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ABSTRACT 

The Software Defined Radio (SDR) is a reconfigurable radio whose functionality is controlled 

by software, which greatly enhances the reusability and flexibility of waveform applications. 

The system update is also made easily achievable through software update instead of 

hardware replacement. The Software Communication Architecture (SCA), on the other hand, 

is an open architecture framework which specifies an Operating Environment (OE) in which 

waveform applications are executed. A SCA compliant SDR greatly improves the portability, 

reusability and interoperability of waveforms applications between different SDR 

implementations. 

 

The multiprocessor system on chip (MPSoC) consisting of large, heterogeneous sets of 

embedded processors, reconfiguration hardware and network-on-chip (NoC) interconnection 

is emerging as a potential solution for the continued increase in the data processing bandwidth, 

as well as expenses for the manufacturing and design of nanoscale system-on-chip (SoC) in 

the face of continued time-to-market pressures. 

 

We studied the challenges of efficiently deploying a SCA compliant platform on an MPSoC. 

We conclude that for realizing efficiently an SDR system with high data bandwidth 

requirement, a design flow with systematic design space exploration and optimization, and an 

efficient programming model are necessary. We propose a hybrid programming model 

combining distributed client/server model and parallel shared memory model. A design flow 

is proposed which also integrates a NoC topology synthesis engine for applications that are to 

be accelerated with parallel programming and multiple processing elements (PEs).  

 

We prototyped an integrated SW/HW development environment in which a CORBA based 

integrated distributed system is developed which depends on the network-on-chip for 

protocol/packet routing, and software components are deployed with unified interface despite 

the underlying heterogeneous architecture and os; while the hardware components (processors, 

IPs, etc) are integrated through interface conforming to the Open Core Protocol (OCP). 
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Résumé 

1. Motivation 

Depuis la première commercialisation de systèmes mobiles cellulaires début des années 1980, 

l’industrie des communications sans fil a connu un développement croissant de normes de 

communication de la technologie première génération (1G) au standard de quatrième 

génération (4G). La technologie 1G a été introduite début des années 1980 et complétée début 

des années 1990. La technologie sans fil 1G est analogique. La technologie 2G, dont le 

développement a commencé fin des années 1980 et s’est terminé dans les années 1990, est 

souvent qualifié de « numérique », et a remplacé la technologie 1G en utilisant des signaux et 

des réseaux numériques. Entre la technologie 2G et la 3G, on a pu observer le déploiement 

intermédiaire, une technologie 2.5G, numérique mais avec des possibilités de transfert de 

données limitées telles que les services de SMS. Les systèmes de troisième génération 3G, 

développés dans les années 1990, ne se limitent plus à la seule transmission de la parole 

comme en 2G, mais permettent l’utilisation simultanée de la parole et de services de données 

à un débit plus élevé. Ainsi, les réseaux 3G permettent aux opérateurs de réseau d’offrir aux 

utilisateurs une gamme plus large de services plus avancés, bien qu’à des débits réseau accrus, 

grâce à une meilleure utilisation du spectre alloué. Successeur de la télécommunication 3G, la 

technologie 4ème génération (4G) fournira aux utilisateurs des services de transmission de la 

parole, de données, et de multimédias en temps réel, à un débit encore plus élevé. Elle offrira 

également une meilleure qualité de service (QoS), la sécurité et la possibilité d’interface avec 

des réseaux filaires constituant l’épine dorsale de l’architecture du réseau. 

 

Afin de supporter les besoins et les contraintes des différents réseaux, de très nombreuses 

normes sont apparues. Les opérateurs réseaux doivent se conformer à l’ensemble de ces 

normes, des premières de la technologie 2G à celles attendues concernant la 3G. 

 

Vu que chaque norme est différente et utilise même parfois des fréquences porteuses 

différentes, des stations ou des handsets doivent être développés, déployés et maintenus, 

entraînant des codes très lourds et un développement lent. Comte tenu du rythme auquel les 

nouvelles normes sont publiées, la conformité à ces normes pour un coût acceptable en temps 
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de développement et en taille de puce devient vite un un cauchemar pour toute personne 

impliquée dans les systèmes de communication. 

 

Le concept de Radio Logicielle a été proposé, la première fois, par Joseph Mitola III pour 

faire face à une telle crise. Dans cette approche, les transformations de la forme d’onde, 

modulation, démodulation des signaux d’un système radio sont mises en œuvre par du logiciel 

plutôt que par du matériel à fonctionnalité spécifique. Les composants développés en logiciel 

sont ensuite implantés dans les dispositifs modernes programmables/reconfigurables, tels que 

les GPP, DSP, FPGA, ou ASIP. Avec de tels dispositifs, l’adaptation du système à une autre 

norme de communication, ou même l’évolution vers une technologie plus récente peuvent être 

réalisés par mise à jour du logiciel sans remplacement du matériel qui serait long et coûteux. 

Compte tenu des progrès de la technologie des semi-conducteurs et de la technologie sans fil 

fournissant un accès haut-débit à Internet fiable, les mises à jour de logiciels et la 

reconfiguration du système peuvent être réalisées en temps réel avec des données de 

configuration téléchargées via Internet. De cette façon, un dispositif unique peut être rendu 

compatible avec tout un ensemble de normes, par exemple, ZigBee, Bluetooth, 802.11 

a/b/g/n, 3G, etc. Il est possible de réaliser le passage d’un protocole à l’autre sans dégradation 

de qualité de service, si la conception est rigoureuse. 

 

La réalisation de ces fonctions concernant la radio, par logiciel, présente un avantage sous 

réserve de :  

 

1. réutilisabilité, portabilité et d’interopérabilité des applications 

2. La plateforme et le support de modèle de programmation permettant de maintenir la 

complexité de la programmation à un niveau raisonnable 

 

La première condition est primordiale : elle est à l’origine même du concept de radio 

logicielle. Les avantages de la flexibilité, idée maîtresse de ce concept, ne sont effectifs que si 

l’on peut librement ajouter, mettre à jour ou améliorer les capacités fonctionnelles d’un 

système radio réalisé sous forme de modules logiciels. Idéalement, les traitements concernant 

les formes d’onde conçue pour une plate-forme SDR peuvent être facilement transposés à une 
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autre plate-forme ; de même, les traitements développés par une entreprise peuvent 

fonctionner conjointement avec ceux d’une autre entreprise. Pour atteindre cet objectif, il faut 

qu’un framework ouvert et standardisé définisse des interfaces homogènes et les services 

auxquels une application doit se conformer. 

 

L’architecture de communication logicielle (Software Communication Architecture, SCA), 

est une architecture ouverte largement acceptée pour les projets de SDR. Elle est développée 

par le Département de la Défense des Etats-Unis (DoD) pour la réalisation, pour un coût 

abordable, d’une famille de systèmes radio tactiques de haute capacité offrant des services 

réseaux évolutifs. La spécification SCA définit un environnement d’exploitation (Operation 

Environment, OE) dans lequel on exécute les applications. L’OE est constitué d’un cadre de 

base (Core Framework), d’un middleware minimal conforme à CORBA, et d’un système 

d’exploitation conforme à POSIX. La norme POSIX minimise le coût de portage des 

applications car elle fournit une couche d’abstraction qui rend transparentes les méthodes 

spécifiques de chaque système d’exploitation. CORBA permet un certain niveau de 

transparence et l’indépendance vis-à-vis du langage de programmation. Dans cette thèse, on 

s’intéresse au développement et à la programmation d’une plateforme  SDR conforme à SCA. 

 

D’autre part, beaucoup d’applications haut-débit ont besoin d’une puissance de traitement et 

d’une bande passante I/O supérieures à celles fournies par les systèmes traditionnels 

composés d’un mono-processeur accompagné de certains IPs matériels. Les nouvelles 

plateformes de SDR sont en général implémentées sur des plateformes multiprocesseurs 

système sur puce (MPSoC) exploitant ses importantes ressources de calculs avec une bonne 

efficacité énergique. Il existe déjà des systèmes intégrant des dizaines cœurs, des matériaux 

reconfigurables et le réseau sur puce. Les possibilités d’un rapide développement, 

déploiement et vérification des logiciels embarqués parallèles sur ces nouvelles plateformes 

MPSoC sont autant de points clés pour satisfaire les objectifs de performance tout en 

respectant les délais de mise à disposition sur le marché et le coût de développement. 

 

Le déploiement de SDR à base de SCA sur une plateforme moderne MPSoC implique la 

combinaison de deux paradigmes de programmation : le modèle distribué à base de CORBA, 
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et le modèle parallèle utilisant la programmation SMP. La conception de SDR à base standard 

manque de flots de conception et d’un modèle de programmation efficace pour tirer parti de 

riches ressources de calcul de MPSoC de manière systématique. Dans cette thèse, nous 

proposons un flot de conception de SDR avec une exploration architecturale et une 

optimisation systématique basé sur un modèle de programmation hybride (le modèle distribué 

client/serveur et le modèle parallèle). 

 

Nous nous sommes intéressés à la partie traitement de bande de base d’un système radio. Les 

fonctionnalités de bande de base radio sont représentées dans un réseau de processus de Kahn. 

Un système distribué sans contraintes de ressources est produit par un engin de générateur de 

système distribué d’un premier niveau. Les nœuds générés sont analysés et classés afin de 

déterminer ceux qui ont un important besoin en performance de calcul. Ces nœuds sont 

ensuite regroupés dans une sous-branche pour être parallélisés. A la sortie du flot, une voie de 

rétroaction globale est fournie pour permettre l’optimisation des ressources, et l’ajustement de 

fréquence tout en répondant aux exigences de performance du système. 

 

2. L’Etat de l’art de la radio logicielle et de la radio cognitive 

Il existe des efforts sur l’implémentation de la plateforme radio logicielle ainsi que le 

développement d’un framework complet pour le développement et le déploiement des 

applications waveforms. 

 

Le SCARI-OPEN est une implémentation de la JTRS Architecture de la communication de 

logiciel (SCA v2.2). Il a été certifié par le JTRS-JPO. Le projet est effectué par la Centre de 

Recherche de Communications (CRC) de Canada avec l’objectif de développer une référence 

d’implémentation (RI) afin de : 1. réduire le niveau d’ambigüité de la spécification SCA ; 2. 

augmenter l’interopérabilité des applications ; 3. Augmenter la compréhension de 

l’architecture par un exemple ; 4. accélérer l’émergence de SDRs par la disponibilité d’une 

implémentation ; 5. réduire le coût de développement et le délai de mise sur le marché. 

 

L’OSSIE (Open Source SCA Implementation :: Embedded) est un core framework basé sur 

SCA et un outil pour le développement rapide de SDR. Il est développé à Virginia Tech et la 
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dernière version est la version 0.8.0 sortie en 2010. L’OSSIE contient un core framework et 

une suite d’outils orientés GUI (Interface Utilisateur Graphique) qui est capable de générer 

automatiquement les codes sources conformes à SCA et les fichiers de support permettant aux 

développeurs de se concentrer sur les fonctionnalités de traitement de signal. 

 

La SDR-4000 est une plateforme émetteur-récepteur développée par Spectrum. Elle offre des 

COTS (Composant pris sur étagère) matériels, logiciels et services pour accélérer le 

développement et le déploiement des solutions pour le modem sans fil. La SDR-4000 contient 

deux composants principaux, l’engin de traitement modem PRO-4600 et l’émetteur-récepteur 

à deux canaux XMC-3321. Les deux composants ensemble constituent un modem sans fil 

supportant deux canaux par slot. 

 

L’IDROMel est un projet de l’Agence Nationale de la Recherche (ANR) de France visant à 

définir et valider une SDR reconfigurable et une plateforme de CR. La plateforme combine 

les technologies les plus récentes, comme : 1. le traitement bande de base flexible ; 2. un 

système intégré basé sur un réseau sur puce ; 3. un support de reconfiguration partielle 

utilisant un FPGA ; 4. une bande RF très large de 200 MHz à 7.5 GHz ; 5. un support de 4x4 

MIMO ; 6. une conception flexible de MAC pour le support de handover vertical. 

 

Le WiNC2R développé par l’Université Rutgers est un prototype de plateforme de radio 

cognitive. L’Annabelle développé par l’Université de Twente, propose une architecture 

multiprocesseur système-sur-puce (MPSoC) pour le traitement bande de base de la radio 

cognitive. La SDR LSI est une solution mono-puce pour le traitement bande de base de SDR 

développé par Fujitsu.  

 

Dans les chapitres suivants, nous nous intéresserons à l’aspect de traitement de bande de base 

de la SDR. 

 

3. L’implémentation et l’optimisation d’un système embarqué pour la SDR 

Dans ce chapitre, plusieurs méthodologies de conception de multiprocesseur système sur puce 

(MPSoC) sont présentées. On a proposé un flot de conception de MPSoC avec l’aide d’un 
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paralléliseur automatique, l’outil PLuTo. PLUTO effectue des transformations source-à-

source automatiques basées sur la modélisation polyédrique. Il est capable d’optimiser les 

séquences de boucles imbriquées pour le parallélisme à grain gros et la localité de cache 

simultanément. Après la transformation, un code parallèle OpenMP est généré qui peut être 

ensuite exécuté sur les plateformes multi-cœurs. Par contre, l’exécution du code OpenMP 

dépend des APIs OpenMP, du compilateur et du support runtime de l’OS qui sont rarement 

présents dans un système embarqué. On a donc conçu un adaptateur OpenMP vers 

l’environnement embarqué qui est intégré dans le flot de conception d’accélérateur. 

 

Une étude de cas est présentée dans laquelle on a programmé et évalué une plateforme 

multiprocesseur système sur puce à base de réseau sur puce développée par le laboratoire. Le 

système est composé de 16 processeurs de type Microblaze et les communications inter-

processeur  se font à travers un réseau sur puce avec un modèle de programmation à mémoire 

partagé. 

 

Nous avons étudié le potentiel de la parallélisation automatique sur le système multi-cœur 

avec 16 processeurs élémentaires (PE) interconnectés par un réseau sur puce (NoC). 

L’implémentation effective de matériel nous a permis d’aborder les trois sujets suivants : (1) 

l’efficacité du support matériel des primitives de synchronisation, (2) la performance de la 

parallélisation automatique, (3) les avantages de la multiprogrammation. Avec le paralléliseur 

PLUTO, on a fait des expériences de programmation parallèle sur la plateforme MPSoC. On a 

noté que plusieurs éléments clé existent qui influent sur l’efficacité de la parallélisation. 

Certains de ces éléments sont inhérents à l’application, tandis que d’autres dépendent de 

l’architecture. Une compréhension détaillée des caractéristiques aussi bien de l’application 

que de l’architecture est essentielle pour obtenir une performance satisfaisante. On a 

programmé la multiplication de matrices, Seidel, la DCT, et Jocobi 1d. La multiplication de 

matrices et la DCT présentent de bonnes caractéristiques pour la parallélisation et la 

performance évalue linéairement quand le nombre de processeurs augmente. La performance 

pour Seidel atteint un pallier quand le nombre de processeur dépasse 8. Jocobi 1d n’expose 

aucun parallélisme. Il n’y a donc aucun intérêt à essayer de paralléliser cette application. 
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Pour la plupart des applications, les ressources des processeurs ne peuvent pas être totalement 

exploitées. Nous sommes naturellement conduits à la solution multiprogrammation où les 

ressources processeurs sont partagées par plusieurs applications. Nous constatons que le 

nombre de 8 processeurs est souvent un point critique au-delà duquel l’augmentation de 

performance avec l’augmentation de nombre de processeurs s’arrête. Une combinaison 

judicieuse d’applications peut effectivement améliorer la performance globale. Une solution 

est de partager les ressources entre plusieurs applications. On a donc fait des expériences de 

multiprogrammation sur la même plateforme. Les résultats montrent une meilleure utilisation 

de ressources. 

 

L’Unité d’Interface de Réseau (Network Interface Unit, NIU) du MPSoC en question est 

basée sur le Protocole Open Core (OCP). OCP est un protocole non propriétaire. Il établit un 

standard commun pour l’intégration des propriétés intellectuelles (IPs) à la façon « plug et 

play ». Le protocole OCP est basé sur le modèle maître-esclave point-à-point. Nous nous 

sommes intéressés à deux des mécanismes de synchronisation fournies par le protocole OCP, 

plus précisément : la synchronisation exclusive, et la synchronisation paresseuse. On a 

développé un benchmark de synchronisation de type barrière pour tester la performance des 

deux mécanismes sous différentes hiérarchies de mémoire ainsi que différentes types de 

mémoire. Les résultats montrent que la performance de la synchronisation exclusive dépasse 

celle de la synchronisation paresseuse de 50% quand les variables de synchronisation sont 

centralisés. Quand il s’agit du même mécanisme de synchronisation avec différents types de 

mémoire, on a constaté que lorsque la variable de synchronisation est placée dans la mémoire 

sur puce BRAM,  la performance est meilleure que lorsqu’elle est dans la DDR.  

 

4. Le mapping de middleware sur un système embarqué distribué à base de réseau 

Il y a de plus en plus de systèmes qui sont composés d’une collection de composants divers 

interconnectés par un réseau où chaque composant exécute des fonctionnalités qui impliquent 

à la fois l’interaction locale et distante avec d’autres composants du système. Stimulée par 

l’augmentation du nombre d’applications à base de réseau, la technologie middleware est 

devenue de plus en plus importante. Dans un système distribué, le middleware est défini 

comme une couche de logiciel qui se situe entre le système d’exploitation et les applications. 
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Par cacher l’hétérogénéité de l’architecture, l’OS sous-jacent et le langage de programmation, 

le middleware facilite l’intégration d’application, améliore la portabilité des composants 

logiciels et l’interopérabilité des applications développées par différentes entreprises. 

 

Dans ce chapitre, on a introduit la spécification middleware du Groupe de Management 

d’Objets (Object Management Group, OMG) : c’est Common Object Request Broker 

Architecture (CORBA) et sa version embarquée, l’eCORBA. 

 

Il existe de nombreuses implémentations de CORBA académiques ou commerciales. On a 

présenté omniORB, qui est développé par le Laboratoire AT & T de Cambridge. OmniORB 

sera plus tard choisi comme middleware dans notre système distribué. 

 

Nous avons construit un système embarqué distribué utilisant plusieurs cartes FPGA comme 

plateforme de preuve de concept. Les cartes sont interconnectées via un commutateur 

Ethernet. Chaque carte contient un système de calcul à base de processeur PowerPC405 

disposant d’un système d’exploitation Linux avec une pile TCP/IP. Les applications de 

communications sont développées à l’aide du middleware CORBA conforme à la 

spécification SCA. La performance du middleware est évaluée à l’aide de micro-benchmarks 

d’évaluation. Les effets de l’augmentation de fréquence sur la performance globale du 

système sont examinés pour chaque composant du système (Client, Serveur, ou Services 

communs). Les résultats donnent de bonnes indications sur le domaine de fréquences qui 

minimise la consommation d’énergie. 

 

A la fin de ce chapitre, on a proposé un flot de conception pour la SDR avec l’exploration 

architecturale systématique et l’optimisation multi-objective utilisant le modèle de 

programmation hybride (distribué client/serveur + parallèle).  

 

5. Le mapping de middleware sur un mono-puce multiprocesseur système 

L’objectif ultime est d’intégrer l’ensemble sur une seule puce pour fournir une plateforme de 

SDR bande de base conforme à SCA. La plateforme hybride, basée sur un commutateur 

Ethernet, dont on a parlé, tout en permettant une preuve-de-concept rapide et pertinente, a ses 
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limites comme la bande passante du réseau et la flexibilité de configuration en raison de 

l’isolement des nœuds. Afin de bien tirer parti de l’interopérabilité et de la portabilité des 

applications à base de CORBA, la conception de plateforme SDR conforme à SCA sur une 

mono puce implique d’effectuer l’adaptation du mécanisme de transmission de CORBA de 

GIOP/IIOP à une couche de communication sur puce propriétaire. Dans notre cas, on va 

utiliser la bibliothèque Danube d’Arteris [65] pour l’interconnexion de plusieurs dispositifs de 

calcul, des mémoires, et des IPs via une interface standard, le Open Core Protocol (OCP). Le 

mécanisme de transport de CORBA est par défaut TCP/IP via internet. On va garder TCP/IP 

comme protocole de la couche transport et de la couche réseau de CORBA. Par contre, on va 

modifier la couche MAC en remplaçant Ethernet par OCP/NTTP. NTTP est un protocole de 

transport de paquet propriétaire implémenté dans les composants de Danube. Avec cet 

empilage de protocole, la couche de communication de CORBA peut rester largement 

inchangée et un driver gérant l’interface OCP doit être inclus au noyau Linux afin de traiter 

les interruptions générées par la couche OCP et router correctement les paquets entre les 

couches de protocoles. Avec cette solution mono-puce, les ressources peuvent être librement 

allouées aux nœuds nécessitant des calculs intensifs qui peuvent alors utiliser des dispositifs 

de calcul parallèles afin d’accélérer le calcul. 

 

Le modèle de programmation distribué sur puce est inspiré de l’approche traditionnelle pour 

les grands systèmes. Mais il faut aussi prendre en compte les contraintes et les opportunités 

que permettent les SoCs. Par exemple, la taille maximale de transmission (MTU) doit être 

adaptée aux ressources mémoire de l’interface MAC, et la longueur maximale d’une écriture 

en mode burst du réseau sur puce afin de pouvoir envoyer un paquet de données de manière 

atomique. D’autre part, contrairement au réseau informatique, le réseau sur puce offre un 

meilleur taux de succès de transmission, et divers services comme le contrôle de flux, l’accusé 

de transmission fourni par le Network Interface Unit (NIU). Par conséquent, les services 

correspondants fournis par la couche transport (TCP) peuvent être économisés.  

 

Une autre partie de la thèse porte sur la synthèse de topologie de réseau-sur-puce (PSTRP) 

pour la sous-branche de parallélisation du flot de conception. Le problème de la synthèse de la 

topologie du réseau-sur-puce peut se modéliser sous forme de programme linéaire en nombres 
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entiers. On a étudié deux modèles de communications, le passage de messages et la mémoire 

partagée. Les résultats montrent que les contraintes d’implémentation, comme la hiérarchie du 

réseau sur puce, doivent être prises en compte pour obtenir un résultat à la fois 

mathématiquement optimisé et électroniquement réalisable. 
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Chapter 1 

Introduction 

Since the first commercialization of mobile cellular systems in the early 1980’s, the wireless 

communication industry has exhibited a rapid evolution of communication standards from 

first generation (1G) technology to the forth generation (4G) standard. The first-generation 

(1G) technology system was introduced in the early 1980s and completed in the early 1990s. 

1G wireless used analog technology. The second generation (2G) technology, fielded in the 

late 1980s and finished in the late 1990s and often referred to as “digital”, replaced the 1G 

technology by using digital signals and digital networks. During the transition from 2G to 3G 

there exists an interim deployment of 2.5G digital technology with limited data capabilities, 

such as short messaging services. The third-generation systems was developed in the late 

1990s, which extended the voice-only digital from 2G (as enhanced), and allowed 

simultaneous use of speech and data services and higher data rates. Thus, 3G networks enable 

network operators to offer users a wider range of more advanced services while achieving 

greater network capacity through improved spectral efficiency. The successor to the 3G 

mobile telecommunication technology is the 4th generation (4G) technology that provides 

voice, data and streamed multimedia to users at even higher data rates, higher Quality of 

Service (QoS), security and interface with wire-line backbone networks. 

 

Table 1 summarizes the advancement of wireless technology generations in terms of steady 

growth of data rate and new services requiring high throughput for handling Internet and 

multimedia content.  
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Table 1 Supported data rates for each wireless generation 

Wireless generation Data rate Services 

1G 2.4kbps Voice only 

2G 64kbps Voice, limited data capacity 

3G 125kbps ~ 2Mbps Global roaming, superior voice quality, 

M-TV, Internet 

4G ~ 1Gbps Enhanced QoS, security, global 

roaming, wireline Internet backbone 

interface 

 

 

Figure 1 Wireless communication standards and their data rates 

More over, in order to support the needs and constraints of various networks, a huge number 

of standards have appeared that operators are required to support, ranging from the early 

second generation to all the expected new third generation standards. Figure 1 shows the 
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different wireless communication standards and their corresponding data rates, while Table 2 

gives more detailed information as connection, and modulation methods, for various wireless 

standards, including WiFi, WLAN, WiMax, WCDMA, GSM, EDGE, and ZigBee. 

Table 2 Data rates for various wireless standards 

Cellular 

Family 

Standard Peak Data 

Rate (kbits/s) 

Typical Data 

Rate 

Connection Modulation 

GSM 

GSM-CSD 

HS-CSD 

GPRS 

EDGE 

9.6/14.4 

28.8/43.2 

115/171 

385/513 

9.6 

28.8 

50 

115 

Circuit Switched 

Circuit Switched 

Packet Switched 

Packet Switched 

GMSK 

GMSK 

GMSK 

8-PSK 

UMTS 
FDD 

TDD 

384/2000 

384/2000 

144 

144 

Packet Switched 

Packet Switched 

QPSK 

QPSK 

CDMAOne 
IS-95A 

IS-95B 

14.4 

65/115 

14.4 

56 

Circuit Switched 

Packet Switched 

QPSK 

QPSK 

CDMA2000 
IX 

IX EV 

144/307 

2000 

130 

N/K 

Packet Switched 

Packet Switched 

QPSK 

QPSK 

TDMA CSD 9.6 9.6 Circuit Switched π/4 QPSK 

PDC i-mode 9.5 9.6 Packet Switched π/4 QPSK 

(Data obtained from Philips 2002 & 2004 Worldwide Wireless Telecommunication Standards 

chart) 

 

Since each standard is different, sometimes even using different carrier frequency, specific 

stations or handsets have to be developed, deployed and maintained, implying very large 

codes and slow developments. Considering the pace at which new standards are being 

released, it quickly becomes a nightmare for anybody involved in the communication industry 

to support them all at an acceptable cost in terms of development time and chip area. 

 

The idea of Software Defined Radio coined by Mitola Joseph III is proposed to cope with 

such a crisis. In such an approach, the channel modulation waveforms in a radio system are 

implemented in software instead of hardware with fixed functionality. The software defined 
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components are deployed on modern programmable/reconfigurable devices like GPP, DSP, 

ASIP or FPGA. Consequently, a demand of system adaptation to different communication 

standards or even an update to newer generation technology can be achieved by software 

update instead of the tedious and time/money consuming hardware replacement. With the 

improvement of semiconductor technology and availability of wireless technology providing 

reliable and high data rate Internet access, software updates and system reconfiguration can be 

done in a real-time manner with configuration data downloaded form air interface. In such a 

way, a unique device can be made compatible with a whole set of standards, for example 

ZigBee, Bluetooth, 802.11a/b/g/n, 3G, etc., and handovers between different protocols can be 

done without degradation with careful design. 

 

Whether the adoption of software defined radio is beneficial, however, depends on two 

factors: 

 

1. Software reusability, portability and interoperability. 

2. Hardware platform and programming model support to achieve the performance 

requirements while keeping the programming difficulty at a reasonable level. 

 

The first factor is intrinsically important which determines the usability of the SDR idea as a 

whole. The benefits of flexibility, which is the main idea represented by SDR, is only 

achievable if one can freely add, update, or enhance functional capabilities of the radio system 

having been realized in form of software modules. Ideally, waveform applications designed 

for one SDR platform can be easily ported to another platform; waveform applications 

developed by one enterprise can be interoperable with the waveform applications of another 

company. In order to achieve this goal, an open standardized framework is necessary which 

provides uniform definitions of interfaces, and services an application should conform to. 

 

The Software Communication Architecture (SCA) is a largely accepted open architecture for 

SDR programs. It is developed by the US Department of Defense (DoD) for the development 

a family of affordable, high-capacity tactical radio systems that can provide scalable, 

interoperable wireless mobile network services. The SCA specification defines an Operating 
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Environment (OE) comprising of a Core Framework, a minimum CORBA compliant 

middleware and a POSIX compliant operating system in which waveform applications are 

executed. The POSIX standard minimizes the cost of porting waveform software because it 

provides an abstraction layer for operating system-specific methods. CORBA provides a level 

of transparency and program-language independence. The developments and programming of 

SCA compatible SDRs are the problems treated in this thesis. 

 

On the other hand, many of the new high-bandwidth waveforms demand processing power 

and I/O bandwidth that exceeds that provided by traditional single processor systems 

combined by certain hardware IP. New SDR platforms are most likely deployed on multi- and 

many- core systems (MPSoC) leveraging its rich processing resources with energy efficiency. 

Systems exists which incorporate dozens, hundreds or even thousands of cores. [1][2][3][4][5] 

Rapid development, deployment and verification of parallel embedded software in these 

emerging MPSOC is key issue to ensure performance requirements under strong time to 

market (TTM) and development cost constraints. 

 

The deployment of SCA based SDR and the modern MPSoC platform entails the combination 

of two programming paradigm: CORBA based distributed model, and SMP based parallel 

model. Standard based SDR design lacks explicit design flow and efficient programming 

model for leveraging the rich processing resources that an MPSoC platform provides in a 

systematic manner. In this thesis, we propose a SDR design flow with systematic architecture 

exploration and optimization based on a hybrid programming model (distributed client/server 

and parallel). 

 

We are interested in the baseband processing part of the radio system. The radio baseband 

functions are represented in a Kahn Process Network. A distributed system with no resource 

constraints is generated with a first level distributed system generation engine. The resulted 

nodes are profiled and classified in order to determine the ones that have a high requirement 

of processing performance and are passed to a sub-branch to be parallelized. At the output of 

the flow, a global feedback path is provided to optimize resource utilization, and frequency 

scaling while meeting system performance requirement. 
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We built an embedded distributed system based on multiple FPGA cards as a proof-of-

concept platform. The cards are connected via an Ethernet switch. Each card contains a 

PowerPC405 based computing system running Linux kernel with a TCP/IP stack. The 

communicating applications are realized by Common Object Request Broker Architecture 

(CORBA) middleware conforming to the SCA specification. The performance of the 

middleware is tested with micro-benchmarks. Frequency scaling effects on the overall system 

performance is examined on a participant-by-participant basis (Client, Server, or Common 

Service). The results give good clues for frequency configuration with the goal of minimizing 

consumption. 

 

The parallelization sub-branch is based on an automatic parallelizer and a chain of parallel 

library transformation/customization tool and FPGA design tools. We studied the potential of 

automatic parallelization on a NoC-based 16 PE multi-core system which we designed and 

implemented on a single FPGA. We addressed three issues in the framework of NOC based 

MPSOC with actual hardware: (1) an efficient hardware support for synchronization 

primitives (2) the performance of automatic parallelization (3) the multiprogramming 

benefits. 

 

The execution results of several parallelized code show us several key elements that influence 

the effectiveness of parallelization. Some of these elements are intrinsic in the application, 

while others are architecturally dependant. A comprehensive understanding of the 

characteristics of both the application and the architecture accompanied by an optimum 

combination of the two is necessary for a satisfying performance. 

 

The Network Interface Unit (NIU) of the MPSoC is based on the Open Core Protocol (OCP) 

standard. The OCP protocol is an openly licensed, core-centric protocol intended to 

contemporary system level integration challenges. It provides a common standard for 

intellectual property (IP) core integration in a “plug and play” manner. The protocol is based 

on the master-slave point-to-point model. We focus on the two synchronization mechanisms 

provided by the protocol, namely: the Exclusive Synchronization and the Lazy 
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Synchronization. The results show the superiority of the blocked mechanism in the dedicated 

synchronization NOC with BRAM over LL-SC with BRAM or blocked with DDR in a 

single-lock case. 

 

Single-application performance results show an under-exploited MPSoC platform lack of 

sufficient parallelizability. We are naturally led to the multiprogramming solution where 

processors resources are shared by multiple applications. We notice that 8 processors is 

usually a critical number beyond which the performance stops scaling linearly. A combination 

of applications and an efficient allocation of processor resources can effectively improve the 

overall performance. 

 

The ultimate objective is to move everything on a single chip to provide a SCA compliant 

single-chip SDR baseband. The Ethernet switch based hybrid platform while serving as fast 

and pertinent proof-of-concept has limits like network bandwidth and configuration flexibility 

due to the isolation of nodes. Single chip design of SCA compliant SDR platform involves 

efforts as the mapping of transmission mechanism of CORBA from the GIOP/IIOP to GIOP + 

proprietary-on-chip-communication in order to fully leverage the interoperability and 

portability of CORBA based applications. In our case, we will leverage the Network-on-chip 

(NoC) Danube library of Arteris [65] for the interconnection of multiple processing elements, 

memory resources and IP integration via a standard interface, the Open Core Protocol (OCP). 

By default, the communication mechanism of CORBA is TCP/IP. We still use TCP/IP as the 

transport layer and internet layer protocol of COBRA. However, we modify the MAC layer 

by replacing Ethernet by OCP/NTTP. NTTP is the proprietary packet transport protocol 

implemented in the Danube NoC. An example architecture is shown in Figure 2 that is 

composed of two servers and two clients whose communication is based on a version of 

CORBA adjusted to OCP network. With this configuration, the communication layer of 

CORBA can remain largely unchanged and an OCP device driver should be registered in the 

Linux kernel in order to handle interruptions generated by the OCP layer and route the packet 

properly among the protocol layers. Extra resources can be flexibly allocated to nodes in 

charge of processing computing-intensive algorithms by synthesizing an array of parallel 

processing elements to assist the computation, as is shown in upper-right corner of Figure 2. 
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Figure 2 Single chip distributed system based on CORBA & NoC
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Chapter 2 

Software Defined Radio and Cognitive Radio State 

of the art 

2.1 SDR Definition 

The term “Software Defined Radio” was coined in 1991 by Joseph Mitola in his publication 

[23]. A Software Defined Radio (SDR) is a radio system, where components are implemented 

using software instead of hardware. 

 

By realizing the main components in software, a SDR offers support for multiple standards, 

multiple bands, and seamless mode/band transitions by software update rather than hardware 

alternation. This greatly reduces the development and deployment cost of radio systems with 

the ever developing radio communications standards. SDR also have significant utility for the 

military area and cell phone services, both of which must serve a wide variety of changing 

radio protocols in real time.  

 

There are several other important concepts that are closely related to SDR which should first 

be clarified, namely Digital Radio (DR), Software Radio (SR), and Cognitive Radio (CR). By 

the term Software Radio we refer to a transceiver whose functions are realized as programs 

running on a suitable processor. An SR transceiver comprises all the layers of a 

communication system. An ideal SR directly samples the antenna. Digital Radio is a radio 

system whose baseband signal processing functions are implemented on a Digital Signal 

Processor (DSP). A Software Defined Radio (SDR) is a presently realizable version of SR: 

instead of sampling directly antenna output, the received signals are sampled after a suitable 
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band selection filter. A Cognitive Radio (CR) [1] combines an SR with a Personal Digital 

Assistant (PDA) and connects its owner to Intelligent Networks (INs). [21] 

2.2 SCA Specification 

The Software Communication Architecture (SCA) [24] is an open architecture framework 

developed under the requirement of US Department of Defense (DoD) to maximize 

portability, interoperability, and configurability of the Software Defined Radio.  

 

The SCA specifies an Operating Environment (OE) in which waveform applications are 

executed. In the context of SCA, a waveform is defined as the entire set of radio and/or 

communications functions that occur from the user input to the radio frequency output and 

vice versa.  

 

The Operating Environment is composed of a Core Framework (CF), a minimum CORBA 

compliant middleware and a POSIX compliant Operating System (OS). [24] The OS running 

the SCA must provide services and interfaces that are defined as mandatory in the Application 

Environment Profile (AEP) of the SCA. Figure 3 depicts the main building blocks and the 

hierarchy of the SCA. [25] 

 

 

Figure 3 Software Communication Architecture 
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The Core Framework is a set of open application-layer interfaces and services which provide 

an abstraction of the underlying system software and hardware for software application 

designers. [21] The CF consists of four parts: 

 

• Base Application Interfaces: provide the management and control interfaces for all 

system software components. The interfaces in this group are: Port, LifeCycle, 

TestableObject, PropertySet, PortSupplier, ResourceFactory and Resource. 

 

• Base Device Interfaces: realize the management and control of hardware devices 

within the system through their software interface. The interfaces in this group are: 

Device, LoadableDevice, ExecutableDevice, and AggregateDevice. 

• Framework Control Interfaces: control the instantiation, management, and 

destruction/removal of software from the system. The interfaces in this group are: 

Application, ApplicationFactory, DomainManager, and DeviceManager. 

 

• Framework Services Interfaces: provide additional support functions and services such 

as file system management. The interfaces in this group are: File, FileSystem, and 

FileManager. 

 

In Figure 4, the SCA core framework components and their interfaces are represented in UML 

form. 
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Figure 4 SCA Core framework in UML 

 

The CF uses a Domain Profile to describe the components in the system. The software 

component characteristics are contained in the Software Package Descriptor (SPD), Software 

Component Descriptor (SCD) and Software Assembly Descriptor (SAD).The hardware 

device characteristics are stored in the Device Package Descriptor (DPD) and Device 

Configuration Descriptor (DCD). The Properties Descriptor contains information about the 

properties of a hardware device or software component. The Profile Descripter contains an 

absolute file name for either a Device Configuration Descriptor, or a Software Package 

Descriptor or a Software Assembly Descriptor. Finally, the DomainManager Configuration 

Descriptor (DMD) contains the configuration information for the DomainManager. 

 

The reconfiguration of radio usually concerns the installation/uninstallation of SCA 

applications as well as connection/disconnection of ports. These operations are accomplished 

by a series of function calls to the SCA Core Framework. 
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The following scenario depicts the steps and interfaces utilized when a client application tries 

to install a new application within a certain system domain. It needs to invoke the create 

operation provided by the ApplicationFactory interface. ApplicationFactory then refers to the 

Domain Profile for available devices that meet the application’s memory and processor 

requirements, available dependant applications, and dependant libraries needed by the 

application. If the requirements are met, an Application instance is created and the memory 

and processor are allocated. The application software module is then loaded on the devices 

using the appropriate Device interface. Then connect the resources’ ports. Finally the 

Application object reference in the context of CORBA Naming Service is returned. 

 

Distributed processing is a fundamental aspect of SCA and OMG CORBA [26] is used as the 

middleware that provides the standardized message passing technique in a client/server 

model. Using CORBA allows software objects to communicate with each other through a 

standardized interface description language (IDL). CORBA is designed to be both language 

and platform independent, which simplifies the development and deployment of 

communication software. All CF interfaces are defined in Interface Definition Language 

(IDL). The CORBA handles the message marshalling and delivering.  

2.3 CR Definition and theoretical issues 

Cognitive radio is a paradigm for wireless communication in which either a network or a 

wireless node changes its transmission or reception parameters to communicate efficiently 

avoiding interference with licensed or unlicensed users. This alteration of parameters is based 

on the active monitoring of several factors in the external and internal radio environment, 

such as radio frequency spectrum, user behavior and network state. The term “Cognitive 

Radio (CR)” was coined by Joseph Mitola III in October 1998 to represent the integration of 

substantial computational intelligence – particularly machine learning, vision, and natural 

language processing – into software defined radio (SDR). [33] CR embeds a RF-domain 

intelligent agent as a radio and information access proxy for the user, making a myriad of 

detailed radio use decisions on behalf of the user (not necessarily of the network) to use the 

radio spectrum more effectively. 
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Although cognitive radio was initially thought of as a software-defined radio extension, most 

of the research work is currently focusing on Spectrum Sensing Cognitive Radio, particularly 

in the TV bands. The main problem of Spectrum Sensing Cognitive Radio is in designing 

high quality spectrum sensing devices and algorithms for exchanging spectrum sensing data 

between nodes. It has been shown that a simple energy detector cannot guarantee the accurate 

detection of signal presence, calling for more sophisticated spectrum sensing techniques and 

requiring information about spectrum sensing to be exchanged between nodes regularly. 

Increasing the number of cooperating sensing nodes decreases the probability of false 

detection. [144] Filling free radio frequency bands adaptively using OFDMA is a possible 

approach. Applications of Spectrum Sensing Cognitive Radio include emergency networks 

and WLAN higher throughput and transmission distance extensions. 

2.4 Academic SCA based SDR (OSSIE and SCARI) 

1. SCARI (CRC 2004) 

The SCARI-OPEN is an implementation of the JTRS Software Communication Architecture 

SCAv2.2 and certified by the JTRS-JPO. The project is carried out at the Canada’s 

Communications Research Center (CRC) and was launched in 2001 under a contract between 

CRC and SDR Forum to develop a reference implementation (RI) aiming at: [28] 

 

• Reduce the level of ambiguity of the SCA specification documents 

• Increase the potential for interoperability by allowing implementers to customize the 

RI instead of rewriting the whole architecture 

• Increase understanding of the architecture through an example 

• Accelerate the emergence of SDRs through the availability of an implementation 

• Reduce the cost and time-to-market for SDRs 

 

SCARI-OPEN is an open source implementation written in Java. The RI provides the 

mandatory components of the SCA core framework, along with support for the most used 

features, including Service Interfaces, Core Framework with the XML Domain Profile, 
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related tools to operate the radio and simple waveform applications to demonstrate the 

operation of radio. 

 

The SCARI++ core framework is a new generation core framework of CRC implemented in 

C++. It supports an exceptional number of operating environments. Some of them are 

especially designed for real-time embedded systems.  

 

2. OSSIE 

OSSIE, acronym for Open Source SCA Implementation::Embedded, is an open source SCA-

based core framework and rapid development tool for SDR developed at Virginia Tech. [27] 

Its latest version 0.8.0 was released in January, 2010. 

 

OSSIE is targeted for use in wireless communications curricula and research efforts. OSSIE 

includes a core framework as well as a suite of graphical user interface-oriented tools. The 

tools are capable of auto-generation of SCA-specific component source codes and supporting 

files, leaving the developer the task to specify the signal processing functionalities. 

2.5 Commercial SCA based SDR (Spectrum Signal) 

Spectrum SDR-4000 [29] 

SDR-4000 is a SDR small form factor transceiver platform development by Spectrum. SDR-

4000 offers the commercial off the shelf (COTS) hardware, software and services to 

accelerate the development and deployment of black-side wireless modem solutions for 

tactical military communications system. The SDR-4000 consists of two major component 

level products: the PRO-4600 SDR modem processing engine and the XMC-3321 dual 

transceiver I/O mezzanine card. The two components together provide a wireless modem that 

supports up to two channels per slot. Figure 5 illustrates the two components and an example 

of data flow. 
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Figure 5 PRO-4600/XMC-3321 example of data flow 

 

The PRO-4600 component employs a combination of heterogeneous processors and FPGA: 

Xilinx Virtex-4 FPGA, TMS320C6416T DSP and MPC8541E GPP, which fulfills the size, 

weight and power-limited requirements of SDR applications. 

 

The XMC-3321 is dual channel transceiver module optimized to operate with the PRO-4600 

for SDR applications. The XMC-3321 supports 10.6, 21.4 and 70 MHz IF frequencies 

through the use of dual 14-bit A/D converters sampling at up to 105 MSPS and dual 14-bit 

D/A converters sampling at up to 300 MSPS. 

 

Figure 6 shows the standards-based software operating environment of the SDR-4000 

platform. It supports real-time operating systems such as Integrity of Green Hills or Wind 

River VxWorks. The SCARI Core Framework of CRC is supported by the SDR-4000, which 

maximizes the real-time performance of embedded platforms by providing a full 

implementation of all the SCA Core Framework interfaces and implementing exceptional 

features that minimize the boot time of an SCA system. 
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Figure 6 Software Operating Environment 

2.6 Other efforts in SDR implementations 

1. IDROMel (ANR project, France, 2009) 

The project IDROMel [30] is a French National Agency for Research (ANR) project aiming 

at defining, developing, and validating a reconfigurable SDR and Cognitive Radio platform. 

The platform combines the latest technologies, such as: 

 

• Flexible baseband processing 

• Network on Chip based integration 

• FPGA partial reconfiguration support 

• Very wide band RF from 200 MHz to 7.5 GHz agility 

• 4 X 4 MIMO support 

• Flexible MAC design for vertical handover support 

 

The platform permits various SDR or CR scenarios like vertical handovers in a heterogeneous 

network including multiple Radio Access Technologies (RATs) (with different QoS 

parameters, frequency bands and bandwidths). The selected RATs are UMTS and WiMax. 

The baseband processing part of the platform features a hierarchical heterogeneous 
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architecture. The implementation is based on two FPGAs. The first FPGA, Virtex-5LXT110 

from Xilinx, implements a 32-bit microcontroller that is responsible for communications with 

the host-PC via a PCI-express link and for the global control of the second FPGA. The second 

FPGA, which is a Xilinx Vertex-5LX330 board, consists of 7 DSP blocks interconnected by a 

crossbar responsible for various signal processing functions and interface with the RF front 

end, as shown in Figure 7. The main characteristics are summarized in Table 3. 

 

Figure 7 IDROMel baseband architecture 

Table 3 IDROMel summary 

Standards UMTS, WiMAX 

Technology Xilinx Virtex-5110LXT control; Virtex-5 

330LX processing 

 

IP Core DFT, Generic modulator BPSK to QAM256, 

generic channel coder (conventional, cyclic, 

M-sequence), generic channel decoder 

(Viterbi, turbo), generic 

interleaver/deinterleaver 

 

Processor 8 bit uC for each IP Core 
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Partial reconfiguration of FPGA is a new feature that is capable of extending SDR 

perspectives by bringing the highest flexibility to the hardware level. The results show an 

interesting reconfiguration overhead which is as little as 700 µs/Partial Reconfiguration. 

 

2. WiNC2R (WINLAB, Rutgers University, 2008) 

In [31], a prototype of a Cognitive Radio hardware platform – the WiNC2R is described. The 

platform is based on the FPGA technologies featuring rich logic resources. The flexible 

processing elements provide the designers a large exploration space to find the best 

performance/power/area tradeoff. The architecture is composed of three parts, the RF module, 

the baseband module and the networking module. While the RF module is mainly composed 

of analog circuits, the baseband module and the networking module are all implemented with 

FPGAs. The baseband module is implemented in Xilinx Virtex-4SX series of FPGA, which 

features rich DSP resources and is geared towards high-performance digital signal processing 

applications. The network module is implemented in the Xilinx Virtex-4FX series of FPGA, 

which is targeted for embedded control intensive applications. DMA engines and hardware 

accelerators are used to accelerate some computation-intensive PHY layer functions, like 

FFT, Viterbi decoding, ECC, etc, which are dynamically configurable on a per-packet basis to 

cover multiple standards. Figure 8 shows the baseband and network module of the WiNC2R 

while Table 4 lists the main baseband characteristics. 

 

Table 4 WiNC2R baseband summary 

Standard OFDM, QPSK/DSSS 

Technology Xilinx Virtex-4SX35, Virtex-4FX12 

IP Core ECC, FFT, Viterbi decoding, Reed-Solomon 

(RS) encoding & decoding 

Processor  Data Processor (DP) (MAC & higher layer), 

Cognitive processor (CP) 
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Figure 8 Baseband and network modules 

 

3. Annabelle (University of Twente, Netherlands, 2007) 

Annabelle [32] is a multiprocessor system-on-chip (MPSoC) cognitive radio platform. It 

focuses on the baseband processing aspects of the Cognitive Radio. A Cognitive Radio needs 

an adaptive physical layer that must be supported by a reconfigurable baseband processing 

platform. As illustrated in Figure 9, the Annabelle architecture is an ARM core based 

heterogeneous MPSoC. The baseband processing functions and reconfiguration are carried 

out on an array of Montium reconfigurable DSP processors interconnected via a circuit-

switched Network-on-chip (NoC). A summary of the main characteristics of Annabelle 

platform is given in Table 5.  
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Figure 9 Block diagram of Annabelle base band 

Table 5 Annabelle baseband summary 

Standard OFDM 

Technology ATMEL 130nm process 

IP Core Viterbi decoder (ASIC) 

Processor ARM926-EJS, Montium DSP (sparse FFT, 

filter bank, DCFD) 

 

4. SDR LSI (Fujitsu 2006) 

SDR LSI is a single-chip solution for SDR baseband. It is developed for programmable 

wireless communications systems. As shown in Figure 10, SDR LSI features a hybrid 

architecture consisting of reconfigurable signal processors and parametric accelerator circuits 

for baseband processing. The reconfigurable signal processors (RSPs) are arranged in cluster 

structure that improves the mapping efficiency and minimizes the processing time. The main 

characteristics and supported standards of SDR LSI are summarized in Table 6. 
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Figure 10 SDR LSI architecture 

Table 6 SDR LSI baseband summary 

Standard 802.11a, b  

IP Core FFT, Viterbi decoder, programmable flip-

flop array (Scrambler/descrambler, CRC, 

Convolution encoder), FIR 

Processor ARM946, RSP (reconfigurable signal 

processor)  

2.7 Academic CR major projects and achievements 

Cognitive radio technologies have been proposed in order to identify and exploit unused 

spectrum while controlling the interference caused to licensed users. Local regulatory 

authority around the world license frequency bands to primary users (PU). However, primary 

users typically leave parts of their allocated spectrum underutilized. According to extensive 

measurement campaigns, radio resources are utilized from 15 percent to 85 percent depending 
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on location, frequency band and time of day [126]. This allows opportunistic communication 

by exploiting unoccupied frequency bands. 

 

Authors in [125] present an FPGA implementation of a feature detector for OFDM-based 

primary user signals. The paper compares different spectrum sensing techniques that have 

been proposed and chooses an autocorrelation based OFDM signal detection algorithm due to 

its performance despite a relatively more complex implementation. Implementation is realized 

on a Xilinx Virtex-5 FPGA. Simulations with Matlab and Modelsim indicate that the detector 

works well in above SNR of -5dB. 

 

The opportunistic radio (OR) is a narrower definition of Cognitive radio where the 

environmental awareness is limited to the spectrum knowledge. The study in [127] proposes 

an OR decision making framework including the flow of context information as an input 

process to the decision making engine, the context filtering and the reasoning mechanisms in 

which the decision optimization is achieved using a genetic algorithm (GA)-based approach. 

The experimental study is performed on the Ettus USRP (Universal Software Radio 

Peripheral) hardware and the GNU Radio open source software. The test results show the OR 

ability to perform spectrum sensing in the 2.4GHz ISM band and provide evidence that the 

proposed framework enables the OR terminal to detect spectrum opportunity and provide the 

best solution for a suitable channel allocation. 

 

Authors in [128] describes a hardware demonstrator of an OR system detecting and using 

temporal opportunities. They present an exclusive implementation of a cyclostationarity 

sensing algorithm, and propose a low complexity decision-making algorithm, which performs 

real-time regulation of the OR communications. The demonstrator operates in the 2.4GHz 

band and is validated by sharing the spectrum resource with a standard IEEE 802.11g primary 

system (PS) running a video streaming application without perceptible impact of the OR 

system. 

2.8 Conclusion 
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This chapter introduces the notion of Software Defined Radio (SDR). The advantages 

introduced the SDR and its implementation challenges are discussed. We are especially 

interested in the group of SDR that conforms to the Software Communication Architecture 

(SCA). SDRs that are compatible with the SCA open framework maximize the portability, 

reusability and interoperability of its waveform applications that are desirable features under 

current context of rapid advancement of communication standards and hardware platform. 

The definition of Cognitive Radio (CR) extends the Software Defined Radio by the 

integration of substantial computation intelligence - particularly machine learning, vision, and 

natural language processing. 

 

Then the academic and industrial efforts in the development of Software Defined Radio and 

Cognitive Radio are summarized. In the case of Software Defined Radio, many platforms and 

software tool kits have been developed for the fast prototyping, test and verification of a SDR 

system, such as the SDR4000, and SCARI. Some focus on the architectural design of the 

baseband processing part based on modern multiprocessor system on chip (MPSoC), such as 

Annabelle and SDR LSI. Other platforms leverage the flexibility provided by modern FPGAs 

to realize dynamic reconfiguration aspect of the SDR to conform to different communication 

standards without perceptible performance degradation during protocol handoff, like 

IDROMel. When it comes to the Cognitive Radio, researches focus more on a narrower 

definition by confining the environmental awareness of a Cognitive Radio to the spectrum 

knowledge. Algorithms for spectrum sensing and decision making are proposed and hardware 

platforms are also developed as a proof-of-concept. 

 

As mentioned in the introduction, we are more interested in the baseband processing aspects 

of the Software Defined Radio system. In all the mentioned works, no one ever proposed a 

SDR design flow for systematic and automatic system generation, and the programming 

paradigm faced by the SDR community is also of its own specificities. In our work, we 

propose a SDR design flow with systematic architecture exploration and optimization based 

on a hybrid programming model (distributed client/server + parallel). 
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Chapter 3 

Embedded System Implementation and 

Optimization for SDR 

This chapter first introduces the state of the art the MPSoC and FPGA design flows. Then an 

automatic parallelizer based automatic MPSoC design flow is proposed. The automatic 

parallelizer tool PLuTo is described. A NoC based multiprocessor architecture is designed and 

implemented. Some performance analyses were carried out on this platform to evaluate the 

design flow. The synchronization performance the OCP (Open Core Protocol) is also studied. 

3.1 MPSoC and FPGA Design Flow 

In [124], the authors propose a design methodology to generate and program MPSoC designs 

in a systematic and automated way for multiple applications. The architecture is automatically 

inferred from the application specifications, and customized for it. The flow is illustrated in 

Figure 11. The applications are described in the form of Synchronous Data Flow (SDF) 

graphs, which are used to generate the hardware topology. The software project for each core 

is produced to model the applications behavior. The project files specific to the target 

architecture are also produced to link the software and hardware topology. The final MPSoC 

platform is then generated. 

 

Article [96] leverages the performance and energy efficiency provided by the single-chip 

heterogeneous multiprocessors, where different processors are customized for the tasks they 

perform. However, a primary bottleneck is the development of programming paradigms and 

tools to alleviate the design complexity. The authors proposed a multilevel custom 

multiprocessor-synthesis methodology to perform the assignment and scheduling of the 
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applications tasks on the various processors together with the processor customization in an 

integrated manner. The author makes use of the Application Specific Instruction set Processor 

(ASIP) technology to customize instruction set depending on specific task characteristics. The 

ASIP technology customizes the instruction set according to specific application 

characteristics which can give a more energy efficient implementation for the same 

performance level. 

 

Figure 11 Multiprocessor Synthesis Design flow [124] 

The heterogeneous multiprocessor-synthesis problem is abstracted by the author as: A task 

graph is composed of n tasks and each task ti has mi custom-instruction versions. Cycleij 

corresponds to the execution cycle of an instruction version of a task and Areaij corresponds 

to the area consumed (1 ≤ i ≤ n, 1 ≤ j ≤ mi). Given p initially homogeneous processors in a 

multiprocessor system, and a total area budget AB for all custom instructions, assign and 

schedule the tasks on these processors with a set of custom instructions such that the total 
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execution time of the task graph is minimized while the total area of all the custom 

instructions is within AB. Figure 12 illustrates the overall design flow. A task graph is 

generated from the application. Each task is profiled and a performance-area tradeoff curve is 

generated in for different levels of instruction set customization. More custom instructions are 

added, more performance will be got in sacrifice of chip area. Then the task graphs are 

scheduled. The tasks that appear on the critical path are candidates for more instruction set 

customizations while others can be relaxed to save silicon resources. Then the tasks are re-

scheduled and eventually a new critical path appears. This operation is repeated until a 

satisfying performance-area trade-off is achieved. 

 

 

Figure 12 Synthesis methodology for heterogeneous multiprocessors [96] 

The ever-increasing complexity of applications and platforms makes the tradition RTL level 

approach of SoC design error-prone and time-consuming and thus impractical. Authors in 

[98] argue the importance of high level of abstraction in the SoC design in order to tackle this 

problem. Moving up to higher levels of abstraction opens a gap that the authors name the 

Implementation Gap. Tools are needed to close this gap in a systematic and automated way. 

[98] The paper proposes a methodology and techniques implemented in a tool called ESPAM 

(Embedded System-level Platform Synthesis and Application Mapping) for automated 

multiprocessor system design and implementation, as illustrated in Figure 13. 
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The flow is composed of three levels of specification: System Level, RTL level and Gate 

Level. The System-level specification is given as input to ESPAM. First, ESPAM constructs a 

platform instance following the platform specification. Second, ESPAM refines the abstract 

platform model to an elaborate parameterized RTL model ready for implementation. Finally, 

ESPAM generates the program code for each processor in the multiprocessor system in 

accordance with the application and mapping specifications. 

 

 

Figure 13 ESPAM system design flow 

 

With the increasing design complexity, the gap between ESL (Electronic System Level) 

design to RTL synthesis becomes more crucial for industrial projects. In [138], the authors 

present a SystemC-based ESL tool, SystemCoDesigner, to carry out automatic multi-objective 

optimization for a hardware/software SoC implementation. This tool combines the behavioral 

synthesis with automatic software generation. The design flow using SystemCoDesigner is 

illustrated in Figure 14. Starting from a SystemC behavioral model, SystemCoDesigner 

automatically extracts the mathematical model, performs behavioral synthesis step, and 

explores the multi-objective design space. During the design space exploration, a single point 
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is evaluated by simulating highly accurate performance models, which are automatically 

generated from the SystemC behavioral model and the behavioral synthesis results. 

SystemCoDesigner then automatically generates the bit stream for FPGA targets from any 

previously optimized implementation.  

 

Figure 14 ESL Design Flow using SystemCoDesigner 

In [43], authors present the Daedalus system-level design flow for the design of MPSoC based 

embedded multimedia systems. The design flow is shown in Figure 15. It offers a fully 

integrated tool-flow in which design space exploration, system-level synthesis, application 

mapping, and system prototyping of MPSoCs are highly automated. The Daedalus aims at 

composable MPSoC design in which MPSoCs are strictly composed of IP library components 

including a variety of programmable and dedicated processors, memories, and interconnects. 

The input to the flow is a sequential multimedia application specification in C. The KPNgen 

tool automatically converts the sequential application into a parallel Kahn Process Network 

(KPN) specification which is subsequently used by the Sesame modeling and simulation 

environment to perform the system-level architectural design space exploration. The resulting 

system designs are then passed to the ESPAM tool to generate synthesizable VHDL that 

implements the candidate MPSoC platform architecture. In addition, C codes are generated at 

this step for the applications processes that are mapped onto programmable cores. Using 



 

30 

commercial synthesis tools and compilers, this implementation can be readily mapped onto an 

FPGA for prototyping. 

 

Figure 15 The Daedalus system-level design framework 

In [134], the authors address the design space exploration (DSE) problem in order to find out 

Multi-Processor System-on-Chip architectures for a given multi-task signal processing 

application aiming to minimize the system cost while satisfying the real-time constraints. 

They propose a two step design architecture exploration to solve the three sub-problems, 

which are the processing elements selection, the application mapping and the synthesis of the 

communication architecture. The design flow is illustrated in Figure 16. 

 

The flow inputs are the behavioral specification, an architecture template and a block 

performance database. The behavioral specification is represented in synchronous data flow 

(SDF) graphs where each node represents a coarse grain function block whose body is 

described in C code, an arc represents a FIFO channel that carries a stream of data from a 

source node to a destination node. The block performance database recodes the information 

on how long it takes for each PE to execute a functional block. The co-synthesis loop is 

performed as the first loop of the proposed exploration framework. When the PE selection and 

the mapping decision have been made, a HW/SW co-simulation is carried out to obtain the 

memory traces of all PEs. The communication architecture exploration loop then follows. The 
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design flow has also a global loop that updates the communication costs used in the co-

synthesis loop with those obtained after the communication architecture is determined from 

the communication DSE loop. The experimental results with various random graphs and the 

4-channel DVR application validated the efficiency and the viability of the proposed 

exploration method. 

 

 

Figure 16 Two step design architecture exploration 

3.2 Optimization Based Design Flows 

Authors in [41] focus on the synthesis bus matrix based communication architecture for the 

high bandwidth MPSoC design. They propose an automated approach, named bus matrix 

synthesis (BMSYN), for synthesizing a bus matrix communication architecture, which 

satisfies all performance constraints in the design and minimizes wire congestion in the 

matrix.  
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Figure 17 BMSYN automated flow 

Figure 17 shows the automated BMSYN flow. The flow inputs include a common through 

graph (CTG) representing the performance constraints of the system, a library of IP models, a 

target bus matrix template, and the communication parameter constraint set. First of all, a fast 

transaction-level model (TLM) simulation of the system is carried out to determine the 

application-specific data traffic statistics. The information is then passed to the global 

optimization phase to reduce the full bus matrix architecture by removing unused busses and 

local slave components from the matrix. The resulting matrix is called a maximally connected 

reduced matrix. In the next step, an optimization engine based on a static branch and bound 

algorithm is used to cluster slave components which further reduces the number of busses in 

the matrix. The resulting architecture is then passed to a fast bus cycle accurate simulation 

engine to validate and select the best solution that meets all the performance constraints, 

determine slave arbitration schemes, optimize the design to minimize bus speeds and OO 

buffer sizes and then finally output the optimal synthesized bus matrix architecture. The 

results from the synthesis of an AMBA3, AXI-based bus matrix for four MPSoC applications 

from the networking domain show a significant reduction in bus numbers in the synthesized 
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matrix when compared with a full bus matrix (up to 9 x) and a maximally connected reduced 

matrix (up to 3.2x). 

3.3 Automatic Parallelization State of the Art: The case of PluTo 

For the purpose of this work we have selected an open source automatic parallelizer PLUTO. 

PLUTO [58] is a polyhedral automatic source-to-source transformer that can optimize nested 

loop sequences for coarse-grained parallelism and cache locality simultaneously. OpenMP 

parallel code for multicores can be generated from very regular C program sections. The 

effectiveness of the tool is based on the observation that a long running program often spends 

most of its time in nested loops. This is particularly common in scientific applications. 

Therefore a sub-optimized nested loop hinders the efficiency of a program in such aspects as 

inefficiency of cache access, unnecessary data dependence, overhead of synchronization 

point, etc. The polyhedral model is used in PLUTO for program representation and 

transformation. The polyhedral model provides powerful abstractions to optimize loop nests 

with regular accesses for parallel execution. Affine transformations in this model capture a 

complex sequence of execution-reordering loop transformations that improve performance by 

parallelization as well as better locality. The polyhedral model provides a powerful 

abstraction to reason about transformations on such loop nests by viewing a dynamic instance 

(iteration) of each statement as an integral point in a well defined space, which is the 

statement’s polyhedral. Below we list some basic mathematic representations of the 

polyhedral model: 

Loops are represented using iteration vectors: 

 
 
The iteration domain D defined as the set of values for which the statement is executed are 

represented as: 

 
 

 

where x
r

 is the iteration vector, A  is a integer matrix and c
r

 is a constant vector (possibly 

parametric). 

With such a representation for each statement and a precise characterization of inter and intra-

statement dependence, it is possible to determine the correctness and goodness of a sequence 
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of complex loop transformations using the machinery from Linear Algebra and Integer Linear 

Programming. The polyhedral model is applicable to loop nests in which the data access 

functions and loop bounds are affine combinations of the enclosing loop variables and 

parameters. The task of program optimizations in the polyhedral model involves mainly three 

phases: (1) static dependence analysis of the input program, (2) transformations in the 

polyhedral abstraction, (3) generation of efficient loop code. There have been significant 

recent advances in dependence analysis and code generation that demonstrated the 

applicability of the polyhedral model to real applications. However current state-of-the-art 

polyhedral implementations still require manual efforts and expertise for determining the best 

set of transformations. For example, an import issue is the choice of transformations from the 

huge space of valid transforms. PLUTO addresses this problem by formulating a way to 

obtain good transformations fully automatically. 

 

One of the key transformations involved in the PLUTO automatic transformation framework 

is tiling. It is studied in two perspectives: data locality and parallelization. Tiling for locality 

requires grouping points in the iteration space into smaller blocks (tiles) which allows data 

reuse in multiple directions when the block fits in a faster memory (register, L1 or L2 cache). 

Tiling for parallelism involves partitioning the iteration space into tiles that may be 

concurrently executed on multiple processors with minimum frequency and volume of inter-

processor communications. PLUTO develops a cost function for looking for good tiling 

hyperplanes. 

 

Figure 18 PLuTo workflow 

Figure 18 shows the entire tool-chain of the PLUTO tool. The PLUTO tool utilizes LooPo 

[81] infrastructure for program scanner/parser and dependence tester. LooPo is a project of 

the University of Passau whose purpose is to develop a prototype implementation of loop 
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parallelization methods based on the polyhedral model. PLUTO uses PipLib [80] as ILP 

solver and CLooG [79] for code generation. CLooG provides software and library generating 

loops for scanning Z-polyhedra. It finds the code or pseudo-code with which each integral 

point of one or more parameterized polyhedra, or union of parameterized polyhedra is 

reached. CLooG is designed to avoid control overhead and produce very effective code. 

Figure 19 presents an example of PLUTO transformed code. 

 

Figure 19 PLUTO transformation: (a) sequential code, (b) parallel 

The PLuTo parallelizer allows multiple options. The options are described in Table 7. In 

particular, classical unrolling and unrolling factors are proposed to the user. Vectorization is 

also proposed as part of the currency extraction potential. 

Table 7 polycc command-line options 

Pluto options Description 
--tile Tile code 
--l2tile Tile also the L2 Cache 
--parallel Parallelize code using OpenMP 
--multipipe Extraction of multiple degree of parallelism 
--smartfuse Fuse between strongly-connected components 
--unroll Unroll up to two loops 
--ufactor=<f> Unrolling factor 
--prevector Vectorization 
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Pluto has been applied in various studies [58][104]. In [104], hybrid iterative and model-

driven optimizations have been successfully proposed and applied. 

3.4 Automatic parallelizer based MPSoC design flow 

The PLUTO parallelized code depends on the OpenMP API, compiler and OS run time 

support to realize task partition. However, such support is rarely available in an embedded 

context where OS is not always present. We proposed an automatic accelerator generation 

flow that integrates PLUTO and adapts an application targeting the general purpose processor 

to an embedded environment. The flow is illustrated in Figure 20. 

 

Figure 20 Automatic parallelizer based accelerator design flow 

The input source file (prog.c) is marked with PLUTO directives indicating the loop nests to be 

parallelized and the accompanying configuration file containing platform information, such as 

memory hierarchy. PLUTO parallelizer then analyzes the code and generates the parallel 

version in the form of OpenMP (prog.par.c). An automatic application adaptor (App_Adpt) 

then replaces the OpenMP directives with platform specific identifiers so that workload can 
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be partitioned and identified by their corresponding processor. Necessary synchronization 

functions are also inserted at this step based on the semantics of the specific OpenMP 

directives. After preparing the application, the accelerator generator (Accelerator Gen) 

generates the platform in the form of Xilinx Microprocessor Project file (.xmp) with the help 

of a library of EDK project basic construction components. Then the platform is synthesized, 

place and routed (ISE) to generate the final downloadable bit stream. Finally, the bit stream is 

downloaded and executed on the target evaluation board. 

 

Figure 21 Code example of the Design flow 

This flow is readily adaptable to other platforms or CAD tools. Figure 21 is an example 

showing the evolution of the form of source code. (a) is the original sequential code marked 

with PLUTO directives which is passed to the PLUTO tool to generate (b), parallel code in 

the form of OpenMP. Then the semantics of the OpenMP is analyzed and replaced with 

processor identification functions and synchronization mechanisms to generate (c) and (d) 

which are ready to be compiled and executed on the target platform. Wherein, code (c) is the 
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master code which initializes the DDR2 memory and takes charge of the global 

synchronization, while code (d) does the actual calculation. 

3.5 Case study: A NoC based MPSoC programming and 

optimization 

3.5.1 MPSOC platform 

We designed and implemented a single FPGA chip 16PE shared memory MPSOC using a 2 

stage NOC [46]. The multiprocessor platform is in general a shared memory architecture 

which integrates 16 Processing Elements (PE) Tiles of type MicroBlaze v7.0, as illustrated in 

Figure 22. Each tile is a powerful computing system with 64KB local memory that can 

independently run its own program code. PE tiles are connected to four DDR2 controllers via 

the Data-NoC which in turn control four off-chip DDR2 memory banks each having 256MB 

of capacity. This is where data storage and communication take place. A piece of small (1KB) 

on-chip block memory (BRAM) is implemented and connected to the 16 PEs via the 

synchronization NoC providing different synchronization facilities with minimum latency. 

One of the PEs is also connected to a PCI-Express controller that serves as console output 

when the platform is in a standalone mode or as high bandwidth data transfer channel 

configured in the host/coprocessor mode. 

 

Figure 22 Architecture of NoC-based multi-core 
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(1) Data & Synchronization NoC 

The communication infrastructure is built on the Network-on-Chip technology. ArterisTM 

Danube NoC Intellectual Property Library [22] provides highly configurable IP blocks, 

switch, network interface unit (NIU), routing table, etc., that manage on-chip communications 

between IP cores in System-on-Chip (SOC) designs like processors, DSPs, memories, I/O 

peripherals and so on. Data and control are transferred through different components of the 

NoC in form of packet conforming to the Arteris proprietary NoC Transaction and Transport 

Protocol (NTTP). IP integration is facilitated by the Network Interface Unit (NIU) of different 

standardized bus protocols, for example, AHB, AXI, OCP, and so on. We utilized the OCP 

protocol for the network work interface unit to which we will return in the next sub-section.  

 

Figure 23 Architecture of Data NoC 

Figure 23 shows the internal design of the Data NoC. It is a two-stage packet switched 

network comprised of a request network and a response network. The first stage is composed 

of 4 switches with 4-input-4-output each while the second one is composed of 4 switches with 

4-input-1-output. Processors and memory controllers are integrated via the OCP-NTTP and 

NTTP-OCP NIU respectively, which realizes protocol conversion between IP core native 

transactions and NoC. 

The architecture of the Synchronization NoC is shown in Figure 24. It differs from that of the 

Data NoC in the second stage of switches that contains only one 4-input-1-output switch 

directing traffic onto an on-chip RAM (BRAM). The Exclusive Access Manager inserted 

between the last-stage switch and the output NIU is an optional unit that can be included to 

realize the Load-Linked Store-Conditional (LL-SC) synchronization mechanism defined in 

the OCP protocol.  
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Figure 24 Architecture of Synchronization NoC 

(2) Processing elements 

In our system we used the Xilinx Microblaze v7.00 soft-core microprocessor as the 

processing element. Figure 25 shows the block diagram of the microblaze architecture. The 

Microblaze processor is a 32bit Reduced Instruction Set Computer (RISC). It is implemented 

with Harvard memory architecture. The Microblaze processor is highly configurable and is 

optimized for FPGA implementation. A set of parameters and execution units can be 

configured at design time to fit design requirement, such as the number of pipeline stages, the 

cache sizes, a selectable Barrel Shifter (BS), a Floating Point Unit (FPU), a Hardware Divider 

(HWD), a Hardware Multiplier (HWM) and a Memory Management Unit (MMU). The 

performance and the maximum execution frequency varie depending on the processor 

configuration. For communication purposes, Microblaze v7.00 offers a Processor Local Bus 

(PLB) bus interface and up to 16 Fast Simplex Links (FSL) interfaces which is a point-to-

point FIFO-based communication channel. In our implementation, Microblaze processors are 

used in its simple version, which contains a 5 stage pipelines, a 32 bit integer HWM, and the 

Machine Status Register Instructions are enabled, as well as the pattern comparator. The 

Microblaze based element contains an Instruction-side Local Memory Bus (ILMB), a Data-

side Local Memory Bus (DLMB), an ILMB BRAM interface controller, a DLMB BRAM 

interface controller and a BRAM based 32KByte local on-chip memory. The local memory is 

connected to the processor through the LMB interface controller and the LMB memory bus. 

The FSL interface of the Microblaze is directly connected to the OCP Synchronization 
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Adapter and the OCP Data Adapter. The processors feed the OCP adapter with data and 

commands through the FSL channel. Then the OCP adapter converts these data and 

commands to OCP compatible signals, which are consumed by the Data-NoC and 

Synchronization NoC. 

 

Figure 25 Block diagram of the microblaze architecture 

3.5.2 OCP-IP Specification 

 

The Open Core Protocol (OCP) is an openly licensed, core-centric protocol defined by the 

OCP International Partnership (OCP-IP) [66].  It provides a common standard for intellectual 

property (IP) core integration in a “plug-and -lay” manner. The protocol is based on the 

master-slave point-to-point model. 

 

Today’s IP cores have custom, tight coupling interface logic that is difficult to design and 

difficult to modify. Consider a scenario in which we need to connect M master cores to N 

slave cores each having a custom interface. M x N bridges must be designed in order to 

connect each master core to every slave core. (Figure 26 (a)) OCP uses a network socket 

approach to separate communication from the design of the individual IP core interface design 
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which allows differing IP cores to effectively make use of the on-chip network. As a 

consequence, the M-master-N-slave scenario requires only (M + N) bridges with every core 

integrating the OCP interface. (Figure 26 (b)) 

 

Figure 26 System integration with a custom interface. (a) System integration with an OCP 

protocol (b) 

OCP provides a master/slave connection between two cores. One core, called the OCP 

initiator core has an OCP master interface. A master interface enables a core to generate OCP 

requests such as READ or WRITE and receive the READ responses. The other core, called 

the OCP target core, has an OCP slave interface that allows it to receive and respond to 

requests. 

 

OCP interface signals are grouped into dataflow, sideband, and test signals. The dataflow 

signals are divided into basic signals, simple extensions, burst extensions, and thread 

extensions. [67] The OCP is a synchronous interface with a single clock signal. All OCP 

signals are driven with respect to, and sampled by the rising edge of the OCP clock. Except 

for clock, OCP signals are strictly point-to-point and unidirectional. The complete set of OCP 

signals is shown in Figure 27. The encoding of different Master Commands (MCmd) is 

summarized in  

 

 

Table 8.  
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Figure 27 OCP signals 
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Table 8 OCP MCmd 

MCmd [2:0] Command Type 

0 0 0 Idle (none) 

0 0 1 Write write 

0 1 0 Read read 

0 1 1 ReadEx read 

1 0 0 ReadLinked read 

1 0 1 WriteNonPost write 

1 1 0 WriteConditional write 

1 1 1 Broadcast write 

3.5.3 Synchronization with OCP-IP 

 

We are interested in the synchronization mechanisms defined in the OCP protocol. There are 

3 major steps in a synchronization event: (1) acquire method, (2) waiting algorithm (3) release 

method [14]. There are 2 main choices for the waiting algorithm: busy waiting and blocking. 

Busy-waiting means that the process spins in a loop that repeatedly tests for a variable to 

change its value. Blocking the process does not spin but simply blocks itself and releases the 

processor if it finds that it needs to wait. Busy-waiting is likely to be better when the waiting 

period is short whereas blocking is better if the waiting period is long. Synchronization 

mechanisms should present: (1) low latency, (2) low traffic, (3) scalability (4) low storage 

cost and (5) fairness. Two common ways of implementing synchronization are: read-modify-

write and LL-SC. The OCP protocol [21] supports these two ways of synchronization among 

OCP masters by encoding of different Master Commands MCmd as listed in  

 

 

Table 8.  

 

The first one is Locked synchronization, which is a read-modify-write style atomic transfer. 

OCP initiator uses the ReadExclusive (ReadEX) command and Write or WriteNonpost 

command to perform a read-modify-write atomic transaction. In our system the NTTP 

protocol translates such accesses by inserting control packets, Lock and Unlock, on the 
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request flow. The NIU sends a Lock request packet when it receives the ReadEX command. 

The Lock request locks the whole path to the NTTP slave. Then a LOAD request packet read 

the data of NTTP slave. The OCP master modifies the data and sends it to the slave by a 

Write or a WritreNonPost command. When the NIU receives the Write command, it writes 

the data to require the NTTP slave by a STORE request packet and then releases the NoC by 

an Unlock request packet. The other competing OCP masters cannot access the locked 

location, until the Unlock packet is sent. Such a mechanism is efficient for handling exclusive 

accesses to a shared resource, but can result in a significant performance loss when used 

extensively. The Load-Linked Store-Conditional (LLSC) synchronization is realized by first 

issuing a ReadLinked (RDL) and then a normal Write or WriteNonpost command. If in 

between the two operations, another write operation occurred at the same position, or put it 

another way, the linked resource is modified, the write operation fails, thus realizing the 

atomic semantic. The Arteris NoC library embeds the Locked Synchronization 

implementation in the switch component, while it requires a specialized component called 

Exclusive Access Manager for the LLSC mechanism. Parallel software implementation 

involves complex tradeoffs including partitioning and load balancing, the granularity of 

communication, working set and the overhead of synchronization [15-16]. Poor 

synchronization primitives and hardware may greatly impact the parallel program 

performance. In this paper, we will present the performance analysis on hardware support for 

synchronization. 

 

The ADPe-XRC-4 evaluation board of Alpha Data was chosen for the implementation of the 

system. It is designed with a Xilinx Virtex4 FX140 FPGA which features 63, 168 slices and 

1.2 MB BRAM. The board has 4 independent banks of DDR2 SDRAM with a total capacity 

of 1GB memory. The block diagram and an actual illustration of the board are presented in 

Figure 28 and Figure 29 respectively. 
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Figure 28 Block diagram of Alpha-Data FPGA 

 

Figure 29 Alpha-data ADPe-XRC-4 FPGA board 

 

3.5.4 Synchronization results and analysis  

 

We have conducted synchronization performance evaluation experiments on the system. 

Although some efforts have been made for the benchmarking of NOC based multicore 

systems, NOC benchmarking for synchronization remains an open issue. We use the same 

approach as [68] through synchronization micro-benchmarks. The processors are divided into 

1 master PE and 15 slave PEs. As illustrated in Figure 30, when entering the program, the 

master processor set the “Start” flag that triggers the execution of the other slave processors. 

It then turns to test the “Finish” flag which is updated by each slave processor upon task 

completion. There is zero workload for the slave processor between the “Start” flag test and 

the “Finish” flag updating to measure the number of clock cycles introduced by the 

synchronization.  
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Figure 30 Synchronization micro benchmarks 

Because of the concurrent write nature of the “Finish” flag, a synchronization mechanism is 

needed to assure the atomic read-modify-write operation. We implemented different 

synchronization mechanisms and compared their impact on the performance. The first 

mechanism is called the “block synchronization”, which means that when one processor gets 

access to a protected memory area, the others cannot access the same memory area until the 

first one releases the memory by a write operation. The access is controlled by the NoC 

interface. The second mechanism is called LL-SC (Load linked Store conditional) as it uses 

the Load Linked and Store Conditional instructions that allows to implement an atomic 

operation without forbidding memory accesses between the two instructions. It means that the 

protected memory area is not exclusively owned by any processor at any time. If a processor 

wants to perform an atomic update, it should first read the contents of memory, updates the 

contents, and before writing back it should make sure that no other processor has modified the 

contents between the read and write operation. In a first step we evaluate the performance of 

blocked synchronization versus LL-SC by varying synchronization agents with the 

synchronization lock placed in the BRAM. 

 

From the results shown in Figure 31, it should be noticed that the Locked Synchronization 

outperforms that of the LLSC by 50%. It can be explained by the overhead introduced in the 

LLSC when a conditional write is judged to either pass or fail depending on whether the 

tested variable is modified. More over, upon failure, the ocp packet containing the 
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WriteConditional command has to be reissued by the processor and routed through the NoC 

which introduces extra processor and packet routing (NIU to Exclusive Access Manager) 

cycles compared to the Locked mechanism for which the write packet blocks at some 

conflicting point on the NoC and passes once the lock is cleared. As a result, we conclude that 

the LLSC synchronization mechanism is not preferable in an environment where the shared 

memory is protected by an access-exclusive NoC. In a second step, the synchronization 

performance is compared between a dedicated NOC (Synchronization NoC) with access to a 

lock variable placed in an on-chip memory (BRAM) and a shared NoC (Data NoC) with the 

lock variable placed in the DDR2 memory. The results are shown in Figure 32.  

 

Figure 31 Synchronization performance: Locked vs. LLSC 



 

49 

0

5000

10000

15000

20000

Iteration number

C
y

cl
e 

co
u

n
t

DDR2 BRAM

DDR2 2843 5923 11240 15760

BRAM 1964 4070 6683 9331

1 5 10 15

 

Figure 32 Synchronization performance: BRAM vs. DDR2 

Clearly, blocking on BRAM with dedicated NOC reduces by 40% the synchronization time 

for 15 processors. It indicates the advantage of using the blocked synchronization mechanism 

for centralized synchronization architectures. 

 

The overall results show the superiority of the blocked mechanism in the dedicated 

synchronization NOC with BRAM over LL-SC with BRAM or blocked with DDR in a 

single-lock case. The synchronization only requires a small number of synchronization 

variables even for a great number of processors. So it is a good choice to sacrifice some on-

chip resources as a dedicated synchronization memory. 

3.5.5 Experiments of automatic parallelization 

 

In examining the execution results of the PLUTO parallelized codes on our platform, we 

noted several key elements that influence the effectiveness of parallelization. Some of these 

elements are intrinsic in the application, while others are architecturally dependant. A 

comprehensive understanding of the characteristics of both the application and the 

architecture accompanied by an optimum combination of the two is necessary for a satisfying 

performance. We parallelized and tested several micro benchmarks from linear algebra and 

multimedia algorithms with each one of them highlighting one or a couple of the performance 

limiting aspects for parallel computation.  
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(1) Matrix multiplication 128 * 128 

 

Figure 33 Execution results of Matrix Multiplications (128 * 128)  

The timing results are obtained using low level timer register read/write instruction thus 

introducing only trivial overheads, in the order of several tens of cycles. 

 

Matrix multiplication is among others the most parallelizable application because of its high 

data independency. The parallelized code generated by PLUTO is actually a block based 

matrix multiplication. The resulting matrix is divided into blocks. Each processor can simply 

take charge of one unfinished block to work on independently without having to stall waiting 

for data produced by other blocks. However the memory access efficiency becomes an 

important issue. For all hierarchical memory architectures, memory access efficiency is a key 

element for the overall performance. The better the local cached data is exploited, the better 

the performance will be. In our case, we defined two block sizes for the blocked based matrix 

multiplication algorithm, 4 * 4 and 8 * 8, respectively.  From Figure 33 we can see that the 

cycle reduction in increasing the block size from 4 * 4 to 8 * 8 is 41% (as the triangle marked 

line illustrates). This is because with larger block sizes, there is a larger data reuse ratio. (This 

ratio differs from application to application and is approximately in the order of magnitude of 

O(n) for matrix multiplication, where n indicates block size.) However there are two 

exceptions on the curve where the processor number equals 12 and 15 respectively. This 

comes from an under-utilization of processor resources when the workloads are not divisible 

by the number of processors. We can deduce that using 16*16 block size will saturate even 

earlier the performance gain. The figure also shows that that the cycle counts don’t scale from 
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8 processors to 12 or 15 processors. We will return to this issue in the other applications. 

Figure 33 shows a perfect performance scalability of the system as, when we double the 

number of processors the performance also doubles. The synchronization and communication 

overheads can be ignored with the block size we chose due to relatively high level of 

parallelization. The result shows, on one hand, that the NoC is far from saturation as proved 

by the nearly perfect scalability and still have space for even heavier traffic loads, and on the 

other hand, the possibility to hide the communication latency with computation is a promising 

technique for better performance. 

 

(2) Seidel 128 * 128 

There are two important aspects in a PLUTO generated code: data dependence analysis and 

data locality improvement. The data dependence analysis results can be readily exploited by 

dispatching independent parts of codes to different processors, and the correction of the 

operation is guaranteed by the PLUTO tool. The cycle counts for different numbers of 

processors show a relatively low but still satisfying parallelizability of the Seidel Algorithm 

compared to that of the Matrix Multiplication. The performance scaling keeps track of 

resource scaling until 8 nodes. The core of Seidel algorithm is the calculation of the average 

of each 3 x 3 window of 9 elements in a two dimensional array. If we partition the job on a 

line-by-line basis, the second processor can only start after the first one has finished 

calculating the first two pixels, the third waits similarly for the second processor. That's why 

when the number of processors increases beyond a certain level, the new coming should wait 

the total calculation of the first processor before being able to start execution. 
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Figure 34 Execution results of Seidel 128 * 128 

When passing from 8 nodes to 16, we only get 27% cycle reduction. Because of the lack of 

hardware support for cache control, we manually managed some software cache 

functionalities to improve data reuse. The data are should be first fetched from the DDR 

memory to the local Bram before the processor can proceed the calculation. We consider the 

local Bram as the equivalent of a software cache. Cache functionality is the reuse of partial 

fetched data instead of refetching the whole block in a later block calculation. This is done by 

software.  However the data locality implemented by the compiling tool by tiling is not 

readily usable due to different architectural constraints. In our case, the lack of hardware 

support for cache (local memory) control makes it necessary to manage the cache protocol in 

software. PLUTO implements tiling in transforming long “for” loops into nests of small “for” 

loops so that the inner most loops can totally fit into the local memory, and cache miss 

happens only when the outer loops change. We manually coded some cache control protocols 

and compared their performance with a protocol without cache data management. We 

restricted manual coding in the innermost loop because of the code complexity and memory 

limits. The blue curve shows the cycle reduction of an intelligently cache data managed code 

compared with the original one and there’s a steady 33% cycle reduction for all 

configurations with different number of processors. 

 

(3) DCT (Block size: 4 * 4) 
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Figure 35 Execution results of DCT (32 * 32) 

 

Figure 36 Execution results of DCT (64 * 64) 

In this application, we fixed the size of data block to 4 * 4. From Figure 35 we note that 

beyond 8 nodes, additional processor doesn’t introduce any performance improvement. This 

phenomenon results from the fact that we use a relatively large parallelization granularity (4 * 

4) for a small workloads (32 * 32) in which case extra processor resources are in idle mode 

lack of available workload. When we increase the workload from 32 * 32 to 64 * 64, this 

phenomenon exists no longer and we get a perfect performance scaling until 16 nodes, as 

illustrated in Figure 36. We also compared the performance differences between burst and 



 

54 

non burst mode of ddr access. The resulting performance improvement is trivial and is hardly 

visible from the figures.  

 

(4) Jacobi_1d (Vector size: 1000 Iteration: 2) 

In this application, we noted a limitation of the PLUTO parallelizer. For this particular 

application and some other ones (LU decomposition), it can provide an efficient 

parallelization only when the number of iterations is great or when the workload is large. For 

jacobi_1d with 2 iterations, the parallelization efforts only introduce synchronization 

overheads and no performance improvement.  

 

Figure 37 Execution results of Jacobi 1D 

 

Instead of parallel execution, the processors take turns to execute different parts of the work 

bringing out the same performance as one processor taking charge of all the work.  However, 

Figure 37 does show us another interesting point regarding the synchronization overhead. 

Even though this synchronization shouldn’t exist at the first place if only one processor is 

activated, the fact that choosing the optimum tiling size, (512, 128), can greatly reduce 

synchronization calls and thus improve the performance, a factor of two compared to others in 

this case. 
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3.5.6 Multi-programming Experiments and Analysis 

 

As it can be noticed from the above single-application parallelization performance results, the 

power of the parallel architecture is not always fully exploited due the application's intrinsic 

limitation in terms of parallelizability or the limitation of parallel compiler to fully exploit the 

application parallelism. Therefore we are naturally led to such a situation that the resources of 

the parallel architecture should be shared by multiple applications.  

 

We did some experiments of the multi-programmed platform with different combinations of 

the above mentioned applications. We noticed that the number of 8 processors is usually a 

critical point beyond which performance stops improving linearly. So in our experiments, we 

divided the processors in two groups with each application being allocated 8 processors. 

 

Table 9 Matrix Multiplication (128 * 128 Block size 8 * 8) / DCT (32 * 32 Block size 4 * 4) 

Number of processors Matrix DCT Total 

16 (single application) 19,707,161 10,246,616 29,953,777 

8 (single application) 39,339,984 10,250,044 49,590,028 

8 each (multi-program) N/A N/A 40,278,067 

 

Table 10 DCT (32*32 Block Size 4*4) / Seidel 128*128 Level1_Data_Reuse and intelligent 

management of cached data 

Number of 
processors DCT Seidel Total 
16 (single 
application) 10,246,616 3,545,928 13,792,544 
8 (single 
application) 10,250,044 4,837,995 15,088,039 
8 each (multi-
program) N/A N/A 10,408,323 
8 DCT / 4 Seidel 
/ 4 open N/A N/A 10,408,249 
8 DCT / 2 Seidel 
/ 6 open N/A N/A 13,609,924 
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From the result we notice that for the combination of matrix multiplication and DCT, the 

cycle count of the multi-programmed platform (40,278,067) is 34% greater than the 

accumulated (29,953,777) value of separated execution. The reason is that the matrix 

multiplication is the most parallelizable application and the performance improves linearly 

until 16 processors. So there's no need to optimize the resources utilization by sharing the 

computing resources with another application. And the inclusion of another parallel executed 

application add additional burden on the interconnection infrastructure and memory access 

conflicts. 

 

As the figures in the previous section show, the performance scaling stops for DCT when the 

processor number reaches 8. The 16 processor to 8 processor improvement for Seidel is only 

27%. So it makes sense to share processors between these two applications and the measured 

results justify this reasoning.  The cycle count of the multi-programmed platform (10408323) 

is 25% less important than the accumulated (13792544) value of the separated executions. We 

should also notice that because of the data size chosen, there is a performance difference 

between the two applications in the order of ten. If the data size of Seidel increases, the 

performance improvement of the multi-programmed platform should become more important. 

So we kept reducing the processor allocation to the Seidel application. When the processor 

allocation is 8 (DCT), 4 (Seidel), 4 (open), the cycle count remains unchanged as the case 

where each application is allocated 8 processor. If we remove 2 more processors from Seidel 

application, which gives the configuration 8 (DCT), 2 (Seidel), 6 (open), the performance 

starts to deteriorate to the best achieved performance in a single programmed platform. So the 

most performance/resources optimized configuration for DCT/Seidel combination is 8 (DCT), 

4 (Seidel), 4 (open). The remaining four idle processors are good candidates for compute 

bound applications. 

 

The platform also provides means to realize design space exploration. The microblaze soft 

core is highly reconfigurable. It can be reconfigured to include different number of pipeline 

stages and a hardware multiplier and a barrel shifter. The architecture can also be extended by 

hardware accelerator via the FSL link. Brams are limited resources that should be used in an 
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efficient way. In a multiprogrammed environment, Bram resources should be customized for 

each processor according to application needs. 

3.6 Conclusion 

The design of multiprocessors on chip is strongly emerging in high performance embedded 

systems. The specific features of embedded multiprocessor on chip present new challenges for 

parallel applications mainly due to the limited on-chip memory available per processor and 

the rudimentary memory hierarchies. Time to market and development costs constraints in 

embedded systems do not always allow for carefully hand tuned parallel applications and the 

potential of automatic parallelization in this framework needs to be evaluated. 

 

This paper addresses several issues in regard to this goal. First, we have analyzed and 

implemented various hardware supports for synchronization mechanisms each presenting 

different area-performance tradeoffs in order to select the most suitable synchronization 

which would best support parallelization. 

 

It clearly appears that a dedicated synchronization NOC with dedicated on-chip memory for 

synchronization lock variables have shown the best performance. To the best of our 

knowledge this paper is the first paper to evaluate various synchronization mechanisms on an 

actually implemented 16PE multi-core with a network on chip.  

 

Second, we have conducted several automatic parallelization experiments on a single chip 

embedded multi-core system. Our platform is composed of 16 PE with 4 external DDR. 

Experiments on the selected applications show that the automatic parallelization can hardly 

efficiently exploit more than 8 processors. The number of external DDR resulting from the 

single chip package pins constraints reduces memory access concurrency and cannot match 

the communication concurrency potential allowed by the NOC.  

 

Third, consequently to the findings of point 2 we evaluated the potential of multiprogramming 

performance. Multiprogramming for the considered applications exhibits memory accesses, 

synchronization and communication patterns which allows a better use of the platform.  
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In our future work, the platform generation flow will be enriched by introducing a multi-

objective optimization engine that takes into full consideration the performance/cost 

influential parameters, algorithmic or architectural, and works in an iterative manner for the 

generation of a cost-effective, application oriented high performance multi-core 

implementation. 
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Chapter 4 

Mapping middleware on Distributed Networked 

Embedded Systems 

An increasing number of systems are composed of a collection of various devices 

interconnected by a network, where each individual device performs functions that involve 

both local interaction and remote interaction with other devices of the system. On the other 

hand, the users interact with internet applications through a variety of devices, whose 

characteristics and performance figures span and increasingly wide range. 

 

Stimulated by the growth of network-based applications, the middleware technologies are 

more and more important. In a distributed computing system, the middleware is defined as the 

software layer that lies between the operating system and the applications on each site of the 

system. By hiding the heterogeneity of the underlying architecture, the operating system, the 

programming language, the middleware facilitates software integration, enhances portability 

of software components and interoperability between applications developed by different 

enterprises. 

4.1 CORBA, e/CORBA and OmniORB 

CORBA is the acronym for Common Object Request Broker Architecture. It is a potential and 

wide-accepted middleware standard developed by the Object Management Group (OMG) [6]. 

It is OMG's showcase specification for application interoperability independent of platforms, 

operating systems, and programming languages - even of networks and protocols. 
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From the first publication of CORBA 1.0 in October 1991, the CORBA specification has 

evolved through various completion and modifications and arrived at version 3.0 in July 2002. 

The CORBA versions are usually referred to as CORBA 2 or CORBA3, which in fact are 

complete releases of the entire CORBA specification. Because OMG increments the major 

release number only when they make a significant addition to the architecture, these terms 

become shorthand for just the significant addition. So, “CORBA 2” sometimes refers to 

CORBA interoperability and IIOP protocol, and “CORBA 3” sometimes refers to the 

CORBA Component Model. For the CORBA transport mechanism discussion, the 

CORBA/IIOP Specification is the right place to go. 

 

Figure 38 A client sending a request to an object implementation[6] 

 

The CORBA architecture is built upon a collection of objects that provides services to clients. 

An object is an identifiable, encapsulated entity that provides one or more services, while a 

client of service is any entity capable of requesting the service. The requestors of services 

(clients) are isolated from the providers of services by a well defined encapsulation interface 

as shown in Figure 38. In this figure, the Client wants to perform an operation (request) on the 

object, whose code and data are implemented in the Object Implementation. The ORB is 

responsible for all of the mechanisms required to find the object implementation for the 

request, to prepare the object implementation to receive the request and communicate the data 

corresponding to the request. 

 

The interface the client sees is completely independent of where the object is located, what 

programming language is implemented, or any other aspect that is not reflected in the object’s 

interface. The interfaces the client calls and the object implementation provide are defined in 

the OMB Interface Definition Language (IDL). In particular, the clients are isolated from the 
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implementation of services as data representations and executable code provide for the 

location, language and architecture transparency. 

 

Figure 39 The structure of Object Request Interfaces 

Figure 39 shows the structure of an individual Object Request Broker (ORB). The interfaces 

to the ORB are shown by striped boxes, and the arrows indicate whether the ORB is called or 

performs an up-call across the interface. 

 

To make a request, the Client can use the Dynamic Invocation interface or an OMG IDL stub. 

The Client can also directly interact with the ORB for some functions. The Object 

Implementation receives a request as an up-call either through the OMG IDL generated 

skeleton or through a dynamic skeleton. The Object Implementation may call the Object 

Adapter and the ORB while processing a request or at other times. 

 

The definitions of the interfaces to objects can be defined in two ways. The interfaces can be 

defined statically in an interface definition language, called the OMG Interface Definition 

Language (OMG IDL), which defines the types of objects according to the operations that 

may be performed on them and the parameters for those operations. Alternatively the 

interfaces can be added to an Interface Repository service; this service represents the 

components of an interface as objects, permitting run-time access to these components. 
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The client performs a request by having access to an Object Reference for an object. The 

client initiates the request by calling the stub routines or by constructing the request 

dynamically, as illustrated in Figure 40.  

 

Figure 40 A client using the stub or dynamic invocation interface 

The ORB locates the appropriate implementation code, transmits parameters, and transfers 

control to the Object Implementation through an IDL skeleton or a dynamic skeleton, as 

shown in Figure 41. When the request is complete, the control and output values are returned 

to the client. 

 

Figure 41 An Object Implementation receiving a request 

Interoperability is another important specification of CORBA that offers support for networks 

of objects managed by multiple, heterogeneous CORBA-compliant ORBs. 

4.1.1 CORBA interoperability and GIOP/IIOP 

 

The ORB interoperability [7] specifies a comprehensive, flexible approach for supporting 

networks of objects that are distributed across and managed by multiple, heterogeneous 
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CORBA-compliant ORBs -- “interORBability”. The elements of interoperability are as 

follows: 

• An ORB interoperability architecture 

• An Inter-ORB bridge support 

• General and Internet Inter-ORB Protocols (GIOPs and IIOPs) 

 

The ORB Interoperability architecture provides a conceptual framework for defining the 

elements of interoperability and for identifying its compliance points. It also characterizes 

new mechanisms and specifies conventions necessary to achieve interoperability between 

independently produced ORBs. 

 

The inter-ORB bridge support element specifies ORB APIs and conventions to enable the 

easy construction of interoperability bridges between ORB domains. 

 

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-

level data representation) and a set of message formats for communications between ORBs. 

The GIOP is specifically built for ORB to ORB interactions and is designed to work directly 

over any connection-oriented transport protocol that meets a minimum set of assumptions. 

While versions of GIOP running on different transports would not be directly interoperable, 

their commonality would allow easy and efficient bridging between such networking 

domains. 

 

The Internet Inter-ORB Protocol (IIOP)®  element specifies how GIOP messages are 

exchanged using TCP/IP connections. The IIOP specifies a standardized interoperability 

protocol for Internet, providing “out of box” interoperation with other compatible ORBs 

based on the most popular product- and vendor-neutral transport layer. 

 

The GIOP is designed to be implementable on a wide range of transport protocols. The 

objective is to draw analogy between the TCP/IP mapped GIOP transportation and a 

proprietary on-chip communication protocol used in the embedded context that will be 
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discussed later, and discuss the feasibility of mapping GIOP message transportation on this 

protocol. 

4.1.2 CORBA/e 

 

In today’s world, the stand-alone systems are becoming a thing of the past. The embedded 

processor environments are networked and highly interconnected. The software must cope 

with the communications and interoperability issues, while delivering the same reliability and 

performance as the isolated embedded system of the past. Embedded system software 

development becomes a more and more expensive and time-consuming task. But with a solid 

middleware architecture, this investment can pay dividends across many generations of 

technology. For the developers of real-time and embedded systems, CORBA/e is ideally 

suited to the challenges of today’s mission-critical environment. 

 

CORAB/e is a specification targeted to applications that will be executing on an embedded 

processor with constrained resources and/or that require predictable real-time behavior. [8] 

The architecture and specifications described in the manual are aimed at software designers 

and developers of Distributed Real-Time Embedded (DRE) Systems who want to produce 

embedded applications that comply with OMG standards for the Object Request Broker 

(ORB). CORBA/e has been designed to have the best of both worlds: dramatically 

minimizing the footprint and overhead of typical middleware, while retaining the core 

elements of interoperability and real-time computing that support optimized distributed 

systems. There are two CORBA/e profiles, the CORBA/e Compact and the CORBA/e Micro 

Profile, separately tailored for minimal and single-chip environments.  

 

The CORBA/e Compact Profile merges key features of standard CORBA suitable for 

resource-constrained static systems (no DII, DSI, Interface Repository, or Component 

support) and Real-time CORBA into a powerful yet compact middleware package that 

interoperates with other CORBA clients and servers of every size, executes with the 

deterministic characteristics required by a true real-time platform. 
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The CORBA/e Micro profile shrinks the footprint even more, small enough to fit low-

powered microprocessors or digital signal processors. This profile further eliminates the 

Valuetype, the Any type, most of the POA options preserved in the Compact Profile, and all 

of the Real-time functions excepting only the Mutex interface. In exchange for these 

limitations, the profile defines a CORBA executable that vendors have fit into only tens of 

kilobytes - small enough to fit onto a high-end DSP or microprocessor of a hand-held device. 

 

The developers of real-time embedded distributed system must pay special attention to 

resources utilization and to the predictability of system execution. In order to provide support 

for the development of real-time systems, CORBA/e provides handles for managing resources 

and end-to-end predictability. 

 

To decide a priori if a real-time requirement is met, the system must behave predictably. This 

can only happen if all the parts of the system behave deterministically and if they “combine” 

in a predictable way. The real-time interfaces and mechanisms provided by CORBA/e 

facilitate a predictable combination of the ORB and the application. The application manages 

the resources by using real-time CORBA/e interfaces and the ORB’s mechanisms coordinate 

the activities of the application. The real-time ORB relies upon the RTOS to schedule threads 

that represent activities being processed and to provide mutexes to handle any resource 

contention. 

4.2 omniORB 

There have been commercial as well as academic efforts for implementing ORB. Commercial 

ORBs include Orbix and Orbacus from Iona, Visibroker from Borland, and the ORBexpress 

series from OIS. On the academic side, there are TAO from Washington University [9], 

omniORB [10] from the former AT&T Laboratory in Cambridge, and the GOPI [11] from 

Lancaster University. 

 

We chose the omniORB-4.1.3 [12] as the middleware implementation for the distributed 

application development. omniORB is an Object Request Broker (ORB) that implements the 

2.6 specification of the OMG CORBA. Its various characteristics like light-weight, high 
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performance and the GPL license policy make it a potential candidate for the development of 

an embedded distributed system based on the proprietary transportation layer. We list below 

some features of the omniORB: 

 

(1) Multithreading 

OmniORB is fully multithreaded. With default policies, there is at most one call in flight in 

each communication channel between two address spaces at any one time. To maximize the 

level of concurrency, new channels connecting the two address spaces are created on demand 

and cached when there are concurrent calls in progress, while each channel is served by a 

dedicated thread. More over, the throughput is maximized in processing large call arguments 

by sending large data elements as soon as they are processed while the other arguments are 

being marshaled. From version 4.0 onwards, omniORB allows a flexible thread pooling 

policy and supports sending multiple interleaved calls on a single connection which allows 

omniORB to scale to large numbers of concurrent clients. 

 

(2) Portability 

OmniORB is designed to be portable. It runs on many flavors of Unix, Windows, several 

embedded operating systems, and less known systems such as OpenVMS and Fujitsu-

Siemens BS2000. It is designed to be easy to port to new platforms. The IDL to C++ mapping 

for all target platforms is the same. 

 

OmniORB uses true C++ exceptions and nested classes. It keeps to the CORBA 

specification’s standard mapping as much as possible and does not use the alternative 

mappings for C++ dialects. The only exception is the mapping of IDL modules, which can 

use either namespaces or nested classes. 

 

OmniORB relies on native thread libraries to provide multithreading capability and uses a 

small class library, namely omnithread, to encapsulate the APIs of the native thread libraries. 

It is easy to port omnithread to any platform that either supports the POSIX thread standard or 

has a thread package that supports similar capabilities. [12] 
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4.3 Analysis Case studies : Performance and Scalability  

From now, we will present a case study in which a CORBA based distributed embedded 

systems developed. Four ML403 evaluation cards of Xilinx are deployed in the system. The 

omniORB-4.1.3 is used for the development of the distributed applications. The Client/Server 

communication is based on the IIOP protocol via the Ethernet. Several benchmarking tests are 

carried out to evaluate the performance of the system in terms of latency and throughput. 

4.3.1 Distributed Embedded System Hardware Architecture 

4.3.1.1 ML403 board 

 

Figure 42 ML403 board from Xilinx 

The embedded distributed system is based on four ML403 board from Xilinx as illustrated in 

Figure 42. The ML403 board features a Virtex-4FX12 FPGA chip on which one ppc405 

processor is integrated. The FPGA contains 648 Kb on-chip two-port ram blocks (BRAM). 

The PPC405 processor is a 32-bit implementation of the PowerPC architecture targeting the 

embedded application. It is equipped of a 5-stage pipeline and 16KB instruction cache and 

16KB data cache. It can work at a frequency as high as 450MHz. For the inter-card 

communication, we used the Ethernet switch from Netgear which supports 10/100Mbs 

connections. Figure 43 is a block diagram of the architecture of the ML403 board while Table 

11 summarizes the features of the principal peripherals and ports. 
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Table 11 Principal components of the ML403 board 

Class Components Description 

Vitex-4 FPGA   

 XC4FX12 1 

 Processor PPC405 1 

 Slices 5,472 

 Block RAM 648Kb 

 Ethernet MACs 2 

Memory   

 DDR SDRAM 64MB 

 ZBT SRAM 1MB 

 Compact Flash 512MB 

 Linear Flash 8MB 

 IIC EEPROM 4kb 

Connectors and 

Interfaces 

  

 SMA connector (Differential Clocks) 4 

 PS/2 Connectors (Keyboard/Mouse) 2 

 Audio (In/Out, Microphone, Head Phone) 2 

 RS-232 Serial Ports 1 

 USB Ports (2 Peripherals/1 Host) 3 

 PC4 JTAG 1 

 DB15 VGA Display 1 

 RJ-45 Ethernet Ports 1 

 General-Purpose I/O (Buttons/LEDs) Several 
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Figure 43 Block diagram of the ML403 board 

4.3.1.2 Architecture of the distributed processing node based on a 

virtex4fx12 FPGA 

 

Figure 44 Block diagram of the architecture of the distributed node based on the virtex4fx12 

FPGA 

The FPGA sub-system is composed of the elements shown in Figure 44: one PPC405 

processor that implements the Operating system, the stack TCP/IP; one SysACE 

CompactFlash controller that connects the processor to the CompactFlash card on which the 

operating system, communications and computation applications will be supported; one 

interruption controller; one Ethernet MAC and one RS232_uart. The processor Local Bus 
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(PLB) from IBM Coreconnect family is used as on chip high performance bus. The resource 

utilization of the design is summarized in Table 12. 

Table 12 Resource utilization 

Resource Utilization 

Number of RAMB16s 23 out of 36              63% 

Number of Slices 3641 out of 5472      66% 

        Number of SLICEMs 126 out of 2736         4%  

 

 

Figure 45 Embedded distributed system based on four FPGA node connected by an Ethernet 

switch 

Figure 45 is a block diagram of the complete distributed platform consisting of four ML403 

boards. The cards are connected with each other via an Ethernet switch. There is a great 

flexibility for the configuration of the cards. They can serve as a Client, Server or as a 

Common Object Server (COS). In our experiment, we will configure one card as the Naming 

service server, another as a server, the third and forth as clients for testing the case where 

there exist concurrent invocations. 

4.3.2 Software architecture 

 

As stated before, omniORB-4.1.3 was chosen [12] as the middleware implementation for the 

distributed application development. The default mechanism for GIOP transportation, IIOP, is 

used for the Client/Server message transfer. OmniORB is compiled and installed on the Linux 

2.6.28 kernel. The Xilinx patched Linux Kernel source from [13] is utilized. It is one Linux 

kernel distribution equipped with the supplementary supports for Xilinx platforms. The Linux 
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kernel and the network applications are compiled in a cross environment. The host machine is 

an Intel CoreTM 2. The tool kit Buildroot is used for the creation of the cross-compilation 

(i386 – ppc) tool chain and the Linux file system. The file system is written on the ext2 

partition of the SysACE CompactFlash of the ML403 platform. The Linux kernel is compiled 

with the help of Device Tree Generator [14] from Xilinx which is an integrated tool of the 

Xilinx EDK [15] kit for the automatic generation of the Board Support Package (BSP). It 

generates the device tree file containing information of the component of the system 

(memory-mapped address, interruption, driver compatibility, etc.) for the compilation of the 

Linux kernel. Figure 46 shows the software architecture of the system. 

 

Figure 46 Software architecture of the embedded distributed system 

Figure 47 illustrates the complete testing platform: 

 

Figure 47 : Platform with four ML403 and a Switch 
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4.3.3 Performance Evaluation 

4.3.3.1 Middleware benchmarking 

 

Because of the diversity of ORB implementations, it is essential to have an open CORBA 

benchmark well understood and easy to measure. The Open Benchmarking Suite developed 

by Chares University represents an excellent effort towards the establishment of such a 

benchmark. [16][17][18] 

 

Latency and throughput are two major factors for the performance evaluation of a 

communication system. The latency shows the added overhead of message 

marshalling/unmarshalling, the TCP/IP stack, the time spent on the network, etc, while the 

throughput presents the capacity of the system to process large quantities of data. The results 

of these two factors affect how the execution time of a transaction is felt by the user. The 

Open Benchmarking Suite developed by Charles University also proposes some precious 

remarks concerning the precision issues when benchmarking CORBA [19].  

 

The experiments are carried out on the 4-FPGA-based platform with the PPC405 processors 

configured to 100MHz frequency, and equipped with 64MB main memory each. The platform 

configuration is: a Client/Server pair in which the client makes round trip calls to the server in 

sending n bytes of data. The C++ application, as well as the omniORB4.1.3, is compiled with 

the GNU g++ version 4.2.4 with the optimization flat –O2 activated. The execution time per 

call is measured on the client side by averaging 5, 000 consecutive calls. The IDL file is 

showed below: 

interface Echo { 

  string echoString(in string mesg); 

}; 

The throughput is measured by sending various sized sequence of bytes in a single direction. 

The IDL source file in defined below: 

interface BulkTransfer { 

        oneway void transfer(in string data); 

}; 
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The throughput under the concurrent invocation condition is also tested by executing two 

clients sending requests to the same server at the same time. 

 

4.3.2.2 Performance results 

 

The measured results for the intra-machine communications as well as for the inter-machine 

communications are presented in Table 13. 

Table 13 Time of round-trip Echo function without any message 

Platform Transport Time per call (µs) 

Linux 

PPC405 100MHz 

(Gcc-4.2.4-O2) 

TCP/IP intra-machine loopback 

TCP/IP inter-machine 

2121 

2154 

 

OmniORB4 takes 2121 µs for the intra-machine communication and 2154 µs for the inter-

machine communication.  For comparison, we cite the results from the work of [10] to show 

the round-trip echo call performance measured on other platforms. The results are showed in 

Table 14. 

 

When comparing the two tables, we notice that the latency of the PPC405 platform is 112% 

(Pentium Pro 200 Mhz) ~ 69% (Pentium 166 Mhz) larger in inter-machine communication 

and 500% (Pentium Pro 200 Mhz) ~ 112% (Pentium 166 Mhz) larger in intra-machine 

communication. The comparison results come from the lower frequency and the more 

constrained resources (memory/thread) of our system compared to the other non-embedded 

environments. Table 15 (Figure 48) shows the throughput results in sending 1 MB of data by 

the client to the server in a one-way operation. The throughput with different packet sizes is 

measured for intra-machine communications as well as inter-machine communications when 

the client is sending 1MB of data. 
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Figure 48 Throughput for 1 MB transfer in one-way invocation 

 

Table 14 Latency measurements for other architectures 

Platform Transport 
Time per call 

(µs) 

Linux Pentium Pro 200 Mhz 

(gcc-2.7.2 no compiler 

optimization) 

TCP/intra-machine 

TCP/ethernet (ISA card) 

TCP/ATM 

340 

1000 

440 

Windows NT 4.0 Pentium 

Pro (MS Visual C++ -- O2) 

TCP/intra-machine 

TCP/ethernet (ISA card) 

360 

1000 

Digital Unix 3.2 DEC 

3000/600  (DEC C++ -- O2) 

TCP/intra-machine 

TCP/ethernet  

750 

1050 

Windows 96 Pentium 166 

Mhz (MS Visual C++ -- O2) 

TCP/intra-machine 

TCP/ethernet (PCI card) 

1000 

1250 

Solaris 2.5.1 Ultra 1 167 

Mhz (Sunpro C++ -- fast) 

TCP/intra-machine 

TCP/ethernet 

540 

710 
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Table 15 Throughput for 1 MB transfer in one-way invocation 

Packet 

size 
Transport Time per call (µs) 

10 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

0.007 

0.013   

0.008 

100 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

0.07 

0.15 

0.09 

1,000 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

0.59 

0.74 

0.47 

10,000 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

1.72 

1.86 

1.64 

100,000 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

3.40 

1.97 

1.63 

1,000,000 TCP/IP intra-machine loopback 

TCP/IP inter-machine 

TCP/IP inter-machine (concurrence) 

4.97 

2.53 

1.57 

 

We noticed that the throughput of the system improves when the packet size increases. With 

larger packet sizes, the overhead introduced by each invocation, marshalling/unmarshalling 

for example, is reduced. We can also see that the best performance changes between the intra-

machine communication and the inter-machine communication when the size exceeds 1KB 

bytes. We suppose that in the case of intra-machine invocation, the gain of performance on 

the communication is reduced by the time consumed in context switches between the client 

process and the server process. The frequency of context switches decreases when the packet 

size increases. Therefore at a certain point, the performance is dominated by the 

communication overhead and the throughput of intra-machine invocation exceeds that of the 
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inter-machine invocation. In Table 15, the third result of each line shows the throughput in the 

presence of request conflicts: two clients concurrently invoke the same server object. In that 

case, the performance deteriorates in average by 30% compared to the case where only one 

client exists. 

4.3.4 Performance of the Server/Client distributed platform when 

increasing clock frequency 

 

The results obtained in the former section are based on a homogeneous frequency 

configuration of the four FPGA systems, more precisely the PPC405 processor and the PLB 

bus. Though architecturally identical, the four FPGA sub-systems serve different roles in the 

distributed system. Therefore performance requirements are not necessarily the same for a 

sub-system configured as client compared to one configured as server. The effect of 

frequency scaling on performance enhancement also varies depending on the role the specific 

system takes in the distributed system. 

 

A study of the frequency scaling effect on system performance is important to get satisfying 

performance under minimum energy budget. In our experiments, we defined three basic 

frequency configurations in terms of PPC405 and PLB bus and their combination in a 

distributed system is studied. 

 

Basic frequency configuration choices: 

PPC405 200MHz / PLB 100MHz (200/100) 

PPC405 100MHz / PLB 100MHz (100/100) 

PPC405 50MHz / PLB 50MHz (50/50) 

 

Same as in the former section, the two performance metrics measured are latency and 

throughput. The benchmarking programs are defined in the same way as in the former 

experiments that we will remind below: 

 

Latency: 

interface Echo { 
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    string echoString(in string mesg); 

}; 

 

Throughput: 

interface BulkTransfer { 

          oneway void transfer(in string data); 

}; 

 

1. Server side frequency scaling 

Naming service configuration and Client configuration are both fixed at 50/50. 

 

Figure 49 Influence of Server configurations on Latency 

As the server configuration migrates from 50/50 to 100/100, the latency of Server/Client 

system reduces by 20%. When the server configuration moves to 200/100 from 100/100, the 

latency reduces by 7.4%. 
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Figure 50 Influence of Server configurations on Throughput 

 

According to the Figure 2, it is noted that when server configuration moves from 50/50 to 

100/100, a significant throughput improvement is introduced with a maximum increase of 

32% for a packet size of 1.00E+03 bytes, and 3.2% when the packet size is 1.00+06 bytes. 

There is no visible throughput improvement when the server configuration migrates from 

100/100 to 200/100. 

 

2. Client side frequency scaling 

The Naming service configuration is fixed at 100/100, while the Server configuration is fixed 

at 200/100. 

 

As the client configuration migrates from 50/50 to 100/100, the latency of Server/Client 

system reduces by 20%. When the server configuration moves to 200/100 from 100/100, the 

latency reduces by 8.4%. 

 

When the client configuration changes from 50/50 to 100/100, the throughput of the 

Server/Client model increases by 4%, 55%, 60%, 70%, 70% corresponding to the Packet size 

configuration of 1.00E+02, 1.00E+03, 1.00E+04, 1.00E+05, 1.00E+06 respectively. 
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Figure 51 Influence of Client configurations on Latency 
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Figure 52 Influence of Client configurations on Throughput 

When the client configuration changes from 100/100 to 200/100, the throughput of the 

Server/Client model increases by 2%, 24%, 15%, 21%, with a packet size of 1.00E+03, 

1.00E+04, 1.00E+05, 1.00E+06 correspondingly. An exception arises when packet size equals 
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1.00E+02 bytes, which shows tiny throughput degradation despite the fact of frequency 

scaling. 

 

3. Naming server side frequency scaling 

Server configuration is fixed at 200/100, while Client configuration is fixed at 50/50. 

 

Figure 53 Influence of Naming service configurations on Latency 

As the client configuration migrates from 50/50 to 100/100, the latency of Server/Client 

system reduces by 0.2%. 

 

From Figure 54, it is noted that Naming service frequency scaling introduces negligible 

throughput improvement.   
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Figure 54 Influence of Naming service configurations on Throughput 

 

4. Conclusion 

The naming service omniNames is executed on a separate ml403 platform from either the 

client or the server. From the latency and throughput results we can see that frequency scaling 

on the machine on which Naming service is hosted doesn’t introduce performance 

improvement. This is due to the fact that the performance metrics are obtained by averaging a 

large number of calls in the case of latency or by operating on a large problem size in the case 

of throughput. Therefore, the object reference query operation via the naming server that takes 

place once before all the object invocations is amortized by the following calculations. So in 

systems where there are only few object reference queries compared to the object invocation 

quantities on these references, which is the case of most distributed systems, the performance 

of the Naming service is not crucial. 

 

We also noted that the Client side performance and the Server side performance have equally 

important roles in deciding the responsiveness of the system. The frequency scaling effects on 

system latency are 20%, 7.4% for the server, and 20%, 8.4% for the client. In the 

development of time critical distributed systems, it is very important to choose equivalent 

server / client configurations in order to achieve optimum system responsiveness.  
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When it comes to system throughput, the results show perfect scaling effects at the client side. 

The frequency increase from 50/50 to 100/100 results in more than 50% throughput increase 

for most of packet size configurations. While frequency increase from 100/100 to 200/100 

introduces about 20% throughput increase for most of packet size configurations.  

 

However the frequency scaling effects on the server side is not as clear. This can be explained 

in examining the definition of the IDL interface for throughput that is a one way invocation 

without the Client waiting for a response from the server. 

4.3.5 Distributed Client-server with Multiprocessor Networked Embedded 
Latency and Bandwidth Analysis 

 

 

Figure 55 FFT distributed computing 

 

Figure 56 Matrix multiplication distributed computing 
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Figure 57 Qam-16 distributed computing 

The Corba model will necessarily introduce overhead in terms of communication protocol 

stack. However the benefits of an easy deployment and integration should be considered. 

4.4 Hybrid programming model 

In this section, we will explore the hybrid programming model in introducing local parallel 

processing elements in the former distributed system. Figure 58 is a block diagram of the 

complete distributed platform consisting of four ML403 boards. The grey section in the center 

represents the globally distributed view in which four PPC based computing systems are 

interconnected via an Ethernet switch. This architecture leaves developers a great flexibility 

for the configuration of the cards. One can serve as a Client, a Server or as a Common Object 

Server (COS). In our experiment, we will configure one card as the Naming service server, 

another as the server, the third and forth as clients for testing the case in which there exists 

concurrent invocations. Table 16 summarizes the resource utilization of each FPGA sub-

system. 
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Figure 58 Block diagram of the embedded distributed system with parallel processing units 

(ml403 x 4) 

Table 16 Resource utilization 

Number of RAMB 16s 33 out of 36 91% 

Number of Slices 5407 out of 5472 98% 

Number of SLICEMs 579 out of 2736 21% 

 

Some experiments have been done on this platform. The results are shown in the following 

figures for Lenth-64 FFT, Length-15 viterbi decoder, Qam-16 modulation respectively. 

 

(A) 64-point FFT 
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Figure 59 64-point single precision floating point FFT 

The reason why ppc takes three times as much as that of single microblaze is due to the fact 

that ppc is configured at the same frequency as the microblaze and the access to the DDR 

memory is much slower than the bram access. The focus here, however, is on the parallel 

programming effects of the microblaze couple, and the execution result of powerpc is 

presented here just as a reference. This is true for the following applications. The ppc+1MB 

system has a reduction of 75% of execution time. Partly it is because of the addition of 

parallel processing and also because the microblaze benefits from its local memory. The 

addition of the second microblaze only adds more exploitation of parallelism which is closely 

related to the parallelism within the applications.  

 

(B) Length-15 Viterbi decoder 

 

Figure 60 Length-15 viterbi decoder 

As shown in Figure 60, moving from 1 microblaze to 2 reduces the execution cycle by 10%. 
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(C) Quadrature amplitude modulation (QAM) 

 

 

Figure 61 Qam-16 modulation (16-symbol outputs) 

As shown in Figure 61, increasing the number of microblaze cores from one to two slightly 

deteriorates the performance by 11%. This is because the constellation alphabet is pre-

calculated and offered to the microblaze core. The latter only calculates the gray code for the 

input data, and then indexes to the alphabet to find the corresponding symbol, which is a very 

trivial calculation. 

 

If resources permit, the above system can be readily extended to a many-PEs hybrid 

architecture as shown in Figure 62. 
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Figure 62 Hybrid architecture with mesh-like parallel processing elements 

 

Figure 63 PPC405 + microblaze x 8 

We implemented a ppc405 computing system with 8 microblaze processing elements as 

illustrated in Figure 63. Due to resources constraints, we synthesized the design with the 

Xilinx virtex4 FX140 FPGA. The results of resource utilization are summarized in Table 17. 
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Table 17 Resource utilization 

Number of RAMB 16s 140 out of 552 25% 

Number of Slices 6417 out of 63168 10% 

Number of SLICEMs 824 out of 31584 2% 

 

The hybrid programming model combines the parallel programming (parallel programming) 

with distributed programming. In this chapter, we detailed the construction of a parallel node 

for a distributed system. The performance evaluation results are done under a single 

application environment. In a real system, the PPC processor would be in charge of other 

applications as well as communication and control tasks. The benefits of adding more parallel 

processing elements to which the PPC can distribute calculation loads would be more 

important. 

4.5 Multiobjective Optimization Based Automatic Design flow for 

CORBA based Distributed Networked Embedded Systems 

The design flow based on multi-FPGA distributed embedded system is presented in  

Figure 64. The level-1 distributed system generator takes as input an application abstracted 

with Kahn Process Network (KPN). Processes are mapped to separated processors without 

considering the underlying SoC architecture. A function profiling is then carried out to 

determine the most time consuming process. The profiling results are used to filter out the 

system performance critical function that will then be accelerated by parallel programming 

while the other non-critical functions are bypassed to the final stage. The performance critical 

functions are parallelized by an automatic parallelizer. A default parameter set including 

information as memory hierarchy, number of processors, is first provided and is finely tuned 

during the local optimization loop, represented by the arrow connecting the “Platform gen” 

block and the “Parallelization” block. The network on chip topology is synthesized. Then the 

platform is generated by the platform generation engine. The parallelization and the bypass 

branch are then combined and deployed on the multi-FPGA based distributed/parallel 

platform. If the system requirements like performance, resources are satisfied while keeping a 

minimum frequency configuration to reduce the energy consumption, the flow ends. If one of 
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the above requirements is not met, we will loop back to the first level distributed system 

generation block through a multi-objective optimization engine that is responsible for 

resource or frequency optimization, parameter tuning, etc. 

 

The multi-FPGA based designed flow serves as an important concept that will be extended for 

the single-chip based design flow that is discussed in the following chapters. However due to 

the resources constraints of the “ML403” test boards, we could not test an extended version of 

the hybrid architecture concept beyond one server/client plus two PE accelerators. It was 

anyway an important preliminary step for the validation of the concept. The natural next 

design phase is to move to a single large-scale FPGA chip. 

4.6 Conclusion 

This chapter has presented the OMG CORBA specifications including eCORBA. The 

omniORB has been used as middleware for the distributed application development due to its 

various characteristics like light-weight, high performance, and the GPL license policy. 

 

A distributed embedded system based on CORBA and implemented on multiple FPGA was 

developed as a first step towards building a single-chip SCA compliant Software Defined 

Radio. We used the IIOP, the default mechanism for GIOP transportation, for the 

Client/Server invocation communication. OmniORB was compiled and installed on the Linux 

2.6.28 kernel. 
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Figure 64 Design flow based on the hybrid programming model with multi-objective 

optimization 



 

91 

CORBA performance is evaluated on this platform. Also the frequency scaling impact on 

system performance was studied. The results serve as a good indication for system architects 

when building such distributed systems under stringent energy budget. 
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Chapter 5 

Middleware mapping on Single Chip 

Multiprocessors 

5.1 State of the art of Middleware Mapping on Multi-processor 

Platforms. 

Heterogeneous multiprocessing is the future of chip design with the potential for tens to 

hundreds of programmable elements on single chips. Middleware that was traditionally used 

in the internet domain must be adapted to be applied on the single chip in order to mask the 

underlying architecture and OS heterogeneity, thus enabling application development to be 

carried in a portable and uniform way. 

 

Authors in [139] talks about the trend of domain specific software programmable, 

heterogeneous SoCs in reducing nonrecurring expenses by providing a flexible platform. 

Better application programming tools are needed for effective utilization of such platforms by 

end-users. The article provides the MultiFlex programming model that inspired by 

mainstream approaches for large system development while adapted and constrained for the 

SoC domain. The Distributed System Object Component (DSOC) model, resembling CORBA 

enhanced with hardware object request broker, is provided to support the heterogeneous 

distributed computing. The SIDL interface defines a language-neutral representation of object 

call to enable interoperability between object implementations. The DSOC objects, combined 

with the SIDL interface compiler, allow an easy mapping of tasks to the platform hardware or 

software. The StepNP SoC platform is developed as a simulation environment for the 



 

94 

programming model whose architecture combined with an example of network domain 

application mapping is illustrated in Figure 65: 

 

Figure 65 StepNP platform 

Authors in [130] presents the design of MC-ORB, which is the first real-time object request 

broker (ORB) designed to address the nuances of multicore platforms with a novel core-aware 

middleware thread architecture and allocation service for soft real-time tasks. The work 

evaluated the cost of various thread management function calls in a multicore system, like 

load balance checks and thread migrations. The results show that the most costly function is 

thread migration among cores attending as much as 20 µs per migration. The major design 

goal is thus explicitly managing task allocation at the middleware level and minimizing thread 

migration. The MC-ORB is implemented using the ACE 5.2.7 framework and on the Linux 

2.6.17 kernel. Empirical evaluations show that MC-ORB is highly efficient and effective on a 

multicore Linux platform, especially in comparison to a real-time ORB designed for single 

processor platforms. 
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The work in [130] mainly deals with core-level real time scheduling issues of a multi-core 

system with OS SMP support. It doesn’t address the migration of middleware into a 

multiprocessor system on chip where each processor has its own instance of OS. In that case, 

the communication layer adaptation of the middleware should be considered according to the 

communication mechanisms provided by the embedded system. 

 

The Multi-Writers-Multi-Readers (MWMR) communication middleware developed at SoClib 

implements a generic inter-task communication mechanism for shared memory multi-

processors architectures. This protocol has been designed to support both communication 

between software tasks and hardware tasks, implemented as a dedicated hardware 

coprocessors. The MWMR protocol is implemented on top of POSIX threads API. [131][132] 

The MWMR defines a generic communication channel as a software buffer located in on-chip 

shared memory. 

5.2 Network on Chip technology 

Advances in semiconductor technology enable the integration of increasing numbers of IP 

blocks in a single System-on-chip (SoC). Network on chip (NoC) is a new approach for the 

design of the communication sub-system of SOC compared to the traditional bus based 

approaches. NoC brings networking theories to on-chip communication. Compared to 

traditional bus based architectures, NoC offers several advantages: 

 

• Bandwidth scalability 

• Process scalability 

• Energy efficiency 

• Easy IP integration with standard interface 

• Reduced time-to-market  [46][48] 

 

We will briefly introduce the recent year NoC implementations in both academic and 

commercial community. 
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5.2.1 SPIN 

 

Figure 66 Flat tree topology 

The SPIN network (Scalable Programmable Integrated Network) is one of the first published 

NoC [140]. It was developed by the University of Pierre and Marie Curie. It implements a fat-

tree topology with two one-way 32-bit data paths at the link layer as shown in Figure 66. The 

fat tree is the most cost-efficient topology for VLSI realizations and provides a simple and 

effective routing scheme. In SPIN, the routers are packet-based with a flit size of 36 bits. 

Wormhole routing is used without limiting the packet size. There are three types of flits: first, 

data and last flits. The first flit contains the address and packet tagging information, while the 

last flit contains the payload checksum. Adaptive routing algorithm and out-of-order delivery 

can be used to maximize the network bandwidth. Otherwise, deterministic and in-order 

delivery is used to avoid the reordering buffers on the output ports. In comparison with tree 

topology, the fat tree doubles the bandwidth at each level of the hierarchy up to the root but at 

a higher area cost. 

5.2.2 AEthereal 

The Aethereal NoC was developed by Philips Research Laboratories and offers both 

guaranteed service (GS) and best effort (BE) traffic. [141] [142] The guaranteed performance 

of GS connections results from wire and buffer reservations in the NoC. To give 100% 

guarantees, these reservations must be for the worst case, wasting any unused bandwidth. To 

increase the resource usage, the BE connections are introduced that use all unused bandwidth 

with a lower priority. It also put emphasis on the programming model and a design flow. 

AEthereal provides a combined distributed and centralized model.  

5.2.3 Nostrum 
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Nostrum is a NoC developed by the LECS (Laboratory of Electronics and Computer Science) 

at the Royal Institute of Technology in Sweden. [143] Nostrum implemented a service of 

Guaranteed Bandwidth (GB) and latency in addition to the already existing service of Best-

effort (BE) packet delivery. The guaranteed bandwidth is accessed via Virtual Circuits (VC) 

that are implemented using a combination of two concepts that are ‘Looped Containers’ and 

‘Temporally Disjoint Networks’. The Looped Containers are used to guarantee access to the 

network independently of the current network load without dropping packets; and the TDNs 

are used in order to achieve several VCs plus ordinary BE traffic. 

5.2.4 MANGO 

 

The MANGO (Message-passing Asynchronous Network-on-chip providing Guaranteed 

services over OCP interfaces) architecture [145], developed at the Technical University of 

Denmark, is an asynchronous NoC, targeted for coarse-grained GALS-type SoC. MANGO 

provides connection-less Best Effort (BE) routing as well as connection-oriented Guaranteed 

Services (GS). Guaranteed service connections are established by allocating a sequence of 

Virtual Channels through the network. The routers implement virtual channels as separate 

physical buffers. A scheduling scheme called the ALG (Asynchronous Latency Guarantees), 

schedules the access to the links, allowing guaranteeing the latency. 

 

The router consists of two separate routers: the BE router and the GS router. 

 

The BE router implements a source routing scheme. The three MSBs of the packet header 

indicate one of the five output ports. After passing the router, the header is rotated three bits, 

positioning the header bits for the next hop. With a flit size of 33 bits (of which one is the 

end-of-packet bit) it is thus possible to make only 10 routing hops. 
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Figure 67 MANGO router 

While the routers themselves are implemented using area efficient bundled-data circuits, the 

links implement delay-insensitive dual-rail data encoding. This makes global timing robust, 

because no timing assumptions are necessary between routers. However pipelining is 

necessary in order to keep performance. 

5.2.5 Arteris NoC technology 

 

In the design of our Network on chip, we used the Arteris NoC technology. Arteris Company 

was founded in 2003 in Paris and the company focuses on challenges associated with the 

next-generation System-on-chip (SoC) design: the on-chip communications. In 2005, Arteris 

introduced the first commercial implementation of NoCs delivered in form of IP library, the 

Danube library, and a set of EDA tools for configuring and implementing the networking IP 

cores as synthesizable RTL. Arteris proposes the NoC configuration and design flow as 

shown in Figure 68. 

 

Arteris NoC technology provides a flexible and scalable solution that allows each designer to 

make the right trade-offs and achieve the specific design goals for their particular design. It is 

composed of two networks: a request network and a response network. 

 

The Danube Intellectual Property Library that contains a set of configurable building blocks 

managing all on-chip communications between IP cores in SoC designs. The Danube IP 
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library comprises three types of units: Network Interface Units providing interfaces to the IP 

cores, Packet Transport Units and physical links building up the switch fabric user-defined 

topology. These units can be configured based on the system objectives and topology 

requirements. Figure 69 shows the mains components of the Danube Library while Table 18 

lists the characteristics of the main IP components. 

 

 

Figure 68 NoC design flow by Arteris 

 

 

Figure 69 example of Danube IPs 
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Table 18 Arteris Danube transport units IPs 

 Description 

Switch Accept packets from input ports and forward each packet to specific 

output port unchanged 

Sync-Fifo Stores packets at high rates of speed and moves packets to slower units 

Bisync-Fifo Provides resynchronization for units from asynchronous clock domain 

Clock-Conv Connects units from distinct clock domain 

Width-Conv Connects links of different width 

Endian-Conv Enables the choice of little or bit endian units 

Rate-Adapter Removes WAIT cycles 

Bandwidth-

Limiter 

Prevents initiators from consuming too much bandwidth 

Bandwidth-

Regulator 

Guarantee an average target bandwidth to an initiator that is subject to 

fluctuating throughput requirements 

Meso link Long distance transport in NoC 

InterChip-Link Connects one chip to another along the same wires 

 

The Switch generator is an essential building block of the NoC interconnect system. Figure 70 

illustrates an N input ports M output ports of the Danube Switch unit. It accepts NTTP 

packets carried by input ports, and forwards each packet to a specific output port unchanged. 

The Switch unit supports synchronous operation, full crossbar with up to one data word 

transfer per MINI port per cycle. It uses wormhole routing for achieving reduced latency. The 

unit can be software-controlled at run-time through the service network. 

 

The statistic collector IP, shown in Figure 71, provides performance monitoring capability by 

probing NTTP or OCP links, recording events, and transmitting results to a debug unit 

through a dedicated NTTP link. It provides up to 8 probes that provide metrics such as 

throughput and latency on certain dataflows. The statistics collector monitors activity by 

connecting probes to NTTP or OCP signals, without introducing any flow control in the 

system. An NTTP port is used to export results as frames, for processing by a dedicated 

target. 
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Figure 70 Arteris Danube Switch 

 

Figure 71 Statistic collector 

Arteris provides two design tools for NoC exploration and implementation: the NoCexplorer 

and NoCcompiler. The NoCexplorer exploration tool provides an environment to capture the 

dataflow requirements of the IP blocks to be serviced by the NoC and allows the designer to 

rapidly utilize a very fast dataflow simulation engine and parameterizable dataflow sources 

and sinks to model the system behavior. The NoCcompiler tool creates a database of the 

specific instance of the NOC. It exports in a variety of languages the NoC design, for 

example, Verilog, VHDL, SystemC that is to be passed to other synthesis / place & route tools 

for the final system implementation. 
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Figure 72 NoCcompiler GUI 

5.3 Synchronization Issues with CORBA Based designs 

The traditional CORBA synchronization mechanism is realized by the synchronous two-way 

client/server invocation. The client thread that invokes a server operation blocks until 

response is returned. Although simple in programming, this method lacks the support for 

exploiting the intrinsic parallelism in distributed systems including asynchronous invocation 

where one client can continue invoking another object existing on another server before the 

first invocation is done or group invocations as supported in MPI by multicast/select, 

multicast/gather, scatter/gather, etc. [135] 

 

There are several approaches for achieving the asynchronous invocation. First, the two-way 

synchronous invocation can be used with multiple threads. However this solution is 

accompanied by the drawbacks of error-prone multi-threaded programming, scalability issue 

with thread creation overhead, or it is not even applicable in a single-threaded client. Second, 

we can use one way invocation. This solution has no guarantee of reliable delivery due to the 

best-effort semantic. The third solution is to use the Dynamic Invocation Interface (DII) 
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deferred synchronization. But using the DII interface means cumbersome programming and 

increased the program size. More over, type-safety is left to be guaranteed at the developer 

level rather at the compiler level. The most promising solution is to use the Asynchronous 

Method Invocation (AMI) (CORBA messaging specification). Unfortunately, it is an optional 

service and is not always supported by academic or commercial ORBs. 

 

Works have been done to address the inefficiencies in the CORBA based server/client 

programming in exploiting the natural parallelism in a distributed system. [135] tackles these 

issues by providing a multilayered architecture, and API implemented in C++ classes to 

provide the necessary invocation semantics for parallel programming. 

 

In [136], the authors propose a parallel programming model over CORBA, the P-CORBA, 

which addresses the issues concerning the parallel programming over a Network of 

Workstations. The model enriches CORBA with the notion of concurrency in introducing a 

metaobject regrouping a set of different objects of the same class that must be dispatched to 

different machines depending on the machines' load condition. The model also provides 

methods for dynamic load balancing and object migration. Experiments show a higher 

message sending overhead than MPI send calls but the overall performance on a clustered 

platform is better due to the dynamic load balancing feature. The CORBA implementation 

utilized in this work is MICO. 

 

The paper [137] presents three agent based parallel interaction architecture that improves the 

performance of CORBA based on the traditional synchronized object invocation and serial 

server execution. It analyzes the three client-agent-server interaction architectures, parallel 

interaction architecture. The performance of these architectures is compared with the 

traditional sequential architecture. The execution results showed substantial performance 

benefit gain from using parallel interaction architecture especially at low to medium load. 

Multithreading can efficiently solve the bottleneck problem at the agent level that risks large 

queuing delays when the load is high. 
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5.4 OCP-IP Protocol and CORBA 

Because the Network Interface Unit of the NoC in our MPSoC conforms to the OCP protocol, 

we discuss the CORBA middleware transport layer adaptation issues in this section. 

 

The default transport mechanism that is requested to be supported by the CORBA 

specification is the IIOP protocol (routing GIOP packet on internet). According to the 

CORBA specification, the GIOP definition makes the following assumptions regarding to the 

transport behavior: [7] 

 

1. The transport is connection-oriented. GIOP uses connections to define the scope and 

extent of request IDs. 

2. The transport is reliable. Specifically, the transport guarantees that bytes are delivered 

in the order they are sent, at most once, and that some positive acknowledgment of 

delivery is available. 

3. The transport can be viewed as a byte stream. No arbitrary message size limitations, 

fragmentation or alignments are enforced. 

4. The transport provides some reasonable notification of disorderly connection loss. If 

the peer process aborts, the peer host crashes, or network connectivity is lost, a 

connection owner should receive some notification of this condition. 

5. The transport's model for initiating connections can be mapped onto the general 

connection model of TCP/IP. Specifically, an agent (described herein as a server) 

publishes a known network address in an IOR, which is used by the client when 

initiating a connection. 

 

Compared to the macro-world setting of work-stations cluster consisting of computers 

interconnected by internet via the network adapter, our MPSoC system is constructed by 

interconnecting multiple embedded processors via a packet switched on-chip network (NTTP) 

and the network interface corresponds to the OCP-IP Protocol. 
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In order to port the CORBA transport layer to the single chip environment, we must first 

study the feasibility by examining article-by-article the fulfillment of the above assumptions 

in the MPSoC communications fabric.  

 

For the purpose of simplicity, we do not want to touch the entire transport and internet 

protocol layer of the protocol stack. We studied the three layers of the communication stack 

below the application layer, transport layer, network layer, and MAC, in terms of their 

respective necessity of modification and complexity of adaptation for making ORB 

communicate in our NoC based MPSoC. Interestingly, the necessity and complexity 

correspond in an inverse order, which means the layer that lies nearer to hardware has a 

stronger modification need but requires less efforts in terms of Linux kernel programming. On 

the other hand, the layers that approach the application level have less requirement of 

modification but require more kernel programming efforts to realize such a modification. The   

Table 19 summarizes the three choices discussed above from the less-complex to the more-

complex ones. 

Table 19 Communication layer adaptation choices 

 Necessity of modification Programming efforts 

MAC layer only Yes Minimum 

IP and MAC layers No Medium 

TCP, IP and MAC layers No Maximum 

 

Since the network interface unit is replaced by the OCP/NTTP NIU, the MAC layer protocol 

needs to be adapted to process the specific MAC layer headers. The IP layer and TCP layer 

remain untouched and the middleware communication architecture can be adapted with trivial 

efforts. The proposed inter-layer calls and packet migrations are illustrated in Figure 73. With 

this approach, the NTTP packet switch layer is hidden at the NIU level, and the device driver 

of the OCP NIU should deal with a custom OCP MAC address for higher level protocols to 

identify the correct network device. This is the approach we took in our design. However the 

two other approaches will also be discussed. 
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Figure 73 TCP/IP/OCP receive sequence 

A second approach is to modify the IP layer protocol to reflect the specific properties of the 

NTTP packet. This approach is illustrated in Figure 74. With this approach, a new network 

work layer protocol should be registered with the Linux network kernel. Same as the first 

approach, this one requires trivial efforts for COBRA communication layer adaptation. But 

there exists one problem: the NTTP packet is generated at the NIU level, which is different 

from the traditional TCP/IP packet.  This issue should be considered when taking this choice. 

 

With the first two choices, the 5 assumptions of CORBA GIOP over the transportation layer 

are largely resolved by the TCP/IP layer and the OCP protocol is masked from the 

middleware point of view. However although inspired by the off-chip networks, NoCs offer 

more preferable characteristics than their off-chip counterparts. For example, NoC can avoid 

dropping data, assuming that a SoC operates reliably (that is, its routers do not fail, misrouting 

does not occur, and so forth). Moreover, the Arteris NoCs are composed of a request network 

and a response network. Every transaction should be acknowledged at the NoC level, which is 

treated in the transport layer in the case of off-chip network. All these features are not 
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exploited in the first two approaches. This is where the third solution, the TCP level 

adaptation becomes useful. In taking direct services provided by the NoC layer, the 

communications stack should become more efficient. However, since the CORBA 

communication layer function deals socket calls that deal directly the transport layer. Any 

modification in this layer should be done with considerations in mind no to break the 

standardized socket like calls. 

 

 

Figure 74 TCP/NTTP/OCP receive sequence 

5.5 Network Interface design and low level APIs 

Figure 75 shows the architecture of the PLB-OCP network interface. It is composed of two 

parts, a receiver and a transmitter. There are two packet buffers for stocking transmitted and 

received packets. The buffer size is set to 2k bytes.  
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Figure 75 Architecture of the PLB-OCP network interface 

When transmitting, the host writes a whole packet represented by the Linux struct sk_buff into 

the transmit buffer. The Maximum Transfer Unit is defined so that the size of packet 

represented by len field of the sk_buff structure doesn’t surpass the capacity of the transmit 

buffer. The host processor then sets the frame ready bit of the transmit control register to 

indicate a valid frame. The interface then sends out the packet in a burst write mode to the 

corresponding destination processor. 

 

When a burst write command arrives at the input of the network interface indicating the sent 

of a packet from a remote host, the interface checks the availability of its receiving buffer. If 

available, it accepts the command and stores the successive data load in the receiving buffer. 

It then sets the frame_busy bit of the receive control register to indicate the occupancy of the 

buffer by a valid packet.  

 

A transmitter interruption is generated when a packet is sent out of the OCP interface and the 

transmit buffer becomes available to accept new frame. This serves to retry of a former failed 
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and delayed packet send attempt due to non availability of the transmit buffer. A receiver 

interruption is generated when a new packet is coming in and stored in the receiver buffer. 

The host processor then comes to store this packet in its main memory and clears the 

frame_ready bit. 

 

Low level APIs are developed to facilitate the data operation, device control and interruption 

handling from the upper layer code, for example the network device driver. These APIs 

include: 

int OCP_MAC_Send(OCP_MAC_t *OCP_MAC, u8 *FramePtr, unsigned ByteCount) ; 

int OCP_MAC_Recv(OCP_MAC_t *OCP_MAC, u8 *data); 

void OCP_MAC_DisableInterrupts(OCP_MAC_t *OCP_MAC) ; 

void OCP_MAC_EnableInterrupts(OCP_MAC_t *OCP_MAC) ; 

void OCPMAC_InterruptHandler(void *InstancePtr); 

5.6 Network-on-chip design 

5.6.1 Protocol definition 

The NTTP protocol configuration considers the master address space and the slave address 

space and the data payload length burst transactions.  

 

mstAddr: 2 bits (4 masters) 

slvAddr: 2 bits (4 slaves) 

len: 8 (512 payload cells) 

 

The OCP protocol configuration has concerns with burst length that should be set according 

to NTTP settings, and transaction phase semantics. 

 

burstType: TIE_OFF_INCR 

Burstlength_wdth: 8 

reqlast: true 

resplast: false 

writenonpost, writeresp_enable: false (precise burst write doesn’t need response) 
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5.6.2 NoC connection 

 

Each plb_ocp network interface requires two interfaces, one for transmitting (ocp master) and 

the other for receiving (ocp slave). Figure 76 illustrates the NoC design of a two-node system 

consisting of only a 2x2 switch. The initiator interface of master_00 is connected to switch 

input port 0 and the initiator interface of master_01 is connected to switch input port 1. 

According to the route table definition that will be explained later, data targeted at master_00 

are routed to the switch output port 0, and data sent to master_01 are routed to switch output 

port 1. As a result, the path input_0 -> output_0, confined in the red frame, forms the 

loopback path of master_00, while the path input_0 -> output_1, confined in the blue frame, 

forms the inter-node path between master_00 and master_01. The situation is similar for 

master_01. 

 

Figure 76 A two-node point-to-point connection 

5.6.3 Memory mapping 

The ocp MAC address is defined following the Ethernet mac address format that consists of 

six bytes, “\0ocpxx”. The first byte is ‘\0’ to avoid being a multicast address (the first of 

multicast is odd). The last two bytes indicates the id of the processor. Each master interface 

response port is identified by the ocp master address. The interface inserts its own address 

into the master address field of the request packets and is later copied to the response packets 

by the ocp slave in order that the response packets are routed back to the same master. In this 
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example, the master addresses are coded in two bits supporting up to 4 masters. The nttp 

global address base represents the starting address of the receive buffer in each plb-ocp 

interface in a system view. The respective size of the receiver buffer is represented by nttp 

address size. Because plb_ocp network interface can only initiate write operations, which 

send ocp frame to the corresponding receiver buffer, the memory map considers only the 

receiver buffer. The global memory map is summarized in Table 20. 

Table 20 NTTP Global memory map 

ocp_mac address ocp master address nttp global address 

base 

nttp address size 

“\0ocp00” “00” x”00000000” x”800” (2kB) 

“\0ocp01” “01” x”00000800” x”800” (2kB) 

“\0ocp02” “10” x”00001000” x”800” (2kB) 

“\0ocp03” “11” x”00001800” x”800” (2kB) 

 

Figure 77 illustrates the address translation from the ocp address domain to the nttp (NoC) 

address domain. The example aims to access the x”2bc” memory address of the receiver 

buffer of plb-ocp interface_01. 

 

Figure 77 Address translation from ocp domain to nttp domain 

5.7 Single FPGA Chip NOC Based Multiprocessor Design 
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Figure 78 Two ppc405 connected with NoC with multiplexed output 

 

A single chip platform is developed for testing of the on-chip CORBA based communication 

system. As illustrated in Figure 78, the system is composed of two separate computing 

systems, each having a ppc405 microprocessor and running Linux operating system. The two 

ppc405 communicates via a NoC fabric through the ocp MAC.  

 

For Linux console output and debugging, we choose to use the PCI-express connection to 

communicate with a terminal on a host pc. Each ppc405 processor connects its console output 

to a console front end conforming to the RS232 protocol. Then the multiple front end outputs 

are tagged and multiplexed by the console backend component which in turn connects to the 

PCI-express bus. 

 

On the host side, a monitor program checks the PCI-express input and distributed input data 

to the corresponding processor terminal according to data tag. The structure of the host side 

monitor and terminal program is illustrated in Figure 79. 
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Figure 79 Host machine console system 

5.8 Performance results 

The measured results for the inter-processor communication are presented in Table 21. 

 

Table 21 Time of round-trip Echo function with zero message body 

Platform Transport Time per call (us) 

Linux 2.6.28 

PPC405 120MHz 

(Gcc-4.2.4-O2) 

TCP/IP inter-processor 3412 

5.9 Design Flow for Client-server with Automatic Parallelization 

Paradigm MPSOC 

The entire proposed design flow is presented in Figure 80.  
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Figure 80 Design flow based on the hybrid programming model single chip 

The level-1 distributed system generator takes as input an application abstracted in Kahn 

Process Network (KPN). Processes are mapped to separated processors without considering 
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the underlying SoC architecture. A function profiling is then carried out to determine the most 

time consuming process. The profiling results are used to filter out the system performance 

critical functions that will then be accelerated by parallel programming while the other non-

critical functions are bypassed to the final stage. The performance critical functions are 

parallelized by an automatic parallelizer. A default parameter set including information as 

memory hierarchy, processor number, is first provided and is finely tuned during the local 

optimization loop, represented by the arrow connecting the “Platform gen” block and the 

“Parallelization” block. The network on chip topology is synthesized. The platform is then 

synthesized by the platform generation engine. The parallelization and the bypass branch are 

then combined and deployed on the SSM IP based distributed/parallel platform. If the system 

requirements like performance, resources are satisfied while keeping a minimum frequency 

configuration reducing energy consumption, the flow ends. If one of the above requirements 

is not met, we will loop back to the first level distributed system generation block through a 

multi-objective optimization engine which is responsible for resource or frequency 

optimization, parameter tuning, etc. 

5.9.1 Network-on-chip synthesis 

 

Authors in [41] focus on the synthesis of a bus matrix based communication architecture for 

the high bandwidth MPSoC design. They propose an automated approach, named bus matrix 

synthesis (BMSYN), for synthesizing a bus matrix communication architecture, which 

satisfies all performance constraints in the design and minimizes wire congestion in the 

matrix.  

 

Figure 17 shows the automated BMSYN flow. The inputs to the flow include a common 

through graph (CTG) representing the performance constraints of the system, a library of IP 

models, a target bus matrix template, and a communication parameter constraint set. First of 

all, a fast transaction-level model (TLM) simulation of the system is carried out to determine 

the application-specific data traffic statistics. The information is then passed to the global 

optimization phase to reduce the full bus matrix architecture by removing unused busses and 

local slave components from the matrix. The resulting matrix is called a maximally connected 

reduced matrix. In the next step, an optimization engine based on a static branch and bound 
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algorithm is used to cluster the slave components, which further reduces the number of busses 

in the matrix. The resulting architecture is then passed to a fast bus cycle accurate simulation 

engine to validate and select the best solution that meets all the performance constraints, 

determine slave arbitration schemes, optimize the design to minimize bus speeds and OO 

buffer sizes and then finally output the optimal synthesized bus matrix architecture. The 

results from the synthesis of an AMBA3, AXI-based bus matrix for four MPSoC applications 

from the networking domain show a significant reduction in bus count in the synthesized 

matrix when compared with a full bus matrix (up to 9 x) and a maximally connected reduced 

matrix (up to 3.2x). 

 

5.9.1.1 Definition of problem in terms of graph 

 

The scenario we consider here corresponds to the shared memory model where each processor 

has equal access to the shared memory and the communication between processors is done via 

the share memory. The input to the NoC synthesis engine is a core graph that models the 

connection and bandwidth requirements of the system. Suppose H=(C, K) is an oriented 

graph, with |K|=p, and w ∈ RK is an indexed vector on the arcs of H. Each arc (u, v) of K 

corresponds to one demand of information transmission from component u to component v. 

The value of w(u,v) corresponds to the quantity of information to be transmitted from u to v. 

The pair (H, w) represent the above mentioned core graph.  

 

The topology synthesis of a network on chip consists in determining one topology of NoC 

that satisfies the information transportation defined by the core graph while keeping minimum 

surface.  This network is composed of routers and links. Several types of routers can be 

installed. The number of input ports, output ports, the surface consumption, and the 

bandwidth per port depends on the type of installed router. We suppose that there exists k 

types of different routers indexed from 1 to k. The number of input ports (resp. output ports) 

of router i, i = 1,…,k, is noted ei (resp. si) and its maximum bandwidth per port is noted by Ωi. 

Without loss of generality, we suppose that router 1 is a dummy router in that it doesn’t 

consume any silicon surface, and has neither input port nor output port. We suppose that q, 

representing the number of possible routers constituting the NoC, is given. We use R to 
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indicate {1,…,q}. Let D = (V, A) be the graph representing the possible connections between 

the elements of the NoC, where V = R ∪ C. In addition, we suppose that no direct connection 

exists between any two core graph vertexes. Therefore A corresponds to the collection of arcs 

connecting a component to a router, a router to a component or two distinct routers. We note 

by m the number of arcs in D. The topology synthesis of network on chip then consists of, 

given (H, w) and q, determining a sub-graph D’ of D, one type of router for each element in 

R, and the path from u to v for each demand (u, v) of H, so that: 

• the number of entering arcs (resp. exiting arcs) of each vertex r among R is inferior or 

equal to the number of input port (resp. output port) of the router installed in vertex r, 

• the number of entering or exiting arc of each vertex v of C is respectively inferior or 

equal to k, 

• the path of demand utilize uniquely the arcs of D’,  

• the constraints of bandwidth are satisfied, 

• the surface of all the installed routers is minimum. 

5.9.1.2 Integer linear programming 

 

The communication infrastructure plays a more and more critical role in the modern MPSoC 

design. The NoC based communication is more scalable and exploits better the parallelism of 

the architecture. An optimized NoC topology is important to get better performance under 

stringent on-chip resources constraints. The NoC topology synthesis can be modeled in form 

of integer linear programming. We will define the variables for the modeling of the demand 

path.  

 

Let x ∈{0,1}mp be the vector such that 

=k

ax
1 if connection k is transported on arc a,

0 if not,
AaKk ∈∀∈∀ ,=k

ax
1 if connection k is transported on arc a,

0 if not,
AaKk ∈∀∈∀ ,

 

 

We define the second set of variables in order to model the sub-graph D’ that represents the 

resulting NoC. We define ∈{0,1}m  such that 
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=ay
1 if arc a belongs to sub-graph D’

0 if not, Aa ∈∀
=ay

1 if arc a belongs to sub-graph D’

0 if not, Aa ∈∀
 

Finally in order to know which type of router is installed on each site r of R, we define z 

∈{0,1}R*l such that 

=i

rz
1 if switch of type i is installed on site r,

0 if not,
.,...1,0, liRr =∀∈∀=i

rz
1 if switch of type i is installed on site r,

0 if not,
.,...1,0, liRr =∀∈∀

 

The NoC topology synthesis problem corresponds then to the following linear programming: 
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5.9.1.3 Case study 

In this section, we will present a case study in which a MPEG4 core graph, as illustrated in 

Figure 81, is used as input to the NoC topology synthesis engine. 
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Figure 81 MPEG4 Core graph 

The generated NoC topology is shown in Figure 82. 

 

With this ILP model, the interconnection infrastructure, Network on Chip, of MPSoC can be 

tailored on a link-by-link basis, which optimizes the allocation of on-chip resources. 

5.10  Conclusion 

The CORBA middleware was originally utilized in large scale distributed system software 

developments. With the advance in the semiconductor process technology, more and more 

resources are now integrated on a single chip, large on-chip memories, embedded processors, 

DSPs, configurable IP accelerators, etc. CORBA formerly served as a software bus by 

abstracting the underlying architecture and operating system heterogeneity and by providing a 

uniformed function-call like interface to the programmer. It is now usable as well as necessary 

for the embedded domain to provide an efficient programming model to embedded 

application developers. 
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Figure 82 MPEG4 NoC topology 

 We implemented the CORBA middleware on a network-on-chip (NoC) based multi-

processor single chip. The NoC draws analogy with the macro-world network: packets are 

routed to and from nodes that are connected to the NoC. We developed a network interface, 

the plb_ocp_mac, which provides services like a network adapter. It encodes the hardware 

addresses to the packets provided by the kernel through the TCP/IP stack, and calls the low-

level driver to hand the packet to the NoC. During receiving, the network interface stores the 

packet sent to it, remove the hardware address, and then hands the packet to upper network 

stacks. 

 

While inspired by the mainstream approaches for large system developments, the CORBA 

adaptation should take into consideration the characteristics and constraints specific to the 

SoC domain. We discussed in this chapter several optimization potentials which mainly 

consider the relatively reliable network transmission, and the resource constraints of the 

embedded system. 

 

A part from the distributed programming model, modern MPSoC architectures expose also 

the SMP based parallel programming model. These two models should be combined 

according to different application calculation and traffic characteristics to attain maximum 

performance. In this chapter, we focused on the NoC topology synthesis. We developed the 
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mathematical model for a share-memory multiprocessor architecture, and use the Integer 

Linear programming tool to get the optimum solution of the NoC topology. 

 

A SDR design flow is proposed with systematic architecture exploration and optimization 

based on the hybrid programming model (distributed client/server + parallel). A NoC 

topology synthesis engine was developed with linear integer programming. A complete SDR 

application has not yet been tested, but the tools and the design flow have been tested with all 

the features that are needed for implementing the SDR. 
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Chapter 6 

Conclusion 

This thesis proposes a design methodology and programming model for the efficient 

development and deployment of complex communications systems, specifically, the Software 

Defined Radio. Our contributions can be decomposed according to the following categories: 

 

1. Design flow based on hybrid programming model 

We are interested in the Software Defined Radio that is conforming to the Software 

Communication Architecture, which provides interoperability and reusability to radio 

waveforms. The SCA specification defines an operation environment that in which waveform 

applications are executed. It requires the use of CORBA middleware that provides abstraction 

of the underlying architecture and operating system for distributed objects. On the other hand, 

for some computation intensives functions, the signal processor based architecture doesn’t 

fulfill the performance requirements under stringent energy budget and we resort to 

multiprocessor and parallel programming for function acceleration. 

 

Based on the above hybrid programming model, the design flow proposes a two-state system 

generation engine with the first state generating distributed nodes and the second generating 

parallel processing elements with the help of an automatic parallelizer and network on chip 

(NoC) synthesizer. 

 

2. Parallel programming and performance evaluation with automatic parallelizer 

In this part, we use an automatic parallelizer, Pluto, for the source-to-source transformation of 

serial source codes to parallelized versions. Pluto is an automatic polyhedral source-to-source 
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transformation framework that can optimize regular programs for parallelism and locality 

simultaneously. Our main objective was to evaluate the efficiency of an automatic parallelizer 

within an “automatic” design flow. 

 

We evaluated the Pluto parallelized codes on our NoC connected 16 PEs MPSoC platform. 

We noted several key elements that influence the effectiveness of parallelization. A 

comprehensive understanding of the characteristics of both the application and the 

architecture accompanied by an optimum combination of the two is necessary for a satisfying 

performance. Beyond this straightforward remark, we have shown that an automatic 

parallelizer can be used in our design flow. 

 

The synchronization mechanisms play a fundamental role in efficient parallel programming 

and careful attention is necessary for the hardware implementation of these synchronization 

mechanisms. We have conducted performance experiments on the above single chip 

embedded multiprocessor. The experiments show that automatic parallelization can hardly 

exploit more than 8 processors despite the network on chip allowing communication 

concurrency. 

 

3. NoC topology synthesis 

Depending on the connection requirements between master and slave components and the 

profiling results regarding traffic, we used the ILP tool to automatically synthesize the 

topology of the network on chip in search of minimum chip surface utilization. Again, we 

have shown that an automatic synthesis tool to synthesize the NoC topology can be used in 

our design flow. 

 

4. Adaptation of CORBA middleware on single chips with NoC communication 

architecture 

The final goal is to integrate a macro world network based distributed SDR system on a single 

chip. For this purpose we first developed a multi-FPGA based distributed embedded system 

as a proof-of-concept. The multiple FPGA card are connected via an internet switch, each 

acting as a separate distributed node with a PPC405 processor. We tested the performance of 



 

125 

CORBA middleware and the potential of hybrid programming model by integrating in each 

PPC405 system a local parallel processing array for local parallel calculation while keeping a 

global distributed view. 

 

Then we have worked on the adaptation of the TCP/IP stack to the on chip NoC 

communications. We have developed an OCP MAC adapter for accessing the NoC and tuned 

the TCP/IP stack parameters to fit in the on chip resources constraints. A first test has 

validated the CORBA execution on the single chip multiprocessor prototype consisting of two 

PPC405 processor connected by a NoC. There remains a large space for performance 

improvement of the communication based on this architecture. We have proposed several 

solutions including both a software stack and hardware optimizations. The tests with complete 

SDR baseband chains are currently being developed. 
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