and this restricts the use of this technique to a limited number
of substances. In the case of synchrotron sources, there are suitable solutions. The
limited narrow local band on the second crystal that fulfils the Bragg condition may
be extended by rocking the crystal and integrating the topograph on the detector. The
penalty for the larger reflecting crystal area is the reduced strain sensitivity, as for the
integrated wave techniques introduced before.
Another possibility is to correct for dispersion by bending the monochromator. For
an experimentally-defined bending radius, the dispersive configuration becomes non-
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3. EXPERIMENTAL TECHNIQUES

dispersive. In this way, high strain sensitivity is achieved for unmatched sample and
monochromator materials. This technique is also called curved collimator topography,
introduced at laboratory source [96, 97] and later adapted to synchrotron radiation [98]
with the construction of an instrument. This instrument was recently relocated from
ID19 to BM05. In this occasion a large part of the electronics and the mechanics was
improved/changed and I have been strongly involved (together with D. Van Brussel and
P. Van Vaerenbergh) in the reinstallation and the commissioning of the instrument.
It is also possible to use a perfect crystal as the first crystal, choosing a set of planes
whose d-spacing is close to that of the reflecting planes in the sample and obtaining a
quasi-non-dispersive setup. Moreover, by using an asymmetric reflection, it is possible
to obtain the low divergence required for quasi-plane wave topography, [99, 100]. An-
other possibility is to use multiple crystal system in order to obtain a highly monochro-
matic beam, therefore limiting the possible dispersion [101].
The advantages of the dispersive and non-dispersive double crystal techniques with
respect to white beam topography are: a higher strain sensitivity can be achieved (in
the range of about 10−4 – 10−7 for the dispersive configuration, up to about 10−8 or
even better for the non-dispersive), the lower heat load and the fact that images are
easy to simulate. Drawbacks are the more demanding requirements of the experiment
(e.g. sample orientation is necessary, sensitivity to mechanical and temperature drifts)
and the fact that only one diffraction can be recorded at one time.
A powerful extension of double crystal topography is a technique called Rocking Curve
Imaging. Here, the crystal is rotated step by step over the entire rocking curve, and
at each step an image is recorded. In this way, a series of topographs is obtained with
each image belonging to a different working point (angular position) on the rocking
curve. The strain fields are therefore mapped in a more complete way.
Moreover, by using CCD cameras as detectors and PC-based analysis, it becomes easy
to analyze the image series pixel by pixel and to extract local parameters such as the
local rocking curve maxima (which reflect the local Bragg angles), the rocking curve
widths or their integral reflectivities, [102]. Taking those series for different sample
positions (rotating around the normal of the reflecting lattice planes) it is possible to
separate the lattice parameter and the lattice inclination contributions to the effective
misorientation.
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3.3 X-ray surface sensitive techniques.

3.3 X-ray surface sensitive techniques.

Two techniques have been used in order to characterize the surface roughness and
crystalline quality of the sub-surface layer of high quality diamond crystals: X-ray
Reflectivity (XRR) and Grazing Incidence Diffraction (GID). Both techniques take
advantage of the fact that the index of refraction of X-rays in matter is less than one
and may be written in the form:

n = 1− δ − ıβ (3.5)

with:

δ = 2πρere
k2 β = µ0

2k (3.6)

where k is the wavevector, ρ is the electron density of the material and µ0 is the
linear absorption coefficient. For X-rays, δ and β are of the order of 10−6 and 10−9,
respectively. The fact that the refractive index is less than 1 implies that there exists
a critical angle αc below which X-rays undergo external total reflection. The value of
the critical angle is obtained by using the Snell-Descartes law. In X-ray optics, the
convention for the beam angles is to measure them between the beams and the surface,
while in geometrical optics it is between the beams and the normal to the surface,3.14.
This implies that the sine functions in the Snell-Descartes law are converted into cosines,
giving:

n1 cosαi = n2 cosαt (3.7)

where αi,t are respectively the incident and transmitted angles and n1,2 are the indices
of refraction of the different media. Total reflection occurs when αt is equal to zero.
By substituting the refractive indices for air (to a good approximation, nair = 1) and
for the medium from 3.5, neglecting the absorption and using the Maclaurin expansion
of the cosines, it is possible to obtain the critical angle αc:

αc ≈
√

2δ (3.8)

Typical values for αc are of the order of milliradians, i.e. grazing incidence. The
penetration depth Λ as a function of the angle of incidence αi (for the specular condition,
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αi αr

αt

n

n1 = 1

n2 = 1-δ-iβ

Ki Kr

Kt

Figure 3.14: Scheme of the incoming, reflected and transmitted beam together with the
beam angles at the boundary between vacuum and a material with index of refraction
smaller than 1.

αi = αf ) can be written [103]:

Λ(αı) = λ

4
√

2π
√

(α2
c − α2

ı ) +
√

(α2
ı − α2

c)2 + (2β)2
(3.9)

Fig.3.15 is a plot of the penetration depth of 7 keV X-rays in diamond.
For angles below αc, an evanescent wave is produced inside the sample fig.3.16. This
wave propagates parallel to the surface, and is exponentially damped in the perpen-
dicular direction. The minimum depth of this wave is ≈ λ/4παc, therefore it depends
only on the material and wavelength used. It is of the order 3 nm for diamond at 7
keV X-ray energy. Around the critical angle, the penetration depth increases abruptly
and above the critical angle it follows the Beer-Lambert law. This phenomenon enables
studies of the quality of the crystal at different penetration depths.

3.3.1 X-Ray Reflectivity (XRR)

XRR is insensitive to the degree of long-range order of the material investigated (e.g.
crystalline, amorphous). It is sensitive to changes in the local electron density (includ-
ing surface and interface roughness) and not to strain fields, which are exploited in
X-ray topography. XRR was pioneered by Kiessig [104] and developed by Parrat [105].
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Figure 3.15: Penetration depth in diamond as a function of the incident grazing angle,
E= 7 keV

In the case of a perfectly smooth, infinite surface with an infinitely thick bulk and
zero absorption coefficient, the reflectivity is one below the critical angle and decays
proportional to q−4 = sin(αi)

4πλ
−4

for larger angles. If the sample is rough, the decay
is stronger. A first theoretical model to take into account the roughness has been
developed by Nevot and Croce, [106], assuming the roughness to have a Gaussian dis-
tribution. A second model based on the distorted wave Born approximation (DWBA)
has been formulated by Sinha [107].

Moreover, if the sample is made of layers of different electron densities, interference
fringes (called Kiessig fringes) are obtained in the reflectivity curve above the critical
angle. These fringes are more pronounced if the difference in electron density between
the layers is large. The distance between fringes is inversely proportional to the thick-
ness of the layer. These effects are used to build multilayer monochromators, where
many layers of materials of alternating high and low electron densities are stacked
on each other, giving high intensity peaks at larger angles compared to typical criti-
cal angles. These peaks have a broader bandwidth than that obtained using crystal
monochromators (∆λ

λ ≈ 10−1–10−3 compared to ∆λ
λ ≈ 10−4–10−5), see fig.3.17, allow-

ing a higher photon intensity at the price of a lower energy resolution. Geometrical

53



3. EXPERIMENTAL TECHNIQUES

α < αc
Λ

Figure 3.16: The evanescent wave created in total reflection, and its penetration depth
Λ

and resolution function factors such as sample dimensions and beam divergence play
a major role, especially in the region of total reflection, and in order to obtain a good
agreement with the data they need to be taken into account [108].

Figure 3.17: Reflectivity curve of tungsten-carbon multilayer for Cu Ka X-rays, (a) linear
scale and (b) logarithmic scale. From [109]

In our experiment on the study of diamond surfaces after polishing, three kinds of XRR
scans were performed:

specular scans - the detector angle is swept at twice the rate of the sample angle
whilst maintaining the condition ω = 0.5 ∗ 2θ (called ω − 2θ scans). In this type
of scan, the scattering vector q is perpendicular to the surface of the sample, and
only the electron density differences in this direction are probed;
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3.3 X-ray surface sensitive techniques.

off-specular scans - longitudinal diffuse - the detector is again moved at twice the
angular speed of the sample (ω − 2θ), but the sample is initially positioned with
an offset θoff compared to the specular scan. It is possible to subtract the average
of two longitudinal diffuse scans collected at ∆θ ± θoff from the data obtained in
a specular scan, obtaining the so-called true specular.

transverse diffuse scans - in this case the detector is kept at a fixed position whilst
the sample is rocked. These scans allow the scattering vector parallel to the sur-
face to be probed in order to determine in-plane correlation of the roughness.
Moreover, transverse diffuse scans allow the separation of roughness and compo-
sition grading which is impossible in specular reflectivity. Characteristic peaks
are present on both sides of the specular peak, called Yoneda peaks [110]. They
appear when either the incoming or the exit beam angles with respect to the
sample surface are equal to the critical angle.

3.3.2 Grazing Incidence Diffraction (GID) in non-coplanar geometry.

GID combines the surface and the depth-controlled sensitivity of X-ray at grazing inci-
dence together with Bragg diffraction from planes approximately perpendicular to the
sample surface. The technique was introduced by Marra et al. [111] and used in a
depth-controlled study by Dosch et al. [103]. The geometry used is shown in fig.3.18.
The incidence and exit beams are kept at a small angle around the critical angle of
total reflection. Lattice planes perpendicular to the crystal surface are used for Bragg
diffraction (non-coplanar diffraction geometry). Exploiting such a geometry gives ac-
cess to the momentum transfer almost parallel to the crystal surface, therefore probing
the crystalline structure close to the surface, e.g. possible mosaicity near the surface,
or sub-surface distortion due to the crystal processing. This can complement the mea-
surements of the strain components perpendicular to the crystal surface measured by
high-resolution diffraction.
The angle between the incident beam and the surface of the crystal is kept constant
during a scan; this implies that the penetration depth is also constant. By correctly
implementing the rotations of the sample (around the surface normal) and of the de-
tector, it is possible to collect transverse and radial scans of the reciprocal lattice point
corresponding to the diffracting lattice planes. By repeating this at different incident
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E0

Eh
Es

θB

Figure 3.18: Grazing incidence diffraction, E0, Es, and Eh are the incident, specular and
diffracted waves respectively, and θB is the Bragg angle, from [112].

angles, it is possible to study the crystalline structure at different depths and, e.g.
obtain a quantitative measure of the thickness of the region which is distorted due to
polishing.
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Chapter 4

Characterization of single crystal
diamonds

In this chapter, I will first present the characteristics that make diamond an interesting
material for 3rd and 4th generation synchrotron sources. Afterwards, I will show some
of the results obtained from the characterization of single crystal diamonds, mostly
using X-ray related techniques but also, in some cases, compared with alternative tech-
niques such as Atomic Force Microscopy (AFM) and optical profilometer. Some of the
results presented here have been published in different papers, [113, 114, 115], of which
I am co-author.

4.1 Diamond

4.1.1 Properties

Diamond is one of the allotropes of carbon, some of the others being e.g. graphite,
graphene and fullerene. At room temperature, diamond is metastable; the thermo-
dynamically stable form is graphite. At high temperature and ambient pressure is
possible to graphitize diamonds, from 600 ◦C to 800 ◦C in the presence of oxygen or
a metallic catalyst [116], and from 950 ◦C or higher in vacuum [117]. The diamond
crystal is formed by carbon atoms bounded by four equidistant nearest neighbours in
a tetrahedral symmetry due to the sp3 orbital. In comparison, in graphite, the bond-
ing between carbon atoms is sp2, resulting in layers of graphite weekly bonded by van
der Waals forces. The diamond unit cell consists of two interpenetrating face-centered
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cubic lattices, one at (0,0,0) and the second shifted at (1
4 ,1

4 ,1
4). The lattice parameter

at room temperature is between (0.356683± 0.00001) nm and (0.356725± 0.00003) nm
[118]. Two different crystallographic forms of diamond exist: the cubic and the hexag-
onal (also known as lonsdaleite). The difference between these two forms is the result
of a different sequence of atomic layers. If the sequence is ABABAB, i.e. the third
layer exactly superposes the first, then the crystal has hexagonal structure. With a
sequence of ABCABC, i.e. the fourth layer superposes the first, then the crystal has
cubic structure, fig.4.1.

diamond lonsdaleite

A

B

C

A

A

B

A

B

Figure 4.1: Differences between diamond (cubic) and lonsdaleite (hexagonal). The pic-
tures of the two structures were generated using the software Vesta,[119]

Diamond has the highest hardness of all natural materials (only man-made aggregated
diamond nanorods [120] and ultrahard fullerite [121] are harder than diamond). This
explains the origin of the name, adamas (Greek) that means the “untameable” or the
“unconquerable”.

4.1.2 Synthesis of diamonds

The first commercially successful synthetic diamond was synthesised in Stockholm,
Sweden, in 1953 using High Pressure and High Temperature (HPHT). The discovery
was kept secret [122]. One year later, there were two reported syntheses of diamond at
the General Electric Research Laboratory: one by H.M. Strong and the second by H.T.
Hall. The results were quickly published in Nature [123] and the method of growing
man-made diamond was patented. Those first diamonds were tiny (1×0.3 mm) and
hardly reproducible. After further experiments, it became clear that to synthesize
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diamond, a metal “solvent/catalyst” bath was necessary. In 1971, R.H Wentorf Jr.
showed the possibility of growing bigger diamonds using the so called “thermal gradient
method” [124]. This method is best done in a large volume belt press system and will
be described in more detail in the next section. With the HPHT method, single crystal
diamonds with more than 1 cm maximum dimension can be grown and routinely 5-
7 mm diamonds with low nitrogen content are grown by companies such as Element
Six (formerly De Beers Industrial Diamond) and Sumitomo Electric Industries. An
alternative method, the “pressure gradient” method, makes use of a different type of
high pressure system, called split-sphere BARS press (from the Russian acronym of
press-free high-pressure setup “split sphere”) to grow large size single crystal, see e.g.

[125].

Another technique used to grow synthetic diamond is Chemical Vapour Deposition
(CVD) [126], [127]. It is the most widely used technique for depositing many materials
in the semiconductor industry, including a wide range of dielectrics and many metals
and metal alloys. The technique generally involves the growth of a solid material
from the gas phase using a reactive gas mixture, which supplies the necessary active
species (carbon from methane in the case of diamond) onto a controlled surface (or
substrate). The substrate does not have to be diamond but in order to grow single
crystal CVD diamond (instead of polycrystalline diamond) it is necessary to use a
diamond substrate with high quality surface finish. Numerous different methods have
been developed; the main difference consists in which technique is used to activate the
gas-phase carbon-containing precursor molecules (e.g. hot filament, DC-plasma, RF-
plasma, microwave-plasma, electron cyclotron resonance-microwave plasma). The main
advantages of CVD techniques are the low pressure necessary (consequently a lower cost
in terms of equipment); the possibility of growing large diamonds; and the possibility
of growing diamond on different substrates. Unfortunately, until now, the quality of
the bulk material does not meet the requirements for use as X-ray optical elements,
even though recently great improvements have been made by using high quality IIa
HPHT single crystals as seeds, [128]. In the next section, the HPHT method will be
described. Up to now, this method facilitates synthesis of diamonds with the highest
structural quality.
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Figure 4.2: The P,T phase diagram of carbon, from Bundy [129].

High-Pressure High-Temperature synthesis of diamond

Fig.4.2 shows the phase diagram for elemental carbon, from Bundy [129]. Four regions
are recognizable:

• the CVD method at low pressure;

• shock wave synthesis, where very high pressure and temperature are achieved by
detonation;

• HPHT direct conversion;

• HPHT catalytic synthesis.

Shock wave synthesis produces very small diamonds (of the order of a few µm), not
suitable for application as optical elements. Direct conversion of graphite to carbon
faces a high kinetic barrier, so that it takes place at pressures above 13 GPa and
temperatures around 3000 K [130, 131] but these conditions are difficult and expensive
to achieve. In order to overcome the kinetic barrier, a metal solvent-catalyst bath is
used. This allows conversion at lower temperature and pressure, typically around 1550
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to 1600 K and 5 to 6 GPa [132]. This is the method used to grow high quality synthetic
diamonds and attention will now be focused on this specific technique.

Figure 4.3: Scheme of a HPHT system for growing diamonds, from Sumiya et al. [133]

Fig.4.3 shows a schematic diagram of a press used to grow synthetic diamonds (de-
tails differ between manufacturers and, being a commercial procedure, it is covered by
intellectual patents and kept confidential). The essential parts for the growth are [134]:

• carbon source: could be graphite but higher quality crystals are obtained using
a fine diamond powder as the carbon source;

• a growth medium of metal solvent-catalyst. As mentioned before, the liquid
metal solvent is necessary to enable the process to proceed at lower pressure and
temperature. Alloys of metals such as Fe-Ni, Mn-Ni and Co-Fe are generally used;

• a diamond seed: as usual in crystal growth, it is necessary to use a very high
quality seed crystal in order to grow high quality diamond. The seed must also
be embedded to avoid it floating away, and it must be in contact with the bottom
of the metal bath.

All the components are placed inside a heater and the heater is filled with a pressure
medium, e.g. NaCl. The cell as formed is compressed in a high pressure vessel. A
thermal gradient (20 to 50 K) is produced inside the heater between the carbon source
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and the seed (e.g. in a simple cylindrical heater the temperature is higher in the middle
and it decreases along the axis of the cylinder). The driving force for the reconstitution
of diamond is provided by the difference in solubility of carbon in the metal bath at
different temperatures (as usual in crystal growth from solution). The carbon source
is kept at a higher temperature, so that diamond dissolves in the bath whilst the seed
is kept at a lower temperature. This generates a supersaturation of the carbon that
deposits on the diamond seed homoepitaxially, fig.4.4.

Figure 4.4: A Scanning Electron Micrograph (SEM) of a synthetic diamond, from Kanda
[135]; the diamond seed is clearly visible on the bottom part of the stone.

The growth parameters (pressure, temperature gradient) must be extremely stable.
Fluctuations may produce growth defects that may not be tolerable for a crystal fore-
seen for X-ray optics applications. The growth rate of the diamond is also related to
the temperature gradient: larger gradients give rise to higher growth rates, but metallic
inclusions are easily incorporated in the diamond, destroying the quality of the crystal.
A compromise between high quality and feasible growth time has to be found. Typical
growth rates for a good crystal are around 2 to 5 mg/h and typical growth times are
of the order of 200 to 500 hours, [134].

Defects in diamonds

During the growth process, numerous crystallographic defects may be formed inside the
crystal, destroying the necessary perfection. These defects could be zero-, one-, two-
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or three-dimensional, respectively atomic impurities, dislocations, stacking faults and
inclusions. Among a large variety of possible atomic impurities in diamond, the most
common are nitrogen and boron. A classification of natural diamonds has been made
and it applies perfectly also to synthetic crystals, [118].

• Type Ia: high concentration of nitrogen, from 10 up to 3000 ppm, in aggregated
form; two subcategories are the IaA with nitrogen clusters made by neighbouring
pairs of substitional atoms and the IaB, believed to be four substitional nitrogen
atoms neighbouring a vacancy. These kinds of impurities do not absorb visible
light, so they are typically transparent under optical illumination. Almost 98%
of natural diamonds are type Ia.

• Type Ib: 25 to 800 ppm nitrogen atoms, in single substitutional form; these
impurities absorb radiation in the UV region, with a tail also in the violet-blue,
giving the characteristic yellow-brown colour. They are quite rare in nature but
are the most common synthetic diamonds produced because of the higher growth
rate.

• Type IIa: very low concentration of nitrogen, normally less than 10 ppm; they are
optically transparent and very rare in nature albeit some of the finest historical
stones, such as the Cullinan and Koh-i-Noor, are type IIa.

• Type IIb: in this case the classification is not due to the nitrogen but to the
boron impurities, up to 50 ppm; this kind of impurity gives absorption in the
red/IR region, giving to the stone a characteristic blue colour. They are very rare
in nature but it has been discovered that they show interesting semiconducting
properties

The concentration of N impurities in synthetic diamond strongly depends on the crys-
tallographic orientation of the growth sector, [136]. For example, growth in the 〈111〉
direction contains more N than growth in the 〈100〉 direction, and much more than
in the 〈110〉, fig.4.5. At the boundaries between these growth sectors, the lattice is
slightly deformed due to the difference in the diamond lattice parameter, which for
single substitutional nitrogen (also called C or P1 defect) is [114]

∆a0
a0

= (0.12± 0.03)× CN (4.1)
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Figure 4.5: Concentration-dependence of nitrogen in the different growth sector. The
colour density indicates the N concentration; N concentration in 〈111〉 > 〈100〉 > 〈113〉 >
〈110〉, from [114].

where CN is the concentration of nitrogen impurities expressed as an atomic fraction.
Due to the lower nitrogen content, type IIa diamonds are less affected by this kind of
deformation. Consequently, it is accepted that for the highly demanding application of
X-ray optical elements, type IIa crystals of very high quality are the preferred material.
To produce type IIa diamond, it is necessary to add to the metal solvent/catalyst
elements with high affinity for N, such as Ti, Zr and Al. These elements are called
“nitrogen getters” and forming nitrides such as TiN and ZrN in the solvent catalyst,
they lower the concentration of nitrogen impurities inside the diamond.
Fig.4.6 shows a comparison between type Ib and type IIa diamond specimens. It
is possible to observe in the optical image the pale yellow colour of the Ib and the
transparency of the type IIa. This effect is due to the nitrogen impurity, which is a
deep donor and absorbs blue light and so it makes the diamond appear yellow. Also
clearly visible are the different growth sectors with different nitrogen concentrations
(as illustrated in fig.4.5). These are also clearly visible in the UV image: the nitrogen,
excited by the UV light, emits in the green-yellow region, except for the 110 sector,
where the concentration is much lower. The different growth sectors are also visible in
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the IIa diamond, under UV light. The last images are X-ray topographs, showing the
much lower quality of type Ib with respect to type IIa.

Figure 4.6: Comparison between type Ib and type IIa synthetic diamonds.

Dislocations are linear defects. There are two basic types of dislocations: edge disloca-
tions and screw dislocations. A combination of edge and screw dislocations is called a
mixed dislocation.

• Edge dislocations may be thought of as the result of adding a half-plane of atoms
mid way through the crystal.

• Screw dislocations can be thought of as the result of cutting through the crystal
and slipping one half with respect to the other by a lattice vector parallel to the
edge of the cut.

It is possible to define a vector, called the Burgers vector, which represents the mag-
nitude and direction of the lattice distortion arising from a dislocation. The Burgers
vector and the dislocation line are parallel for a screw dislocation and perpendicular
for an edge dislocation. In a mixed dislocation, the angle will be between 0◦ and 90◦.
Stacking faults are planar defects and are regions within the crystal where the regular
stacking sequence has been interrupted. Two types of stacking fault are possible in fcc
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crystals: intrinsic stacking faults (ABCABABC instead of ABCABCABC), which can
be pictured as vacancy agglomeration and extrinsic stacking faults (ABCABACAB),
which can be thought as a layer of interstitial atoms added to the sequence. Inclusions
are normally due to metal from the solvent catalyst bath that remains trapped inside
the crystal during the growth process. The size of the inclusions can vary from 1 µm to
1 mm and their shape is normally plate or rod-like, with rounded corners. The strain
in the crystal due to this kind of defect may be very large, so that inclusions must be
completely avoided for a diamond to be use as an X-ray optical element. A greater
concentration of defects is present near the seed (e.g. dislocations, stacking faults)
[125] and [137]. The dislocations radiate outwards from the seed, following roughly
the growth direction of the respective growth sector. Therefore the upper part of the
crystal possesses quite a wide central zone almost defect-free. Moreover, as is usual in
crystal growth, crystals with a lower density of defects may be grown using a defect-free
diamond as the seed [138].

4.2 Characterization of synthetic diamonds. Experimen-
tal results.

In chapter 3 I have introduced the different methods used to characterize synthetic
diamonds, here I will present a selection of the results obtained.

4.2.1 High Resolution X-ray Diffractometry

After the determination of the experimental apparatus function discussed in 3.1 it is
now possible to estimate the rocking curve broadening for different diamond samples
due to the presence of defects. This has been done by using a similar procedure (model
and fit) presented for the determination of the apparatus function, equation 3.2.
Table 4.1 shows an overview of different typical diamond plates, selected from all the
samples analyzed. In order to quantify the broadening of the rocking curve, we decided
to extract the full width at different peak heights, namely 50%, 20% and 2% of the
maximum intensity. This allows one to study also the influence of defects on the wings
of the rocking curve. For comparison, the Darwin widths of the intrinsic reflectivity
curves of diamond for the different reflections, sample thicknesses and the energy used
(14.413 keV) are given together with the white beam topographs.
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Diamond 1. (100) IIa 2. (100) Ib 3. (100) CVD 4. (111) IIa

WBT

wh 1.056” 1.129” 1.000” 2.954”

∆FW50%M 0.04”± 0.06” 0.86”± 0.06” 0.37”± 0.06” 0.43”± 0.06”
∆FW20%M 0.08”± 0.09” 1.71”± 0.09” 0.74”± 0.09” 0.68”± 0.09”
∆FW2%M 0.28”± 0.15” 3.25”± 0.15” 2.61”± 0.15” 11.9”± 0.15”

Table 4.1: Widths of the broadening due to defects curve at different heights of the
peaks for different types of diamonds, together with the Darwin widths wh. The errors are
estimated from the values obtained for the apparatus function at the same height.

The results obtained show a negligible broadening for sample 1, IIa HPHT diamond,
100 oriented in a region close to the centre of the plate. For the Ib sample and the
CVD diamond the situation is worse, with a greater broadening recorded at all levels.
For sample 4, a type IIa HPHT plate 111 oriented, the results are different. The bulk
quality seems good (the theoretical rocking curve is broader for the 111 reflections than
for the 400, therefore the increase of 0.43 arcseconds is relatively smaller), but the full
width at 2% of the maximum is very large. We think this is related to a much worse
quality of the surface of the plate, since the 111 surface is the most difficult to polish.
The surface quality of the crystal has been characterized also using X-ray techniques,
and the results are presented in section 4.2.4.

4.2.2 X-ray Topography

In our case, a better adapted method to control the quality of the different diamond
crystals is X-ray topography, introduced in section 3.2, since it allows us to obtain local
information about the defect distribution in the crystal.
All the results presented here have been collected at two beamlines at the ESRF: BM05
and ID19. It is impossible to present all the topographic results obtained during my
PhD, since a lot of them have been assessment of a industrially sensitive nature of
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purchased high quality IIa diamonds. I will concentrate on a selection of interesting
cases, showing the differences between crystals of different quality but also between the
results obtained using different strain sensitive techniques.
The X-ray topographs were recorded either on photographic films or using a CCD cam-
era. For the films, we typically used Kodak Industrex SR45 films or AGFA Structurix
D3, with a grain size of approximately 3 µm. For the CCDs we used either the FReLoN
camera (developed at the ESRF, [139]) or a PCO.2000 camera 1. The reason of having
two different cameras is simply the fact that the FReLoN camera is too heavy to be
mounted on some of the existing diffractometers. In both cases, the X-rays are first
converted to optical light by scintillator crystals, then, by using a set of lenses, the
image is focused on the CCD chip. It is therefore possible by changing the optics to
change the spatial resolution of the image (e.g. with the PCO, two sets of optics pro-
duce an estimated pixel size of 3 µm and 10 µm). All the different optics have been
conceived and developed in the Detector Group of the ESRF.
The main advantage of films over CCD cameras is the combination of a large field of
view (e.g. 13×18 cm in our case) with a high spatial resolution (1 to 3 µm in our
case), allowing, for example, the collection of the different Laue spots in a white beam
experiment. Nevertheless, when the field of view required is not large, the CCD cameras
allow Rocking Curve Imaging, i.e. a combination of High Resolution Diffractometry
and Topography. An additional advantage of CCD cameras over photographic films is
the fact that the signal recorded is proportional to the X-ray intensity whilst for the
films, an additional digitalisation step of the transmitted light is required and this is
an additional source of error in the cases when a quantitative analysis is performed.

4.2.2.1 White Beam Topography (WBT)

Fig.4.7 shows an example of a transmission WBT of a high quality type IIa diamond.
The different inhomogeneities in the images are related to defects such as dislocations,
stacking faults and inclusions but also, in the case of the equal thickness fringes, simply
related to the fact that the edge are bevelled and confirm the high local crystal quality
(interferences are not perturbed).
Fig.4.8 shows a zoom of fig.4.7, where a clearly visible set of dislocations is present. The
conditions for the formation of the three types of extinction images (direct, dynamical

1see http://www.pco.de/sensitive-cameras/pco2000/ for details about this camera
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Figure 4.7: Example of a white beam topograph of a IIa type diamond, 2̄20 reflection

and intermediate) are fulfilled. On one end of the dislocation image (in this case left side
of the picture), the direct and dynamical images converge while on the other end they
diverge. This implies that the dislocation is a threading dislocation, passing through the
crystal plate and crossing the two surfaces at two points: the point on the exit surface
of the X-ray (i.e. towards the detector) correspond to the point where the direct and
dynamical image are joined together. Futhermore, by using topographs with different
diffraction vectors it is possible to determine the orientation of the Burgers vector
associated to a dislocation by using the contrast extinction rule introduced on page
45. In this particular case, the dislocations that are clearly visible on this topograph
are completely invisible on the spot diffracted perpendicularly (i.e. the 220 reflection).
The Burgers vector of these dislocations is therefore parallel to the [1̄10] direction.

It is also possible to obtain an estimation of the strain produced by the inclusion present
in fig.4.7. By measuring the distance between the core of the inclusion (assuming it to
be in the middle of the strain field) and to the outermost deformed part of the image,
d, it is possible, by simple geometrical calculation, to derive the distortion created by
the inclusion. Using the sample to film distance L and the distance from the beam-stop
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Figure 4.8: Zoom of the topograph showed in fig.4.7. It is possible to see a set of
dislocations in the left part (the black line is the direct image, the brighter shadow is the
dynamical image), a stacking fault (the triangular shape on the right part of the image)
and the equal thickness fringes on the right.

shadow to the topograph D it is possible to calculate the misorientation angle δϑ as

δϑ ≈ arcsin d√
L2 +D2

In the case of the inclusion shown in fig.4.7, we have d = 0.9 mm, L = 23 cm and
D = 8.2 cm, resulting in a misorientation of δϑ ≈ 3 × 10−3 rad. This is just a rough
estimation, but it shows that it is possible to make quick estimations of relatively strong
misorientation from white beam topographs.
A series of WBT topographs for different types (CVD, HPHT Ib and IIa) of diamonds
is shown in tab.4.1. It gives a clear indication of the low quality of the CVD and Ib
samples compared to the IIa ones.
In figure 4.9 the X-ray topographs together with UV fluorescence maps of high qual-
ity IIa diamond plate are compared. The schematic drawing above the topographs
shows the different positions at which top and bottom plates are extracted. It is
clear from these images that the quality of the plates increases significantly the farther
from the seed the plate is extracted. From the UV fluorescence maps it is possible to
see the different growth sectors; most of the dislocations and stacking faults grow in
the 111 or 113 sectors (see fig 4.5), leaving the 100 direction almost free of defects.
The basic phenomenon leading to the UV maps is that of broad blue band emission
from donor-acceptor recombination for close pairs, as modified by the different relative
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concentrations of the boron acceptor and nitrogen donor within the different growth
sectors, [114, 140]. Due to the fact the nitrogen concentration is small (normally less
than 20 ppb), the d-spacing difference in the different growths sectors produces growth
sector boundaries which deformations are below the strain sensitivity of white beam
topography and therefore are not visible.

White Beam 
X-Ray Topographs

UV Fluorescence

top middle bottom

2 mm

Figure 4.9: White beam -220 topographs and UV fluorescence maps of different IIa plates
cut from the same stone at different distances from the seed, as shown schematically for the
top and bottom plates in the top drawing. In the fluorescence maps, the different growth
sectors are clearly visible. The arrow indicates the projection of the diffraction vector on
the film for the different topographs.

In the case where the plate is cut in a different crystallographic direction, e.g. 110, the
region closer to the seed is clearly distinguishable from the opposite side, see fig.4.10;
the seed was clearly on the bottom part of the topograph while the 100-cubic growth
sector, defect free, is at the top.

4.2.2.2 Double crystal Topography

The main drawbacks for the white beam are the high background, the limited sensitivity
to weak distortion and the sensitivity only to lattice inclination. This problems can be
overcome by using a reference crystal (or a set of crystals) before the sample.
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2 mm

Figure 4.10: White beam 111 topograph, projection of the diffraction vector shown
with an arrow, of a IIa high quality diamond crystal, together with a diagram showing
approximately where the plate was extracted. From the defects, it is possible to determine
that the seed was in the lower part of the plate.

As shown in fig.3.13, there are two arrangements possible for the double crystal topog-
raphy, the dispersive (+n, ±m) and the non-dispersive (+n,-n).

X-ray topography in the dispersive configuration. Fig.4.11 is an example of
topographs collected in a dispersive configuration, i.e. using a double silicon 111
monochromator and a diamond sample, 220 Laue reflection, at ID19, beam energy
E=20 keV, shown together with a white beam topograph. The sample is a type Ib
diamond, grown with the split-sphere (BARS) method by colleagues in Novosibirsk.
The angular step size between images is 2.7”.
Due to the angular divergence and energy spread of the incident beam, different regions
of the sample diffract at slightly different angular positions with slightly different wave-
length. The rocking curve is broad, with shallow flanks implying relatively low strain
sensitivity. In this sample growth sector boundaries are clearly visible, in the form of
strong double line contrast on the left part of the image (visible in the white beam
topograph). They are caused by the differences in nitrogen concentration between dif-
ferent growth sectors and the relative dilatation of the lattice following equation 4.1.
The double contrast can be understood by assuming that at the boundaries between
the two regions the lattice planes are distorted. After cutting out a crystal plate from
the crystal, the internal stresses relax, leaving the surface stress free. This leads to a
rather complicated strain field with two strongly strained regions close to the outcrops
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of the growth sector boundary through the surfaces, as shown in fig.4.12, from [141],
and which are responsible for the double contrast.

lower
N concentration

higher
N concentration

largest strains

incoming beam

contrast

diffracted beam
forward 

diffracted beam

Figure 4.12: Scheme of the boundary between two different growth sectors with different
N concentrations, showing the source of the double contrast in fig.4.11.

X-ray topography in the non-dispersive configuration. In the ideal configura-
tion, the crystal conditioner is a perfect crystal of the same material and diffracts from
the same atomic planes as the sample. Unfortunately this is not always possible. The
problem of having a flawed reference crystal is that, since the distance from the source
is very large, every defect on the first crystal is imaged together with the defects from
the second. Fig.4.13 shows two white beam topographs (220 type reflections) of two
111 oriented type IIa HPHT diamond crystals. These two crystals have being used for
a mechanical feasibility test of a double diamond high-heat load monochromator, [115].
Since it was only a feasibility test, the quality of the two crystals was not very high.
In fact, in both plates are present a high number of defects, mostly stacking faults
and dislocation bundles. We note the very strong deformation present in the second
crystal (vertical double line with interference fringes on both sides), that is similar
to micropipes which are normally found in SiC. We suppose it is a superdislocation
with a large Burgers vector but, as distinct from a micropipe, without being hollow.
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First crystal Second crystal

2 mm

Figure 4.13: White beam topography in transmission geometry of two diamond plates,
111 oriented. The reflections used were of the {220} family, and the projection of the
diffraction vectors are indicated by the arrows. Both plates present a large number of
defects, which are clearly visible in the double crystal topographs shown in fig.4.14

Fig.4.14 shows a series of topographs collected by rocking the second crystal, after the
first crystal was set to diffract the monochromatic beam (E= 10.5 keV) produced by a
double Si 111 crystal monochromator at ID06. The angular step between images was
0.36”. The reflections used were the 333 for both crystals. Each image obtained is an
overlap of defective regions in both crystals.
In order to overcome the problem of dispersion in double crystal topography when a
good reference crystal of the same material is not available, there are different solutions.
One is to obtain a beam with high monocromaticity and small divergence using multiple
crystal systems, [101, 142]. We concentrated on two other possible solutions: to use a
perfect crystal and to slightly bend it in order to correct for dispersion [96, 97, 98] or
to use a set of planes in the beam conditioner whose d-spacing is not too different from
that of the reflection in the sample [99]. I will now present some of the results obtained
with the two methods. Fig.4.15 shows a series of reflection topographs of the same Ib
diamond shown in fig.4.11, collected using a bendable monochromator. The reflections
used were the 800 for the bent silicon and 444 for the diamond, and the energy was 20
keV. The angular step size between two images is 0.2”. The difference compared to the
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previous dispersive setup is clear; it is now possible to clearly distinguish the different
growth sectors that diffract at different angular positions of the sample. This is related
to the different concentrations of nitrogen in the different growth sectors that expands
the lattice as shown in equation 4.1. It is possible to estimate the difference in the
lattice parameter between different growth sectors simply from the angular positions
where the intensity in a given growth sector is maximum. For example, a difference of
0.8” is present between the fourth image in the first row and the third image in the
second row. If we assume only differences in d-spacing between growth sectors and by
using 3.4 we obtain an estimation of ∆d/d ≈ 3.9 × 10−6 between regions in the two
growth sectors.

An example of topographs taken using a quasi non-dispersive configuration by com-
bining the silicon asymmetric 331 of a 111 oriented plate reflection with a high quality
type IIa diamond 220 symmetric Bragg reflection is shown in fig.4.16. The mismatch
between the silicon lattice planes and the diamond lattice planes in this configuration
is 1.22 %. The angle between 111 and 331 lattice planes is 22◦ resulting in an asym-
metry factor b, for an energy of 13 keV, of -1/79. The divergence of the beam after the
collimator is shrunk to 0.14” and is smaller than the angular the Darwin width of the
diamond, 0.82”.

The sample is a high quality IIa type HPHT diamond, 0.5 mm thick. The streaky
artefacts that clearly appear only near the peak of the rocking curve (darker pictures)
come from the direct beam and are phase contrast images probably related to a low
quality beryllium window. Due to the high asymmetry of the first reflection, they
appear as vertically elongated features. From this series of topographs it is also possible
to notice the different penetration depth of the X-ray along the rocking curve, see
fig.2.8. For the 220 reflection at 13 keV the extinction distance text is ≈ 4 µm whilst
the absorption depth tabs is ≈ 1.2 mm, i.e. more than the sample thickness. The large
absorption depth allows a perspective view of all the defects in the bulk. On the top
of the rocking curve, e.g. the first topograph on the second row, only the surface layer
is visible since the absorption is dominated by the extinction.

Finally, it is not possible to discern whether the inhomogeneity of the diffracted intensity
for the topographs near the maximum of the rocking curve is due to the small dispersion
or to the fact that the sample is slightly bent.
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Figure 4.17: Map of the angular center of mass positions of the pixel by pixel rocking
curve obtained using the diamond shown in fig.4.15 using the software Visrock.

By combining all the topographs collected at different angular positions it is possible
to obtain a map of local rocking curves pixel by pixel. This method is called Rocking
Curve Imaging RCI and has been developed by Lübbert and co-workers, [102]. One of
the requirements for the RCI is that the topographs are collected with a CCD camera.
In order to analyze the series of images I have used the program Visrock, developed by
Lübbert and Baumbach, [143]1 Visrock analyzes the series of images to obtain different
maps related to the local rocking curve pixel by pixel, such as angular position of the
maximum or FWHM of the rocking curve. It is possible to perform a refined estimation
of the nitrogen content difference between the different growth sectors using a similar
series of topographs as the one shown in fig.4.17 (with a smaller step size and an
extended angular range), using the angular position of the centre of mass of each pixel.
For example, the difference between the growth sectors shown in yellow in fig.4.17 and
the large part of the diamond shown in orange is of ≈ 0.0002◦. This can be transformed
in a difference of d-spacing of ≈ 3.5 × 10−6. This is similar to the value obtained by
the previous estimation, but now it is obtained pixel by pixel. Moreover, this value

1Visrock is available from this link: http://www.esrf.eu/computing/scientific/VISROCK/MAIN.
htm.
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4.2 Characterization of synthetic diamonds. Experimental results.

is similar to what was found by Lang and co-workers, [144] on a type Ib sample. By
using equation 4.1, we obtain a difference of concentration of (29± 7) ppm, which is a
plausible value for Ib diamonds.
A second example of the potentiality of RCI is illustrated in fig.4.18, which shows an
example of the results obtained with a similar series of topographs of the IIa diamond
shown in fig.4.16 (with smaller step size and a broader scan). The rocking curve col-
lected in one pixel belonging to the more perfect region, together with the integral
rocking curve of the entire crystal, are compared with the theoretical reflectivity curve.
For the single pixel rocking curve, there are very small deviations from the ideal reflec-
tivity curve, which is a confirmation of the high quality of this diamond plate in this
region.

4.2.2.3 Quantitative analysis of the effective misorientation in a high qual-
ity type IIa diamond

It is possible to determine the effective misorientation defined in 3.4 using X-ray to-
pography. Nevertheless, it is important to mention that to “back calculate” the origin
of the deformation from the topograph is an inverse problem and is not possible in a
general way due to the missing information related to the phase, which is lost when
recording the diffracted intensities, [145]. An exception is given if it is possible to apply
the dynamical theory for perfect crystal to locally deformed crystals, [146]. This is an
approximation that holds only if the effective misorientation is small inside the “area of
influence” [46], which is represented with the red regions for the Bragg and Laue case
in fig.2.7.
We used two different methods in order to determine the effective misorientation in
this approximation:

• analyzing a topograph collected on the steepest part of the flank of the rocking
curve, where the strain sensitivity is highest;

• collecting a series of topograph for several working points along the rocking curve
and recording the angular positions of the maximum intensity in the different
regions of the sample.

The first method was introduced by Bonse in 1958 [147]. If we assume that the changes
in δθ in the region of interest are so small that the working point shifts in the linear
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part of the flank it is possible to directly relate the intensity variation on the topograph
to the variation of the effective misorientation simply by

δIx

Ixmax
= k δϑ (4.2)

where δIx is the relative change of intensity, Ixmax is the X-ray intensity on the top of
the rocking curve, k is the slope of the rocking curve normalized to one (the superscript
x is to indicate X-ray). It is clear from equation 4.2 that for larger slopes the intensity
variation corresponding to the same misorientation will be larger (or similarly, a same
intensity variation will corresponds to smaller effective misorientation). One of the
advantages of the bent monochromator is the possibility to change the strain sensitivity
by changing the pair of reflections used for the monochromator and the sample. In order
achieve this, a series of silicon bendable monochromators with different orientation are
available.
Fig.4.19 shows three topographs of a high quality type IIa HPHT diamond, 100 ori-
ented, see [113]. The left image is a white beam transmission topograph, reflection
220. There are clearly visible scratches on the bottom left part of the plate, the rest
of the plate is almost defect-free, with mainly three isolated dislocations barely visi-
ble. The other two topographs are collected using the bendable monochromator, in
Bragg geometry. The middle one was taken at 12 keV, using the 444-reflection for the
monochromator (Darwin width wh = 1”) and the diamond 115-reflection (wh = 1.02”).
The slope of the rocking curve, in the steepest point is about 1.2”−1. If we assume that
it is possible to detect intensity variation of 1%, this implies a theoretical detection
limit of ≈ 4 × 10−8. In this topograph, the dislocations are now well visible, but the
rest of the plate seems still homogenous. The right topograph was taken at 20 keV
using Si-800 and C*-800 reflections (Darwin widths of 0.31” and 0.25” respectively).
The slope on the flanks is about 4”−1, and the detection limit is ≈ 1.2 × 10−8. With
this enhanced strain sensitivity it is possible to see inhomogeneities in the region which
before were homogenous; moreover, the image width of the single dislocations is now
much larger, up ≈ 1 mm from the core of the dislocation.
The topographs can be collected with either CCD cameras or with films. In the latter
case, an intermediate conversion is necessary in order to obtain the X-ray intensity
that stroke the film. If the film is not overexposed, the darkening S is proportional
to the X-ray intensity. During the digitalization, optical light is transmitted through
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2 mm

Figure 4.19: Left, white beam topographs in Laue geometry, 220 reflection, of a high
quality type IIa diamond. Middle and right, double crystal topographs collected with the
bendable monochromator diffractometer. The detection limits for the two topographs are
of about ≈ 4× 10−8 for the middle one and ≈ 1.2× 10−8 for the right one.

the film and is recorded by a CCD camera. The visible light is absorbed by the film
following the Beer-Lambert law of absorption, S(x, y) = log(IL0 /IL(x, y)), where IL0 is
the intensity of light transmitted at a point of the film that is unexposed and IL(x, y)
is the intensity at a point (x, y) of the image. These considerations will bring to the
following

δIx

Ixmax
= Ix − Ixav

Ixmax
=

log IL0
IL
− log IL0

ILav

log IL0
ILmax

=
log ILav

IL

logDR
(4.3)

where the subscript av stands for the average intensity in the region we want to study (if
possible - in a perfect reference region) and DR is the dynamic range. This is defined as
the ratio of the light intensities in an unexposed part of the film, IL0 , and in the region
we are interested, measured on the topograph collected on the top of the rocking curve,
ILmax. The estimation of the dynamic range can be source of errors, e.g. if the angular
step size used to collect the topographs is too large one could jump over the top of the
rocking curve, resulting in a wrong ILmax. Finally, by joining equations 4.2 and 4.3 we
obtain:

δϑ =
log ILav

IL

k logDR
(4.4)
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It is now important to determine the value of k, which is the slope of the normalized
rocking curve. As defined previously in section 3.1, the rocking curve is given by the
convolution of the reflectivity curves of the two crystals, i.e. the bent silicon and the
diamond crystal.
Uschmann and co-workers [148] have calculated the X-ray reflection properties of elas-
tically bent crystals in Bragg geometry. They based their calculations on the Takagi-
Taupin theory [149, 150] for deformed crystals. It is necessary to understand whether
for our experimental conditions it is necessary to calculate the reflectivity curve for the
bent crystal or if the perfect flat crystal one is a sufficient good approximation. This is
possible by estimating the bending radius of the silicon crystal. After Chukhovskii et
al. [151], the general equation for the non-dispersive setting for a polychromatic and
divergent wave and two curved crystals is
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Figure 4.20: Comparison between the experimental and the theoretical rocking curves,
together with their derivatives. The experimental rocking curve is different respect the
theoretical one in the high angles side. The experimental data are obtained from a RCI
series using a ROI of ≈ 0.5×0.5 mm2 in a region of the sample without defects.
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tan θB,2
tan θB,1

=

(
1− L0,2

R2 sin θ0,2

) (
1 + 2L0,1

R1 sin θ0,1

)
(
1 + L0,1

R1 sin θ0,1

) (4.5)

where the index 1 and 2 represent the first and second crystal, R are the curvature
radii (positive if the first crystal is convex and the second is concave), L0 is the source
to crystal distance, θB and θ0 are respectively the Bragg and incident angles, allowing
asymmetric reflections to be considered. In our case we assume the diamond crystal to
be flat, i.e. R2 is infinite. From 4.5 is possible to obtain the radius of curvature of the
first crystal to obtain a non-dispersive setting

R1 = L0,1
sin θ0,1

1 + 1
1− tan θB,2

tan θB,1

 ‡ (4.6)

If we substitute in the formula typical experimental values for the distances and the
Bragg angles, we obtain a bending radius of the order of few kilometres at ID19 and
some hundredths of meters at BM05. Therefore in the first approximation, we decided
to use the reflectivity curve of the flat crystal to calculate the theoretical rocking curve,
and to calculate the slope on the flanks.
Fig.4.20 shows a comparison between the theoretical calculation (Si880 and C* 660
reflections, E=20 keV) and the experimental data. The data have been obtained from
a series of topographs collected with a PCO camera on a high quality type IIa diamond
and integrating the intensity in a ROI of ≈ 0.5×0.5 mm2, chosen in a part of the sample
without defects. The agreement is quite good on the low angle side of the rocking curve
but is worse on the high angle side. We attributed this difference to the fact that the
first crystal is bent. In order to confirm this, we decided to calculate the rocking curve
using the reflectivity curve of a bent silicon crystal.
The reflectivity curves of bent crystal were calculated by I. Uschmann. A comparison
between the reflectivity curves of flat and cylindrically bent (radii of curvature of −208
m and −463 m) silicon crystals is shown in fig.4.21. Some oscillations due to the
bending are present on the high angle side. Such oscillations in bent crystals have been
measured for the first time by Uschmann and co-workers [152] on a quartz crystal.

‡in the Altin et al., [98] a similar formula is obtained, but is present a typing error, θB,1 and θB,2

are inverted. Moreover, the convention for the sign is opposite.
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Figure 4.21: Comparison between the theoretical rocking curve for flat and bent silicon
crystal for two different radii of curvature. 880 reflections, E= 20 keV, crystal thickness 2
mm.

Fig.4.22 shows the comparison between the same experimental data shown in fig.4.20
with the rocking curve calculated using the bent crystal reflectivity curve. The agree-
ment between the theory and the experimental data is considerably improved, especially
on the high angle side, and is a confirmation of the exactness of the theory used. Nev-
ertheless, since the working point of the analysed topograph sits on the low angle side
of the rocking curve, the error made by using the reflectivity curve of a flat crystal
instead of a bent one is negligible.

Moreover for these experimental conditions (concave crystal, negative curvature), the
high angle side of the rocking curve is less sensitive to deformations, since the slope
is much smaller. This is clearly visible in fig.4.23; on the left is shown a topograph
recorded on the low angle side of the rocking curve in fig.4.22 while on the right is
the topograph recorded on the high angle side. For example, the width of the single
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Figure 4.22: Comparison between the experimental and the theoretical rocking curves
obtained using bent silicon reflectivity curve shown in fig.4.21, together with their deriva-
tives. The agreement is improved on the high angle side respect fig.4.20.

dislocation is much larger on the left topograph than on the right one. In addition,
whilst in the topograph taken on the lower strain sensitive condition the intensity is
quite homogenous on most of the crystal plate, on the topograph taken on the high
strain sensitive side the image is more inhomogenous.

In the second method, a series of topographs at different angular positions is recorded.
The scan needs to be large enough in order to cover the entire rocking curve. By using
the software Visrock, the angular position of the center of mass of the rocking curve of
each pixel is obtained. This map represents directly the effective misorientations.

In both methods it is possible to separate the two components - ∆d/d and ∆ϕ - of 3.4
by collecting the topographs at two opposite azimuthal positions, i.e. by rotating about
the surface normal of 180◦ between the two positions. This method was introduced by
Bonse [153] in the study of natural quartz crystal, and has been used among others
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1 mm

Figure 4.23: X-ray topographs in a non-dispersive setup collected with the bendable
monochromator; left on the low angle side of the rocking curve, right on the high angle
side. The difference in strain sensitivity, as estimated by the rocking curve in fig.4.22 is
well visible, for example in the width of the single dislocation image on the left side of the
plate. The arrow represent the projection of the incoming and diffracted wavevectors.

by Kikuta [154] on silicon crystals, by Yoshimura et al. [155] on synthetic quartz,
by Lang et al. [144] on Ib diamond crystals and recently by Macrander et al. [156]
also on Ib diamond crystals. The idea behind this method is that, when changing the
azimuthal positions of the crystal by 180◦, the regions where the effective misorientation
is composed only of lattice spacing variation will present the same contrast, whilst for
the tilted regions the contrast will be inversed.
By calling Θ0(x, y) and Θ180(x, y) the angular positions of the maximum for the pixel
(x, y) and the azimuthal angles 0◦ and 180◦ respectively, we obtain that the d-spacing
variation can be written as:

∆d
d

(x, y) = cotϑB
(Θ0(x, y) + Θ180(x, y)

2

)
(4.7)

whilst the angular tilt can be expressed as

∆ϕ(x, y) = Θ180(x, y)−Θ0(x, y)
2 (4.8)
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It is possible now to compare the results obtained with the two methods on a high qual-
ity diamond sample. Fig.4.24 shows the quantitative misorientation map obtained from
a topograph collected on the steepest part of the flank of the rocking curve, obtained
using the 880 reflection of the silicon crystal and the 660 reflection of the diamond, at
20 keV. The slope used in the calculation was 5.8”−1, resulting in a theoretical detection
limit of ≈ 0.810−8. The image was collected on a film due to the very low intensity
of the reflection, and the dynamic range was estimated to be ≈ 24. A CCD camera
was also used to collect the series of topographs at different angular positions, but the
pictures had a very small dynamic range (≈ 5) and noisy data. Therefore the results
obtained are worse and will not be presented.

Figure 4.24: Effective misorientation map of a IIa diamond crystal, bent silicon 880,
diamond 660 reflections, 20 keV. The values in the colour bar are expressed in 10−8.

The effective misorientation is of the order of 4 × 10−8 for a region of interest of 0.5
× 0.5 mm2 and 1 × 10−7 in a region of 1 × 1 mm2. Fig.4.25 shows angular position
maps of the center of mass of the pixel by pixel rocking curves. The reflections used
were the 440 for both the silicon and the diamond crystal. The strain sensitivity in
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this case is smaller, with a slope of the rocking curve of ≈ 2”−1. At the same time,
the intensity of the reflections is higher than in the high strain sensitive configuration
discussed previously, and therefore it was possible to collect images with a good statistic
using the CCD camera.
The maps of d-spacing variations and tilt are shown in fig.4.26. The values obtained
for the d-spacing variation in a similar region of interest of 0.5 × 0.5 mm2 is about
8× 10−8; in the same region the tilt variations are of the order of 4× 10−8.

0 degrees180 degrees

Figure 4.25: Maps of the angular position of the center of mass of the rocking curve pixel
by pixel, obtained using Visrock. Si 440 and C* 440 reflection, E = 20 keV. The color bar
is expressed in arcseconds. The roundish structured features presented in the images are
phase contrast artefacts present in the direct beam.

Therefore the values obtained with the two methods are in good agreement and are
a proof of the validity of the method. It is therefore possible to select the method
that better suits the experimental conditions. It is finally important to highlight the
incredibly high quality of the diamonds studied. In regions of up to 1 × 1 mm2 the
quality is comparable to the one obtained for silicon crystals, [157], and are therefore
perfectly suited to be used as optical elements at the beamlines.
In fig.4.27 it is possible to see the improvements in the quality of the synthetic diamonds
used as phase plates at the ESRF. On the top row, two Ib diamonds used in the past
as phase plates, the left one at BM28 and the right one at ID24; on the bottom row,
two of the recently purchased plates, now in use at the beamlines ID06 and ID20.
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4. CHARACTERIZATION OF SINGLE CRYSTAL DIAMONDS

Figure 4.26: Separated maps of d-spacing variations and tilt. In order to vizualize the
high quality part of the crystal the contrast has been exaggerated. The values are expressed
in 10−8.

Recently we obtained a further demonstration that an improvement in the quality of
the diamond used can make a large difference to the performance of a beamline. At
ID14-2 they replaced an old type Ib 100 oriented diamond beam splitter which used
the 111 asymmetric Laue reflection with a recently purchased type IIa 110 oriented
one (111 symmetric Laue reflection). The flux measured with the new diamond was
1× 1012, ten times larger than the maximum flux obtained with the old one.
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4.2.3 Coherence measurements

In 2.3 the theoretical basis of the coherence of electromagnetic waves is presented. In
this section I will show the results obtained using the Talbot effect in the characteriza-
tion of the wavefront deformations related to the use of diamonds, especially when used
as diffracting elements but also in transmission, as filter or window. The Talbot effect
is the self-imaging of periodic structures under coherent illumination. It was discovered
in 1836 by Henry Fox Talbot [158] and subsequently explained by Lord Rayleigh [159]
to be a manifestation of Fresnel diffraction, and it has been demonstrated for hard
X-rays by Cloetens et al. [160]. When a coherent wave impinges on a periodic object,
e.g. a diffraction grid, images of the object are formed at periodic distances from the
object itself. The periodic distance is called the Talbot distance D and is given by:

DT = 2a2

λ
(4.9)

where a is the (lateral) period of the object and λ the wavelength of the light. For
distances D equal to integer multiples of half the Talbot distance (also called DR,
replication distance), an image of the object may be registered, with a translation
equal to a/2 in the detector plane for the odd integers and no translation for even
integers, see fig.4.28.
In the case of a phase gratings, the results are different: no image is recorded at
a distance equal to the replication distance (and its integer multiple) but images of
the grid (with a contrast that depends on the phase shift created by the grating) are
recorded at a distance equal to DT /4 (and odd integer multiples of this).
For a perfectly coherent illumination the pattern reproduces itself at each replication
distance. In the case of a partial coherent beam, the contrast of the image at every
distance becomes weaker and weaker at every repetition distance. It is possible to
model this by introducing a damping factor S̃(zf), [160]:

Im = S̃(zf)I coh
m (4.10)

where Im and I coh
m are the Fourier coefficients of the intensity distribution for a partially

and a totally coherent beam, respectively. S̃(zf) is the Fourier transform of the angular
source size S(α) at a frequency f . By assuming a Gaussian distribution for the source
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DT = 2 a2/λ
DR

a

Figure 4.28: The Talbot effect for an absorbing gratings of period a, duty cycle 0.1 (90% is
opaque, 10% is transparent). Indicated are the positions of the screen where the maximum
contrast with the same period as the grid are collected. The image is a re-elaboration of
the one in [161].

size, it is possible to obtain an estimate of the angular source size α0 for the partially
coherent beam as:

α0 = a

π
√

2(z2
k − z2

0)

√[
ln
∣∣∣∣I1(z0)
I1(zk)

∣∣∣∣] (4.11)

where zk and z0 are distances from the screen with zk = z0 +Dr and the I1(z) are the
Fourier coefficients for the frequency 1/a of the image collected at the position z.

Experimental results

The experiments were performed at the long beamline ID19. The source size is 30×120
µm2 (V×H) and the distance from the source is 150 m, resulting in an angular source
size of ≈ 0.2×0.8 µrad2 and a transversal coherence length of ≈ 290×70 µm2 at 0.6
Å. The choice of ID19 was taken especially considering the high degree of spatial
coherence at the sample position. The grating we used was a two-dimensional grid,
of period ≈ 6 µm, made of silicon. Fig.4.29 shows an SEM image of the grid, taken
using the secondary electrons with the in-lens detector. It shows that the differences
of thickness in the grid are about 1.8 µm. At the energy we performed the experiment,
20.5 keV, the difference in absorption is negligible, ≈ 0.1%.
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1.81 μm

6.05 μm 

Figure 4.29: SEM picture of the Talbot grid.

Therefore the grid can be considered as a pure phase grid. The beam was produced by
a U32 undulator with a gap of 17 mm, using the third harmonic. From the beam energy
and the period of the grid is possible to calculate the Talbot distance, using equation
4.9. The results is DT ≈ 1.2 m. The detector was a FReLoN camera [139]. The pixel
size after the optics was 0.7 µm resulting in a field of view of 1.4×1.4 mm2. Images were
collected at distances of 300 mm and 900 mm from the sample, being respectively DT /4
and 3DT /4, the positions where the contrast is maximum. Possible contributions from
higher harmonics (mostly 333 reflection of the ninth undulator harmonics at 61.5 keV)
were reduced (e.g. by a factor ≈ 70 for the third harmonic) by detuning the second
crystal of the monochromator ≈ 0.5” (≈ 20 % of the Si 111 Darwin width).

Fig.4.30 shows the configurations used to measure the transverse coherence of the beam.
From equation 4.11 it is possible to see that it is possible to obtain the angular source
size (in the approximation of a Gaussian distribution for beam) by using the coefficients
of the Fourier transform of the image of the grid (at the spatial frequency corresponding
to the inverse of the period) for two distances, in our case DT /4 and 3DT /4. We
collected a dataset of three images for each position: a darkfield image without the
beam, a flatfield image with the beam but without the grid and finally a fullfield
image, with the beam and the grid. In order to correct for “hot” pixels in the camera,
which give fixed white spots, the darkfield was substracted from both the other images.
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Afterwards, to correct for the presence of inhomogeneities in the beam, the resulting
images are divided, fullfield/flatfield.

Figure 4.30: Talbot configurations used to measure the transverse coherence after optical
elements: a) in transmission (filters, windows) b) in diffraction (monochromators, beam
splitter). From [162].

In order to measure the increase in angular source size (resulting in a smaller transverse
coherence length) arising from imperfections in the diffracting crystals, it is necessary
to measure the angular source size of the beam impinging on the sample. This was
done simply by collecting the two images in transmission without any sample. The
values obtained were 0.3×1.2 µrad, slightly larger than the theoretical value (0.2×0.8
µrad). This is related to the presence of optical elements (monochromator, beryllium
windows and diamond filter) that disturb the wavefront.
To analyze the data I used a program written by Rafael Klünder (which is an improved
version of a previous one by Peter Cloetens and Pierre Bluet). One of the improvements
was the possibility of correct small misalignments of the grid with respect to the camera.
Also, the two corrected images can be slightly misaligned, and a translation correction
was made in order to have them overlapping exactly. Another point in the analysis that
was improved compared to the previous versions was the leakage correction. Leakage
is a problem that arises when using a Fast Fourier Transform of a signal which is not
periodic in the sample window. This results in a smearing out of the amplitude of
the real frequency into adjacent frequencies. In order to correct for this effect, two
processes are effectuated on the data. First, the window is automatically cut pixel
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sample reflection α0 [µrad] S [µm]

reference - 0.32± 0.05 48± 8
diamond Ib (100) 022 1.7± 0.2 255± 30
diamond Ib (111) 111 0.91± 0.13 137± 20
diamond IIa (100)(top plate) 400 0.65± 0.12 98± 18
diamond IIa (100)(middle plate) 400 1.4± 0.2 210± 30
diamond IIa (100)(top plate) 022 1.3± 0.15 195± 23
diamond IIa (111) 02̄2 1.4± 0.3 210± 45
diamond IIa (111) 111 0.85± 0.15 128± 23

Table 4.2: Angular source size for the reference beam and for different diffracting dia-
monds.

by pixel until the amplitude of the coefficient of the Fourier transform at the spatial
frequency 1/a is maximised. Second, the signal is multiplied by a function, called the
Hanning truncation function defined as

H(x) = cos2
(
πx

2w

)
(4.12)

Where w is the width of the as-cut window. The user defines a Region of Interest (ROI)
in the image. After the corrections described previously, a Fourier transform of the data
in both the vertical and the horizontal direction is performed. The angular source size
is obtained by inserting in equation 4.11 the intensities of the Fourier-transformed
coefficient at the frequency 1

a for each propagation distance.
With the configuration shown in fig.4.30, it is possible to measure the coherence of the
beam either in transmission or in diffraction. A summary of the results in diffraction is
shown in tab.4.2, since in transmission the coherence appears to be always preserved.
All the data were collected using horizontal geometry, i.e. the diffraction vector was
horizontal. Moreover, the beam was monochromatized by a double silicon monochro-
mator, diffracting in the vertical plane. Therefore, the geometry was a dispersive in
both the horizontal and vertical direction, resulting in a diagonal band diffracting at
each angular position of the sample.
For all the samples there is a considerable increase of the source size, from a factor of
two to a factor of more than 4. The biggest values are for the type Ib diamonds and
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Figure 4.31: Example of ROIs and ROI displacement, shown on top of a diffraction image
recorded at 300 mm from the sample. The coherence is calculated using all the pixels inside
the ROI and the value is recorded in the top-left region of size equal to the displacement.
Sample: 100 oriented, HPHT IIa crystal, reflection 400, and horizontal diffraction.
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Figure 4.32: Example of the local coherence map of the sample shown in fig.4.31. ROI
size 200×200 pixels, ROI-displacement 5 pixels.
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for the symmetric Laue reflections, whilst the smaller values are obtained compared to
the symmetric Bragg (for the same plate).
Recently, I’ve extended the main program, in collaboration with Rafael Klünder. By
inserting two parameters, ROI size and displacement (fig.4.31), the software calculates
the coherence over the entire image and produces a map of vertical and horizontal
angular source sizes. In order for the program to analyze the data correctly, a lower
limit on the ROI size of ≈ 150×150 pixels (100×100 µm2) has been used. There is no
theoretical lower limit for the smaller displacement, but the time of calculation increases
quadratically; in practice a displacement of 25 pixels gives a good compromise between
calculation time and the resolution obtained on the coherence map.
The idea behind this extension to the original program is to try to measure the local
effect of crystalline defects on the coherence properties of the diffracted beam. More-
over, by simply making a histogram of results “pixel by pixel”, it is possible to obtain
statistically valid values, such as the mean angular source size and standard deviation.
The results obtained are comparable with the previous version of the software.
The advantage of the local mapping of the coherence is shown in fig.4.32 using the
data obtained for the 100-oriented sample in fig.4.31. It is clear that the dislocations
in the bottom-left part of the image increase the angular source size dramatically. The
rest of the crystal seems better, but on average an increase of the angular source of
approximately three times is obtained even in the more perfect region.
All the diamonds tested increased the angular source size, partially spoiling the coher-
ence of the beam. Since the quality of the synthetic diamond bulk has been shown in
the previous sections to be in some cases very good, we think that the problem still
resides mainly in an imperfect finishing of the diamond surface or could be related to
a small bending of the sample (some samples are rather thin, varying from 200 to 700
µm). Efforts for the future are concentrated in this direction: to improve the polishing
process, in some cases by finding alternative methods, and to characterize not only the
surface profile but also the damaged sub-surface layer.

4.2.4 Surface sensitive techniques.

Polishing diamonds is not an easy task, since diamond is among the hardest of materi-
als. Nevertheless, diamonds for jewellery have been polished for centuries, and are still,
using the so-called scaife technique. In this technique, a cast iron wheel (called a scaife)
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hkl Fhkl integr. refl. tex [µm] tabs [µm]

111 17.67 1 2.21 630

220 16.00 0.60 3.99 1029

400 12.45 0.36 7.25 1456

333 7.52 0.21 15.58 1890

Table 4.3: Structure factor, integrated reflectivity, extinction and absorption depth values
for 1 mm thick diamond at 300 K calculated using the XCRYSTAL tool in XOP, E = 12 keV.

charged with diamond powder is used. The polishing process is strongly anisotropic:
the wear rate strongly depends on the crystallographic orientation of the surface be-
ing polished and on the direction of the polishing [163]. This is well known by gem
polishers, who categorize diamond surfaces in “hard” and “soft” directions. The softer
directions are the 〈100〉 on {110} and {100} surfaces (with the former being the softest)
whilst the hardest are all directions on a {111} surface. It has been recently shown
using molecular dynamics simulations that during mechanical polishing of diamonds
the crystal undergoes an sp3 to sp2 order-disorder transition resulting in the formation
of an amorphous layer [164]. The growth rate of this layer depends on orientation and
the difference originates in the way the crystal bonds are broken. At the same time, the
{111} surfaces are the most interesting if the crystal is to be used as Bragg monochro-
mator, due to the largest structure factor and consequently largest integrated intensity
of the 111 reflection, see tab.4.3 where the different integrated intensities have been
calculated for a diamond sample 1 mm thick and at an energy of 12 keV. The structure
factors are expressed in units of Thomson scattering length (re = 2.82×10−15 m). The
integrated reflectivities are obtained multiplying the reflectivity curve by itself and they
have been normalized to the integrated intensity obtained for the 111 reflection. More-
over, a large structure factor results also in a small extinction depth, making the 111
reflection more sensitive to sub-surface distortion than any other symmetric reflection.
Therefore, alternative methods to the mechanical polishing need to be considered in
order to obtain well-polished {111} surfaces. One method that avoids polishing is
by cleaving the crystal. Cleavage is the tendency of a crystal to split along some
definite crystallographic orientations. Diamond cleaves preferentially on the {111}
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surfaces. A theoretical explanation has been recently given [165] relating it to a much
lower strength and energy for fracture on the {111} planes compared to other planes.
Unfortunately, the cleaved surfaces normally appear not to be atomically smooth, but
to present terraces, [166, 167]. Other alternative methods of polishing diamonds, such
as chemo-mechanical, electrical discharge or thermo-chemical polishing, are presented
in the reviews by Malshe, et al. [168] and by Chen and Zhang [169].
The thermo-chemical polishing was investigated by our group at the ESRF, in collabo-
ration with the University of Johannesburg. The results obtained have been submitted
to the proceedings of the XTOP 2010 conference [170]. Polishing using a hot-metal
plate was introduced by Grodzinsky in 1953 [171] and has been recently developed by
Yoshikawa [172]. Different metals have been tested for the polishing wheel but the
highest polishing rate is obtained using very pure iron. By pressing a diamond on a
heated metal plate, carbon atoms are diffused from the diamond to the plate itself.
This process will remove atoms from the diamond surface and leaves it flatter. The
system implemented at the iThemba Labs in Johannesburg uses an iron wheel heated
to around 810-850◦C, 4.33. The load on the samples (pressing them onto the hot metal
plate) was 0.1 N and the polishing time was 4 hours.

Figure 4.33: The Hot-metal polishing apparatus.

In this study, three diamond samples were characterized, both at the University of
Johannesburg and at the ESRF. The characteristics of the three samples are shown in
table 4.4. The miscut angle (the angle between the lattice planes and the surface of the
crystal) of the samples discussed here was determined during the experiment at ID01
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Sample 1 Sample 2 Sample 3

dimensions [mm3] 4.5×5.8×0.69 6.0×7.6×0.69 4.9×5.9×0.78

first surface as-grown + HMP HMP lapped + HMP
miscut (‖) 0.23◦ 0.02◦ 5.20◦

miscut (⊥) 0.04◦ 0.02◦ 5.20◦

second surface cleaved cleaved lapped
miscut (‖) ≈ 0◦ not measured not measured
miscut (⊥) 0.40◦ not measured not measured

Table 4.4: Samples parameters. The miscuts were measured in two orthogonal directions,
indicated with ‖ and ⊥.

by measuring angular positions of the symmetric 111 reflection, after having carefully
adjusted the surface for the XRR data collection.
In our experiments we wanted to study both the roughness of the surface and the depth
of the deformed layer created (if any) during the polishing process, using respectively
X-ray reflectivity and Grazing Incidence X-ray Diffraction (in-plane). It needs to be
pointed out that our understanding of the technical requirements to perform the ex-
periments increased after each experimental session. For example, the requirements on
the crystal plates are very stringent: the miscut angle needs to be smaller than the
critical angle in order to be able to perform GID studies. For this reason, we decided
to work at lower energy (7 keV for XRR, 8.5 keV for GID) in order to maximize the
critical angle. To work at even lower energies would have required the beam path to be
under vacuum to minimize absorption. We decided to avoid this since it would limit
the number of samples that is possible to analyze due to the long time to switch from
atmospheric to low pressures.

4.2.4.1 Optical surface profile and AFM results

Fig.4.34 shows the optical surface profiles for both surfaces of two diamonds (sample 1
and sample 3, sample 2 being very similar to sample 1).
These maps are obtained by Vertical Scanning Interferometry (VSI) using a WYKO
NT9300, working with filtered white light at ≈550 nm. The vertical resolution is
≈0.5 nm rms (root mean square) for a highly rough surface. The lateral resolution
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Figure 4.34: Surface morphology of diamond samples measured with the Vertical Scan-
ning Interferometer at the ESRF Metrology Lab. a) sample 1, Hot Metal Polished b)
sample 1, cleaved, c) sample 3 lapped with a 5◦ miscut + Hot Metal polished, d) lapped
5◦ miscut.

depends on the objective; it can be 4 µm, 2.2 µm and 0.5 µm for the magnifications of
2.5x, 5x, 50x, respectively. In order to cover the whole surface of each diamond, since
they are larger than the field of view of the objective, a microstitching interferometry
technique is used. This consists of taking sub-apertures but overlapping them, and
reconstructing the topography through the computational assemblage of the image
fields obtained by VSI. The Hot Metal polished faces have deformed profiles, with a
rms roughness of almost 1 µm. The cleaved surface shows a deeply terraced profile,
with height differences of several µm. Sample 3 surfaces are curved, and have height
differences across the face of ≈1 µm. This is due probably to small instabilities of
the goniometer head during the polishing process; improvements in this direction are
already being made by our collaborators in South Africa.
Micro roughness analyses have also been performed, over four regions of approximately
100×130 µm2. On the polished side the roughness is ≈20 nm for sample 1, ≈100 nm for
sample 2, and ≈5 nm for sample 3. The polished side of sample 3 is locally smoother
than sample 1 and 2, and has some characteristic grooves, due to the lapping process.
The roughness on the cleaved surface is almost the same for all samples, the value
being close to ≈6 nm locally. AFM results confirm VSI analysis. In samples 1 and 2,
several µm of roughness characterize the Hot Metal polished face, and the cleaved face
appears locally smooth on a single terrace. Sample 3 was lapped on both faces, and
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some characteristic grooves are visible on the unpolished face. The opposite face was

analyzed before and after the Hot Metal polishing process 4.35. Polishing appears to

smooth out the grooves a little.

Figure 4.35: AFM analysis of sample 3. Surface before (on the left) and after (on the
right) the Hot Metal polishing process. In the image on the right the roughness is ≈ 5 nm
over a 15×15 µm2 area.

4.2.4.2 Sample preparation

The original carbon surface of diamonds can be rapidly polluted by airborne contam-

inants, or by contact with other material surfaces. Metal traces derived from the

polishing process, and particulates in the atmosphere could be responsible for the pres-

ence of thin layers on the diamond surfaces which are then evidenced in the common

surface investigation methods. In order to minimise surface contamination, before the

XRR and GID analysis, the diamonds were cleaned in a boiling (≈90◦C) acid mix-

ture of (HCl:HNO3) in a molar ratio 1:1 for ten minutes and an acid preparation

(H2SO4:HNO3) with a 3:1 molar ratio at boiling temperature (≈250◦C), and subse-

quently stored in deionised water-filled hermetic ampoules. The acid etch applied is a

modified process based on [173] and leaves an oxygen terminated surface [174]. During

the experiment, the samples were exposed to normal atmosphere for several minutes,

before the X-ray data collection which was carried out in a helium atmosphere. The

contamination in air to a level significant for the sensitivity of the techniques used

cannot be discounted.
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4.2.5 Grazing Incidence Diffraction

For the GID measurements an energy of 8.5 keV was used (the reason for this was
that at 7 keV, 2θB for the 220 reflection is close to 90◦, resulting in an impossibility of
the detector, attached to the ν rotation of a six circle diffractometer, to move out of
the plane of incidence). The incident beam was limited to 0.5×0.7 mm2 (V×H). The
scattering geometry was vertical, i.e. sample mounted vertically, in order to exploit
the smaller vertical divergence of the beam. Detector slits where 0.4×5 mm2. The
data were collected using a NaI scintillator counter (Cyberstar). In order to study the
depth of the distorted region due to the polishing, we collected GID scans at different
incidence angles. Two types of scans have been recorded, namely radial and transverse
scans together with reciprocal space maps. The radial scans are sensitive to the d-
spacing changes whilst the transversal scans measure the mosaic spread.

3 nm 10 nm

2 μm 7 μm

Figure 4.36: Example of radial scans for the sample 1, reflection -202, E= 8.5 keV. It
is possible to notice, at small penetration depth a broad peak related to a layer under
compressive strain.

Fig.4.36 shows an example of radial scans collected for sample 1, reflection -202. The
penetration depths are estimated from the angle of incidence using eq.3.9. The ex-
perimental data are a combination of bulk, surface and background contributions to
intensity. A higher, narrow peak originates from the bulk, while a low, broad peak
originates from the sample surface. The curve has been modelled as the sum of a
Pseudo Voigt function (for the contribution from the bulk), a split-Lorentzian function
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1 (surface contribution) and a constant value (background). In addition the normal-
ized areas under each curve were calculated and compared to assess the contributions
arising from bulk and surface. The analysis of these data was performed by Genziana
Bussone as part of her Master’s thesis.

Figure 4.37: Comparison of the strain estimations for the cleaved and Hot Metal polished
face of sample 1 as a function of the penetration depth.

The in-plane grazing incidence diffraction analysis shows clearly the difference between
the two faces of sample 1. The cleaved face is locally smooth; in fitting the curves, the
contribution of the background intensity is insignificant compared to that of the bulk.
At greater penetration depths an increase of the background, attributed to defects in the
bulk, is observed. On the Hot Metal polished surface, the polishing process produces a
deformed surface layer which gives high background and surface contributions at small
penetration depths. Both background and surface contributions decrease as penetration
depth increases, as the higher quality bulk starts to dominate the measurement. In
reflection -202 radial scans, a strong asymmetry of the surface peak can be observed
for depths less than 4 µm, the diffraction from the surface layer being displaced from
that of the contribution from the bulk. It is possible to obtain the strain directly from
the displacement of the surface peak. The strain calculation indicates a compressively-
strained, near-surface region a few µm deep. The strain calculation for the cleaved
face, considering the same reflection, shows a region a few micrometers deep ( 4 to 7

1a split function consists of two functions with different FWHMs but same height, allowing asym-
metric peaks to be treated [175]
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µm) under a smaller compressive stress. At greater penetration depths, more than 7
µm, all data tend toward bulk behaviour. In contrast, the 0-22 reflection of both faces
shows approximately bulk behaviour for all penetration depths. Thus it appears that
the surface strain is anisotropic, as shown in fig.4.37.

Figure 4.38: Comparison of the FWHM of the peak for the transversal scans, for the
Hot Metal polished and cleaved faces of sample 1 for two directions (-202 and 0-22) as a
function of the penetration depth.

The transverse scans can be interpreted by considering the variation of the FWHM of
the fitted curves. The broader the FWHM, the more the variation in misorientation of
the mosaic elements in plane. The results are shown in fig.4.38. In the top few microns
of the Hot Metal polished face, the FWHM values are higher than those at greater
depths (tending to bulk), consistent with a deformed surface region. For the cleaved
face, the FWHM values vary less with penetration depth, that is, the mosaic spread at
the surface is no greater than in the bulk.

4.2.6 X-ray Reflectivity

Measurements of specular and transverse diffuse reflectivity curves have been performed
in order to obtain information about the roughness, density, thickness and the interfaces
of thin layered structures apparent in the samples. The true specular reflectivity was
obtained by subtracting the average forward-diffuse scatter ±0.12◦ either side of the
specular peak, from the specular XRR data. The fitting was performed by Tamzin
Lafford using the Bede REFS software [176].
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Figure 4.39: True specular reflectivity of sample 1, Hot Metal polished and cleaved
surfaces.

The XRR data do not show Kiessig fringes from the thick (≈ 4 µm) deformed layer,
detected through GID, but the effects of a modified density and effective interface
width are present. The thickness of this layer was therefore fixed in the fitting process
in accordance with the VSI results. The true specular reflectivity data for sample 1
could be fitted only by including thin low density layers near the surface fig.4.39, which
could derive from surface contamination. No repeatable, unique fit was obtained for
the data from sample 2.
The differences in roughness for the opposite faces of the samples are clear from a
comparison of profilometry and transverse diffuse XRR data, fig.4.40.
However, the roughness indicated by XRR fitting is much less than that indicated by
the profilometer. With roughness (damage) a few microns deep, this is more likely to
be reflected in XRR in reduced density values of the thick layer than in the roughness
parameter, which is valid only up to ≈35-50 Å. Fitting the specular reflectivity of
sample 1 required layers of 40-55% of bulk density, with two thin surface contamination
layers totalling 45 Å. Fitting data for the cleaved face, the thick layer density was very
similar to bulk density, while the surface contamination layers (totalling 116 Å) ranged
from 94% to 105% of bulk density, with some uncertainty.
The absence of a clear specular peak in the transverse diffuse reflectivity data for the
polished side of sample 3 fig.4.41 clearly shows that the surface is either very rough or
very curved. The VSI data (fig.4.34.c-d) show that the surface is curved.
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Figure 4.40: Transverse diffuse scattering of sample 1, Hot Metal polished and cleaved
surfaces.

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

-0.25 -0.15 -0.05 0.05 0.15 0.25

N
or

m
al

is
ed

 re
fle

ct
iv

ity

qx [Å-1]

qz = 0.031

qz = 0.046

qz = 0.062

qz = 0.062

qz = 0.124

qz = 0.248

Sample 3

Figure 4.41: Transverse diffuse scattering of sample 3, Hot Metal polished surface. There
is very little specular reflectivity, indicating either a very rough or a highly curved surface.
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Chapter 5

Improvements to polishing of
silicon crystals and beryllium
windows

In this chapter I will present results obtained in the characterization of materials, mainly
high quality single crystal silicon and ultra high purity beryllium foils, used as optical
elements that should not disturb the wavefront, spoiling the coherence properties of
the synchrotron beam.

5.1 Improvements and quantification of silicon crystals
processing at the ESRF Crystal Laboratory

Thanks to the huge investment made in the last decades by the electronic industry,
[177], it is possible to obtain silicon crystals with a very high quality and a residual
strain of the order of 10−8, [157].
In order to be used as optical element, the crystal needs to be cut into the foreseen
shape and the surfaces need to be polished with high quality. This is done in different
steps that, for what concerns the ESRF, are often made at the Crystal Laboratory:

• cutting the plates from the silicon float zone wafer with diamond saw (76 µm
grain);

• rough lapping using silicon carbide (SiC) powder (37 µm) mixed with water;
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• chemical etching for 3 to 5 minutes in a bath made of a mixture of nitric acid
(HNO3) and hydrofluoric acid (HF) in a ratio 1:4 and soft lapping with SiC of 17
µm;

• mechanical polishing (also called optical polishing since it results in mirror-like
surfaces), using a slurry of diamond powder with 1 µm grain size and alcohol.
For this process the polishing plate is covered by a silk cloth.

It is known that processing of crystals induces lattice deformations in the crystal,
[178, 179], in the form of a cold deformed layer. This layer creates an elastic strain
in the crystal underneath whose strength decreases with depth. The thickness of the
deformed layer is proportional to the dimension of the grain used. Therefore, each step
is required to remove the deformed layer from the previous step but at the same time,
it creates a new thinner deformed layer. One way of removing a deformed layer is to
chemically etch it away; however, as it will be shown in the results, etching results
in a modulation of the surface, called “orange peel”. Depending on the applications,
this modulation may be tolerated or not, e.g. for small angle scattering it needs to be
minimised or avoided.
Another way of removing a deformed layer is to use a mechano-chemical polishing,
which uses very small grains and leaves a flatter surface compared to the etching. At
the ESRF Crystal Laboratory this consists of two steps. In the first step it is used a
slurry of colloidal silica (Grace Davison LUDOX R© P-W30) with grain size dispersed
around an average value of 30 nm and a pH of 9. The second step is done by replacing
the pad used in the previous step with a polyurethane embossed pad named ÅKERS
SUPRA5 and using the same slurry as before.
The removal rate of this technique is rather low (typically of the order of 1 µm per
hour) and therefore it can be used only crystals which have a very small (few µm thick)
deformed layer.
In order to find the critical points of the actual procedure, we performed different
polishing tests.

5.1.1 First test - Localization of the main problem.

Normally at the Crystal Laboratory, the way to inquire whether a crystal is well polished
or not is by inspection via optical microscopy. Fig.5.1 shows three images, each showing
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the state of the surface after a removal of respectively 9 µm, 13 µm and 19 µm. Many
spot-like features are visible on the first image; these are indentations related to the
lapping step. In the second image, most of the indentations appear to be removed.
Finally in the last picture, no more indentations are visible. At this stage, the crystal
was considered as ready for the following final step, the mechano-chemical polishing.

9 µm removal 19 µm removal13 µm removal
200 μm

Figure 5.1: Optical microscopy of silicon crystals after different polishing times and
consequently different thicknesses removed, measured using an infrared interferometer.

In order to verify whether this procedure was accurate enough we made a series of 111
oriented silicon samples. The reason to work with 111 oriented samples is twofold: first,
as shown previously in section 4.2.4, this is the preferred direction for Bragg monochro-
mator. Second, it allows for the collection of non-dispersive X-ray topographs with the
standard double Si111 monochromator of BM05. The description of the different sam-
ples is shown in tab.5.1.

Step/Sample Description Samples Removed

1 Surface Lapping All
2 Optical Polishing 2 to 6 ≈ 20 µm
3 1st etching 3-4-5 ≈ 10 µm
4 2nd etching 4-5 ≈ 10 µm
5 3rd etching 5 ≈ 10 µm

Table 5.1: Series of samples for the calibration of the optical polishing process

The three etching steps were done in order to obtain a rough idea of how thick is the
deformed layer due to the lapping and mechanical polishing. The etching reaction is
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composed of two steps [180, 181]:

3 Si + 4 HNO3 → 3 SiO2 + 4 NO + 2 H2O

SiO2 + 6 HF → H2SiF6 + 2 H2O

the first step is oxidation of silicon by nitric acid followed by dissolution of SiO2 by the
hydrofluoric acid. The samples have been characterized using different methods, namely
High Resolution X-ray Diffraction, X-Ray Topography, Optical Profilometer and AFM.
The HRXRD measurements have been carried out initially with a laboratory source
first and then again afterwards at ID18.
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Figure 5.2: Normalized rocking curves of the different samples from the first polishing
series. Cu−Kα1 radiation, 111 reflection.

For the laboratory source setup, a crystal with an asymmetry angle of 9.5◦ from the 111
direction has been prepared by the crystal lab. This crystal used in grazing incidence
geometry (with asymmetry factor b=-0.2 for Cu-Kα1 radiation) act as a monochromator
and as a collimator, producing a radiation with a divergence 5 times smaller than the
acceptance of the sample. In order to avoid contaminations of the Cu-Kα2 radiation, a
double set of slits has been used at the exit of the X-ray tube.
An example of the normalized recorded rocking curves of the 111 reflection for the
series of samples is shown in fig.5.2. It is obvious (and expected) the large difference
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between the rocking curve for the lapped (sample 1) and optical polished (sample 2)
samples, due to the bad surface status. But already after the first etching (sample 3),
the different rocking curves become indistinguishable and they agree perfectly with the
theoretical values.
A slight difference is recorded if the rocking curves are measured with higher order re-
flection (444) using the highly monochromatized beam produced at ID18, E=21.541 keV
(corresponding to the 151Eu nuclear resonance transition) with ∆λ

λ ≈ 10−7 , see fig.5.3.
In this case it is possible to discern a small difference in the tails between samples 3 -
4 and sample 5.
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Figure 5.3: Normalized rocking curves of the different samples from the first polishing
series. E = 23.871 keV, 444 reflection.

The difference between the samples appears to be even clearer when comparing X-ray
topographs of the different samples, fig.5.4. The topographs are collected at BM05
on the flanks of the rocking curve, non-dispersive configuration at 20 keV. The strain
detection limit for these conditions is ≈ 1.4 × 10−7, obtained from the slope of the
rocking curve, which is 0.35”−1 and by considering that it is possible to detect intensity
variation of the order of 1%. In the lapped sample 1, the deformed layer creates a grainy
structure of deformations. In sample 2 scratches coming from the optical polishing are
clearly visible, together with strong indentations, black spot-like contrasts, coming from
the lapping.
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After the first etching (removal of ≈ 10 µm), there are still scratches and indenta-
tions visible. After the second etching (total removal of ≈ 20 µm), all the scratches
are removed, implying that they are located in the upper part of the deformed layer.
Nevertheless, indentations are still visible, i.e. they are located deep in the layer. Fi-
nally, with the third etching (total removal of ≈ 30 µm), no defects are visible in the
topographs. This implies that the thickness of the deformed layer is between 20µm and
30 µm.
The roughness measurement obtained using the optical profilometer and the AFM at
the Metrology Laboratory are shown in fig.5.5. The data labelled 5X and 50X are
obtained using a Micromap Promap 512 optical profiler, each representing the possible
magnifications. The field of view for the 5X is 1.64×0.83 mm2 with a spatial resolution
of 2.5 µm; for the 50X, field of view is 163× 83 µm2 and a spatial resolution of 0.5 µm.
The AFM measurements, have a field of view of 15× 15 µm2 with a spatial resolution
of 30 nm. It is clear that the samples which have been etched for a long time present a
rough surface with strong low frequency modulations (“orange peel”), visible especially
in the values of the rms-roughness measured at low magnification (5X).
From this first polishing test we started to doubt whether the removal of material done
by the optical polishing was too small, leaving the crystal with a thick deformed layer
and with the indentations produced during the lapping. Therefore we decided to make
a second test in order to calibrate the removal of the deformed layer by the optical
polishing.

5.1.2 Second test - Calibration of the optical polishing.

In the second polishing test, we try to define how much material is necessary to remove
in order to completely eliminate the indentations after the optical polishing.
We decided to procede in two different ways, producing two different series of sample.
In the first series (samples 21 to 24) we increased the time of optical polishing for each
crystal, starting with all the crystals, then removing sample 21 and continuing with
the rest and so on. We obtained therefore four samples with a different thickness of
material removed, namely 19 µm, 31 µm, 66 µm and 80 µm. The removed thicknesses
were measured using a Fogale Low Coherence Interferometric Sensor, which accuracy
is of ±1 µm.
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Figure 5.5: Roughness root mean squared values of the different samples from the first
series. The increase in roughness at low spatial frequency (5X) is clear for the etched
samples.

For the second series, we decided to add one extra polishing step with a granularity
between the lapping at 17 µm grain size and the optical polishing at 1 µm, using an
intermediate slurry with silicon carbide of 9 µm. After this extra step, the four samples
have been polished like for the previous series, obtaining an estimate thickness removal
of 14 µm, 29 µm, 56 µm and 73 µm.
The two series of samples have been characterized using Rocking Curve Imaging, [102].
We collected 101 images along the rocking curve with a step size of 0.2”, using the
symmetric 111 reflection at E=20 keV. The images have been analyzed using the Visrock
software, [143]. The FWHM maps appear to show all the deformations in the crystal
and we decided to use them.
Some of the results obtained are presented in fig.5.6. For both series it is clear the
complete disappearance of indentations spots in the topographs for removal of the
order of 30 µm and above. No particular difference was noticed between the series of
samples with the intermediate lapping with 9 µm grain and the one without this step.
Since the extra step brings technical complications (related to the limited number of
polishing machines available at the Crystal Lab) we decided to not pursue this solution
any longer.
These results confirmed what was obtained with the previous rough estimation made
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SAMPLE 21 

SAMPLE 22 

SAMPLE 23 

SAMPLE 24 

SAMPLE 31

SAMPLE 32

SAMPLE 34

SAMPLE 33 

19 μm

31 μm

66 μm

80 μm

14 μm

29 μm

56 μm

73 μm

Figure 5.6: Rocking Curve Imaging - FWHM maps of the samples from the second
polishing test; in red are indicated the estimated removed thicknesses.

via etching. It is necessary to remove at least 30 µm of material during the optical
polishing. In order to be on the safe side, we decided that for all the future crystals
polished at the Crystal Laboratory at least 40 µm needs to be removed.
Finally, we decided to also optimize the next polishing step, the mechano-chemical
polishing.

5.1.3 Third test - Optimization of the MCP.

An important parameter for the Mechano Chemical Polishing step is the pH of the
slurry used. Using the same philosophy as before a series of samples were prepared in
an identical way (lapping, optical polishing with removal thickness of at least 40 µm).
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Sample 41 was put aside, as witness of the optical polishing. The other samples were
mechano-chemical polished in three different ways:

• samples 42 and 43 using pure Grace Davison LUDOX R© P-W30, ph 9, for respec-
tively 12 and 24 hours;

• samples 44 and 45 using a mixture of LUDOX R© P-W30 and GIGAPUR detergent,
with a final pH of 12, for respectively 12 and 24 hours;

• samples 46 and 47 using a mixture of LUDOX R© P-W30 and KOH, final pH 10.2
1, for respectively 12 and 24 hours.

The layer removed was measured using the Fogale Low Coherence Interferometric Sen-
sor. The values obtained vary between 2 µm and 20 µm, but they are not directly
correlated with the polishing time or the pH used. It seems that other factors may
influence the removal speed, e.g. the quality of the pad or of the slurry may change
with time. The samples were characterized using Rocking Curve Imaging at BM05 and
using optical profilometer and AFM at the Metrology Lab. From the X-ray topographs
collected, we established that in the case the removal is below 3 µm, scratches are still
visible. For removal above 10 µm, the scratches disappeared, but “clouds” of little dots
appear in the topographs. We conclude that a removal between 3 µm and 10 µm seems
optimal, but further tests to obtain a better quantification are necessary. The influence
of the pH value on the quality of the crystals was not very clear. For what concerns
the roughness, better values (between 3 Å at 50X and 9 Å at 2.5X) were obtained with
higher pH (10.2 and 12) compared to the pH 9 (rms-roughness between 4-5 Å at 50X
and 17 Å at 2.5X).

5.2 Coherence measurements of the polished samples

The set of samples was also used to measure the transversal coherence of the X-ray
beam after diffraction. In this way it is possible to verify the influence of the surface
quality on the coherence. Two different experiments have been performed: the first one
at ID19, using the Talbot effect already discussed in 4.2.3 for the diamond samples and
the second at ID06 using an interferometer based on bi-lens [15].

1The value of pH 10.2 has been obtained after private discussion with colleagues from Max Planck
Institute for solid state research in Stuttgart and with prof. Yasunaga from Tokai University
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5.2.1 Talbot effect measurements

As in the previous case for the diamond samples 4.2.3, the beam energy was 20.5 keV,
the grid period 6 µm and the Talbot distances 300 and 900 mm. An example of the
results obtained for the sample 21 (optical polished with a removal of 19 µm is shown
in fig.5.7.
All the deformations that are visible in the topograph (on the left) are visible also in
the calculated coherence maps. It is clear that the indentations, seen here as elongated
deformations in the vertical direction, disturb considerably the coherence, increasing
the vertical angular source size from 0.3-0.5 µrad to 1-2 µrad.
It is important to notice that the scratches appear as dark lines in the coherence map,
i.e. as if they improve the coherence. In reality, the calculated values of source size on
the scratches are zero, which has no physical meaning. The program fails to correctly
calculate the coherence locally in the neighbourhood of the scratches, and returns a
null value.
In order to have an estimation of the angular source size after diffraction from each
silicon crystal a statistical analysis was performed on the obtained 2D maps. In fig.5.8
is shown an example of histogram corresponding to sample 21 and a ROI of 100x100
pixels.
The null values are automatically removed. The mean values and standard deviations
of every map for some of the samples are compared in fig.5.9.
The general behaviour of the angular source sizes measured with the different samples
is in good agreement with the previous X-ray Topography characterization, i.e. less
deformations visible on the topographs implies a smaller angular source size.
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Figure 5.8: Histogram of the vertical coherence angular source size map of sample 21,
ROI 100x100 points.
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5.2.2 Coherence measurements using bi-lens-based interferometer

Recently, Snigirev and co-workers [15] presented a novel type of X-ray interferometer
employing a bi-lens system consisting of two parallel Compound Refractive Lenses
(CRL).

a)

b)

Figure 5.10: a) schematic view of the bi-lens system, b) scanning electron microscope
images of a set of bi-lenses, used for different beam energies (from [15]).

Fig.5.10a) shows the operating principle of the interferometer. Two identical parallel
planar CRLs are transversally separated by a distance d. Each CRL focuses the incom-
ing beam at a distance zf = F/(1 − F/z0), where z0 is the distance from the source
to the lenses and F = R/2Nδ is the focal length of the CRL, R being the radius of
curvature of one parabolic surface, N the number of lenses and δ the decrement of
refraction index, see eq.3.6. If the distance between the lenses d is smaller than than
the transverse coherence length lt, see eq.2.28, then each lens is illuminated coherently
and will generate two waves which will interfere at a distance z1 > zfd/Aeff, with Aeff

the absorption limited effective aperture of the lens. The authors demonstrated that
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it is possible to measure the value of the source size from the visibility of the fringes
using the following formula:

S = Λz0
zf + z1

(
− lnV

3.56

) 1
2

(5.1)

where Λ is the fringe spacing defined as Λ = λz1/d and V is the visibility, defined as
V = (Imax − Imin)/(Imax + Imin) where Imax and Imin are the intensities on a peak
in a valley of the fringes. The experimental configuration used for the experiment is
shown in fig.5.11. The energy used was E=18 keV, and the different distances were:
z0 = 54 m, zf = 0.02 m, z1 = 2.98 m, d = 30 µm.

Camera

Pin-diode

Bi-lenses

Sample

Slits

X-ray

Figure 5.11: The experimental configuration used for the experiment at ID06.

Fig.5.12 shows an example of recorded interference fringes. The different coloured
regions represent the different ROI that have been analyzed. I wrote a code in Matlab
to analyze these data and to obtain the value of the source size. The program analyzes
the data inside the ROI and calculates the visibility of each fringe. The final visibility
for each ROI is then calculated as the average of the single fringe visibility, using the
standard deviation as the error.
The results obtained for the same samples at ID19 using the Talbot effect and at ID06
are shown in fig.5.13. It is important to notice the big angular source size measured
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0
12 3

Figure 5.12: An example of the fringes produced by the bi-lenses at ID06. The analysis
of the visibility was performed on the different ROI indicated with the different colours.
The image is rotate 90◦ from the original view.

at ID06 without any sample, which corresponds to a source size of 67 µm, which is
much bigger than the expected value. A possible explanation is vibrations of the
monochromator. Nevertheless, by comparing the relative increases in angular source
size with respect to the reference values for both ID19 and ID06, we see that the
behaviour is similar.
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5.3 Improvements on the polishing of beryllium windows

Most beamlines at synchrotron radiation sources use beryllium for windows separat-
ing regions with high-vacuum and normal air pressure. For a good performance it is
important that the window does not deform the wavefront. In order to obtain this, it
is essential to minimise fluctuation in the bulk material density (no pores or voids, no
density fluctuations) as well as to guarantee geometrically smooth surfaces.

1 notch 2 notches 3 notches

400 μm

Figure 5.14: X-ray radiographs of three beryllium plates, flat field corrected. It is possible
to see large inhomogeneities distributed on most of the plates. The straight feature on the
left of the images is one of the edges of the samples. The number of notches was used to
identify the samples.

In collaboration with P. Theveneau from ESRF and the company Brush Wellmann we
performed a study of the quality of the material and of the polishing of Be plates of
the ultra high purity class IF-1 R© produced by eletrofusion.
The tests were performed at ID19 and BM05 collecting phase sensitive X-ray radio-
graphs of the three Be plates (≈ 500 µm thick) by using a large sample to camera
distance after different polishing steps. Moreover, the geometrical surfaces were charac-
terized by using a Micromap Promap 512 optical profiler at the Metrology Laboratory.
In order to classify the three samples, each one had a different number of notches on
the corner, respectively one, two and three notches. The results of the first test are
shown in fig.5.14. This test was performend at ID19, using a FReLoN camera with
0.7 µm resolution and a field of view of 1.4 × 1.4 mm2. The energy of the beam was
20.5 keV and the sample-to-detector distance 0.9 m.

128



5.3 Improvements on the polishing of beryllium windows

1 notch
1 mm

400  μm

Figure 5.15: X-ray radiographs of one beryllium plate after the first polishing. The corner
of the sample is visible in the image. In the zoom on the right it is possible to clearly see
polishing grooves.

1 notch
1 mm

400  μm

Figure 5.16: X-ray radiographs of one beryllium plate after the second polishing. In the
zoom on the right it is now impossible to distinguish any features related to the Be window.
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It is clear from these images that the samples present a high number of inhomogeneities
and it is not of the necessary quality to be used as window for synchrotrons.
The situation improved after the first polishing process, as shown in fig.5.15, which
show the phase sensitive radiograph of one of the three plates (the other two being
very similar to this one). This test was performed at BM05 using the PCO camera
with a resolution of 3 µm and a field of view of 6×6 mm2 and a sample to detector
distance of 125 cm. The large inhomogeneities are not visible any longer but strongly
anisotropic polishing grooves are visible.
Finally, after a second polishing, no more features are visible on the radiographs, see
fig.5.16 (same conditions as for the previous test).
The values of the rms-roughness (expressed in µm) maesured with the optical pro-
filometer at the Metrology Laboratory for the three beryllium samples and for the first
and second polishing are shown in tab.5.2.
The roughness appears almost constant for the three magnifications after the first
polishing and is slightly smaller after the second polishing, especially at the high fre-
quency (magnification 50X). Also from the profilometer maps it is possible to see that
the polishing process is anisotropic, with straight parallel lines which are visible at all
magnifications, see fig.5.17.

1st polishing 2nd polishing

sample 2.5X 5X 50X 2.5X 5X 50X

1 notch 0.35 0.33 0.32 0.26 0.25 0.18
2 notch 0.36 0.33 0.25 0.27 0.15 0.19
3 notch 0.32 0.34 0.32 0.20 0.21 0.18

Table 5.2: Roughness - rms values, in µm for the three Be plates after the first and second
polishing

By comparing the X-ray radiographs and the data obtained with the optical profiler it
is possible to conclude that a clear improvement of the surface is visible between the
first and the second polishing. No beam inhomogeneities have been recorded with the
X-ray radiographs; nevertheless it is important to highlight the fact that the detector
to sample distance used is still very small compared to the window to detector distance
at the beamlines. Some inhomogeneities at much larger distance can still appear. To
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Figure 5.17: Profilometer maps of one of Be plates after the second polishing process,
obtained at three different magnifications.

conclude, the sample processing should still be improved, in order to have surface
modulations of less than 0.1 µm and rms roughness smaller than about 20 nm.
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Chapter 6

X-ray coherence exploited in
imaging of ferroelectric domains

In this chapter, I will present an example of applications exploiting the transversal
coherence of the X-ray beam: the investigation by coherent X-ray section topography
of ferroelectric domain behaviour as a function of temperature in periodically-poled
rubidium-doped potassium titanyl phosphate (Rb:KTP).
Before entering into the details of the experiment, I will introduce briefly some con-
cepts about ferroelectricity, together with the main applications of periodically-poled
ferroelectric crystals. Afterwards, I will describe the furnace that we developed and
characterized at the ESRF and that allowed the investigation. Finally I will present
the results obtained, together with simulations and a model proposed to describe the
behaviour of the domains at high temperature.

6.1 Ferroelectricity

Ferroelectricity is the property of some dielectrics to have a permanent polarization in
the absence of an external electric field. The discovery of ferroelectric crystals by J.
Vasalek dates back to 1920 [182]. By modifying the electric field on a plate of Rochelle
salt (potassium sodium tartrate) he recorded a hysteresis loop in the polarization, with
the presence of a residual polarization at zero electric field. The name ferroelectricity
comes by analogy with the properties of ferromagnetic materials, although the physical
natures of the phenomena are very different. By analogy with ferromagnetic crystals,
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ferroelectric crystals possess a temperature, the Curie temperature Tc, where a phase
transition from the ferroelectric to the paraelectric state occurs.
All ferroelectric crystals are non-centrosymmetric and they have one polar axis. They
belong to a larger class of crystals, called pyroelectrics, which are polarized if the
temperature is changed.
Barium titanate (BaTiO3) is an example of a ferroelectric crystal. This crystal under-
goes different phase transitions with temperature. Above 393 K, it has a perovskite
structure: this is a centrosymmetric cubic structure. Therefore the crystal is para-
electric, since all the charges in the lattice are compensated. At lower temperatures,
the crystal is subject to different structural changes, becoming tetragonal at 393 K,
orthorhombic at 278 K and finally rhombohedral below 183 K. In all these structures,
the crystal lattice is no longer centrosymmetric, and the charges are not compensated
due to a displacement of the cations Ba 2+ and Ti 4+ with respect to the O 2 – . This
displacement is in three different crystallographic directions: [100] for the tetragonal,
[110] for the orthorhombic and [111] for the rhombohedral structure.
In fig.6.1 are shown the cubic and tetragonal structures. In the tetragonal structure, the
Ti 4+ and the Ba 2+ cations are displaced slightly, by 0.1 Å, producing a net polarization
pointing, in this diagram, upwards and elongating the lattice parameter c. If an external
electric field is applied to a ferroelectric crystal it is possible to permanently switch
the polarization from one direction to the opposite, i.e. having the cations displaced
downwards.
In fig.6.2 is shown a schematic hysteresis loop of a ferroelectric crystal. Under normal
conditions, i.e. zero field and unprepared sample, the crystal will have different regions,
called domains, within which the polarization is uniformly oriented. The polarization
is differently oriented from one domain to another, which are separated by the so-called
domain walls. In this configuration, the total polarization is close to zero under a zero
applied field corresponding to the origin of the graph, O. As an external field is applied,
the different domains start to orient in the direction of the field, until the applied field
is sufficient for the crystal to become single-domain. In this condition, the polarization
reaches a “saturation” value, indicated by Ps. If the field is now decreased to zero, a
residual polarization, Pr, remains. This is due to the fact that some of the domains
remain aligned in the same direction. It is necessary to invert the polarity of the electric
field until a value called the coercive field, Ec to obtain again zero polarization. In order
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cubic

Ba

Ti

O

tetragonal

Figure 6.1: Cubic and tetragonal structures of BaTiO3. The pictures of the structures
were generated using structural data from [183] and the software Vesta. The difference
between the two structures is very small, and the best way to see it is to focus on the slight
bending of the Ti-O bonds upwards in the tetragonal structure.

to depolarize the crystal, it is necessary either to increase its temperature above Tc or
to repeat the hysteresis cycle with smaller and smaller electric field strengths until the
original position O is reached.
The applications of ferrolectric crystals are very wide-ranging: among others, they
can be used as tunable capacitors, non-volatile memory, sensors, e.g. in ultrasound
machines, or in infrared cameras. Moreover, some ferroelectrics present very high non-
linear optical properties that make them very useful as optical devices, for example in
laser optics as frequency converters via quasi-phase matching (QPM). This particular
application was foreseen for the crystal we have been studying, therefore the basis of
the theory will be introduced here.

6.2 Ferroelectric crystals used for non-linear optics appli-
cations.

When electromagnetic radiation propagates in a medium, the electric field produces a
polarization density inside the medium. This polarization can be expressed as a Taylor
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P

EEc

Ps

Pr

O

Figure 6.2: Hysteresis cycle of a ferroelectric crystal. PS and Pr are the saturation and
residual polarizations, Ec is the coercive field.

series expansion [184]

Pi(t) =
∑
j

ε0χjEj(t) +
∑
j,k

ε0χ
(2)
j,kEj(t)Ek(t) +

∑
j,k,l

ε0χ
(3)
j,k,lEj(t)Ek(t)El(t) + · · · (6.1)

where the subscript indicates the Cartesian component of P (t), the instantaneous po-
larization; E(t), the instantaneous electric field; χ the linear susceptibility; and χ(n)

are the non-linear susceptibility of order n.
When the intensity of the electric field is weak, the non-linear terms may be neglected
but in the case of high intensities, e.g. lasers, they cannot, resulting in non-linear
optical effects.
One of the non-linear effects widely used in laser technology is the so-called Second
Harmonic Generation (SHG), also known as frequency doubling. This phenomenon
was observed for the first time by Franken and co-workers in 1961 [185]. In fig.6.3 is
shown a diagram of SHG. An intense incident beam is passed through a non-linear
crystal. Inside the crystal, there will be two polarization waves, corresponding to linear
and quadratic susceptibilities. Therefore, at the exit of the crystal there will be a
wave composed of two wavelengths: the fundamental, which has the same wavelength
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Non-linear crystal

Pump-wave

Prism

residual pump

SHG-wave

Figure 6.3: Second Harmonic Generation (SHG) scheme. A monochromatic wave of
frequency ω impinges a non-linear optical crystal. At the exit of the crystal, a combination
of the pump-wave and the frequency-doubled wave is obtained (symbolically separated by
a prism).

as the pump-wave; and the SHG wave, with a wavelength that is half of the incident
wavelength. In the picture, the two waves are ideally separated by a prism.
SHG is extremely sensitive to the phase of the waves. If the phase of the two waves is
not matched, the intensity of the frequency-doubled radiation produced is very small.
In order to be phase matched, the phase velocities of the pumping and the frequency-
doubled radiations need to be equal. This implies that n(ω) = n(2ω). The waves
are said to be perfectly matched and the intensity of the SHG-radiation will increase
inside the medium, at the same time reducing intensity from the pump wave, in so-
called (pump depletion). Nevertheless, in the normal dispersion region, n(ω) < n(2ω),
resulting in different phase velocities. The result of having different phase velocities for
the two waves is depicted in fig.6.4.
The graph represents the value of the second harmonic electric field, ESH as a function
of the distance travelled, z, by the wave in the crystal. The black dash-dotted line
indicates the case of perfect phase matching, whilst the green dashed line shows the
case of zero phase matching. In the small inset are plotted the photon momenta for
the different cases. In the case of zero phase matching, the strength of the electric
field increases until the radiation has travelled a distance called the coherence length
1, defined as lc = π/∆k where k is the photon momentum. This point corresponds
to the first half of the polygon plotted in green in the inset. Starting from this point,
ESH decreases since the energy is flowing back from the frequency-doubled wave to

1not to be confused with the coherence length defined in 2.3
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the pump wave. After a distance z = 2lc the SHG wave disappears, with all the energy
reconverted into the pump wave. This phenomenon repeats periodically, with small
maxima for odd multiples of lc and minima for even multiples.

ESH

zlc 2lc

perfect 
phase 
match

quasi 
phase 
match

zero phase 
match

ESH

z

∆k

Figure 6.4: Plot of the strength of the electric field of the SHG radiation as a function of
the distance travelled inside the crystal. In the inset is presented a geometrical approach to
the phenomenon. In the case of perfect phase match, the arrows are all aligned, producing
a linear increase of ESH with the distance. If there is a phase shift of ∆k, represented with
a rotation of the photon momentum, the intensity increases until it reaches a maximum
and decreases to zero, green curves. Finally, if quasi-phase match is implemented, it is
possible to achieve an increase in the SHG radiation.

One way to match the phases is the so-called quasi phase matching. This method
was proposed in theoretical work by Armstrong and co-workers, [186] and consists of
alternating slabs of crystals with each slab being a symmetric inversion of the previous
one with respect to the polar direction. If the length of the slabs is matched to the
coherence length, it is possible to obtain the red curve in 6.4. Among the different
methods used to achieve this, we are interested in the periodic poling of ferroelectric
crystals.
Periodic poling is a method to obtain inversed domains in a crystal with widths which
match the coherence length. The method was proposed by Yamada and co-workers,
[187]. It consists in applying to a single-domain ferroelectric crystal an external electric
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field higher than the coercive field. The field is applied to periodic electrodes which
are deposited using lithographic techniques on the c+ polar face of the crystal. In this
way, it is possible to obtain a periodic structure of inverted domains. The width of
the period is matched to the coherence length, which is calculated via the dispersion
relation. When the two domains have the same width, i.e. duty-cycle 50:50, the quasi-
phase matching is the highest and is said to be of first order. Domain widths are
typically of the order of 3 µm to 40 µm.

6.3 Visualization of ferroelectric domains using X-ray

There are several methods of visualizing inverted ferroelectric domains, among others
polarization microscopy, surface etching, powder or liquid crystal decorations, atomic
force microscopy and X-ray topography techniques [188]. I will concentrate only on the
last. First of all, we need to consider that for the 180◦ inverted domains, there is no
lattice mismatch between the domains at the domain walls, unlike for e.g the 90◦ ones.
Nevertheless, since the polarity is inversed, the same diffraction spot will be hkl for
one domain type and h̄k̄l̄ for the other, composing a Friedel pair. In a Friedel pair, the
moduli of the structure factors are the same whilst the phases are inverted, therefore
no intensity variation between domains is expected within the diffracted beam under
normal conditions.
One way to visualize the inverted domains is to work in anomalous scattering conditions,
i.e. at an energy close to an absorption edge of one of the elements. If one of the atoms
in the lattice is scattering anomalously, then the amplitude of the factor structure is
different for each component of the Friedel pair. This method has been used by Nizeki
and Hasegawa [189]. They visualized inverted domains in a BaTiO3 crystal using CrKα

radiation and the 00±3 Friedel pair.
Another method of visualizing inverted ferroelectric domains is by a combination of
Bragg and Fresnel diffraction [190], and it is the method we used for our experiments.
This method requires a large transverse coherence length of the incident X-ray beam,
and can therefore be performed only at third generation synchrotron sources. As pre-
viously stated, the phase of the inverted domains is different from each reflection of the
Friedel pair. A phase jump ∆φ = φhkl−φh̄k̄l̄ is present. Therefore a periodically poled
ferroelectric crystal can be seen as a phase grating by the incoming X-ray beam if set in
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Bragg condition for a given reflection. As it has been shown in 4.2.3, a periodic object
illuminated with a coherent beam will produce a periodic pattern in both the direction
of the periodicity and in the direction of propagation of the beam.

This method has been successfully used to solve the structural matching between in-
verted domains in potassium titanyl arsenate (KTA) and potassium titanyl phosphate
(KTP), [191, 192]. It has also been successfully applied to in situ studies of the behavior
of rubidium titanyl arsenate (RTA) under an electric field [193]. In the experiments we
performed, we wanted to study the behaviour of domains at temperatures close to and
above the Curie temperature of KTA and rubidium doped KTP (Rb:KTP) crystals.
In fact, the process of transition from one stable polarization state to another with
opposite direction of the macroscopic electrical dipole remains poorly understood and
related studies on KTP and isomorphic crystal are limited. However, its understanding
is crucial for obtaining highly efficient QPM devices.

In order to perform the experiment, we developed a furnace whose main characteristic
is to preserve the coherence of the incoming X-ray beam.

6.4 Coherence preserving furnace

The furnace was developed in the Sample Environment Laboratory of the ESRF by B.
Gorges and H. Vitoux. The results of the characterization of the furnace that I report
here have been also published in an article, [194], of which I am a co-author. The
challenge in the design of the furnace concerns the facts that the crystals we want to
study are, in general, optically transparent and thermal insulators, and the experiments
needs to be performed in transmission geometry. If the sample is heated only from
below, a very large thermal gradient would be produced, provoking distortions that
would conceal the effects we are looking for. Therefore, an alternative way of heating
the sample was proposed, consisting of two black-body radiator plates located near
the sample. The radiators need to have low absorption for X-ray in the 15-50 keV
range, be chemically homogenous, with very small thickness variation, i.e. very well
polished, with good heat conductivity and high irradiation power. By considering all
these requirements, a good solution seemed to be to use single silicon crystal plates of
150 µm thickness.
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Another problem is the fixing of the sample in order to keep it free of strain when
heated. The use of glue or a clamp can introduce distortion when the sample is heated
due to the different thermal expansion coefficients of different materials. In order to
avoid this, the sample is simply rested on a boron nitride support between the silicon
plates. A thermocouple is in contact with the lower part of the sample through a hole in
the boron nitride support. Moreover, to avoid deleterious contact between the heater,
made out of nickel, and the silicon, a boron nitride framework was also fabricated. In
fig.6.5 are shown the different parts of the furnace, together with a photograph of it.

boron nitride 
framework
7 x 7 x 0.5 

mm3
2 silicon plate black 

body radiators
10 x 10 x 0,15 mm3

nickel sample holder
(10 mm diameter)

connected to the 70 W 
heater 

Figure 6.5: Left, scheme of the furnace’s sample holder. In purple, the nickel sample
holder which is connected to the resistance heater; in cyan, the boron nitride pieces; and
in grey, the silicon plates. Right, a photograph of the furnace, with an aluminium cover to
minimize heat losses.

The furnace was tested at the BM05 beamline using different crystal samples. The first
test was made to check the efficiency of the heating and the reliability of the indication
provided by the thermocouple. In order to do so, we studied the phase transition
between α and β phases in a 5x5 mm2 quartz crystal which exhibits Dauphiné twins.

α and β are two of the nine possible crystalline phases of silica SiO2 with the former
being the stable phase at low temperature and the latter being stable between 573◦C
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and 870◦C. Dauphiné twins are one of the three types of twinning commonly found in
natural quartz, together with Brazil and Japan twins, and is composed of two quartz
crystals with the same chirality (either two right-handed or two left-handed crystals)
combined. Fig.6.6.a) shows a white beam topograph of the sample at 50◦C where the
two twins are clearly visible. The sample was then heated to 600◦C, which is above
the phase transition temperature T=573◦C, fig.6.6.b). At this temperature, the quartz
is completely transformed into the β form, and the twins are reorganized into a single
crystal. In fig.6.6.c) is shown the situation after the sample has been cooled again
to room temperature, showing that the Dauphiné twins have reappeared, but in a
completely different arrangement. By this first test, we determined that the difference
between the temperature read by the thermocouple and the real temperature at the
sample was about 10◦C.

a) c)b)

4mm
4mm4mm

h

Figure 6.6: a) the quartz at 50◦C, presenting clearly visible twins. b) the crystal at
600◦C, completely in the β phase and without any twinning visible. c) the crystal cooled
down to room temperature, presenting twins again, but differently organized. Projection
of the diffraction vector represented by h.

A second test was performed in order to estimate the temperature gradient inside
the furnace, by studying the ferro-paraelectric phase transition of a 5x5mm2 BaTiO3

crystal, which has a Curie temperature Tc ≈ 121◦C. Fig.6.7.a) shows a white beam
topograph of the sample at room temperature. The crystal is ferroelectric and it is
strongly distorted by the presence of 90◦ domains. At 120◦C, the different domains
start to disappear together with the strain fields related to them, fig.6.7.b). In the
lower part of the image, closer to the heater, the phase transition is practically complete
(the strain field related to the different domains tends to disappear), while the middle
and top parts of the crystal are still in the ferroelectric state (still strongly distorted).
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Finally, in fig.6.7.c) is shown the topograph of the sample above the Curie temperature.

The crystal is almost completely in the paraelectric state, except a small part on the

upper right corner which is still ferroelectric and distorted. This gives us an estimation

of the thermal gradient, being of the order of 1◦C/mm.

a) b) c)

20 mm 6 mm 6 mm
h

Figure 6.7: a) BaTiO3 crystal at room temperature; the crystal appears strongly dis-
torted due to the presence of 90◦ ferroelectric domains. b) T=120◦C, the crystal is under-
going phase transition. The bottom part of the crystal, which is closer to the heater, is
slightly warmer and is already in the paraelectric phase. The middle and the top parts are
still ferroelectric and therefore deformed. c) T=125◦C, the crystal is almost completely
paraelectric, except at the top right corner. The arrow represents the projection of the
diffraction vector.

Finally, the last test was intended to check whether the furnace preserved the coherence

of the beam. In order to do so, we measured the coherence of the beam using the

Talbot effect as explained in 4.2.3. We measured the value of the angular source size:

(i) without the furnace; (ii) in transmission with the furnace at room temperature;

(iii) in transmission with the furnace at 800◦C. We obtained the following results: (i)

0.80±0.02, (ii) 0.98±0.02, (iii) 0.99±0.02. A slight increase in the value of the angular

source size was measured. Nevertheless, the transversal coherence length of the beam

with the furnace is ≈40 µm and does not depend on the temperature. This value is

enough for the visualization of inverted ferroelectric domains through the coupling of

Bragg and Fresnel diffraction.
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6.5 Visualization of inverted domains in KTA and Rb:KTP
crystals.

We performed two separated experiments, both at the ESRF beamline BM05. In
the first experiment we studied a KTA crystal whilst in the second one we studied a
Rb:KTP crystal.
The KTA sample was about 3× 3× 0.4 mm3 with a poling period of 39µm. The Curie
temperature for KTA is 880◦C [195]. In order to index the diffraction spots I used a
software called Orient Express1, see fig.6.8.

0 2 1

1 10 5
1 8 4
1 6 3
2 10 5
1 4 2
3 10 5
2 6 3
3 8 4
4 10 5

-1 10 5

0 3 1

1 4 1

-1 4 -1

Figure 6.8: Indexation of the KTA crystal using the software Orient Express. In green, the
reflections which were analyzed because they showed a maximum contrast of the periodic
pattern. Some spots are due to the silicon crystal plates and therefore are not taken into
account in the indexation process.

Unfortunately, the experiment was not very successful, due to a severe distortion of
the crystal under heating, fig6.9. We understood that the calibration made for the
thermal gradient was not correct at higher temperatures (above 700◦C ) and that we
needed to improve the design of the furnace if we wanted to study samples at such high
temperatures.

1available from http://www.ccp14.ac.uk/ccp/web-mirrors/lmgp-laugier-bochu/
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Thanks to the technical help of colleagues from the Sample Environment Lab, we made
two improvements. First, we added a small aluminium cylinder with two holes (one
for the incoming and one for the diffracted beam) to be used as an additional infrared
mirror. Second, we enclosed the whole furnace inside a larger dome, again with entrance
and exit holes for the beam, closed with Kapton R© foils, 6.10. By using a primary pump,
we evacuated the air inside the dome, then we replaced the air with nitrogen (in order
to avoid oxidation of the nickel components of the furnace) and finally we evacuated
the nitrogen again. The experiments were then performed under a low vacuum of
approximately 10−2mbar.

a) b)

Figure 6.10: a) furnace for the experiment with the KTA crystal; b) improved furnace,
with an internal infrared mirror (not visible in the picture) and the external dome.

These improvements allowed us to perform the experiment on a Rb-doped KTP crys-
tal. The results of this experiment have been published in the Journal of Applied
Crystallography, [196].

6.6 Investigation by coherent X-ray section topography of
ferroelectric domain behaviour as a function of tem-
perature in periodically-poled Rb:KTP.

Rb-doped KTP is one of the most attractive ferroelectric non-linear optical materials
for quasi-phase matched devices due to its limited domain broadening, which grants
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high pattern fidelity, and to its high resistance to optical damage, especially in the blue-
green region [54, 197]. The sample was obtained from a 3mm thick single domain c-cut
flux-grown Rb:KTP crystal. The poling was done using an aluminium grating with
period Λ = 38.83 µm with a duty cycle of 25%:75% (Al:insulator). The thickness of the
sample was then reduced to 500 µm by mechano-chemical polishing. The structure of
the Rb:KTP crystal used is shown in fig.6.11. The structural data were obtained from
a small section of the crystal (210 x 80 x 120 µm3) using a Gemini kappa-geometry
CCD Diffractometer (Oxford Diffraction Ltd., UK) with Mo-Kα radiation (0.707 Å).
The refinement of these data confirmed the structure as that accepted for pure KTP,
namely orthorhombic in space-group Pna21. The refined percentage of Rb replacing K
was 0.3%ś0.1%. The Curie temperature was estimated to be approximately the same
as for KTP, Tc (≈ 935 ◦C, [198]) given the very low content of Rb and the linear
relationship between Tc and the amount of Rb suggested by Thomas et al., [199].

K (Rb)

O

P

Ti

Figure 6.11: Structure of the Rb:KTP crystal. Due to the very low level of doping, there
are no Rb atoms displayed, even though from the structure we know that 0.3% of the K is
replaced by Rb.

The fundamental harmonic of reflection used in the experiment was the 162 as obtained
by using the software Orient Express. By knowing the d-spacing of the 162 reflection
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together with the distances from the sample to the film and from the topograph to the
direct beam spot, it is possible to obtain the wavelength of the fundamental harmonic
by simply applying Bragg’s law. We obtained a value of 0.62 Å for the first harmonic.
Nevertheless, considering the sample thickness and absorption, we estimated that most
of the fundamental harmonic was absorbed. Therefore the spot recorded corresponds
to the 12 2 4 reflection with a wavelength of 0.31 Å. The phase shift between adjacent
domains was calculated using the structural data and the software DABAX included in
the package XOP, [200]. We obtained a phase shift ∆φ of 25.77◦. The phase shift was
calculated assuming ([192]) that the atom P1 is the pivot atom for the inversion of the
adjacent domain. Due to this phase shift, the crystal acts as a phase grating for the
diffracted beam, therefore producing, via theTalbot effect, a periodic pattern in both
the propagation distance and the detector plane. The simulation of the topographs was
made using the same software used by Rejmankova et al., [190]. The Fourier coefficients
of the intensity profile recorded at a distance D from a sample can be expressed as:

Im(D) = Im,coh(D) γ(λDm/a) R(m/a) (6.2)

where Im,coh(D) are the Fourier coefficients corresponding to the illumination by a
transversal fully coherent beam, γ(λDm/a) is the degree of coherence between two
points separated by (λDm/a), R(m/a) is the resolution of the detector for the spatial
frequency m/a, and a is the period of the grating. D is the defocusing distance, defined
as

D = (d1 d2)
(d1 + d2) (6.3)

where d1 is the distance from the source to the sample and d2 from the sample to the
film. Using the Zernike-Van Cittert theorem [51], it is possible to express the degree of
coherence as a function of the angular source size as

γ(λDm/a) = e−(απDm/2a)2/ ln 2 (6.4)

for an angular Gaussian beam profile of width α.
In fig.6.12 are shown the experimental topographs together with the simulations ob-
tained at room temperature and at different defocusing distances. The agreement
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between the data and the simulations is very good, and confirms the validity of the
theory used.

Figure 6.12: Part of the section topographs of 2 12 4 reflection, recorded at different
defocusing distances, compared with the simulations made over 8 periods. λ = 0.31 Å,
point spread function of the film being 2 µm. Small absorption (µ0t ≈ 0.7). h is the
projection of the diffraction vector onto the film.

The sample was then heated and a series of topographs at different temperatures and
distances was collected. In fig.6.13 are shown the experimental topographs at a defo-
cusing distance of 117 cm, together with the simulations obtained using the domain
models shown on the right of the simulations. In order to simulate the behaviour of the
domains with temperature it has been necessary to use a non-constant domain profile
in the bulk of the crystal, changing from one surface to the other. The ratios of the
widths of inverted domains compared to the width of the period are represented in
black, as well as its percentage. At temperatures below 800◦C, the ratio is the nominal
obtained during the poling, i.e. 25% of the period is composed of inverted domains. At
a temperature recorded by the thermocouples of 800◦C, the simulation requires 30% of
the period to be inverted at the predominately c+ face, linearly graded to 25% in the
bulk and linearly graded again towards lower values, ≈10%, at the opposite face. This
tendency is increased at higher temperature, with the c+ face becoming 60% inverted
at 930◦C, and with the c− face becoming mono-domain above ≈ 875◦C. Unfortunately,
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at higher temperatures, physical distortions of the crystal prevented the observation to
a completely mono-domain state or the ferro-paraelectric phase transition. It is impor-
tant to highlight the fact that the temperature recorded is that at the thermocouple,
and could be overestimated with respect to the real temperature at the sample, due to
a thermal gradient along the sample that, at high temperatures, appears to be bigger
than the calibrated value for the BaTiO3 sample of 1◦C/mm, and is most probably of
the order of 25◦C/mm.

Figure 6.13: Parts of the section topographs of the 2 12 4 reflection showing six periods,
recorded at defocusing distance of 117 cm and at different temperatures (as read by the
thermocouple), together with the simulations obtained using the domain models shown on
the right of the corresponding simulations. The model profiles are drawn over one period,
where black represents the inverted domain part of the period, and white the non-inverted
one.

The observed behaviour can be explained by assuming the presence of an internal
electric field, Ebi, built in during the thermal treatment of the crystal. This field is
due to concentration gradients of ionized defects created mainly by out-diffusion of
potassium and oxygen atoms when heated, as shown by Kugel and Rosenman [201]
for another ferroelectric crystal, LiNbO3 (in that case, only the diffusion of oxygen has
been considered) and by Angert et al. for KTP, [202]. The depth into which the built-in
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6.6 Ferroelectric domain behaviour with temperature in Rb:KTP

electric field penetrates increases with the heat treatment time and temperature, though
the magnitude of the field is reduced. At the same time, the coercive field, Ec necessary
to switch the domains becomes weaker as the temperature is increased, [203]. This
results in Ebi > Ec in near surface regions and the domains are switched consecutively.
Fig.6.14 shows the model used to interpret the results obtained. Fig.6.14.a) presents
the situation at low temperature. The inverted domains are represented in blue while
the non-inverted ones are in white. The arrows represent the polarization, and the left
surface corresponds to the predominately c+ face. In fig.6.14.b) the built-in electric
field is created, in light blue, near the c+ faces. Under the condition Ebi > Ec, the
domains are switched near the surfaces. This would produce head-to-head domain
walls which are energetically unfavourable. A compromise between electrostatic and
elastic energies is necessary, and the system relaxes into the “saw toothThese results
confirmed domain structure, as shown in fig.6.14.c). By increasing the temperature,
the inverted domains disappear from the initially c−-dominated face of the sample, and
become wider at the opposite face 6.14.d).
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Figure 6.14: Model of the behaviour of the periodic domains as a function of temperature.
a) low temperature, showing the domains as poled; b) at high temperature a built-in electric
field is created, represented in cyan. This field attempts to switch the polarity in the areas
near the sample surfaces corresponding to a c+ face as-poled. This results in the “saw
tooth” domains represented in c). At higher temperature, the inverted domains disappear
on the originally c−-dominated surface, while they increase on the opposite surface (d).
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6.7 Conclusions

The study of the high temperature behaviour of ferroelectric domains in a periodically-
poled Rb:KTP crystal from room temperature to around the Curie temperature has
been performed in situ using synchrotron radiation. This has been possible thanks
to the transversal coherence of the beam and is an example of the studies which are
possible to perform only at a third generation synchrotron source.
The simulations confirm the validity of the atomic model presented by Pernot et al
[192] that consider the atom P(1) as the pivotal atom between inverted domains. The
obtained data have been successfully modelled in terms of the spontaneous polarization
inversion due to ionized defect gradients created by out-diffusion of potassium and
oxygen ions when the sample is heated close to Tc in a low vacuum.
The results obtained are in agreement with ex situ work published by Kugel and Rosen-
man [201] and Angert et al. [202].
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Chapter 7

Further diamond related studies

In this chapter I will introduce three studies which resulted in three different published
papers that I have co-authored. These studies are not directly related with the main
topic of my thesis but they all have in common the used material (diamond) and the
characterization techniques used (X-ray Topography).

7.1 Bending diamonds by femtosecond laser ablation

The subject of the first paper, [92], is the possibility of producing statically bent di-
amonds by using femtosecond laser ablation; such a bent crystal could be used as an
extraction device for high energy beam, e.g. at the Large Hadron Collider (LHC) in
Geneva. It was proven that charged particles incident on a single-crystal with small
angles respect to crystallographic directions and having low transverse momentum with
respect to the axis of the crystal are channelled inside the lattice. This effect persists
even if the crystal is slightly bent, such that the particles may be deviated from their
original direction of motion as in a dipole magnet. Since the fields are very strong, this
results in bending power equivalent to a magnetic field of several thousand Tesla. Dia-
mond has proven to be resistant to the harsh environment close to the particle beam,
but being rigid and brittle, mechanical bending has been proven to be almost impossi-
ble. Laser ablation seems a promising technique to bend the crystals. Two high quality
HPHT type IIa diamond samples were characterized before and after laser ablation
by white beam X-ray topography in order to verify whether the ablation destroys the
quality of the crystal. One sample presented trenches only on one surface while the
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7. FURTHER DIAMOND RELATED STUDIES

other on both surfaces. A bent crystal in Laue geometry focuses a polychromatic beam.
If the crystal is cylindrically bent, the radius of curvature for meridional focusing and
in the case of a large source to sample distance is R ≈ 2q/ cos(θB), where q is the
focusing distance, [204]. By collecting topographs at different sample to film distances
and by comparing the dimension of the topographs, we obtained an estimation of the
bending radius of the crystals. For the crystal with trenches on both sides, no difference
in the size of the topographs was recorded at the different distances, meaning that the
sample was flat. For the other sample instead, focusing of the beam (in both vertical
and horizontal direction) was obtained if the trenches were upstream, and defocusing
for downstream trenches, see fig.7.1.

Defocusing

h [220]

Focusing

3 mm

20 cm 40 cm 60 cm

Horizontal

h [2-20]

20 cm 40 cm 60 cm

Vertical

Figure 7.1: White beam topographs of a laser ablated diamond at different sample to
film distances. Focussing of the beam is obtained for trenches upstream. Projection of the
diffraction vectors are represented by the arrows.

From the widths and heights of the topographs at the different positions it was possible
to obtain the focal lengths in the two directions, (84.0 ± 0.8) cm and (97.2 ± 0.5) cm
respectively. This results radii of curvatures of (171± 2) cm in the horizontal direction
and (200±2) in the vertical. Furthermore, by converting the distance between adjacent
trenches in each picture to local curvature, it is found that the maximum possible non-
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7.2 X-ray topography of diamond using forbidden reflections: which
defects do we really see?

uniformity in relative curvature across the crystal is about 3%.

7.2 X-ray topography of diamond using forbidden reflec-
tions: which defects do we really see?

The second paper, [205], was written in collaboration with A. Shiryaev and colleagues
from Russia. The subject of the paper was to compare the contrast obtained on syn-
thetic diamond in allowed and forbidden reflections. In the diamond structure (space
group Fd3m), the X-ray reflections from the 222 planes are forbidden because of sym-
metry restrictions. However, the thermal anharmonicity of atomic vibrations, and the
covalent character of bonding in crystals like diamond, Si and Ge, lead to distortion of
the shape of the electron cloud which, in contrast with an ideal crystal, deviates from
spherical. These reflections are sometimes called quasi-forbidden.
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Figure 7.2: On the left, X-ray topograph in transmission geometry, obtained by rocking
the crystal and integrating the diffracted intensity, E = 20keV. a) 400 reflection, b) 222
reflection. On the right, IR maps showing the concentrations of C and A defects.

The study of quasi-forbidden reflections can give information on lattice deformations,
such clusters of impurity atoms but the influence of points defect on the intensities of
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forbidden reflections remains an open question. We studied two synthetic and three
natural diamonds plates by X-ray topography in monochromatic beam, at 20 keV. Due
to dispersion and in order to obtain the entire image of the plates the topographs were
obtained by rocking the crystal and integrating the diffracted intensity. The synthetic
diamonds were a type IIa HPHT diamond grown from Element Six and a Ib diamond
grown by the split sphere (BARS) method by colleagues in Novosibirsk.
The latter sample was very interesting since it presents two regions with different types
of nitrogen impurities, as it is possible to see from fig.7.2 in the central part of the plate,
the N is single substitutional (C defects) while in the bottom part, close to the seed
it form nitrogen pairs (A defects). We collected X-ray topographs of this sample at
room temperature and also, using a furnace, at temperature of about 1000 K, using a
FReLoN camera with 3 µm resolution. We measured the ratio of the diffracted intensity
between two regions with different nitrogen defects. For the allowed 111 reflections,
this ratio is constant with temperature, but for the 222 reflections we see that above
873 K it decreases, therefore suggesting that point defects can influence the intensity
of a forbidden reflection.
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7.3 Crystal growth and perfection of large octahedral synthetic diamonds

7.3 Crystal growth and perfection of large octahedral syn-
thetic diamonds

The third and last paper, [206] was written in collaboration with F. Khokhryakov, I.
Kupriyanov and other Russian colleagues. In this work we characterized octahedral
diamond crystals grown by the temperature gradient method at T=1550±20 ◦C and at
a pressure P=5.7 ±0.1 GPa, using a split-sphere (BARS) apparatus, using Ni0 · 7 Fe0 · 3
alloy as solvent catalyst.

Figure 7.3: Zoom of the white beam topography of a Ib synthetic diamond. The projec-
tion of the diffraction vector is represented by the arrows.

The characterization was performed by selective etching, X-ray topography, IR spec-
troscopy, photoluminescence topography and cathodoluminesce topography. One of the
plates characterized was the same Ib synthetic diamond used for the previous paper
on forbidden reflections, see fig.7.2. Fig.7.3 shows a set of sub-images of a white beam
topographs collected at BM05. It is possible to see bunches of defects. It is difficult
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to determine exactly the types of most defects due to their high density. The majority
of these defects are 〈111〉 oriented dislocations, generated within the seed crystal area,
together with 〈112〉 oriented planar defects stacking faults or microtwins).
The fact that the source of most of the defects is in the region close to the seed is a
result which is common to most of the plates studied. This could be related to a low
quality of the seed crystal or of its surface finishing.
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Chapter 8

Conclusions

The main goal of this PhD was twofold.
On the one hand the task of characterizing different materials of interest to be used as
X-ray optical elements (diamond, silicon and beryllium). This was done in collaboration
with the producers and/or with the people involved in the finishing processes. The main
purpose was to improve the bulk and/or surface quality in order to meet the stringent
requirements for the materials to be used as X-ray optical elements which preserve the
transverse coherence of the beam.
On the other hand, the purpose was to use this extraordinary property of coherence in
a synchrotron beam to investigate, for the first time with in situ visualization meth-
ods, the behaviour of ferroelectric domains in a periodically-poled rubidium-doped
potassium titanyl phosphate (Rb:KTP) single crystal as the Curie temperature Tc is
approached.
Characterization of high quality crystals was performed with a set of different X-ray
based methods (and supplemented by other methods, e.g. optical) on many different
beamlines and in collaboration with many scientists and technical staff. Here a main
task was not only to use the complementary methods, but to push their limits and to
obtain semi-quantitative and, above all, quantitative results concerning crystal defects
and crystal quality.
One of the main results regarding the diamonds is the considerable improvement of
the bulk quality (and to some degree also of the crystals dimension) of the synthetic
diamonds. This was only possible thanks to the longstanding collaboration between
the ESRF, Element Six in South Africa and on the Isle of Man and the University of
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Johannesburg. An idea of the quality jump between the “old” (produced in the last
decade of the last century) and “new” material is given by the comparison of phase
plates shown in fig.4.27. An impressive example of the increased efficiency of the new
material used in an application as X-ray optical elements may be that of beam-splitter
monochromator at the ESRF beamline ID14. Recently, just by replacing an old type
Ib plate by a new type IIa one, a tenfold increase of the flux at the sample position was
obtained.

We pushed the possibilities of HRXRD to quantify sub-arsecond broadening of rocking
curves of high quality crystals (in particular of diamond) that is due to the presence
of residual strains in the bulk and the subsurface region. This was performed in two
different steps. First, by implementing different numerical methods either to calculate
the instrumental function or to determine it from measurements. The final result was
compared with a direct measurement of the instrumental function by using high order
e.g. 999 and forbidden 222 reflections. Second, once we could determine the apparatus
function with sufficient reliability, we were able to determine the broadening of the
rocking curves due to the presence of defects. The results obtained show that, in the
case of high quality type IIa diamonds, this broadening is practically negligible. For
lower quality crystals (bulk and/or surface quality), a broadening varying from 0.4” to
0.9” at the FWHM level was measured.

Several X-ray topography techniques were extensively used to characterize a big variety
of diamond plates. As a first, but very important step, this characterization was simply
qualitative in order to assess the presence and distribution of extended defects in the
crystal plates. This is of great importance for the crystal growers to be able to optimise
the growth parameters and to reduce or even avoid the creation of defects. At the same
time, we showed the possibility of obtaining semi-quantitative estimates of the stronger
strain fields, e.g. related to metallic inclusions in the crystal.

A special effort was undertaken in order to measure the local effective misorientation
in high quality type IIa diamonds. This was achieved by analysing topographs with
selected non-dispersive and quasi non-dispersive double-crystal setups, but mainly by
using an instrument with bendable monochromators . We showed that in regions up
to 0.5×0.5 mm2 the effective misorientation in a crystal is 4×10−8. This value is
comparable to those routinely obtained for float-zone silicon crystals.
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We studied the influence of the quality of the diamond crystal on the transverse co-
herence of the beam and we found that the coherence of the diffracted beam is never
preserved, with increases of the angular source size of the order of two to five times the
values obtained for the reference beam. This influence was attributed to the presence of
remaining residual strains in the bulk of the plates, small local bendings (samples were
rather thin) and of a deformed sub-surface layer due to the polishing of the crystal.

Therefore, a quantification of the deformation due to the polishing was attempted
using surface-sensitive X-ray techniques. This is, to our knowledge, the first time that
results on the crystalline quality of diamonds in this deformed layer have been reported.
We found that, in the case of a 111 diamond polished by the Hot Metal Polishing
method, a layer≈4 µm thick is compressively strained and that this strain is anisotropic.
Moreover, the “mosaic spread” measured in the deformed layer is larger than in the bulk.
In the case of a cleaved sample, terraces are present on the surface of the diamond and
neither strain nor “mosaicity” of the sub-surface layer is recorded. Some improvements
to the polishing apparatus are now being completed by our colleagues in South Africa
and new experiments to study further the subsurface damage with X-ray techniques
are planned for the near future.

An important task for the ESRF Crystal Laboratory was (and still is) the improvement,
and in particular the quantification of the different steps of the polishing technology. In
collaboration with the Crystal and the Metrology Laboratories of the ESRF, the surface
quality of silicon crystals was studied using different X-ray-based and complementary
(optical, AFM) characterization techniques. The main results obtained are, firstly,
that the thickness of the deformed layer due to the lapping procedure is of the order
of 30 µm. Therefore, the removal of at least 40 µm by optical polishing is necessary.
Secondly, the layer thickness necessary to be removed by mechano-chemical polishing
seems to be between 3 µm and 10 µm. Further tests are necessary and will be done
in future. In this way a crystal surface with an undetectable (by our double crystal
topography methods) deformed sub-surface layer is obtained. Moreover, the coherence
preservation properties of various silicon crystals with different surface qualities were
tested using two independent methods: using the Talbot effect and by bi-lens-based
interferometry. The results obtained are similar and are consistent with those of the
X-ray topography.
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The quality of ultra-high-purity beryllium foils was studied in cooperation with the
producer to check and help optimise the bulk quality and the polishing procedure.
After some polishing steps no phase contrast was visible on the radiograph recorded at
125 cm from the sample. Already this is a very promising result. In future it could be
necessary to make tests with much larger propagation distances, or to make ultimate
tests directly at the beamlines where those plates will be used.
In order to exploit the coherence of the beam in the study of ferroelectric domains as a
function of temperature, we developed, in collaboration with the Sample Environment
Laboratory, a special furnace. This furnace allows the performance of experiments in
transmission geometry while preserving the coherence of the beam. Moreover, it allows
the heating of optically transparent and thermally insulating samples without creating
a large thermal gradient across the crystals. The furnace was tested with different
crystals and the coherence properties were established using the Talbot effect.
The main motivation of the investigation of the ferroelectric inverted domains as a
function of temperature was to improve the understanding of the transition from one
electrical polarization state to the opposite one. This will help in the fabrication of
highly efficient QPM devices.
Imaging the domains was performed using combined Bragg-Fresnel imaging. The white
beam section topographs obtained at different temperatures, from room temperature
to 930◦C were correctly simulated. The modelling of the results obtained at high
temperature is based on the assumption that an internal electric field (built in) is
created on the c+ face during heating. The penetration depth of this field into the
crystal increases with the heat treatment time and temperature, though the magnitude
of the field is reduced. Moreover, the coercive field necessary to switch the polarization
state decreases with temperature. This results in an inversion of the polarization on
the c+ surface, producing head-to-head domains which are energetically unfavourable.
The system therefore relaxes into a “saw tooth” structure, as shown in the experimental
data.
Finally, I presented three different studies which were not directly related with the
main subject of the thesis but that have in common diamond as the material used
and X-ray topography as one of the characterization techniques used. The first on the
possibility of bending diamonds using laser ablation, the second on the investigation
of the type of defects which are possible to record using forbidden reflections and the
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third on the characterization of large octahedral synthetic diamonds grown with the
split-sphere (BARS) method.
In conclusions, X-ray characterization techniques have been successfully applied to the
study of the materials quality of interest for X-ray optical applications, resulting in im-
provements of the bulk quality of the diamonds and of the surface treatment processing
of the silicon. Moreover, X-ray Bragg Fresnel imaging was efficaciously applied to the
understanding of ferroelectric domain behaviour as a function of temperature.
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[79] J. Baruchel and J. Härtwig. X-Ray Topography, pages 342 – 348. Elsevier, 2005. 44

[80] M. Dudley, X. R. Huang, and W. Huang. Assessment of orientation and
extinction contrast contributions to the direct dislocation image. Journal of
Physics D: Applied Physics, 32(10A):A139–A144, 1999. 44

[81] B. K. Tanner and D. K. Bowen. Synchrotron X-radiation topography. Materials
Science Reports, 8(8):371 – 407, 1992. 46

[82] J. Bordas, A. M. Glazer, and H. Hauser. Use of synchrotron radiation for X-
ray topography of phase-transitions. Philosophical Magazine, 32(2):471–489, 1975.
47

[83] M. Hart. Synchrotron radiation – its application to high-speed, high-
resolution X-ray diffraction topography. Journal of Applied Crystallography,
8(4):436–444, 1975. 47

[84] J. Gastaldi, C. Jourdan, P. Marzo, C. Allasia, and J. N. Jullien. Ultra-high
vacuum heating camera for in situ synchrotron radiation X-ray topographic
studies. Journal of Applied Crystallography, 15(4):391–395, 1982. 47

[85] A. Buffet, G. Reinhart, T. Schenk, H. Nguyen-Thi, J. Gastaldi,
N. Mangelinek-Noeel, H. Jung, J. Haertwig, J. Baruchel, and B. Billia.
Real-time and in situ solidification of Al-based alloys investigated by syn-
chrotron radiation: a unique experimental set-up combining radiography and
topography techniques. Physica Status Solidi (a), 204(8):2721–2727, 2007. 47

[86] B. K. Tanner, M. Safa, and D. Midgley. Cryogenic X-ray topography using
synchrotron radiation. Journal of Applied Crystallography, 10(2):91–99, 1977. 47

[87] J. Baruchel, C. Medrano, and M. Schlenker. Synchrotron radiation topo-
graphic study of the thick ferromagnetic-fan interface in MnP. Journal of
Physics D: Applied Physics, 38(10A):A67, 2005. 47

[88] I. B. MacCormack and B. K. Tanner. Application of X-ray synchrotron topog-
raphy to in situ studies of recrystallization. Journal of Applied Crystallography,
11(1):40–43, 1978. 47

[89] F. Zontone, L. Mancini, R. Barrett, J. Baruchel, J. Härtwig, and Y. Epel-
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Appendix A

Apparatus function
determination - Direct
deconvolution methods

In order to deconvolve the apparatus fucntion, I wrote a code in Mathematica that uses
two different deconvolution algorithms: the Burger-Van Cittert algorithm [66] and the
Richardson-Lucy algorithm [67, 68].

A.1 Burger - Van Cittert

By using the commutative property of the convolution, it is possible to write the con-
volution integral 3.1 as

e(t) =
∫ −∞
∞

i(τ)f(t− τ)dτ (A.1)

since now the unknown is the instrument broadening function that is broaden by the
known reflectivity curves of decreasing widths. It is possible to write A.1 as a Fredholm
integral equation of the second kind

e(t) = i(t) +
∫ −∞
∞

i(τ) [f(t− τ)− δ(t− τ)] dτ (A.2)

An approximate solution of A.2 is given by the following iterative algorithm:

in = n e− n(n− 1)
2! e1 + n(n− 1)(n− 2)

3! e2 + n(n− 1)(n− 3)
3! e3 − · · · ± en−1 (A.3)
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A. APPARATUS FUNCTION DETERMINATION - DIRECT
DECONVOLUTION METHODS

where

e1 = e ∗ f ; e2 = e1 ∗ f = (e ∗ f) ∗ f . . . en = en−1 ∗ f (A.4)

It is possible to write A.3 by using the binomial coefficient, defined in the multiplicative
form as

(
n

k

)
= nk

k! = n(n− 1)(n− 2) · · · (n− k + 1)
k(k − 1)(k − 2) · · · 1 (A.5)

obtaining

in = n e+
n−1∑
i=1

(−1)i
(

n

i+ 1

)
ei (A.6)

Let’s clarify the ideas behind this deconvolution algorithm: in the first iteration, the
experimental data e is taken as the first approximation to the instrumental broadening
function i1. Convolving i1 with the reflectivity curve f yields e1, the first approximation
of e. The second approximation i2 is then obtained by adding a correction to i1 which
is the difference between e and the e1 and so on and so forth.
Hill and Ioup, [207] studied the necessary convergence conditions for the Van Cittert
iterative method. Among others, it is required that the used function is even, with a
maximum on the origin and, with continuous derivatives everywhere if the derivatives
are continuous at the origin. All these requirements are fulfilled in our case. There
is one peculiarity considering the requirements that the maximum has to be in the
origin; the origin is not always, as one could think, the position of the maximum of the
experimental data. In fact, in some cases, the theoretical curve and the experimental
data have been shifted in order to obtain a more stable solution.
Nevertheless, the algorithm fails to converge to a good solution in many cases. Fig.A.1
shows an example of the Van Cittert code failing for Si 555 reflection and slits open 0.7
mm whilst in fig.A.2 an example of a converging result for Si 555 and slits 0.04 mm.
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A.1 Burger - Van Cittert
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Van Cittert deconvolution - Si555 - slits 0.7 mm

Figure A.1: The deconvolution results at different iterations in a case where a good final
result is not obtained. Notice the shift between experimental data and reflectivity curve
needed to have a better convergence.
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—— resulting convolution at 10 iterations

- - - - instrumental broadening at 10 iterations
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Van Cittert deconvolution - Si555 - slits 0.04 mm

Figure A.2: The deconvolution results at different iterations, this time where a good
result is obtained in less than 6 iterations.

V



A. APPARATUS FUNCTION DETERMINATION - DIRECT
DECONVOLUTION METHODS

The main problem with the Van Cittert is the fact that the first approximation of
the instrumental broadening is the experimental curve itself. This can work for curves
where the broadening is considerable (e.g. when the slits are closed to a value smaller
than 100 µm, the Fraunhofer diffraction from the slits become important). In fact,
the results obtained for example in fig.A.2 are in good agreement with the Fraunhofer
diffraction calculated from 32 µm slits, very close to the nominal value of 40 µm. This
is a systematic nuisance in deconvolution problems, and it is well stated in [65]: it is
difficult to deconvolute a narrow curve from a broader one. Nevertheless, this has been
possible by using the Richardson-Lucy algorithm.

A.2 Richardson - Lucy

In [68] the convolution is seen as a particular type of a more general probabilistic theory.
Following the notation used by Lucy:

φ(x) =
∫
ψ(ξ)P (x|ξ)dξ (A.7)

where P (x|ξ) is the probability that x′ will fall in (x, x + ∆x) if ξ′ = ξ. In our case,
the probability function is the theoretical reflectivity, while φ and ψ are respectively
the experimental data and the instrumental broadening function.

Bayes’ theorem for conditional probabilities states that:

P (A|B) = P (B|A)P (A)
P (B)

where P (A), P (B) are the probabilities a priori of A and B, while P (A|B) is the
conditional probability of realizing A given B.

By using this theorem and by imposing the normalization of P (x|ξ) we obtain:

ψ(ξ) =
∫
φ(x)Q(ξ|x)dx with Q(ξ|x) = ψ(ξ)P (x|ξ)∫

ψ(ξ)P (x|ξ)dξ (A.8)

By guessing a first value for ψ, we can obtain an estimation of Q(ξ|x) , that we can use
in the first part of A.8 to obtain an improved estimation of ψ by using φ̂, an estimation
of φ (in our case the experimental data).
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A.2 Richardson - Lucy

We obtain the following recursive algorithm:

ψr+1(ξ) = ψr(ξ)
∫

φ̂(x)
φr(x)P (x|ξ)dξ (A.9)

with

φr(x) =
∫
ψr(ξ)P (x|ξ)dξ. (A.10)

One of the main differences between the Van Cittert and the Richardson-Lucy algo-
rithms is the fact that in the latter an initial guess for the instrumental broadening
function is made. This gives more freedom to the algorithm, and it has been possible
to deconvolute an instrumental broadening for the cases where the Van Cittert failed.
The problem in having the freedom for the initial guess is to find a correct way to
choose the best one. I have decided to use as a guess the same function I have used for
the fitting procedure, the sum of a Gaussian and Lorentzian with normalized area. In
order to choose the best value for the ω and σ parameters I have made a test by using
different values and by checking the results of the iteration algorithm.
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—— resulting convolution at 25 iterations

- - - - instrumental broadening at 25 iterations
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—— resulting convolution at 50 iterations

- - - - instrumental broadening at 50 iterations
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—— resulting convolution at 75 iterations

- - - - instrumental broadening at 75 iterations
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Lucy deconvolution - Si333 - slits 0.2 mm - Initial guess Ω= 0.01"- Σ= 0.01"

Figure A.3: Richardson-Lucy deconvolution test, with narrow initial guess, σ = ω =
0.01”.
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A. APPARATUS FUNCTION DETERMINATION - DIRECT
DECONVOLUTION METHODS
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—— resulting convolution at 25 iterations

- - - - instrumental broadening at 25 iterations
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- - - - instrumental broadening at 50 iterations
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—— resulting convolution at 75 iterations

- - - - instrumental broadening at 75 iterations
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Lucy deconvolution - Si333 - slits 0.2 mm - Initial guess Ω= 0.05"- Σ= 0.05"

Figure A.4: Richardson-Lucy deconvolution test, with intermediate initial guess, σ =
ω = 0.05”.
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—— resulting convolution at 25 iterations

- - - - instrumental broadening at 25 iterations
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—— resulting convolution at 50 iterations

- - - - instrumental broadening at 50 iterations
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- - - - instrumental broadening at 75 iterations
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Lucy deconvolution - Si333 - slits 0.2 mm - Initial guess Ω= 0.1"- Σ= 0.1"

Figure A.5: Richardson-Lucy deconvolution test, with broad initial guess, σ = ω = 0.1”.
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A.2 Richardson - Lucy

The results obtained by the test are shown in figg.A.3,A.4,A.5. If the initial guess is too
narrow, e.g. 0.01” (fig.A.3) the obtained results is not good even after a big number
(100) iterations, especially for what concerns the top part of the rocking curve. If the
initial guess is too broad, e.g. 0.1” (fig.A.5), the convergence is slower but at around
75 iterations a good results is obtained. In this case, a good guess is for example 0.05”
(fig.A.4), giving a good results already after only 25 iterations. In order to be able
to compare the apparatus functions obtained for different reflection I have therefore
decided to keep the value of 0.05” as initial guess.
Finally, in the case where both Van Cittert and Richardson-Lucy algorithms converged
to a solution this appear to be the comparable for both methods. This is visible in figure
fig.A.6, where the two methods are compared together with the Fraunhofer diffraction
profile for the experiemental slits size.

—— Van Cittert

—— Lucy

×××××××× Fraunhofer 32 Μm
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Van Cittert deconvolution - Si555 - slits 0.04 mm

Figure A.6: Comparison between the deconvolved functions from the 555 reflection,
nominal slits size 40 µm with both methods and the Fraunhofer diffraction from 32 µm
slits.

IX



Riassunto. 
Le proprietà eccezionali delle sorgenti di radiazione di sincrotrone sono state e sono tuttora 
utilizzate in maniera sempre più frequente in discipline molto diverse, che spaziano dall’archeologia 
alla chimica, dalla scienza dei materiali alla biologia, dalla medicina alla fisica. Tra queste 
proprietà, è importante sottolineare la brillanza della radiazione, lo spettro continuo, l’alto grado di 
polarizzazione, la struttura temporale e la ridotta dimensione della sorgente e della divergenza del 
fascio. Quest’ultime proprietà risultano in una grande coerenza trasversale della radiazione 
prodotta. 
La coerenza della luce di sincrotrone ha permesso lo sviluppo di nuove tecniche, ad esempio 
l’imaging basato sul contrasto di fase, la spettroscopia a correlazione di fotoni e la diffrazione X 
coerente. È dunque di primaria importanza che le ottiche possano preservare questa proprietà, 
perturbando il meno possibile il fronte d’onda. 
La tesi è costituita da tre parti. 
Nella prima parte, viene presentato il lavoro effettuato all’interno del gruppo ottico dell’ESRF 
relativo alla caratterizzazione di cristalli di diamante sintetico di alta qualità previsti per 
applicazioni nelle ottiche a raggi X. Questa caratterizzazione è stata effettuata utilizzando diverse 
tecniche complementari basate sui raggi X, quali la diffrattometria ad alta risoluzione, la topografia, 
la diffrazione ad incidenza rasante, la riflettomettria e misure di preservazione della coerenza 
utilizzando l’effetto Talbot. 
Nella seconda parte, vengono esposti i risultati ottenuti nello studio del comportamento di domini 
ferroelettrici ad alta temperatura in un cristallo periodicamente polarizzato. In questo tipo di misure, 
basato sulla diffrazione di Bragg-Fresnel, è necessario un’alta coerenza della luce di sincrotrone. 
Nella terza parte vengono illustrati i risultati ottenuti nella caratterizzazione di diamanti per 
applicazioni differenti dalle ottiche a raggi X.  
 
 
 
Rèsumè. 
Les propriétés exceptionnelles des sources de rayonnement synchrotron ont été et sont de plus en 
plus exploités dans des disciplines très différentes, allant de l'archéologie à la chimie, de la science 
des matièraux a la biologie, de la médecine à la physique. Parmi ces propriétés, il est important de 
mentionner la haute brillance, le spectre continu, le haut degré de polarisation, la structure 
temporelle, la petite taille de la source et la petite divergence du faisceau. Ces dernières propriètèes  
entraînant une forte cohérence transversale du rayonnement produit. 
La cohérence du faisceau a permis le développement des nouvelles techniques comme par exemple, 
l'imagerie à contraste de phase, la spectroscopie à corrélation des photons et l'imagerie par 
diffraction des photons cohérents. Par conséquent, il est de première importance que les éléments 
optiques puissent préserver cette propriété, perturbant le moins possible la front d'onde. 
Ce travail de thèse se constitue de trois parties. 
Dans la premiere partie, je vais présenter le travail effectué au sein du groupe optique de l'ESRF 
dans la caractérisation des cristaux de diamant synthétique de haute qualité prévus pour des 
applications aux optiques pour les rayons X. Cet caractérisation a été effectué en utilisant 
différentes techniques rayons X complémentaires, telles que la diffractométrie à haute résolution, la 
topographie, la diffraction en incidence rasante, la réflectométrie et des mesures de préservation de 
cohérence en utilisant l'effet Talbot. 
Dans la deuxième partie, je expose les résultats obtenu dans l'étude du comportement à haute 
température des domaines ferroélectriques dans un cristal périodiquement polarisé. Dans cet type 
d'étude, basé sur la diffraction de Bragg-Fresnel, est nécessaire un haute cohérence du faisceau. 
Dans la troisième partie, je présents des résultats obtenu dans la caractérisation des diamants prévus 
pour des applications autres que les optique rayons X. 
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