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Directeur de thèse : Stéphane DUCASSE (Directeur de recherche – INRIA Lille)
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Abstract

Software evolves over time with the modification, addition and removal of new classes,
methods, functions, dependencies. A consequence is that behavior may not be placed in
the right packages and the software modularization is broken. A good organization of
classes into identifiable and collaborating packages eases the understanding, maintenance,
test and evolution of software systems. We argue that maintainers lack tool support for
understanding the concrete organization and for structuring packages within their context.

Our claim is that the maintenance of large software modularizations needs approaches
that help (i) understanding the structure at package level and assessing its quality; (ii)
identifying modularity problems; and (iii) take decisions and verify the impact of these
decisions.

In this thesis, we propose ECOO, an approach to help reengineers identify and un-
derstand structural problems in software architectures and to support the remodularization
activity. It concerns the three following research fields:

• Understanding package dependency problems. We propose visualizations to high-
light cyclic dependency problems at package level.

• Proposing dependencies to be changed for remodularization. The approach proposes
dependencies to break to make the system more modular.

• Analyzing impact of change. The approach proposes a change impact analysis to try
modifications before applying them on the real system.

The approaches presented in this thesis have been qualitatively and quantitatively val-
idated and results have been taken into account in the reengineering of analyzed systems.
The results we obtained demonstrate the usefulness of our approach.

Keywords: remodularization; dependency analysis; visualization; change impact anal-
ysis; package dependency





Résumé

Les logiciels évoluent au fil du temps avec la modification, l’ajout et la suppression de nou-
velles classes, méthodes, fonctions, dépendances. Une conséquence est que le comporte-
ment peut être placé dans de mauvais paquetages et casser la modularité du logiciel. Une
bonne organisation des classes dans des paquetages identifiables facilite la compréhension,
la maintenance, les tests et l’évolution des logiciels.

Nous soutenons que les responsables manquent d’outils pour assurer la remodularisa-
tion logicielle. La maintenance des logiciels nécessite des approches qui aident à (i) la
compréhension de la structure au niveau du paquetage et l’évaluation de sa qualité; (ii)
l’identification des problèmes de modularité, et (iii) la prise de décisions pour le change-
ment.

Dans cette thèse nous proposons ECOO, une approche qui aide la remodularisation.
Elle concerne les trois domaines de recherche suivants:

• Comprendre les problèmes de dépendance entre paquetages. Nous proposons des
visualisations mettant en évidence les dépendances cycliques au niveau des paque-
tages.

• Proposer des dépendances qui devraient être changées. L’approche propose des
dépendances à changer pour rendre le système plus modulaire.

• Analyser l’impact des changements. L’approche propose une analyse d’impact du
changement pour essayer les modifications avant de les appliquer sur le système
réel.

L’approche présentée dans cette thèse a été validée qualitativement et les résultats ont
été pris en compte dans la réingénierie des systèmes analysés. Les résultats obtenus dé-
montrent l’utilité de notre approche.

Mots clés: remodularisation; analyse de dépendance; visualisation; analyse d’impact;
dépendance de paquetage
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In a progressive country change is constant; ...change... is inevitable.

[Benjamin Disraeli]

At a Glance

This chapter introduces the domain and the context of our research. We explain
the remodularization problems in large software systems. In this context, we
place our approach and the solutions offered. We finish this chapter with a
summary of the contributions.
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1.1 Context

Software systems, and in particular, Object-Oriented systems are representations of the
real world. Like the real world, these systems are not static, they should evolve with new
features, new rules, new paradigms. . . and have to deal with constraints like memory con-
sumption, response delay, user interface, new features. . .

Software systems must be continuously updated or should risk becoming outdated and
irrelevant [Lehman 1996]. Moreover, it becomes difficult to analyze the complete software
systems because of their increasing size. For example, the Windows operating system
consists of more than 60 millions lines of code (500,000 pages printed double-face, about
16 times the Encyclopedia Universalis).

Most of the effort during a software system lifecycle is spent in supporting its evolu-
tion [Sommerville 1996]. It is well known that up to 80% of the total cost of software devel-
opment project is spent in maintenance and evolution of existing features [Davis 1995, Er-
likh 2000].

Software maintenance and evolution is hard because maintainers have to deal with large
source code systems. Reengineers have to spend a large part of their time understanding
the system. Corbi [Corbi 1989] estimates the portion of time invested in program compre-
hension to be between 50 and 60 %.

Maintaining such large applications is a trade-off between having to change a model
that nobody can understand in details and limiting the impact of changes. Purushothaman
and Perry found that 40% of bugs are introduced while fixing other bugs, because under-
standing the complete implications of a change in a large source code system is not really
possible [Purushothaman 2005]. A simple change can be scattered over the system because
of code duplication for example.

In short, software systems evolving during years are difficult to understand and change.
Maintainers need help maintaining them.

1.2 A Significant Modularization Problem

Software evolves over time with the modification, addition and removal of new classes,
methods, functions, and dependencies. A consequence is that some classes may not be
placed in the right packages and the software modularization is broken [Eick 2001, Gris-
wold 1993].

The studies of Eick [Eick 2001] shows that software code decays: as software systems
evolve over time to meet requirements and environment changes, with the modification,
addition and removal of new classes and dependencies, the software systems become more
complex and their modularization looses quality [Lehman 1985].

The following two laws of Lehman and Belady illustrate this situation [Lehman 1996].
They stress that software must continuously evolve to stay useful and that this evolution is
accompanied by an increase of complexity.

• Continuous Changes. “An E-type program (i.e., a software system that solves a
problem or implements a computer application in the real world) that is used must be
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continually adapted else it becomes progressively less satisfactory.” [Lehman 1996]

• Increasing Complexity. “As a program is evolved its complexity increases unless
work is done to maintain or reduce it.” [Lehman 1996]

These two laws, deduced from empirical studies, show the need and the difficulty of
software evolution. In addition, companies face the problem that most of the changes can-
not be predicted (unanticipated changes) because they are driven by the market or emerging
technologies.

As a consequence, software modularization must be maintained. In that respect, it
is then important to understand, to assess and to optimize the concrete organization of
packages and their relationships.

1.3 Package Granularity

Classes and their relationships represent the static structure of the software system and
maintainers need to understand this structure for maintaining and upgrading software sys-
tems. To solve the problem of complexity of large object-oriented software systems, soft-
ware developers organize classes into subsystems using the concepts of package. A pack-
age is a unit of reuse and deployment: it is built, tested, and released as a whole as soon
as one of its classes is changed, or used elsewhere [Martin 2000]. We name software mod-
ularization the organization of classes into multiple packages. Developers organize them
by different criteria, they are complex entities that represent code ownership, feature con-
tainment, team organization, deployment entities [Abreu 2001]. Modularity implies that
releasing a new package should impact the dependent packages in the building process.

A package provides and requires services from other packages. They can play cen-
tral roles or peripheral [Ducasse 2007]: some packages act as reference hubs, others as
authorities. Packages have different usage patterns, often depending on the clients that
use them [Abdeen 2008]. These multiple views of packages do not ease the understand-
ing and the maintenance. Researchers in object-oriented programming, have claimed that
a good organization of classes into identifiable and collaborating packages eases the un-
derstanding, maintenance, test and evolution of software systems [DeRemer 1976, My-
ers 1978, Yourdon 1979, Pressman 1994, Ponisio 2006a].

As we explained before, software system evolution makes the software modularization
complex and unclear. A reason of their complexity is that the source code is composed of
a large collection of interdependent classes that mutually communicate to produce desired
behavior.

It makes packages complex entities, they contain classes communicating inside and
outside their scopes. Understanding them and their role (e.g., core package, UI class con-
tainer, tests package . . . ) is important for reengineering because making changes to a pack-
age may impact the entire system depending on its role. Modifying a core package can
have a large impact, whereas modifying a peripheral package should have a low impact on
other packages. Maintainers need to know the role of a package before modifying it.



4 Chapter 1. Introduction

Software remodularization, as a software maintenance task, is done by maintainers and
more precisely by reengineers. This task is to make a better package organization after a
structure deterioration. Reengineers have to: (i) understand the structure at package level
and at class level and assess its quality; (ii) understand where are structural problems; and
(iii) take decisions and verify the impact of these decisions.

Package organization represents the backbone of large software systems. It is largely
acknowledged that packages should form layered structures [Bachmann 2000,Demeyer 2002].
One of the problems of remodularization is package cycles. Cycles between packages have
a high impact on the modularity of applications and break layered structure. Indeed, a
cycle in the package dependency graph implies all packages in the cycle to be tested, and
released together as they depend on each other. Martin [Martin 2000] proposes the Acyclic
Dependencies Principle (ADP), which states that there should not be any cycle between
packages.

While it is easy to detect package cycles as soon as they are introduced (as JooJ does on
classes [Melton 2007b]) and correct them, the problem is more difficult in legacy software
where no cycle assessment has been performed during the software development. It is
difficult to understand the interweaving of dependencies and difficult to devise an efficient
plan for breaking cycles.

Although languages such as Java make dependencies between packages explicit (i.e.,
via the import statement), reengineers lack tool support to understand the concrete organi-
zation and structure of packages within their context.

Existing approaches for understanding the structure of packages and software mod-
ularization [Ducasse 2005c, Lungu 2006, Ponisio 2006a, Ponisio 2006b, Ducasse 2007,
Dong 2007a] do not provide a fine-grained view of packages and do not provide infor-
mation about the remodularization effort. In these approaches, it is not easy to understand
the place of a package in the system, particularly when this system grows.

Moreover, developers need to make choices about future system structure such as
changing the dependencies between packages.

Existing approaches lack of (i) a deep understanding fine-grained package structure and
dependencies; (ii) an identification of package dependency problems; and (iii) an analyze
of the impact of a change on the package structure.

Research question: How can we identify structural problems in software ap-
plications and help reengineers in their remodularization task?

1.4 Our Approach in a Nutshell

Thesis: In large software architectures, we need to identify unwanted depen-
dencies between packages causing structural problems and help proposing
solutions to avoid modularity problem.

Many current software systems are being (or already are) implemented in object-oriented
languages (e.g., Java, C++ and Smalltalk); as a consequence, those systems will represent
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future legacy software systems to maintain. This thesis focuses on object-oriented software
systems.

Particularly, we work on the notion of packages, which is supported by Object oriented
languages such as Java, Smalltalk and C++. The idea behind package is to improve the
quality of software, e.g., adaptability and changeability, by organizing classes into identifi-
able groups. It helps engineers to easily understand, maintain, test and evolve large object-
oriented software systems [DeRemer 1976, Myers 1978, Yourdon 1979, Pressman 1994].

In this thesis, we propose new analyses to help engineers to understand and restructure
large existing applications (adapted visualizations and layer identifications) for software
evolution. In a first part, we propose approaches to support the understanding of software
applications at the level of packages. It provides information to highlight modularity prob-
lems (i.e., cycles between packages). Based on these analyses, an algorithm provides an
identification of layers based on a semi-automatic classification of package dependencies.
The semi-automatic approach is important because it supports the knowledge of the main-
tainer. Finally we provide an approach that allows maintainers to try transformations on
model of the software system and provide feedback on the impact of the suggested trans-
formations.

The approach is named ECOO for ECell, Ozone, Orion. It is centered on the need of the
reengineer to control changes. It provides visualizing tools and semi-automatic algorithm
to provide propositions for changes. Figure 1.1 provides the overview of the approach.
In this approach, we propose two visualizations EDSM and CYCLETABLE, which help in
understanding structural problems at package level, including ECELL to have a detailed
view of a dependency. We also propose OZONE an algorithm that computes dependencies
involved in cycles and propositions to remodularize software architecture. It uses a strategy
based on EDSM and CYCLETABLE heuristics. In addition, we propose ORION which
provides an infrastructure to analyze impact of changes in large software architecture. On
top of ORION, we already plugged EDSM, CYCLETABLE and OZONE.

These steps will be implemented on top of the Moose1 open-source reengineering en-
vironment and validated on multiple open-source applications.

1.5 Contributions

The novelty of this dissertation resides in providing a solution to resolve cycles between
packages in putting the reengineer at the center of the solution. In fact, the reengineer is the
sole “entity” which can analyze different solutions and take final decisions. In this context,
we made the following contributions:

1. Identifying cycle causes with Enriched Dependency Structural Matrix [Laval 2009a].
In this paper, we propose EDSM, an approach to enrich Dependency Structural Ma-
trix with ECELL, a view displaying the internals of a package dependency. We adapt
EDSM for software reengineering with contextual information about (i) the type of

1More information about Moose, see: http://www.moosetechnology.org/

http://www.moosetechnology.org/
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Figure 1.1: Our approach.

dependencies (inheritance, class reference, . . . ); (ii) the proportion of referencing en-
tities; and (iii) the proportion of referenced entities. We highlight strongly connected
component (SCC) and stress potentially simple fixes for cycles using coloring infor-
mation.

2. Cycles Assessment with CycleTable [Laval 2010b]. CYCLETABLE presents (i) a
heuristic to focus on shared dependencies between cycles in SCC; and (ii) a visu-
alization highlighting dependencies to efficiently remove cycles in the system. This
visualization is completed with ECELL (small views displaying the internals of a
dependency).

3. OZONE: Package Layered Structure Identification in presence of Cycles [Laval 2010a].
OZONE is an approach which provides (i) a strategy to highlight dependencies which
break Acyclic Dependency Principle; and (ii) an organization of package in multiple
layers even in presence of cycles. While our approach can be run automatically, it
also supports human inputs and constraints.

4. Supporting Simultaneous Versions for Software Evolution Assessment [Laval 2010c].
We propose ORION, an interactive prototyping tool for reengineering to simulate
changes and compare their impact on multiple versions of software source code
models. Our approach offers an interactive simulation of changes, reuses existing
assessment tools, and has the ability to hold multiple and branching versions si-
multaneously in memory. Specifically, we devise an infrastructure which optimizes



1.6. Structure of the Dissertation 7

memory usage of multiple versions for large models. This infrastructure uses an ex-
tension of the FAMIX source code meta-model but it is not limited to source code
analysis tools since it can be applied to models in general.

1.6 Structure of the Dissertation

This thesis is organized as follows:

Chapter 2 (p.9) analyzes the problem of the maintenance of large and complex object
oriented software modularizations. It also evaluates existing approaches that tried to solve
these problems.

Chapter 3, ECOO (p.25), presents the overall approach. It defines the terminology used
in the thesis. It also argues that a cycle between packages cannot be easily removed and
shows an overview of the complete approach explained in the next chapters.

Chapter 4, ECELL (p.39), proposes a visualization to understand at fine-grained level
the content of a package dependency. It provides information to help the reengineer to
understand at a glance the complexity of the dependency. The user study shows that it is
helpful to highlight dependency problems.

Chapter 5, EDSM (p.55), proposes a matrix-based visualization built around ECELLs
to provide micro-macro reading. It allows reengineers to identify some package architec-
ture problems by highlighting cycles between packages. It also helps during reengineering
task by providing information about easy-to-fix dependencies. The validation shows that
EDSM is a helpful approach that gives enough information to help reengineers take deci-
sions about potentially easy-to-fix dependencies.

Chapter 6, CYCLETABLE (p.83), proposes a cycle-centric visualization. By the decom-
position of Strongly Connected Component, it highlights dependencies that have a high
impact on cycles to help reengineers remove these cycles with minimal effort. The valida-
tion shows that CYCLETABLE is better than a node-link visualization for the detection of
this kind of dependency.

Chapter 7, OZONE (p.103), provides a semi-automatic algorithm based on our exper-
iments performed with EDSM and CYCLETABLE. It proposes dependencies that can be
removed to have a system without cycles. A layered view in presence of cycles is shown
to help engineers to evaluate these propositions. The case study shows that this approach
provides good results but can be improved with more specific parameters.
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Chapter 8, ORION (p.127), proposes an infrastructure to analyze impact of changes on
large software models. It provides an architecture where multiple versions of a software
model are loaded jointly and can be compared. ORION uses an optimized representation
that is shown to improve memory usage while the validation shows that the use of memory
is low and the access speed to entities is a bit slower than a sole model.

Chapter 9 (p.155) summarizes how our proposals satisfy the requirements identified in
Chapter 2 (p.9) for the remodularization of large software systems. The chapter ends with
an outlook on the opened future work.
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One never notices what has been done; one can only see what remains to be
done.

[Marie Curie]

At a Glance

This chapter introduces the work related to our research. We detail four do-
mains: (i) software visualization for structure assessment; (ii) remodulariza-
tion approaches; (iii) regression and integration testing; and (iv) software change
impact analysis. We show that these approaches do not provide enough infor-
mation to help reengineers remodularize software systems.

Keywords: Software visualization, analysis for remodularization, change analysis.
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2.1 Introduction

In Chapter 1 (p.1) we argue that a legacy system reengineer must perform four goals: he
should (i) identify problems; (ii) solve these problems; (iii) avoid the degradation of the
system; and (iv) minimize change costs. In this chapter we show that there is a lack of
approaches to perform these tasks. We organize this chapter in three sections corresponding
to the three domains related to our work: (i) software visualization for structure assessment;
(ii) remodularization approaches; and (iii) software change impact analysis.

Structure of the Chapter

In the next section we introduce related work to software visualization for structure as-
sessment. In Section 2.3 (p.14) we introduce related work to software analysis for remod-
ularization approaches. In Section 2.4 (p.17) we present related work to regression and
integration testing. In Section 2.5 (p.20) we detail related work to software change impact
analysis. Finally, Section 2.6 (p.23) summarizes the chapter.

2.2 Software Visualization for Structure Assessment

We identify two main types of approaches to obtain information about packages and their
relationships: metrics and visualizations. Metrics allow one to measure the quality of a
software entity (i.e., global software, package, class, method. . . ). Visualizations provide
visual information about the state of the software application. Our work is about visualizing
information, consequently, we do not provide a state of the art of metrics approaches.
But we participated in Squale deliverable [Balmas 2009b, Ducasse 2009a, Balmas 2009a,
Denier 2010a, Denier 2010b, Mordal-Manet 2011], which provide a quality model based
partly on metrics.

There is a significant effort to create efficient software visualizations to support the un-
derstanding and analyses of applications [Langelier 2005,Maletic 2001,Marcus 2003,Wet-
tel 2007a]. Lanza and Ducasse worked on system level understanding combining metrics
and visualization [Lanza 2003b] and class understanding support [Ducasse 2005b].

Many approaches, mainly based on visualization techniques [Healey 1992,Tufte 1997,
Tufte 2001, Ware 2000], have flourished to produce a representation of the software struc-
ture [Ducasse 2005b,Dong 2007b,Langelier 2005,Lanza 2003a,Lungu 2006,Sangal 2005,
Storey 1997, Wettel 2007a, Wettel 2007b, Wysseier 2005]; to show how properties are
spread in a population of packages [Ducasse 2006]; to identify software bugs and to
understand software evolution [D’Ambros 2006, D’Ambros 2007, Lanza 2001]. Other
approaches have also used metrics to assess software design quality [Lanza 2002, Mar-
tin 2002, Ponisio 2006b, Pinzger 2005]; to assess the effort of maintaining package struc-
ture [Hautus 2002]. Few of these approaches are for addressing the problem of package
understanding [Ducasse 2005c, Lungu 2006, Martin 2002, Ponisio 2006b].

In this section, we detail the main important visualization approaches related to our
work.
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Package Blueprint. It takes the focus of a package and shows how such package uses and
is used by other packages [Ducasse 2007]. It shows three different kinds of visualizations:
(i) packages used by a selected package; (ii) packages using a selected package; and (iii)
packages inheriting from a selected package. Figure 2.1 shows the principle (left) and a
view (center and right) of package blueprint.

It provides a fine-grained view because it shows the class relationships within pack-
ages. However, package blueprint lacks (1) a global view of the system structure and (2)
consequently, the identification of cycles at system level.
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Figure 2.1: (left) Principle of Package Blueprint with 4 packages. (right) The three visual-
ization provided by Package Blueprint at work.

Node-link Representation. Often node-link visualizations are used to show dependen-
cies among software entities. Several tools such as dotty/GraphViz [Gansner 2000], Wal-
rus [Munzner 2000] or Guess [Adar 2006] can be used. Using node-link visualization is
intuitive and has a fast learning curve. One problem with node-link visualization is finding
a layout scaling on large sets of nodes and dependencies: such a layout needs to preserve
the readability of nodes, the ease of navigation following dependencies, and to minimize
dependency crossing. Even then, modularity identification is not trivial.

Figure 2.2 shows the dependencies inside the core of Pharo1.0, composed of 70 pack-
ages. With a node-link visualization, it is difficult to see where are the problems. Here
package cycles are represented by red links. Figure 2.4 shows the same information pro-
vided in a Dependency Matrix. It is difficult to find a single layout which present well in
all cases.

Holten proposed Hierarchical Edges Bundles (HEB) (Figure 2.3), an approach to im-
prove the scalability of large hierarchical graph visualizations. Edges are bundled together
based on hierarchical information and it uses color schema to represent the flow of infor-
mation [Holt 2006, Holten 2009]. It has been applied to see the communication between
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Figure 2.2: Dependencies between 70 packages of Pharo 1.0.

classes grouped by packages in large systems and the bundling of edges produces less clut-
tered display. But, it is difficult to identify package dependencies patterns, as nodes are
positioned in circle, creating many link crossings. Henry et al [Henry 2007] have also
reported this limit.

Dependency Structural Matrix (DSM). Node-link visualizations are known to be in-
tuitive and to work well on sparse graphs, while matrices perform better especially for
detailed analysis of dense graphs [Ghoniem 2005]. Contrary to node-link, a DSM visual-
ization preserves the same structure whatever the data size. This feature enables the user to
dive fast into the representation using the normal process. Cycles remain clearly identified
by colored cells, there is no edge between packages, and so this reduces clutter in the vi-
sualization. However, DSM does not provide fine-grained information about dependencies
between packages. Classes involved in a dependency are not shown in cells of a DSM. Fig-
ure 2.4 shows the same information as in previous node-link view (Figure 2.2) in a colored
DSM.

Hybrid Approaches. Henry et al. propose NodeTrix (Figure 2.5), a hybrid graph vi-
sualization mixing matrices for local details and node-link visualization for the overall
structure [Henry 2007]. It is tailored for the globally sparse but locally dense graphs.
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Figure 2.3: Hierarchical Edges Bundles (HEB) where green represents caller and red rep-
resents called.

Figure 2.4: A Dependency Structural Matrix of Pharo 1.0: the blue square represents pack-
ages in cycle, the red cells packages in direct cycles.
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Abello and van Ham present Matrix Zoom, a scalable hybrid visualization for hierar-
chical sets of data, using matrices only for fine-grained details [Abello 2004]. The user
navigates into the hierarchy and can get some details on the focused subset in the matrix.

Figure 2.5: NodeTrix is a visualization mixing matrices and node-link.

As a Conclusion

Existing visualizations lack details for remodularization. These approaches
do not provide a fine-grained view of packages that would help maintainers
understand the causes of the problems: understanding package dependencies;
identifying unwanted dependencies; identifying package roles within a system

2.3 Software Analysis for Remodularization

It is a well-known practice to layer applications with bottom layers being more stable than
top layers [Martin 2002]. Until now few approaches have been proposed in practice to
identify layers: Mudpie [Vainsencher 2004] and Sotograph [Bischofberger 2004] represent
a first cut at identifying cycles between packages as well as package groups potentially
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representing layers. From the side of remodularization algorithms, lots of them where
defined for procedural languages [Koschke 2000]. However object-oriented programming
languages bring some specific problems linked with late-binding and the fact that a package
does not have to be systematically cohesive since it can be an extension of another one
[Wilde 1992].

Melton et al. [Melton 2007a] proposes an empirical study of cycles among classes.
They compute metrics to define better candidate dependencies to remove. They particularly
indicate that it is crucial to take into account the semantic of the software architecture to
avoid breaking dependencies that should not be broken.

2.3.1 Dependency Analysis

On Packages. Dong and Godfrey [Dong 2007a] propose an approach to study dependen-
cies between packages and to give a new meaning to packages with (1) characterization of
external properties of components, (ii) usage of resource and (iii) connectors. It helps the
maintainers to understand the nature of package dependencies. This kind of tool is useful
to understand a global system.

Lungu et al. [Lungu 2006] propose a collection of package patterns to help reengineers
understand large software system. They propose to recover architecture based on package
information and an automatic process to recover defined patterns. Then they propose a UI
to interact with the package structure. This approach is useful to understand the behavior
of a package in the system. It can provide information about the position of a package in
a layered organization. This kind of pattern could be used to add more information on a
package and to propose more information about the breaking of a dependency, for example
knowing that a package is autonomous is valuable information.

Bunch [Mancoridis 1999, Mitchell 2006] is a tool which remodularizes automatically
software. It proposes to decompose and to show an architectural-view of the system struc-
ture based on classes and function calls. It helps maintainers to understand relationships
between classes. This tool breaks the package concerns and does not provide the informa-
tion we need to make a layered organization of a package system.

PASTA [Hautus 2002] is a tool for analyzing the dependency graph of Java packages.
It focuses on detecting layers in the graph and consequently provides two heuristics to deal
with cycles. One considers all packages in the same strongly connected component as
a single package. The other heuristic selectively ignores some undesirable dependencies
until no more cycle is detected. Thus, PASTA reports on these undesirable dependencies
that should be removed to break cycles. The undesirable dependencies are selected by
computing a class relationship weight and selecting the minimal ones.

On Classes. The Kleinberg algorithm [Kleinberg 1999] defines authority and hub values
for each class in a system. A high authority means the class is used by a big part of the
system, and the hub value means the class uses multiple other classes in the system. Scan-
niello et al. [Scanniello 2010] propose an approach to build layers of classes based on this
algorithm. They identify relationships between classes and use the Kleinberg algorithm to
group them into layers. They propose a semi-automatic approach that allows the maintainer
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to manipulate the architecture and adds its own meaning of the system. Zaidman [Zaid-
man 2006] uses this algorithm on a dynamic analysis to measure the runtime coupling and
retrieve classes that need to be understood early on in the program comprehension process.

JooJ [Melton 2007b] is an eclipse plugin (not released) to detect and remove as early as
possible cycles between classes. The principle of JooJ is to highlight statements creating
cycles directly in the code editor. It computes the strongly connected components to detect
cycles among classes. It also computes an approximation of the minimal set of edges to
remove in order to make the dependency graph totally acyclic. This problem is called
minimum feedback arc set in the graph literature (explained in the next paragraph). It
highlights the minimum number of statements that one needs to remove in order to break
all cycles among classes. However, no study is made to validate this approach for cycle
removal. It is possible that the selected dependencies should not be removed because they
are valid in the domain of the program.

Feedback Arcset. In graph theory, a feedback arcset is a collection of edges that should
be removed to obtain an acyclic graph. The minimum feedback arcset is the minimal col-
lection of edges to remove to obtain an acyclic graph. This theoretical approach can-
not be used for three particular reasons: (i) it is an NP-complete problem (optimized by
Kann [Kann 1992] to become APX-hard). Some approaches propose heuristics to compute
the Feedback Arc Set Problem in reasonable amount of time [Eades 1993]; (ii) it does not
take into account the semantic of the software structure. Optimizing a graph is not equiva-
lent to an acceptable solution at the software level; and (iii) the goal of breaking cycles in
software applications is not to break a minimal set of links, but the more pertinent ones.

2.3.2 Search-based Software Engineering

Some approaches based on Formal Concept Analysis [Snelting 1998] show that such an
analysis can be used to identify modules. However the presented examples are small and
not representative of real code. Other clustering algorithms [Jain 1988, Jain 1999] have
been proposed to identify modules [Mancoridis 1999, Mitchell 2006]. Once again, the
specific characteristics of object-oriented programming are not taken into account, like late
binding.

Lutz [Lutz 2001] proposes a hierarchical decomposition of a software system. It uses
a genetic algorithm to find the best way to group components of the system into coarse-
grained components. Mudpie [Vainsencher 2004] is a tool to help the maintenance of
software system by bringing out Strongly Connected Components (defined in Section 3.3,
p.28) and focusing on dependencies in cycle. Approaches exist to decompose a system by
using genetic heuristics [Abdeen 2009].

Mancoridis and Mitchell [Mancoridis 1998, Mancoridis 1999] introduced a search-
based approach based on hill-climbing clustering technique to cluster software modules
(classes in our context). Their approach starts with an initial random modularization. The
clustering algorithm clusters each of the result and selects the result with the highest quality
as the suboptimal solution. Recently, they used Simulated Annealing technique to optimize
resulting clusters [Mitchell 2002, Mitchell 2006, Mitchell 2008]. Their optimization ap-
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proach creates new modularizations by moving randomly some classes (a block of classes)
to new clusters. The goal of their approach is increasing cluster internal dependencies. The
main problem is the random move of classes, it breaks the coarse-grained architecture of
the system [Abdeen 2009].

Harman et al. [Harman 2002] proposed genetic algorithms to partition software classes
into subsystems (i.e., packages). Their algorithms start with an initial population of modu-
larizations. These algorithms apply genetic operators on packages to modify current mod-
ularizations and/or create new modularizations into the population.

The goal of both approaches is increasing package internal dependencies. For that, they
forget the idea that a package is a structural entity that engineer use to group classes. These
approaches move classes without taking into account the package structure.

As a Conclusion

These approaches are often not customized for object-oriented applications.
For example, they do not take into account the late binding paradigm. Existing
solutions produce new architecture of the software application automatically,
which is quite impossible to analyze. They break the meaning of the architec-
ture and reengineers need to learn a new architecture. For example, Falleri et
al. [Falleri 2008] show that Relational Concept Analysis, applied to rich UML
descriptions including references between concepts produce a huge number of
artifacts.

2.4 Regression and Integration Testing

Regression and Integration testing consists on combining and testing multiple components
as a group. This phase is important for the evolution of software application. For object-
oriented programs, one of the problems is the interaction between components. These
components can be at different levels: algorithmic level, class level, cluster level and sys-
tem level [Chen 2001, Frankl 1994].

When integrating components, it is sometimes difficult to know the order of integration
because of heavy interaction amongst them. Consequently, engineers can have trouble
integrating components, which affect the quality and reliability of the application.

Researchers worked on strategies to find an optimal order of components for testing.
It means first of all understanding communication and coordination between components.
Then, based on this knowledge, strategies will find an order of components, which will
create stubs to ensure the integration process.

Chan et al. [Chan 2002] propose an overview of integration testing techniques at the
cluster level (i.e., multiple classes in interaction). The conclusion is that all the listed
approaches used for object-oriented programs are simply extensions of techniques used
in the imperative programming techniques. Shashank et al. provide a literature survey of
integration testing in component-based software engineering [Shashank 2010]. The authors
show that there are four main challenges: (i) lack of source code, (ii) heterogeneity of
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the components, (iii) incomplete interface specification, and (iv) difficulty in identifying
dependencies.

For the last challenge, researchers work on approaches close to remodularization work.
This challenge is now detailed.

2.4.1 Understanding Interactions between Components

In direct relation with our work, two challenges are related: (i) understanding communi-
cation and coordination between components, and (ii) finding the better strategy to order
component integration [Briand 2003].

In remodularization domain, we want to understand the interaction between compo-
nents to make them more modular (i.e., changing the structure of the application). Whereas
in regression and integration testing researchers want to understand the interaction between
components to find an integration order (i.e., defining components more important than
others).

To ensure the integration process when classes communicate heavily, the system build
class stubs to avoid integration errors, then replace these stubs by the real classes. Re-
searchers work on minimizing the number of these stubs. Numerous approaches provide
algorithms to order dependencies among classes [Briand 2001, Kung 1996, Labiche 2000,
Le Traon 2000, Tai 1997] and minimize the number of stubs needed. Kung et al. propose
the first paper about the integration problem [Kung 1995]. Limited to a class dependency
graph with no cycles, they propose a topological sorting of classes. If there are cycles
between classes, they propose to break the cycles performing a random selection.

2.4.2 Solving Integration Problems

When there are cycles between classes or components to integrate, the problems are to
choose the classes to integrate first. Some approaches in the regression and integration
testing domain have been proposed to minimize the testing effort. This effort can be com-
puted from the number of stub creation, and from stub complexity.

Kung et al. After proposing a simple strategy to order classes [Kung 1995], Kung et al.
worked on a better strategy for integration testing [Kung 1996]. They differentiate three
kinds of dependencies: inheritance, aggregation and association, and they argue that in
each cycle, there is at least an association dependency. They propose to search all strongly
connected components (SCC) [Tarjan 1972], and break cycles by removing associations
because it is the weakest of the three kinds of dependencies.

Tai and Daniels propose an algorithm that gives two numbers to each class of the sys-
tem: a major number based on aggregation and inheritance, and a minor number based
on associations [Tai 1997]. It uses the same idea as Kung et al. [Kung 1996] that already
differentiate association from inheritance and aggregation. The strategy build a layered
architecture based on the major number where classes in a layer n+1 depends on classes
in layer n. Then to break cycles, a weight function is computed on each layer with the sum
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of incoming and outgoing association of classes in the same layer. The strategy is to create
stubs for classes with a high weight, because the higher the weight is, the more cycles are
broken.

Le Traon et al. propose a model to break strongly connected components (SCC) and
build stub based on the generated acyclic graph [Le Traon 2000]. The algorithm is an im-
provement of the Bourdoncle algorithm [Bourdoncle 1993]. It computes a weight for each
vertex in a SCC based on incoming and outgoing dependencies inside the cycle. Then, in
each SCC, it selects the vertex with maximal weight and removes incoming dependencies.
The goal of this algorithm is to minimize stub creation in testing.

Briand et al. propose a strategy that combines the two previous strategies to address
some of their drawbacks [Briand 2001]. The strategy computes Strongly Connected Com-
ponents like Le Traon et al. [Le Traon 2000]. Consequently, it computes the weight of
each association dependency based on the Tai and Daniels algorithm [Tai 1997], and fi-
nally break the dependency with the highest weight.

Genetic Algorithm. Briand et al. propose an algorithm using inter-class coupling mea-
surements to define an optimal order of class integration [Briand 2002]. This algorithm
tries to recover the best choice for stub minimization. In [Da Veiga Cabral 2010], authors
propose to optimize this algorithm by refining the cost function of the genetic algorithm
with a multi-objective optimization algorithm.

Comparative Studies. Le Hanh et al. [Hanh 2001] propose an experimental comparison
of four approaches [Kung 1996, Tai 1997, Le Traon 2000, Briand 2002] to break SCC for
stub minimization. In [Briand 2003], Briand et al. review and compare three strategies
[Tai 1997, Le Traon 2000, Briand 2001] for breaking cycles based on graph. This study
shows: (i) Tai and Daniels’s algorithm [Tai 1997] creates unnecessary stubs, (ii) Le Traon
et al.’s algorithm [Le Traon 2000] optimizes the number of stubs but produces arbitrary
choice, and (iii) Briand et al.’s algorithm [Briand 2001] has not these kind of problems.

In [Bansal 2009], Bansal et al. propose a comparison of various graph-based strategies.
They show that genetic algorithm find optimal solutions but must be run many times. They
also show that Le Traon et al.’s algorithm [Le Traon 2000] minimize the number of stubs
compared to other algorithm, which is the goal of the algorithm.

As we will show in Chapter 7 (p.103) such algorithms are close to our solution.

As a Conclusion

In Regression and Integration Testing domain, researchers work particularly
on minimizing the testing effort by stubbing elements that have the minimal
impact on the system. Researchers from this domain produce algorithm that
could be used to understand remodularization at package level.
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2.5 Software Change Impact Analysis

The domain of change impact analysis deals with computing (and often predicting) the
effects of changes on a system. We structure this domain in two parts in relation with our
work that we want to compare to: change impact analysis and versioning mechanism.

2.5.1 Program Slicing

Program slicing is an approach extracting all instructions that have an impact on the value
of a specific variable at a specific point of a program. It is used to identify change impact
at low level (i.e., variable and instruction).

CodeSurfer [Anderson 2001, Anderson 2005] is a tool that provides a number of anal-
yses, including pointer analysis, and creates a dependency graph of the program. It allows
the user to browse dependencies. It uses program slicing to understand which part of a
program is impacted by a variable, and which are the parts of a program that can impact
a particular variable or a given source-code element in general [Welser 1984, Tip 1995,
Bohner 1996]. In the context of software maintenance, such program slicing techniques
have been widely adopted for procedural source code [Gallagher 1991].

Program slicing is dedicated to low-level analysis. Our work is at the architecture level
(i.e., classes and packages).

2.5.2 Change Impact Analysis

Compared to Software Configuration Management (SCM) and Revision Control System,
which supports change persistence and comparison, the domain of change impact analysis
deals with computing (and often predicting) the effect of changes on a system. Our ap-
proach is orthogonal to change impact analysis. Tools performing change impact analysis
can be used complementary to our infrastructure to perform change assessment on a ver-
sion and guide the reengineer when creating new versions and testing new changes. We
structure the domain in two parts: change model and change assessment, which provides
tools and analyses (metrics, visualization, change prediction).

Change Model. Smalltalk basic mechanism to record changes dynamically is called a
changeset. A changeset captures a list of elementary changes that can be manipulated,
saved to files and re-applied if necessary. However, in Smalltalk systems, only one version
of a system can be refactored at a time, even if changeset containing several versions can
be manipulated. The same happens with Cheops and change-oriented methodology and
IDES [Ebraert 2009]. In [Robbes 2008], the author argues that managing changes as first-
class entities is better than traditional approaches. The implementation of this approach
records fine-grained changes and provides a better comprehension of changes history. This
approach is applied on a single version of source code.

Some models exist to support changes as a part of development. The Prism Model [Mad-
havji 1992] proposes a software development environment to support change impact anal-
ysis. This work introduces a model of change based on deltas that supports incremental
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changes. As it is based on deltas, it is not really possible to analyze different models in
parallel.

Another work in change management system is Worlds [Warth 2008]. It is a language
construct that reifies the notion of program state. The author notes that when a part of a
program modifies an object, all elements referencing this object are affected. Worlds has
been created to control the scope of side effects. With the same idea to control side-effect
but restricted to source code, ChangeBoxes [Denker 2007] propose a mechanism to make
changes as first-class entities. ChangeBoxes support concurrent views of software artifacts
in the same running system. We can manipulate ChangeBoxes to control the scope of a
change at runtime.

Other work [Johnson 1988,MORmSETT 1993] exists in this domain, but they manage
only a single branch. Worlds manage several parallel universes. The limitation of Worlds
is that it only captures the in-memory side effects. This work is a source-code-based ap-
proach.

A history-based approach is Hismo [Gîrba 2005a], a meta-model for software evolu-
tion. This approach is based on the notion of history as a sequence of versions. A version
is a snapshot taken at a particular moment. It makes version from the past based on a copy
approach: each version is a model. Hismo is a study of the past. In [Gîrba 2005a], the
author proposes some metrics to compare elements that have changed.

Han [Han 1997] considers system components (variable, method, and class) that will
be impacted by a change. The approach is focused on how the system reacts to a change.
Links between these components are association (S), aggregation (G), inheritance (H), and
invocation (I). Change impact is computed based on the value of a boolean expression. For
example a change is formalized as S~H+G, which means that a change is applied on all
element associations without inheritance plus all element aggregations. This work has been
reused in [Abdi 2006]. The class-based change impact model [Chaumun 2002] is based on
the same semantics, with a more general model. It analyses history and identifies classes
that are likely to change often.

In [Mens 2006], the authors propose taxonomy of model transformation for helping
developers who want to choose a model transformation approach. In the enumeration of
characteristics of a model transformation, there is no information about multiple models
management.

Other models exist as [Abdi 2009] which proposes a technique based on a probabilistic
model, a Bayesian network is used to analyze the impact of an entry scenario.

Change Assessment. [Li 1996] and [Lee 1998] propose an algorithm to analyze change
impact based on the detection of inheritance, encapsulation, and polymorphism changes.
The algorithm proposes an order of changes based on the repercussion on self, children
and clients. This method is the first one applied to an object model. It is also reserved to
classes.

Some approaches try to predict changeability, they assess the impact of a change to a
code location by looking at previous change impact upon this location. [Cai 2007] presents
a decision-tree-based framework to assess design modularization for changeability. It
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formalizes design evolution problem as decision problems, model designs and potential
changes using augmented constraint networks (ACN). [Antoniol 1999] uses metrics com-
parison to try to predict the size of evolving Object-oriented systems based on the analysis
of classes impacted by a change. A change is computed as a number of lines of code added
or modified, but they do not provide the possibility to compare some versions and to choose
one.

Other approaches propose change impact analysis based on test regression [Ryder 2001].
[Kung 1994] proposes a change impact analysis tool for regression tests. In this paper they
define a classification of changes based on inheritance, association and aggregation. They
also define formal algorithms to compute impacted classes and ripple effects. The Chianti
tool [Ren 2004] is able to identify tests, which run over the changed source code. They can
be run in priority to test regression in the system. For each affected test, Chianti reports the
set of related changes.

2.5.3 Software Configuration Management and Revision Control

Software Configuration Management (SCM) is the discipline of managing the evolution of
a software system. It integrates Revision control, which is the management of changes. It
is the predominant approach to save software evolution. It allows one to manage high-level
abstraction evolution.

The majority of revision control systems uses a diff-based approach. They only store
changes so they are efficient in memory. The domain of revision control does not provide
a model that allows us to navigate between multiple versions of a model. In fact, this is not
a real goal of the revision control domain.

In [Buckley 2005], three tools are compared: Refactoring Browser, CVS and eLiza.
A refactoring browser transforms source code. It has basic undo mechanism but does not
manage versions. So, it is really useful for refactoring source code but it works on a current
model of source code. It is not really adapted for the application of various analyses on
different versions. CVS (Concurrent Versions System) works on file system and supports
parallel changes. However since CVS does not include a domain model of the information
contained in the files they manipulate, it is difficult to use a CVS model to perform multiple
analyses on various versions. It is possible but limited. The third system compared is eLiza.
It has been created to provide systems that would adapt to changes in their operational
environment. eLiza provides only one active configuration, which provides a sequential
versioning system.

Molhado [Nguyen 2005a] is a SCM framework and infrastructure, which provides the
possibility to build version and SCM services for objects, as main SCM systems provide
only versioning for files. As it is flexible, the authors work on several specific SCM built
on Molhado: web-based application [Nguyen 2005b], refactoring aware [Dig 2007] to
manage changes and merge branches. The main topic of Molhado is to provide a SCM
system based on logical abstraction, without the concrete level of files management.
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As a Conclusion

Remodularization requires engineers to make choices about future system
structure such as changing the dependencies between packages. While soft-
ware maintainers would greatly benefit from the possibility to assess different
choices to select the most adequate changes before changing the source code.
There is no approach that supports the navigation and manipulation of multi-
ple versions simultaneously in memory.

2.6 Summary

In this chapter we show that the problems of software evolution are many and varied.
Software system remodularization is a challenge and needs specific approaches to ensure
the evolution of the system. We consider three particular domains to help reengineers in
their task: (i) visualization approaches; (ii) software analysis approaches; and (iii) change
impact analysis approaches.

Current visualizations do not provide coarse and fine-grained information to help en-
gineers (i) understand the system; and (ii) solve modularity problems (i.e., cycles between
packages). Software analysis approaches do not take enough into account the high level
structure of the software application. Regression and integration testing provides inter-
esting algorithms but they are not used for helping reengineers. Change impact analysis
approaches do not provide a good enough infrastructure to help reengineers taking deci-
sions.

The next chapter introduces ECOO, our approach to answer these problems. In this
chapter, we will explain the challenges stressed by the approach, the terminology used and
the four part of the approach.
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The most exciting phrase to hear in science, the one that heralds the most
discoveries, is not ’Eureka!’ but ’That’s funny...’

[Isaac Asimov]

At a Glance

This chapter introduces the global approach defended in this thesis. This ap-
proach is a composition of four parts. We explain each part and how together
they represent the ECOO approach. We also explain the terminology used in
the following of the document.

Keywords: Package granularity, modularity problem, Cycle understanding, reengi-
neering help.
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3.1 Introduction

In Chapter 2 (p.9) we show the lack of approach to perform the four reengineering goals
(identify problems, solve these problems, avoid the regression of the system and minimize
change costs). Our research is related to these four points. In this chapter, we present our
global approach named ECOO to answer these four points at package level.

Structure of the Chapter

In the next section we introduce the challenges addressed by the ECOO approach. In Sec-
tion 3.3 (p.28) we introduce the terminology used in the whole thesis. Section 3.4 (p.31)
introduces the ECOO approach, explains the principle of the approach and the four handled
axes. We explain in Section 3.5 (p.36) how the approach is implemented and which tools
are used. Section 3.6 (p.37) explains the validation methodology, which is a validation
for each axis rather than a global validation. Finally, Section 3.7 (p.37) summarizes the
chapter.

3.2 Package Level Challenges

We develop an approach to make reengineering, and particularly remodularization more
effective. Our goal is to provide a global approach for software architecture remodulariza-
tion. Our work provides solution to five challenges of software remodularization:

Architecture Analysis. Legacy systems are often systems that have evolved for many
years with several changes of development team. The two factors, age of the software and
turnover of the development teams involve a significant loss of knowledge and architecture
deterioration: code duplication, undesirable dependencies between entities, architecture
less modular. Therefore, understanding how the package architecture is built, the internal
and external package communications is a challenge with the aim of understanding the
overall application structure.

The bigger an application is, the less easy to find are problems of structure. It becomes
difficult to identify sources of problems. It is therefore important to understand the organi-
zation of packages and their relationships. Packages are complex structures because they
contain classes and methods in relation to themselves and with the outside.

Challenge: Architecture becomes less modular with time. We need to under-
stand the software architecture to ensure the evolution.

The approach proposed in this thesis is based on static analysis of the architecture. We
provide visualizations to highlight (i) architectural layers; and (ii) architectural problems.

Cycle Understanding. A cycle between multiple packages means that these packages
are not independent of each other. In a modular system, it is considered as an architectural
problem. The challenge is how to understand the reasons of a cycle between multiple
packages to help engineers to understand and resolve modularity problems.
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Challenge: Cycles break package modularity. We need to understand causes
of cycles to remove them.

The approach in this thesis proposes a visualization allowing the developer to identify
cycles and understand dependencies in details.

Our visualization is based on the principle that a link between two packages is defined
by a set of classes and methods linked by four types of dependency: inheritance, method
invocation, class reference, and class extension.

Package Layers Understanding. Package organization represents the backbone of large
software systems. It is usually agreed that packages should form layered structures. How-
ever, identifying such layered structures is difficult since packages are often in cycles (when
there is a cycle, we cannot differentiate multiple layers).

Ideally, software is composed of several layers of packages: the first layer, named
“Kernel”, then the layers above depend on the layers below. The challenge here is to
understand the package layer structure in presence of cycles and to propose solutions to
recover modularity.

Challenge: A layered Architecture ensures a good modularity. We need to
identify layers even in presence of cycles.

The approach in this thesis identifies unwanted dependencies (i.e., dependencies which
break the layered structure) in such systems and build the layered structure considering
unwanted dependencies.

Change Impact Analysis. When reengineering software systems, maintainers should be
able to assess and compare multiple change scenarios for a given goal, so as to choose the
most pertinent one. When changing a legacy system, it is difficult to predict the impact on
the functionality and structure of the software. Thus, remodularization is made by iterating
small changes followed by audits.

Challenge: To ensure that a change in the software structure is adapted to the
reengineer goal, the challenge is to provide a system that can give feedback
on changes and can manage multiple parallel changes.

The approach in this thesis proposes the ORION meta-model which allows one to create
versions of a same model combined with changes in the structure to compare and analyze
the impacts of change.

Help for Decision. With the architecture analysis, cycle analysis, layers analysis and
impact assessment tools, there is only one step to reach the help for decision. Thus, the
goal is to offer possible solutions to developer, that he can validate or invalidate based on
his knowledge of the software.
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Challenge: The best way of evolution is when the reengineer take the decision
and understand the evolution. The challenge is to help the reengineer to take
the best decision for a specific problem

The approach in this thesis has for goal to help engineers in their task. We provide tools
that analyze software system and provide help for decision to remodularize it by targeting
cycles between packages.

3.3 Terminology

In this section, we define the terminology used in this thesis.

Kinds of Dependencies. At the package level in object-oriented system, we concentrate
on the following kinds of dependencies: method invocation, class access or reference, class
inheritance, and class extension.

• Method invocation. There is a method invocation that goes from a class A to a
class B if there is at least one method in class A invoking one method of class B. In
dynamic typed languages (e.g., Smalltalk), we often cannot statically determine the
class of the invoked method (i.e., the class of the target object in the run-time). Our
strategy consists in resolving candidate classes (i.e., every class within which there
is a method that has the invoked method signature) and filtering them by pertinence.
In real case, invocations are commonly associated with a class reference.

• Class access and reference. There is a class access going from a class A to a class
B if class B is explicitly used in class A code as a type of an instance and/or a class
variable, or a variable/parameter type.

• Class inheritance. There is a class inheritance dependency between class A and class
B if class A is a subclass of class B.

• Class extension. A class extension is a method defined in a package, for which
the class is defined in a different package [Bergel 2005]. Class extensions exist in
Smalltalk, CLOS, Ruby, Python, Objective-C and C#3. They offer a convenient way
to incrementally modify existing classes when subclassing is inappropriate. They
support the layering of applications by grouping with a package its extensions to
other packages. AspectJ inter-type declarations offer a similar mechanism. Fig-
ure 3.1 shows the class extension principle, particularly the inversion of the depen-
dency when there is a class extension.

Package Dependency. A dependency from package A to package B is the union of all
kinds of dependencies from classes in package A to classes in package B. In this context,
A is called client of package B and package B is called provider of package A.
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(b) Dependency with class extension.

Figure 3.1: Class extension principle.

Architecture Remodularization. It is the set of techniques to make a more modular
system. The goal is to make the software flexible, configurable and scalable. The issue of
modularity is particularly true for legacy systems: critical systems that have evolved over
the years.

Acyclic Dependency Principle (ADP). Martin defines the Acyclic Dependencies Princi-
ple (ADP) [Martin 2000]. ADP proposes that the graph of dependencies between packages
should be a directed acyclic graph: there should not be any cycle between packages.

Layered Architecture. For Bachmann et al. [Bachmann 2000], there are two properties
in a layered architecture: (i) a layer B is below a layer A if elements (i.e., packages) in
layer A can use elements in layer B; and (ii) layer A can use only packages below it (in
Figure 3.2, layer B). In Figure 3.2 the dotted dependency from Kernel to pA should not
exist. Szyperski [Szyperski 1998] and Bachmann [Bachmann 2000] make a distinction
between Closed layering and Open layering. In closed layering, the implementation of
one layer should only depend on the layer directly below. In this case, in Figure 3.2 the
dependency from pE to Kernel should not exist. In open layering, any lower layer may be
used.

A layered system offers good properties of modifiability and portability. It means that
there are no cycles between packages and that dependencies do not cross non-contiguous
layers [Bachmann 2000].

Strongly Connected Component (SCC). In a graph, it is the maximal set of nodes (here,
packages) that depend on each other ones. In Figure 3.3, all nodes are in a single SCC. We
use the Tarjan SCC algorithm [Tarjan 1972] as a reference for our implementation.
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Figure 3.3: Sample SCC.

Cycle. It is a circular dependency between two or more packages. We distinguish a SCC
and a cycle. A SCC is a collection of nodes, a cycle is a path that comes back to its origin.
We distinguish two kinds of cycles:

• Direct cycle. It represents a cycle between two packages. In Figure 3.3, C and D are
in a direct cycle because there is one dependency from C to D, and one dependency
from D to C.

• Indirect cycle. It represents a cycle between more than two packages. In Figure 3.3,
A, B and C are in indirect cycle. A, B and E are also in indirect cycle.

Layer-breaking Dependency. It is a dependency that (i) belongs to a cycle; and (ii) seems
the best dependency to remove to be able to build an “adequate” layered organization. In
Figure 3.2, the dependency from “Kernel” to “pA” breaks the layered architecture.

Minimal Cycle. It is a cycle with no node (here no package) appearing more than once
when listing the sequence of nodes in the cycle. In graph theory, it is named a simple



3.4. ECOO: Package Cycle Remediation 31

A B

E

D

C

A B

C

Figure 3.4: Sample SCC (Figure 3.3) decomposed into three minimal cycles.

cycle. In Figure 3.4, A-B-E and A-B-C are two different minimal cycles, but A-B-C-D-C
is not because C is present twice. A-B-C-D-C can be reconstructed with the two minimal
cycle A-B-C and C-D. To retrieve minimal cycles, some algorithms exist as [Tiernan 1970,
Weinblatt 1972]. We use the algorithm proposed by Falleri et al. [Falleri 2010], which is
the most recent.

Shared Dependency. It is a dependency presents in at least two minimal cycles. In Fig-
ure 3.4, the edge between A and B is shared by the two minimal cycles A-B-E and A-B-C.

3.4 ECOO: Package Cycle Remediation

ECOO (for ECELL, OZONE, ORION) provides a global approach to understand and resolve
modularity at the package level in software architecture. First, we provide ECELL, a visu-
alization to understand a package dependency at a glance but with adequate details. It is
integrated in two different visualizations (EDSM and CYCLETABLE) to provide informa-
tion to resolve cycle issues. Second, OZONE is a help for decision. It proposes package
dependencies to remove for a better modularity of package architecture (i.e., an architec-
ture without cycles). Third, ORION provides a change impact analysis system. It helps
reengineers choose which change is the best for the expected goal by allowing them to
compare multiple change impacts.

3.4.1 Principle

ECOO is an approach structured around four ideas grouped to solve the four problems
enunciated previously (identify problems, solve these problems, avoid the regression of the
system and minimize change costs)

Figure 3.5 shows key points treated by the ECOO approach. ECOO is package-oriented
and deals with dependencies between packages. These dependencies are complex and diffi-
cult to understand without a specific approach. The analysis of these dependencies is made
with two different approaches: (i) analysis of cycles; and (ii) analysis of layers. These two
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Figure 3.5: Key points treated by ECOO approach.

approaches are strongly correlated because a cycle cannot be arranged in multiple layers.
These two analyses allow reengineers to understand the global software structure and take
decision about the actions to do. We build a meta-model for change-impact analysis to help
reengineers in their decisions.

In the rest of this chapter, we present an overview of the four parts of the approach.

3.4.2 Package Dependency Oriented Approach

In software systems, relationships between packages are complex because they depend
on fine-grained relationships between classes. Understanding software architecture is not
trivial and understanding package dependency is not easy with standard visualizations.
A dependency between two packages is in reality a collection of relationships between
classes.

ECELL (for Enriched Cell) is a dependency-oriented visualization. It builds a view
of dependency from a package to another. ECELL shows only information needed to un-
derstand the dependency. It is based on four kinds of dependencies: inheritance, class
reference, invocation, and class extension.

ECELL overview. An ECELL is composed of four parts (Figure 3.6): a header provides
the number of all and each kind of dependencies. At the center, there are two rectangles
representing relationships between classes from the client package (i.e., the source pack-
age) to the provider package (i.e., the target package). Then at the bottom, there is a frame
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that is used in EDSM (Chapter 5, p.55) and CYCLETABLE (Chapter 6, p.83) for different
meaning: EDSM shows the kind of cycle, CYCLETABLE shows the shared dependencies.

3.4.3 Understanding Architecture

To understand package architecture, we improve Dependency Structural Matrix (DSM) by
adding colors and including ECELL in each cell of the matrix.

This visualization allows one to see the structure of a software application in a matrix.
Using colors, it allows reengineers to spot package cycle issues. With integration of ECELL

it helps reengineers to understand and fix cycles.

Figure 3.6: ECELL at work.

EDSM overview. It provides information using colors: red/pink represents a dependency
in a direct cycle. Yellow represents a dependency in an indirect cycle. A blue square
represents a Strongly Connected Component. Grey represents standard dependency (i.e.,
not in a cycle). Figure 3.7 shows a visualization of EDSM with colors but without ECELL.

3.4.4 Targeting Cycle Problems

EDSM provides information about direct cycles, but not on complex cycles due to the
matrix structure. To resolve complex cycles, it is useful to know the implication of a
dependency in cycles.

We propose CYCLETABLE, which decomposes each cycle in minimal cycles and high-
lights dependencies implied in multiple of them. We introduce ECELL to provide fine-
grained information for each dependency.

CYCLETABLE overview. A CYCLETABLE is a matrix where a row represents a package
and a column represents a minimal cycle. In this matrix, a cell represents a dependency. A
colored cell is a shared dependency (i.e., shared by each cycle where there is the same col-
ored cell). Figure 3.8 shows a CYCLETABLE. For example, we can see, in the second row,
a lot of blue cells, which represent the same dependency in multiple minimal cycles (i.e.,
multiple columns). If we remove this particular dependency, all implied cycles disappear.
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Figure 3.7: EDSM at work.

Figure 3.8: CYCLETABLE at work.
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3.4.5 Proposing Changes

Based on our visualizing tools and our case studies, we concluded that some cycles have
similar characteristics. To help reengineers in their work, we provide a list of dependencies
that have these properties. It provides (i) an approach to propose changes at package level;
and (ii) an approach to build package layer architecture in presence of cycles. These two
points allow a reengineer to understand how packages interact with the others and what is
the place of each package in the system.

OZONE overview. OZONE is a semi-automatic approach which computes a list of un-
wanted dependencies and builds a layered architecture using this list to interpret complex
cycles. The reengineer can add its own evaluation of dependencies to minimize false-
positive results. Figure 3.9 shows OZONE principle. It shows that packA, packB and
packC are in a cycle but on multiple layers.

Level 2

Kernel

UI

PackB

PackC

PackA

19

342

2
6

12

8

15

Level 0

Level 1

Level 3

Level 4

5

Figure 3.9: OZONE principle. Dotted arrows are highlighted dependencies. Grey shapes
represent packages in a cycle.

3.4.6 Analyzing Change Impact

Providing help for reengineering with ECELL, EDSM, CYCLETABLE and OZONE is not
enough. In practice, removing a dependency is not trivial and it can have a large impact on
the system architecture. For example moving a class from a package to another can remove
a dependency, but create multiple other dependencies (explained in detail in Chapter 8,
p.129).

We provide ORION, an approach to simulate changes in multiple model versions with-
out impacting the real system. It allows reengineers to try changes without breaking the
system and having feedback from reengineering tools (i.e., visualizations, metrics).

ORION overview. We provide a meta-model for change impact analysis applicable to
existing models. ORION is an interactive prototyping tool for reengineering to simulate
changes and compare their impact on multiple versions of software source code models. It
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reuses existing assessment tools, and has the ability to hold multiple and branching versions
simultaneously in memory. Its infrastructure optimizes memory usage of multiple versions
for large models. Figure 3.10 shows an experimental browser built especially to manipulate
multiple versions of a system for our experiments.

Figure 3.10: ORION at work.

3.5 Implementation

Language Independent Approach. All our implementations have been implemented
on top of the Moose reengineering environment [Ducasse 2005a] and are based on FAMIX
[Demeyer 2001], a family of meta-models, which are customized for various aspects of
code representation (static, dynamic, history). FAMIX-core describes the static structure
of software systems, particularly object-oriented software systems1.

Our tools can be applied to object-oriented languages, when there is a parser for it to
build FAMIX model. Currently, we can use our tools on Smalltalk, Java, C-Sharp and C++
source code.

ECELL, EDSM and CYCLETABLE. (Chapter 4, p.39, Chapter 5, p.55, Chapter 6, p.83)
These three approaches are implemented on top of Mondrian. It is a visualization engine,
which provides a scripting system for visualization. It allows us to build visualization
quickly.

OZONE. (Chapter 7, p.103) It uses a graph representation of a package system. We use
the graph library available in Moose reengineering environment, which is sufficient for the
behavior we need (i.e., node-link representation and add/remove edges). The tool (browser
and visualization) is build on top of Moose by using Mondrian and Glamour. Glamour is
an engine for scripting browsers.

1see http://www.moosetechnology.org/docs/famix

http://www.moosetechnology.org/docs/famix
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ORION. (Chapter 8, p.127) It is an extension of FAMIX. Extending FAMIX is a major
asset of ORION as it allows us to reuse tools and analyses developed on top of FAMIX
[Ducasse 2009b].

The browser used for validation was built on top of the Moose, Mondrian and Glamour
engines.

3.6 Validation

This approach has a large spectrum, it is therefore better to validate each part of the ap-
proach separately. Each part has a specific validation adapted to the goal.

• ECELL. It has been validated at the same time as EDSM in a user survey performed
with 9 different projects, that provides a qualitative assessment of the approach.

• EDSM. We provide three validations of EDSM: a case study performed on Moose
4beta4, a controlled experiment performed on Seaside2.8 (a web framework), a user
survey performed with 9 different projects.

• CYCLETABLE. It has been validated with a controlled experiment on a graph of
Moose package dependencies with 11 developers.

• OZONE. It has been validated with a case study performed on Moose 4beta4.

• ORION. It has been validated with a benchmark study on memory used and speed
accessing elements and a case study performed on Moose 4beta4.

These multiple validations provide a complete evaluation of the global approach.

3.7 Summary

In this chapter we introduced ECOO, our approach to help reengineers to resolve modularity
problems at package level. The approach is a combination of four axes (understanding
architecture, targeting cycle problems, proposing changes, and analyzing impact), which
will be explained in following chapters. We also introduced challenges stressed by the
approach and explained terminology used in the whole document.

The next chapters explain in detail the approach. We begin with a review of ECELL

(Chapter 4, p.39) before integrating it in EDSM (Chapter 5, p.55) and CYCLETABLE

(Chapter 6, p.83). These two approaches introduce the axis of proposing changes pro-
vided by OZONE (Chapter 7, p.103), which can be used in the ORION approach (Chapter
8, p.127).
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Nothing in life is to be feared, it is only to be understood.

[Marie Curie]

At a Glance

This chapter introduces a visual representation of package dependency. A
package dependency is complex because it represents multiple class relation-
ships (inheritance, class reference, class extension, method invocation). The
visualization shows information needed to understand the package dependency.
A user study validation proves that this visualization can be used at different
levels of expertise.

Keywords: Dependency analysis, fine-grained information, package dependency vi-
sualization.
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4.1 Introduction

In the previous chapter, we introduced ECOO, a global approach to help reengineers to
remodularize software systems. This chapter explains that a package dependency is com-
posed of multiple class relationships that make it difficult to understand. We stress this
point and provide a visualization of package dependency. We can identify patterns in this
visualization that help engineers to analyze dependency problems.

Structure of the Chapter

In the next section we introduce the challenge of the ECELL approach and which kind
of information we want to see. In Section 4.3 (p.42) we provide an overview of ECELL

that is detailed in Section 4.4 (p.43). Section 4.5 (p.47) shows and explains some visual
patterns we already see in experiments. Section 4.6 (p.49) provides a validation, which is a
part of validation made in context of EDSM (Chapter 5, p.73). Finally, Section 4.7 (p.53)
summarizes the chapter.

4.2 Dependency Information

In a software system, package relationships are complex because they depend on more
fine-grained relationships between classes. Seeing a software architecture is not trivial and
understanding package dependency is not easy with standard visualizations. For example,
Figure 4.1 shows 14 core packages of Moose Reengineering System. A Node-link visual-
ization cannot provide fine-grained information of the dependencies between these nodes
(i.e., here packages) because links do not provide enough space to add information.

Famix-Smalltalk

Famix-Implementation

Moose-Core

Famix-Core

Famix-Extensions

Fame

Moose-GenericImporter

Moose-SmalltalkImporter

Moose-Finder

Famix-Java

Famix-File

Moose-Wizard Moose-MonticelloImporter

Famix-SourceAnchor

Figure 4.1: Package dependencies in the core of Moose Reengineering System.
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A dependency between two packages is actually a collection of relationships between
classes. Figure 4.2 illustrates this idea. In Package A and Package B there are multiple
classes communicating together.

Package A

Package B

A1

A3

A2

A5A4

B1 B2

B3

Other package

Other package

Figure 4.2: An illustration of package dependency.

To provide a good view of package dependency, we should provide fine-grained infor-
mation. It is important to understand a dependency and to help engineers to remodularize
their system.

We point out two pieces of information that should be provided:

• Evaluating the Causes of Dependencies: Removing a package dependency often
means changing some class relationships involved in the cycle. However, the cost of
this action vary with the type of relationship e.g., changing a reference to a class is
often easier than changing an inheritance relationship.

ECELL gives this fine-grained information and it supports a better understanding of
the situation.

• Evaluating the Distribution of Dependencies: Knowing that a package has multiple
dependencies to another one is valuable but insufficient information. For a depen-
dency between packages, valuable information is to know how many classes are
involved in the dependency and the distribution of the relationships between these
classes. Figure 4.3 illustrates three kinds of relationship distributions. The first de-
pendency involves multiple classes in the two packages. The second dependency
shows that one class in the client package is involved and uses all classes in the
provider package. The third case shows that multiple classes in the client package
use one class in the provider package. These three kinds of relationships do not
provide the same information about the package dependency.
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This information is important for understanding package dependency and for pack-
age remodularization. We provide a solution to see it in ECELL.

Figure 4.3: Three kinds of relationship distribution between packages.

4.3 Overview of an ECELL

4.3.1 ECELL Goal

ECELL is a package-dependency-oriented visualization. It builds a view of a selected de-
pendency from a package to another. ECELL shows only information needed to understand
the dependency. Figure 4.4 illustrates the kind of information provided in ECELL. It shows
only classes involved in the dependency and relationships from client package classes to
provider package classes. Here only relationships A4→ B1 and A5→ B2 are displayed.

The goal of ECELL is to provide a small dashboard of the package dependency with
indicators about the situation between the client and the provider packages. It contains
contextual information, which shows (i) the nature of dependencies (inheritance, class ref-
erence, invocation, and class extension); (ii) the referencing entities; (iii) the referenced
entities; and (iv) the spread of the dependency.

ECELL uses colors to convey information about the context in which dependencies
occur. Our goal is to use preattentive visualization1 as much as possible to help spot im-
portant information [Treisman 1985,Healey 1992,Healey 1993,Ware 2000]. An ECELL is
composed of parts and shapes with different color schemas.

1Researchers in psychology and vision have discovered a number of visual properties that are preattentively
processed [Healey 1992]. They are detected immediately by the visual system: viewers do not have to focus
their attention on a specific region in an image to determine whether elements with the given property are
present or absent. An example of a preattentive task is detecting a filled circle in a group of empty circles.
Commonly used preattentive features include hue, curvature, size, intensity, orientation, length, motion, and
depth of field. However, combining them can destroy their preattentive ability (in a context of filled squares
and empty circles, a filled circle is usually not detected preattentively).
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Package A

Package B

A1

A3

A2

A5A4

B1 B2

B3

Other package

Other package

Figure 4.4: ECELL displays only the concerned relationships.

4.3.2 ECELL Construction

An ECELL content displays all dependencies at class level from a client package to a
provider package. An ECELL is composed of three parts (see Figure 4.5).

• The top row gives an overview of the strength and nature of dependencies between
classes into the two involved packages.

• The two large boxes in the middle detail class dependencies going from the top box
to the bottom box (i.e., from the client package to the provider package). The client
package depends on the provider package. Each box contains squares that represent
involved classes: referencing classes in the client package and referenced classes in
the provider package. Dependencies between squares link each client class (in top
box) to its provider classes (in bottom box) (Figure 4.5).

• At the bottom, a colored frame represents the state of the dependency used to provide
information in EDSM (Chapter 5, p.55) and CYCLETABLE (Chapter 6, p.83).

4.4 Details of an ECELL

4.4.1 Cycle Color (bottom row)

The bottom row is the first information to see in an ECELL. It represents the more coarse-
grained information using color. This frame is used to provide either cycle information in
EDSM (Chapter 5, p.55) or shared dependencies information in CYCLETABLE (Chapter 6,
p.83). Information about this feature is provided in the respective chapters.
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Client package

Provider package

Ratio of classes
concerned by

the dependency
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State of the dependency

Classes involved in the
dependency

Information about 
the dependency

Figure 4.5: ECELL structural information.

4.4.2 Dependency Overview (top row)

An ECELL shows an overview of the strength, nature, and distribution of the dependencies
from the client to the provider.

The top row gives a summary of the number and nature of dependencies to get an
idea of their strength. It shows the total number of dependencies (Tot) in black, inheritance
dependencies (I) in blue, references to classes (R) in red, invocations (S) in green, and class
extensions (explained in Chapter 3, p.28) (E) made by the client package to the provider
one in gray. A stronger color highlights the strongest dependency type to help reengineers
targeting the minimal effort to do. The colors are used to reinforce the comprehension of
links between classes (see below). In Figure 4.6 there are 8 directed dependencies from
Seaside-Platform to Seaside-HTTP: 1 inheritance and 7 references (in bright red).

1 inheritance
7 references 

from 3 classes 
to 3 others

Figure 4.6: An ECELL representing dependency from Seaside-Platform to Seaside-HTTP
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4.4.3 Content of the Dependency (middle boxes)

A dependency is represented by two boxes: one (on top) for the client package, and one
(on bottom) for the provider package. Classes in the client package reference classes in the
provider package.

4.4.3.1 Dependency Distribution (left bars)

For each package, we are interested in the ratio of classes involved in dependencies with
the other package. We map the height of the left bar of each package box to the percentage
of classes involved in the package. The bar color is also mapped to this percentage to
reinforce its impact (from green for low values to red for 100% involvement). A package
showing a red bar is fully involved with the other package.

4.4.3.2 Class Representation

Each square represents a class. A square has particular color and border in EDSM (Chap-
ter 5, p.55). For example, Figure 4.6 shows two classes with black thick border, which
represent two classes strongly involved in a direct cycle. As it concerns a specific behavior
of EDSM, it is explained in detail in Chapter 5 (p.60).

4.4.3.3 Edge Color

Edges are the smallest details displayed by ECELL. They give information on the nature
and spread of dependencies between the classes (Figure 4.5). There are four basic natures,
each one mapped to a primary color (synchronized with colors of information in top row of
the ECELL): reference in red, inheritance in blue, invocation in green and class extension
in gray. When dependencies between two classes are multiples, only one link is displayed.
For example, in Figure 4.6, there are 7 references but only 6 red link are displayed. It means
that one on the client’s classes makes 2 references to the same provider’s class. When
dependencies between two classes are of different natures, colors are mixed as follows: red
is used for a dependency with both references and invocations because a reference is often
followed by invocations (a new color would make it more difficult to understand the figure).
Black is used for any dependency involving inheritance with references and/or invocations.
Indeed, an inheritance dependency mixed with other dependencies can be complex and we
choose not to focus on such a combination.

4.4.3.4 Representation of Class Extension

A class extension (explained in Section 3.3 p.28) represents a method that is in another
package than its class. In an ECELL, a class extension is represented by a square with
dotted border (Figure 4.7 and Figure 4.8) because it represents methods in another package
than the class definition. We differentiate two pieces of information about extensions:

• A client package has an extended method of a class defined in a provider package.
In this case, there is an extension link between the class and its extension (in grey).
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In Figure 4.7, The two classes are extended in package SmallDude-Moose. Here, six
methods from these classes are defined in package SmallDude-Moose.

• A client package uses an extended method whose class is defined in a third package.
In this case, there is no extension link but could have access or invocation dependen-
cies. In Figure 4.8, the two class extensions in Famix-Extensions refer to one class
in Moose-Finder.

6 methods extend
2 classes

Figure 4.7: The package SmallDude-Moose extends two classes from Famix-Extensions.

2 extended methods
refer to 1 class

Figure 4.8: Two class extensions in Famix-Extensions refer to one class in Moose-Finder.

4.4.4 Tooltip

Complementary to the overview and the zooming facility, Tooltips on a class include the
name of the class and the name of each concerned method. Figure 4.9 shows the pop-
up information of ECELL linking Seaside-Platform to Seaside-Components: it shows the
tooltips from the class WAImageTest involving method renderImageOn:.

Moreover, a Tooltip is available on edges showing the source code of the class or/and
method that create the dependency. Figure 4.9 does not show a tooltip on an edge because
in this example we used a model without its source code.
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Figure 4.9: ToolTips in an ECELL.

4.5 Visual Patterns

The ECELL visual aspect generates visual patterns. While performing experiments, we
have detected some patterns stressing characteristic situations listed in this section. Fig-
ures of this section show some specific characteristics of class shapes (specific colors for
background and border) coming from EDSM (Chapter 5 p.55). This behavior is not used
in this section but is explained in Section 5.3.2 (p.60).

A. Packages having a large percentage of classes involved in the dependency (left bar
in red). When this pattern shows a high ratio in the referencing package (top), chang-
ing it can be complex since many classes should be modified. In the case of a high
ratio in referenced (bottom) package, a first interpretation is that this package is highly
necessary to the good working of the referencing package (Figure 4.10).

Figure 4.10: ECELL showing visual patterns A, B, D, E.

B. Packages communicating heavily. The two packages interact heavily, so intuitively it
seems to be difficult to fix this dependency (Figure 4.10). The opposite may be easier
to fix.

C. Packages referencing a large number of external classes (a lot of red links and
header with bright red number). This pattern shows direct references to classes be-
tween the two packages (Figure 4.11).
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Figure 4.11: ECELL showing visual patterns C, H.

D. Packages containing classes performing numerous invocations to other classes (a
lot of green links and header with the number in bright green) (Figure 4.10).

E. Packages containing classes inheriting from other classes. It means that the refer-
encing package is highly dependent of the referenced package (Figure 4.10).

F. Packages with a large number of extensions. It means that the referencing package
extends the referenced package (Figure 4.7).

G. Packages in which a large number of classes refer to one class (incoming funnel).
This patterns shows that the dependency is not dispersed in the referenced package. It
can be that the referenced class is either an important class (facade, entry point) or also
simply packaged in the wrong package (Figure 4.12).

H. Packages in which a large number of classes are referred to one class (outgoing
funnel). This pattern is the counterpart of the previous one. Therefore, it helps spotting
important referencing classes. It is useful to check whether such a class in addition is
referenced by other (Figure 4.11).

Figure 4.12: ECELL showing visual pattern G.
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4.6 Validation

4.6.1 Goal

This case study is a part of the user study performed to validate EDSM (Chapter 5 p.73)
as a usable tool for non-expert developers. In this study, two groups of questions concern
ECELL. We provide here the analysis of these two questions. This section is a copy of the
two concerned questions from Section 5.5.3 (p.73). EDSM is an approach to understand
cycles, so in this study we use the term cycle as a group of particular dependencies.

4.6.2 Used Tools

For this user study, we wrote a small tutorial about EDSM2 where a part is dedicated
to ECELL and a questionnaire. The developers use EDSM (i.e., ECELL) on their own
developed software system and answer questions. They can only use EDSM (i.e., ECELL)
and the software source code (i.e., no other tool for software analysis)

4.6.3 Protocol

We provide the users with the EDSM tool, the questionnaire and the tutorial. The ques-
tionnaire has 36 questions organized in eight parts. Two parts concern ECELL.

1. Usefulness of ECELL in general: we propose ECELL as a view of a dependency for
reengineering. It has two goals: understanding and resolving dependencies. We ask
two questions related to these features: is ECELL useful to understand cycles? Is
ECELL useful to fix a cycle?

Possible answers are: strongly disagree, disagree, agree, strongly agree, or not ap-
plicable.

2. Use and usefulness of ECELL features: In this part, we want to investigate the use-
fulness of each ECELL feature in details. For 8 features (Color of ECELL, Header
of ECELL, Name of package in background of ECELL, Ratio of concerned classes,
Color of classes, Border of classes, Color of edges, Popup information), we ask two
questions: Do you use this feature? Do you consider this feature useful?

Possible answers are: the first question is a yes-no question. The second question
needs an answer between 1 (not useful) and 5 (very useful).

4.6.4 Results

The user study was conducted with nine participants unsupervised, from master students
to experience researchers, with various programming skills and experienced in software
projects. We selected them with two criteria: the time they have to investigate EDSM and
the size of the maintained system. In fact, when the maintained system has a sole package,
EDSM is useless. In the following figures, we use a color for each studied system provided

2available on http://www.moosetechnology.org/docs/eDSM

http://www.moosetechnology.org/docs/eDSM
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in Figure 4.13. In this section we detail the result of the two parts of the questionnaire
concerned by ECELL.

Pharo
Pharo
Mondrian
Merlin
Moose
Seaside
SqueakDBX
XMLParser
PolyMorph

Figure 4.13: Color used for each project.

1. Characteristics of the system (Table 4.1): they are eight software systems evaluated
with EDSM. There are two developers working on the Pharo Smalltalk Environment
and one developer for each of following system: Mondrian Visualization Engine,
Merlin, Moose, Seaside 3.0, SqueakDBX, XMLParser, Polymorph. All these sys-
tems are developed in Smalltalk. Table 4.1 shows there are systems with different
size. All these software applications have cycles between packages.

Software name (kind of software) Packages Classes SCCs (size) Direct
(number in cycle) cycles

Pharo (Smalltalk Environment) 104 (68) 1558 1 (68) 98
Mondrian v.480 (Visualization Engine) 20 (8) 149 2 (2 - 6) 7
Merlin (Wizard library) 5 (4) 31 1 (4) 3
Moose (Software analysis platform) 108 (21) 1428 6 (2-2-2-2-4-9) 19
Seaside 3.0 (Web framework) 93 (5) 1408 2 (2 - 3) 2
SqueakDBX (Database) 3 (3) 88 1 (3) 1
XMLParser (XML Library) 8 (4) 33 1 (4) 4
PolyMorph (UI library) 12 (4) 152 1 (4) 4

Table 4.1: Some metrics about studied Software Applications

2. Usefulness of ECELL in general (Figure 4.14): ECELL in the context of large EDSM
should be useful to understand a cycle and to fix it. Results show that ECELL helps
developers to understand cycles. Fixing a cycle is a bit more difficult, as sometimes
developers need to access source code to understand dependencies. It is available in
ECELL.

3. Use and usefulness of ECELL features (Table 4.2 and Figure 4.15): ECELL is a
complex visualization. It provides a lot of information, some of which is useful for
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Understanding cycle Fixing cycle
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Figure 4.14: Usefulness of ECELL as rated by the 9 participants in our validation experi-
ment.

specific uses. Results confirm that the main features of ECELL are used (the cell
color, the header, the name of packages in the cell and the popup information view).
Only one user did not use ECELL because of a bug during his experiment time.

Specific features, reserved for special understanding of the packages were less used.
Figure 4.15 shows that main features (i.e., Cell Color, Header of ECELL, Name of
packages in ECELL, Popup) are useful, whereas specific ones (i.e., Ratio, Class color,
Class border, Edge color) were considered less useful.
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Cell Color X X X X X X X X 88%
Header X X X X X X X X 88%
Name X X X X X X X X 88%
Ratio X X X X 44%

Class color X X X X X 55%
Class border X X X 33%
Edge color X X X X X 55%

Popup X X X X X X X 77%

Table 4.2: Use of ECELL feature.
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Figure 4.15: Usefulness of ECELL features as evaluated by the 9 participants in our valida-
tion experiment.

4.6.5 Conclusion of the User Study

This user study was built to validate EDSM, which explains the notion of cycles in the first
question. ECELL is useful to understand dependency at a glance. It allows one to point
problems and help resolving them.

This study shows that depending of the user, features are more or less useful. All
developers used the coarse grained information provided by ECELL. Less developers used
the fine grained information. But each feature was used and considered useful by at least
one developer. As a consequence, we think that ECELL should integrate a system to manage
granularity to match with the need of developers.

Finally, ECELL is not a replacement for code browsers. The goal is to provide visual
information, which is not easy to find with a standard browser. ECELL is complementary
to a browser and the future implementation of ECELL will probably be integrated with a
source code browser.
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4.7 Summary

In this chapter we introduced ECELL. It provides contextual information on package de-
pendencies. ECELL provides information about the context of a dependency by displaying
in a cell the complexity of the relationship. We validate this visualization by a user study.
Results show that the main features of ECELL are used and useful whereas more specific
features are used for particular task and are less used by users.

The next two chapters introduce EDSM and CYCLETABLE. The first one is a visual-
ization of a whole software system and highlight cycles. The second one is a cycle-centric
visualization, which highlight dependencies highly implied in cycles. These two visualiza-
tions are improved with ECELL placed in cells of the visualization.
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It is not the strongest of the species that survives, nor the most intelligent that
survives. It is the one that is the most adaptable to change.

[Charles Darwin]

At a Glance

In this chapter we present EDSM, a Dependency Structural Matrix where cells
are enriched with ECELL (Chapter 4). We distinguish Strongly Connected
Components and stress potentially simple fixes for cycles using coloring in-
formation. We validate the approach with different studies: two different case
studies on Moose and Seaside software; one user study to validate EDSM as a
usable tool for developers.

Keywords: Software visualization, dependency structural matrix, structure analysis.
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5.1 Introduction

We show in Chapter 2 (p.9) that understanding the package organization of an applica-
tion is a challenging and critical task since it reflects the application structure. Many ap-
proaches have flourished to provide information on packages and their relationships, by
visualizing software artifacts [Wu 2000], metrics, their structure and their evolution. Dis-
tribution Map [Ducasse 2006] shows how properties are spread over an application. Lanza
et al. [Ducasse 2005b] propose to recover high-level views by visualizing relationships.
Package Surface Blueprint [Ducasse 2007] reveals the package internal structure and rela-
tionships with other packages – surfaces represent relations between an analyzed package
and its provider packages. Dong and Godfrey [Dong 2007a] propose high-level object
dependency graphs to represent and understand the system package structure.

Dependency Structure Matrix (DSM) is an approach originally developed for process
optimization. It highlights patterns and problematic dependencies among tasks. It has
been successfully applied to identify software dependencies [Steward 1981,Sullivan 2001,
Lopes 2005,Sullivan 2005,Sangal 2005] and particularly cycles [Sangal 2005]. It provides
a dependency-centric view possibly associated with color to perceive more rapidly some
values [Heer 2010]. MacCormack et al [MacCormack 2006] have applied the DSM to
analyze the value of modularity in the architectures of Mozilla and Linux.

Applied to package dependencies, DSM has for header package names and each cell
represents a dependency. A non-empty cell at the intersection indicates package in column
depends on package in row.

In this chapter, we improve DSM visualization to provide fine-grained information
about package dependencies. We propose EDSM, a DSM including ECELL (Chapter 4
p.39). We distinguish independent cycles and differentiate cycles using colors. We applied
EDSM on several large systems, the Moose reengineering framework, Seaside 2.8, a dy-
namic web framework and Pharo1, an open-source implementation of Smalltalk program-
ming language and environment. Each study has a different context to study the usability
of the EDSM visualization.

Structure of the Chapter

The chapter is organized as follows: Section 5.2 (p.56) introduces DSM and its limitations
in existing implementations. Section 5.3 (p.58) presents EDSM specifications and Section
5.4 (p.64) presents its usage, from overview of an application to detailed view of inter-
package dependencies. Section 5.5 (p.69) reports three different validations and shows the
usability of EDSM visualization. Section 5.6 (p.80) discusses about our solution. Section
5.7 (p.82) summarizes the chapter.

5.2 DSM Presentation and Limitations

DSM is an adjacency matrix built from a collection of components. In our case, we consider
packages, to understand the structure of an application.

1http://www.pharo-project.org

http://www.pharo-project.org


5.2. DSM Presentation and Limitations 57

The use of DSMs gives pertinent results for the verification of the independence of
software components [Sangal 2005], however, in their current form, DSMs must be coupled
with other tools to offer fine-grained information and support corrective actions. Figure 5.1
shows a sample dependency graph and its corresponding binary DSM. A binary DSM
shows the existence/lack of a dependency (or reference) by a mark or “1/0”.

The rule for reading the matrix is: elements in column reference elements in row when
there is a mark. In our context, A, B, C, and D are packages. The element in column is
also called the client (i.e., the source) and the one in row the provider (i.e., the target). In
Figure 5.1, A references B and C, B references A, C references D and D references C.

To optimize the DSM visualization some algorithms are known as partitioning algo-
rithms [Warfield 1973] or clustering algorithms [Browning 2001]. They optimize the or-
ganization of elements in the matrix. We use them and we structure the matrix to show the
package at core level on bottom and on right, and the packages on higher level on top and
on left. It is not the topic of this chapter, so we do not write anymore about it.

A B C D
A X
B X
C X X
D X

A B

C D

Figure 5.1: A simple DSM.

5.2.1 Dependency Information

A traditional DSM offers an easily readable general overview but does not provide de-
tails about the situation it describes. We identify two weaknesses: lack of information on
dependency causes and lack of information on dependency distribution.

Y. Cai et al [Cai 2007] use DSMs to represent modular structure before and after
changes. The authors points three weaknesses of DSM: first, they are not expressive enough
to support precise design analysis, second, it only represents design dimensions and third,
DSM does not reveal the multiple ways to do a change. Current DSM implementations al-
low one to perform high-level inventory of a situation, but they are limited to coarse-grained
understanding—tools just offer drop-down lists to show classes and methods creating de-
pendencies between packages.

For example, current DSM implementations do not provide detailed information about
inter-package dependencies. Cycles, which constitute a special target for dependency reso-
lution, are commonly identified using the adjacency matrix power method [Yassine 1999].
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A B C D
A X
B X
C X
D

(a) DSM with marks.

A B C D
A 5
B 3
C 1
D

(b) DSM with numbers.

Figure 5.2: Examples of DSM.

5.2.2 Dependency Causes Evaluation

Fixing a cycle often means changing some dependencies involved in the cycle. However,
the cost of fixing a cycle may vary with the cause of dependency e.g., changing a refer-
ence to a class is often easier than changing an inheritance relationship. Dependencies
are of different natures (class reference, method invocation, inheritance relationship, and
class extension) and a binary matrix (Figure 5.2(a)) or a matrix providing the number of
dependencies in each cell (Figure 5.2(b)) do not provide such information.

Annotating a DSM with the types of dependencies can give more fine-grained infor-
mation and it supports a better understanding of the situation. However, a challenge with
this solution is that the matrix should remain readable, providing fine-grained information
for understanding cycles, no sacrificing the overall view of architecture.

5.2.3 Dependency Distribution Evaluation

Knowing that a package has 31 dependencies to another one is valuable but insufficient
information. The ratio of concerned classes in a package is important since it allows one
to quantify the effort to fix a cycle. The intuition is that it is easier to target few classes
with some dependencies rather than a lot of classes with few dependencies. This simple
heuristic is used on our DSM to help reengineers to fix cycles.

For example in Figure 5.3, 12 classes of package Components-Tools reference 2 classes
of package Component, while only one class of Component references one class present in
Components-Tools (the large gray arrow in Figure 5.3). Consequently, it should be easier
to focus the dependencies from Component to Components-Tools rather than the ones in
the opposite direction.

5.3 Micro-macro Reading with EDSM

5.3.1 Macro-reading: Colored DSM

To address the lack of fine-grained information mentioned in Section 5.2.1 (p.57), we
enhance DSM with ECELL. We enhance DSM with functionalities that are not present
in current DSM implementation such as Lattix [Sangal 2005]. Our solution provides a
micro-macro reading by (i) highlighting independent cycles using colors (Section 5.3.1.1,
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Components-Tools Component

ToolFrame
Inspector
Browser
Viewer
Halo
Tool

StringLibraryEditor
DispatcherComponent

DispatcherEditor

ConfigurationEditor

FileHandler

Walkback

Component

Presenter

Figure 5.3: A cycle between two packages of Seaside 2.8.

p.59) for a macro reading; and (ii) understanding inter-package dependencies with a micro-
reading visualization (Section 5.3.2, p.60).

ECELL resolves DSM limitations (Section 5.2, p.56) by informing reengineers about
the dependency cause and the dependency distribution evaluation. An important design
feature is the use of color to focus on packages where it seems easier to resolve a package
cycle. Therefore we use brighter colors for places having fewer dependencies. The tool
is implemented on top of the Moose open-source reengineering environment. Since it
is based on the FAMIX meta-model [Demeyer 2001], our EDSM works for mainstream
object-oriented programming languages [Ducasse 2005a].

5.3.1.1 Cycle Detection

Our approach enhances the traditional matrix by providing a number of new features: cycle
distinctions, direct and indirect cycle identification, and hints for fixing cycles. EDSM dis-
tinguishes strongly connected components (SCC) using a Tarjan algorithm [Tarjan 1972].
This method is efficient to detect SCCs.

We use color in DSM cells to identify cycles. A DSM cell (i.e., a dependency) involved
in a Strongly Connected Component has a red or yellow color (Figure 5.4). The red color
means that the two concerned packages reference each other and thus create a direct cycle.
Two packages in a direct cycle have two red cells symmetric against the diagonal. The yel-
low color means that the dependencies from one package to the other participate in a SCC.
The pale blue background color frame all cells involved in a SCC (visible in Figure 5.5).
Its area is a visual indication of the number of packages in the cycle. On the contrary, rows
and columns with white or gray colors indicate packages not involved in any cycle. The
diagonal of the matrix, where a package may reference itself, is colored in gray to highlight
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Figure 5.4: Cell color definition.

the symmetry axis but is not used in the current version.

5.3.1.2 Color Hint for Targeting Direct Cycle

We define a special rule to highlight cells of primary focus when resolving direct cycles.
The intuition is that it will be easier to fix a cycle by focusing on the side with fewer
dependencies. A cell with much fewer dependencies is displayed with a bright red color
whereas its symmetric cell is displayed with a light red/pink color (Figure 5.4). The ratio
we use is 1 to 3 of the weight of package dependency. This rule only applies to direct cycles
as it is easier to compare two packages side by side than an arbitrary number of packages
involved in an indirect cycle.

Figure 5.4 illustrates in a simple DSM the rules for cycle colors in cells. It shows
two direct cycles with the red color, one between Session and Components-Tools and one
between Component and Components-Tools. The bright red color in the Component to
Components-Tools enables one to quickly focus on the dependencies from Component to
Components-Tools, since there is only one dependency against 31 in the opposite direction.
Finally, Session, Component and Components-Tools are involved in the same strongly con-
nected component highlighted by the yellow and cyan cells. The yellow cell means partic-
ularly that there is a dependency from Component to Session creating an indirect cycle.

5.3.2 Micro-reading: ECELL Integration

Each cell shows the intersection between a client and a provider. To give a detailed
overview of dependencies from a client package to a provider package, we propose to
integrate ECELL (Chapter 4, p.39) in each cell. The goal is to create small multiples
[Tufte 1997] as shown in Figure 5.6.

The principle of small multiples is that “once viewers decode and comprehend the
design for one slice of data, they have familiar access to data in all the other slices”
[Tufte 1997]. In EDSM, each ECELL represents a small context, which enables com-
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Figure 5.5: a DSM with a blue square representing a SCC.

parison with others. Each ECELL can be used as a small dashboard with indicators about
the situation between the client and the provider.

Our goal is to use preattentive visualization as much as possible to help spotting im-
portant information [Treisman 1985, Healey 1992, Healey 1993, Ware 2000].

As explained in Chapter 4 (p.39), an ECELL contents displays all dependencies at class
level from a client package to a provider package. We adapt ECELL to EDSM with three
new features:

• The bottom part of ECELL (State of the dependency in Figure 5.7) represents the
type of dependency proposed in Section 5.3.1.2 (p.60): pink/red represent direct
cycle, yellow represents indirect cycle, gray represents non-cyclic dependencies.

• Class Color fill: impact of the class in system. A class may depend on other packages
than the two represented by the cell, such as class SeasidePlatformSupport in Fig-
ure 5.8. The color fill uses strong orange and light orange to qualify the relationships
the class has with packages other than the two concerned. A class that is implied in
other cycles is displayed as light orange. A class which has some methods involved
in other cycles is displayed as strong orange. The classes which do not correspond
to this description are in gray. Thus, reengineering strong or light orange class can
have impacts on several cycles.

• Class Border color and thickness: Internal usage. A gray thin border means that the
class has a unidirectional dependency with the other package i.e., it either uses or is
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Figure 5.6: A part of DSM presented in Figure 5.5 including ECELL. ECELL in DSM
provides a small-multiple effect.

used by classes in the other package. In Figure 5.8, the class SeasidePlatformSupport
has a thick border because it is referenced by classes from Seaside-HTTP.

A black thick border means that the class has a bidirectional dependency with the
other package: it both uses and is used by classes in the other package of the ECELL

(not necessarily the same classes). In Figure 5.8, three classes (WAResponse and
WARequest in one cycle and WAComponent in the other one) have a thick border
because they reference a class from Seaside-Platform and they are referenced by 2
classes from Seaside-Platform

ECELL included in EDSM provides enough information to avoid limitations listed in
Section 5.2 (p.56). It provides information about type and number of dependencies in the
header of the cell, about dependency causes by showing classes involved in the cycle, about
dependency distribution by showing ratio of classes and links between classes.
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Figure 5.7: Enriched cell structural information.

Two classes with black thick border:
They are client and provider in this cycle
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thick border:

It is client and 
provider in this cycle

Figure 5.8: Zoom on three packages in cycles.
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5.4 Using EDSM

5.4.1 Interaction and Detailed View

While the EDSM offers an overview at the package level as shown by Figure 5.6, extracting
all the information from an ECELL is sometimes difficult. There is a clear tension between
getting a small multiple effect and detail readability. We offer zoom and fly-by-help to
improve usability.

Zooming on Two Packages. Each cell in a DSM represents a single direction of depen-
dency. To get the full picture of interactions between two packages, we compare two cells,
one for each direction. Despite DSM intrinsic symmetry, it is not always easy to focus
on the two concerned cells. We provide a selective zoom with a detailed view on the two
concerned cells, as shown in Figure 5.8. Thus, a new window is opened to focus on a direct
cycle that seems interesting from the overview, and analyze the details with the zooming
view.

Zooming on Dependencies from a Particular Package. Each package has several de-
pendencies. To get the full picture of interactions with a specific package, we watch all
cells in the concerned column to know the outgoing dependencies or the concerned row
to know the incoming dependencies. For a big DSM, it is not always easy to focus on a
specific package. We provide a selective zoom with a detailed view on a package and all
its dependencies.

Zooming on a SCC. The analyzed system can have multiple SCCs. When the reengineer
needs to focus on fixing dependencies in a specific SCC, he does not need to see the entire
EDSM. We provide a selective zoom with a detailed view on a SCC. It selects a SCC and
shows concerned packages in a new EDSM.

5.4.2 Fixing a Cycle with EDSM

We now detail an example of cycle resolution through the analysis of EDSM. It begins with
understanding EDSM in the large to select a good candidate for remodularization. Then
we detail how to understand a couple of direct cycle.

First, when we see the full EDSM, we should watch the red ECELL. They seem to be
the better candidates because they are in direct cycle and they have much fewer dependen-
cies than their counterpart. In Figure 5.6, there are 3 red ECELLs which seem to be good
candidates for remodularization. They are extracted in Figure 5.9. Among these three de-
pendencies, two have single dependency between classes (i.e., in Figure 5.9, the second
and third ECELL).

When there is no red cell in a direct cycle, it is more difficult to define the better
candidate dependency to remodularize. So, for each direct cycle, the reengineer should
select manually the best candidate.
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Figure 5.9: Three red cells to be fixed.

The criteria to identify the best candidate for a remodularization are in ECELL. As
we show in Section 5.3.2 (p.60), ECELL displays a lot of information which can be read
in this order: (i) the state of the dependency, which is represented by a color bar at the
bottom of the ECELL; (ii) the number and the type of dependencies, which display the type
of remodularization. For example, for extension, it is easy to move the extended method,
whereas for inheritance, the reengineering task would be more difficult; and (iii) the content
of the ECELL, where the class involvement is displayed. Here, we see in detail the work to
do to break the dependency.

Figure 5.10: A cycle with good candidate dependency to remove.

In Figure 5.10, there is a direct cycle between Seaside-Component and Seaside-Components-
Tools (named Component and Tools below). We can see that Tools have lots of dependen-
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cies to Component (pink ECELL) while only one class in Component uses one class of
Tools (red ECELL). Moreover, there is one red edge (class reference) in the red ECELL,
whereas in the pink ECELL they are multiple inheritances and multiple invocations.

At first glance, it is thus easier to investigate the dependencies of the red ECELL, from
Component to Tools. Let us look at the red ECELL. There is one referencing class and one
referenced class. The two classes have a bold border, which means they are involved in
the two directions of the cycle. In Figure 5.10 it is visible that these two bold classes are
present in the two ECELL. It means these two classes represent the core of this cycle.

There is only one reference in one method: WAPresenter.renderWithContext: to the
class WAHalo. This provides entry points in the source code to find precisely where the
provider class WAHalo is referenced.

It appears that the method WAPresenter.renderWithContext: contains the creation of an
instance of WAHalo. A possible solution is to create class extensions for WAPresenter in
the package Tools and to put the referencing method in it. Then the dependencies would be
reversed, effectively breaking the cycle.

5.4.3 Small Multiples at Work

EDSM supports the understanding of the general structure of complex programs using
structural element position. Since it is based on the idea of small multiples [Tufte 1997],
the ECELL visual aspect generates visual patterns.

We applied EDSM to the Seaside 2.8 framework, the case study is available in Section
5.5.2 (p.70). It is composed of 33 packages and 358 classes. It has a large number of cyclic
dependencies. We use this case study to show EDSM in practice (Figure 5.11).

The first use of the EDSM is to get a system overview to scan packages not involved in
cycles (not shown in Figure 5.11) and how they interact with other packages. Subsequently,
we spot packages involved in direct and indirect cycles. In Figure 5.11 we can spot some
visual patterns.

A. Packages in indirect cycles (yellow bottom bar). It is not a good starting point to fix
them because the cycle probably comes from a direct cycle between two other packages.

B. Packages with direct cycles (pink bottom bar). These dependencies are diagonally
symmetric. These dependencies should be fixed but the reengineer should select man-
ually the best candidate dependency to remove.

C. Packages with direct cycles with a good candidate dependency to fix (red bottom
bar - low ratio of references). This pattern shows cycle created by a single class in
one package. In Figure 5.10, the class labeled WAPresenter is the only one appearing
in Seaside-Component and both uses and is used by classes in Seaside-Components-
Tools (as indicated by its thick border). Actually, there is a single class in Seaside-
Components-Tools which links back to the WAPresenter class. EDSM stresses that
one class is the center of the cycle; in such a case we can focus on this class and its
dependencies.
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Figure 5.11: An overview of a Seaside subset: ECELL in DSM provides a small-multiple
effect.

D. One class involved as client and provider in a cycle (black thick border) The cycle is
created by a single class. Figure 5.8 shows an example of such situation.

E. Packages where only two classes are referring to each other (Thick border). Such
pattern represents a direct cycle between two classes. In Figure 5.12, only one class
of Seaside-Component is in cycle with only one class of Seaside-RequestHandler. In
addition, they both have a thick border so it is a direct cycle between these two classes.
This pattern allows us to focus our attention on just two classes of the two packages.

F. Classes involved in other cycles. When a class is involved in other cycles, its back-
ground is orange. It means that when we change this class, it could probably impact
other cycles. In Figure 5.8, the class SeasidePlatformSupport is involved in two cycles.

G. Classes not involved in other cycles. When a class is not involved in other cycles, its
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background is gray. It means that when we change this class, there will be no impact
on existing cycles. In Figure 5.8, there are several classes in gray.

The following patterns (H to O) have been already explained in Chapter 4 (p.39). We
show here these ECELL patterns in EDSM context.

H. Packages having a large percentage of classes involved in the dependency (left bar
in red). When this pattern shows a high ratio in the referencing package (top), chang-
ing it can be complex since many classes should be modified. In the case of a high
ratio in referenced (bottom) package, a first interpretation is that this package is highly
necessary to the good working of the referencing package.

I. Packages communicating heavily. The two packages interact heavily, so intuitively it
seems to be difficult to fix this dependency. The opposite may be easier to fix.

J. Packages referencing a large number of external classes (a lot of red links and
header with bright red number). This pattern shows direct references to classes be-
tween the two packages.

K. Packages containing classes performing numerous invocations to other classes (a
lot of green links and header with the number in bright green).

L. Packages containing classes inheriting from other classes. It means that the refer-
encing package is highly dependent on the referenced package. Looking at the opposite
cell is good practice.

M. Packages with a large number of extensions. It means that the referencing pack-
age extend the referenced package. It represents additional feature for the referenced
package (Absent in Figure 5.11).

N. Packages in which a large number of classes refer to one class (incoming funnel).
This patterns shows that the dependency is not dispersed in the referenced package. It
can be that the referenced class is either an important class (facade, entry point) or also
simply packaged in the wrong package.

O. Packages in which a large number of classes are referred to one class (outgoing
funnel). This pattern is the counterpart of the previous one. Therefore, it helps spotting
important referencing classes. It is useful to check whether such a class in addition is
referenced by other.

Browsing the overview and accessing more detailed views is supported by direct inter-
action with the mouse. These views can be for example class blueprint or any polymetric
views [Lanza 2003b].
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Figure 5.12: A class-to-class cycle.

5.5 Validation

We report on three different studies performed to enhance and validate our approach deal-
ing with package dependencies. Such studies have been performed on small and large soft-
ware architecture. The first one is on the Moose open-source reengineering environment.
This case study confirms that EDSM is useful when a reengineer knows the source code
and knows how to use EDSM. The second study is on a model of Seaside 2.8 Framework.
It shows that EDSM helps understanding and fixing a software system without knowing
the source code. The third study is a user study that shows that ECELL is a comprehensive
tool for developers.

5.5.1 Moose Case Study

5.5.1.1 Goal

The Moose open-source reengineering environment is a well-maintained platform with
multiple libraries. We expect few cycles and such cycles should be simple to fix, because
developers are highly sensible to the problem. The goal of this experiment is to validate
the approach on a well-known case study.

5.5.1.2 Presentation

In this case study, we used EDSM to analyze cycles between packages in the Moose
Reengineering System version 4b4. The system has 108 packages and 1428 classes. There
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are 21 packages in cycle creating 6 SCCs. SCCs involve respectively 2, 2, 2, 2, 4 and 9
packages. There are 19 direct cycles.

During this case study, we used mainly EDSM. We also used ORION (Chapter 8,
p.127). This approach provides a tool allowing us to make modifications on a model and
to analyze impact of changes.

5.5.1.3 Protocol

The goal is to remove from the model all cycles based on our experiment with EDSM. We
perform the study in two steps: (i) as direct maintainers of the Moose platform, we could
readily validate whether each cycle was a problem or not, find the problematic dependency
and propose a solution to eliminate the problematic dependency; and (ii) before implement-
ing the solution, each proposition was sent to, and validated by, the Moose community.

5.5.1.4 Topology

At the end of the study, there were 4 direct cycles left made by test packages. We did not
remove them, as they are required for testing some tools like EDSM.

For the rest of the system, we provide 22 propositions to remove cycles to the commu-
nity (in Table 5.1). All these propositions have been accepted and integrated in the source
code.

5.5.1.5 Conclusion of the Case Study

In this case study we wanted to show that EDSM is adapted to understand problems in a
known system. The Moose Reengineering Framework has cycles that are not critical. They
have been removed with simple actions on the source code.

5.5.2 Seaside

5.5.2.1 Goal

In this user study, the goal is to validate the approach, in particular the information provided
by EDSM, by comparing results of our work with the same work done by engineers without
EDSM.

5.5.2.2 Presentation

We analyze Seaside 2.8, a web framework in Smalltalk. This system receives the major
revision 3.0 because of some refactoring after the version 2.8. A major goal of the Seaside
3.0 revision was to reengineer the application in modular packages.

Seaside 2.8 contains 33 packages, 358 classes, 2 SCCs (one with 3 packages and one
with 22 packages), and 25 direct cycles between packages. During this case study, we used
mainly EDSM. We also used ORION (Chapter 8, p.127). This approach provides a tool
allowing us to make modifications on a model and to analyze impact of changes.
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Type: iterative development
extend method FAMIXClass.browseSource() in Moose-Finder.
extend method FAMIXMethod.browseSource() in Moose-Finder.
move class MPImportSTCommand in Moose-Wizard.
move class MPImportJavaSourceFilesWithInFusionCommand in Moose-Wizard.
extend method FAMIXNamedEntity.isAbstract() in Famix-Extensions.
extend method FAMIXNamedEntity.isAbstract:(Object) in Famix-Extensions.
extend method FAMIXClass.isAbstract() in Famix-Extensions.
extend method CompiledMethod.mooseName() in Famix-Implementation.
extend method CompiledMethod.mooseNameWithScope:(Object) in Famix-Implementation.
extend method FAMIXPackage.definedMethods() in Famix-Extensions.
extend method FAMIXPackage.extendedClasses() in Famix-Extensions.
extend method FAMIXPackage.extendedClassesGroup() in Famix-Extensions.
extend method FAMIXPackage.extensionClasses() in Famix-Extensions.
extend method FAMIXPackage.extensionClassesGroup() in Famix-Extensions.
extend method FAMIXPackage.extensionMethods() in Famix-Extensions.
extend method FAMIXPackage.localMethods() in Famix-Extensions.
extend method FAMIXPackage.localClasses() in Famix-Extensions.
extend method FAMIXPackage.localClassesGroup() in Famix-Extensions.

Type: evolution
extend method MooseModel.mseExportationTest() in Moose-SmalltalkImporterTests.
move class MooseScripts in Moose-SmalltalkImporter.

Type: message not sent
remove reference checkClass: refers to MooseModel.
remove method FAMIXClass.ascendingPathTo:(Object).

Table 5.1: Propositions provided to the Moose Community

5.5.2.3 Protocol

In this case study, we import a model of Seaside 2.8 and we do not access the source code.
The goal is to use only EDSM and ORION to remove all cycles in the Seaside model. We
send to Seaside developers our propositions for cycles removal, they analyze the validity
of the propositions. They provide four types of answers: (i) accepted and integrated in
Seaside 3.0 (true positive), it represents the best validity for our case study as the devel-
opers have already detected and integrated; (ii) accepted but not integrated, it represents a
good validity but the proposition has not been integrated because of better solutions due to
our lack of knowledge of the system; (iii) refused (false positive), it represents the worst
validity: engineers refuse the change because proposed changes break the semantic of the
system; and (iv) refused for lack of control on the package, this case is particular because
some packages we analyzed are not controlled by the Seaside team.

5.5.2.4 Results

We proposed 71 actions to perform. It took us seven hours to remove all cycles in the
system. Table 5.2 shows a summary of our propositions by type of actions. We proposed
to extend 42 methods, to move 22 classes in other packages, to merge 5 packages and to
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create 2 packages to move classes or extend methods in them. Seaside developers accepted
39 propositions (Table 5.3).

Proposition type Number
extend a method 42

move a class 22
merge 2 package 5

add a package 2

Table 5.2: Summary of proposed actions.

• 17 propositions were already integrated in Seaside 3.0.

• 22 propositions were accepted but not integrated because developers have imple-
mented other solutions. Due to evolution of the system and not only remodulariza-
tion, they have probably evolved and refactored some packages, with an impact on
the architecture.

• 6 propositions have been refused because developers have lack of control on the
packages involved, so they have no idea of the structure.

• Finally, 26 propositions (37%) have been refused particularly because of our lack of
knowledge of the studied system. Engineers refused multiple propositions because
these propositions would break the meaning of the expected architecture.

Validity type Number
accepted and already integrated in Seaside 3.0 17
accepted, not integrated in Seaside 3.0 22
refused 26
refused for lack of control 6

Table 5.3: Validity of propositions.

5.5.2.5 Conclusion of the Case Study

In this case study, we would like to highlight that contrary to the first case study, we per-
formed the study without any knowledge of the architecture of Seaside and without the
source-code. In our opinion, this study points to the data-to-information quality of EDSM,
both extracting the global picture showing the right details.

In this case, Seaside was already remodularized which offered a good feedback for
the study. Results of this case study prove that EDSM helps detecting structural problems
and provides enough information to fix them, as a developer can do without EDSM. The
Seaside developers have accepted 55% of propositions and 8% were refused for lack of
control on the packages. The part of refused proposition (37%) is acceptable considering
we did not know the system and we did not have access to the source code.
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EDSM provides information about problems, it does not inform about possible solu-
tions. Solutions are proposed manually. We can consider that EDSM provides enough
information to help remodularizing a system but does not replace the engineer knowledge
or source-code browser.

5.5.3 User Study

5.5.3.1 Goal

This case study was partly explained in the user study performed to validate ECELL (Chap-
ter 4 p.49). In this case study, we perform a user study to validate EDSM as a usable tool
for non-expert developers. Contrary to the two first case studies, which validate EDSM
features by an expert, this user study targets uses on a wider range of systems.

5.5.3.2 Used Tools

For this user study, we wrote a small tutorial about EDSM (Appendix A, p.163 and avail-
able on http://www.moosetechnology.org/docs/eDSM) and a questionnaire. The developers use
EDSM on their own developed software systems and answer questions. They can only use
EDSM and the software source code (i.e., no other tool for software analysis)

5.5.3.3 Protocol

We provide the users with the EDSM tool, the questionnaire and the tutorial. The ques-
tionnaire has 36 questions. We can organize the questionnaire in 8 parts.

1. Participant characteristics: requesting general information about the user experience.
There are 4 questions. (i) Are you aware of the package structure of your application?
(ii) Are you an expert of the system you will analyze with our tool? (iii) Are you
skilled using visualizations? (iv) Do you use software-visualizations in general?

Possible answers are: strongly disagree, disagree, agree, or strongly agree.

2. Characteristics of the system: We ask the name of the system and 5 simple metrics
which are answered by a small script in EDSM. They are: Number of packages of
the software, Number of classes, Number of packages in cycle, Number of SCCs,
Size of each SCC.

3. Time spent using EDSM: This single question asks the time users used EDSM.

4. Usefulness of simple DSM to understand the system: As DSM are known to help
understanding a structure and the adding of colors should help identifying structural
problems, we ask two questions: (i) Did the DSM help you to see the structure of
your application? (ii) Did the DSM help you to identify some critical dependen-
cies? The simple DSM from our approach is used. It provides colored cells for fast
detecting cycles.

Possible answers are: strongly disagree, disagree, agree, strongly agree, or not ap-
plicable.

http://www.moosetechnology.org/docs/eDSM
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5. Pattern identification in EDSM:

This part of the questionnaire tests the usefulness of EDSM in large. We are par-
ticularly interested in which small multiple patterns the user paid attention. These
patterns correspond to dependencies that could be removed. We ask 5 questions: Do
you identify places where you could cut a cycle? Do you identify packages where
most of the classes are involved in cycles? Do you identify packages where only one
class is creating a cyclic dependency? Do you identify packages which should be
merged? Do you identify cycles you want to keep?

Possible answers are: strongly disagree, disagree, agree, strongly agree, or not ap-
plicable.

6. Usefulness of ECELL in general (already explained in Chapter 4, p.39): we propose
ECELL as a view of a dependency for reengineering. It has two goals: understanding
and resolving. We ask two questions related to these features: is ECELL useful to
understand dependencies? Is ECELL useful to fix a dependency?

Possible answers are: strongly disagree, disagree, agree, strongly agree, or not ap-
plicable.

7. Use and usefulness of ECELL features (already explained in Chapter 4, p.39): In this
part, we want to investigate the usefulness of each ECELL feature in details. For 8
features (Color of ECELL, Header of ECELL, Name of package in background of
ECELL, Ratio of concerned classes, Color of classes, Border of classes, Color of
edges, Popup information), we ask two questions: Did you use this feature? Do you
consider this feature useful?

Possible answers are: the first question is a yes-no question. The second question
needs an answer between 1 (not useful) and 5 (very useful).

8. Open questions: We ask some opened question to collect more information about
the use of EDSM and the perception of the user. The questions are asked in two
times: (i) At the beginning of the questionnaire, what is your goal in this experiment
for your application (identify cycles, layers, hidden dependencies)? What are your
expectations in using this tool? What is the size of your screen? (ii) At the end
of the questionnaire, did you complete your goal? If not, why? (lack of time, too
complex, tool useless) Did DSM help you? Which applications do you use to see
your software structure and its problems? Which features of the EDSM need to be
improved? Which features of the tool are useless?

5.5.3.4 Results

The user study was conducted with nine participants unsupervised, from master students
to experience researchers, with various programming skills and experienced in software
projects. We selected them with two criteria: the time they have to investigate EDSM and
the size of the maintained system. In fact, when the maintained system has one package,
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EDSM is useless. In the following figures, we use a color for each studied system provided
in Figure 5.13

In this section we detail the result of each part of the questionnaire.

Pharo
Pharo
Mondrian
Merlin
Moose
Seaside
SqueakDBX
XMLParser
PolyMorph

Figure 5.13: Color used for each project.

1. Participant characteristics (Figure 5.14): answers show that answering engineers are
experts of these software applications. They are also concerned by the package struc-
ture. Their interaction with visualization tools exists but is not excessive.

Interest Expertise Skill Use

Not applicable

Strongly disagree

Disagree

Agree

Strongly agree

Figure 5.14: State of participants.

2. Characteristics of the system (Table 5.4): they are eight software systems evaluated
with EDSM. There are two developers working on the Pharo Smalltalk Environment



76
Chapter 5. EDSM,

Understanding package dependencies

and one developer for each of following system: Mondrian Visualization Engine,
Merlin, Moose, Seaside 3.0, SqueakDBX, XMLParser, Polymorph. All these sys-
tems are developed in Smalltalk. Table 5.4 shows there are systems with different
size. All these software applications have cycles between packages.

Software name (kind of software) Packages Classes SCCs (size) Direct
(number in cycle) cycles

Pharo (Smalltalk Environment) 104 (68) 1558 1 (68) 98
Mondrian v.480 (Visualization Engine) 20 (8) 149 2 (2 - 6) 7
Merlin (Wizard library) 5 (4) 31 1 (4) 3
Moose (Software analysis platform) 108 (21) 1428 6 (2-2-2-2-4-9) 19
Seaside 3.0 (Web framework) 93 (5) 1408 2 (2 - 3) 2
SqueakDBX (Database) 3 (3) 88 1 (3) 1
XMLParser (XML Library) 8 (4) 33 1 (4) 4
PolyMorph (UI library) 12 (4) 152 1 (4) 4

Table 5.4: Some metrics about studied Software Applications

3. Time spent using EDSM (Figure 5.15): the time spent using EDSM is important to
know. The longer the participants work on EDSM, the more precise the analysis is.
It is a good metric to know the time to understand EDSM and the time to get the
goal. We do not differentiate the learning time from the use time.
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Figure 5.15: Time spent for each project.

4. Usefulness of simple DSM to understand the system (Figure 5.16): Figure 5.11
shows a simple DSM with only background color and weight of dependencies. This
view is useful to have a preview of the system. Previous work (as [Sangal 2005])
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promotes DSM for retrieving software structure. The participants seems to have
difficulties to retrieve the structure (providers are on bottom/right and client are on
top/left). They identify cycles between packages and detect critical dependencies.

Understanding Structure Cycles Identification

Not applicable

Strongly disagree

Disagree

Agree

Strongly agree

Figure 5.16: Usefulness of DSM.

5. Pattern identification in EDSM (Figure 5.17): EDSM promotes the use of small
multiple view. We ask five simple pattern identifications for expert of a system.
Answers show that developers can detect these patterns in EDSM. Patterns do not
appear in all systems, especially in Smalltalk ones. Hence, some answers are “not
applicable”.

6. Usefulness of ECELL in general (Figure 5.18) (already explained in Chapter 4, p.39):
ECELL in the context of large EDSM should be useful to understand a cycle and to
fix it. Results show that ECELL helps developers to understand cycles. Fixing a
cycle is a bit more difficult, as sometimes developers need to access source code to
understand dependencies. It is available in ECELL.

7. Use and usefulness of ECELL features (Table 5.5 and Figure 5.19) (already explained
in Chapter 4, p.39): ECELL is a complex visualization. It provides a large quantity of
information, some of which is only useful in specific cases. Results confirm that the
main features of ECELL are used (the cell color, the header, the name of packages
in the cell and the popup information view). Specific features, reserved for special
understanding of the package, are less used. Figure 5.19 shows that main features
are useful, where specific ones are considered less useful. Maybe the class border
feature is useless.

8. Open questions: Participants use EDSM globally for analyzing these systems and
detecting cycles between packages. The main idea is to detect easily cycles, visualize
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Figure 5.17: Patterns identification in EDSM.

Understanding cycle Fixing cycle

Not applicable

Strongly disagree

Disagree

Agree

Strongly agree

Figure 5.18: Usefulness of ECELL.

them and try to build a better structure than the existing one. Generally, the goal has
been reached. One person did not like the matrix representation, and two others
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Class color X X X X X 55%
Class border X X X 33%
Edge color X X X X X 55%

Popup X X X X X X X 77%

Table 5.5: Use of ECELL features.
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Figure 5.19: Usefulness of ECELL features.

(PolyMorph with 8 packages and XMLParser with 12 packages) declared that the
learning time is too big for the studied system.

All but one participant consider EDSM as a useful tool. The one who does not like it
prefers graph visualization. This developer uses iterative tools like scripts and simple
graph visualization. In fact, EDSM is less useful in this case. Other participants do
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not use any other tool and probably let their systems deteriorate, which is shown
by this experiement where all studied systems have cycles. This result is important
because there is a lack of tools to analyze software application.

About the improvement which could be integrated in EDSM the answer which is
repeated is the need of a nomenclature and a better interaction with the source code.
Globally, participants like EDSM but the learning time seems to be a problem. There
are multiple colors with multiple meaning. To improve the reading of ECELL and
EDSM, a nomenclature is a possible solution.

5.5.3.5 Threats to Validity

No Other Tool to Compare to. One of the problems of our user study is that there is no
tool for comparison. It is a difficult state because, we cannot compare our approach with
others developed at level of classes.

Class Extensions. All studied software applications are developed with the Smalltalk
language. It has some particular features such as class extension, which makes it easier
to modularize software applications, but which also make easier to create cycles. More
experimentation with java should be done.

5.5.3.6 Conclusion of the User Study

Results are good enough to say that EDSM is a useful tool to understand and to help
breaking cycles between packages. The part of problem encountered by participants is due
to a lack of information about the nomenclature.

EDSM encompasses the principle of micro-macro reading by showing the details of
cycles at class level within the package structure. But ECELL is too complex for users who
are not experts, especially due to use of many colors. We already integrated a basic mode
with colors reserved for most useful features.

A point to highlight is that all studied software applications have cycles between pack-
ages. This problem is important because it could mean two issues: either lack of tools
lead too many ADP (Acyclic Dependency Principle proposed by Martin [Martin 2000])
violation (due to iterative) and we should provide a better structure to avoid this kind of
problem either the definition of a package is not correct and we should think about what is
a package.

5.6 Discussion

5.6.1 Comparison with Other Approaches

Package Blueprint. It takes the focus of a package and shows how such package uses
and is used by other packages [Ducasse 2007]. It provides a fine-grained view, however
package blueprint lacks (1) the identification of cycles at system level and (2) the detailed
focus on classes actually involved in the cycles.
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Node-link Representation. Often node-link visualizations are used to show dependen-
cies among software entities. Several tools such as dotty/GraphViz, Walrus or Guess can
be used. Using node-link representation is intuitive and has a fast learning curve. One
problem with node-link visualization is finding a good layout scaling well on large sets
of nodes and edges: such a layout needs to preserve the readability of nodes, the ease of
navigation following edges, and to minimize edge crossing. Even then, cycle identification
is not trivial. In our opinion it is difficult to find a single layout which works well in all
cases.

With DSM the visualization structure is preserved whatever the data size is, which
enables the user to dive fast into the representation using the normal process. Cycles remain
identified by colored cells, there is no edge between packages, and so this reduces clutter in
the visualization. Moreover, EDSM enables fine-grained information about dependencies
between packages. Classes in client package as well as in provider package are shown in
the cells of the DSM.

Dependence Clusters. Brinkley and Harman proposed two visualizations for assess-
ing program dependencies, both from a qualitative and quantitative point of view [Bink-
ley 2004]. They identify global variables and formal parameters in software source-code.
Subsequently, they visualize the effect dependencies. Additionally, the MSG visualiza-
tion [Binkley 2005] helps finding dependence clusters and locating avoidable dependen-
cies. Some aspects of their work are similar to our own. Granularity and the methodology
employed differ: they operate on procedure and use slicing analysis, while we focused on
coarse-grained entities and use model analysis.

5.6.2 Advantages of EDSM

EDSM brings two benefits for software structure analysis.
The first one is about the matrix structure. A matrix provides a clear structure in com-

parison to a node-link visualization: a line or a column represents all interactions with a
package. This is a spatial advantage because there are no edges between packages, so this
reduces clutter in the visualization.

A second benefit arises from small-multiples and micro-macro reading [Tufte 1997].
It provides contextual information: in a global view, EDSM could be read similarly as
the original DSM by looking the header for number of links and the bottom to see cycle
context. However, EDSM provides more information about the context of a dependency
by displaying in an ECELL the complexity of the relationship. Also seeing simultaneously
the multiple contexts of dependencies allows the programmer to compare and assess the
complexity of each. EDSM also provides browsing actions like detailed zoom and focusing
on SCC or subset.

5.6.3 Limits of EDSM

There are still some limitations that we would like to overcome, with the objective to make
EDSM more effective for reengineers. A problem is the limitation of screen space. A DSM
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requires a lot of unused space when there are empty cells.
One common problem of visualization, which is applied to EDSM, is the problem of

having enough information to understand a system, but not too much information to still
have a clean visualization. In the second case study, on the validation of Seaside propo-
sition, a lot of propositions has been refused because of a lack of information about pro-
gramming strategy, but in the user study we show that EDSM provides a lot of information,
which could be not used every time.

5.6.4 Impact and Cost of Small Multiples

One critic about EDSM is that it loses the simplicity of the original DSM. Our experience
on real and complex software showed that DSM is powerful at high level but limited for de-
tails, which are crucial to understand problems. With DSM, we were constantly losing time
browsing code to understand what a cell was referring to. EDSM gives such information
at a glance.

A related criticism about EDSM is that it looks too complex. However, one does not
need to know all the features. The main features are easy to catch to start with EDSM
(ECELL to work as small multiples and micro-macro reading i.e., that variations of the
same structure reveal information).

5.7 Summary

This chapter presented an enhancement of Dependency Structure Matrix (DSM) using
micro-macro reading thanks to ECELL. First, colors are used to distinguish direct and
indirect cycles. Second, ECELL contents are enriched with the nature and strength of the
dependencies as well as with the classes involved. Such enhancements are based on small-
multiples, micro-macro reading and preattentive visualization principles. Thanks to these
improvements, package organization, cycles, and cycle details are made explicit. We ap-
plied EDSM on several complex systems to demonstrate that EDSM is a useful tool for
detecting, understanding and fixing cycles between packages.

EDSM is integrated in the Moose Reengineering system and we are integrating changes
proposed by user study participants (i.e., nomenclature).

The next chapter introduces CYCLETABLE. It is a cycle-centric visualization. Because
EDSM does not provide enough information about cycles (i.e., it only shows Strongly Con-
nected Components and direct cycles), CYCLETABLE decomposes Strongly Connected
Components and highlight high impact dependencies.
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Crash programs fail because they are based on theory that, with nine women
pregnant, you can get a baby a month.

[Wernher Von Braun]

At a Glance

In this chapter we present CYCLETABLE, a visualization highlighting depen-
dencies to efficiently remove cycles in the system. It decomposes Strongly
Connected Component into minimal cycles to focus on shared dependencies
between minimal cycles. This visualization is completed with ECELL (Chapter
4) to provide fine-grained view of dependency. We performed (i) a case study,
which shows that the shared dependency heuristic highlights dependencies to
be removed; and (ii) a comparative study, which shows that CYCLETABLE is
useful for the task of breaking cycles in a SCC compared to a normal node-link
representation.

Keywords: Software visualization, cycle decomposition, breaking cycle.
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6.1 Introduction

In Chapter 5 (p.55), we propose EDSM, which enhances Dependency Structural Matrix
(DSM) for a better understanding of cycles at the package level. EDSM shows Strongly
Connected Components (SCC) and highlights cycles between two packages in the SCC.
However, eDSM is not well adapted when one cycle involves more than two packages
(indirect cycles).

We devised a new approach based on the decomposition of one SCC into a set of
minimal cycles (defined in Section 3.3, p.28). Together the set of minimal cycles cover all
dependencies in the SCC and allows the engineer to come up and assess plans to remove
all cycles in the system.

In this chapter, we present an approach highlighting dependencies named shared de-
pendencies (defined in Section 3.3, p.28) combined with a visualization entirely dedicated
to cycle assessment, called CYCLETABLE. CYCLETABLE layout displays all cycles at
once and shows how they are intertwined through one or more shared dependencies. CY-
CLETABLE combines this layout with ECELL (Chapter 4, p.39) to present details of depen-
dencies at class level, which allows the engineer to assess the weight of the dependency.

Structure of the Chapter

Section 6.2 (p.84) introduces the background and the challenges of cycle analysis with
the traditional node-link representation of graphs and with DSM. Section 6.3 (p.87) and
Section 6.4 (p.89) explain CYCLETABLE layout and usage. Section 6.5 (p.90) presents
ECELL in CYCLETABLE and discusses on a sample case the criteria to break cycles as
highlighted by the visualization. Section 6.6 (p.92) presents some validations based on a
case study and a comparative study. Section 6.7 (p.100) lists related work and Section 6.8
(p.101) concludes the chapter.

6.2 Cycle Understanding Problems

In this section, we present important points related to cycle understanding and what meth-
ods exist to fix them. We take an example (Figure 6.1 and Figure 6.2) already presented in
Chapter 3 (p.30)

6.2.1 Feedback Arcset

In graph theory, a feedback arcset is a collection of edges we should remove to obtain
an acyclic graph. The minimum feedback arcset is the minimal collection of edges to
remove to break the cycle. This approach could produce good results working on package
dependencies because it does not break so much the structure. This method is not usable
for two important reasons:

• It is a NP-complete problem (optimized by Kann [Kann 1992] to become APX-hard).
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Figure 6.2: Sample SCC (Figure 6.1) decomposed into three minimal cycles.

• It does not take into account the semantic of the software structure. Optimizing a
graph is not equivalent to a possible realistic at the software level.

6.2.2 Cycle Visualization

6.2.2.1 Graph Visualization

Figure 6.1 shows a sample graph with five nodes and three minimal cycles. Notice that
cycle A-B-C and A-B-E share a common dependency (in bold) from A to B. This shared
dependency is interesting to spot since it joins two cycles and by removing it we would
break those cycles.

Graph layouts offer an intuitive representation of graphs, and some handle cyclic graph
better than others. On large graphs, complex layouts may reduce the clutter but this is often
not simple to achieve.

6.2.2.2 DSM and EDSM Visualization

In Chapter 5 (p.55), we show that DSM (Dependency Structural Matrix) provides a good
approach to see software dependencies [Steward 1981, Sullivan 2001, Lopes 2005, Sulli-
van 2005, Sangal 2005] and particularly cycles [Sangal 2005]. It provides a dependency-



86
Chapter 6. CYCLETABLE,

Visualization for Cycles Assessment

DCBA
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D C>D

E>A

B>EE

E

Dependencies from
the cycle A-B-E

a direct cycle

Figure 6.3: DSM corresponding to the graph of Figure 6.1. Each cell represents a depen-
dency. See also Chapter 5, p.55.

centric view possibly associated with color to perceive more rapidly interesting values
[Heer 2010]. We use DSM (Dependency Structural Matrix) to see direct cycles: a di-
rect cycle is displayed in red and the two cells representing the two dependencies of the
direct cycle are symmetric along the diagonal [Sangal 2005]. Seeing indirect cycles is
more difficult, as the visualization is not adapted for it. The main reason for this problem
is that it is difficult to read an indirect cycle in the matrix, i.e., to follow the sequence of
cells representing the sequence of dependencies in the cycle. The order can appear quite
arbitrary as one has to jump between different columns and rows (this problem does not
exist with direct cycles as there is only two cells involved, mirroring each other along the
diagonal). The cycle A-B-E composed by the three dependencies A>B, B>E and E>A has
been circled in Figure 6.3 to show the complexity of reading indirect cycles, intertwined
with direct cycles.

In Figure 6.3, the whole matrix displays a pale blue background, indicating that A, B,
C, D, and E are in the same SCC. We can see the direct cycle between C and D (in red) and
in yellow the other dependencies in the SCC.

We proposed EDSM (Chapter 5, p.55), an improvement of DSM, which shows the
relationships between classes in package dependencies. It shows all classes involved in
a dependency and which types of dependency exist, providing a good understanding of
the dependency and support for breaking the dependency when necessary. While EDSM
allows us to analyze direct cycles comfortably, it does not address the problem of indirect
cycles left over after removal of direct cycles.

6.2.3 Lack of Solutions

In this section, we present the problem of understanding and breaking cycles and we ex-
plain why existing approaches are not up to the task. Solving cycles in legacy systems with
several packages and large SCCs is difficult. Feedback Arcset is not necessarily adapted.
Node-link representations become unreadable with a large number of packages and de-
pendencies crossing each other. DSM does not provide enough information about indirect
cycles. Based on our experience, we propose to focus on shared dependencies in order
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Figure 6.4: CYCLETABLE for Figure 6.1 sample graph.

to efficiently understand and break cycles. The next section shows how this heuristic is
embodied and used in the CYCLETABLE visualization.

6.3 CYCLETABLE

During our experiments with EDSM, we have noted that a dependency can be part of mul-
tiple cycles. These “shared” dependencies should be highlighted because when we remove
them, all involved cycles disappear. Our intuition is that the more shared a dependency is,
the more likely it is unwanted in the architecture and should be removed.

We propose a visualization to help reengineers to identify dependencies involved in
cycles and to highlight shared dependencies. This visualization shows all minimal cycles
ordered by shared dependencies.

6.3.1 CYCLETABLE in a Nutshell

We design CYCLETABLE with the purpose of visualizing intertwined cycles. CYCLETABLE

is a rectangular matrix where packages are placed in rows and cycles in columns. CY-
CLETABLE (i) shows each minimal cycle independently in columns; (ii) highlights shared
dependencies between minimal cycles; and (iii) uses ECELL (Chapter 4, p.39) to provide
information about dependency internals, enabling small multiples and micro-macro read-
ing [Tufte 1997] i.e., variations of the same structure to reveal information. We detail each
of these points now.
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6.3.2 CYCLETABLE Layout

The CYCLETABLE layout is presented in Figure 6.4. This figure shows a sample CY-
CLETABLE layout for the graph in Figure 6.1 and Figure 6.2. The first column contains the
name of packages involved in cycles, then each column represents one minimal cycle. A
row represents all dependencies involved in cycles coming from the package. A non-empty
cell, at the intersection of one row and one column, indicates that the package of this row
has a dependency involved in the column cycle.

6.3.2.1 One Cycle per Column

Except for the first, each column represents a minimal cycle. In Figure 6.4, the first column
involves packages A, B and E in a cycle (first cell represents the dependency from A to B,
the second cell from B to E and the last one from E to A).

6.3.2.2 One Package per Row

Each row contains dependencies (represented as boxes) from a package. In Figure 6.4, the
first row represents package A, with a dependency to B involved in two different minimal
cycles. The second row represents package B, which depends on E and C.

6.3.2.3 Shared Dependencies

Cells with the same background color represent the same dependency, shared by multiple
cycles. In Figure 6.4, first row contains two boxes with a yellow background color. It
represents the same dependency from A to B, involved in the two distinct cycles A-B-
E and A-B-C. It is valuable information for reengineering cycles. Indeed, removing or
reversing A-B can solve two cycles.

6.3.2.4 Size of the Cycle

The last line of CYCLETABLE displays the size of each cycle (e.g., each column). This
information is valuable when there are multiple cycles. A first approach could be to fix the
smaller cycles because there are fewer dependencies to understand.

6.3.3 Cycle Sequence

Cycle sequence represents a relative order between dependencies. This number is some-
times necessary to retrieve the exact order of dependencies in a cycle. Let’s take the exam-
ple of cycle A-B-E. In Figure 6.4, the first relative dependency is A>B (there is the number
1 in top-left corner). The second dependency of the cycle is B>E (number 2 in top-left
corner). The third and last dependency of the cycle is E>A (number 3 in top-left corner).
In this particular case, it is not useful as cycle sequence follows the top-down order.

To understand the usefulness of this information, Figure 6.5 provides a real example.
The 13th column displays a cycle that cannot be read from top to bottom. As the dependen-
cies are not in the right order, it is useful to have the sequence of the cycle. The cycle should
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Figure 6.5: A subset of Moose in CYCLETABLE with simple cells.

be read from number 1 to number 5, 1: FxExtension>MsFinder, 2: MsFinder>MsWizard, 3:
MsWizard>MsGene, 4:MsGene>MsCore and 5: MsCore>FxExtension.

6.4 Reading a CYCLETABLE

Figure 6.5 shows a sample CYCLETABLE with 9 packages involved in 15 minimal cycles.

6.4.1 Reading a Package

There are three visualization patterns for a package.

• There is one color in the row: the package has one shared dependency to another
package but it is involved in multiple cycles. For example in Figure 6.5, the package
MsCore (row 2) has one shared dependency to FxExtension, this dependency is shared
by all cycles displayed in this CYCLETABLE.
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• There are white cells in the row: a white dependency is not a shared dependency.
The package is involved in multiple cycles with many dependencies. In Figure 6.5,
the package MsWizard (last row) has three different dependencies involved in three
different cycles. There is no shared dependency.

• When there are multiple colors in the row, there are multiple cycles with multiple
shared dependencies. It is the common visualization pattern. The goal is to look at
the most present color. For example in Figure 6.5, the line MsMont has six cells: four
cells are white and two cells are green. The two green cells are the same dependency,
the white cells represents four different dependencies. MsMont has five different
dependencies, involved in six cycles.

6.4.2 Reading a Cycle

A column represents a cycle. Cycle length is displayed at the bottom of the table. A cycle
with colored cells has shared dependencies with other cycles. For example in Figure 6.5,
the 9th cycle between FxCore, MsCore and FxExtensions has two shared dependencies (red
and blue) and one non-shared dependency.

6.4.3 Reading Colors

The more cells share the same color, the more the same dependency is involved in mul-
tiple cycles. Then this dependency is interesting for cycle removing. We do not say that
this dependency must be removed, but when we remove a shared dependency, all cycles
involving this dependency are removed. For example, in Figure 6.5, if the blue dependency
from MsCore to FxExtension could be removed, all presented cycles would be removed.

6.5 CYCLETABLE with ECELL

6.5.1 Integrating ECELL in CYCLETABLE

Showing the details at class level of a dependency from one package to another is also
important to understand the dependency and assess its weight. We use ECELL (Chapter
4, p.39) adapted to CYCLETABLE (Figure 6.6). Figure 6.7 shows how ECELL is included
in CYCLETABLE and provides a closed context to understand each dependency separately.
This section shows the specific behavior for CYCLETABLE.

An ECELL contents displays all dependencies at class level from a client package to a
provider package. Only the bottom part of ECELL (State of the dependency in Figure 6.6)
has a particular meaning. Its color represents the identification of shared dependencies and
the number is the position in the cycle (see Section 6.4, p.89).

6.5.2 Breaking Cycles with CYCLETABLE and ECELL

Figure 6.7 shows a CYCLETABLE with four packages of Moose core: FxCore, MsCore,
FxExtensions and MsFinder. Six minimal cycles are immediately visible. It also appears
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Figure 6.6: ECELL structural information. See also Chapter 4, p.39.

that three dependencies are each involved in multiple cycles (with red, blue, and orange
markers at the bottom of the ECELLs).

An important asset of CYCLETABLE is that it does not focus on a single solution to
break cycles. It rather highlights different options as there are many ways to resolve such
cycles. Only the reengineer can select what he thinks is the best solution. We now discuss
how CYCLETABLE allows one to consider solutions for solving cycles in Figure 6.7.

The first point to consider in CYCLETABLE is the notion of shared dependencies, the
number of cycles that are involved, and their weight. For example, the red ECELL linking
FxCore to MsCore (first row) is in two indirect cycles and one direct cycle. It has a weight
of two dependencies and involves four classes (two in each package) as well. But one
dependency is an inheritance which can require some work to remove. Finally, from a
semantic point of view, MsCore is at the root of many functions in the system so it seems
normal to have such dependencies from FxCore.

Instead, we turn our focus to the blue ECELLs, linking MsCore to FxExtensions. It
has a weight of five dependencies and involves two classes. From a semantic point of
view, FxExtensions represents extended functionalities of the system so it seems that the
dependency from MsCore is misplaced: it is just a single method referencing a class in
FxExtensions. Moving the method to package FxExtensions is enough in this case to remove
the dependency. This single action breaks four cycles.

Two direct cycles remain: (FxExtensions - MsFinder) named A in Figure 6.7 and (FxCore
- MsCore) named B in Figure 6.7. The cycle A has a dependency shared with previously
fixed cycles (yellow dependency) and is small (two internal dependencies). But the other
dependency is also made of two internal dependencies. The situation is balanced. In this
case the reengineer has to rely first on his knowledge of the system architecture to detect
the improper dependency (FxExtensions >MsFinder). CYCLETABLE is still useful to explore
the involved classes and methods.

We assessed before that the dependency from FxCore to MsCore is acceptable. Hence,
the dependency from MsCore to FxCore should be removed to resolve the cycle labeled B
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Figure 6.7: CYCLETABLE with ECELL. There are 4 packages involved in cycles: FxCore,
MsCore, FxExtensions and MsFinder.

(Figure 6.7). As for the first case, a single method making a reference was misplaced in
package MsCore and should become a class extension.

6.6 Validation

We performed two studies to validate our approach. First, we show on a case study that
unexpected dependencies in the architecture, which should be removed, often reveal them-
selves as shared dependencies and are given the primary focus in CYCLETABLE. Second,
we perform a comparative study of CYCLETABLE with a normal node-link visualization
to validate the efficiency of CYCLETABLE when understanding and fixing large sets of
intertwined cycles.
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6.6.1 Case Study on Unexpected Dependencies

6.6.1.1 Presentation and Hypothesis

The case study was realized on the core of Moose version 4beta4 (33 packages). The rest of
Moose is not included in this case study because it does not have cycles. A developer from
the Moose team evaluated all package dependencies of the system (106 dependencies),
regardless of their involvement in cycles. The goal was to retrieve an objective evaluation
of each dependency. The possible values that the developer can give are: the dependency is
expected in the system architecture, purpose of the dependency requires deep investigation,
and the dependency is unexpected and should probably be removed.

After this step, we match all shared dependencies from CYCLETABLE against the eval-
uation given by the developer. We assessed two hypotheses: the probability that unex-
pected dependencies are often shared, and prominence of unexpected dependencies in CY-
CLETABLE, given by their positions in the matrix.

6.6.1.2 Results—shared dependencies as primary targets for removal investigation

Table 6.1 summarizes the results of the case study. The first three lines show some char-
acteristics of the system: there are 14 packages involved in 42 minimal cycles, themselves
including 17 different shared dependencies. Then, the assessment performed by the Moose
developer returned 11 unexpected dependencies, which should be removed. Finally, we
perform the intersection between unexpected and shared dependencies: 9 out of the 11
unexpected dependencies are also shared by various cycles. The two other unexpected but
not shared dependencies are actually independent direct cycles i.e., they are direct cycles
forming each one SCC, with no intertwined cycles. These two dependencies are not critical
in the system architecture.

The 11 unexpected dependencies retrieved by the developer cover the 42 minimal cy-
cles: in other words, fixing those 11 dependencies would break all cycles. It is remarkable
that fixing the 9 shared dependencies actually break 40 out of 42 minimal cycles (the two
remaining cycles being the independent direct cycles). This case study shows that i) un-
expected dependencies are often shared dependencies, and that ii) removing shared depen-
dencies can break multiple cycles with minimal effort, as only a handful of dependencies
need to be assessed.

6.6.1.3 Results—prominence of unexpected dependencies in CYCLETABLE

CYCLETABLE uses a heuristic to order packages and cycles in the matrix. This heuris-
tic tries to place cycles sharing common dependencies next to each other. In this study,
we show that the ordering given by the heuristic effectively also puts forward unexpected
dependencies, given that they are often shared. Starting with the set of unexpected de-
pendencies retrieved by the developer, we looked up the position of the client package in
CYCLETABLE. This position corresponds to the row where the dependency is displayed.

Table 6.2 shows that 9 out of 11 unexpected dependencies (80%) appear in the first three
lines (3 out of 15 packages, 20%). Thus issues with cyclic dependencies relate mostly to
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Characteristics Moose
number of packages 33
number of packages in cycles 14
number of dependencies 106
number of minimal cycles 42
number of shared dependencies 17
number of unexpected dependencies 11
unexpected ∩ shared 9
cycles coverage by unexpected ∩ shared 40 / 42

Table 6.1: Results of Shared Dependency Validation.

three packages. This result shows that just by focusing on the first part of the visualization,
a great deal of work can be done in breaking cycles.

Unexpected dependency Position in CYCLETABLE

(line number)
Famix-Core » Famix-Implementation 1
Moose-Core » Famix-Core 2
Moose-Core » Moose-SmalltalkImporter 2
Moose-Core » Famix-Extensions 2
Moose-Core » Moose-GenericImporter 2
Moose-Core » Famix-Implementation 2
Famix-Extension » Famix-Smalltalk 3
Famix-Extensions » Moose-Finder 3
Famix-Extension » Famix-Java 3
Fame » Moose-Core 9
Moose-Wizard » Moose-Finder 10

Table 6.2: Results of Unexpected Dependency Position.

6.6.2 Comparative Study with Node-link Representation

6.6.2.1 Presentation and Hypothesis

In this comparative study, we validate CYCLETABLE as a useful visualization to understand
and break a large set of cycles intertwined together. The precise goal of the study was to
validate the effectiveness of CYCLETABLE layout in matrix, compared to a common node-
link layout. We measure the time taken by participant to reason about cycles and the quality
of their answer.

The setup is the following: first the participant is given a tutorial about the task and
the tool with a small example, questions and correct answers to train himself. Second he
performs the same questions on the real case study. For the case study, we use a subset
of Moose (the 14 packages in cycles, see Table 6.1). Since we focus on assessing the
tool, we replace all package names by arbitrary letters from A to O and we do not use



6.6. Validation 95

ECELL (Figure 6.9). Hence, participants could not use prior Moose background (some had
already worked as developers in Moose) or package names to guide their intuition. The
assessment of multiple intertwined cycles is impractical when one uses a single node-link
representation showing the full SCC (as shown in Figure 6.8).

Famix-Smalltalk

Famix-Implementation

Moose-Core

Famix-Core

Famix-Extensions

Fame

Moose-GenericImporter

Moose-SmalltalkImporter

Moose-Finder

Famix-Java

Famix-File

Moose-Wizard Moose-MonticelloImporter

Famix-SourceAnchor

Figure 6.8: Node-Link representation of the Moose 14 packages in cycle.

Instead, we choose to display a series of node-link representations, one for each min-
imal cycle. This allows us to map the same data in CYCLETABLE and node-link. In
particular, a shared dependency was also displayed with the same color across multiple
node-links.

One group of seven participants answers questions using CYCLETABLE. The other
group of six participants answers questions using the node-link visualization.

6.6.2.2 List of Questions

Here are the eight questions that the users have to answer. We also give the rating of the
answer, based on the distance of the answer to the correct one. A 0 rating indicates a good
answer.

Q1: Give 2 packages that are in a direct cycle (cycle between two packages). Rating: 0
when the answer represents a direct cycle, 1 else.
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Figure 6.9: Sample of CYCLETABLE (left) and node-link visualization (right) representing
the same cycles used in the study. Colors and letters are randomly generated.

Q2: Give a minimal cycle involving N and O (enumerate packages in order). Rating: 0
when the answer is {O, G, N}, +1 for each false value.

Q3: How many minimal cycles go through package F? Rating: Computed as the difference
between the answer and 16, the correct answer.

Q4: How many shared dependencies exit package F? Rating: Computed as the difference
between the answer and 2, the correct answer.

Q5: How many dependencies should be removed to break all cycles involving package F?
Rating: Computed as the difference between the answer and 8, the correct answer.

Q6: What is the biggest shared dependency in the system? Rating: 0 when the answer is
{G, M}, 1 else.

Q7: How many minimal cycles are broken by removing the biggest shared dependency?
Rating: Computed as the difference between the answer and 24, the correct answer.

Q8: Give the minimum number of edges to remove in order to break all cycles in the
system. Rating: Computed as the difference between the answer and 10, the correct
answer.

6.6.2.3 Results

13 participants performed the study, from bachelors students to experienced researchers
with various programming skills and experience in visualizations. We distinguish three
parts in the results (Figure 6.10 and Figure 6.11).
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The first part relates to questions Q1 and Q2. For these two easy questions, the user
should identify cycles. Results show that it is faster to identify a cycle with a node-link
visualization. We can consider that it is still more intuitive than CYCLETABLE.

The second part relates to questions 3 to 7, where the user should recognize shared de-
pendencies or packages involved in multiple cycles. Here, CYCLETABLE performs better
and faster. Q7 appears as an exception: actually participants in both groups confused two
very similar colors, which is a mistake on our part for the choice of colors. These questions
validate the design of CYCLETABLE compared to node-link, for the purpose of reasoning
about shared dependencies.

Finally question 8 evaluates the capacity to assess the full complexity of the graph. It
builds upon the preparatory work made by answering the previous questions as one needs
to assess a minimal set of dependencies, mostly based on the impact of removing shared
dependencies. Results show it takes in average more than 90 seconds with CYCLETABLE

and more than 3 minutes with node-link visualization. While both groups gave similar
answers, it highlights the ease to read CYCLETABLE for this task.

6.6.3 Threats to Validity

Rating. We compute a rating based on the distance to the expected answer. We can
see that CYCLETABLE provides better answers than a node-link visualization. But false-
answers are due to a visualization without software meaning for participants. In the case
of real reengineering session, results could be different. It is a part of future work.

Removable Dependency. We suppose for CYCLETABLE that a critical dependency is
often shared. In our case study, results show that this hypothesis is right. But we should do
more experiments to confirm it.

Smalltalk Software. We analyzed Smalltalk source code which contains class extension.
Class extension is a feature available in multiple languages. It makes easier to modularize
software, but it makes also easier to make cycles. A work is in progress to analyze Java
software.

6.6.4 Conclusion of the Study

We create this visualization to assess cycles at package level. To analyze the usefulness of
the visualization, we do not have other visualization tools to compare. We build a node-link
visualization which shows shared dependencies. The benefit of node-link visualization is
that there is no learning time.

The study shows that CYCLETABLE is efficient to detect and to help reengineers break
cycles between packages. There are still some limits that we would like to overcome, with
the goal to make CYCLETABLE more effective for reengineers.

The order of cycles in the matrix is based on the similarity they share with each other,
based on their common shared dependencies. The order of packages follows cycle se-
quences as soon as cycles are inserted in the matrix. This heuristic gives good result in the
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Figure 6.10: Boxplots showing distance to expected answer in absolute and time in minutes
for questions 1 to 4. Graph shown on left and CYCLETABLE on right for each question.
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Figure 6.11: Boxplots showing distance to expected answer in absolute and time in minutes
for questions 5 to 8. Graph shown on left and CYCLETABLE on right for each question.
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first rows and columns of the visualization. Then it becomes difficult to arrange cycles and
packages so that a shared dependency forms a unique line of color in its row.

When there are cycles without shared dependencies, CYCLETABLE shows cycles sep-
arately but without colors. Such systems are actually simple to understand. In this case the
use of other visualization such as node-link or DSM could be better.

6.7 Related work

Node-link visualization. Often node-link Visualizations are used to show dependencies
among software entities. Several tools such as dotty/GraphViz, Walrus or Guess can be
used. Using node-link visualization is intuitive and has a short learning curve. One prob-
lem with node-link visualization is finding a layout scaling on large sets of nodes and
dependencies: such a layout needs to preserve the readability of nodes, the ease of nav-
igation following dependencies, and to minimize dependency crossing. Even then, cycle
identification is not trivial.

Package Blueprint. It shows how one package uses and is used by other packages in an
application [Ducasse 2007]. It provides a fine-grained view. However, package blueprint
lacks (1) the identification of cycles at system level and (2) the detailed focus on classes
actually involved in the cycles.

Dependency Structural Matrix. Contrary to node-link, a DSM visualization preserves
the same structure whatever the data size is. This enables the user to dive fast into the rep-
resentation using the normal process. SCCs can be identified by colored cells. Moreover,
EDSM (Chapter 5, p.55) displays fine-grained information about dependencies between
packages. Classes in client package as well as in provider package are shown in the cells
of the DSM.

Dependence Clusters. Brinkley and Harman proposed two visualizations for assess-
ing program dependencies, both from a qualitative and quantitative point of view [Bink-
ley 2004]. They identify global variables and formal parameters in software source-code.
Subsequently, they visualize the dependencies. Additionally, the MSG visualization [Bink-
ley 2005] helps finding dependence clusters and locating avoidable dependencies. Some
aspects of their work are similar to ours. Granularity and the methodology employed differ:
they operate on source-code and use slicing method, while we focused on coarse-grained
entities and use model analysis.
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6.8 Summary

This chapter presented CYCLETABLE, a visualization showing cycles between packages
in order to break cyclic dependencies. A fundamental heuristic of CYCLETABLE is the
focus on shared dependencies, which can impact multiple cycles at once by their removal.
The visualization is completed with ECELL, which has already been integrated in EDSM
(Chapter 5). We validated the heuristic of shared dependencies in a case study and the
efficiency of CYCLETABLE over a node-link visualization in a comparative study.

The next chapter introduces OZONE. It is an approach which provides proposition
of dependencies to remove with the goal to have a layered system (i.e., without package
cycle). To propose dependencies to remove, OZONE bases its analysis on two heuristics
highlighted in EDSM and CYCLETABLE: remove direct cycles and remove shared depen-
dencies.
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I feel very strongly that change is good because it stirs up the system.

[Ann Richards]

At a Glance

In this chapter, we propose an approach which provides (i) a strategy that
supports the understanding of dependencies which violate the Acyclic De-
pendency Principle, (ii) their consequent removal, and (iii) an organization of
packages (even in presence of cycles) in multiple layers. While our approach
can be run automatically, it also supports human inputs and constraints. We
validate our approach with two studies: (i) The first one validates the relevance
of the strategy’s propositions, and (ii) the second one is a comparison of our
results with MFAS.

Keywords: Layered organization, Acyclic Dependency Principle, breaking cycle.
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7.1 Introduction

Having a layered organization allows for a simpler system maintenance because side effects
are limited to layers. Therefore, it is beneficial to organize packages of an object-oriented
system into layers. Such layered organization can help ascertain package dependencies and
therefore, facilitate the assessment of changes on different packages. However, identifying
such layered structure is difficult. The difficulty arises from the fact that packages often
form cyclic dependencies amongst each other. The presence of cycles amongst packages
not only breaks the ADP but it also hampers the computation of a layered organization for
the packages.

In this chapter, we propose an approach, OZONE, which provides (i) a strategy to high-
light and remove the dependencies which break the ADP; (ii) an organization of packages
(even in presence of cycles) in multiple layers; and (iii) a simple visualization to allow
for developer inputs. The benefits of our approach are two-fold: First, it helps removing
unwanted cyclic dependencies. Second, it helps grouping packages into layers.

The approach automatically groups software packages into a layered organization by
ignoring shared dependencies i.e., it does not take into account dependencies that are
present in multiple cycles. In addition, we believe that the reengineer knows the sys-
tems best and knows which dependencies are pertinent to be removed from the system.
Therefore, while our approach can be run automatically, it also supports human inputs and
constraints so that system knowledge can be imparted in the creation of layers. We validate
our approach with a study on the structure of two large open-source software applications:
the Moose and Pharo projects. Engineers of these two projects validate the results reported
by our approach.

Structure of the Chapter

Section 7.2 (p.104) details the importance of layered architecture and Section 7.3 (p.106)
presents the problem of layered organization computation in current approaches. Section
7.4 (p.109) explains our intuition and Section 7.5 (p.111) explains our approach. Section
7.6 (p.114) proposes a simple user to interact with a layered organization. Section 7.7
(p.116) presents the validation of the approach. Related work is presented in Section 7.8
(p.123). Section 7.9 (p.126) discusses and concludes the chapter.

7.2 Layer Identification

Using a layered view of the software architecture is a common approach to understand
it [Ducasse 2009c]. In addition, when the structure of a large system is layered, it simplifies
its evolution since changes are limited to layers. To build a layered organization at the
package-level, there are two important principles: the ADP which is a pre-condition to the
computation of the second principle and the computation of the layered architecture that
we want to build.
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Layered architecture. For Bachmann et al. [Bachmann 2000], there are two properties
in a layered architecture: (i) a layer B is below a layer A if elements (i.e., packages) in
layer A can use elements in layer B and (ii) layer A can use only packages below it (in
Figure 7.1, layer B). In Figure 7.1 the dotted dependency from Kernel to pA should not
exist. Szyperski [Szyperski 1998] and Bachmann [Bachmann 2000] make a distinction
between Closed layering and Open layering. In closed layering, the implementation of
one layer should only depend on the layer directly below it. In this case, in Figure 7.1 the
dependency from pE to Kernel should not exist. In open layering, any lower layer may be
used.

Our layered organization is based on the Open layering because the Closed one is not
adapted to software architecture. The Closed layering is useful for a clean and well encap-
sulated system, which is not adapted to our purpose because we do not want to identify a
well-encapsulated system, but to identify dependencies which break the layered organiza-
tion.

pC

pA pB

pD pELayer A

Layer B

KernelLayer C

Closed layering

Open layering

Forbidden dependency

Figure 7.1: Layer Description - dashed arrow represents an unwanted dependency, thick
arrow represents a dependency allowed in Opened layering.

Acyclic Dependency Principle (ADP). A layered system offers good properties of mod-
ifiability and portability [Bachmann 2000]. It means that there are no cycles between
packages and that software changes do not propagate to all the layers. Martin defines
the Acyclic Dependencies Principle (ADP) [Martin 2000]. It proposes that the dependency
graph between packages should be a directed acyclic graph: there should not be any cyclic
dependency between packages. Package structures with cycles are in general more diffi-
cult to understand, maintain and deploy than those that conform to the ADP. Legacy and
large systems often present structures which do not respect this principle. Like an organic
system and following the entropy principle, the more software grow, the harder it is to keep
this property.

Cycles: a problem for layer identification. Identifying layers in a package system is not
trivial. In particular, when some packages are in cycle, layers cannot be computed without
considering cycles as a special artifact. Different strategies may be used: for example, a
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cycle may be considered outside the layered architecture as NDepend1 does. It may be in-
tegrated in a single layer as Lattix or MudPie [Vainsencher 2004] do (Section 7.3.1, p.107).
The same strategy is used at the class level [Lutz 2001, Mancoridis 1999, Mitchell 2006],
all classes in a cycle are assigned to the same layer.

This way to compute layers is not well suited for packages. First, most of the time,
packages should not be in cycles, as the ADP states. Second, if two packages in a cycle use
each other, these cannot be placed in two different layers. An alternative is to place them in
the same layer. However, in a large software system with numerous packages in cycle, the
granularity of a layer can become so large that the layered structure would be useless and
totally artificial. For example, working on the remodularization of Pharo2, an open-source
Smalltalk environment, we found 70 packages in cycles. These packages belong to the
core (package Kernel), to the UI (package Morphic), to the protocol (package Network)
and to other subsystems. In this case, grouping cyclic packages would lead to giant layers.
Another approach, Minimum Feedback Arc Set provides a good approach to reduce cycles
present in a graph. However, it does not allow for user constraints [Eades 1993].

To better understand the different approaches to build package layered view in the
presence of cycles, we illustrate common approaches used in the two commercial tools
already cited: Lattix and Structure101. We now present these approaches and their limits.

7.3 Limitation of Existing Approaches

In this section, we demonstrate the problem of layer identification in existing tools. For
illustration purposes, we use an example graph to clearly present the problem that we ad-
dress. In Figure 7.2, we propose a simple graph with 4 nodes (i.e., packages). All the nodes
in the graph are in cycle. All edges in the figure are labeled with the number of dependen-
cies between classes, the weight of the package dependency. In the following, we describe
the limitation of the layer creation in the existing tools.

Kernel

UI

PackA

PackB
5

4 1

4

6

6

Figure 7.2: An example of cycles between packages.

1http://www.ndepend.com
2http://www.pharo-project.org

http://www.ndepend.com
http://www.pharo-project.org
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We know two main approaches that extract layered structure from package depen-
dencies. These two approaches are based on Dependency Structure Matrix (DSM) [San-
gal 2005] and Minimum Feedback Arc Set (MFAS) [Eades 1993]. These two approaches
are incarnated in two tools: Lattix3 and Structure1014. The problem with the first approach
is that it does not deal adequately with cycle consideration and identification of effective
layered structure in presence of cycles. The problem of the second approach is that the
algorithm used (MFAS) does not allow for user constraints.

Other approaches exist in Regression and Integration Testing domain. Particularly, Le
Traon et al. [Le Traon 2000] find SCCs and search to minimize the number of stub creation.
The goal is not to minimize the number of edges but to minimize the number of vertices
impacted. Brian et al. [Briand 2001] also find SCCs and try to remove only association
dependencies, because it is the weakest type of dependency [Kung 1996]. More details
about these approaches are presented in Section 2.4 (p.17) and in related work of this
chapter (Section 7.8.3, p.124).

7.3.1 Dependency Structural Matrix

Dependencies structural matrix is the underlying approach used by tools such as Lattix
LDM 5. It allows engineers to create a dependency model of a software system. These
dependencies can be managed with help of visualizations based on DSM. The tool provides
features to make propositions for reengineering cyclic dependencies and provides a what-if
approach to work on the structure.

The approach is the concrete implementation of the work of Sangal et al. [Sangal 2005].
In the paper, Sangal et al. propose to populate Dependency Structural Matrix (DSM) based
on the information of package dependencies. Further, the dependency information is used
to work out a layered organization for the system under analysis. This work considers a
cycle as a feature, not as a modularization problem. It proposes to group each cycle in
a container, named “module”. A module contains a group of packages in cycle. When
computing layered organization of packages, modules are considered as a separate layer.
Non-cyclic packages are computed with the algorithm listed below:

1: Model::computeLayers(): void {
2: for( Package package: allPackages() ) {
3: if (package.isInCycle() or package.useAPackageInCycle())
4: package.layer := notAttributed
5: elseif (package.providers() = nil)
6: package.layer := 0
7: elseif (package.providers().layer() = 0)
8: package.layer := 1
9: else
10: package.layer := 1 + Max(package.providers().layer())

3http://www.lattix.com
4http://www.headwaysoftware.com/products/structure101/
5http://www.lattix.com/

http://www.lattix.com
http://www.headwaysoftware.com/products/structure101/
http://www.lattix.com/
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11: }
12: }

Figure 7.3(a) shows an example of the package layers discovered with Lattix consider-
ing the packages in Figure 7.2. As the tool creates a single layer for all the packages, the
packages present in the system are placed in a single cycle.

Problems in this approach are multiple: (i) if cycles exist between packages that should
be in different layers, they will be grouped in the same layer; (ii) it is not possible to
differentiate a layer built from a cycle and one built from dependencies to a lower layer; (iii)
when there are dependencies creating cycles between multiple packages, it is not possible
to identify them because the layered view does not provide this kind of information (does
not show package dependencies). The tool does not target to resolve cyclic dependency
problem and does not include cycles for computing a layered organization.

Layer 0

Kernel

UI PackA

PackB

5
6

6

4

1

4

(a) Result of applying Lattix’s Strategy.

Layer 3
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Layer 0

Kernel
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PackA

PackB5
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64
1

4

Layer 2

(b) Result of applying MFAS Strategy.

Figure 7.3: Layered organization obtained by different strategies when applied to the sys-
tem described in Figure 7.2.

7.3.2 Feedback Arc Set

In graph theory, a feedback arc set computes an acyclic graph. The minimum feedback arc
set (MFAS) is the minimal collection of edges in the graph to remove to break a cycle.
In a weighted graph, it removes the lightest of the dependencies to remove cycles This
approach can produce good results working on package dependencies because it requires
to make minimum modification to the software structure to break cycles. A limitation of
using MFAS is that it does not take into account the semantic of the software structure.
Optimizing a graph is not equivalent to identify the layered architecture of an existing
software system.

MFAS principle does not take into account the semantic of the structure. It removes
edges from a graph without taking into account the importance or the kind of dependen-
cies. Moreover, it does not take into account interaction with the user. In addition, MFAS
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algorithm acts as a black box without possibility of user interaction.
Figure 7.3(b) presents the layered organizations obtained by applying the MFAS algo-

rithm. This organization produced by MFAS does not adequately handle cycles between
packages: it removes edges to break cycles without taking into account the importance
of the removed dependency. The resulting organization places user interface (UI) at the
bottom of the layer organization, which is not correct in this case. The UI should be in-
dependent of the underlying implementation. Hence, breaking the minimum number of
cycles can create incorrect layers. Cycles should be broken such that the resulting organi-
zation should capture the reengineer’s understanding of the system.

A tool, named Structure1016, proposes to build layer organization and to analyze de-
pendencies which violate the layered organization. The tool employs feedback arc set to
break cycles amongst packages. This tool is well integrated with the source-code environ-
ment and it provides services to modify directly source code. However, the interaction with
the developer to remove cyclic dependency is minimal.

7.4 The Intuition behind OZONE: Direct Cycles and Shared De-
pendencies

As a general principle, cycles between packages should not exist. We consider that pack-
age cycles stem from design issues, architecture violations, or programming errors. A
dependency which creates a cycle should be highlighted when an analysis of the system is
performed for creating package layers. This provides software engineers an opportunity to
focus their attention on the dependency that should probably be eradicated from the sys-
tem. Hence, the cornerstone of our approach is to find unwanted dependencies i.e., the
dependencies that can be removed from the system to break cycles.

Intuition. Our approach, OZONE, is based on two intuitions for finding unwanted de-
pendencies. The first intuition is that in a cycle, all package dependencies don’t have the
same strength. The strength of a package dependency is the number of relations amongst
classes involved in the dependency. In a cycle between two packages (defined as direct
cycle in Section 3.3, p.28), we remove the lightest of the dependencies to break the cycle.
We hypothesize that the lightest dependency is inadvertently introduced in the system and
it is the result of a design defect or a programming error. Moreover, our hypothesis is that
lightest dependencies often require the least amount of work. Based on this hypothesis, our
approach analyzes only direct cycles and ignore for each direct cycle, the lightest depen-
dency before analyzing the whole graph. This is a strong difference with MFAS, because
MFAS analyzes the whole graph and remove the dependencies that are involved in the most
cycles.

Our second intuition is based on the occurrence of dependency in cycles involving three
or more packages (defined as indirect cycle in Section 3.3, p.28): A frequent dependency
in indirect package cycles is a suitable candidate to be ignored to break cycles between

6http://www.headwaysoftware.com/products/structure101/

http://www.headwaysoftware.com/products/structure101/
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packages. We refer to it as a shared dependency. We hypothesize that shared dependencies
have a strong impact on the system structure. The hypothesis follows logically from the
fact that dependencies shared the most, are the ones that have a strong and bad impact on
the system structure.

Principle. To determine unwanted dependencies in a package structure, we decompose
package cycles into small ones such that no cycle appears twice. Amongst these cycles, first
we select the direct cycle and in each direct cycle we ignore the weakest dependency. Then,
amongst the rest of the cycles (i.e., indirect cycles), we ignore shared dependencies. In this
way, layer identification is possible while circumventing the problem of layer creation in
the presence of cycles mentioned in the previous sections.

Figure 7.4 presents the layered organization that we would like to see for the package
structure presented in Figure 7.2. We would like to have a decomposition of the structure in
multiple layers while highlighting the dependencies which can be removed to break cycles.

Layer 3

Layer 1

Layer 0
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PackB 5
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Figure 7.4: The expected layered organization.

To compute the layered organization for the structure in Figure 7.4-left based on the
removal of unwanted dependencies:

• First we decompose cycles amongst packages into smaller ones such that no cycles
get repeated. The cycles amongst the packages (PackA, PackB, Kernel, UI) are decom-
posed into three cycles: (UI -> PackA -> UI), (UI -> PackA -> Kernel-> UI), and (UI ->
PackA -> PackB -> Kernel-> UI). The cycle (UI -> PackA -> UI) is a direct cycle so we
start with this to break cyclic dependencies. Applying our first intuition, we ignore
the lightest dependency i.e., (PackA -> UI).

• Then there are two indirect cycles and we can notice that the dependency (Kernel ->
UI) appears in both indirect cycles: It is a shared dependency. Therefore, we ignore
this dependency to break the cycle amongst the packages. Once these unwanted
dependencies are ignored (dotted in Figure 7.4), all the package cycles are addressed
and we can correctly compute the package organization as illustrated in Figure 7.4-
right.
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7.5 Our Solution: Detecting Dependencies Hampering Layer
Creation

In this section, we present a strategy to build a layered organization of system packages
even if there are cycles amongst these packages. The approach considers all cycles and
finds the “adequate” dependencies to ignore to create distinct layers. We named them
dependencies breaking or hampering layer creation. These dependencies are defined based
on the intuition explained in previous section. It focuses only on dependencies in cycles.
The strategy is not concerned with other dependencies because the primary goal is to break
cycles to build layered organization.

This section is organized as follows: First, we describe the algorithm for finding layer-
breaking dependencies. Second, we explain how to compute a layered organization. Fi-
nally, we explain a feature to define constraints on dependencies manually, for adapting
layered organization to the reengineer vision.

7.5.1 Highlighting Layer-breaking Dependencies

As we showed in the previous section, the problem to build a layered architecture is how
to take into account cycles between packages. We propose a heuristic that is based on the
observations and experiments from EDSM (Chapter 5, p.55) and CYCLETABLE (Chapter
6, p.83). We apply the strategy on a graph where each node represents a package and each
edge represents a dependency between two packages. A dependency between packages de-
pends on relations between classes and methods inside these packages. Edges are weighted
with the number of dependencies between elements in the package (class inheritance, class
extension, class reference, method invocation, and variable access).

The algorithm runs in two steps and ignores unwanted edges from a copy of a sys-
tem model. We ignore (“remove logically”) these unwanted dependencies when assigning
packages to layers. Once these dependencies are ignored, we compute layer organization
for the packages present in the system:

1. one of the two dependencies of each direct cycles is ignored. To eliminate a direct
cycle, the algorithm considers the weight of each dependency in the cycle and marks
the lightest as unwanted.

2. when all direct cycles are removed, the algorithm considers the new version of the
graph and computes SCC and minimal cycles to retrieve shared dependencies. When
there are shared dependencies, it removes the one shared the most, because this is
the one with the highest impact on minimal cycles. We repeat this action as long as
there are cycles. If two dependencies are shared by the same number of cycles, the
algorithm selects the lightest of them.

The algorithm computes first direct cycles. There are two reasons to begin with them:
(i) when a cycle is addressed, it could have an impact on other larger cycles that include
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it7, (ii) addressing a direct cycle is somehow simpler because there are only two solutions:
cutting one or the other of the two package dependencies.

Based on the definitions and strategy previously explained, we propose an algorithm to
ignore edges in a package dependency graph. In this algorithm, the term “ignore” is used
to (i) remove an edge from the graph to make it acyclic and (ii) to store the dependency to
highlight it with the goal to later understand it in the source code.

1: Model::getRemovedEdges(Graph graph): Collection {
2: for (Cycle cycle: computeDirectCycles()) {
3: if (cycle.edgeOne.weight() > cycle.edgeTwo.weight() * 3)
4: graph.remove(cycle.edgeTwo)
5: elseif (cycle.edgeTwo.weight() > cycle.edgeOne.weight() * 3)
6: graph.remove(cycle.edgeOne)
7: else
8: graph.removeTheMostSharedEdge(cycle.edgeOne, cycle.edgeTwo)
9: or (graph.removeTheLightestEdge(cycle.edgeOne, cycle.edgeTwo))
10: or (graph.remove(cycle.edgeOne))
11: }
12: while (computeSCC().notEmpty()) {
13: graph.computeMinimalCycles()
14: graph.removeTheMostSharedEdge()
15: }
16: return graph.removedEdges
17: }

The presented algorithm works as follows: from line 2 to line 11, direct cycles are
removed from the graph. It checks for large differences between the two edges of the
direct cycle (it uses a ratio of 1/3) and removes the lightest (l.3 to l.6). If the difference
is not important enough, the algorithm checks shared dependencies and removes the most
shared (l. 8). If the two edges have the same number of shared dependencies, it removes the
lightest edge (l.9). If none of these conditions are satisfied, the algorithm removes the first
edge (l.10). This last line is necessary to remove all cycles to make a layered architecture.
It is akin to removing a random dependency in the cycle, but the engineer can specify
constraints to guide the tool by explicitly marking a dependency as valid or not (explained
in Section 7.5.3, p.113). Then from line 12 to 15, the algorithm removes other cycles if
other SCC are detected. It computes minimal cycles (l.13) and removes the most shared
(l.14). If there are multiple dependencies with the same shared number, it selects the less
weighted dependency. The algorithm returns a collection of layer-breaking dependencies.

7.5.2 Building Layers

When the previous algorithm returns layer-breaking dependencies, we can convert cyclic
package dependencies graph into an acyclic graph by ignoring the dependencies creating

7For example in Figure 7.2 breaking the direct cycle PackA-PackB, can also break the cycle PackA-PackB-
PackC.
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cycles. With this acyclic graph, we can easily build a layered organization. These specific
dependencies are however, later presented to the reengineer for further analysis.

The algorithm is same as used in other approaches. The first layer is built with the
packages which do not use any other packages. Then each layer is built with packages
which use only packages on lower layers.

1: Model::buildLayers(Graph aCyclicGraph): Collection {
2: L := Collection
3: N := aCyclicGraph.nodes
4: while (N.notEmpty()) {
5: currentL = L.addNewLayer()
6: concernedNodes = N.selectNodesWithoutOutgoing(N)
7: currentL.add(concernedNodes)
8: N remove(concernedNodes)
9: }
10: return L
11: }

The previous algorithm builds the layered architecture. The lines 2 and 3 initialize vari-
ables: L is a collection of layers. Each layer is a collection of packages. N is the collection
of all packages of the system. Lines 4 to 9 build the layered architecture. Each layer (l.5) is
filled by putting into it packages without any outgoing dependencies to packages contained
in N (l.6 and 7). Finally, it removes the selected nodes from N (l.8).

7.5.3 Manually Defining Constraints

The algorithm may provide a result that does not completely match the vision of the reengi-
neer. The automatic computation based on our strategy provides a first step to understand
the shape of the system. The reengineer should be able to impart his/her knowledge of the
system and impose constraints on cyclic dependencies removal. He should evaluate each
dependency in the system and introduce constraints. Then the system should recompute
the layer organization according to the provided constraints.

For this purpose, we design four possible evaluations: (i) flaggedByAlgo for depen-
dencies detected by the algorithm as unwanted (the layer-breaking dependencies), (ii) un-
wanted for dependencies that the software engineer would like to remove, (iii) notFlagged
for the dependencies for which the software engineer does not know whether they are ex-
pected or not and the algorithm left untouched, (iv) expected for the dependencies which
should not be removed in the software engineer opinion.

These constraints add a new dimension to the algorithm:

• By default the algorithm flags with flaggedByAlgo dependencies which it considers
breaking layers. Then the engineer should confirm with the flag unwanted or invali-
date with the flag expected.

• When a dependency is flagged expected, it is not removed by the algorithm, and it
checks another dependency to remove the cycle. If all dependencies of a cycle are
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flagged as expected, the cycle cannot be removed. In this case, all involved packages
are together in a single layer.

• When a dependency is flagged unwanted, it is automatically ignored. So the algo-
rithm does not take into account the dependency. When it is a part of a cycle, it is
not computed in SCC and minimal cycle search.

• When a dependency is not flagged, the algorithm considers it as removable if neces-
sary.

In the following section, we show a simple prototype that illustrates how results could
be presented to the engineer.

7.6 A Prototype of an Interactive Browser to Build Layers

We built a user interface to present features provided by the approach: (i) highlighting
dependency strategy, (ii) user defined constraints, and (iii) layered architecture building.
This interface is a prototype, it has been created for our study and should probably be
improved. We do not consider it as a contribution of this article.

The prototype has been implemented on top of the Moose software analysis plat-
form [Ducasse 2005a] and it is based on the FAMIX language independent source code
metamodel [Demeyer 2001]. It can work on Java, C#, and C++ as well. Therefore while
implemented in Smalltalk, it can be applied to mainstream object-oriented languages.

It is composed of three main panels: a layers visualization with polymetric view (on
the left of the UI) [Lanza 2003b], a list of unwanted dependencies (on the top center of the
UI), and a list of all dependencies of the system (on the top right of the UI)8. The list of
unwanted dependencies contains dependencies selected by the algorithm and dependencies
removed manually by the engineer.

7.6.1 The Layer Visualization

As its user interface shows, the layer visualization is an experimental tool. We build it to
show our main concerns: relations between packages, packages forming SCC, and some
convenient metrics about the size of packages to help us to develop a basic understanding
of the system.

Layer. It is a rectangle with boxes inside representing packages. Bottom packages are in
Layer 0 (i.e., core layer). Each new rectangle represents a new Layer (Figure 7.5, left part).

Package. Packages are represented with polymetric views [Lanza 2003b,Demeyer 1999,
Gîrba 2005b]. Each package is represented by its name and a box. The height, the width,
the fill color and the border color have a meaning (Figure 7.6):

8The lower right part of the figure is for more advanced analysis. It represents an ECELL visualization
(Chapter 4, p.39)
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Panel representing Layer View Panel representing a view of the dependency
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Figure 7.5: UI to build layered view based on constraints.

• height: it represents the number of client packages of the package. It means that tall
packages should be located in lower layers.

• width: it represents the number of used packages of the package. It means that a
package in a low layer should be narrow.

• fill color: it represents the number of classes in the package. The darker a package
is, the more classes it contains.

• border color: it represents an SCC. If the color is gray, the package is not in an SCC.
If it is another color, the package is in an SCC with all other packages with the same
border color.

This kind of information allows the engineer to understand at a glance the dependencies
of the packages present in the system, but again this is not the focus of this article.

Dependency. A dependency is represented by a line with and arrow: the arrow is in the
direction of the dependency. Dependencies can have three colors. The red color represents
a dependency flagged unwanted, a dependency that the engineer wants to remove. The
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green color is a dependency flagged expected, a normal dependency. The black color is a
dependency not evaluated. Finally the color gray represents dependencies not yet evalu-
ated.

This system allows the reengineer to understand the dependencies between packages
in more detail.

Package A

Package B

client
packages

provider 
packages

fill color: 
number of

classes

Border color: 
in a SCC

a dependency from B to A.
red: should be remove
green: accepted
black: not yet accepted
gray: not evaluated

Figure 7.6: The polymetric view used in Layer View

7.6.2 Interactions

Interactions on lists. On the two lists on the top right of the UI (one as unwanted depen-
dencies and one with all dependencies of the system), reengineers can define constraints
explained in Section 7.5.3 (p.113). With a simple right click, a popup menu appears and
proposes to select one of the three available values: 1 (for expected), 0 (for notFlagged) or
-1 (for unwanted).

When a new value is given to a dependency, the algorithm recomputes the layered
organization and the UI is updated. One can see the result automatically.

Interactions on layer view. On the layered view, it is possible to select a package and
put it in another layer.

A package (fixed on a layer) influences the algorithm to consider as layer-breaking
dependencies all dependencies which do not respect the layered architecture definition i.e.,
all dependencies breaking layer are ignored. Then the reengineer should confirm that all
these dependencies are unwanted by flagging them with unwanted.

7.7 Validation

We performed two distinct experiences and validation studies. Layer relevance: The first
study validates that the dependencies selected by our heuristic are relevant and build a layer
organization corresponding to the structure of the software. Algorithms comparative study:
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The second study validates our heuristic on a big system (Pharo 1.1 has 115 packages) and
results are compared with the MFAS algorithm.

We performed the experiments on two systems: the Moose software analysis platform
[Nierstrasz 2005] and the Pharo Smalltalk development environment [Black 2009]. We
selected these two systems because they are large, contain realistic package dependencies,
are open-source and available to other researchers, and also because we were able to get
feedback on our results by engineers working on the two projects. In particular, Pharo
and Moose engineers (independent of the authors of this article) checked and qualified all
the dependencies of the Moose and Pharo system and this allows us to compute recall and
precision between our algorithm and MFSA.

7.7.1 Layer Relevance on Moose Software Analysis Platform

We performed a study to validate our approach. The goal of this study is to validate two
important features of the approach: (i) Are layer-breaking dependencies relevant? (ii) Does
the layer organization fit the programmers understanding of the system?

7.7.1.1 Protocol

The case study was realized on the beta version 4 of Moose 4.0. The program contains 33
packages and 106 dependencies amongst these packages. This version was chosen because
it contains a lot of cyclic dependencies, since it is known to not be well modularized. A
developer from the Moose team (independent from this research) evaluated all the 106
package dependencies of the system. He flagged the dependencies as already explained:
expected, not flagged, and unwanted. Some metrics for Moose 4.0 beta 4 are presented in
Table 7.1.

Moose 4.0 beta4 characteristics
Number of packages 33
Number of packages in cycles 14
Number of package SCC 1
Number of direct cycles 10
Number of package dependencies 106
Number of package dependencies involved in SCC 56

Table 7.1: Moose 4.0 beta4 characteristics.

Then, we ran our algorithms on the system and compared layer-breaking dependencies
found by the algorithm and unwanted dependencies given by the engineer.

7.7.1.2 Results and Discussion

Phase 1: Algorithm results. The algorithm proposed to remove 15 dependencies (Table
7.2) that we analyzed and compared with the values given by the Moose engineer. Table
7.2 shows that 10 out of 15 layer-breaking dependencies (66%) found by our tool are
considered unwanted by the engineer. Without manual changes, results validate that the
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approach has a good strategy. The 5 false-positive dependencies are due to two kinds of
issues in the algorithm.

• First, the two couples Moose-Finder – Moose-Wizard and Moose-SmalltalkImporter
– Famix-Implementation are in direct cycle. It means that there are also two de-
pendencies Moose-Wizard to Moose-Finder and Famix-Implementation to Moose-
SmalltalkImporter.

In these two cases, both dependencies in the two direct cycles have similar weights.
Without shared dependencies available, the algorithm had no clue which dependency
to ignore and had to choose “randomly” the first of the two.

This point should be improved in future work with the possibility for the maintainer
to choose the unwanted dependencies avoiding this kind of false-positive.

• Second, the three false-positive results going to Moose-Core (Famix-Core » Moose-
Core, Moose-SmalltalkImporter » MooseCore and Moose-GenericImporter » Moose-
Core) are related to a choice of the algorithm to remove the dependency Famix-Core
» Moose-Core instead of Moose-Core » Famix-Core.

In this case, the problem comes from two dependencies from a direct cycle which
have the same weight but Famix-Core » Moose-Core is shared one more time than
Moose-Core » Famix-Core. If we constrain to remove Moose-Core » Famix-Core,
these three false-positive results disappear.

Layer-breaking dependencies Value given by engineer
Famix-Extensions » Moose-Finder unwanted
Moose-Core » Famix-Implementation unwanted
Fame » Moose-Core unwanted
Famix-Extensions » DSMCore unwanted
Famix-Core » Famix-Implementation unwanted
DSMCore » DSMCycleTable unwanted
Glamour-Helpers » Glamour-Core unwanted
Glamour-Browsers » Glamour-Scripting unwanted
Moose-Core » Famix-Extensions unwanted
Famix-Smalltalk » Famix-Extensions unwanted
Moose-SmalltalkImporter » MooseCore expected
Moose-Finder » Moose-Wizard expected
Moose-GenericImporter » Moose-Core expected
Famix-Core » Moose-Core expected
Moose-SmalltalkImporter » Famix-Implementation expected

Table 7.2: Layer-breaking dependencies returned by the algorithm.

The first version of the layer organization proposes 11 layers. Figure 7.7 shows a
simple view of layers organization. It shows particularly the main problem revealed in the
first result of the algorithm: Moose-Core is too high in the layer organization, due to a
false-positive result (Famix-Core » Moose-Core).
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Figure 7.7: Moose packages layer organization proposed by the algorithm.

Phase 2: Manual flagging. Then, based on manual evaluation of dependencies by the
Moose developer, we manually flagged as unwanted the 10 correct propositions of our
algorithm and flagged as expected the 5 false-positive propositions.

Phase 3: Algorithm results. Finally, after the manual flagging, the algorithm retrieved
4 new layer-breaking dependencies, shown in Table 7.3. All of them are considered un-
wanted dependencies by the engineer. In total, the algorithm proposes 14 dependencies
considered unwanted.

Layer-breaking dependency Value given by engineer
MooseCore » Moose-SmalltalkImporter unwanted
Moose-Core » Famix-Core unwanted
Moose-Wizard » Moose-Finder unwanted
Moose-Core » Moose-GenericImporter unwanted

Table 7.3: New layer-breaking dependencies after manual constraints.

After manually evaluating results and providing new information to remove the false-
positive results, the algorithm recomputes the layers organization and provides a 8 layers
organization (Figure 7.8). In this view, we see that the problem of Moose-Core is resolved
because Moose-Core appears on the second layer, which is the correct place for this pack-
age.

7.7.2 Comparative Study with MFAS on Pharo

In this section, we present the validation of our approach performed on Pharo. Pharo is a
new open-source Smalltalk-inspired environment (1558 classes in 115 packages in version
1.1). We applied our approach to find the cyclic dependencies present in Pharo. The
purpose of the study is to validate the results obtained with our approach and compare
them with the results obtained by MFAS. Some metrics roughly characterizing Pharo are
presented in Table 7.4.
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Figure 7.8: Moose packages layer organization proposed after providing manual con-
straints.

Pharo 1.1 characteristics
Number of packages 115
Number of packages in cycles 68
Number of classes 1558
Number of package SCC 1
Number of direct cycles 98
Number of package dependencies 1328
Number of package dependencies involved in SCC 922

Table 7.4: Pharo 1.1 characteristics.

7.7.2.1 Protocol

We asked engineers from the Pharo community to evaluate all the 1328 dependencies be-
tween packages present in Pharo: the dependencies were systematically evaluated by the
engineers over a period of a couple of days. They flagged them using the ranking we
presented before. It helps comparing our results with the package dependencies extracted
by the developers of the system. Hence, we present a comparison of the values manually
computed by the developers.

Using our approach independently to this evaluation, we computed edges removed
by the JooJ MFAS tools [Melton 2007b] and unwanted dependencies found by our own
algorithm.

Then, we compute the precision and recall of our results: tp (true positives) is the
number of dependencies to be ignored computed by the algorithm and identified as un-
wanted by the developer. fp (false positives) indicates the number of dependencies
which have been detected by the algorithm but which are not identified as unwanted by
the developer (note that they can be not flagged), while fn (false negatives) indicates
the number of unwanted dependencies for the developer which are not detected by the
algorithm. The precision of a solution is computed as:

Precision =
tp

tp + fp

and indicates how much of the detected dependencies are unwanted. The closer to 1 P is,
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the more precise the tool. The recall is defined as:

Recall =
tp

tp + fn

and indicates how many of the unwanted dependencies the algorithm is able to recover.

7.7.2.2 Results

Manual evaluation results. We provide in this section results of the study. Table 7.5
describes the evaluation of various dependencies discovered in Pharo: 20% of the total
dependencies were marked as unwanted.

Evaluation Value
unwanted 0.20
not flagged 0.02
wanted 0.78

Table 7.5: Manual evaluation of dependencies in Pharo.

SCC manual evaluation results. Since both of the approaches that we evaluate consider
ignoring dependencies that constitute SCCs, we compute the percentage of the dependen-
cies in SCCs that are marked as unwanted. Table 7.6 illustrates the results. Of all the
dependencies that exist in SCCs, only 25% are considered unwanted by the developers.

Evaluation Value
unwanted 0.25
not flagged 0.02
wanted 0.73

Table 7.6: Unwanted Dependencies in SCCs.

Comparison of MFAS and OZONE. We compared the precision and the recall of MFAS
and OZONE. Table 7.7 presents the results.

Technique Precision Recall
MFAS 0.61 0.39
OZONE 0.64 0.42

Table 7.7: Comparison of the Accuracy: OZONE and MFAS

The validation of the approach demonstrates that the accuracy of our approach is better
in finding cyclic dependencies (Table 7.7). Whereas, 61% of the dependencies removed by
MFAS were accurate, our approach removed 64% dependencies. Also, we could identify
42% of the total unwanted dependencies, whereas MFAS computed only 40% of those.
Hence, our approach performs better than MFAS on this example. Moreover, our approach
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allows the reengineer to review the dependencies marked as unwanted by the approach and
applies appropriate constraints. These constraints are then used in layer computation. We
also provide a visualization user interface to support the evaluation of the dependencies
that we consider should be removed from the system.

Although our approach produced better results, we believe that it can be improved by
validating it over more systems. Also, the approach could be extended to take into account
design patterns such as Model-View-Controller (MVC) that could provide semantic infor-
mation. In this case, if a cycle is discovered between the view and the model, we should
remove the dependency from model to view. It can also be interesting to compute the num-
ber of cycles that are considered as normal by the developer by checking all dependencies
that are considered expected and are in a cycle.

7.7.2.3 Threats to Validity

The threats to the validity of our results may arise due to four different reasons.
(i) Only two systems were tested. We validate our approach based on manual validation

by developers. We think that this is the best validation that we can have. The problem of
this kind of validation is that it takes a long period of time to evaluate each dependency
manually. Here, for Moose it took a couple of hours and for Pharo a couple of days. We
plan to apply our approach on other systems, developed in other languages e.g., Java to
further evaluate results, however one difficulty is to find engineers ready to spend time
performing an evaluation.

(ii) The developers may have made mistakes. This threat to validity has a small im-
pact because packages are coarse-grained entities. Knowing that a package should depend
or not on another one is easy for developers for most of the packages. It happens that
some packages are in direct cycles without to be conceptually wrong, in such a case they
belong to the same layer. When such situation occurs engineers may flag differently the
dependencies depending on whether they took this dimension in perspective.

(iii) There are different heuristics for MFAS. We use the heuristic proposed by JooJ
[Melton 2007b] because it was already developed and readily available. A different heuris-
tic may provide better results.

(iv) In our algorithm, we ignore dependencies to obtain an acyclic graph. After ignor-
ing direct cycles and shared dependencies, the algorithm ignore light dependencies. The
number of this kind of dependencies was not evaluated and the impact of this heuristics was
not evaluated. In practice we did not get different results because this case was marginal.
However, we plan to analyze these dependencies and improve our algorithm.

(v) The two systems are Smalltalk systems. Since Smalltalk (as well as other languages
such as Objective-C, C#, Ruby, Python) supports class extensions (a method can be pack-
aged in a different package than its class), packages tend to rely less on inheritance but
class extensions to extend existing behavior. This produces better layered applications. We
should study the influence of such criteria on our algorithm. We believe that since we only
take into account dependencies class extensions are just one dependencies and since we
took case studies exhibiting a realistic numbers of cycles and dependencies, this thread
should not modify our results.
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7.8 Related Work

Research has been done on the problem of package cycle identification and removal. We
present these approaches in this section.

7.8.1 Heuristics

Some research work has been done on package dependencies and package layer computa-
tion. PASTA [Hautus 2002] is a tool for analyzing the dependency graph of Java packages.
It focuses on detecting layers in the graph and consequently provides two heuristics to deal
with cycles. The first heuristic is to consider packages in the same strongly connected
component as a single package. The other heuristic selectively ignores some undesirable
dependencies until no more cycles are detected. Thus, PASTA reports the undesirable
dependencies which should be removed to break cycles. The undesirable dependencies
are selected by computing their weights and selecting the minimal ones. Our approach
takes one more parameter into account: we introduce shared dependencies and use it as a
heuristic to remove package cycles.

In graph theory, a feedback arc set is a collection of edges which should be removed
to obtain an acyclic graph. The minimum feedback arc set is the minimal collection of
edges to remove to obtain an acyclic graph. This theoretical approach cannot be used for
three particular reasons: (i) It is a NP-complete problem (optimized by Kann [Kann 1992]
to become APX-hard). Some approaches proposes heuristic to compute the Feedback Arc
Set Problem in reasonable time [Eades 1993]; (ii) It does not take into account the semantic
of the software structure. Optimizing a graph is not equivalent to a possible solution at the
software level; (iii) The goal of breaking cycles in software applications is not to break a
minimal set of links, but the more pertinent ones.

JooJ [Melton 2007b] is an eclipse plugin (not released) to detect and remove as early
as possible cyclic dependencies between classes. The principle of JooJ is to highlight
statements creating cyclic dependencies directly in the code editor. It computes the strongly
connected components to detect cycles among classes. It also computes an approximation
of the minimal set of edges to remove to make the dependency graph totally acyclic based
on feedback arc set. However, no study is made to validate this approach for cycle removal.
It is possible that the selected dependencies are not to be removed because they are valid
in the domain of the program. In another study, Melton et al. [Melton 2007a] propose
an empirical study of cycles among classes. They employ minimum feedback arc set to
resolve cycles present in the software system. They particularly indicate that it is crucial to
take into account the semantic of the software architecture to not break dependencies that
should not be broken. For this purpose, the authors propose to add constraints to minimum
feedback arc set such as not removing inheritance relationship while breaking cycles. We
also consider user input an essential feature to remove cycles. In our work, we include user
validation to take into account the semantics of the program.

Mudpie [Vainsencher 2004] is a tool to help the maintenance of software system by
bringing out SCCs and focusing on the dependencies in SCC. However, no strategy is
presented to break the cycles present and the tool relies on the developer’s intuition to
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remove cycles.
Multiple works [Abdeen 2009] exist to decompose a system by using genetic heuristics.

Lutz [Lutz 2001] proposes a hierarchical decomposition of a software system. It uses a
genetic algorithm to find the best way to group components of the system into coarse-
grained components. Our work is not in this domain. Our goal is to discover dependencies
which break the system, in particular, the layered organization of the system.

7.8.2 Software Clustering

Software clustering is another domain in relation to our work. The goal of clustering
is to order elements into modules based on some criteria defined by the engineer [An-
driyevska 2005, Praditwong 2010]. This kind of approaches can be useful to manipulate
fine-grained information. In our work we manipulate packages and we consider that a
package has a meaning for engineers, as it should not be broken automatically.

Bunch [Mitchell 2006] is a tool which remodularizes automatically a software. It pro-
poses to decompose and to show an architectural-view of the system structure based on
classes and function calls. It helps maintainer to understand relations between classes. This
tool breaks the package concerns and does not provide the information we need to make a
layered organization of a package system. Our work is based on package architecture.

The Kleinberg algorithm [Kleinberg 1999] defines authority and hub values for each
class in a system. A high authority means the class is used by a big part of the system,
and the hub value means the class uses multiple other classes in the system. Scanniello et
al. [Scanniello 2010] propose an approach to build layers of classes based on this algorithm.
They identify relations between classes and use the Kleinberg algorithm to group them into
layers. They propose a semi-automatic approach which allows the maintainer to manipulate
the architecture and add its proper meaning of the system.

7.8.3 Regression and Integration Testing

This domain is in relation to our work because researchers work on finding the better solu-
tion to remove cycles between entities. Le Traon et al. [Le Traon 2000] propose a model
to break Strongly Connected Components (SCC). The algorithm computes a weight for
each vertex in a SCC based on incoming and outgoing dependencies. Then, in each SCC,
it selects the vertex with maximal weight and remove incoming dependencies. Briand et
al. [Briand 2001] combines this algorithm with Tai and Daniels strategy [Tai 1997] to com-
pute a weight for each dependency. The goal of this kind of algorithm is to minimize
stub creation. Le Hanh et al. [Hanh 2001] propose an experimental comparison of four
approaches to break SCC for stub minimization. The goal is to find the best candidate
that can remove cycles to build an order of integration. The difference with our work is
about the goal. The goal of this kind of algorithm is to find vertices to create stub. Our
goal is to find edges that should be removed. Consequently, algorithms are different: our
work computes a weight on each edge, whereas this kind of algorithm computes a weight
on each vertex. A future work is to analyze how we can use these algorithms. An in-
teresting idea is about the differentiation of the kind of dependencies to avoid removing
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inheritances [Kung 1996, Tai 1997]. A future work is to use this idea in OZONE to select
unwanted dependencies.

7.8.4 Visualization

Several approaches propose to recover software structure, visualize classes and files orga-
nizations [Vainsencher 2004]. Only few approaches provide layered organization for pack-
ages and in particular take cycles into account. A few approaches help determine informa-
tion on packages and their relationships, with visualizations and metrics [Ducasse 2007].
In these approaches, it is not easy to understand the place of a package in a system, particu-
larly when large systems are analyzed. Some other approaches propose to recover software
structure and visualize the organization of classes and files [Mitchell 2006]. To under-
stand the complexity of large object-oriented software systems and particularly the package
structure, there are some visualization tools [Ducasse 2006, Ducasse 2005b, Balzer 2005,
Langelier 2005]. Package Blueprint [Ducasse 2007] shows the communications between
packages; eDSM (Chapter 5, p.55) and CycleTable (Chapter 6, p.83) highlight the cy-
cle problems in a system. However, these approaches do not identify layers for packages
present in a software system.

Dong and Godfrey [Dong 2007a] propose an approach to study dependencies between
packages and to give a new meaning to packages with (i) characterization of external prop-
erties of components, (ii) usage of resource and (iii) connectors. It helps the maintainers to
understand the nature of package dependencies. This kind of tool is useful to understand a
global system. It could be used in the view of a dependency to replace eCell. We can also
replace eCell by node-link visualization which does not need learning time.

Lungu et al. [Lungu 2006] propose a collection of package patterns to help reengi-
neers to understand large software system. They propose to recover architecture based on
package information and an automatic process to recover defined patterns. Then they pro-
pose an user interface to interact with the package structure. This approach is useful to
understand the behavior of a package in the system. It can provide information about the
position of a package in a layered organization. This kind of patterns could be used to add
more informations on a package and to propose more information about the breaking of a
dependency, for example knowing that a package is autonomous is a valuable information.

7.8.5 Tools

There are other tools like JDepend9 or Classycles10 which allow software engineers to see
package dependencies and cycles. But these tools do not provide a layered organization
of the package structure. JDepend is a tool which computes design metrics on Java class
directories to generate a quality view of packages. Classycle is a tool to see cycles between
classes and shows package dependencies and cycles based on class information. It uses the
same algorithm as JDepend. NDepend11 is a tool to help engineers to maintain software

9http://www.clarkware.com/software/JDepend.html
10http://classycle.sourceforge.net/
11http://www.ndepend.com

http://www.clarkware.com/software/JDepend.html
http://classycle.sourceforge.net/
http://www.ndepend.com
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with the help of visualization and metrics. It provides a UI to manage large software
maintenance. However, the tool does not support the removal of package cycles.

7.9 Summary

In this chapter we show that building a package layer organization is not trivial in the
presence of cycles. Two existing approaches are presented that use different strategies to
take cycles into account. One puts cycles outside the layer structure, the other searches
to remove edges that would allow minimal changes to a software system without taking
into account the semantics of the system. We believe that neither of the two solutions is
appropriate. Based on our experience, we propose a strategy to organize a system contain-
ing cycles between packages in layers. We consider layer-breaking dependencies defined
in the strategy and provide a user interface to add manual constraints. As the weight of
the dependencies is not enough to break cycles, our approach selects unwanted depen-
dencies based on two characteristics: light dependencies and shared dependencies. These
two characteristics have already been proposed visually by EDSM (Chapter 5, p.55) and
CYCLETABLE (Chapter 6, p.83).

The study shows that the strategy provides good results but the strategy should be
improved to be more flexible. First, we can see that a manual verification is needed to
validate the layer-breaking dependencies computed by our algorithm. By extension, the
user interface and the visualization provided in Section 7.6 (p.114) should be improved to
be more usable and to highlight some feature of the system. The idea is that the algorithm
should not remove absolutely all cycles, but ask the reengineer to validate the computed
dependencies and introduce dependency constraints.

Finally, the strategy is based on shared dependencies, it depends on the analysis of the
complete system to have all shared dependencies. In the case of computing the algorithm
on only a part of a system, shared dependencies are lower and the algorithm should return
more false-positive values. Here again, the algorithm should be more flexible and ask input
from the reengineer.

The next chapter introduces ORION. It provides a system for change impact analysis.
After having analyzed the system with EDSM and CYCLETABLE, analyzed propositions
made by OZONE, reengineers can analyze the impact of changes in the structure of the
system before applying real changes.
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The future belongs to those who prepare for it today.

[Malcolm X]

At a Glance

In this chapter, we propose ORION, an interactive prototyping tool for reengi-
neering, to simulate changes and compare their impact on multiple versions
of software source code models. Our approach offers an interactive simula-
tion of changes. We devise an infrastructure which optimizes memory usage
of multiple versions for large models. We validate our approach by running
benchmarks on memory usage and computation time of model queries on large
models. They show that the ORION approach scales up well in terms of mem-
ory usage, while the current implementation could be optimized to lower its
computation time. We also report on two large case studies on which we ap-
plied ORION.

Keywords: impact analysis, change simulation, simultaneous version.
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8.1 Introduction

While software reengineers would greatly benefit from the possibility to assess different
choices, in practice they mostly rely on experience or intuition because of the lack of ap-
proaches providing comparison between possible variations of a change. Software reengi-
neers do not have the possibility to easily apply analyses on different version branches of
a system and compare them to pick up the most adequate changes.

Usually reengineering tools use an internal representation of the source code (AST for
refactoring engine, simpler source code meta-models for others) [Chikofsky 1990]. Sim-
ilarly our approach is based on a source code model on which source code changes are
applied interactively. We present an approach which allows reengineers (1) to create sev-
eral futures by performing changes and (2) compare them. Each future is a full-fledged
model which can be assessed through usual software metrics, quality models, visualiza-
tion. . . Of course versioning systems have supported branching for decades. We propose
to be able to navigate and apply changes to possible futures or branches without actually
committing them in a code repository. Specifically, we propose an infrastructure which
optimizes memory usage of multiple versions for large models, enabling to work interac-
tively on multiple models. Moreover, the concepts supporting our infrastructure are generic
enough to blend in many meta-models. Existing tools can be reused on top of such ver-
sioned models without adaptation.

In this chapter we raise the problem of the scalability of such multiple futures and
branching versions. First, what do reengineers expect during the workflow, what tools do
they need and what kind of feedback should tools provide? Second, what is the infrastruc-
ture to put in place to support it efficiently? How to support model manipulations (edi-
tion, analyses) of large source code models with many small modifications (class changes,
method changes)? A naive implementation is to make a copy of the original model for each
future version and to modify the copies. However, with this naive approach a lot of mem-
ory is wasted by copying unchanged model entities. For example, modifying one package
in a system with 100 packages would imply 99 useless copies.

Structure of the Chapter

This chapter presents in Section 8.2 (p.129) our vision for reengineering. Section 8.3
(p.132) details the principles and challenges of the model-based infrastructure supporting
our approach and Section 8.4 (p.139) gives code samples of the critical parts. Section 8.5
(p.143) provides benchmarks about the scalability of the model compared to a naive full
copy approach as well as brief reports about two large case studies. In Section 8.6 (p.149),
we discuss how our vision could be implemented (less efficiently) with revision control
systems. Section 8.7 (p.149) presents related work and Section 8.8 (p.153) concludes this
chapter.
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8.2 ORION Vision for Reengineering Support

In this section we present the vision behind this work and we draw requirements for the
implementation of such a vision.

8.2.1 Efficiency in Reengineering

A reengineer has basically four forces driving his work. He should: (1) identify issues,
(2) solve issues, (3) avoid degradation of the system, and (4) minimize costs of change
[Bohner 1996]. While the first three items are checked externally (bug report, review,
tests), the reengineer has larger latitude to assess changes and their cost. Often there are
multiple solutions to solve an issue, and assessing the most adequate one is a challenge of
its own. The reengineer usually relies on his experience and intuition to select the most
promising candidate.

8.2.2 Motivating Scenario

We describe now a scenario dealing with reengineering package dependencies, especially
the removal of cycles between packages. From the scenario, we extract general require-
ments for the ORION approach i.e., the simultaneous analyses and comparison of multiple
versions of the system and illustrate them with examples.

A Relevant Scenario. Our experience with identification and removal of cycles in large
software systems shows us that one of the key challenges is to eliminate a cycle without cre-
ating a new one. Let us take an example from Moose, a platform for software analyses and
reverse engineering [Nierstrasz 2005] (See Figure 8.1.a). In the original model, we are in-
terested in three packages, two classes, and the two methods Model::inferNamespaceParents
and Model::allNamespaces1. The black arrow from inferNamespaceParents indicates a ref-
erence to class Namespace. The gray arrow from inferNamespaceParents indicates an in-
vocation of method allNamespaces. They create a dependency from package Moose-Core
to respectively package Famix-Core and package Famix-Extensions. The dotted arrows from
Famix-Core to Moose-Core and from Famix-Extensions to Famix-Core indicate dependencies
of the same kinds seen at package level (coming from classes not shown in the figure). Al-
together, the three packages make a strongly connected component. This component can
be decomposed into two circuits: Moose-Core depends on Famix-Core and reciprocally, but
Moose-Core also depends on Famix-Extensions, which depends on Famix-Core, which comes
back to Moose-Core.

Possible Changes. In Figure 8.1.b, inferNamespaceParents, which is directly involved in
one cycle, is changed into a class extension in package Famix-Core. As a consequence both
previous cycles are broken since there is no dependency coming out of Moose-Core. The
reference to Namespace is now internal to Famix-Core. However, the invocation escapes

1Notice that allNamespaces is defined in a different package than its parent class. This feature called class
extension (or partial class) is especially useful to make packages more modular.
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Figure 8.1: a) two dependency cycles between three packages; b) a change that removes
the two cycles but creates a new one; c) a change that effectively removes the two cycles.

the package and a new cycle is actually created between Famix-Core and Famix-Extensions.
Overall, this solution is possible but not good, because the new cycle is a degradation.

In Figure 8.1.c, inferNamespaceParents is changed into a class extension in package
Famix-Extensions. Now the invocation is internal to Famix-Extensions, while the reference
escapes the package but “blends” into the existing dependency from Famix-Extensions to
Famix-Core. No new dependency is created at the package level, while the two previous
cycles are effectively removed. In this case, a single cheap change cuts two cycles, which
is a very positive outcome.

8.2.3 Requirements

In general, removing cycles is hard because predicting the full impact of a change is diffi-
cult, be it positive or negative as illustrated in the above example. From this experience, we
see that having the possibility to compare two solutions applied to the same original code
model would help reach a decision. Taking such scenario as an illustration, we extract the
following requirements for an infrastructure supporting this vision.

• The reengineer needs access to different tools to assess the current situation: sys-
tem structure (as a diagram or other visualizations), algorithms, metrics, queries to
compute relationships between entities of the system. For our example, one needs
graph algorithms such as Tarjan [Tarjan 1972] to compute cycles between packages.
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This also implies running queries over the entities of the model to build the graph
of dependencies between packages. We develop a dedicated visualization using De-
pendency Structural Matrix to analyze in details cycles between packages (Chapter
5, p.55). Metrics such as the number of cycles (as strongly connected components in
the graph) are also useful to provide a quick assessment of system status.

• The reengineer needs change actions to derive new versions of the system. Such
actions have to be at the appropriate level of granularity for the task at hand. For ex-
ample, changing package dependencies can involve many actions at different levels:
moving classes around, moving methods between classes, merging/splitting pack-
ages.

• The reengineer needs to run the same set of tools on the original model and on
derived versions to analyze the new systems and assess whether he reached his goals.
He then can decide to stop and select this version, continue working on this version,
mark it as a “landmark” and derive from it a new version to work on, or come back to
another version and starts in a new direction. For example, an often unforeseen yet
common consequence of cycle removal is the creation of a new cycle in another place
(see Figure 8.1.b). At this point, the developer has two possibilities: he continues to
work on this version to also remove the new cycle; or, he considers this new cycle too
costly to fix and comes back to a previous version to work out a different solution.

• The reengineer needs to assess what changed between two versions, to follow the
impact of a change on the system and the progression towards a goal. This involves
assessments focused on changes: changed entities directly impacted by the actions,
but also changed properties of the system, or difference between two measures of a
metric. He may eventually design custom tools, such as dedicated visualizations, to
look at changes from the point of view of his task. For example, after performing a
change, the reengineer should be informed of the destruction and creation of cycles.
He can follow his overall progression by looking at the total number of cycles for
each version.

• Finally, when the reengineer settles on a version and wants to create this version
starting from the original model, he needs the sequence of actions to apply, derived
from the branch of the selected version.

First, this discussion stresses that the reengineer needs specific tools appropriate for
the task at hand. Developing tools is costly, thus being able to reuse existing tools is
an important asset for any reengineering infrastructure. On the other hand, these tools
have to work on a generic reengineering infrastructure. In the following subsection, we
present how the ORION approach embodies the above requirements. This presentation
shows how specific requirements for the task of cycle removal and generic requirements
for reengineering interplay in the front-end user interface. The remainder of the chapter is
dedicated to a more in-depth review of how ORION manages the generic requirements.
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8.3 ORION Design and Dynamics

This section presents the design and challenges for the realization of ORION requirements.
We first present the meta-model of ORION as well as its efficient implementation using
shared entities: to save memory space and creation time, entities which do not change are
shared between different versions of the model. We explain the creation of a new version
and the dynamics of actions on a version. Finally, we detail how queries are resolved in the
context of multiple versions and shared entities. In particular, we show that a model should
be navigated from one specific version even if a query may navigate to shared elements
that are reused from older versions. Note that the infrastructure we present is not specific
to source code meta-model but can be applied to any meta-model.

8.3.1 ORION Meta-Model: Core and FAMIX Integration

ORION Core Meta-Model. The ORION approach is built around the three main elements
shown in bold in Figure 8.2 (OrionModel, OrionEntity, and OrionAction). One instance of
OrionModel stands for one version of the system. Each version points to its parentVersion,
building a tree-like history of the system. The tree root represents the original model and
contains all entities from the current source code. Hence, a version derives from a single
parent but can have multiple children as concurrent versions are explored. Each OrionModel
owns its OrionEntities. The system also contains a single OrionContext, which points to the
current version on which the reengineer is working. Thus, navigating between versions is
as easy as changing the OrionContext to point to the wanted version.

An OrionEntity represents a structural entity or a reified association between entities in
the model. ORION entities represent the level of abstraction upon which reengineering ac-
tions are performed. For the task reported in this chapter, we support four kinds of entities:
OrionClass, OrionMethod, OrionPackage, OrionNamespace, and four kinds of association:
OrionReference (from one class to another), OrionInvocation (of method), OrionInheritance,
and OrionAccess (from a method to a variable).

Each OrionEntity has an orionID which is unique across all versions. A newly created en-
tity receives a new, unique orionID. A changed entity keeps the same orionID as its ancestor.
This identifier allows ORION to keep track of changed entities between different versions
of the system.

OrionAction is the superclass for different kinds of actions. We distinguish between
AtomicActions such as “remove a method”, “move a class”, or “create a package”, and
CompositeActions such as “merge two packages” or “split a class”, built using a composite
pattern. An instance of OrionAction runs to modify the current version but also stores infor-
mation about the execution of an action (current version, target entity, specific parameters
of the action) to keep track of changes. When executed, an action runs on the current model
in OrionContext and modifies the entities in place.

FAMIX Meta-Model Integration. ORION is an extension of FAMIX, a family of meta-
models which are customized for various aspects of code representation (static, dynamic,
history). FAMIX-core describes the static structure of software systems, particularly object-
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Figure 8.2: ORION meta-model.

oriented software systems2. Extending FAMIX is a major asset of ORION as it allows us
to reuse tools and analyses developed on top of FAMIX [Ducasse 2009b]. Especially, it
fulfills requirementwhich states that tools should run indifferently on the derived versions
as on the original model.

In practice, the original model is created as a regular FAMIX model before being im-
ported into ORION. During the import, FAMIX entities upon which actions can be applied
are converted to their corresponding ORION entities. Other FAMIX entities which do not
support OrionAction are directly included in the ORION model (for example, FamixVariable
and FamixParameter). An ORION model deals seamlessly with both FAMIX entities and
ORION entities.

8.3.2 The Need for Sharing Entities Between Versions

Models for reengineering are typically large because they reify a lot of information to
perform meaningful analyses. For example, one system under study with ORION is Pharo3,
an open-source Smalltalk platform comprising 1800 classes in 150 packages. Its FAMIX
representation has more than 800, 000 entities, because it includes entities for variables,
accesses, invocations. . . It becomes a major concern for an approach such as ORION,

2see [Demeyer 2001] and http://www.moosetechnology.org/docs/famix
3http://www.pharo-project.org/home

http://www.moosetechnology.org/docs/famix
http://www.pharo-project.org/home
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because we need several such models in memory to enable an interactive experience for
the reengineer. In the following, we briefly review some of the strategies we analyzed
in [Laval 2009b] and explain the dynamics of our model with shared entities.

The most straightforward strategy is the full copy, where a version is created by copying
all entities from its parent version. Then two versions are two independent models in
memory and tools run as is on each model. However, this approach has a prohibitive cost
both in term of memory space and creation time. In early experiments analyzing Pharo,
each model took 350Mb in memory and, more annoyingly, the copy took more than one
hour to allocate and create the 800, 000 instances for each version. This was useless in the
context of our approach.

Another common strategy is the partial copy approach. The principle is to copy only
the entity changed as well as the entities connected to it, so that they still make a consis-
tent graph in the current version. Unfortunately, this view does not hold in the FAMIX
meta-model where all entities are transitively connected together through their relation-
ships (each class representation points to its methods while each method representation
points to its parent class). Thus, copying an entity and its linked partners comes back to
copying the full model.

Our solution is a variation of the partial copy approach, but requires an adaptation of
the access of entities through links. The trade-off is between the memory cost of large
models and the time cost of running queries on such models. Only entities which are
directly changed are copied (then modified) in our approach. Other entities are left un-
changed in their version, making the copy “sparse” and efficient. Changed and unchanged
entities are reachable from the current version through a reference table, which is copied
from the parent when creating the new version and modified by actions. Thus entities are
effectively shared across different versions. However, dynamics are more complex than a
simple Copy-on-Write standard approach as explained below.

Figure 8.3 illustrates how an ORION system manages the three kinds of change for an
entity: creation, change, and deletion. Figure 8.3.a shows the original model with four
OrionEntities with orionId 1 to 4; the light gray area on the left represents the reference table
of the ORION model, which holds pointers to each OrionEntity. Figure 8.3.b shows a child
version where entity 5 has been created; the reference table holds a new pointer to entity
5 at the end (gray rectangle). Entities 1 through 4 are still accessible from the reference
table. Figure 8.3.c shows another version where entity 4 has changed. Consequently, a
new entity 4 appears in the version and the reference in the table is replaced with the new
pointer. Figure 8.3.d shows a version where entity 3 has been deleted. Only the pointer
to entity 3 is really removed from the reference table, making the entity unreachable and
effectively deleted from this version.

Table 8.1 summarizes the pros and cons of the above approach for our constraints.
Numbers in parenthesis refer to the Pharo case study, which is our largest case to date with
800, 000 entities per model.
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Figure 8.3: Illustration of ORION dynamics through different changes (creation, change,
deletion).

Approach Creation cost for new
version

memory cost for x versions access cost to
an entity

Full copy in
FAMIX

Copying all entities (70
minutes)

x * original size (350 Mo per
version)

direct access

Partial copy +
table look-up
in ORION

Copying the reference
table (30 seconds)

original model size + x times
reference tables + size of each
changed entity (350Mo +
around 10Mo per version)

table look-up

Table 8.1: Comparison between copy model and shared entity model in the case of Pharo.

8.3.3 Running Queries in the Presence of Shared Entities

Queries are the foundations for tools as they enable navigation between entities of the
model. Basic queries represent direct relationships between entities: a class can be queried
for its methods, a method can be queried for its outgoing invocations (i.e., method calls
within the method), a package for its classes, . . . More complex queries made by tools are
composed from such queries.

Sharing entities across different models has an important impact on the way queries
are run in a version. In particular, starting from a given version, a query may run on
shared entities from older versions: results returned by such shared entities must always be
interpreted in the context of the starting version, as older entities may link to entities which
have changed since. This specific aspect makes our solution more subtle to implement
than a simple Copy-on-Write. The challenge of running queries over shared entities is
summarized as follows:
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Figure 8.4: Sample model with one derived version: classC is deleted from Actor and
method mB1() moved from classB to classA.

1. basic queries retrieve entities which may or may not reside in a parent version;

2. then ORION should resolve each retrieved entity to its most recent entity (sharing the
same orionId) reachable from the current version.

The challenge is akin to late binding in object-oriented languages. An entity residing in
a parent version is always interpreted in the context of the current version where the query
is run, just as a method invocation is always resolved against the dynamic class of this, even
when the call comes from a method in a superclass. In our solution, there is no look-up
through parent versions to resolve the most recent entity, but a direct access through the
reference table of the current version.
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Example. Let us illustrate this challenge with the following case. In Figure 8.4, two
changes are applied on the original model v1 (top diagram): a class deletion (class Student
is removed in version v2) and a method move between classes (method speak() moves from
Professor to Person).

The deletion action directly impacts the parent package Actor. In the new version v2,
class Student is removed and package Actor should be updated so that it does not reference
Student. First, v2.Actor is created as a new OrionEntity (with the same orionID as v1.Actor) as
it only knows about Person and Professor; second, Student is not in the reference table of
v2 (left sidebar) so it is unreachable.

The second change involves three OrionEntities for which new versions are created to
mirror changes: v2.Professor does not contain method speak() anymore while v2.Person
now contains it, and v2.speak() itself now refers to v2.Person as its parent class. Notice that
the invocation lecture()→speak() is not touched by this change as it is still considered as an
invocation on method speak(). Methods lecture() and write() are not updated in v2 because
they are not directly impacted by the changes from v1 to v2.

Notice how we use the dotted notation version.element to refer unambiguously to an
OrionEntity residing in a version. For example in Figure 8.4, v1.Person refers to Person in the
original model. v2.Person is a new element which shares the same orionID. v1.write() and
v2.write() represent the method write() in their respective version, but the entity is actually
shared.

Queries. The following queries illustrate, from basic to more challenging cases, how
navigation across shared entities is resolved in ORION. A query takes two parameters: a
target entity and the current version as a context (v1 or v2). The general algorithm for
processing basic queries takes two steps. First, the query is actually run against the target
entity and returns entities which possibly originate from different versions. Second, for
such entities, orionIDs are matched against the reference table of the current version to
retrieve the latest entities corresponding to each orionID.

In Figure 8.5, several queries are represented, from basic to more complex, which we
explain below. qV and qVI especially illustrate the challenge of shared entities.

qI – v1.Professor.getAllMethods()→ {v1.speak(), v1.lecture()}. This query returns all meth-
ods of the class Professor in the context v1.

qII – v2.Professor.getAllMethods() → {v1.lecture()}. lecture() exists in v2 but resides in v1,
because this entity has not been modified. This is the standard case of shared entities
between versions. Since lecture() is in the reference table of v2, it is reachable. Since
a specific v2.lecture() does not exist, the reference actually points to the most recent
entity with respect to v2, which is v1.lecture().

qIII – v1.speak().getParentClass() → v1.Professor. This query runs in the context of v1,
giving the original view of the model.

qIV – v2.speak().getParentClass() → v2.Person. This query runs in the context of v2. It
returns a different result than qIII respecting changes applied in v2.
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Figure 8.5: Sample model of Figure 8.4 representing query mechanism.

qV – v2.lecture().getParentClass() → v2.Professor. As noted for qII, v2.lecture() is actu-
ally v1.lecture() and the query is run against the later (represented by step qV.1 in
Figure 8.5). Then the query resolves in two steps: first message parentClass sent
on v1.lecture() retrieves v1.Professor; second, since the query runs in the context of
v2, ORION retrieves the correct v2.Professor from the reference table of v2 using the
orionID as the common denominator.

qVI – v2.lecture().getParentClass().getAllMethods()→ {v2.lecture()}. This is a composed query.
Here we get the same scenario than with qV (v2.Professor) but in addition we query
all its methods as in qII, which returns its sole method v1.lecture() in the version v2.

Queries qV and qVI show the subtlety of running queries on shared entities. First, query
qV is launched on v2.lecture() but actually runs on v1.lecture() - since it is shared between
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v1 and v2. Second, when a query is run in a version, it must follow changes related to
this version: in query qVI, v2.lecture() is v1.lecture(), but querying element Professor selects
entity v2.Professor, not v1.Professor, so that the correct set of methods is retrieved. The last
query stresses that even if an entity from a parent version is returned, traversing this entity
implies a resolution against the current version to retrieve changed entities. In presence of
shared entities between versions, a composed query may reach entities of a parent version,
not residing in the current version, yet it should always return entities as seen from the
current version. A version acts as a view on a graph and from such a view the graph and
its navigation should be consistent.

8.4 Implementation

8.4.1 Core Implementation

We give some details of the implementation which illustrate the dynamics of ORION. Our
goal is to give enough information so that the approach can be reproduced in other meta-
modeling environments such as the ones supporting EMF. We give code samples in pseudo-
code for the following cases: creation of a new version, action execution, basic query. It
shows ORION internals, which create changed entities and resolve an entity in the current
version.

Version Creation. A new version is created from a parent version by copying the full
list of references (reference table) from the parent model (only references are copied, not
entities). The version model also stores a reference to its parent model and the parent adds
the version as a new child:

OrionModel::createChildVersion(): OrionModel {
OrionModel newVersion = new OrionModel();
childrenVersions.add(newVersion);
newVersion.setParentVersion(this);
for(OrionEntity entity: entities()){

newVersion.addEntity(entity); }
return newVersion; }

Action Execution (Move Method). An instance of OrionAction runs to modify the cur-
rent version but also stores information about the execution (current version, target entity,
specific parameters of the action) to keep track of changes. To move a method from its
current class to another class, ActionMoveMethod needs three parameters: the current ver-
sion as orionContext, the method as targetEntity, and the target class as targetClass. These
parameters are stored in instance variables of the action, set at initialization.

The method run of the action retrieves the entities concerned by the change from the
orionContext then directly update these entities. The orionContext (the current version) takes
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care of copying entities from the parent version and updating its reference table. Action-
MoveMethod touches three entities: the method and the two classes. Its method run updates
the links between those three entities to apply the change.

ActionMoveMethod::run(): void {
OrionMethod method = orionContext().retrieveEntity( targetEntity() );
OrionClass oldClass = orionContext().retrieveEntity( method().parentClass() );
OrionClass newClass = orionContext().retrieveEntity( targetClass() );

oldClass.methods().remove(method);
newClass.methods().add(method);
method.setParentClass(newClass); }

The method retrieveEntity from OrionModel first checks whether the entity resides in the
model. In this case it means that the entity has already been changed and can be directly
modified. Otherwise, it makes a shallowCopy of the entity since it comes from a parent
version. shallowCopy copies only references to other entities as well as the orionId.

OrionModel::retrieveEntity(OrionEntity anEntity): OrionEntity {
if( contains(anEntity) ) {

return anEntity;
} else {

OrionEntity changedEntity = anEntity.shallowCopy();
changedEntity.setModel(this);
return entities().add(changedEntity);

}}

OrionModel::contains(OrionEntity anEntity): boolean {
return this == anEntity.model(); }

Query Execution. The main concern of queries in ORION is that they always return
entities as seen through the current version. Basic queries, which directly access entities in
a model, needs to be adapted in ORION to resolve direct access in the context of the current
version.

OrionMethod::parentClass(): OrionClass {
return parentClass.currentVersion(); }

The naive implementation of currentVersion below looks for the entity with the same ori-
onId in the current model. However, it involves the traversal of the reference table (entities())
each time an entity needs to be resolved. Care is needed to optimize this method as well
as the traversal. A straightforward optimization is to first test whether the entity belongs to
the current version using OrionModel::contains (see above), otherwise to launch the traver-
sal. A more general optimization is to use an efficient data structure such as a search tree
to implement the reference table.
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OrionEntity::currentVersion(): OrionEntity {
for(OrionEntity entity: OrionContext.currentModel().entities()){

if( entity.orionId == orionId ) {
return entity; } }

return null; // should never happen
}

Complex queries are built on basic queries to compute more information. They always
get the most recent entities from basic queries and thus do not require adaptation in ORION.
This is especially interesting as most analyses are built with complex queries, enabling
reuse of existing tools, while basic queries (which require adaptation) form a limited set
fixed by the meta-model.

8.4.2 Experimental ORION Browser: Removal of Cycles Between Packages

We designed and implemented ORION, an infrastructure for reengineering, as a realiza-
tion of the requirements of Section 8.2 (p.129) and proof of concept of our vision. We
developed an experimental version browser dedicated to the analysis of cycles between
packages. It serves as the central place for running version and cycle analyses (shown in
Figure 8.6). This section describes the core functions of the browser with respect to our
vision, illustrated in the context of cycle removal. We do not claim that this browser is
the sole solution to manage simultaneous versions. It is an illustration of our vision and of
possibilities offered by ORION.

We distinguish two parts in the browser layout: top row for navigation in the system,
bottom row for task analyses and change assessment. The reengineer interacts with the
browser by selecting elements in the different panels and opening a contextual menu.

The navigation row at the top is built from two main panels: the left-most panel shows
the tree of model versions. The second panel is a sliding navigation browser of the se-
lected version, embedded in the ORION browser (middle and right panels in Figure 8.6).
It first displays the list of entities by group (all packages, all classes. . . ). It is possible
to browse entities by selecting a group. Then by selecting an entity, a new panel opens
on the right of the current panel with all linked entities (in Figure 8.6, selected method in
middle panel displays groups of linked entities in right panel (accesses, invocations. . . ),
which can be browsed in turn). In the first panel (left), one can create a new child version
from the selected version, or delete an existing one (from a contextual menu). Another
action accessible on the selected version is to display the sequence of actions leading from
the original model to the version. Each entity in the second panel (middle) defines the list
of reengineering actions enabled on itself, like moving a method to a class, or moving a
class to a package. A dedicated contextual menu is accessible, listing possible actions (see
the pop-up menu in Figure 8.6). Applying an action produces a change which is recorded
in the currently selected version. By default, the reengineer can browse and filter the full
set of entities in the model. But the reengineer can also switch to changed entities in the
second panel to only show entities which have already changed in the selected version.

The bottom row is for analyses and assessment. It contains one large visualization panel
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Figure 8.6: An ORION browser dedicated to cycle removal.

and another panel for displaying metric measures. This part of the browser is customized
with specific visualizations and metrics for the current task. It may not necessarily display
all information relevant for the task at hand, but rather be a starting point to launch more
complex and intensive analyses, depending on the assessment of the reengineer for the
current situation .

Visualization. Figure 8.6 shows a very simple visualization in the bottom left panel ded-
icated to highlight strongly connected components (SCC) involving packages. This visu-
alization has been chosen because it is both space-savvy (not requiring a complex graph
layout nor a large matrix) and time efficient (using Tarjan algorithm for detecting SCCs in
linear time [Tarjan 1972]). Each boxed label represents one package. Colorized boxes in-
dicate packages which belong to the SCC involving all packages of the same color. Hence,
the reengineer gets a fast overview of cyclic dependencies in the system and can focus
on each problematic subset (that is, each SCC) separately. From the visualization, he can
select a single SCC and launch from a contextual menu a more sophisticated visualiza-
tion such as eDSM (Chapter 5, p.55) to perform a detailed analysis and devise the plan of
actions (not shown).

Change Impact Metrics. The bottom right panel displays properties of the system ded-
icated to the task at hand. Such properties are chosen to assess the current version with re-
spect to the global goal and to follow the progression from the original model. In line with
the visualization, we only use simple metrics in the browser. More sophisticated metrics
are only useful in specific analyses. In this case, following the number and size of strongly
connected components is a good indicator of progression toward the objective (no cycle
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implies no SCC). We also include the number of direct cycles, which are a primary target
for reengineering. Figure 8.6 shows these two metrics with their values and two change in-
dicators: difference with the parent version and difference with the original version. More
specifically, the value of “Connected Components” is 3 (2 - 2 - 2), which indicates three
strongly connected components, each composed of only two packages. This is of good
omen for the next versions. The last column of “Direct Cycles” shows −16, which means
that 16 direct cycles have been removed in this version, compared to the original model.

Again this browser is just an illustration of the ORION infrastructure.

8.5 Benchmarks and Case Studies

In this section we run three benchmarks showing that ORION scales up well in terms of
memory usage without slowing too much the time necessary to run queries. We compare
our approach with the full model copy, which defines the baseline for computation time
(no overhead at all) but does not scale up well in memory. The first benchmark shows that
ORION saves a lot of memory compared to the full copy approach. The second benchmark
shows that the time overhead induced by ORION on queries is acceptable for an interactive
experience. The third benchmark shows that the creation time of a new version is insignif-
icant in ORION, while it is fairly slow for the full copy approach, making it impractical in
an interactive scenario. We also report on two case studies undertaken on large projects,
with insights on the initial changes performed with ORION.

8.5.1 Test Data

We ran our benchmarks against a model of Moose imported in FAMIX [Nierstrasz 2005].
We will call this model Famix-Moose from now on. Famix-Moose is a typically large model
with more than 150, 000 entities, including 721 classes in 69 packages, 8, 574 methods,
65, 378 method invocations, and other entities.

8.5.2 Memory Benchmark

Goal. This benchmark shows the difference in memory usage between ORION and the
regular Moose. We devise two settings to assess this benchmark: one with a few changes
per version (low impact setting), and one with many changes per version (high impact
setting). The goal of the two settings is to check how the memory usage of ORION is
impacted by small and large changes.

Experimental Settings.

Regular Moose. In this experiment, we first create the Famix-Moose model, and we
copy it 20 times. Between each copy, we measure the memory used by the different models.
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ORION with Low Impact Setting (ORION Low). In this experiment, we first create
the Famix-Moose model. Using ORION, we create 20 successive versions (resulting in
21 models in memory in total). For each version, we do the following operation 5 times:
We randomly select two methods and add an invocation between them. This modification
impacts only the two concerned methods, so at most 10 entities are changed in each version
(provided each method is selected once per version). Between each version creation, we
measure the memory used by the different models.

ORION with High Impact Setting (ORION High). In this experiment, we first cre-
ate the Famix-Moose model. Using ORION, we create 20 successive versions. For each
version, we do the following operation 10 times We randomly select a method and delete
it. The deletion of a method has a high impact because it changes multiple entities: linked
invocation entities are deleted, methods invoking or invoked are changed, as well as its
parent class and parent package. For instance in the run of this experiment, methods such
as = or do: have been removed, forcing the copy of respectively 2, 917 and 813 elements.
Between each version creation, we measure the memory used by the different models.

Results. Figure 8.7 shows benchmark results. The first point represents memory usage
of the infrastructure and of the original model, which takes up to 100 mega-bytes. It is
clear that copying the full Moose model induces a huge memory usage. For instance, 10

such models require almost 600 mega-bytes of memory, which is a lot even for a recent
computer. On the other hand, ORION behaves very well from this point of view. To store
the 20 new versions with ORION, only 220 mega-bytes are sufficient for the low setting,
and 230 mega-bytes for the high setting, which is a huge improvement. The difference
between low and high settings is due to the change of many entities in high setting. It
makes versions of multiple entities stored in the reference table. We can also see that
ORION is robust even when the changes are complex.

8.5.3 Query Time Benchmark

Goal. This benchmark shows the difference in query running time between ORION and
the regular Moose. Using a full copy of a Moose model actually boils down to using
the regular Moose system in the day-to-day usage, which defines the baseline for timing
queries. We devise two settings to assess this benchmark: one with a few changes per
version (low impact setting), and one with lots of changes per version (high impact setting).
The goal of the two settings is to check how query performance of ORION is impacted by
small and large changes.

Experimental Settings. We perform 4 queries:

• invokedMethods, on each class of the model. This query returns all methods invoked
by the methods of a class. It is executed for all classes. We chose this query because
it runs over all methods, browsing both changed and unchanged entities. This query
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Figure 8.7: Memory usage in ORION vs full copy. The x-axis shows the number of versions
and the y-axis shows memory usage (in mega-bytes).

is simple but retrieves a large result, while most analyses are performed on subsets
with complex queries.

• allMethods, on each package of the model. This query returns all methods contained
in the classes of a package, it is executed for all packages.

• allSubclasses on each class. This query is simpler than the two preceding, but it
represents a good indicator for usual queries. It returns all subclasses of a class, it is
executed for all classes.

• superclass on each class. This query returns the superclass of a class, it is executed
for all classes.

We perform the four queries on each class (or package, depending of the scope) of the
model. We run these queries 10 times and take the mean time.

Regular Moose. In this experiment, we run the queries on a standard Famix-Moose
model. Since copying the model does not affect the time spent in queries, we run the
experiment on a single version.

Low Impact Setting (ORION Low). In this experiment, we take the same setting as
Low impact setting in Section 8.5.2 (p.143). For each version, we measure the mean time
spent to run one query.

High Impact Setting (ORION High). In this experiment, we take the same setting
as High impact setting in Section 8.5.2 (p.143). For each version, we measure the mean
time spent to run one query.
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Results. Figure 8.8 shows the result of the query invokedMethods, which is the worst
result of the four queries. It shows also that results are constant and up to three times
slower than regular Moose model. Table 8.2 shows benchmark result averages. ORION

induces an overhead on the time spent in queries which is acceptable in view of query
time. This overhead does not depend on the number of versions nor on changes but on the
structure used for the reference table. Nevertheless, the time overhead is not so important
(see column Factor in Table 8.2) as to disturb the interactive experience. The High impact
setting provides approximately the same results as Low impact setting.
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Figure 8.8: Comparison of time spent for the query invokedMethods (worst case) in ORION

vs Regular Moose. The x-axis shows the number of versions and the y-axis shows the time
spent (in seconds).

Regular Moose ORION Low ORION High Factor
Invoked methods 735.25 2708.4 2653.45 3.64
All methods of each package 9.9 19.05 20.7 2
All subclasses of each class 3.45 6.65 6.6 1.92
Superclass of each class 4.55 5.4 5.45 1.20

Table 8.2: Average of query time (in milliseconds) .

8.5.4 Creation Time Benchmark

Goal. This benchmark shows the difference in creation time for a new version be-
tween ORION and the regular Moose. Creation of a new version should not hamper the in-
teractive experience in the infrastructure, supporting the workflow of the reengineer. With
the regular Moose, the creation of a new version is a deep copy of the model. With ORION,
it is only a copy of the reference table.
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Experimental Design.

Regular Moose. In this experiment, we first create the Famix-Moose model, and we copy
it 10 times. We measure the time spent in copying each version and then compute the mean
time of copy for version creation.

ORION. In this experiment, we first create the Famix-Moose model. We perform 10
successive version creations (each version being the parent of the next one). We measure
the time spent in creating each version. Finally, we compute the mean time of version
creation. This experiment does not need change execution because ORION just copies the
reference table during creation.

Results.

• Regular Moose: 67, 45 seconds

• ORION: 3, 15 seconds

We can clearly see that the copy time of a Moose model (more than one minute) is
impractical for an interactive tool. On the other hand, the version creation time required by
ORION (around three seconds) is acceptable and should not hamper the user experience.

8.5.5 Threats to Validity

The aim of benchmarks is to compare our solution with a naive duplication of models. Two
threats to validity are highlighted: one external validity, one construct validity. External va-
lidity claims that the generality of the results is justified [Easterbrook 2008, Perry 2000].
The threat is the meta-model used by ORION. Construct validity claims that the construc-
tion and the measures are correct. The threat in this part is the randomized changes selected
for benchmarks.

Meta-Model. The meta-model provides a reification of dependencies between elements.
So, a model based on Famix has a lot of elements due to this reification. A meta-model
without this kind of behavior is smaller and could have different results. However, there
would still be a memory gain because sharing entities is better than copying all elements in
the model.

Randomized Changes A change should impact more or less elements in the model, due
to their relations with other elements in the model. For example, the deletion of the method
Collection»at: impacts a lot of entities in the model. Some other methods can be deleted
with no impact because they are not used (i.e., dead code). We paid attention that in each
benchmark, methods with a lot of relationships are removed such as add:.
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8.5.6 Case Studies

We now report on two case studies performed on large projects with ORION: Moose and
Pharo. Pharo is an open-source Smalltalk environment comprising 1800 classes in 150
packages. For this case study, we ran a smaller model containing 685, 000 entities (only
packages in cycles with their embedded entities) instead of 800, 000.

The goal of the case studies was the removal of cycles between packages as shown
in Section 8.2 (p.129). To customize the ORION browser for this task, we developed the
dedicated visualization as well as goal metrics tracking cycle evolution (Figure 8.6). It
allows us to follow the evolution of changes, and focus on packages in cycles, for which we
use the EDSM tool (enhanced Dependency Structural Matrix), an advanced visualization
for detailed analysis of cyclic dependencies (Chapter 5, p.55). Each case study involved
two experts using ORION. One was a reverse engineering expert who assessed cycles based
on the report from the browser and eDSM, while the other was an expert of the system
under study who suggested changes based on the previous assessment. Once a change is
applied in ORION, visualization and metrics are computed again on the changed version to
follow the evolution of the system, and a new assessment can begin. The process can be
repeated until the goal is met.

Moose. Initial assessment of Moose showed 17 packages (among 69) in 5 strongly con-
nected components, one involving 7 packages. 19 direct cycles between packages were
detected. Seven versions were created and assessed to achieve the final objective, which
removed 15 direct cycles. The 4 remaining cycles actually relate to test resources, that
is deliberate cycles created to test Moose tools. The proposed plan of action touches 52
entities in the model with 22 actions. All were basic actions (3 class moves, 1 reference
removal, 1 method delete, 17 method extensions). Among those 22 actions, 13 were read-
ily integrated into Moose source code. The remaining 9 changes, participating in the same
single direct cycle, are pending, as the involved concern might be completely refactored.

Pharo. The complexity of the Pharo case study is much larger as initial assessment
showed 68 packages in a single strongly connected component, creating 360 direct cycles.
We only report on a single 2-hour session, as the case is still ongoing. Eleven versions were
created during this session, impacting 110 entities and removing 36 direct cycles. Twenty
nine actions were executed, 3 of which were composite actions (merge packages, remove
class). Such actions effectively extracted 5 packages from the original SCC. All actions
have been integrated in the development release of Pharo.

8.5.7 Threats to Validity of Case Studies

The case study made on the Moose project is possibly biased because we are maintainers
of the project and we therefore know the system. But we noticed that the infrastructure still
helped us to detect some unpredictable impact. We think that our own experience in this
matter is useful.



8.6. Discussion: Reengineering Using Revision Control Systems 149

The case study on Pharo has one threat to validity: it is not possible to know all char-
acteristics of the system. Consequently, it is difficult to generalize the result. However,
this study involved two people: one knew how to manipulate ORION, the other had a deep
knowledge of Pharo as a maintainer. Ideally, a single person should be able to work with
the tool on his model.

8.6 Discussion: Reengineering Using Revision Control Systems

Revision control systems (like CVS and SVN) have managed version branching for decades.
They offer compact ways of storing delta between versions but reengineering environments
or IDEs like Eclipse do not take advantage of such incremental storage. For Eclipse, there
is only one version of the source code in memory when we perform a given refactoring.

Using code versioning to support our scenario boils down to (1) create one branch in
the code repository for each possible solution, (2) effectively apply changes in the code,
then (3) run the analysis tools on each branch. The developer would eventually need some
tools to compare versions. Note that we are not concerned by textual differences between
versions but software quality assessment based on visualization and metrics of the different
versions.

Such a process is possible but costly, as one has to check out one working copy, set up
the reengineering tools for each version, apply effective changes in the code. In addition
it is cumbersome to navigate and compare the versions. It makes it impractical to test
numerous small solutions. In practice, developers often cannot support such costs: they
give their best guess at what would be the adequate solution, apply it, and rollback if it
reveals too problematic.

Overall, this process would have two drawbacks:

• it consumes time and resources, as the developer has to switch between analyses and
reengineering environments, work directly with the code, version its code so as to
move forward and rollback between changes. Moreover, it breaks the flow of work
while one has to deal with these multiple concerns.

• due to these costs, it is impractical to compare multiple alternative solutions as one
should produce the code for each solution.

These drawbacks are not present in ORION due to a single environment for analyses
and reengineering. Moreover, as ORION works on models, it does not change source code,
and make available comparison of multiple alternative solutions. It allows us to import only
one time the source code as model and to work on version without changing the original
model.

8.7 Related Work

There are three domains in relation with this work that one may want to compare to: ver-
sioning mechanism, change management, and change impact analysis. To the best of our



150
Chapter 8. ORION,

Simultaneous Versions for Change Analysis

knowledge, there is no approach which supports the navigation and manipulation of multi-
ple versions simultaneously in memory.

8.7.1 Software Configuration Management and Revision Control

Software Configuration Management (SCM) is the discipline of managing the evolution of
a software system. It integrates Revision control which is the management of changes. It
is the predominant approach to save software evolution. It allows one to manage high-level
abstraction evolution.

The majority of revision control systems uses a diff-based approach. They only store
changes so they are efficient in memory. In our approach, we need a compromise between
memory efficiency and a permanent graph access. So, the domain of revision control does
not provide a model which allows us to navigate between multiple versions of a model. In
fact, this is not a real goal of the revision control domain.

Smalltalk basic mechanisms to record changes dynamically is called a changeset. A
changeset captures a list of elementary changes that can be manipulated, saved to files and
reapplied if necessary. However, in Smalltalk change set system, only one single version
of a system can be refactored at a time, even if changeset containing several versions can
be manipulated. The same happens with Cheops and change-oriented methodology and
IDES [Ebraert 2009]. In [Robbes 2008], the author argues that managing changes as first-
class entities is better than traditional approaches. The implementation of this approach
records fine-grained changes and provides a better comprehension of changes history. This
approach is applied on a single version of source code. ORION integrates first-class changes
as each action is represented by an object. It allows the developer to have fine-grained
information.

In [Buckley 2005], three tools are compared: Refactoring Browser, CVS and eLiza.
A refactoring browser transforms source code. It has basic undo mechanism but does
not manage versions. So, it is really useful for refactoring source code but it works on
a current model of source code. It is not really adapted for the application of various
analyses on different versions. CVS (Concurrent Versions System) works on file system
and supports parallel changes. However since CVS does not include a domain model of
the information contained in the files they manipulate, it is difficult to use a CVS model
to perform multiple analyses on various versions. It is possible but limited. The third
element compared is eLiza. This system from IBM has been created to provide systems
that would adapt to changes in their operational environment. This system provides a
sequential versioning system because only one configuration can be active. This system is
not adapted to our subject because it is based on an automatic change system in relation
with the environment.

Molhado [Nguyen 2005a] is a SCM framework and infrastructure which provides the
possibility to build version and SCM services for objects, as main SCM systems provide
only versioning for files. As it is flexible, the authors work on several specific SCM built on
Molhado: web-based application [Nguyen 2005b], refactoring aware [Dig 2007] to manage
changes and merge branches. The main topic of Molhado is to provide a SCM system based
on logical abstraction, without the concrete level of files management. This approach is
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orthogonal to ORION because it controls changes while ORION simulates changes. There
are some similarities between the two approaches and it is probable that ORION could
integrate a SCM, in the future.

8.7.2 Change Impact Analysis

Compared to Software Configuration Management (SCM) and Revision Control System,
which supports change persistence and comparison, the domain of change impact analy-
sis deals with computing (and often predicting) the effect of changes on a system. Our
approach is orthogonal to change impact analysis. Tools performing change impact anal-
ysis can be used in the ORION infrastructure to perform change assessment on a version
and guide the reengineer when creating new versions and testing new changes. We struc-
ture the domain in two parts: change model, which could inspire future work on the ORION

meta-model; change assessment, which provides tools and analyses (metrics, visualization,
change prediction).

Change Model. Han [Han 1997] considers system components (variable, method, class)
that will be impacted by a change. The approach is focussed on how the system reacts to a
change. Links between these components are association (S), aggregation (G), inheritance
(H), invocation (I). Change impact is computed based on the value of a boolean expression.
For example a change is considered as S~H+G. This work has been reused in [Abdi 2006].
The class-based change impact model [Chaumun 2002] is based on the same semantics,
with a more general model. It analyses history and identifies classes which are likely to
change often. These approaches use the same type of link between elements as ORION.
This type of analysis is not included in ORION, our approach provides metrics and visu-
alization based on the direct analysis of the model. In the future, it will be possible to
integrate a similar approach, as ORION knows which entities are modified.

A history-based approach is Hismo [Gîrba 2005a], a meta-model for software evolu-
tion. This approach is based on the notion of history as a sequence of versions. A version
is a snapshot taken at a particular moment. It makes version from the past based on a copy
approach: each version is a FAMIX model. It has some similarity with our idea, however,
it is a copy-based approach, so it is impractical to perform interactive modifications. An-
other difference is that our idea is based on analysis of the future, Hismo is a study of the
past. In [Gîrba 2005a], the author proposes some metrics to compare which elements have
changed. In our approach the goal is to have a notion of impact of a change.

Other models exist as [Abdi 2009] which proposes a technique based on a probabilistic
model, a Bayesian network is used to analyze the impact of an entry scenario. ORION is
not concerned by this type of model because it provides the real modification of models.

Change Assessment. [Li 1996] and [Lee 1998] propose an algorithm for analyzing change
impact with the detection of inheritance, encapsulation, and polymorphism. The algorithm
proposes an order of changes based on the repercussion on self, children and clients. This
method is the first one applied to an object model. It is also restricted to classes. Some
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approaches try to predict changeability, they assess the impact of a change to a code loca-
tion by looking at previous change impact upon this location. This domain could be used
in ORION to better reflect the impact of changes. [Cai 2007] presents a decision-tree-based
framework to assess design modularization for changeability. It formalizes design evolu-
tion problem as decision problems, model designs and potential changes using augmented
constraint networks (ACN). [Antoniol 1999] uses metrics comparison to try to predict the
size of evolving object-oriented systems based on the analysis of classes impacted by a
change. A change is computed as a number of lines of code added or modified), but they
do not provide the possibility to compare some versions and to choose one.

Other approaches propose change impact analysis based on test regression [Ryder 2001].
[Kung 1994] proposes a change impact analysis tool for regression tests. Authors define
a classification of changes based on inheritance, association and aggregation. They also
define formal algorithms to compute impacted classes and ripple effects. The Chianti
tool [Ren 2004] is able to identify tests which run over the changed source code. They
can be run in priority to test regression in the system. For each affected test, Chianti re-
ports the set of related changes. ORION cannot do this kind of analysis because it does not
work on source code.

8.7.3 Change-based Environment

Some models exist to support changes as a part of development. The Prism Model [Mad-
havji 1992] proposes a software development environment to support change impact anal-
ysis. This work introduces a model of change based on deltas that supports incremental
changes. As it is based on deltas, it is not really possible to analyze different models in
parallel.

Another work in change management system is Worlds [Warth 2008]. It is a language
construct which reifies the notion of program state. The author notes that when a part of a
program modifies an object, all elements which reference this object are affected. Worlds
has been created to control the scope of side effects. It manages several parallel universes.
The limitation of Worlds is that it only captures the in-memory side effects. Compared to
ORION, this work is a source-code-based approach, ORION is model based. In the future,
it could be possible to use this type of approach to expand ORION and populate changes on
source code with mastering side effects.

With the same idea to control side-effect but restricted to source code, ChangeBoxes
[Denker 2007] proposes a mechanism to make changes as first-class entities. ChangeBoxes
support concurrent views of software artifacts in the same running system. We can manipu-
late ChangeBoxes to control the scope of a change at runtime. Compared to ORION which
is structure oriented, ChangeBoxes are used to integrate changes in a runtime environment.

The Model Driven Engineering domain and particularly Model transformation could
have similar ideas with ORION approach. In [Mens 2006], authors propose a taxonomy of
Model Transformation for helping developers who want to choose a model transformation
approach. In the enumeration of characteristics of a model transformation, there is no
information about multiple models management. One more time, in the future, ORION

could integrate a link to source code and have a bidirectional transformations mechanism,
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as Model transformation provides.

8.8 Summary

In this chapter, we present a novel approach to reengineering through simulation of changes
in source code model. In particular, we claim that software maintainers should be able to
assess and compare multiple change scenarios. We define user and technical requirements
for an infrastructure supporting our vision, ranging from reuse of existing tools to han-
dling simultaneous versions in memory. We implemented the requirements in ORION, our
current infrastructure.

The main concern detailed in this chapter is the efficient manipulation of simultaneous
versions in memory of large source code models. Copy approach does not scale up in
memory for such models. In ORION, only changed entities are copied between versions,
unchanged entities being effectively shared. Then, basic queries take care of retrieving a
consistent view of entities in the analyzed version. Our benchmarks report the large gain
in memory for our approach with an acceptable overhead in query running time. Overall,
it allows ORION to scale up and be usable.

This chapter is the last part of the ECOO approach. The next chapter concludes the
thesis by resuming ideas proposed in ECOO. Then we open discussions about problems in
software remodularization.
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The important thing is not to stop questioning.

[Albert Einstein]

At a Glance

This chapter concludes the dissertation. We summarize the ECOO approach
and our proposal. We discuss the global approach by explaining lessons learned
and future work. We finish the dissertation by detailing open issues.
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9.1 As a Conclusion

Software systems evolving during years are difficult to understand and change. They lost
modularity with their evolution. Software remodularization is a problem now and for the
future.

We have reviewed various approaches related to software remodularization. We orga-
nized them in three parts: (i) software visualization for structure assessment; (ii) remod-
ularization approaches; and (iii) software change impact analysis. They focus on under-
standing global structure and automatic or semi-automatic approaches to solve problems.
Change impact analysis avoid degradation problems. No one provides completely what a
reengineer needs to remodularize a system.

In this dissertation, we argue for the need of remodularize architecture to ensure evo-
lution. On the structure at package level, we argue that a reengineer has three needs: (i)
understand the structure and assess its quality; (ii) identify and understand the structural
problems; and (iii) take decisions and verify the impact of these decisions.

Our solution provides a complete approach to help reengineers resolving cyclic de-
pendencies at package level. ECELL provides a view of a package dependency showing
fine-grained information. EDSM provides a view of coarse-grained information. Then
EDSM and CYCLETABLE highlight strongly connected components as structural prob-
lems. OZONE proposes dependencies to remove with the goal of obtaining an acyclic
package structure. ORION helps reengineers analyzing the impact of possible changes.

Our validations of each step shows that the approach works and can be used with object-
oriented systems. We validate each part of the approach separately, which provides finally
a complete validation.

9.2 Discussion: How ECOO Answer the Reengineer Needs

The ECOO approach provides architecture analysis with ECELL and EDSM; cycle un-
derstanding with EDSM and CYCLETABLE; package layers understanding with EDSM
and OZONE; change impact analysis with ORION; and help for decision with OZONE and
ORION.

We argue that reengineers need to (i) understand package structure and dependencies;
(ii) identify package dependency problems; and (iii) analyze the impact of a change on the
package structure. The ECOO approach provides an answer to these three points:

Understanding Fine-Grained Package Structure and Dependencies. ECELL provides
a fine-grained view of package dependencies. It builds a view of dependency from a pack-
age to another one. ECELL shows only information needed to understand the dependency.
It is based on four kinds of dependencies: inheritance, class reference, method invocation,
and class extension.

Identifying Package Dependency Problems. EDSM allows one to see, in a matrix, the
structure of a software application. Using colors, it provides a preattentive visualization
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to spot cycle issues. With the integration of ECELL it helps reengineers understand cycles
at a fine-grained level. CYCLETABLE decomposes each strongly connected component
already detected in EDSM in minimal cycles and highlights dependencies implied in sev-
eral of them. ECELL included in CYCLETABLE provides fine-grained information for each
dependency. OZONE is a semi-automatic algorithm which provides a list of unwanted de-
pendencies based on direct cycles shown in EDSM and shared dependencies already high-
lighted in CYCLETABLE. It builds a layered architecture based on this list. The reengineer
can add his own evaluation of dependencies to avoid false-positive results of the algorithm.

Analyzing the Impact of a Change on the Package Structure. ORION is an approach
to simulate changes in multiple versions of a model without impacting the real system. It
allows reengineers to try changes without breaking the system and having feedback from
reengineering tools (i.e., visualizations, metrics).

9.3 Open Issues

There are multiple open issues that were not discussed in this thesis, but should be explored
in future work.

9.3.1 Cycle Identification

In the user study of EDSM (Chapter 5, p.73), we discovered that all studied software
applications had cycles between packages. This situation shows that all these systems
break the Acyclic Dependency Principle proposed by Martin [Martin 2000] and probably
that lots of systems are in a similar situation.

First, we should analyze the reason of cycles. It seems that cycles are mainly due
to structural problems and can be fixed by reengineering source code. A part of these
cycles have similar characteristics and it would be interesting to analyze them and discover
particular patterns that can help in detection of unwanted dependencies.

Second, there are some cycles that seem not to be breakable because of the semantic.
For convenient reasons, engineers organize classes in multiple small packages instead of
one big. This organization creates package cycles, which are not critical.

These two observations open some questions about the problem of cycle:

• What are the patterns for package cyclic dependencies? Are they good or bad depen-
dencies? Packages can be in cycles because of a semantic division that make sense
for the engineer and is not critical for the modularity of the application.

• What is the definition of a package? What are the definitions/roles of packages?
Related to the first question, we do not know how an engineer builds a package: is it
for structural architecture or other convenience?

• Finally we could ask: Is Acyclic Dependency Principle (ADP) valid in all cases? Is
it not too costly to apply ADP at package level?
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Third, some algorithms exist in the regression and integration testing domain that could
be useful to improve our strategy. The goal of these algorithms is to find vertices to create
stub instead of finding edges that should be removed. Consequently, a future work is to
analyze how we can use this different vision and these algorithms. Another idea from this
domain is the differentiation of the kind of dependencies to avoid removing inheritances
[Kung 1996, Tai 1997]. A future work is to use this idea in OZONE to select unwanted
dependencies.

9.3.2 Dependency Analysis

Lightest Dependencies. Our work focuses on the syntactic analysis of dependencies and
cycles, without exploring the semantics. There is a hypothesis that the “lightest” depen-
dencies should be broken to break a cycle. This was validated, but there was no further
exploration of the nature of dependencies and cycles.

A next step would be to try to classify the kinds of dependencies and cycles that occur
in practice. This information could be used to improve the algorithms to provide more
accurate indications of unwanted dependencies.

Moreover, our algorithms do not take into account the different kinds of dependencies
(i.e., inheritance, class references, method invocation, class extension) that we already de-
tect in ECELL. Future work will follow two directions: (i) analyzing which dependency
patterns arise most commonly in cycles; and (ii) analyzing which kind of strength we can
give to the different kinds of dependencies to minimize false-positive results in the algo-
rithms.

Shared Dependencies. The strategy based on the shared dependencies in CYCLETABLE

and OZONE depends on the analysis of the complete system to have all shared dependen-
cies. In the case of computing the algorithm on only a part of a system, shared dependencies
are smaller and the algorithm should return more false-positive values.

We should investigate the shared dependencies strategy and compare it with other ap-
proaches. It could be used as a metric to compute the quality of a dependency. Aggregated
to other metrics, we can remove false-positive detected dependencies.

Cost analysis. Another issue is to estimate the cost of breaking cycles. If there is a
cycle with 8 dependencies from a package A to a package B, and 20 from B to A, it could
be that the 20 dependencies all go to a single class in A, but the 8 dependencies go to
different locations in B. If this single class in A has no further dependencies within A, then
moving this class to package B will be easier to break the cycle than to try breaking the 8
dependencies. We need to investigate a cost analysis.

9.3.3 ORION Change Impact Analysis

We plan to optimize query running time by using optimized search structure for retrieving
entities between versions. We envision dedicated visualizations for change assessment. We
also need to assess how our current infrastructure handles new reengineering tasks: then
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new tools and models need to be developed on top of ORION and possibly adapted. In
particular, we believe ORION could be a useful approach to assess automatic reengineer-
ing tools such as [Abdeen 2009]. Such tools usually provide a refactored model without
rationale for their decisions, which makes reengineers wary of the result. With ORION, we
could “watch” automatic algorithms iterate over the model, creating new versions at each
important step, and giving better insights on the inner working of the tool. Overall, ORION

aims to provide better decision support for software reengineers.
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A.1 DSM Presentation

Dependency Structural Matrix (DSM) is an adjacency matrix: a cell represents a link be-
tween two packages. The rule for reading the matrix is: an element in column header
references an element in row header at the crossing of the column and the row. For exam-
ple, in Figure A.1, A references B and C, B references A, C references D and D references
C.

A B C D
A X
B X
C X X
D X

A B

C D

Figure A.1: A simple dependency graph and its matching DSM

In this visualization, the studied elements are packages. Previously in this tutorial, we
talk about package rather than element.

A.2 DSM Cell color

A DSM is represented with numbers and several colors Figure A.2. Numbers represents
the sum of all dependencies between the two involved packages. Color is an help system
to understand the structure:
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• gray cells: represent a dependency between a client package and a provider package

• blue squares (covering several cells): represent a strongly connected component
(SCC), all packages involved in a SCC are in cycle

• yellow cell: represent a single dependency involved in a SCC.

• red/pink cell: represent a cycle between two packages (A → B and B → A), we
name it direct cycle. If a cell is red, it means that the number of dependencies from
column to row is a third (or less) than the number of dependencies from row to
column (note: the symetric cell will be in pink). It means that this dependency is
probably easier to remove than its counterpart.

Figure A.2: Color in DSM: red/pink→ direct cycle, yellow→ a link composing a SCC.

A.3 Enriched contextual cell information

A cell can be opened to give more details on the dependencies. We call it an eCell It is
presented as Figure A.3. An eCell is written from top to bottom:

• on top, there is the number of dependencies. It shows the total number of dependen-
cies, and the number or four different types of dependencies (inheritance, reference,
invocation, extension).

• In the core of the eCell, we show the classes involved in the dependency and the
links between these classes. A class can have three colors and one specific border.
Specific colors are: pale orange means the class is involved in other dependencies,
strong orange means a method of this class is involved in other dependencies, gray
is for other classes. A black thick border means that the class is implied in both
dependencies of a direct cycle. A dotted border represents a class extension: the
class is not defined in the targeted package
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• at the bottom, there is the state of the dependency, which is the color of the cell
presented in Section A.2.

Client package

Provider package

Ratio of classes
concerned by

the dependency

Tot      I      R      S      E

Strong orange class: this 
class contains methods 
involved in multiple 
cycles

Light orange class: 
this class is involved 
in multiple cycles

Number and type of 
dependencies 
(Inheritance, Reference, 
Sending, Extension)

C

Z X Y

BA

Colors of the link corresponds 
to the cell's header:
- Red: reference
- Blue: inheritance
- Green: invocation

State of the dependency

Black thick border: this 
class is a client and a 
provider in the cycle.

Figure A.3: Enriched cell structural information.

A.3.1 Tooltip

When the cursor is on a non-empty cell: a tooltip appears with an eCell inside. If it is on a
direct cycle, it shows the two concerned dependencies, as in Figure A.4

A.3.2 Contextual menu and double click

By right clicking on colored cells (blue, red or yellow), it is possible to open a DSM or a
DSM with eCell focusing the specific SCC. In Figure A.5, we can see the contextual menu,
which provide, for example a DSM as in Figure A.6.

The use of double-click is possible on header and on SCC. For the header, it opens a
DSM with all packages on which the selected package depends. And for the SCC, it opens
a window with an eDSM of the SCC, as in Figure A.6.

A.3.3 Show source code

To see the source-code, it is possible to right-click on a class and to select “Browse” on the
class or on a specific method as in Figure A.7.
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Figure A.4: Fly by help in action.

Figure A.5: Contextual menu.
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Figure A.6: one SCC centric eDSM.

Figure A.7: We can browse source code.
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Object-Oriented Architecture
Analysis and Remediation

Software evolves over time with the modification, addition and removal of new classes, methods,
functions, dependencies. A consequence is that behavior may not be placed in the right packages
and the software modularization is broken. A good organization of classes into identifiable and col-
laborating packages eases the understanding, maintenance, test and evolution of software systems.
We argue that maintainers lack tool support for understanding the concrete organization and for
structuring packages within their context.

Our claim is that the maintenance of large software modularizations needs approaches that help
(i) understanding the structure at package level and assessing its quality; (ii) identifying modularity
problems; and (iii) take decisions and verify the impact of these decisions.

In this thesis, we propose ECOO, an approach to help reengineers identify and understand struc-
tural problems in software architectures and to support the remodularization activity. It concerns
the three following research fields:

• Understanding package dependency problems. We propose visualizations to highlight cyclic
dependency problems at package level.

• Proposing dependencies to be changed for remodularization. The approach proposes depen-
dencies to break to make the system more modular.

• Analyzing impact of change. The approach proposes a change impact analysis to try modifi-
cations before applying them on the real system.

The approaches presented in this thesis have been qualitatively and quantitatively validated
and results have been taken into account in the reengineering of analyzed systems. The results we
obtained demonstrate the usefulness of our approach.

Keywords: remodularization; dependency analysis; visualization; change impact analysis;
package dependency
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