
Introduction

Size-Based Termination: Semantics and
Generalizations

Cody Roux

INRIA-Lorraine Pareo

June 7, 2011

Introduction

Outline

Introduction

Introduction

High-level computation is about recognizing shapes:

And modifying them:

→

Introduction

We are particularly interested in tree structures and their
transformations.
Trees can be represented using algebraic data-types:
the tree

f

g a

a

Is represented by the term:

f(g(a), a)

Introduction

We can also represent families of trees using terms with variables:
The family of trees:

f

g

is represented by the term

f(g(x), y)

Introduction

We can then represent transformations using pairs of terms:
The transformation:

f

g

g

Is represented by the rule:

f(g(x), y)→ g(y)

Applying the transformation is called rewriting.

Introduction

Example: the snowflakes can be represented by terms of the
shape

• Line

• Peak(x, y, z,w) x
y z

w

For example if a = Peak(Line, Line, Line, Line) then

Peak(a, Line, Line, a) represents:

Introduction

We can transform such a shape by the rule:

Line → Peak(Line, Line, Line, Line)

This is non-deterministic: applied to Peak(Line, Line, Line, Line) it
can give

or

Rewriting can therefore encode decisions.

Introduction

More formally:

• A term is either a variable x, y, . . . or a function symbol f , g, . . .
applied to a number of terms, depending on its arity.

• A rewrite rule is a pair l → r of terms such that all variables of r
are present in l.

• A substitution θ is a (partial) mapping from variables to terms.
We write tθ for the term t in which every variable x is replaced
with θ(x).

• A term t rewrites to a term u if there is a rule l → r , a subterm t ′

and a substitution θ such that t ′ = lθ and u is equal to t with the
occurrence of t ′ replaced with rθ.

Introduction

A few remarks:

• Pure rewriting has a very rich and profound theory
[Bezem et al., 2003, Jouannaud, 1993,
Dershowitz and Jouannaud, 1990, Baader and Nipkow, 1998].

• Rewriting is very expressive: it is Turing-complete, and most
problems are undecidable: Termination, Confluence,
Reachability... And can serve as a model for computation,
security protocols, etc.

• Rewriting can be seen as a semantics for equality: a rewrite rule
can be seen as a directed equation.

Introduction

Given a family of terms, for example:

f

There is a fundamental transformation:

f

This is the substitution operation.

We wish to reify this transformation.

Introduction

This transformation becomes the term

λx.f(x, x)

Called the abstraction of f(x, x). This term can be applied:

(λx.f(x, x))t

rewrites to
f(t , t)

This reduction is called β-reduction.

Introduction

The combination of β-reduction and rewriting is very expressive: it
may form the basis of a real programming language!
(e.g. Ocaml/SML [Cousineau et al., 1985, Milner et al., 1997],
Haskell [Hudak et al., 1992], Elan [Borovanský et al., 1998], Maude
[Clavel et al., 1996]...)
Our approach is founded on [Jouannaud and Okada, 1991].

Introduction

In fact a bit too expressive!

We add types:

• Allows simple algebraic semantics

• Makes β-reduction alone terminating

How can we use this additional structure to give guarantees?

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Outline

Algebraic semantics

Size-based termination

Semantic Labelling

The Model Construction

Proving Termination

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We adopt the algebraic semantics for higher-order systems
described by Plotkin, Fiore and Turi [Fiore et al., 1999] and
extended to rewriting by Hamana [Hamana, 2003].

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

What is an algebraic structure?

The categorical view:
An algebraic structure is a functor which encodes information
which can refer to its argument:

Nat(X) = Unit + X

An element of Nat(X) is either a “special element” i or a box
containing an e ∈ X .

Given a functor F , an F-algebra A is an interpretation of F(A) into
A :

eval : F(A)→ A

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

For Nat(X) over sets:
An algebra is a set A with

• An element z ∈ A , the image of i by eval

• A function s : A → A which sends the boxed element e to s(e).

• Nat-algebras form a category

• The initial Nat-algebra is the set of closed terms

0,S(0),S(S(0)), . . .

Or, equivalently, N.

How do we encode information about variable binding?

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Idea: replace sets with variable indexed sets, called presheafs:

For each setV = {x1, . . . , xn} of variables A(V) are the elements
of A that depend on x1, . . . , xn.

Motivating example:

Term(V) = {t | free variables of t ⊆ V}

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Abstraction then becomes a morphism of presheafs:

absV : A(V ∪ {x})→ A(V)

for x < V.
We define the presheaf

Ax(V) = A(V∪{x})

for x < V.

This gives
abs : Ax → A

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

In the typed framework:

Γ, x : T ,∆ ` x : T
var

Γ ` f : τf
sig

Γ ` t : T → U Γ ` u : T
Γ ` t u : U

app

Γ, x : T ` t : U
Γ ` λx : T .t : T → U

abs

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The typed algebras: presheafs over contexts instead of sets of
variables and indexed by types.

The term presheaf

TermT (Γ) = {t | Γ ` t : T }

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We can give the signature for the that defines term algebra functor:

Σλ(F) = V + S + F × F + Fx : _

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We can give the signature for the that defines term algebra functor:

Σλ(F) = V︸︷︷︸
var

+ S︸︷︷︸
sig

+ F × F︸︷︷︸
app

+ Fx : _︸︷︷︸
abs

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We can give the signature for the that defines term algebra functor:

Σλ(F) = V︸︷︷︸
var

+ S︸︷︷︸
sig

+ F × F︸︷︷︸
app

+ Fx : _︸︷︷︸
abs

Note: the actual product and abstraction are slightly more complex.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We define the operator • on presheafs:

(A • B)T (Γ)

is the set of tuples
(a, b1, . . . , bn)

such that

a ∈ AT (x1 : T1, . . . , xn : Tn)⇒ bi ∈ BTi (Γ)

modulo renaming.
This can be seen as the unapplied substitution

a{x1 7→ b1, . . . , xn 7→ bn}

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The operator • defines a monoidal product for term algebras.
We define a substitution to be an arrow

subst : A • A → A

which turns A into a •-monoid.

We furthermore require the structure to be compatible with the
algebra structure; we call this a •-algebra.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Theorem (Fiore, Plotkin & Turi)

Term is the initial •-algebra.

This gives us an interpretation morphism

(|_|) : Term → A

for every •-algebra A .

We write:

(|Γ ` t : A |) ∈ AT (Γ)

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Finally, we want this structure to be compatible with the rewrite
rules: A is an ordered presheaf such that

t →∗
R∪β u ⇒ (|t |) ≥ (|u|)

We call such a structure a premodel, or model if there is equality.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Question

How can we use models to simplify termination problems?

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Outline

Algebraic semantics

Size-based termination

Semantic Labelling

The Model Construction

Proving Termination

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Size-based termination uses type annotations to deduce
size-information about terms.

We have a judgment for base types:

Γ `size t : Ba

Which denotes: t is of size a.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We consider strictly positive inductive types: if c is a constructor of
the type B, for example

c : A → B → (A → B)→ B

then we annotate with size information to give

c : A → Bα → (A → Bβ)→ Bmax(α,β)+1

The size of a term intuitively corresponds to the size of the normal
form as a tree.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The size-type system is given by the following rules
[Blanqui and Roux, 2009, Blanqui, 2004, Barthe et al., 2004]:

Γ, x : T ,∆ `size x : T
ax

φ subst
Γ `size f : τfφ

symb

Γ `size t : T → U Γ `size u : T
Γ `size t u : U

app

Γ, x : T∞ `size t : U
Γ `size λx : |T |.t : T → U

abs

Γ `size t : T T ≤ U
Γ `size t : U

sub

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The criterion then requires (among other things) that each rule

f l1 . . . ln → r

if Γ `size li : Bai then
Γ `~asize r : T

where `~asize constrains recursive calls on f to smaller arguments.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The traditional proof of correctness involves a modification of the
classic Tait normalization proof.
We desire

• A more conceptually simple proof.

• A more modular proof.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Our approach:

Rewrite System

Translated SystemAlgebraic Semantics

Generic Termination Proof

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Outline

Algebraic semantics

Size-based termination

Semantic Labelling
Currying
Stability by Reduction

The Model Construction

Proving Termination

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Our transformation method needs to use semantic information in
the terms.

We select semantic labelling [Zantema, 1995].

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The idea:

• Select a modelMR of the rewrite system R, with interpretation
(|_|)M.

• In each rule l → r ∈ R, we replace each f(t1, . . . , tn) ∈ l, r with

f((|t1 |),...,(|tn |))(t1, . . . , tn)

recursively.

• Show that normalization of the new system is equivalent to that
of the original system.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Hamana [Hamana, 2007] describes such a framework for the
higher-order case and shows correctness.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

However his approach has several drawbacks:

• Application may not be curried.

• The reduction associated to β-reduction is not β-reduction!

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The definition of labelling:

Without currying
φ is a valuation and

• xφ = x

• t u
φ

= t
φ

uφ

• λx : T .t
φ

= λx : T .t
φx

x

• f(t1, . . . , tn)
φ

= f(|~t |)φ(t1
φ
, . . . , tn

φ
)

Where φx
x weakens the context for φ and extends it to send x to x.

The labelling of a term only depends on the semantics of subtypes.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

In the curried framework:

f(t1, t2, . . . , tn) is represented by (. . . ((f t1) t2) . . . tn)

The labelling of this last term is

f() t1
φ
. . . tn

φ

There is no meaningful label for f as it takes no arguments!

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Our solution: non structural labelling:

f t1 . . . tn
φ

= f(|~t |)φ t1
φ
. . . tn

φ

f may be applied to less than n arguments.

f t1 . . . tk
φ

= f((|t1 |)φ,...,(|tk |),(|?|)) ~t
φ

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We solve this by weakening the context for f -labels in this case:

f t1 . . . tk
φ

= f((|t1 |)φ′ ,...,(|tk |)φ′ ,(|x1 |)φ′ ,...,(|xn−k |)φ′)
~t
φ

with φ′ = φx1...xn−k
x1...xn−k

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Now the fundamental property of labelling in the first-order case is
expressed by:

t→Rt ′ ⇔ ∀φ, t
φ
→
R

t ′
φ

if we are working with a model and

t→Rt ′ ⇔ ∀φ, t
φ
→
R∪Decr∗ t

′
φ

if we are working with a premodel, with

Decr = {fl → fl′ | l ≥M∗ l′}

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

In the higher-order framework we would like to have

t→R∪βt ′ ⇔ t
φ
→
R∪βt

′
φ

to be able to apply some generic termination argument to the
labelled system.

However this property fails in Hamana’s framework.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

It fails in 2 different ways:

instantiation of variables in a context

(λx : T .f x) t →β f t

labelling gives
(λx : T .f(|x`x |) x) t 6→β f(|t |) t

And symmetrically:

substitution of a term into a context

(λy : T .λx : U.y) (f t)→β λx : U.f t

labelling gives

(λy : T .λx : U.y) (f(|t |) t) 6→β λx : U.f(|x`t |) t

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

To solve this failure we introduce two orders on labels:

(|x ` t |) >inst (|t |)x 7→v

Which allows instantiation of free variables in labels and

(|t |) >weak (|x ` t |)

which allows us to weaken the context of the labels.

And allow decrease of the labels in rewriting:

Struct = {fl → fl′ | l >inst ,decr l′}

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

With the structural rules, we can “save” the result:

Theorem:

t→R∪βt ′ ⇔ t
φ
→
R∪β∪Decr∗∪Struct∗ t

′
φ

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

However we loose termination, as Struct is non-terminating: If x is
free in t , then

(|x ` t |) >inst (|t |) >weak (|x ` t |)

We can however express a relative termination result:

Corollary:

t is R ∪ β-normalizing ⇔ t
φ

is Rβ-normalizing
relative to Decr ∪ Struct

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Outline

Algebraic semantics

Size-based termination

Semantic Labelling

The Model Construction

Proving Termination

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We want to build a set-theoretical model in which:

• Abstractions are interpreted by functions.

• There is a natural notion of size.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We proceed by cumulativity.

We mutually define:

• elements of inductive types by tuples

(|c t1 . . . tn |)φ = (c, (|t1|)φ, . . . , (|tn |)φ)

• elements of arrow types by functions

(|λx : T .t |)φ = v 7→ (|t |)φx
v

We need to find interpretations for base types.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Pure set theoretic extensions lead to very large sets!

Solution

Use realizable function spaces.

We consider the interpretation:

[[A → B]] =
{
f ∈ [[B]][[A]] | ∃t , t f

}
with

t f ⇔ ∀u x, t u f(x)

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Using this definition and the Tarski fixed-point theorem we can
interpret types.

There is a natural notion of size:

• size((c, t1, . . . , tn)) = max(size(t1), . . . , size(tn)) + 1

• size(f) = supx f(x)

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

The size types correspond to sizes in the model:

Γ `size t : Ba ⇒ θ |= µ⇒ size((|t |)θ) ≤ (|a |)µ

By well-founded induction on the sizes we can interpret defined
functions

fAlg(x1) . . . (xn) = (|r |)θ

for f~l → r ∈ R and (|~l|)θ = ~x. We use the orthogonality restriction
here.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Using this construction we build a model Alg of the rewrite system.

AlgT (Γ) = [[Γ→ T]] = [[T1]]→ . . .→ [[Tn]]→ [[T]]

subst(f , x1, . . . , xn) = v 7→ f(x1(v)) . . . (xn(v))

etc.

Theorem:
Alg constitutes a R ∪ β-model.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Outline

Algebraic semantics

Size-based termination

Semantic Labelling

The Model Construction

Proving Termination

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

For the termination proof, we need a relative precedence
termination criterion.

We proceed in a similar manner to [Blanqui, 2003].

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

We consider a typed left-algebraic higher-order rewrite system R
and a typed algebraic rewrite system S. The Criterion We suppose
that

• The positivity conditions are satisfied.

• There is a well-founded precedence >prec on the function
symbols.

• The rules in R respect the precedence:

∀f~l → r ∈ R, g ∈ r ⇒ f >prec g

• The precedence is compatible with S.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Compatibility states: if

f t1 . . . tn →S g u1 . . . um

then

• ~u is an S-permutation of~t :

∀i∃j, tj →S ui

• g is weaker for >prec than f :

∀h, g >prec h ⇒ f >prec h

Theorem:
If R and S satisfy the criterion then

Γ ` t : T ⇒ t ∈ SN

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Define >decr on labels to be

fl >decr fl′ ⇔ l>Alg l′

with
x>Algy ⇔ size(x) > size(y)

To show termination of the size-based system we take

f >prec g ⇔ f>Struct ◦ >decrg

It is easy to show compatibility.

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Well-foundedness is more difficult: we may have

Γ1 ⊇ Γ2 ⊆ Γ3

x1 >prec x2 >prec x3

In particular lexicographic ordering on sizes and the size of
contexts is insufficient.

We use a lemma from Doornbos and Von Karger
[Doornbos and Karger, 1998].

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

This method is generic: it can be used to prove different
termination results, for example:

Algebraic semantics Size-based termination Semantic Labelling The Model Construction Proving Termination

Theorem (Breazu-Tannen, Gallier &
Okada)[Breazu-Tannen and Gallier, 1990, Okada, 1989]:
Let R be a first-order (uni-sorted) rewrite system that is SN .

Then the system consisting of

• A single base type D.

• Curried typed rewrite rules: if f is of arity n then

f : D → . . .→ D︸ ︷︷ ︸
n

→ D

and

f(l1, . . . , ln)→ r 7→ f curry(l1) . . . curry(ln)→ curry(r)

• β-reduction

Is strongly normalizing on typed terms.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

However this approach fails on certain simple rewrite systems.

There is no model for which

f (S x)→ (λy : T .f y) x

can be shown to be terminating in the labelling framework.

We need to be capable of analyzing control flow.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

To do this we go back to the types. We need a system capable of
analyzing potential calls.

In first-order rewriting, this is achieved using dependency pairs.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We wish to capture part of the analysis on the dependency graph
using refinement types

We restrict ourselves to the type of unlabeled binary trees.

The idea:
The refinement B(p) of the type B of trees is

B(p) = {t ∈ B | t is of shape p}

We perform analysis on the shapes.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Outline

The Type System

Dependency Graph

The Termination Criterion

The Termination Semantics

Perspectives

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We give the following shapes or patterns:

• The top pattern >, which denotes any possible tree.

• The leaf pattern which denotes leaves.

• The node(p, q) pattern which denotes trees which are nodes
with left subtree of shape p and right subtree of shape q.

• The bottom pattern ⊥ which denotes no possible tree.

• Variables α which allow us to quantify over all patterns.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We can then describe our system.

types:
T ,U ∈ T B B(p) | ∀α.T | T → U

terms:

t , u ∈ Trm B x | f | λx : T .t | λα.t | t u | t p | Leaf | Node

Note that abstraction and application of patterns is explicit.

Contrary to the previous approach, we only treat matching on
non-defined terms, but with no orthogonality restriction.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We define a type system to assign types with patterns to terms.

Γ, x : T , Γ′ ` x : T
ax

Γ, x : T ` t : U
Γ ` λx : T .t : T → U

t − lam

Γ ` Leaf : B(leaf)
leaf − intro

Γ ` Node :∀αβ.B(α)→ B(β)→ B(node(α, β))
node − intro

Γ ` t : T
Γ ` λα.t :∀α.T

p − lam

with α free in Γ.

Γ ` t : T → U Γ ` u : T
Γ ` t u : U

t − app

Γ ` t :∀α.T
Γ ` t p : T {α 7→ p}

p − app

Γ ` f : τf
symb

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

This is insufficient in general to type interesting rewrite systems:

rev Leaf → Leaf
rev (Node x y) → Node (rev y) (rev x)

The type of rev can only be ∀α.B(α)→ B(>) and we need
subtyping to derive

Leaf : B(>)

and
Node (rev y) (rev x) : B(>)

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We introduce subtyping rules

We define the sub-pattern relation� by:

• p � p

• p � >

• ⊥ � p

• p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

This leads to the following subtyping:

• p�q ⇒ B(p)≤B(q)

• T2 ≤ T1 ∧ U1 ≤ U2 ⇒ T1 → U1 ≤ T2 → U2

• T ≤ U ⇒ ∀α.T ≤ ∀α.U

Γ ` t : T T ≤ U
Γ ` t : U

sub

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Thanks to explicit annotations of pattern abstraction and
application, all of our rules are syntax directed, except for the
subtyping rules.

An alternate application rule:

Γ ` t : T → U Γ ` u : T ′ T ′ ≤ T
Γ ` t u : U

sub − app

This rule replaces application and subtyping.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Using transitivity of subtyping we show that the new rules are
equivalent to the old ones.

Theorem:

Type inference is decidable.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Outline

The Type System

Dependency Graph

The Termination Criterion

The Termination Semantics

Perspectives

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We suppose that every rule can be well-typed in the framework
and that:

• Each symbol f has a number of recursive arguments of type B.

• The type of f is of the form

f :∀α1 . . . αn.B(α1)→ . . .→ B(αn)→ Tf

• the αi appear positively in Tf .

• In each rule l → r , each symbol g ∈ r is fully applied to its type
arguments.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We wish to analyze the types involved in typing to build a type
based dependency graph.

The dependency pairs:
For each rule f ~α~l → r and each g ∈ r such that

• Γ `min li : B(pi)

• g q1 . . . qn appears in r

We build the dependency pair

f](p1, . . . , pn)→ g](q1, . . . , qm)

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We need to check possible successive calls by examination of the
pairs. To do this we define pattern unification ./.

• A variable α pattern-unifies with everything.

• > pattern-unifies with everything.

• ⊥ may unify with a variable, with > or itself

• Similarly leaf unifies with a variable, > or leaf.

• Same for node(p, q) which unifies with a variable, >, or
node(p′, q′) iff

p./p′ ∧ q./q′

We write:

f](p1, . . . , pn)./f](q1, . . . , qn)

if
p1./q1 ∧ . . . ∧ pn./qn

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

The dependency graph has

• as nodes the dependency pairs

• an edge between l] → r] and l′] → r ′] if

r] ./ l′]

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We can also define a decrease B on patterns:

The closure by context of

node p, qBp

and
node p, qBq

We carry this to dependency pairs:

f(node(p, q))→B g(p)

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Outline

The Type System

Dependency Graph

The Termination Criterion

The Termination Semantics

Perspectives

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

To show termination we observe the dependency graph:

i](node(α, β))→B i](α)

i](node(α, β))→B i](β)

f](node(α, β))→D g](node(α, β))

f](node(α, β))→D i](node(α, β))

g](node(α, β))→B f](α)

g](node(α, β))→D i](node(α, β))

g](leaf)→ f](⊥) g](leaf)→ h](leaf)
h](node(α, β))→B h](α)

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We need to verify that each cycle contains only weak decreases
(marked with D) and at least one strict decrease (marked with B).

Theorem [Roux, 2011]:
If the above condition is satisfied, every well-typed term is strongly
normalizing

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Outline

The Type System

Dependency Graph

The Termination Criterion

The Termination Semantics

Perspectives

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

To prove termination, we modify the classic proof by candidates:
we need to find an interpretation of the base types.

In particular we need to instantiated pattern variables. We
instantiate them with closed patterns.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

The intuition:
[[B(p)]]θ = {t | tmatches p}

Problem
If a non-confluent term

Node (Node x y) z ← t → Node Leaf Leaf

is in B(node(α, β)), then we would necessarily have α 7→ >.

This is not sufficiently precise.

We interpret pattern variables by sets of closed patterns.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

If t is a term in SN and P is a set of closed patterns, we write
t ↓≺≺ P if

For each normal form u of t , there is some p ∈ P such that u
matches p.

We take θ to send variables to sets of closed patterns. We define

[[B(p)]]θ = {t ∈ SN | t ↓≺≺ pθ}

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Then we carry out the classic construction

• [[A → B]]θ = {t | ∀u ∈ [[A]]θ, t u ∈ [[B]]θ}

• [[∀α.A]]θ = {t | ∀P, t ∈ [[T]]θαP }

It works.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

To show decrease in terms we need additional information.

Lemma:
If t = (Node l1 l2)σ, then every normal form of t is of the shape

Node v1 v2

with v1 and v2 normal forms of l1σ and l2σ.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

From this we get

• if t = (Node l1 l2)σ

• if for every θ

t ∈ [[B(node(α, β))]]θ ⇒ u ∈ [[B(α)]]θ

Then every normal form of u is smaller than some normal form of t .

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Infinite sequences of calls:

t1 → t2 → . . .

therefore give rise to sequences of normal forms

u1

u2

u3

v1

v2

v3

. . .

And we may conclude by König’s lemma.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Outline

The Type System

Dependency Graph

The Termination Criterion

The Termination Semantics

Perspectives

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

We have described two distinct extensions to the size-types
approach to termination of higher-order rewrite systems. We would
like a combination which

• Has the power of the algebraic semantics.

• Can capture the notions of control flow.

The Objective
Prove completeness of such a framework.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

In addition, for both these frameworks, we can go up:

• More expressive type theories.

• Weaker conditions: relax orthogonality, matching on defined
constructors, higher-order inductive types.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

A natural extension of the type-based dependency framework is to
allow unions of base types:

B(p1) ∪ . . . ∪ B(pn)

and explore the possible lattices of types that can be authorized.

We can also look at conversion at the type level:

f :∀α.B(α)→ B (̃f(α)), f̃(leaf)'p, f̃(node(γ, δ))'q

and study the type annotations as a first order rewrite system.

Look for type-level analogues of first-order techniques
(interpretations, simplification orderings).

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Thank you!

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Baader, F. and Nipkow, T. (1998).
Term Rewriting and All That.
Cambridge University Press.

Barthe, G., Frade, M. J., Giménez, E., Pinto, L. and Uustalu, T.
(2004).
Type-based termination of recursive definitions.
Mathematical Structures in Computer Science 14, 97–141.

Bezem, M., Klop, J. W. and de Vrijer, R., eds (2003).
Term Rewriting Systems.
Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press.

Blanqui, F. (2003).
Rewriting Modulo in Deduction Modulo.
In RTA, (Nieuwenhuis, R., ed.), vol. 2706, of Lecture Notes in
Computer Science pp. 395–409, Springer.

Blanqui, F. (2004).

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

A type-based termination criterion for dependently-typed
higher-order rewrite systems.
In Proceedings of RTA’04, (van Oostrom, V., ed.), vol. 3091, pp.
24–39,.

Blanqui, F. and Roux, C. (2009).
On the Relation between Sized-Types Based Termination and
Semantic Labelling.
In CSL, (Grädel, E. and Kahle, R., eds), vol. 5771, of Lecture
Notes in Computer Science pp. 147–162, Springer.

Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E. and
Ringeissen, C. (1998).
An Overview of ELAN.
In Proc. of WRLA vol. 15, Electronic Notes in Theoretical
Computer Science.

Breazu-Tannen, V. and Gallier, J. (1990).
Polymorphic rewriting conserves algebraic strong
normalisation.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Theoretical Computer Science 83, 3–28.

Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. (1996).
Principles of Maude.
In Proc. of WRLA vol. 4, Electronic Notes in Theoretical
Computer Science.

Cousineau, G., Curien, P.-L. and Mauny, M. (1985).
The Categorical Abstract Machine.
In FPCA pp. 50–64,.

Dershowitz, N. and Jouannaud, J.-P. (1990).
Rewrite Systems.
In Handbook of Theoretical Computer Science, (Leeuwen, J. v.,
ed.), vol. B: Formal Models and Semantics, chapter 6, pp.
243–320.

Doornbos, H. and Karger, B. V. (1998).
On the Union of Well-Founded Relations.

Fiore, M. P., Plotkin, G. D. and Turi, D. (1999).

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Abstract Syntax and Variable Binding.
In LICS pp. 193–202,.

Hamana, M. (2003).
Term rewriting with variable binding: an initial algebra
approach.
In PPDP pp. 148–159, ACM.

Hamana, M. (2007).
Higher-Order Semantic Labelling for Inductive Datatype
Systems.
In Proceedings of the 9th ACM SIGPLAN International
Conference on Principles and Practice of Declarative
Programming.

Hudak, P., Peyton Jones, S., Wadler, P., Arvind, B., Fairbairn,
B. J., Fasel, J., Guzmán, M., Hammond, K., Hughes, J.,
Johnsson, T., Kieburtz, R., Nikhil, R., Partain, W. and
Peterson, J. (1992).

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

Report on the functional programming language Haskell,
version 1.2.
Special Issue of SIGPLAN Notices 27.

Jouannaud, J.-P. (1993).
Introduction to Rewriting.
In Term rewriting, (Comon, H. and Jouannaud, J.-P., eds), vol.
909, pp. 1–15,.

Jouannaud, J.-P. and Okada, M. (1991).
Executable higher-order algebraic specification languages.
In Proceedings of LICS’91 pp. 350–361, IEEE Computer
Society Press.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997).
The Definition of Standard ML (Revised).
The MIT Press.

Okada, M. (1989).
Strong normalizability for the combined system of the typed
λ-calculus and an arbitrary convergent term rewrite system.

The Type System Dependency Graph The Termination Criterion The Termination Semantics Perspectives

In Proc. of ISSAC pp. 357–363, ACM Press.

Roux, C. (2011).
Refinement Types as Higher-Order Dependency Pairs.
In 22nd International Conference on Rewriting Techniques and
Applications (RTA’11), (Schmidt-Schaus̈, M., ed.), vol. 10, of
Leibniz International Proceedings in Informatics (LIPIcs) pp.
299–312, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany.

Zantema, H. (1995).
Termination of Term Rewriting by Semantic Labelling.
Fundamenta Informaticae 24, 89–105.

	Introduction
	Semantic labelling as a higher-order termination framework
	Algebraic semantics
	Size-based termination
	Semantic Labelling
	Currying
	Stability by Reduction

	The Model Construction
	Proving Termination

	Type Based Dependency Pairs
	The Type System
	Dependency Graph
	The Termination Criterion
	The Termination Semantics
	Perspectives

