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Introduction

High-level computation is about recognizing shapes:

And modifying them:

→
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We are particularly interested in tree structures and their
transformations.
Trees can be represented using algebraic data-types:
the tree

f

g a

a

Is represented by the term:

f(g(a), a)



Introduction

We can also represent families of trees using terms with variables:
The family of trees:

f

g

is represented by the term

f(g(x), y)
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We can then represent transformations using pairs of terms:
The transformation:

f

g

g

Is represented by the rule:

f(g(x), y)→ g(y)

Applying the transformation is called rewriting.
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Example: the snowflakes can be represented by terms of the
shape

• Line

• Peak(x, y, z,w) x
y z

w

For example if a = Peak(Line, Line, Line, Line) then

Peak(a, Line, Line, a) represents:
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We can transform such a shape by the rule:

Line → Peak(Line, Line, Line, Line)

This is non-deterministic: applied to Peak(Line, Line, Line, Line) it
can give

or

Rewriting can therefore encode decisions.
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More formally:

• A term is either a variable x, y, . . . or a function symbol f , g, . . .
applied to a number of terms, depending on its arity.

• A rewrite rule is a pair l → r of terms such that all variables of r
are present in l.

• A substitution θ is a (partial) mapping from variables to terms.
We write tθ for the term t in which every variable x is replaced
with θ(x).

• A term t rewrites to a term u if there is a rule l → r , a subterm t ′

and a substitution θ such that t ′ = lθ and u is equal to t with the
occurrence of t ′ replaced with rθ.
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A few remarks:

• Pure rewriting has a very rich and profound theory
[Bezem et al., 2003, Jouannaud, 1993,
Dershowitz and Jouannaud, 1990, Baader and Nipkow, 1998].

• Rewriting is very expressive: it is Turing-complete, and most
problems are undecidable: Termination, Confluence,
Reachability... And can serve as a model for computation,
security protocols, etc.

• Rewriting can be seen as a semantics for equality: a rewrite rule
can be seen as a directed equation.
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Given a family of terms, for example:

f

There is a fundamental transformation:

f

This is the substitution operation.

We wish to reify this transformation.
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This transformation becomes the term

λx.f(x, x)

Called the abstraction of f(x, x). This term can be applied:

(λx.f(x, x))t

rewrites to
f(t , t)

This reduction is called β-reduction.
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The combination of β-reduction and rewriting is very expressive: it
may form the basis of a real programming language!
(e.g. Ocaml/SML [Cousineau et al., 1985, Milner et al., 1997],
Haskell [Hudak et al., 1992], Elan [Borovanský et al., 1998], Maude
[Clavel et al., 1996]...)
Our approach is founded on [Jouannaud and Okada, 1991].
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In fact a bit too expressive!

We add types:

• Allows simple algebraic semantics

• Makes β-reduction alone terminating

How can we use this additional structure to give guarantees?
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We adopt the algebraic semantics for higher-order systems
described by Plotkin, Fiore and Turi [Fiore et al., 1999] and
extended to rewriting by Hamana [Hamana, 2003].
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What is an algebraic structure?

The categorical view:
An algebraic structure is a functor which encodes information
which can refer to its argument:

Nat(X) = Unit + X

An element of Nat(X) is either a “special element” i or a box
containing an e ∈ X .

Given a functor F , an F-algebra A is an interpretation of F(A) into
A :

eval : F(A)→ A
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For Nat(X) over sets:
An algebra is a set A with

• An element z ∈ A , the image of i by eval

• A function s : A → A which sends the boxed element e to s(e).

• Nat-algebras form a category

• The initial Nat-algebra is the set of closed terms

0,S(0),S(S(0)), . . .

Or, equivalently, N.

How do we encode information about variable binding?
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Idea: replace sets with variable indexed sets, called presheafs:

For each setV = {x1, . . . , xn} of variables A(V) are the elements
of A that depend on x1, . . . , xn.

Motivating example:

Term(V) = {t | free variables of t ⊆ V}
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Abstraction then becomes a morphism of presheafs:

absV : A(V ∪ {x})→ A(V)

for x < V.
We define the presheaf

Ax(V) = A(V∪{x})

for x < V.

This gives
abs : Ax → A
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In the typed framework:

Γ, x : T ,∆ ` x : T
var

Γ ` f : τf
sig

Γ ` t : T → U Γ ` u : T
Γ ` t u : U

app

Γ, x : T ` t : U
Γ ` λx : T .t : T → U

abs
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The typed algebras: presheafs over contexts instead of sets of
variables and indexed by types.

The term presheaf

TermT (Γ) = {t | Γ ` t : T }
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We can give the signature for the that defines term algebra functor:

Σλ(F) = V + S + F × F + Fx : _
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We can give the signature for the that defines term algebra functor:

Σλ(F) = V︸︷︷︸
var

+ S︸︷︷︸
sig

+ F × F︸︷︷︸
app

+ Fx : _︸︷︷︸
abs
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We can give the signature for the that defines term algebra functor:

Σλ(F) = V︸︷︷︸
var

+ S︸︷︷︸
sig

+ F × F︸︷︷︸
app

+ Fx : _︸︷︷︸
abs

Note: the actual product and abstraction are slightly more complex.
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We define the operator • on presheafs:

(A • B)T (Γ)

is the set of tuples
(a, b1, . . . , bn)

such that

a ∈ AT (x1 : T1, . . . , xn : Tn)⇒ bi ∈ BTi (Γ)

modulo renaming.
This can be seen as the unapplied substitution

a{x1 7→ b1, . . . , xn 7→ bn}
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The operator • defines a monoidal product for term algebras.
We define a substitution to be an arrow

subst : A • A → A

which turns A into a •-monoid.

We furthermore require the structure to be compatible with the
algebra structure; we call this a •-algebra.
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Theorem (Fiore, Plotkin & Turi)

Term is the initial •-algebra.

This gives us an interpretation morphism

(|_|) : Term → A

for every •-algebra A .

We write:

(|Γ ` t : A |) ∈ AT (Γ)
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Finally, we want this structure to be compatible with the rewrite
rules: A is an ordered presheaf such that

t →∗
R∪β u ⇒ (|t |) ≥ (|u|)

We call such a structure a premodel, or model if there is equality.
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Question

How can we use models to simplify termination problems?
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Size-based termination uses type annotations to deduce
size-information about terms.

We have a judgment for base types:

Γ `size t : Ba

Which denotes: t is of size a.
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We consider strictly positive inductive types: if c is a constructor of
the type B, for example

c : A → B → (A → B)→ B

then we annotate with size information to give

c : A → Bα → (A → Bβ)→ Bmax(α,β)+1

The size of a term intuitively corresponds to the size of the normal
form as a tree.
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The size-type system is given by the following rules
[Blanqui and Roux, 2009, Blanqui, 2004, Barthe et al., 2004]:

Γ, x : T ,∆ `size x : T
ax

φ subst
Γ `size f : τfφ

symb

Γ `size t : T → U Γ `size u : T
Γ `size t u : U

app

Γ, x : T∞ `size t : U
Γ `size λx : |T |.t : T → U

abs

Γ `size t : T T ≤ U
Γ `size t : U

sub
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The criterion then requires (among other things) that each rule

f l1 . . . ln → r

if Γ `size li : Bai then
Γ `~asize r : T

where `~asize constrains recursive calls on f to smaller arguments.
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The traditional proof of correctness involves a modification of the
classic Tait normalization proof.
We desire

• A more conceptually simple proof.

• A more modular proof.
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Our approach:

Rewrite System

Translated SystemAlgebraic Semantics

Generic Termination Proof
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Our transformation method needs to use semantic information in
the terms.

We select semantic labelling [Zantema, 1995].
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The idea:

• Select a modelMR of the rewrite system R, with interpretation
(|_|)M.

• In each rule l → r ∈ R, we replace each f(t1, . . . , tn) ∈ l, r with

f((|t1 |),...,(|tn |))(t1, . . . , tn)

recursively.

• Show that normalization of the new system is equivalent to that
of the original system.
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Hamana [Hamana, 2007] describes such a framework for the
higher-order case and shows correctness.
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However his approach has several drawbacks:

• Application may not be curried.

• The reduction associated to β-reduction is not β-reduction!
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The definition of labelling:

Without currying
φ is a valuation and

• xφ = x

• t u
φ

= t
φ

uφ

• λx : T .t
φ

= λx : T .t
φx

x

• f(t1, . . . , tn)
φ

= f(|~t |)φ(t1
φ
, . . . , tn

φ
)

Where φx
x weakens the context for φ and extends it to send x to x.

The labelling of a term only depends on the semantics of subtypes.
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In the curried framework:

f(t1, t2, . . . , tn) is represented by (. . . ((f t1) t2) . . . tn)

The labelling of this last term is

f() t1
φ
. . . tn

φ

There is no meaningful label for f as it takes no arguments!
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Our solution: non structural labelling:

f t1 . . . tn
φ

= f(|~t |)φ t1
φ
. . . tn

φ

f may be applied to less than n arguments.

f t1 . . . tk
φ

= f((|t1 |)φ,...,(|tk |),(|?|)) ~t
φ
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We solve this by weakening the context for f -labels in this case:

f t1 . . . tk
φ

= f((|t1 |)φ′ ,...,(|tk |)φ′ ,(|x1 |)φ′ ,...,(|xn−k |)φ′ )
~t
φ

with φ′ = φx1...xn−k
x1...xn−k
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Now the fundamental property of labelling in the first-order case is
expressed by:

t→Rt ′ ⇔ ∀φ, t
φ
→
R

t ′
φ

if we are working with a model and

t→Rt ′ ⇔ ∀φ, t
φ
→
R∪Decr∗ t

′
φ

if we are working with a premodel, with

Decr = {fl → fl′ | l ≥M∗ l′}
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In the higher-order framework we would like to have

t→R∪βt ′ ⇔ t
φ
→
R∪βt

′
φ

to be able to apply some generic termination argument to the
labelled system.

However this property fails in Hamana’s framework.
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It fails in 2 different ways:

instantiation of variables in a context

(λx : T .f x) t →β f t

labelling gives
(λx : T .f(|x`x |) x) t 6→β f(|t |) t

And symmetrically:

substitution of a term into a context

(λy : T .λx : U.y) (f t)→β λx : U.f t

labelling gives

(λy : T .λx : U.y) (f(|t |) t) 6→β λx : U.f(|x`t |) t
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To solve this failure we introduce two orders on labels:

(|x ` t |) >inst (|t |)x 7→v

Which allows instantiation of free variables in labels and

(|t |) >weak (|x ` t |)

which allows us to weaken the context of the labels.

And allow decrease of the labels in rewriting:

Struct = {fl → fl′ | l >inst ,decr l′}
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With the structural rules, we can “save” the result:

Theorem:

t→R∪βt ′ ⇔ t
φ
→
R∪β∪Decr∗∪Struct∗ t

′
φ
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However we loose termination, as Struct is non-terminating: If x is
free in t , then

(|x ` t |) >inst (|t |) >weak (|x ` t |)

We can however express a relative termination result:

Corollary:

t is R ∪ β-normalizing ⇔ t
φ

is Rβ-normalizing
relative to Decr ∪ Struct
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We want to build a set-theoretical model in which:

• Abstractions are interpreted by functions.

• There is a natural notion of size.
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We proceed by cumulativity.

We mutually define:

• elements of inductive types by tuples

(|c t1 . . . tn |)φ = (c, (|t1|)φ, . . . , (|tn |)φ)

• elements of arrow types by functions

(|λx : T .t |)φ = v 7→ (|t |)φx
v

We need to find interpretations for base types.
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Pure set theoretic extensions lead to very large sets!

Solution

Use realizable function spaces.

We consider the interpretation:

[[A → B]] =
{
f ∈ [[B]][[A ]] | ∃t , t 
 f

}
with

t 
 f ⇔ ∀u 
 x, t u 
 f(x)
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Using this definition and the Tarski fixed-point theorem we can
interpret types.

There is a natural notion of size:

• size((c, t1, . . . , tn)) = max(size(t1), . . . , size(tn)) + 1

• size(f) = supx f(x)
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The size types correspond to sizes in the model:

Γ `size t : Ba ⇒ θ |= µ⇒ size((|t |)θ) ≤ (|a |)µ

By well-founded induction on the sizes we can interpret defined
functions

fAlg(x1) . . . (xn) = (|r |)θ

for f~l → r ∈ R and (|~l|)θ = ~x. We use the orthogonality restriction
here.
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Using this construction we build a model Alg of the rewrite system.

AlgT (Γ) = [[Γ→ T ]] = [[T1]]→ . . .→ [[Tn]]→ [[T ]]

subst(f , x1, . . . , xn) = v 7→ f(x1(v)) . . . (xn(v))

etc.

Theorem:
Alg constitutes a R ∪ β-model.
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For the termination proof, we need a relative precedence
termination criterion.

We proceed in a similar manner to [Blanqui, 2003].
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We consider a typed left-algebraic higher-order rewrite system R
and a typed algebraic rewrite system S. The Criterion We suppose
that

• The positivity conditions are satisfied.

• There is a well-founded precedence >prec on the function
symbols.

• The rules in R respect the precedence:

∀f~l → r ∈ R, g ∈ r ⇒ f >prec g

• The precedence is compatible with S.
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Compatibility states: if

f t1 . . . tn →S g u1 . . . um

then

• ~u is an S-permutation of~t :

∀i∃j, tj →S ui

• g is weaker for >prec than f :

∀h, g >prec h ⇒ f >prec h

Theorem:
If R and S satisfy the criterion then

Γ ` t : T ⇒ t ∈ SN
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Define >decr on labels to be

fl >decr fl′ ⇔ l>Alg l′

with
x>Algy ⇔ size(x) > size(y)

To show termination of the size-based system we take

f >prec g ⇔ f>Struct ◦ >decrg

It is easy to show compatibility.
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Well-foundedness is more difficult: we may have

Γ1 ⊇ Γ2 ⊆ Γ3

x1 >prec x2 >prec x3

In particular lexicographic ordering on sizes and the size of
contexts is insufficient.

We use a lemma from Doornbos and Von Karger
[Doornbos and Karger, 1998].
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This method is generic: it can be used to prove different
termination results, for example:
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Theorem (Breazu-Tannen, Gallier &
Okada)[Breazu-Tannen and Gallier, 1990, Okada, 1989]:
Let R be a first-order (uni-sorted) rewrite system that is SN .

Then the system consisting of

• A single base type D.

• Curried typed rewrite rules: if f is of arity n then

f : D → . . .→ D︸           ︷︷           ︸
n

→ D

and

f(l1, . . . , ln)→ r 7→ f curry(l1) . . . curry(ln)→ curry(r)

• β-reduction

Is strongly normalizing on typed terms.
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However this approach fails on certain simple rewrite systems.

There is no model for which

f (S x)→ (λy : T .f y) x

can be shown to be terminating in the labelling framework.

We need to be capable of analyzing control flow.
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To do this we go back to the types. We need a system capable of
analyzing potential calls.

In first-order rewriting, this is achieved using dependency pairs.
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We wish to capture part of the analysis on the dependency graph
using refinement types

We restrict ourselves to the type of unlabeled binary trees.

The idea:
The refinement B(p) of the type B of trees is

B(p) = {t ∈ B | t is of shape p}

We perform analysis on the shapes.
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We give the following shapes or patterns:

• The top pattern >, which denotes any possible tree.

• The leaf pattern which denotes leaves.

• The node(p, q) pattern which denotes trees which are nodes
with left subtree of shape p and right subtree of shape q.

• The bottom pattern ⊥ which denotes no possible tree.

• Variables α which allow us to quantify over all patterns.



The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We can then describe our system.

types:
T ,U ∈ T B B(p) | ∀α.T | T → U

terms:

t , u ∈ Trm B x | f | λx : T .t | λα.t | t u | t p | Leaf | Node

Note that abstraction and application of patterns is explicit.

Contrary to the previous approach, we only treat matching on
non-defined terms, but with no orthogonality restriction.



The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We define a type system to assign types with patterns to terms.

Γ, x : T , Γ′ ` x : T
ax

Γ, x : T ` t : U
Γ ` λx : T .t : T → U

t − lam

Γ ` Leaf : B(leaf)
leaf − intro

Γ ` Node :∀αβ.B(α)→ B(β)→ B(node(α, β))
node − intro

Γ ` t : T
Γ ` λα.t :∀α.T

p − lam

with α free in Γ.

Γ ` t : T → U Γ ` u : T
Γ ` t u : U

t − app

Γ ` t :∀α.T
Γ ` t p : T {α 7→ p}

p − app

Γ ` f : τf
symb
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This is insufficient in general to type interesting rewrite systems:

rev Leaf → Leaf
rev (Node x y) → Node (rev y) (rev x)

The type of rev can only be ∀α.B(α)→ B(>) and we need
subtyping to derive

Leaf : B(>)

and
Node (rev y) (rev x) : B(>)



The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We introduce subtyping rules

We define the sub-pattern relation� by:

• p � p

• p � >

• ⊥ � p

• p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

This leads to the following subtyping:

• p�q ⇒ B(p)≤B(q)

• T2 ≤ T1 ∧ U1 ≤ U2 ⇒ T1 → U1 ≤ T2 → U2

• T ≤ U ⇒ ∀α.T ≤ ∀α.U

Γ ` t : T T ≤ U
Γ ` t : U

sub
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Thanks to explicit annotations of pattern abstraction and
application, all of our rules are syntax directed, except for the
subtyping rules.

An alternate application rule:

Γ ` t : T → U Γ ` u : T ′ T ′ ≤ T
Γ ` t u : U

sub − app

This rule replaces application and subtyping.
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Using transitivity of subtyping we show that the new rules are
equivalent to the old ones.

Theorem:

Type inference is decidable.
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We suppose that every rule can be well-typed in the framework
and that:

• Each symbol f has a number of recursive arguments of type B.

• The type of f is of the form

f :∀α1 . . . αn.B(α1)→ . . .→ B(αn)→ Tf

• the αi appear positively in Tf .

• In each rule l → r , each symbol g ∈ r is fully applied to its type
arguments.
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We wish to analyze the types involved in typing to build a type
based dependency graph.

The dependency pairs:
For each rule f ~α~l → r and each g ∈ r such that

• Γ `min li : B(pi)

• g q1 . . . qn appears in r

We build the dependency pair

f ](p1, . . . , pn)→ g](q1, . . . , qm)
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We need to check possible successive calls by examination of the
pairs. To do this we define pattern unification ./.

• A variable α pattern-unifies with everything.

• > pattern-unifies with everything.

• ⊥ may unify with a variable, with > or itself

• Similarly leaf unifies with a variable, > or leaf.

• Same for node(p, q) which unifies with a variable, >, or
node(p′, q′) iff

p./p′ ∧ q./q′

We write:

f ](p1, . . . , pn)./f ](q1, . . . , qn)

if
p1./q1 ∧ . . . ∧ pn./qn
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The dependency graph has

• as nodes the dependency pairs

• an edge between l] → r] and l′] → r ′] if

r] ./ l′]
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We can also define a decrease B on patterns:

The closure by context of

node p, qBp

and
node p, qBq

We carry this to dependency pairs:

f(node(p, q))→B g(p)
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To show termination we observe the dependency graph:

i](node(α, β))→B i](α)

i](node(α, β))→B i](β)

f ](node(α, β))→D g](node(α, β))

f ](node(α, β))→D i](node(α, β))

g](node(α, β))→B f ](α)

g](node(α, β))→D i](node(α, β))

g](leaf)→ f ](⊥) g](leaf)→ h](leaf)
h](node(α, β))→B h](α)
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We need to verify that each cycle contains only weak decreases
(marked with D) and at least one strict decrease (marked with B).

Theorem [Roux, 2011]:
If the above condition is satisfied, every well-typed term is strongly
normalizing
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To prove termination, we modify the classic proof by candidates:
we need to find an interpretation of the base types.

In particular we need to instantiated pattern variables. We
instantiate them with closed patterns.
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The intuition:
[[B(p)]]θ = {t | tmatches p}

Problem
If a non-confluent term

Node (Node x y) z ← t → Node Leaf Leaf

is in B(node(α, β)), then we would necessarily have α 7→ >.

This is not sufficiently precise.

We interpret pattern variables by sets of closed patterns.
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If t is a term in SN and P is a set of closed patterns, we write
t ↓≺≺ P if

For each normal form u of t , there is some p ∈ P such that u
matches p.

We take θ to send variables to sets of closed patterns. We define

[[B(p)]]θ = {t ∈ SN | t ↓≺≺ pθ}
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Then we carry out the classic construction

• [[A → B]]θ = {t | ∀u ∈ [[A ]]θ, t u ∈ [[B]]θ}

• [[∀α.A ]]θ = {t | ∀P, t ∈ [[T ]]θαP }

It works.
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To show decrease in terms we need additional information.

Lemma:
If t = (Node l1 l2)σ, then every normal form of t is of the shape

Node v1 v2

with v1 and v2 normal forms of l1σ and l2σ.
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From this we get

• if t = (Node l1 l2)σ

• if for every θ

t ∈ [[B(node(α, β))]]θ ⇒ u ∈ [[B(α)]]θ

Then every normal form of u is smaller than some normal form of t .
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Infinite sequences of calls:

t1 → t2 → . . .

therefore give rise to sequences of normal forms

u1

u2

u3

v1

v2

v3

. . .

And we may conclude by König’s lemma.
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We have described two distinct extensions to the size-types
approach to termination of higher-order rewrite systems. We would
like a combination which

• Has the power of the algebraic semantics.

• Can capture the notions of control flow.

The Objective
Prove completeness of such a framework.
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In addition, for both these frameworks, we can go up:

• More expressive type theories.

• Weaker conditions: relax orthogonality, matching on defined
constructors, higher-order inductive types.
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A natural extension of the type-based dependency framework is to
allow unions of base types:

B(p1) ∪ . . . ∪ B(pn)

and explore the possible lattices of types that can be authorized.

We can also look at conversion at the type level:

f :∀α.B(α)→ B (̃f(α)), f̃(leaf)'p, f̃(node(γ, δ))'q

and study the type annotations as a first order rewrite system.

Look for type-level analogues of first-order techniques
(interpretations, simplification orderings).
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Thank you!
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