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Je remercie Makoto Hamana d’avoir pris le temps de donner des explications sur son travail
et pour les discussions importantes qui s’en suivirent.
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“Why is it hard to imagine eternity?” demanded Natasha. “After today comes tomorrow, and

then the next day, and so on for ever; and there was yesterday, and the day before...”

— War and Peace, L. Tolstoy, 1869
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Introduction

Il n’est pas exagéré de prétendre que la compréhension du comportement réel du code source
des programmes qui tournent sur les machines numériques est un défi majeur du XXIè siècle.
Les promesses remplies de la puissance de calcul apportée par la micro-électronique sont contre-
carrées par l’extrême complexité du raisonnement formel sur les programmes. Le raisonnement
informel sur les programmes structurés ne permet pas d’éviter en général les comportements
pathologiques. Reste alors le raisonnement formel, basé sur une formulation mathématiquement
précise du comportement logiciel. Cependant, même l’approche formelle souffre de limitations:
il est difficile de la mettre en pratique sur des programmes réalistes, c’est l’explosion combi-
natoire des états possibles des programmes, qui est une conséquence de l’indécidabilité de la
preuve de nombreuses propriétés concernant l’exécution d’un algorithme. La terminaison est
un sous-problème du problème plus général de la correction d’un programme, mais il est signi-
ficatif, car la terminaison est en général nécessaire à la correction du programme (en général
nous désirons que le programme retourne une valeur, avant de terminer), et elle nécessite une
analyse particulière.

La terminaison est le type quintessentiel du problème indécidable. En effet, c’est le pre-
mier problème, avec celui de décider si un énoncé de l’arithmétique est prouvable, pour lequel
l’indécidabilité fut prouvée par Alan Turing [Tur36] et Alonzo Church [Chu36]. En outre, la
terminaison peut être vue comme un problème “très indécidable”: la preuve d’indécidabilité, en
plus d’être simple, est confortée par de nombreux problèmes d’énoncé simple dont on ne sait pas,
aujourd’hui, s’ils terminent ou non. Par exemple, il est facile de construire un programme dont
une preuve de terminaison réfuterait la conjecture de Goldbach: il suffit d’énumérer les entiers
pairs, et d’arrêter si l’entier considéré n’est pas somme de deux nombres premiers inférieurs.
Cela suggère que la terminaison est essentiellement un problème sémantique, c’est-à-dire qui
dépend du sens du programme, ou encore de son comportement voulu.

Cette limitation n’a pas empêché le développement d’analyses de terminaison, particulière-
ment après l’avènement de l’âge informatique, où se pose en particulier le problème bien réel de
la correction des centaines de milliers de lignes de code utilisées dans l’industrie. En pratique,
de nombreux critères de terminaison, nécessairement incomplets, existent pour divers langages.
Nous nous intéressons à un modèle de calcul particulier, la réécriture. La réécriture est un
paradigme de calcul calculatoirement complet (voir par exemple Post [Pos47], Dershowitz et
Jouannaud [DJ90], et Davis [Dav85]), qui modélise une grande classe de calculs. En particulier,
la réécriture précise l’aspect calculatoire du raisonnement équationnel, et en conséquence est très
utile pour exprimer déclarativement un calcul: il suffit de spécifier les équations que satisfont
l’objet à calculer. La réécriture du premier ordre se concentre sur des arbres annotés par des
symboles de fonction, avec à leur feuille des variables qui sont destinées à être instanciées. Par
exemple la règle f (g(x), y) � g(y) représente la transformation
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Où # et � sont des arbres arbitraires. On pourra se référer à Terese [BKdV03] ou Baader
et Nipkow [BN98] pour une introduction complète.

Le λ-calcul ajoute de la puissance à ce formalisme en réifiant le concept de substitution:
on ajoute les constructions d’abstraction, représentée par λx.t et l’application, représentée par
la juxtaposition. Le terme λx.t u représente alors le terme t dans lequel toutes les occurrences
(libres) de la variable x sont remplacés par le terme u. La simple présence de ces constructions
suffit à donner un calcul complet (voir Church [Chu41]), mais la combinaison de ce calcul et
de la réécriture donne un système suffisamment expressif pour servir de base à un langage de
programmation. Les langages ML [MTHM97, CM98] et Haskell [Fax02] ont à leur cœur un
λ-calcul avec de la réécriture avec la restriction que le filtrage se fait sur des termes non-définis,
et que les règles doivent être orthogonales.

Il existe de nombreux critères de terminaison pour la réécriture. Pour la réécriture du
premier ordre, il est commun de distinguer deux types de critères: les critères syntaxiques et
les critères sémantiques. Les critères syntaxiques sont avant tout destinés à être décidables et à
faire l’objet d’un algorithme, et les objets mathématiques considérés sont l’ensemble des termes
et le système de réécriture. Un exemple important de ce genre de critère est donné par les ordres
de simplification, et en particulier le recursive path ordering (RPO) [Der82], qui est utilisé dans
la pratique. D’un autre côté, les critères sémantiques cherchent en général à être complets, c’est-
à-dire que tout système de réécriture normalisant passe le critère. La structure mathématique
considérée est une abstraction du système de réécriture, sa sémantique. L’exemple prototypique
est le critère de Manna-Ness [MN70], qui considère un ensemble X muni d’un ordre bien fondé
>X, avec une fonction d’interprétation (| |) des termes vers X qui vérifie t �

+ u⇒ (|t|) >X (|u|). Il est
facile de montrer qu’un tel critère est complet, en prenant le modèle “syntaxique”, dans lequel
l’interprétation d’un terme est le terme lui-même.

En ce qui concerne le λ-calcul, le calcul pur n’est pas normalisant, et il convient donc de
ne considérer qu’une classe de termes normalisants. Une classe très importante de tels termes
sont les termes simplement typés: on construit une fonction de typage, qui permet d’associer
des types de la forme B,C, . . . ou a → b a certains λ-termes, ou B,C, . . . sont des constantes
de type. On peut ensuite montrer (voir par exemple [GLT89]) que chaque terme qui admet un
type simple est fortement normalisant. Bien qu’apparemment syntaxique de nature, le typage
a une contrepartie sémantique: il est tentant d’interpréter chaque constante de type comme un
ensemble, et a → b comme un ensemble de procédures qui, à un élément de l’interprétation
de a, associe un élément de l’interprétation de b. La preuve de terminaison de Tait [Tai67],
utilise cette intuition, en interprétant chaque type en un ensemble de termes normalisants. Ce
point de vue est conforté par les développements en logique mathématique visant à établir une
correspondance entre théorie des types et théorie des systèmes logiques: c’est la correspondance
de Curry-Howard-DeBruijn (on pourra se référer à De Bruijn [dB95] pour une présentation
générale). Dans le cadre de cette correspondance, un λ-terme typé est la preuve d’une proposition
que représente son type. L’existence d’une forme normale correspond alors à l’existence d’une

2



preuve sans coupure. Cette notion étant fortement liée à la consistance du système, il faut en
général construire un modèle pour la montrer. C’est donc bien un point de vue sémantique.

Évidemment, ce point de vue est un peu caricaturé, et il n’existe pas de manière objective
de distinguer un critère syntaxique d’un critère sémantique. Néanmoins, une approche puis-
sante pour donner un critère décidable est de prendre un critère sémantique et d’en donner une
représentation syntaxique, qui se prête à la manipulation par les programmes. Donnons trois
exemples.

Le premier concerne l’utilisation de types annotés pour déduire certaines contraintes concer-
nant la taille des formes normales des arguments de fonctions définies. Introduits par Hughes
et al [HPS96], et indépendemment par Giménez [Gim96], ils ont étés étudiés notamment par
Abel [Abe06], Frade [Fra03], Barthe et al [BFG+04] et Blanqui [Bla04] pour différents systèmes
de types, allant des types simples au Calcul des Constructions de Coquand et Huet [CH88].
L’avantage de la méthode par typage est sa puissance vis-à-vis des précédents critères syntax-
iques, par exemple le schéma général de Blanqui, Jouannaud et Okada [BJO02, Bla05b, BJO99]
ou la condition de garde décrite par Giménez et Amadio et al [Gim95, ACG98], se basant en
partie sur Coquand [Coq93]. La terminaison à base de types permet de montrer la normalisation
en présence de certains systèmes qui ne sont pas simplement normalisants, et permet surtout
de s’affranchir d’une certaine sensibilité à la forme syntaxique des définitions. Une extension
de ce critère pour les types simples et les types de données du premier ordre est donnée par
Blanqui et Riba [BR06], et une version similaire de Xi [Xi01], qui permet d’ajouter des prédicats
de l’arithmétique de Presburger [Pre29] pour décrire les annotations de tailles. Ceci augmente
grandement la puissance du critère, car on dispose alors de toute l’arithmétique de Presburger
pour exprimer la sémantique d’un symbole de fonction définie.

Le second critère prend un modèle équationnel d’un système de réécriture du premier ordre
et utilise ce modèle pour construire un système annoté, dont la terminaison est équivalente à
celle du système originel. Cette méthode porte le nom de méthode des annotations sémantiques,
et fut introduite par Zantema [Zan95]. Une extension naturelle du critère consiste à remplacer
les modèles par des prémodèles, et le critère devient alors complet. Cette méthode de preuve de
normalisation forte a récemment été étendue aux systèmes de réécriture d’ordre supérieurs par
Hamana [Ham07], en utilisant des prémodèles issus de la vision catégorique d’algèbres proposée
par Fiore et al [FPT99], qui utilise des constructions sur des préfaisceaux.

Le dernier critère est celui des paires de dépendances, décrit en premier par Arts et Giesl
[AG00]. Il est très important pour la réécriture au premier ordre, car il permet d’être utilisé en
conjonction avec d’autres critères: c’est une approche [GAO02, GTSK05]. Le but est de montrer
qu’il n’y a pas de châınes de dépendances infinies, ou les châınes de dépendances dénotent une
séquence d’appels de fonctions. La technique est donc plutôt syntaxique, et elle est utilisée en
pratique par les logiciels d’analyse de terminaison, mais fait en général usage d’un graphe de
dépendances, qui est une abstraction des successions possibles de paires de dépendances dans
une châıne.

Cette thèse tente de donner une vision générale de ces trois critères sémantiques pour une
forme de réécriture d’ordre supérieure, la réécriture algébrique à gauche. Dans un premier temps,
on montre qu’une certaine forme de critère de terminaison à base de tailles est subsumée par
le critère des annotations sémantiques. On décrit un critère d’annotations sémantiques inspiré
de celui de Hamana. Nous montrons qu’il est possible, étant donné un modèle du système de
réécriture augmenté de la β-réduction, de décrire un système de réécriture sur des termes qui
portent des annotations de la sémantique. Ensuite nous montrons qu’en rajoutant des règles
structurelles, le système annoté simule le système original, avec β-réduction. Malheureusement, le
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Introduction

système annoté n’est jamais normalisant, même si le système original l’est! Nous contournons le
problème en montrant que si le système annoté vérifie une propriété plus faible, la normalisation
relative par rapport aux règles structurelles, alors le système original est fortement normalisant.

Ensuite nous construisons un modèle qui capture l’intuition sémantique sous-jacente du sys-
tème de réécriture. En effet, ce modèle permet d’interpréter les types de données inductives par
des ensembles cumulatifs, dont les éléments ont une notion naturelle de rang ordinal. Les types
fonctionnels sont interprétés par des “vraies” fonctions. Pour limiter la taille de ces espaces, nous
utilisons la notion de réalisabilité.

Pour montrer la terminaison relative du système annoté, on utilise un critère simple de
précédence, adaptée du schéma général [Bla03]. Ce critère est suffisamment général pour prouver
la terminaison de différents systèmes annotés, et il contient toute l’information combinatoire
nécessaire à la preuve de normalisation forte. Nous affirmons qu’il peut donc être utilisé comme
une “boite noire” qui permet de montrer la terminaison d’un système pour lequel nous avons une
sémantique suffisamment précise du système avec règles algébriques. C’est donc en un sens un
résultat de modularité.

Cette approche par les prémodèles ne permet cependant pas de capturer un certain aspect
de la terminaison des systèmes avec β-réduction: la non-localité. En effet, les fonctions définies
à l’intérieur d’un terme ne disposent pas localement de toute l’information sur ses arguments:
certaines variables peuvent être instanciées par une β-réduction.

Nous montrons qu’une variation des types annotés utilisés pour la terminaison à base de
taille, les types raffinés, peut être utilisée pour capturer cette information non-locale. Ceci nous
permet de construire un analogue du graphe de dépendances approximé dans les types. Le
langage étudié est un langage d’ordre supérieur avec β-réduction et réécriture. La sémantique
opérationnelle porte sur des termes dans lesquels les annotations de types ont étés effacées, ce
qui permet d’avoir toute l’information nécessaire au typage dans les termes, tout en évitant les
réductions “administratives”.

Nous montrons qu’il existe une analyse syntaxique du graphe de dépendance approximé qui
est tout à fait analogue à une analyse du premier ordre sur le graphe de dépendance approximé,
la méthodes des projections simples, et qui permet de donner une condition suffisante à la
terminaison des termes bien typés. Ceci permet d’opérer un rapprochement entre les méthodes
issues de la théorie de la réécriture et celles utilisées en théorie des types. Nous comparons
la puissance de cette analyse avec d’autres approches pour les paires de dépendance à l’ordre
supérieur.

Ce document est disposé comme suit:

• Nous donnons d’abord un chapitre qui introduit les notations et concepts de base de la réécri-
ture d’ordre supérieure considérée dans cette thèse. Nous redémontrons le théorème bien
connu de la normalisation forte du λ-calcul simplement typé, pour donner une introduction
aux concepts de calculabilité utilisés par la suite.

• Nous abordons ensuite une première partie consacrée à l’application des annotations séman-
tiques pour la preuve d’un critère de terminaison à base de types annotés.

– Le premier chapitre est consacré à la description du critère de terminaison à base de tailles
dont la preuve de correction est l’objet des chapitres suivants, avec des exemples de systèmes
qui passent (ou non) le critère.
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– Dans le second chapitre nous introduisons le concept d’algèbre d’ordre supérieure, ainsi
que celle d’objet monöıdal dans la catégorie des •-monöıdes qui nous permet de donner la
définition de prémodèle d’un système de réécriture. Les notions de théorie des catégories
nécessaires seront rappelées.

– Dans le troisième chapitre, nous utilisons la sémantique définie dans le chapitre précédent
pour décrire la méthode des annotations sémantiques et donner le théorème fondamental:
le système annoté termine relativement à certaines règles structurelles si et seulement si le
système original termine.

– Ensuite nous décrivons comment construire un modèle dans lequel les types de base sont
interprétés par une description ensembliste des types de données qu’ils représentent, et les
fonctions sont représentés par des fonctions réalisées par un certain terme, dans le cas où le
système de réécriture satisfait les conditions du théorème de terminaison donné au chapitre
1. Nous suggérons que ce modèle correspond à l’intuition de la sémantique du système de
type de ce premier chapitre.

– Dans le cinquième chapitre nous montrons qu’il existe un critère de terminaison relative
général qui permet de montrer la terminaison (relativement aux règles structurelles) de
systèmes annotés. Ce critère se base sur une précédence sur les symboles de fonction définis,
qui doit être compatible avec les règles structurelles. Nous montrons qu’un système qui
passe le critère du chapitre 2, annoté avec la sémantique du chapitre 5 passe le critère.
Pour montrer la compatibilité avec les règles structurelles nous avons besoin d’un lemme
combinatoire.

Nous donnons ensuite une application supplémentaire de cette approche pour montrer un
théorème de modularité de Breazu-Tannen, Gallier & Okada [Oka89, GBT89].

• La seconde partie rend compte d’une approche par les types, similaire à la terminaison à
base de tailles, mais qui permet une approximation plus précise de la succession d’appels de
fonctions.

– Le premier chapitre de cette partie décrit la théorie classique des paires de dépendance pour
la réécriture du premier ordre, pour fixer les notations et les concepts, et contraster avec la
situation à l’ordre supérieur.

– Le second chapitre décrit un système de types dépendants, que nous appelons types raffinés,
qui permet, étant donné un système de réécriture bien typé, de donner un ensemble de
paires de dépendances et un graphe de dépendances approximé. Ensuite nous décrivons un
critère syntaxique sur le graphe, qui correspond au critère de simple projection dans le cadre
standard des paires de dépendances, et énonçons le théorème principal de cette partie: si le
système de réécriture passe le critère, tout terme bien typé est fortement normalisant sous
ce système et la β-réduction.

– Le troisième chapitre détaille la preuve du théorème principal. Nous appliquons les tech-
niques de calculabilité utilisées dans les sections précédentes. Un soin particulier doit être
pris pour traiter le non-déterminisme inhérent de la réécriture. Celui-ci nous pousse à con-
sidérer des suites d’ensembles de formes normales de termes, auxquelles nous appliquons le
fameux lemme de König.

• Nous décrivons les approches à la terminaison les plus liées à notre approche, et nous ex-
pliquons comment notre approche se situe par rapport à ces efforts. Nous donnons ensuite
des perspectives concernant l’unification et l’extension des critères proposés.
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Introduction

Nos contributions sont les suivantes:

• Nous montrons que la méthode des annotations sémantiques de Hamana [Ham07] peut être
modifiée afin que la β-réduction soit préservée en tant que règle de calcul dans le système
annoté. Pour cela, il est nécessaire d’introduire des règles structurelles, et de considérer la
terminaison relativement à ces règles et non plus la terminaison tout court. Nous montrons
la correction de cette approche.

• Nous donnons un modèle de réalisabilité pour les systèmes de réécriture qui satisfont le critère
de taille, qui permet d’interpréter les termes de manière intuitive. Un terme en forme normale
est dénoté par un tuple qui le représente en tant qu’arbre. Les abstractions sont interprétées
par des fonctions dans l’ensemble des fonctions réalisées, et nous montrons que les éléments
de cette sémantique ont un ordinal naturellement associé, le rang, qui nous sert à définir les
interprétations de fonctions définies par induction bien fondée, ainsi que montrer la terminai-
son.

• Nous montrons que la méthode d’annotations sémantiques peut s’appliquer aux systèmes qui
passent le critère de taille. Comme les règles structurelles permettent alternativement un
affaiblissement et une instantiation du contexte dans lequel sont interprétés les termes, il est
nécessaire, pour montrer la bonne fondaison d’un ordre sur ces interprétations, d’utiliser un
lemme combinatoire, du a Doornbos et von Karger pour montrer la stabilité de cet ordre
vis-à-vis de ces modifications du contexte.

• Nous donnons une nouvelle preuve de modularité de la terminaison entre la réécriture du
premier ordre et le λ-calcul simplement typé.

• Nous décrivons un système de types pour un langage d’ordre supérieur basé sur la réécriture,
qui permet de décrire un graphe de dépendances des appels de fonctions. L’examen des cycles
dans ce graphe permet d’identifier les sources de non-terminaison potentielles. Nous donnons
un critère syntaxique sur ce graphe, basé sur l’ordre sous terme, qui permet de garantir la
terminaison des termes bien typés. Le langage comporte des annotations de types qui facilitent
l’inférence, mais la sémantique opérationnelle est donnée sur les termes avec les annotations
effacées. Nous prouvons que ce critère est correct, c’est-à-dire que pour tout système qui passe
ce critère, et tout terme bien typé, l’effacement de ce terme est fortement normalisant sous le
système de réécriture et β-réduction.
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Définitions

Commençons par dire un mot sur la méta-théorie. Nous adoptons la convention, habituelle
dans les développements non-formels, de ne pas nous étendre sur celle-ci; en particulier, nous
ne détaillerons pas les axiomes précis utilisés. Nous supposerons simplement que nous pouvons
sans peine construire des définitions et preuves inductives, des espaces de fonctions, etc.

Ceci dit, nous supposerons que nous sommes placés dans un cadre méta-théorique proche
de la théorie de Zermelo-Fraenkel avec axiome du Choix [FBHL73] (on pourra également se
référer a Jech [Jec06]), ce qui permet d’utiliser le traitement habituel des ordinaux, par exemple
[CL03]. Nous utilisons en particulier l’axiome du choix à certains endroits, en évitant la question
du système d’axiomes minimal nécessaire pour formaliser le résultat.

Cette thèse traite de terminaison de systèmes de réécriture d’ordre supérieurs. Nous tra-
vaillerons dans des systèmes qui sont des extensions du λ-calcul avec une signature de fonctions.
Les définitions et lemmes peuvent être trouvés dans Terese [BKdV03], mais nous rappelons les
bases ici.

1 Relations et termes

La réécriture est un modèle de calcul basé sur la notion de réduction. Mathématiquement, nous
modéliserons la réduction par une relation.

Definition 1 Soit E un ensemble quelconque, et R ⊆ E × E une relation sur E. Nous noterons
xRy si (x, y) ∈ R. On dit que R est un préordre si R est réflexive et transitive. On dit que R est
un ordre si R est un préordre et antisymétrique.

La clôture transitive R+ de R est la plus petite relation telle que:

• xRy⇒ xR+y

• xR+y ∧ yR+z⇒ xR+z

La clôture reflexive transitive R∗ de R est la plus petite relation telle que:

• xR+y⇒ xR∗y

• xR∗x

La clôture symétrique réflexive transitive ≡R de R est la plus petite relation telle que:

• xR∗y⇒ x ≡R y

• x ≡R y⇒ y ≡R x
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Définitions

La composée R ◦ S de deux relations R et S est la relation définie par:

xR ◦ S y⇔ ∃z, xRz ∧ zS y

Étant donné un ensemble X, et une relation R, le quotient X/ ≡R de X par ≡R est défini par:

X/ ≡R≔ {x | x ∈ X}

avec x la classe d’équivalence de x définie par

x = {y | x ≡R y}

Nous ne travaillons pas sur des ensembles E arbitraires. Nous voulons considérer des ensem-
bles d’éléments qui modélisent correctement un calcul a effectuer.

Definition 2 Donnons un ensemble Σ que l’on appelle Signature, et un ensemble X infini appelé
ensemble de variables. L’ensemble des λ-termes sur la signature Σ est l’ensemble défini par la
forme de Backus-Naur (BNF) suivante:

t, u ∈ TrmΣ ≔ x | f | t u | λx.t

avec x ∈ X et f ∈ Σ.

Nous adopterons les conventions de notation suivantes: l’application est associative à droite,
donc (t u) v s’écrit t u v et nous adopterons la notation vectorielle pour une série d’applications,
t u1 . . . un se note t ~u. On notera Trm au lieu de TrmΣ si il n’y a pas d’ambigüıté.

Définissons maintenant le renommage des variables:

Definition 3 Soit t un terme et x, y deux variables. Le renommage de x par y dans t, noté t{y/x}

est défini par induction sur t:

• x{y/x} = y

• z{y/x} = z si z ∈ X et z , x

• f {y/x} = f pour f ∈ Σ

• t u{y/x} = t{y/x} u{y/x}

• (λz.t){y/x} = λz.(t{y/x}) pour tout z ∈ X

La présence de termes comme λx.x nous oblige à définir le concept de variable liée:

Definition 4 On définit l’ensemble des variables libres et liées d’un terme t ∈ Trm dénotés
respectivement FV(t) et BV(t) par induction sur t:

• ∀x ∈ X,FV(x) = {x}

• ∀ f ∈ Σ,FV( f ) = BV( f ) = ∅

• FV(t u) = FV(t) ∪ FV(u), BV(t u) = BV(t) ∪ BV(u)

• FV(λx.t) = FV(t)\{x}, BV(λx.t) = BV(t) ∪ {x}
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1. Relations et termes

Nous voulons considérer les termes modulo renommage des variables liées: nous voulons
moralement avoir:

∀t ∈ Trm,∀y < FV(t), λx.t = λy.(t{y/x})

Il est possible de garantir cette égalité en travaillant sur un certain quotient de l’ensemble
Trm. Cependant travailler explicitement avec cet ensemble quotient est difficile en pratique.
Nous adopterons plutôt la convention de Barendregt [Bar84]: étant donné un terme de la forme
λx.t et un ensemble fini E de variables, on peut toujours supposer x < E, quitte à remplacer λx.t

par λy.t{y/x}. En particulier, nous passerons sous silence certaines difficultés techniques issues
de cette approche, et qui rendent difficile la formalisation rigoureuse des développements.

Notons au passage certaines approches alternatives:

• Les variables de De Bruijn [dB91]: il n’y a pas de nom de variable associée au λ, et les
variables dans les termes sont représentes par des nombres qui dénotent le nombre de λ à
remonter pour arriver à celui qui lie la variable en question; les variables libres sont traites
comme des variables liées par des λ “fictifs”.

• L’approche “localement sans nom” [MM04]. Cette technique tente de combiner les avantages
des termes nommés et des variables à la De Bruijn en donnant des noms aux variables libres
et en adoptant l’approche précisée ci-dessus pour les variables liées. Cette technique à été
utilisée avec succès pour formaliser certains développements non-triviaux de systèmes avec
lieurs.

• L’approche “syntaxe abstraite d’ordre supérieure” [MN87, Hof99]. L’idée ici est d’interpréter
une abstraction non pas comme une construction syntaxique, mais comme une vraie fonction
de la méta-théorie. Cette approche a été exploitée dans les implémentations et dans les
formalisations sur machine, mais est assez peu utilisée pour les preuves sur papier. En effet,
il faut restreindre l’espace des fonctions considérées pour ne pas avoir “trop” de termes, c’est
à dire des termes pathologiques qui ne sont pas issus de la définition inductive.

Notons que la pratique informelle de la convention de Barendregt peut être mise sur une
fondation solide en utilisant la logique nominale de Pitts et Gabbay [Pit03, Gab07]. Dans cette
approche formelle, les termes sont considérés modulo permutation de leur variables (libres et
liées) et les propriétés prouvées par induction sur la structures doivent être invariantes par cette
action, enfin ils considèrent un opérateur de frâıcheur qui affirme qu’une certaine variable ne se
trouve pas dans un certain ensemble fini.

Les preuves données ici peuvent être formalisées de manière complètement rigoureuse avec
l’une des techniques ci-dessus.

Definition 5 Une substitution est une application partielle X → Trm, dont le domaine est fini.
On notera Θ l’ensemble des substitutions. La substitution qui envoie x1 sur u1, x2 sur u2,...,xn

sur un est notée {x1, . . . , xn 7→ u1, . . . , un}.
Soit θ ∈ Θ et t ∈ Trm. La substitution θ appliquée à t, noté tθ, est le terme défini inductivement

par:

• xθ = θ(x) si x est dans le domaine de θ

• xθ = x sinon
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• f θ = f

• t1 t2θ = t1θ t2θ

• λy.tθ = λy.(tθ) si y n’est pas dans le domaine de θ (et n’est pas défini sinon).

On note θx
t pour la substitution égale à θ sur le domaine de θ et égale à t sur x, qui est

supposé en dehors du domaine de θ.

Remarquons que en général,

t{x1, . . . , xn 7→ u1, . . . , un} , t{x1 7→ u1} . . . {xn 7→ un}

En effet, x j peut apparâıtre libre dans ui pour j < i. On a alors, par exemple t{x1 7→ u1}{x2 7→

u2} = t{x1, x2 7→ u1{x2 7→ u2}, u2}

Definition 6 Un ensemble de filtres (ou patterns) est un ensemble P équipé d’une opération
partielle:

match:P × Trm→ Θ

si match(p, t) est défini, on dit que t est une instance de p ou que p filtre t avec la substitution
match(p, t).

Cette définition de filtres est très générale. On utilise surtout l’instance suivante:

Definition 7 On prend comme ensemble de filtres l’ensembleAlg ⊆ Trm des termes algébriques,
définis mutuellement avec les patterns algébriques:

a ∈ Alg ≔ f p1 . . . pn

p1 . . . pn ∈ Palg ≔ x | a

avec x ∈ X et f ∈ F .

Pour la fonction match on prend:

match(x, t) = {x 7→ t}

match( f , f ) = {}

match(t1 t2, u1 u2) = match(t1, u1) ⊎match(t2, u2)

Où {} est la substitution à domaine vide, ⊎ est l’opération suivante: si θ et θ′ sont deux substitu-
tions, θ⊎ θ′ est définie si pour tout x dans l’intersection des domaines de θ et θ′, θ(x) = θ′(x). La
substitution θ ⊎ θ′ est alors la substitution de domaine dom(θ) ∪ dom(θ′) et égale à θ sur dom(θ)

et à θ′ sur dom(θ′)\dom(θ).

match(a, b) n’est pas défini dans tous les autres cas.

Sauf précision contraire, on prendra P = Trm et match comme défini ci-dessus.
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2. Réécriture

2 Réécriture

Nous nous restreignons dans cette thèse à ne considérer que des patterns algébriques pour toutes
les règles à l’exception de la règle β. Il est possible de considérer des définitions plus générales
de patterns, ce qui permet de donner plus de règles de réécriture. Cependant, la théorie de la
réécriture avec patterns algébriques évite certains problèmes épineux, dont le matching d’ordre
supérieur. De plus, cette restriction est néanmoins très expressive, en particulier elle permet de
représenter les programmes de langages fonctionnels purs sous forme de système de réécriture,
sous réserve d’ajouter une règle spéciale que l’on appellera β, et sur laquelle nous allons revenir
dans ce paragraphe.

Definition 8 Étant donné un ensemble de filtres P, une règle de réécriture sur Trm est un
couple (l, r) ∈ P × Trm que l’on notera l � r. Dans ce cas, l est appelé le membre gauche de la
règle, et r le membre droit.

Donnons maintenant la définition d’une règle bien particulière, et qui justifiera le nom de
réécriture d’ordre supérieur.

Definition 9 Prenons comme ensemble de patterns l’ensemble des termes, et comme fonction
match l’égalité:

• match(t, u) = {} si t = u

• match(t, u) n’est pas défini sinon.

On définit la β-réduction comme l’ensemble des règles de réécritures suivant:

{(λx.t)u � t{x 7→ u} | t, u ∈ Trm}

On parlera souvent de l’ensemble des règles définissant la β-réduction comme d’une seule
règle. La β-réduction donne un moyen de“réifier” la notion de substitution, qui est fondamentale
en informatique.

Une règle de réécriture mène à une notion de réduction définie comme suit:

Definition 10 Soit ρ = (l, r) une règle de réécriture, et t un terme. On dit que t se réécrit en
tête en u sous ρ, noté t �

h
ρ u si:

• match(l, t) = θ

• u = rθ

En particulier, match(l, t) doit être défini. Le terme u est alors appelé le réduit en tête de t par
ρ. Si il existe u tel que t �

h
ρ u alors t est appelé rédex pour ρ.

Comme match est une fonction partielle, un terme t ne peut avoir au plus qu’un seul réduit,
ce qui induit une fonction partielle: �ρ :Trm→ Trm, qui a un terme associe son réduit s’il en a
un et n’est pas définie sinon.

La notion de réécriture n’est intéressante que si il est possible d’appliquer une règle à
l’intérieur d’un terme. Pour exprimer cette notion de“réécriture profonde”, il est utile d’introduire
la notion suivante.
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Definition 11 L’ensemble des contextes de termes, noté Tctxt est défini par:

C[] ∈ Tctxt ≔ [] | t C[] | C[] u | λx.C[]

si t, u ∈ Trm et x ∈ X.

Si t ∈ Trm et C[] ∈ Tctxt alors C[t] est le terme défini par induction sur C[] par:

• si C[] = [] alors t

• si C[] = C′[] u alors C′[t] u

• si C[] = u C′[] alors u C′[t]

• si C[] = λx.C′[] alors λx.C′[t] si x n’apparâıt pas dans t.

Étant donné une règle de réécriture ρ, des termes t, u et un contexte C[], on dit que t se
réécrit en u sous ρ dans le contexte C[] (ou à la position C[]), noté t �

C[]
ρ u, si t = C[t′], et il

existe un terme u′ tel que t′ �h
ρ u′ et u = C[u′].

On dit que t se réécrit en u sous ρ si il existe un contexte C[] tel que t �
C[]
ρ u.

Ici nous perdons déjà le déterminisme que nous avions dans la définition de la réécriture de
tête: un terme t peut se réécrire en de nombreux termes différents selon la position à laquelle
s’opère la réécriture. Notons également que �

h
ρ=�

[]
ρ pour toute règle ρ.

Definition 12 Un ensemble R de règles de réécriture est appelé un système de réécriture. On
dit que t se réécrit en u sous R, et on note t �R u, si il existe ρ ∈ R tel que t �ρ u.

On dit que t se réécrit en plusieurs pas en u sous R si t �
∗
R

u.

On dit que t se réécrit en au moins un pas en u sous R si t �R�
+

R
u.

Par abus nous dirons parfois “se réécrit en un pas” pour éviter les ambigüıtés, et nous oublierons
les références a R si il n’y a pas de confusion possible quand au système de réécriture considéré.

Ici enfin le non déterminisme est triple: un terme t peut se réécrire non seulement à plusieurs
positions différentes mais également sous plusieurs règles différentes, et en un nombre de pas
différents. Notons qu’un système de réécriture ne doit pas nécessairement avoir tous ses mem-
bres gauches qui proviennent du même ensemble de patterns. En particulier nous mélangerons
souvent réécriture avec des règles dont les membres gauches sont des patterns algébriques et la
règle β.

Introduisons finalement les concepts qui seront l’objet principal de nos préoccupations dans
cette thèse:

Definition 13 Soit E un ensemble et R une relation sur E. Un élément e ∈ E est en forme
normale pour R si il n’existe aucun e′ tel que eRe′.

On dit que n ∈ E est une forme normale de e si eRn et n est en forme normale pour R.

Un élément e ∈ E est fortement normalisant pour R si il n’existe pas de suite infinie (en)n∈N

telle que e = e0 et eiRei+1 pour tout i ∈ N. On notera alors e ∈ SNR ou e ∈ SN si il n’y a pas
d’ambigüıté.

On dit que R est fortement normalisant (ou bien fondé), si pour tout e ∈ E, e ∈ SNR.

Une relation induit un principe d’induction sur les éléments fortement normalisants.
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Lemma 14 (induction bien fondée)
Soit E un ensemble et R une relation sur E. Soit P un sous-ensemble de E qui vérifie:

∀x, (∀y, xRy⇒ y ∈ P)⇒ x ∈ P

Alors SNR ⊆ P.

Proof. Soit x ∈ SNR. Montrons x ∈ P par contradiction. Supposons que x < P. Alors
par hypothèse il existe y1 tel que xRy1 et y1 < P. Par l’axiome du choix relationnel, on peut
construire une suite infinie y1, y2, . . . telle que pour tout i, yiRyi+1 et yi < P. Mais ceci contredit
l’hypothèse x ∈ SNR. �

Notons au passage que la preuve ci-dessus utilise une version de l’axiome du choix de manière
essentielle. Une autre définition possible de la normalisation forte d’une relation est de prendre
le lemme 14 comme postulat pour SN . Cette définition est souvent adoptée dans les approches
constructives à la formalisation de résultats de normalisation forte.

On s’intéresse a la normalisation forte pour les termes t ∈ Trm sous la relation �R pour un
système de réécriture donné.

Notons que la terminaison de la réécriture est indécidable en général [Pos47]. Il n’est donc
possible de trouver des procédures de décision partielles. En particulier, si une méthode est
correcte, c’est à dire qu’elle affirme la terminaison de systèmes qui sont effectivement fortement
normalisants, alors elle ne peut être complète, c’est à dire qu’il y a des systèmes de réécriture
fortement normalisants pour lesquelles la procédure ne pourra pas affirmer qu’ils terminent.
D’autre part, tout critère à la fois correct et complet ne peut pas être décidable.

La situation est même pire que cela: en absence d’autres règles, il est indécidable de déter-
miner si un terme t est fortement normalisant sous β! C’est d’ailleurs un des premiers systèmes
pour lequel la normalisation a été montré indécidable [Chu41]. Il existe des termes qui ne
normalisent pas pour β: Si on prend le terme δ = λx.x x, alors

δδ = (λx.x x)λx.x x �β (λx.x x)λx.x x = δδ

3 Le typage et le théorème fondamental

Pour “brider” la puissance de la β-réduction, et pour pouvoir exclure les termes comme δδ, on
introduit une restriction sur l’ensemble des termes considérés: c’est le typage [Chu40]. L’intuition
est la suivante: à chaque terme t ∈ Trm on essaye d’associer un type qui dénote une abstraction
de son comportement calculatoire. En particulier, si pour chaque u qui a un comportement
dénoté par le type T , t u a le comportement dénoté par le type U, alors on associe au terme t

le type T → U. Cette intuition sera fondamentale pour comprendre la sémantique des règles de
typage. Pour que cette définition soit bien fondée il faut un ensemble de types de base.

Definition 15 On définit donc l’ensemble des types simples

T,U ∈ T ≔ B | T → U

avec B ∈ B un ensemble de types de base.

Nous écrirons T1 → T2 → . . .→ Tn au lieu de T1 →
(

T2 → (. . .→ Tn). . .
)

.
Pour que l’inférence des types associés aux termes soit plus facile, nous allons considérer

un ensemble modifié de termes, qui portent des annotations de types. On appelle souvent cet
ensemble de termes avec annotations termes à la Church.
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ax
Γ, x : T,∆ ⊢ x : T

symb
Γ ⊢ f : τ f

Γ ⊢ t : T → U Γ ⊢ u : T app
Γ ⊢ t u : U

Γ, x : T ⊢ t : U
abs

Γ ⊢ λx : T.t : T → U

Figure 1: Règles de typage pour les types simples

Definition 16 L’ensemble TrmT des termes annotes pour une signature F est défini par:

t, u ∈ TrmT ≔ x | f | t y | λx : T.t

avec x ∈ X, f ∈ F et T ∈ T .
L’ensemble des contextes de typage sur T est défini par:

Γ ∈ Ctxt ≔ • | Γ, x : T

avec x ∈ X, T ∈ T . Nous écrirons x1 : T1, . . . xn : Tn au lieu de •, x1 : T1, . . . xn : Tn. On suppose
également que les xi sont distincts. Si x apparâıt dans un contexte Γ on dit que x est dans le
domaine de Γ. Plus généralement on adoptera la nomenclature des substitutions, ces dernières
étant un analogue sémantique des contextes de typage.

Étant donné une signature F , un assignement de types τ est une fonction F → T . Si f ∈ F ,
on écrit τ f au lieu de τ( f ). Étant donné f ∈ F et un assignement de types τ, on dit que f est
d’arité n si τ f = T1 → . . . Tn → B avec B un type de base.

Lorsqu’il n’y a pas de confusion, nous dirons simplement terme pour terme annoté et contexte
pour contexte de typage. Il est clair que nous pouvons étendre toutes les définitions ci-dessus
(substitution, filtrage, réécriture), à cette nouvelle classe de termes.

Étant donné un assignement de types τ, il est maintenant possible d’associer un type à
certains termes dans TrmT , suivant les règles décrites dans la figure 1.

Definition 17 Soit Γ un contexte, T un type et t un terme. Un séquent est un triplet (Γ, t,T )

que l’on écrit Γ ⊢ t : T . On dit que t a le type T dans le contexte Γ, si Γ ⊢ t : T est dérivable
grâce aux règles décrites dans la figure 1. On écrira ∇� Γ ⊢ t : T si ∇ est l’arbre de dérivation du
séquent Γ ⊢ t : T .

On dira parfois juste Γ ⊢ t : T au lieu de Γ ⊢ t : T est dérivable.
Remarquons que si, au lieu du terme δ décrit ci-dessus, nous prenons le terme δT = λx : T.x x,

alors il n’existe aucun T , aucun U et aucun Γ tel que Γ ⊢ δT : U. En effet un examen rapide des
règles montre que ceci est équivalent à l’assertion: Γ, x : T ⊢ x : T → U et Γ, x : T ⊢ x : T . Ceci n’est
possible que si T → U = T , ce qui est impossible pour notre algèbre de types.

Nous pouvons donc être rassuré que notre premier exemple de terme non fortement normal-
isant pour la β-réduction ne peut pas être bien typé dans notre système de types. Nous allons
aller plus loin et montrer que tout terme bien typé dans ce système est fortement normalisant
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3. Le typage et le théorème fondamental

pour β. La normalisation faible a été prouvé par Turing (voir Gandi [CHS80]), mais nous allons
utiliser l’idée de preuve de Tait [Tai67] qui prouve encore une fois la normalisation faible, mais
qui peut être adaptée à la normalisation forte. C’est cette méthode de preuve qui va servir pour
tous les résultats de normalisation forte dans cette thèse.

Theorem 18 Soit Γ, t,T tels que Γ ⊢ t : T . On a t ∈ SNβ.

Proof. Nous allons utiliser la technique dite de Tait-Girard [Gir72] appelée aussi celle des
candidats de réductibilité (computability candidates en anglais). Pour prouver la normalisation
forte d’un terme t : T , nous allons montrer que t appartient a un certain ensemble [[T ]] qui ne
contient que des termes fortement normalisants. Il faut donc moralement trouver une sémantique
des types [[ ]], et montrer son adéquation, c’est a dire sa correction vis-à-vis des règles de typage.

Definition 19 A chaque type T on associe un ensemble [[T ]] ⊆ TrmT par induction sur le type:

• pour un type B ∈ B, [[B]] = SNβ

• pour un type T → U, [[T → U]] = [[T ]] _ [[U]] = {t ∈ SN | ∀u ∈ [[T ]], t u ∈ [[U]]}

Il s’agit de montrer maintenant que pour chaque type T , [[T ]] satisfait certaines conditions de
stabilité vis-à-vis de la réduction. Ces conditions utilisent la notion d’élément neutre:

Definition 20 Un terme t ∈ TrmT est dit neutre si il est de la forme:

• x ∈ X

• t u

Si t n’est pas neutre on dit que c’est une valeur. Si v est une valeur et t �β v, on dit que v est
une valeur de t.

Lemma 21 Pour tout T ∈ T , [[T ]] satisfait les conditions de Girard :

• normalisation forte: [[T ]] ⊆ SN .

• stabilité par réduction: si t ∈ [[T ]] et t �β u alors u ∈ [[T ]].

• condition de faisceau (appelée ainsi dans [Gal90]): si t est neutre, et ∀u, t �β u ⇒ u ∈ [[T ]]

alors t ∈ [[T ]].

Proof. Nous procédons par induction sur le type T :

• cas B ∈ B.

– Le premier point est évident.

– La stabilité par réduction est aussi claire: si t ∈ SN et t �β u alors u ∈ SN .

– La condition de faisceau: si tout u tel que t �β u est dans SN alors pour toute réduction
infinie t �β t1 �β . . ., t1 ∈ SN , or t1 �β t2 �β . . . est une réduction infinie de t1, contradiction.
On peut donc conclure t ∈ SN .

• cas T → U.

15
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– Le premier point est également clair.

– Stabilité par réduction: Supposons t ∈ [[T ]] _ [[U]]. Soit u ∈ [[T ]] arbitrairement choisi. On a
t u ∈ [[U]] par définition. Par hypothèse d’induction, pour tous les réduits t′ de t, t′ u ∈ [[U]],
car t′ u est un réduit de t u. En conséquence, comme u a été choisi arbitraire, t′ est dans
[[T ]] _ [[U]].

– Condition de faisceau: prenons t ∈ TrmT neutre et un u ∈ [[T ]] arbitrairement choisi, et
supposons que tout réduit t′ de t est dans [[T ]] _ [[U]]. Observons que t u est neutre. Par
hypothèse d’induction, si tout les réduits de t u sont dans [[U]] alors t u l’est également.
Pour prouver cela, nous allons utiliser le fait que u est fortement normalisant par hypothèse
d’induction. Nous procédons maintenant par induction bien fondée sur u ordonné par la
relation �

∗
β. Les réduits en un pas de t u sont de la forme t′ u avec t′ un réduit de t ou

t u′ avec u′ un réduit de u. En effet, une réduction en tête ne peut pas se produire, car il
faudrait que t soit de la forme λx.v, ce qui n’est pas possible car t est neutre.

∗ Si le réduit est de la forme t′ u on peut conclure par hypothèse sur t (et u).

∗ Si le réduit est de la forme t u′ alors nous appliquons l’hypothèse d’induction (sur u) pour
conclure que tous les réduits de t u′ sont dans [[U]] et donc (par l’induction sur le type)
t u′ l’est également.

Tous les réduits de t u sont donc dans [[U]] et on peut appliquer l’hypothèse d’induction sur
le type pour conclure que t u l’est également, puis conclure par généricité de u.

�

Pour pouvoir prouver que les termes bien typés sont dans l’interprétation de leur type, nous
allons procéder par induction. Le lemme suivant nous permet de traiter le cas de la règle symb.

Lemma 22 (Correction de l’interprétation pour les symboles)
Pour tout f ∈ F , f ∈ [[τ f ]]

Proof. Soit f ∈ F et supposons τ f = T1 → . . . Tn → B avec B un type de base. Soit
t1 ∈ [[T1]], . . . , tn ∈ [[Tn]] arbitraires. Il suffit de montrer que f ~t est dans [[B]] = SN . Il suffit
d’examiner les réduits de f ~t: ils sont nécessairement de la forme f t′

1
. . . t′n avec ti →

∗
β t′

i
. En effet,

f ~t ne peut jamais être un rédex pour β. Chaque ti étant fortement normalisant par le lemme
21, on peut conclure qu’il ne peut pas y avoir de réductions infinies de f ~t. �

Voici un dernier lemme utile pour la normalisation forte.

Lemma 23 Pour tout x ∈ X et tout T , x ∈ [[T ]].

Proof. Il suffit d’utiliser la condition de faisceau du lemme 21, en observant que x est en
forme normale, tout affirmation sur ses réduits étant donc trivialement vraie. �

En général, pour prouver des propriétés sur la sémantique opérationnelle du λ-calcul, il faut
avoir une notion de substitution “en attente”, qui lie chaque variable libre à un terme, c’est la
notion de clôture (on pourra consulter [Ste78]), qui est également utilisée pour implémenter la
β-réduction. Pour montrer la normalisation forte, nous devons définir la notion de substitution
calculable.

Definition 24 Soit Γ un contexte et θ une substitution. On dit que θ satisfait Γ, et on note
θ |= Γ, si les domaines de θ et Γ cöıncident, et θ(x) ∈ [[Γ(x)]] pour tout x dans le domaine de Γ, θ.
Dans ce cas on dira que la substitution θ est calculable.

Si t est un terme, θ une substitution et T un type, on notera θ |= t : T pour tθ ∈ [[T ]].
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La notation θ |= t : T rappelle clairement celle de la relation de typage. Le théorème d’adéquation
met en relation ces deux notions.

Theorem 25 (Adéquation) Soit t un terme, Γ un contexte et T un type.

Γ ⊢ t : T ⇒ ∀θ |= Γ, θ |= t : T

On appelle aussi ce théorème: théorème de correction.
Proof. Soit Γ, t,T comme dans le théorème. Nous allons procéder par induction sur le

jugement Γ ⊢ t : T . Soit θ une substitution telle que θ |= Γ.

• Cas ax: θ(x) ∈ [[T ]] par hypothèse sur θ.

• Cas symb: Application directe du lemme 22.

• Cas app: Par induction, on a θ |= t : T → U et θ |= u : T . On a donc par définition de
[[T ]] _ [[U]]: tθ uθ = (t u)θ ∈ [[U]].

• Cas abs: Par hypothèse d’induction, pour tout θ′ tel que θ′ |= Γ, x : T , on a θ′ |= t : U. Soit
u ∈ [[T ]] arbitraire. Montrons que (λx.t)θ u ∈ [[U]]. Nous allons utiliser la condition de faisceau
sur [[U]] en exploitant le fait que (λx.t)θ u est neutre. Il faut donc montrer que tous les réduits
de (λx.t)θ u sont dans [[U]]. Comme on peut supposer que x est en dehors du domaine de θ,
(λx.t)θ = λx.tθ. Les réduits sont de trois types:

1. (λx.t′) u avec t′ un réduit de tθ.

2. (λx.tθ) u′ avec u′ un réduit de u.

3. tθ{x 7→ u}.

Pour les deux premiers cas, nous allons procéder par induction bien fondée sur tθ et u respec-
tivement. u est bien fondé par la condition de normalisation forte (lemme 21). En posant
θ′ = θx

x, on a par le lemme 23, θ′ |= Γ, x : T et donc tθ′ ∈ [[U]], ce qui permet de déduire que
λx.tθ′ = λx.tθ est fortement normalisant. On montre donc dans les trois cas que le réduit est
dans [[U]]:

1. Par induction bien fondée sur λx.tθ, tous les réduits de (λx.t′) u sont dans [[U]], donc par la
condition de faisceau et le fait que (λx.t′) u soit neutre, ce terme est dans [[U]].

2. De même que précédemment.

3. On pose θ′ = θx
u. Par hypothèse, u ∈ [[T ]] et θ |= Γ, donc θ′ |= Γ, x : T . De l’hypothèse

d’induction (globale), on peut déduire que tθ′ = tθ{x 7→ u} est dans [[U]].

Ceci conclut la preuve.

�

Nous pouvons enfin terminer la preuve de normalisation forte: pour tout séquent Γ ⊢ t : T ,
on peut donner la substitution θ de même domaine que Γ et qui envoie toute variable sur elle
même. Par le lemme 23, θ |= Γ, et par le théorème d’adéquation (théorème 25), t = tθ ∈ [[T ]]. Or
le lemme 21 affirme [[T ]] ⊆ SN , ce qui nous permet de conclure. �

Nous avons donc ce que nous voulions, une manière de contrôler la
non-normalisation de la β-réduction. Nous voulons maintenant combiner celle-ci avec des rè-
gles de réécriture algébriques. En effet, bien que la β-réduction sur les termes non typés soit
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Turing-complète, il est bien souvent préférable, dans la pratique de la programmation par exem-
ple, d’avoir un système typé, donc avec une β-réduction normalisante, couplé avec des fonctions
“nommées”, qui peuvent être représentés par des systèmes de réécriture algébriques. En effet,
cela permet d’utiliser le système de type pour garantir certaines propriétés de correction du
programme, ainsi que d’éviter les lourdeurs (et lenteurs) des encodages de structures de données
dans le λ-calcul sans symboles de fonctions. Notons que la normalisation forte d’un système de
réécriture algébrique (sans β), même dans un cadre typé, est indécidable.

Definition 26 Une règle l � r est dite bien typée si pour tout contexte Γ et tout type T :

Γ ⊢ l : T ⇒ Γ ⊢ r : T

Un système de réécriture R est dit bien typé si toutes ses règles le sont.

Property 27 Pour un filtre algébrique l, si Γ ⊢ l : T alors T est unique, et si Γ ne contient que
les variables (nécessairement libres) de l, alors Γ est unique également.

Proof. Procédons par induction sur l. Comme c’est un terme algébrique, il est de la forme
f p1 . . . pn avec les pi des patterns algébriques. On procède par induction sur n. Si n = 0, alors
l = f et T = τ f . Sinon, comme Γ ⊢ f ~p : T , on a Γ ⊢ f p1 . . . pn−1 : T1 → T et Γ ⊢ pn : T1. On peut
alors raisonner par cas sur pn:

• cas variable: Γ ⊢ x : T1. Le type T1 est déterminé de manière unique par τ f . De plus la seule
manière de dériver ce séquent est par la règle ax, donc x est dans le domaine de Γ et Γ(x) = T1.

• cas terme algébrique: par hypothèse d’induction, T1 est déterminé de manière unique par pn,
et Γ est déterminé de manière unique sur les variables de pn.

�

Une proposition plus générale apparâıt dans Barbanera et al [BFG97].

Il est donc possible de prouver qu’une règle de réécriture algébrique l � r est bien typée en
exhibant simplement un type T et un contexte Γ qui ne contient que les variables de l, tel que
Γ ⊢ l : T et Γ ⊢ r : T .

Cependant, il ne suffit pas de considérer un système de réécriture R fortement normalisant
dans un cadre typé pour pouvoir conclure à la normalisation forte du système R∪ β. On dit que
la normalisation forte est non modulaire. Illustrons notre propos par un exemple tiré de Blanqui
[Bla05b].

Example 1 Soit B l’ensemble {B} des types de bases (réduit à un seul élément) et F la signature
{ f , c}, avec l’assignement de types τc = (B→ B) → B et τ f = B→ B→ B. On définit le système
de réécriture (algébrique) R suivant:

R = { f (c x) � x}

Le système R est bien typé et fortement normalisant. En effet, à chaque terme t ∈ TrmT
nous pouvons associer le nombre nt de symboles c contenus dans t. Ensuite il est facile de vérifier
que pour chaque u tel que t �R u, nt > nu. Il ne peut donc y avoir de suite infinie de pas de
réécriture.
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3. Le typage et le théorème fondamental

Cependant R∪β n’est pas fortement normalisant sur les termes bien typés avec la β-réduction:
si

δ = λx : B.( f x)
(

c ( f x)
)

alors
δ (c δ) �β

(

f (c δ)
) (

c
(

f (c δ)
)

)

�
∗
R δ (c δ)

Le terme δ (c δ) ne normalise donc pas sous R ∪ β.

Remarquons que le terme δ ci dessus présente une forte similarité avec notre terme λx.x x présenté
ci-dessus comme contre-exemple de la normalisation des termes non-typés. Le phénomène prin-
cipal qui permet l’écriture de tels termes est l’absence de positivité: le terme c est de type
(B→ B)→ B, et il y a donc une occurrence négative du type B dans les arguments de la fonction
c. Une condition de positivité est donc nécessaire pour pouvoir garantir la normalisation des
termes typés pour des systèmes de réécriture intéressants, on pourra consulter Mendler [Men87]
pour une discussion détaillée.

Dans les chapitres qui suivent, nous allons donner des critères pour la combinaison de sys-
tèmes de réécriture algébriques et la β-réduction.
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Semantics for size-based termination
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1

A Type-Based Termination Criterion

We describe a type system more complex than the one given in definition 17. The idea is
straightforward: type systems allow us to compute an abstraction of the value of a program,
where value may refer to the interpretation of the program in some given semantics, or just the
set of normal forms of its representation as a (strongly normalizing) term. Computing the value
of a program is undecidable, as is determining if a program terminates, but it is furthermore
very easy to prove undecidability of one given the undecidability of the other, as we may show
in the following informal reasoning. Suppose we have given a procedure t that takes as input p

and determines if p terminates on the empty input. We can build a procedure that determines
the value of p in the following manner: apply t to p. If t returns non-terminating, then return
no value. Otherwise we compute the normal form of p, which exists by definition and return
that. In the other direction, let v be a procedure that computes the value of a given program,
or returns no value if there is none. To build t we can just apply v to p and if v returns no

value, then we return non-terminating, and return terminating otherwise.

More pragmatically, it is often possible to use information on the value of a terms to show
termination. Let us give an informative example.

Example 2 (Structural recursion)

Let R be the following rewrite system over Trm: we give the signature Σ = {0, S , f } and the
rules R = { f (S x) � S ( f x)}. Then R (without β-reduction) is strongly normalizing. Note first
that simple counting of the number of symbols is insufficient to prove termination (contrary to
example 1) because the rule preserves the number of symbols.

Proof.

Consider the size function which maps a term t to the number of ses at the head of t:

• size(S t) = size(t) + 1

• size(0) = 0

• size(λx.t) = 0

• size(t u) = 0 if t , S .

It is easy to show that terms in SN only have a finite number of reducts (as the rewrite
system is finite). We can therefore define the following interpretation function (| |) :SN → N

23



Chapter 1. A Type-Based Termination Criterion

(|t|) = max
t�∗
R

u
size(u)

We can then use the (| |) function to prove strong normalization of R. Let t be a term. We
show by structural induction that t ∈ SN :

• Variable case: trivial.

• Case λx.t: this term is strongly normalizing if and only if t is strongly normalizing, which is
true by induction hypothesis.

• Case 0, S : trivially true.

• Case t u: Notice first that t and u are in SN by induction hypothesis. We proceed by case
analysis on t. If t , f , then the reducts of t u are of the form t′ u′ with t′ and u′ reducts of
t and u respectively. Indeed, if t , f , then a simple examination of the (unique) rule suffices
to see that t may never reduce to f , and then we may never apply this rule to t′ u′. We can
therefore conclude by the induction hypothesis.

Otherwise, if t = f , then we look at possible reducts of f u. We proceed by lexicographic
induction on the pair ((|u|), u) ordered by >N × �

+

R
, u is strongly normalizing by induction

hypothesis, so (|u|) is defined, and �
+

R
is well-founded on reducts of u.

– f u′ with u �
+ u′. We have ((|u|), u) > ((|u′|), u′) and can conclude by induction hypothesis.

– S ( f v) with u = S v. It suffices to show that f v is in SN . By definition (|u|) >N (|v|), and we
can apply the induction hypothesis.

All reducts of f u are therefore in SN , and so is f u. �

We can extract two major elements from the normalization proof above:

1. The use of a semantics to express decrease.

2. The notion of recursive call : to prove normalization of f (S v) it suffices to prove normalization
of f v, which is a subterm of a reduct of f (S v).

There are similarities between the above proof and the proof of theorem 18. We shall use
a type system to build a syntactic approximation of (a variant of) the (| |) function defined
above, but which allows treatment of β-reduction. Typing will be used both to compute the
approximation and to guarantee that b-reduction is well-behaved. Such size-based type systems
were introduced independently by Hughes et al [HPS96] and Gimenez [Gim96], and subsequently
underwent many developments [Abe06, BR06, Bla05a, CK01, BFG+04, BGP06, BGP09].

In what follows we describe an adaptation to simple types of the the type system given
in Blanqui [Bla04], which is described for the Calculus of Algebraic Constructions [Bla01], an
extension of the Calculus of Constructions of Coquand and Huet [CH88]. The system for simple
types is described in Blanqui & Roux [BR09], and is quite similar to that exposed in Barthe
et al [BFG+04], where the main difference is that their formalism involves inductive datatypes
with a fixpoint operator and an explicit matching construct rather than rewrite rules. The
system described here presents the advantage of allowing (certain) matches on defined symbols.
However there are systems which can be shown to terminate in the Barthe et al framework but
not with the criterion we give here (see example 9).
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1.1 The type system

In everything that follows, we will assume that signatures are countable. This is not a very
strong restriction in practice, as actual (physical) programs may only contain a finite number of
symbols.

Definition 28 (Size types)
We define the size-algebra A with the following BNF:

a, b ∈ A ≔ α | 0 | s(a) | max(a, b) | ∞

with α ∈ V an infinite set of size variables. We can then define the simple sized-types:

T,U ∈ TA ≔ Ba | T → U

With B ∈ B the set of base types. A type of the form Ba is called an atomic type.
The set of terms is then defined by:

t, u, t1, . . . , tn ∈ TrmA ≔ x | f | λx : T | t u

With f ∈ Σ a signature and T ∈ TA. We write Trm if there is no ambiguity.
We then extend the definitions for rewrite systems and reduction of terms in TrmA by

straightforward analogy with that on non annotated terms as described in chapter (definitions
9, 12).

A type assignment τ is a function from Σ to TA.

We can easily define an erasure of a sized-type to a simple type.

Definition 29 For each size-type T , we define T , the type T∞ is obtained from T by replacing
each size annotation by ∞.

We define the erasure as follows:

• |Ba| = B

• |T → U | = |T | → |U |

We separate Σ into two subsets: the subset C of constructors and the set D of eliminators.
Only constructors may appear deeply in a left-hand-side of a rule, and only eliminators can
appear at the head of a left-hand-side. However these subsets need not be disjoint! In particular
a constructor may be defined by rewrite rules. The distinction is useful to enforce more restrictive
typing rules on constructors.

We wish to give a size semantics to terms using A. The intuition is the following: if a term t

is of size n, then the application of a constructor c to t is of size n + 1. If c takes two arguments
t and u of sizes n and m, then the size of c t u is taken to be max(n,m) + 1. We must then give
a type system capable of assigning an approximation of this size, and then check that recursive
calls are made on terms of smaller size, as in example 2. A first difficulty arises from the fact
that certain terms can not be given a finite size. Consider the example of Brouwer ordinals:

Example 3 (Brouwer Ordinals)
Take the following base types:

B = {Nat,Ord}
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And the following constructors:
C = {0, S , 0O, S O, Lim}

With the following type assignment:

τ0 = Nat

τS = Nat → Nat

τ0O
= Ord

τS o
= Ord → Ord

τLim = (Nat → Ord)→ Ord

And as eliminators:
D = {recT | T ∈ T }

With types τrecT
= T → (Nat → T → T )→ Nat → T . We give the rewrite rules:

R = {recT t u 0 � t, recT t u (S v) � u v (recT t u v) | T ∈ T }

The Brouwer ordinals are the set of terms of type Ord in the empty context.

The Brouwer ordinal Lim (recOrd 0O S O) can not be attributed a finite size. Indeed, if we
give size n to terms of the shape

S n
o 0O = S O(. . . (S O 0O) . . .)

Where S O appears n times, then we cannot bound the size of recOrd 0O S O t for any t, as it is
equal to n for t = S n 0.

But if we consider Lim f as a tree, it is reasonable to consider f t as a subtree of it. Therefore,
Lim (recO 0O S O) has as subtrees trees of size n for any n ∈ N. To talk about the size of this
term, it is therefore necessary to be able to consider terms of ordinal size. The term above can
then be given the size ω + 1, where ω the first infinite ordinal.

However we do not want to explicitly speak of ordinals in our type system. Indeed in general
it is not necessary to know the exact size of a term to be able to compare the size of arguments
in a recursive call. It is only necessary to be able to express the difference in sizes between the
two terms. Our type annotations are capable of expressing such differences if they are strictly
smaller than ω.

The elements 0, s and max have a natural interpretation in ordinals, and we use the ∞ symbol
to denote either an unknown ordinal, or one that can not be expressed with s,max and 0 alone.

One can only give a size denotation to a term built with constructors unless their type
respects certain positivity conditions. We draw our definitions from Mendler [Men87].

Definition 30 (Positive and negative positions)
Take T ∈ T or TA and let A be an atomic type. A appears positively in T if:

• T = A

• T = T1 → T2 and A appears positively in T2 or negatively in T1 or both.

And A appears negatively in T if T = T1 → T2 and A appears positively in T1 or negatively
in T2 or both.

Finally A appears strictly positively in T if:
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• T = A

• T = T1 → T2 and A appears strictly positively in T2.

It is obvious that if an atomic type appears strictly positively in T then it appears positively
in T .

A datatype represents a structure in informatics. We use our base type to represent algebraic
datatypes [MTH91]. To define the semantics of such structures (and give a correct definition of
a well-formed datatype), we suppose we are given a declaration preorder >B over B. We suppose
that this preorder is well-founded on its strict part, and we write B ≃B C, if B ≥B C and C ≥B B.

Definition 31 (Well-formed constructors) Given a signature Σ = C ∪D and a type assign-
ment τ, a symbol c ∈ C is a constructor of B ∈ B if

τc = T1 → . . .→ Tn → Ba

with T1, . . . ,Tn ∈ TA and a ∈ A

A constructor c of B is strictly positive if its type τc is of the form T1 → . . .→ Tn → Ba and if
Cb appears in Ti then C ≤B B, and furthermore if C ≃B B, then Cb appears strictly positively in
Ti. The indexes i in which some C ≃B appears are called inductive indexes and the arguments
at those indexes, inductive arguments.

A constructor c of B is well-formed if its type is of the form τc = T1 → . . . → Tn → Ba, if it
is strictly positive, and

• If Cb appears in Ti with C ≃B B, then b = αi is a variable in V.

• If Cb appears in Ti with C ;B B, then b = ∞.

• All size variables appearing in the Ti are distinct.

• a = s(max(α1, . . . , αk)) with α1, . . . , αk being the size variables in τc and

max(a1, . . . , ak) = max(a1,max(a2, . . . ,max(αk−1, αk) . . .))

if k ≥ 2, otherwise
max(a) = a

if k = 1 and
max() = 0

if k = 0.

Functions are defined by constructor elimination. A function is recursive if its value in some
arguments depends on its value in other arguments. Clearly, a function f defined by rewriting
may be recursive if one of the rules defining f , that is of the form f~l � r, contains the symbol f

in the right hand side.
However a function may be recursive without fulfilling this condition. For instance, taking

{ f x � g x, g y � f y}, the value of f x depends on its own value (again in x). Recursive function
definitions are the fundamental source of non-termination in typed rewrite systems, so we need
a way to deal with this system. In fact we need a slightly more general treatment of recursion,
which expresses the fact that f and g are mutually defined. We proceed as for mutually defined
datatypes.
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Chapter 1. A Type-Based Termination Criterion

Definition 32 (Call preorder) A call preorder over a signature Σ is a preorder ≥D over D
which is well-founded in its strict part. We write f ≃D g if f ≥D g and f ≤D g.

A left-algebraic rewrite system R over Σ is said to respect >D if in every rule f~l � r ∈ R and
every symbol g ∈ Σ that appears in r or ~l, f ≥D g.

We are only going to consider orthogonal systems here, as they will facilitate the model
construction of chapter 4. Orthogonal systems are systems for which rewrite rules may not
interact, that is at each position in a term only one head rewrite-rule may apply.

Definition 33 (Orthogonality) Let l, l′ be two algebraic patterns with distinct variables. We
say that l and l′ are overlapping if there exists a subterm m of l such that m and l′ are unifyable,
or symmetrically. If in this case m = l then we say that it is a head overlap.

An algebraic pattern is linear if every variable occurs only once.

A left-algebraic rewrite rule l � r is left-linear if l is linear, and given two rules ρ1 = l1 � r1

and ρ2 = l2 � r2, we say ρ1 and ρ2 overlap if:

• ρ1 , ρ2 and l1 and l2 overlap.

• ρ1 = ρ2 and l1 and l2 have a non-head overlap.

We say that a left-algebraic rewrite system R is orthogonal if every rewrite rule is left-linear
and for every pair ρ1, ρ2 of rules do not overlap.

It is a fact that orthogonal rewrite systems are easier to study, and in particular the are
confluent, even in the presence of β-reduction: if R is an orthogonal rewrite system, then for
every term t and terms u, v such that t �

∗
R∪β

u, t �
∗
R∪β

v, then there exists a term w such that

u �
∗
R∪β

w and v �
∗
R∪β

w. See van Oostrom [vO94] for an in depth discussion. Note that a term

may overlap itself as we may have for instance f ( f x) which unifies with f y (as we require
distinct variable names).

We can now give the typing rules that will allow us to give size-labelled types to terms in
TA.

Definition 34 (Size-type system)

A term t in TA is well-typed of type T under the context Γ in the size-type system if

Γ ⊢size t : T

is derivable using the rules of figure 1.1. We adopt the nomenclature and notations of definition
17 for simple types.

The type system involves an order on the size labels, which will also be used in checking
decrease of recursive calls.

Definition 35 The size order ≤⊆ A ×A is defined by the rules of figure 1.2. We write a ≃ b if
a ≥ b and a ≤ b. We define the strict size order by taking

s(a) > b⇔ a ≥ b ∧ a, b ; ∞
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1.1. The type system

ax
Γ, x : T,∆ ⊢size x : T

φ subst
symb

Γ ⊢size f : τ fφ

Γ ⊢size t : T → U Γ ⊢size u : T
app

Γ ⊢size t u : U

Γ, x : T∞ ⊢size t : U
abs

Γ ⊢size λx : |T |.t : T → U

Γ ⊢size t : T T ≤ U
sub

Γ ⊢size t : U

Figure 1.1: Typing rules for labelled types

0 ≤ a α ≤ α

a ≤ b

a ≤ s(b)

a ≤ b

s(a) ≤ s(b)

a ≤ b

a ≤ max(b, c)

a ≤ c

a ≤ max(b, c)

a ≤ c b ≤ c

max(a, b) ≤ c a ≤ ∞

Figure 1.2: Order on the size algebra

We have defined a set of types labelled with a certain size algebra. Notice however that the
domain of abstractions (the type T in the expression λx : T.t) is restricted: every size variable in
T is required to be ∞. This is a restriction on the set of typeable terms, and also on the set of
rewrite systems that pass the termination criterion, as for instance example 9. The reasons for
this restriction are twofold.

• It allows preservation of the subject reduction property:

∀Γ, t,T, Γ ⊢size t : T, t �R∪β u⇒ Γ ⊢size u : T

We give a counter example to this property in the absence of the restriction in example 4.

• The formalism that we describe in chapters 3 and 5 that will allow us to prove correctness of
the criterion is incapable of treating systems in which abstracted variables can contain size
information.

The type system is quite similar to that for simple types (see chapter definitions) with the
following differences:
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Chapter 1. A Type-Based Termination Criterion

a ≤ b

Ba ≤ Bb

T2 ≤ T1 U1 ≤ U2

T1 → U1 ≤ T2 → U2

Figure 1.3: Subtyping rules

• The symb rule. The type of function symbols is implicitly universally quantified in its free
size variables. We therefore authorize arbitrary instantiations of these by a substitution φ, as
a function symbol is introduced.

• The abs rule. As previously mentioned, we only authorize abstractions over variables of type
T∞ for a given T . This prevents size information to be contained in abstracted variables.

• The sub rule. The intuitive semantics of type Ba is the set of B elements with size at most a.
Subtyping allows one to express this intuition. There are many natural rules that can only be
typed using the subtyping rule. For instance the system given in example 6 can only be typed
if we can infer Nat0 ≤ Nat∞. This is a common occurrence in functions defined by matching
on arguments, where we need the output type of the function to be an upper bound of the
types of the right hand sides.

Example 4 (Counter-example to subject reduction)
Let us give a counterexample to subject reduction if we allow arbitrary size annotations in

abstractions. This example is taken from Barthe et al [BGP09]. Suppose that the abs rule is as
follows:

Γ, x : T ⊢size t : U
abs

Γ ⊢size λx : T.t : T → U

Take the type Nat ∈ B, with constructors 0 and S in Σ with respective types Nat0 and
Natα → Nats(α). Consider the defined function f ∈ Σ of type Natα → Natα defined by the
following rules:

f 0 � 0

f (S x) � (λz : Natβ.z)x

This system is well-typed in the context Γ = x : Natβ. The judgement

y : Natγ ⊢size f (S y) : Natγ

is derivable, but f (S y) reduces to (λ z : Natβ.z)y, and it is not possible to type this term, as
Natγ � Natβ.

1.2 Decrease of recursive calls and the main theorem

We need a way to observe decrease in recursive calls. This decrease is measured on the size of
the arguments applied to defined functions. We can only measure size of elements of base type,
and for each defined function symbol we identify a certain number of arguments for which we
wish to observe decrease: the recursive arguments.
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Definition 36 (Elimination form)
Let Σ = C ∪D be a signature and f ∈ D be a defined function with type τ f . We say that τ f

is in elimination form if there is some natural number k such that

τ f = B
α1

1
→ . . .→ B

αk

k
→ T1 → . . . Tn → B

a f

f

with FV(a f ) ⊆ {α1, . . . , αk}, and αi not appearing in T j for any i, j and αi , α j if i , j. We say
that B1, . . . , Bk are the recursive types of f , and k is the number of recursive arguments of f .

We suppose from now on that for every signature Σ = D∪C, f ∈ D and every typing function
τ that τ f is in elimination form, with n f the number of recursive arguments.

To compare the size of the arguments, we use a valuation function that allows us to combine
the sizes of the different recursive arguments into one global decrease, for instance by applying
a lexicographic or multi-set transformation.

Definition 37 (Function status)
If Σ is a signature, τ a typing function and f is a defined function with k recursive arguments,

a status for f is a function stat f that takes a well-founded set (E, >) and returns a well-founded
order > f over Ek that respects >:

• if ~e, ~e′, ~e′′ ∈ Ek, and for every 1 ≤ i ≤ k, ei ≥ e′
i
then

~e′ > f ~e
′′ ⇒ ~e > f ~e

′′

• if E, >E and F, >F are well-founded sets and s : E → F verifies

e >E e′ ⇒ s(e) >F s(e′)

then for ~e, ~e′ ∈ Ek

~e > f ~e
′ ⇒ s(~e) > f s(~e′)

It is trivial to check that the lexicographic order verifies this property.

All we need to do now is define a typing judgement that, given a pair ( f , ~a) of a defined
function and size annotations (a1, . . . , ak), expressed the following fact: all functions g ≃D f are
called on arguments that are strictly smaller than a1, . . . , ak.

Definition 38 (Recursive judgement)
Let Σ be a signature with τ a typing function. We suppose given a status stat f for each

f ∈ D. Furthermore suppose that if f ≃D g, then the number of recursive arguments for f and
g are equal and stat f

= statg.
Suppose the number of recursive arguments of f is k, and take a1, . . . , ak in A. The recursive

judgment ⊢
f

~a
is defined by the rules of figure 1.1, with the exception of the symb rule which is

replaced with the rules:

~a > f
~b g ≃D f

symb-call
Γ ⊢

f

~a
g : τgφ

With φ a substitution, τg = B
β1

1
→ . . . B

βk

k
→ U1 → . . .Um → B

bg

g and ~b = ~βφ

And the rule

31



Chapter 1. A Type-Based Termination Criterion

g <D f
symb-call’

Γ ⊢
f

~a
g : τgφ

Where φ is an arbitrary substitution.

This presentation of a recursive jugment is quite close to that described by Xi [Xi01]. We use
this recursive call judgement to give a type-based termination criterion for left-algebraic rules
with β-reduction. To do this, we need to correctly approximate the size of the arguments in the
left-hand-side of rewrite rules. Typing is insufficient without further modifications:

Example 5 Take Nat as (the only) atomic type, and split Σ = {0, S , f } into C = {0, S } and
D = { f }. The labelled types are as follows: τ0 = Nat0, τS = Natα → Nats(α), τ f = Natγ → Nat∞.
We define R to be the rewrite system with the unique rule

f (S x) � f (S 0)

Let Γ = x : Nats(α). We can derive
Γ ⊢size S x : Nats(s(α))

Furthermore
Γ ⊢size S 0: Nats(0)

But we have s(s(α)) > s(0). The naive criterion (that does not have any restriction on the typing
of left-hand sides) is therefore satisfied, as there is a strict decrease in the type of the argument
of the recursive call. However this system is not strongly normalizing on well-typed terms, as
we can derive

⊢size f (S 0) : Nat∞

And this term admits the infinite reduction

f (S 0) � f (S 0) � . . .

The problem can be described in this manner: there is no instance a of the size variable α such
that the term S 0 has size s(s(a)) (as a tree). The context Γ is therefore not suitable for typing
the left-hand side of our rule. This property, namely having equality between the size of an
instance of a left-hand side and some instance of the size-annotation in its type, shall be stated
and proven explicitly in chapter 4 (lemma 102).

As a consequence, we must give a more restrictive version of typing for left hand sides.

Definition 39 (Minimal typing)
Let f p1 . . . pn be an algebraic pattern. We define minimal typing as the judgement defined

by the rules of figure 1.2, where a type A is minimal in the context Γ if it is of the form

T1 → . . . Tn → Bα

with:

• α a variable that does not appear in Γ.

• for each i, all the size annotations that appear in Ti are equal to ∞.
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1.2. Decrease of recursive calls and the main theorem

A minimal in Γ,∆
Γ, x : A,∆ ⊢min x : A

Γ ⊢min t : T → U Γ ⊢min u : T ′
Tφ = T ′

Γ ⊢min t u : Uφ

c ∈ C
Γ ⊢min c : τc

Figure 1.4: Rules for minimal typing

This constraint on typing is related to the pattern condition in Blanqui & Roux [BR09] and
accessibility in [BR06], which are more semantic in nature, and are guaranteed by our minimal
typing rules.

Notice that ⊢min⊆⊢size. We have omited the abstraction rule, as it is not necessary to type
algebraic patterns and the subtyping rule, as it leads to problems similar to the ones described
in example 5.

Definition 40 (Size-criterion)
Let Σ = C ∪ D be a signature, and τ be a typing function. A rule l � r is well-formed if

l = f p1 . . . pn is an algebraic pattern with f ∈ D, every function symbol in pi is in C and n is
equal to the number of recursive arguments of f .

Let R be a left-algebraic rewrite system over Σ, >B a declaration preorder >D a call preorder,
and we suppose given a status > f for each f ∈ D. The system R passes the size-criterion if

• >D, >B are well-founded.

• R respects >D.

• Every c ∈ C is a well formed constructor for some B ∈ B.

• Every f ∈ D is in elimination form.

• For every rule f l1 . . . ln � r, n is the number of recursive arguments of f .

• R is orthogonal.

• Each rule f~l � r ∈ R satisfies the decrease condition: There is a context Γ and a type T ∈ TA
such that

– Γ ⊢min li : B
ai

i

– Γ ⊢min f ~l : T

– Γ ⊢
f

~a
r : T

The correctness theorem for size-based termination can be expressed as follows:

Theorem 41 (Main theorem)
Suppose the conditions of definition 40 are satisfied. Then if R passes the size criterion we

have for each Γ,T ∈ T and each term t:

Γ ⊢ t : T ⇒ t ∈ SNR∪β
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Chapter 1. A Type-Based Termination Criterion

Notice that to the size-types are only needed to to establish that R passes the criterion, and
that strong normalization is established for every well-typed term for simple (unlabeled) types.

The proof of this theorem is the object of the semantic analysis of the next sections.

Let us give an application of this termination technique.

Example 6 We take this example from Blanqui [Bla04]. Consider the signature Σ = {S , 0} ∪
{minus, div} with base type Nat and types of constants given by 0: Nats(0), S : Natα → Nats(α),minus : Natα →

Natβ → Natα, div : Natα → Natβ → Nat∞. We set div >D minus and give the rules:

minus 0 n � 0

minus n 0 � n

minus (S n) (S m) � minus n m

div 0 m � 0

div (S n) (S m) � S (div (minus n m) (S m))

Each rule can be typed in the context n : Natγ,m : Natδ.

It is easy to verify that this rewrite system satisfies the termination criterion. We detail rule
div (S n) (S m) � div (minus n m) (S m). We have

n : Natγ,m : Natδ ⊢min S n : Nats(γ)

and

n : Natγ,m : Natδ ⊢min S m : Nats(δ)

We take for statdiv the function that takes a well-founded order >E over E and returns the
following well-founded order >E×E over E × E:

(e1, e2) >E×E (e′1, e
′
2)⇔ e1 >E e′1

We therefore only compare the size of the first argument of div in recursive calls. It is easy
to check that

n : Natγ,m : Natδ ⊢div
(s(γ),s(δ)) div (minus n m) (S m) : Nat∞

Indeed

n : Natγ,m : Natδ ⊢size minus : Natγ → Natδ → Natγ

And we can apply the symb-call’ with the substitution that sends α to γ and β to δ. Then by
applying the rule app we get

n : Natγ,m : Natδ ⊢div
(s(γ),s(δ)) minus n m : Natγ

But s(γ) > γ, and so (s(γ), s(δ)) >div (γ, s(δ)). We can therefore apply symb-call with φ such that
φ(α) = γ and φ(β) = s(δ). Finally applying app again gives

n : Natγ,m : Natδ ⊢div
(s(γ),s(δ)) S (div (minus n m) (S m)) : Nat∞
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1.2. Decrease of recursive calls and the main theorem

The above system is not simply terminating. Our criterion gives semantic information,
contained in the fact that minus returns a term smaller or equal in size to its first argument,
encoded in the type Natα → Natβ → Natα.

Here is an example with matching on defined symbols and higher-order constructors. Note
that higher-order constructors can not be themselves defined, as they can not be both well-
formed and in elimination form (see definitions 31 and 36).

Example 7 We take as base types Nat and Prop, and give the signature Σ = {S , 0,¬,∧,∨,∀,∃,⊤,⊥}
with C = Σ and D = {¬} and we adopt an infix notation for ∧ and ∨. We give the types 0: Nats(0),
S : Natα → Nats(α), ⊤,⊥ : Props(0), ∧,∨ : Propα → Propβ → Props(max(α,β)), ¬ : Propα → Props(α) and
∃,∀ : Nat∞ → Props(α). We consider the following rewrite rules:

¬(x ∧ y) � (¬x) ∨ (¬y)

¬(x ∨ y) � (¬x) ∧ (¬y)

¬(∀ f ) � ∃(λn : N.¬ f n)

¬(∃ f ) � ∀(λn : N.¬ f n)

¬(⊤) � ⊥

¬(⊥) � ⊤

This system represents the negation elimination, and it can be shown to be terminating using
the size-types criterion. Set Γ ≔ x : Propα, y : Propβ, and Γ′ = f : Nat∞ → Propα. We have

Γ ⊢min ¬(x ∧ y),¬(x ∨ y) : Props(s(max(α,β)))

Γ
′ ⊢min ¬(∀ f ),¬(∃ f ) : Props(s(α))

and

[] ⊢min ¬(⊤),¬(⊥) : Props(s(0))

Now we need to show that for every right hand side of the rewrite rules, each recursive call to
¬ is made on a smaller argument. For instance for the first rule we have

Γ ⊢min x ∧ y : Props(max(α,β))

and

Γ ⊢¬s(max(α,β)) (¬x) ∨ (¬y) : Props(s(max(α,β)))

And the other rules may be treated in the same manner.

Note that we may not add certain natural rules like ¬(¬(x)) � x as this would break orthog-
onality.

In fact it is not entirely trivial to give an interesting example of an orthogonal system with
defined constructors. A non-orthogonal system can sometimes be adapted to an orthogonal
system though, by adding a non-defined constructor that freezes reduction.
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Example 8 Take the set of base types B = {Nat, List} and the signature C = {S , 0, nil, cons, f reeze,map}

and D = { f old,map} with the types

S : Natα → Nats(α)

0 : Nats(0)

nil : Lists(0)

cons : Nat∞ → Listα → Lists(α)

f reeze : Listα → Lists(α)

map : Listα → (Nat∞ → Nat∞)→ Lists(α)

f old : Listα → Nat∞ → (Nat∞ → Nat∞ → Nat∞)→ Nat∞

And the rules
map nil f � nil

map (cons x y) f � cons ( f x) (map y f )

f old nil a f � a

f old (cons x y) a f � f x ( f old y a f )

f old (map ( f reeze x) f ) a g � f old x a (λn : Nat.g ( f n))

We may see this as a kind of optimization procedure, where the optimization of a f old over
a map is only allowed to fire if the list to which is applied the map is frozen by the f reeze

constructor. The system is orthogonal, and it is easy to verify that it passes the termination
criterion, using the precedence f old >D map.

Finally let us give a simple example of a system for which termination may not be shown
using our criterion.

Example 9 (Non-local size information)
We take B = {Nat} and Σ = D ∪ C with C = {S , 0} and D = { f }. We give the types

S : Natα → Natα, 0: Nats(0), f : Natα → Nat∞ and as a rewrite system the unique rule

R = { f (S x) � (λz : Nat. f z) x

In the context x : Natβ, we can derive

x : Natβ ⊢min f (S x) : Nat∞

and
x : Natβ ⊢min S x : Nats(β)

However we can not derive
⊢

f

s(α)
(λz : Nat∞. f z) x

Indeed in the context x : Natα, z : Nat∞, fφ : Nat∞ → Nat∞ implies φ(α) = ∞, and in particular
we can not prove s(β) ≯ φ(α).

It is not difficult to show that this rewrite system can not be shown to terminate (on well-
typed terms) with β-reduction, for any possible annotation for f . The size information necessary
to show termination is “hidden” by the β-expansion in the right-hand-side. However a similar
system can be treated in the formalism presented by Barthe et al [BFG+04], as they have a more
liberal rule for abstraction.
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2

Higher Order Algebras

We define Σλ-algebras, which allow us to give a semantics to higher-order rewrite systems. We
closely follow the developments of Fiore, Plotkin and Turi [FPT99] for the definitions of Σλ-
algebras and •-monoids, as well as that of Hamana [Ham07, Ham98] for premodels of rewrite
systems, simply flushing out some of the categorical content. A good overview of this approach
to higher order algebras can be found in Zsido [Zsi10]. The basic idea is to generalize the
categorical description of first-order algebraic structures (see for example Vene [Ven00] for an
overview), which can be made using endofunctors F on the category Set, and giving the notion
of F-algebra. To be able to consider bound variables, the concept of variables must be reified,
and we must now consider functors over the category Set

G (category of presheafs), with G the
category of contexts (of variables) and renamings. One can define the concept of Σl-algebra, and
prove that it is possible to interpret terms t in Trm over a signature Σ into such an algebra, using
an interpretation function (|t|). It is then possible to describe a monoidal product • in Set

G which
captures the intuition of instantiation. We then consider Σλ-algebras which are also •-monoids
for this monoidal product. A final requirement is the compatibility of the two structures (called
strength). When considering functors over the category Pre of preordered sets instead of just
sets, we can describe premodels for a rewrite system R ∪ β, which are simply required to verify
(|t|) ≥ (|u|) if t �

∗
R∪β

u.

2.1 Categorical Basics

We will briefly give the basics of category theory necessary for the comprehension of this section,
while referring to Mac Lane [Lan71] for details. As mentioned previously, we will not worry much
about foundational concerns.

Definition 42 A category C is given by a class of objects Ob jC and for each pair of objects A, B

a set of morphisms C(A, B), which is endowed with the following structure:

• For each object A ∈ Ob jC, there is a morphism idA

• For each A, B,C ∈ Ob jC, there is an application ◦ :C(A, B)→ C(B,C)→ C(A,C)

• The following equalities hold:

1. ( f ◦ g) ◦ h = f ◦ (g ◦ h)
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2. idA ◦ f = f

3. f ◦ idB = f

for each objects A, B,C and each f ∈ C(A, B), g ∈ C(B,C), h ∈ C(C,D).

We will write f : A→ B for f ∈ C(A, B). From now on if we write f ◦ g we suppose that there
are A, B and C such that f ∈ C(A, B) and g ∈ C(B,C)

Given a pair of categories C and D, a functor F associates to each A ∈ Ob jC an object
FA ∈ Ob jD and to each f ∈ C(A, B) a morphism F f ∈ D(FA, FB), while respecting the equalities:

• FidA = idFA

• F( f ◦ g) = (F f ) ◦ (Fg)

A functor F :C → C is called an endofunctor.
Given two functors F and G between C and D, a natural transformation η : F → G is an

operation that associates to each A of C a map ηA : FA→ GA such that for all f : A→ B

G f ◦ ηA = ηB ◦ F f

In this case we say that the following diagram commutes:

FA

F f

��

ηA // GA

G f

��
FB ηB

// GB

Given a category C and two objects A, B we say that A and B are in isomorphism or isomor-
phic if there exist f and g such that g ◦ f = idA and f ◦ g = idB.

For a given category C a final object 1C is an object of C such that for any object A ∈ Ob jC,
there exists a unique morphism !A : A→ 1C. Final objects are unique up to unique isomorphism.

We may define a dual notion of initial object 0C such that for every object A there exists a
unique morphism φA : 0C → A.

For any given category C an object C is a product of A and B if:

1. there exist π1 : C → A and π2 : C → B.

2. the universal property holds: for each D and f : D → A, g : D → B there exists a unique
morphism 〈 f , g〉 : D→ C such that the following diagram commutes:

D

f

����
��

��
��

��
��

��
��

��
��

��
�

〈 f ,g〉

�� g

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

C

π1

xxqqqqqqqqqqqqqqqqq

π2

&&MMMMMMMMMMMMMMMMM

A B
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Such an object is unique up to unique isomorphism and we sometimes write A × B for such an
object. Note that given f : A → A′ and g : B → B′, if A × B and A′ × B′ exist, it is possible to
build an application f × g : A × B→ A′ × B′ defined by f × g = 〈 f ◦ π1, g ◦ π2〉.

In the same way we define a dual notion of coproduct : for A and B, a coproduct A + B is an
object along with morphisms ι1 : A→ A+B and ι2 : B→ A+B, such that, for any C and f : A→ C,
g : B→ C there is a unique f ⊔ g : A + B→ C such that

A

ι1

''NNNNNNNNNNNNNNNNNN

f

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

> B

ι2

wwpppppppppppppppppp

g

����
��

��
��

��
��

��
��

��
��

��
��

A + B

f⊔g

��
C

commutes, we similarly define f + g.

We say that a category C is cartesian if there exists an initial object 1C and for each pair of
objects A and B there is a product object A × B.

For a given cartesian category C and an object A of C, we have the right product functor
× A, defined by its action on objects B by B× A and on applications f : B→ B′ as f × idA. It is

easy to verify that the functor properties hold. One can similarly define the left product functor
A × .

The motivational example of a category is the category Set, defined as the category with
objects equal to the class of all sets, and as morphisms between two sets A and B as the set
of all applications between A and B (written BA). It is easy to verify that this is a category.
Furthermore Set is cartesian, its final object given by a set with one element and its products
given by the usual cartesian product of two sets.

Given two categories C and D, the functor category DC is the category which has as objects
the functors between C and D and as morphisms the natural transformations between functors.

Given a set E, we may construct the trivial category in which the objects are the elements
e ∈ E and the set E(e, e′) is defined by a singleton set if e = e′ and the empty set otherwise,
taking the identity morphism to be the unique element. All the above requirements are trivially
satisfied.

We describe how to construct a notion of higher order algebra as a semantics for the rewrite
systems described in the previous section. To understand the categorical notion of algebra, we
shall start with an example of a first order algebra: the algebra of natural numbers.

Example 10 (The algebra of natural numbers)

Consider the final object 1 = {∅} of the category Set. We define N to be the functor from
Set to Set defined on objects by NA = 1 + A, and where the action on morphisms is defined by
N f = 1 + f . A N-algebra is then an object A along with a morphism natA : NA → A. We first
observe that the class of all N-algebras is a category with the following notion of morphism: a
morphism between N-algebras A and B is a morphism φ : A → B in the category Set such that
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the following diagram commutes:

NA
Nφ

//

natA

��

NB

natB

��
A

φ
// B

Now take N to be the set of natural numbers. There are two morphisms z : 1 → N and
s :N → N, defined by z(∅) = 0 and s(n) = n + 1, which endow N with a structure of N-algebra.
Furthermore observe that N endowed with these two maps is initial in the category of N-algebras.
Let us prove this: let A be a N-algebra, with the structure given by the morphism natA. It is
easy to show that natA can be decomposed as 1a ⊔ f where 1a : 1 → A is a constant function
1a(∅) = a ∈ A, and f : A→ A. We may then define the following function φA :N→ A by induction
on N:

φA(0) 7→ a

φA(n) 7→ f (φA(n − 1))

We first verify that this is indeed an N-algebra morphism, that is show that φ◦natN = natA ◦ Nφ.
This amounts to checking:

φ ◦ ι1(∅) = φ(0) = 1a ◦ id1 ◦ ι1(∅) = a

and
φ ◦ ι2(n − 1) = φ(n) = f ◦ φ ◦ ι2(n − 1) = f (φ(n − 1))

Both of which are true by definition of φ.
We must also show uniqueness: let ψ be another morphism from the algebra N to A. We

prove by induction on n that ∀n, φ(n) = ψ(n):

• n = 0. We have by definition of a morphism ψ ◦ natN = natA ◦ Nψ but

ψ ◦ natN ◦ ι1(∅) = ψ ◦ 10(∅) = ψ(0)

On one hand and
natA ◦ Nψ ◦ ι1(∅) = natA ◦ id1 ◦ ι1(∅) = 1a(∅) = a

on the other, from which we conclude ψ(0) = a.

• By induction φ(n − 1) = ψ(n − 1). Again we consider the equality ψ ◦ natN = natA ◦ Nψ. We
have in the same manner:

ψ ◦ natN ◦ ιN(n − 1) = ψ((n − 1) + 1) = ψ(n)

and
natA ◦ Nψ(n − 1) = f ◦ ψ(n − 1) = f (ψ(n − 1))

So that ψ(n) = f (ψ(n − 1)) by induction hypothesis we have

ψ(n) = f (φ(n − 1)) = φ(n)

�
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Note the use of induction in both the definition of φ and the proof of uniqueness. Indeed,
the fact that N is initial in the category of N-algebras can be seen as a reformulation of the
statement that it is possible to define functions by induction on the standard structure of N: to
define a function from N to A, it suffices to identify a ∈ A and f : A→ A, and then appeal to the
existence of a morphism φ between N and the resulting N-algebra.

2.2 Presheaf Algebras and Substitution Monoids

The example above gives us a clue about how to treat algebraic structures using category theory:
instead of looking at sets with constructors and equations (or rewrite rules), we consider a
suitable functor over Set and the associated category of algebras over that functor. Then the
key insight is this: if instead of taking Set as the base category we take some category which is
“aware” of free variables, we can define a notion of higher order algebra.

Definition 43 (Typed algebras) A presheaf on a category C is a functor from C to Set.
The category of contexts G is defined as the category with as objects contexts Γ on simple

types T , and as morphisms the functions ι : dom(Γ) → dom(Γ′) that preserve types,i.e. Γ(x) =

Γ
′(ι(x)) for all x in the domain of Γ.
The category of typed algebras Set

G

T
is defined as the category of functors from the trivial

category T of types to presheafs on G. Given a presheaf F ∈ Set
G

T
, a type T and a context Γ, we

write FT (Γ) instead of F(T )(Γ).

To be able to build the higher order algebras we are interested in, we need some more
categorical structures.

Definition 44 Let C be a category, I be a set and (Ai)i∈I be an I-indexed family of objects of
C. The product of the family (Ai)i∈I is an object

∏

i∈I Ai and some morphisms (πi)i∈I such that

πi :
∏

i∈I

Ai → Ai

and with the universal property : for every object C such that there exists a family ( fi)i∈I,
fi : C → Ai, there exists a unique morphism 〈 fi | i ∈ I〉 : C →

∏

i∈I Ai such that the triangle

C

〈 fi |i∈I〉

��

fi

''OOOOOOOOOOOOOOOOOOO

Ai

∏

i∈I Ai

πi

77pppppppppppppppppp

commutes for each i.
Notice that for a 2-element family (Ai)i∈{1,2}, the product

∏

i∈{1,2} Ai is isomorphic to A1 × A2.
We define dually the coproduct

∑

i∈I Ai of a family (Ai)i∈I of objects, equipped with morphisms
ιi : Ai →

∑

i∈I Ai, that satisfies the dual universal property, we write
⊔

i∈I fi for the morphism from
∑

i∈I Ai to B if fi : Ai → B is a family of morphisms.
We say a category C admits small products (resp. admits small coproducts) if for every family

of objects in C indexed by a set, the product of that family exists.
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The following definition shows that Set
G

T
has the necessary structure to build the algebraic

framework.

Property 45 The category Set
G

T
admits small products and coproducts.

Proof. The proof may be found in Mac Lane [Lan71]. The products and coproducts are
just defined point-wise from those in Set.

We may define two presheaves which show that the category of functors in Set
G

T
is appropriate

to speak of the algebra of terms.

Definition 46 (The presheaf of terms)

We define dom ∈ Set
G

T
as the functor which takes a type T and a context Γ and returns the

set of all variables x of type T in Γ, and the action on morphisms ι : Γ → Γ′ is just ι, that is
dom(ι) = ι. This functor can be seen as the functor that witnesses the Yoneda lemma.

Given a signature Σ, we define the functor TrmΣ by

TrmΣT (Γ) = {t ∈ TrmΣ | Γ ⊢ t : T }

With the action on arrows ι :Γ→ Γ′ to be the renaming function:

TrmΣT (ι)(t) = t{~x 7→ ι(~x)}

It is easy to verify that t{~x 7→ ι(~x)} is indeed in TrmΣT (Γ′), by induction on the typing derivation Γ ⊢
t : T , using the fact that every free variable in t is in the domain of Γ. If Γ′ = Γ, y1 : U1, . . . , ym : Um

and ι : Γ → Γ′ is the inclusion morphism, then TrmΣT (ι)(t) is called the weakening of t and some-
times written ι(t) or just t.

There is a natural transformation from dom to TrmΣ, which for each object Γ is just the
inclusion domT (Γ) → TrmT (Γ) which sends a variable to its representation as a term, using the
fact that by rule ax if Γ(x) = T then Γ ⊢ x : T .

From here on we fix a signature Σ and an arity function ar :Σ→ T . We define the signature
functor Σ defined by

ΣT (Γ) = { f ∈ Σ | ar( f ) = T }

Σ acts on morphisms trivially, i.e. sends all morphisms to the identity, as ΣT (Γ) does not depend
on Γ.

We can define a notion of algebra on Set
G

T
in a very similar way as example 10. The main

difference, of course, involves abstraction, and we will define an abstraction transformation,
which given a presheaf, a context Γ and a type, considers the set of elements in that presheaf
with respect to Γ to which we add an extra bound variable x.

We use the Barendregt convention and suppose that x is not in the domain of Γ, as in the
contrary case we can choose some Γ′ that is isomorphic to Γ such that x < dom(Γ′). This choice
of presentation is somewhat of a departure from the usual presentation of binding algebras,
which tend to have numbered variables, and giving a presentation of higher-order algebras using
De Bruijn levels. Again the named version of the presentation may be formalized by appeal
to FM-sets, which form the theoretical basis of the nominal-logic approach. We again refer to
[Gab07], and will not worry about machine formalization here: Fx : A is seen as a notation rather
than a strict functor.
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2.2. Presheaf Algebras and Substitution Monoids

Definition 47 (Σλ-algebra)
For each functor F ∈ Set

G

T
, variable x and type T ∈ T , we define the abstraction Fx : T of F

to be the functor defined by:
Fx : T

U (Γ) ≔ FU(Γ, x : T )

With x < dom(Γ).

The functor Fx : T acts on arrows ι : Γ → Γ′ by Fx : T
U

(ι)(Γ) = F(ι′)U(Γ, x : T ) where ι′ is the
function from Γ, x : T to Γ′, x : T which is equal to ι on Γ and sends x to x.

We can now define the endo-functor Σλ by case on the types:
for a base type B,

Σλ(F)B(Γ) = ΣB(Γ) +
∑

U∈T

FU→B(Γ) × FU(Γ)

and for any types T and U,

Σλ(F)T→U(Γ) = ΣT→U(Γ) + Fx : T
U (Γ) +

∑

V∈T

FV→T→U(Γ) × FV (Γ)

We define the V + Σλ functor as

(V + Σλ)T (Γ) = domT (Γ) + (Σλ)T (Γ)

Where V stands for Variable, and we adopt the notation adopted by Fiore et al and Hamana.
Given a functor T : Set

G

T
→ Set

G

T
, a T -algebra is a presheaf A ∈ Set

G

T
equipped with a morphism

(of presheafs) evA : T A→ A.
The category AlgT is the category with as objects T -algebras and as morphisms the set of

morphisms f in Set
G

T
such that the following square commutes:

T A
T f

//

evA

��

T B

evB

��
A

f
// B

Note that all V + Σλ-algebras are in particular Σλ-algebras.

A Σλ-algebra A is intuitively equipped with three operations which consist of: an element
of AT for each f ∈ Σ of type T , an application which is a morphism from AU→T × AU to AT for
each U, and an abstraction which is a morphism from Ax : T

U
to AT→U . A V + Σλ-algebra supplies

the additional structure of free variables in Γ, which is essential for describing the semantics of
terms.

As hoped, the presheaf TrmΣ is indeed the initial object in the category of such algebras.

Theorem 48 (Term algebra)
The presheaf TrmΣ is a V + Σλ-algebra and is initial in the category of V + Σλ-algebras.

Proof.
To define the morphism evTrm : V + ΣλTrmΣ → TrmΣ, it suffices to define a morphism

evT
Trm : (V + ΣλTrmΣ)T → TrmΣT

for each T . We proceed by cases:
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• T = B a base type. By the universal properties of coproducts, it suffices to build morphisms
var : domB → TrmΣB, val : ΣB → TrmΣB and appU

B
:TrmΣU→B × TrmΣU → TrmΣB for each U ∈ T .

For the first, we choose the inclusion function defined earlier. For the second, we take the
inclusion ΣB ⊆ TrmΣB. Indeed, for every f ∈ ΣB and context Γ, we have Γ ⊢ f : B by rule symb.

For appU
B
, we take the function which for each Γ, and pair (t, u) ∈ TrmΣU→B(Γ) × TrmΣU(Γ)

associates the term t u. By rule app, it is easy to check that t u is in TrmΣB.

• Case T → U. It suffices to build morphisms var : domT→U → TrmΣT→U , val :ΣT→U → TrmΣT→U ,
appV

T→U
:TrmΣV→T→U × TrmΣV → TrmΣT→U for every V ∈ T and a morphism absT

U
: (TrmΣ)x : T

U
→

TrmΣT→U for some (fresh) variable x. In the first three cases we proceed exactly as above. In
the forth case, given a context Γ, we may suppose by Barendregts convention that x is not in
the domain of Γ. By definition, (TrmΣ)x : T

U
(Γ) = TrmΣU(Γ, x : T ), and given a term t in that set

we may apply the abs rule to build the term λx : T.t in the set TrmΣT→U(Γ).

It is now necessary to check that this indeed defines a presheaf morphism, that is that the
functions between sets define a natural transformation. This reduces to checking stability with
respect to “renaming” in contexts, which we may do for each component of the morphism:

• It is already established that the inclusion dom→ TrmΣ is a natural transformation.

• The inclusion function ΣT ⊆ TrmT clearly leads to a natural transformation, indeed there is
nothing to check as the action of ΣT on morphisms is trivial.

• for the appU
V

we need to check that (t u){~x 7→ ι(~x)} = t{~x 7→ ι(~x)} u{~x 7→ ι(~x)} this follows by
definition of substitution.

• for the function absT
U
we need to check that (λx : T.t){~x 7→ ι(~x)} = λx : T.(t{~x 7→ ι′(~x)}). By the

Barendregt convention, we may suppose that x , x j for all j. We can then again conclude by
definition of substitution.

We then need to check that TrmΣ is initial. We proceed as in example 10, using structural
induction on terms. So let A be a V + Σλ-algebra. The algebra structure gives the morphisms
varA : dom → A, valA : Σ → A, for each base type T a family of morphisms (app(A)U

T
)U∈T such

that app(A)U
T

: AU→T × AU → AT , and for each pair of types T and U and variable x, a morphism
abs(A)T

U
: Ax : T

U
→ AT→U . Let t be some well-typed term, that is there exist Γ and T such that

Γ ⊢ t : T . In particular, t ∈ TrmΣT (Γ). We build an element φ(t)Γ
T
∈ AT (Γ) by induction on the

derivation of Γ ⊢ t : T

• t = x a variable. As t is well-typed, x is in the domain of Γ, and so x ∈ domT (Γ). We can
therefore define φΓ

T
(x) = var(x).

• t = f an element of ΣT . In the same manner as above, we take φ( f )Γ
T
to be val(A)( f ).

• t = u v. We have Γ ⊢ u : U → T and G ⊢ v : U. We define

φΓT (t) = app(A)
T1

T
(φΓU→T (u), φΓU(v))

• t = λx : U.u. We have Γ, x : U ⊢ u : V and T = U → V. We can then define

φΓT (t) = abs(A)U
V (φΓ,x : U

V
(u))
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2.2. Presheaf Algebras and Substitution Monoids

We need to show that φ is indeed a morphism of Σλ-algebras, that is

evA ◦ Σλφ = φ ◦ evTrmΣ

and that this morphism is unique. The proof is quite similar to that of example 10, and we refer
to Hamana [Ham07] for the proof. �

The presheaf algebras give us a satisfactory treatment of higher-order algebras. However,
to be able to define a semantics in the hope of analyzing termination, we need to integrate the
notion of reduction. We do this by introducing preordered T -algebras. Preordered algebras are
defined in exactly the same manner as ordinary algebras, but by using the base category of
preordered sets instead of sets.

Definition 49 Let Pre be the category of sets equipped with a preorder (E,≥), with as mor-
phisms order preserving (monotone) maps. As usual we identify preordered sets with the un-
derlying carrier.

We define the category Pre
G

T
by taking the functors from the trivial category T to the

category of functors from G to Pre, which we shall also call presheafs. Notice that for every
presheaf F in Set

G

T
, there is a presheaf F̃ in Pre

G

T
defined for each context Γ and type T by

F̃T (Γ) = (FT (Γ),≥triv)

Where ≥triv is the trivial preorder defined by x ≥triv y⇔ x = y.

The category Pre
G

T
has all small products and coproducts.

We may define Σλ-algebras and V + Σλ-algebras in the same manner as definition 47.

Given a set of left-algebraic rewrite rules R over the signature Σ, we can see TrmΣ equipped
with the relation R ∪ β as a V + Σλ-algebra.

Property 50 Let R be a set of left-algebraic rewrite rules and define TrmΣR be the functor in

Pre
G

T
defined on objects as:

(TrmΣR)T (Γ) = (TrmΣT (Γ),�∗R∪β)

and on morphisms as

(TrmΣR)T (ι) = (TrmΣ)T (ι)

The functor TrmΣR carries a structure of Σλ-algebra. In the following we suppose that Σ and
R are fixed, and write Trm for TrmΣR.

To show that Trm is well defined we need a classic lemma:

Lemma 51 Trm enjoys subject reduction: for any context Γ, type T and t, u terms, if Γ ⊢ t : T

and t �
∗
Rβ

u then Γ ⊢ u : T .

The proof is classic, and we shall omit it.

Now we may prove the property 50:

Proof.

First we show that Trm is a functor. From subject reduction, we have that �
∗
Rβ

is indeed an
order on TrmT (Γ) for every T and Γ. We need to show that for each T and ι : Γ → Γ′, TrmT (ι)
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is a morphism between TrmT (Γ) and TrmT (Γ′). We have that it is a function, we only need to
show that it is monotonous, that is if t �

∗
Rβ

u, then

t{~x 7→ ι(~x)} �∗Rβ u{~x 7→ ι(~x)}

This can be shown by an easy induction on the number of steps, and then on rule application
position.

We define the evTrm morphism as the evTrmΣ morphism on Set
G

T
, and prove that (evTrmΣ)

Γ

T
(t) ≥

(evTrmΣ)
Γ

T
(u) for all t ≥ u in (ΣλTrm)T (Γ). It suffices to check this on each component of evTrmΣ :

• valΓ
T
: we need to prove that for each f , g in ΣT , if f ≥ g in ΣT then f �

∗
R∪β

g in TrmΣT . But
the preorder on ΣT is just the trivial order, so f = g.

• varΓ
T
: as above, the preorder on the variables in Γ of type T is the trivial order.

• appU
T
: take terms t, t′, u, u′ such that Γ ⊢ t, t′ : U → T and Γ ⊢ u, u′ : U. We have (t, u) ≥ (t′, u′)

or equivalently t �
∗
R∪β

t′ and u �
∗
R∪β

u′. We need to show that appU
T

(t, u) = t u �
∗ t′ u′ =

appU
T

(t′, u′). But this is true by the congruence rule of definition 11.

• absU
V
: In this case, T = U → V, we may proceed exactly as above.

�

The proposition follows quite easily from the definition of rewriting as a congruence. In fact,
working with algebras in Pre

G

T
is just a way of requiring that the preorders on the components are

compatible with the algebraic structure, and renaming of the variables. The notion of reduction
is taken into account by working over the category of preorders. To adequately model rewriting
however, we need to take into account the notion of substitution. Indeed, the fundamental
properties of the rewriting preorder is that it is closed under contexts, which is handled by the
notion of Σλ-algebra on Pre, and by substitution. To give a categorical account of substitution,
we introduce the notion of monoidal product. In fact, we shall only consider one example of
monoidal product and for a general treatment of the notion we shall refer the reader to Mac
Lane [Lan71].

Given two functors A, B in Pre
G

T
, a context ∆ and a type T , the set (A•B)T (∆) can intuitively

be seen as the set of pairs of an element a ∈ AT (Γ) for some context Γ and a substitution θ of
the variables in a by elements of BU(∆), if the variable is of type U, taken modulo renaming
of variables in a. To actually perform this substitution, we need a function subst such that
subst(a, θ) ∈ AT (∆). This can usually only make sense if A = B, and this leads us to use the
notion of monoid object to make this precise.

In what follows, if Γ = x1 : T1, . . . , xn : Tn and Γ′ = y1 : U1, . . . , ym : Um, if ι : Γ → Γ
′ we write ι(i)

for the number j such that y j = ι(xi).

Definition 52 (Monoidal product)

Given three categories C,D,E, a bifunctor F :C × D → E associates to each pair of objects
A ∈ C and B ∈ D an object F(A, B) of E, and if f : A → A′ and g : B → B′ are morphisms,
then F( f , g) is a morphism between F(A, B) and F(A′, B′), such that F respects composition and
identity in both components.
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2.2. Presheaf Algebras and Substitution Monoids

Given a category C a monoidal product ⊗ on C is a bifunctor ⊗ :C × C → C and an unit
object I with three natural isomorphisms:

αA,B,C : A ⊗ (B ⊗C)→ (A ⊗ B) ⊗C

λA : I ⊗ A→ A ρ : A ⊗ I → A

Satisfying the additional coherence conditions:

αA⊗B,C,D ◦ αA,B,C⊗D = αA,B,C ⊗ idD ◦ αA,B⊗C,D ◦ idA ⊗ αB,C,D

ρA ⊗ idB ◦ αA,I,B = idA ⊗ λB

and
λI = ρI

For all objects A, B,C,D.
We define the substitution monoidal product • : Pre

G

T
× Pre

G

T
→ Pre

G

T
on objects by the

quotient:

(A • B)T (∆) =



















∑

Γ∈G

AT (Γ) ×
∏

x∈dom(Γ)

BΓ(x)(∆)



















/ ≃

Where ≃ is the symmetric transitive closure of the relation ∼:

(a, bι(1), . . . , bι(n)) ∼ (A(ι)(a), b1, . . . , bm)

if dom(Γ) = x1, . . . , xn, dom(Γ′) = y1, . . . , ym and ι : Γ → Γ
′. We give an order structure on

(A • B)T (∆) by taking the transitive closure of the rule:

a ≥ a′ ∧ b1 ≥ b′
1
, . . . , bn ≥ b′n

(a, b1, . . . , bn) ≥ (a′, b′
1
, . . . , b′n)

if there is some Γ such that a, a′ ∈ AT (Γ) and (b1, . . . , bn), (b′
1
, . . . , b′n) are in Πx∈dom(Γ)BΓ(x)(∆).

Therefore in order to prove that m ≥ n in (A • B)U(∆) one must find a common Γ and T such

that m = (a, ~b) and n = (a′, ~b′) with a, a′ ∈ AT (Γ), to then compare a and a′ and ~b and ~b′.

We can verify that this definition respects the relation ∼. If ι : Γ → Γ′ is an arrow, then
a ≥ a′ ⇒ A(ι)(a) ≥ A(ι)(a′) by functoriality of A, and of course (b1, . . . , bn) ≥ (b′

1
, . . . , b′n) ⇒

(bι(1), . . . , bι(n)) ≥ (b′ι(1)
, . . . , b′ι(n)

).
On functions j :∆ → ∆′, (A • B)( j) is defined as the quotient of the function

∑

Γ∈G AT (Γ) ×
∏

x∈dom(Γ) BΓ(x)( j). That is, if (a, b1, . . . , bn) is in AT (Γ) × ΠB(∆) then

(A • B)( j)((a, ~b)) = (a, B( j)(b1), . . . , B( j)(bn))

It is easy to check that this definition is independent of the choice of representative: if ι :Γ→ Γ′,
then

(a, B( j)(b1), . . . , B( j)(bn)) ∼ (A(ι)(a), B( j)(bι(1)), . . . , B( j)(bι(n)))

As unit object we take the presheaf dom.
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For the proof that • is well defined on morphisms (that the action on morphisms is indeed
stable by the equivalence relation), that it is indeed a bifunctor, and that it is a monoidal product
with identity dom, we refer to Zsido [Zsi10].

Definition 53 (Monoid object)

Given a category C and a monoidal product ⊗ :C×C → C with unit I, a monoid object M of
⊗ (or ⊗-monoid) is an object M of C equipped with two morphisms µ : M⊗M → M and η : I → M,
such that the following diagrams commute:

M ⊗ (M ⊗ M)
αM,M,M

//

idM⊗µ

��

(M ⊗ M) ⊗ M
µ⊗idM // M ⊗ M

µ

��
M ⊗ M

µ
// M

I ⊗ M
η⊗idM //

λ

##FFFFFFFFFFFFFFFFFFFF M ⊗ M

µ

��

M ⊗ I
idM⊗ηoo

ρ

{{xxxxxxxxxxxxxxxxxxxx

M

We will say monoid instead of ⊗-monoid if the context is clear.

A morphism of monoids between two monoids (M, µM, ηM) and (M′, µM′ , ηM′) is a morphism
φ : M → M′ such that

φ ◦ µM = µM′ ◦ (φ ⊗ φ)

and

φ ◦ ηM = ηM′

The following proposition shows that the monoidal structure on • does indeed capture the
algebraic nature of substitution. In the following, if M is a •-monoid, we will often write µM(t, θ)

instead of µM(t, θ(x1), . . . , θ(xn)), that is we lift µM to operate on tuples instead of equivalence
classes of these.

Property 54 The functor Trm is a monoidal object for •, with the following structural mor-
phisms:

• µ :Trm•Trm→ Trm is defined by taking a class with representative (t, ux1
, . . . , uxn

) in TrmT (Γ)×
∏

x∈dom(Γ) TrmΓ(x)(∆) to the term t{~x 7→ ~u} in TrmΣT (∆). We will write interchangeably µTrm and
subst.

• η : dom→ Trm we just take the inclusion functor var defined previously.

The proof relies principally on this classic lemma [Pie02]:
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Lemma 55 (Substitution lemma)
We write ∆ ⊢ θ : Γ if θ is a substitution and ∆,Γ are contexts such that ∆ ⊢ θ(x) : Γ(x) for all

x ∈ dom(Γ).
Let Γ ⊢ t : T and ∆ ⊢ θ :Γ. Then:

∆ ⊢ tθ : T

Proof. We proceed by induction on Γ ⊢ t : T . The only non-trivial case is abs: in this
case we have Γ, x : U ⊢ u : V with t = λx.u. Observe that the substitution θ′ = θx

x satisfies
∆, x : U ⊢ θ′ : Γ, x : U, so by induction hypothesis, ∆, x : U ⊢ tθ′ : V. We may then apply abs to
obtain ∆ ⊢ λx : U.(tθ′) : U → V which, given that x is not in the domain of θ, implies

∆ ⊢ tθ : T

as required. �

To prove property 54 we need to verify 3 things (for details see [Zsi10]):
Proof.

1. The subst morphism is well defined: we verify that if (t, θ) ∼ (t′, θ′) then tθ = t′θ′. In this case
if t ∈ TrmT (Γ) and t′ ∈ TrmT (Γ′) we have t′ = t{~x 7→ ~y}, where ~x are the variables of dom(Γ) and
~y are those of dom(Γ′), and θ(xi) = θ

′(yi) for each xi. From this we can conclude that tθ = t′θ′.

2. The term tθ is indeed in TrmT (∆) if (t, θ) is a representative of an element of (Trm • Trm)T (∆).
This follows from the lemma.

3. We need to verify the equations for monoid objects: this is a consequence of the equalities

(tθ)θ′ = t(θ′ ◦ θ)

where θ′ ◦ θ(x) = θ(x)θ′ for all x ∈ dom(θ).

xi{~x 7→ ~t} = ti and t = t{~x 7→ ~x}

which are easily proven by induction on the term t.

�

2.3 Premodels

We can now use the monoidal structure on presheafs in Pre
G

T
to describe algebras that allow us

to perform instantiation of the variables present in a Σλ-algebras A by the inclusion η : dom→ A.
We define the notion of premodel, which is just a Σλ-algebra which has the additional monoidal
structure •, into which we can interpret the presheaf of terms, where the substitution operation
and the algebraic structure are compatible. To express compatibility of the •-structure we
need to define the strength morphism st, which intuitively expresses the commutation of the
substitution with constructors of the algebra.

Definition 56 Let Σ be a signature and R be a well-typed left-algebraic rewrite system. A
Σλ-monoid M is a V + Σλ-algebra, that is also a •-monoid, and such that the following diagram
commutes:
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Σλ(M) • M
stM //

evM•idM

��

Σλ(M • M)
Σl(µM)

// Σλ(M)

evM

��
M • M

µM // M

where stM : Σλ(M) • M → Σλ(M • M) is the strength morphism defined piecewise on each
component of Σλ(M):

• signature case: we send ( f , θ) to f

• application case: we send ((a, b), θ) to ((a, θ), (b, θ))

• abstraction case: we send (t, θ) to (t, θ′xx ) where θ′ is the weakening of θ (from MΓ(∆) to
MΓ(∆, x : T )) if t ∈ MU(Γ, x : T ), by observing that if t ∈ MT (Γ, x : A) = Mx : A

T
(Γ) and θ ∈ MΓ(∆)

then (t, θ′xx ) is in M • MT (∆, x : A) = (M • M)x : A
T

(∆).

This last condition expresses compatibility of substitution with the algebraic structure, that is
that substitution is a congruence.

A morphism of Σλ-monoids from M to N is a morphism φ : M → N that is simultaneously a
V + Σλ-algebra morphism and a •-monoid morphism.

For the proof that stM is indeed a morphism (and that the definition given above is stable by
∼ equivalence classes), we once again refer to Zsido [Zsi10]. Notice that we only consider the
Σλ-algebra structure in the definition of a Σλ-monoid, though we require that it is a V+Σλ-algebra.

Property 57 TrmΣR is a Σλ-monoid.

Proof. The fact that Trm does indeed satisfy the diagram above can be reduced to the
simple identities:

f θ = f (t u)θ = tθ uθ λx.tθ = λx.(tθ)

Which are a direct consequence of the definition of substitution. �

The definition of substitution was explicitly given to respect the term structure. The coher-
ence diagram is just a reformulation of that fact, as mentioned above.

Definition 58 (Premodel)
A Σλ-monoid M in Pre

G

T
is a premodel for R ∪ β if there is a morphism

(| |)M :Trm→ M

of Σλ-monoids.
In that case the morphism (| |) is called the interpretation morphism, or just the interpretation.
We write (|Γ ⊢ t : T |)M for application of the morphism to t ∈ TrmT (Γ), and drop the superscript

if there is no ambiguity.

If the order structure on M is trivial, then we say that M is a model.
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It is not coincidental that we took a similar notation for the interpretation morphism as for
the semantic function of example 2. Indeed the notion of premodel and interpretation morphism
can capture this kind of analysis.

Note that the fact we are working with the presheafs in Pre
G

T
automatically forces any model

to satisfy:
t �
∗
R∪β t′ ∧ Γ ⊢ t : T ⇒ (|Γ ⊢ t : T |) ≥ (|Γ ⊢ t′ : T |)

As the (| |) morphism must preserve the preorder on each component.
Notice also that (| |) must be equal (as a function) to the initial morphism when taken to be

a morphism of V + Σλ-algebras in Set
G

T
, as there is only one such possible morphisms.

We introduce the concept of M-valuations and a lemma, which allow us to go between
valuations and substitutions, which will be helpful for proving that the semantics defined in
chapter 4 are sound.

Definition 59 Given a premodel M and contexts ∆ and Γ, a M-valuation φ from Γ to ∆ is a
tuple φ ∈ Πx∈dom(Γ)MΓ(x)(∆). In this case we write φ ∈ MΓ(∆) and treat φ as a function from
dom(Γ) to

⋃

T MT (Γ). Given a type T , we define

(|Γ ⊢ t : T |)φ ≔ µM((|Γ ⊢ t : T |), φ(x1), . . . , φ(xn))

if Γ = x1 : U1, . . . , xn : Un. In addition, given a substitution θ such that ∆ ⊢ θ :Γ, we write (|∆ ⊢ θ :Γ|)

for the M-valuation from Γ to ∆ that sends a variable x to (|∆ ⊢ θ(x) : Γ(x)|).

We will sometimes refer to a Γ-valuation instead of a M-valuation from Γ to ∆, if M is clear
in the context. Notice also that if (t,~v) ∈ M • M(Γ) for some context Γ = x1 : T1, . . . , xn : Tn, then
~v ∈ Πx1...xn

MΓ(xi)(∆), and we may identify ~v with the Γ-valuation that sends xi to vi.

Property 60 (Substitution lemma for premodels)
We have, for all t ∈ TrmT (Γ) and substitution θ such that ∆ ⊢ θ :Γ:

(|Γ ⊢ t : T |)(|∆⊢θ :Γ|) = (|∆ ⊢ tθ : T |)

Proof. The proof is essentially a reformulation of the fact that (| |) is a morphism of •-
monoids. Indeed, we have for each term t and substitution θ with Γ ⊢ t : T and ∆ ⊢ θ :Γ,

(| |) ◦ µTrm(t, θ) = (|∆ ⊢ tθ : T |)

and
µM ◦ ((| |) • (| |))(t, θ) = (|Γ ⊢ t : T |)∆⊢θ :Γ

But the condition of (| |) being a monoid morphism implies that the diagram

Trm • Trm

µTrm

��

(| |)•(| |)
// M • M

µM

��
Trm

(| |)
// M
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Commutes, which is exactly the desired equality.
�

As a corollary, we have that substitution commutes with valuation, a fact that we shall use
in the next section when dealing with the interpretation of β-reduction.

Definition 61 Let M be a premodel and φ be a valuation in MΓ(∆). If U is a type, u is a term
such that ∆ ⊢ u : U, and x is a variable that does not appear in the domain of Γ then φx

u is the
valuation in MΓ,x : U(∆) that sends all variables y ∈ dom(Γ) to φ(y) and that sends x to u.

Corollary 62 Let M be a premodel, t ∈ TrmT (Γ, x : A) and u :TrmA(Γ). Let varΓ ∈ MΓ(Γ) be the
valuation that sends each variable x : B in Γ to varM(B)(Γ)(x) (remember that varM : dom → M).
We have

(|Γ ⊢ t{x 7→ u} : T |) = (|Γ, x : A ⊢ t : T |)(varΓ)
x
(|Γ⊢u : A|)

Proof. First notice that (|Γ ⊢ x : B|) is equal to varM(B)(Γ)(x). Indeed (| |) is necessarily the
initial morphism from the Σλ-algebra Trm to the Σλ-algebra M. By the definition of an algebra
morphism, (| |) ◦ varTrm = varM ◦ iddom, which gives the desired equality.

Now the corollary follows directly from proposition 60 applied to the substitution θ which
sends y ∈ dom(Γ) to y and x to u. �

We may also deduce that the result still holds if we introduce an additional valuation.

Corollary 63 Let t ∈ TrmT (Γ), θ ∈ TrmΓ(∆), and φ ∈ M∆(Θ). We define φ ◦ θ as the valuation in
MΓ(Θ) that sends x ∈ dom(Γ) to (|∆ ⊢ θ(x)|)φ. Then

(|Γ ⊢ t : T |)φ◦θ = (|∆ ⊢ tθ : T |)φ

Proof. Applying associativity of µ (the first law of monoid objects, see definition 53), we
have

(|Γ ⊢ t : T |)φ◦θ = µM((|Γ ⊢ t : T |)(|∆⊢θ :Γ|), φ)

which applying proposition 60 gives:

µM((|∆ ⊢ tθ : T |), φ) = (|∆ ⊢ tθ : T |)φ

�

Proving that the interpretation is indeed a morphism of ordered Σλ-algebras can be quite
tedious, but by using monotonicity of µ on the Trm presheaf it can be made easier: indeed if (| |) is
a Σl-monoid morphism in Set

G

T
, then all that is required to prove that it is a morphism in Pre

G

T
is

to show that it preserves the order on each component TrmT (Γ), that is that (|Γ ⊢ t : T |) ≥ (|Γ ⊢ u : T |)

if t �
∗
R∪β

u. We show that it is only necessary to do this for t = l and u = r with l � r ∈ R and

for t �
hd
β u, as substitution respects the structure of Pre

G

T
.

Property 64 (Simplified condition for premodels)
Suppose that M is a Σλ-monoid. If (| |) is in fact a morphism of Σλ-monoids in Set

G

T
, and for

all rules Γ ⊢ l � r : T in R
(|Γ ⊢ l|) ≥ (|Γ ⊢ r|)

And that in addition
(|Γ ⊢ (λx : A.t)u : T |) ≥ (|Γ ⊢ t{x 7→ u} : T |)

for every t ∈ TrmT (Γ) and u ∈ TrmA(Γ). Then (| |) is in fact a Σλ-monoid morphism for Pre
G

T
and

thus M is a premodel.
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Lemma 65 Suppose that ∆ ⊢ t : T , Γ ⊢ l : T and there is a substitution such that t = lθ. Then
θ ∈ TrmΓ(∆).

Proof. Easy induction on the derivation of Γ ⊢ l : T .

We prove property 64:
Proof. The morphism (| |) is the initial morphism of Σλ-algebras in Set

G

T
, and it is a morphism

of •-monoids. We only need to show that for each ∆,T and each t, u ∈ TrmT (∆), if t �
∗
Rβ

u, then
(|∆ ⊢ t : T |) ≥ (|∆ ⊢ u : T |). We will proceed by induction on the number of rewrite steps and on
the position on which rewriting takes place, and use the rather strong requirements that are
imposed on Σλ-monoids and the initial morphism (| |).

• head rewrite: we distinguish two cases.

– There is some rule l � r ∈ R and some substitution θ such that t = lθ. The rule l � r is
typed by some Γ, and by the above lemma, we have θ ∈ TrmΓ(∆). We have by hypothesis
(|Γ ⊢ l : T |) ≥ (|Γ ⊢ r : T |). As µM is a morphism in the category of presheafs in Pre

G

T
(and

therefore preserves the order on the first component of M • M), we have

(|Γ ⊢ l : T |)(|∆⊢θ :Γ|) ≥ (|r|)(|∆⊢θ :Γ|)

Which by lemma 60 implies
(|∆ ⊢ lθ : T |) ≥ (|∆ ⊢ rθ : T |)

– We have t = (λx : A.t′)u′ and u′ = t′{x 7→ u′}. We may conclude by direct application of the
hypothesis.

• t = t1 t2 with t1 � u1 and u = u1 t2. As (| |) is a morphism of Σλ algebras

(|Γ ⊢ t1 t2 : T |) = appM((|Γ ⊢ t1 : A→ T |), (|Γ ⊢ t2 : A|))

for some type A. Then by induction

(|Γ ⊢ t1 : A→ T |) ≥ (|Γ ⊢ u1 : A→ T |)

And as appM is a morphism of presheafs,

appM((|Γ ⊢ t1 : A→ T |), (|Γ ⊢ t2 : A|)) ≥ appM((|Γ ⊢ u1 : A→ T |), (|Γ ⊢ t2 : A|))

• We proceed in the same way for rewriting in the right-hand side of an application and under
an abstraction.

�

In the next chapter, we will see how to use models to build a modified version of a given
rewrite system. The termination of this modified rewrite system implies the termination of
the original system, and as it contains semantic information from the model, termination is
(hopefully) more easy to prove.
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3

Semantic Labelling

In this chapter we introduce semantic labelling, and show how we can transform rewrite systems
into ones for which termination is equivalent. Semantic labelling was introduced by Zantema
[Zan95] for first order rewrite systems. It was noticed by Hirokawa and Middeldorp [HM06] that
it was not necessary to explicitly describe the semantics of every function symbol. The method
was turned into a procedure for determining termination of rewrite systems, by Zantema and
Koprowski [KZ06] and extended to equational systems by Zantema [Zan95] and Ohsaki et al
[OMG00]. It was carried to higher-order rewriting by Makoto Hamana [Ham07] using presheaf-
algebraic semantics.

The idea is to use the presheaf semantics presented in the previous chapter to label function
symbols with the semantics of their arguments. This information fundamentally alters the
difficulty of showing termination of the system, as certain syntactic properties absent from the
original system are now satisfied. However labelling needs to respect the operational semantics:
reductions in the original system need to be simulated by reductions in the labelled one. Whereas
this was a relatively simple property in first order semantic labelling, the presence of bound
variables and β-reduction makes this property fail for the näıve version of higher-order semantic
labelling. We solve this problem by introducing structural rules which allow us to resolve the
discrepancies between the reductions in the unlabeled system and those in the labeled one.

Our presentation presents the following differences from that of Hamana: we are in the
restricted setting of algebraic rewrite rules with β-reduction, and treat currified function symbols.
In addition, we do not make use of meta-variables distinct from ordinary variables: the algebraic
semantics defined in the previous section are sufficient to treat substitution and rewriting in
one stratum. The main difference lies in the definition of the labeled rewrite system: Whereas
Hamana defines the reduct of a labelled term as the labelling of the reduct, we give a presentation
that is closer to the first order case: the labelled rules are just the original rules, labelled
with all possible semantics for the free variables. This has the advantage of having a more
traditional presentation of rewriting. In particular, in the Hamana version, the labeled version
of β-reduction is not β-reduction. We wish to apply a standard termination criterion, e.g. the
General Schema [BJO02], which has not, at present, been generalized to the labelled β-reduction.
The disadvantage of our presentation is the previously mentioned loss of the correspondence
between the labeled system and the original one. To correct this we add structural rules, which
complete the labeled system and allow it to simulate the original one. Sadly, the structural rules
are not terminating, but we show that it suffices to show relative termination of the rewrite
rules and β-reduction with respect to these structural rules to show termination of the original
system.
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3.1 Labelling of Terms and Rewrite Systems

In what follows we fix a signature Σ with a type assignment τ, a left-algebraic rewrite system R
that is well-typed, and a R-premodel M.

Definition 66 Suppose that φ ∈ MΓ(∆) is a valuation. If x is a variable that does not occur in
Γ and ∆, and U is a type we write φx

x for the valuation in MΓ,x : U(∆, x : U) that sends y ∈ dom(Γ)

to M(ι)(φ(y)) and x to varM
U

(∆)(x), where ι : ∆ → ∆, x : U is the inclusion function (also called
weakening). Notice that U is implicit in this definition.

Note that by the algebra structure of Trm, if Γ ⊢ t : T is a derivation, and ι :Γ→ Γ, x : U is the
inclusion morphism, then Γ, x : U ⊢ t : T , and t = Trm(ι)(t) ∈ TrmT (Γ, x : U). Then by definition of
monoid morphisms

M(ι)((|Γ ⊢ t : T |)) = (|Γ, x : U ⊢ ι(t) : T |)

and ι(t) = t, as ι is the identity on dom(Γ).

Definition 67 (Labelling)

For each f ∈ Σ let L f be a set. We define the set ΣL of labeled functions by:

Σ
L
≔ { fl | f ∈ Σ, l ∈ L f }

For each element of Σ we suppose given a natural number n f , the number of recursive
arguments of f , and we suppose that for each rule f l1 . . . ln → r ∈ R, n = n f .

Let f ∈ Σ. We define the set of M-labels for f (or f -labels) to be:

LM
f ≔

















∑

T∈T

∑

Γ∈G

MT (Γ)

















n f

Let the set of labelled terms Trm
Σ

or just Trm be the set TrmΣ
LM

. The set of labels is
intuitively the set tuples of all possible semantics of terms t ∈ TrmT (Γ) for some T and Γ.

We define the labelling function as follows: given t such that Γ ⊢ t : T , and a valuation

φ ∈ MΓ(∆) we define the labelled term t
φ
∈ Trm

Σ

by induction on the typing derivation:

• ax: xφ = x.

• app: we distinguish two cases:

1. t = f t1 . . . tk with Γ ⊢ ti : Ti, and T = T1 → . . . Tk → U1 → . . .Um → T f with T f an atomic
type. Again we distinguish two cases:

(a) k ≥ n f : in this case,

t
φ
= fl t1

φ
. . . tk

φ

where

l = ((|Γ ⊢ t1|)φ, . . . , (|Γ ⊢ tn f
|)φ)
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(b) k < n f : in this case,

t
φ
= fl t1

φ
. . . tk

φ

where
l = (a1, . . . , ak, v1, . . . , vn f−k)

With ai = (|Γ, ~x : ~U ⊢ ti : Ti|)φ~x
~x
and v j = (|Γ, ~x : ~U ⊢ xi : Ui|)φ~x

~x
= varM

Ui
(xi), where the xi are fresh

variables not in Γ or ∆, which gives φ~x
~x
∈ M

Γ,~x : ~U(∆, ~x : ~U).

2. Otherwise t = t1 t2 and
t
φ
= t1

φ
t2
φ

• abs: we have t = λx : U.u, we define
t
φ
= λx : U.uφ

x
x

We do not include a symb case, as it is included in the app case where k = 0.

The set of labelled terms contains semantic information in the labels. Intuitively, we just
add the semantics of the recursive arguments of f as a label on f for each f ∈ Σ. In the higher
order setting however, it is possible for f to not be applied to n f arguments. In that case, we
just add the appropriate number of fresh variables and replace the semantics of the missing
arguments with the semantics of the added variables, and weaken φ accordingly. This is the
same as treating the under-applied symbol as if it were preceded by a succession of abstractions:
in the term f t1 . . . tk with k < n f , we label f with l, if

λx1 : U1 . . . xn f−k : Un f−k. f t1 . . . tk x1 . . . xn f−k = λx1 : U1 . . . xn f−k : Un f−k. fl t1 . . . tk x1 . . . xn f−k

Labelling allows us to perform certain syntactic analyses (for example examining the function
symbols in right hand sides), with a higher chance of success.

However, higher order rewriting presents certain caveats when trying to apply the semantic
labelling technique. In particular, in the first order case, the fundamental substitution lemma is
guaranteed to hold: for all terms t and substitutions θ, tθ = tθ, in short, substitution commutes
with labelling. This does not hold in the higher order case we have just outlined, due to the
lack of “compositionality”: the labelling depends on the global form of the term, not just of the
labelling of its subterms. To understand the formal statement of commutativity, we need to
introduce labellings of substitutions.

Definition 68 (Labelling of a substitution)
Let θ be a substitution and ∆ and Γ be two contexts such that ∆ ⊢ θ : Γ. Let Θ be a context

and φ be a valuation in M∆(Θ). We define θ
φ
to be the substitution that sends each x ∈ dom(θ)

to θ(x)
φ
.

For all t, θ, φ, the commutativity lemma could then be expressed as: tθ
φ
= t

φ◦θ
θ
φ
. Let us give

an example where this rule fails in the higher-order case:

Example 11 (Counter-example to commutativity)
Let Σ = { f , c} be a signature, such that f is given the type T → U and c is given the type T

for T,U base types. Fix a Σλ-algebra M. Let ∅ be the empty valuation (the unique valuation in

M[]([]), with [] the empty context). We write t instead of t
∅
, and we have

x c∅◦{x 7→ f }
= x c
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Since the constant c does not have recursive arguments (nc = 0) and

f = f(|y : T⊢y : T |)

with y some fresh variable. Therefore

x c∅◦{x 7→ f }{x 7→ f } = f(|y : T⊢y : T |) c

On the other hand, we have

f c = f(|[]⊢c : T |) c

So the term x c does not verify the commutation lemma for θ = {x 7→ f } and φ = ∅. Indeed

the framework can not predict that f is going to be applied to the constant c, so θ
∅
(x) must

introduce a free variable y to denote the semantics of the argument of f . This is due to the fact
that we work in a higher-order case, in which subterms do not contain all the information on
the possible arguments of a defined function. Notice the similarity with the counter-example to
completeness of our size-based termination criterion (example 9).

We need to introduce some mechanism to manage the failure of this lemma. The fundamental
idea is that we may “instantiate” certain variables by a given argument. In the example above,
we could allow the label (|y : T ⊢ y : T |) to be instantiated to (| ⊢ c : T |). We then add these possible
instantiations to the rewrite rules.

Definition 69 (Instantiation order)

Let Γ,∆ be contexts, A a type and a an element of MA(Γ). We define the instantiation
morphism insta : MT (Γ, x : A,∆)→ MT (Γ,∆) by:

insta(t) = µM(t, φa)

Where φa is the valuation in MΓ,x : A,∆(Γ,∆) that sends every y ∈ dom(Γ,∆) to its inclusion
varM(Γ, x : A,∆)(y) and x to a.

We define the instantiation order >inst on f -labels by taking the transitive closure of the
following relation: if ~a = (a1, . . . , an) and ~b = (b1, . . . , bn) with ai, bi ∈ MTi

(Γ) for a given Γ, then

~a >inst
~b⇔ ∃a, ∀i, bi = insta(ai)

Finally we define the algebraic rewrite system Inst on Trm to be the set of rules

{ fl � fr | f ∈ Σ, l, r ∈ L f , l >inst r}

Notice that the instantiation order on labels is well founded, by simple induction on the size
of the context involved in the labels, and that it is uniform in its arguments, that is if ~a >inst

~b,
then there is a unique a such that bi = insta(ai). Uniformity will be important to prove the
structural property we use to prove termination (lemma 129). Notice also that in example 11,
we have

f(|y : T⊢y : T |) c �Inst f(|⊢c : T |) c

which is reassuring, as Inst was built just for this purpose!

We shall need the following lemmas:
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3.1. Labelling of Terms and Rewrite Systems

Lemma 70 Instantiation commutes with valuation: Γ = x1 : T1, . . . xn : Tn, ∆ = y1 : U1, . . . , ym : Um,
and let Γ, x : A,∆ ⊢ t : T . Then for any valuation φ ∈ MΓ(Θ) and element a ∈ MA(Γ),

inst
µM(a,φ

~y

~y
)

(

(|Γ, x : A,∆ ⊢ t|)(φx
x)~x
~x

)

= µM(insta(|Γ, x : A,∆ ⊢ t|), φ~x
~x
)

Proof. Let t ∈ MT (Γ, x : A,∆), φ ∈ MΓ(Θ) and a ∈ MA(Γ). We need to show that

µM(µM(t, (φx
x)
~y

~y
), φ

µM(a,φ
~y

~y
)
) = µM(µM(t, φa), φ

~y

~y
)

With φ
µM(a,φ

~y

~y
)
∈ MΘ,x : A,∆(Θ,∆) and φa ∈ MΓ,x : A,∆(Γ,∆). Take Γ = x1 : T1, . . . , xn : Tn and ∆ =

y1 : U1, . . . , ym : Um.

Remember that the following diagram commutes:

M • (M • M)
α //

id•µM

��

(M • M) • M
µM•id // M • M

µM

��
M • M

µ
// M

Which gives

µM(µM(t, (φx
x)
~y

~y
), φ

µM(a,φ
~y

~y
)
) = µM(t, ω)

with

ω(xi) = µM((ι(φ)(xi), φµM(a,φ)) = ι(φ(xi))

ω(x) = µM(varM(x), φ
µM(a,φ

~y

~y
)
) = µM(a, φ

~y

~y
)

and

ω(y j) = varM(y j)

Furthermore

µM(µM(t, φa), φ
~y

~y
) = µM(t, ω′)

with

ω′(xi) = µM(varM(xi), ι(φ)) = ι(φ(xi))

ω′(x) = µM(a, ι(φ)) = µM(a, φ
~y

~y
)

and

ω′(y j) = varM(y j)

Therefore ω = ω′, and the desired equality holds.

�

Lemma 71 Let t be a term such that Γ,∆ ⊢ t : T and x be a variable that does not appear in t.
If a ∈ MA(Γ), then

insta(|Γ, x : A,∆ ⊢ t : T |) = (|Γ,∆ ⊢ t : T |)

Proof. Simple induction on t.
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Lemma 72 Let t, u be terms such that Γ ⊢ t : T → U and Γ ⊢ u : T . Let φ ∈ MΓ(∆) be some
valuation. Then

t
φ

uφ �
∗
Inst t u

φ

Proof. The proof proceeds by cases on the judgement Γ ⊢ t : T → U.

• var: By definition of labelling, xφuφ = x uφ = x uφ.

• abs: We have by definition λx : T.t′ u
φ
= λx : T.t′

φ
uφ and so t

φ
uφ rewrites to t u

φ
in zero steps.

• app,symb: t = f t1 . . . tk. We distinguish two cases,

1. if k ≥ n f we have f ~t u
φ
= f(|~t|)φ

~t
φ
uφ = f ~t

φ
uφ with (|~t|)φ = ((|Γ ⊢ t1 : T1|)φ, . . . , (|Γ ⊢ tn f

: Tn f
|)φ).

2. otherwise, k < n f and if n = n f − k, and U = U1 → . . . → Un → T f , then taking Γ′ =
Γ, x1 : U1, . . . , xn : Un, and φ

′
= φ~x

~x
we have

f t1 . . . tk
φ
= fl t1

φ
. . . tk

φ

with l = (l1, . . . , lk,m1, . . . ,mn), where li = (|Γ′ ⊢ ti : T1|)φ′ , and mi = (|Γ′ ⊢ xi : Uk+i|)φ′ .

Now take a = (|Γ′′ ⊢ u : U1|)φ′′ and a′ = (|Γ ⊢ u : U1|), and set Γ′′ = Γ, x2 : U2, . . . xn : Un and
φ′′ = φx2...xn

x2...xn
. By lemma 70, we have for each 1 ≤ i ≤ k,

insta(li) = µM(insta(|Γ′ ⊢ ti : Ti|), φ
′′)

And by lemma 71, as x1 does not appear in ti,

insta(|Γ′ ⊢ ti : Ti|) = (|Γ′ ⊢ ti : Ti|)

which gives

insta(li) = (|Γ′′ ⊢ ti : Ti|)φ′′

Furthermore

insta(m1) = (|Γ′′ ⊢ u : U1|)φ′′

and for 2 ≤ i ≤ n

insta(mi) = (|Γ′′ ⊢ xi : Ui|)φ′′

again by application of lemma 71.

From the above we can deduce:

(l1, . . . , lk,m1, . . . ,mn) >inst (l′1, . . . , l
′
k, a
′,m′2, . . . ,m

′
n)

Where l′
i
= (|Γ′′ ⊢ ti : Ti|)φ′′ , a′ = (|Γ′′ ⊢ u : U1|)φ′′ and m′

i
= (|Γ′′ ⊢ xi : Ui|)φ′′ . But

f t1 . . . tk u
φ
= fl′ t1

φ
. . . tk

φ
uφ

Where l′ = (l′
1
, . . . , l′

k
, a′,m2, . . . ,m

′
n), which gives, by definition of the Inst rewrite rules

t
φ

uφ �
∗
Inst t u

φ
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3.1. Labelling of Terms and Rewrite Systems

�

The commutativity lemma fails for a second reason: when substituting under a binder, it is
necessary to weaken the context which is given for the valuation.

Example 12 Let Σ be as in example 11, take t to be the term λy : U → U.y x and θ be the
substitution that sends x to f c. Then θ(x) = f(|⊢c|) c and t = t, which gives tθ = λy.y ( f(|⊢c|) c). But

tθ = λy.y ( f(|y⊢c|) c)

and so tθ , tθ

To solve this discrepancy we introduce the weakening reduction.

Definition 73 (Weakening order)
The weakening order >wk is defined in the following manner: if a ∈ MA(Γ) and Γ′ is an

extension of Γ, then
a >wk M(ι)(a)

where ι :Γ→ Γ′ is the inclusion function.
We turn this order into a rewrite relation on function symbols in the same way as for

instantiation, with
f~a �Wk f~b ⇔ ~a >wk

~b

One can already note that the order is not well founded. In order to prove termination of
the original system, we will not be able to rely on termination of the labelled one. We will have
to use a weaker notion, relative termination.

The following lemma will be useful for proving the commutativity lemma.

Lemma 74 Suppose Γ ⊢ t : T , and let φ ∈ MΓ(∆) be a valuation. If x is some variable not in Γ
or ∆, then

t
φ

�
∗
Wk t

φx
x

Where in the right hand side t is seen as a term typed in the context Γ, x : A.

Proof. We proceed by induction on the derivation.

• case Ax: trivial.

• case App,Symb: let t = f t1 . . . tn, and ι the inclusion of Γ into Γ, x : A. We have

f t1 . . . tn
φ
= fl t1

φ
. . . tn

φ

with l = (l1, . . . , ln,m1, . . . ,mk) where li = (|Γ′ ⊢ ti|)φ′ and m j = (|Γ′ ⊢ x j|)φ′ for some Γ′ =

Γ, y1 : U1, . . . , yk : Uk and φ′ = φ
~y

~y
. Now using the functoriality of µ it is easy to verify that for

each i:
M(ι)((|Γ′ ⊢ ti : T |)φ′) = (|Γ′, x : A ⊢ ti : T |)φ′xx

So taking l′ = (l′
1
, . . . , l′n,m

′
1
, . . . ,m′

k
) with l′

i
= (|Γ′, x : A ⊢ ti : Ti|)φ′xx and m j = (|Γ′, x : A ⊢ x j|)φ′xx we

have fl �wk fl′ . By induction hypothesis, ti
φ

�
∗
wk

ti
φx

x and so

f ~t
φ

�
∗
Wk fl′ t1

φx
x . . . tn

φx
x
= f ~t

φx
x
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• case App: t = t1 t2 with t1 not in the shape f u1 . . . uk, we may conclude by immediate
application of the induction hypothesis.

• case Abs: t = λy : T.u. We may take y , x by the Barendregt convention, and so

λy : T.u
φ
= λy : T.uφ

y
y

By the induction hypothesis uφ
y
y
�
∗
wk

uφ
y x
y x = uφ

x y
x y and so

λy : T.u
φ

�
∗
Wk λy : T.u

φx
x

�

Using instantiation and weakening, we shall be able to “save” the lemma that failed in the
strict version.

Property 75 (Weak commutativity lemma)
Let t be a term, θ be a substitution, φ be a valuation, such that

Γ ⊢ t : T ∆ ⊢ θ :Γ φ ∈ M∆(Θ)

for Γ,∆,Θ contexts and T a type. Then

t
φ◦θ

θ
φ

�
∗
Wk∪Inst tθ

φ

Proof. We proceed by induction on the judgement Γ ⊢ t : T .

• var By definition, xφ◦θ = x, xφ◦θθ
φ
= θ(x)

φ
.

• lam In this case, t = λx : T.u and x is supposed distinct from the variables in dom(Γ), dom(∆), dom(Θ).
We have

λx.u
φ◦θ
θ
φ
= λx.(uφ◦θ

x
xθ
φ
)

As x is not in the domain of θ, taking θ′ to be the substitution equal to θ on its domain, and
that sends x to itself,

(φ ◦ θ)x
x = φ

x
x ◦ θ

′

And applying lemma 74, we have

λx.(uφ◦θ
x
xθ
φ
) �
∗
wk λx.(uφ

x
x◦θ
′

θ′
φx

x
)

which, by the induction hypothesis reduces under �
∗
wk∪Inst

to

λx.uθ′
φx

x
= (λx.u)θ

φ

• app, symb: We treat 2 cases:

– t = f t1 . . . tn. In this case
t
φ◦θ
= fl t1

φ◦θ
. . . tn

φ◦θ

with
l = ((|Γ′ ⊢ t1|)φ◦θ~y

~y

, . . . , (|Γ′ ⊢ t1|)φ◦θ~y
~y

, (|Γ′ ⊢ y1|)φ◦θ~y
~y

, . . . , (|Γ′ ⊢ ym|)φ◦θ~y
~y

)
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For some extension Γ′ = Γ, y1 : U1, . . . , ym : Um. But φ ◦ θ
~y

~y
= φ

~y

~y
◦ θ′ with θ′ equal to θ on its

domain and equal to the identity on y1, . . . , ym, and by corollary 63, for each i

(|Γ′ ⊢ ti|)φ~y
~y
◦θ′
= (|∆′ ⊢ tiθ

′|)
φ
~y

~y

and

(|Γ′ ⊢ yi|)φ◦θ~y
~y

= (|∆′ ⊢ θ′(yi)|)φ~y
~y

= (|∆′ ⊢ yi|)φ~y
~y

Where ∆′ = ∆, y1 : U1, . . . , ym : Um, and so l = l′ with

l′ = ((|∆′ ⊢ t1θ
′|)
φ
~y

~y

, . . . , (|∆′ ⊢ tnθ
′|)
φ
~y

~y

, (|∆′ ⊢ y1|)φ~y
~y

, . . . , (|∆′ ⊢ ym|)φ~y
~y

)

Now

t
φ◦θ
θ
φ
= fl t1

φ◦θ
θ
φ
. . . tn

φ◦θ
θ
φ

which by induction hypothesis and l = l′ reduces under �
∗
Wk∪Inst

to

fl′ t1θ
φ
. . . tnθ

φ
= ( f t1 . . . tn)θ

φ

– Other cases: t = t1 t2. In that case

t1 t2
φ◦θ
θ
φ
= t1

φ◦θ
θ
φ

t2
φ◦θ
θ
φ

and by induction hypothesis this �
∗
Wk∪Inst

reduces to

t1θ
φ

t2θ
φ

which �
∗
Inst

reduces to (t1 t2)θ
φ
by lemma 72.

�

Furthermore, we show that the use of �
∗
Wk∪Inst

is not necessary when labelling the instances
of patterns, provided all constructors are fully applied to their arguments.

Lemma 76 (Commutativity lemma for patterns)

Suppose that p = f l1 . . . ln f
is an algebraic pattern. Suppose furthermore that in each li,

every function symbol c ∈ Σ is applied to nc arguments. Then if Γ ⊢ p : T , ∆ ⊢ θ :Γ and φ ∈ M∆(Θ)

as in property 75, we have

pφ◦θθ
φ
= pθ

φ

Proof. The proof proceeds exactly as in the proof of property 75, observing that the cases
in which we need to use the Inst and Wk reductions are avoided (there are no abstractions). �

Our goal is to show that an unlabeled system can be turned into a labelled one while pre-
serving reduction, provided we allow the extra reductions described above, and an additional
decrement relation, to allow for the fact that we are working in a premodel and not necessarily
a model. In particular, we need to be able to allow reduction in the semantic labels to match
reduction at the term level.
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Definition 77 (Structural rules)
If f ∈ Σ, we define the decrement order >decr on f -labels by taking:

(a1, . . . , an) >decr (b1, . . . , bn)

if ai >MT (Γ) bi for some 1 ≤ i ≤ n and some Γ,T and a j ≥MT (Γ) b j for j , i.
We define the rewrite system Decr by

{ fl �Decr fl′ | f ∈ Σ, l >decr l′}

We take Struct to be the set of rules Inst ∪Wk ∪ Decr.

The labelled rewrite system is defined by taking the labelling of the rules for all possible
valuations.

Definition 78 (Labelled rewrite system)
Given the rewrite system R, let R be the rewrite system on Trm defined by:

{l
φ

� rφ | l � r ∈ R, φ ∈ MΓ(∆) if Γ ⊢ l � r : T }

3.2 The Fundamental Lemma of Semantic Labelling

The following theorem will allow us to prove the simulation of the original rewrite system by
the labelled one.

Theorem 79 (Fundamental theorem)
Let t, t′ ∈ Trm such that Γ ⊢ t, t′ : T and t �R∪β t′. Then for all φ ∈ MΓ(∆),

t
φ

�
+

R∪β∪Struct
t′
φ

The proof makes use of the following lemmas:

Lemma 80 For all elements m ∈ MT (Γ, x : A), φ ∈ MΓ(∆) and a ∈ MA(∆)

insta(µM(m, φx
x)) = µM(m, φx

a)

Proof. The proof is similar to that of lemma 70. We have

insta(µM(m, φx
x)) = µM(µM(m, φx

x), φa)

where φa is the valuation that sends every y ∈ dom(Γ) to var(y) and x to a. By the first monadic
law for µM, we have

µM(µM(m, φx
x), φa) = µ(m, ψ)

where ψ is the valuation that sends y ∈ dom(Γ) to µM(φ(y), φa) and x to µM(var(x), φa). But
(φ(y), φa) ∼ (φ(y), var), and by the second and third monadic law for µM

µM(φ(y), var) = φ(y)

and
µM(var(x), φa) = a

which gives the desired result.
�
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Lemma 81 For all terms t, and variables x fresh in Γ such that Γ, x : A ⊢ t : T , φ ∈ MΓ(∆) and
a ∈ MA(∆)

t
φx

x
�
∗
Inst t

φx
a

Proof. We proceed by induction on the derivation of Γ, x : A ⊢ t : T . The only interesting case
is App, Symb, that is t = f t1 . . . tn. In this case

f~t
φx

x

= fl t1
φx

x . . . tn
φx

x

where l = ((|Γ′ ⊢ t1|)φ′ , . . . , (|Γ
′ ⊢ tn|)φ′) with Γ′ = Γ, x : A,∆ and φ′ = (φx

x)
~y

~y
if ∆ = y1 : U1, . . . , ym : Um.

We have by lemma 80

(|Γ′ ⊢ ti : Ti|)φ′ >inst (|Γ′ ⊢ ti : Ti|)(φx
a)
~y

~y

and by the induction hypothesis

ti
φx

x
�
∗
Inst ti

φx
a

Which allows us to conclude.

�

Proof of Theorem 79. The proof proceeds by induction on the position on which rewriting
occurs.

• Head step: Suppose that it is the application of a rule f ~l � r ∈ R: In that case there is some
substitution θ such that t = f ~lθ and t′ = rθ. We have by lemma 76

f ~lθ
φ

= f ~l
φ◦θ

θ
φ

Which by definition of R, reduces in one R step to

rφ◦θθ
φ

and by the substitution lemma 75

rφ◦θθ
φ

�
∗
Struct rθ

φ

Now suppose that it is the application of the β rule: t = (λx : T.u)v and t′ = u{x 7→ v}. We have

(λx.u)v
φ
= λx.uφ

x
xvφ �β uφ

x
x{x 7→ vφ}

By lemma 81,

uφ
x
x
�Inst u

φx
(|Γ⊢v|)φ

and by noticing φx
(|Γ⊢v|)φ

= φ ◦ {x 7→ v} and finally applying the substitution lemma (lemma 75)
we get

uφ◦{x 7→v}{x 7→ vφ} �Struct u{x 7→ v}
φ

• We have t = λx : T.t1 and t1 �R∪β t′
1
with t′ = λx : T.t′

1
. In that case

λx.t1
φ
= λx.t1

φx
x
�
∗

R∪β∪Struct
λx.t′

1

φx
x
= t′

φ
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• We have t = f t1 . . . tn with ti �R∪β t′
i
and t′ = f t1 . . . t

′
i
. . . tn. In this case

t
φ
= fl t1

φ
. . . tn

φ

with l = ((|Γ′ ⊢ t1|)φ′ , . . . , (|Γ
′ ⊢ tn|)φ′ , (|Γ

′ ⊢ y1|)φ′ , . . . , (|Γ
′ ⊢ ym|)φ′), where Γ

′
= Γ, ~y : ~U and φ′ = φ

~y

~y
as

usual. In this case, as (| |) and µM are morphisms of prealgebras, we have (|Γ′ ⊢ ti|)φ′ ≥ (|Γ′ ⊢ t′
i
|)φ′ ,

and so applying the induction hypothesis,

fl t1
φ
. . . tn

φ
�
R∪β∪Struct

fl t1
φ
. . . t′

i

φ
. . . tn

φ
�Decr f t1 . . . t

′
i
. . . tn

φ

• If t = u v with u , f~t and u �R∪β u′ then applying the induction hypothesis gives:

u vφ = uφ vφ �
R∪β∪Struct

u′
φ

vφ

and applying lemma 72

u′
φ

vφ �
∗
Inst u′ v

φ

• The symmetrical case is treated in the same way.

�

Notice that the converse also is true: define the erasure of a term by:

• |x| = x

• | fl| = f

• |λx : T.t| = λx : T.|t|

• |t u| = |t| |u|

In this case it is easy to check that if t
φ
reduces under R ∪ β ∪ Struct to some term u in one

step, then t reduces to a term v in one or zero steps, and furthermore if the applied rule is β or
in R, then the erased term rewrites with a β or R step.

3.3 Normalization of the original system

Now if every well typed labelled term was strongly normalizing under R ∪ β ∪ Struct, then
normalization of unlabeled terms would easily follow, by application of the previous lemma.
Sadly this can not be the case, as the presence of the Wk rules do not allow this system to be
terminating. However these rewrite rules do not have a non-labeled counterpart. It is therefore
more interesting to us to look at sequences of reductions which involve β and R reduction steps.
In particular we shall see that if there are no infinite sequence of reductions which contain an
infinite number of β or R steps, then the original system is strongly normalizing. This approach
is quite common in first order rewriting, and forms the basis of many termination techniques.
Details on relative termination can be found in Geser [Ges90] or Zantema [Zan04b].
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Definition 82 (Relative normalization)
Let R and S be two rewrite systems. We say that a term t is strongly normalizing in R relative

to S if there are no infinite �
∗
S
◦ �R reduction sequences starting with t, that is sequences (ti)i∈N

and (ui)i∈N such that t = t0, and for each i,

ti �
∗
S ui �R ti+1

In that case we write t ∈ SNR/S .

Example 13 Let Σ = {plus, S , 0} be a signature with types τplus = N → N → N, τS = N → N

and τ0 = N for some atomic type N and consider the rules:

R = {plus 0 y � y, plus (S x) y � S (plus x y)}

and
S = {plus x y � plus y x}

Then every term t is normalizing in R relative to S.

Lemma 83 In the conditions of theorem 79, the reduction t
φ

�
+

R∪β∪Struct
t′
φ
contains at least

one rewrite step in R or β.

Proof. By examination of the proof of theorem 79. �

And the main theorem of this section can now be stated:

Theorem 84 (Preservation of termination)
The system R∪ β is strongly normalizing for well-typed terms if and only if R∪ β is strongly

normalizing relative to Struct.

Proof. In the “if” direction: suppose by contraposition that Γ ⊢ t : T and there is an infinite
sequence t = t1 �R∪β t2 �R∪β . . .. Then taking var to be the valuation in MΓ(Γ) that sends every
x ∈ dom(Γ) to var(x), we have by theorem 79 an infinite sequence

t1
var

�
∗

R∪β∪Struct
t2 �

∗

R∪β∪Struct
. . .

and lemma 83 states that there are an infinite number of R ∪ β steps in that reduction, contra-
dicting relative normalization of R ∪ β over Struct.

Conversely, suppose that u1 �
∗

R∪β∪Struct
u2 �

∗

R∪β∪Struct
. . . is an infinite reduction sequence

with an infinite number of occurrences of R ∪ β steps. By taking the erasure of ui for each i, we
may build an infinite β ∪ R reduction sequence of unlabeled terms.

In the next chapters, we give a realizability semantics that will be used to give an algebraic
description of the size-based criterion of chapter 1 using the Σλ-algebra framework of the previous
chapter. Then we will apply the above theorem and show relative normalization of the labelled
system using a simple precedence criterion, described in chapter 5.
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4

The Realizability Algebra

In this chapter we show how to define a realizability algebra which will provide the appropriate
semantics to apply the labelling theorem (theorem 79) and prove the correctness of the type-
based criterion presented in chapter 1.

The basic idea is to give the natural interpretation of terms by interpreting abstractions as
functions, and elements of base type as tuples which encode the base type, then define the size
of such an element in a natural manner, and define the interpretation of defined functions by
well-founded induction on the size of its arguments.

However, if we attempt to interpret the function spaces as the full set-theoretical function
space, then the sets that interpret inductive types must be huge. This comes from the fact
that the interpretation space consists of a very large amount of set theoretic functions (a “sea
of set theoretical functions” [MW98], attributed to Girard) some of which grow too quickly and
would require working with very large sets if we desire to interpret inductive datatypes (for
which constructors must be injective). We show how to remedy this problem by introducing
a realizability function space that limits the size of the function spaces by only authorizing
functions that are realized by some term. This allows us to work with the ordinals that occur
in the traditional Tait-style proof of normalization.

Non-defined constructors can then be interpreted as their set-theoretic counterpart, that is
tuples involving symbols c ∈ C and the recursive arguments. For instance the term S (S 0), if S

and 0 are constructors, will be interpreted by the tuple (S , (S , 0)). To interpret terms which never
reduce to a constructor, we introduce the special symbol ⋄. Defined functions are interpreted
by well-founded induction using the (orthogonal) rules. We show that every term realizes its
interpretation, and that the size of a term is modeled by the size-annotations of the type system
presented in the previous chapter.

We interpret constructors in the standard manner, as the function that takes the supremum
of its recursive arguments, and adds one. However giving a semantics to defined symbols in
D is more difficult. We need to give an interpretation that respects the rewrite rules, in order
to be able to build a model by applying proposition 64. To do this we need to proceed by
well-founded induction, using the size labels in the type to justify this induction. The crucial
fact is that if a term t is of type Ba in context Γ, then for every valuation of term variables φ
and size variables µ in Γ that are “compatible”with the typing, (|t|)φ ≤ (|a|)µ. This must be proven
mutually inductively with the definition of the interpretation of the functions. Care must be
taken to build only functions that are in fact in the realizability interpretation.

We then show that this realizability interpretation gives rise to a R ∪ β-premodel (in fact a
R ∪ β-model) in the sense of definition 58.
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4.1 The Realizability Space and the Rank function

We define the set theoretical interpretation space using the realizability semantics. The realiz-
ability relation is inspired from the classical body of research pioneered by Kleene [Kle45] (see
van Oosten [vO02] for a historical survey).

We now suppose that we satisfy the hypotheses of the termination theorem (theorem 41),
that is that Σ = C ∪D, and that there is a function τ′ that associates a size type to each f ∈ Σ.
We suppose that there are two well-founded preorders, >B a declaration order on base types and
>D a call preorder on defined functions. For each f , |τ′

f
| = τ f , and τ′ satisfies the conditions

described in definition 40, namely that every f ∈ D is in elimination form and that every c ∈ C

is a well-formed constructor. Finally we suppose that R is a left-algebraic rewrite system that
passes the size criterion, and respects >D.

We are going to proceed by induction on >B to mutually define the interpretation space [[T ]]

and the realizability relation of a type T . We are going to use the positivity conditions on the
constructors, and we are going to proceed by cumulativity, by defining [[T ]]α for an ordinal α
(by well-founded induction) if B appears strictly positively in T and [[T ]] is defined for any T

containing only atomic types strictly smaller than B.

Definition 85 (Bounded interpretation)
We proceed by induction on the well-founded preorder >B. Take B ∈ B and suppose that

[[A]] and the relation 
A
⊆ Trm× [[A]] is defined for every type A such that A <B B. Take T such

that all atomic types A in T verify A <B B we define [[T ]] and 
T
⊆ Trm × [[T ]] by induction on

T .

• T = A: By hypothesis A <B B and [[A]] and 
A

are already defined.

• T = U → V. We define
t T f ⇔ ∀u x, u U x⇒ t u V f (x)

and
[[U → V]] = [[U]] _ [[V]] = { f ∈ [[V]][[U]] | ∃t, t U→V f }

We choose ⋄ to be a special symbol not contained in Σ.

We define T B to be the set of types T ∈ T in which C ≃B B appears in a strictly positive
position (see definition 30). If T ∈ T B and α is an ordinal, we mutually define the bounded
interpretation [[T ]]α and the bounded realizability relation α

T
⊆ Trm × [[T ]]α by induction on T :

• T = C ≃B B. We proceed by well-founded induction on α:

– α = 0 then we define
[[C]]0

= {⋄}

and for every term t such that t never reduces to a term of the form c t1 . . . tn with c ∈ C

t 0
C ⋄

– α = β + 1 is a successor ordinal. We define

[[C]]β+1
=

{

(c, v1, . . . , vn) | τc = T1 → . . .→ Tn → C, ∀i vi ∈ [[Ti]]
β
}

∪ [[C]]β

Then we define

t 
β+1

C
v⇔ t �

∗ c t1 . . . tn ∧ v = (c, v1, . . . , vn) ∧ ∀i ti 
β
Ti

vi ∨ t 
β
C

v
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4.1. The Realizability Space and the Rank function

– α = λ a limit ordinal. We then define

[[C]]λ =
⋃

β<λ

[[C]]β

And

t λC v⇔ ∃β < λ, t 
β
C

v

• T = U → V: We define

[[U → V]]α = [[U]] _ [[V]]α = { f ∈ ([[V]]α)[[U]] | ∃t, t αU→V f }

where

t αU→V f ⇔ ∀u x, u U x⇒ t u αV f (x)

Lemma 86 The interpretation is monotonic: for every T ∈ T B, if α ≤ β are two ordinals, then
[[T ]]α ⊆ [[T ]]β and α

T
⊆ 

β
T
.

Proof. Without loss of generality we may suppose that α < β. We proceed by induction
on T :

• T = C ≃B B: by well-founded induction on β:

– β = 0 may not occur.

– β = β′ + 1. It is clear that [[C]]β
′

⊆ [[C]]β. We have α ≤ β′ and so by induction hypothesis

[[C]]α ⊆ [[C]]β
′

⊆ [[C]]β

A similar reasoning shows


α
C ⊆ 

β
C

– β = λ a limit ordinal. Simple application of the induction hypothesis.

• T = U → V: Take some f ∈ [[U → V]]α such that t α
T

f . Take an arbitrary x ∈ [[U]] and u such

that u 
U

x. We have by definition t u α
V

f (x) and so by induction hypothesis t u 
β
V

f (x), by

which we conclude t 
β
T

f and f ∈ [[T ]]β.

�

Now that we have the interpretation of B at level α, we need to find an ordinal for which the
interpretation is stable, that is an ordinal for which [[B]]λ = [[B]]λ+1. We shall show that such an
ordinal exists and that it is countable.

Lemma 87 (Existence of a realizer)

Let T ∈ T B and v ∈ [[T ]]α for some ordinal α. There exists a term t such that t α
T

v.

Proof. As usual, we proceed by induction on the structure of T :

• T = C ≃B B. By induction on α:
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Chapter 4. The Realizability Algebra

– α = 0. Then [[C]]α = {⋄} and for any variable x

x 0
C ⋄

– α = α′ + 1. Remember that

[[C]]α
′
+1
= {(c, v1, . . . , vn | vi ∈ [[Ti]]

α′} ∪ [[C]]α
′

Take v ∈ [[C]]α
′
+1, and suppose v < [[C]]α

′

(otherwise we are done). We have v = (c, v1, . . . , vn)

with vi ∈ [[Ti]]
α′ . By induction hypothesis we may take for each i, ti 

α′

Ti
vi and we have

c t1 . . . tn 
α′+1
C (c, v1, . . . , vn)

• T = U → V. We can conclude by definition of [[U → V]].

�

Property 88 (Limit ordinal for the interpretation)

Let Ω be the smallest uncountable ordinal. There exists an ordinal OB which verifies for each
T ∈ T B:

[[T ]]OB = [[T ]]OB+1

Proof. Note first that Ω exists by a well-known theorem of Hartogs [Har15], and can be
constructed as the set of all countable well-founded orders, ordered by initiality.

Given T ∈ T B, we consider the sets Reaα
T
of realizers of elements of [[T ]]α:

ReaαT = {t ∈ Trm | ∃ f ∈ [[T ]]α, t αT f }

and we show

1. If α ≤ β then Reaα
T
⊆ Rea

β
T
.

2. If Reaα
T
= Rea

β
T
then [[T ]]α = [[T ]]β.

This will allow us to conclude using countability of Trm. The first point follows directly from
the inclusions α

T
⊆ 

β
T
.

For the second point we suppose without loss of generality that α < β we proceed by
induction on T :

• T = C ≃B B. By contraposition suppose that there is some v ∈ [[C]]β\[[C]]α. By lemma 87
there is some t such that t 

β
C

v. We show that for every v′ ∈ [[C]]α, t 1α
C

v′. We proceed by
well-founded induction on β.

– β = 0 may not occur.

– β = β′ + 1. By contraposition suppose that there is some v ∈ [[T ]]β\[[B]]α. By lemma 87 there
is some t such that t 

β
C

v. If v ∈ [[B]]β
′

then we can conclude by induction hypothesis. In
the other case we have v = (c, v1, . . . , vn) for some constructor c of type T1 → . . . Tn → C, and
t �
∗ c t1 . . . tn with ti 

β′ vi. We finally proceed by well-founded induction on α:

∗ α = 0. Then v′ = ⋄ and t 1α
C

v′
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4.1. The Realizability Space and the Rank function

∗ α = α′ + 1. Then by induction hypothesis we may suppose that v′ < [[C]]α
′

. So we have
v′ = (c′, v′

1
, . . . , v′m). If c , c′ we are done. Otherwise c = c′ and n = m. As we have

v < [[C]]α, n ≥ 0 (otherwise v = v′) and there is some inductive index i such that vi < [[Ti]]
α′ .

From the induction hypothesis we therefore have

ti 1
α′

Ti
v′i

and so t 1α
C

v′.

∗ α = λ a limit ordinal, we have for any v′ ∈ [[C]]λ, v′ ∈ [[C]]α
′

with α′ < λ < β and we may
conclude by induction hypothesis.

– Easy by induction hypothesis.

• Easy by induction hypothesis.

Now suppose that for every α < β < Ω, [[T ]]α ( [[T ]]β. Then we have Reaα
T
( Rea

β
T
and we can

build an uncountably long sequence

Rea0
T ( Rea1

T ( . . .ReaΩT ⊆ Trm

which contradicts countability of Trm. Furthermore it is easy to show if T = U → V then for
any ordinal λ that

[[U → V]]λ = [[U → V]]λ+1 ⇔ [[V]]λ = [[V]]λ+1

And so the limit ordinal for T1 → . . .→ Tn → B is the same as that for B.
We have not shown that OB = OC if C ≃B B. This is only true if the inductive types C and

B are truely mutual, that is C has a constructor c with an inductive index which depends on B

and vice versa. We avoid the problem by simply setting

λB = inf
{

α ∈ Ω | [[B]]α = [[B]]α+1
}

and taking
OB = sup

C≃BB

λC

�

We can finally define the interpretation of C ≃B B by taking

[[C]] = [[C]]OB

if [[A]] is defined for every A <B B. This allows us to define the type interpretation for any type.

Definition 89 (Type interpretation)
Let T be a type. We define the type interpretation [[T ]]. We proceed by induction on >B:

suppose that for each atomic type B in T and every atomic type A <B B that [[A]] is defined.
Then we have by induction on T :

• T = C ≃B B. We can carry out the bounded interpretation construction described in definition,
and we take [[C]] = [[C]]OB , as described above.

• T = U → V we take [[T ]] = [[U]] _ [[V]].
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Chapter 4. The Realizability Algebra

We can define the interpretation of simply typed terms into these sets in the standard manner,
given an appropriate interpretation of function symbols.

Definition 90 (Interpretation of Terms)
Suppose given a function I which to each f ∈ Σ associates a function I f ∈ [[τ f ]]. Suppose

given Γ ⊢ t : T , and a valuation φ that to each x ∈ dom(Γ) associates an element of [[Γ(x)]] (in
which case we write φ ∈ [[Γ]]).

We can define the conditional interpretation by induction on the typing derivation:

• var case: (|x|)φ = φ(x)

• symb case: (| f |)φ = I f

• app case: (|t u|)φ = (|t|)φ((|u|)φ)

• abs case: (|λx : T.t|)φ = u 7→ (|t|)φx
u

This give us an interpretation for each well-typed term, but we do not know that each term is
in the interpretation of their type. To prove this we need to find realizers for the interpretation
of terms. This will essentially be supplied by the term itself.

Definition 91 Given a context Γ, a substitution σ of same domain as Γ, and a valuation θ ∈ [[Γ]],
we write σ 

Γ
θ, or just σ  θ, if for each x ∈ dom(Γ)

σ(x) 
Γ(x) θ(x)

Lemma 92 (Head expansion of realizers)
Suppose that f ∈ [[U → V]] and that t is a term such that for each y ∈ [[U]] and u 

U
y

t{x 7→ u} V f (y)

then
λx : U.t U→V f

Proof. Let u 
U

y. We proceed by induction on V to show (λx : T.t)u 
V

f (y). The only
interesting case is for base type:

We need to show that (λx : T.t)u �
∗ c t1 . . . tn with c a constructor if and only if t{x 7→ u} �∗

c t1 . . . tn. This is a consequence of the standardization theorem [Plo75] (see also Terese [BKdV03],
page 568, theorem 10.2.48).

We can now state and prove the relative correctness of the interpretation:

Lemma 93 (Relative correctness of the realizability semantics)
Suppose given for each f an interpretation function I f ∈ [[τ f ]]. Furthermore suppose that for

each f ∈ Σ, f τ f
I f . Then if Γ ⊢ t : T , θ ∈ [[Γ]] and σ is a substitution such that σ  θ, then

tσ T (|t|)θ

Proof. We proceed by induction on the typing derivation:

• var. Follows from the definition of σ  θ.

• symb. Directly from hypothesis.
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4.2. The Interpretation of Symbols

• app. Let t = u v. We have by induction hypothesis uσ 
U→V

(|u|)θ and vσ 
U

(|v|)θ. Therefore
we have uσ vσ 

V
(|u|)θ((|v|)θ) and so

(u v)σ V (|u v|)θ

• abs. Let t = λx : U.v. We may suppose that x is not in the domain of σ or θ, and we have by
induction hypothesis, for any σ′ 

Γ,x : U
θ′

vσ′ V (|v|)θ′

Let y be an arbitrary element of [[U]] and u 
U

y. Take σ′ = σx
u and θ′ = θx

y . We therefore
have

vσ{x 7→ u}  (|v|)θx
y

application of head expansion for realizers (lemma 92) gives

(λx : T.v)σ U→V (|λx : T.v|)θ

�

Property 94 If I is an interpretation such that for all f ∈ Σ, I f ∈ [[τ f ]], then for each Γ ⊢ t : T ,
and each valuation θ ∈ [[Γ]],

(|t|)θ ∈ [[T ]]

Proof. Simple induction on the derivation of t. �

4.2 The Interpretation of Symbols

The non-defined constructors, i.e. the elements of C\D can be directly defined in these semantics,
by using the natural interpretation into the set-theoretical description of the inductive types.
To define the interpretation of defined symbols however, we will need a semantic notion of size
which we will show that the syntactic annotations adequately model.

Definition 95 (Interpretation of constructors)

We define the function I which associates a function Ic ∈ [[τc]] to the elements c ∈ C\D. Let
c be such a symbol, and τc = T1 → . . .→ Tn → B. Then we define

Ic(v1) . . . (vn) = (c, v1, . . . , vn)

We need to show that for every c ∈ C, Ic is indeed in [[τc]].

Property 96 For every c ∈ C, Ic ∈ [[τc]] and

c τc
Ic

Proof. Suppose τc = T1 . . . Tn → B. We need to show that for any v1 ∈ [[T1]], . . . , vn ∈ [[Tn]]

and any t1 T1
v1, . . . , tn Tn

vn, (c, v1, . . . , vn) ∈ [[B]] and

c t1 . . . tn  (c, v1, . . . , vn)
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Chapter 4. The Realizability Algebra

By definition of 
Ti

and [[Ti]], for each i there is an αi such that vi ∈ [[Ti]]
αi and ti 

αi

Ti
vi.

Take α to be the maximum of α1, . . . , αn. Then we have by definition (c,~v) ∈ [[B]]α+1 and

c t1 . . . tn 
α+1
B (c, v1, . . . , vn)

�

The semantic notion of size that we ask for appears naturally in our cumulative description
of inductive types.

Definition 97 (Rank)
Let T be a type and v ∈ [[T ]]. The rank of v at type T is defined inductively by:

• T = B: we define
rkB(v) = inf

{

α | v ∈ [[B]]α
}

• T = U → V:
rkU→V ( f ) = sup

x∈[[U]]

rkV f (x)

Note that while rkT1→...Tn→B( f ) is a countable ordinal, it may be the case that it is equal to OB.

The rank functional is going to be the semantic counterpart to the syntactic annotations.

Lemma 98 (Rank of a value of base type)
Let v = (c, v1, . . . , vn) ∈ [[B]]. We have

rkB(v) = max(rkTi1
(vi1), . . . , rkTik

(vik )) + 1

Proof. First let us prove that if T ∈ T B and f ∈ [[T ]] then

rkT ( f ) = inf
{

α | f ∈ [[T ]]α
}

We proceed by induction on T :

• T = C ≃B B: follows by definition of rkC.

• T = U → V: By definition

f ∈ [[U → V]]α ⇔ ∀x ∈ [[U]], f (x) ∈ [[V]]α

and
rkT ( f ) = sup

x∈[[U]]

rkV f (x)

which by induction hypothesis is equal to

sup
x∈[[U]]

inf{α | f (x) ∈ [[U]]α}

which by definition means

rkT ( f ) = inf
{

α | ∀x, α ≥ inf{β | f (x) ∈ [[V]]β}
}

and so
rkT ( f ) = inf

{

α | ∀x, f (x) ∈ [[V]]α
}
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Now if v = (c, v1 . . . , vn) ∈ [[B]], then v ∈ [[B]]α for a certain minimal α = α′ + 1 with vi ∈ [[Ti]]
α′ .

By definition, vi ∈ [[Ti]]
0 if i is not an inductive index and for each inductive index i, α′ ≤ rkTi

(vi)

by the above statement. Therefore if i1, . . . , ik are the inductive indexes, we have

α′ ≥ max(rkTi1
(vi1), . . . , rkTik

(vik ))

and this is an equality by minimality of α.
�

It is necessary, for the definition of the semantics of defined functions and after that the
proof of strong normalization, that the semantics of our functions correspond in some fashion
to the syntactic annotations on the types given by the size criterion.

Definition 99 (Interpretation of size annotations)
Let a ∈ A, and let µ :V → Ω be an assignment of countable ordinals to size variables. If a

that does not contain ∞ as a subterm, the ordinal interpretation of a, writen (|a|)µ is the ordinal
in Ω defined by:

• (|α|)µ = µ(α)

• (|0|)µ = 0

• (| s(a)|)µ = (|a|)µ + 1

• (|max(a, b)|)µ = max((|a|)µ, (|b|)µ)

Furthermore, if a does contain ∞ as a subterm, then a ≃ ∞ and we define (|a|)µ = (|∞|)µ = Ω.

Notice that (| |) is well-defined on equivalence classes of A. To see this, one can notice by
simple induction on the definition of ≃, that if a ≃ b, then for all µ, (|a|)µ ≃ (|b|)µ. Notice that
we need to treat the ∞ case separately, as ∞ ≃ s(∞) but Ω , Ω + 1. Notice also that if θ is a
Γ-size-valuation, and x : ~T → B∞, then it cannot be the case that sup

~v∈[[ ~|T |]]
θ(x)(~v) = Ω, for in this

case sup
~v∈[[ ~|T |]]

θ(x)(~v) ≤ OB, which is a countable ordinal.

Definition 100 (Size valuations)
Let Γ be a sized-type context and θ ∈ [[|Γ|]] a valuation. We say that θ is a Γ-size-valuation

if there is θ̂ :V → Ω such that for every variable x ∈ dom(Γ), if x is of type Γ(x) = T1 → . . . →

Tn → Bax then
rk|Γ(x)| θ(x) ≤ (|ax|)θ̂

A Γ-size-valuation is minimal if the inequality is in fact an equality for all x ∈ dom(Γ). We
suppose in addition that θ̂(α) = 0 if α does not appear in Γ.

It may seem curious that, in the definition of Γ-size-valuations, if x is of type ~T → Ba, we
do not take into account the size annotations contained within the Ti. As a consequence of
this fact is that we do not take into account the “second order” size information of the context.
However this size information may never actually be useful, as the shape of the size annotations
on function symbols, described in definitions 36 and 31 shows that this type information may
never be used, as there is no “third order” size information in the types of elements f ∈ Σ:
there is no size annotation different from ∞ under two nested arrows, i.e. a type of the shape
(Ba → A) → A′ with a ; ∞. While this is a limitation on the expressive power of our criterion,
in practical cases it is rare that size information of order higher than 2 is needed.
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Chapter 4. The Realizability Algebra

Lemma 101 (Correctness of the order on sizes)
Let a, b ∈ A such that a ≤ b. For all ordinal assignments µ

(|a|)µ ≤ (|b|)µ

Furthermore, if a < b then
(|a|)µ < (|b|)µ

Proof. We prove (|a|)µ ≤ (|b|)µ by simple induction on the derivation of a ≤ b. If a < b then
s(a) ≤ b and a, b ; ∞. We therefore have (| s(a)|)µ = (|a|)µ + 1 ≤ (|b|)µ which gives

(|a|)µ < (|b|)µ

�

We need the following lemmas:

Lemma 102 (Existence of minimal-size-valuations)
Suppose that Γ is a context and that for all x ∈ dom(Γ), Γ(x) is minimal for Γ, as described

in definition 39. Then if θ is a valuation in [[|Γ|]], then we may find θ̂ which makes θ a minimal
Γ-size-valuation.

Proof. If Γ(x) = ~T → Ba, then a is equal to some variable α that does not appear at another
place in Γ. We can then take θ̂(α) = rk|Γ(x)| θ(x), and θ̂(β) = 0 for all size variables not in Γ. It is
easy to check that θ̂ satisfies the necessary conditions. �

In fact minimal typing gives strong constraints on the shape of the size annotations of types
of inductive terms.

Lemma 103 Suppose that c ∈ C and that Γ ⊢min c l1 . . . ln : Ba. Suppose that i1, . . . , ik are the
inductive indexes of c. Then we have

a = s(max(a1, . . . , ak))

with
Γ ⊢min li j

: T
j

1
→ . . . T

j
n j
→ Ba j

Proof. By well-formedness of c we have τ′c = T1 → . . .→ Tn → Bb, with b = s(max(α1, . . . , αk)),
if Ti j

= U
j

1
→ . . .U

j
n j
→ Bα j . Then by inversion, the derivation Γ ⊢min c l1 . . . ln ends with n times

the application rule. Notice that if

(U
j

1
→ . . .U

j
n j
→ Bα j)φ = T

j

1
→ . . . T

j
n j
→ Ba j

Then in particular φ(α j) = a j. Then we may conclude by using the fact that α j does not appear
in Ti, if i , i j. �

We can now prove correctness of minimal typing. It is important to note that the size
annotations involved in the typing can not be equal to ∞, as this would prohibit the existence
of minimal size-valuations.

Lemma 104 (Correctness of minimal typing)
Suppose that l is a constructor term such that Γ ⊢min l : Ba, and that θ is a minimal Γ-size-

valuation. We have
rkB(|l|)θ = (|a|)θ̂
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Proof. First notice that a , ∞. We prove by induction on the derivation that if
Γ ⊢min t : T1 → . . .→ Tn → Ba then a ; ∞:

• If l = x then the type of x is minimal in Γ, which implies a = α for some variable α ∈ V.

• otherwise l = c l1 . . . ln, and we may apply the previous lemma to see that a = s(max(a1, . . . , ak)).
By induction hypothesis ai ; ∞ for 1 ≤ i ≤ k, from which we can conclude.

Then notice that (|l|)θ is indeed defined, as Ic is defined for every c ∈ C, and all function
symbols of l are in C, as Γ ⊢min l : T . Finally we prove the (slightly) stronger lemma: if Γ ⊢min

l : T1 → . . .→ Tn → Ba, and all constructors in l are fully applied, then

(|a|)θ̂ = rk
|~T |→B

(|l|)θ

by induction on the structure of l.

• l = x: The lemma follows from the definition of θ̂. Indeed, if Γ ⊢min x : Ba, then a = α for some
variable α, which does not appear in Γ other than in the type annotation for x. The definition
of θ̂(α) is then exactly

rkB θ(x)

• l = c l1 . . . ln: In this case if the recursive indexes are i1, . . . , ik, then by lemma 103, we have

a = s(max(a1, . . . , ak))

With Γ ⊢min li j
: ~T j → Ba j . By the induction hypothesis,

(|ai|)θ̂ = rk
|~T j |→B

(|li j
|)

But on the other hand by definition of (| |)θ and lemma 98

rkB(|c l1 . . . ln|)θ = max(oi1 , . . . , oik ) + 1

with oi = rk
|~Ti |→B

(|li j
|), and so

rkB((|l|)θ) = max(oi1 , . . . , oik ) + 1 = max((|ai1 |)θ̂, . . . , (|aik |)θ̂) + 1 = (|a|)θ̂

which is the desired result.

�

We continue to build a correspondence between the semantic world and the labels on sizes.
We show that size-valuations are compatible with subtyping.

Lemma 105 Suppose θ is a Γ-size-valuation, and Γ′ is such that dom(Γ) = dom(Γ′), and for each
x in that domain, Γ(x) ≤ Γ′(x). Then θ is a Γ′-size-valuation.

Proof. Note first that for any types T,U, if T ≤ U then |T | = |U |. We proceed by induction
on the size of Γ. The empty case is trivial.

Suppose Γ = ∆, x : U and Γ′ = ∆′, x : T with U ≤ T .
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By the induction hypothesis θ is a size valuation for ∆′. Suppose T = V1 → . . .Vn → Ba and
U = W1 → . . .Wn → Bb. We have |Vi| = |Wi| for 1 ≤ i ≤ n, therefore

rk
|~V |→B

θ(x) = rk
| ~W |→B

θ(x)

then by hypothesis we have
rk
|~V |→B

θ(x) ≤ (|b|)θ̂

and by lemma 101
(|b|)θ̂ ≤ (|a|)θ̂

�

We want to build I f for defined f i.e. f ∈ D. To do this we proceed by well-founded induction
on the rank of the recursive arguments of the functions, using the decrease criterion. This is
somewhat reminiscent of proofs of strong normalization realizability function spaces, namely
Altenkirch’s Λ-sets [Alt94]. In this case, the semantics are built using the well-foundedness
argument, which are themselves used to give the semantics required to apply the labelling
argument, and do not directly lead to a proof of strong normalization.

We will mutually recursively define I f and show validity with respect to the size annotations,
using a relative correctness lemma which allows us to separately treat function symbols and
general terms, as we have done for realizability (with lemma 93).

Definition 106 We say that I f is valid if each f ∈ Σ is in [[τ f ]] and it verifies the following
property: if τ′

f
= T1 → . . .→ Tn → Ba f , then given Γ = x1 : T1, . . . , xn : Tn and θ a Γ-size-valuation,

then
rkB(| f x1 . . . xn|)θ ≤ (|a f |)θ̂

Lemma 107 (Correctness of the size-annotations)
Suppose that I f is valid. Then for every context Γ and term t such that Γ ⊢size t : Ba and every

Γ-size-valuation θ
rkB(|t|)θ ≤ (|a|)θ̂

Proof. We proceed by induction on the typing derivation, and prove that if Γ ⊢size t : T1 →

. . .→ Tn → Ba, then if Γ′ = Γ, x1 : T1, . . . , xn : Tn with xi fresh in Γ and θ is a Γ′-size-valuation then

rkB(|t x1 . . . xn|)θ ≤ (|a|)θ̂

• case var: If t = x, then we have

(|t x1 . . . xn|)t = θ(x)(θ(x1)) . . . (θ(xn))

By definition of θ̂,
(|a|)θ̂ ≥ rk(θ(x)) = sup

~v

rk(θ(x)(~v))

Which immediately gives
(|a|)θ̂ ≥ rk(θ(x)( ~θ(x)))

• case symb: If t = f , then T = τ fφ for some valuation φ. If τ f = T1 → . . . → Tn → Ba f , then
by validity if I, for all Γ, x1 : T1, . . . , xn : Tn-size-valuation ψ,

rk I f (ψ(x1)) . . . (ψ(xn)) ≤ (|a f |)ψ̂

We proceed by case distinction:
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– f ∈ D: Then a f only depends on a number k of recursive arguments of types Ti = B
αi

i
for

1 ≤ i ≤ k. We can then define the Γ, x1 : T1, . . . , xn : Tn-valuation ψ as follows: ψ sends xi to
θ(xi) and ψ̂ sends αi to (|φ(α)|)θ̂ for 1 ≤ i ≤ k and is equal to θ̂ on other variables. It is easy to
check that this is indeed a size-valuation for that context and that:

(|a fφ|)θ̂ = (|a f |)ψ̂

from which
rkB (| f x1 . . . xn|)θ ≤ (|a fφ|)θ̂

– f ∈ C\D. In the same way, ac only depends on a number k of inductive arguments of type
~Ti → B

αi

i
and such that ~Ti does not contain any size annotation different from∞. We proceed

as above to build ψ and ψ̂ which verify:

(|acφ|)θ̂ = (|ac|)ψ̂

• case abs: We have t = λx : |T1|.t
′. By inversion, we have in this case T = T1 → . . . → Tn → Ba

(and n ≥ 1). By induction hypothesis, for every Γ, x : T1, x2 : T2, . . . , xn : Tn-size-valuation ψ,

rkB(|t′ x2 . . . xn|)ψ ≤ (|a|)ψ̂

We need to show that for the Γ, x1 : T1, . . . , xn : Tn valuation θ,

rkB(|(λx : T1.t
′) ~x|)θ = rkB(|t′|)θx

θ(x1)
(θ(x2)) . . . (θ(xn)) ≤ (|a|)θ̂

For this we simply take ψ(y) = θ(y) variables other than x and ψ(x) = θ(x1), and take ψ̂ to be
equal to θ̂. It is easy to verify that this is a size-valuation, and it yields the desired inequality.

• case app: Take t = t1 t2. By induction hypothesis we have for every Γ, x : T, x1 : T1, . . . , xn : Tn-
size-valuation ψ,

rkB(|t1 x x1 . . . xn|)ψ ≤ (|a|)ψ̂

We take ψ equal to θ(xi) for i = 1 . . . n and ψ(x) = (|t2|)θ, and take ψ̂ to be equal to θ̂. We verify
that this is indeed a Γ, x : T, x1 : T1, . . . , xn : Tn-size-valuation, as by induction hypothesis if t2 is
of type U1 → . . .→ Um → Cb then for every v1, . . . vm in [[|U1|]], . . . , [[|Um|]] we have

rkB(|t2|)θ(v1) . . . (vm) ≤ (|b|)θ̂

Then we compute
(|t1 t2|)θ ~(θ(x)) = (|t1|)θ((|t2|)θ) ~(θ(x)) = (|t1|)ψ(ψ(x)) ~(ψ(x))

and by hypothesis
rkB(|t1|)ψ(ψ(x)) ~(ψ(x)) ≤ (|a|)ψ̂

From which we can conclude
rkB(|t1 t2|)θ ~(θ(x)) ≤ (|a|)θ̂

• case sub: We have T ′ ≤ T , with Γ ⊢size t : T ′. We proceed by induction on the derivation of
T ′ ≤ T .

– Atomic case: follows from inductive hypothesis and from correctness of the order on sizes
(lemma 101).
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– Arrow case: follows from lemma 105 and the induction hypothesis.

�

We may now define the interpretation of I f by well-founded induction in the semantics.
Remember that if f is of type T1 → . . . → Tn → B, then > f is a well-founded order on [[T1]] ×

. . . × [[Tk]], with k the number of recursive arguments of f , that respects the order ≥ of ordinals.

Lemma 108 Suppose that ~a > f
~b. Then for any valuation µ,

(|~a|)µ > f (|~b|)µ

Proof. By lemma 101, (| |)µ preserves >. We get the result directly from definition of > f

(definition 37).

The interpretation I f of the defined function f is defined in the following manner: given
values v1, . . . , vk, with k the number of recursive arguments of f , we examine all possible rules
f ~l � r ∈ R, and all possible valuations θ such that (|~l|)θ = ~v. We can show that by orthogonality,
at most rule and valuation may possibly exist, and in that case we define I f (v1) . . . (vk) = (|r|)θ.

Definition 109 (Value matching)
Let ~l be a tuple of constructor terms and ~v ∈ [[~T ]] for some types T1 . . . Tn.
We define the set of value matches Val~l(~v) to be

Val~l(~v) ≔ {θ | ∀i (|li|)θ = vi}

If f : B1 → . . .→ Bk → T f where the Bi are the recursive arguments of f and v1 ∈ [[B1]], . . . , vn ∈

[[Bk]], we define the set of value matches for f to be

Val f (~v) =
⋃

ρ= f~l→r∈R

{ρ} × Val~l(~v)

Orthogonality of R is going to guarantee that Val f (~v) has at most one inhabitant.

Lemma 110 Let f ∈ D of type B1 → . . .→ Bk → T f and v1 ∈ [[B1]], . . . , vk ∈ [[Bk]]. Then Val f (~v)

contains at most one element.

Proof. Suppose by contradiction that there is ~l,~l′ with rules ρ = f~l � r, ρ′ = f~l′ � r′ ∈ R

and θ, θ′ such that for each i

vi = (|li|)θ = (|l′i |)θ′

We show that there is some overlap between ρ and ρ′. We proceed by induction on k, and
therefore suppose that there is a substitution σ such that l1σ = l′

1
σ, . . . , l jσ = l′

j
σ for j < k and

show that we can extend σ such that l j+1σ = l′
j+1
σ. By induction on l j+1:

• l j+1 = x by orthogonality, x < dom(σ) and we can extend σ to be equal to l′
j+1

on x and the
identity on variables of l′

j+1
which gives

l j+1σ = l′j+1σ

• l j+1 = c m1 . . .mp. Then by induction on l′
j+1

:
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– l′
j+1
= x a variable. We may conclude as above.

– l′
j+1
= d m′

1
. . .m′q. We have

(|c m1 . . .mp|)θ = (|d m′1 . . .m
′
q|)θ′

by orthogonality again, no rules with head c or d may apply, and so we have

(|c m1 . . .mp|)θ = (c, (|m1|)θ, . . . , (|mp|)θ

and
(|c m′1 . . .m

′
q|)θ′ = (c, (|m′1|)θ′ , . . . , (|m

′
q|)θ′

which gives c = d, p = q and by induction mi and m′
i
are unifyable, which by linearity gives

l j+1 and l′
j+1

unifyable.

�

Definition 111 (Interpretation of defined functions)
We define I by well-founded induction on >D.
Let f ∈ D with k recursive arguments, and suppose that Ig is defined for every g <D f . Let

v1 . . . vn be elements of [[T1]], . . . , [[Tn]]. We define I f (v1) . . . (vn) by induction on (rk v1, . . . , rk vk)

ordered by the well-founded order > f : we therefore suppose that Ig(v′
1
) . . . (v′

k
) is defined for any

g ≃D f and (~v) > f (~v′). We distinguish two cases:

• f ∈ D\C:

– There is a rule ρ = f ~l � r and a valuation such that (ρ, θ) ∈ Val f (~v). Then we define

I f (v1) . . . (vn) = (|r|)θ(vk+1) . . . (vn)

– The set Val f (~v) is empty. In that case we set

I f (v1) . . . (vn) = ⋄

• d ∈ D ∩ C

– There is a rule ρ = d ~l � r and a valuation such that (ρ, θ) ∈ Vald(~v). Then we define

Id(v1) . . . (vn) = (|r|)θ(vk+1) . . . (vn)

as above.

– If Vald(~v) is empty then we set

Id(v1) . . . (vn) = (d, v1, . . . , vn)

We need to show that (|r|)θ is well defined by induction on the derivation Γ ⊢size r : T : The
only interesting case is

• symb: In this case we have r = g t1 . . . tk as by hypothesis, every function symbol is fully
applied to its inductive arguments. Then either g <D f and Ig is already defined or g ≃D f .

Now by hypothesis there exists ∆ such that ∆ ⊢min f~l : T f , and an extension ∆′ of ∆ such that
∆
′ ⊢size g~t : Tg and furthermore:
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– ∆ ⊢min li : B
ai

i

– ∆′ ⊢size ti : B
bi

i

– ~a > f
~b

Now by lemma 102 θ may be equipped with a ∆-minimal-size-valuation structure, and by
lemma 104, for every 1 ≤ i ≤ n, rkBi

(|li|)θ = (|ai|)θ̂. Now we need to show that for any θ′ a
|∆′|-valuation, that extends θ

(rk(|l1|)θ, . . . , rk(|lk|)θ) > f (rk(|t1|)θ′ , . . . , rk(|tk|)θ′)

To show this we define the following ∆′-size-valuation θ′: θ̂′ is equal to θ̂ on its domain,
and sends all other size-variables in ∆′ to Ω. It is routine to check that this is indeed a
∆
′-size-valuation.

Now notice that by lemma 107

(|ti|)θ′ ≤ (|bi|)θ̂′

and we may conclude

rk(|~l|)θ = (|~a|)θ̂ > f (|~b|)θ̂′ ≥ rk(|~t|)θ′

using lemma 108 and the fact that > f respects ≥ (definition 37).

�

We first show that this interpretation is valid:

Property 112 (Validity of the interpretation)

The interpretation I f is valid.

Proof. We treat both cases

• c ∈ C\D. Suppose τ′c = T1 → . . .→ Tn → Bac , and let ∆ = x1 : T1, . . . , xn : Tn and let θ be a ∆-size-
valuation. Let i1, . . . , ik be the inductive arguments of c. We have Ti j

= U1 → . . .→ Um → Bαi

with rk(θ(xi j
)) ≤ θ̂(αi) which gives

rk (c, θ(x1), . . . , θ(xn)) = max(rk θ(xi1), . . . , rk θ(xik )) + 1 ≤ (|ac|)θ̂

• Otherwise, let f ∈ D. We proceed by induction on >D. Let τ
′
f
= T1 → . . .→ Tn → Ba f , and set

∆ = x1 : T1, . . . , xn : Tn. Take a ∆-size-valuation θ, and set θ(x1) = v1, . . . , θ(xn) = vn. We proceed
by induction on (rk v1, . . . , rk vk) ordered by > f , as in the definition of I f .

Now we have

(| f x1 . . . xn|)θ = I f (v1) . . . (vn)

and we examine both possible cases:

– Val f (~v) is empty. Then either f ∈ D\C and then I f (~v) = ⋄, in which case rk I f (~v) = 0 and we
are done, or f ∈ D ∩ C and we may proceed as above.
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– Otherwise a rule ρ = f ~l → r and a valuation θ′ such that (|~l|)θ′ = ~v, we have a size-context
∆
′ and a substitution φ such that ∆′ ⊢min f ~l : τ′

f
φ. Now by lemma 102 we may extend θ′

into a ∆′-minimal-size-valuation. The induction hypothesis and the correctness of the size
annotations (lemma 107) then gives us

I f (~v) = (|r|)θ′ ≤ (|a fφ|)θ̂′

Now for each recursive arguments T1 = B
α1

1
, . . . ,Tk = B

αk

k
, and we have by definition of

minimal typing
Γ ⊢min li : Bφ(αi)

and by definition of a minimal-size-valuation

φ(αi)θ̂′ = rk vi ≤ θ̂(αi)

This gives us
(|a f |)θ̂′◦φ ≤ (|a f |)θ̂

By monotony of all operations in A, and so finally

rk I f (~v) ≤ (|a f |)θ̂

�

Next, we need to show that a symbol realizes its interpretation.

Lemma 113 Suppose that f ~l � r is a rule in R and that for some li = l that there is a valuation
θ and a term t such that

t T (|l|)θ

Then there is a substitution σ such that t �
∗ lσ and

σ 
Γ
θ

Proof. By induction on the structure of l:

• l = x, then we take σ(x) = t and we are done.

• l = c m1 . . .mp. In this case, by orthogonality of R, c ~m is in normal form and we have

(|l|)θ = (c, (|m1|)θ, . . . , (|mp|)θ)

and so t �
∗ c t1 . . . tp such that

ti Ti
(|mi|)θ

And by induction hypothesis, there exists σ1, . . . , σn such that

ti �
∗ miσi

and σi Γ θ on its domain. By linearity of l we can take σ to be the disjoint sum of the σi,
and it is easy to verify that it satisfies the necessary properties.

�
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Property 114 For every function symbol f ∈ Σ of type τ f

f τ f
I f

Proof. We proceed as above, by induction on >D. If τ f = T1 → . . . → Tk → T f let v1 ∈

[[T1]], . . . , vk ∈ [[Tk]] where k is the number of recursive arguments of f , and t1 T1
v1, . . . , tk Tk

vk.
We only treat the case Val f (v1, . . . , vk) , ∅. In that case we proceed by well-founded induction

on (rk v1, . . . , rk vn) ordered by > f . There is a rule ρ = f ~l � r ∈ R, a context Γ that types that
rule and a valuation θ ∈ [[Γ]] such that

(|~l|)θ = ~v

We have by lemma 113, that there exists some σ such that ~t = ~lσ, and σ 
Γ
θ. Then relative

correctness (lemma 93) and the inductive hypothesis give

f t1 . . . tk � rσ T f
(|r|)θ

from which we conclude

f  I f

�

Finally we may conclude that our interpretation is correct:

Corollary 115 For each f ∈ Σ, f ∈ [[τ f ]].

We can then prove the non-relative version of correctness:

Property 116 (Correctness of the realizability semantics)
Suppose that ∆ ⊢ θ : Γ, Γ ⊢ t : T and that θ is a valuation into [[Γ]], and σ is a substitution

that verifies dom(θ) = dom(σ) = dom(Γ) and σ(x)  θ(x) for each x in that domain. Then

tσ  (|t|)θ

Proof. This is a consequence of the lemma 114 and relative correctness of the realizability
(lemma 93).

�

We have almost all we need to build our realizability model, except for the crucial fact that
the interpretation is stable by reduction on terms.

Lemma 117 (Substitution lemma) Given two terms t and u, such that Γ ⊢size u : U and
Γ, x : U ⊢size t : T . If furthermore θ is a Γ-valuation, then

(|t{x 7→ u}|)θ = (|t|)θx
(|u|)θ

Proof. simple induction on the structure of t.
�

Property 118 (Compatibility of the interpretation with reduction)
The interpretation is compatible with reduction, that is if Γ ⊢size t : T is a derivation and

t �R∪β t′, then for every θ ∈ [[Γ]] a valuation,

(|t|)θ = (|t′|)θ
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Proof. We proceed by induction on the position at which rewriting occurs:

• The rewrite step occurs at the root. Then we proceed by case

– t = (λx.u)v and t′ = u{x 7→ v}. Then application of the substitution lemma gives

(|(λx.u)v|)θ = (|u|)θx
(|v|)θ
= (|u{x 7→ v}|)θ

– t = f ~t with ~t = ~lσ for some rule f ~l � r ∈ R and some substitution σ. Then by definition of
I f , and the substitution lemma

I f ((|t1|)θ) . . . ((|tk|)θ) = I f ((|l1|)θ◦σ) . . . ((|lk|)θ◦σ) = (|r|)θ◦σ = (|rσ|)θ

• t u � t′ u with t � t′ then we have by induction

(|t u|)θ = (|t|)θ((|u|)θ) = (|t′|)θ((|u|)θ) = (|t′ u|)θ

• t u � t u′ with u � u′. Same as above.

• λx : T.t � λx : T.t′ with t � t′, then by induction hypothesis

(|λx : T.t|)θ = v 7→ (|t|)θx
v
= v 7→ (|t′|)θx

v
= (|λx : T.t′|)θ

�

4.3 The Realizability Model

We now build a R∪ β-model structure for the realizability interpretation. We have to show first
that it is a V +Σλ-algebra, then that it is a •-monoid, prove compatibility of the two structures,
and finally that the structure respects the rewrite rules. The model is simply a categorical
reformulation of the informal model we have described above, the requirement of being a V +Σl-
algebra is easily fulfilled by our ability to interpret terms, and the •-monoid structure being
satisfied by any structure in which interprets substitution by function application.

Definition 119 (Realizability model)
We define the functor Rea ∈ Pre

G

T
by

ReaT (Γ) = [[T1]] _ . . . _ [[Tn]] _ [[T ]]

if Γ = x1 : T1, . . . , xn : Tn.
In this case we will sometimes write [[Γ]] _ [[T ]]. The order on elements of ReaT (Γ) is the

trivial order: x ≥ y⇔ x = y.
If ι :Γ→ Γ′ we define the renaming morphism Rea(ι) : ReaT (Γ)→ ReaT (Γ′) by taking

Rea(ι)( f )(v1) . . . (vm) = f (vι(1)) . . . (vι(n))

with Γ = x1 : T1, . . . , xn : Tn and Γ′ = y1 : U1, . . . , yn : Um, and noticing that if t  f then

λy1 : U1. . . . .λym : Um.t yι(1) . . . yι(n)  Rea(ι)( f )
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We can often show that a function is realized by simply “mimicking” the function using the
term abstraction. In fact the most elegant, if not the most concise approach to building a Rea

premodel would have been to do things categorically by building a notion of “Cartesian Closed
Model” and then showing that the realizability space is a cartesian closed model. Sadly this
is not the case in general, as we do not have products a priori, though products can exist for
certain choices of base types in B, constructors in C and rules.

Property 120 Rea has the structure of a V + Σλ-algebra.

Proof. We give the four morphisms that suffice to define the evaluation ev:

• varΓ
T

: domT (Γ) → ReaT (Γ). If Γ = x1 : T1, . . . , xn : Tn, then if xi ∈ domT (Γ) (then Ti = T ) we take
varΓ

T
(x) to be equal to the function which takes elements v1 ∈ [[T1]], . . . , vn ∈ [[Tn]] and returns

vi (in other words the i-th projection). The function is realized by the term

λx1 : T1. . . . λxn : Tn.xi

• valΓ
T

: ΣT → ReaT (Γ). Given f ∈ Σ of type τ f , the function valΓτ f
( f ) sends ~v ∈ [[Γ]] to the

(constant) element I f given in definitions 95 and 111, which is in [[τ f ]] by proposition 114.

• absT
U

: ReaU(Γ, x : T ) → ReaT→U(Γ) is defined as the identity! Indeed we have ReaU(Γ, x : T ) =

ReaT→U(Γ). There is nothing more to verify here.

• appU
T

: ReaU→T (Γ) × ReaU(Γ)→ ReaT (Γ). We take the function that takes f and v and returns
the function that takes v1, . . . , vn ∈ [[Γ]] and returns

w = f (v1) . . . (vn)(v(v1) . . . (vn))

If t  f and u  v, then
λx1 : T1. . . . .λxn : Tn.(t ~x)(u ~x)  w

It is easy to verify that these applications are in fact morphisms (stable by renaming with respect
to an arbitrary ι :Γ→ Γ′).

Definition 121 The presheaf Rea is a •-monoid, with the following structural morphisms:

• µ : Rea •Rea→ Rea is defined on a class with representative

( f , v1, . . . , vn) ∈ ReaT (Γ) ×
∏

x∈dom(Γ)

ReaΓ(x)(∆)

as the function that takes w1, . . . ,wm in [[∆]] and returns

z = f (v1(~w)) . . . (vn(~w))

We can check that if t  f and for each i, ui  vi then

λy : U1. . . . λy : Um.t(u1~y) . . . (un~y)  z

Monotony follows easily.

• We take η = var defined earlier.
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We need first to prove that µ is well defined, that is that it is constant on ∼ equivalence classes.
We then need to prove that the monoid laws are satisfied.

Proof. Suppose ι :Γ→ Γ′, and ( f , v1, . . . , vn) ∼ (g,w1, . . . ,wm). By definition of the ∼ relation
we have

• for all i, vi = wι(i)

• for all a1, . . . , am, g(a1, . . . , am) = f (aι(1)) . . . (aι(n)).

From this we deduce

f (v1(~z)) . . . (vn(~z)) = f (wι(1)(~z)) . . . (wι(n)(~z))

and

f (wι(1)(~z)) . . . (wι(n)(~z)) = g(w1(~z)) . . . (wm(~z))

And so µ is stable on equivalence classes.

The monoid laws are straightforward. For instance for the associativity law:

Rea •(Rea •Rea)
(µ•id)◦α

//

id•µ

��

Rea •Rea

µ

��
Rea •Rea

µ
// Rea

It is easy to verify, given contexts Γ,∆ and Θ, a type T , and elements f ∈ ReaT (Γ), ~g ∈ ReaΓ(∆)

and ~x ∈ Rea∆(Θ), that µ( f , µ(g1, ~x), . . . , µ(gn, ~x)) and µ(µ( f , ~g), ~x) are both equal to the function
that takes ~z ∈ [[Θ]] and returns

f (g1(x1(~z)) . . . (xm(~z))) . . . (gn(x1(~z)) . . . (xm(~z)))

�

Lemma 122 The presheaf Rea is a Σλ-monoid, that is the Σλ-monoid structure of Rea and the
•-monoid structure are compatible.

Proof. We need to show that the following diagram commutes:

Σλ(Rea) • Rea
st //

ev•id

��

Σλ(Rea •Rea)
Σl(µ)

// Σl(Rea)

ev

��
Rea •Rea

µ
// Rea

Take two contexts Γ,∆, a type T , an element v ∈ Σλ(Rea)T (∆) and a substitution σ ∈ Rea∆(Γ),
where we set σ(y1) = v1, . . . , σ(ym) = vm if ∆ = y1 : U1, . . . , ym : Um.

We proceed by cases on the structure of v.
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• symb: v = f ∈ Σ. In this case, both sides of the diagram are trivially equal to the function
that sends ~w ∈ [[Γ]] to I f .

• app: v = (a, b) with a ∈ ReaT→U(Γ) and b ∈ ReaT (Γ). On one side we have

µ(ev(a, b), σ) = µ(~x 7→ a(~x)(b(~x)), σ)

which is finally equal to the function which sends ~z ∈ [[Γ]] to

a(v1(~z)) . . . (vm(~z))(b(v1(~z)) . . . (vm(~z)))

On the other hand we have

ev(µ(a, σ), µ(b, σ)) = ev(~z 7→ a(v1(~z)) . . . (vm(~z)),~z 7→ b(v1(~z)) . . . (vm(~z)))

which is equal to the function that sends ~z ∈ [[Γ]] to

a(v1(~z)) . . . (vm(~z))(b(v1(~z)) . . . (vm(~z)))

• abs: trivial, as ev is the identity in this case.

�

Theorem 123 The realizability model is a R ∪ β-model.

Proof. To show this we need to build an interpretation function from Trm to Rea that
respects reduction. For the interpretation function, if Γ = x1 : T1, . . . , xn : Tn we simply take the
function that takes t ∈ TrmT (Γ) and returns

v1 . . . vn 7→ (|t|)θ

where θ sends xi to vi. This function is realized by the term

λx1 : T1. . . . λxn : Tn.t

using property 116. Then we use property 64 to show that it is in fact a model. We need to
show 4 properties:

1. The (| |) function defines a morphism of presheafs: We need to verify that for each type T and
contexts Γ,Γ′, if ι :Γ→ Γ′ is a morphism of contexts, then the following square commutes:

TrmT (Γ)

Trm(ι)

��

(| |)
// ReaT (Γ)

Rea(ι)

��
TrmT (Γ′)

(| |)
// ReaT (Γ′)

Let Γ = x1 : T1, . . . , xn : Tn, Γ ⊢size t : T , v1 ∈ [[T1]], . . . , vn ∈ [[Tn]], and θ be the valuation that
sends xi to vi. We define ι(θ) to be the substitution that sends xi to vι(i). It is then easy to
show that

(| |) ◦ Rea(ι)(t)(v1) . . . (vn) = (|t|)ι(θ)

Then by a simple induction, we may show that

(|ι(t)|)θ = (|t|)ι(θ)
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2. This morphism is the initial morphism from Trm. This again is a straightforward induction.

3. (| |) respects the •-monoid structure. Take a term t ∈ TrmT (Γ) and a substitution σ. Set (|σ|) to
be the valuation that sends x ∈ dom(Γ) to (|σ(x)|). Then the substitution lemma (lemma 117)
expresses exactly

µ((|t|), (|σ|)) = (|µ(t, σ)|)

furthermore it is immediate from the definitions that

(|varTrm(xi)|) = (|xi|) = ~v 7→ vi = varRea(xi)

for each i.

4. Finally we need to show that if l � r is a rewrite rule in R∪ β, then (|l|)θ = (|r|)θ for each θ. But
this is an immediate consequence of the correctness lemma 118.

�

We believe that the realizability model is a candidate for the intuitive reading of the semantics
of size-based termination: in this framework, abstractions are read as meta-theoretical functions,
and application is simply the function application. Care must be taken, using the realizability
framework, to allow inductive types like Brouwer ordinals to have their intended interpretation,
without resorting to very large ordinals. This corresponds to the intuition “every ordinal in
computer science is countable”, which can be seen as an ordinal-theoretic counterpart of the
Church thesis“every function is general recursive”. The size annotations in types then correspond
to a restriction of the behavior of the semantic elements: a term of type Natα → Natα can not
possibly sent an element to a strictly larger one.

In the next chapter we see that this interpretation is sufficient to apply the labelling tech-
nique, using a termination criterion that operates by precedence on terms.
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5

Correctness of the Criterion

In this chapter we show that if a higher-order rewrite system satisfies the size-based termination
criterion of definition 40, then the system labeled with the algebra exposed in chapter 4 is
terminating relatively to the structural rules, and can furthermore be shown to be so with a
simple (and general) criterion.

The criterion simply states that if a (algebraic higher-order) rewrite system matches on
(strictly) positive constructors, that for some well-founded order compatible with the structural
rules, every symbol in the right hand side is strictly smaller than the head symbol in the left hand
side, then the rewrite system is normalizing relatively to the structural rules. The criterion is an
adaptation to the case of relative normalization of the General Schema [JO91], by Jouannaud
and Okada, extended by Blanqui, Jouannaud and Okada [BJO02] and further by Blanqui to
rewriting modulo [Bla03] to allow rewriting relative to equations, that is rules that go in both
directions, an important sub-case of relative normalization. In this framework, recursive calls
are also allowed, if made on structurally smaller terms. These structural calls are not necessary
to prove correction of our size based criterion however, as all the information necessary to show
decrease is contained in the model, which in turn is explicit in the labels we add to the function
symbols. The criterion presented here can be seen as a generalization of the first order precedence
termination criterion. The criterion described in Blanqui [Bla03] can not as such be applied to
our problem, as it is defined for equations and not rewrite rules, and requires equivalence classes
of terms to be finite, which is not our case. However our approach is very similar in spirit.

To apply this criterion to our labeled system, we need to describe a precedence on function
symbols. The natural way to do this, and indeed the motivation for this approach, is to look
at an order on the labels themselves. In the case of terms labelled with the realizability model,
we wish order labels by the pointwise extension of the natural size order, carried to tuples by
the status of the function symbol considered (see definition 37). However this will not suffice to
be able to apply the criterion. We also need this order to be compatible with the application
of structural rules. For this reason we will not simply take the ranks of labels, ordered by the
status > f , but allow a number of instantiations and weakenings to occur beforehand. To show
that this order is still well-founded, we apply a lemma from Doornbos and von Karger that
allows us to prove well-foundedness of an order by showing certain commutation properties.

5.1 The Termination Criterion

Theorem 124 (The precedence criterion for relative termination)

Let Σ = D ∪ C be a signature and τ a type assignment for Σ. Let >B be a well-founded
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preorder on base types, and >prec be a well-founded preorder on elements f ∈ D. Let R be
an arbitrary left algebraic rewrite system and S be an algebraic rewrite system such that for
all rules f~l � r ∈ R ∪ S, f ∈ D. For each f ∈ D we suppose given a natural number n f . We
furthermore suppose that the following conditions are satisfied:

• The constructors are strictly positive.

• All terms in matched position are constructor terms.

• For each rule f l1 . . . ln � r ∈ R, n = n f .

• The system R satisfies the decrease condition: for each rule f l1 . . . ln � r ∈ R, every function
symbol g ∈ D that appears in r verifies

f >prec g

• The preorder >prec is compatible with S: if f t1 . . . tn �
∗
S

u, then u = g u1 . . . um and:

– for every h ∈ Σ:

g >prec h⇒ f >prec h

– for every j, there exists i such that ti �
∗
S

u j, and the type of the i-th argument of f is equal
to the type of the j-th argument of g.

Then for all Γ, t,T :

Γ ⊢ t : T ⇒ t ∈ SNR∪β/S

The compatibility condition is quite restrictive. However it is sufficient in our case, as we
deal with structural rewrite rules that are of the form f � g with f , g ∈ Σ. We write �S∗;Rβ for
�
∗
S
◦ �R∪β. We sometimes write � for �S∗;β and �

∗ for �
∗
S∗;R∪β

.
The proof proceeds in a very similar manner as the proof of theorem 18.

Definition 125 A term is a value if it is of the form

• λx : T.t

• c t1 . . . tm with c ∈ C and m smaller or equal to the arity of c.

• f t1 . . . tk with k < n f

A term is neutral if it is not a value.

A reducibility candidate is a set C ⊂ SNRβ/S that verifies:

• Stability by reduction: if t ∈ C then for every u such that t �S∗;Rβ u, u ∈ C.

• Sheaf condition: if t is a neutral term and for every u such that t �S∗;Rβ u, u ∈ C then t ∈ C.

The proof is a variation on the proof of theorem 18 in the preliminary chapter. The goal is
to interpret each type as a reducibility candidate. We shall need the Knaster-Tarski fixed-point
theorem to be able to assert the existence of certain reducibility candidates.
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Property 126 (Knaster & Tarski [Tar55])

Let L be a complete lattice. If ψ : L→ L is a monotone function, then it has a least fixed-point.

This theorem is folklore, and we will omit the proof.

Proof.

First we define the interpretation of sets as follows. Given two subsets X and Y of SNRβ/S,
we define

X _ Y ≔ {t ∈ SNRβ/S | ∀u ∈ X, t u ∈ Y}

Now we proceed by induction on >B to define IB for each B ∈ B. If E is the set of C ∈ B

such that C ≃B B, then we define FB as a function from P(Trm)E to P(Trm) as:

FB(X) =
{

t ∈ SN | t �
∗ c t1 . . . tn ⇒ τc = T1 → . . . Tn → B ∧ t1 ∈ [[T1]]X . . . tn ∈ [[Tn]]X

}

Where X ∈ P(Trm)E and [[ ]]X is defined by

• [[C]]X = IC if C <B B,

• [[C]]X = X(C) if C ≃B B

• [[C]]X = N the set of all neutral terms otherwise

• [[T → U]]X = [[T ]]X _ [[U]]X.

Then by the Tarski fixed-point theorem (theorem 126) applied to the lattice of subsets of SNRβ/S,
the function F :P(Trm)E → P(Trm)E has a fixed point, which we set to be I .

We show that IB satisfies the girard conditions (definition 21)

• Strong normalization: by definition.

• Stability by reduction: if t is in SNRβ/S then so are all its reducts. Furthermore if t �S∗;Rβ t′

then all the reducts of t′ are in particular reducts of t, which allows us to conclude.

• Sheaf condition. Suppose that t is neutral and every (one step) reduct of t is in IC. It is clear
that t is in SNRβ/S. Suppose t �

∗ c t1 . . . tn. Then by neutrality t , c~t and so t � t′ �∗ c t1 . . . tn
and we may conclude by the hypothesis t′ ∈ IB that the ti are in the appropriate sets.

We must then show that if C1 and C2 are reducibility candidates, then so is C1 _ C2. We
proceed as in the proof of lemma 21.

• SN: by definition.

• Stability by reduction: suppose that t ∈ C1 _ C2. Let t � t′ and u ∈ C1. Then t u � t′ u, and
by the induction hypothesis, t′ u is in C2. As u was taken to be arbitrary, t′ ∈ C1 _ C2.

• Sheaf condition: let t be neutral, and suppose that u ∈ C1. Neutrality of t implies that all
reducts of t u are of the form t′ u or t u′ with t′ a reduct of t and u′ a reduct of u. We may
proceed by well-founded induction on the reducts of u (which is in SNRβ/S) to show that
t u′ ∈ C2, and by hypothesis t′ u ∈ C2. Therefore t u is in C2 by hypothesis, as t u is again
neutral. From this we conclude that t ∈ C1 _ C2.
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We may now finally conclude that

∀T ∈ T , [[T ]] satisfies the Girard conditions

Now suppose Γ ⊢ t : T and θ |= Γ. We have

θ |= t : T

We show this in two steps:

1. first we show that if f ∈ [[τ f ]] for each f occurring in t, then tθ ∈ [[T ]].

2. then we show that each f is indeed in [[τ f ]].

The proof of the first point proceeds by induction on the typing derivation and is identical
to the proof of theorem 18, except for the symb case, which follows by hypothesis.

It remains to show that for every function symbol f ∈ Σ, f ∈ [[τ f ]].
We proceed by cases:

• c ∈ C\D: Easy by definition of [[B]].

• f ∈ D\C. Suppose that τ f = Θ1 → . . . → Tn → B and t1, . . . , tn in [[T1]], . . . , [[Tn]] respectively.
We need to show that t = f t1 . . . tn is in [[B]]. Using the fact that f~t is neutral, we only need to
show that all reducts are in [[B]]. We prove that for all t′ = g u1 . . . um such that f~t �

∗
S

g~u, t′ is
in [[B]]. By the strong normalization condition, ti ∈ SN for each i. We can therefore proceed
by induction on the tuple ( f , t1, . . . , tn) ordered by >prec × �

+

S∗;Rβ
× . . .× �

+

S∗;Rβ
(the product

order of >prec and S∗;Rβ-reduction). There are three possible kinds of reducts t′ for t:

– f t1 . . . t
′
i
. . . tn with ti � t′

i
. We can conclude by induction.

– f~t �
∗
S

g u1 . . . um �S∗;Rβ g u1 . . . u
′
i
. . . um with ui �S∗;Rβ u′

i
. In this case, by the compatibility

hypothesis, there is some j such that t j �
∗
S

ui, and therefore t j �
∗ u′

i
, and we may conclude

again by the induction hypothesis.

– f ~t �
∗
S

g u1 . . . um and there is some rule g l1 . . . lk � r ∈ R with k ≤ m, a substitution θ such
that l1θ = u1, . . . , lkθ = uk, and t′ = rθ uk+1 . . . um. Now we have each ui computable, as ti is
computable for each i, t j �

∗
S

ui for some j and stability by reduction. Now by typeability
hypothesis, we have Γ ⊢ r : T . Let us show that θ |= Γ: we proceed by induction on the
structure of li.

∗ li = x, in this case θ(x) = ui, and we may conclude by computability of ui.

∗ li = c p1 . . . pn, in this case we have ui = c v1 . . . vn, and ui computable implies vk computable,
and we may conclude by induction hypothesis.

It remains to show that rθ is in [[T ]]. For this we proceed by induction on the derivation of
Γ ⊢ r : T . We only need to treat the symb case: in this case, r = hv1 . . . vn, with g >prec h,
and viθ computable. We conclude by the induction on f , as by compatibility f >prec h.

• c ∈ D ∩ C: We first show the following lemma: if c ∈ D ∩ C is of type T1 → . . . → Tn → B,
t1, . . . , tn are such that ti ∈ [[Ti]], and for every u such that c t1 . . . tn �S∗;Rβ u, u ∈ [[B]] then

c t1 . . . tn ∈ [[B]]

To show this we simply need to show
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– c ~t ∈ SNRβ/S. This is straightforward from the hypothesis and [[B]] ⊆ SNRβ/S.

– If c ~t �
∗ d ~u with d a constructor of B of type U1 → . . .→ Um → B, then for each 1 ≤ j ≤ m,

u j ∈ [[U j]]. Suppose c ~t �
∗
S

d ~u. Then by the compatibility hypothesis for each j, there is
some ti such that ti ∈ [[U j]] and ti �

∗
S

u j. By stability by reduction of computable terms,

u j ∈ [[U j]]. Now suppose that c ~t �
+

S∗;Rβ
d ~u. Then by hypothesis d ~u ∈ [[B]] and by definition

u j ∈ [[U j]].

Now to show that c ∈ [[τc]] we may proceed as in the case f ∈ D\C.

�

5.2 Termination of the Labelled System

With this theorem in hand, and given a rewrite system satisfying the termination conditions, we
wish to prove termination of the labeled system as described in theorem 79 using the semantics
described by proposition 120, and then apply the main theorem of semantic labelling (theorem
84) and prove termination of the labelled system. To do this we need to find the appropriate
precedence on function symbols.

Definition 127 Let Σ be a signature and R be a rewrite system that satisfies the criterion
of theorem 41. Consider the labeled system R as defined in definition 78, labeled using the
realizability model of theorem 123. Given a function symbol f ∈ D of type T1 → . . .→ Tk → T f ,
we extend > f to elements of ReaT1

(Γ) × . . . × ReaTk
(Γ) for each Γ by taking

(a1, . . . , ak) > f (b1, . . . , bk)⇔ ∀~x ∈ [[G]], (rkT1
a1(~x), . . . , rkTk

ak(~x)) > f (rkT1
b1(~x), . . . , rkTk

bk(~x))

and we define the order >prec on labels of f by the transitive closure of

>prec=≥inst ◦(≥wk ◦ > f )

The order >Prec on labeled function symbols (in D) is defined by

fl >Prec gl′ ⇔ f >D g ∨ f ≃D g ∧ l >prec l′

The >Prec order is exactly what is needed to apply the termination theorem given above to
our labelled system. We show below that it is compatible (in the sense given in the termination
theorem 124) with the Struct rewrite system, and that it is well-founded.

The strict order on the components of the Rea functor is trivially well-founded, as it is the
strict point-wise order of a function into a well-founded domain. However it is far from trivial
that the >prec order is well-founded also. Indeed, arbitrary weakening of the context may occur
in alternation with the instantiation of certain variables in the context.

To prove well-foundedness of >prec, we shall apply a combinatorial lemma which allows us
to prove well-foundedness of the union of two orders, provided they are well-founded themselves
and satisfy a certain compatibility property. The combinatorial lemma was first stated and
proved by Doornbos and von Karger [DK98].

Lemma 128 (Doornbos & von Karger)
Let >R and >B be well-founded relations on a set E. Then if

>R ◦ >B ⊆ >B ◦(>B ∪ >R)∗ ∪ >R

Then >R ∪ >B is well-founded.
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We will not reproduce the proof here, see [DK98] for a complete demonstration. We can then
show well-foundedness of >prec by a simple combinatorial proof. We prove inclusion properties
of the orders involved, which shall also be useful for the proof of compatibility.

Lemma 129 The following inclusions are verified:

≥wk ◦ >inst ⊆ (>inst ◦ ≥wk)∪ ≥wk (a)

> f ◦ >inst ⊆ >inst ◦ > f (b)

Proof. First let us recall that the orders involved are on f -labels, that is tuples of functions,
where each function is in the same domain. The ≥wk order allows increase of the domain, >inst

allows instantiation of one of the arguments by a function, which may depend on other elements
of the domain.

Inclusion (a): take (a1, . . . , an) ≥wk (b1, . . . , bn) >inst (c1, . . . , cn). There are two possibilities:

• each ai is in [[Γ, x : A,Γ′]]→ [[Ti]], bi in [[Γ, x : A,Γ′,∆]]→ [[Ti]] and ci ∈ [[Γ,Γ′,∆]]→ [[Ti]] with the
following relations, for each ~x ∈ [[Γ]], x ∈ [[A]], ~y ∈ [[Γ′]] and ~z ∈ [[∆]], and some d ∈ [[Γ]]→ [[A]].

ai(~x)(x)(~y) = bi(~x)(x)(~y)(~z)

bi(~x)(d(~x))(~y)(~z) = ci(~x)(~y)(~z)

Then taking a′
i
(~x)(~y) = ai(~x)(d(~x))(~y) we have

(a1, . . . , an) >inst (a′1, . . . , a
′
n) ≥wk (c1, . . . , cn)

• Otherwise ai is in [[Γ]]→ [[Ti]] and bi in [[Γ,∆, y : A,∆′]]→ [[Ti]], ci ∈ [[Γ,∆,∆′]]→ [[Ti]] with

ai(~x) = bi(~x)(~y)(y)(~z)

and

ci(~x)(~y)(~z) = bi(~x)(~y)(d(~x)(~y))(~z)

And so, taking y = d(~x)(~y):

ci(~x)(~y)(~z) = bi(~x)(~y)(d(~x)(~y))(~z) = ai(~x)

and so we directly have

(a1, . . . , an) ≥wk (c1, . . . , cn)

The proof of (b) is simpler:take (a1, . . . , an) > f (b1, . . . , bn) >inst (c1, . . . , cn) with ai, bi functions
in [[Γ, x : A,∆]] → [[Ti]] and ci a function in [[Γ,∆]] → [[Ti]], as well as a function d : [[Γ]] → [[A]]

with

∀i,~z ∈ [[Γ, x : A,∆]], rk(~a)(~z) > f rk(~b)(~z)

and

∀i, ~x ∈ [[Γ]], ~y ∈ [[∆]], ci(~x)(~y) = bi(~x)(d(~x))(~y)
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Then it suffices to take a′
i
defined by a′

i
(~x)(~y) = ai(~x)(d(~x))(~y) and we obtain

(a1, . . . , an) >inst (a′1, . . . , a
′
n) > f (c1, . . . , cn)

. �

This structural lemma will allow us to apply the lemma from Doornbos and Von Karger,
and prove well-foundedness of >prec

1.

Property 130 The order >prec is well-founded.

Proof. First notice that well-foundedness of >R ∪ >B trivially implies that of ≥B ◦ >R. We
therefore apply lemma 128, taking >R to be ≥wk ◦ > and >B to be >inst.

We show the stronger statement

(≥wk ◦ > f )◦ >inst ⊆ (>inst ◦ ≥wk ◦ > f ) ∪ (≥wk ◦ > f )

By inclusion (e) from lemma 129, we have > f ◦ >inst⊆>inst ◦ > f , which gives

≥wk ◦ > f ◦ >inst ⊆ ≥wk ◦ >inst ◦ > f

Then, applying the inclusions (d) and (e) we have

≥wk ◦ > f ◦ >inst ⊆ (>inst ◦ ≥wk ∪ ≥wk)◦ > f

And finally

(>inst ◦ ≥wk ∪ ≥wk)◦ > f ⊆ (>inst ◦ ≥wk ◦ > f ) ∪ (≥wk ◦ > f )

Now we need to check that both >inst and ≥wk ◦ > f are well-founded. In the first case it
is a simple induction on the size of the context. In the second case, for every type T , [[T ]] is
non-empty, so given a sequence of elements l1 ≥wk ◦ > f l2 ≥wk ◦ > f . . ., we can take a tuple ~x and
a sequence of tuples (~yk)k∈N such that if ln(~v) = (an

1
(~v), . . . , an

m(~v)), then rk(l1(~x)) > f rk(l2(~x)(~y0)) > f

rk(l1(~x)(~y0)(~y1)) > f . . . which is a contradiction by well-foundedness of > f . �

And we can finally prove the well-foundedness of the precedence.

Corollary 131 The order >Prec is well-founded.

Proof. It suffices to take the lexicographic combination of >D and >prec, both of which are
well-founded, the first by hypothesis and the second by property 130.

�

To apply theorem 124, we need to show compatibility of the preorder >Prec just described,
and the Struct rewrite system described in chapter 3.

Lemma 132 (Compatibility)

The preorder >Prec is compatible with Struct.

1We thank Frederic Blanqui, Gilles Dowek and Guillaume Burel for technical contributions to the proof of this

lemma.

99



Chapter 5. Correctness of the Criterion

Proof. Remember that by definition Struct = Inst ∪ Wk ∪ Decr. First note that Decr is
trivial, as we are working in a model rather than a premodel. Now if fl t1 . . . tn �

∗
Struct

u, then
as these rules only modify labels of function symbols, we have u = g u1 . . . un with g = fl′ and
ti �

∗
Struct

ui. If in addition g >Prec h, then either h = f ′m with f >D f ′, in which case fl >Prec h or
h = fm with l ≥struct l′ and l′ >prec m. In this case we need to show that l >prec m.

We have ≥struct=≥inst ∪ ≥wk and >prec=≥inst ◦ ≥wk ◦ > f . We therefore need to show that

(≥inst ∪ ≥wk) ◦ (≥inst ◦ ≥wk ◦ > f ) ⊆ ≥inst ◦ ≥wk ◦ > f

This can be shown using the inclusions of lemma 129.
�

The only thing left to show is that the rules do indeed admit decrease with respect to >Prec,
which can be shown by induction on the typing (in the size-type framework) of the rule.

Lemma 133 (Decrease)
The rewrite system R∪Struct admits the decrease condition with respect to the >Prec preorder.

Proof. Consider a rule f~l � r in R typed by a context Γ, and φ ∈ ReaΓ(∆) be some valuation.
Then

f~l
φ

= fm
~
l
φ

with m = ((|Γ ⊢ l1|)φ, . . . , (|Γ ⊢ lk|)φ). Suppose that g t1 . . . tk appears in r. We show that

gn t1
φ′
. . . tk

φ′

appears at the same position in rφ with φ′ the extension of φ to ReaΓ,Θ(∆,Θ) which sends variables
in Θ to themselves and n = ((|Γ,Θ ⊢ t1|)φ′ , . . . , (|Γ,Θ ⊢ tk|)φ′) and that furthermore fm >Prec gn.

We proceed by induction on the derivation of Γ ⊢size r : T in the size framework.

• var: g ~t cannot occur as the subterm of a variable.

• abs: we have r = λx : T.t. By definition

λx : T.t
φ′

= λx : T.t
φ′xx

and we conclude by simple induction hypothesis on t.

• app,symb: We treat two cases: r = t u with t , g t1 . . . ti for some g,~t, i with i ≥ k. In this
case we conclude by simple application of the induction hypothesis. Otherwise r = g t1 . . . ti
with i ≥ k, and g t1 . . . ti is as above.

Now either f >D g and we are finished, or f ≃D g and we proceed as in definition 111. By
the decrease condition we have Γ ⊢size li : B

ai

i
for some base type Bi. Take arbitrary ~v in [[∆]].

Define φ(~v) to be the valuation that sends every x in Γ to φ(x)(~v). By lemma 102 φ(~v) is a
Γ-minimal size-valuation, and by lemma 104, for each i

rk (|li|)φ(~v) = (|ai|)φ̂(~v)

Furthermore, take any ~w in [[Θ]]. By the definition of the rule for abstraction (figure 1.1)
we have for every x ∈ dom(Θ), Θ(x) = T∞ for some T , from which we have that φ′(~v, ~w) is a
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5.2. Termination of the Labelled System

Γ,Θ-size-valuation, by taking φ̂′(~v, ~w) the valuation that sends variables α in Γ to φ̂(~v)(α) and
all other variables to Ω. Then applying lemma 107 gives

rk (|ti|)φ′(~v,~w) ≤ (|bi|)φ̂′(~v,~w)

Where Γ,Θ ⊢size ti : B
bi

i
. By the decrease condition and the fact that > f respects ≥, we therefore

may conclude

rk (|~l|)φ(~v) > f rk (|~t|)φ′(~v,~w)

which gives

(|Γ ⊢ ~l|)φ >prec (|Γ,Θ ⊢ ~t|)φ′

By definition of the >prec order. This finally gives

fm >Prec gn

�

Notice in fact that we only have used ≥wk ◦ > f instead of the full >prec order. However
we can not weaken our definition, as taking >prec=≥wk ◦ > f would not allow us to prove the
compatibility with Struct (lemma 132).

Theorem 134 Suppose that the conditions of theorem 41 are satisfied. The system R ∪ β is
terminating on well-typed terms.

Proof. The proof applies the fundamental theorem of semantic labelling 84 using the Rea

algebra. We prove relative normalization of R ∪ β with respect to Struct, by applying the prece-
dence termination theorem 124 with >Prec as the precedence. Compatibility is assured by lemma
132, and by the previous lemma the decrease condition is verified. The other conditions of the
termination theorem trivially follow from the conditions of theorem 41.

�

We have given a two-tier proof of correctness of the size-type criterion for termination, by first
giving a sufficient condition in terms of termination of the labelled system, and then applying
a generic termination lemma based on computability predicates. This is a way of separating
concerns: the “user” of the termination theorem does not need to worry about computability
or the Girard conditions when building the realizability semantics of chapter 4, as this is all
handled in the proof of theorem 124. We only need to find an appropriate precedence, and prove
compatibility with the structural rules.

While powerful, this approach is not complete: The system described in example 9 can not
be shown to be terminating with the “labelling + precedence” termination approach. Indeed
all information on the semantics of the argument of f in the recursive call is hidden by the
abstraction. This is a common difficulty in higher-order rewriting. The next part describes a
criterion that may deal with this kind of “non local” decrease information. Let us note that
the size-type systems described, for example, by Barthe et al and Abel can easily handle these
kinds of systems, though of course they are not complete either, as they are decidable criteria.
The presentation of semantic labelling by Hamana [Ham07] is complete for left-algebraic rewrit-
ing, but at the cost of having to label abstraction and application with the semantics of their
arguments, and as previously noted, the labelling of β-reduction is not β-reduction.
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5.3 Further applications

Let us give another application of this approach. We will use the fundamental theorem of se-
mantic labelling (theorem 84), coupled with the relative normalization theorem (theorem 124) to
prove a well-known theorem: the termination of a first-order rewrite system implies termination
of the currified system with β-reductions. This was proven independently by Okada [Oka89]
and Breazu-Tannen and Gallier [GBT89] for the simply typed λ-calculus and system F, respec-
tively. We present a novel proof for the case of the monomorphic λ-calculus. The idea is to label
(higher-order) terms with a syntactic model of the first-order terms, ordered by the first order
rewrite system.

Definition 135 Given a signature Σ, a first-order arity ar is a function ar :Σ→ N. Given such
an arity, the set of first-order terms is defined by

t1, . . . , tn ∈ TrmΣf o ≔ y | f (t1, . . . , tn)

where f ∈ Σ and ar( f ) = n, and y ∈ Y a set of first order variables. A rewrite rule on first-order
terms is a pair l � r of terms with the free variables of r contained in those of l. We define
reduction as for higher-order terms: given a set R of rewrite rules t head reduces to u under R if
there is a rule l � r ∈ R and a substitution θ such that lθ = t and u = rθ. We define reduction
�R by context closure and �

+

R
and �

∗
R
as the transitive and symmetric transitive closure like in

definition 12.

Now fix a signature Σ an arity ar, and a first-order rewrite system R on TrmΣf o. We wish to
define the currified version of R. We take an injective correspondence i :Y → X between first-
order variables and higher-order ones. Given a term t ∈ Trm f o we define curry(t) by induction
on the structure:

• curry(y) = i(y)

• curry( f (t1, . . . , tn)) = f curry(t1) . . . curry(tn)

And we define the curryfied rewrite system by

curry(R) = {curry(l) � curry(r) | l � r ∈ R}

Take D as single base type, that is B = {D}. Define the type assignment τ that sends f to
D → . . . → D → D with n + 1 occurrences of D if ar( f ) = n. We can prove by induction the
following fact:

Lemma 136 If t is a first-order term, and Γ is the context that sends i(y) to D if y is a variable
of t, then

Γ ⊢ curry(t) : D

Proof. Simple induction on t. �

We can now build the syntactic model : the base type D is interpreted as the set of first-
order terms, ordered by the rewrite relation. Then arrows are interpreted by the full space of
functions, as there are no cardinality restrictions when dealing with first-order rewrite systems.
The definition is quite similar to that of the Rea premodel, but quite simpler as there is no need
to work in the realizability space, and the syntactic nature of the model makes certain properties
hold trivially.
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Theorem 137 We can build the following curry(R)-premodel Fo:

• We map each type T to a set [[T ]] as follows:

– [[D]] = Trm f o, ordered by the relation ≥R defined by

t >R u⇔ t �
∗
R u

– [[T1 → T2]] = [[T2]][[T1]] the full set of monotonous functions from [[T1]] to [[T2]], ordered by
the pointwise order.

• We define Fo as the presheaf

FoT (Γ) ≔ [[Γ]]→ [[T ]]

With [[Γ]] → [[T ]] defined as [[T1]] → . . . → [[Tn]] → [[T ]] if Γ = x1 : T1, . . . , xn : Tn. We take as
action under renaming with respect to a morphism ι :Γ→ Γ′:

Fo(ι)( f ) = ~v ∈ [[Γ′]] 7→ f (vι(1)) . . . (vι(n))

as in the definition of Rea 119.

• The morphism var : dom→ Fo is defined as for the Rea algebra, that is if Γ = x1 : T1, . . . , xn : Tn

then var(xi) is the i-th projection.

• For application and abstraction we take the pointwise application and the identity, as in the
definition of the Rea Σλ-algebra structure (definition 120). More precisely

appFo(t, u)(x1) . . . (xn) = t(x1) . . . (xn) (u(x1) . . . (xn))

and

absFo(t) = t

• For the interpretation val of function symbols f ∈ Σ, if f us of arity n, then we define val( f )

to be the function that takes t1 ∈ Trm f o . . . tn ∈ Trm f o and returns the term f (t1, . . . , tn). By
abuse, we will write f for this function.

• We give a structure of •-monoid to Fo exactly in the same manner as for Rea in definition
121.

Proof. We need to verify that Fo is indeed a Σl-algebra, that the morphisms are stable by
renaming, and that the algebra structure is compatible with the monoid structure. However the
structure of this proof is exactly analogous of the proof for the Rea presheaf, with the (significant)
simplification that we are working in the full function spaces, and therefore do not need to worry
about functions being realized. We will therefore omit this tedious proof.

The only notable difference is the definition of the interpretation of functions, and therefore
we need to verify that the interpretation of f is indeed in the interpretation of its type, which
simply reduces to verifying that f is indeed monotonous. This can in turn be expressed as:

∀t1, . . . , tn, u1, . . . , un ∈ Trm f o t1 �
∗
R u1, . . . tn �

∗
R un ⇒ f (t1, . . . , tn) �

∗
R f (u1, . . . , un)

but this is true by definition of first-order reduction.
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Chapter 5. Correctness of the Criterion

However we still need to verify that this interpretation gives rise to a premodel for curry(R).
To do this we apply lemma 64, which shows that it suffices to prove for each rule curry(l) �

curry(r) ∈ curry(R), typed by context Γ that

(|Γ ⊢ curry(l) : D|) ≥ (|Γ ⊢ curry(r) : D|)

and that
(|Γ ⊢ (λx : T.t) u|) = (|Γ ⊢ t{x 7→ u}|)

This second equality can be shown in the same manner as for the Rea algebra (lemma 123).

To show the first inequality, consider such a rule, and the context Γ that sends every variable
in curry(l) (and curry(r)) to the type D. It is clear that this is the most general possible context.
If Γ = x1 : D, ldots, xn : D then we take elements t1, . . . , tn of Trm f o and variables y1, . . . , yn ∈ Y in l

that verify i(yi) = xi. Let σ be the substitution that sends yi to ti. We assert:

(|Γ ⊢ curry(l)|)(t1, . . . , tn) = lσ

and
(|Γ ⊢ curry(r)|)(t1, . . . , tn) = rσ

We show this by induction on the structure of l:

• Variable case: l = yi, curry(l) = xi and (|Γ ⊢ l|)(t1, . . . , tn) = var(xi)(t1, . . . , tn) = ti.

• Function case: l = f (u1, . . . , un) which gives

(|Γ ⊢ f curry(u1) . . . curry(un)|)(t1, . . . , tn) = f ((|Γ ⊢ curry(u1)|)(~t), . . . , (|Γ ⊢ curry(un)|)(~t))

which by induction hypothesis gives

f (u1σ, . . . , unσ) = f (u1, . . . , un)σ

Then we can conclude, as lσ ≥R rσ.
We can now prove our main theorem, which states that termination of the first-order rewrite

system R implies that of curry(R) ∪ β over well-typed terms. It is of interest to note that first-
order semantic labelling has been used to prove termination of curry(R) without β-reductions (or
λ-abstractions) under the condition that R is terminating. This was shown using almost exactly
the same labelling as here, in Zantema [Zan95].

Theorem 138 (Breazu-Tannen, Gallier & Okada)
If R is strongly normalizing over terms in TrmΣf o, then so is curry(R) ∪ β over TrmΣ

Proof. We use the main theorem of semantic labelling (theorem 84) applied to the Fo

premodel described above, taking ar( f ) as the number of recursive arguments for f . We then
need to prove termination of curry(R)∪β relative to Struct. The positivity conditions are trivially
satisfied, and all rules match on constructor terms. We take n f = ar( f ).

We define the following precedence on labelled function symbols: Let � be the order on
Trm f o defined by reflexive transitive closure of

∀i, f (t1, . . . , tn) � ti
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5.3. Further applications

If fl is a labelled function symbol, with l = ((|Γ ⊢ t1|), . . . , (|Γ ⊢ tn|)), and gm is a labelled function
symbol with m = ((|Γ′ ⊢ u1|), . . . , (|Γ

′ ⊢ um|)), then fl >call gm if Γ = Γ′ and for all ~v ∈ [[Γ]]

f ((|Γ ⊢ ~t|)(~v)) �
+

R ◦� g((|Γ ⊢ ~u|)(~v))

We then define the >prec order on labeled function symbols by

>prec=≥inst ◦ ≥wk ◦ >call

Notice that if R is strongly normalizing on first-order terms, then >call is well-founded.
Well-foundedness of >prec can then be shown in the same way as the corresponding lemmas

for a system labelled with the realizability semantics (lemmas 130 and ), using the fact that >call

respects ≥R.
As we are working with a premodel that is not a model, compatibility of >prec with ≥Struct is

a bit trickier: in addition to the inclusions of lemma 129, we need to show the inclusions:

≥decr ◦ >call ⊆ >call (c)

≥decr ◦ ≥wk ⊆ ≥wk ◦ ≥decr (d)

≥decr ◦ >inst ⊆ >inst ◦ ≥decr (e)

Which allow us to show the inclusion:

(≥decr ∪ ≥inst ∪ ≥wk) ◦ (≥inst ◦ ≥wk ◦ >call) ⊆ ≥inst ◦ ≥wk ◦ >call

The decrease condition is then rather straightforward to check: if curry(l) � curry(r) is in
curry(R) and typeable in the context Γ, then let φ be a FoΓ(∆) valuation. Set l = f (l1, . . . , ln).

We have curry(l)
φ
= facurry(~l) with a = ((|Γ ⊢ curry(l1)|)φ, . . . , (|Γ ⊢ curry(ln)|)φ). We proceed by

induction on the structure of r:

• x a variable. There is nothing to show here.

• g(u1, . . . , um) We have curry(g(u1, . . . , um)) = gb curry(~u) with

b = ((|Γ ⊢ curry(u1)|)φ, . . . , (|Γ ⊢ curry(um)|)φ)

For any occurrence of a function symbol in ui, we may conclude by the induction hypothesis.
If ~v ∈ [[∆]], then we define σ as the substitution that takes y such that i(y) = x ∈ dom(Γ) and
sends it to φ(x)(~v), and we have for each i, j:

(|Γ ⊢ curry(li)|)φ(~v) = liσ (|Γ ⊢ curry(u j)|)φ(~v) = u jσ

Considering the rule f (l1, . . . , ln) � r we have f (~lσ) �R ◦ � g(~uσ) for any σ, from which we
conclude

fa >call fb

We may therefore apply theorem 124 and conclude that the labelled system is normalizing
relative to S truct.

�
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6

Related work

There has been much work on termination of higher-order rewriting. A first remark is that there
is not one but many different descriptions of higher-order rewrite systems. Let us simply mention
higher-order rewriting systems by Nipkow [Nip91], and combinatory reduction systems from Klop
(see e.g. [KvOvR93]). See Terese [BKdV03] or van Raamsdonk [vR96] for an overview.

We mostly confine ourselves here to rewriting which involves bound variables. We do not
attempt to give a comprehensive history of the field here, but simply try to give a description
of the work closest to our results.

Jouannaud and Okada [JO91], describe a combination of left-algebraic rewriting and β-
reduction, and give a termination criterion for such a combination, the General Schema. Drawing
on work by Coquand [Coq92], this criterion was extended to an extension of the Calculus of
Constructions with rewriting by Fernàndez [Fer93] and further by Blanqui et al [BJO97, BJO02,
Bla01, Bla03] in a system called the Calculus of Algebraic Constructions. These criteria are
syntactic in nature, they capture structural decrease in recursive calls, and extended to allow
instantiation of higher-order variables when destructing a constructor of a higher-order data
type.

The approach by rewriting is contrasted to the approach by eliminators which are a restricted
set of function definitions which allow definition of recursive functions simply by their clever use.
This simplifies termination considerations, as it is only necessary to consider the restricted set of
rules. Mendler [Men87, Men91], followed by Mattes [Mat98], describes such eliminators and gives
conditions under which well-typed terms in a polymorphic type system may normalize under
the combination of β-reduction and the rules for these eliminators. The Calculus of Inductive
Constructions, for instance, is an extension of the Calculus of Constructions with eliminators,
and its correctness was shown by Paulin and Werner [PM96, Wer94]. Using eliminators to define
functions can be unwieldly however, and Giménez [Gim95] describes a translation from recursive
definitions satisfying a certain guardedness condition [Gim98] to the system with eliminators. In
practice it is a variant the guardedness condition that is implemented in type systems such as
the Coq interactive theorem prover [Coq08], Agda [Nor09] and Epigram [McB04] (see Amadio
et al [ACG98] and Abel [Abe99]). The version of the CIC with fixpoint recursion under the
guardedness condition system is quite close to the CAC in its description and expressivity.

The drawbacks of the syntactic approach led to the development of type based termination,
introduced independently by Gimenez [Gim98] and Hughes, Pareto & Sabry [HPS96] for simple
types and extended to polymorphism by Frade [Fra03] and to higher kinded polymorphism and
more flexible inductive types by Abel [Abe06]. The present thesis attempts to give a semantic
account of this technique. The type-based termination criterion given in chapter 1 is taken from
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Blanqui & Roux [BR09], and is a simply-typed account of the version given by Blanqui [Bla04]
for the CAC.

Van de Pol shows [vdP96, vdP93, vdPS95] that it is possible to define certain interpretations
of the simply typed λ-calculus with rewrite rules into well-founded domains. These interpreta-
tions verify the following remarkable property: every rewrite step, including β-reduction, induces
a strict decrease in the interpretation. Obviously this allows one to prove strong normalization.
We conjecture that these interpretations are premodels in the sense of definition 58, but no
labelling is required to show normalization of the rewrite system. However in practice it is
quite difficult to build interpretations that verify van de Pol’s conditions, it is much easier to
build premodels that satisfy β-reduction: for all terms t, u the interpretation of λx.t u is equal
to that of t{x 7→ u}. The labelling approach allows separation of concerns: we build a premodel
in which β-reduction is satisfied, and (relative) termination is given (on the labelled system) by
our criterion (theorem 124)

If we do not restrict ourselves to left-algebraic rewriting then it can be shown that such
termination models are not complete: there exist terminating rewrite systems which do not
admit such a model, as shown by Kahrs [Kah95, vdP96] (see also Terese [BKdV03]). Hamana
however shows [Ham07] that given a certain restriction on meta-terms appearing in the rules,
which he calls solid meta-terms, the criterion becomes complete. Van Oostrom et al [AvOS10]
note that many modularity results generalized from first-order rewriting become false in the
higher-order case.

Our work is evidently closely related to the work of Hamana [Ham07] which builds on previous
work [Ham03, Ham05] on algebraic semantics of higher-order rewriting, in which he describes
a higher-order version of the semantic labelling technique and gives some applications. As
previously noted, the system he describes does not preserve β-reduction and as such does not
generally allow one to directly apply known termination criteria like the General Schema or the
Higher Order Recursive Path Ordering. Our solution involves the use of structural rules, which
turn the termination problem into a relative termination problem.

The work the most (quantitatively) related to ours is possibly that of Whalstedt [Wah07],
in which he gives a general termination criterion on terms with a dependent type system and
recursive definitions: if the call-relation is well-founded then well-typed terms are terminating
under β-reduction and the recursive definitions. This is equivalent to the termination of the
system if each recursive call is made on smaller arguments that is stable by substitution and
reduction. This can be seen as the syntactic pendent to our approach: given such a well-founded
order, we can construct a “syntactic model” and apply our criterion to the system labelled by
this model using the well-founded order as precedence. However our approach presents some
quantitative differences. Whalstedts criterion applies to a language with dependent types and
type constructors with parameters, whereas we treat only rewriting within simple types. However
he only treats rewriting on datatypes without higher order recursive parameters, and without
matching on defined symbols. More investigation is needed to discover the relationship between
these two criteria. Let us finally note that, for reasons similar to ours, Whalstedts criterion does
not allow one to prove termination of example 9, as the information needed for decrease is not
present in the recursive call. In a sense, all bound variables in the arguments of recursive calls
are considered to be instantiable to any possible term. This difficulty is a fundamental aspect
of higher-order termination, that we attempt to treat with our type-based method in the second
part of this thesis.
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A Type-Based Dependency Analysis
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1

Dependency Pairs

The dependency pair approach, introduced by Arts and Giesel [AG00], is a framework that
permits a powerful termination analysis. The fundamental idea is that it suffices to examine
possible sequences of calls, and show that there can not be an infinite chain of calls. In this part
we begin by describing the theory of so called dynamic dependency pairs for first-order systems as
described in definition 135, with the intent of introducing notation and background. In particular
we describe the notion of dependency pair processor, which embodies the fundamental philosophy
of the dependency pair approach, and explain the concept of approximated dependency graph,
reduction pairs and simple projections. The material for this chapter is taken from Giesl et al
[GTSK05] and Hirokawa & Middeldorp [HM07a].

In the next chapter we show that it is possible to give a type-based approach to dependency
pairs, using refinement types inspired by Freeman & Pfenning [FP91a], on left-algebraic systems
with β-reduction. In this approach, dependency pairs are given by type information on the rules
instead of pairs of terms. We show that a natural type-based dependency graph approximation
can be built using these dependency pairs, and that it is possible to formulate a termination
criterion based on simple projections. The chapter after that shows that the criterion is sound,
that is that well-typed terms are strongly normalizing if the criterion is satisfied.

Size-based termination involves the use of dependent types to infer an approximation of
the size of terms of inductive type. However in general the size abstraction is not sufficient
to determine whether a rewrite system is strongly normalizing. Let us consider the following
rewrite system:

Example 14 Let Σ = { f , g, c, d} be a signature. Consider the following rewrite system R:

f (c x) � c (g (d x))

g (c y) � f (c y)

The system R is strongly normalizing (even on untyped terms). However this fact can not
be established using the size-based criterion presented in chapter 1, simply because there is no
size decrease in either rule. Termination follows from the fact that if a term t rewrites to t′ by
application of the second rule, then only the first rule may be applied, and then no further rules
can be applied at that position, as it can not possibly match either rule. To make this reasoning
precise need a way of systematically analyzing the possible sequence of calls in between rules.
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1.1 The Dependency Chain Criterion

We recall the definition for first order terms.

Definition 139 Let Σ be a signature. An arity ar is a function from Σ to the set of natural
numbers. The set of first-order terms for the signature Σ with arity ar is defined as the set

t1, . . . , tn ∈ Trm f o ≔ x | f (t1, . . . , tn)

with x ∈ X, f ∈ Σ and n = ar( f ).

A first-order rewrite system R is a set of pairs l � r such that l, r ∈ Trm f o and the set of
variables in r is contained in that of l. We define head rewriting �

h
R
, �R,�

∗
R
and �

+

R
in the same

way as for definition 12.
We say that a symbol f ∈ Σ is defined, if there is a rule f l1 . . . ln � r ∈ R, we write D for the

set of all defined symbols, if c < D we say that c is undefined (we do not use the common term
constructor as it is used with another meaning in chapter 1). The head hd(t) if a term t ∈ Trm f o

is the (unique) symbol f such that t = f (t1, . . . , tn) and is undefined if t = x is a variable.

We define the subterm ordering � by the reflexive transitive closure of the relation defined
by

∀ f ∈ Σ, 1 ≤ i ≤ n, f (t1, . . . , tn) � ti

if ar( f ) = n.

We build the set of dependency pairs, which intuitively denotes the set of possible consec-
utive calls, where a call is a subterm of a term on which it is possible to apply a rule. The
fundamental insight of the dependency pair approach is the following observation: if there is a
non-terminating term, then there is a minimally non-terminating term, such that every strict
subterm is terminating. For such a term and a non-terminating rewrite sequence there is ob-
viously at least one head rewrite step. Once this step is performed, there is some subterm of
that term which is once again a minimally non-terminating term. This suggests that to prove
termination of a rewrite system R it is interesting to concentrate on the combination of �R ◦�.

Definition 140 To each f ∈ Σ we associate a new symbol f ♯, and write Σ♯ for { f ♯ | f ∈ Σ}, we
extend an arity for Σ to an arity for Σ♯ by taking ar( f ♯) = ar( f ). Given a term t in Trm f o, we
define t♯ as f ♯(t1, . . . , tn) if t = f (t1, . . . , tn) and as x if t = x.

The set DPR of dependency pairs is defined as

DPR ≔
{

l♯ � t♯ | l � r ∈ R, r � t ∧ hd(t) ∈ D
}

Thus, DPR is a rewrite system over the signature Σ ∪ Σ♯.
Given a set of rewrite rules D over the signature Σ ∪ Σ♯, a D-chain is defined by a possibly

infinite sequence of rules l1 � r1, l2 � r2, . . . ∈ R
′ such that there exists a substitution σ (of

possibly infinite domain), such that

∀i, riσ �
∗
R li+1σ

We say that the problem D is finite if there are no infinite D-chains.

Then the main theorem states:
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1.1. The Dependency Chain Criterion

Theorem 141 (Arts & Giesl [AG00])

Given an algebraic rewrite system R with a set of dependency pairs DPR, we have

SNR ⇔ the problem DPR is finite

Notice that if there are no infinite D-chains, then in fact D is terminating relative to R in the
sense of chapter 3 (definition 82), as has been noted by Zantema [Zan04a]. It is a notable fact
that many practical approaches to termination consist in transforming a termination problem
into a relative termination problem.

There is an analogy between the finite chain condition and the reducibility method used in
chapter 5 to prove strong normalization of the termination criterion of theorem 124. Though the
reducibility method is not a termination criterion per say, it is a proof technique which proceeds
in two steps:

• If the context C[] is “safe” or computable, and so is t then so is C[t].

• Every function symbol f is computable: if t1, . . . , tn are computable terms, then so is f (t1, . . . , tn).
This can be proven by considering all possible calls: if f (~t) �R r and g(u1, . . . , um) is a call of
r, then g(~u) is computable.

It is clear that the second step corresponds to the dependency pair approach, and it is in
fact possible to give a proof of the main theorem using computability :

Proof. The ⇒ direction is easy by contraposition: if there is an infinite DPR-chain, it is
easy to built an infinite R reduction sequence.

For the ⇐ direction: We say t ∈ Trm f o is computable if it is in SNR. We say that f ∈ Σ is
computable if ar( f ) = n and for every computable t1, . . . , tn ∈ Trm f o, f (t1, . . . , tn) is computable.
It is sufficient to show that every symbol f is computable to show termination: if every symbol
is computable and t ∈ Trm f o then by induction on t either

• t = x, then t ∈ SNR

• t = f (t1, . . . , tn) and so by induction hypothesis each ti is strongly normalizing, and as f is
computable, so is t

We define Trm∗f o to be the set of finite tuples of terms and >dp to be the order on Σ ×Trm∗f o

defined by the transitive closure of

( f ,~t) >dp (g, ~u)⇔ f ♯(t1, . . . , tn) �
∗
R ◦ �DP g♯(u1, . . . , um)

By hypothesis, DPR-chains are finite, and so >dp is well-founded.

To show computability of symbols, we proceed by case:

• f is undefined. Then the computability follows by definition of reduction.

• f is defined. Suppose ar( f ) = n and take t1, . . . , tn arbitrary computable terms and set t =

f (t1, . . . , tn). We assert: it suffices to show that for every t′
1
, . . . , t′n such that for each i, ti �

∗
R

t′
i
,

and every head reduct r of f (t′
1
, . . . , t′n), r is computable.
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Indeed a term is normalizable if every one of its reducts is normalizable, and we can reason
by well founded induction on ~t ordered by the product order �

+

R
× . . .× �

+

R
(well-founded

on reducts of ~t): a one step reduct of t is either a head reduct, or a reduct of the form
f (t1, . . . , t

′
i
, . . . , tn), with ti �R t′

i
, for which the assertion is true by induction hypothesis.

To show the assertion, we proceed by well-founded induction on ( f ,~t) ordered by >dp. Suppose
t �
∗
R

f (t′
1
, . . . , t′n) �

h
R

r. We show that r is in SNR by induction on the term structure:

– r = x a variable: r is in normal form by definition.

– r = g(u1, . . . , um). By the induction hypothesis, ui are in SN . But we also have ( f ,~t) >dp (g, ~u),
and so g(u1, . . . , um) is computable.

�

This approach to dependency pairs by computability is quite useful in the case of higher-
order rewriting as noted by Kusakari & Sakai [KS07], and Blanqui et al [Bla06, KISB09]. The
proof technique exposed above is very similar to that used to prove correctness of our type-based
dependency pair criterion.

1.2 Dependency Pair Processors and the Dependency Graph

Working with the set of dependency pairs can be nice, as it offers a different rewrite system on
which to try our standard termination techniques. It is a transformation technique somewhat
like semantic labelling presented in chapter 3. However, unlike semantic labelling, little semantic
information has been added, and in general there are as many or more rules in DPR as in R.
This has led to the elaboration of dependency pair processors. Processors attempt to take a
DP problem and break it into a number of smaller problems, for which finiteness would imply
finiteness of the original problem. We present one of the most important DP processors, the
approximated dependency graph.

Definition 142 Let D be a dependency pair problem for the rewrite system R. The dependency
graph DG for D is the (directed) graph with elements of D as nodes and an edge between l1 � r1

and l2 � r2 if there is a σ such that r1σ �
∗
R

l2σ (that is if there is a chain between the pairs
l1 � r1 and l2 � r2).

A graph G approximates DG if DG ⊆ G, that is if the set of nodes of G is equal to that of DG

and for each pair of nodes n1 and n1, if there is an edge between n1 and n2 in DG, then there is
one in G. A graph is strongly connected if there is a path from every node to every other node.
A strongly connected component or SCC of G is a maximal strongly connected subgraph of G.

The need for approximated dependency graphs stems from the undecidability to compute
the dependency graph. From here on we only consider finite rewrite systems.

Failure of finiteness in a DP problem can be traced to cycles in a dependency graph, if this
approximation is finite.

Lemma 143 For every infinite chain for a DP problem D and every graph G that is an approx-
imation of the dependency graph, there is a strongly connected component C and an infinite
path in C.
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1.2. Dependency Pair Processors and the Dependency Graph

Proof. Suppose that there is an infinite D-chain (ni)i∈N. The chain corresponds to a path in
G, as each sequence ni, ni+1 is in particular a 2-element chain, therefore a link in the dependency
graph, which is approximated by G. Observe that the graph G is finite, by finiteness of the set
of dependency pairs, which itself follows from finiteness of R. Now observe that there is some
N ∈ N and some SCC C such that

∀i ≥ N, ni ∈ C

Indeed, suppose that there are C and C′ such that for all N, there exist i1, i2, i3 ≥ N such that
ni1 and ni3 are in C and ni2 is in C′. By strong connectedness of C, this gives a path between ni1

and ni2 and between ni2 and ni1 , which contradicts maximality of SCCs.

As all SCCs are finite, there is an infinite path in C.

�

We can therefore describe a first DP processor:

Theorem 144 (Giesl, Thiemann & Shneider-Kamp [GTSK04])

LetD be a problem. If G is an approximation of the dependency graph, with SCCs C1, . . . ,Cn,
then

C1 finite ∧ . . . ∧Cn finite ⇒ D finite

In particular, if G is without cycles, then D is finite.

To use this result, we need a simple and efficient way to compute a decent approximation
to the dependency graph. One such approximation can be computed in the following manner:
we take a right hand side, and consider that any term headed by a defined symbol or a variable
can rewrite to any term. This is formalized by replacing these terms by fresh variables and
performing unification.

Definition 145 (Standard approximated graph)

Let Σ be a signature and R be a rewrite system. If t is an algebraic term on the signature
Σ ∪ Σ♯, we define rencap(t) by induction:

• rencap( f (t1, . . . , tn)) = y with y fresh, if f ∈ D.

• rencap(g(t1, . . . , tn)) = g(rencap(t1), . . . , rencap(tn)) if g < D or g ∈ Σ♯.

The standard approximation to the dependency graph DGR is the graph GR with

• As set of nodes DPR,

• An edge between l1 � r1 and l2 � r2 iff rencap(r1) and l2 are unifyable.

Property 146 (Arts & Giesl [AG00])

The graph GR is an approximation of DGR.
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Proof. Suppose that there is a link between l1 � r1 and l2 � r2 in DGR, that is that there
is some substitution σ such that

r1σ �
∗
R l2σ

Let us show that there is a link in GR: we show that there is a unifier θ of r1 and l2, by induction
on r1.

• r1 = x: there is a trivial unifier.

• r1 = f (t1, . . . , tn). In this case either f ∈ D and so rencap(r) is equal to a fresh variable, and we
can easily find a unifier. Otherwise, f ∈ Σ♯ or f ∈ Σ\D. In this case, as there are no rules in R
with head equal to f , we have l2 = f (u1, . . . , un), with ti �

∗
R

ui. By induction hypothesis, there
are θ1, . . . , θn such that rencap(ti)θ = uiθi. Furthermore, by freshness of the variables chosen in
definition of rencap, all variables in rencap(ti) are distinct from those in rencap(t j) if i , j. We
can therefore take θ = θ1 ⊎ . . . ⊎ θn.

�

Notice that this allows us to prove strong normalization of (the first order analogue of) the
rewrite system in example 14: the defined symbols are f and g, and the standard approximated
dependency graph is:

f ♯(c(x)) � g♯(d(x)) g♯(c(y)) � f ♯(c(y))

This graph is without cycles, so by application of proposition 146 and theorem 144 and of
theorem 141, we may conclude that the system is strongly normalizing.

We give another very important type of processor, which is often used in the final proof that
a problem is finite. The general idea is to find a certain well founded order % on terms that
is compatible with �

∗
R
, that is if t �

∗
R

u then t % u, and is also compatible with D, and then
we remove all dependency pairs which entail a strict decrease, as they may only occur a finite
number of times in any infinite chain. This is difficult in practice, so we weaken the requirement:
it suffices to find a pair of orders, called a reduction pair [KNT99], % and succ, which verify a
certain compatibility property.

Definition 147 A relation R over Trm f o is monotonic if for each f ∈ Σ, t1Rt′
1
, . . . , tnRt′n implies

f (t1, . . . , tn)R f (t′
1
, . . . , t′n). A relation is stable by substitution or simply stable if for each tRu and

every substitution θ, tθRuθ. It is trivial to show that the reduction relation �
∗
R
is both monotonic

and stable by reduction.

Given Σ a signature and R a rewrite system over Σ, a reduction pair (%,≻) for R is a pair of
relations on terms over the signature Σ ∪ Σ♯ such that

• % is a monotonic and stable order.

• ≻ is stable and well-founded.

• ≻ is compatible with %: % ◦ ≻⊆≻ and ≻ ◦ %⊆≻.
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1.2. Dependency Pair Processors and the Dependency Graph

We write DP% for

{l � r ∈ D | l % r}

DP≻ for

{l � r ∈ D | l ≻ r}

and R% for

{l � r ∈ R | l % r}

The processor based on reduction pairs allows us to remove strictly ordered (by ≻) depen-
dency pairs from the set of dependency pairs, but only every other pair and every rule is weakly
ordered (by %).

Theorem 148 (Giesl et al [GTSK04])

Suppose that Σ is a signature, R is a rewrite system and (%,≻) is a reduction pair for R. If
R% = R and DP% ∪ DP≻ = D then we have

D is finite ⇔ DP%\DP≻ is finite

We now have a powerful framework that allows us to prove termination of first order rewrite
systems: build the approximated dependency graph, find a reduction pair, and verify that the
graph GR, from which we remove the nodes which admit strict decrease in � is without cycles.

Let us give a simpler method that allows us to remove strongly connected components from
the approximated dependency graph, the simple projection method taken from Hirokawa and
Middeldorp [HM07b]. The advantage of simple projections is that they remove the important
constraint of having to verify compatibility with respect to the rules of the rewrite system R, as
is the case with the reduction pair processor.

Definition 149 (Simple projection)

Given a first-order rewrite system R over Σ, a simple projection ι is a function from S♯ to N,
such that 1 ≤ ι( f ) ≤ ar( f ). We also write ι for the function that maps f ♯(t1, . . . , tn) to tι( f ♯).

Theorem 150 (Hirokawa & Middeldorp [HM07b])

Suppose that G is an approximated dependency graph with SCC C, and ι is a simple pro-
jection. Suppose that for each node l � r in C, ι(l) � ι(r) and that for each cycle in C, there is
at least one node l � r such that ι(l) � ι(r). Then

G\C is finite⇒ D is finite

It is of course not possible in general to have equivalence, as this is a syntactic criterion that
is decidable (if G is finite) and therefore can not be complete. Let us give an example of the
application of this method, taken again from Hirokawa & Middeldorp [HM07b].
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Chapter 1. Dependency Pairs

Example 15 We consider the signature Σ = {0, S , int, intlist, nil, cons} with ar(0) = ar(nil) = 0,
ar(intlist) = ar(S ) = 1 and ar(int) = ar(cons) = 2 and the following rules:

intlist(nil) � nil

intlist(cons(x, y)) � cons(S (x), intlist(y))

int(0, 0) � cons(0, nil)

int(0, s(y)) � cons(0, int(s(0), s(y)))

int(s(x), 0) � nil

int(s(x), s(y)) � intlist(int(x, y))

This gives the following standard approximated dependency graph:

intlist♯(cons(x, y)) � intlist♯(y)

int♯(0, s(y)) � int♯(s(0), s(y))

int♯(s(x), s(y)) � intlist♯(int(x, y))

int♯(s(x), s(y)) � int♯(x, y)

We can apply the processor described above to show termination: the SCCs are given by the
full subgraphs with nodes

{

intlist♯(cons(x, y)) � intlist♯(y)
}

and
{

int♯(0, s(y)) � int♯(s(0), s(y)), int♯(s(x), s(y)) � int♯(x, y)
}

respectively.

Taking as simple projection ι(intlist) = 1 and ι(int) = 2 we can easily check that for every
SCC, and every dependency pair l � r in those SCCs,

ι(l) � ι(r)

And there is a strict decrease in each cycle.

Let us make an important observation: it is possible to simulate a system with higher-
order rewrite rules using first-order rewriting. The standard way to do this is to transform the
left algebraic rewrite system into a first-order one, using the defunctionalization transformation
[DN01] also called lambda lifting [Joh85]. By applying λ-lifting, we can give a first-order account
of higher-order functions by considering systems with a special application function.
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Example 16 We give Σ = {app,map, cons, nil} as a signature with arities ar(ap) = ar(cons) = 2

and ar(map) = ar(nil) = 0. We give the rules

app(map(z), nil) � nil

app(map(z), cons(x, xs)) � cons(app(z, x), app(map(z), xs))

This leads to the approximated dependency graph:

app♯(map(z), cons(x, xs)) � app♯(map(z), xs)app♯(map(z), cons(x, xs)) � app♯(z, x)

Which can easily be treated with the above methods. However adding the terms + and addto

of arity 0 and following rewrite rule:

app(app(addto, n), xs) � app(map(app(+, n)), xs)

significantly complicates the dependency problem, as the standard approximated graph contains
a single SCC consisting of every possible dependency pair:

app♯(map(z), cons(x, xs)) � app♯(z, x) app♯(map(z), cons(x, xs)) � app♯(map(z), xs)

app♯(app(addto, n), xs) � app♯(map(app(+, n)), xs) app♯(app(addto, n), xs) � app♯(+, n)

This problem can not be treated using the simple projection method given above. Unfor-
tunately this type of rewrite rule may naturally appear in the defunctionalized version of a
higher-order rewrite system.

The dependency pair approach benefits from numerous refinements to approximations of the
dependency graph, construction of complex reduction pairs, and different dependency processors.
This approach leads to successful automation of the proof of termination of a large number of
systems, using for example the AProVE software system [GSkT06] or the TTT system [HM07b].

However this approach suffers from several drawbacks when addressing higher-order rewrite
systems. The first is that it is difficult to adapt the method to work with abstractions: for
instance, the subterm of an abstracted term may have free variables not contained in the set of
free variables of the left-hand side, making the definition itself of dependency pairs non-trivial.
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If defunctionalization is applied, then the use of app as the only “real” head symbol makes the
dependency graph approximation very poor in general, as illustrated by the above example.

Another drawback is the absence of types. As seen in previous chapters, types often allows us
to control much of the pathological behavior of higher-order rewriting. In particular, we would
like to be able to remove the dependency pairs for which the left-hand side has the form app(x, t)

as in the above example. In a typed setting, the intuition is that x may only be instantiated with
“computable” functions, and cannot therefore lead to non-termination. A related issue is that
it is difficult for these methods to deal with rewrite systems involving elements of higher-order
inductive types, like the Ord type of example 3. It is difficult to give a higher order version
of reduction orders, as is demonstrated by the relative complexity of the higher order recursive
path order.

These drawbacks, as well as the similarity between the dependency pair approach and the
reducibility method, give motivation for attempting a type based dependency pair approach. This
is somewhat a reversal of the previous chapters: in chapter 3, we apply a technique developed
in the rewriting community to deepen our understanding of a type-theoretical construction.
Here we give a type-theoretical exposition of a technique originally exclusive to the rewriting
community. This is not surprising, as both communities are quite related and often prove very
similar results. In this case, we believe that a type theoretic approach to higher-order dependency
pairs could find applications in the termination analysis of pure functional languages, and could
be very easily integrated into dependently typed languages, as it is the case with termination
analysis based on size-types.
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2

The Type System and the

Termination Criterion

In this chapter we will only consider rewrite systems where only undefined symbols may be
matched upon. We proceed as follows. Given a signature and left-algebraic rewrite system,
we define a class of dependent types, dubbed refinement types, because of their similarity with
the type system presented in Freeman and Pfenning [FP91a]. The motivation is, as always, to
express an abstraction of the structure of the normal forms of programs within the types. As we
are working with rewrite systems that have no orthogonality or even a confluence requirement,
a term may have many normal forms. The abstraction we consider describe the shape of the
normal forms by analogy with pattern matching of rules. For instance if the (unique) normal
form of a term t is Node Leaf Leaf, then t matches the pattern node(⊤,⊤), and so t will be in
the semantics of B(node(⊤,⊤)), with B the type of binary unlabeled trees.

These types will have a similar function as the term abstraction computed by the rencap

function defined in chapter 1. Indeed, we may compute a dependency graph using just the type
information gathered from the rewrite system. Whereas the size based criterion required strict
decrease for each recursive call, with the type based dependency graph it is possible to perform
a more sophisticated analysis. As in the first-order dependency pair approach, we can define
an embedding order on type level terms and thus define a simple projection on the dependency
pairs very similar to the analogous notion for dependency pairs in the first order case given in
the previous chapter (definition 149). We use this order to give a termination criterion very
close to that described in theorem 150, but for higher-order terms with β-reduction.

2.1 The Type System

For simplicity, in this chapter we consider only the datatype of binary unlabeled trees. The
general case of first-order inductive datatypes can be constructed in the same manner, however
the extension to higher-order datatypes like Ord (see example 3) is left open. We first define the
set of patterns which will be used in the type annotations to denote values toward which terms
may reduce.

Definition 151 We define the set of type-patterns, or just patterns P:

p, q ∈ P ≔ α | leaf | node(p, q) | ⊤ | ⊥

with α ∈ V a set of pattern variables.
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The patterns can label the base type of binary trees B. The set of simple types is the same
as in preceding chapters, except we allow explicit quantification over pattern variables. The ⊤
pattern or wildcard matches every possible value. It may be used in much the same way as ∞ is
used in chapter 1 to allow more flexibility in typing. The ⊥ pattern does not match any value.
It allows us to type only neutral terms.

Definition 152 We define the set of types T :

T,U ∈ T ≔ B(p) | T → U | ∀α.T

Explicit quantification is a departure from the presentation of the size based criterion pre-
sented in chapter 1, in which type variables were implicitly universally quantified. Whereas the
implicit presentation is more convenient for the model construction of chapter 4, the explicit
presentation is more convenient in implementations, as it allows a simple, syntax directed type
inferrence.

The explicit version with quantification at any position in types is in this case slightly more
expressive than the implicit version, as we can express for example the type

(∀α.B(α)→ B(α))→ B(leaf)

Which is inexpressible in the implicit version. The difference is analogous to ML polymorphism
versus system F polymorphism, see for example Milner [Mil78]. As in this case, the explicit
pattern abstractions and applications are sufficient to allow decidability of type inferrence in
our system. Note that type inferrence is likely to be undecidable in a system with implicit
quantification of types which may appear at any position in a type, as is the case for system F
as proven by Wells [Wel94].

Definition 153 We define the set of terms as:

t, u ∈ Trm ≔ x | f | t u | t p | λx : T.t | λα.t | Node | Leaf

with x ∈ X a set of term variables, f ∈ Σ is a set of function symbols and α ∈ V.

We give explicit annotations for pattern abstraction and application in relation to the above
remark.

Definition 154 We suppose given a type assignment τ : Σ → T , such that for each f ∈ Σ,
τ f = ∀α1, . . . , αk.A1 → . . .→ Ak → T f with

• αi pairwise distinct.

• Ai = B(αi)

• ∀1 ≤ i ≤ k, αi appears positively in T f .

In this case k is called the number of recursive arguments.

The positivity condition is quite similar to the one used in the usual formulation of type-
based termination, see for instance Abel [Abe06] for an in depth analysis. This requirement is
related to the cumulativity of types, which means that the interpretation of a type contains the
interpretation of all its subtypes. Note that the positivity condition for defined function symbols
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ax
Γ, x : T,∆ ⊢ x : T

Γ, x : T ⊢ t : U
t-lam

Γ ⊢ λx : T.t : T → U

Γ ⊢ t : Tα < FV(Γ) p-lam
Γ ⊢ λα.t :∀α.T

leaf-intro
Γ ⊢ Leaf : B(leaf)

node-intro
Γ ⊢ Node:∀αβ.B(α)→ B(β)→ B(node(α, β))

Γ ⊢ t : T → U Γ ⊢ u : T t-app
Γ ⊢ t u : U

Γ ⊢ t :∀α.T p-app
Γ ⊢ t p : T {α 7→ p}

symb
Γ ⊢ f : τ f

Figure 2.1: Typing Rules

is also guarenteed by the system given in chapter 1, as a consequence of being in elimination
form (definition 36). The typing rules are also similar to the ones for type-based termination.

The typing rules of our system are given by the typing rules in figure 2.1. To these rules we
add the subtyping rule:

Γ ⊢ t : T T ≤ U

Γ ⊢ t : U
sub

where the subtyping relation is defined in figure 2.2, and which uses the subpattern relation ≪
on patterns.

Notice the absence of rules allowing us to give the type B(⊥). Intuitively if a term is of type
B(p), then all of its normal forms that are values match p. In consequence, a term of type B(⊥)

(and that is strongly normalizing) may not reduce to a value. In the same way, a term of type
B(leaf) may only have Leaf as a normal form that is a value. We will be able to give a precise
interpretation to this intuition with the termination semantics given in the next chapter.

We now prove that type checking is decidable, by exhibiting a syntax directed type inferrence
system which types the same terms as our type system. By syntax directed, we mean that for a
given term at most one rule of inferrence can be applied, and whether this rule can be applied
is determined by the syntactic structure of the term.

First note that subtyping is decidable: this is a simple consequence of the subtyping rules
being syntax directed.

Lemma 155 The subtyping relation is transitive: if T,U,V are types, then

T ≤ U ∧ U ≤ V ⇒ T ≤ V
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p ≪ ⊤ ⊥ ≪ p

α ≪ α leaf ≪ leaf

p1 ≪ q1 p2 ≪ q2

node(p1, p2) ≪ node(q1, q2)

p ≪ q

B(p) ≤ B(q)

T2 ≤ T1 U1 ≤ U2

T1 → U1 ≤ T2 ≤ U2

T ≤ U

∀α.T ≤ ∀α.U

Figure 2.2: Rules for subtyping

Proof. First we prove transitivity for patterns: for p, q, r

p ≪ q ≪ r ⇒ p ≪ r

we proceed by induction on the structure of p:

• p = ⊥. Then we have ⊥ ≪ r.

• p = ⊤. In this case we can only have q = ⊤ and r = ⊤.

• p = leaf. In this case have q = ⊤, in which case r = ⊤ and we are done, or q = leaf and then
r = leaf or r = ⊤.

• p = α. In this case q = α or q = ⊤ and we can conclude as above.

• p = node(p1, p2). In this case either q = ⊤, and we proceed as above, or q = node(q1, q2) and
pi ≪ qi for i = 1, 2. In this case either r = ⊤, and we are done, or r = node(r1, r2) and then by
induction hypothesis p1 ≪ r1 and p2 ≪ r2 and therefore p ≪ r.

Now we show transitivity of subtyping by induction on the structure of T :

• T = B(p). In this case we necessarily have U = B(q) and V = B(r) and we may conclude using
the transitivity of the subpattern relation.

• T = T1 → T2. In this case we have U = U1 → U2 with U1 ≤ T1 and T2 ≤ U2, and V = V1 → V2

with V1 ≤ U1 and U2 ≤ V2. Induction hypothesis gives V1 ≤ T1 and T2 ≤ V2 and so T ≤ V.

�

Definition 156 (type synthesis)
Given a context Γ, a term t and a type T , we say that t synthesizes T in context Γ, if Γ ⊢ t ↑ T

can be derived using the rules of figure 2.3.
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ax
Γ, x : T,∆ ⊢ x ↑ T

Γ, x : T ⊢ t ↑ U
t-lam

Γ ⊢ λx : T.t ↑ T → U

Γ ⊢ t ↑ T
α < FV(Γ) p-lam

Γ ⊢ λα.t ↑ ∀α.T

leaf-intro
Γ ⊢ Leaf ↑ B(leaf)

node-intro
Γ ⊢ Node ↑ ∀αβ.B(α)→ B(β)→ B(node(α, β))

Γ ⊢ t ↑ T → U Γ ⊢ u ↑ T ′ T ′ ≤ T
t-app

Γ ⊢ t u ↑ U

Γ ⊢ t ↑ ∀α.T p-app
Γ ⊢ t p ↑ T {α 7→ p}

symb
Γ ⊢ f ↑ τ f

Figure 2.3: Type Synthesis Rules

Type synthesis is decidable, as the rules are syntax directed. It suffices to show that type
synthesis allows us to conduct type checking, that is prove the equivalence between Γ ⊢ t : T and
Γ ⊢ t ↑ T .

Theorem 157 (Correctness and completeness of type synthesis)

Suppose Γ is a context, t is a term and T is a type. Then type synthesis is contained in type
checking:

Γ ⊢ t ↑ T ⇒ Γ ⊢ t : T

Conversely, if t is typeable of type T in Γ, then t synthesizes a type U with U ≤ T :

Γ ⊢ t : T ⇒ Γ ⊢ t ↑ U ∧ U ≤ T

Proof. First suppose that Γ ⊢ t ↑ T . We prove by induction on the derivation that Γ ⊢ t : T .
The only interesting case is

t-app: Take t = t1 t2 with Γ ⊢ t1 ↑ T → U, Γ ⊢ t2 ↑ T ′ and T ′ ≤ T . By induction hypothesis,
Γ ⊢ t1 : T → U and Γ ⊢ t2 : T ′. By application of the sub rule we conclude that Γ ⊢ t2 : T and we
can apply the app rule to derive

Γ ⊢ t1 t2 : U

Now suppose that Γ ⊢ t : T we prove by induction on the derivation that there is U such that
Γ ⊢ t ↑ U with U ≤ T . We only treat the interesting cases.
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• sub: we have Γ ⊢ t : T ′ with T ′ ≤ T . By induction hypothesis there exists U such that

Γ ⊢ t ↑ U ∧ U ≤ T ′

By transitivity of the subtyping relation, U ≤ T .

• t-app: in this case t = t1 t2 with Γ ⊢ t1 : T → U and Γ ⊢ t2 : T . By induction hypothesis,
Γ ⊢ t1 ↑ C, Γ ⊢ t2 ↑ A′ with C ≤ T → U and A′ ≤ T . In this case we must have C = A→ B with
T ≤ A and B ≤ U. By transitivity of the subtype relation, A′ ≤ A and we can apply t-app to
obtain

Γ ⊢ t1 t2 ↑ B

and we have B ≤ U.

�

2.2 Minimal Typing and the Dependency Graph

Now that we have a type system, we need to build the dependency analysis by examining the
rewrite rules. As in chapter 1, we will need to constrain both the shape and type of terms that
may appear in the left-hand sides.

Definition 158 Now suppose given a set R of rewrite rules. A constructor is either Leaf or
Node, and a constructor term is a term with only constructors and variables, with no variable
in an application position. We suppose given a rewrite system R such that each rule ρ ∈ R is of
the form f p1 . . . pk l1 . . . lk � r with k the number of recursive arguments, li constructor terms
and p j patterns. We furthermore suppose that for each such rule there is a context Γ and a type
T such that:

Γ ⊢min f p1 . . . pk l1 . . . lk : T

and Γ ⊢ r : T , with ⊢min defined in figure 2.4. Suppose in addition that every function symbol
g ∈ r is fully applied to its pattern arguments, that is if τg = ∀α1 . . . αk.T then for each occurrence
of g in r there are patterns p1, . . . , pk ∈ P such that g p1 . . . pk appears at that position.

Minimal typing here is essentially identical to minimal typing as defined in chapter 1 (def-
inition 39), and serves a similar function, that is to force the types to adequately denote the
semantics of the terms.

We can then define the higher-order analogue of dependency pairs, which use the type infor-
mation instead of the term information. The type information for the left hand side is deduced
from the type inference, so we shall need unicity of the inferred type.

Lemma 159 Suppose that Γ ⊢min l : T with l a constructor term. Then T is unique modulo
variable renaming.

Proof. The proof is an easy induction, given that all rules are syntax directed. �

Note that, in the typed framework, a dependency pair is not formally a (higher-order) rewrite
rule.
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α < Γ,Γ′
Γ, x : B(α),Γ′ ⊢min x : B(α)

Γ ⊢min Leaf : B(leaf)

Γ ⊢min l1 : B(p1) Γ ⊢min l2 : B(p2)

Γ ⊢min Node p1 p2 l1 l2 : B(node(p1, p2))

Γ ⊢min l1 : B(p1) . . . Γ ⊢min lk : B(pk)
~α < Γ

Γ ⊢min f p1 . . . pk l1 . . . lk : T fφ

with τ f = ∀α1 . . . αk.A1 → . . .→ Ak → T f and φ(αi) = pi for 1 ≤ i ≤ k.

Figure 2.4: Minimal Typing Rules

Definition 160 (Type dependency pairs)
Let ρ ≔ f ~p ~l � r be a rule in R, with Γ such that Γ ⊢min f ~p ~l : T , and Γ ⊢ r : T . The set of

type dependency pairs DPT (ρ) is the set

{ f ♯(p1, . . . , pk) � g♯(q1, . . . , ql) | ∀i,Γ ⊢min li : B(pi) ∧ g q1 . . . ql appears in r}

The set DPT (R) is defined as the union of all DPT (ρ), for ρ ∈ R, where we suppose that all
variables are disjoint between dependency pairs.

The set of higher-order dependency pairs defined above should already be seen as an ab-
straction of the dependency pair notion defined in the previous chapter (definition 140). Indeed,
thanks to subtyping, there may be some information loss in the types, if for instance the ⊤
pattern is used. As an example, if f , g and h all have the type ∀α.B(α)→ B(⊤), consider the rule

f α x � g ⊤ (h α x)

The dependency pairs we obtain are

f ♯(α) � g♯(⊤), f ♯(α) � h♯(α)

In the first dependency pair, the information that g is called on the argument h x is lost. However
one may observe that in the case of the simple approximation to the dependency graph, the fact
that h is a defined symbol gives rencap(g♯ (h x)) = g♯ y with y some fresh variable, which effectively
gives us the same information as our typed dependency pair. This approach can therefore be
seen as a type based manner to study the standard approximated dependency graph. Note that
in the case where h is given a more precise type, like B(α) → B(leaf), which is the case if every
normal form of h t is either neutral or Leaf, we have a more precise approximation than the
standard approximated dependency graph.

Definition 161 Let p and q be patterns. We say that p and q are pattern-unifyable, and
write p ⊲⊳ q, if p′ and q′ are unifyable, where p′ and q′ are the patterns p and q in which
each occurrence of ⊤ and each occurrence of a variable is replaced by some fresh variable. An
alternative defintion for ⊲⊳ is the smallest relation that verifies:

• p ⊲⊳ ⊤
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• p ⊲⊳ α

• p1 ⊲⊳ q1 ∧ p2 ⊲⊳ q2 ⇒ node(p1, p2) ⊲⊳ node(q1, q2)

• leaf ⊲⊳ leaf

• ⊥ ⊲⊳ ⊥

• p ⊲⊳ q⇒ q ⊲⊳ p

for any p, q patterns and α any pattern variable.
We then write f ♯(p1, . . . , pk) ⊲⊳ g♯(q1, . . . , ql) if f ♯ = g♯, k = l and pi ⊲⊳ qi for each 1 ≤ i ≤ k.

The standard typed dependency graph GR is defined as the graph with

• As set of nodes the set DPT (R).

• There is an edge between the dependency pairs t1 � u1 and t2 � u2 if

u1 ⊲⊳ t2

We have in this definition an adequate higher-order notion of standard approximated depen-
dency graph.

Definition 162 If p and q do not contain any occurence of ⊤, we define the embeddeding
preorder p � q by the following rules

• pi � q⇒ node(p1, p2) � q for i = 1, 2

• p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

• p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

with � as the reflexive closure of �.

2.3 Erased Terms and the Main Theorem

We shall need to revise our definition of reduction in order to state (and prove) the normalization
theorem. The problem with our current definition of rewriting arises when trying to match on
patterns. Take the rule

f node(α, β) (Node x y) � Leaf

In the presence of this rule, we wish to have, for instance, the reduction

f ⊤ (Node (g x) (h x)) � Leaf

However, there is no substitution θ such that node(α, β)θ = ⊤. There are two ways to deal
with this. Either we take the subpattern order into account when performing matching, that
is match on terms modulo ≪, or we do away with the pattern arguments when performing
reduction. We adopt the second solution, as it is used in practice when dealing with languages
with dependent type annotations (see for example McKinna [McK06]). Symmetrically, we erase
pattern abstractions as well.
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Definition 163 We define the set of erased terms Trm|�| as:

t, u ∈ Trm|�| ≔ x | f | λx.t | t u | Leaf | Node

where x ∈ X and f ∈ F .

Given a term t ∈ Trm, we define the erasure |t| ∈ Trm|�| of t as:

|x| = x

| f | = f

|λx : T.t| = λx.|t|

|λα.t| = |t|

|t u| = |t| |u|

|t p| = |t|

|Leaf | = Leaf

|Node | = Node

An erased term can intuitively be thought of as the compiled form of a well typed term.

Definition 164 An erased term t head rewrites to a term u if there is some rule l � r ∈ R and
some substitution σ from X to terms in Trm|�| such that

|l|σ = t ∧ |r|σ = u

We then define �
∗
R∪β

and �
+

R∪β
as usual.

We can now express our termination criterion. The idea is quite close to the dependency
pair processors exposed in the theorems 144 and 148 from chapter 1, using the simple projection
criterion.

Theorem 165 (Type-based dependency pair criterion)

Let G be the typed dependency graph for R and suppose that for every SCC G1, . . . ,Gn,
there is a simple projection ι1, . . . , ιn which to each function symbol f ∈ Σ associates an integer
1 ≤ ιi

f
≤ k with k the number of recursive arguments. Suppose that for each 1 ≤ i ≤ n and each

rule f ♯(p1, . . . , pn) � g♯(q1, . . . , qn) in Gi, we have pιi
f
� qιig . Finally suppose that for each cycle in

Gi, there is some rule f ♯(p1, . . . , pn) � g♯(q1, . . . , qn) such that

pιi
f
� qιig

then for every Γ, t,T such that Γ ⊢ t : T ,

|t| ∈ SNR

The next chapter is devoted to the proof of this theorem.

We give a representative example of our criterion.

Example 17 Consider the following rewrite system:

• The signature is given by {app, a, g, h}
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g♯(leaf) � a♯

a♯ � app♯

a♯ � g♯(node(leaf, leaf))

Figure 2.5: Dependency graph of example 17

• The type assignment τ is defined by

τapp = ∀αβ.(B(α)→ B(β))→ B(α)→ B(β)

τa = B(node(leaf, leaf))

τg = ∀α.B(α)→ B(node(leaf, leaf))

τh = ∀α.B(α)→ B(leaf)

where app and a have 0 recursive arguments, and g and h both have 1.

• And the rules are given by

app � λαβ.λx : B(α)→ B(β).λy : B(α).x y

a � app node(lea f , lea f ) leaf (g node(leaf, leaf)) (Node leaf leaf Leaf Leaf)

g node(α, β) (Nodeα β x y) � Leaf

g leaf Leaf � a

Or in a more readable form with the type and pattern arguments omited:

app � λx.λy.x y

a � app g (Node Leaf Leaf)

g(Node x y) � Leaf

g Leaf � a

It is possible to verify that the criterion can be applied and that in consequence, according
to theorem 165, all well typed terms are strongly normalizing under R∪β. Indeed, we may easily
check that each of these rules is minimally typed in the context x : B(α), y : B(β), and furthermore,
the dependency graph in figure 2.5 has no cycles.

One may object that if we inline the definition of app and perform β-reduction on the right-
hand sides of rules we obtain a rewrite system that can be treated with more conventional
methods, such as those performed by the AProVe tool [GTSK05] (on terms without abstraction,
and without β-reduction). However this operation can be very costly if performed automatically
and is, in its most näıve form, ineffective for even slightly more complex higher-order programs
such as map, which performs pattern matching and for which we would need to instantiate
certain variables. By resorting to typing, we allow termination to be proven using only “local”
considerations, as the information encoding the semantics of app is contained in its type.
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However it becomes necessary, if one desires a fully automated termination check on an
unannotated system, to somehow infer the type of defined constants, and possibly perform an
analysis quite similar in effect to the one proposed above. We believe that to this end one may
apply known type inference technology, such as the one described in Chin and Khoo [CK01], to
compute these annotated types. In conclusion, what used to be a termination problem becomes
a type inference problem, and may benefit from the knowledge and techniques of this new
community, as well as facilitate integration of these techniques into type-theoretic based proof
assistants like Coq [Coq08].

Let us examine a second, slightly more complex example, in which there is “real” recursion.

Example 18 Let R be the rewrite system defined by

f (Node x y) → g (i (Node x y)

g (Node x y) → f (i x)

g Leaf → f (h Leaf)

i (Node x y) → Node (i x) (i y)

i Leaf → Leaf

h (Node x y) → h x

again with the type arguments omited, and with types f , g :∀α.B(α)→ B(⊤), h :∀α.B(α)→ B(⊥)

and i : ∀α.B(α) → B(α). Every equation can by typed in the context Γ = x : B(α), y : B(β). The
system with full type annotations is given by:

f node(α, β) (Node α β x y) → g node(α, β) (i node(α, β) (Node α β x y))

g node(α, β) (Node α β x y) → f α (i α x)

g leaf Leaf → f ⊥ (h leaf Leaf)

i node(α, β) (Node α β x y) → Node node(α, β) (i α x) (i β y)

i leaf Leaf → Leaf

h node(α, β) (Node α β x y) → h α x

The dependency graph is given in figure 2.3 with as dotted edges those that do not contribute
to cycles, and has as SCCs the full subgraphs of GR with nodes

{

i♯(node(α, β)) � i♯(α), i♯(node(α, β)) � i♯(β)
}

{

f ♯(node(α, β)) � g♯(node(α, β), g♯(node(α, β) � f ♯(α)
}

{

h♯(node(α, β)) � h♯(α)
}

respectively. Taking ιs = 1 for every SCC and every symbol s ∈ Σ, it is easy to show that every
SCC respects the decrease criterion on cycles. For example, in the cycle

f ♯(node(α, β)) � g♯(node(α, β))⇆ g♯(node(α, β)) � f ♯(α)

we have node(α, β) � node(α, β) and node(α, β) �α, so the cycle is weakly decreasing with at least
one strict decrease.

We may then again apply the correctness theorem to conclude that the erasure of all well-
typed terms are strongly normalizing with respect to R ∪ β.
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i♯(node(α, β)) � i♯(α)

i♯(node(α, β)) � i♯(β)

f ♯(node(α, β)) � g♯(node(α, β))

f ♯(node(α, β)) � i♯(node(α, β))

g♯(node(α, β)) � f ♯(α)

g♯(node(α, β)) � i♯(node(α, β))

g♯(leaf) � f ♯(⊥) g♯(lea f ) � h♯(leaf)h♯(node(α, β)) � h♯(α)

Figure 2.6: The dependency graph for example 18
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3

Correctness

The proof of the termination theorem uses computability predicates. As mentioned before, the
absence of control, and particularly the lack of orthogonality makes giving accurate semantics
somewhat difficult. We draw inspiration from the termination semantics of Berger [Ber05], which
uses sets of values to denote terms. As is standard in computability proofs, each type will be
interpreted as a set of strongly normalizing (erased) terms. Suppose a term t reduces to the
normal forms Leaf and Node Leaf Leaf. In that case t is in the candidate that contains all
terms that reduce to Leaf or Node Leaf Leaf, or are hereditarily neutral. If t is the erasure of a
term of type B(α) for some pattern variable α, the interpretation [[B(α)]] must depend on some
valuation of the free variable α. If we valuate α by some closed pattern p and interpret [[B(α)]]

by the set of terms whose normal forms are neutral or match p, then the only possible choice
for p is ⊤. Indeed if α is interpreted by p then both Leaf and Node Leaf Leaf must match p

which is only the case if p = ⊤.

Clearly this does not give us the most precise possible semantics for t, as the set of terms
which match ⊤ also includes terms such as u = Node (Node x y) Leaf. We need more precise
semantics if we are to capture the information needed for the dependency analysis: if we take the
constructor term l = Node Lea f x, then a reduct of t does match l, but this can never happen for
u. To give sufficiently precise semantics to terms, we therefore need to interpret pattern variables
with sets of closed patterns. In this case we will interpret α by the set {leaf, node(leaf, leaf)} to
capture sufficiently precise semantics for t.

Let us briefly sketch the termination proof. We first define a term-matching relation, that
allows us to relate normal forms and closed type-patterns. We use this relation to define the
interpretation of base types B(p) as the type of terms t such that the normal forms of t term-
match p. We then proceed as usual to define the interpretation [[T ]]θ of a type T with respect to a
valuation of pattern variables θ. We show that this interpretation satisfies the Girard conditions
and that it is a correct interpretation with respect to all the typing rules, except the symb rule.

Then we must show the correctness of the interpretation with respect to the symb rule,
that is f ∈ [[τ f ]] for every defined symbol. In order to do this, we need to relate the possible

reductions in the operational semantics to the dependency graph GR. For a given rule ρ = f~l � r,
if li : B(pi), and if there is a call in r to the function g of type B(q1) → . . . → B(qm) → Tg, then

we show that for every instance ~t of ~l there is a minimal type-valuation ψ such that for each i,
ti ∈ [[B(p)]]ψ. Then we show for each j, u j is in [[B(qi)]]ψ, and if pi � q j (resp. �) then there is a
strict decrease (resp. large decrease) between ti and u j in some well-founded order.

Finally if the u j reduce to some u′
j
, and this leads to the application of another rule ρ′ = g~l′ �
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r′, then there is an edge between the node f ♯(~p) � g♯(~q) and the nodes that correspond to the
rule ρ′. Then it only remains to show that this does not break the decrease in the aforementioned
well-founded order, and we will be able to prove f ∈ [[τ f ]] by induction on this order.

3.1 The Type Interpretation and Conditional Correctness

We define the interpretation of types, and prove that they satisfy the Girard conditions. We
then show that correctness of the defined function symbols implies correctness of the semantics,
as in the proof of theorem 124.

Definition 166 A value is a term v ∈ Trm|�| of the form:

• λx.t

• Node t u

• Leaf

For any t ∈ Trm|�| we say v is a value of t if t �
∗
R∪β

v and v is a value.

A term is neutral if it is not a value, and is hereditarily neutral if it has no values.

We introduce term-matching as the mechanism for relating terms and type-patterns. It
resembles ordinary pattern matching, with the difference that no substitution needs to be com-
puted, so it is just a relation. In the semantics we only consider closed patterns, as the variables
in patterns themselves only represent potential pattern instantiations.

Definition 167 Let Pc be the set of closed patterns, and NF the set of Rβ-normal forms in
Trm|�|. The term matching relation ≺≺⊆ NF × Pc is defined in the following way:

• v ≺≺ ⊤

• v ≺≺ p if v is neutral.

• v ≺≺ node(p, q) if v = Node v1 v2 with v1 ≺≺ p ∧ v2 ≺≺ q.

• v ≺≺ leaf if v = Leaf.

A pattern valuation, or valuation if the context is clear, is a partial function with finite
support from pattern variables V to non-empty sets of closed patterns. If p is a pattern, θ is a
pattern valuation and FV(p) ⊆ dom(θ) then pθ is the set defined inductively by:

• αθ = θ(α)

• leaf θ = {leaf}

• ⊤θ = {⊤}

• ⊥θ = {⊥}

• node(p1, p2)θ = {node(q1, q2) | q1 ∈ p1θ ∧ q2 ∈ p2θ}
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We may write pθ = {p | α1 ← θ(α1), . . . , αn ← θ(αn)} where the αi are the variables of p, by
analogy with list comprehension notation (as in Berger [Ber05]). If α < dom(θ) and P is a set of
closed patterns, we write θα

P
for the valuation that sends β ∈ dom(θ) to θ(β) and α to P. Notice

that pθ is a set of closed patterns.

Finally if P is a set of closed patterns and t is a term in SN , we write t ↓≺≺ P if for every
normal form v of t:

∃p ∈ P, v ≺≺ p

We define B to be the smallest set that verifies:

B = {t ∈ SN | ∀v a value of t, v = Leaf ∨ v = Node t1 t2 ∧ t1, t2 ∈ B}

That this set exists can be proven using the Tarski fixed-point theorem exactly in the same
manner as in the proof of theorem 124.

The type interpretation [[ ]] is a function that to each T ∈ T and each valuation θ such that
FV(T ) ⊆ dom(θ) associates a set [[T ]]θ ⊆ SNR∪β. We define it by induction on the structure of
T :

• [[B(p)]]θ = {t ∈ B | t ↓≺≺ pθ}

• [[T → U]]θ = {t ∈ SN | ∀u ∈ [[T ]]θ, t u ∈ [[U]]θ}

• [[∀α.T ]]θ = {t ∈ SN | ∀P, t ∈ [[T ]]θα
P
}

Where P is a non-empty set of closed patterns.

We proceed as in the proof of theorem 3, and show that each type interpretation is a re-
ducibility candidate.

Lemma 168 (Girard conditions 21)

If T ∈ T is a type, then for every valuation θ,

[[T ]]θ satisfies the Girard conditions

Proof. We proceed by induction on the structure of T .

• T = B(p)

– Strong normalization: by definition of B.

– Stability by reduction. Suppose that t ∈ [[B(p)]]θ. If t �
∗ u, then the set of normal forms of

u is contained in the set of normal forms of t.

– Sheaf condition. Suppose that t is neutral and that each one step reduct of t is in [[B(p)]]θ.
Now either t is in normal form, and then t ↓≺≺ pθ (as it is non empty), or for every one step
reduct u of t, u ↓≺≺ pθ. But in this case every normal form of t is the normal form of some
t � u, and thus t ↓≺≺ pθ.

• T = T1 → T2 This is shown in the same way as for lemma 21.

• T = ∀α.U
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– Strong normalization: by definition.

– Stability by reduction: Let t ∈ [[∀α.U]]θ. We have for every set P of closed terms, t ∈ [[U]]θα
P
.

By induction, every reduct u of t is also in [[U]]θα
P
. As P was chosen arbitrarily, u is also in

[[∀α.U]]θ.

– Sheaf condition. Let t be neutral and suppose that one step reducts of t are in [[∀α.U]]θ.
Take an arbitrary P. Every reduct of t is in [[U]]θα

P
. By induction hypothesis, t is in [[U]]θα

P
,

from which we may conclude.

�

Now we give the conditional correctness theorem, which states that if the function symbols
belong to the interpretation of their types, then so does every well-typed term, which is exactly
the approach taken with theorem 124.

Definition 169 Let θ be a valuation, σ a substitution from term variables to erased terms,
and Γ a context. We say that (θ, σ) validates Γ, and we write σ |=θ Γ, if the set of free pattern
variables in Γ is contained in dom(θ), and if for every x ∈ dom(Γ)

σ(x) ∈ [[Γ(x)]]θ

Likewise, we write σ |=θ t : T if FV(t) ⊆ dom(σ), FV(T ) ⊆ dom(θ) and

|t|σ ∈ [[T ]]θ

Theorem 170 (Relative correctness of the semantics)
Suppose that for each f ∈ Σ and each valuation θ,

f ∈ [[τ f ]]θ

then for every context Γ, term t and type T , if Γ ⊢ t : T

∀(θ, σ), σ |=θ Γ⇒ σ |=θ t : T

We need the substitution lemma for types:

Lemma 171 For every patterns q, p and valuation θ, if α is not in the domain of θ, then

p{α 7→ q}θ = pθαqθ

Proof. We proceed by induction on the structure of p:

• p = α: trivial.

• p = β , α: We have p{α 7→ q} = β and therefore p{α 7→ q}θ = θ(β) = θα
qθ(β).

• p = leaf,⊤,⊥: trivial.

• p = node(p1, p2): We have p{α 7→ q}θ = node(p1{α 7→ q}, p2{α 7→ q})θ. But this last term is
equal to

{node(q1, q2) | qi ∈ pi{α 7→ q}θ, i = 1, 2}

which by induction is equal to

{node(q1, q2) | qi ∈ piθ
α
qθ, i = 1, 2}

which allows us to conclude.
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�

Lemma 172 (Substitution lemma)
Let T be a type and θ a pattern valuation. If α does not appear in the domain of θ then:

[[T {α 7→ p}]]θ = [[T ]]θα
pθ

Proof. We proceed by induction on the type.

• Atomic case:
[[B(q){α 7→ p}]]θ = {t ∈ B | t ↓≺≺ q{α 7→ p}θ}

But by lemma 171, q{α 7→ p}θ = pθα
pθ, from which we can conclude.

• Arrow case: straightforward from induction hypothesis.

• case ∀β.T . We may suppose by the Barendregt convention that β is distinct from α, not in
the domain of θ and distinct from all variables in p. We then have:

[[(∀β.T ){α 7→ p}]]θ = {t ∈ SN | ∀Q, t ∈ [[T {α 7→ p}]]
θ
β
Q

}

Let θ′ = θ
β
Q
. We may apply the induction hypothesis, which gives:

[[T {α 7→ p}]]θ′ = [[T ]]θ′α
pθ′

And as β does not appear in p:
[[T ]]θ′α

pθ′
= [[T ]]

θ
α β
pθ Q

But we have:
{t ∈ SN | ∀Q, t ∈ [[T ]]

θ
α β
pθ Q

} = [[∀β.T ]]θα
pθ

Which concludes the argument.

�

We may easily generalize this result to:

Corollary 173 Let T be a type. If φ is a substitution, and θ is a valuation such that the
variables of T do not appear in the domain of θ, then:

[[Tφ]]θ = [[T ]]θ◦φ

Where θ ◦ φ is the valuation defined by θ ◦ φ(α) = φ(α)θ.

Another useful lemma states that type interpretations only depend on the value of the pattern
substitutions in the free variables of the type.

Lemma 174 Let T be some type and θ, θ′ be two closed pattern substitutions. If θ(α) = θ′(α)

for every α ∈ FV(T ), then [[T ]]θ = [[T ]]θ′ .

Proof. Straightforward induction on T .
The next lemmas proceed to show correctness of the interpretation with respect to subtyping.

Definition 175 Let P and Q be sets of closed patterns. We write P ≪ Q if for each p ∈ P,
there is a q ∈ Q such that p ≪ q.

137



Chapter 3. Correctness

The definition of ≪ for sets of closed patterns is the one we need for this correctness lemma.
Intuitively the set of terms t such that t ↓≺≺ P is included in the set of terms u such that u ↓≺≺ Q,
as we may “transport” a witness p of t ↓≺≺ P into Q.

Lemma 176 Let θ be a pattern valuation. If p ≪ q, then pθ ≪ qθ

Proof. Induction on the derivation of p ≪ q. The only non-trivial case is node(p1, p2) ≪

node(q1, q2) with pi ≪ qi for i = 1, 2. In that case, if r ∈ node(p1, p2)θ, we have r = node(r1, r2)

with ri ∈ piθ for i = 1, 2. By induction hypothesis, there is r′
1
, r′

2
in node(q1, q2)θ such that ri ≪ r′

i

for each i. Then we take node(r′
1
, r′

2
) ∈ node(q1, q2)θ to conclude.

�

Lemma 177 (Correctness of subtyping)
Suppose T ≤ U. Then for all θ, [[T ]]θ ⊆ [[U]]θ

Proof. We proceed by induction on all the possible cases for the judgement T ≤ U.

• p ≪ q: We first show that for all terms t, and every non-empty set of closed patterns P and
Q, if P ≪ Q, then t ↓≺≺ P ⇒ t ↓≺≺ Q. This follows from the following fact: if v is in normal
form and r ≪ s, then

v ≺≺ r ⇒ v ≺≺ s

To show this we proceed by induction on the ≪ judgement. The first three cases are easy. In
the fourth case, v ≺≺ node(r1, r2) which by definition implies that v = Node v1 v2, with v1 ≺≺ r1

and v2 ≺≺ r2. We can then conclude by the induction hypothesis.

Now using lemma 176, we have, if p ≪ q, t ↓≺≺ pθ ⇒ t ↓≺≺ qθ.

Now let t ∈ [[B(p)]]θ, we have by definition t ↓≺≺ pθ, and by the previous remark, t ↓≺≺ qθ

which implies t ∈ [[B(q)]]θ.

• Suppose T2 ≤ T1 and U1 ≤ U2. Let t be in [[T1 → U2]]θ, we show that it is in [[T2 → U2]]θ. Let
u be in [[T2]]θ. By the induction hypothesis, u ∈ [[T1]]θ, therefore (by definition of [[T1 → U1]]θ),
t u is in [[U1]]θ, which by another application of the induction hypothesis, is included in [[U2]]θ.
From this we can conclude that t is in [[T2 → U2]]θ.

• Let t be a term in [[∀α.T ]]θ and P be some arbitrary set of closed patterns, and suppose that
α is a variable not appearing in the domain of θ. We then have

t ∈ [[T ]]θα
P

Since ∀α.T ≤ ∀α.U, we have T ≤ U. The induction hypothesis gives:

[[T ]]θ′ ⊆ [[U]]θ′

for all valuations θ′. Take θ′ to be θα
P
. We have:

[[T ]]θα
P
⊆ [[U]]θα

P

From this we can deduce t ∈ [[U]]θα
P
and conclude.

�

We shall also need the fact that given T and a valuation θ, then [[T ]]θ is included in [[T ]]θ′ if
θ′ is a weakening of θ on the variables in positive position in T .
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Lemma 178 Let T be a type and θ, θ′ two closed pattern substitutions. If for every variable α
such that every free occurence of α in T is in a positive position, θ(α) ≪ θ′(α), and θ(β) = θ′(β)

for every other variable, then
[[T ]]θ ⊆ [[T ]]θ′

Conversely if θ(α) ≪ θ′(α) for every free variable α in a negative position, then

[[T ]]θ′ ⊆ [[T ]]θ

Proof. First notice that if p is a pattern, then pθ ≪ pθ′, by a simple induction on p. We
prove both propositions simultaneously by induction on T :

• T = B(p). All variables of p appear positively in T . Then by the above remark, pθ ≪ pθ′, and
therefore [[B(p)]]θ ⊆ [[B(p)]]θ′ .

• T = T1 → T2. We treat the positive case. We have by induction hypothesis [[T1]]θ′ ⊆ [[T1]]θ,
as all variable of T1 that appear positively in T appear negatively in T1, and [[T2]]θ ⊆ [[T2]]θ′ .
Therefore, by definition of [[T1 → T2]]φ, we have:

[[T1 → T2]]θ ⊆ [[T1 → T2]]θ′

The negative case is treated in the same fashion.

• T = ∀α.U: straightforward induction.

�

We note that these properties are exactly analogous to properties of the type interpretation
usually used to prove correctness for size-based termination, see e.g. Blanqui [Bla04].

We can now prove the correctness of the interpretation relative to that of the function symbols
(theorem 170).

Proof. We proceed by induction on the typing derivation.

• ax: by definition of σ |=θ Γ.

• t-lam: identical to the case in theorem 25.

• p-lam: by induction hypothesis, for all σ′, θ′ such that σ′ |=θ′ Γ, |t|σ
′ is in [[T ]]θ′ . Let σ, θ be

some such valuations and P be a set of closed patterns. As |λα.t|σ = |t|σ, we need to show
that |t|σ ∈ [[T ]]θα

P

Observe that if α does not appear in Γ, then σ |=θ Γ implies σ |=θα
P
Γ, by virtue of lemma 174.

We may therefore conclude that |t|σ is in [[T ]]θα
P
.

• leaf-intro: Clear by definition of [[B(leaf)]]θ

• node-intro: let t, u be terms in [[B(α)]]θ and [[B(β)]]θ, respectively. The normal forms of Node t u

are of the form Node t′ u′, with t′ and u′ normal forms of t and u, respectively. Therefore, to
check if Node t u ↓≺≺ node(θ(α), θ(β)), it suffices to check t ↓≺≺ θ(α) and u ↓≺≺ θ(β), both of
which are true by hypothesis.

• t-app: straightforward by the induction hypothesis.
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• p-app: by hypothesis, |t|σ ∈ [[∀x.T ]]θ, this gives by definition |t|σ ∈ [[T ]]θx
pθ
, and by the substi-

tution lemma (lemma 172), |t|σ ∈ [[T {x 7→ p}]]θ, therefore

|t p|σ ∈ [[T {x 7→ p}]]θ

• symb: By hypothesis.

• sub: By application of the correctness of subtyping (lemma 177), and the induction hypothesis.

�

3.2 Higher Order Dependency Chains

Now it remains to show that each function symbol is computable. By analogy with the first
order dependency pair framework, we need to build an order on terms that is in relation to
the approximated dependency graph. Then sequences of decreasing terms will be the analogue
of chains, and we will show that there can be no infinite decreasing sequences. For this we
wish to build a well-founded order on sequences of calls, which correspond to the dependency
chains in the first-order case (definition 140). The definition in the first-order case can not
be sufficient here, as the subterms of function calls do not contain sufficient information to
determine termination (as in example 9). We therefore need to use the information given by our
type system.

However it is somewhat subtle to build this order in practice: indeed, a natural candidate
for such an order is (the transitive closure of) the relation defined by ( f ,~t) > (g, ~u) if and only if

∃θ, φ, f ♯(p1, . . . , pn) � g♯(q1, . . . , qm) ∈ G, ∀i, j, ti ∈ [[B(pi)]]θ ∧ u j ∈ [[B(q j)]]φ

This would allow us to easily build the relation between the graph and the order, and show
that each call induces a decrease in this order. Sadly, this order may not be well founded
even in the event that the termination criterion is satisfied. Consider for example the rule
f node(α, β) (Node x y) � f α x, typeable in the context Γ = x : B(α), y : B(β). Given the above
definition, we have ( f , t) > ( f , u) provided that there are closed p and q such that t ≺≺ p and
u ≺≺ q. But then we may take p = q = ⊤ and if t = z and u = z with z a variable, then
( f , z) > ( f , z). The rewrite system does satisfy the criterion, as node(α, β) � α, but the order is
not well founded.

One possible solution is to restrict the reduction to call-by-value on closed terms, where a
reduction in R can occur only if the arguments to the defined function are values in normal form
(although β-reduction can occur at any moment). However we strive for more generality.

The solution we adopt here is to take, instead of just a particular instance of the pattern
variables, the most general possible instance, and noticing that a rewrite step may occur only if
a term matches a left-hand side.

Definition 179 Take the set Pmin of minimal patterns to be the subset of P defined by:

p, q ∈ Pmin ≔ α | leaf | node(p, q)

Let v be a term in normal form. We inductively define the pattern form pat(v) of v inductively:

• pat(v) = ⊥ if t is neutral.

140



3.2. Higher Order Dependency Chains

• pat(Leaf) = leaf

• pat(Node v w) = node(pat(v), pat(w))

• pat(v) is undefined otherwise.

Note that if v is a normal form in B, then pat(v) is defined. If t is a term in B, then pats(t) is
the set

pats(t) = {pat(v) | v a normal form of t}

We define the partial type matching function matchP that takes terms t1, . . . , tn in B, and
minimal patterns p1, . . . , pn in Pmin and returns a pattern valuation:

• if p1 = α1, . . . , pn = αn and ti = t j whenever αi = α j, then

matchP(~t, ~p)(αi) = pats(ti)

• if pi = node(q1, q2) and ti = Node u1 u2 then

matchP(~t; ~p) = matchP(t1, . . . , ti−1, u1, u2, ti+1, . . . , tn ; p1, . . . , pi−1, q1, q2, pi+1, . . . , pn)

• if pi = leaf and ti = Leaf then

matchP(~p,~t) = matchP(t1, . . . , ti−1, ti+1, . . . , tn ; p1, . . . , pi−1, pi+1, . . . , pn)

• matchP is undefined in other cases.

The type matching can be seen as a way of giving the most precise possible valuation for
terms that match some left-hand side of a rule. Notice that for each f ♯(~p) � g♯(~q) ∈ G, each pi

is in Pmin. Indeed, an examination of the minimal typing rules show that only minimal patterns
may appear in types.

Note also the reassuring fact that if matchP(~t, ~p) = θ, then for each i, ti ↓≺≺ piθ, by a simple
induction.

Definition 180 A link is a tuple (n,~t, ~u) such that

• ~t, ~u ∈ B

• n = f ♯(~p) � g♯(~q) ∈ G

• matchP(~t, ~p) = θ is defined, and
∀ j, u j ↓≺≺ q jθ

′

For some extension θ′ of θ such that FV(~q) ⊆ dom(θ′).

A chain is an eventually infinite sequence c1, c2, . . . of links such that if ci = (ni,~ti, ~ui), then
for each i,

~ui �
∗ ~ti+1

and if ni = f
♯
i
(~p) � g

♯
i
(~q) then gi = fi+1.
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Notice that if FV(~q) ⊆ FV(~p) then we may take θ′ = θ in the definition of chains.

We first need to show a correspondence between the chains and the graph, that is:

Lemma 181 (Correctness of the approximated graph)
For each chain c1, c2, . . . such that ci = (ni,~ti, ~ui), there is a path n1 → n2 → . . . in GR.

Proof. It suffices to show that if c1 = (n1,~t, ~u), c2 = (n2, ~u
′,~v) is a chain, then there is an

edge between n1 = f ♯(~p) � g♯(~q) and n2 = g♯(~r) � h♯(~s). First note that the variables of ~q and ~r
may be considered distinct. Notice that by definition of a link, there is a θ such that for each i,
ui ↓≺≺ qiθ, and furthermore matchP(ri, u

′
i
) is defined. As ui �

∗ u′
i
, all normal forms of u′

i
are also

normal forms of ui. We need to prove ∀i, qi ⊲⊳ ri. We proceed by induction on matchP(ri, u
′
i
).

• ri is a variable. We can conclude immediately by the definition of ⊲⊳, as a fresh variable can
unify with any pattern.

• u′
i
= Leaf and ri = leaf. In this case Leaf is a normal form of ui, so there is some q′ ∈ qiθ such

that Leaf ≺≺ q′. By examining the possible cases for qi it follows that qi is either leaf, ⊤ or
some variable α. In each of those cases we can conclude that qi ⊲⊳ leaf.

• u′
i
= Node u′1

i
u′2

i
and ri = node(r1

i
, r2

i
). Now let us examine qi. We may exclude the cases

qi = leaf and qi = ⊥, as every normal form of u′
i
is a normal form of ui and is of the form

Node v v′. In the case qi = α or qi = ⊤ we may easily conclude. The only remaining case
is qi = node(q1

i
, q2

i
). From the induction hypothesis we get q1

i
⊲⊳ r1

i
and q2

i
⊲⊳ r2

i
, which imply

qi ⊲⊳ ri

�

If the conditions of the termination theorem are satisfied, there are no infinite chains, in the
same way as for the first order dependency pair approach.

Theorem 182 (Finiteness of chains)
Suppose that the conditions of the termination theorem of chapter 2 (theorem 165) are

satisfied. Then there are no infinite chains.

We need to define and establish the well foundedness of the embedding order on terms.

Definition 183 We mutually define the strict and large embedding preorder on erased terms in
normal form � and � by:

• t1 � u⇒ Node t1 t2 � u

• t2 � u⇒ Node t1 t2 � u

• t1 � u1 ∧ t2 � u2 ⇒ Node t1 t2 � Node u1 u2

• t1 � u1 ∧ t2 � u2 ⇒ Node t1 t2 � Node u1 u2

• Leaf � Leaf

• t � u if t and u are neutral.

• t � u⇒ t � u
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Note that the preorder is not an order: for instance, x � y and y � x. It can be seen as an
order on the set in which all neutral terms are identified.

Lemma 184 The preorder � is well-founded.

Proof. Given a term in normal form t, define size(t) inductively:

• size(Node t1 t2) = size(t1) + size(t2) + 1

• size(t) = 0 otherwise.

It is then easy to verify by mutual induction that if t � u, size(t) > size(u) and if t � u then
size(t) ≥ size(u). Well foundedness of the order on naturals yields the desired conclusion.

�

To show that there are no infinite chains, we will exploit the fact that if c = (n,~t, ~u) is a link,
that is decreasing in the embedding order on patterns, then there is a decrease in the normal
forms from t to u.

To show this, we must prove that pattern-matching does indeed completely capture the
“pattern semantics” of a term in B.

Lemma 185 Suppose ~t are terms in B and ~p are minimal patterns. If matchP(~t, ~p) is defined
and equal to θ, then for each q ∈ piθ, there is a normal form v of ti such that pat(v) = q.

Proof. We proceed by induction on the definition of matchP:

• pi = αi. In this case (as matchP(~t, ~p) is defined) By definition αθ is equal to {pat(v) |

v is a normal form of ti}.

• pi = leaf. In this case ti = Leaf and therefore we can take v = Leaf.

• pi = node(p1
i
, p2

i
). In this case, ti = Node t1

i
t2
i
. By the induction hypothesis, for any q1 ∈ p1

i
θ

and q2 ∈ p2
i
θ there are normal forms v1 and v2 of t1

i
and t2

i
such that q j = pat(v j) for j = 1, 2.

It is easy to observe that Node v1 v2 is a normal form of ti, and that q = node(q1, q2) is an
element of piθ, and pat(Node v1 v2) = q allows us to conclude.

�

To prove that there are no infinite chains, we need to relate the decrease of the patterns to
the decrease of the normal forms of the terms that appear in chains.

Lemma 186 (Correctness of the embedding order)

Suppose that p and q are closed patterns such that p � q (respectively p � q), and v1, v2

normal forms such that pat(v1) = p and v2 ≺≺ q. Then v1 � v2 (respectively v1 � v2).

Proof. We prove both properties simultaneously by induction on the derivation of p � q:

• p = node(p1, p2) and p1 � q. We have v1 = Node u1 u2 with pat(u1) = p1. By induction
hypothesis u1 � v2, and therefore Node u1 u2 � v2.

• p = node(p1, p2), q = node(q1, q2) with p1 � q1 and p2 � q2. In that case v1 = Node v1
1

v2
1
and

v2 = Node v1
2

v2
2
. The induction hypothesis gives v1

1
� v1

2
and v2

1
� v2

2
, from which we may

conclude.
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• The symmetrical cases are treated in the same manner.

• p = leaf and q = leaf. In this case, v1 = v2 = Leaf, and v1 � v2.

• p = ⊥ and q = ⊥. In this case both v1 and v2 are neutral, which gives v1 � v2.

Lemma 187 (Chain decrease)

Let c = (n,~t, ~u) be some link such that n = f ♯(~p) � g♯(~q). Suppose that there is i such that
pi � qi, (respectively pi � qi). Then if v is a normal form of ui, there exists some normal form v′

of ti such that v′ � v, (respectively v′ � v).

Proof. Let θ = matchP(~t, ~p), which is guaranteed to exist by hypothesis. First notice that
for every α ∈ FV(~p), θ(α) does not contain ⊤, by definition of matchP.

We treat the � case first. Suppose that v is a normal form of ui. By definition, we have
ui ↓≺≺ qiθ, which means by definition that there is some r ∈ qiθ such that v ≺≺ r. Since pi � qi,
this implies that there is some r′ ∈ piθ such that r′� r. We have by lemma 185 that there exists
some v′ a normal form of ti such that pat(v′) = r′, which allows us to conclude using the previous
lemma (lemma 186).

�

We finally have all the tools to give the proof of well foundedness of chains.

(Proof of theorem 182.

By contradiction, let c1, c2, . . . be an infinite chain, such that for each i, ci = (ni,~ti, ~ui). By
lemma 181, n1, n2, . . . is an infinite path in G. By finiteness of G, there is some SCC G′ and some
natural number k such that nk, nk+1, . . . is contained in G′. By hypothesis, if ni = f

♯
i
(~pi) � g

♯
i
(~qi),

there is an index j such that for each i, pi
j
� qi

j
. Furthermore, again by hypothesis, there are

an infinite number of indexes i such that pi
j
� qi

j
. Let Vi = {v | v is a normal form of ti

j
} and

Ui = {v | v is a normal form of ui
j
}. We apply lemma 187 to show that for each v′

i
∈ Ui there

exists vi ∈ Vi such that vi � v′
i
for these indexes and vi � v′

i
for the others.

We wish to show that there is an infinite chain v1, v2, . . . such that vi � vi+1 for each i and
vi � vi+1 for an infinite number of indexes i, contradicting well-foundedness of � (lemma 184).

To do this we first notice that Vi+1 ⊆ Ui, as ~ui �
∗ ~ti+1. Then we build the following graph:

• We have a node at the top, connected to every element of Vk.

• We have an edge between a ∈ Vi and b in Ui if a � b or a � b.

• We have an edge between a ∈ Ui and b ∈ Vi+1 if a = b.

Notice first that every Vi,Ui is finite, as the rewrite system is finite (each strongly normalizing
term therefore has a finite number of normal forms). We wish to apply König’s lemma [Kön26]
which states: every infinite connected graph with finite degree has an infinite simple path (a
path without repeated nodes). It is easy to see that the graph is of finite degree: every Vi and
Ui is finite and vertices are exclusively bewtween the Vi and Ui. We can verify that the graph
is infinite, as no Vi or Ui is empty (the ti and ui are strongly normalizing and therefore have at
least one normal form). Finally the graph is connected, as there is an edge between an element
of Ui and an element of Vi for each i. This give us the existence of an infinite path in the tree,
which concludes the proof.

�
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We could alternatively use well-foundedness of the multiset ordering [DM79] to prove the
non-existence of infinite chains. Note however that well-foundedness of the multiset order is also
shown using König’s lemma.

3.3 Correctness of Defined Function Symbols

To prove that the function symbols are in the interpretation of their type, we shall (obviously)
need to consider the rewrite rules. In particular, we need to relate the minimal typing used to
derive the types of left hand sides and pattern matching, in order to prove that our notion of
chain is the correct one.

Lemma 188 (Correctness of type-matching)

Suppose that Γ is a context, that l1, . . . , lk are constructor terms and that Γ ⊢min l1 : B(p1), . . . ,Γ ⊢min

lk : B(pk). Suppose that t1, . . . , tk match l1, . . . , lk. Then matchP(~t, ~p) is defined.

Proof. We proceed by induction on the structures of li (matching the cases of the matchP
judgement)

• l1 = x1, . . . , ln = xn. In this case, the only applicable case for ⊢min is the variable case. If xi = x j,
then ti = t j. Furthermore pi = αi for some variable αi and again, αi = α j if and only if xi = x j,
by linearity of αi and α j in Γ. Therefore if αi = α j, then ti = t j, and matchP(~t, ~p) is defined.

• li = Leaf. In this case the only applicable rule is the leaf rule, and pi = leaf and ti = Leaf. By
induction matchP(~t, ~p) is defined.

• li = Node l1
i

l2
i
. In this case we apply the node rule, and we have pi = node(p1

i
, p2

i
). Again, we

have ti = Node t1
i

t2
i
, and we may conclude by the induction hypothesis.

�

Our reason for defining pattern matching is to provide the“closest”possible pattern semantics
for a term. In fact we have the following result, which states that any valuation θ such that t is
in [[B(α)]]θ can be “factored through” match(t, p):

Lemma 189 Suppose that ~t is a tuple of strongly normalizing terms, that ~α is a tuple of pattern
variables, and θ′ is a valuation that verifies:

∀i, ti ∈ [[B(αi)]]θ′

Suppose in addition that ~p are minimal patterns such that matchP(~t, ~p) is defined and equal to
θ. Let φ be the substitution that sends αi to pi. Then

∀i, θ ◦ φ(αi) ≪ θ′(αi)

Proof. We proceed by induction on the judgment matchP(~t, ~p).

• pi = βi for each pi, and therefore φ(αi) = βi. In that case, θ◦φ(αi) = {pat(v) | v normal form of ti}.
Furthermore, ti ↓≺≺ θ′(αi). Take some v a normal form of ti. We have some q ∈ θ′(αi) such
that v ≺≺ q. We then verify that pat(v) ≪ q, which implies θ ◦ φ(αi) ≪ θ′(αi)
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• pi = leaf. In this case, θ′ ◦ φ(αi) = leaf. By ti ↓≺≺ θ′(αi) and ti = Leaf, we have that θ′(αi)

contains leaf or ⊤, and in each case we can conclude.

• pi = node(p1
i
, p2

i
). In this case, ti = Node t1

1
t2
i
, and

θ ◦ φ(αi) = {node(r1, r2) | r1 ∈ p1
i θ ∧ r1 ∈ p2

i θ}

By ti ↓≺≺ θ′(αi) we have for each normal form v of ti some q in θ′(αi) such that v ≺≺ q. In
addition v is of the form Node v1 v2, where v1 is a normal form of t1

i
and v2 is a normal form

of t2
i
. From this we get that either q = ⊤, in which case we are done, or q = node(q1, q2) with

v1 ≺≺ q1 and v2 ≺≺ q2. In this case we apply the induction hypothesis to deduce that there is
some r1 ∈ p1

i
θ and r2 ∈ p2

i
θ such that r1 ≪ q1 and r2 ≪ q2, and thus node(r1, r2) ≪ node(q1, q2).

�

Before proving the computability of the defined function symbols, we have to consider a
last obstacle: the recursive calls are made to functions applied to all their pattern arguments,
but not necessarily applied to their arguments themselves. To remedy this, we stratify the
interpretation of the type of function symbols, and prove that if some conditions are satisfied,
then the stratified interpretation is equal to the ordinary interpretation.

Definition 190 We define the following order >dp on pairs ( f ,~t) with f ∈ Σ and ~t a tuple of
terms:

( f ,~t) >dp (g, ~u)⇔ ∃~v, n = f ♯(~p) � g♯(~q), ~t �
∗ ~v ∧ (n,~v, ~u) is a link

That is, if ~t reduces to ~v such that there is a link between ~v and ~u, and where the associated
node corresponds to a call from f to g.

Lemma 191 If the conditions of theorem 165 are satisfied then the order >dp is well-founded.

Proof. Any infinite decreasing sequence ( f1,~t1) > ( f1,~t2) > . . . gives rise to an infinite chain,
which is not possible by theorem 182.

We have enough to prove the main theorem, that is correctness of defined symbols.

Theorem 192 (Correctness of defined symbols)
Suppose that the conditions of theorem 165 are satisfied. Then for each f ∈ Σ and each

valuation θ, f ∈ [[τ f ]].

Proof. Suppose that τ f = ∀~α.B(α1) → . . . → B(αk) → T f . Take θ a valuation and t1, . . . , tn
in [[B(α1)]]θ, . . . , [[B(αk)]]θ. We need to show that

f t1 . . . tn ∈ [[T f ]]θ

Note that each ti is strongly normalizing. As t = f ~t is neutral, it suffices to show that every
reduct of t is in [[T f ]]θ.

We proceed as in the proof of correctness of the dependency pair criterion (theorem 141): it
suffices to show that u ∈ [[T f ]]θ where u is a head reduct of f t′

1
. . . t′n and ti �

∗ t′
i
. We show this

by well-founded induction on ~t ordered by strict reduction: the reducts u of f t1 . . . tn are either

• reducts of a head reduct t′ of t: then t′ ∈ [[T f ]]θ by hypothesis, and then u ∈ [[T f ]]θ by stability
of reducibility candidates by reduction.

146



3.3. Correctness of Defined Function Symbols

• reducts of f t1 . . . t
′
i
. . . tn where ti �

+ t′
i
. By hypothesis, every head reduct of f u1 . . . un with

t1 �
∗ u1 . . . t

′
i

�
∗ ui . . . tn �

∗ un is computable. By induction hypothesis this means that
f t1 . . . t

′
i
. . . tn is computable and therefore so is u.

So in this case every reduct of t is computable, and therefore so is t.

So now take t1 �
∗ t′

1
. . . tn �

∗ t′n, and suppose that f t′
1
. . . t′n head rewrites to t′. We prove

that t′ is computable by well founded induction on ( f ,~t) ordered by >dp. There is some rule
l � r ∈ R, and some substitution σ such that |l|σ = t, and |r|σ = t′. By hypothesis that there is
some context Γ and some derivation Γ ⊢min li : B(pi) for each i, and a derivation Γ ⊢ r : T fφ, with
φ the substitution that sends αi to pi.

By lemma 188, matchP(~t, ~p) = ψ is defined. We therefore have ti ∈ [[B(pi)]]ψ for each i, which
gives ti ∈ [[B(αi)]]ψ◦φ by the substitution lemma. By lemma 189, ψ ◦ φ ≪ θ. We may then apply
the positivity condition of τ f using lemma 178 to deduce that [[T f ]]ψ◦φ ⊆ [[T f ]]θ. Therefore it
suffices to show that t′ is in [[T f ]]ψ◦φ, which is equal to [[T fφ]]ψ by the substitution lemma. By
hypothesis, Γ ⊢ r : T fφ, so we would like to apply the correctness theorem 170 to show that
t′ = |r|σ ∈ [[T fφ]]ψ. The correctness theorem itself can not be applied, as it takes as hypothesis
the correctness of function symbols, which we are trying to prove. But we will proceed in the
same manner, making essential use of the well-founded induction hypothesis.

Let us first show that for each x ∈ dom(σ), σ(x) ∈ [[Γ(x)]]ψ. Suppose that i is such that x

appears in li. We proceed by induction on the derivation of Γ ⊢min li.

• var. In this case li = x. Then Γ(x) is neccesarily equal to B(γ), and φ(αi) = pi = γ. Furthermore
by definition of matchP, ψ(γ) = pats(ti) and so σ(x) = ti ∈ [[B(γ)]]ψ.

• leaf. In this case li = Leaf. We have nothing to show here.

• node. In this case li = Node l1 l2. Simple application of the induction hypothesis.

Now we prove by induction on the derivation of Γ ⊢ r : T that |r|σ ∈ [[T ]]ψ. We can exactly
mimic the proof of theorem 170, except for the symb case. In this case, there is a g such that
r = g ~q, and if τg = ∀~β.B(β1) → . . . → B(βm) → Tg, we need to show that, for some extension
ψ′ of ψ, g ∈ [[B(q1) → . . . → B(qm) → Tg]]ψ′ . Recall the induction hypothesis on ( f ,~t), which
states that for every θ, if ( f ,~t) >dp (g, ~u), then g~u ∈ [[Tg]]θ. Now take θ to be ψ′ ◦ ζ where ζ is the
substitution that sends βi to qi. It suffices to show that if for i = 1, . . . ,m ui ∈ [[B(βi)]]ψ′◦ζ , then
( f ,~t) >dp (g, ~u). For this we need to show that there exists n ∈ G such that:

• n = f ♯(~r) � g♯(~s)

• matchP(~t,~r) = θ

• There is an extension θ′ of θ such that

~u ↓≺≺ σθ′

We just take n to be the node that corresponds to the call site of g ~q. In this case, ~r = ~p and
~s = ~q. By definition, matchP(~t, ~p) is defined and equal to ψ. Then ψ′ is an extension of ψ and as
ui ∈ [[B(βi)]]ψ′◦ζ = [[B(qi)]]ψ′ , we have ui ↓≺≺ qiψ

′.
�
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Chapter 3. Correctness

Corollary 193 Every well-typed term is in the interpretation of its type, that is

∀Γ, t,T Γ ⊢ t : T ⇒ |t| ∈ [[T ]]

Where [[T ]] = [[T ]]θ where θ is the valuation that sends every variable to the set {⊤}.

Proof. In fact it does not matter which θ we choose: let θ be any valuation. Given a variable
x and a type T , by lemma 168, x ∈ [[T ]]θ, as x is neutral and in normal form. Given Γ ⊢ t : T , we
can therefore take the substitution σ that sends every variable x ∈ dom(Γ) to itself. In that case
σ(x) ∈ [[Γ(x)]]θ by the above remark, and by the combination of theorem 170 and theorem 192,
|t|σ ∈ [[T ]]θ. But in this case |t|σ = |t|.

�

We obtain theorem 165 as a corollary: every well typed term is in the interpretation of its
type, but this interpretation only contains strongly normalizing terms by lemma 168.
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4

Related work

Our work on type-based dependency pairs follows the philosophy of size-based termination: we
aim to define a type system that captures the semantics of the phenomena under consideration,
and give a criterion that states that under certain conditions involving the typing of the rules,
every well-typed terms are strongly normalizing. We have already discussed size-types in the
previous part. We discuss other approaches to the extension of dependency pairs to higher-order
rewriting.

These approaches can be loosely divided into two categories: the dynamic dependency pairs,
which may include pairs of the form f [~t] � x[~u], as exposed in chapter 1 and static dependency
pairs in which such rules can not appear. Our type based approach is of the latter flavor,
as is usually the case with systems based on computability : the termination of (x ~t)σ for a
computable σ is trivial if every ti is computable as well. The static approaches generally do not
enjoy completeness: there are some rewrite systems which are terminating but for which there
are infinite chains.

Work by Kusakari & Sakai [SK05] allows for the treatment of applicative rewrite systems, in
which abstractions may not appear. It is however possible to take a system with abstractions and
apply defunctionalization [DN01, Joh85] in order to obtain a system of the same expressivity,
though termination of untyped terms of defunctionalized systems is not strictly equivalent to that
of the original system in general. They also treat rules in which a variable may be applied in the
left-hand side of a rule, which we forbid in our system. As for the other criteria described in this
section, they allow matching on defined symbols, a feature which is absent from our approach (in
these aspects, we are closer to functional languages in the tradition of ML [MTH91] or Haskell
[HPJW+92]). The defunctionalized rewrite system for the example with app (example 17) is
given by

app[x, y] � x[y]

f � app[g,Node[Leaf,Leaf]]

g[Node[x, y]] � Leaf

g[Leaf] � f

Which leads to the following graph for the static dependency pair framework (called SC
dependency pairs in [KS07]):
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a♯ � g♯[z] a♯ � app♯[g, Node[Leaf,Leaf]] g♯[Leaf] � a♯

Unfortunately, this graph does have a cycle, and so the criterion can not be applied. Now
it is possible to apply a certain number of transformation rules, for example supercompilation
[Tur85] to try and find a semantically equivalent rewrite system for which the approximated
dependency graph does not have any unresolvable cycles. In this case we would simply reduce
the right hand side of the rule a � app[g,Node[Leaf,Leaf]] and turn it into the rule

a � g[Node[Leaf,Leaf]]

Which leads to an approximated dependency graph without cycles. However this analysis is in
general much more complex than the simple rencap analysis described in chapter 1 (definition
145).

The static dependency pair frameworks described in this section all suffer from this problem.
Blanqui et al [KISB09, Bla06] extend the approach to HRSes which allow abstraction in right-
hand sides and left-hand sides under certain restrictions, and define the notion of argument
filterings and usable rules for such systems.

Dynamic dependency pairs are considered by Kusakari et al [SK05, KS07], Aoto and Yamada
[AY05] for applicative systems.Giesl, Thiemann and Schneider-Kamp [GTSK05], and Hirokawa,
Middeldorp and Zankl et al [HMZ08] show that it is possible to adapt the dependency pair
approach for first-order rewrite systems in order to treat applicative higher-order rewrite systems
effectively. Given the above λ-free system, the approximated dynamic dependency graph is:

a � app[g, Node[Leaf,Leaf]] g[Leaf] � a

app[x, y] � x[y]

a � g

To prove that there are no infinite dependency chains, each of these approaches must therefore
face the non-trivial task of treating the cycle in this graph.

Every criterion mentioned in this paper is capable of treating the example 18 given in chapter
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2, as it is the applicative form of a relatively simple first-order rewrite system:

f (Node(x, y)) → g(i(Node(x, y)))

g(Node(x, y)) → f (i(x))

g(Leaf) → f (h(Leaf))

i(Node(x, y)) → Node(i(x), i(y))

i(Leaf) → Leaf

h(Node(x, y)) → h(x)

However termination can not be shown using simple projections, as

• for any term t, i(t) is not a subterm of t.

• semantic information on the function h needs to be given.

Our type system allows us to express the simple facts that (i t) behaves like the term t with
respect to term structure and that (h t) may never reduce to a constructor. this allows a simple
syntactic analysis at type level to determine termination. Again, it could be argued that a
non-trivial semantic analysis needs to be performed to be able to infer the types of the i and g

functions. In a sense we displace a termination problem to a type inference problem, though of
course many techniques are similar in both fields.
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Higher-order labelling and size-based termination

We have shown that the termination of a version of size-based termination by type-level anno-
tations could be captured by the combination of:

• A higher-order version of semantic labelling.

• A realizability-model, which takes terms of base type to a set-theoretic representation of
inductive types, and terms of function type to realized set-theoretical functions.

• A termination criterion, that allows us to show relative termination of the labelled system.

This approach leads to a general semantic termination criterion: first find a model that
captures the semantic properties of the system, and apply the termination criterion to the
labelled system. To apply the precedence criterion, we need to find a compatible precedence.
We show that this is not always trivial to do, and in the case of the size semantics and the
syntactic model of theorem 137, we show that a certain combinatory lemma allows us to show
the well-foundedness of the precedence, which is built by combination of a “natural” order, and
an order which ensures compatibility. We believe that this lemma can be applied in a systematic
way, and it would be nice to find a direct combinatory characterization of our termination, which
we conjecture to be close to that of Whalstedt [Wah07].

While the categorical semantics have not yet, to our knowledge, been extended to treat
dependent or polymorphic types, it seems that such developments are not far away. At any
rate, our approach can be instantiated to a particular class of models, and as such can be
straightforwardly generalized to more powerful type theories. In particular we believe that it is
possible to give the fundamental theorem of semantic labelling for the system F [Gir72, Rey74]
with rewriting, in which we restrict the models to realizability models in the sense of Λ-sets
from Altenkirch [Alt93]. As our termination criterion is based on a simplification of the General
Schema applied to rewriting modulo equivalence rules [Bla03], it can readily be generalized to
system F or even the Calculus of Algebraic Constructions. This would give a general account of
the idea of “separation of concerns”, which aims to separate the computability arguments used to
handle β-reductions and the combinatory or semantic argument used to handle the left-algebraic
rules. In this sense our result is a modularity result.

Another natural question is the expressivity of this criterion. As noted in example 9, the
criterion is not complete. Another example that can not be handled by the labelling approach
is the system consisting of the rule:

f (S x) � (λy.y x) f

In both these situations, the β-expansion “hides” information from the argument on which the
recursive call is performed. One advantage of the traditional presentation of type-based termi-
nation, which is absent in our framework, is that such information can be encoded in the types.
This is the motivation of the type-based dependency pair approach described in chapter 2. One
may wonder therefore, if there is a restriction of higher-order rewriting with left-algebraic rules
for which the labelling criterion is complete. We have shown in section 5.3 of chapter 5 that
this is the case for the combination of a (simply sorted) first order rewrite system and currified
rewriting with β-reduction. We furthermore conjecture that this is the case for all rewrite system
for which the right-hand sides of rules satisfy the following constraints:

• All function symbols are fully applied.
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• No bound variables appear in the arguments of defined symbols.

Note however, that the semantic-labelling approach is capable of handling strictly more
powerful systems, as the recursors for Brouwer ordinals (example 3) do not satisfy this condition,
yet can be shown to be terminating using size-based termination.

It is also conceivable to replace our precedence criterion with a more powerful version, for
example an adaptation of the Higher Order Recursive Path Ordering of Jouannaud & Rubio
(see e.g. [BJR08]) to the case of relative normalization. Though it is unlikely that we obtain
a theoretically more powerful criterion, it may be the case that the combination of semantic
labelling and HORPO leads to a criterion that is easier to apply on specific examples, as a
premodel which leads to a labelled system that does not pass the precedence criterion may
possibly be treated by HORPO. This occurs frequently in the first-order case, see e.g. Zantema
[BKdV03] (page 248-249 example 6.5.42.).

We believe that our restriction to orthogonal rewrite systems in the criterion of chapter 1
can be raised, either by taking the more general constraint of confluence, or by giving a more
permissive model in which terms may be interpreted by sets of atoms in the semantic world.

Finally we wish to generalize these results to richer notions of rewriting. Hamana presents
his criterion for CRSs, which include a simple form of matching on terms with bound variables.
The absence of this constraint has simplified the presentation of our labelling framework, but it
is likely that we may generalize the correctness result to the richer notion.

Type based dependency pairs

We have described a type system which allows us to build a type-level dependency graph for
constructor-based left-algebraic rewrite systems, and we show that if the simple projection cri-
terion of Hirokawa & Middeldorp holds for this graph, then the system is terminating.

Much can be said about possible generalizations of the type-based dependency pair criterion.
It is clear that the system may be generalized to any first-order datatype, like the Peano natural
numbers or (monomorphic) lists. It is less clear that this criterion is able to treat higher-order
datatypes like the Brouwer ordinals of example 3. However we believe that these types can be
treated, using simply a suitable modification of the proof of well-foundedness of � on normal
forms (lemma 184). In this case however, considering the set of reducts of terms of base type is
not sufficient. It is also necessary to consider reducts of functional arguments applied to terms.
Then the finite sets considered in the proof of well-foundedness of chains (theorem 182) become
infinite, and we may not easily apply König’s lemma as is.

Our criterion only treats left-algebraic rules in which matching may not occur on defined
symbols. In addition, it is difficult to give an interesting return type for most functions as the
shape of the output is not generally uniform in the input. As an example consider the function
defined by the rules (given without the type annotations):

f Leaf � Node Leaf Leaf

f Node x y � Leaf

In our framework, the only possible type we can give to this function is f : ∀α.B(α) →

B(⊤). Indeed for every annotation p(α) such that f : ∀α.B(α) → B(p(α)) is valid, we have
node(leaf, leaf) ≪ p(leaf) and leaf ≪ p(node), but this is the case only for p(α) = ⊤. A possibility
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is to introduce a type-level function f̂ , with the conversion rules f̂ (leaf) ≃ node(leaf, leaf) and
f̂ (node(p, q)) ≃ leaf. We then carry such a conversion to the types, and give to f the type

∀α.B(α)→ B( f̂ (α))

This approach gives much more power to the type system, and allows extending the frame-
work to matching upon defined symbols. Such rules would make computing the dependency
graph more difficult of course, but it is possible to adopt the approximation given in definition
145 using the cap function. A more subtle problem is then giving a suitable generalization of
the � order on type annotations that allows us to generalize the termination theorem (theorem
165). We conjecture that, if the conversion rule ≃ is oriented left-to-right, and considered as a
first-order rewrite system, then a simplification order such as >rpo may suffice. This order would
then have to weakly orient every conversion rule and use >rpo instead of � to treat every cycle
in the graph. This leads to a “type level first order system” and an interesting research question
is the following: is proving termination of a higher-order rewrite system using refinement types
and type level conversion equivalent to applying defunctionalization to the system and applying
first-order termination techniques, such as described in Giesl et al [GTSK05]?

If we do not have conversion at the type level, we can still add expressivity to our framework
by adding union types. To do this we authorize atomic types to be of the form B(p1)∪ . . .∪B(pn).
This extension is very natural as our semantics already account for instantiation of type variables
by sets of patterns. This is less liberal than the unions considered in Freeman and Pfenning
[FP91b], who may consider unions of arbitrary types at the cost of a considerable loss of simplicity
in type-checking. With such an extension, we would be able to give the following type to the
function f defined above:

f :∀α.B(α)→ B(leaf) ∪ B(node(leaf, leaf))

We believe that the semantics defined in chapter 3 is sufficient to prove termination of such
an extended system, though the semantics of type-level variable substitution is considerably
more complex.

As for our semantic labelling approach, we believe that the type-based dependency pair
approach can be generalized to systems with polymorphic or dependent types, such as the
Calculus of Inductive Constructions, as has already been done for type-based termination [Bla04,
Abe04, BGP06].

Our framework uses explicit type information in the abstraction of terms, and marks pattern
abstractions and applications, in order to make the type inference syntax directed. In this way it
is possible to give an alternative type system in which subtyping is pushed into the application
rule and types are synthesized rather than checked. However, the user does not wish to give
all this explicit type information. It is likely that the type information can be recovered from
a system without the annotations on types and explicit abstraction and application, by using a
method similar to Blanqui [Bla05a]. Indeed, carrying out the synthesis described above without
these explicit annotations results in a number of constraints on patterns (much in the same way
as for Damas-Milner type inference [DM82], see also Pierce [Pie02]). We conjecture that finding
solutions to these constraints is decidable.

A further possible development, which would make the criterion fully automatic, is the
inference of the type annotations for defined functions themselves. Note that it is always possible
to give a “trivial” annotation to functions, namely by taking the simple type of the function, and
to each atomic type in positive position, associating the atomic type B(⊤) and to each atomic
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type in negative position, associating B(α) for some fresh variable α, and then quantifying over
all variables. For instance to a symbol f of simple type B → ((B → B) → B) → B we would
associate:

f :∀αβγ.B(α)→ ((B(β)→ B(⊤))→ B(γ))→ B(⊤)

This easily ensures well-typedness of the rules, but much information is lost, though one
should note that the criterion does not become trivial. In particular, the dependency graph
of example 17 does contain a cycle if such an approximation is used. The inference of more
informative annotations seems to be a non-trivial problem. The closest to our case seems to be
the work of Barthe, Gregoire and Pastawski [BGP09] in which they describe such an inference
system for a size-type system for the Calculus of Inductive Constructions, and prove a form
of completeness of their inference. In their framework, the inputs on which the size of the
output depends must be marked. Let us mention also work by Chin and Khoo [CK01], in
which they use a form of abstract interpretation refinement to compute size annotations for
functions in the language of Presburger arithmetic. Let us mention in passing work on program
transformation by deforestation (see e.g. Hamilton [Ham06]) which appears to apply semantic
techniques very similar to those necessary for inference of annotations. Finally, work by Rondon
et al [RKJ08, KRJ10], dubbed liquid types describes inference for different variants of refinement
types, and may very well apply to our case with minor variations.

Our criterion is completely orthogonal to the size change principle described by Lee, Jones
and Ben-Amram [LJBA01]. Indeed the SCP operates simply on the control graph of the rewrite
system (or the program), showing, in analogy with the theorem on finiteness of chains (theorem
182), that a certain sequence of calls may not occur an infinite number of times. We therefore
conjecture that this analysis could easily be integrated into our criterion. This is comforted by
the fact that the SCP has been successfully integrated into more complex analyses on sequences
of calls, see for example Codish et al [CFGSK10] and Hyvernat [Hyv10].

Other research directions

It would not be difficult to build a premodel analogous to that of chapter 4, which sends terms
of base type to finite sets of patterns. However it is not possible to use semantic labelling to
prove the correctness of the normalization theorem for the type level dependency pairs because,
as we have noted above, semantic labelling does not capture the “non-local data flow” which is
captured by the type systems used in the traditional size-based termination or our refinement
type framework. One may wonder how to combine the powerful semantics of the premodel
approach with the data-flow analysis provided by typing.

A natural approach is, given a presheaf algebra M for our terms, to refine the interpretation
MT (Γ) in order to be able to express constraints in addition to guarantees: Given a term t typed
by T in the context Γ, (|Γ ⊢ t : T |) = o expresses the guarantee that the semantics of t is o. However
we wish to express the fact that certain function applications may never occur: a function is
constrained to only be applied to certain arguments. This is (one of the) fundamental insights
of type-based termination. If we restrict ourselves to models in which the sheaf MA→B(Γ) is a
certain set of functions from [[A]] to [[B]] (as is the case for our size-premodel), then constraints
can be ensured by restricting the domain of these functions to a subset {v | v ≤ k} ⊆ [[A]]. If we
wish to apply semantic labelling to prove termination, then the correctness of the interpretations
of subterms must then be shown incrementally, in a similar manner to the derivation of a size-
type. We therefore conjecture the existence of a semantic typing system for termination, which
may very well be complete for left-algebraic simply typed and positive rewrite systems. This can
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certainly be seen as the most ambitious open research direction for this thesis. Berger [Ber05],
following Coquand and Spiwak [CS06], describes a domain which allows interpreting λ-terms,
and in which the interpretation is different than ⊥ if and only if the term is strongly normalizing
under rewrite rules combined with β-reduction, which may provide a clue as to how to construct
such a semantics-based type system.
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Orsay, France, 2001. Available in english as ”Type theory and Rewriting”.

[Bla03] Frédéric Blanqui. Rewriting modulo in deduction modulo. In Robert Nieuwenhuis,
editor, RTA, volume 2706 of Lecture Notes in Computer Science, pages 395–409.
Springer, 2003.

[Bla04] Frédéric Blanqui. A type-based termination criterion for dependently-typed higher-
order rewrite systems. In Proc. of the 15th International Conference on Rewriting
Techniques and Applications, volume 3091 of Lecture Notes in Computer Science,
2004.

[Bla05a] Frédéric Blanqui. Decidability of type-checking in the Calculus of Algebraic Con-
structions with size annotations. In Proceedings of the 19th International Conference
on Computer Science Logic, Lecture Notes in Computer Science 3634, 2005.

[Bla05b] Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathe-
matical Structures in Computer Science, 15(1):37–92, 2005.

[Bla06] Frédéric Blanqui. Higher-order dependency pairs. In Proceedings of the 8th Inter-
national Workshop on Termination, 2006.

162



[BN94] Henk Barendregt and Tobias Nipkow, editors. Types for Proofs and Programs,
International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993,
Selected Papers, volume 806 of Lecture Notes in Computer Science. Springer, 1994.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[BR06] Frédéric Blanqui and Colin Riba. Combining typing and size constraints for checking
the termination of higher-order conditional rewrite systems. In Proceedings of the
13th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Lecture Notes in Computer Science 4246, 2006.

[BR09] Frédéric Blanqui and Cody Roux. On the relation between sized-types based termi-
nation and semantic labelling. In Erich Grädel and Reinhard Kahle, editors, CSL,
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theory. Studies in logic and the foundations of mathematics. North-Holland, 1973.
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Résumé

Ce manuscrit présente une réflexion sur la terminaison des systèmes de réécriture d’ordres
supérieurs. Nous nous concentrons sur une méthode particulière, la terminaison à base de tailles.
La terminaison à base de tailles utilise le typage pour donner une approximation syntaxique à
la taille d’un élément du langage.

Notre contribution est double: premièrement, nous permettons d’aborder de manière struc-
turée le problème de la correction des approches à base de taille. Pour ce faire, nous montrons
qu’elle peut être traitée par une version de la méthode des annotations sémantiques. Cette
dernière utilise des annotations sur les termes calculés à partir de la sémantique des sous-termes
dans un certain prémodèle équationnel. Nous montrons la correction de notre approche par
annotations sémantiques, ainsi que du critère qui permet de traiter le système annoté, et nous
construisons un prémodèle pour le système qui correspond intuitivement à la sémantique du sys-
tème de réécriture. Nous montrons alors que le système annoté passe le critère de terminaison.

D’un autre coté nous modifions l’approche classique de la terminaison a base de tailles et
montrons que le système modifié permet une analyse fine du flot de contrôle dans un langage
d’ordre supérieur. Ceci nous permet de construire un graphe, dit graphe de dépendance ap-
proximé, et nous pouvons montrer qu’un critère syntaxique sur ce graphe suffit à montrer la
terminaison de tout terme bien typé.

Mots clés: Réécriture, ordre supérieur, typage, normalisation, tailles, annotations séman-
tiques, prémodèle, paires de dépendance.

Abstract

The present manuscript is a reflection on termination of higher-order rewrite systems. We
concentrate our efforts on a particular approach, size-based termination. This method uses
typing to give a syntactic approximation to the size of an element of the language.

Our contribution is twofold: first we give a structured approach to proving the correctness
of size-based termination. To do this, we show that it is possible to apply a certain version
of semantic labelling. This technique uses annotations on terms computed using the semantics
of subterms in a certain equational premodel. We show correctness of our labelling framework
and of the criterion that allows us to prove termination of the labelled system, and we build
a premodel of the rewrite system that intuitively corresponds to the rewrite system. We show
that the system labelled using these semantics passes the termination criterion.

Furthermore we show that a modification of the classical size-types approach allows us to
perform a fine control-flow analysis in a higher-order language. This allows us to build an
approximated dependency graph, and show that if a certain syntactic criterion is satisfied by
the graph, then all well-typed terms are terminating.

Keywords: Rewriting, higher-order, typing, termination, size, semantic labelling, premodel,
dependency pairs.
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