
HAL Id: tel-00605989
https://theses.hal.science/tel-00605989

Submitted on 5 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-on-chip design flow for Software Defined Radio
Guangye Tian

To cite this version:
Guangye Tian. System-on-chip design flow for Software Defined Radio. Other [cs.OH]. Université
Paris Sud - Paris XI, 2011. English. �NNT : 2011PA112099�. �tel-00605989�

https://theses.hal.science/tel-00605989
https://hal.archives-ouvertes.fr

i

=$N° D’ORDRE

SPECIALITE : INFORMATIQUE

Ecole Doctorale « Informatique »

Présentée par : Mr. Guangye Tian

Sujet :

Flot de Conception Système sur Puce pour Radio Logicielle

Soutenue le 28/06/2011 .devant les membres du jury :

M ……Alain MERIGOT, Président…………

M…… Guy GOGNIAT, Rapporteur ………

M ……Smail NIAR, Rapporteur……………

M…… Daniel ETIEMBLE, Directeur de thèse…

M…… Omar HAMMAMI, Co-directeur de thèse

 ii

 iii

ACKNOWLEDGMENT

Je remercie vivement mon directeur de thèse, Processeur Daniel Etiemble, Professeur

d’Université Paris Sud, pour tous ses conseils et discussions techniques.

J’exprime ma profonde reconnaissance à mon co-directeur de thèse, Processeur Omar

Hammami, processeur de l’ENSTA ParisTech, pour toute la confiance qu’il m’a témoigné et

toute sa disponibilité à diriger cette thèse. Je le remercie également pour les longues

discussions techniques, pour les précieux conseils qu’il m’a donné, et pour tout ce qu’il m’a

appris pendant cette thèse et lors de la rédaction de ce manuscrit. Je le remercie enfin de

m’avoir permis d’intégrer son équipe.

Je remercie Messieurs Guy Gogniat, professeur à l’université de Bretagne Sud et Smail Niar,

professeur à l’université de Valenciennes, pour le temps qu’ils ont consacré à l’examen de

mes travaux et à la rédaction du rapport de thèse.

Je remercie Monsieur Alain Mérigot, Professeur à l’université Paris Sud, pour avoir accepté

de présider le jury.

Je remercie, bien évidement, Xinyu Li, Zhoukun Wang, Mazen Khaddour, Muhammad Imran

Taj et tous mes amis, collèges de l’ENSTA pour leur soutien pendant le moment le plus

difficile.

Enfin, et sur tout, je remercie ma famille pour son soutien, sa compréhension et ses

encouragement.

 iv

 v

ABSTRACT

The Software Defined Radio (SDR) is a reconfigurable radio whose functionality is controlled

by software, which greatly enhances the reusability and flexibility of waveform applications.

The system update is also made easily achievable through software update instead of

hardware replacement. The Software Communication Architecture (SCA), on the other hand,

is an open architecture framework which specifies an Operating Environment (OE) in which

waveform applications are executed. A SCA compliant SDR greatly improves the portability,

reusability and interoperability of waveforms applications between different SDR

implementations.

The multiprocessor system on chip (MPSoC) consisting of large, heterogeneous sets of

embedded processors, reconfiguration hardware and network-on-chip (NoC) interconnection

is emerging as a potential solution for the continued increase in the data processing bandwidth,

as well as expenses for the manufacturing and design of nanoscale system-on-chip (SoC) in

the face of continued time-to-market pressures.

We studied the challenges of efficiently deploying a SCA compliant platform on an MPSoC.

We conclude that for realizing efficiently an SDR system with high data bandwidth

requirement, a design flow with systematic design space exploration and optimization, and an

efficient programming model are necessary. We propose a hybrid programming model

combining distributed client/server model and parallel shared memory model. A design flow

is proposed which also integrates a NoC topology synthesis engine for applications that are to

be accelerated with parallel programming and multiple processing elements (PEs).

We prototyped an integrated SW/HW development environment in which a CORBA based

integrated distributed system is developed which depends on the network-on-chip for

protocol/packet routing, and software components are deployed with unified interface despite

the underlying heterogeneous architecture and os; while the hardware components (processors,

IPs, etc) are integrated through interface conforming to the Open Core Protocol (OCP).

 vi

Key works: Hybrid programming model, parallel programming, Network-on-chip, FPGA,

SDR, and SCA

 vii

Résumé

1. Motivation

Depuis la première commercialisation de systèmes mobiles cellulaires début des années 1980,

l’industrie des communications sans fil a connu un développement croissant de normes de

communication de la technologie première génération (1G) au standard de quatrième

génération (4G). La technologie 1G a été introduite début des années 1980 et complétée début

des années 1990. La technologie sans fil 1G est analogique. La technologie 2G, dont le

développement a commencé fin des années 1980 et s’est terminé dans les années 1990, est

souvent qualifié de « numérique », et a remplacé la technologie 1G en utilisant des signaux et

des réseaux numériques. Entre la technologie 2G et la 3G, on a pu observer le déploiement

intermédiaire, une technologie 2.5G, numérique mais avec des possibilités de transfert de

données limitées telles que les services de SMS. Les systèmes de troisième génération 3G,

développés dans les années 1990, ne se limitent plus à la seule transmission de la parole

comme en 2G, mais permettent l’utilisation simultanée de la parole et de services de données

à un débit plus élevé. Ainsi, les réseaux 3G permettent aux opérateurs de réseau d’offrir aux

utilisateurs une gamme plus large de services plus avancés, bien qu’à des débits réseau accrus,

grâce à une meilleure utilisation du spectre alloué. Successeur de la télécommunication 3G, la

technologie 4ème génération (4G) fournira aux utilisateurs des services de transmission de la

parole, de données, et de multimédias en temps réel, à un débit encore plus élevé. Elle offrira

également une meilleure qualité de service (QoS), la sécurité et la possibilité d’interface avec

des réseaux filaires constituant l’épine dorsale de l’architecture du réseau.

Afin de supporter les besoins et les contraintes des différents réseaux, de très nombreuses

normes sont apparues. Les opérateurs réseaux doivent se conformer à l’ensemble de ces

normes, des premières de la technologie 2G à celles attendues concernant la 3G.

Vu que chaque norme est différente et utilise même parfois des fréquences porteuses

différentes, des stations ou des handsets doivent être développés, déployés et maintenus,

entraînant des codes très lourds et un développement lent. Comte tenu du rythme auquel les

nouvelles normes sont publiées, la conformité à ces normes pour un coût acceptable en temps

 viii

de développement et en taille de puce devient vite un un cauchemar pour toute personne

impliquée dans les systèmes de communication.

Le concept de Radio Logicielle a été proposé, la première fois, par Joseph Mitola III pour

faire face à une telle crise. Dans cette approche, les transformations de la forme d’onde,

modulation, démodulation des signaux d’un système radio sont mises en œuvre par du logiciel

plutôt que par du matériel à fonctionnalité spécifique. Les composants développés en logiciel

sont ensuite implantés dans les dispositifs modernes programmables/reconfigurables, tels que

les GPP, DSP, FPGA, ou ASIP. Avec de tels dispositifs, l’adaptation du système à une autre

norme de communication, ou même l’évolution vers une technologie plus récente peuvent être

réalisés par mise à jour du logiciel sans remplacement du matériel qui serait long et coûteux.

Compte tenu des progrès de la technologie des semi-conducteurs et de la technologie sans fil

fournissant un accès haut-débit à Internet fiable, les mises à jour de logiciels et la

reconfiguration du système peuvent être réalisées en temps réel avec des données de

configuration téléchargées via Internet. De cette façon, un dispositif unique peut être rendu

compatible avec tout un ensemble de normes, par exemple, ZigBee, Bluetooth, 802.11

a/b/g/n, 3G, etc. Il est possible de réaliser le passage d’un protocole à l’autre sans dégradation

de qualité de service, si la conception est rigoureuse.

La réalisation de ces fonctions concernant la radio, par logiciel, présente un avantage sous

réserve de :

1. réutilisabilité, portabilité et d’interopérabilité des applications

2. La plateforme et le support de modèle de programmation permettant de maintenir la

complexité de la programmation à un niveau raisonnable

La première condition est primordiale : elle est à l’origine même du concept de radio

logicielle. Les avantages de la flexibilité, idée maîtresse de ce concept, ne sont effectifs que si

l’on peut librement ajouter, mettre à jour ou améliorer les capacités fonctionnelles d’un

système radio réalisé sous forme de modules logiciels. Idéalement, les traitements concernant

les formes d’onde conçue pour une plate-forme SDR peuvent être facilement transposés à une

 ix

autre plate-forme ; de même, les traitements développés par une entreprise peuvent

fonctionner conjointement avec ceux d’une autre entreprise. Pour atteindre cet objectif, il faut

qu’un framework ouvert et standardisé définisse des interfaces homogènes et les services

auxquels une application doit se conformer.

L’architecture de communication logicielle (Software Communication Architecture, SCA),

est une architecture ouverte largement acceptée pour les projets de SDR. Elle est développée

par le Département de la Défense des Etats-Unis (DoD) pour la réalisation, pour un coût

abordable, d’une famille de systèmes radio tactiques de haute capacité offrant des services

réseaux évolutifs. La spécification SCA définit un environnement d’exploitation (Operation

Environment, OE) dans lequel on exécute les applications. L’OE est constitué d’un cadre de

base (Core Framework), d’un middleware minimal conforme à CORBA, et d’un système

d’exploitation conforme à POSIX. La norme POSIX minimise le coût de portage des

applications car elle fournit une couche d’abstraction qui rend transparentes les méthodes

spécifiques de chaque système d’exploitation. CORBA permet un certain niveau de

transparence et l’indépendance vis-à-vis du langage de programmation. Dans cette thèse, on

s’intéresse au développement et à la programmation d’une plateforme SDR conforme à SCA.

D’autre part, beaucoup d’applications haut-débit ont besoin d’une puissance de traitement et

d’une bande passante I/O supérieures à celles fournies par les systèmes traditionnels

composés d’un mono-processeur accompagné de certains IPs matériels. Les nouvelles

plateformes de SDR sont en général implémentées sur des plateformes multiprocesseurs

système sur puce (MPSoC) exploitant ses importantes ressources de calculs avec une bonne

efficacité énergique. Il existe déjà des systèmes intégrant des dizaines cœurs, des matériaux

reconfigurables et le réseau sur puce. Les possibilités d’un rapide développement,

déploiement et vérification des logiciels embarqués parallèles sur ces nouvelles plateformes

MPSoC sont autant de points clés pour satisfaire les objectifs de performance tout en

respectant les délais de mise à disposition sur le marché et le coût de développement.

Le déploiement de SDR à base de SCA sur une plateforme moderne MPSoC implique la

combinaison de deux paradigmes de programmation : le modèle distribué à base de CORBA,

 x

et le modèle parallèle utilisant la programmation SMP. La conception de SDR à base standard

manque de flots de conception et d’un modèle de programmation efficace pour tirer parti de

riches ressources de calcul de MPSoC de manière systématique. Dans cette thèse, nous

proposons un flot de conception de SDR avec une exploration architecturale et une

optimisation systématique basé sur un modèle de programmation hybride (le modèle distribué

client/serveur et le modèle parallèle).

Nous nous sommes intéressés à la partie traitement de bande de base d’un système radio. Les

fonctionnalités de bande de base radio sont représentées dans un réseau de processus de Kahn.

Un système distribué sans contraintes de ressources est produit par un engin de générateur de

système distribué d’un premier niveau. Les nœuds générés sont analysés et classés afin de

déterminer ceux qui ont un important besoin en performance de calcul. Ces nœuds sont

ensuite regroupés dans une sous-branche pour être parallélisés. A la sortie du flot, une voie de

rétroaction globale est fournie pour permettre l’optimisation des ressources, et l’ajustement de

fréquence tout en répondant aux exigences de performance du système.

2. L’Etat de l’art de la radio logicielle et de la radio cognitive

Il existe des efforts sur l’implémentation de la plateforme radio logicielle ainsi que le

développement d’un framework complet pour le développement et le déploiement des

applications waveforms.

Le SCARI-OPEN est une implémentation de la JTRS Architecture de la communication de

logiciel (SCA v2.2). Il a été certifié par le JTRS-JPO. Le projet est effectué par la Centre de

Recherche de Communications (CRC) de Canada avec l’objectif de développer une référence

d’implémentation (RI) afin de : 1. réduire le niveau d’ambigüité de la spécification SCA ; 2.

augmenter l’interopérabilité des applications ; 3. Augmenter la compréhension de

l’architecture par un exemple ; 4. accélérer l’émergence de SDRs par la disponibilité d’une

implémentation ; 5. réduire le coût de développement et le délai de mise sur le marché.

L’OSSIE (Open Source SCA Implementation :: Embedded) est un core framework basé sur

SCA et un outil pour le développement rapide de SDR. Il est développé à Virginia Tech et la

 xi

dernière version est la version 0.8.0 sortie en 2010. L’OSSIE contient un core framework et

une suite d’outils orientés GUI (Interface Utilisateur Graphique) qui est capable de générer

automatiquement les codes sources conformes à SCA et les fichiers de support permettant aux

développeurs de se concentrer sur les fonctionnalités de traitement de signal.

La SDR-4000 est une plateforme émetteur-récepteur développée par Spectrum. Elle offre des

COTS (Composant pris sur étagère) matériels, logiciels et services pour accélérer le

développement et le déploiement des solutions pour le modem sans fil. La SDR-4000 contient

deux composants principaux, l’engin de traitement modem PRO-4600 et l’émetteur-récepteur

à deux canaux XMC-3321. Les deux composants ensemble constituent un modem sans fil

supportant deux canaux par slot.

L’IDROMel est un projet de l’Agence Nationale de la Recherche (ANR) de France visant à

définir et valider une SDR reconfigurable et une plateforme de CR. La plateforme combine

les technologies les plus récentes, comme : 1. le traitement bande de base flexible ; 2. un

système intégré basé sur un réseau sur puce ; 3. un support de reconfiguration partielle

utilisant un FPGA ; 4. une bande RF très large de 200 MHz à 7.5 GHz ; 5. un support de 4x4

MIMO ; 6. une conception flexible de MAC pour le support de handover vertical.

Le WiNC2R développé par l’Université Rutgers est un prototype de plateforme de radio

cognitive. L’Annabelle développé par l’Université de Twente, propose une architecture

multiprocesseur système-sur-puce (MPSoC) pour le traitement bande de base de la radio

cognitive. La SDR LSI est une solution mono-puce pour le traitement bande de base de SDR

développé par Fujitsu.

Dans les chapitres suivants, nous nous intéresserons à l’aspect de traitement de bande de base

de la SDR.

3. L’implémentation et l’optimisation d’un système embarqué pour la SDR

Dans ce chapitre, plusieurs méthodologies de conception de multiprocesseur système sur puce

(MPSoC) sont présentées. On a proposé un flot de conception de MPSoC avec l’aide d’un

 xii

paralléliseur automatique, l’outil PLuTo. PLUTO effectue des transformations source-à-

source automatiques basées sur la modélisation polyédrique. Il est capable d’optimiser les

séquences de boucles imbriquées pour le parallélisme à grain gros et la localité de cache

simultanément. Après la transformation, un code parallèle OpenMP est généré qui peut être

ensuite exécuté sur les plateformes multi-cœurs. Par contre, l’exécution du code OpenMP

dépend des APIs OpenMP, du compilateur et du support runtime de l’OS qui sont rarement

présents dans un système embarqué. On a donc conçu un adaptateur OpenMP vers

l’environnement embarqué qui est intégré dans le flot de conception d’accélérateur.

Une étude de cas est présentée dans laquelle on a programmé et évalué une plateforme

multiprocesseur système sur puce à base de réseau sur puce développée par le laboratoire. Le

système est composé de 16 processeurs de type Microblaze et les communications inter-

processeur se font à travers un réseau sur puce avec un modèle de programmation à mémoire

partagé.

Nous avons étudié le potentiel de la parallélisation automatique sur le système multi-cœur

avec 16 processeurs élémentaires (PE) interconnectés par un réseau sur puce (NoC).

L’implémentation effective de matériel nous a permis d’aborder les trois sujets suivants : (1)

l’efficacité du support matériel des primitives de synchronisation, (2) la performance de la

parallélisation automatique, (3) les avantages de la multiprogrammation. Avec le paralléliseur

PLUTO, on a fait des expériences de programmation parallèle sur la plateforme MPSoC. On a

noté que plusieurs éléments clé existent qui influent sur l’efficacité de la parallélisation.

Certains de ces éléments sont inhérents à l’application, tandis que d’autres dépendent de

l’architecture. Une compréhension détaillée des caractéristiques aussi bien de l’application

que de l’architecture est essentielle pour obtenir une performance satisfaisante. On a

programmé la multiplication de matrices, Seidel, la DCT, et Jocobi 1d. La multiplication de

matrices et la DCT présentent de bonnes caractéristiques pour la parallélisation et la

performance évalue linéairement quand le nombre de processeurs augmente. La performance

pour Seidel atteint un pallier quand le nombre de processeur dépasse 8. Jocobi 1d n’expose

aucun parallélisme. Il n’y a donc aucun intérêt à essayer de paralléliser cette application.

 xiii

Pour la plupart des applications, les ressources des processeurs ne peuvent pas être totalement

exploitées. Nous sommes naturellement conduits à la solution multiprogrammation où les

ressources processeurs sont partagées par plusieurs applications. Nous constatons que le

nombre de 8 processeurs est souvent un point critique au-delà duquel l’augmentation de

performance avec l’augmentation de nombre de processeurs s’arrête. Une combinaison

judicieuse d’applications peut effectivement améliorer la performance globale. Une solution

est de partager les ressources entre plusieurs applications. On a donc fait des expériences de

multiprogrammation sur la même plateforme. Les résultats montrent une meilleure utilisation

de ressources.

L’Unité d’Interface de Réseau (Network Interface Unit, NIU) du MPSoC en question est

basée sur le Protocole Open Core (OCP). OCP est un protocole non propriétaire. Il établit un

standard commun pour l’intégration des propriétés intellectuelles (IPs) à la façon « plug et

play ». Le protocole OCP est basé sur le modèle maître-esclave point-à-point. Nous nous

sommes intéressés à deux des mécanismes de synchronisation fournies par le protocole OCP,

plus précisément : la synchronisation exclusive, et la synchronisation paresseuse. On a

développé un benchmark de synchronisation de type barrière pour tester la performance des

deux mécanismes sous différentes hiérarchies de mémoire ainsi que différentes types de

mémoire. Les résultats montrent que la performance de la synchronisation exclusive dépasse

celle de la synchronisation paresseuse de 50% quand les variables de synchronisation sont

centralisés. Quand il s’agit du même mécanisme de synchronisation avec différents types de

mémoire, on a constaté que lorsque la variable de synchronisation est placée dans la mémoire

sur puce BRAM, la performance est meilleure que lorsqu’elle est dans la DDR.

4. Le mapping de middleware sur un système embarqué distribué à base de réseau

Il y a de plus en plus de systèmes qui sont composés d’une collection de composants divers

interconnectés par un réseau où chaque composant exécute des fonctionnalités qui impliquent

à la fois l’interaction locale et distante avec d’autres composants du système. Stimulée par

l’augmentation du nombre d’applications à base de réseau, la technologie middleware est

devenue de plus en plus importante. Dans un système distribué, le middleware est défini

comme une couche de logiciel qui se situe entre le système d’exploitation et les applications.

 xiv

Par cacher l’hétérogénéité de l’architecture, l’OS sous-jacent et le langage de programmation,

le middleware facilite l’intégration d’application, améliore la portabilité des composants

logiciels et l’interopérabilité des applications développées par différentes entreprises.

Dans ce chapitre, on a introduit la spécification middleware du Groupe de Management

d’Objets (Object Management Group, OMG) : c’est Common Object Request Broker

Architecture (CORBA) et sa version embarquée, l’eCORBA.

Il existe de nombreuses implémentations de CORBA académiques ou commerciales. On a

présenté omniORB, qui est développé par le Laboratoire AT & T de Cambridge. OmniORB

sera plus tard choisi comme middleware dans notre système distribué.

Nous avons construit un système embarqué distribué utilisant plusieurs cartes FPGA comme

plateforme de preuve de concept. Les cartes sont interconnectées via un commutateur

Ethernet. Chaque carte contient un système de calcul à base de processeur PowerPC405

disposant d’un système d’exploitation Linux avec une pile TCP/IP. Les applications de

communications sont développées à l’aide du middleware CORBA conforme à la

spécification SCA. La performance du middleware est évaluée à l’aide de micro-benchmarks

d’évaluation. Les effets de l’augmentation de fréquence sur la performance globale du

système sont examinés pour chaque composant du système (Client, Serveur, ou Services

communs). Les résultats donnent de bonnes indications sur le domaine de fréquences qui

minimise la consommation d’énergie.

A la fin de ce chapitre, on a proposé un flot de conception pour la SDR avec l’exploration

architecturale systématique et l’optimisation multi-objective utilisant le modèle de

programmation hybride (distribué client/serveur + parallèle).

5. Le mapping de middleware sur un mono-puce multiprocesseur système

L’objectif ultime est d’intégrer l’ensemble sur une seule puce pour fournir une plateforme de

SDR bande de base conforme à SCA. La plateforme hybride, basée sur un commutateur

Ethernet, dont on a parlé, tout en permettant une preuve-de-concept rapide et pertinente, a ses

 xv

limites comme la bande passante du réseau et la flexibilité de configuration en raison de

l’isolement des nœuds. Afin de bien tirer parti de l’interopérabilité et de la portabilité des

applications à base de CORBA, la conception de plateforme SDR conforme à SCA sur une

mono puce implique d’effectuer l’adaptation du mécanisme de transmission de CORBA de

GIOP/IIOP à une couche de communication sur puce propriétaire. Dans notre cas, on va

utiliser la bibliothèque Danube d’Arteris [65] pour l’interconnexion de plusieurs dispositifs de

calcul, des mémoires, et des IPs via une interface standard, le Open Core Protocol (OCP). Le

mécanisme de transport de CORBA est par défaut TCP/IP via internet. On va garder TCP/IP

comme protocole de la couche transport et de la couche réseau de CORBA. Par contre, on va

modifier la couche MAC en remplaçant Ethernet par OCP/NTTP. NTTP est un protocole de

transport de paquet propriétaire implémenté dans les composants de Danube. Avec cet

empilage de protocole, la couche de communication de CORBA peut rester largement

inchangée et un driver gérant l’interface OCP doit être inclus au noyau Linux afin de traiter

les interruptions générées par la couche OCP et router correctement les paquets entre les

couches de protocoles. Avec cette solution mono-puce, les ressources peuvent être librement

allouées aux nœuds nécessitant des calculs intensifs qui peuvent alors utiliser des dispositifs

de calcul parallèles afin d’accélérer le calcul.

Le modèle de programmation distribué sur puce est inspiré de l’approche traditionnelle pour

les grands systèmes. Mais il faut aussi prendre en compte les contraintes et les opportunités

que permettent les SoCs. Par exemple, la taille maximale de transmission (MTU) doit être

adaptée aux ressources mémoire de l’interface MAC, et la longueur maximale d’une écriture

en mode burst du réseau sur puce afin de pouvoir envoyer un paquet de données de manière

atomique. D’autre part, contrairement au réseau informatique, le réseau sur puce offre un

meilleur taux de succès de transmission, et divers services comme le contrôle de flux, l’accusé

de transmission fourni par le Network Interface Unit (NIU). Par conséquent, les services

correspondants fournis par la couche transport (TCP) peuvent être économisés.

Une autre partie de la thèse porte sur la synthèse de topologie de réseau-sur-puce (PSTRP)

pour la sous-branche de parallélisation du flot de conception. Le problème de la synthèse de la

topologie du réseau-sur-puce peut se modéliser sous forme de programme linéaire en nombres

 xvi

entiers. On a étudié deux modèles de communications, le passage de messages et la mémoire

partagée. Les résultats montrent que les contraintes d’implémentation, comme la hiérarchie du

réseau sur puce, doivent être prises en compte pour obtenir un résultat à la fois

mathématiquement optimisé et électroniquement réalisable.

 xvii

CONTENTS

Flot de Conception Système sur Puce pour Radio Logicielle...i

ACKNOWLEDGMENT...iii

ABSTRACT...v

Résumé...vii

CONTENTS...xvii

LIST OF TABLES ...xx

LIST OF FIGURES ..xxi

Chapter 1 ..1

Introduction ..1

Chapter 2 Software Defined Radio and Cognitive Radio State of the art..........................9

2.1 SDR Definition...9

2.2 SCA Specification ..10

2.3 CR Definition and theoretical issues ..13

2.4 Academic SCA based SDR (OSSIE and SCARI) ..14

2.5 Commercial SCA based SDR (Spectrum Signal) ..15

2.6 Other efforts in SDR implementations ...17

2.7 Academic CR major projects and achievements ..22

2.8 Conclusion..23

Chapter 3 Embedded System Implementation and Optimization for SDR25

3.1 MPSoC and FPGA Design Flow..25

3.2 Optimization Based Design Flows ...31

3.3 Automatic Parallelization State of the Art: The case of PluTo33

3.4 Automatic parallelizer based MPSoC design flow...36

3.5 Case study: A NoC based MPSoC programming and optimization.................38

3.5.1 MPSOC platform ..38

3.5.2 OCP-IP Specification..41

 xviii

3.5.3 Synchronization with OCP-IP ..44

3.5.4 Synchronization results and analysis ..46

3.5.5 Experiments of automatic parallelization ...49

3.5.6 Multi-programming Experiments and Analysis ...55

3.6 Conclusion..57

Chapter 4 Mapping middleware on Distributed Networked Embedded Systems............59

4.1 CORBA, e/CORBA and OmniORB...59

4.1.1 CORBA interoperability and GIOP/IIOP ...62

4.1.2 CORBA/e ..64

4.2 omniORB..65

4.3 Analysis Case studies : Performance and Scalability.......................................67

4.3.1 Distributed Embedded System Hardware Architecture..............................67

4.3.1.1 ML403 board ..67

4.3.1.2 Architecture of the distributed processing node based on a virtex4fx12 FPGA

 ..69

4.3.2 Software architecture ..70

4.3.3 Performance Evaluation..72

4.3.3.1 Middleware benchmarking ...72

4.3.4 Performance of the Server/Client distributed platform when increasing clock

frequency ..76

4.3.5 Distributed Client-server with Multiprocessor Networked Embedded Latency

and Bandwidth Analysis ...82

4.4 Hybrid programming model ...83

4.5 Multiobjective Optimization Based Automatic Design flow for CORBA based

Distributed Networked Embedded Systems...88

4.6 Conclusion..89

Chapter 5 Middleware mapping on Single Chip Multiprocessors93

5.1 State of the art of Middleware Mapping on Multi-processor Platforms.93

5.2 Network on Chip technology..95

5.2.1 SPIN ..96

5.2.2 AEthereal ..96

 xix

5.2.3 Nostrum ..96

5.2.4 MANGO ..97

5.2.5 Arteris NoC technology ..98

5.3 Synchronization Issues with CORBA Based designs102

5.4 OCP-IP Protocol and CORBA ...104

5.5 Network Interface design and low level APIs ..107

5.6 Network-on-chip design ...109

5.6.1 Protocol definition ..109

5.6.2 NoC connection ..110

5.6.3 Memory mapping..110

5.7 Single FPGA Chip NOC Based Multiprocessor Design111

5.8 Performance results ..113

5.9 Design Flow for Client-server with Automatic Parallelization Paradigm MPSOC

 ..113

5.9.1 Network-on-chip synthesis ...115

5.9.1.1 Definition of problem in terms of graph...116

5.9.1.2 Integer linear programming ..117

5.9.1.3 Case study ..118

5.10 Conclusion..119

Chapter 6 ..123

Conclusion ...123

References ..127

List of publications...141

 xx

LIST OF TABLES

Table 1 Supported data rates for each wireless generation .. 2

Table 2 Data rates for various wireless standards.. 3

Table 3 IDROMel summary .. 18

Table 4 WiNC2R baseband summary.. 19

Table 5 Annabelle baseband summary .. 21

Table 6 SDR LSI baseband summary .. 22

Table 7 polycc command-line options ... 35

Table 8 OCP MCmd .. 44

Table 9 Matrix Multiplication (128 * 128 Block size 8 * 8) / DCT (32 * 32 Block size 4 * 4)

.. 55

Table 10 DCT (32*32 Block Size 4*4) / Seidel 128*128 Level1_Data_Reuse and intelligent

management of cached data ... 55

Table 11 Principal components of the ML403 board... 68

Table 12 Resource utilization... 70

Table 13 Time of round-trip Echo function without any message... 73

Table 14 Latency measurements for other architectures.. 74

Table 15 Throughput for 1 MB transfer in one-way invocation.. 75

Table 16 Resource utilization... 84

Table 17 Resource utilization... 88

Table 18 Arteris Danube transport units IPs .. 100

Table 19 Communication layer adaptation choices ... 105

Table 20 NTTP Global memory map... 111

Table 21 Time of round-trip Echo function with zero message body.................................... 113

 xxi

LIST OF FIGURES

Figure 1 Wireless communication standards and their data rates .. 2

Figure 2 Single chip distributed system based on CORBA & NoC .. 8

Figure 3 Software Communication Architecture ... 10

Figure 4 SCA Core framework in UML .. 12

Figure 5 PRO-4600/XMC-3321 example of data flow.. 16

Figure 6 Software Operating Environment .. 17

Figure 7 IDROMel baseband architecture ... 18

Figure 8 Baseband and network modules .. 20

Figure 9 Block diagram of Annabelle base band ... 21

Figure 10 SDR LSI architecture... 22

Figure 11 Multiprocessor Synthesis Design flow [124] .. 26

Figure 12 Synthesis methodology for heterogeneous multiprocessors [96] 27

Figure 13 ESPAM system design flow .. 28

Figure 14 ESL Design Flow using SystemCoDesigner ... 29

Figure 15 The Daedalus system-level design framework .. 30

Figure 16 Two step design architecture exploration .. 31

Figure 17 BMSYN automated flow ... 32

Figure 18 PLuTo workflow.. 34

Figure 19 PLUTO transformation: (a) sequential code, (b) parallel .. 35

Figure 20 Automatic parallelizer based accelerator design flow... 36

Figure 21 Code example of the Design flow ... 37

Figure 22 Architecture of NoC-based multi-core .. 38

Figure 23 Architecture of Data NoC.. 39

Figure 24 Architecture of Synchronization NoC ... 40

Figure 25 Block diagram of the microblaze architecture... 41

Figure 26 System integration with a custom interface. (a) System integration with an OCP

protocol (b)... 42

Figure 27 OCP signals ... 43

 xxii

Figure 28 Block diagram of Alpha-Data FPGA .. 46

Figure 29 Alpha-data ADPe-XRC-4 FPGA board .. 46

Figure 30 Synchronization micro benchmarks .. 47

Figure 31 Synchronization performance: Locked vs. LLSC ... 48

Figure 32 Synchronization performance: BRAM vs. DDR2... 49

Figure 33 Execution results of Matrix Multiplications (128 * 128) .. 50

Figure 34 Execution results of Seidel 128 * 128 ... 52

Figure 35 Execution results of DCT (32 * 32)... 53

Figure 36 Execution results of DCT (64 * 64)... 53

Figure 37 Execution results of Jacobi 1D .. 54

Figure 38 A client sending a request to an object implementation[6] 60

Figure 39 The structure of Object Request Interfaces ... 61

Figure 40 A client using the stub or dynamic invocation interface ... 62

Figure 41 An Object Implementation receiving a request ... 62

Figure 42 ML403 board from Xilinx ... 67

Figure 43 Block diagram of the ML403 board .. 69

Figure 44 Block diagram of the architecture of the distributed node based on the virtex4fx12

FPGA ... 69

Figure 45 Embedded distributed system based on four FPGA node connected by an Ethernet

switch ... 70

Figure 46 Software architecture of the embedded distributed system 71

Figure 47 : Platform with four ML403 and a Switch... 71

Figure 48 Throughput for 1 MB transfer in one-way invocation .. 74

Figure 49 Influence of Server configurations on Latency ... 77

Figure 50 Influence of Server configurations on Throughput ... 78

Figure 51 Influence of Client configurations on Latency .. 79

Figure 52 Influence of Client configurations on Throughput .. 79

Figure 53 Influence of Naming service configurations on Latency... 80

Figure 54 Influence of Naming service configurations on Throughput................................... 81

Figure 55 FFT distributed computing .. 82

Figure 56 Matrix multiplication distributed computing... 82

 xxiii

Figure 57 Qam-16 distributed computing .. 83

Figure 58 Block diagram of the embedded distributed system with parallel processing units

(ml403 x 4)... 84

Figure 59 64-point single precision floating point FFT ... 85

Figure 60 Length-15 viterbi decoder ... 85

Figure 61 Qam-16 modulation (16-symbol outputs) ... 86

Figure 62 Hybrid architecture with mesh-like parallel processing elements........................... 87

Figure 63 PPC405 + microblaze x 8 .. 87

Figure 64 Design flow based on the hybrid programming model with multi-objective

optimization ... 90

Figure 65 StepNP platform .. 94

Figure 66 Flat tree topology... 96

Figure 67 MANGO router.. 98

Figure 68 NoC design flow by Arteris ... 99

Figure 69 example of Danube IPs.. 99

Figure 70 Arteris Danube Switch... 101

Figure 71 Statistic collector ... 101

Figure 72 NoCcompiler GUI ... 102

Figure 73 TCP/IP/OCP receive sequence .. 106

Figure 74 TCP/NTTP/OCP receive sequence.. 107

Figure 75 Architecture of the PLB-OCP network interface... 108

Figure 76 A two-node point-to-point connection... 110

Figure 77 Address translation from ocp domain to nttp domain ... 111

Figure 78 Two ppc405 connected with NoC with multiplexed output.................................. 112

Figure 79 Host machine console system.. 113

Figure 80 Design flow based on the hybrid programming model single chip 114

Figure 81 MPEG4 Core graph ... 119

Figure 82 MPEG4 NoC topology .. 120

ii

1

Chapter 1

Introduction

Since the first commercialization of mobile cellular systems in the early 1980’s, the wireless

communication industry has exhibited a rapid evolution of communication standards from

first generation (1G) technology to the forth generation (4G) standard. The first-generation

(1G) technology system was introduced in the early 1980s and completed in the early 1990s.

1G wireless used analog technology. The second generation (2G) technology, fielded in the

late 1980s and finished in the late 1990s and often referred to as “digital”, replaced the 1G

technology by using digital signals and digital networks. During the transition from 2G to 3G

there exists an interim deployment of 2.5G digital technology with limited data capabilities,

such as short messaging services. The third-generation systems was developed in the late

1990s, which extended the voice-only digital from 2G (as enhanced), and allowed

simultaneous use of speech and data services and higher data rates. Thus, 3G networks enable

network operators to offer users a wider range of more advanced services while achieving

greater network capacity through improved spectral efficiency. The successor to the 3G

mobile telecommunication technology is the 4th generation (4G) technology that provides

voice, data and streamed multimedia to users at even higher data rates, higher Quality of

Service (QoS), security and interface with wire-line backbone networks.

Table 1 summarizes the advancement of wireless technology generations in terms of steady

growth of data rate and new services requiring high throughput for handling Internet and

multimedia content.

2

Table 1 Supported data rates for each wireless generation

Wireless generation Data rate Services

1G 2.4kbps Voice only

2G 64kbps Voice, limited data capacity

3G 125kbps ~ 2Mbps Global roaming, superior voice quality,

M-TV, Internet

4G ~ 1Gbps Enhanced QoS, security, global

roaming, wireline Internet backbone

interface

Figure 1 Wireless communication standards and their data rates

More over, in order to support the needs and constraints of various networks, a huge number

of standards have appeared that operators are required to support, ranging from the early

second generation to all the expected new third generation standards. Figure 1 shows the

3

different wireless communication standards and their corresponding data rates, while Table 2

gives more detailed information as connection, and modulation methods, for various wireless

standards, including WiFi, WLAN, WiMax, WCDMA, GSM, EDGE, and ZigBee.

Table 2 Data rates for various wireless standards

Cellular

Family

Standard Peak Data

Rate (kbits/s)

Typical Data

Rate

Connection Modulation

GSM

GSM-CSD

HS-CSD

GPRS

EDGE

9.6/14.4

28.8/43.2

115/171

385/513

9.6

28.8

50

115

Circuit Switched

Circuit Switched

Packet Switched

Packet Switched

GMSK

GMSK

GMSK

8-PSK

UMTS
FDD

TDD

384/2000

384/2000

144

144

Packet Switched

Packet Switched

QPSK

QPSK

CDMAOne
IS-95A

IS-95B

14.4

65/115

14.4

56

Circuit Switched

Packet Switched

QPSK

QPSK

CDMA2000
IX

IX EV

144/307

2000

130

N/K

Packet Switched

Packet Switched

QPSK

QPSK

TDMA CSD 9.6 9.6 Circuit Switched π/4 QPSK

PDC i-mode 9.5 9.6 Packet Switched π/4 QPSK

(Data obtained from Philips 2002 & 2004 Worldwide Wireless Telecommunication Standards

chart)

Since each standard is different, sometimes even using different carrier frequency, specific

stations or handsets have to be developed, deployed and maintained, implying very large

codes and slow developments. Considering the pace at which new standards are being

released, it quickly becomes a nightmare for anybody involved in the communication industry

to support them all at an acceptable cost in terms of development time and chip area.

The idea of Software Defined Radio coined by Mitola Joseph III is proposed to cope with

such a crisis. In such an approach, the channel modulation waveforms in a radio system are

implemented in software instead of hardware with fixed functionality. The software defined

4

components are deployed on modern programmable/reconfigurable devices like GPP, DSP,

ASIP or FPGA. Consequently, a demand of system adaptation to different communication

standards or even an update to newer generation technology can be achieved by software

update instead of the tedious and time/money consuming hardware replacement. With the

improvement of semiconductor technology and availability of wireless technology providing

reliable and high data rate Internet access, software updates and system reconfiguration can be

done in a real-time manner with configuration data downloaded form air interface. In such a

way, a unique device can be made compatible with a whole set of standards, for example

ZigBee, Bluetooth, 802.11a/b/g/n, 3G, etc., and handovers between different protocols can be

done without degradation with careful design.

Whether the adoption of software defined radio is beneficial, however, depends on two

factors:

1. Software reusability, portability and interoperability.

2. Hardware platform and programming model support to achieve the performance

requirements while keeping the programming difficulty at a reasonable level.

The first factor is intrinsically important which determines the usability of the SDR idea as a

whole. The benefits of flexibility, which is the main idea represented by SDR, is only

achievable if one can freely add, update, or enhance functional capabilities of the radio system

having been realized in form of software modules. Ideally, waveform applications designed

for one SDR platform can be easily ported to another platform; waveform applications

developed by one enterprise can be interoperable with the waveform applications of another

company. In order to achieve this goal, an open standardized framework is necessary which

provides uniform definitions of interfaces, and services an application should conform to.

The Software Communication Architecture (SCA) is a largely accepted open architecture for

SDR programs. It is developed by the US Department of Defense (DoD) for the development

a family of affordable, high-capacity tactical radio systems that can provide scalable,

interoperable wireless mobile network services. The SCA specification defines an Operating

5

Environment (OE) comprising of a Core Framework, a minimum CORBA compliant

middleware and a POSIX compliant operating system in which waveform applications are

executed. The POSIX standard minimizes the cost of porting waveform software because it

provides an abstraction layer for operating system-specific methods. CORBA provides a level

of transparency and program-language independence. The developments and programming of

SCA compatible SDRs are the problems treated in this thesis.

On the other hand, many of the new high-bandwidth waveforms demand processing power

and I/O bandwidth that exceeds that provided by traditional single processor systems

combined by certain hardware IP. New SDR platforms are most likely deployed on multi- and

many- core systems (MPSoC) leveraging its rich processing resources with energy efficiency.

Systems exists which incorporate dozens, hundreds or even thousands of cores. [1][2][3][4][5]

Rapid development, deployment and verification of parallel embedded software in these

emerging MPSOC is key issue to ensure performance requirements under strong time to

market (TTM) and development cost constraints.

The deployment of SCA based SDR and the modern MPSoC platform entails the combination

of two programming paradigm: CORBA based distributed model, and SMP based parallel

model. Standard based SDR design lacks explicit design flow and efficient programming

model for leveraging the rich processing resources that an MPSoC platform provides in a

systematic manner. In this thesis, we propose a SDR design flow with systematic architecture

exploration and optimization based on a hybrid programming model (distributed client/server

and parallel).

We are interested in the baseband processing part of the radio system. The radio baseband

functions are represented in a Kahn Process Network. A distributed system with no resource

constraints is generated with a first level distributed system generation engine. The resulted

nodes are profiled and classified in order to determine the ones that have a high requirement

of processing performance and are passed to a sub-branch to be parallelized. At the output of

the flow, a global feedback path is provided to optimize resource utilization, and frequency

scaling while meeting system performance requirement.

6

We built an embedded distributed system based on multiple FPGA cards as a proof-of-

concept platform. The cards are connected via an Ethernet switch. Each card contains a

PowerPC405 based computing system running Linux kernel with a TCP/IP stack. The

communicating applications are realized by Common Object Request Broker Architecture

(CORBA) middleware conforming to the SCA specification. The performance of the

middleware is tested with micro-benchmarks. Frequency scaling effects on the overall system

performance is examined on a participant-by-participant basis (Client, Server, or Common

Service). The results give good clues for frequency configuration with the goal of minimizing

consumption.

The parallelization sub-branch is based on an automatic parallelizer and a chain of parallel

library transformation/customization tool and FPGA design tools. We studied the potential of

automatic parallelization on a NoC-based 16 PE multi-core system which we designed and

implemented on a single FPGA. We addressed three issues in the framework of NOC based

MPSOC with actual hardware: (1) an efficient hardware support for synchronization

primitives (2) the performance of automatic parallelization (3) the multiprogramming

benefits.

The execution results of several parallelized code show us several key elements that influence

the effectiveness of parallelization. Some of these elements are intrinsic in the application,

while others are architecturally dependant. A comprehensive understanding of the

characteristics of both the application and the architecture accompanied by an optimum

combination of the two is necessary for a satisfying performance.

The Network Interface Unit (NIU) of the MPSoC is based on the Open Core Protocol (OCP)

standard. The OCP protocol is an openly licensed, core-centric protocol intended to

contemporary system level integration challenges. It provides a common standard for

intellectual property (IP) core integration in a “plug and play” manner. The protocol is based

on the master-slave point-to-point model. We focus on the two synchronization mechanisms

provided by the protocol, namely: the Exclusive Synchronization and the Lazy

7

Synchronization. The results show the superiority of the blocked mechanism in the dedicated

synchronization NOC with BRAM over LL-SC with BRAM or blocked with DDR in a

single-lock case.

Single-application performance results show an under-exploited MPSoC platform lack of

sufficient parallelizability. We are naturally led to the multiprogramming solution where

processors resources are shared by multiple applications. We notice that 8 processors is

usually a critical number beyond which the performance stops scaling linearly. A combination

of applications and an efficient allocation of processor resources can effectively improve the

overall performance.

The ultimate objective is to move everything on a single chip to provide a SCA compliant

single-chip SDR baseband. The Ethernet switch based hybrid platform while serving as fast

and pertinent proof-of-concept has limits like network bandwidth and configuration flexibility

due to the isolation of nodes. Single chip design of SCA compliant SDR platform involves

efforts as the mapping of transmission mechanism of CORBA from the GIOP/IIOP to GIOP +

proprietary-on-chip-communication in order to fully leverage the interoperability and

portability of CORBA based applications. In our case, we will leverage the Network-on-chip

(NoC) Danube library of Arteris [65] for the interconnection of multiple processing elements,

memory resources and IP integration via a standard interface, the Open Core Protocol (OCP).

By default, the communication mechanism of CORBA is TCP/IP. We still use TCP/IP as the

transport layer and internet layer protocol of COBRA. However, we modify the MAC layer

by replacing Ethernet by OCP/NTTP. NTTP is the proprietary packet transport protocol

implemented in the Danube NoC. An example architecture is shown in Figure 2 that is

composed of two servers and two clients whose communication is based on a version of

CORBA adjusted to OCP network. With this configuration, the communication layer of

CORBA can remain largely unchanged and an OCP device driver should be registered in the

Linux kernel in order to handle interruptions generated by the OCP layer and route the packet

properly among the protocol layers. Extra resources can be flexibly allocated to nodes in

charge of processing computing-intensive algorithms by synthesizing an array of parallel

processing elements to assist the computation, as is shown in upper-right corner of Figure 2.

8

Figure 2 Single chip distributed system based on CORBA & NoC

9

Chapter 2

Software Defined Radio and Cognitive Radio State

of the art

2.1 SDR Definition

The term “Software Defined Radio” was coined in 1991 by Joseph Mitola in his publication

[23]. A Software Defined Radio (SDR) is a radio system, where components are implemented

using software instead of hardware.

By realizing the main components in software, a SDR offers support for multiple standards,

multiple bands, and seamless mode/band transitions by software update rather than hardware

alternation. This greatly reduces the development and deployment cost of radio systems with

the ever developing radio communications standards. SDR also have significant utility for the

military area and cell phone services, both of which must serve a wide variety of changing

radio protocols in real time.

There are several other important concepts that are closely related to SDR which should first

be clarified, namely Digital Radio (DR), Software Radio (SR), and Cognitive Radio (CR). By

the term Software Radio we refer to a transceiver whose functions are realized as programs

running on a suitable processor. An SR transceiver comprises all the layers of a

communication system. An ideal SR directly samples the antenna. Digital Radio is a radio

system whose baseband signal processing functions are implemented on a Digital Signal

Processor (DSP). A Software Defined Radio (SDR) is a presently realizable version of SR:

instead of sampling directly antenna output, the received signals are sampled after a suitable

10

band selection filter. A Cognitive Radio (CR) [1] combines an SR with a Personal Digital

Assistant (PDA) and connects its owner to Intelligent Networks (INs). [21]

2.2 SCA Specification

The Software Communication Architecture (SCA) [24] is an open architecture framework

developed under the requirement of US Department of Defense (DoD) to maximize

portability, interoperability, and configurability of the Software Defined Radio.

The SCA specifies an Operating Environment (OE) in which waveform applications are

executed. In the context of SCA, a waveform is defined as the entire set of radio and/or

communications functions that occur from the user input to the radio frequency output and

vice versa.

The Operating Environment is composed of a Core Framework (CF), a minimum CORBA

compliant middleware and a POSIX compliant Operating System (OS). [24] The OS running

the SCA must provide services and interfaces that are defined as mandatory in the Application

Environment Profile (AEP) of the SCA. Figure 3 depicts the main building blocks and the

hierarchy of the SCA. [25]

Figure 3 Software Communication Architecture

11

The Core Framework is a set of open application-layer interfaces and services which provide

an abstraction of the underlying system software and hardware for software application

designers. [21] The CF consists of four parts:

• Base Application Interfaces: provide the management and control interfaces for all

system software components. The interfaces in this group are: Port, LifeCycle,

TestableObject, PropertySet, PortSupplier, ResourceFactory and Resource.

• Base Device Interfaces: realize the management and control of hardware devices

within the system through their software interface. The interfaces in this group are:

Device, LoadableDevice, ExecutableDevice, and AggregateDevice.

• Framework Control Interfaces: control the instantiation, management, and

destruction/removal of software from the system. The interfaces in this group are:

Application, ApplicationFactory, DomainManager, and DeviceManager.

• Framework Services Interfaces: provide additional support functions and services such

as file system management. The interfaces in this group are: File, FileSystem, and

FileManager.

In Figure 4, the SCA core framework components and their interfaces are represented in UML

form.

12

Figure 4 SCA Core framework in UML

The CF uses a Domain Profile to describe the components in the system. The software

component characteristics are contained in the Software Package Descriptor (SPD), Software

Component Descriptor (SCD) and Software Assembly Descriptor (SAD).The hardware

device characteristics are stored in the Device Package Descriptor (DPD) and Device

Configuration Descriptor (DCD). The Properties Descriptor contains information about the

properties of a hardware device or software component. The Profile Descripter contains an

absolute file name for either a Device Configuration Descriptor, or a Software Package

Descriptor or a Software Assembly Descriptor. Finally, the DomainManager Configuration

Descriptor (DMD) contains the configuration information for the DomainManager.

The reconfiguration of radio usually concerns the installation/uninstallation of SCA

applications as well as connection/disconnection of ports. These operations are accomplished

by a series of function calls to the SCA Core Framework.

13

The following scenario depicts the steps and interfaces utilized when a client application tries

to install a new application within a certain system domain. It needs to invoke the create

operation provided by the ApplicationFactory interface. ApplicationFactory then refers to the

Domain Profile for available devices that meet the application’s memory and processor

requirements, available dependant applications, and dependant libraries needed by the

application. If the requirements are met, an Application instance is created and the memory

and processor are allocated. The application software module is then loaded on the devices

using the appropriate Device interface. Then connect the resources’ ports. Finally the

Application object reference in the context of CORBA Naming Service is returned.

Distributed processing is a fundamental aspect of SCA and OMG CORBA [26] is used as the

middleware that provides the standardized message passing technique in a client/server

model. Using CORBA allows software objects to communicate with each other through a

standardized interface description language (IDL). CORBA is designed to be both language

and platform independent, which simplifies the development and deployment of

communication software. All CF interfaces are defined in Interface Definition Language

(IDL). The CORBA handles the message marshalling and delivering.

2.3 CR Definition and theoretical issues

Cognitive radio is a paradigm for wireless communication in which either a network or a

wireless node changes its transmission or reception parameters to communicate efficiently

avoiding interference with licensed or unlicensed users. This alteration of parameters is based

on the active monitoring of several factors in the external and internal radio environment,

such as radio frequency spectrum, user behavior and network state. The term “Cognitive

Radio (CR)” was coined by Joseph Mitola III in October 1998 to represent the integration of

substantial computational intelligence – particularly machine learning, vision, and natural

language processing – into software defined radio (SDR). [33] CR embeds a RF-domain

intelligent agent as a radio and information access proxy for the user, making a myriad of

detailed radio use decisions on behalf of the user (not necessarily of the network) to use the

radio spectrum more effectively.

14

Although cognitive radio was initially thought of as a software-defined radio extension, most

of the research work is currently focusing on Spectrum Sensing Cognitive Radio, particularly

in the TV bands. The main problem of Spectrum Sensing Cognitive Radio is in designing

high quality spectrum sensing devices and algorithms for exchanging spectrum sensing data

between nodes. It has been shown that a simple energy detector cannot guarantee the accurate

detection of signal presence, calling for more sophisticated spectrum sensing techniques and

requiring information about spectrum sensing to be exchanged between nodes regularly.

Increasing the number of cooperating sensing nodes decreases the probability of false

detection. [144] Filling free radio frequency bands adaptively using OFDMA is a possible

approach. Applications of Spectrum Sensing Cognitive Radio include emergency networks

and WLAN higher throughput and transmission distance extensions.

2.4 Academic SCA based SDR (OSSIE and SCARI)

1. SCARI (CRC 2004)

The SCARI-OPEN is an implementation of the JTRS Software Communication Architecture

SCAv2.2 and certified by the JTRS-JPO. The project is carried out at the Canada’s

Communications Research Center (CRC) and was launched in 2001 under a contract between

CRC and SDR Forum to develop a reference implementation (RI) aiming at: [28]

• Reduce the level of ambiguity of the SCA specification documents

• Increase the potential for interoperability by allowing implementers to customize the

RI instead of rewriting the whole architecture

• Increase understanding of the architecture through an example

• Accelerate the emergence of SDRs through the availability of an implementation

• Reduce the cost and time-to-market for SDRs

SCARI-OPEN is an open source implementation written in Java. The RI provides the

mandatory components of the SCA core framework, along with support for the most used

features, including Service Interfaces, Core Framework with the XML Domain Profile,

15

related tools to operate the radio and simple waveform applications to demonstrate the

operation of radio.

The SCARI++ core framework is a new generation core framework of CRC implemented in

C++. It supports an exceptional number of operating environments. Some of them are

especially designed for real-time embedded systems.

2. OSSIE

OSSIE, acronym for Open Source SCA Implementation::Embedded, is an open source SCA-

based core framework and rapid development tool for SDR developed at Virginia Tech. [27]

Its latest version 0.8.0 was released in January, 2010.

OSSIE is targeted for use in wireless communications curricula and research efforts. OSSIE

includes a core framework as well as a suite of graphical user interface-oriented tools. The

tools are capable of auto-generation of SCA-specific component source codes and supporting

files, leaving the developer the task to specify the signal processing functionalities.

2.5 Commercial SCA based SDR (Spectrum Signal)

Spectrum SDR-4000 [29]

SDR-4000 is a SDR small form factor transceiver platform development by Spectrum. SDR-

4000 offers the commercial off the shelf (COTS) hardware, software and services to

accelerate the development and deployment of black-side wireless modem solutions for

tactical military communications system. The SDR-4000 consists of two major component

level products: the PRO-4600 SDR modem processing engine and the XMC-3321 dual

transceiver I/O mezzanine card. The two components together provide a wireless modem that

supports up to two channels per slot. Figure 5 illustrates the two components and an example

of data flow.

16

Figure 5 PRO-4600/XMC-3321 example of data flow

The PRO-4600 component employs a combination of heterogeneous processors and FPGA:

Xilinx Virtex-4 FPGA, TMS320C6416T DSP and MPC8541E GPP, which fulfills the size,

weight and power-limited requirements of SDR applications.

The XMC-3321 is dual channel transceiver module optimized to operate with the PRO-4600

for SDR applications. The XMC-3321 supports 10.6, 21.4 and 70 MHz IF frequencies

through the use of dual 14-bit A/D converters sampling at up to 105 MSPS and dual 14-bit

D/A converters sampling at up to 300 MSPS.

Figure 6 shows the standards-based software operating environment of the SDR-4000

platform. It supports real-time operating systems such as Integrity of Green Hills or Wind

River VxWorks. The SCARI Core Framework of CRC is supported by the SDR-4000, which

maximizes the real-time performance of embedded platforms by providing a full

implementation of all the SCA Core Framework interfaces and implementing exceptional

features that minimize the boot time of an SCA system.

17

Figure 6 Software Operating Environment

2.6 Other efforts in SDR implementations

1. IDROMel (ANR project, France, 2009)

The project IDROMel [30] is a French National Agency for Research (ANR) project aiming

at defining, developing, and validating a reconfigurable SDR and Cognitive Radio platform.

The platform combines the latest technologies, such as:

• Flexible baseband processing

• Network on Chip based integration

• FPGA partial reconfiguration support

• Very wide band RF from 200 MHz to 7.5 GHz agility

• 4 X 4 MIMO support

• Flexible MAC design for vertical handover support

The platform permits various SDR or CR scenarios like vertical handovers in a heterogeneous

network including multiple Radio Access Technologies (RATs) (with different QoS

parameters, frequency bands and bandwidths). The selected RATs are UMTS and WiMax.

The baseband processing part of the platform features a hierarchical heterogeneous

18

architecture. The implementation is based on two FPGAs. The first FPGA, Virtex-5LXT110

from Xilinx, implements a 32-bit microcontroller that is responsible for communications with

the host-PC via a PCI-express link and for the global control of the second FPGA. The second

FPGA, which is a Xilinx Vertex-5LX330 board, consists of 7 DSP blocks interconnected by a

crossbar responsible for various signal processing functions and interface with the RF front

end, as shown in Figure 7. The main characteristics are summarized in Table 3.

Figure 7 IDROMel baseband architecture

Table 3 IDROMel summary

Standards UMTS, WiMAX

Technology Xilinx Virtex-5110LXT control; Virtex-5

330LX processing

IP Core DFT, Generic modulator BPSK to QAM256,

generic channel coder (conventional, cyclic,

M-sequence), generic channel decoder

(Viterbi, turbo), generic

interleaver/deinterleaver

Processor 8 bit uC for each IP Core

19

Partial reconfiguration of FPGA is a new feature that is capable of extending SDR

perspectives by bringing the highest flexibility to the hardware level. The results show an

interesting reconfiguration overhead which is as little as 700 µs/Partial Reconfiguration.

2. WiNC2R (WINLAB, Rutgers University, 2008)

In [31], a prototype of a Cognitive Radio hardware platform – the WiNC2R is described. The

platform is based on the FPGA technologies featuring rich logic resources. The flexible

processing elements provide the designers a large exploration space to find the best

performance/power/area tradeoff. The architecture is composed of three parts, the RF module,

the baseband module and the networking module. While the RF module is mainly composed

of analog circuits, the baseband module and the networking module are all implemented with

FPGAs. The baseband module is implemented in Xilinx Virtex-4SX series of FPGA, which

features rich DSP resources and is geared towards high-performance digital signal processing

applications. The network module is implemented in the Xilinx Virtex-4FX series of FPGA,

which is targeted for embedded control intensive applications. DMA engines and hardware

accelerators are used to accelerate some computation-intensive PHY layer functions, like

FFT, Viterbi decoding, ECC, etc, which are dynamically configurable on a per-packet basis to

cover multiple standards. Figure 8 shows the baseband and network module of the WiNC2R

while Table 4 lists the main baseband characteristics.

Table 4 WiNC2R baseband summary

Standard OFDM, QPSK/DSSS

Technology Xilinx Virtex-4SX35, Virtex-4FX12

IP Core ECC, FFT, Viterbi decoding, Reed-Solomon

(RS) encoding & decoding

Processor Data Processor (DP) (MAC & higher layer),

Cognitive processor (CP)

20

Figure 8 Baseband and network modules

3. Annabelle (University of Twente, Netherlands, 2007)

Annabelle [32] is a multiprocessor system-on-chip (MPSoC) cognitive radio platform. It

focuses on the baseband processing aspects of the Cognitive Radio. A Cognitive Radio needs

an adaptive physical layer that must be supported by a reconfigurable baseband processing

platform. As illustrated in Figure 9, the Annabelle architecture is an ARM core based

heterogeneous MPSoC. The baseband processing functions and reconfiguration are carried

out on an array of Montium reconfigurable DSP processors interconnected via a circuit-

switched Network-on-chip (NoC). A summary of the main characteristics of Annabelle

platform is given in Table 5.

21

Figure 9 Block diagram of Annabelle base band

Table 5 Annabelle baseband summary

Standard OFDM

Technology ATMEL 130nm process

IP Core Viterbi decoder (ASIC)

Processor ARM926-EJS, Montium DSP (sparse FFT,

filter bank, DCFD)

4. SDR LSI (Fujitsu 2006)

SDR LSI is a single-chip solution for SDR baseband. It is developed for programmable

wireless communications systems. As shown in Figure 10, SDR LSI features a hybrid

architecture consisting of reconfigurable signal processors and parametric accelerator circuits

for baseband processing. The reconfigurable signal processors (RSPs) are arranged in cluster

structure that improves the mapping efficiency and minimizes the processing time. The main

characteristics and supported standards of SDR LSI are summarized in Table 6.

22

Figure 10 SDR LSI architecture

Table 6 SDR LSI baseband summary

Standard 802.11a, b

IP Core FFT, Viterbi decoder, programmable flip-

flop array (Scrambler/descrambler, CRC,

Convolution encoder), FIR

Processor ARM946, RSP (reconfigurable signal

processor)

2.7 Academic CR major projects and achievements

Cognitive radio technologies have been proposed in order to identify and exploit unused

spectrum while controlling the interference caused to licensed users. Local regulatory

authority around the world license frequency bands to primary users (PU). However, primary

users typically leave parts of their allocated spectrum underutilized. According to extensive

measurement campaigns, radio resources are utilized from 15 percent to 85 percent depending

23

on location, frequency band and time of day [126]. This allows opportunistic communication

by exploiting unoccupied frequency bands.

Authors in [125] present an FPGA implementation of a feature detector for OFDM-based

primary user signals. The paper compares different spectrum sensing techniques that have

been proposed and chooses an autocorrelation based OFDM signal detection algorithm due to

its performance despite a relatively more complex implementation. Implementation is realized

on a Xilinx Virtex-5 FPGA. Simulations with Matlab and Modelsim indicate that the detector

works well in above SNR of -5dB.

The opportunistic radio (OR) is a narrower definition of Cognitive radio where the

environmental awareness is limited to the spectrum knowledge. The study in [127] proposes

an OR decision making framework including the flow of context information as an input

process to the decision making engine, the context filtering and the reasoning mechanisms in

which the decision optimization is achieved using a genetic algorithm (GA)-based approach.

The experimental study is performed on the Ettus USRP (Universal Software Radio

Peripheral) hardware and the GNU Radio open source software. The test results show the OR

ability to perform spectrum sensing in the 2.4GHz ISM band and provide evidence that the

proposed framework enables the OR terminal to detect spectrum opportunity and provide the

best solution for a suitable channel allocation.

Authors in [128] describes a hardware demonstrator of an OR system detecting and using

temporal opportunities. They present an exclusive implementation of a cyclostationarity

sensing algorithm, and propose a low complexity decision-making algorithm, which performs

real-time regulation of the OR communications. The demonstrator operates in the 2.4GHz

band and is validated by sharing the spectrum resource with a standard IEEE 802.11g primary

system (PS) running a video streaming application without perceptible impact of the OR

system.

2.8 Conclusion

24

This chapter introduces the notion of Software Defined Radio (SDR). The advantages

introduced the SDR and its implementation challenges are discussed. We are especially

interested in the group of SDR that conforms to the Software Communication Architecture

(SCA). SDRs that are compatible with the SCA open framework maximize the portability,

reusability and interoperability of its waveform applications that are desirable features under

current context of rapid advancement of communication standards and hardware platform.

The definition of Cognitive Radio (CR) extends the Software Defined Radio by the

integration of substantial computation intelligence - particularly machine learning, vision, and

natural language processing.

Then the academic and industrial efforts in the development of Software Defined Radio and

Cognitive Radio are summarized. In the case of Software Defined Radio, many platforms and

software tool kits have been developed for the fast prototyping, test and verification of a SDR

system, such as the SDR4000, and SCARI. Some focus on the architectural design of the

baseband processing part based on modern multiprocessor system on chip (MPSoC), such as

Annabelle and SDR LSI. Other platforms leverage the flexibility provided by modern FPGAs

to realize dynamic reconfiguration aspect of the SDR to conform to different communication

standards without perceptible performance degradation during protocol handoff, like

IDROMel. When it comes to the Cognitive Radio, researches focus more on a narrower

definition by confining the environmental awareness of a Cognitive Radio to the spectrum

knowledge. Algorithms for spectrum sensing and decision making are proposed and hardware

platforms are also developed as a proof-of-concept.

As mentioned in the introduction, we are more interested in the baseband processing aspects

of the Software Defined Radio system. In all the mentioned works, no one ever proposed a

SDR design flow for systematic and automatic system generation, and the programming

paradigm faced by the SDR community is also of its own specificities. In our work, we

propose a SDR design flow with systematic architecture exploration and optimization based

on a hybrid programming model (distributed client/server + parallel).

25

Chapter 3

Embedded System Implementation and

Optimization for SDR

This chapter first introduces the state of the art the MPSoC and FPGA design flows. Then an

automatic parallelizer based automatic MPSoC design flow is proposed. The automatic

parallelizer tool PLuTo is described. A NoC based multiprocessor architecture is designed and

implemented. Some performance analyses were carried out on this platform to evaluate the

design flow. The synchronization performance the OCP (Open Core Protocol) is also studied.

3.1 MPSoC and FPGA Design Flow

In [124], the authors propose a design methodology to generate and program MPSoC designs

in a systematic and automated way for multiple applications. The architecture is automatically

inferred from the application specifications, and customized for it. The flow is illustrated in

Figure 11. The applications are described in the form of Synchronous Data Flow (SDF)

graphs, which are used to generate the hardware topology. The software project for each core

is produced to model the applications behavior. The project files specific to the target

architecture are also produced to link the software and hardware topology. The final MPSoC

platform is then generated.

Article [96] leverages the performance and energy efficiency provided by the single-chip

heterogeneous multiprocessors, where different processors are customized for the tasks they

perform. However, a primary bottleneck is the development of programming paradigms and

tools to alleviate the design complexity. The authors proposed a multilevel custom

multiprocessor-synthesis methodology to perform the assignment and scheduling of the

26

applications tasks on the various processors together with the processor customization in an

integrated manner. The author makes use of the Application Specific Instruction set Processor

(ASIP) technology to customize instruction set depending on specific task characteristics. The

ASIP technology customizes the instruction set according to specific application

characteristics which can give a more energy efficient implementation for the same

performance level.

Figure 11 Multiprocessor Synthesis Design flow [124]

The heterogeneous multiprocessor-synthesis problem is abstracted by the author as: A task

graph is composed of n tasks and each task ti has mi custom-instruction versions. Cycleij

corresponds to the execution cycle of an instruction version of a task and Areaij corresponds

to the area consumed (1 ≤ i ≤ n, 1 ≤ j ≤ mi). Given p initially homogeneous processors in a

multiprocessor system, and a total area budget AB for all custom instructions, assign and

schedule the tasks on these processors with a set of custom instructions such that the total

27

execution time of the task graph is minimized while the total area of all the custom

instructions is within AB. Figure 12 illustrates the overall design flow. A task graph is

generated from the application. Each task is profiled and a performance-area tradeoff curve is

generated in for different levels of instruction set customization. More custom instructions are

added, more performance will be got in sacrifice of chip area. Then the task graphs are

scheduled. The tasks that appear on the critical path are candidates for more instruction set

customizations while others can be relaxed to save silicon resources. Then the tasks are re-

scheduled and eventually a new critical path appears. This operation is repeated until a

satisfying performance-area trade-off is achieved.

Figure 12 Synthesis methodology for heterogeneous multiprocessors [96]

The ever-increasing complexity of applications and platforms makes the tradition RTL level

approach of SoC design error-prone and time-consuming and thus impractical. Authors in

[98] argue the importance of high level of abstraction in the SoC design in order to tackle this

problem. Moving up to higher levels of abstraction opens a gap that the authors name the

Implementation Gap. Tools are needed to close this gap in a systematic and automated way.

[98] The paper proposes a methodology and techniques implemented in a tool called ESPAM

(Embedded System-level Platform Synthesis and Application Mapping) for automated

multiprocessor system design and implementation, as illustrated in Figure 13.

28

The flow is composed of three levels of specification: System Level, RTL level and Gate

Level. The System-level specification is given as input to ESPAM. First, ESPAM constructs a

platform instance following the platform specification. Second, ESPAM refines the abstract

platform model to an elaborate parameterized RTL model ready for implementation. Finally,

ESPAM generates the program code for each processor in the multiprocessor system in

accordance with the application and mapping specifications.

Figure 13 ESPAM system design flow

With the increasing design complexity, the gap between ESL (Electronic System Level)

design to RTL synthesis becomes more crucial for industrial projects. In [138], the authors

present a SystemC-based ESL tool, SystemCoDesigner, to carry out automatic multi-objective

optimization for a hardware/software SoC implementation. This tool combines the behavioral

synthesis with automatic software generation. The design flow using SystemCoDesigner is

illustrated in Figure 14. Starting from a SystemC behavioral model, SystemCoDesigner

automatically extracts the mathematical model, performs behavioral synthesis step, and

explores the multi-objective design space. During the design space exploration, a single point

29

is evaluated by simulating highly accurate performance models, which are automatically

generated from the SystemC behavioral model and the behavioral synthesis results.

SystemCoDesigner then automatically generates the bit stream for FPGA targets from any

previously optimized implementation.

Figure 14 ESL Design Flow using SystemCoDesigner

In [43], authors present the Daedalus system-level design flow for the design of MPSoC based

embedded multimedia systems. The design flow is shown in Figure 15. It offers a fully

integrated tool-flow in which design space exploration, system-level synthesis, application

mapping, and system prototyping of MPSoCs are highly automated. The Daedalus aims at

composable MPSoC design in which MPSoCs are strictly composed of IP library components

including a variety of programmable and dedicated processors, memories, and interconnects.

The input to the flow is a sequential multimedia application specification in C. The KPNgen

tool automatically converts the sequential application into a parallel Kahn Process Network

(KPN) specification which is subsequently used by the Sesame modeling and simulation

environment to perform the system-level architectural design space exploration. The resulting

system designs are then passed to the ESPAM tool to generate synthesizable VHDL that

implements the candidate MPSoC platform architecture. In addition, C codes are generated at

this step for the applications processes that are mapped onto programmable cores. Using

30

commercial synthesis tools and compilers, this implementation can be readily mapped onto an

FPGA for prototyping.

Figure 15 The Daedalus system-level design framework

In [134], the authors address the design space exploration (DSE) problem in order to find out

Multi-Processor System-on-Chip architectures for a given multi-task signal processing

application aiming to minimize the system cost while satisfying the real-time constraints.

They propose a two step design architecture exploration to solve the three sub-problems,

which are the processing elements selection, the application mapping and the synthesis of the

communication architecture. The design flow is illustrated in Figure 16.

The flow inputs are the behavioral specification, an architecture template and a block

performance database. The behavioral specification is represented in synchronous data flow

(SDF) graphs where each node represents a coarse grain function block whose body is

described in C code, an arc represents a FIFO channel that carries a stream of data from a

source node to a destination node. The block performance database recodes the information

on how long it takes for each PE to execute a functional block. The co-synthesis loop is

performed as the first loop of the proposed exploration framework. When the PE selection and

the mapping decision have been made, a HW/SW co-simulation is carried out to obtain the

memory traces of all PEs. The communication architecture exploration loop then follows. The

31

design flow has also a global loop that updates the communication costs used in the co-

synthesis loop with those obtained after the communication architecture is determined from

the communication DSE loop. The experimental results with various random graphs and the

4-channel DVR application validated the efficiency and the viability of the proposed

exploration method.

Figure 16 Two step design architecture exploration

3.2 Optimization Based Design Flows

Authors in [41] focus on the synthesis bus matrix based communication architecture for the

high bandwidth MPSoC design. They propose an automated approach, named bus matrix

synthesis (BMSYN), for synthesizing a bus matrix communication architecture, which

satisfies all performance constraints in the design and minimizes wire congestion in the

matrix.

32

Figure 17 BMSYN automated flow

Figure 17 shows the automated BMSYN flow. The flow inputs include a common through

graph (CTG) representing the performance constraints of the system, a library of IP models, a

target bus matrix template, and the communication parameter constraint set. First of all, a fast

transaction-level model (TLM) simulation of the system is carried out to determine the

application-specific data traffic statistics. The information is then passed to the global

optimization phase to reduce the full bus matrix architecture by removing unused busses and

local slave components from the matrix. The resulting matrix is called a maximally connected

reduced matrix. In the next step, an optimization engine based on a static branch and bound

algorithm is used to cluster slave components which further reduces the number of busses in

the matrix. The resulting architecture is then passed to a fast bus cycle accurate simulation

engine to validate and select the best solution that meets all the performance constraints,

determine slave arbitration schemes, optimize the design to minimize bus speeds and OO

buffer sizes and then finally output the optimal synthesized bus matrix architecture. The

results from the synthesis of an AMBA3, AXI-based bus matrix for four MPSoC applications

from the networking domain show a significant reduction in bus numbers in the synthesized

33

()T

niiix ⋅⋅⋅= ,, 21

r

{ }cxAxxD n rrrr
≥Ζ∈= ,

matrix when compared with a full bus matrix (up to 9 x) and a maximally connected reduced

matrix (up to 3.2x).

3.3 Automatic Parallelization State of the Art: The case of PluTo

For the purpose of this work we have selected an open source automatic parallelizer PLUTO.

PLUTO [58] is a polyhedral automatic source-to-source transformer that can optimize nested

loop sequences for coarse-grained parallelism and cache locality simultaneously. OpenMP

parallel code for multicores can be generated from very regular C program sections. The

effectiveness of the tool is based on the observation that a long running program often spends

most of its time in nested loops. This is particularly common in scientific applications.

Therefore a sub-optimized nested loop hinders the efficiency of a program in such aspects as

inefficiency of cache access, unnecessary data dependence, overhead of synchronization

point, etc. The polyhedral model is used in PLUTO for program representation and

transformation. The polyhedral model provides powerful abstractions to optimize loop nests

with regular accesses for parallel execution. Affine transformations in this model capture a

complex sequence of execution-reordering loop transformations that improve performance by

parallelization as well as better locality. The polyhedral model provides a powerful

abstraction to reason about transformations on such loop nests by viewing a dynamic instance

(iteration) of each statement as an integral point in a well defined space, which is the

statement’s polyhedral. Below we list some basic mathematic representations of the

polyhedral model:

Loops are represented using iteration vectors:

The iteration domain D defined as the set of values for which the statement is executed are

represented as:

where x
r

 is the iteration vector, A is a integer matrix and c
r

 is a constant vector (possibly

parametric).

With such a representation for each statement and a precise characterization of inter and intra-

statement dependence, it is possible to determine the correctness and goodness of a sequence

34

of complex loop transformations using the machinery from Linear Algebra and Integer Linear

Programming. The polyhedral model is applicable to loop nests in which the data access

functions and loop bounds are affine combinations of the enclosing loop variables and

parameters. The task of program optimizations in the polyhedral model involves mainly three

phases: (1) static dependence analysis of the input program, (2) transformations in the

polyhedral abstraction, (3) generation of efficient loop code. There have been significant

recent advances in dependence analysis and code generation that demonstrated the

applicability of the polyhedral model to real applications. However current state-of-the-art

polyhedral implementations still require manual efforts and expertise for determining the best

set of transformations. For example, an import issue is the choice of transformations from the

huge space of valid transforms. PLUTO addresses this problem by formulating a way to

obtain good transformations fully automatically.

One of the key transformations involved in the PLUTO automatic transformation framework

is tiling. It is studied in two perspectives: data locality and parallelization. Tiling for locality

requires grouping points in the iteration space into smaller blocks (tiles) which allows data

reuse in multiple directions when the block fits in a faster memory (register, L1 or L2 cache).

Tiling for parallelism involves partitioning the iteration space into tiles that may be

concurrently executed on multiple processors with minimum frequency and volume of inter-

processor communications. PLUTO develops a cost function for looking for good tiling

hyperplanes.

Figure 18 PLuTo workflow

Figure 18 shows the entire tool-chain of the PLUTO tool. The PLUTO tool utilizes LooPo

[81] infrastructure for program scanner/parser and dependence tester. LooPo is a project of

the University of Passau whose purpose is to develop a prototype implementation of loop

35

parallelization methods based on the polyhedral model. PLUTO uses PipLib [80] as ILP

solver and CLooG [79] for code generation. CLooG provides software and library generating

loops for scanning Z-polyhedra. It finds the code or pseudo-code with which each integral

point of one or more parameterized polyhedra, or union of parameterized polyhedra is

reached. CLooG is designed to avoid control overhead and produce very effective code.

Figure 19 presents an example of PLUTO transformed code.

Figure 19 PLUTO transformation: (a) sequential code, (b) parallel

The PLuTo parallelizer allows multiple options. The options are described in Table 7. In

particular, classical unrolling and unrolling factors are proposed to the user. Vectorization is

also proposed as part of the currency extraction potential.

Table 7 polycc command-line options

Pluto options Description
--tile Tile code
--l2tile Tile also the L2 Cache
--parallel Parallelize code using OpenMP
--multipipe Extraction of multiple degree of parallelism
--smartfuse Fuse between strongly-connected components
--unroll Unroll up to two loops
--ufactor=<f> Unrolling factor
--prevector Vectorization

36

Pluto has been applied in various studies [58][104]. In [104], hybrid iterative and model-

driven optimizations have been successfully proposed and applied.

3.4 Automatic parallelizer based MPSoC design flow

The PLUTO parallelized code depends on the OpenMP API, compiler and OS run time

support to realize task partition. However, such support is rarely available in an embedded

context where OS is not always present. We proposed an automatic accelerator generation

flow that integrates PLUTO and adapts an application targeting the general purpose processor

to an embedded environment. The flow is illustrated in Figure 20.

Figure 20 Automatic parallelizer based accelerator design flow

The input source file (prog.c) is marked with PLUTO directives indicating the loop nests to be

parallelized and the accompanying configuration file containing platform information, such as

memory hierarchy. PLUTO parallelizer then analyzes the code and generates the parallel

version in the form of OpenMP (prog.par.c). An automatic application adaptor (App_Adpt)

then replaces the OpenMP directives with platform specific identifiers so that workload can

37

be partitioned and identified by their corresponding processor. Necessary synchronization

functions are also inserted at this step based on the semantics of the specific OpenMP

directives. After preparing the application, the accelerator generator (Accelerator Gen)

generates the platform in the form of Xilinx Microprocessor Project file (.xmp) with the help

of a library of EDK project basic construction components. Then the platform is synthesized,

place and routed (ISE) to generate the final downloadable bit stream. Finally, the bit stream is

downloaded and executed on the target evaluation board.

Figure 21 Code example of the Design flow

This flow is readily adaptable to other platforms or CAD tools. Figure 21 is an example

showing the evolution of the form of source code. (a) is the original sequential code marked

with PLUTO directives which is passed to the PLUTO tool to generate (b), parallel code in

the form of OpenMP. Then the semantics of the OpenMP is analyzed and replaced with

processor identification functions and synchronization mechanisms to generate (c) and (d)

which are ready to be compiled and executed on the target platform. Wherein, code (c) is the

38

master code which initializes the DDR2 memory and takes charge of the global

synchronization, while code (d) does the actual calculation.

3.5 Case study: A NoC based MPSoC programming and

optimization

3.5.1 MPSOC platform

We designed and implemented a single FPGA chip 16PE shared memory MPSOC using a 2

stage NOC [46]. The multiprocessor platform is in general a shared memory architecture

which integrates 16 Processing Elements (PE) Tiles of type MicroBlaze v7.0, as illustrated in

Figure 22. Each tile is a powerful computing system with 64KB local memory that can

independently run its own program code. PE tiles are connected to four DDR2 controllers via

the Data-NoC which in turn control four off-chip DDR2 memory banks each having 256MB

of capacity. This is where data storage and communication take place. A piece of small (1KB)

on-chip block memory (BRAM) is implemented and connected to the 16 PEs via the

synchronization NoC providing different synchronization facilities with minimum latency.

One of the PEs is also connected to a PCI-Express controller that serves as console output

when the platform is in a standalone mode or as high bandwidth data transfer channel

configured in the host/coprocessor mode.

Figure 22 Architecture of NoC-based multi-core

39

(1) Data & Synchronization NoC

The communication infrastructure is built on the Network-on-Chip technology. ArterisTM

Danube NoC Intellectual Property Library [22] provides highly configurable IP blocks,

switch, network interface unit (NIU), routing table, etc., that manage on-chip communications

between IP cores in System-on-Chip (SOC) designs like processors, DSPs, memories, I/O

peripherals and so on. Data and control are transferred through different components of the

NoC in form of packet conforming to the Arteris proprietary NoC Transaction and Transport

Protocol (NTTP). IP integration is facilitated by the Network Interface Unit (NIU) of different

standardized bus protocols, for example, AHB, AXI, OCP, and so on. We utilized the OCP

protocol for the network work interface unit to which we will return in the next sub-section.

Figure 23 Architecture of Data NoC

Figure 23 shows the internal design of the Data NoC. It is a two-stage packet switched

network comprised of a request network and a response network. The first stage is composed

of 4 switches with 4-input-4-output each while the second one is composed of 4 switches with

4-input-1-output. Processors and memory controllers are integrated via the OCP-NTTP and

NTTP-OCP NIU respectively, which realizes protocol conversion between IP core native

transactions and NoC.

The architecture of the Synchronization NoC is shown in Figure 24. It differs from that of the

Data NoC in the second stage of switches that contains only one 4-input-1-output switch

directing traffic onto an on-chip RAM (BRAM). The Exclusive Access Manager inserted

between the last-stage switch and the output NIU is an optional unit that can be included to

realize the Load-Linked Store-Conditional (LL-SC) synchronization mechanism defined in

the OCP protocol.

40

Figure 24 Architecture of Synchronization NoC

(2) Processing elements

In our system we used the Xilinx Microblaze v7.00 soft-core microprocessor as the

processing element. Figure 25 shows the block diagram of the microblaze architecture. The

Microblaze processor is a 32bit Reduced Instruction Set Computer (RISC). It is implemented

with Harvard memory architecture. The Microblaze processor is highly configurable and is

optimized for FPGA implementation. A set of parameters and execution units can be

configured at design time to fit design requirement, such as the number of pipeline stages, the

cache sizes, a selectable Barrel Shifter (BS), a Floating Point Unit (FPU), a Hardware Divider

(HWD), a Hardware Multiplier (HWM) and a Memory Management Unit (MMU). The

performance and the maximum execution frequency varie depending on the processor

configuration. For communication purposes, Microblaze v7.00 offers a Processor Local Bus

(PLB) bus interface and up to 16 Fast Simplex Links (FSL) interfaces which is a point-to-

point FIFO-based communication channel. In our implementation, Microblaze processors are

used in its simple version, which contains a 5 stage pipelines, a 32 bit integer HWM, and the

Machine Status Register Instructions are enabled, as well as the pattern comparator. The

Microblaze based element contains an Instruction-side Local Memory Bus (ILMB), a Data-

side Local Memory Bus (DLMB), an ILMB BRAM interface controller, a DLMB BRAM

interface controller and a BRAM based 32KByte local on-chip memory. The local memory is

connected to the processor through the LMB interface controller and the LMB memory bus.

The FSL interface of the Microblaze is directly connected to the OCP Synchronization

41

Adapter and the OCP Data Adapter. The processors feed the OCP adapter with data and

commands through the FSL channel. Then the OCP adapter converts these data and

commands to OCP compatible signals, which are consumed by the Data-NoC and

Synchronization NoC.

Figure 25 Block diagram of the microblaze architecture

3.5.2 OCP-IP Specification

The Open Core Protocol (OCP) is an openly licensed, core-centric protocol defined by the

OCP International Partnership (OCP-IP) [66]. It provides a common standard for intellectual

property (IP) core integration in a “plug-and -lay” manner. The protocol is based on the

master-slave point-to-point model.

Today’s IP cores have custom, tight coupling interface logic that is difficult to design and

difficult to modify. Consider a scenario in which we need to connect M master cores to N

slave cores each having a custom interface. M x N bridges must be designed in order to

connect each master core to every slave core. (Figure 26 (a)) OCP uses a network socket

approach to separate communication from the design of the individual IP core interface design

42

which allows differing IP cores to effectively make use of the on-chip network. As a

consequence, the M-master-N-slave scenario requires only (M + N) bridges with every core

integrating the OCP interface. (Figure 26 (b))

Figure 26 System integration with a custom interface. (a) System integration with an OCP

protocol (b)

OCP provides a master/slave connection between two cores. One core, called the OCP

initiator core has an OCP master interface. A master interface enables a core to generate OCP

requests such as READ or WRITE and receive the READ responses. The other core, called

the OCP target core, has an OCP slave interface that allows it to receive and respond to

requests.

OCP interface signals are grouped into dataflow, sideband, and test signals. The dataflow

signals are divided into basic signals, simple extensions, burst extensions, and thread

extensions. [67] The OCP is a synchronous interface with a single clock signal. All OCP

signals are driven with respect to, and sampled by the rising edge of the OCP clock. Except

for clock, OCP signals are strictly point-to-point and unidirectional. The complete set of OCP

signals is shown in Figure 27. The encoding of different Master Commands (MCmd) is

summarized in

Table 8.

43

Figure 27 OCP signals

44

Table 8 OCP MCmd

MCmd [2:0] Command Type

0 0 0 Idle (none)

0 0 1 Write write

0 1 0 Read read

0 1 1 ReadEx read

1 0 0 ReadLinked read

1 0 1 WriteNonPost write

1 1 0 WriteConditional write

1 1 1 Broadcast write

3.5.3 Synchronization with OCP-IP

We are interested in the synchronization mechanisms defined in the OCP protocol. There are

3 major steps in a synchronization event: (1) acquire method, (2) waiting algorithm (3) release

method [14]. There are 2 main choices for the waiting algorithm: busy waiting and blocking.

Busy-waiting means that the process spins in a loop that repeatedly tests for a variable to

change its value. Blocking the process does not spin but simply blocks itself and releases the

processor if it finds that it needs to wait. Busy-waiting is likely to be better when the waiting

period is short whereas blocking is better if the waiting period is long. Synchronization

mechanisms should present: (1) low latency, (2) low traffic, (3) scalability (4) low storage

cost and (5) fairness. Two common ways of implementing synchronization are: read-modify-

write and LL-SC. The OCP protocol [21] supports these two ways of synchronization among

OCP masters by encoding of different Master Commands MCmd as listed in

Table 8.

The first one is Locked synchronization, which is a read-modify-write style atomic transfer.

OCP initiator uses the ReadExclusive (ReadEX) command and Write or WriteNonpost

command to perform a read-modify-write atomic transaction. In our system the NTTP

protocol translates such accesses by inserting control packets, Lock and Unlock, on the

45

request flow. The NIU sends a Lock request packet when it receives the ReadEX command.

The Lock request locks the whole path to the NTTP slave. Then a LOAD request packet read

the data of NTTP slave. The OCP master modifies the data and sends it to the slave by a

Write or a WritreNonPost command. When the NIU receives the Write command, it writes

the data to require the NTTP slave by a STORE request packet and then releases the NoC by

an Unlock request packet. The other competing OCP masters cannot access the locked

location, until the Unlock packet is sent. Such a mechanism is efficient for handling exclusive

accesses to a shared resource, but can result in a significant performance loss when used

extensively. The Load-Linked Store-Conditional (LLSC) synchronization is realized by first

issuing a ReadLinked (RDL) and then a normal Write or WriteNonpost command. If in

between the two operations, another write operation occurred at the same position, or put it

another way, the linked resource is modified, the write operation fails, thus realizing the

atomic semantic. The Arteris NoC library embeds the Locked Synchronization

implementation in the switch component, while it requires a specialized component called

Exclusive Access Manager for the LLSC mechanism. Parallel software implementation

involves complex tradeoffs including partitioning and load balancing, the granularity of

communication, working set and the overhead of synchronization [15-16]. Poor

synchronization primitives and hardware may greatly impact the parallel program

performance. In this paper, we will present the performance analysis on hardware support for

synchronization.

The ADPe-XRC-4 evaluation board of Alpha Data was chosen for the implementation of the

system. It is designed with a Xilinx Virtex4 FX140 FPGA which features 63, 168 slices and

1.2 MB BRAM. The board has 4 independent banks of DDR2 SDRAM with a total capacity

of 1GB memory. The block diagram and an actual illustration of the board are presented in

Figure 28 and Figure 29 respectively.

46

Figure 28 Block diagram of Alpha-Data FPGA

Figure 29 Alpha-data ADPe-XRC-4 FPGA board

3.5.4 Synchronization results and analysis

We have conducted synchronization performance evaluation experiments on the system.

Although some efforts have been made for the benchmarking of NOC based multicore

systems, NOC benchmarking for synchronization remains an open issue. We use the same

approach as [68] through synchronization micro-benchmarks. The processors are divided into

1 master PE and 15 slave PEs. As illustrated in Figure 30, when entering the program, the

master processor set the “Start” flag that triggers the execution of the other slave processors.

It then turns to test the “Finish” flag which is updated by each slave processor upon task

completion. There is zero workload for the slave processor between the “Start” flag test and

the “Finish” flag updating to measure the number of clock cycles introduced by the

synchronization.

47

Figure 30 Synchronization micro benchmarks

Because of the concurrent write nature of the “Finish” flag, a synchronization mechanism is

needed to assure the atomic read-modify-write operation. We implemented different

synchronization mechanisms and compared their impact on the performance. The first

mechanism is called the “block synchronization”, which means that when one processor gets

access to a protected memory area, the others cannot access the same memory area until the

first one releases the memory by a write operation. The access is controlled by the NoC

interface. The second mechanism is called LL-SC (Load linked Store conditional) as it uses

the Load Linked and Store Conditional instructions that allows to implement an atomic

operation without forbidding memory accesses between the two instructions. It means that the

protected memory area is not exclusively owned by any processor at any time. If a processor

wants to perform an atomic update, it should first read the contents of memory, updates the

contents, and before writing back it should make sure that no other processor has modified the

contents between the read and write operation. In a first step we evaluate the performance of

blocked synchronization versus LL-SC by varying synchronization agents with the

synchronization lock placed in the BRAM.

From the results shown in Figure 31, it should be noticed that the Locked Synchronization

outperforms that of the LLSC by 50%. It can be explained by the overhead introduced in the

LLSC when a conditional write is judged to either pass or fail depending on whether the

tested variable is modified. More over, upon failure, the ocp packet containing the

48

WriteConditional command has to be reissued by the processor and routed through the NoC

which introduces extra processor and packet routing (NIU to Exclusive Access Manager)

cycles compared to the Locked mechanism for which the write packet blocks at some

conflicting point on the NoC and passes once the lock is cleared. As a result, we conclude that

the LLSC synchronization mechanism is not preferable in an environment where the shared

memory is protected by an access-exclusive NoC. In a second step, the synchronization

performance is compared between a dedicated NOC (Synchronization NoC) with access to a

lock variable placed in an on-chip memory (BRAM) and a shared NoC (Data NoC) with the

lock variable placed in the DDR2 memory. The results are shown in Figure 32.

Figure 31 Synchronization performance: Locked vs. LLSC

49

0

5000

10000

15000

20000

Iteration number

C
y

cl
e

co
u

n
t

DDR2 BRAM

DDR2 2843 5923 11240 15760

BRAM 1964 4070 6683 9331

1 5 10 15

Figure 32 Synchronization performance: BRAM vs. DDR2

Clearly, blocking on BRAM with dedicated NOC reduces by 40% the synchronization time

for 15 processors. It indicates the advantage of using the blocked synchronization mechanism

for centralized synchronization architectures.

The overall results show the superiority of the blocked mechanism in the dedicated

synchronization NOC with BRAM over LL-SC with BRAM or blocked with DDR in a

single-lock case. The synchronization only requires a small number of synchronization

variables even for a great number of processors. So it is a good choice to sacrifice some on-

chip resources as a dedicated synchronization memory.

3.5.5 Experiments of automatic parallelization

In examining the execution results of the PLUTO parallelized codes on our platform, we

noted several key elements that influence the effectiveness of parallelization. Some of these

elements are intrinsic in the application, while others are architecturally dependant. A

comprehensive understanding of the characteristics of both the application and the

architecture accompanied by an optimum combination of the two is necessary for a satisfying

performance. We parallelized and tested several micro benchmarks from linear algebra and

multimedia algorithms with each one of them highlighting one or a couple of the performance

limiting aspects for parallel computation.

50

(1) Matrix multiplication 128 * 128

Figure 33 Execution results of Matrix Multiplications (128 * 128)

The timing results are obtained using low level timer register read/write instruction thus

introducing only trivial overheads, in the order of several tens of cycles.

Matrix multiplication is among others the most parallelizable application because of its high

data independency. The parallelized code generated by PLUTO is actually a block based

matrix multiplication. The resulting matrix is divided into blocks. Each processor can simply

take charge of one unfinished block to work on independently without having to stall waiting

for data produced by other blocks. However the memory access efficiency becomes an

important issue. For all hierarchical memory architectures, memory access efficiency is a key

element for the overall performance. The better the local cached data is exploited, the better

the performance will be. In our case, we defined two block sizes for the blocked based matrix

multiplication algorithm, 4 * 4 and 8 * 8, respectively. From Figure 33 we can see that the

cycle reduction in increasing the block size from 4 * 4 to 8 * 8 is 41% (as the triangle marked

line illustrates). This is because with larger block sizes, there is a larger data reuse ratio. (This

ratio differs from application to application and is approximately in the order of magnitude of

O(n) for matrix multiplication, where n indicates block size.) However there are two

exceptions on the curve where the processor number equals 12 and 15 respectively. This

comes from an under-utilization of processor resources when the workloads are not divisible

by the number of processors. We can deduce that using 16*16 block size will saturate even

earlier the performance gain. The figure also shows that that the cycle counts don’t scale from

51

8 processors to 12 or 15 processors. We will return to this issue in the other applications.

Figure 33 shows a perfect performance scalability of the system as, when we double the

number of processors the performance also doubles. The synchronization and communication

overheads can be ignored with the block size we chose due to relatively high level of

parallelization. The result shows, on one hand, that the NoC is far from saturation as proved

by the nearly perfect scalability and still have space for even heavier traffic loads, and on the

other hand, the possibility to hide the communication latency with computation is a promising

technique for better performance.

(2) Seidel 128 * 128

There are two important aspects in a PLUTO generated code: data dependence analysis and

data locality improvement. The data dependence analysis results can be readily exploited by

dispatching independent parts of codes to different processors, and the correction of the

operation is guaranteed by the PLUTO tool. The cycle counts for different numbers of

processors show a relatively low but still satisfying parallelizability of the Seidel Algorithm

compared to that of the Matrix Multiplication. The performance scaling keeps track of

resource scaling until 8 nodes. The core of Seidel algorithm is the calculation of the average

of each 3 x 3 window of 9 elements in a two dimensional array. If we partition the job on a

line-by-line basis, the second processor can only start after the first one has finished

calculating the first two pixels, the third waits similarly for the second processor. That's why

when the number of processors increases beyond a certain level, the new coming should wait

the total calculation of the first processor before being able to start execution.

52

Figure 34 Execution results of Seidel 128 * 128

When passing from 8 nodes to 16, we only get 27% cycle reduction. Because of the lack of

hardware support for cache control, we manually managed some software cache

functionalities to improve data reuse. The data are should be first fetched from the DDR

memory to the local Bram before the processor can proceed the calculation. We consider the

local Bram as the equivalent of a software cache. Cache functionality is the reuse of partial

fetched data instead of refetching the whole block in a later block calculation. This is done by

software. However the data locality implemented by the compiling tool by tiling is not

readily usable due to different architectural constraints. In our case, the lack of hardware

support for cache (local memory) control makes it necessary to manage the cache protocol in

software. PLUTO implements tiling in transforming long “for” loops into nests of small “for”

loops so that the inner most loops can totally fit into the local memory, and cache miss

happens only when the outer loops change. We manually coded some cache control protocols

and compared their performance with a protocol without cache data management. We

restricted manual coding in the innermost loop because of the code complexity and memory

limits. The blue curve shows the cycle reduction of an intelligently cache data managed code

compared with the original one and there’s a steady 33% cycle reduction for all

configurations with different number of processors.

(3) DCT (Block size: 4 * 4)

53

Figure 35 Execution results of DCT (32 * 32)

Figure 36 Execution results of DCT (64 * 64)

In this application, we fixed the size of data block to 4 * 4. From Figure 35 we note that

beyond 8 nodes, additional processor doesn’t introduce any performance improvement. This

phenomenon results from the fact that we use a relatively large parallelization granularity (4 *

4) for a small workloads (32 * 32) in which case extra processor resources are in idle mode

lack of available workload. When we increase the workload from 32 * 32 to 64 * 64, this

phenomenon exists no longer and we get a perfect performance scaling until 16 nodes, as

illustrated in Figure 36. We also compared the performance differences between burst and

54

non burst mode of ddr access. The resulting performance improvement is trivial and is hardly

visible from the figures.

(4) Jacobi_1d (Vector size: 1000 Iteration: 2)

In this application, we noted a limitation of the PLUTO parallelizer. For this particular

application and some other ones (LU decomposition), it can provide an efficient

parallelization only when the number of iterations is great or when the workload is large. For

jacobi_1d with 2 iterations, the parallelization efforts only introduce synchronization

overheads and no performance improvement.

Figure 37 Execution results of Jacobi 1D

Instead of parallel execution, the processors take turns to execute different parts of the work

bringing out the same performance as one processor taking charge of all the work. However,

Figure 37 does show us another interesting point regarding the synchronization overhead.

Even though this synchronization shouldn’t exist at the first place if only one processor is

activated, the fact that choosing the optimum tiling size, (512, 128), can greatly reduce

synchronization calls and thus improve the performance, a factor of two compared to others in

this case.

55

3.5.6 Multi-programming Experiments and Analysis

As it can be noticed from the above single-application parallelization performance results, the

power of the parallel architecture is not always fully exploited due the application's intrinsic

limitation in terms of parallelizability or the limitation of parallel compiler to fully exploit the

application parallelism. Therefore we are naturally led to such a situation that the resources of

the parallel architecture should be shared by multiple applications.

We did some experiments of the multi-programmed platform with different combinations of

the above mentioned applications. We noticed that the number of 8 processors is usually a

critical point beyond which performance stops improving linearly. So in our experiments, we

divided the processors in two groups with each application being allocated 8 processors.

Table 9 Matrix Multiplication (128 * 128 Block size 8 * 8) / DCT (32 * 32 Block size 4 * 4)

Number of processors Matrix DCT Total

16 (single application) 19,707,161 10,246,616 29,953,777

8 (single application) 39,339,984 10,250,044 49,590,028

8 each (multi-program) N/A N/A 40,278,067

Table 10 DCT (32*32 Block Size 4*4) / Seidel 128*128 Level1_Data_Reuse and intelligent

management of cached data

Number of
processors DCT Seidel Total
16 (single
application) 10,246,616 3,545,928 13,792,544
8 (single
application) 10,250,044 4,837,995 15,088,039
8 each (multi-
program) N/A N/A 10,408,323
8 DCT / 4 Seidel
/ 4 open N/A N/A 10,408,249
8 DCT / 2 Seidel
/ 6 open N/A N/A 13,609,924

56

From the result we notice that for the combination of matrix multiplication and DCT, the

cycle count of the multi-programmed platform (40,278,067) is 34% greater than the

accumulated (29,953,777) value of separated execution. The reason is that the matrix

multiplication is the most parallelizable application and the performance improves linearly

until 16 processors. So there's no need to optimize the resources utilization by sharing the

computing resources with another application. And the inclusion of another parallel executed

application add additional burden on the interconnection infrastructure and memory access

conflicts.

As the figures in the previous section show, the performance scaling stops for DCT when the

processor number reaches 8. The 16 processor to 8 processor improvement for Seidel is only

27%. So it makes sense to share processors between these two applications and the measured

results justify this reasoning. The cycle count of the multi-programmed platform (10408323)

is 25% less important than the accumulated (13792544) value of the separated executions. We

should also notice that because of the data size chosen, there is a performance difference

between the two applications in the order of ten. If the data size of Seidel increases, the

performance improvement of the multi-programmed platform should become more important.

So we kept reducing the processor allocation to the Seidel application. When the processor

allocation is 8 (DCT), 4 (Seidel), 4 (open), the cycle count remains unchanged as the case

where each application is allocated 8 processor. If we remove 2 more processors from Seidel

application, which gives the configuration 8 (DCT), 2 (Seidel), 6 (open), the performance

starts to deteriorate to the best achieved performance in a single programmed platform. So the

most performance/resources optimized configuration for DCT/Seidel combination is 8 (DCT),

4 (Seidel), 4 (open). The remaining four idle processors are good candidates for compute

bound applications.

The platform also provides means to realize design space exploration. The microblaze soft

core is highly reconfigurable. It can be reconfigured to include different number of pipeline

stages and a hardware multiplier and a barrel shifter. The architecture can also be extended by

hardware accelerator via the FSL link. Brams are limited resources that should be used in an

57

efficient way. In a multiprogrammed environment, Bram resources should be customized for

each processor according to application needs.

3.6 Conclusion

The design of multiprocessors on chip is strongly emerging in high performance embedded

systems. The specific features of embedded multiprocessor on chip present new challenges for

parallel applications mainly due to the limited on-chip memory available per processor and

the rudimentary memory hierarchies. Time to market and development costs constraints in

embedded systems do not always allow for carefully hand tuned parallel applications and the

potential of automatic parallelization in this framework needs to be evaluated.

This paper addresses several issues in regard to this goal. First, we have analyzed and

implemented various hardware supports for synchronization mechanisms each presenting

different area-performance tradeoffs in order to select the most suitable synchronization

which would best support parallelization.

It clearly appears that a dedicated synchronization NOC with dedicated on-chip memory for

synchronization lock variables have shown the best performance. To the best of our

knowledge this paper is the first paper to evaluate various synchronization mechanisms on an

actually implemented 16PE multi-core with a network on chip.

Second, we have conducted several automatic parallelization experiments on a single chip

embedded multi-core system. Our platform is composed of 16 PE with 4 external DDR.

Experiments on the selected applications show that the automatic parallelization can hardly

efficiently exploit more than 8 processors. The number of external DDR resulting from the

single chip package pins constraints reduces memory access concurrency and cannot match

the communication concurrency potential allowed by the NOC.

Third, consequently to the findings of point 2 we evaluated the potential of multiprogramming

performance. Multiprogramming for the considered applications exhibits memory accesses,

synchronization and communication patterns which allows a better use of the platform.

58

In our future work, the platform generation flow will be enriched by introducing a multi-

objective optimization engine that takes into full consideration the performance/cost

influential parameters, algorithmic or architectural, and works in an iterative manner for the

generation of a cost-effective, application oriented high performance multi-core

implementation.

59

Chapter 4

Mapping middleware on Distributed Networked

Embedded Systems

An increasing number of systems are composed of a collection of various devices

interconnected by a network, where each individual device performs functions that involve

both local interaction and remote interaction with other devices of the system. On the other

hand, the users interact with internet applications through a variety of devices, whose

characteristics and performance figures span and increasingly wide range.

Stimulated by the growth of network-based applications, the middleware technologies are

more and more important. In a distributed computing system, the middleware is defined as the

software layer that lies between the operating system and the applications on each site of the

system. By hiding the heterogeneity of the underlying architecture, the operating system, the

programming language, the middleware facilitates software integration, enhances portability

of software components and interoperability between applications developed by different

enterprises.

4.1 CORBA, e/CORBA and OmniORB

CORBA is the acronym for Common Object Request Broker Architecture. It is a potential and

wide-accepted middleware standard developed by the Object Management Group (OMG) [6].

It is OMG's showcase specification for application interoperability independent of platforms,

operating systems, and programming languages - even of networks and protocols.

60

From the first publication of CORBA 1.0 in October 1991, the CORBA specification has

evolved through various completion and modifications and arrived at version 3.0 in July 2002.

The CORBA versions are usually referred to as CORBA 2 or CORBA3, which in fact are

complete releases of the entire CORBA specification. Because OMG increments the major

release number only when they make a significant addition to the architecture, these terms

become shorthand for just the significant addition. So, “CORBA 2” sometimes refers to

CORBA interoperability and IIOP protocol, and “CORBA 3” sometimes refers to the

CORBA Component Model. For the CORBA transport mechanism discussion, the

CORBA/IIOP Specification is the right place to go.

Figure 38 A client sending a request to an object implementation[6]

The CORBA architecture is built upon a collection of objects that provides services to clients.

An object is an identifiable, encapsulated entity that provides one or more services, while a

client of service is any entity capable of requesting the service. The requestors of services

(clients) are isolated from the providers of services by a well defined encapsulation interface

as shown in Figure 38. In this figure, the Client wants to perform an operation (request) on the

object, whose code and data are implemented in the Object Implementation. The ORB is

responsible for all of the mechanisms required to find the object implementation for the

request, to prepare the object implementation to receive the request and communicate the data

corresponding to the request.

The interface the client sees is completely independent of where the object is located, what

programming language is implemented, or any other aspect that is not reflected in the object’s

interface. The interfaces the client calls and the object implementation provide are defined in

the OMB Interface Definition Language (IDL). In particular, the clients are isolated from the

61

implementation of services as data representations and executable code provide for the

location, language and architecture transparency.

Figure 39 The structure of Object Request Interfaces

Figure 39 shows the structure of an individual Object Request Broker (ORB). The interfaces

to the ORB are shown by striped boxes, and the arrows indicate whether the ORB is called or

performs an up-call across the interface.

To make a request, the Client can use the Dynamic Invocation interface or an OMG IDL stub.

The Client can also directly interact with the ORB for some functions. The Object

Implementation receives a request as an up-call either through the OMG IDL generated

skeleton or through a dynamic skeleton. The Object Implementation may call the Object

Adapter and the ORB while processing a request or at other times.

The definitions of the interfaces to objects can be defined in two ways. The interfaces can be

defined statically in an interface definition language, called the OMG Interface Definition

Language (OMG IDL), which defines the types of objects according to the operations that

may be performed on them and the parameters for those operations. Alternatively the

interfaces can be added to an Interface Repository service; this service represents the

components of an interface as objects, permitting run-time access to these components.

62

The client performs a request by having access to an Object Reference for an object. The

client initiates the request by calling the stub routines or by constructing the request

dynamically, as illustrated in Figure 40.

Figure 40 A client using the stub or dynamic invocation interface

The ORB locates the appropriate implementation code, transmits parameters, and transfers

control to the Object Implementation through an IDL skeleton or a dynamic skeleton, as

shown in Figure 41. When the request is complete, the control and output values are returned

to the client.

Figure 41 An Object Implementation receiving a request

Interoperability is another important specification of CORBA that offers support for networks

of objects managed by multiple, heterogeneous CORBA-compliant ORBs.

4.1.1 CORBA interoperability and GIOP/IIOP

The ORB interoperability [7] specifies a comprehensive, flexible approach for supporting

networks of objects that are distributed across and managed by multiple, heterogeneous

63

CORBA-compliant ORBs -- “interORBability”. The elements of interoperability are as

follows:

• An ORB interoperability architecture

• An Inter-ORB bridge support

• General and Internet Inter-ORB Protocols (GIOPs and IIOPs)

The ORB Interoperability architecture provides a conceptual framework for defining the

elements of interoperability and for identifying its compliance points. It also characterizes

new mechanisms and specifies conventions necessary to achieve interoperability between

independently produced ORBs.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable the

easy construction of interoperability bridges between ORB domains.

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax (low-

level data representation) and a set of message formats for communications between ORBs.

The GIOP is specifically built for ORB to ORB interactions and is designed to work directly

over any connection-oriented transport protocol that meets a minimum set of assumptions.

While versions of GIOP running on different transports would not be directly interoperable,

their commonality would allow easy and efficient bridging between such networking

domains.

The Internet Inter-ORB Protocol (IIOP)® element specifies how GIOP messages are

exchanged using TCP/IP connections. The IIOP specifies a standardized interoperability

protocol for Internet, providing “out of box” interoperation with other compatible ORBs

based on the most popular product- and vendor-neutral transport layer.

The GIOP is designed to be implementable on a wide range of transport protocols. The

objective is to draw analogy between the TCP/IP mapped GIOP transportation and a

proprietary on-chip communication protocol used in the embedded context that will be

64

discussed later, and discuss the feasibility of mapping GIOP message transportation on this

protocol.

4.1.2 CORBA/e

In today’s world, the stand-alone systems are becoming a thing of the past. The embedded

processor environments are networked and highly interconnected. The software must cope

with the communications and interoperability issues, while delivering the same reliability and

performance as the isolated embedded system of the past. Embedded system software

development becomes a more and more expensive and time-consuming task. But with a solid

middleware architecture, this investment can pay dividends across many generations of

technology. For the developers of real-time and embedded systems, CORBA/e is ideally

suited to the challenges of today’s mission-critical environment.

CORAB/e is a specification targeted to applications that will be executing on an embedded

processor with constrained resources and/or that require predictable real-time behavior. [8]

The architecture and specifications described in the manual are aimed at software designers

and developers of Distributed Real-Time Embedded (DRE) Systems who want to produce

embedded applications that comply with OMG standards for the Object Request Broker

(ORB). CORBA/e has been designed to have the best of both worlds: dramatically

minimizing the footprint and overhead of typical middleware, while retaining the core

elements of interoperability and real-time computing that support optimized distributed

systems. There are two CORBA/e profiles, the CORBA/e Compact and the CORBA/e Micro

Profile, separately tailored for minimal and single-chip environments.

The CORBA/e Compact Profile merges key features of standard CORBA suitable for

resource-constrained static systems (no DII, DSI, Interface Repository, or Component

support) and Real-time CORBA into a powerful yet compact middleware package that

interoperates with other CORBA clients and servers of every size, executes with the

deterministic characteristics required by a true real-time platform.

65

The CORBA/e Micro profile shrinks the footprint even more, small enough to fit low-

powered microprocessors or digital signal processors. This profile further eliminates the

Valuetype, the Any type, most of the POA options preserved in the Compact Profile, and all

of the Real-time functions excepting only the Mutex interface. In exchange for these

limitations, the profile defines a CORBA executable that vendors have fit into only tens of

kilobytes - small enough to fit onto a high-end DSP or microprocessor of a hand-held device.

The developers of real-time embedded distributed system must pay special attention to

resources utilization and to the predictability of system execution. In order to provide support

for the development of real-time systems, CORBA/e provides handles for managing resources

and end-to-end predictability.

To decide a priori if a real-time requirement is met, the system must behave predictably. This

can only happen if all the parts of the system behave deterministically and if they “combine”

in a predictable way. The real-time interfaces and mechanisms provided by CORBA/e

facilitate a predictable combination of the ORB and the application. The application manages

the resources by using real-time CORBA/e interfaces and the ORB’s mechanisms coordinate

the activities of the application. The real-time ORB relies upon the RTOS to schedule threads

that represent activities being processed and to provide mutexes to handle any resource

contention.

4.2 omniORB

There have been commercial as well as academic efforts for implementing ORB. Commercial

ORBs include Orbix and Orbacus from Iona, Visibroker from Borland, and the ORBexpress

series from OIS. On the academic side, there are TAO from Washington University [9],

omniORB [10] from the former AT&T Laboratory in Cambridge, and the GOPI [11] from

Lancaster University.

We chose the omniORB-4.1.3 [12] as the middleware implementation for the distributed

application development. omniORB is an Object Request Broker (ORB) that implements the

2.6 specification of the OMG CORBA. Its various characteristics like light-weight, high

66

performance and the GPL license policy make it a potential candidate for the development of

an embedded distributed system based on the proprietary transportation layer. We list below

some features of the omniORB:

(1) Multithreading

OmniORB is fully multithreaded. With default policies, there is at most one call in flight in

each communication channel between two address spaces at any one time. To maximize the

level of concurrency, new channels connecting the two address spaces are created on demand

and cached when there are concurrent calls in progress, while each channel is served by a

dedicated thread. More over, the throughput is maximized in processing large call arguments

by sending large data elements as soon as they are processed while the other arguments are

being marshaled. From version 4.0 onwards, omniORB allows a flexible thread pooling

policy and supports sending multiple interleaved calls on a single connection which allows

omniORB to scale to large numbers of concurrent clients.

(2) Portability

OmniORB is designed to be portable. It runs on many flavors of Unix, Windows, several

embedded operating systems, and less known systems such as OpenVMS and Fujitsu-

Siemens BS2000. It is designed to be easy to port to new platforms. The IDL to C++ mapping

for all target platforms is the same.

OmniORB uses true C++ exceptions and nested classes. It keeps to the CORBA

specification’s standard mapping as much as possible and does not use the alternative

mappings for C++ dialects. The only exception is the mapping of IDL modules, which can

use either namespaces or nested classes.

OmniORB relies on native thread libraries to provide multithreading capability and uses a

small class library, namely omnithread, to encapsulate the APIs of the native thread libraries.

It is easy to port omnithread to any platform that either supports the POSIX thread standard or

has a thread package that supports similar capabilities. [12]

67

4.3 Analysis Case studies : Performance and Scalability

From now, we will present a case study in which a CORBA based distributed embedded

systems developed. Four ML403 evaluation cards of Xilinx are deployed in the system. The

omniORB-4.1.3 is used for the development of the distributed applications. The Client/Server

communication is based on the IIOP protocol via the Ethernet. Several benchmarking tests are

carried out to evaluate the performance of the system in terms of latency and throughput.

4.3.1 Distributed Embedded System Hardware Architecture

4.3.1.1 ML403 board

Figure 42 ML403 board from Xilinx

The embedded distributed system is based on four ML403 board from Xilinx as illustrated in

Figure 42. The ML403 board features a Virtex-4FX12 FPGA chip on which one ppc405

processor is integrated. The FPGA contains 648 Kb on-chip two-port ram blocks (BRAM).

The PPC405 processor is a 32-bit implementation of the PowerPC architecture targeting the

embedded application. It is equipped of a 5-stage pipeline and 16KB instruction cache and

16KB data cache. It can work at a frequency as high as 450MHz. For the inter-card

communication, we used the Ethernet switch from Netgear which supports 10/100Mbs

connections. Figure 43 is a block diagram of the architecture of the ML403 board while Table

11 summarizes the features of the principal peripherals and ports.

68

Table 11 Principal components of the ML403 board

Class Components Description

Vitex-4 FPGA

 XC4FX12 1

 Processor PPC405 1

 Slices 5,472

 Block RAM 648Kb

 Ethernet MACs 2

Memory

 DDR SDRAM 64MB

 ZBT SRAM 1MB

 Compact Flash 512MB

 Linear Flash 8MB

 IIC EEPROM 4kb

Connectors and

Interfaces

 SMA connector (Differential Clocks) 4

 PS/2 Connectors (Keyboard/Mouse) 2

 Audio (In/Out, Microphone, Head Phone) 2

 RS-232 Serial Ports 1

 USB Ports (2 Peripherals/1 Host) 3

 PC4 JTAG 1

 DB15 VGA Display 1

 RJ-45 Ethernet Ports 1

 General-Purpose I/O (Buttons/LEDs) Several

69

Figure 43 Block diagram of the ML403 board

4.3.1.2 Architecture of the distributed processing node based on a

virtex4fx12 FPGA

Figure 44 Block diagram of the architecture of the distributed node based on the virtex4fx12

FPGA

The FPGA sub-system is composed of the elements shown in Figure 44: one PPC405

processor that implements the Operating system, the stack TCP/IP; one SysACE

CompactFlash controller that connects the processor to the CompactFlash card on which the

operating system, communications and computation applications will be supported; one

interruption controller; one Ethernet MAC and one RS232_uart. The processor Local Bus

70

(PLB) from IBM Coreconnect family is used as on chip high performance bus. The resource

utilization of the design is summarized in Table 12.

Table 12 Resource utilization

Resource Utilization

Number of RAMB16s 23 out of 36 63%

Number of Slices 3641 out of 5472 66%

 Number of SLICEMs 126 out of 2736 4%

Figure 45 Embedded distributed system based on four FPGA node connected by an Ethernet

switch

Figure 45 is a block diagram of the complete distributed platform consisting of four ML403

boards. The cards are connected with each other via an Ethernet switch. There is a great

flexibility for the configuration of the cards. They can serve as a Client, Server or as a

Common Object Server (COS). In our experiment, we will configure one card as the Naming

service server, another as a server, the third and forth as clients for testing the case where

there exist concurrent invocations.

4.3.2 Software architecture

As stated before, omniORB-4.1.3 was chosen [12] as the middleware implementation for the

distributed application development. The default mechanism for GIOP transportation, IIOP, is

used for the Client/Server message transfer. OmniORB is compiled and installed on the Linux

2.6.28 kernel. The Xilinx patched Linux Kernel source from [13] is utilized. It is one Linux

kernel distribution equipped with the supplementary supports for Xilinx platforms. The Linux

71

kernel and the network applications are compiled in a cross environment. The host machine is

an Intel CoreTM 2. The tool kit Buildroot is used for the creation of the cross-compilation

(i386 – ppc) tool chain and the Linux file system. The file system is written on the ext2

partition of the SysACE CompactFlash of the ML403 platform. The Linux kernel is compiled

with the help of Device Tree Generator [14] from Xilinx which is an integrated tool of the

Xilinx EDK [15] kit for the automatic generation of the Board Support Package (BSP). It

generates the device tree file containing information of the component of the system

(memory-mapped address, interruption, driver compatibility, etc.) for the compilation of the

Linux kernel. Figure 46 shows the software architecture of the system.

Figure 46 Software architecture of the embedded distributed system

Figure 47 illustrates the complete testing platform:

Figure 47 : Platform with four ML403 and a Switch

72

4.3.3 Performance Evaluation

4.3.3.1 Middleware benchmarking

Because of the diversity of ORB implementations, it is essential to have an open CORBA

benchmark well understood and easy to measure. The Open Benchmarking Suite developed

by Chares University represents an excellent effort towards the establishment of such a

benchmark. [16][17][18]

Latency and throughput are two major factors for the performance evaluation of a

communication system. The latency shows the added overhead of message

marshalling/unmarshalling, the TCP/IP stack, the time spent on the network, etc, while the

throughput presents the capacity of the system to process large quantities of data. The results

of these two factors affect how the execution time of a transaction is felt by the user. The

Open Benchmarking Suite developed by Charles University also proposes some precious

remarks concerning the precision issues when benchmarking CORBA [19].

The experiments are carried out on the 4-FPGA-based platform with the PPC405 processors

configured to 100MHz frequency, and equipped with 64MB main memory each. The platform

configuration is: a Client/Server pair in which the client makes round trip calls to the server in

sending n bytes of data. The C++ application, as well as the omniORB4.1.3, is compiled with

the GNU g++ version 4.2.4 with the optimization flat –O2 activated. The execution time per

call is measured on the client side by averaging 5, 000 consecutive calls. The IDL file is

showed below:

interface Echo {

 string echoString(in string mesg);

};

The throughput is measured by sending various sized sequence of bytes in a single direction.

The IDL source file in defined below:

interface BulkTransfer {

 oneway void transfer(in string data);

};

73

The throughput under the concurrent invocation condition is also tested by executing two

clients sending requests to the same server at the same time.

4.3.2.2 Performance results

The measured results for the intra-machine communications as well as for the inter-machine

communications are presented in Table 13.

Table 13 Time of round-trip Echo function without any message

Platform Transport Time per call (µs)

Linux

PPC405 100MHz

(Gcc-4.2.4-O2)

TCP/IP intra-machine loopback

TCP/IP inter-machine

2121

2154

OmniORB4 takes 2121 µs for the intra-machine communication and 2154 µs for the inter-

machine communication. For comparison, we cite the results from the work of [10] to show

the round-trip echo call performance measured on other platforms. The results are showed in

Table 14.

When comparing the two tables, we notice that the latency of the PPC405 platform is 112%

(Pentium Pro 200 Mhz) ~ 69% (Pentium 166 Mhz) larger in inter-machine communication

and 500% (Pentium Pro 200 Mhz) ~ 112% (Pentium 166 Mhz) larger in intra-machine

communication. The comparison results come from the lower frequency and the more

constrained resources (memory/thread) of our system compared to the other non-embedded

environments. Table 15 (Figure 48) shows the throughput results in sending 1 MB of data by

the client to the server in a one-way operation. The throughput with different packet sizes is

measured for intra-machine communications as well as inter-machine communications when

the client is sending 1MB of data.

74

Figure 48 Throughput for 1 MB transfer in one-way invocation

Table 14 Latency measurements for other architectures

Platform Transport
Time per call

(µs)

Linux Pentium Pro 200 Mhz

(gcc-2.7.2 no compiler

optimization)

TCP/intra-machine

TCP/ethernet (ISA card)

TCP/ATM

340

1000

440

Windows NT 4.0 Pentium

Pro (MS Visual C++ -- O2)

TCP/intra-machine

TCP/ethernet (ISA card)

360

1000

Digital Unix 3.2 DEC

3000/600 (DEC C++ -- O2)

TCP/intra-machine

TCP/ethernet

750

1050

Windows 96 Pentium 166

Mhz (MS Visual C++ -- O2)

TCP/intra-machine

TCP/ethernet (PCI card)

1000

1250

Solaris 2.5.1 Ultra 1 167

Mhz (Sunpro C++ -- fast)

TCP/intra-machine

TCP/ethernet

540

710

75

Table 15 Throughput for 1 MB transfer in one-way invocation

Packet

size
Transport Time per call (µs)

10 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

0.007

0.013

0.008

100 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

0.07

0.15

0.09

1,000 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

0.59

0.74

0.47

10,000 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

1.72

1.86

1.64

100,000 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

3.40

1.97

1.63

1,000,000 TCP/IP intra-machine loopback

TCP/IP inter-machine

TCP/IP inter-machine (concurrence)

4.97

2.53

1.57

We noticed that the throughput of the system improves when the packet size increases. With

larger packet sizes, the overhead introduced by each invocation, marshalling/unmarshalling

for example, is reduced. We can also see that the best performance changes between the intra-

machine communication and the inter-machine communication when the size exceeds 1KB

bytes. We suppose that in the case of intra-machine invocation, the gain of performance on

the communication is reduced by the time consumed in context switches between the client

process and the server process. The frequency of context switches decreases when the packet

size increases. Therefore at a certain point, the performance is dominated by the

communication overhead and the throughput of intra-machine invocation exceeds that of the

76

inter-machine invocation. In Table 15, the third result of each line shows the throughput in the

presence of request conflicts: two clients concurrently invoke the same server object. In that

case, the performance deteriorates in average by 30% compared to the case where only one

client exists.

4.3.4 Performance of the Server/Client distributed platform when

increasing clock frequency

The results obtained in the former section are based on a homogeneous frequency

configuration of the four FPGA systems, more precisely the PPC405 processor and the PLB

bus. Though architecturally identical, the four FPGA sub-systems serve different roles in the

distributed system. Therefore performance requirements are not necessarily the same for a

sub-system configured as client compared to one configured as server. The effect of

frequency scaling on performance enhancement also varies depending on the role the specific

system takes in the distributed system.

A study of the frequency scaling effect on system performance is important to get satisfying

performance under minimum energy budget. In our experiments, we defined three basic

frequency configurations in terms of PPC405 and PLB bus and their combination in a

distributed system is studied.

Basic frequency configuration choices:

PPC405 200MHz / PLB 100MHz (200/100)

PPC405 100MHz / PLB 100MHz (100/100)

PPC405 50MHz / PLB 50MHz (50/50)

Same as in the former section, the two performance metrics measured are latency and

throughput. The benchmarking programs are defined in the same way as in the former

experiments that we will remind below:

Latency:

interface Echo {

77

 string echoString(in string mesg);

};

Throughput:

interface BulkTransfer {

 oneway void transfer(in string data);

};

1. Server side frequency scaling

Naming service configuration and Client configuration are both fixed at 50/50.

Figure 49 Influence of Server configurations on Latency

As the server configuration migrates from 50/50 to 100/100, the latency of Server/Client

system reduces by 20%. When the server configuration moves to 200/100 from 100/100, the

latency reduces by 7.4%.

78

Figure 50 Influence of Server configurations on Throughput

According to the Figure 2, it is noted that when server configuration moves from 50/50 to

100/100, a significant throughput improvement is introduced with a maximum increase of

32% for a packet size of 1.00E+03 bytes, and 3.2% when the packet size is 1.00+06 bytes.

There is no visible throughput improvement when the server configuration migrates from

100/100 to 200/100.

2. Client side frequency scaling

The Naming service configuration is fixed at 100/100, while the Server configuration is fixed

at 200/100.

As the client configuration migrates from 50/50 to 100/100, the latency of Server/Client

system reduces by 20%. When the server configuration moves to 200/100 from 100/100, the

latency reduces by 8.4%.

When the client configuration changes from 50/50 to 100/100, the throughput of the

Server/Client model increases by 4%, 55%, 60%, 70%, 70% corresponding to the Packet size

configuration of 1.00E+02, 1.00E+03, 1.00E+04, 1.00E+05, 1.00E+06 respectively.

79

2606,48

2078,55
1902,44

0

500

1000

1500

2000

2500

3000

Client (50/50) Client (100/100) Client (200/100)

Client frequency configuration

L
a

te
n

c
y
 (

µ
s

)

Figure 51 Influence of Client configurations on Latency

0

0,5

1

1,5

2

2,5

3

3,5

4

1,00E+02 1,00E+03 1,00E+04 1,00E+05 1,00E+06

String size (Byte)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Client (50/50) Client (100/100) Client (200/100)

Figure 52 Influence of Client configurations on Throughput

When the client configuration changes from 100/100 to 200/100, the throughput of the

Server/Client model increases by 2%, 24%, 15%, 21%, with a packet size of 1.00E+03,

1.00E+04, 1.00E+05, 1.00E+06 correspondingly. An exception arises when packet size equals

80

1.00E+02 bytes, which shows tiny throughput degradation despite the fact of frequency

scaling.

3. Naming server side frequency scaling

Server configuration is fixed at 200/100, while Client configuration is fixed at 50/50.

Figure 53 Influence of Naming service configurations on Latency

As the client configuration migrates from 50/50 to 100/100, the latency of Server/Client

system reduces by 0.2%.

From Figure 54, it is noted that Naming service frequency scaling introduces negligible

throughput improvement.

81

Figure 54 Influence of Naming service configurations on Throughput

4. Conclusion

The naming service omniNames is executed on a separate ml403 platform from either the

client or the server. From the latency and throughput results we can see that frequency scaling

on the machine on which Naming service is hosted doesn’t introduce performance

improvement. This is due to the fact that the performance metrics are obtained by averaging a

large number of calls in the case of latency or by operating on a large problem size in the case

of throughput. Therefore, the object reference query operation via the naming server that takes

place once before all the object invocations is amortized by the following calculations. So in

systems where there are only few object reference queries compared to the object invocation

quantities on these references, which is the case of most distributed systems, the performance

of the Naming service is not crucial.

We also noted that the Client side performance and the Server side performance have equally

important roles in deciding the responsiveness of the system. The frequency scaling effects on

system latency are 20%, 7.4% for the server, and 20%, 8.4% for the client. In the

development of time critical distributed systems, it is very important to choose equivalent

server / client configurations in order to achieve optimum system responsiveness.

82

When it comes to system throughput, the results show perfect scaling effects at the client side.

The frequency increase from 50/50 to 100/100 results in more than 50% throughput increase

for most of packet size configurations. While frequency increase from 100/100 to 200/100

introduces about 20% throughput increase for most of packet size configurations.

However the frequency scaling effects on the server side is not as clear. This can be explained

in examining the definition of the IDL interface for throughput that is a one way invocation

without the Client waiting for a response from the server.

4.3.5 Distributed Client-server with Multiprocessor Networked Embedded
Latency and Bandwidth Analysis

Figure 55 FFT distributed computing

Figure 56 Matrix multiplication distributed computing

83

Figure 57 Qam-16 distributed computing

The Corba model will necessarily introduce overhead in terms of communication protocol

stack. However the benefits of an easy deployment and integration should be considered.

4.4 Hybrid programming model

In this section, we will explore the hybrid programming model in introducing local parallel

processing elements in the former distributed system. Figure 58 is a block diagram of the

complete distributed platform consisting of four ML403 boards. The grey section in the center

represents the globally distributed view in which four PPC based computing systems are

interconnected via an Ethernet switch. This architecture leaves developers a great flexibility

for the configuration of the cards. One can serve as a Client, a Server or as a Common Object

Server (COS). In our experiment, we will configure one card as the Naming service server,

another as the server, the third and forth as clients for testing the case in which there exists

concurrent invocations. Table 16 summarizes the resource utilization of each FPGA sub-

system.

84

Figure 58 Block diagram of the embedded distributed system with parallel processing units

(ml403 x 4)

Table 16 Resource utilization

Number of RAMB 16s 33 out of 36 91%

Number of Slices 5407 out of 5472 98%

Number of SLICEMs 579 out of 2736 21%

Some experiments have been done on this platform. The results are shown in the following

figures for Lenth-64 FFT, Length-15 viterbi decoder, Qam-16 modulation respectively.

(A) 64-point FFT

85

Figure 59 64-point single precision floating point FFT

The reason why ppc takes three times as much as that of single microblaze is due to the fact

that ppc is configured at the same frequency as the microblaze and the access to the DDR

memory is much slower than the bram access. The focus here, however, is on the parallel

programming effects of the microblaze couple, and the execution result of powerpc is

presented here just as a reference. This is true for the following applications. The ppc+1MB

system has a reduction of 75% of execution time. Partly it is because of the addition of

parallel processing and also because the microblaze benefits from its local memory. The

addition of the second microblaze only adds more exploitation of parallelism which is closely

related to the parallelism within the applications.

(B) Length-15 Viterbi decoder

Figure 60 Length-15 viterbi decoder

As shown in Figure 60, moving from 1 microblaze to 2 reduces the execution cycle by 10%.

86

(C) Quadrature amplitude modulation (QAM)

Figure 61 Qam-16 modulation (16-symbol outputs)

As shown in Figure 61, increasing the number of microblaze cores from one to two slightly

deteriorates the performance by 11%. This is because the constellation alphabet is pre-

calculated and offered to the microblaze core. The latter only calculates the gray code for the

input data, and then indexes to the alphabet to find the corresponding symbol, which is a very

trivial calculation.

If resources permit, the above system can be readily extended to a many-PEs hybrid

architecture as shown in Figure 62.

87

Figure 62 Hybrid architecture with mesh-like parallel processing elements

Figure 63 PPC405 + microblaze x 8

We implemented a ppc405 computing system with 8 microblaze processing elements as

illustrated in Figure 63. Due to resources constraints, we synthesized the design with the

Xilinx virtex4 FX140 FPGA. The results of resource utilization are summarized in Table 17.

88

Table 17 Resource utilization

Number of RAMB 16s 140 out of 552 25%

Number of Slices 6417 out of 63168 10%

Number of SLICEMs 824 out of 31584 2%

The hybrid programming model combines the parallel programming (parallel programming)

with distributed programming. In this chapter, we detailed the construction of a parallel node

for a distributed system. The performance evaluation results are done under a single

application environment. In a real system, the PPC processor would be in charge of other

applications as well as communication and control tasks. The benefits of adding more parallel

processing elements to which the PPC can distribute calculation loads would be more

important.

4.5 Multiobjective Optimization Based Automatic Design flow for

CORBA based Distributed Networked Embedded Systems

The design flow based on multi-FPGA distributed embedded system is presented in

Figure 64. The level-1 distributed system generator takes as input an application abstracted

with Kahn Process Network (KPN). Processes are mapped to separated processors without

considering the underlying SoC architecture. A function profiling is then carried out to

determine the most time consuming process. The profiling results are used to filter out the

system performance critical function that will then be accelerated by parallel programming

while the other non-critical functions are bypassed to the final stage. The performance critical

functions are parallelized by an automatic parallelizer. A default parameter set including

information as memory hierarchy, number of processors, is first provided and is finely tuned

during the local optimization loop, represented by the arrow connecting the “Platform gen”

block and the “Parallelization” block. The network on chip topology is synthesized. Then the

platform is generated by the platform generation engine. The parallelization and the bypass

branch are then combined and deployed on the multi-FPGA based distributed/parallel

platform. If the system requirements like performance, resources are satisfied while keeping a

minimum frequency configuration to reduce the energy consumption, the flow ends. If one of

89

the above requirements is not met, we will loop back to the first level distributed system

generation block through a multi-objective optimization engine that is responsible for

resource or frequency optimization, parameter tuning, etc.

The multi-FPGA based designed flow serves as an important concept that will be extended for

the single-chip based design flow that is discussed in the following chapters. However due to

the resources constraints of the “ML403” test boards, we could not test an extended version of

the hybrid architecture concept beyond one server/client plus two PE accelerators. It was

anyway an important preliminary step for the validation of the concept. The natural next

design phase is to move to a single large-scale FPGA chip.

4.6 Conclusion

This chapter has presented the OMG CORBA specifications including eCORBA. The

omniORB has been used as middleware for the distributed application development due to its

various characteristics like light-weight, high performance, and the GPL license policy.

A distributed embedded system based on CORBA and implemented on multiple FPGA was

developed as a first step towards building a single-chip SCA compliant Software Defined

Radio. We used the IIOP, the default mechanism for GIOP transportation, for the

Client/Server invocation communication. OmniORB was compiled and installed on the Linux

2.6.28 kernel.

90

Figure 64 Design flow based on the hybrid programming model with multi-objective

optimization

91

CORBA performance is evaluated on this platform. Also the frequency scaling impact on

system performance was studied. The results serve as a good indication for system architects

when building such distributed systems under stringent energy budget.

92

93

Chapter 5

Middleware mapping on Single Chip

Multiprocessors

5.1 State of the art of Middleware Mapping on Multi-processor

Platforms.

Heterogeneous multiprocessing is the future of chip design with the potential for tens to

hundreds of programmable elements on single chips. Middleware that was traditionally used

in the internet domain must be adapted to be applied on the single chip in order to mask the

underlying architecture and OS heterogeneity, thus enabling application development to be

carried in a portable and uniform way.

Authors in [139] talks about the trend of domain specific software programmable,

heterogeneous SoCs in reducing nonrecurring expenses by providing a flexible platform.

Better application programming tools are needed for effective utilization of such platforms by

end-users. The article provides the MultiFlex programming model that inspired by

mainstream approaches for large system development while adapted and constrained for the

SoC domain. The Distributed System Object Component (DSOC) model, resembling CORBA

enhanced with hardware object request broker, is provided to support the heterogeneous

distributed computing. The SIDL interface defines a language-neutral representation of object

call to enable interoperability between object implementations. The DSOC objects, combined

with the SIDL interface compiler, allow an easy mapping of tasks to the platform hardware or

software. The StepNP SoC platform is developed as a simulation environment for the

94

programming model whose architecture combined with an example of network domain

application mapping is illustrated in Figure 65:

Figure 65 StepNP platform

Authors in [130] presents the design of MC-ORB, which is the first real-time object request

broker (ORB) designed to address the nuances of multicore platforms with a novel core-aware

middleware thread architecture and allocation service for soft real-time tasks. The work

evaluated the cost of various thread management function calls in a multicore system, like

load balance checks and thread migrations. The results show that the most costly function is

thread migration among cores attending as much as 20 µs per migration. The major design

goal is thus explicitly managing task allocation at the middleware level and minimizing thread

migration. The MC-ORB is implemented using the ACE 5.2.7 framework and on the Linux

2.6.17 kernel. Empirical evaluations show that MC-ORB is highly efficient and effective on a

multicore Linux platform, especially in comparison to a real-time ORB designed for single

processor platforms.

95

The work in [130] mainly deals with core-level real time scheduling issues of a multi-core

system with OS SMP support. It doesn’t address the migration of middleware into a

multiprocessor system on chip where each processor has its own instance of OS. In that case,

the communication layer adaptation of the middleware should be considered according to the

communication mechanisms provided by the embedded system.

The Multi-Writers-Multi-Readers (MWMR) communication middleware developed at SoClib

implements a generic inter-task communication mechanism for shared memory multi-

processors architectures. This protocol has been designed to support both communication

between software tasks and hardware tasks, implemented as a dedicated hardware

coprocessors. The MWMR protocol is implemented on top of POSIX threads API. [131][132]

The MWMR defines a generic communication channel as a software buffer located in on-chip

shared memory.

5.2 Network on Chip technology

Advances in semiconductor technology enable the integration of increasing numbers of IP

blocks in a single System-on-chip (SoC). Network on chip (NoC) is a new approach for the

design of the communication sub-system of SOC compared to the traditional bus based

approaches. NoC brings networking theories to on-chip communication. Compared to

traditional bus based architectures, NoC offers several advantages:

• Bandwidth scalability

• Process scalability

• Energy efficiency

• Easy IP integration with standard interface

• Reduced time-to-market [46][48]

We will briefly introduce the recent year NoC implementations in both academic and

commercial community.

96

5.2.1 SPIN

Figure 66 Flat tree topology

The SPIN network (Scalable Programmable Integrated Network) is one of the first published

NoC [140]. It was developed by the University of Pierre and Marie Curie. It implements a fat-

tree topology with two one-way 32-bit data paths at the link layer as shown in Figure 66. The

fat tree is the most cost-efficient topology for VLSI realizations and provides a simple and

effective routing scheme. In SPIN, the routers are packet-based with a flit size of 36 bits.

Wormhole routing is used without limiting the packet size. There are three types of flits: first,

data and last flits. The first flit contains the address and packet tagging information, while the

last flit contains the payload checksum. Adaptive routing algorithm and out-of-order delivery

can be used to maximize the network bandwidth. Otherwise, deterministic and in-order

delivery is used to avoid the reordering buffers on the output ports. In comparison with tree

topology, the fat tree doubles the bandwidth at each level of the hierarchy up to the root but at

a higher area cost.

5.2.2 AEthereal

The Aethereal NoC was developed by Philips Research Laboratories and offers both

guaranteed service (GS) and best effort (BE) traffic. [141] [142] The guaranteed performance

of GS connections results from wire and buffer reservations in the NoC. To give 100%

guarantees, these reservations must be for the worst case, wasting any unused bandwidth. To

increase the resource usage, the BE connections are introduced that use all unused bandwidth

with a lower priority. It also put emphasis on the programming model and a design flow.

AEthereal provides a combined distributed and centralized model.

5.2.3 Nostrum

97

Nostrum is a NoC developed by the LECS (Laboratory of Electronics and Computer Science)

at the Royal Institute of Technology in Sweden. [143] Nostrum implemented a service of

Guaranteed Bandwidth (GB) and latency in addition to the already existing service of Best-

effort (BE) packet delivery. The guaranteed bandwidth is accessed via Virtual Circuits (VC)

that are implemented using a combination of two concepts that are ‘Looped Containers’ and

‘Temporally Disjoint Networks’. The Looped Containers are used to guarantee access to the

network independently of the current network load without dropping packets; and the TDNs

are used in order to achieve several VCs plus ordinary BE traffic.

5.2.4 MANGO

The MANGO (Message-passing Asynchronous Network-on-chip providing Guaranteed

services over OCP interfaces) architecture [145], developed at the Technical University of

Denmark, is an asynchronous NoC, targeted for coarse-grained GALS-type SoC. MANGO

provides connection-less Best Effort (BE) routing as well as connection-oriented Guaranteed

Services (GS). Guaranteed service connections are established by allocating a sequence of

Virtual Channels through the network. The routers implement virtual channels as separate

physical buffers. A scheduling scheme called the ALG (Asynchronous Latency Guarantees),

schedules the access to the links, allowing guaranteeing the latency.

The router consists of two separate routers: the BE router and the GS router.

The BE router implements a source routing scheme. The three MSBs of the packet header

indicate one of the five output ports. After passing the router, the header is rotated three bits,

positioning the header bits for the next hop. With a flit size of 33 bits (of which one is the

end-of-packet bit) it is thus possible to make only 10 routing hops.

98

Figure 67 MANGO router

While the routers themselves are implemented using area efficient bundled-data circuits, the

links implement delay-insensitive dual-rail data encoding. This makes global timing robust,

because no timing assumptions are necessary between routers. However pipelining is

necessary in order to keep performance.

5.2.5 Arteris NoC technology

In the design of our Network on chip, we used the Arteris NoC technology. Arteris Company

was founded in 2003 in Paris and the company focuses on challenges associated with the

next-generation System-on-chip (SoC) design: the on-chip communications. In 2005, Arteris

introduced the first commercial implementation of NoCs delivered in form of IP library, the

Danube library, and a set of EDA tools for configuring and implementing the networking IP

cores as synthesizable RTL. Arteris proposes the NoC configuration and design flow as

shown in Figure 68.

Arteris NoC technology provides a flexible and scalable solution that allows each designer to

make the right trade-offs and achieve the specific design goals for their particular design. It is

composed of two networks: a request network and a response network.

The Danube Intellectual Property Library that contains a set of configurable building blocks

managing all on-chip communications between IP cores in SoC designs. The Danube IP

99

library comprises three types of units: Network Interface Units providing interfaces to the IP

cores, Packet Transport Units and physical links building up the switch fabric user-defined

topology. These units can be configured based on the system objectives and topology

requirements. Figure 69 shows the mains components of the Danube Library while Table 18

lists the characteristics of the main IP components.

Figure 68 NoC design flow by Arteris

Figure 69 example of Danube IPs

100

Table 18 Arteris Danube transport units IPs

 Description

Switch Accept packets from input ports and forward each packet to specific

output port unchanged

Sync-Fifo Stores packets at high rates of speed and moves packets to slower units

Bisync-Fifo Provides resynchronization for units from asynchronous clock domain

Clock-Conv Connects units from distinct clock domain

Width-Conv Connects links of different width

Endian-Conv Enables the choice of little or bit endian units

Rate-Adapter Removes WAIT cycles

Bandwidth-

Limiter

Prevents initiators from consuming too much bandwidth

Bandwidth-

Regulator

Guarantee an average target bandwidth to an initiator that is subject to

fluctuating throughput requirements

Meso link Long distance transport in NoC

InterChip-Link Connects one chip to another along the same wires

The Switch generator is an essential building block of the NoC interconnect system. Figure 70

illustrates an N input ports M output ports of the Danube Switch unit. It accepts NTTP

packets carried by input ports, and forwards each packet to a specific output port unchanged.

The Switch unit supports synchronous operation, full crossbar with up to one data word

transfer per MINI port per cycle. It uses wormhole routing for achieving reduced latency. The

unit can be software-controlled at run-time through the service network.

The statistic collector IP, shown in Figure 71, provides performance monitoring capability by

probing NTTP or OCP links, recording events, and transmitting results to a debug unit

through a dedicated NTTP link. It provides up to 8 probes that provide metrics such as

throughput and latency on certain dataflows. The statistics collector monitors activity by

connecting probes to NTTP or OCP signals, without introducing any flow control in the

system. An NTTP port is used to export results as frames, for processing by a dedicated

target.

101

Figure 70 Arteris Danube Switch

Figure 71 Statistic collector

Arteris provides two design tools for NoC exploration and implementation: the NoCexplorer

and NoCcompiler. The NoCexplorer exploration tool provides an environment to capture the

dataflow requirements of the IP blocks to be serviced by the NoC and allows the designer to

rapidly utilize a very fast dataflow simulation engine and parameterizable dataflow sources

and sinks to model the system behavior. The NoCcompiler tool creates a database of the

specific instance of the NOC. It exports in a variety of languages the NoC design, for

example, Verilog, VHDL, SystemC that is to be passed to other synthesis / place & route tools

for the final system implementation.

102

Figure 72 NoCcompiler GUI

5.3 Synchronization Issues with CORBA Based designs

The traditional CORBA synchronization mechanism is realized by the synchronous two-way

client/server invocation. The client thread that invokes a server operation blocks until

response is returned. Although simple in programming, this method lacks the support for

exploiting the intrinsic parallelism in distributed systems including asynchronous invocation

where one client can continue invoking another object existing on another server before the

first invocation is done or group invocations as supported in MPI by multicast/select,

multicast/gather, scatter/gather, etc. [135]

There are several approaches for achieving the asynchronous invocation. First, the two-way

synchronous invocation can be used with multiple threads. However this solution is

accompanied by the drawbacks of error-prone multi-threaded programming, scalability issue

with thread creation overhead, or it is not even applicable in a single-threaded client. Second,

we can use one way invocation. This solution has no guarantee of reliable delivery due to the

best-effort semantic. The third solution is to use the Dynamic Invocation Interface (DII)

103

deferred synchronization. But using the DII interface means cumbersome programming and

increased the program size. More over, type-safety is left to be guaranteed at the developer

level rather at the compiler level. The most promising solution is to use the Asynchronous

Method Invocation (AMI) (CORBA messaging specification). Unfortunately, it is an optional

service and is not always supported by academic or commercial ORBs.

Works have been done to address the inefficiencies in the CORBA based server/client

programming in exploiting the natural parallelism in a distributed system. [135] tackles these

issues by providing a multilayered architecture, and API implemented in C++ classes to

provide the necessary invocation semantics for parallel programming.

In [136], the authors propose a parallel programming model over CORBA, the P-CORBA,

which addresses the issues concerning the parallel programming over a Network of

Workstations. The model enriches CORBA with the notion of concurrency in introducing a

metaobject regrouping a set of different objects of the same class that must be dispatched to

different machines depending on the machines' load condition. The model also provides

methods for dynamic load balancing and object migration. Experiments show a higher

message sending overhead than MPI send calls but the overall performance on a clustered

platform is better due to the dynamic load balancing feature. The CORBA implementation

utilized in this work is MICO.

The paper [137] presents three agent based parallel interaction architecture that improves the

performance of CORBA based on the traditional synchronized object invocation and serial

server execution. It analyzes the three client-agent-server interaction architectures, parallel

interaction architecture. The performance of these architectures is compared with the

traditional sequential architecture. The execution results showed substantial performance

benefit gain from using parallel interaction architecture especially at low to medium load.

Multithreading can efficiently solve the bottleneck problem at the agent level that risks large

queuing delays when the load is high.

104

5.4 OCP-IP Protocol and CORBA

Because the Network Interface Unit of the NoC in our MPSoC conforms to the OCP protocol,

we discuss the CORBA middleware transport layer adaptation issues in this section.

The default transport mechanism that is requested to be supported by the CORBA

specification is the IIOP protocol (routing GIOP packet on internet). According to the

CORBA specification, the GIOP definition makes the following assumptions regarding to the

transport behavior: [7]

1. The transport is connection-oriented. GIOP uses connections to define the scope and

extent of request IDs.

2. The transport is reliable. Specifically, the transport guarantees that bytes are delivered

in the order they are sent, at most once, and that some positive acknowledgment of

delivery is available.

3. The transport can be viewed as a byte stream. No arbitrary message size limitations,

fragmentation or alignments are enforced.

4. The transport provides some reasonable notification of disorderly connection loss. If

the peer process aborts, the peer host crashes, or network connectivity is lost, a

connection owner should receive some notification of this condition.

5. The transport's model for initiating connections can be mapped onto the general

connection model of TCP/IP. Specifically, an agent (described herein as a server)

publishes a known network address in an IOR, which is used by the client when

initiating a connection.

Compared to the macro-world setting of work-stations cluster consisting of computers

interconnected by internet via the network adapter, our MPSoC system is constructed by

interconnecting multiple embedded processors via a packet switched on-chip network (NTTP)

and the network interface corresponds to the OCP-IP Protocol.

105

In order to port the CORBA transport layer to the single chip environment, we must first

study the feasibility by examining article-by-article the fulfillment of the above assumptions

in the MPSoC communications fabric.

For the purpose of simplicity, we do not want to touch the entire transport and internet

protocol layer of the protocol stack. We studied the three layers of the communication stack

below the application layer, transport layer, network layer, and MAC, in terms of their

respective necessity of modification and complexity of adaptation for making ORB

communicate in our NoC based MPSoC. Interestingly, the necessity and complexity

correspond in an inverse order, which means the layer that lies nearer to hardware has a

stronger modification need but requires less efforts in terms of Linux kernel programming. On

the other hand, the layers that approach the application level have less requirement of

modification but require more kernel programming efforts to realize such a modification. The

Table 19 summarizes the three choices discussed above from the less-complex to the more-

complex ones.

Table 19 Communication layer adaptation choices

 Necessity of modification Programming efforts

MAC layer only Yes Minimum

IP and MAC layers No Medium

TCP, IP and MAC layers No Maximum

Since the network interface unit is replaced by the OCP/NTTP NIU, the MAC layer protocol

needs to be adapted to process the specific MAC layer headers. The IP layer and TCP layer

remain untouched and the middleware communication architecture can be adapted with trivial

efforts. The proposed inter-layer calls and packet migrations are illustrated in Figure 73. With

this approach, the NTTP packet switch layer is hidden at the NIU level, and the device driver

of the OCP NIU should deal with a custom OCP MAC address for higher level protocols to

identify the correct network device. This is the approach we took in our design. However the

two other approaches will also be discussed.

106

Figure 73 TCP/IP/OCP receive sequence

A second approach is to modify the IP layer protocol to reflect the specific properties of the

NTTP packet. This approach is illustrated in Figure 74. With this approach, a new network

work layer protocol should be registered with the Linux network kernel. Same as the first

approach, this one requires trivial efforts for COBRA communication layer adaptation. But

there exists one problem: the NTTP packet is generated at the NIU level, which is different

from the traditional TCP/IP packet. This issue should be considered when taking this choice.

With the first two choices, the 5 assumptions of CORBA GIOP over the transportation layer

are largely resolved by the TCP/IP layer and the OCP protocol is masked from the

middleware point of view. However although inspired by the off-chip networks, NoCs offer

more preferable characteristics than their off-chip counterparts. For example, NoC can avoid

dropping data, assuming that a SoC operates reliably (that is, its routers do not fail, misrouting

does not occur, and so forth). Moreover, the Arteris NoCs are composed of a request network

and a response network. Every transaction should be acknowledged at the NoC level, which is

treated in the transport layer in the case of off-chip network. All these features are not

107

exploited in the first two approaches. This is where the third solution, the TCP level

adaptation becomes useful. In taking direct services provided by the NoC layer, the

communications stack should become more efficient. However, since the CORBA

communication layer function deals socket calls that deal directly the transport layer. Any

modification in this layer should be done with considerations in mind no to break the

standardized socket like calls.

Figure 74 TCP/NTTP/OCP receive sequence

5.5 Network Interface design and low level APIs

Figure 75 shows the architecture of the PLB-OCP network interface. It is composed of two

parts, a receiver and a transmitter. There are two packet buffers for stocking transmitted and

received packets. The buffer size is set to 2k bytes.

108

Figure 75 Architecture of the PLB-OCP network interface

When transmitting, the host writes a whole packet represented by the Linux struct sk_buff into

the transmit buffer. The Maximum Transfer Unit is defined so that the size of packet

represented by len field of the sk_buff structure doesn’t surpass the capacity of the transmit

buffer. The host processor then sets the frame ready bit of the transmit control register to

indicate a valid frame. The interface then sends out the packet in a burst write mode to the

corresponding destination processor.

When a burst write command arrives at the input of the network interface indicating the sent

of a packet from a remote host, the interface checks the availability of its receiving buffer. If

available, it accepts the command and stores the successive data load in the receiving buffer.

It then sets the frame_busy bit of the receive control register to indicate the occupancy of the

buffer by a valid packet.

A transmitter interruption is generated when a packet is sent out of the OCP interface and the

transmit buffer becomes available to accept new frame. This serves to retry of a former failed

109

and delayed packet send attempt due to non availability of the transmit buffer. A receiver

interruption is generated when a new packet is coming in and stored in the receiver buffer.

The host processor then comes to store this packet in its main memory and clears the

frame_ready bit.

Low level APIs are developed to facilitate the data operation, device control and interruption

handling from the upper layer code, for example the network device driver. These APIs

include:

int OCP_MAC_Send(OCP_MAC_t *OCP_MAC, u8 *FramePtr, unsigned ByteCount) ;

int OCP_MAC_Recv(OCP_MAC_t *OCP_MAC, u8 *data);

void OCP_MAC_DisableInterrupts(OCP_MAC_t *OCP_MAC) ;

void OCP_MAC_EnableInterrupts(OCP_MAC_t *OCP_MAC) ;

void OCPMAC_InterruptHandler(void *InstancePtr);

5.6 Network-on-chip design

5.6.1 Protocol definition

The NTTP protocol configuration considers the master address space and the slave address

space and the data payload length burst transactions.

mstAddr: 2 bits (4 masters)

slvAddr: 2 bits (4 slaves)

len: 8 (512 payload cells)

The OCP protocol configuration has concerns with burst length that should be set according

to NTTP settings, and transaction phase semantics.

burstType: TIE_OFF_INCR

Burstlength_wdth: 8

reqlast: true

resplast: false

writenonpost, writeresp_enable: false (precise burst write doesn’t need response)

110

5.6.2 NoC connection

Each plb_ocp network interface requires two interfaces, one for transmitting (ocp master) and

the other for receiving (ocp slave). Figure 76 illustrates the NoC design of a two-node system

consisting of only a 2x2 switch. The initiator interface of master_00 is connected to switch

input port 0 and the initiator interface of master_01 is connected to switch input port 1.

According to the route table definition that will be explained later, data targeted at master_00

are routed to the switch output port 0, and data sent to master_01 are routed to switch output

port 1. As a result, the path input_0 -> output_0, confined in the red frame, forms the

loopback path of master_00, while the path input_0 -> output_1, confined in the blue frame,

forms the inter-node path between master_00 and master_01. The situation is similar for

master_01.

Figure 76 A two-node point-to-point connection

5.6.3 Memory mapping

The ocp MAC address is defined following the Ethernet mac address format that consists of

six bytes, “\0ocpxx”. The first byte is ‘\0’ to avoid being a multicast address (the first of

multicast is odd). The last two bytes indicates the id of the processor. Each master interface

response port is identified by the ocp master address. The interface inserts its own address

into the master address field of the request packets and is later copied to the response packets

by the ocp slave in order that the response packets are routed back to the same master. In this

111

example, the master addresses are coded in two bits supporting up to 4 masters. The nttp

global address base represents the starting address of the receive buffer in each plb-ocp

interface in a system view. The respective size of the receiver buffer is represented by nttp

address size. Because plb_ocp network interface can only initiate write operations, which

send ocp frame to the corresponding receiver buffer, the memory map considers only the

receiver buffer. The global memory map is summarized in Table 20.

Table 20 NTTP Global memory map

ocp_mac address ocp master address nttp global address

base

nttp address size

“\0ocp00” “00” x”00000000” x”800” (2kB)

“\0ocp01” “01” x”00000800” x”800” (2kB)

“\0ocp02” “10” x”00001000” x”800” (2kB)

“\0ocp03” “11” x”00001800” x”800” (2kB)

Figure 77 illustrates the address translation from the ocp address domain to the nttp (NoC)

address domain. The example aims to access the x”2bc” memory address of the receiver

buffer of plb-ocp interface_01.

Figure 77 Address translation from ocp domain to nttp domain

5.7 Single FPGA Chip NOC Based Multiprocessor Design

112

Figure 78 Two ppc405 connected with NoC with multiplexed output

A single chip platform is developed for testing of the on-chip CORBA based communication

system. As illustrated in Figure 78, the system is composed of two separate computing

systems, each having a ppc405 microprocessor and running Linux operating system. The two

ppc405 communicates via a NoC fabric through the ocp MAC.

For Linux console output and debugging, we choose to use the PCI-express connection to

communicate with a terminal on a host pc. Each ppc405 processor connects its console output

to a console front end conforming to the RS232 protocol. Then the multiple front end outputs

are tagged and multiplexed by the console backend component which in turn connects to the

PCI-express bus.

On the host side, a monitor program checks the PCI-express input and distributed input data

to the corresponding processor terminal according to data tag. The structure of the host side

monitor and terminal program is illustrated in Figure 79.

113

Figure 79 Host machine console system

5.8 Performance results

The measured results for the inter-processor communication are presented in Table 21.

Table 21 Time of round-trip Echo function with zero message body

Platform Transport Time per call (us)

Linux 2.6.28

PPC405 120MHz

(Gcc-4.2.4-O2)

TCP/IP inter-processor 3412

5.9 Design Flow for Client-server with Automatic Parallelization

Paradigm MPSOC

The entire proposed design flow is presented in Figure 80.

114

Figure 80 Design flow based on the hybrid programming model single chip

The level-1 distributed system generator takes as input an application abstracted in Kahn

Process Network (KPN). Processes are mapped to separated processors without considering

115

the underlying SoC architecture. A function profiling is then carried out to determine the most

time consuming process. The profiling results are used to filter out the system performance

critical functions that will then be accelerated by parallel programming while the other non-

critical functions are bypassed to the final stage. The performance critical functions are

parallelized by an automatic parallelizer. A default parameter set including information as

memory hierarchy, processor number, is first provided and is finely tuned during the local

optimization loop, represented by the arrow connecting the “Platform gen” block and the

“Parallelization” block. The network on chip topology is synthesized. The platform is then

synthesized by the platform generation engine. The parallelization and the bypass branch are

then combined and deployed on the SSM IP based distributed/parallel platform. If the system

requirements like performance, resources are satisfied while keeping a minimum frequency

configuration reducing energy consumption, the flow ends. If one of the above requirements

is not met, we will loop back to the first level distributed system generation block through a

multi-objective optimization engine which is responsible for resource or frequency

optimization, parameter tuning, etc.

5.9.1 Network-on-chip synthesis

Authors in [41] focus on the synthesis of a bus matrix based communication architecture for

the high bandwidth MPSoC design. They propose an automated approach, named bus matrix

synthesis (BMSYN), for synthesizing a bus matrix communication architecture, which

satisfies all performance constraints in the design and minimizes wire congestion in the

matrix.

Figure 17 shows the automated BMSYN flow. The inputs to the flow include a common

through graph (CTG) representing the performance constraints of the system, a library of IP

models, a target bus matrix template, and a communication parameter constraint set. First of

all, a fast transaction-level model (TLM) simulation of the system is carried out to determine

the application-specific data traffic statistics. The information is then passed to the global

optimization phase to reduce the full bus matrix architecture by removing unused busses and

local slave components from the matrix. The resulting matrix is called a maximally connected

reduced matrix. In the next step, an optimization engine based on a static branch and bound

116

algorithm is used to cluster the slave components, which further reduces the number of busses

in the matrix. The resulting architecture is then passed to a fast bus cycle accurate simulation

engine to validate and select the best solution that meets all the performance constraints,

determine slave arbitration schemes, optimize the design to minimize bus speeds and OO

buffer sizes and then finally output the optimal synthesized bus matrix architecture. The

results from the synthesis of an AMBA3, AXI-based bus matrix for four MPSoC applications

from the networking domain show a significant reduction in bus count in the synthesized

matrix when compared with a full bus matrix (up to 9 x) and a maximally connected reduced

matrix (up to 3.2x).

5.9.1.1 Definition of problem in terms of graph

The scenario we consider here corresponds to the shared memory model where each processor

has equal access to the shared memory and the communication between processors is done via

the share memory. The input to the NoC synthesis engine is a core graph that models the

connection and bandwidth requirements of the system. Suppose H=(C, K) is an oriented

graph, with |K|=p, and w ∈ RK is an indexed vector on the arcs of H. Each arc (u, v) of K

corresponds to one demand of information transmission from component u to component v.

The value of w(u,v) corresponds to the quantity of information to be transmitted from u to v.

The pair (H, w) represent the above mentioned core graph.

The topology synthesis of a network on chip consists in determining one topology of NoC

that satisfies the information transportation defined by the core graph while keeping minimum

surface. This network is composed of routers and links. Several types of routers can be

installed. The number of input ports, output ports, the surface consumption, and the

bandwidth per port depends on the type of installed router. We suppose that there exists k

types of different routers indexed from 1 to k. The number of input ports (resp. output ports)

of router i, i = 1,…,k, is noted ei (resp. si) and its maximum bandwidth per port is noted by Ωi.

Without loss of generality, we suppose that router 1 is a dummy router in that it doesn’t

consume any silicon surface, and has neither input port nor output port. We suppose that q,

representing the number of possible routers constituting the NoC, is given. We use R to

117

indicate {1,…,q}. Let D = (V, A) be the graph representing the possible connections between

the elements of the NoC, where V = R ∪ C. In addition, we suppose that no direct connection

exists between any two core graph vertexes. Therefore A corresponds to the collection of arcs

connecting a component to a router, a router to a component or two distinct routers. We note

by m the number of arcs in D. The topology synthesis of network on chip then consists of,

given (H, w) and q, determining a sub-graph D’ of D, one type of router for each element in

R, and the path from u to v for each demand (u, v) of H, so that:

• the number of entering arcs (resp. exiting arcs) of each vertex r among R is inferior or

equal to the number of input port (resp. output port) of the router installed in vertex r,

• the number of entering or exiting arc of each vertex v of C is respectively inferior or

equal to k,

• the path of demand utilize uniquely the arcs of D’,

• the constraints of bandwidth are satisfied,

• the surface of all the installed routers is minimum.

5.9.1.2 Integer linear programming

The communication infrastructure plays a more and more critical role in the modern MPSoC

design. The NoC based communication is more scalable and exploits better the parallelism of

the architecture. An optimized NoC topology is important to get better performance under

stringent on-chip resources constraints. The NoC topology synthesis can be modeled in form

of integer linear programming. We will define the variables for the modeling of the demand

path.

Let x ∈{0,1}mp be the vector such that

=k

ax
1 if connection k is transported on arc a,

0 if not,
AaKk ∈∀∈∀ ,=k

ax
1 if connection k is transported on arc a,

0 if not,
AaKk ∈∀∈∀ ,

We define the second set of variables in order to model the sub-graph D’ that represents the

resulting NoC. We define ∈{0,1}m such that

118

=ay
1 if arc a belongs to sub-graph D’

0 if not, Aa ∈∀
=ay

1 if arc a belongs to sub-graph D’

0 if not, Aa ∈∀

Finally in order to know which type of router is installed on each site r of R, we define z

∈{0,1}R*l such that

=i

rz
1 if switch of type i is installed on site r,

0 if not,
.,...1,0, liRr =∀∈∀=i

rz
1 if switch of type i is installed on site r,

0 if not,
.,...1,0, liRr =∀∈∀

The NoC topology synthesis problem corresponds then to the following linear programming:

∑
=

=
l

i

i

rz
1

1 Rr ∈∀

k

v

va

k

a

va

k

a bxx
inout

=− ∑∑
∈∈)()(δδ

VvKk ∈∀∈∀ ,

=k

vb

1 if v = ok,
-1 if v = dk,
0 if others

a

k

a yx ≤ KkAa ∈∀∈∀ ,

∑ ∑
∈ =

Ω≤
Kk

l

i

i

vi

k

a

k
zxq

1

)(, vaVv δ∈∀∈∀

∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
in

zey
δ

Rr ∈∀

∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
out

zsy
δ

Rr ∈∀

∑
=

=
l

i

i

rz
1

1 Rr ∈∀∑
=

=
l

i

i

rz
1

1 Rr ∈∀

k

v

va

k

a

va

k

a bxx
inout

=− ∑∑
∈∈)()(δδ

VvKk ∈∀∈∀ ,
k

v

va

k

a

va

k

a bxx
inout

=− ∑∑
∈∈)()(δδ

VvKk ∈∀∈∀ ,

=k

vb

1 if v = ok,
-1 if v = dk,
0 if others

=k

vb

1 if v = ok,
-1 if v = dk,
0 if others

a

k

a yx ≤ KkAa ∈∀∈∀ ,a

k

a yx ≤ KkAa ∈∀∈∀ ,

∑ ∑
∈ =

Ω≤
Kk

l

i

i

vi

k

a

k
zxq

1

)(, vaVv δ∈∀∈∀∑ ∑
∈ =

Ω≤
Kk

l

i

i

vi

k

a

k
zxq

1

)(, vaVv δ∈∀∈∀

∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
in

zey
δ

Rr ∈∀∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
in

zey
δ

Rr ∈∀

∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
out

zsy
δ

Rr ∈∀∑ ∑
∈ =

≤
)(1ra

l

i

i

ria
out

zsy
δ

Rr ∈∀

5.9.1.3 Case study

In this section, we will present a case study in which a MPEG4 core graph, as illustrated in

Figure 81, is used as input to the NoC topology synthesis engine.

119

Figure 81 MPEG4 Core graph

The generated NoC topology is shown in Figure 82.

With this ILP model, the interconnection infrastructure, Network on Chip, of MPSoC can be

tailored on a link-by-link basis, which optimizes the allocation of on-chip resources.

5.10 Conclusion

The CORBA middleware was originally utilized in large scale distributed system software

developments. With the advance in the semiconductor process technology, more and more

resources are now integrated on a single chip, large on-chip memories, embedded processors,

DSPs, configurable IP accelerators, etc. CORBA formerly served as a software bus by

abstracting the underlying architecture and operating system heterogeneity and by providing a

uniformed function-call like interface to the programmer. It is now usable as well as necessary

for the embedded domain to provide an efficient programming model to embedded

application developers.

120

VU
2

Au
3

CPU
1

RAST
4

IDCT
8

ADSP
5

RISC
0

Bab
7

SAMP
6

8:1 2:1

1:3

SDRAM
9

SDRAM
11

SDRAM
10

Figure 82 MPEG4 NoC topology

 We implemented the CORBA middleware on a network-on-chip (NoC) based multi-

processor single chip. The NoC draws analogy with the macro-world network: packets are

routed to and from nodes that are connected to the NoC. We developed a network interface,

the plb_ocp_mac, which provides services like a network adapter. It encodes the hardware

addresses to the packets provided by the kernel through the TCP/IP stack, and calls the low-

level driver to hand the packet to the NoC. During receiving, the network interface stores the

packet sent to it, remove the hardware address, and then hands the packet to upper network

stacks.

While inspired by the mainstream approaches for large system developments, the CORBA

adaptation should take into consideration the characteristics and constraints specific to the

SoC domain. We discussed in this chapter several optimization potentials which mainly

consider the relatively reliable network transmission, and the resource constraints of the

embedded system.

A part from the distributed programming model, modern MPSoC architectures expose also

the SMP based parallel programming model. These two models should be combined

according to different application calculation and traffic characteristics to attain maximum

performance. In this chapter, we focused on the NoC topology synthesis. We developed the

121

mathematical model for a share-memory multiprocessor architecture, and use the Integer

Linear programming tool to get the optimum solution of the NoC topology.

A SDR design flow is proposed with systematic architecture exploration and optimization

based on the hybrid programming model (distributed client/server + parallel). A NoC

topology synthesis engine was developed with linear integer programming. A complete SDR

application has not yet been tested, but the tools and the design flow have been tested with all

the features that are needed for implementing the SDR.

122

123

Chapter 6

Conclusion

This thesis proposes a design methodology and programming model for the efficient

development and deployment of complex communications systems, specifically, the Software

Defined Radio. Our contributions can be decomposed according to the following categories:

1. Design flow based on hybrid programming model

We are interested in the Software Defined Radio that is conforming to the Software

Communication Architecture, which provides interoperability and reusability to radio

waveforms. The SCA specification defines an operation environment that in which waveform

applications are executed. It requires the use of CORBA middleware that provides abstraction

of the underlying architecture and operating system for distributed objects. On the other hand,

for some computation intensives functions, the signal processor based architecture doesn’t

fulfill the performance requirements under stringent energy budget and we resort to

multiprocessor and parallel programming for function acceleration.

Based on the above hybrid programming model, the design flow proposes a two-state system

generation engine with the first state generating distributed nodes and the second generating

parallel processing elements with the help of an automatic parallelizer and network on chip

(NoC) synthesizer.

2. Parallel programming and performance evaluation with automatic parallelizer

In this part, we use an automatic parallelizer, Pluto, for the source-to-source transformation of

serial source codes to parallelized versions. Pluto is an automatic polyhedral source-to-source

124

transformation framework that can optimize regular programs for parallelism and locality

simultaneously. Our main objective was to evaluate the efficiency of an automatic parallelizer

within an “automatic” design flow.

We evaluated the Pluto parallelized codes on our NoC connected 16 PEs MPSoC platform.

We noted several key elements that influence the effectiveness of parallelization. A

comprehensive understanding of the characteristics of both the application and the

architecture accompanied by an optimum combination of the two is necessary for a satisfying

performance. Beyond this straightforward remark, we have shown that an automatic

parallelizer can be used in our design flow.

The synchronization mechanisms play a fundamental role in efficient parallel programming

and careful attention is necessary for the hardware implementation of these synchronization

mechanisms. We have conducted performance experiments on the above single chip

embedded multiprocessor. The experiments show that automatic parallelization can hardly

exploit more than 8 processors despite the network on chip allowing communication

concurrency.

3. NoC topology synthesis

Depending on the connection requirements between master and slave components and the

profiling results regarding traffic, we used the ILP tool to automatically synthesize the

topology of the network on chip in search of minimum chip surface utilization. Again, we

have shown that an automatic synthesis tool to synthesize the NoC topology can be used in

our design flow.

4. Adaptation of CORBA middleware on single chips with NoC communication

architecture

The final goal is to integrate a macro world network based distributed SDR system on a single

chip. For this purpose we first developed a multi-FPGA based distributed embedded system

as a proof-of-concept. The multiple FPGA card are connected via an internet switch, each

acting as a separate distributed node with a PPC405 processor. We tested the performance of

125

CORBA middleware and the potential of hybrid programming model by integrating in each

PPC405 system a local parallel processing array for local parallel calculation while keeping a

global distributed view.

Then we have worked on the adaptation of the TCP/IP stack to the on chip NoC

communications. We have developed an OCP MAC adapter for accessing the NoC and tuned

the TCP/IP stack parameters to fit in the on chip resources constraints. A first test has

validated the CORBA execution on the single chip multiprocessor prototype consisting of two

PPC405 processor connected by a NoC. There remains a large space for performance

improvement of the communication based on this architecture. We have proposed several

solutions including both a software stack and hardware optimizations. The tests with complete

SDR baseband chains are currently being developed.

126

127

References

[1] S. Kyo et al., “A Low-Cost Mixed-Mode Parallel Processor Architecture for

Embedded systems”, Proceedings of the 21st annual international conference on

Supercomputing, SESSION: Architecture – multiprocessor systems, Pages: 253-262,

2007.

[2] Sankaralingam, K. et al., “Distributed Microarchitectural Protocols in the TRIPS

Prototype Processor”, 39th Annual IEEE/ACM International Symposium on

Microarchitecture, Page: 480-491, 2006.

[3] D. Burke, et al., “RAMP Blue: Implementation of a Manycore 1008 Processor FPGA

System”, Proceedings of the Reconfigurable Systems Summer Institute, RSSI 2008,

July 2008.

[4] Y. Hoskote, et al., “A 5-GHz Mesh Interconnect for a Teraflops Processor”, IEEE

Micro, Volume 27, Issue 5, Page 51-61, 2007.

[5] X.Li and O.Hammami, An Automatic Design Flow for Data Parallel and Pipelined

Signal Processing Applications on Embedded Multiprocessor with NoC: Application

to Cryptography , International Journal on Reconfigurable Computing, Hindawi, 2009.

[6] www.omg.org

[7] “Common Object Request Broker Architecture (CORBA) Specification, Version 3.1”

Part 2: CORBA Interoperability, OMG

[8] “Common Object Request Broker Architecture (CORBA) for embedded Specification,

Version 1.0”, OMG Document Number: formal/2008-11-06, OMG

[9] D.C. Schmidt, D.L. Levine, and C. Cleeland, “Architectures and Patterns for High-

Performance, Real-Time CORBA Object Request Brokers,” Advances in Computers,

M. Zelkowitz, ed., Academic Press, 1998

[10] S. Lo, S. Pope, "The Implementation of a High Performance ORB over Multiple

Network Transports", MIDDLEWARE'98

[11] G. Coulson, S. Baichoo, "Implementing the CORBA GIOP in a high-performance

object request broker environment", Distributed Computing, Spinger, April 2001

128

[12] The omniORB version 4.1 User's Guide, D. Grisby, Apasphere Ltd. Sai-Lai Lo, David

Riddoch, AT&T laboratories Cambridge, July 2007,. URL:

http://omniorb.sourceforge.net/index.html

[13] URL: http://git.xilinx.com/cgi-bin/gitweb.cgi

[14] http://xilinx.wikidot.com/device-tree-generator

[15] ISE Design Suite 10.1 Release Notes and Installation Guide, Xilinx

[16] P. Tuma, A. Buble, "Overview of the CORBA Performance", Proceedings of the 2002

EurOpen.CZ Conference, Znojmo, Czech Republic, Sep 2002

[17] P. Brebner, et al.,"Middleware Benchmarking: Approaches, Results, Experiences,

Concurrency and Computation: Practice and Experience", Vol. 17, No. 15, pp. 1799-

1805, Wiley, Dec 2005

[18] T. Kalibera et al., "Automated Benchmarking and Analysis Tool", proceedings of First

International Conference on Performance Evaluation Methodologies and Tools

(VALUETOOLS 2006), Pisa, Italy, Copyright (C) ACM, ISBN 1-59593-504-5,

Oct 2006

[19] A. Buble, L. Bulej, P. Tuma, "CORBA Benchmarking: A Course with Hidden

Obstacles", proceedings of the 2003 International Parallel & Distributed Processing

Symposium (IPDPS 2003), Nice, France, Copyright (C) 2003 IEEE, Piscataway, New

Jersey, USA, ISBN 0-7695-1926-1, ISSN 1530-2075, pp. 279, CDROM

DATA/W18_PMEO_11.PDF, Apr 2003

[20] M. Joseph. Cognitive Radio – An integrated Agent Architecture for Software Defined

Radio. Thesis, Department of Teleinformatics, Royal Institute of Technology,

Stockholm (Sweden), 2000.

[21] F. K. Jondral, “Parameter Controlled Software Defined Radio”. Software Defined

Radio Technical Conference and Product Exposition, 2002.

[22] M. Joseph. The Software Radio Architecture. IEEE Communications Magazine, 33, 5,

p.26-38, 1995

[23] M. Joseph. The Software Defined Radio. IEEE National Telesystems Conference,

1992

[24] Software Communications Architecture Specification, Version 2.2.2, Joint Program

Executive Office (JPEO) Joint Tactical Radio System (JTRS), 15 May 2006

129

[25] N. Hayes, “Software Communications Architecture”, July 2003

[26] Common Object Request Broker Architecture (CORBA) Specification, Version 3.1,

OMG, January 2008 www.omg.org

[27] C. R. Aguayo Gonzalez, et al., “Open-Source SCA-Based Core Framework and Rapid

Development Tools Enable Software-Defined Radio Education and Research”, IEEE

Communications Magazine, Vol. 47, no. 10, October 2009

[28] http://www.crc.gc.ca/en/html/crc/home/research/satcom/rars/sdr/products/scari_open/s

cari_open 2010

[29] http://www.spectrumsignal.com/ 2010

[30] D. Nussbaum, et al., “Open Platform for Prototyping of Advanced Software Defined

Radio and Cognitive Radio Techniques”, 12th Euromicro Conference on Digital

System Design / Architecture, Methods and Tools, 2009

[31] Z. Miljanic et al., “The WINLAB Network Centric Cognitive Radio Hardware

Platform – WiNC2R”, Mobile Netw Appl (2008) 13:533 – 541

[32] Q. Zhang, A.B.J. Kokkeler, G.J.M. Smit, K.H.G. Walters, “Cognitive Radio baseband

processing on a reconfigurable platform”, Physical Communication (2009)

doi:10.1016/j.phycom.2009.02.008

[33] M. Joseph III. Cognitive Radio Architecture: The Engineering Foundation of Radio

XML. New Jersey: John Wiley & Sons, Inc.

[34] http://ossie.wireless.vt.edu

[35] Z. Miljanic, I. Seskar, K. Le and D. Raychaudhuri, “The WINLAB Network Centric

Cognitive Radio Hardware Platform – WiNC2R”, Mobile Netw Appl (2008) 13:533 –

541

[36] D. Nussbaum, K. Kalfallah, R. Knopp, C. Moy, A. Nafkha, P. Leray, J. Delorme, J.

Palicot, J. Martin, F. Clermidy, B. Mercier, R. Pacalet, “Open Platform for

Prototyping of Advanced Software Defined Radio and Cognitive Radio Techniques”,

12th Euromicro Conference on Digital System Design / Architecture, Methods and

Tools, 2009

[37] Q. Zhang, A.B.J. Kokkeler, G.J.M. Smit, K.H.G. Walters, “Cognitive Radio baseband

processing on a reconfigurable platform”, Physical Communication (2009)

doi:10.1016/j.phycom.2009.02.008

130

[38] A. Viebmann, et al., “FALCON, a software defined radio transceiver concept”, IEEE

International Symposium on Personal, Indoor and Mobile Radio Communications, no.

1, September 2006, pp. 1414-1418

[39] M. Horowitz, W. Dally, “How scaling will change processor architecture”,

Proceedings of the IEEE Solid-State Circuits Conference, 2004, Digest of Technical

Papers, ISSCC, pp. 132-133 (February 2004)

[40] T. Limberg, B. Ristau, and G. Fettweis, “A Real-Time Programming Model for

Heterogeneous MPSoCs”, Proceedings of the 8th international workshop on

Embedded Computer Systems: Architecture, Modeling and Simulation, Pages: 75 – 84,

Samos, Greece, 2008.

[41] S. Pasricha, N. D. Dutt, M. Ben-Romdhane, “BMSYN: Bus Matrix Communications

Architecture Synthesis for MPSoC”, IEEE Transaction on computer-aided design of

integrated circuits and systems, VOL. 26, NO. 8, August 2007

[42] V. Dumitriu, G. N. Khan, “Throughput-oriented NoC Topology Generation and

Analysis for High Performance SoCs”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, VOL. 17, NO. 10, October 2009

[43] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C.

Zissulescu, E. Deprettere, “Daedalus: Toward Composable Multimedia MP-SoC

Design”, Proceedings of the 45th annual Design Automation Conference, Anaheim,

California 2008

[44] ITRS http://www.itrs.net

[45] A.A. Jerraya and Wayne Wolf , “Multiprocessor Systems-on-Chip”, Morgan Kaufman

Pub, 2004

[46] L. Benini, G. De Micheli, “Networks on Chips: Technology and Tools”, Morgan

Kaufmann, 2006

[47] W. Wolf, A. A. Jerraya, G. Martin, “Multiprocessor System-on-Chip (MPSoC)

Technology, ” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on Volume 27, Issue 10, Oct. 2008, Page(s):1701 – 1713

[48] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, G. De Micheli, “Network-

on-Chip design and synthesis outlook”, Integration, the VLSI Journal, Volume 41,

Issue 3, May 2008, Pages 340-359

131

[49] K. Sankaralingam et al., “Distributed Microarchitectural Protocols in the TRIPS

Prototype Processor”, 39th Annual IEEE/ACM International Symposium on

Microarchitecture, Page: 480-491, 2006.

[50] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A.

Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, "An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm CMOS," in IEEE International Solid-State

Circuits Conference San Francisco, CA, USA: Digest of Technical Papers, 2007, pp.

5-7.

[51] M. Ito et al., “An 8640 MIPS SoC with Independent Power-Off Control of 8 CPUs

and 8 RAMs by An Automatic Parallelizing Compiler”, Solid-State Circuits

Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International 3-7

Feb. 2008 Page(s):90 – 598

[52] D.N. Truong et al.,” A 167-Processor Computational Platform in 65 nm CMOS”,

IEEE Journal of Solid State Circuits, pp.1130 – 1144, Vol.44, No.4, April 2009.

[53] Z. Wang, O. Hammami, “A Twenty-four Processors System on Chip FPGA Design

with On-Chip Network Connection”, IP SOC 2008, France.

[54] Z. Wang, O. Hammami, “External DDR2-Constrained NOC-Based 24-Processors

MPSOC Design and Implementation on Single FPGA”, IEEE International Design

and Test Workshop 2008, Tunisia.

[55] Z.Wang, Design and Multi-Technology Multi-objective Comparative Analysis of

Families of MPSOC PhD thesis, INPG, Nov. 2009.

[56] R.Allen and K.Kennedy, Optimizing Compilers for Modern Architectures: A

Dependence-based Approach, Morgan Kaufmann, 2001.

[57] A. Yunheung Paek Navarro et al., “An advanced compiler framework for non-cache-

coherent multiprocessors”, Parallel and Distributed Systems, IEEE Transactions on

Volume 13, Issue 3, March 2002 Page(s):241 - 259

[58] U.Bondhugula, A.Hartono, J.Ramanujam, P.Sadayappan, “A practical automatic

polyhedral parallelizer and locality optimizer”, PLDI '08: Proceedings of the 2008

ACM SIGPLAN conference on Programming language design and implementation,

June 2008.

132

[59] A.Kejariwal, A.V.Veidenbaum, A.Nicolau, M.Girkar, X.Tian, H.Saito On the

exploitation of loop-level parallelism in embedded applications Transactions on

Embedded Computing Systems (TECS) , Volume 8 Issue 2 January 2009

[60] M.KHaddour, Z.Wang and O.Hammami “Performance Evaluation and Analysis of

Parallel Software Implementations of TDES on a16-PE Embedded Multiprocessor

Platform”, IFIP network and service security conference, Paris 2009.

[61] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,

P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring it all to

software: RAW machines”, IEEE computer, 30(9):86-93, September 1997.

[62] Mechael Bedford Taylor, et al., “Evaluation of the Raw Microprocessor: An Exposed-

Wire-Delay Architecture for ILP and Streams”, Proceedings of the 31st annual

international symposium on Computer architecture, ISCA’04, June 2004.

[63] The Message Passing Interface Forum, http://www.mpi-forum.org

[64] http://openmp.org/wp/

[65] Arteris S.A. http://www.arteris.com

[66] OCP International Partnership http://www.ocpip.org

[67] Open Core Protocol Specification, Release 2.0, OCP-IP

[68] D.Culler , J.P. Singh , Anoop Gupta Parallel Computer Architecture: A

Hardware/Software Approach, Morgan Kauffman, 1998.

[69] R. Gupta, “Synchronization and communication costs of loop partitioning on shared-

memory multiprocessor systems”, IEEE Transactions on Parallel and Distributed

Systems, Volume 3, Issue 4, July 1992 Page(s):505 – 512.

[70] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors Scheduling and

Synchronization, Marcel Dekker , 2000.

[71] Xilinx http://www.xilinx.com

[72] P. Gai, G. Lipari, M. Di Natale, M. Duranti, A. Ferrari, “Support for multiprocessor

synchronization and resource sharing in system-on-programmable chips with softcores

SOC”, Conference, 2005. Proceedings. IEEE International 25-28 Sept. 2005

Page(s):109 - 110

133

[73] M. Monchiero, G. Palermo, C. Silvano, O. Villa, “Efficient Synchronization for

Embedded On-Chip Multiprocessors”, Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, Volume 14, Issue 10, Oct. 2006 Page(s):1049 - 1062

[74] S. Liu, J-L.Gaudiot, “Synchronization Mechanisms on Modern Multi-core

Architectures”, Asia-Pacific Computer Systems Architecture Conference 2007: 290-

303

[75] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, J. H. Anderson, “Real-

Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or

Spin?”, Real-Time and Embedded Technology and Applications Symposium, 2008.

RTAS '08. IEEE, 22-24 April 2008 Page(s):342 - 353

[76] S. Fide, S. Jenks, “Architecture optimizations for synchronization and communication

on chip multiprocessors”, Parallel and Distributed Processing, 2008. IPDPS 2008.

IEEE International Symposium on 14-18 April 2008 Page(s):1 - 8

[77] T. Ono, M. Greenstreet, “A modular synchronizing FIFO for NoCs Networks-on-

Chip”, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium on 10-13 May

2009 Page(s): 224 – 233

[78] A.Nicolau, G.Li, A.Kejariwal, “Techniques for Efficient Placement of

Synchronization Primitives”, Proceedings of the 14th ACM SIGPLAN symposium on

principles and practice of parallel programming, PPoPP’09, Pages 199-208, 2009.

[79] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[80] http://www.piplib.org/

[81] “The Polyhedral Loop Parallelizer: LooPo”, University of Passau,

http://www.infosun.fim.uni-passau.de/cl

[82] J.Cavacoz, G.Fursin, F.Agakov, E.Bonilla, M.F.P. O’Boyle, O.Temam, “Rapidly

Selecting Good Compiler Optimizations using Performance Counters”, Proceedings of

the International Symposium on Code Generation and Optimization”, Pages 185-197,

2007.

[83] K.D.Cooper, D.Subramanian, and L; Torczon, “Adaptive optimizing compilers for the

21st century”, Journal of Supercomputing, 23(1):7-22, August 2002.

134

[84] D.Parello, O.Temam, A.Cohen, J.Verdun, “Toward a Systematic, Pragmatic and

Architecture-Aware Program Optimization Process for Complex Processors”,

Proceedings of the 2004 ACM/IEEE conference on Supercomputing, Page 15, 2004.

[85] D.Barthou, S.Donadio, P.Carribault, A.Duchateau, W.Jalby, “Loop Optimization

using Compilation and Kernel Decomposition”, International Symposium on Code

Generation and Optimization”, 2007.

[86] N.Vasilache, A.Cohen, L.Pouchet, “Automatic Correction of Loop Transformations”,

Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques”, Pages 292-304, 2007.

[87] A.Hartono, M.Manikandan, C.Bastoul, A.Cohen, S. Krishnamoorthy, B.Norris,

J.Ramanujam, P.Sadayapppan, “Parametric Multi-Level Tiling of Imperfectly Nested

Loops”, Proceedings of the 23rd international conference on Supercomputing, Pages

147-157, 2009.

[88] C.Ancourt, F.Irigoin, Scanning polyhedra with DO loops, Proceedings of the third

ACM SIGPLAN symposium on Principles and practice of parallel programming,

p.39-50, April 21-24, 1991, Williamsburg, Virginia, United States

[89] C.Bastoul. Efficient code generation for automatic parallelization and optimization. In

ISPDC, page 23, 2003.

[90] C.Bastoul, Code Generation in the Polyhedral Model Is Easier Than You Think,

Proceedings of the 13th International Conference on Parallel Architectures and

Compilation Techniques, p.7-16, September 29-October 03, 2004.

[91] F. Irigoin, R. Triolet, Supernode partitioning, Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, p.319-329,

January 10-13, 1988, San Diego, California, United States.

[92] F.Quilleré , S.Rajopadhye , D.Wilde, Generation of Efficient Nested Loops from

Polyhedra, International Journal of Parallel Programming, v.28 n.5, p.469-498, Oct.

2000.

[93] TLoG: A Parameterized Tiled Loop Generator. Available at

http://www.cs.colostate.edu/MMAlpha/tiling/.

[94] E.S.Chung and al, ProtoFlex: Towards Scalable, Full-System Multiprocessor

Simulations Using FPGAs, ACM Tr

135

[95] R.Benmouhoub, O.Hammami, “MOCSOC: Multiprocessor on chip synthesis from

OCCAM”, SASIMI, 3-4 April, 2006.

[96] F.Sun, Ravi, S., Raghunathan, A., Jha, N.K., “Application-specific heterogeneous

multiprocessor synthesis using extensible processors”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Volume 25, Issue 9 Sept.

2006 Page(s):1589 – 1602

[97] I. Auge, F. Petrot, F. Donnet, P. Gomez, “Platform-based design from parallel C

specifications”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Volume 24, Issue 12, Dec. 2005 Page(s):1811 – 1826

[98] H. Nikolov, T. Stefanov, E. Deprettere, “Multi-processor system design with ESPAM

“, Proceedings of the 4th international conference Hardware/software codesign and

system synthesis, 2006. 22-25 Oct. 2006 Page(s):211 – 216

[99] H. Nikolov, T. Stefanov, E. Deprettere, “Systematic and Automated Multiprocessor

System Design, Programming, and Implementation”, Transactions on Computer-

Aided Design of Integrated Circuits and Systems, IEEE, Volume 27, Issue 3, March

2008.

[100] X.Li and O.Hammami, An Automatic Design Flow for Data Parallel and Pipelined

Signal Processing Applications on Embedded Multiprocessor with NoC: Application

to Cryptography , International Journal on Reconfigurable Computing, Hindawi, 2009.

[101] M. D. Hill, M. R. Marty, “Amdahl's Law in the Multicore Era”, ComputerVolume

41, Issue 7, July 2008 Page(s):33 - 38

[102] X. Sun, Y. Chen, “Reevaluating Amdahl’s law in the multicore era”, Journal of

Parallel and Distributed Computing, May. 2009.

[103] S.Schneider, J.Yeom and D.S.Nikolopoulos, “Programming Multiprocessors with

Explicitly Managed Memory Hierarchies”, IEEE Computer, pp.28-34, Dec.2009.

[104] L.Pouchet, U.Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam and P. Sadayappan,

“Hybrid Iterative and Model-Driven Optimization in the Polyhedral Model”, INRIA

Technical Report No. 6962, June 2009.

[105] R.Ben Mouhoub and O.Hammami, “MOCDEX: Multiprocessor on Chip

Multiobjective Design Space Exploration with Direct Execution”, EURASIP Journal

on Embedded Systems, vol. 2006, Article ID 54074, 14 pages, 2006.

136

[106] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system using graphics

processing unit”, IEEE Communication Magazine, Vol. 48, no. 3, March 2010.

[107] M. Palkovic, et al., “Future Software-Defined Radio Platforms and Mapping Flows ",

Signal Processing Magazine, IEEE Volume: 27 , Issue: 2 Digital Object Identifier:

10.1109/MSP.2009.935386, Publication Year: 2010 , Page(s): 22 - 33

[108] F. Clermidy et al., “A 477mW NoC-based digital baseband for MIMO 4G SDR “,

Digital Object Identifier: 10.1109/ISSCC.2010.5433920, Publication Year: 2010 ,

Page(s): 278 - 279

[109] L. Alaus et al., “Promising Technique of Parameterization For Reconfigurable Radio”,

the Common Operators Technique: Fundamentals and Examples, march 2009, Revue

Journal of Signal Processing Systems, Editor Springer New York ISSN 1939-8018

(Print) 1939-8115 (Online), DOI 10.1007/s11265-009-0353-4

[110] C. Moy, L. Doyle, Y. Sanada, “Cognitive Radio: From Equipment to Networks”,

Annals of Telecommunications, Editorial article of the Special issue on Cognitive

Radio, vol. 64, number 7-8, Aug. 2009 ; DOI : 10.1007/s12243-009-0125-y

[111] F. Harris, R. W. Lowdermilk, “Software defined radio: Part 22 in a series of tutorials

on instrumentation and measurement”, Instrumentation & Measurement Magazine,

IEEE, Volume: 13 , Issue: 1, Digital Object Identifier: 10.1109/MIM.2010.5399214,

Publication Year: 2010 , Page(s): 23 - 32

[112] M. Hasan et al., “A middleware based network hot swapping solution for SCA

compliant radio”, Consumer Electronics, IEEE Transactions on, Volume: 55 , Issue: 3,

Digital Object Identifier: 10.1109/TCE.2009.5277994, Publication Year: 2009 ,

Page(s): 1315 - 1321

[113] J. Guan, X. Ye, J. Gao, B. Wang, “The Flow of Software Defined Radio Waveform

Development Based on SCARI”, Wireless Communications, Networking and Mobile

Computing, 2009. WiCom '09. 5th International Conference on Digital Object,

Identifier: 10.1109/WICOM.2009.5302559, Publication Year: 2009 , Page(s): 1 - 4

[114] J. L. Shanton, “A software defined radio transformation”, Military Communications

Conference, 2009. MILCOM 2009. IEEE Digital Object Identifier:

10.1109/MILCOM.2009.5379729 Publication Year: 2009 , Page(s): 1 - 5

137

[115] T. Kempf, S. Wallentowitz, G. Ascheid, R. Leupers, H. Meyr, “A Workbench for

Analytical and Simulation Based Design Space Exploration of Software Defined

Radios”, VLSI Design, 2009 22nd International Conference on Digital Object

Identifier: 10.1109/VLSI.Design.2009.24 Publication Year: 2009 , Page(s): 281 - 286

[116] H.Wang, Thèse "Architectures reconfigurables à base d’opérateur CORDIC pour le

traitement du signal: Applications aux récepteurs MIMO", SCEE, Supelec, France,

April 28, 2009.

[117] S.T.Gul, Thèse "Optimization of Multi-standards Software Defined Radio Equipments:

A Common Operators Approach ", SCEE,

Supelec, France, April 28, 2009.

[118] A.Ykhlef, Thèse "Séparation aveugle de sources dans les systèmes de communication

MIMO", SCEE, Supelec, France, 2008

[119] L.Godard, Thèse "Modèle de Gestion Hiérarchique Distribuée pour la Reconfiguration

et la Prise de Décision dans les Équipements de Radio Cognitive", SCEE, Supelec,

France, 2008

[120] A.Al ghouwayel, "Intérêt des techniques de paramétrisation pour des architectures

radio logicielle reconfigurables", SCEE, Supelec, France, 2008

[121] B.Riwahi, Thèse "Analyse et réduction du Power Ratio des systèmes de

radiocommunications multi-antennes", SCEE, Supelec, France, 2008

[122] B. Le Guen, Thèse "Adaptation du contenu spatio-temporel des images pour un

codage par ondelettes", SCEE, Supelec, France, 2008

[123] M. Ghozzi, Thèse "Des terminaux multi modes aux terminaux intelligents sensibles à

leur environnement. Architecture d'un terminal Radio Cognitive", SCEE, Supelec,

France, 2008

[124] A. Kumar, S. Fernando, Y. Ha, B. Mesman, H. Corporaal, "Multi-Processor System-

Level Synthesis for Multiple Applications on Platform FPGA" Field Programmable

Logic and Applications, 2007. FPL 2007. International Conference on Digital Object

Identifier: 10.1109/FPL.2007.4380631 Publication Year: 2007, Page(s): 92 - 97

[125] K. Kokkinen, V. Turunen, M. Kosunen, S. Chaudhari, V. Koivunen, J. Ryynanen,

"FPGA implementation of autocorrelation-based feature detector for cognitive radio",

NORCHIP 2009

138

[126] D. Cabric, “Cognitive radios: System design perspective,” Ph.D dissertation,

University of California, Berkley, 2007

[127] S. Shantaraskul, K. Moessner, “Implementation of a genetic algorithm-based decision

making framework for opportunistic radio”, Communications, IET, March 26 2010,

Page: 495-506, ISSN: 1751-8626

[128] L. Biard, D. Noguet, T. Gernandt, P. Marques, A. Gameiro, “A hardware demonstrator

of a cognitive radio system using temporal opportunities”, Cognitive Radio Oriented

Wireless Networks and Communications, 2009. CROWNCOM’09. 4th International

Conference on

[129] J. M. Paul, D. E. Thomas, and A. S. Cassidy, “High-level modeling and simulation of

single-chip programmable heterogeneous multiprocessors”, ACM Transactions on

Design Automation of Electronic Systems, Volume 10, Issue 3, Page: 431 - 461, July

2005

[130] Y. Zhang, C. Gill, C. Lu, “Real-Time Performance and Middleware for

Multiprocessor and Multicore Linux Platforms”, Embedded and Real-Time

Computing Systems and Applications, 2009. RTCSA’09. 15th IEEE International

Conference on

[131] A. Greiner, E. Faure, N. Pouillon, D. Genius, “A generic hardware / software

communication middleware for streaming applications on shared memory

multiprocessor system-on-chip”, Specification & Design Languages, 2009. FDL 2009.

Forum on, ISSN: 1636-9874

[132] https://www.soclib.fr/trac/dev/wiki/Tools/Mwmr, 2010

[133] K. Goossens, J. Dielissen, A. Radulescu, “AEthereal network on chip: concepts,

architectures, and implementations”, Design & Test of Computers, Volume: 22, Issue:

5, IEEE, 2005

[134] C. Lee, S. Kim, and S. Ha, “A systematic design space exploration of MPSoC based

on synchronous data flow specification”, Journal of Signal Processing Systems,

Volume 58, Issue 2, February 2010.

[135] H.D. Kim, C.S. Jeong, “Object Clustering for High Performance Programming”,

Journal of Supercomputing, 19, 267-283, 2001

139

[136] D. Janadi Ram, A. Vijay Srinivas, P.Manjula Rani, "A model for Parallel

programming over CORBA", Journal of Parallel and Distributed Computing, Volume

64, Issue 11, Pages 1256-1269, 2004

[137] M. Huo, S. Majumdar, "Performance of parallel architectures for CORBA-based

systems", Proceedings of the 4th international workshop on Software and performance,

Pages: 249-253, 2004.

[138] J. Keinert et al., “SystemCoDesigner - an automatic ESL synthesis approach by design

space exploration and behavioral synthesis for streaming applications”, ACM

Transactions on Design Automation of Electronic Systems (TODAES), Volume 14,

Issue 1, Jan. 2009

[139] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O. Benny, B.

Lavigueur, D. Lo, G. Beltrame, V. Gagne and G. Nicolescu, "Parallel Programming

Models for a Multiprocessor SoC Platform Applied to Networking and Multimedia",

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, VOL. 14, NO. 7,

July 2006

[140] A. Andriahantenaina, A. Greiner, “Micro-Network for SoC: Implementation of a 32-

port SPIN network”, Design, Automation and Test in Europe (DATE’03), Munich,

Germany March 03-March 07, ISBN: 0-7695-1870-2

[141] K. Goossens, J. van Meerbergen, A. Peeters and P. Wielage “Networks on Silicon:

Combining Best-Effort and Guaranteed Services”, Design Automation and Test in

Europe (Date’02), 2002

[142] K. Goossens, J. Dielissen, and A. Radulescu, “ AEthereal Network on Chip: Concepts,

Architectures, and Implementations”, IEEE Design & Test, Volume 22, Issue 5, Pages:

414 - 421, 2005, ISSN: 0740-7454

[143] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed Bandwidth using

Looped Containers in Temporally Disjoint Networks within the Nostrum Network on

Chip”, Proceedings of the Conference on Design automation and test in Europe,

Volume 2, 2004

[144] N. Hoven, R. Tandra, and A. Sahai, “Some Fundamental Limits on Cognitive Radio”,

University of California at Berkeley, February 11, 2005

140

[145] T. Bjerregaard and J. Sparso, “A Router Architecture for Connection-Oriented Service

Guarantees in the MANGO Clockless Network-on-Chip”, in Proceedings of the

conference on Design, Automation and Test in Europe, 2005

141

List of publications

International conferences:

1. G.Tian and O.Hammami, “Performance Evaluation of Synchronization Mechanisms on 16 PE
NoC Based MPSOC”, IEEE ICECSI09

2. O.Hammami and G.Tian, “Performance Evaluation of Parallel Applications On Multiprocessor
Systems On chip”, the 14th IEEE Mediterranean Electrotechnical Conference, May, 2008,
Ajaccio

Posters

3. G.Tian and O.Hammami, “Automatic Parallelization Experiments on 16 PE NoC Based
MPSOC”, IEEE ASICON 2009 (Prize of Excellent Poster)

French conferences

4. O.Hammami, G.Tian, “Conception de système embarqué distribué à base de multiprocesseur
MPSOC paramétrable”, Innovation Technologique et Systèmes de Transport (ITT’09), Paris,
2009

5. O.Hammami, G.Tian, “Analyse des performances des communications embarquées dans un
environnement embarqué distribué à base de FPGA”, Innovation Technologique et Systèmes de
Transport (ITT’09), Paris, 2009

Journal

1. G.Tian, O.Hammami and D. Etiemble, “Performance Evaluation of Automatic Parallelization
and Multiprogramming on a NoC-based 16-PE Multi-core System on Chip”, Journal of
Systems Architecture (Submitted)

142

