
HAL Id: tel-00600523
https://theses.hal.science/tel-00600523

Submitted on 15 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning during search
Alejandro Arbelaez Rodriguez

To cite this version:
Alejandro Arbelaez Rodriguez. Learning during search. Other [cs.OH]. Université Paris Sud - Paris
XI, 2011. English. �NNT : 2011PA112063�. �tel-00600523�

https://theses.hal.science/tel-00600523
https://hal.archives-ouvertes.fr

THÈSE

DE L’UNIVERSITÉ PARIS–SUD

presentée en vue de l’obtention du grade de

DOCTEUR DE L’UNIVERSITÉ PARIS–SUD

Specialité: INFORMATIQUE

par

ALEJANDRO ARBELAEZ RODRIGUEZ

LEARNING DURING SEARCH

Soutenue le 31 Mai 2011 devant la commission d’examen :

Susan L. EPSTEIN, Hunter College of The City University of New York (Rapporteur)

Youssef HAMADI, Microsoft Research (Directeur de thèse)

Abdel LISSER, LRI (Examinateur)

Eric MONFROY, Université de Nantes / Universidad de Valparaiso (Invité)

Barry O’SULLIVAN, University College Cork (Rapporteur)

Frédéric SAUBION, Université d’Angers (Examinateur)

Thomas SCHIEX, INRA (Examinateur)

Michèle SEBAG, CNRS / LRI (Directeur de thèse)

Microsoft Research - INRIA Joint Centre

28 rue Jean Rostand 91893 Orsay Cedex, France

PHD THESIS

by

ALEJANDRO ARBELAEZ RODRIGUEZ

LEARNING DURING SEARCH

Microsoft Research - INRIA Joint Centre

28 rue Jean Rostand 91893 Orsay Cedex, France

Acknowledgements

First, I would like to express my gratitude to my supervisors Youssef Hamadi and Michèle

Sebag for their continuous guidance and advice during this time. I would also like to thank

Marc Schoenauer for giving me the opportunity of being part of the TAO research group.

Special thanks also go to Camilo Rueda and Nestor Cataño who supported my appli-

cation to the PhD at the Microsoft Research – INRIA joint centre. My gratitude also goes

to Susan L. Epstein, Abdel Lisser, Eric Monfroy, Barry O’Sullivan, Frédéric Saubion, and

Thomas Schiex, for being part of the jury committee.

I would like to thank my friends who made my stay in France more enjoyable, in par-

ticular, at the university: Alvaro Fialho, Romaric Gaudel, Raymond Roos, Luis Da Costa,

Ibrahim Abdoulahi, Daniel Ricketts, and Said Jabbour. Also outside the research lab: Car-

los Olarte, Andres Aristizabal, Luis Pino, Frank Valencia, Hélène Collado, Silway Mal-

iszewska, Tatiana Hernandez, and Carlos Acuña. And all the people that used to play

table-tennis with me here in France: Pierre Monceaux, Julien Cledera, Albin Andrieux,

Sylvain Meurgue, Thomas Treal, Sébastien Gadelle, and Sébastien Barthelemi just to name

a few. I have got to say that I will miss playing the French competition on Saturdays.

I also want to express my gratitude to the members of the AVISPA research group in

Cali-Colombia, as well as, many thanks to Alberto Delgado, Julian Gutierrez, Jorge Pérez,

Daniel Ricketts, and Carlos Olarte for proofreading some chapters of this thesis.

Last but not least, I would like to thank from the bottom of my heart my family, my par-

ents Juan Bautista and Yolanda, my brothers Gilma and Juan Carlos, and my little nephew

Stephan for all their support and encouragement in so many ways during all my life.

Alejandro Arbelaez Rodriguez,

Paris, May 2011

v

Abstract

Autonomous Search is a new emerging area in Constraint Programming, motivated by

the demonstrated importance of the application of Machine Learning techniques to the

Algorithm Selection Problem, and with potential applications ranging from planning and

configuring to scheduling. This area aims at developing automatic tools to improve the

performance of search algorithms to solve combinatorial problems, e.g., selecting the best

parameter settings for a constraint solver to solve a particular problem instance. In this the-

sis, we study three different points of view to automatically solve combinatorial problems;

in particular Constraint Satisfaction, Constraint Optimization, and SAT problems.

First, we present domFD, a new Variable Selection Heuristic whose objective is to

heuristically compute a simplified form of functional dependencies called weak dependen-

cies. These weak dependencies are then used to guide the search at each decision point.

Second, we study the Algorithm Selection Problem from two different angles. On the one

hand, we review a traditional portfolio algorithm to learn offline a heuristics model for the

Protein Structure Prediction Problem. On the other hand, we present the Continuous Search

paradigm, whose objective is to allow any user to eventually get his constraint solver to

achieve a top performance on their problems. Continuous Search comes in two modes: the

functioning mode solves the user’s problem instances using the current heuristics model;

the exploration mode reuses these instances to training and improve the heuristics model

through Machine Learning during the computer idle time. Finally, the last part of the the-

sis, considers the question of adding a knowledge-sharing layer to current portfolio-based

parallel local search solvers for SAT. We show that by sharing the best configuration of

each algorithm in the parallel portfolio on regular basis and aggregating this information in

special ways, the overall performance can be greatly improved.

vii

Contents

1 Introduction 1
1.1 Motivation and Context . 1

1.2 Constraint Programming . 2

1.3 Contributions of this thesis . 3

1.4 Thesis outline . 4

1.5 List of Publications . 6

2 Formalism 9
2.1 Constraint Satisfaction Problems . 9

2.2 Complete Search . 10

2.2.1 Variable and Value ordering . 15

2.3 Incomplete Search . 16

2.4 The Propositional Satisfiability Problem 19

2.4.1 Variable Selection . 19

2.5 Constraint Optimization Problems . 22

2.6 Supervised Machine Learning . 24

2.6.1 Support Vector Machines . 24

2.6.2 Decision Trees . 26

3 Related work 29
3.1 The Algorithm Selection Problem . 29

3.1.1 Portfolios for SAT . 30

3.1.2 Portfolios for QBF . 34

ix

CONTENTS

3.1.3 Portfolios for CSP . 35

3.2 Portfolios for Optimization problems . 37

3.3 Per class learning . 39

3.4 Adaptive Control . 41

3.5 Other work . 43

4 Exploiting Weak Dependencies in Tree-based Search 47
4.1 Introduction . 47

4.2 Constraint propagation . 48

4.3 Exploiting weak dependencies in tree-based search 50

4.3.1 Weak dependencies . 50

4.3.2 Example . 50

4.3.3 Computing weak dependencies . 52

4.3.4 The domFD dynamic variable ordering 53

4.3.5 Complexities of domFD . 54

4.4 Experiments . 55

4.4.1 The problems . 56

4.4.2 Searching for all solutions or for an optimal solution 58

4.4.3 Searching for a solution with a classical branch-and-prune strategy . 58

4.4.4 Searching for a solution with a restart-based branch-and-prune strat-

egy . 59

4.4.5 Synthesis . 62

4.5 Previous work . 63

4.6 Summary . 64

5 Building Portfolios for the Protein Structure Prediction Problem 65
5.1 Introduction . 65

5.2 The protein structure prediction problem 66

5.3 Features . 68

5.3.1 Problem features . 68

5.3.2 CP features . 69

5.4 Algorithm portfolios . 70

x

CONTENTS

5.4.1 Algorithm subset selection . 72

5.5 Experiments . 73

5.6 Summary . 80

6 Continuous Search in Constraint Programming 83
6.1 Introduction . 83

6.2 Continuous Search in Constraint Programming 85

6.3 Dynamic Continuous Search . 86

6.3.1 Representing instances: feature definition 87

6.3.1.1 Static features . 88

6.3.1.2 Dynamic features . 88

6.3.2 Feature pre-processing . 89

6.3.3 Learning and using the heuristics model 89

6.3.4 Generating examples in Exploration mode 90

6.3.5 Imbalanced examples . 91

6.4 Experimental validation . 92

6.4.1 Experimental setting . 92

6.4.2 Practical performances . 94

6.4.3 Exploration time . 99

6.4.4 The power of adaptation . 99

6.5 Previous Work . 101

6.6 Summary . 102

7 Efficient Parallel Local Search for SAT 105
7.1 Introduction . 105

7.2 Knowledge Sharing in Parallel Local Search for SAT 106

7.2.1 Using Best Known Configurations 107

7.2.2 Weighting Best Known Configurations 107

7.2.2.1 Ranking . 108

7.2.2.2 Normalized Performance 108

7.2.3 Restart Policy . 108

7.3 Experiments . 109

xi

CONTENTS

7.3.1 Experimental Settings . 109

7.3.2 Practical Performances with 4 Cores 110

7.3.3 Practical Performances with 8 Cores 114

7.3.4 Analysis of the Diversification/Intensification Trade off 116

7.3.5 Analysis of the Limitations of the Hardware 118

7.4 Previous Work . 123

7.4.1 Complete Methods for Parallel SAT 123

7.4.2 Incomplete Methods for Parallel SAT 124

7.4.3 Cooperative Algorithms . 125

7.5 Summary . 126

8 Conclusions and Perspectives 127
8.1 Overview of the main contributions . 127

8.2 Perspectives . 128

Bibliography 131

xii

List of Figures

2.1 Sudoku . 11

2.2 Resulting search tree for the sudoku example 13

2.3 Sudoku resolution step-by-step (Backtracking) 14

2.4 Sudoku resolution step-by-step (Local Search) 18

2.5 SAT example . 19

2.6 Linear Support Vector Machine. The optimal hyperplane is the one maxi-

mizing the minimal distance to the examples. 25

2.7 Decision tree example . 26

3.1 Rice’s abstract model for the algorithm selection problem 30

4.1 Weak dependencies . 51

4.2 Variables and propagators . 52

5.1 3D conformation of the 3SDHA protein 67

5.2 Traditional algorithms portfolio framework 71

5.3 Experimental validation using 10-fold cross-validation and an inner for-

ward selection . 74

5.4 wdegVs wdeg+ . 75

5.5 Experimental evaluation using all available heuristics 78

5.6 Experimental evaluation using forward heuristic selection 79

5.7 〈ALL, cp+bio〉 Vs 〈FS, cp+bio〉 . 80

6.1 Continuous Search scenario . 85

xiii

LIST OF FIGURES

6.2 dyn-CS: selecting the best heuristic at each restart point 86

6.3 Continuous Search in Constraint Programming 87

6.4 Langford-number (lfn) . 94

6.5 Geometric (geom) . 95

6.6 Balance incomplete block designs (bibd) 95

6.7 Job Shop (js) . 96

6.8 Nurse Scheduling (nsp) . 96

7.1 Performance using 4 cores in a given amount of time 112

7.2 Runtime comparison, each point indicates the runtime to solve a given in-

stance using 4cores-Prob (y-axis) and 4cores-No Sharing (x-axis) 113

7.3 Best configuration cost comparison on unsolved instances. Each point indi-

cates the best configuration (median) cost of a given instance using 4cores-

Prob (y-axis) and 4cores-No Sharing (x-axis) 113

7.4 Performance using 8 cores in a given amount of time 115

7.5 Pairwise average Hamming distance (x-axis) vs Number of flips every 106

steps (y-axis) to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf

instance . 119

7.6 Individual algorithms performance to solve the unif-k3-r4.2-v16000-c67200-

S2082290699-014.cnf instance . 121

7.7 Runtime comparison using parallel local search portfolios made of respec-

tively 1, 4, and 8 identical copies of PAWS 122

xiv

List of Tables

4.1 All solutions and optimal solution . 58

4.2 First solution, branch-and-prune strategy 60

4.3 First solution, restart-based strategy . 61

4.4 Synthesis of the experiments . 62

5.1 Amino-acid feature’s group . 69

5.2 Overall strategies solution cost with a 5-minute timeout 76

6.1 Total solved instances (5 Minutes) . 97

6.2 Total solved instances (3 Minutes) . 98

6.3 Predictive Accuracy of the heuristics model (10-fold Cross Validation) . . . 98

6.4 Exploration time in Hours (time-out 3 Minutes) 99

6.5 Exploration time in Hours (time-out 5 Minutes) 99

6.6 Total solved instances (5 Minutes) . 100

7.1 Overall evaluation using 4 cores . 114

7.2 Overall evaluation using 8 cores . 116

7.3 Diversification-Intensification analysis using 8 cores 120

xv

Chapter 1

Introduction

1.1 Motivation and Context

Nowadays, it is widely recognized that selecting the right algorithm for a given problem

might considerably increase the overall performance to solve complex combinatorial prob-

lems. This is because, in general no algorithm outperforms all others on all possible prob-

lems. In order to understand this more precisely, we recall the No Free Lunch Theorem

(NFL) [WM97] which states that without particular knowledge about a given class (or dis-

tribution) of problems, it is not possible to establish that a given algorithm is on average

better than any other.

if an algorithm performs well on a certain class of problems then it

necessarily pays for that with degraded performance on the set of all

remaining problems.

–Wolpert & Macready [WM97].

Interestingly, in the 70’s (nearly 20 years ahead of the NFL) Rice [Ric76] introduced

a framework for the Algorithm Selection Problem. Broadly speaking, this framework at-

tempts to use Machine Learning to build a heuristics model. Such a model is mainly a

function f(x) which maps a given instance x into an algorithm hi ∈ {h1, . . . , hn}, where

hi is the most suitable algorithm to solve x, based on some performance criteria (e.g.,

1

1. INTRODUCTION

runtime, solution cost, etc). In fact, in general the application of Machine Learning to effi-

ciently solve combinatorial problems is part of an emerging area called Autonomous Search

[HMS11, O’S10] whose objective is to automatically tune the parameters of a given algo-

rithm in two directions: offline and self-adaptive tuning. The former is based on extensive

preliminary experimentation to identify promising parameters, while in the latter case (also

called reactive search [BB05]) the solver maintains an ongoing interaction with its envi-

ronment to adapt on-the-fly the parameters of the search algorithm.

1.2 Constraint Programming

Constraint Programming (CP) is a powerful technique which allows the resolution of many

combinatorial problems and is usually used as black-box for problem solving. That is, a

user might only need to write down a model for his problem and push the “go” button to

find a feasible solution. However, constraint solvers have been open since the beginning,

and expose their parameters to a properly trained ‘Constraint Programmer’. What seemed a

correct standpoint in the 90’s, at a time where the number of applications was pretty small,

is seen today as a major weakness [Pug04].

In CP, properly crafting a constraint model capturing all constraints of a particular hard

problem is often not enough to ensure an acceptable runtime performance. One way to

improve performance is to use well-known techniques such as redundant and channeling

constraints or to be aware that your constraint solver has a particular global constraint which

can do part of the job more efficiently. The problem with these techniques (or tricks) is that

they are far from obvious. Indeed, they do not change the solution space of the original

modeling, and for a normal user (with a classical mathematical background), it might not

be easy to understand why adding redundancy helps.

For this reason, Autonomous (or Automated) search has recently been established as

2

1.3 Contributions of this thesis

one of the main challenging areas in CP. This area consists in developing automatic tech-

niques to tune the parameters of constraint solvers1. Broadly speaking, current work ex-

tends Rice’s framework and consists of the following three-step procedure: (1) definition

of a proper set of features (or problem descriptors), (2) using Machine Learning to train and

learn a heuristics model based on a set of representative training instances, and (3) testing

the accuracy of the learnt model on a set of unseen instances.

In addition, current work (see [SM08] and more in Chapter 3) can also be seen from two

different perspectives. On the one hand, static portfolios (e.g., [PT07, LBNS02, GJK+10,

GHBF05, HHHLB06]) use the winner-takes-all approach by selecting a single (the best)

algorithm to solve a given instance. On the other hand, dynamic portfolios (e.g., [OHH+08,

SM07, LL01, PT09, CB04]) refer to a current technology where the system maintains an

ongoing interaction with its environment to identify on-the-fly the best algorithm for a

given instance.

As pointed out earlier, there exist several approaches which have contributed to the

current success of Autonomous Search. We would like to highlight SATzilla [XHHLB07]

and CPHYDRA [OHH+08] which are pioneer portfolios in SAT and CP. In addition,

the Quickest First Principle [BTW96] is a reference framework for developing dynamic

portfolios, that is, where a set of pre-determined algorithms interleaves their execution in

order to speed up the search.

1.3 Contributions of this thesis

In this thesis we study three different viewpoints to automatically solve combinatorial prob-

lems, in particular Constraint Satisfaction, Constraints Optimization, and SAT problems.

The first contribution of this thesis concerns the development of domFD (see Chapter

4) a novel dynamic variable selection heuristic which learns Weak Dependencies during

the course of the search. Weak Dependencies are actually a simplified form of functional

dependencies which represent relations between the variables of the problem and are used

1In this thesis, we assume that a constraint solver is a black-box technology whose parameters need to be
carefully tuned to efficiently solve combinatorial problems. For instance, selecting the right search heuristic,
constraint pruning level, restart strategy, etc.

3

1. INTRODUCTION

to identify the most suitable variable at each choice point of the tree-based search algorithm.

The second contribution (see Chapter 5) refers to the Algorithm Selection Problem.

Here, we explore the application of two different feature sets to build a portfolio algorithm

for the Protein Structure Prediction Problem. One feature set is from the application domain

and the other is from the CP abstraction of the problem. Moreover, in this chapter we also

propose the use of forward selection to identify a proper subset of heuristics candidates to

build the final heuristics model.

Furthermore, we propose the Continuous Search paradigm (see Chapter 6) which ex-

tends the typical point of view of the Algorithm Selection Problem. This new paradigm

considers real-life situations where the user does not necessary dispose of a large number

of training instances to train and learn a heuristics model. Instead, the heuristics model is

set to its default parameter settings and it is enriched along a lifelong learning approach,

exploiting the problem instances submitted by the user to the constraint solver.

Finally, our last contribution is devoted to a new parallel algorithm for the SAT problem

(see Chapter 7). This parallel algorithm uses the well-known concept of parallel portfolio

of algorithms, where several algorithms compete and cooperate to solve a given instance.

In this context, each algorithm in the parallel portfolio exchanges the best configuration

found so far, in order to carefully craft a new starting point.

1.4 Thesis outline

In this section, we describe the structure of the thesis, as well as the connection between

the publications associated to the thesis with each chapter.

Chapter 2 introduces the basic concepts and terminology used in this thesis. We

briefly describe Constraint Satisfaction Problems, Constraint Optimization Problems,

the Satisfiability Problem, and the main algorithms to solve these kinds of problems.

Including complete and incomplete search. Additionally, this chapter presents im-

portant concepts about Machine Learning.

4

1.4 Thesis outline

Chapter 3 presents an extensive literature review on the Algorithm Selection Prob-

lem in the context of Constraint Satisfaction Problems, Constraint Optimization Prob-

lems, the Satisfiability Problem, and Quantified Boolean Formulas. This way, this

chapter describes the Algorithm Selection Problem using four different abstractions:

traditional portfolio algorithms, per class learning, adaptive algorithms and other

work in the area.

Chapter 4 presents our first contribution domFD, a new variable selection heuristic,

which aims to compute a simplified form of functional dependencies, so-called weak

dependencies. These weak dependencies are used to rank decision variables and

guide the search procedure. The main contribution of this chapter was published as

[AH09b].

Chapter 5 investigates the use of Machine Learning techniques to build a portfolio

algorithm by taking into account two different feature sets: features extracted directly

from problem domain and features extracted from the CP abstraction of the problem.

Moreover, forward selection is used to automatically select the best subset of algo-

rithms to build the final heuristics model. Finally, the selection of the best algorithm

is based on the solution cost of each heuristic in the portfolio after a given amount of

time. The main contribution of this chapter was published as [AHS10a].

Chapter 6 introduces the Continuous Search paradigm whose objective is to ex-

ploit computer’s idle time to incrementally build a heuristic model for the current

distribution of problems. Unlike other work related to the algorithm selection prob-

lem (e.g., [SM08, XHHLB07, PT07, SM07, HW09b]) Continuous Search does not

require a large number of representative training examples to train and build a heuris-

tics model. The main contributions of this chapter are described as follows: [AHS09]

presents the application of Support Vector Machines to select the best CSP heuristic

at different states of the search, [AH09a] briefly introduces the Continuous Search

paradigm, and [AHS10b, AHS11] fully details this new paradigm.

Chapter 7 describes a new parallel local search solver for SAT which extends the

traditional parallel portfolio algorithm by adding a knowledge-sharing framework.

5

1. INTRODUCTION

This way, each algorithm candidate exchanges its best configuration found so far, in

order to carefully design a new starting point. The main contributions of this chapter

were published as [AH11b, AH11a]

Chapter 8 presents general conclusions of this thesis and gives some directions for

future work.

1.5 List of Publications

Most of the material of this thesis has been previously reported in the following peer-

reviewed publications:

• Alejandro Arbelaez and Youssef Hamadi. Exploiting Weak Dependencies in Tree-

Based Search. In ACM Symposium on Applied Computing (SAC), pages 1385–1391,

Honolulu, Hawaii, USA, March 2009. ACM. [AH09b]

• Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Building Portfolios for

the Protein Structure Prediction Problem. In Workshop on Constraint Based Methods

for Bioinformatics (WCB), Edinburgh, UK, July 2010. [AHS10a]

• Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Online Heuristic Se-

lection in Constraint Programming. In International Symposium on Combinatorial

Search, Lake Arrowhead, USA, July 2009. [AHS09]

• Alejandro Arbelaez and Youssef Hamadi. Continuous Search in Constraint Program-

ming: An Initial Investigation. In Karen Petrie and Olivia Smith, editors, Constraint

Programming Doctoral Program, pages 7–12, Lisbon, Portugal, September 2009.

[AH09a]

• Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous Search in

Constraint Programming. In Eric Gregoire, editor, 22th International Conference

on Tools With Artificial Intelligence (ICTAI), volume 1, pages 53–60, Arras, France,

October 2010. IEEE. [AHS10b]

6

1.5 List of Publications

• Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous Search in

Constraint Programming. In Youssef Hamadi, Eric Monfroy, and Frédéric Saubion,

editors, Autonomous Search. Springer-Verlag, 2011. [AHS11]

• Alejandro Arbelaez and Youssef Hamadi. Improving parallel local search for SAT.

In Learning and Intelligent Optimization, Fifth International Conference, LION 2011

(to appear), 2011. [AH11b]

• Alejandro Arbelaez and Youssef Hamadi. Efficient Parallel Local Search for SAT.

Submitted to JAIR, 2011. [AH11a]

7

Chapter 2

Formalism

In the previous chapter, we have introduced and motivated the general objectives of this

thesis. Now, in this chapter, we describe some basic concepts, such as Constraint Satis-

faction Problems (CSPs), the Propositional Satisfiability Problem (SAT), and Constraint

Optimization Problems (COPs). Additionally, we review notions on backtracking and lo-

cal search, which are the most commonly used techniques to solve this kind of problems.

The chapter concludes by presenting Supervised Machine Learning.

2.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where

• X = {X1, X2, . . . , Xn} represents a set of n variables.

• D = {D1, D2, . . . Dn} represents a set of associated domains (i.e., possible values

for the variables).

• C = {C1, C2, . . . , Cm} represents a finite set of constraints.

Each constraint Ci involves a set of variables in X and is used to restrict the combina-

tions of values between these variables. Constraints are often expressed as mathematical

expressions such as X1 = X2 + X10 or particular declarations such as alldifferent(

9

2. FORMALISM

[X1, X2, . . . , Xn]) indicating that variables X1 to Xn must have different values. The de-

gree of a variable deg(Xi) indicates the number of constraints involving Xi and dom(Xi)

(dom(Xi) = Di) denotes the current domain of a given variable Xi. In theory, the domain

of a variable can initially take an infinite set of values, however in practice it is usually

restricted to a finite set of numbers (e.g., dom(Xi) ∈ [1..100])

Solving a CSP involves finding a solution, i.e., an assignment of values to variables such

as all constraint are satisfied. If a solution exits the problem is stated as satisfiable and un-

satisfiable otherwise. Currently, there are two well established techniques for solving CSPs,

complete and incomplete techniques [BHZ06, RvBW06], the former is developed on top of

a backtracking algorithm which combines a tree-based search with constraint propagation,

while the latter is based on local search algorithms to quickly find an assignment for each

variable that satisfies all constraints.

A well known CSP example is the sudoku problem [Sim05]. This problem consists in

completing a pre-filled 9× 9 matrix with numbers from [1..9] such that every column, row,

and 3× 3 sub-matrix (see Figure 2.1) contain different values. A formal CSP definition of

this problem is presented as follows:

Variables =


X11 X21 . . . X91

X12 X22 . . . X92

...
...

...
...

X19 X29 . . . X99

Constraints =


∀i∈[1..9] alldifferent([Xi1 . . . Xi9]) Columns

∀i∈[1..9] alldifferent([X1i . . . X9i]) Rows

∀i,j∈[0..2] alldifferent([X3i+1,3j+1 . . . X3i+3,3j+3]) Sub-matrices

Domains = ∀i,j∈[1..9] Dij ∈ [1..9]

2.2 Complete Search

Algorithm 2.1 depicts a depth-first search backtracking algorithm [Van06] widely used to

tackle CSPs. The algorithm starts with the problem definition s and at each node of the

10

2.2 Complete Search

M3
4

1

8
M2

1

8

6
M1

8

2 6

9

M4
1 2 4

9
M5 M6

9

8 2 4

M9
1

2

7

5M8
4

7

5
M7
5

8

9

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 2.1: Sudoku

11

2. FORMALISM

search select-variable (line 4) selects an unassigned variable x and select-value (line 5)

selects a valid value for x, following that a constraint x = v is added to the search process.

In case of unfeasibility, the backtracking search can undo previous decisions (line 9) and

add new constraints such as x 6= v (line 10). The search thus explores a so-called search tree

(i.e., binary search tree), where each leaf-node corresponds to a solution or an inconsistent

assignment of values for the variables (i.e., Failure).

Clearly, in the worst-case scenario the search process requires to explore an exponential

space. Therefore, it is necessary to combine the exploration of variable/value candidates

with a look-ahead strategy to narrow the domains of the variables and reduce the remaining

search space through constraint propagation.

Algorithm 2.1 backtracking(Problem s)
1: if s = SOLUTION or s = FAILURE then
2: return s
3: end if
4: x← select-variable(s)
5: v ← select-value(x)
6: add-constraint-and-propagate(x = v) to s
7: result←backtracking(s)
8: if result = FAILURE then
9: remove-constraint(x = v) from s

10: add-constraint-and-propagate(x 6= v) to s
11: return backtracking(s)
12: end if
13: return result

In order to illustrate how the backtracking algorithm solves a CSP, let us consider the

sudoku example presented in Figure 2.11. In this example, we assume that the alldifferent

constraint implements domain consistency (so-called generalized arc consistency) which

means that for each value for all variables there exists an assignment of variables that

satisfies the constraint. Additionally, let us assume that the variable selection function

returns the first none assigned variable in the list of candidates and the value selection

returns the minimum value in the domain.

1Instance 12 of the sudoku example in Gecode [Gec06]

12

2.2 Complete Search

Figure 2.2 shows a step by step execution of the algorithm, it starts by performing

constraint propagation to remove inconsistent values for the variables (Figure 2.3(a), then

the search starts and the constraint X12 = 3 is added (Figure 2.3(b)), the resulting state

of the search is still unknown, so that X42 = 7 is also added (Figure 2.3(c)). As a results

of this X65 has no support because its remaining values are {1, 3} and those values are

already assigned to X64 and X75. The search backtracks to the previous step and tries

X42 6= 7 (Figure 2.3(d)) where the variable X95 is inconsistent with X45 and X82, at this

point the search backtracks to the root node to post X12 6= 3 (Figure 2.3(e)) and X13 = 3

(Figure 2.3(f)), after posting the last constraint the constraint propagation engine detects

an inconsistency among X48, X46, X44 and X58, therefore the algorithm backtracks to the

previous state to post X12 6= 3 (Figure 2.3(g)) where a solution is finally obtained.

=7 !=7

12X

=3 !=3

=3 !=3

Failure Failure Failure Solution

24X 13X

Figure 2.2: Resulting search tree for the sudoku example

The backtracking algorithm is usually equipped with a restart strategy which helps to

reduce the effects of early mistakes in the search. Currently, in the literature there are

several restart methodologies, among which the most important are: static restarts [GSK98]

that implements a static policy by means of restart every c backtracks, geometric restarts

[Wal99] that systematically increase the cutoff c by multiplying it by a constant factor (e.g.,

×1.2), Luby [LSZ93] defines the cutoff of each restart based on the sequence Luby={1, 1,

2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . . }, which is formally defined as follows:

13

2. FORMALISM

8 3,7 3,5,7

2 4 6

3,5,7 1 9

2,3,7 3,5 1

7,8 9 5,7,8

3,7 4 6

9 4 6

5,7 1 3

5,7 8 2

1 2 4
 3,5,
6,7 3,6,7 8

9 3,6,7 3,5,7

 3,6,
7,8

 3,5,
6,8

 3,5,
7,8

9 2 4
 1,3,
6,7

 1,3,
5,6 3,5,7

3,6 5,7 9

3,6 5,7 1

8 2 4

1 3,6,9 8

2

4 3,6 7

53,6,9

4 3,6 2,3,9

1,3,6 7 3,9

5 1,8 2,8

3,6,7 5 2,3,7

4 8 1,3

3,6 9 1,2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a)

8 3 7

2 4 6

5 1 9

2 5 1

7,8 9 7,8

3 4 6

9 4 6

5 1 3

3 8 2

1 2 4

 3 7 8

9 6 5

 6,8 6,8 5

9 2 4

 1,7 1,3 3,7

3 7 9

6 5 1

8 2 4

1 6,9 8

2

4 3 7

56,9

4 3,6 2,3,9

1,6 7 3,9

5 1,8 2,8

7 5 2,3

4 8 1,3

6 9 1,2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b)

8 3 7

2 4 6

5 1 9

2 5 1

7 9 8

3 4 6

9 4 6

5 1 3

3 8 2

1 2 4

 3 7 8

9 6 5

 8 6 5

9 2 4

 1 1,3 3,7

3 7 9

6 5 1

8 2 4

1 6,9 8

2

4 3 7

56,9

4 3 2,3,9

6 7 3,9

5 8 2

7 5 2,3

4 8 1,3

6 9 1

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(c)

8 3 7

2 4 6

5 1 9

2 5 1

8 9 7

3 4 6

9 4 6

5 1 3

3 8 2

1 2 4

 3 7 8

9 6 5

 6 8 5

9 2 4

 7 1,3 3,7

3 7 9

6 5 1

8 2 4

1 6,9 8

2

4 3 7

56,9

4 3,6 2,3,9

1 7 3,9

5 1,8 2,8

7 5 2,3

4 8 1,3

6 9 1,2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(d)

8 7 3,5

2 4 6

3,5 1 9

2 3,5 1

7,8 9 5,7,8

3,7 4 6

9 4 6

5,7 1 3

5,7 8 2

1 2 4

 5,7 3,6 8

9 3,6 5,7

 3,6,
7,8

 3,5,
6,8

 3,5,
7,8

9 2 4
 1,3,
6,7

 1,3,
5,6 3,5,7

3,6 5,7 9

3,6 5,7 1

8 2 4

1 3,6,9 8

2

4 3,6 7

53,6,9

4 3,6 2,3,9

1,3,6 7 3,9

5 1,8 2,8

3,6,7 5 2,3,7

4 8 1,3

3,6 9 1,2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(e)

8 7 3

2 4 6

5 1 9

2 5 1

8 9 7

3 4 6

9 4 6

5 1 3

7 8 2

1 2 4

 7 3,6 8

9 6 5

 7 8 5

9 2 4

 1 6 3

3,6 5,7 9

3,6 5 1

8 2 4

1 9 8

2

4 6 7

53

4 3 2

6 7 9

5 1 8

6,7 5 7

4 8 1

3,6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(f)

8 7 5

2 4 6

3 1 9

2 3 1

8 9 5

7 4 6

9 4 6

7 1 3

5 8 2

1 2 4

 5 3 8

9 6 7

 6 8 7

9 2 4

 1 5 3

3 5 9

6 7 1

8 2 4

1 9 8

2

4 3 7

56

4 6 2

3 7 9

5 1 8

7 5 3

4 8 1

6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(g)

Figure 2.3: Sudoku resolution step-by-step (Backtracking)

14

2.2 Complete Search

Luby(i) =


2k−1, if ∃k.i = 2k − 1

Luby(i− 2k−1 + 1), if ∃k.2k−1 ≤ i < 2k − 1

In this way, the cutoff of the ith restart is p × Luby(i), where p is a constant factor.

Restarts are also an important component in nearly all complete SAT solvers as they have

shown tremendous impact on the performance of the solvers [Hua07].

2.2.1 Variable and Value ordering

This section briefly reviews the basic ideas and principles behind the last generation of

CSP heuristics. As pointed out above, variable/value selection heuristics are critical when

solving CSPs and selecting the right combination of heuristics for a given problem-instance

might considerably improve the overall performance. Classical value ordering strategies

can be summarized as follows: min-value selects the minimum value, max-value selects the

maximum value, mid-value selects the median value and random-value selects a random

value from the remaining domain of a given variable.

On the other hand, variable selection heuristics are more important and comprehend

more sophisticated algorithms. lexico is one of the simplest heuristics for variable selection,

selecting the first unassigned variable in the list of decision variables. random selects an

unassigned variable with a uniform distribution. mindom [HE79] is a well established CSP

heuristic based on the “First-Fail Principle: try first where you are more likely to fail”,

this strategy chooses the variable with minimum size domain. mindom is usually used to

complement more sophisticated heuristics such as dom-deg, which selects the variable that

minimizes the ration dom
degree

, where dom and degree denote the size of the domain of a given

variable and its respectively dynamic degree.

In [BHLS04], Boussemart et al., proposed wdeg and dom-wdeg to focus the search on

difficult constraints. The former selects the variable that is involved in most failed con-

straints. A weight is associated to each constraint and incremented each time the constraint

fails. Using this information wdeg selects the variable whose weight is maximal. The lat-

ter dom-wdeg, is a mixture of the current domain and the weighted degree of a variable,

15

2. FORMALISM

choosing the variable that minimizes the ratio dom
wdeg

.

In [Ref04], Refalo proposed the impacts dynamic variable-value selection heuristic.

The rationale of impacts is to measure the size of the search space given by the Cartesian

product of the domain of the variables (i.e., |dom(x1)| × |dom(X2)| × · · · × |dom(xn)|).
Using this information the impact of a variable is averaged over all previous decisions in

the search tree and the variable with highest impact is selected.

2.3 Incomplete Search

Unlike the previously mentioned search algorithm that combines the variable/value selec-

tion process with constraint propagation to solve CSPs, incomplete methods are mainly

based on local search algorithms to explore the search space. Algorithm 2.2 depicts a tra-

ditional local search algorithm used to solve CSPs. The algorithm starts with a random

value assignment for each variable in the problem (initial-configuration line 2), and iter-

atively selects the best move (variable and value selection) that will most likely increase

the chances of solving the CSP. min-conflict [MJPL92] is a well-known variable selection

strategy in the context of local search, it firstly selects a random variable from an unsat-

isfied constraints and from that variable it chooses the value that minimize the number of

failed constraints.

Algorithm 2.2 local search(Problem s)
1: for try := 1 to Max-Tries do
2: A := initial-configuration(s)
3: for ite := 1 to Max-Iter do
4: if A satisfies s then
5: return s
6: end if
7: var := select-variable(A)
8: val := select-value(var)
9: A[var]:=val

10: end for
11: end for
12: return ’No solution found’

16

2.3 Incomplete Search

One of the main drawbacks of local search is that it can quickly reach a local minimum

and at this point no improvement can be easily achieved. To overcome this limitation, the

algorithm is usually equipped with a tabu list [Gen03] that prevents the search of visiting

previous observed states. Another strategy to avoid local minimum is the random-walk

[SK93] method which adds noise to the variable/value selection process. This algorithm

selects a random value from the selected variable with probability p and with probability

1 − p selects the value that minimizes the number of failed constraints. In addition, it is

also a common practice to restart the local search algorithm with a new (fresh) random

configuration after a given number of iterations (i.e., Max-Iter).

In order to illustrate the local search algorithm, let us consider again the sudoku instance

described in Figure 2.1. In this example, we will assume that the variable selection process

selects an unsatisfiable constraint and from this constraint it selects the best action (i.e.,

variable and value).

Let us assume that after completing with random values the pre-filled matrix we obtain

the configuration observed in Figure 2.4(a), from this configuration a conflicting constraint

is selected (blue constraint in Figure 2.4(a)). In this constraint it is observed that variables

X41 and X52 are in conflict, and the best action would be replacing X41 = 3 since this

move satisfies 3 constraints while changingX52 would only satisfy one. A similar behavior

is obtained at the next iteration of the algorithm presented in Figure 2.4(b) by selecting

X34 = 3. Finally at the last iteration of the algorithm the only two unsatisfied constraints

are observed in Figure 2.4(c) and here the best action is to assign X77 = 1 to finally reach

the solution depicted in Figure 2.4(d).

17

2. FORMALISM

8 7 5

2 4 6

3 1 9

2 3 1

8 9 5

9 4 6

9 4 6

7 1 3

5 8 2

3 2 4

 5 3 8

9 6 7

 6 8 7

9 2 4

 1 5 3

3 5 9

6 7 1

8 2 4

4 9 8

2

4 3 7

56

4 6 2

3 7 9

5 1 8

7 5 3

4 8 1

6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a)

8 7 5

2 4 6

3 1 9

2 3 1

8 9 5

9 4 6

9 4 6

7 1 3

5 8 2

1 2 4

 5 3 8

9 6 7

 6 8 7

9 2 4

 1 5 3

3 5 9

6 7 1

8 2 4

4 9 8

2

4 3 7

56

4 6 2

3 7 9

5 1 8

7 5 3

4 8 1

6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b)

8 7 5

2 4 6

3 1 9

2 3 1

8 9 5

3 4 6

9 4 6

7 1 3

5 8 2

1 2 4

 5 3 8

9 6 7

6 8 7

9 2 4

1 5 3

3 5 9

6 7 1

8 2 4

4 9 8

2

4 3 7

56

4 6 2

3 7 9

5 1 8

7 5 3

4 8 1

6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(c)

8 7 5

2 4 6

3 1 9

2 3 1

8 9 5

3 4 6

9 4 6

7 1 3

5 8 2

1 2 4

 5 3 8

9 6 7

6 8 7

9 2 4

1 5 3

3 5 9

6 7 1

8 2 4

1 9 8

2

4 3 7

56

4 6 2

3 7 9

5 1 8

7 5 3

4 8 1

6 9 2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(d)

Figure 2.4: Sudoku resolution step-by-step (Local Search)

18

2.4 The Propositional Satisfiability Problem

2.4 The Propositional Satisfiability Problem

The propositional Satisfiability Problem (SAT) is the first known NP-complete problem

[Coo71]. It can be seen as a particular class of CSP represented by a pair 〈V , C〉, where

V indicates a set of boolean variables and C a set of clauses representing a propositional

conjunctive-normal form (CNF) formula. Figure 2.5 shows a SAT example described by

means of the CNF formula. This problem is represented by a conjunction of clauses while

each clause is a disjunction of literals (a variable or its negation), and the problem con-

sists in finding a truth assignment for each variable such that all clauses are satisfied, or

demonstrating that no such assignment can be found.

Positive Literal

Clause

Negative Literal

(X1 ∨X2 ∨ −X3) ∧ (−X2 ∨X3 ∨X4) ∧ (−X1 ∨ −X5 ∨X3)

Figure 2.5: SAT example

Complete and Incomplete algorithms are also widely used to tackle SAT instances.

The former is developed on top of the DPLL [DP60] algorithm and combines tree-based

search with constraint propagation, conflict-clause learning, and intelligent backtracking.

The latter is mainly developed on top of the local search algorithm described in Section

2.3, however, in this case at each iteration the main component is to flip the truth value of

the selected variable. In the remaining of this section, we will focus on the main variable

selection methods in the context of local search for SAT.

2.4.1 Variable Selection

This section briefly reviews the main characteristics of state-of-the-art local search solvers

for SAT solving. As pointed out above these algorithms are developed to deal with the vari-

able selection function (select-variable in Algorithm 2.2) which indicates the next variable

19

2. FORMALISM

to be flipped in the current iteration of the algorithm. Broadly speaking, there are two main

categories of variable selection functions, the first one motivated by the GSAT algorithm

[SLM92] is based on the following score function:

score(x) = make(x)− break(x)

Intuitively make(x) indicates the number of clauses that are currently satisfied but flip-

ping x become unsatisfied, and break(x) indicates the number of clauses that are unsatis-

fied but flipping x become satisfied. In this way, local search algorithms select the variable

with minimal score value (preferably with negative value), because flipping this variable

would most likely increase the chances of solving the instance. It is also important to no-

tice that GSAT-like algorithms have been previously used in [MSG98] to guide the variable

selection process of complete SAT solvers

The second category of variable selection functions is the WalkSAT-based one [SKC94]

which includes a diversification strategy in order to avoid local minimums, this extension

selects, at random, an unsatisfied clause and then picks a variable from that clause. The

variable that is generally picked will result in the fewest previously satisfied clauses be-

coming unsatisfied, with some probability of picking one of the variables at random.

• TSAT [MSG97] extends the GSAT algorithm by proposing the use of a tabu list which

contains a set of recently flipped variables in order to avoid flipping the same vari-

ables for a given number of flips. This way, the tabu list helps to scape from local

minimums.

• Novelty [MSK97] firstly selects an unsatisfied clause c and from c selects the best

vbest and second best v2best variable candidates, if vbest is not the latest flipped variable

in c then Novelty flips this variable, otherwise v2best is flipped with a given probability

p and vbest with probability 1-p. Important extensions to this algorithm can be found

in Novelty+, Novelty++ and Novelty+p.

• Novelty+ [Hoo99] with a given probability wp (random walk probability) randomly

selects a variable from an unsatisfied clause and with probability 1-wp uses Novelty

to select the variable.

20

2.4 The Propositional Satisfiability Problem

• Novelty++ [LH05] with a given probability dp (diversification probability) flips the

latest flipped variable from the selected unsatisfied clause and with probability 1-dp

uses Novelty to select the variable.

• Novelty+p [LWZ07] introduces the concept of promising score (pscore) for a given

variable as follows:

pscore(x) = scoreA(x) + scoreB(x′)

where A is the current problem configuration (assignment for the variables), B is

the configuration after flipping x, and x′ the best promising decreasing variable with

respect to B. Similarly to Novelty, Novelty+p starts by selecting vbest and v2best from

an unsatisfied clause c. Afterwards, if vbest is the latest flipped variable in c, then

with a probability p selects v2best and with probability 1-p uses the promising score

to select the next variable. Finally, if vbest is not the latest flipped variable in c but

was flipped after v2best, then vbest is selected, otherwise the promising score is used

to select the best variable.

• G2WSAT [LH05] (G2) maintains a list of promising decreasing variables to deter-

mine the most suitable variable to be flipped at each iteration of Algorithm 2.2, where

a variable is decreasing if score(x) > 0. This way, G2WSAT selects the best variable

from the list, breaking ties using the flip history. If the list of decreasing variables is

empty the algorithm uses Novely++ as a backup heuristic. G2WSAT+p (G2+p) uses

a similar strategy that G2WSAT however in this case the backup solver is Novelty+p.

• Adaptive Novelty+ (AN+) [Hoo02] uses an adaptive mechanism to properly tune the

noise parameter (wp) of walksat-like algorithms (e.g, Novelty+). This way, wp is ini-

tialized to 0 and if search stagnation is observed (i.e., no improvement has been ob-

served for a while), then wp is incremented, i.e., wp=wp+(1+wp)×φ. On the other

hand, whenever an improvement is observedwp is decreased, i.e.,wp=wp−wp×φ/2.

This adaptive mechanism has shown impressive results, and is used to improve the

performance of other local search algorithms in the context of SAT solving.

• Scaling and Probabilistic Smoothing (SAPS) [HTH02] adds a weight penalty to each

21

2. FORMALISM

clause. These weights are initialized to 1 and updated during the search process.

More precisely, as soon as a local minimum is reached SAPS implements a multi-

plicative increase rule to dynamically update the weight for unsatisfied clauses and

at each step of the algorithm with a given probability Psmooth weights are adjusted

according to a given smoothing factor ρ. Additionally, a local minimum is assumed

when no improvement has been observed for a while.

• Pure Additive Weighting Scheme (PAWS) [TPBaFJ04] similarly to SAPS, each clause

is associated with a weight penalty. However, in this case the authors implement an

additive increase rule to dynamically modify the penalty for unsatisfied clauses and

if a given clause penalty has been changed a given number of times this penalty value

is adjusted.

• Reactive SAPS (RSAPS) [HTH02] extends SAPS by adding an automatic tuning

mechanism to identify suitable values for the smoothing factor ρ.

• Adaptive G2WSAT (AG2) [LWZ07] aims to integrate an adaptive noise mechanism

into the G2WSAT algorithm. Similarly, Adaptive G2WSAT+p (AG2+p) also uses an

adaptive noise mechanism into the G2WSAT+p algorithm.

2.5 Constraint Optimization Problems

A Constraint Optimization Problem (COP) is basically a CSP with an objective function

f(X) to optimize. Unlike CSPs where we only need to explore the search space until

a solution is found, solving a COP involves finding a solution (i.e., a valid value for all

variables) and proving that the solution is optimal.

Algorithms 2.3 and 2.4 describe a well-known method used to solve COPs, here we

assume without loss of generality a minimization problem. The algorithm starts with the

Search Optimization method which sets the best solution found so far to NULL and then

executes a depth-first search branch and bound algorithm (Search-BB). This algorithm

prunes (if possible) sub-optimal portions of the search by comparing the current state of

the search with the best solution found so far (line 1). This pruning mechanic ensures

22

2.5 Constraint Optimization Problems

that every new solution is better than the previous best known one. After this point, the

B&B algorithm behaves similar to the backtracking algorithm described above, selecting

the most suitable variable/value pair (lines 8-9). However, in this case to prove optimality,

the algorithm must explore the right and the left branches of the tree. Finally, it is worth

mentioning that in the general case the variable/value selection heuristics used to solve

COPs are mainly the same ones used for CSPs (see Section 2.2.1).

Algorithm 2.3 Search Optimization(Problem s, Objective f)
1: best← NULL
2: Search-BB(s, f)
3: if best = NULL then
4: return ’No Solution Found’
5: end if
6: return best

Algorithm 2.4 Search-BB(Problem s, Objective f)

1: if s = FAILURE or f(s) > f(best) then
2: return
3: end if
4: if s = SOLUTION then
5: best← s
6: return
7: end if
8: x← select-variable(s)
9: v ← select-value(x)

10: add-constraint-and-propagate(x = v) to s
11: Search-BB(s,f)
12: remove-constraint(x = v) from s
13: add-constraint-and-propagate(x 6= v) to s
14: Search-BB(s,f)

23

2. FORMALISM

2.6 Supervised Machine Learning

Supervised Machine Learning exploits data labelled by the expert to automatically build

hypotheses emulating the expert’s decisions [Vap95]. Formally, a learning algorithm pro-

cesses a training set E = {(xi, yi), . . . (xn, yn)} where xi is the example description (i.e.,

vector of features, Ω = IRd) and yi is the associated output. The output can be a numerical

value (i.e., regression) or a class label (i.e., classification). In this chapter, we limit our

study to the classification case and each feature can be a categorical, continuous or discrete

value.

The learning algorithm outputs a hypothesis f : Ω 7→ Y associating to each example

description a desirable output y. Among machine learning applications are pattern recogni-

tion, ranging from computer vision to fraud detection [LB08], predicting protein function

[ASBG07], game playing [GS07], or autonomic computing [RBM+05]. In the following,

we will describe Support Vector Machines and Decision Trees, two of the most popular

machine learning algorithms for classification.

A common technique to evaluate the performance of a machine learning system is to use

k-fold cross-validation [Koh95]. In k-fold cross-validation the entire dataset D is divided

into k disjoint sets (D1, D2, . . . , Dk) . For each subset Di∈k, the hypothesis model is learn

with D −Di and tested on Di.

2.6.1 Support Vector Machines

Support Vector Machines (SVM) is a well-known machine learning technique for binary

classification, that is, the associated label yi is limited to two categories {−1, 1}. Linear

SVM considers real-valued positive and negative instances (Ω = IRd) and constructs the

separating hyperplane which maximizes the margin (Figure. 2.6), i.e. the minimal distance

between the examples and the separating hyperplane. The margin maximization principle

provides good guarantees about the stability of the solution and its convergence towards

the optimal solution when the number of examples increases.

The linear SVM hypothesis f(x) can be described from the sum of the scalar products

between the current instance x and some of the training instances xi, called support vectors:

24

2.6 Supervised Machine Learning

-

+
-margin

-

-
-

Separating hyperplane

+

Optimal hyperplane

+

+

+

Figure 2.6: Linear Support Vector Machine. The optimal hyperplane is the one maximizing
the minimal distance to the examples.

f(x) =< w, x > +b =
∑

αi < xi, x > +b

The SVM approach can be extended to non-linear spaces, by mapping the instance

space Ω into a more expressive feature space Φ(Ω). This mapping is made implicit through

the so-called kernel trick, by defining K(x, x′) =< Φ(x),Φ(x′) >; it preserves all good

SVM properties provided the kernel be positive definite. Among the most widely used

kernels are the Gaussian kernel (K(x, x′) = exp{− ||x−x′||2
σ2 }) and the polynomial kernel

(K(x, x′) = (< x, x′ > +c)d). More complex separating hypotheses can be built on such

kernels,

f(x) =
∑

αiK(xi, x) + b

using the same learning algorithm core as in the linear case. In all cases, a new instance x

is classified as positive (respectively negative) if f(x) is positive (resp. negative).

Although SVMs are developed for binary classification, this machine learning tech-

nique can also be used in the context of multi-class classification using two main strategies:

25

2. FORMALISM

one-vs-all and one-vs-one [RK04]. The former creates N binary classifiers (one for each

class) and to label a new example the classifier with largest score is selected. The latter

creates all possible combinations of binary classifiers pairs, and to label a new example, all

classifiers vote for a winning class.

2.6.2 Decision Trees

In decision tree learning the hypothesis model is represented in terms of a decision tree (see

Figure 2.7) where each non-leaf node represents a given attribute (or feature), each branch

represents the value of the node indicating a decision, and each leaf node represents a class

label. A widely used algorithm to build the hypothesis model is the ID3 algorithm [Qui86]

which uses a greedy technique to recursively select the best feature for each node in the

tree.

Temperature

Humidity WindyNO

<10 [10..20] >20

Windy NONO

High Low Yes NO

Yes

Yes

NO Yes

NO

Feature

Decision

Class label

Figure 2.7: Decision tree example

26

2.6 Supervised Machine Learning

Finally, Figure 2.7 illustrates a resulting decision tree example for the well-known ten-

nis problem [Mit97], which consists in defining whether to play tennis based on the weather

conditions. An instance is classified by looking the attribute indicated by the root node and

moving down in the tree using the branching decisions. It is also worth mentioning that

unlike SVMs, decision tree learning supports multi-class classification without using the

composition of several independent models.

27

Chapter 3

Related work

In the previous chapter, we have presented general concepts about Constraint Programming

and Machine Learning. Now, in this chapter, we review a wide variety of methods devoted

to the Algorithm Selection Problem in the context of Constraint Satisfaction Problems, and

related areas such as the Satisfiability Problem and Quantified Boolean Formulas. In partic-

ular, we discuss how up to now this problem has been explored from different perspectives,

including: portfolio algorithms, which select the most appropriate algorithm for a given

problem instance; per-class learning, which aim to select the most appropriate parame-

ter configuration for a given algorithm on a given class of problems; adaptive algorithms,

which internally adapt the parameters of a given algorithm based on problem changing

conditions. We also review some other work developed in the area.

3.1 The Algorithm Selection Problem

The study of the algorithm selection problem goes back to the seminal work of Rice in

[Ric76] who proposed an abstract model to select the most suitable algorithm for a given

instance taking into account some performance criteria. Figure 3.1 depicts the general

framework of the proposed model. The basic idea behind the scheme is that each problem

instance x in the problem space P is represented by a set of problem features f(x) ∈ F ,

where f is a function intended to extract the feature vector from x and F represents the

feature space.

29

3. RELATED WORK

Algorithm
Performance

Problem Space
x ∈ P

Feature
 extraction

F (x)

Feature Space

f(x) ∈ F

Algorithm Space
a ∈ A

Criteria Space
w ∈ Rn

P (a, x)

Performance
Measure Space

p ∈ Rn

S(f(x), w)

||p|| = g(p, w)

 Selection
 Mapping

 Performance
 Mapping

Figure 3.1: Rice’s abstract model for the algorithm selection problem

Additionally, the selection function S(f(x), w) takes as an input the feature vector f

and a set of user defined performance criteria (or criteria space) w which indicates a family

of performance metrics (e.g., algorithm’s runtime, solution quality, etc), and returns the

most suitable algorithm a whose expected performance is indicated by p. Notice that p is

a n-dimensional vector, where each element in the vector indicates a given performance

criterion. Finally in order to identify a single performance measure for a given algorithm a

the norm value ||p|| = g(p, w) is calculated such that p = P (a, w).

3.1.1 Portfolios for SAT

Over the last 15 years, the study of the application of Machine Learning to build a portfolio

algorithm for the satisfiability problem has become a hot topic in the AI community. Early

studies were devoted to dividing the expected runtime of a given algorithm into different

categories. However, the current state-of-the-art portfolios focus on predicting the actual

runtime of each algorithm candidate.

30

3.1 The Algorithm Selection Problem

In [HRG+01] Horvitz et al., proposed a supervised machine learning approach to char-

acterize the runtime of a given algorithm on a set Quasigroup instances. In an offline train-

ing procedure each training instance is described by means of a set of features or attributes

such as: “ratio between unassigned variables and the size of the problem”, “variance of

unassigned variables across all rows and columns”, “average of explored nodes”, “average

depth of the search tree”, etc. This feature set is used to train a bayesian learning algo-

rithm that will classify the runtime needed to solve a new problem instance into two main

classes: short and long. short (resp. long) states that the solving time of a given instance

is less (resp. greater) than the median time required to solve the entire training set. This

information can later be used to discard low quality heuristics when solving new instances.

Later in [NLBH+04, LBNS02, LBNS09] Nudelman et al. instead of characterizing the

runtime to solve a SAT problem, faced the challenging task of predicting its runtime. To

this end, the so-called Empirical Hardness Model methodology is proposed to estimate the

runtime of a given algorithm to solve a given instance. Empirical Hardness Model consists

of the following 5-steps procedure to build a linear regression model. This model will work

as runtime predictor for a given algorithm based on a set of problem descriptors (so-called

features)

1. Select a problem distribution.

2. Select a set of suitable features.

3. Compute the runtime and feature values for all training examples.

4. Perform feature selection in order to use the most informative subset of features, x

5. Use linear regression to learn f(x) a runtime function prediction.

This methodology is general enough to build a runtime predictor for any algorithm.

Among the most important steps are the identification of problem features and building the

linear regression model. The feature extraction is an important step and it requires highly

experimented users to come with an appropriate feature vector to fully describe the prob-

lem. For instance, in [LBNS02, LBNS09] features associated to the winner determination

31

3. RELATED WORK

problem are discussed and analyzed in the context of Empirical hardness model. Addition-

ally, the learnt runtime function is defined as f(x) = w>φ, where φ is the vector of features

and w is a set of free variables which will be computed using ridge regression [Bis06].

Due to the high success of Empirical Hardness model, this methodology is also applied

in SATzilla [XHHLB07, XHHLB08] state-of-the-art portfolio for SAT solving. SATzilla

uses a set of features discussed in [NLBH+04], those features comprehend general infor-

mation about SAT problem such as: number of variables, clauses, fraction of Horn clauses,

number of unit propagations, etc. Broadly speaking, the architecture of SATzilla is divided

into two main phases: training and testing. During the training phase a set of representa-

tive training samples (or instances) are then required, and based on those instances a set of

potential SAT solvers is identified as well as a set of pre-solvers. During the testing phase,

pre-solvers are executed for a short pre-solving time and if no solution is obtained during

the pre-solving time, the algorithm with minimal expected runtime is executed. It is also

worth mentioning that SATzilla has shown impressive results during the two latest SAT

competitions (20071 & 20092) where this portfolio algorithm won 10 medals.

SATzilla has been extended in many directions. Firstly, incorporating a Mixture-of-

experts model, where the machine learning model combines the decision of two or more

learners to improve the overall accuracy of the learnt system. In this way, [XHLB07] uses

a Sparse Multinomial Logistic technique to compute the probability that a given instance

is SAT or UNSAT, this information is then used to weight the previously mentioned linear

regression model. In the same direction, Haim and Walsh [HW09b] also combine the

decision of a logistic and linear regression models to build a portfolio for SAT, however,

in this case the portfolio takes into account several restarts policies for a set of well-known

SAT solvers. At this point, it is also worth mentioning [DO08] where Devlin and O’Sullivan

show that we can use traditional classification algorithms (e.g., Random Forest, Decision

Trees, k-Nearest Neighbor) to predict with high level of confidence whether a given SAT

formula is SAT or UNSAT.

Another important contribution to SATzilla is presented in [HHHLB06, HH05] where

Hutter et al., extended SATzilla to deal with the parameter tuning problem. In this context,

1www.satcompetition.org/2007
2www.satcompetition.org/2009

32

3.1 The Algorithm Selection Problem

the goal is to use the SATzilla framework to identify promising parameter configurations

for local search algorithms for SAT. The learnt runtime predictor is slightly modified to

include two inputs f(x, y), where x is the vector of SAT features and y is a given parameter

configuration. Thus, if the number of parameter configurations is long enough, once a

new instance arrives one might select the configuration with minimal expected runtime,

otherwise this approach can be used to identify a robust configuration during the training

phase.

Most recently, Xu et al., proposed hydra [XHLB10] to build a portfolio for SAT con-

sidering highly parametrized algorithms. Thus, a solver candidate is a given algorithm

running with a given parameter configuration. hydra is a robust methodology which begins

with a given algorithm and then iteratively adds new solvers to the portfolio until a given

timeout is reached or after a given number of iterations. More precisely, at every iteration a

parameter tuning tool (e.g., [HHLBS09]) is used to identify a new solver candidate. Once

the new solver is available, the portfolio is re-computed taking into account the latest ob-

tained algorithm. Notice that the portfolio construction removes useless solvers that do not

help to improve the performance, so that although new solvers are iteratively added, not all

of them are necessarily considered in the portfolio.

Unlike previous methods that estimate the runtime of a given algorithm before actually

solving the problem, Haim and Walsh studied a slightly different point of view in [HW08,

HW09a], proposing the Linear Model Prediction (LMP) method. This method aims to

build a runtime prediction function which determines the remaining time from the current

state until the end of the search, this way, the estimation is available at any time. To this

end, the feature vector includes information regarding past performance of the search. For

instance, learnt clauses size, conflict clause size, average clause size, search depth, etc.,

and the construction of the runtime function is defined using linear regression as previously

stated for empirical hardness models.

Finally, another interesting application of Machine Learning to the algorithm selection

problem in the context of SAT is presented in [LL01] where Lagoudakis and Littman pro-

posed the use of reinforcement learning [SB98] to select branching rules for SAT. Although

this work presented important results, the learning function is defined by considering only

the total number of variables at a given state of the search tree.

33

3. RELATED WORK

3.1.2 Portfolios for QBF

This section is devoted to the use of machine learning to deal with the algorithm selection

problem in the context of Quantified Boolean Formulas (QBF) [BM08].

Unlike SATzilla, which selects the algorithm with minimal expected runtime before

actually solving the problem, Samulowitz and Memisevic [SM07] proposed an adaptive

solver, where at each node of the search tree a classification algorithm (i.e., multinomial

logistic regression) is used to predict the best algorithm hbest. After hbest is obtained, it is

used to choose the most promising variable. It is important to notice that although the best

algorithm is dynamically selected while solving a given problem, the winner heuristic is

determined by applying each single algorithm to solve the entire problem instance during

the training phase. Therefore, this work requires an important number of training instances

to build a model with good generalization properties.

Pulina and Tacchella in [PT07] studied the application of four well-known machine

learning techniques (Decision trees, 1-nearest neighbor, decision rules and logistic regres-

sion) to implement AQME (Adaptive QBF multi-engine) a portfolio for QBF. As opposed

to previous work on QBF, this approach uses AQME to select the most appropriate algo-

rithm to solve a given QBF instance and this algorithm is used for the entire search process.

Interestingly, the performance of AQME with all learning techniques was considerably bet-

ter than individual QBF solvers. However, as one could have been expected none of the

learning techniques is superior than the others for all the experimental scenarios.

Another important contribution in the context of QBF solving is presented in [PT09]

where Pulina and Tacchella detailed self-AQME, which extends previous work on AQME

with a new training algorithm to deal with several distributions of problems. self-AQME

works in rounds, at each round an execution sequence [(t1, S1), (t2, S2), . . . , (tn, Sn)] is

obtained, where ti indicates the time cutoff for the ith solver in the sequence. The predicted

best solver is always placed first in the sequence and the remaining solvers candidates are

sorted with a given criteria (e.g., performance in previous QBF competitions), notice that

(t1,t2, . . . , tn) values might change between rounds. This procedure is repeated until a

solution is found or a given global timeout is reached, if a solution is obtained with a non-

expected solver s (i.e., s 6= predicted best solver) then a new training example 〈I, s〉 is

34

3.1 The Algorithm Selection Problem

added to the classification model, where I represents the feature vector associated to the

problem instance and s indicates the solver that found the solution.

self-AQME was experimented using the following three sorting criteria: Trust the Pre-

dicted Engine (TPE) grants a given L time cutoff for the first round by means of executing

all available algorithms with a timeout of L
N

, where N indicates the number of candi-

dates. If no solution is found during the first round, the predicted best solver is executed

with all the remaining time budget. All engines are the same (AES) equally divides the

global time budget for each solver candidate, notice that AES will always solve the same

number of instances no matter the learning technique (even with random guesses). In-

creasing the time round-robin (ITR), all solver candidates are executed with a given ρ time

cutoff at each round, and ρ is exponentially increased after finishing a round. Interest-

ingly, using QBF competitions settings3, TPE exhibited the worst performance among the

three methodologies, and AES showed the overall best performance in terms of number

of solved instances. However, when drastically decreasing the overall global time budget,

TPE becomes a very effective algorithm, followed by ITR and AES was the worst. On the

other hand, more recently, Stern et al., [SSH+10] used a machine learning technique called

MatchBox [SHG09] to improve the performance of the TPE strategy.

3.1.3 Portfolios for CSP

Nowadays, there is an important number of methodologies for building portfolios for SAT

and QBF solving, however few efforts have been devoted to CSP. An alternative explanation

lies in the fact that CSPs are more diverse than SAT instances; SAT instances only involve

boolean variables and clauses, contrasting with CSPs using variables with large domains,

and a variety of constraints and pruning rules [BCDP07, BHZ06, PBG05].

Gebruers, et al., in [GHBF05] studied the application of two well known classification

algorithms such as: decision trees (C4.5) and k-nearest neighbor (3-NN) to select the most

suitable strategy for the Social Golfer problem [AV06]. In this context a strategy is a tuple

〈model, variable selection, value selection〉, where model indicates the set of constraints

used to codify the problem and variable selection (resp. value selection) chooses a variable

3http://www.qbflib.org/index eval.php

35

3. RELATED WORK

(resp. value) during the tree search procedure. Overall the experiments, 3-NN exhibited

the best performance by frequently selecting the most appropriate strategy. It is important

to note that this portfolio uses features and heuristics only applicable to the social golfer

problem.

On the other hand, to the best of our knowledge the most remarkable work in the con-

text of CSPs is the CPHYDRA solver [OHH+08]. CPHYDRA is a portfolio-like algo-

rithm that exhibited the overall best performance in the 2008 CSP competition4. Broadly

speaking, CPHYDRA is a portfolio algorithm developed upon case-based reasoning; it

maintains a database with all solved instances (so-called cases). Later on, once a new in-

stance I arrives a set of similar cases C is computed and based on C it builds a switching

policy to select (and execute) a set of black-box solvers that will maximize the possibilities

of solving I within a given amount of time. Similar cases are retrieved using the k-nearest

neighbor (knn) algorithm and a similarity metric (euclidean distance) which represents the

distance between the feature vector of I and a training example.

CPHYDRA uses two set of features: syntactic and semantic. The syntactic feature set

aims to capture general properties of the problem and is computed directly from the XCSP

specification [RL09] of the instance, while the semantic features set aims to capture infor-

mation about the structure of the problem and is computed by launching the mistral solver

[Heb08] during a preliminary testing period of 2 secs and mainly involves general search

statistics obtained during the preliminary testing period. After computing the features and

obtaining the k most similar cases, the following problem formulated to define the order in

which each individual CSP solver will be executed.

maximize
⋃
s∈S

C(s,f(s))
d(c)+1

subject to
∑

s∈S f(s) ≤ 1800

Where C(s, t) indicates that a given solver s is able to solve a similar instance with a

time limit of t seconds, and f(s) ≤ 1800 indicates that the overall time to solve a single

instance is set to 1800 seconds, and d(c) indicates the distance between the similar case and

the new instance. Intuitively, nearest instances are more likely to be more informative. As

4http://www.cril.univ-artois.fr/CPAI08/

36

3.2 Portfolios for Optimization problems

pointed out by the authors, solving this problem is NP-hard. However, as CPHYDRA uses

a few number of solvers and k is not greater than 40, computing the schedule of solvers

does not introduce any considerable overhead.

CPHYDRA was trained using instances from the 2007 CSP competition, this way be-

fore entering in the 2008 competition the database of stored cases (or instances) was com-

pletely filled with respectively features and runtimes for each particular training sample,

and the information in the database remained constant during the competition (as incre-

mental learning is not allowed). Finally, it is important to notice that CPHYDRA won 4

out of 5 categories in the competition and in the remaining category was placed 2nd.

Other researchers have also used machine learning to build portfolio algorithms in

the context of constraint programming; in [XSS09] Xu et al., used Q-learning to iden-

tify branching rules and on the other hand, [KMN10, GKMN10] used a AdaBoost-like

approach [Sch02] to automatically tune the minion solver [GJM06].

3.2 Portfolios for Optimization problems

So far, we have presented methodologies for solving satisfiability problems in the context

of SAT, QBF and CSP. In this section, we switch our attention to optimization problems.

Unlike satisfiability problems, solving an optimization problem involves finding the best

solution and prove that the solution is the optimal. Unfortunately, in many cases this pro-

cess cannot be completed within a reasonable amount of time and the system must provide

to the user the best solution found so far.

Beck and Freuder in [BF04] proposed the low-knowledge approach to automatically

select the most appropriate algorithm in the context of optimization problems. To this end,

a given time limit of L secs is available to find the best solution for a given instance. In

this way, during a prediction phase, each algorithm candidate Ai is executed with a timeout

of L/N seconds. Every t secs the best solution found so far is stored in Ki=[b1,b2, . . . ,

bn] indicating the best solution for the ith algorithm up to each time interval (i.e., t, 2t,

3t, . . . , nt seconds). Taking this into account, three methods to select the best algorithm

are proposed: pcost selects the algorithm with final best solution cost, pslope selects the

algorithm considering the best observed improvement in between stored solutions, and

37

3. RELATED WORK

pextrap selects the algorithm based on an extrapolation of the current solution at a time

L/N to L. Overall the quality of the prediction technique depends on the characteristics of

the problem and the amount of time given for the prediction phase.

In [CB05, CB04] Carchrae and Beck extended the low-knowledge approach including

machine learning techniques to select the most appropriate algorithm. On the one hand,

the low-knowledge strategy is used to identify a set of generic features common to all

optimization problems (i.e., solution cost for each algorithm in the portfolio), these features

are categorical values (i.e., 1/0 variables) obtained during the prediction time. This way,

each algorithm is equipped with n features, one for each value in Ki, the algorithm with

best performance at the ith interval gets value 1, and while the remaining algorithms get

value 0. These features or attributes are a very elegant solution when there is absolutely no

information about the distribution of problems. However, these descriptors did not include

enough generalization to perform better than a simple strategy such as pcost which selects

the best algorithm during the prediction phase

On the other hand, also in [CB05] a reinforcement learning method is used to interleave

and assign computational runtime to all available algorithms according to the current per-

formance of each one. In this context, algorithms are executed in rounds (or iterations), at

each round the reinforcement learning method assigns computational runtime to each algo-

rithm according to latest previous improvements. Intuitively algorithms with current best

performance improvement would be assigned with more computational resources. This

dynamic switching mechanism showed very good results as it was able to outperform the

best pure single algorithm.

Beck and co-author’s work in the low-knowledge framework is an interesting method-

ology, however it is important to note that this framework by itself can not be applied

straightforward to satisfiability problems because it requires the algorithm to provide re-

sults of intermediate solutions (best solution found up to some time limit), and as pointed

out above, the goal of a CSP is precisely to find a single solution.

On the other hand, the Bid Evaluation Problem (BEP) in Combinatorial auctions has

been studied using empirical hardness models in [LBNS06] and decision trees in [GM04].

The former uses a SATzilla-like model, learning a runtime prediction function for each al-

gorithm in the portfolio, while the latter uses decision trees to build a classification model

38

3.3 Per class learning

by considering the winner algorithm as the one with minimal runtime for each instance dur-

ing the training phase. Notice that the main difference between these two approaches and

Beck’s work with low-knowledge is that low-knowledge is general enough to be applied

to any optimization problems, while [LBNS06] and [GM04] need experimented users to

define a suitable feature vector of the problem.

3.3 Per class learning

So far, we have presented preliminary work devoted to the use of Machine Learning to the

algorithm selection problem in the context of Rice’s framework (see Section 3.1), that is

the selection of the best algorithm is based on some features or descriptors of the problem.

In this section, we would like to switch our attention to per-class methods for automatic

parameter tuning. Contrasting with previous approaches which select the best algorithm

for each particular instance, the following set of algorithms aim to select the best parameter

configuration for a set of problems. In other words, The training data set is used to properly

identify a single parameter configuration and it will be used to tackle all testing instances.

The automatic parameter problem was formally described in [BSPV02, Bir04] as an

optimization problem where the search space is the space of all possible parameter con-

figurations. In this context, Birattari et al., proposed the application of a racing algorithm

called F-RACE to identify the most suitable configuration for a given algorithm. F-RACE

aims to use a machine learning idea, typically used in feature selection [MM97] to avoid

exhaustive search among all possible candidates. Broadly speaking, F-RACE iteratively

executes each parameter configuration on a set of problem instances and as soon as enough

statistical evidence (based on the Friedman’s test) shows that a given configuration is in-

ferior than the rest, this configuration is discarded and no longer considered as a candi-

date, F-RACE iterates until a single parameter configuration is found or a given timeout is

reached.

Although F-RACE is a very effective technique, it involves the execution of each pa-

rameter configuration until enough statistical evidence is found to discard poor candidates.

Therefore, F-RACE is limited to few parameter configurations. To overcome this limitation

paramILS [HHLBS09, Hut09] and GGA [AST09] are developed to deal with large (order

39

3. RELATED WORK

of hundreds of thousands) number of parameters configurations. However, ironically these

tools themselves require some parameters to be tuned.

paramILS is an iterative local search algorithm that executes the following two steps

procedure until no improvement is found or a given time limit is reached.

1. Identification of the initial parameter configuration (usually algorithm’s default con-

figuration).

2. Using local search operators to explore the parameter configuration space, and the

best known configuration found so far is updated according to some performance

criteria.

paramILS is build on top of a restart-based search algorithm which involves three

parameters (r,s,prestart). prestart indicates the probability of restarting the search, r and

s indicate respectively the degree of perturbation added to the initial configuration when

restarting the search and at each iteration of the algorithm.

Recent work conducted in [AST09] uses genetic algorithms in combination with a gen-

der separation strategy to focus the search on promising parameter configurations. In this

context, one of the primary goals of GGA is to reduce the overall fitness evaluations, because

computing the fitness value for a given population (or configuration) x involves running the

solver several times with the same configuration x. The gender separation requires 5 param-

eters that were experimentally tuned in [AST09]. The main advantage of GGA compared

to paramILS is that the genetic algorithm approach supports continuous values, so that

no discretization step is required. However, GGA requires the user to define a variable tree

structure which basically indicates dependencies between parameters.

Early work on the automatic configuration problem studied the CALIBRA system [ADL06].

CALIBRA initially performs a full factorial design to define the initial and worse values.

Straight-after a local search algorithm is used until a local minimum is obtained. At this

point a new configuration is carefully crafted using past local optima and worst solutions,

and this procedure is repeated until a user defined stopping criterium is reached (e.g., max.

number of experiments). The major limitation of CALIBRA is that it is limited to up to 5

parameters.

40

3.4 Adaptive Control

3.4 Adaptive Control

Methodologies described in this section differ from the above mentioned work as they do

not require descriptors to characterize problem instances. Instead, algorithms automatically

adapt their internal parameters when solving a problem instance. That is, the algorithm

provides some feedback based on the current performance and the system decides the next

action.

The quickest first principle (QFP) [BTW96] is a methodology for combining CSP

heuristics. QFP relies on the fact that easy instances can frequently be solved by simple

algorithms, while exceptionally difficult instances will require more complex heuristics. In

this context, it is necessary to pre-define an execution order of heuristics and the switching

mechanics is set according to the thrashing indicator (i.e., when the search seems to be

stuck at a given portion of the tree), once the thrashing value of the current strategy reach

some cutoff value, it becomes necessary to stop the current search procedure and try again

with the next heuristic in the sequence.

The purpose in The Adaptive Constraint Engine (ACE) [EFW+02] is to unify the de-

cision of several heuristics in order to guide the search process. In this way, a voting

mechanism selects a mixture of variable/value ordering heuristics by means using some

offline learned weights associated to each heuristic candidate.

In [PE08] Petrovic and Epstein presented an extension of ACE. In this work the authors

showed that a subset of powerful heuristics is more effective than using all available ones.

Therefore, the objective of this method is to select the most suitable subset of heuristics in

order to explore the search space with promising candidates. This method uses the weights

learned during the training phase in order to discard heuristics whose weights are lower

than their corresponding benchmark heuristics. Generally speaking, there are two bench-

mark heuristics, one for variable-ordering and one for value-ordering and these benchmark

heuristics represents random behavior. Taking this into account, ACE learns a mixture of

better-than-random heuristics.

It is also important to highlight that ACE also includes the transfer learning [RK07]

concept. In particular, ACE learns on a class of problems, and then continue to learn

on other classes, adapting weights as it goes. However, during the testing phase ACE

41

3. RELATED WORK

drops heuristics with poor weights values (below-benchmark heuristics) and weights of the

remaining heuristics are not updated during the testing phase.

Another contribution to the ACE framework is presented in [PE06]. This work uses a

restart-based learning method with two objectives: speed up the overall learning time and

improve the quality of the learnt function. Thus, once ACE identifies that the current learnt

information is no longer useful, it throws away the current learning model by re-initializing

the associated weights to each heuristic. This way, two new parameters 〈k, r〉 are added to

the ACE framework. In this context, a restart is activated if k consecutive unsuccessful runs

have been observed during the last l training problems. Notice that the performance of this

new approach is very sensitive to these two parameters. On the one hand, if k is too low the

restart engine will be launched too often, while on the other hand, if k is too high it could

be too late for restarting, because ACE could had already restored the learning values.

Battiti et al., in [BB05] deeply studied the reactive search framework to online tune

the parameters of a given algorithm. In this way, the reactive search framework typically

uses Machine Learning to on-the-fly adjust the parameters of a given algorithm in order

to better react to fast changing conditions while solving a problem-instance. Taking this

into account, reactive search requires to balance the intensification-diversification dilemma.

That is, focussing the search on known good actions (intensification) and trying new actions

to diversify the search (diversification). An interesting application of the reactive search

framework is described and analyzed in [BT94] where Battiti and Tecchinolli proposed a

mechanism for adapting the size of the tabu list by increasing (resp. decreasing) its size

according to the recent progress of the search.

Another family of adaptive methods are developed in local search-based algorithms

for SAT. Hoos [Hoo02] studied an adaptive noise (degree of randomization) mechanism

for the Novely+ algorithm by systematically increasing (resp. decreasing) the noise if no

improvement has been observed for a while. A similar strategy has been adopted for other

algorithms such as: AdaptG2WSAT and AdaptG2WSAT+ in [LWZ07]. On the other hand,

modern local search algorithms for SAT such as gNovelty+ [PG07, PTGS08] are developed

by carefully selecting the main components of existing algorithms. Therefore according to

the current conditions of the problem gNovelty+ chooses the most appropriate component.

Finally, important efforts have been devoted to study the adaptive operator selection

42

3.5 Other work

(AOS) in the context of Genetic Algorithms in [DFSS08] and evolutionary computation

in [FRSS10]. Broadly speaking, The main idea behind the AOS is to select the most ap-

propriate operator based on the past history of each individual one by means of balancing

the trade-off between exploration and exploitation5. Supporting this claim, Fialho and co-

authors studied several methods for the AOS such as: Probabilistic Matching, Adaptive

Pursuit and Multi-armed Bandit with some extensions developed for the AOS framework.

An Extensive experimental validation described and analyzed in [FDSS10] indicates that

multi-armed bandits methods were superior on artificial problems. Since these methods

have been extensively verified, it would be interesting to study their performance in the

low-knowledge framework described in Section 3.2

3.5 Other work

In order to conclude our description of previous work, we would like to highlight some

extra strategies developed to combine different heuristics to solve combinatorial problems.

Back to 1996 in [Min96, Min93] Minton proposed the Multi-Tactic Analytic Compiler

(MULTI-TAC) system to automatically configure LISP programs. Initially MULTI-TAC

is equipped with a set of generic variable/value selection heuristics to automatically infer

problem-specific algorithms which will effectively solve a family of problem instances.

During a training phase MULTI-TAC analyzes the CSP specification of the problem to

generate rules for variable/value selection, that are later compared against the generic vari-

able/value heuristics to filter out low-quality ones. Finally, beam search [R.B92] is used to

select the final subset of rules which will be then applied on a testing set of instances.

Although several methods for the variable selection problem have been thoroughly stud-

ied in the literature, less effort has been devoted to the value selection problem. Neverthe-

less, a remarkable work presented in [ZE08] aims to select the most suitable value for a

given variable in a binary CSP. In this work, Zhang and Epstein keep track of the frequency

in which the domain of a variable is modified through constraint propagation, and less fre-

quently removed values are most likely to be used. Experimental results suggest that this

simple strategy is an interesting alternative to traditional value ordering methods.

5exploration-exploration is also known as intensification-diversification

43

3. RELATED WORK

In [MCC06] Monfroy et al., proposed an adaptive enumeration of CSP strategies (or

heuristics) in order to dynamically replace strategies exhibiting poor performances. The

proposed engine maintains a priority value v for each strategy and v is updated using

a given set of indicators that measure the progress of the search (e.g., thrashing, search

deep, number of nodes, etc.). In this way, if the search observes some progress using a

given strategy c, then c is rewarded, otherwise c is penalized. This work also proposes a

metabacktrack engine which monitors the thrashing value in order to backtrack n steps or

restarting the search from scratch. For instance, if the current thrashing is too high it might

be better to jump to the root node, but if the thrashing is not critical it should backtracks

few steps in the tree.

SATenstein [KXHLB09, Khu10] is motivated by the fact that current state-of-the-art

dynamic local search algorithms for SAT are built by mixing the main properties of existing

algorithms. For instance novelty [MSK97] as most WalkSAT-based [SKC94] algorithms

firstly selects an unsatisfied clause and then uses the GSAT [SLM92] score function to

select the next variable to flip. Supporting this claim, SATenstein is developed on top of a

carefully selected set of components which consider the main characteristics (or properties)

of a wide variety of local search algorithms and leave the selection of critical components

to an automatic parameter tuning tool (e.g., paramILS, see Section 3.3). Finally, it is

worth mentioning that SATenstein has been extensively tested in problems from a wide

variety of domains.

In [GS01] Gomes and Selman studied the applicability of building an algorithm portfo-

lio for combinatorial problems by launching several algorithms (or different copies of the

same algorithm with different random seeds) in parallel settings or interleaving the execu-

tion of all candidates in a single machine. This work showed that when exploring the use of

several independent randomized algorithms, one might rather explore the use of algorithms

with large variance to obtain better performance improvements. However, there are still

open questions in the use of a portfolio algorithm, for instance the definition of the number

of processors or the amount of time to interleave the execution of each algorithm. Notice

that the definition of a portfolio algorithm in this paper differs from the one used earlier on

in this chapter (see Section 3.1), because here the portfolio executes several independent

searches until at least one of them find a solution or a given time out is reached.

44

3.5 Other work

The estimation of the number of nodes in tree search algorithms goes back to the semi-

nal work of Knuth in [Knu75] where the Knuth’s method is proposed. The algorithm starts

with the root node and moves down the tree by selecting random successors, once the algo-

rithm reach a leaf-node the estimation is computed as 1+d1 +d1×d2 +d1×d2×d3 + . . . ,

where di indicates the number of successors at the ith level of the tree. This procedure is

repeated several times (each time with a different random seed) and the final estimation is

the average across all samples.

Knuth’s estimator is a very elegant algorithm but it might not work properly when

the search tree is not known in advance, for instance in the case of branch and bound

algorithms, where the search tree is systematically pruned to avoid non-optimal solutions.

Therefore, Lobjois and Lemaı̂tre in [LL98] extended the knuth’s estimator to deal with

upper bound solutions which systematically help to prune useless portions of the search.

This way, the so-called selection by performance prediction (SPP) method estimates the

runtime of a given optimization algorithm. SPP estimates the total number of nodes of a

branch and bound algorithm as well as the average time to explore a single node. Finally,

once a new instance arrives the portfolio selects the algorithm with minimal overall runtime

(number of times × average per node). In addition to this work, other extensions of the

Knuth’s estimator have been explored in [KSTW06] in the context of SAT and in [CKL06]

in the context of Mixed Integer Programming.

In [SMJGT09] Smith-Miles et al., proposed the use of machine learning algorithms to

identify the structure of a given problem. To this end, a portfolio algorithm is built on

top of Supervised learning methods (Decision trees and Neural Networks) and an unsu-

pervised learning method (Self-organized maps) to select the best between two heuristics.

After extensive experiments with more than 70000 instances, all the three learning meth-

ods performed much better than independent heuristics. However, the self-organized map

provides an interesting graphical representation which helps to understand the relationship

between the features and the structure of the problem.

Another interesting approach was presented by Kautz et al., [KHR+02] who proposed

the use supervised machine learning techniques to build an optimal restart policy R={t1,t2,

. . . , tn} for a given algorithm in order to quickly solve a distribution of problem instances.

In this context ti indicates the cutoff for the ith restart. In order to build R Kautz et al.,

45

3. RELATED WORK

assume independent restarts, where no information is shared between restarts. This work

was extended by Ruan et al., [RHK02] by exchanging information between restarts (e.g.,

runtime from previous restarts) to on-the-fly update the cutoff for the upcoming restarts.

In [RAD10] Rachelson et al., used machine learning to predict values for a subset of

variables in the context of Mixed Integer Programming (MIP). This way, the initial problem

formulation is relaxed by instantiating some variables with the suggested values. This

work has two main limitations. Firstly, the new solution is not necessary the optimal one.

Secondly the learnt model is not generic enough to be applied to any MIP problem-instance

since the input feature vector is restricted to a static number of variables and constraints.

Rather than using supervised learning techniques to select the most appropriate algo-

rithm for a given instance, another option is to define a scheduler policy to interleave the

execution of black-box solvers while solving a new problem instance. Roughly speaking,

there are two main approaches for building the scheduler. On the one hand, Portfolios

with deadlines [WB08] defines an execution sequence [(t1, A1), (t2, A2), . . . , (tn, An)],

where ti indicates the time cutoff for the ith algorithm in the sequence. As soon as a

given algorithm reachs its associated time limit, this algorithm is discarded and no longer

considered for the current instance. On the other hand, Combining Multiples Heuristics

Online [SGS07, SGS08] allows multiples executions of a given algorithm by using two

functioning modes: suspend-restart and stop-restart. The former allows an algorithm to be

suspended and then resumed at a later time, while the latter stops an algorithm and restart

it at a later time. Additionally, [SS08] uses a set of boolean features to identify the most

suitable scheduler for a given instance.

46

Chapter 4

Exploiting Weak Dependencies in
Tree-based Search

So far in this thesis, we have presented background material in Chapter 2 and an extensive

literature review in Chapter 3. From now on, we move our attention to the main contribu-

tions. This way, in this chapter, our objective is to heuristically discover a simplified form

of functional dependencies between variables called weak dependencies. Once discovered,

these relations are used to rank the variables. Our method shows that these relations can

be detected with some acceptable overhead during constraint propagation. More precisely,

each time a variable y gets instantiated as a result of the instantiation of x, a weak depen-

dency (x, y) is recorded. As a consequence, the weight of x is raised, and the variable

becomes more likely to be selected by the variable ordering heuristic.

4.1 Introduction

The relationships between the variables of a combinatorial problem are key to its resolu-

tion. Among all the possible relations, explicit constraints are the most straightforward and

were widely used. For instance, they are used to support classical look-ahead and look-

back schemes. During look-ahead, they can limit the scope of the enforcement of some

consistency level. During look-back, they can improve the backtracking by jumping to

47

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

related and/or guilty decisions. These relationships are also used in dynamic variable or-

dering (DVO) to relate the current variable selection to past decisions (e.g., [Bre79]), or to

give preference to the most constrained parts of the problem, etc.

Recently, backdoors have been illustrated. A backdoor can be informally defined as

a subset of the variables such that, once assigned values, the remaining instance simpli-

fies to a computationally tractable class. Backdoors can be explained by the presence of a

particular relation between variables, e.g., functional dependencies. Unfortunately, detect-

ing backdoors can be computationally expensive [DGS07], and their exploitation is often

restricted to restart-based strategies like in modern SAT solvers [WGS03].

In this chapter, our objective is to heuristically discover a simplified form of functional

dependencies between variables called weak dependencies. Once discovered, these rela-

tions are used to rank the importance of each variable. Our method assumes that these

relations can be detected with low overhead during constraint propagation. More precisely,

each time a variable y gets instantiated as a result of the instantiation of x, a weak depen-

dency (x, y) is recorded. As a consequence, the weight of x is raised, and the variable

becomes more likely to be selected by the variable ordering heuristic.

In the following section, we start with a general description of the constraint propaga-

tion algorithm. Section 4.3 describes our new heuristic. Section 4.4 presents experimental

results. Finally, before summarizing the chapter, Section 4.5, presents related work.

4.2 Constraint propagation

Constraint propagation is usually based on some constraint network property which de-

termines its locality and therefore its computational cost. Arc-consistency is widely used,

and the results of its combination with backtrack search is called (MAC) for Maintain Arc-

consistency [SF94]. Constraints are high-level abstractions implemented by propagators1

[ST08, Tac09], these propagators help to remove invalid values from the variables through

constraint propagation

Algorithm 4.1 describes a classic constraint propagation engine [SC06]. In this algo-

rithm, constraints are managed as propagators in a propagation queue, Q. This structure

1In the following, we will use the term propagator as a synonym for constraint.

48

4.2 Constraint propagation

Algorithm 4.1 Classic propagation engine

1: Q = {p1, p2, ...}
2: while Q 6= {} do
3: p = choose(Q);
4: run(p);
5: for all Xi ∈ vars(p) s.t. Di was narrowed do
6: schedule(Q, p, Xi);
7: end for
8: end while

represents the set of propagators that need to be revised. Revising a propagator corresponds

to the enforcement of some consistency level on the domains of the associated variables.

Initially, Q is set to the entire set of constraints. This is used to enforce the arc-

consistency property before the search process. During depth-first exploration, each de-

cision is added to an empty queue, and propagated through this algorithm.

The function choose removes a propagator p ∈ Q, run applies the filtering algorithm

associated to p, and schedule adds all propagators associated to Xi, i.e., prop(Xi), to

Q. The algorithm terminates when the queue is empty. A fix-point is reached and more

propagations can only appear as the result of a tree-based decision.

Definition 4.1 f(X, y) is a functional dependency between the variables in the set X and

the variable y, if and only if, for each combination of values in X there is precisely one

value for y satisfying f .

Many constraints of arity k can be seen as functional dependencies between a set of

k − 1 variables and some remaining variable y. For instance, the arithmetic constraint

X + Y = Z, gives the dependencies f({X, Y }, Z), f({X,Z}, Y), and f({Y, Z}, X).

There are also many exceptions like the constraint X 6= Y , where in the general case, one

variable is not functionally dependent of the other one.

49

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

4.3 Exploiting weak dependencies in tree-based search

4.3.1 Weak dependencies

In general, functional dependencies are difficult to obtain as they require to check the con-

sequences of assigning each value for a given set of variables. Therefore, Our objective is

to take advantage of functional dependencies during search. We propose to heuristically

discover a weaker form of relation called weak dependency between pairs of variables. A

weak dependency is observed when a variable gets instantiated as the result of another in-

stantiation. Our new DVO heuristic records these weak dependencies and exploits them to

prioritize the variables during the search process.

Definition 4.2 During constraint propagation based on Algorithm 4.1, we call (X, Y) a

weak dependency if the two following conditions hold:

1. Y is instantiated as the result of the execution of a propagator p.

2. p was inserted in Q as the result of the instantiation of X .

Notice that the previous definition excludes intermediate constraint propagation nar-

rowing the domain of other variables or narrowing the domain of Y . This excludes a

situation where Y gets instantiated as a consequence of domain narrowing.

Property 4.1 Weak dependency relations (X, Y) can be recorded as the result of the exe-

cution of a propagator p iff X ∈ vars(p) and Y ∈ vars(p).

The proof is straightforward if we consider Algorithm 4.1.

4.3.2 Example

To illustrate our definition, we consider the following set of constraints:

• p1 ≡ X1 +X2 < X3

• p2 ≡ X1 6= X4

• p3 ≡ X4 6= X5

50

4.3 Exploiting weak dependencies in tree-based search

X1=1

X3=2

X2=0

X4=0 X5=1

P1

P2

P3

Figure 4.1: Weak dependencies

With the domains, D1 = D2 = D4 = D5 = {0, 1} and D3 = {1, 2}.

The initial filtering does not remove any value and the search process has to be started.

Figure 4.1 shows the graph of weak dependencies assuming that the search is started on X1

with value 1, the propagator X1 = 1 is added to Q, and after its execution the domain D1

has been narrowed, so that it is necessary to schedule p1 and p2.

Running p1 sets X2 to 0, and X3 to 2, and gives the weak dependencies (X1, X2)

and (X1, X3). Afterwards, p2 sets X4 to 0 which corresponds to (X1, X4). Finally, the

narrowing ofD4 schedules p3 which setsX5 to 1, and gives the weak dependency (X4, X5).

In this example, it can also be observed that propagator p1 assigns variables X2 and X3.

However, weak dependencies (X2, X3) or (X3, X2) are not computed, since these variables

are narrowed due to the nature of the propagator instead of a direct consequence between

these two variables.

Weak dependencies are binary, therefore they only roughly approximate functional

dependencies. For example, with the constraint X + Y = Z they will never record

({X, Y }, Z). On the other hand, weak dependencies exploit the current domains of the

variables and can record relations which are not true in general but hold in particular cases.

For instance, the propagator p3 above creates (X4, X5). This represents a real functional

dependency since the domains of the variables are binary and equal.

51

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

4.3.3 Computing weak dependencies

We can represent weak dependencies as a weighted digraph relation among the variables

of the problem, where the nodes of the graph are the variables and the edges indicate

weak dependencies relations between two variables, i.e, when there is an edge between

two variablesX and Y , the direction of the edge shows the relation and its weight indicates

the number of observed occurrences of that relation (e.g., Figure 4.1, assuming that the

weight for each edge is 1).

In a propagation centered approach [LS07] each variable has a list of dependent propa-

gators and each propagator knows its variables (see Figure 4.2).

X2X1 X3

Prop1 Prop2

Figure 4.2: Variables and propagators

In this way, once the domain of a variable is narrowed it is necessary to schedule its

associated propagators into the propagator pool. Since we are interested in capturing weak

dependencies, we have to track the reasons for constraint propagation. More specifically,

when a propagator gets activated as the result of the direct assignment of some variable,

we need to keep a reference to that variable. Since the assignment of several variables can

activate a propagator, we might have to keep several references.

A modified schedule procedure is shown in Algorithm 4.2. The algorithm starts by

enqueueing all the propagators associated to a given variable Xi into the propagators pool.

If the propagator p was called as the result of the assignment of Xi (|Di| = 1), a weak

dependency is created between each variable of the set p.assigned and Xi. Variables from

52

4.3 Exploiting weak dependencies in tree-based search

Algorithm 4.2 Schedule(Queue Q, Propagator p, Variable Xi)
1: enqueue(Q, prop(Xi));
2: if |Di| = 1 then
3: dependencies(p.assigned, Xi);
4: for all p′ in prop(Xi) do
5: p′.assigned.add(Xi);
6: end for
7: end if

this set are the ones whose assignment was the reason for propagating p. After that, a

reference to Xi is added to its propagators prop(Xi). This is done to ensure that if these

propagators assign other variables, a subsequent call to the schedule procedure will be able

to create dependencies between Xi and these variables.

4.3.4 The domFD dynamic variable ordering

In the previous section, we have seen that a generic constraint propagation algorithm can be

modified to compute weak dependencies. As we pointed out above, weak dependencies can

be seen as a weighted digraph relation among the variables. Using this graph, we propose

to define a function FD(Xi) which computes the out-degree weight of a variable Xi taking

into account only uninstantiated variables.

FD(Xi) =
∑

Xj∈Γ+(Xi)

weight(Xi, Xj)

Where Γ+(x) (resp. Γ−(x)) represents the set of outgoing (resp. ingoing) edges from

(resp. to) x in the graph of dependencies. It is also important to note that when there is no

outgoing edge associated to Xi we assume FD(Xi) = 1.

Given the definition of FD, we propose to define domFD, a new DVO heuristic based

on both: the observed weak dependencies of the problem and the well-known fail-first

mindom heuristic:

domFD(Xi) =
|Xi|

FD(Xi)

53

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Then, the heuristic selects the variable whose domFD value is minimal.

4.3.5 Complexities of domFD

Space

We know from Property 4.1 that dependencies are created between variables which share

a constraint. Therefore, computing the weak dependency graph requires in the worst case

a space proportional to the space used for the representation of the problem. Assuming n

variables and m constraints, the space is proportional to n+m.

Time

The computation of weak dependencies is tightly linked to constraint propagation. The

original schedule procedure only enqueues the propagators related to Xi in Q, therefore

its original cost is O(m). Our new procedure creates dependencies each time a variable

gets instantiated. Dependencies between variables can be recorded as the result of the

instantiation of one or several variables. In the latter case, up to n− 1 dependencies can be

created since the instantiation of up to n−1 variables can be responsible for the scheduling

of the current propagator (line 3 in Algorithm 4.2). Once dependencies are created, the

propagators associated to Xi need to reference it. Here the cost is bounded by m. Overall,

the time complexity of the new schedule procedure is O(n+m).

We now have to consider the cost of maintaining the weak dependency graph. Since

our heuristic only considers the weights related to the variables which are not instantiated

we have to disconnect variables from the graph when they get a value, and we have to

reconnect them when the search backtracks. This can be done incrementally.

Practically, we do not have to physically remove a variable from the dependency graph,

we can just offset the weight of the recorded dependencies between other variables and

that variable. For instance, when Xi gets instantiated as the result of a tree decision or

as the result of constraint propagation, we only need to update the out degrees of vari-

ables Xj ∈ Γ−(Xi). The update is done by decreasing their associated counter Xj.FD

by weight(Xj, Xi). These counters represent the number of times the weak dependency

(Xj, Xi) was observed during the search process. During backtracking, Xi gets back

54

4.4 Experiments

its domain, and we just have to “reconnect” the associated Xj ∈ Γ−(Xi) by adding

weight(Xj, Xi) to Xj.FD. Since a variable can be linked to m propagators, an update

of the dependency graph cost O(m). In the worst case, each branching holds no propaga-

tion and therefore at each node, the cost of updating the dependency graph is O(m).

Finally, selecting the variable which minimizes domFD can cost an iteration over n

variables if no special data structure is used.

Now if we consider all the operations, constraint propagation with the new schedule

procedure, disconnecting a single variable, and selection of the variable which minimizes

domFD, we have O(n+m) - as opposed to O(m) initially.

4.4 Experiments

In this section, we propose to study the performance of domFD when compared to dom-

wdeg, a recently introduced heuristic able to focus on the difficult parts of a problem

[BHLS04].

In dom-wdeg, the priority is given to variables which are frequently involved in failed

constraints. A weight is added to each constraint and updated (i.e, incremented by one)

each time a constraint fails. Using this value variables are selected based on their domain

size and their total associated weight. Xi, the selected variable minimizes dom-wdeg (Xi)=

|Xi|/
∑

c∈prop(Xi)
weight(c).

This heuristic is used in the Abscon solver which appeared to be the most robust in the

2006 CSP-competition2 where it finished 1 time first, 3 times second, 3 times third, and 2

times fourth, when compared against 15 other solvers.

To compare domFD against the powerful dom-wdeg, we implemented them in Gecode-

2.0.1 [Gec06] and used them to tackle several problems. Since Gecode is now widely used,

we decided to take from the Internet problems already encoded for the Gecode library. We

paid attention to the fact that overall our problems cover a large set of Gecode’s constraints.

We used 35 instances coming from 9 different benchmark families. They involve satis-

faction, counting, and optimization problems. They were solved using the default Gecode’s

branch-and-prune strategy, and a modified restart technique based on the default strategy. In

2http://www.cril.univ-artois.fr/ CPAI06/round2/results/ranking.php?idev=6

55

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

the tests, the value selection ordering was Gecode’s INT VAL MIN, which returns the min-

imal value of a domain. All the experiments were performed on a MacBook-Pro 2.4GHz

Intel Core 2 Duo, under Ubuntu linux 7.10 and gcc version 4.0.1. A time-out (TO) of 10

minutes was used for each experiment.

4.4.1 The problems

In the following, we list the different benchmark families used in this chapter, all these

problems (except Crowded-chess) have been widely studied in the CSPLib [GW99]. Note

that for all problems (except Quasigroup) the model and its implementation is the one

proposed in the Gecode repository3.

• qwh: Quasigroup [AGKS00], problem 3 of CSPLib, this problem consists in com-

pleting a pre-filled N × N matrix with the numbers [1, 2, . . . , N] such that for each

column (resp. row) of the matrix, each element occurs exactly once.

• gol-rul: Golomb-ruler [SSW99], problem 6 of CSPLib, this problem consists in

finding a list M of numbers (so-called marks) such that the difference between any

pair of marks Mi −Mj (i 6= j) in M are all distinct. The number of elements in M

indicate the order of the ruler, and the maximum distance between any two pair of

elements in M indicates the length of the ruler. The goal is to find a golomb-ruler

with minimal length for a pre-defined order.

• all-int: All-interval [GMS03], problem 7 of CSPLib, this problem consists in finding

all possible permutations L = [x1, . . . xn] of numbers such that L is a permutation

of [0, 1, . . . , n − 1] and [|x1 − x2|, |x2 − x3| , . . . , |xn−1 − xn|] is a permutation of

[1, 2, . . . n− 1].

• nono: Nonogram [Bos01], problem 12 of CSPLib, this problem consists of a matrix

with a list of number for each column (resp. row), this list represents a set of rules

indicating how many consecutively filled squares are for each column (resp. row).

3Available from http://www.gecode.org/gecode-doc -latest/ group ExProblem.html.

56

4.4 Experiments

• magic-squ: Magic-square [Wei], problem 19 of CSPLib, this problem consists of

completing a N ×N matrix with the numbers 1, 2, . . . , N2 where each column, row

and the two main diagonals sum the same number.

• lfn: Langford-number [HKS01], problem 24 of CSPLib, this problem consists in

arranging k set of N numbers, such as each occurrence of a given number m is m

times in from the last one.

• sport-lea: Sport league tournament [Hen99], problem 26 of CSPLib, this problem

consists4 in scheduling a round-robin tournament such that: there are t teams, the

season lasts t−1 weeks, each game between two different teams occurs exactly once,

every team plays one game in each week of the season, there are t/2 periods and each

week every period is scheduled for one game, no team plays more than twice in the

same period over the course of the season. Notice that due to the specifications of the

problem, t must be an even number.

• bibd: Balanced Incomplete Block Design [Pre01], problem 28 of CSPLib, this prob-

lem consists of a v × b matrix such that: the number of ones for each column (resp.

rows) is equal to r (resp. k), and the scalar product for each pair of distinct rows

is equal to λ. The original problem contains 5 parameters, however b and r can be

derived from λ, v and k.

• crow-ch: Crowded-chess [Lag08], this problem consists in arranging n queens, n

rooks, 2n − 1 bishops and k knights on a n × n chessboard, so that queens cannot

attack each others, no rook can attack another rook and no bishop can attack another

bishop. Note that two queens (in general two pieces of the same type) are attack-

ing each other even if there is a bishop (in general another piece of different type)

between them.

In the following, when an instance is solved, the number of nodes in the tree(s) (#nodes),

the number of failures (#failures) and the time (time (s)) in seconds are reported. If the 10

minutes time-out is reached, TO is reported, and the best performing algorithm (w.r.t. run-

time efficiency) is indicated in bold.
4This problem description was taken from the gecode [Gec06] definition of the problem.

57

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

4.4.2 Searching for all solutions or for an optimal solution

The first part of Table 4.1, presents results related to the finding of all the solutions of all-

interval problems of order 11 to 14. We can observe that the trees generated with domFD

are usually far smaller than the ones generated by dom-wdeg. Most of the time, domFD

runtime is also better. However, the time per nodes (i.e., #nodes/time in Table 4.1) is more

important for our heuristic. For instance, on all-int-14, dom-wdeg does 89973 nodes/s while

domFD runs at 54122 nodes/s.

The second part of the table presents results for the optimal Golomb-rulers of orders

10 to 12. Here, we can observe that order 10 is easier for dom-wdeg, but sizes trees are

comparable. Order 11, and 12 give the advantages to domFD, with far smaller search trees

and better runtimes. As before, the time per node is more important for our heuristic (31771

vs 35852 on gol-rul-11).

Instance dom-wdeg domFD
#nodes #failures time (s) #nodes #failures time (s)

all-int-11 100844 50261 0.93 52846 26262 0.81
all-int-12 552668 276003 6.92 211958 105648 3.45
all-int-13 2.34M 1.17M 26.13 1.64M 821419 29.74
all-int-14 15.73M 7.86M 174.83 11.27M 5.63M 208.23
gol-rul-10 93732 46866 1.97 102910 51449 2.70
gol-rul-11 2.77M 1.38M 77.26 1.77M 889633 55.71
gol-rul-12 12.45M 6.22M 404.92 6.97M 3.48M 266.28

Table 4.1: All solutions and optimal solution

4.4.3 Searching for a solution with a classical branch-and-prune strat-
egy

Experiments related to the finding of a first solution are presented in Table 4.2. They show

results for respectively, quasi-groups, balance incomplete block design, Langford numbers,

and nonograms.

58

4.4 Experiments

Quasi-groups

Three instances of order 30 with 316 unassigned positions were produced with the gener-

ator presented in [AGKS00]. On these instances, domFD always generates smaller search

trees. When this difference is large enough e.g., second instance, the runtime is also better.

Balance incomplete block design

Our heuristic always explores smaller trees which allows better runtimes. Interestingly the

third instance is solved in 0.03 seconds by domFD while dom-wdeg cannot solve it in 10

minutes.

Langford numbers

On these problems, domFD is always superior to dom-wdeg. For instance, lfn-3-10 can be

solved by both heuristics but the performance of domFD is far better: 190 times faster.

Nonograms

Table 4.2 shows results for the nonogram problem. Three instances of orders 5, 8, and 9

were generated. Here again, the trees are systematically smaller with domFD and when the

difference is large enough runtimes are always better.

4.4.4 Searching for a solution with a restart-based branch-and-prune
strategy

Restart-based searches are very efficient since they can alleviate the effects of early bad

decisions. Therefore, it is important to test our new heuristic with a restart strategy.

A restart is done when some cutoff limit in the number of fails is met, i.e., at some node

in a tree. There, the actual domFD-graph is stored and used to start the next tree-based

search. This allows the early selection of well ranked variables. The same technique is

used with dom-wdeg, and the next search tree can branch early on well ranked variables.

59

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Instance dom-wdeg domFD
#nodes #failures time (s) #nodes #failures time (s)

qwh-30-316-1 1215 603 0.22 234 115 0.32
qwh-30-316-2 48141 24063 8.09 10454 5220 3.62
qwh-30-316-3 6704 3347 1.11 2880 1437 1.15
bibd-7-3-2 100 39 0.01 65 28 0.01
bibd-7-3-3 383 180 0.03 96 42 0.01
bibd-7-3-4 — — TO 132 56 0.03
lfn-3-9 168638 84316 6.16 7527 3760 0.26
lfn-2-19 — — TO 1.64M 822500 43.05
lfn-3-10 2.21M 1.10M 87.15 12440 6218 0.46
nono-5 1785 879 0.12 491 239 0.11
nono-8 17979 8983 3.54 1084 537 0.54
nono-9 248 115 0.04 120 58 0.12

Table 4.2: First solution, branch-and-prune strategy

This part presents results with a restart-based branch-and-prune where the cutoff value

used to restart the search was initially set to 1000, and the cutoff increase policy to ×1.2

(geometric factor). The same 10 minutes time-out was used.

Table 4.3 presents the results for magic square, crowded chess, sport league tournament,

quasi-groups, and bibd problems.

Magic square

Instances of orders 5 to 11 were solved. Clearly, domFD is the only heuristic able to solve

large orders within the time limit. For example, dom-wdeg cannot deal orders greater than

8, while our technique can. The reduction in the search tree sizes is very significant, e.g.,

on mag-squ-8, dom-wdeg develops 35.18M nodes and domFD 152466, which allows it to

be more than 100 times faster.

Crowded chess

As before, domFD can tackle large problems while dom-wdeg cannot.

60

4.4 Experiments

Instance dom-wdeg domFD
#nodes #failures time (s) #nodes #failures time (s)

mag-squ-5 2239 1113 0.02 3025 1505 0.06
mag-squ-6 33238 16564 0.32 4924 2440 0.08
mag-squ-7 9963 4868 0.20 33422 16614 0.86
mag-squ-8 35.18M 17.59M 460.40 152446 75987 4.51
mag-squ-9 — — TO 66387 32951 1.64
mag-squ-10 — — TO 83737 41607 2.17
mag-squ-11 — — TO 8.52M 4.26M 374.62
crow-ch-7 2029 1002 0.04 3340 1656 0.22
crow-ch-8 16147 8036 0.67 2041 1002 0.14
crow-ch-9 129827 64788 6.15 228480 114089 37.97
crow-ch-10 — — TO 1134052 566761 263.01
sport-lea-14 4746 2327 0.68 4814 2359 0.65
sport-lea-16 28508 14073 4.05 3913 1912 0.61
sport-lea-18 546475 272510 101.70 51680 25549 10.72
sport-lea-20 182074 90355 36.69 2.07M 1.03M 514.18
qwh-30-316-1 1215 603 0.22 234 115 0.32
qwh-30-316-2 118348 59104 20.06 8828 4397 2.7
qwh-30-316-3 8944 4451 1.68 3114 1552 1.01
qwh-35-405 2.38M 1.19M 562.62 475053 237369 236.05
bibd-7-3-2 100 39 0.01 65 28 0.01
bibd-7-3-3 383 180 0.03 96 42 0.01
bibd-7-3-4 6486 3210 0.79 132 56 0.03

Table 4.3: First solution, restart-based strategy

61

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

Sport league tournament

If we exclude the last instance, domFD is always better than dom-wdeg.

Quasi-groups

Here, on most problems, domFD generates smaller search trees, and can return a solution

more quickly. On the hardest problem, (order 35), domFD is nearly two time faster.

Balanced incomplete block design

Here domFD performs very well, with both smaller search trees and small runtime.

4.4.5 Synthesis

Table 4.4 summarizes the performance of the heuristics. These results were generated by

only taking into account the problems which can be solved by both domFD and dom-wdeg

i.e., we removed 6 instances which cannot be solved by dom-wdeg.

heuristic average
#nodes #failures time (s) nodes/s

dom-wdeg 2.14M 1.07M 56.99 37664
domFD 717202 358419 39.53 18139

Table 4.4: Synthesis of the experiments

We can observe that the search trees generated by domFD are on the average three times

smaller. The difference in the number of fails is similar. Finally, even if domFD is 2 times

slower on the time per node, it is 31% faster overall.

Technically, our integration into Gecode is quite straightforward and not particularly

optimized. For instance we use Leda [LED], an external library to maintain the graph,

while a bespoke light class with the right set of features should be used. The way we

record weak dependencies is also not optimized and requires extra data structures whose

accesses could be easily improved, e.g., the assigned list of variables shown in Algorithm

62

4.5 Previous work

4.2. For all these reasons, we think that it must be possible to increase the speed of our

heuristic by some factor.

We also did some experiments to see if the computation of domFD could be cheaply

approximated. We used a counter with each variable to record the number of times that

variable was at the origin of a weak dependency. This represents an approximation of

domFD since the counter considers dependencies on instantiated variables. Unfortunately,

this - fast - approximation is always beaten by domFD on large instances.

4.5 Previous work

In [BHLS04], the authors have proposed dom-wdeg, an heuristic which gives priority to

variables frequently involved in failed constraints. It adds a weight to each constraint which

is updated (i.e, incremented by one) each time the constraint fails. Using this value vari-

ables are ranked according to domain size and associated weight. Xi, the selected variable

minimizes dom-wdeg (Xi)= |Xi|/
∑

c∈prop(Xi)
weight(c). As shown in the previous sec-

tion, domFD is superior to dom-wdeg on many problems. Interestingly, while dom-wdeg

can only learn information from conflicts, domFD can also learn from successful branch-

ings. This is an important difference between these two techniques.

In [Ref04], Refalo proposes the impact dynamic variable-value selection heuristic. The

rational here is to maximize the reduction of the remaining search space. In this context,

an impact is computed taking into account the reduction of the search space due to an

instantiated variable. As a result of this, at each decision point this heuristic suggests a

variable, as well as the best value instantiation for such variable.

With domFD, a variable is well ranked if its instantiation has generated several others

instantiation. This is equivalent to an important pruning of the search space. In that respect

domFD is close to impact. However, its principle is the dynamic exploitation of functional

dependencies, not the explicit quantification of search space reductions. More generally,

since DVO heuristics are all based on some understanding of the fail-first principle they are

all aiming at an important reduction of the search space.

To improve SAT solving, [EGS02] proposes a new pre-processing step that exploits the

structural knowledge that is hidden in a CNF formula. It delivers an hybrid formula made

63

4. EXPLOITING WEAK DEPENDENCIES IN TREE-BASED SEARCH

of clauses together with a set of equations of the form y = f(x1, ..., xn). This set of func-

tional dependencies is then exploited to eliminate clauses and variables, while preserving

satisfiability. This work detects real functions while our heuristic observes weak depen-

dencies. Moreover, it uses a pre-processing step while we perform our learning during

constraint propagation.

4.6 Summary

In this chapter, we have presented a simplified form of functional dependencies between

variables called weak dependencies. Once discovered, these relations are used to rank the

branching variables. More precisely, each time a variable y gets instantiated as a result of

the instantiation of x, a weak dependency (x, y) is recorded. As a consequence, the weight

of x is raised, and the variable becomes more likely to be selected by the variable ordering

heuristic.

Experiments done on 9 benchmarks families showed that on the average domFD re-

duces search trees by a factor 3 and runtime by 31% when compared against dom-wdeg,

one of the best dynamic variable ordering heuristic. domFD is also more expensive to

compute since it puts some overhead on the propagation engine. However, it seems that

our implementation can be improved, for example by using incremental data structures to

record potential dependencies in the propagation engine.

Our heuristic learns from successes, allowing a quick exploitation of the solver’s work.

In a way, this is complementary to dom-wdeg which learns from failures. Moreover, both

techniques rely on the computation of mindom. Combining their respective strengths

seems obvious. We did extensive experiments around a new mixture, dom(x)/(wdeg(x) +

FD(x)) but found out that domFD was better than this straightforward combination.

64

Chapter 5

Building Portfolios for the Protein
Structure Prediction Problem

While in the previous chapter we have proposed a new variable selection for CSPs, in this

chapter, we explore the application of Machine Learning to select the best COP heuristic in

the context of the Protein Structure Prediction Problem. This contribution is twofold. First,

the selection criterion is the quality (minimal cost) in expectation of the solution found

after a fixed amount of time, as opposed to the expected runtime. Second, the presented

approach, based on supervised Machine Learning algorithms, considers the original de-

scription of the protein structure prediction problem, as well as the features associated to

the CP encoding of the problem.

5.1 Introduction

The protein structure prediction problem (PSP Problem) has been widely studied in the

field of bioinformatics, since the three dimensional (3D) conformation of a given protein

helps to determine its function. This problem is usually tackled using simplified models

such as HP-models in [BW01] and a constraint logic programming approach in [DDF03].

However, even considering these abstractions the problem is computationally very difficult

and traditional strategies cannot reach a solution within a reasonable time. Also, there has

been several attempts to predict the structure and proteins fold using well known machine

65

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

learning techniques.

In this chapter, we propose the use of machine learning to automatically select the most

promising Constraint Optimization algorithm for the PSP problem. In this context, proteins

are represented as a feature vector in IRd and the algorithm selection process is based on a

well known multi-class classification algorithm called decision tree. This way, the decision

tree technique would suggest the most appropriate variable/value selection strategy used

by a branch-and-bound algorithm in order to determine the 3D conformation of a given

protein.

Unlike other portfolio-based selection approaches [HHHLB06, XHHLB07, AHS09,

HW09b, GHBF05] which select the algorithm that minimizes the expected runtime, our

approach selects the strategy that minimizes the expected cost of the solution found after a

fixed amount of time. To the best of our knowledge, this is the first work which performs

algorithm selection in an optimization setting by taking into account algorithm’s solution

cost instead of algorithm’s runtime. Moreover, and unlike previous works which only ex-

tract the features exploited during machine learning from the SAT or CP encoding of the

problem (see Chapter 3), our work explores the application of two features sets. In this

way, we use features formulated directly from the application domain (Problem Features),

as well as features from the CP encoding of the problem (CP Features).

This chapter is organized as follows. The PSP problem is described in Section 5.2.

Section 5.3 shows the features or attributes used in this work. Section 5.4 presents the

general idea of algorithms portfolio. Section 5.5 reports our experimental validation and

Section 5.6 presents a summary of the chapter.

5.2 The protein structure prediction problem

The PSP problem is well known in computational biology and is currently considered as

one of the grand challenges in this field. Broadly speaking the problem consists in find-

ing the 3D conformation (so-called ternary structure) of a protein defined by its primary

structure or a sequence of residues S = {s1, s2, . . . , sn} where each residue si of the se-

quence represents one of the 20 amino-acids. The ternary structure is often defined by the

minimal energy conformation. Figure 5.1 shows an input example (left) representing the

66

5.2 The protein structure prediction problem

psvydaaaqltadvkkdlrdswkvigs
dkkgngvalmttlfadnqetigyfkrlgn
vsqgmandklrghsitlmyalqnfidqld
npddlvcvvekfavnhitrkisaaefgki
ngpikkvlasknfgdkyanawaklvav
vqaal

Primary Structure 3D Structure

Figure 5.1: 3D conformation of the 3SDHA protein

amino-acid sequence of the 3SDHA protein and the corresponding output (right) of the 3D

configuration of such a protein1.

This problem has been previously studied in [DDP07] using a constraint programming

based model. In this model, each amino-acid is seen as a single atom unit and two consec-

utive amino-acids in the sequence are separated by a fixed distance also known as a lattice

unit. In the mathematical representation, each amino-acid is represented by means of a

vector w, such that w(i) → 〈x, y, z〉 denotes the current position of the ith amino-acid of

the sequence in the three dimensional space, ||w(i) − w(i + 1)|| =
√

2 indicates that two

consecutive amino-acids have the same fixed distance, ∀i 6=j||w(i) − w(j)|| ≥ 2 indicates

that two consecutive amino-acids cannot overlap one another and each amino-acid occu-

pies a single sphere. This way, the final goal of the PSP problem is to minimize the overall

energy conformation of a protein which is defined by the following formula:

E(w) =
∑

1≤i<n

∑
i+2≤j≤n

contact(w(i), w(j))× Pot(si, sj)

1The 3D position for each atom was obtained using [NLLP10], a specialized bioinformatics package, and
the figure was produced with DINO [Phi03]

67

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

where, contact is 1 iff two amino-acids are immediate neighbors in the three dimen-

sional cube (or lattice) and not sequential in the primary structure, otherwise contact is set

to 0. And Pot defines the energy contribution of two adjacent residues. It is important to

note that some other lattice models have been proposed such as the HP-Model [BW01]

where each amino-acid in the sequence is translated from the 20 symbols alphabet into a

two symbols alphabet (i.e., hydrophobic (H) and polar (P)).

5.3 Features

In order to describe a given problem instance in terms of descriptors or features, a user

might choose one of the following kinds of features: Problem Features encoding general

information about the problem itself and CP features (or solver codification features) en-

coding general information about the CP abstraction of the problem. On the one hand, the

Problem Features set is flexible enough no matter the solving technique (e.g., SAT, CP, LP,

LS, etc.), however, are restricted to a particular problem domain. On the other hand, the

CP feature set is general enough to be used for several problem domains but is limited to a

CP abstraction of the problem.

In general, using one feature set or another is up to the user, in the context of the PSP

problem a user with a bioinformatics background might prefer a biological set of features,

while one with a mathematical and/or constraint programming knowledge might prefer the

CP features. In the following we present both kinds of features taking into account its pros

and cons.

5.3.1 Problem features

This feature set aims to characterize the PSP problem and was obtained from the extensive

machine learning literature on protein fold prediction [PC03, DpAD10, CB06]. In order

to build the feature set, every amino-acid in the primary structure is replaced by the index

1, 2 or 3 according to the group it belongs, i.e., Hydrophobicity, Volume, Polarity and

Polarizability (see Table 5.1). For instance, the sequence RSTVVH is encoded as 122332

based on the hydrophobicity attribute. This encoding is used to compute the following set

68

5.3 Features

of descriptors:

• Composition: 3 features representing the percentage of each group in the sequence.

• Transition: 3 features representing the frequency with which a residue from groupi

is followed by a residue from groupj (or vice versa).

• Distribution: 15 features representing the fraction in the sequence where the first

residue, 25%, 50%, 75% and 100% of the residues are contained for each encoding

in Table 5.1.

Attribute Group 1 Group 2 Group 3
Hydrophobicity R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W

Volume G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W
Polarity L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D

Polarizability G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W

Table 5.1: Amino-acid feature’s group

In total the feature set is a composition of 105 (84+20+1) features or descriptors:

84 ((15+3+3)×4) according to Table 5.1 and the previous descriptors, i.e., Composition,

Transition and Distribution. 20 descriptors which represent the proportion of each amino-

acid in the sequence. Finally the size of the sequence.

5.3.2 CP features

This feature set is a collection of 32 descriptors. These features include general information

about the CP encoding of the problem and are described as follows:

• Problem definition (4 features): Number of variables, constraints, variables as-

signed/not assigned at the beginning of the search.

• Variables size information (6 features): Size prod, sum, min, max, mean and

variance of all variables domain size.

• Variables degree information (8 features): min, max, mean and variance of all

variables degree (resp. variables’ domain/degree)

69

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

• Constraints information (6 features): The degree (or arity) of a given constraint c

is represented by the total number of variables involved in c. Likewise the size of c

is represented by the product of its corresponding variables. Taking into account this

information, the following features are computed: min, max, mean of constraints

size and degree.

• Filtering cost category (8 features): Each constraint c is associated a category2.

In this way, we compute the number of constraints for each category. Intuitively

each category represents the implementation cost of the filtering algorithm. Cat =

{Exponential, Cubic, Quadratic, Linear expensive, Linear cheap, Ternary, Binary,

Unary}. Where Linear expensive (resp. cheap) indicates the complexity of a linear

equation constraint and the last three categories indicate the number of variables

involved in the constraint. More information about the filtering cost category can be

found in [Gec06].

Notice that similar features have been previously used to characterize SAT problems

in [XHHLB07] and CSPs in [GKMN10]. The former set of features is limited to SAT,

while the latter, among other properties, include information about partial satisfiability of

the constraints (so called alldifferent statistics).

5.4 Algorithm portfolios

A portfolio algorithm is usually built on top of the general framework described in Figure

5.2. This framework is divided in two main phases: offline and online. During the offline

phase a heuristic model is defined and used later on during the online (or testing) phase to

identify the most appropriate algorithm to solve a given problem instance.

The offline phase requires an experimented user to identify a target distribution of prob-

lems in order to define a representative set of training instances. Afterwards, a pair 〈xi, yi〉
is computed for each training instance, where xi and yi represent respectively the vector of

2Out of 8 categories, detailed in
http://www.gecode.org/doc-latest/reference/classGecode 1 1PropCost.html

70

5.4 Algorithm portfolios

Target Problem
Distribution

Compute Training
Information

Features
Pre-Processing

Learn a
Heuristics Model

Offline

Compute
Features

Feature
Normalization Best Heuristic

Online

Figure 5.2: Traditional algorithms portfolio framework

features and the best algorithm for the ith example in the training set. Subsequently, a fea-

ture pre-processing step is used to remove irrelevant features and normalize feature values.

In this context, irrelevant features do not increase the performance of the classifier, for in-

stance, features with the same value overall training instances. Finally, a machine learning

technique (e.g., Decision trees, SVMs, Case-based reasoning, Logistic regression, etc) is

used to obtain the so-called heuristics model which defines a function I → Alg, where I
is a feature vector representing a problem instance and Alg the most suitable algorithm to

solve the given instance. On the other hand, the online phase is executed each time a new

instance I arrives. Thus, it is only necessary to compute and normalize the feature vector

corresponding to I in order to predict the best algorithm based on the heuristics model.

As pointed out in Chapter 3, in the literature, there exists a wide variety of machine

learning algorithms to build a portfolio. For instance, SATzilla [XHHLB07] uses linear re-

gression to build the portfolio based on an estimation of algorithm’s runtime, CPHYDRA

[OHH+08] uses a case-based reasoning framework to build a heuristics model, and AQBF

[PT07] uses traditional machine learning algorithms (decision trees, 1-nearest neighbor,

decision rules and logistic regression). However, it is also worth mentioning that none of

these learning techniques can be expected to be the best one for all existing problems. In-

deed, the selection of the machine learning algorithm can also be seen as another layer of

71

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

the algorithm selection problem [Bre96].

A classical portfolio is learned by taking into account the overall computational time

to solve a set of problem instances. For instance, SATzilla [XHHLB07], a well known

portfolio for SAT problems, builds a regression model in order to estimate the solving time

of each constitutive SAT solver. In this way, once an unseen instance arrives SATzilla

selects the algorithm with minimal expected run-time.

However, solving a constraint optimization problem involves finding the best solution

and proving that such a solution is indeed the optimal one. Unfortunately, in many cases

this process cannot be completed within a reasonable amount of time and the system must

provide the user with the best solution found so far. Following this idea, building the

portfolio using algorithm’s runtime is not an alternative. A solution would be building

the portfolio taking into account the quality or cost of the solution found after some fixed

amount of computational time (e.g., time-out parameter).

5.4.1 Algorithm subset selection

An important consideration before building a portfolio is the definition of its constitutive

algorithms. In many situations, selecting the right subset of algorithms might improve the

overall performance of the system. For instance, SATzilla selects the best subset of solvers

by selecting candidates that are not well correlated with each other, and executes an ex-

haustive search with the remaining subset. However, exhaustive search involves exploring

2n−1 (where n is the number of solvers) subsets which is computationally very expensive,

so that exhaustive search is not desirable for a large pool of heuristics. Additionally, it is

also necessary to determine when two solvers are not well correlated, which is still an open

question.

Supporting this claim, we propose to borrow the ideas from feature selection methods

[GE03] to choose the best subset of algorithms. Usually a feature selection method imple-

ments grid search in order to find the best feature set. The two most common algorithms

are forward and backward selection. The former starts with an empty subset and incremen-

tally adds variables until no improvement is found; while the latter starts with the full set

and incrementally removes one variable at a time until no improvement is reached. Here,

72

5.5 Experiments

we chose forward selection since we would prefer a small subset of algorithms to build the

classifier.

As a performance metric, we consider the overall mean solution cost. Notice that we

could have also used the accuracy of the machine learning algorithm; however, higher ac-

curacy does not necessarily lead to a better performance, since misclassifying near-optimal

heuristics is not as critical as correctly classifying the ones with a high solution cost.

In order to validate the algorithm subset selection method we used the traditional 10-

fold cross-validation technique (see Chapter 2), but for each iteration the learner selects

the best subset of algorithms by performing an inner 10-fold cross-validation. Figure 5.3

depicts the strategy, the entire data-set D is divided into 10 subsets {D1, D2, . . . , D10} for

each subset Di the heuristics model is defined with L = D −Di , where L itself employs

an inner 10-fold cross-validation to determine the right subset of heuristics in the portfolio

before testing on Di.

Algorithm 5.1 shows the forward heuristic selection method used in order to compute

the right subset of algorithms at each iteration of the 10-fold cross-validation procedure.

Alg represents the full set of algorithms and D indicates the current training set. It is

also important to notice that EnergyEval uses an inner 10-fold cross-validation in order

to obtain the mean energy evaluation considering D and SS ′, where D represents a set

of instances and SS ′ represents a subset of algorithms to build the portfolio. Finally, SS

stores the final subset of algorithms that will be then used to build the portfolio for the

current iteration of the outer 10-fold cross-validation procedure. Therefore algorithms not

included in SS are not considered at this iteration.

5.5 Experiments

In this chapter, we use the Gecode model proposed in [CDD08]. All algorithms (see Chap-

ter 2) are home-made implementations integrated into the Gecode-2.1.1 constraint solver.

We experimented with 180 real sequences from [DD17] of sizes ranging from 31 to 1003,

and performed 10-fold cross-validation to evaluate the model with an inner 10-fold cross-

validation for learning the final subset of heuristics. All experiments were conducted on

3It is important to notice that other constraint programming approaches (e.g., [PDP05], [MSR+09]) are
able to deal with instances up to 250 elements.

73

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

Algorithm 5.1 Forward Algorithm Selection (Algorithms Alg, Data D)

1: SS = {}
2: Best Energy =∞
3: repeat
4: BestA = None
5: for each Algorithm A in Alg and not in SS do
6: SS ′ = SS ∪ {A}
7: if EnergyEval(SS ′, data) < BestEnergy then
8: BestA = A
9: BestEnergy = EnergyEval(SS ′, D)

10: end if
11: end for
12: if BestA == None then
13: SS = SS ∪ {BestA}
14: end if
15: until BestA == None or SS = Alg
16: return SS

heuristic subset selection

 Train

D

 Train
 Train
 Train

Test

Val
Val

Val

aaaaaaaaaa
.
.
.

Test

 TrainVal

 Train
 Train aaaaa
 Train

Val
Val

Val

aaaaaaaaaa
.
.
.

Val

.

.

.

 Train

aaaaaaaaaa

Val

 TrainVal

 Train
 Train

Test

Val
Val

.

.

.

L1
L2
L3

L10

L1
L2
L3

L10

L1
L2
L3

L10

1

D2

D10

Figure 5.3: Experimental validation using 10-fold cross-validation and an inner forward selec-
tion

74

5.5 Experiments

Linux boxes with 2 GB of RAM and 1.8 Ghz Intel processors.

Initial experiments in [CDD08] suggested that lexico is a powerful heuristic for the PSP

problem, therefore we explored an extension of traditional variable selection algorithms,

this novel version is presented as follows:

1. Select the first unassigned variable Xi if and only if Xi+1 is assigned.

2. If the previous step cannot be satisfied, then select the variable according to a given

heuristic criterion (e.g., dom-wdeg, domFD, etc.).

! "! #!! #"!
!$

!%&"

!%

!#&"

!#

!!&"

!
'(#!

)

*+,-.+/0,

1
+
0
23
4

-30000

-25000

-20000

-15000

-10000

-5000

-0

En
er
gy

Figure 5.4: wdeg Vs wdeg+

The algorithms which follow the strategy mentioned above would be named as: dom-

wdeg+, wdeg+ domFD+ and impacts+. Figure 5.4 shows the performance of wdeg (red

points) against its novel version wdeg+ (black points), each point (either red and black)

indicates the solution cost (y-axis) for a given instance (x-axis) and red points above the

black ones indicate that wdeg+ is better than wdeg. The data have been sorted according to

the performance of wdeg+. In this figure we observe that wdeg+ is pretty effective for the

PSP problem, therefore it is worth including the novel version of each algorithm into the

portfolio.

75

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

Overall, we are considering a set of 10 variable selection heuristics Hvar = {lexico,

mindom, dom-wdeg, wdeg, domFD, impacts, dom-wdeg+, wdeg+, domFD+, impacts+ },
2 value selection algorithms Hval = {min-val, med-val}, and finally it is also well known

that restarting the search might improve the performance, therefore the initial cutoff value

c is set to 1000; the cutoff increase policy is by multiplying c by 1.2 (geometric factor).

The restart policy is considered for all heuristics, (except lexico and mindom). In total we

consider a collection of 18 heuristics candidates, 8 variable selection × 2 value selection

+ 2 (impacts and impacts+). Notice that impacts and impacts+ are variable/value selection

techniques.

We use the weka [FHH+05] implementation, i.e., J48, of the C4.5 algorithm [Qui93]

with its default parameter settings. Although J48 supports continuous features values we

experimentally found that including a feature discretization step improved the accuracy

of the machine learning algorithm. So that, a supervised discretization method is used to

translate continuous features values into discrete values (see [WF05] for further details).

Strategy Accuracy % Mean
〈domFD+, med-val〉 18.3 -10437
〈domFD+, min-val〉 17.3 -10310
〈lexico,min-val〉 21.1 -10109
〈ALL, bio〉 38.9 -11418
〈ALL, cp〉 42.7 -11502
〈ALL, cp+bio〉 38.9 -11401
〈FS, bio〉 40.6 -12021
〈FS, cp〉 42.2 -12168
〈FS, cp+bio〉 40.0 -12085

Table 5.2: Overall strategies solution cost with a 5-minute timeout

Table 5.2 summarizes the performance for all strategies with a 5-minute timeout. In this

table Accuracy indicates the percentage of times that a given strategy Si is the winner

considering a perfect portfolio and Mean indicates the mean solution cost overall instances

using 10-fold cross-validation as explained in Section 5.4.1. Additionally, cp, bio, cp+bio

indicate respectively the use of the CP feature set, the bio feature set and a concatenation of

CP+bio features, and the best performing strategy (w.r.t. both accuracy and mean solution

76

5.5 Experiments

cost) is indicated in bold.

The first three rows indicate the performance of the best three single heuristics, i.e.,

〈domFD+,med-val〉, 〈domFD+,min-val 〉 and 〈lexico,min-val〉. The next three rows indi-

cate the performance of the portfolios considering all heuristics candidates, i.e., 〈ALL,bio〉,
〈ALL,cp〉, and 〈ALL,cp+bio〉. Finally, the last three rows indicate the performance of the

portfolio using Forward Selection (FS) to automatically identify the best subset of heuris-

tics, i.e., 〈FS,bio〉, 〈FS,cp〉, and 〈FS,cp+bio〉 .

As can be observed the three features sets exhibit close performances; however, using

the cp feature set is slightly better than the bio and cp+bio features sets. An alternative

explanation lies in the fact that the model is a CP codification of the biological problem

which represents a high level abstraction and does not cover all biological properties of the

PSP problem. For instance, in real situations amino-acids can be placed anywhere in IR3,

but in the CP codification amino-acids must be placed inside the lattice model.

Another observation is that the portfolio with the best accuracy is not necessarily the

one with best solution cost. For instance 〈ALL,cp〉 reached the best accuracy but its so-

lution cost is -11502 against -12168 for 〈FS,cp〉 which reported the second best accuracy

overall strategies. Moreover, as one might have expected, the overall solution cost is on

average better when considering the automatic algorithm selection process. It is also worth

mentioning that we also experimented with a random heuristic selection by computing the

mean across 10 independent runs for each instance. However, this random selection strat-

egy exhibited a mean solution cost of -6631 which is outperformed by all the portfolio

strategies in Table 5.2.

A detailed examination of the cp+bio feature set is presented in Figures 5.5 and 5.6.

Each black point represents the performance of the portfolio for a given instance and each

red point represents the performance of each comparative algorithm, i.e., 〈domFD+, min-

val〉 and 〈domFD+, med-val〉, the two best single heuristics. For analysis purposes here-

after, data have been sorted according to the performance of black points. Notice that since

the optimization goal is to find the minimal energy configuration, red points above the black

ones indicate that the portfolio is better.

Figure 5.5(a) shows the performance of 〈domFD+, med-val〉 against 〈ALL, cp+bio〉
(building the portfolio using all available heuristics); in this figure 〈ALL, cp+bio〉 is better

77

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

! "! #! $! %! &!! &"! &#! &$! &%!
!"'!!!

!"!!!!

!&'!!!

!&!!!!

(!'!!!

(((((!

)*+,-*./+

0
*
/
12
3

&$(!!!(&!!"!&!!!(4!&5!#676&/8!#9

(a) 〈domFD+, med-val〉 Vs 〈ALL, cp+bio〉

! "! #! $! %! &!! &"! &#! &$! &%!
!"'!!!

!"!!!!

!&'!!!

!&!!!!

(!'!!!

(((((!

)*+,-*./+

0
*
/
12
3

&'(!!!(&!!&!&!!!(4!&5!6&!$#/7!#8

(b) 〈domFD+, min-val〉 Vs 〈ALL, cp+bio〉

Figure 5.5: Experimental evaluation using all available heuristics

78

5.5 Experiments

! "! #! $! %! &!! &"! &#! &$! &%!
!"'!!!

!"!!!!

!&'!!!

!&!!!!

(!'!!!

(((((!

)*+,-*./+

0
*
/
12
3

&$(!!!(&!!"!&!!!(4!&5!#676&/8!#9

(a) 〈domFD+, med-val〉 Vs 〈FS, cp+bio〉

! "! #! $! %! &!! &"! &#! &$! &%!
!"'!!!

!"!!!!

!&'!!!

!&!!!!

(!'!!!

(((((!

)*+,-*./+

0
*
/
12
3

&'(!!!(&!!&!&!!!(4!&5!6&!$#/7!#8

(b) 〈domFD+, min-val〉 Vs 〈FS, cp+bio〉

Figure 5.6: Experimental evaluation using forward heuristic selection

79

5. BUILDING PORTFOLIOS FOR THE PROTEIN STRUCTURE PREDICTION
PROBLEM

than 〈domFD+, med-val〉 in 107 instances and worse in 73 instances. Figure 5.5(b) shows

the performance of 〈domFD+, min-val〉 against 〈ALL, cp+bio〉; here the portfolio is better

in 108 instances and worse in 62 instances.

Figure 5.6(a) shows the performance of 〈domFD+, med-val〉 againts 〈FS, cp+bio〉 (build-

ing the portfolio using the algorithm subset selection); in this figure 〈FS, cp+bio〉 is better

than 〈domFD+, med-val〉 in 109 instances and worse in 43 instances. Figure 5.5(b) shows

the performance of 〈domFD+, min-val〉 against 〈FS, cp+bio〉; here the portfolio is better in

96 instances and worse in 45 instances.

0 20 40 60 80 100 120 140 160 180
−25000

−20000

−15000

−10000

 −5000

 0

Instances

En
er

gy

Figure 5.7: 〈ALL, cp+bio〉 Vs 〈FS, cp+bio〉

Finally, Figure 5.7 depicts the performance using all algorithms, i.e., 〈ALL, cp+bio〉,
against the selection of the right subset of them, i.e., 〈FS, cp+bio〉. In this figure we observe

that in 43 instances is better to use the forward heuristic selection method and only in 27

instances is better to build the portfolio with all candidates.

5.6 Summary

80

5.6 Summary

In this chapter, we have studied the application of Machine Learning techniques to build

algorithms portfolios in the context of the PSP problem. We experimented two different

feature sets. That is, features describing general biological properties of the problem and

features extracted directly from the CP abstraction of the problem. Interestingly, in both

situations, the resulting portfolio outperformed (w.r.t. solution quality) the best single al-

gorithm.

The second contribution lies in the use of algorithm’s cost solution in order to build

the heuristics model which itself is based on a traditional multi-class classification algo-

rithm, i.e., decision tree learning. Finally, our last contribution corresponds to the use of

forward heuristic selection in order to chose the right subset of algorithms before building

the heuristics model.

81

Chapter 6

Continuous Search in Constraint
Programming

In the previous chapter, we studied a potential application of Machine Learning to the Al-

gorithm Selection Problem for optimization settings by means of a well-known problem

drawn from bioinformatics. In this chapter, we extend the traditional viewpoint of the Al-

gorithm Selection Problem with Continuous Search, a novel paradigm. Continuous Search

comes in two functioning modes: the production mode, which intends to solve new prob-

lem instances by means of using the current heuristics model; and the exploration mode,

which reuses these instances to train and improve the heuristics model through Machine

Learning during the computer idle time.

6.1 Introduction

In order to efficiently solve a Constraint Satisfaction Problem the user is usually left with

the tedious task of tuning the search parameters of the constraint solver, and this is both

time consuming and not necessary straightforward. Parameter tuning indeed appears to

be conceptually simple, (i/ try different parameter settings on representative problem in-

stances, ii/ pick up the setting yielding best average performance). Still, most users would

easily consider instances which are not representative of their problems, and get misled.

The goal of this contribution is to allow any user to eventually get their constraint

83

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

solver achieving a top performance on their problems. The proposed approach is based

on the original concept of Continuous Search (CS), gradually building a heuristics model

tailored to the user’s problems, and mapping a problem instance onto some appropriate

parameter setting. A main contribution compared to the state-of-the-art (see Chapter 3) is

to relax the requirement of a large set of representative problem instances to be available

beforehand to support offline training. The heuristics model is initially empty (set to the

initial default parameter setting of the constraint solver) and it is enriched along a lifelong

learning approach, exploiting the problem instances submitted by the user to the constraint

solver.

Formally, CS interleaves two functioning modes. In production or exploitation mode,

the instance submitted by the user is processed by the constraint solver; the current heuris-

tics model is used to parameterize the constraint solver depending on the instance at hand.

In learning or exploration mode, CS reuses the last submitted instance, running other

heuristics than the one used in production mode in order to find which heuristics would

have been most efficient for this instance. CS thus gains some expertise relative to this

particular instance, which is used to refine the general heuristics model through Machine

Learning (see Chapter 2). During the exploration mode, new information is thus gener-

ated and exploited in order to refine the heuristics model, in a transparent manner: without

requiring the user’s input and by only using the idle computer’s CPU cycles.

The chapter claim is that the CS methodology is realistic (most computational systems

are always on, especially production ones) and compliant with real-world settings, where

the solver is critically embedded within large and complex applications. The CS com-

putational cost must be balanced against the huge computational cost of offline training

[GHBF05, HW09b, GS01, PT07, WB08, XHHLB07]. Finally, lifelong learning appears a

good way to construct an efficient and agnostic heuristics model, and able to adapt to new

modeling styles or new classes of problem.

This chapter is organized as follows. Section 6.2 introduces the Continuous Search

paradigm. Section 6.3 details the proposed algorithm. Section 6.4 reports on its experi-

mental validation. Section 6.5 discusses previous work and the chapter concludes with a

summary in Section 6.6.

84

6.2 Continuous Search in Constraint Programming

Instances

Exploitation mode
Exploration mode

...I0 I1 Ik

Figure 6.1: Continuous Search scenario

6.2 Continuous Search in Constraint Programming

The Continuous Search paradigm, illustrated on Figure 6.1, considers a functioning system

governed from a heuristics model (which could be expressed as e.g., a set of rules, a knowl-

edge base, a neural net). The core of continuous search is to exploit the problem instances

submitted to the system along a 3-step process:

1. unseen problem instances are solved using the current heuristics model;

2. these instances are solved with other heuristics, yielding new information. This in-

formation associates to the description x of the example (accounting for the problem

instance and the heuristics), a boolean label y (the heuristics improves/does not im-

prove on the current heuristics model);

3. the training set E , augmented with these new examples (x, y), is used to revise or

relearn the heuristics model.

The Exploitation or production mode (step 1) aims at solving new problem instances

as quickly as possible. The exploration or learning mode (steps 2 and 3) aims at learning a

more accurate heuristics model.

Definition 6.1 A continuous search system is endowed with a heuristics model, which is

used as is to solve the current problem instance in production mode, and which is improved

using the previously seen instances in learning mode.

85

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

Initially, the heuristics model of a continuous search system is empty, that is, it is set

to the default settings of the search system. In the proposed CS-based constraint program-

ming, the default setting is a given heuristics noted DEF in the following (Section 6.3).

Assumedly, DEF is a reasonably good strategy on average; the challenge is to improve on

DEF for the particular types of instances which have been encountered in production mode.

6.3 Dynamic Continuous Search

The Continuous Search paradigm is applied to a restart-based constraint solver, defining

the dyn-CS algorithm. After a general overview of dyn-CS, this section details the different

modules thereof.

Figure 6.2 depicts the general scheme of dyn-CS. The constraint-based solver involves

several restarts of the search. A restart is launched after the number of backtracks in the

search tree reaches a user-specified threshold. The search stops after a given time limit.

Before starting the tree-based search and after each subsequent restarts, the description x of

the problem instance is computed (Section 6.3.1). We will call checkpoints the calculation

of these descriptions.

...

Checkpoint
f(x)=Hk

Checkpoint
f(x)=Hk

Checkpoint
f(x)=Hk

Figure 6.2: dyn-CS: selecting the best heuristic at each restart point

The global picture of the Continuous Search paradigm is described in Figure 6.3. In

production (or exploitation) mode, the heuristics model f is used to compute the heuristic

f(x) to be applied for the entire checkpoint window, i.e., until the next restart. Not to

be confused with the choice point which selects a variable/value pair at each node in the

86

6.3 Dynamic Continuous Search

search tree, dyn-CS selects the most promising heuristic at a given checkpoint and uses it

for the whole checkpoint window. In learning (or exploration) mode, other combination

of heuristics are applied (Section 6.3.4) and the eventual result (depending on whether

the other heuristics improved on heuristics f(x)) leads to build training examples (Section

6.3.3). The augmented training set is used to relearn the heuristics model f(x).

f(x) = H

Learning
hypothesis f(x)

TO/Sol?

Perturbations to
solve I

Search

checkpoint

no

yes

User

Instance I

Exploitation mode

Exploration mode

... k

1H
2H

nH

Figure 6.3: Continuous Search in Constraint Programming

6.3.1 Representing instances: feature definition

At each checkpoint (or restart), the description of the problem instance is computed includ-

ing static and dynamic features.

While a few of these descriptors had already been used in SAT portfolio solvers [HHHLB06,

XHHLB07], many descriptors had to be added as CSPs are more diverse than SAT in-

stances: SAT instances only involve boolean variables and clauses, contrasting with CSPs

using variables with large domains, and a variety of constraints and pruning rules [BCDP07,

BHZ06, PBG05].

87

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

6.3.1.1 Static features

This feature set is a collection of 32 features previously defined in Chapter 5 (see Section

5.3.2), these features encode general information of a given problem instance; they are

computed once for each instance as they are not modified along the resolution process.

The static features also allow one to discriminate between types of problems, and different

instances.

6.3.1.2 Dynamic features

Two kinds of dynamic features are used to monitor the performance of the search effort at a

given checkpoint: global statistics describe the progress of the overall search process; local

statistics check the evolution of a given strategy.

• Heuristic criteria (15 features): each heuristic criteria (i.e., wdeg, dom-wdeg, im-

pacts) is computed for each variable; their prod, min, max, mean and variance

over all variables are used as features.

• Constraints weight (12 features): likewise report the min, max, mean and variance

of all constraints weight (i.e., constraints wdeg). Additionally the mean for each fil-

tering cost category is used as feature. Where category is defined as follows, Cat =

{Exponential, Cubic, Quadratic, Linear expensive, Linear cheap, Ternary, Binary,

Unary }. Where Linear expensive (resp. cheap) indicates the complexity of a linear

equation constraint and the last three categories indicate the number of variables in-

volved in the constraint. More information about the filtering cost category can be

found in [Gec06].

• Constraints information (3 features): min, max and mean of constraint’s run-prop,

where run-prop indicates the number of times the propagation engine has called the

filtering algorithm of a given constraint.

• Checkpoint information (33 features): for every checkpointi relevant information

from the previous checkpointi−1 (when available) is included into the feature vec-

tor. From checkpointi−1 we include the total number of nodes and maximum search

88

6.3 Dynamic Continuous Search

depth. From the latest non-failed node, we consider the total number of assigned

variables, satisfied constraints, sum of variables wdeg (resp. size and degree) and

product of variables degree (resp. domain, wdeg and impacts) of non assigned vari-

ables. Finally using the previous 11 features the mean and variance is computed

taking into account all visited checkpoints.

The attributes listed above include a collection of 95 features.

6.3.2 Feature pre-processing

Feature pre-processing is a most important step in Machine Learning [WF05], which can

significantly improve the prediction accuracy of the learned hypothesis. Typically, the

descriptive feature detailed above are on different scales; the number of variables and/or

constraints can be high while the impact of (variable, value) is between 0 and 1. A data

normalization step is performed using the min-max normalization [SSK06] formula:

v′i =

(
vi −mini

maxi −mini

)
× (maxnew −minnew) +minnew

Whereminnew=−1,maxnew=1 andmini (resp. maxi) correspond to the normalization

value for the i-th feature. In this way, feature values are scaled down in [−1, 1]. Although

selecting the most informative features might improve the performance, in this chapter we

do not consider any feature selection algorithm, and only features that are constant over all

examples are removed as they offer no discriminant information.

6.3.3 Learning and using the heuristics model

The selection of the best heuristic for a given problem instance is formulated as a binary

classification problem, as follows. Let H denote the set of k candidate heuristics, two

particular elements inH being DEF (the default heuristics yielding reasonably good results

on average) and dyn-CS, the (dynamic) ML-based heuristics model initially set to DEF.

Definition 6.2 Each training example pi = (xi, yi) is generated by applying some heuris-

tics h (h ∈ H, h 6= dyn-CS) at some checkpoint in the search tree of a given problem

89

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

instance. Description xi (∈ IR97) is made of the static feature values describing the prob-

lem instance, the dynamic feature values computed at this check point and describing the

current search state, and two additional features: checkpoint-id gives the number of check-

points up to now and cutoff-information gives the cutoff limit of the next restart. The asso-

ciated label yi is positive iff the associated runtime (using heuristic h instead of dyn-CS at

the current checkpoint) improves on the heuristics model-based runtime (using dyn-CS at

every checkpoint); otherwise, label yi is negative.

If the problem instance cannot be solved (whatever the heuristics used, i.e., time out dur-

ing the exploration and exploitation modes), it is discarded (since the associate training

examples do not provide any relevant information).

In production mode, the hypothesis f learned from the above training examples (their

generation is detailed in next subsection) is used as follows:

Definition 6.3 At each checkpoint, for each h ∈ H, the description xh and the associated

value f(xh) are computed.

If there exists a single h such that f(xh) is positive, it is selected and used in the subsequent

search effort.

If there exists several heuristics with positive f(xh), the one with maximal value is se-

lected1.

If f(xh) is negative for all h, the default heuristic DEF is selected.

6.3.4 Generating examples in Exploration mode

The Continuous Search paradigm uses the idle computer’s CPU cycles to explore different

heuristic combinations on the last seen problem instance, and see whether one could have

done better than the current heuristics model on this instance. The rationale for this ex-

ploration is that improving on the last seen instance (albeit meaningless from a production

viewpoint since the user already got a solution) will deliver useful indications as to how to

best deal with further similar instances. In this way, the heuristics model will expectedly

be tailored to the distribution of problem instances actually dealt with by the user.
1The rationale for this decision is that the margin, i.e. the distance of the example w.r.t the separating

hyperplane, is interpreted as the confidence of the prediction [Vap95].

90

6.3 Dynamic Continuous Search

The CS exploration proceeds by slightly perturbing the heuristics model. Let dyn-

CS−i,h denote the policy defined as: use heuristics model dyn-CS at all checkpoints except

the i-th one, and use heuristic h at the i-checkpoint.

Algorithm 6.1 Exploration-time(instance: I)

1: E = {} //initialize the training set
2: for all i in checkpoints(I) // loop over checkpoints (I) do
3: for all h inH // loop over all heuristics do
4: Compute x describing the current checkpoint and h
5: if h 6= dyn-CS then
6: Launch dyn-CS −i,h

7: Define y = 1 iff dyn-CS −i,h improves on dyn-CS and −1 otherwise
8: E ← E ∪ {x, y}
9: end if

10: end for
11: end for
12: return E

Algorithm 6.1 describes the proposed Exploration mode for Continuous Search. A lim-

ited number (10 in this work) of checkpoints in the dyn-CS based resolution of instance I
are considered (line 2); for each checkpoint and each heuristic h (distinct from the dyn-CS),

a lesion study is conducted, applying h instead of dyn-CS at the i-th checkpoint (heuris-

tics model dyn-CS −i,h); the example (described from the i-th checkpoint and h) is labelled

positive iff dyn-CS −i,h improves on dyn-CS, and added to the training set E , once the explo-

ration mode for a given instance is finished the hypothesis model is updated by retraining

the SVM including the feature pre-processing as stated in Section 6.3.2.

6.3.5 Imbalanced examples

It is well known that one of the heuristics often performs much better than the others for a

particular distribution of problems [CB08]. Accordingly, negative training examples con-

siderably outnumber the positive ones (it is difficult to improve on the winning heuristics).

This phenomenon, known as Imbalanced distribution, might severely hinder the SVM al-

gorithm [AKJ04]. Two simple ways of enforcing a balanced distribution in such cases,

91

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

intensively examined in the literature and considered in earlier work [AHS09], are to over-

sample examples in the minority class (generating additional positive examples by Gaus-

sianly perturbing the available ones) and/or undersample examples in the majority class.

Another options is to use prior knowledge to rebalance the training distribution. For-

mally, instead of labeling an example positive (resp, negative) iff the associated runtime is

strictly less (resp. greater) than that of the heuristic model, we consider the difference be-

tween the runtimes. If the difference is less than some tolerance value dt, then the example

is relabeled as positive.

The number of positive examples and hence the coverage of the learned heuristics

model increase with dt; in the experiments (Section 6.4), dt is set to 20% of the time

limit iff time-exploitation (time required to solve a given instance in production mode) is

greater than the 20% of the time limit, otherwise dt is set to time-exploitation.

6.4 Experimental validation

This section reports on the experimental validation of the proposed Continuous Search

approach. All tests were conducted on Linux Mandriva-2009 boxes with 8 GB of RAM

and 2.33 Ghz Intel processors.

6.4.1 Experimental setting

The presented experiments consider 496 CSP instances taken from different repositories.

Details of the bibd and lfn problem families are presented in Chapter 4 (see Section 4.4.1).

• nsp: 100 nurse-scheduling [DT00] instances from the MiniZinc [NSB+07] reposi-

tory. This problem consists in defining the work schedule for a set of nurses such

that each nurse might have at least n days off after m consecutive working days, and

no nurse can work x consecutive nights.

• bibd: 83 Balance Incomplete Block Design instances from the XCSP [RL09] repos-

itory, translated into Gecode using Tailor [GMR07].

92

6.4 Experimental validation

• js: 130 Job Shop instances [BHL05] from the XCSP repository. This problem con-

sists in finding the schedule that minimizes the time to complete a set of n jobs with

a set of m shared resources. Each job consists of a set of operations that might se-

quentially finished. That is, one operation should be completed before starting the

next one. The original problem formulation is an optimization problem, however,

instances in the XCSP repository were formulated as CSPs by accepting solutions

with a given solution cost.

• geom: 100 Geometric [BHL05] instances from the XCSP repository. This problem

consists of a graph with n variables that are randomly placed in a two dimensional

cartesian plane. Edges are added to the graph iff the distance between the two vari-

ables is less or equal to
√

2. Finally, similarly to homogeneous random CSPs, some

edges from the resulting graph are chosen to select pairs of incompatible values for

the variables.

• lfn: 83 Langford-number instances, translated into Gecode using global and chan-

nelling constraints.

The learning algorithm used in the experimental validation of the proposed approach is

a Support Vector Machine with Gaussian kernel, using the libSVM implementation with

default parameters [CL01]. All considered CSP heuristics (see Chapter 2.2.1) are home-

made implementations integrated in the Gecode 2.1.1 [Gec06] constraint solver. dyn-CS

was used as a heuristics model on the top of the heuristics2 set H = {dom-wdeg, wdeg,

dom-deg, min-dom, impacts }, taking min-value as value selection heuristic. The cutoff

value used to restart the search was initially set to 1000 and the cutoff increase policy to

×1.5 (geometric factor), the same cutoff policy is used in all the experimental scenarios.

Continuous Search was assessed comparatively to the best two dynamic variable order-

ing heuristics on the considered problems, namely dom-wdeg and wdeg. It must be noted

that Continuous Search, being a lifelong learning system, will depend on the curriculum,

that is the order of the submitted instances. If the user “pedagogically” starts by submitting

2It is also important to notice that domFD is not considered in this chapter due to the complexity of
computing weak dependencies might include an overhead when this heuristic is not used at a particular state
of the search.

93

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

informative instances first, the performance in the first stages will be better than if untyp-

ical and awkward instances are considered first. For the sake of fairness, the performance

reported for Continuous Search on each problem instance is the median performance over

10 random orderings of the CSP instances.

6.4.2 Practical performances

The first experimental scenario involves a timeout of 5 Minutes. Figure 6.4 highlights the

Continuous Search results on Langford-number problems, comparatively to dom-wdeg and

wdeg. The x-axis gives the number of problems solved and the y-axis presents the cumu-

lated runtime. The (median) dyn-CS performance (grey line) is satisfactory as it solves 12

more instances than dom-wdeg (black line) and wdeg (light gray line). The dispersion of

the dyn-CS results depending on the instance ordering is depicted from the set of dashed

lines. Indeed traditional portfolio approaches such as [HHHLB06, SM07, XHHLB07] do

not present such performance variations as they assume a complete set of training examples

to be available beforehand.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Solved Instances
0 5 10 15 20 25 30 35 40

tim
e

(s
ec

)

50

100

150

200

250

300

0

Figure 6.4: Langford-number (lfn)

94

6.4 Experimental validation

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Solved Instances
0 10 20 30 40 50 60 70

tim
e

(s
ec

)

50

100

150

200

250

300

0

Figure 6.5: Geometric (geom)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Solved Instances
0 10 20 30 40 50 60 70

tim
e

(s
ec

)

50

100

150

200

250

300

0

Figure 6.6: Balance incomplete block designs (bibd)

95

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Solved Instances
0 10 20 30 40 50 60 70 80

tim
e

(s
ec

)

50

100

150

200

250

300

0

Figure 6.7: Job Shop (js)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Solved Instances
0 10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

50

100

150

200

250

300

0

Figure 6.8: Nurse Scheduling (nsp)

96

6.4 Experimental validation

Figures 6.5-6.8 depict the performance of dyn-CS, dom-wdeg and wdeg on all other

problem families, respectively (bibd, js, nsp, and geom). On the bibd (Figure 6.6) and

js (Figure 6.7) problems, the best heuristics is dom-wdeg, solving 3 more instances than

dyn-CS. Note that dom-wdeg and wdeg coincide on bibd since all decision variables are

boolean.

On nsp (Figure 6.8), dyn-CS solves 9 more problems than dom-wdeg, but is outper-

formed by wdeg by 11 problems. On geom (Figure 6.5), dyn-CS improves on the other

heuristics, solving respectively 3 more instances and 40 more instances than dom-wdeg

and wdeg.

These results suggest that dyn-CS is most often able to pick up the best heuristics on

a given problem family, and sometimes able to significantly improve on the best of the

available heuristics.

All experimental results concerning the first scenario are summarized in Table 6.1, re-

porting for each considered heuristics the number of instances solved (#sol), the total com-

putational cost for all instances (time, in hour), the average time (avg-time, in minutes)

per instance, and the number of instances for each problem family indicated in parenthe-

ses. It is important to notice that the best performing algorithm (w.r.t. runtime efficiency)

is indicated in bold. These results confirm that dyn-CS outperforms dom-wdeg and wdeg,

solving respectively 18 and 41 instances more out of 315. Furthermore, it shows that dyn-

CS is slightly faster than the other heuristics, with an average time of 2.11 minutes, against

respectively 2.39 for dom-wdeg and 2.61 for wdeg.

Problem dom-wdeg wdeg dyn-CS
#sol time(h) avg-time(m) #sol time(h) avg-time(m) #sol time(h) avg-time(m)

nsp (100) 68 3.9 2.34 88 2.6 1.56 77 2.9 1.74
bibd (83) 68 1.8 1.37 68 1.8 1.37 65 2.0 1.44
js (130) 76 4.9 2.26 73 5.1 2.35 73 5.2 2.4
lfn (83) 21 5.2 3.75 21 5.3 3.83 33 4.1 2.96
geom (100) 64 3.9 2.34 27 6.8 4.08 67 3.3 1.98
Total (496) 297 19.7 2.39 274 21.6 2.61 315 17.5 2.11

Table 6.1: Total solved instances (5 Minutes)

The second experimental results using a timeout of 3 Minutes are presented in table 6.2,

as can be observed, decreasing the time limit drastically reduce the total number of solved

97

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

instances for dom-wdeg and wdeg. Therefore, selecting the right heuristic becomes critical.

Here dyn-CS is able to solve 24 and 45 more instances than dom-wdeg and wdeg.

Problem dom-wdeg wdeg dyn-CS
#sol time(h) avg-time(m) #sol time(h) avg-time(m) #sol time(h) avg-time(m)

nsp (100) 61 2.8 1.68 81 2.1 1.26 75 2.2 1.32
bibd (83) 62 1.3 0.94 62 1.3 0.94 60 1.4 1.01
js (130) 74 3.1 1.43 69 3.3 1.52 67 3.4 1.57
lfn (83) 20 3.2 2.31 20 3.2 2.31 32 2.5 1.81
geom (100) 56 2.6 1.56 20 4.3 2.58 63 2.2 1.32
Total (496) 273 13.0 1.57 252 14.2 1.72 297 11.7 1.42

Table 6.2: Total solved instances (3 Minutes)

Another interesting lesson learned from the experiments concerns the difficulty of the

underlying learning problem, and the generalization error of the learned hypothesis. The

generalization error in the Continuous Search framework is estimated by 10-fold Cross

Validation [BE93] on the whole training set (including all training examples generated in

exploration mode). Table 6.3 reports on the predictive accuracy of the SVM algorithm

(with same default setting) on all problem families, with an average accuracy of 67.8%.

As could have been expected, the predictive accuracy is correlated to the performance of

Continuous Search: the problems with best accuracy and best performance improvement

are geom and lfn.

To give an order of idea, 62% predictive accuracy was reported in the context of

SATzilla [XHHLB07], aimed at selecting of the best heuristic in a portfolio.

A direct comparison of the predictive accuracy might however be biased. On the one

hand SATzilla errors are attributed to the selection of some near-optimal heuristics, after

the authors; on the other hand, Continuous Search would involve several selection steps (in

each checkpoint) and could thus compensate from earlier errors.

Timeout bibd nsp geom js lfn Total
3 Min 64.5% 64.2% 79.2% 65.6% 68.2% 68.3%
5 Min 63.2% 58.8% 76.9% 63.6% 73.8% 67.3%

Average 63.9% 61.5% 78.0% 64.6% 71.0% 67.8%

Table 6.3: Predictive Accuracy of the heuristics model (10-fold Cross Validation)

98

6.4 Experimental validation

6.4.3 Exploration time

Now we turn our attention to the CPU time required to complete the exploration mode.

Tables 6.4 and 6.5 show the total exploration time considering a timeout of five and three

minutes for each problem family, the median value is computed taking into account all in-

stance orderings and instance estimates the total exploration time for a single problem-

instance.

As can be seen the time required to complete the exploration mode after solving a

problem-instance is on average no longer than 2 hours. On the other hand, we would like

to point out that since the majority of the instances for the bibd and geom problems can be

quickly solved by dyn-CS, it is not surprising that the required time is significantly inferior

compared with nsp, js and lfn.

Problem Median Instance
nsp 106.8 1.1
bibd 48.3 0.6
js 135.6 1.0
lfn 100.3 1.0
geom 37.6 0.4

Table 6.4: Exploration time in Hours (time-out 3 Minutes)

Problem Median Instance
nsp 151.1 1.5
bibd 73.6 0.9
js 215.6 1.7
lfn 161.8 1.9
geom 71.6 0.7

Table 6.5: Exploration time in Hours (time-out 5 Minutes)

6.4.4 The power of adaptation

Our third experimental test combines instances from different domains in order to show

how CS is able to adapt to changing problems distribution. Indeed, unlike classical portfolio-

based approaches which can only be applied if the training and exploitation sets come from

99

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

the same domain, CS can adapt to changes and provide top performances even if the prob-

lems change.

Problem #Sol time (h)
nsp-geom‡ 55 4.1
nsp-geom† 67 3.4
lfn-bibd‡ 23 5.3
lfn-bibd† 63 2.3

Table 6.6: Total solved instances (5 Minutes)

In this context, Table 6.6 reports the results on the geom (left) and bibd (right) problems

by considering the following two scenarios. In the first scenario, we are going to emulate

a portfolio-based search which would use the wrong domain to train. In nsp-geom‡, CS

incrementally learns while solving the 100 nsp instances, and then solves one by one the

100 geom instances. However, when switching to this second domain, incremental learning

is switched off, and checkpoints adaptation uses the model learnt on nsp. In the second

scenario, nsp-geom† we solve nsp, then geom instances one by one, but this time, we keep

the incremental learning on when switching from the first domain to the second one - as if

CS was not aware of the transition.

As we can see in the first line of the Table, training on the wrong domain gives poor

performance (55 instances solved in 4.1 hours). At contrary, the second line shows that

CS can recover from training on the wrong domain thanks to its incremental adaptation

(solving 67 instances in 3.4 hours). The right part of the Table reports similar results for

the bibd problem.

As can be observed in nsp-geom† and lfn-bibd†, CS successfully identifies the new

distribution of problems solving respectively the same number and 2 less instances than

geom and bibd when CS is only applied to this domain starting from scratch. However the

detection of the new distribution introduces an overhead in the solving time (see results for

single domain in Table 6.1).

100

6.5 Previous Work

6.5 Previous Work

As pointed out in Chapter 3, the application of Machine Learning algorithms to build a port-

folio solver has been widely studied during the last decade. Methods such as: SATzilla

[XHHLB07], CPHYDRA [OHH+08], self -AQME [PT09], etc., typically require a rep-

resentative set of training examples to properly learn a heuristic model to solve a set of

testing instances.

Although previous mentioned strategies were designed for their respective competi-

tions, i.e., SAT, CSP and QBF, some of them can also be used in incremental learning sce-

narios. However, at this point we would like to remark that the goal of this contribution is

not only describing another methodology for using Machine Learning in the context of the

Algorithm Selection Problem. Instead, we present the Continuous Search paradigm which

uses computer’s IDLE time to incrementally learn and tune the parameters of a constraint

solver.

CPHYDRA is based on lazy learning which means that new cases (or samples) can be

easily added to the heuristics model, however, after the training phase is completed each

new case would be defined as a list L=[〈A1,t1〉, 〈A2,t2〉, . . . , 〈An,tn〉]. L represents a

switching policy to execute a selected subset of solvers, ti indicates the time cutoff for the

ith solver in L, and no communication is allowed between the solvers. Therefore, each new

case after the training phase is a combination of solvers by itself. Thus, including such

new case could be impractical as the system might suggest complex switching policies in

the future. Nevertheless, the continuous search paradigm can also be used in this context to

automatically identify the most informative cases during the exploration mode and defining

new switching policies based on those important examples.

In contrast to dyn-CS which is proposed to identify the best CSP heuristic at different

steps of the search, self -AQME was designed for a slightly different context, i.e., QBF

problems. This portfolio solver updates the heuristic model after processing each training

example during the training phase. This procedure can be extended to the testing phase,

however, we foresee two main difficulties. On the one hand, if the expected best solver

finds a solution, the heuristics model is not updated even if there exists another solver

with better runtime. On the other hand, if the runtime cutoff for each solver candidate is

101

6. CONTINUOUS SEARCH IN CONSTRAINT PROGRAMMING

not properly defined, the heuristics model can be misled with sub-optimal solvers, again

because no other heuristic is tried after a solution is reached. These two main disadvantages

can be overcome by using the continuous search paradigm and exploiting computer’s IDLE

time to obtain the true winner solver. Moreover, the exploration mode can also be used to

update the runtime cutoff parameter for each solver candidate by considering the current

distribution of problems.

Hydra [XHLB10] iteratively exploits highly parameterized algorithms (algorithms with

hundreds of thousands of parameters) to incrementally obtain promising configurations for

such algorithm. This algorithm represents an important contribution to the well-known

SATzilla portfolio solver, however, unfortunately such parameterized algorithm does not

exists yet to solve CSPs.

Finally, in [CB05] low-knowledge is used to select the best algorithm in the context

of optimization problems, this work assumes a black-box optimization scenario where the

user has no information about the problem or even about the domain of the problem, and the

only known information is the output (i.e., solution cost for each algorithm in the portfolio).

Unfortunately, this mechanism is only applicable to optimization problems and cannot be

straightforward used to solve CSPs.

6.6 Summary

The main contribution of the presented approach, the Continuous Search framework aims

at designing a heuristics model tailored to the user problem distribution, allowing her to get

top performance from the constraint solver. The representative instances needed to train a

good heuristics model are not assumed to be available beforehand; they are gradually built

and exploited to improve the current heuristics model, by stealing the idle CPU cycles of

the computing system. Metaphorically speaking, the constraint solver uses its spare time

to play against itself and gradually improve its strategy along time; further, this expertise

is relevant to the real-world problems considered by the user, all the more so as it directly

relates to the problem instances submitted to the system.

The experimental results suggest that Continuous Search is able to pick up the best of

a set of heuristics on a diverse set of problems, by exploiting the incoming instances; in

102

6.6 Summary

2 out of 5 problems, Continuous Search swiftly builds up a mixed strategy, significantly

overcoming all baseline heuristics. With the other classes of problems, its performance is

comparable to the best two single heuristics. Our experiments also showed the capacity of

adaptation of CS. Moving from one problem domain to another one is possible thanks to

its incremental learning capacity. This capacity is a major improvement against classical

portfolio-based approaches which only work when offline training and exploitation use

instances from the same domain.

103

Chapter 7

Efficient Parallel Local Search for SAT

Up to now, in this thesis we have explored different approaches to solve combinatorial

problems in sequential settings. In this chapter, our objective is to study the impact of

knowledge sharing on the performance of portfolio-based parallel local search algorithms.

Our motivation is the demonstrated importance of clause-sharing in the performance of

complete parallel SAT solvers. Unlike complete solvers, state-of-the-art local search al-

gorithms for SAT are not able to generate redundant clauses during their execution. In

our settings, each member of the portfolio shares its best configuration (i.e., one which

minimizes conflicting clauses) in a common structure. At each restart point, instead of

classically generating a random configuration to start with, each algorithm aggregates the

shared knowledge to carefully craft a new starting point.

7.1 Introduction

Complete parallel solvers for the propositional satisfiability problem have received signifi-

cant attention recently. These solvers can be divided into two main categories the classical

divide-and-conquer model and the portfolio-based approach. The first one, typically di-

vides the search space into several sub-spaces while the second one lets algorithms compete

on the original formula [HJS09]. Both take advantage of the modern SAT solving architec-

ture [MMZ+01], to exchange the conflict-clauses generated in the system and improve the

overall performance.

105

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

This push towards parallelism in complete SAT solvers has been motivated by their

practical applicability. Indeed, many domains, from software verification to computational

biology and automated planning rely on their performance. On the contrary, since local

search techniques only outperform complete ones on random SAT instances, their paral-

lelizing has not received much attention so far. The main contribution on the parallelization

of local search algorithms for SAT solving basically executes a portfolio of independent al-

gorithms which compete without any communication between them. In our settings, each

member of the portfolio shares its best configuration (i.e., one which minimizes the num-

ber of conflicting clauses) in a common structure. At each restart point, instead of classi-

cally generating a random configuration to start with, each algorithm aggregates the shared

knowledge to carefully craft a new starting point. We present several aggregation strategies

and evaluate them on a large set of instances. Our best strategies largely improve over a

parallel portfolio of non cooperative local searches. We also present an analysis of configu-

rations diversity during parallel search, and find out that the best aggregation strategies are

the one which are able to maintain a good diversification/intensification trade off.

This chapter is organized as follows: Section 7.2 presents our methodology and our

aggregation strategies, Section 7.3 evaluates them, Section 7.4 highlights previous work

on parallel SAT and cooperative algorithms, and Section 7.5 presents a summary of the

chapter.

7.2 Knowledge Sharing in Parallel Local Search for SAT

Our objective is to extend a parallel portfolio of state-of-the-art local search solvers for

SAT with knowledge sharing or cooperation. Each algorithm is going to share with others

the best configuration it has found so far with its respective cost (number of unsatisfied

clauses) in a shared pair 〈M,C〉.

M =


X11 X12 . . . X1n

X21 X22 . . . X2n
...

...
...

...
Xc1 Xc2 . . . Xcn

 C = [C1, C2, . . . , Cc]

106

7.2 Knowledge Sharing in Parallel Local Search for SAT

Where n indicates the total number of variables of the problem and c indicates the

number of local search algorithms in the portfolio. In the following we are associating

local search algorithms and processing cores. Each element Xji in the matrix indicates the

ith variable of the best configuration found so far by the jth core. Similarly, the jth element

in C indicates the cost for the respective configuration in M .

These best configurations can be exploited by each local search to build a new initial

configuration. In the following, we propose seven strategies to determine the initial config-

uration (cf. function initial-configuration in Algorithm 2.2, Chapter 2).

7.2.1 Using Best Known Configurations

In this section, we propose three methods to build the new initial configuration init by

aggregating best known configurations. In this way, we define initi for all the variables

Xi, i ∈ [1..n] as follows:

1. Agree: if there exists a value v such that v=Xji for all j ∈ [1..c] then initi=v, other-

wise a random value is used.

2. Majority: if there exists two values v and v′ such that |{Xji = v|j ∈ [1..c]}| >
|{Xji = v′|j ∈ [1..c]}| then initi=v, otherwise a random value is used.

3. Prob: initi=1 with probability pones=ones
c

and initi=0 with probability 1−pones, where

ones = |{Xji = 1|j ∈ [1..c]}|.

7.2.2 Weighting Best Known Configurations

In contrast with our previous methods where all best known solutions are treated equally

important, the methods proposed in this section use a weighting mechanism to consider the

cost of best known configurations. The computation of the initial configuration init uses

one of the following two weighting systems: Ranking and Normalized Performance, where

values from better configurations are most likely to be used.

107

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

7.2.2.1 Ranking

This method sorts the configurations of the shared matrix from worst to best according to

their cost. The worst ranked one gets weight of 1 (i.e., RankW1=1), and the best ranked c

(i.e., RankWc=c).

7.2.2.2 Normalized Performance

This method assigns weights (NormW) considering a normalized value of the number of

unsatisfied clauses of the configuration:

NormWj =
|C| − Cj
|C|

Using the previous two weighting mechanisms, we define the following four extra

methods to determine initial configurations.

To this end, we define Φ(val,Weight) =
∑

k∈{j|Xji=val}Weightk.

1. Majority RankW: if there exists two values v and v′ such that Φ(v,RankW) >

Φ(v′, RankW) then initi=v, otherwise a random value is used.

2. Majority NormalizedW: if there exists two values v and v′ such that Φ(v,NormW) >

Φ(v′, NormW) then initi=v, otherwise a random value is used.

3. Prob RankW: initi=1 with probability PRones= Rones
Rones+Rzeros

and initi=0 with proba-

bility 1-PRones, where Rones=Φ(1, RankW) and Rzeros=Φ(0, RankW).

4. Prob NormalizedW: initi=1 with probability PNones= Nones
Nones+Nzeros

and initi=0 with

probability 1-PNones, where Nones=Φ(1, NormW) and Nzeros=Φ(0, NormW)

7.2.3 Restart Policy

As mentioned earlier on, shared knowledge is exploited when a given algorithm is restarted.

At this point the current working configuration of a given algorithm is re-initialized accord-

ing to a given aggregation strategy. However, it is important to restrict cooperation since

it adds overheads and more importantly tend to generate similar configurations. In this

108

7.3 Experiments

context, we propose a new restart policy to avoid re-initializing the working configuration

again and again. This new policy re-initializes the working configuration for a given restart

(i.e., every MaxFlips) if and only if, performance improvements in best known solutions

have been observed during the latest restart window. This new restart policy is formally de-

scribed in the following definition, where we assume that bcki is the cost of the best known

configuration for a given algorithm i up to the (k − 1)th restart.

Definition 7.1 At a given restart k for a given algorithm i the working configuration is

reinitialized iff there exists an algorithm q such that bckq 6= bc(k−1)q and q 6= i.

7.3 Experiments

This section reports on the experimental validation of the proposed aggregation strategies.

7.3.1 Experimental Settings

We conducted experiments using instances from the RANDOM category of the 2009 SAT

competition. Since state-of-the-art local search solvers are unable to solve UNSAT in-

stances, we filtered out these instances. We also removed instances whose status was re-

ported as UNKNOWN in the competition. This way, we collected 359 satisfiable instances.

We decided to build our parallel portfolio on UBCSAT-1.1, a well known local search

library which provides efficient implementation of the latest local search for SAT algo-

rithms [TH04]. We did preliminary experiments to extract from this library the 8 algo-

rithms which perform best on our set of problems. From that, we defined the following

three baseline portfolio constructions where algorithms are independent searches without

cooperation. The first one pcores-PAWS uses p copies of the best single algorithm (PAWS),

the second portfolio 4cores-No sharing uses the best subset of 4 algorithms (PAWS, G2+p,

AG2, AG2+p) and the last one 8cores-No sharing uses all the 8 algorithms (PAWS, G2+p,

AG2, AG2+p, G2, SAPS, RSAPS, AN+). All the algorithms were used with their default

parameters, and without any restart. Indeed these techniques are equipped with important

diversification strategies and usually perform better when the restart flag is switched off

(i.e., MaxFlips=∞).

109

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

On the other hand, the previous knowledge aggregation mechanisms were built on top

of a portfolio with 4 algorithms (same algorithms as 4cores-No sharing) and a portfolio

with 8 algorithms (same algorithms as 8cores-No sharing). There, we used the modified

restart policy described in Section 7.2.3 with MaxFlips set to 106.

All tests were conducted on a cluster of 8 Linux Mandriva machines with 8 GB of RAM

and two quad-core (8 cores) 2.33 Ghz Intel Processors. In all the experiments, we used a

timeout of 5 minutes (300 seconds) for each algorithm in the portfolio, so that for each

experiment the total CPU time was set to c× 300 seconds, where c indicates the number of

algorithms in the portfolio.

We executed each instance 10 times (each time with a different random seed) and re-

ported two metrics, the Penalized Average Runtime (PAR) [HHLB10] which computes the

average runtime overall instances, but where unsolved instances are considered as 10× the

cutoff time, and the runtime for each instance which is calculated as the median across the

10 runs. Overall, our experiments for these 359 SAT instances took 187 days of CPU time.

7.3.2 Practical Performances with 4 Cores

Figure 7.1(a) shows the results of each aggregation strategy using a portfolio with 4 cores,

comparatively to the 4 cores baseline portfolios. The x-axis gives the number of problems

solved and the y-axis presents the cumulated runtime.

As expected, the portfolio with the top 4 best algorithms (4cores-No Sharing) performs

better (309) that the one with 4 copies of the best algorithms (4cores-PAWS) (275). Ad-

ditionally, Figure 7.1(b) shows the performance when considering the PAR metric. The

y-axis shows the Penalized Average Runtime for a given time cutoff given on the x-axis. In

this figure, it can be observed that the aggregation policies are also efficient when varying

the time limit to solve problem instances.

The performance of the portfolios with knowledge sharing is quite good. Overall, it

seems that adding a weighting mechanism can often hurt the performance of the under-

lying aggregation strategy. Among the weighting options, it seems that the Normalized

Performance performs better. The best portfolio implements the Prob strategy without any

weighting (329). This corresponds to a gain of 20 problems against the corresponding

110

7.3 Experiments

4cores-No Sharing baseline.

A detailed examination of 4cores-Prob and 4cores-No Sharing is presented in Figures

7.2 and 7.3. These figures show, respectively, a runtime and a best configuration cost com-

parison. In both figures, points below (resp. above) the diagonal line indicate that 4cores-

Prob performs better (resp. worse) than 4cores-No Sharing. In the runtime comparison,

we observe that easy instances are correlated as they require few steps to be solved, and for

the remaining set of instances 4cores-Prob usually exhibits a better performance. On the

other hand, the second figure shows that when the instances are not solved, the median cost

of the best configuration (number of unsatisfied clauses) found by 4cores-Prob is usually

better than for 4cores-No Sharing. Notice that some points are overlapped because the two

strategies reported the same cost.

All the experiments using 4 cores are summarized in Table 7.1, reporting for each port-

folio the number of solved instances (#solved), the median time across all instances (me-

dian time), the Penalized Average Runtime (PAR) and the total number of instances that

timed out in all the 10 runs (never solved). These results confirm that sharing best known

configurations outperforms independent searches, for instance 4cores-Prob and 4cores-

Prob NormalizedW solved respectively 20 and 17 more instances than 4cores-No Sharing

and all the cooperative strategies (except 4cores-Majority RankW) exhibit better PAR. In-

terestingly, 4cores-PAWS exhibited the best median runtime overall the experiments with

4 cores, this fact suggests that PAWS by itself is able to quickly solve an important number

of instances. Moreover, only 2 instances timeout in all the 10 runs for 4cores-Agree and

4cores-Prob NormalizedW against 7 for 4cores-No Sharing. Notice that this Table also

includes 1core-PAWS, the best sequential local search on this set of problems. The PAR

score for 1core-PAWS is lower than the other values of the table because this portfolio uses

only 1 algorithm, therefore the timeout is only 300 seconds, while 4 cores portfolios use a

timeout of 1200 seconds. Notice that the best performing strategy (w.r.t. each performing

metric) is indicated in bold.

111

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

200 220 240 260 280 300 320 340
 0

 200

 400

 600

 800

1000

1200

Solved Instances

Ti
m

e(
s)

4cores−PAWS
4cores−No Sharing
4cores−Agree
4cores−Majority
4cores−Prob
4cores−Majority RankW
4cores−Majority NormalizedW
4cores−Prob RankW
4cores−Prob NormalizedW

(a) Number of solved instances

0 150 300 450 600 750 900 1050 1200
 0

 500

1000

1500

2000

2500

3000

Time Cutoff

PA
R

4cores−PAWS
4cores−No Sharing
4cores−Agree
4cores−Majority
4cores−Prob
4cores−Majority RankW
4cores−Majority NormalizedW
4cores−Prob RankW
4cores−Prob NormalizedW

(b) Penalized Average Runtime

Figure 7.1: Performance using 4 cores in a given amount of time

112

7.3 Experiments

0 200 400 600 800 1000 1200
 0

 200

 400

 600

 800

1000

1200

4Cores−No Sharing Time(s)

4C
or

es
−P

ro
b

Ti
m

e(
s)

Figure 7.2: Runtime comparison, each point indicates the runtime to solve a given instance
using 4cores-Prob (y-axis) and 4cores-No Sharing (x-axis)

0 0.5 1 1.5 2 2.5 3 3.5
 0

0.5

 1

1.5

 2

2.5

 3

3.5

4Cores−No Sharing cost

4C
or

es
−P

ro
b

co
st

Figure 7.3: Best configuration cost comparison on unsolved instances. Each point indicates the
best configuration (median) cost of a given instance using 4cores-Prob (y-axis) and 4cores-No
Sharing (x-axis)

113

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

Strategy #solved median time PAR never solved
1core-PAWS 249 1.76 911.17 71
4cores-PAWS 275 1.63 2915.19 61
4cores-No Sharing 309 2.19 1901.00 7
4cores-Agree 321 2.54 1431.33 2
4cores-Majority 313 2.53 1724.94 11
4cores-Prob 329 2.51 1257.93 4
4cores-Majority RankW 304 2.47 1930.61 11
4cores-Majority NormalizedW 314 2.48 1807.42 9
4cores-Prob RankW 316 2.53 1621.33 7
4cores-Prob NormalizedW 326 2.50 1261.82 2

Table 7.1: Overall evaluation using 4 cores

7.3.3 Practical Performances with 8 Cores

We now move on to portfolios with 8 cores. The results of these experiments are depicted

in Figure 7.4 indicating the total number of solved instances within a given amount of time.

As in previous experiments, we report the results of baseline portfolios 8cores-No Sharing

and 8cores-PAWS, as well as the seven cooperative strategies. We can observe than the

cooperative portfolios (except 8cores-Agree) largely outperform the non-cooperative ones

in both the number of solved instances (Figure 7.4(a)) and the PAR metric (Figure 7.4(b)).

Indeed, as it will be detailed in Section 7.3.4, 8cores-Agree exhibits a poor performance

mainly because best known configurations stored in the shared data structure tend to be

different from each other. Therefore, this policy tends to generate completely random

starting points, and cannot exploit the acquired knowledge.

The Table 7.2 summarizes these results, and once again it includes the best individual

algorithm running in a single core. We can remark that 8cores-Prob , 8cores-Prob RankW

, and 8cores-Prob NormalizedW solve respectively 24, 22, and 16 more instances than

8cores-No Sharing. Furthermore, it shows that knowledge sharing portfolios are faster

than individual searches, with a PAR of 3743.63 seconds for 8cores-No Sharing against

respectively 2247.97 for 8cores-Prob , 2312.80 for 8cores-Prob RankW and 2295.99 for

8cores-Prob NormalizedW . Finally, it is also important to note that only 1 instance timed

out in all the 10 runs for 8cores-Prob NormalizedW against 8 for 8cores-No Sharing.

114

7.3 Experiments

200 220 240 260 280 300 320 340
 0

 500

1000

1500

2000

Solved Instances

Ti
m

e(
s)

8cores−PAWS
8cores−No Sharing
8cores−Agree
8cores−Majority
8cores−Prob
8cores−Majority RankW
8cores−Majority NormalizedW
8cores−Prob RankW
8cores−Prob NormalizedW

(a) Number of solved instances

0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250 2400
 0

1000

2000

3000

4000

5000

6000

Time Cutoff

PA
R

8cores−PAWS
8cores−No Sharing
8cores−Agree
8cores−Majority
8cores−Prob
8cores−Majority RankW
8cores−Majority NormalizedW
8cores−Prob RankW
8cores−Prob NormalizedW

(b) Penalized Average Runtime

Figure 7.4: Performance using 8 cores in a given amount of time

115

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

Strategy #solved median time PAR never solved
1core-PAWS 249 1.76 911.17 71
8cores-PAWS 286 2.00 5213.84 56
8cores-No Sharing 311 2.33 3743.63 8
8cores-Agree 305 2.48 3952.19 17
8cores-Majority 315 2.47 3163.02 6
8cores-Prob 335 2.45 2247.97 2
8cores-Majority RankW 325 2.39 2944.92 4
8cores-Majority NormalizedW 314 2.54 3298.60 9
8cores-Prob RankW 333 2.55 2312.80 2
8cores-Prob NormalizedW 327 2.47 2295.99 1

Table 7.2: Overall evaluation using 8 cores

These experimental results show that Prob (4 and 8 cores) exhibited the overall best

performance. We attribute this to the fact that the probability component of this method

balances the exploitation of best solutions found so far with the exploration of other values

for the variables, helping in this way, to diversify the new starting configuration.

7.3.4 Analysis of the Diversification/Intensification Trade off

Maintaining an appropriate balance between diversification and intensification of the ac-

quired knowledge is an important step of the proposed cooperative portfolios to improve

the performance. In this chapter, diversification (resp. intensification) refers to the ability

of generating different (resp. similar) initial configuration at each restart.

Figure 7.5 aims to analysis the balance between diversification and intensification by

means of computing the average Hamming distance between all pairs of best known con-

figurations (HamDis) vs the number of flips for a typical SAT instance. Notice that some

lines are of different sizes because some strategies required less flips to solve the instance.

HamDis is formally described as follows:

HamDis =

c∑
i=1

c∑
j=i+1

Hamming(Xi, Xj)

c(c− 1)/2

116

7.3 Experiments

Where, Hamming(Xi, Xj) indicates the Hamming distance between the best configu-

rations found so far for the ithand jth algorithms in the portfolio.

The Figure 7.5(a) shows the diversification - intensification analysis using 4 cores. As

one might have expected, among the cooperative strategies 4cores-Majority reduces di-

versification and shows a high convergence rate, 4cores-Agree reduces intensification and

shows a slow convergence rate. In contrast to these two methods, 4cores-Prob is balancing

diversification and intensification. This phenomenon helps to understand the superiority of

this method in the experiments presented in Section 7.3.2.

A similar observation is drawn from the experiments with 8 cores presented in Figure

7.5(b). However, in this case 8cores-Agree exhibits a dramatic diversification increase

which actually degrades its overall performance compared against its counterpart portfolio

with 4cores (see Table 7.2). Additionally, Figure 7.5(c) shows the behavior of 8cores-

Majority NormalizedW and 8cores-Prob NormalizedW , while Figure 7.5(d) shows the

behavior of 8cores-Majority RankW and 8cores-Prob RankW . From these two last figures,

it can be observed that Majority-based strategies provide less diversification than the Prob-

based ones.

Now we switch our attention to Table 7.3, where we extend our analysis to all problem

instances. To this end, we launched an extra run for each portfolio strategy to compute

HamIns, which is formally defined as follows:

HamIns(i) =
HamDis(i)

total-vars(i)
× 100

Where, HamDis(i) computes the mean overall HamDis values achieved when solving

i and total-vars(i) indicates the number of variables involved in i. This way, HamIns

reports the mean HamIns over all the instances that required at least 106 flips to be solved.

Notice that instances requiring less flips do not employ cooperation because the first restart

is not reached. On the other hand, strategies reporting the highest degree of intensification

(resp. diversification) using 4 and 8 cores are indicated in bold.

As can be observed, prob-based strategies have shown the best performance as they

balance diversification-intensification. For instance, excluding 4cores-agree which is al-

ready known that provides more diversification than intensification, 4cores-prob provides

117

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

the highest HamIns variation among all the cooperative portfolios using 4 cores. More-

over, Majority-based strategies are bad for diversification as they might tend to start with

a configuration similar to the one given by the best single algorithm. It is also worth men-

tioning that our baseline portfolios 4cores-PAWS and 4cores-No Sharing exhibit the highest

values, which is not surprising as no cooperation is allowed.

On the other hand, a similar observation is seen in the case of 8 cores. However, it is

worth mentioning that 8cores-agree gives too much diversification which actually degrades

the overall performance when compared against its counterpart with 4 cores (see Tables 7.2

and 7.1).

Finally, Figure 7.6 shows a trace of the best configuration cost found so far for each

algorithm in the portfolio to solve a typical instance. The x-axis shows the best solution for

each algorithm vs the number of flips. The right part of the figure shows the performance of

individual searches using 4 and 8 cores without cooperation, while the left part depicts the

performance of 4cores-Prob and 8cores-Prob. As expected, non-cooperative algorithms

exhibit different behaviors, for instance Figure 7.6(d) shows that SAPS and RSAPS are

still far from the solution after reaching the timeout, while Figure 7.6(c) shows that using

cooperation all the algorithms (including SAPS and RSAPS) are pushed to promising areas

of the search.

7.3.5 Analysis of the Limitations of the Hardware

In this section, we wanted to assess the inherent slowdown caused by increased cache, and

bus contingency when more processing cores are used at the same time. Indeed, having an

understanding of this slowdown is helpful to assess the real benefits of parallel search. To

this end we decided to run our PAWS baseline portfolio where each independent algorithm

uses the same random seed on respectively 1, 4 and 8 cores. Since all the algorithms are

executing the same search, this experiment measures the slowdown caused by hardware

limitations. The results are presented in Figure. 7.7.

The first case executes a single copy of PAWS with a timeout of 300 seconds, the second

case executes 4 parallel copies of PAWS with a timeout of 1200 seconds (4 × 300) and the

third case executes 8 parallel copies of PAWS with a timeout of 2400 seconds (8 × 300).

118

7.3 Experiments

!!" !"# "##
"###

$###

%###

&###

'###

()*+,

-
.
)/
0*
.
1
!2
.
,
0

!

!

&2.34,!53.6

&2.34,!789.3*0:

&2.34,!;<344

100 x101 10 6

Flips

1000

2000

3000

4000

5000

H
am

D
is

(a) 4cores-Prob, 4cores-Majority, 4cores-Agree

!!" !"# "##

$###

%###

&###

'###

()*+,

-
.
)/
0*
.
1
!2
.
,
0

!

!

32.45,!64.7

32.45,!89:.4*0;

32.45,!<=455

100 x101 10 6

Flips

2000

3000

4000

5000

H
am

D
is

(b) 8cores-Prob, 8cores-Majority, 8cores-Agree

!!" !"# "##

$###

%###

&###

'###

()*+,

-
.
)/
0*
.
1
!2
.
,
0

!

!

32.45,!678.4*09!:.4;<

32.45,!=4.>!:.4;<

100 x101 10 6

Flips

2000

3000

4000

5000

H
am

D
is

(c) 8cores-Majority NormW, 8cores-Prob NormW

!!" !"# "##

"###

$###

%###

&###

'###

()*+,

-
.
)/
0*
.
1
!2
.
,
0

!

!

32.45,!678.4*09!:71;<

32.45,!=4.>!:71;<

100 x101 10 6

Flips

1000

2000

3000
4000
5000

H
am

D
is

(d) 8cores-Majority RankW, 8cores-Prob NormW

Figure 7.5: Pairwise average Hamming distance (x-axis) vs Number of flips every 106 steps
(y-axis) to solve the unif-k3-r4.2-v16000-c67200-S2082290699-014.cnf instance

119

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

Strategy HamIns

4cores-PAWS 38.2
4cores-No Sharing 39.0
4cores-Agree 35.0
4cores-Majority 31.7
4cores-Prob 33.1
4cores-Majority RankW 25.9
4cores-Majority NormalizedW 27.1
4cores-Prob RankW 30.8
4cores-Prob NormalizedW 32.8

8cores-PAWS 38.3
8cores-No Sharing 39.5
8cores-Agree 38.3
8cores-Majority 30.8
8cores-Prob 33.4
8cores-Majority RankW 29.3
8cores-Majority NormalizedW 29.5
8cores-Prob RankW 33.1
8cores-Prob NormalizedW 33.8

Table 7.3: Diversification-Intensification analysis using 8 cores

120

7.3 Experiments

 1 10 100
 1

 10

100

Flips

S
o

lu
ti
o

n
 c

o
s
t

PAWS

G2+p

AG2

AG2+p

Flips
100 x101 10

6

C
on

fig
ur

at
io

n
co

st

10

100

(a) 4cores-prob

 1 10 100

 10

100

Flips

S
o

lu
ti
o

n
 c

o
s
t

PAWS

G2+p

AG2

AG2+p

Flips
100 x10

61 10
C

on
fig

ur
at

io
n

co
st

10

100

(b) 4cores no sharing

 1 10 100
 1

 10

100

Flips

S
o

lu
ti
o

n
 c

o
s
t

PAWS

G2+p

AG2

AG2+p

G2

SAPS

RSAPS

AN+

C
on

fig
ur

at
io

n
co

st

10

100

100 x101 10
6

Flips

(c) 8cores-prob

 1 10 100
 1

 10

100

Flips

S
o

lu
ti
o

n
 c

o
s
t

PAWS

G2+p

AG2

AG2+p

G2

SAPS

RSAPS

AN+

C
on

fig
ur

at
io

n
co

st

10

100

100 x101 10
6

Flips

(d) 8cores no sharing

Figure 7.6: Individual algorithms performance to solve the unif-k3-r4.2-v16000-c67200-
S2082290699-014.cnf instance

121

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

0 50 100 150 200 250 300
0

50

100

150

200

250

300

1 Core runtime

4−
8

C
or

es
 ru

nt
im

e

Figure 7.7: Runtime comparison using parallel local search portfolios made of respectively 1,
4, and 8 identical copies of PAWS (same random seed). Red points indicate the performance
of 4 cores vs 1 core. Black points indicate the performance of 8 cores vs 1 core, points above
the blue line indicate that 1 core is faster

122

7.4 Previous Work

Finally, we estimate the runtime of each instance as the median across 10 runs (each

time with the same seed) divided by the number of cores. In this figure, it can be observed

that the performance overhead is almost not distinguishable between 1 and 4 cores (red

points). However, the overhead between 1 and 8 cores is important for difficult instances

(black points).

This simple test can help us to assess the remarkable performance of our aggregation

techniques. Indeed, on 8 cores, the best technique is able to solve 86 more problems than

the sequential search. This is achieved despite the slowdown caused by cache and bus

contingencies revealed by this experiment.

7.4 Previous Work

In this section, we review the most important contributions devoted to parallel SAT solving

and cooperative algorithms.

7.4.1 Complete Methods for Parallel SAT

GrADSAT [CW06] is a parallel SAT solver based on the zChaff solver and equipped with a

master-slave architecture in which the problem space is divided into sub-spaces, these sub-

spaces are solved by independent zChaff clients and learnt clauses whose size (i.e., number

of literals) is less or equal to a given limit are exchanged between clients. The technique

organizes load-balancing through a work stealing technique which allows the master to

push work to idle clients.

In [SLB09] the authors propose PaMiraXT a SAT solver with two layers of paralleliza-

tion. While on the one hand, the traditional Message Passing Interfase (MPI) is used to

coordinate the execution of independent workstations in a master/client mode. On the

other hand, each client implements MiraXT, a parallel SAT solver which uses the well-

known concept of guiding paths to divide the search space into several sub-spaces. Each

independent MiraXT client (or workstation) uses a local Shared Clause Database which

systematically stores learnt clauses by each core, and a selected subset of those clauses are

sent to the master workstation which checks the consistency of the received information

123

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

with the guided paths to finally broadcast important clauses to all clients.

Unlike other parallel solvers for SAT which divide the initial problem space into sub-

spaces, ManySAT [HJS09] is a portfolio-based parallel solver where independent DPLL

algorithms are launched in parallel to solve a given problem instance. Each algorithm in

the portfolio implements a different and complementary restart strategy, polarity heuristic

and learning scheme. In addition, the first version of the algorithm exchanges learnt clauses

whose size is less or equal to a given limit. It is worth mentioning that ManySAT won

the 2008 SAT Race, the 2009 SAT Competition and was placed second in the 2010 SAT

Race (all these in the parallel track – industrial category). Interestingly all the algorithms

successfully qualified in the 2010 parallel track were based on a Portfolio architecture.

In plingeling, [Bie10] the original SAT instance is duplicated by a boss thread and

allocated to worker threads. The strategies used by these workers are mainly differentiated

around the amount of pre-processing, random seeds, and variables branching. Conflict

clause sharing is restricted to units which are exchanged through the boss thread. This

solver won the parallel track of the 2010 SAT Race.

In [ZHZ02] the authors proposed a hybrid algorithm which starts with a traditional

DPLL algorithm to divide the problem space into sub-spaces. Each sub-space is then allo-

cated to a given local search algorithm (Walksat).

7.4.2 Incomplete Methods for Parallel SAT

PGSAT [Rol02] is a parallel version of the GSAT algorithm. The entire set of variables is

randomly divided into τ subsets and allocated to different processors. In this way at each

iteration, if no global solution has been obtained, the ith processor uses the GSAT score

function (see Chapter 2) to select and flip the best variable for the ith subset. Another con-

tribution to this parallelization architecture is described in [RBB05] where the authors aim

to combine PGSAT and random walk, therefore at each iteration, with a given probability

wp an unsatisfiable clause c is selected and a random variable from c is flipped and with

probability 1-wp. PGSAT is used to flip τ variables in parallel at a cost of reconciling

partial configurations to test if a solution has been found.

gNovelty+ (v.2) [PG09], belongs to the portfolio approach, this algorithm executes n

124

7.4 Previous Work

independent copies of the gNovelty+ (v.2) algorithm in parallel, until at least one of them

finds a solution or a given timeout is reached. This algorithm was the only parallel local

search solver presented in the random category of the 2009 SAT Competition1

In [KSGS09], the authors studied the application of a parallel hybrid algorithm to deal

with the MaxSAT problem. This algorithm combines a complete solver (minisat) and an

incomplete one (Walksat). Broadly speaking both solvers are launched in parallel and

minisat is used to guide Walksat to promising regions of the search space by means of

suggesting values for the selected variables.

7.4.3 Cooperative Algorithms

In [HW93] a set of algorithms running in parallel exchange hints (i.e., partial valid solu-

tions) to solve hard graph coloring instances. To this end, they share a blackboard where

they can write a hint with a given probability q and read a hint with a given probability p.

In [SB07] the authors studied a sequential cooperative algorithm to deal with the office-

space-allocation problem. In this chapter cooperation takes place when a given algorithm

is not able to improve its own best solution, at this point a cooperative mechanism is used

to explore suitable partial solutions stored by individual heuristics. This algorithm is also

equipped with a diversification strategy to explore different regions of the search space.

Although Averaging in Previous Near Solutions [SK93] is not a cooperative algorithm

by itself, this method is used to determine the initial configuration for the ith restart in the

GSAT algorithm. Broadly speaking, the initial configuration is computed by performing

a bitwise average between variables of the best solution found during the previous restart

(restarti−1) and two restarts before (restarti−2). That is, variables with same values in

both configurations are re-used, and the extra set of variables are initialized with random

values. Since overtime, configurations with a few conflicting clauses tend to become simi-

lar, all the variables are randomly initialized after a given number of restarts.

1http://www.satcompetition.org/2009/

125

7. EFFICIENT PARALLEL LOCAL SEARCH FOR SAT

7.5 Summary

In this chapter, we have studied several knowledge sharing strategies in parallel local search

for SAT. We were motivated by the recent developments in parallel DPLL solvers. We

decided to restrict the information shared to the best configuration found so far by the

algorithms in a portfolio. From that we defined several simple knowledge aggregation

strategies along a specific lazy restart policy which creates a new initial configuration when

a fix cutoff is meet and when the quality of the shared information has been improved.

Extensive experiments were done on a large number of instances coming from the lat-

est SAT competition. They showed that adding the proposed sharing policies improves

the performance of a parallel portfolio, this improvement is exhibited in both number of

solved instances and the Penalized Average Runtime (PAR). It is also reflected in the best

configuration cost of problems which could not be solved within the time limit.

126

Chapter 8

Conclusions and Perspectives

Along this thesis, we have studied different approaches to efficiently solve combinatorial

problems. In particular, we have focussed on Constraint Satisfaction, Constraint Optimiza-

tion, and SAT problems. In this chapter we conclude this thesis by summarizing our contri-

butions and describing perspectives for future work. This chapter is meant as a complement

to the more detailed summaries at the end of previous chapters.

8.1 Overview of the main contributions

In this thesis, we have studied three different perspectives to efficiently solve combinatorial

problems. In the first part of the thesis, we have proposed domFD, a new variable selec-

tion heuristic which exploits the concept of weak dependencies to guide the search at each

decision point. Experiments on several problem families showed that domFD usually gen-

erate search trees smaller than the well-known dom-wdeg thus leading this way to better

runtimes on the experimented problems.

In the second part of the thesis, we have explored the Algorithm Selection Problem

from two different angles. Initially, we investigated the application of a tradition portfolio

algorithm to select the best search heuristic for the Protein Structure Prediction Problem by

considering features (or descriptors) coming from two different domains. That is, features

extracted directly from the biological application, and features from the Constraint Pro-

gramming encoding of the problem. In both situations, we have observed that the portfolio

127

8. CONCLUSIONS AND PERSPECTIVES

of algorithms is able to improve the overall quality of the solutions when compared against

the best individual strategy.

Subsequently, we have proposed the Continuous Search paradigm whose main objec-

tive is to relax the requirement of a large number of representative instances to be available

before hand in order to build a heuristics model. To this end, Continuous Search comes

in two modes: the functioning (or exploitation) mode uses the current heuristics model

to solve a given problem instance as soon as possible, while the learning (or exploration)

mode reuses previous seen instances in order to gradually improve the quality of the heuris-

tics model to become an expert on the user’s problem instance distribution. Experimental

validation showed that Continuous Search can design efficient mixed strategies after con-

sidering a moderate number of problem instances.

In the final part of the thesis, we have explored several knowledge sharing strategies

to improve the performance of a parallel portfolio of local search algorithms. The main

objective of these strategies is to aggregate the best configuration found so far for each

algorithm in the portfolio to carefully build a new configuration to start with. Our results,

showed that these simple cooperative strategies along with a specific lazy restart policy

help to considerably improve the performance of a parallel portfolio.

8.2 Perspectives

The work presented in this thesis can be extended in many directions. The following are,

in the author’s opinion, some interesting directions of future work.

• Variable Selection Heuristics. A straightforward extension of the domFD heuristic

would be considering the Multi-level Dynamic Variable Ordering approach [BCS01]

which selects the most promising variable by considering neighbors in the constraint

graph, in the case of domFD one might consider different neighbors in the Weak De-

pendencies graph. Another interesting area of research would be considering [TH10]

to build new score functions by normalizing and combining several score metrics

(e.g., domFD, mindom, dom-wdeg, etc).

• Algorithm Selection Problem. We plan to extend our work in this area mainly

128

8.2 Perspectives

considering the application of Active Learning [BEWB05, DHM07] in order to se-

lect the most informative training examples and focus the exploration mode on the

most promising heuristics. Another point regards the feature design; better features

would be needed to get a higher predictive accuracy, governing the efficiency of

the approach. Indeed, we plan to investigate a set of recently proposed descriptors

[GJK+10, GKMN10], and also a combination of the low-knowledge feature set pro-

posed in [CB05] with the CP feature set studied in this thesis.

A longer term perspective regards the use of Reinforcement Learning for learning

good restart policies; beyond characterizing the best heuristics at a given checkpoint,

the goal becomes to find the best sequence of heuristics, to be applied in each check-

point, in order to solve the instance as fast as possible.

• Parallel Portfolio Algorithms. The framework proposed in Chapter 7 intends to be

the basics for new parallel local search solvers for SAT. Here much work remains

to be done, in particular the use of additional information to exchange, for instance:

tabu-list, the age and score of a variable, information on local minima, etc. It should

also be important to investigate the best way to integrate this extra knowledge in

the course of a given algorithm. As pointed out in Chapter 7, state-of-the-art local

search algorithms for SAT perform better when they do not restart. Incorporating

extra information without forcing the algorithm to restart is likely to be important.

In this direction, we plan to equip the local search algorithms used in Chapter 7 with

clause learning, as described in [CI96, ALMS09] to exchange learnt clauses, bor-

rowing ideas from portfolios for complete parallel SAT solvers. Another interesting

area of research would be designing a parallel portfolio of algorithms which combine

complete and incomplete algorithms, and exchange the knowledge achieved for each

strategy.

129

Bibliography

[ADL06] Belarmino Adenso-Dı́az and Manuel Laguna. Fine-Tuning of Algorithms Us-

ing Fractional Experimental Designs and Local Search. Operations Research,

54(1):99–114, 2006.

[AGKS00] Dimitris Achlioptas, Carla P. Gomes, Henry A. Kautz, and Bart Selman. Gen-

erating Satisfiable Problem Instances. In Proceedings of the Seventeenth Na-

tional Conference on Artificial Intelligence and Twelfth Conference on Inno-

vative Applications of Artificial Intelligence, pages 256–261, Austin, Texas,

USA, July 2000. AAAI Press / The MIT Press.

[AH09a] Alejandro Arbelaez and Youssef Hamadi. Continuous Search in Constraint

Programming: An Initial Investigation. In Karen Petrie and Olivia Smith, ed-

itors, Constraint Programming Doctoral Program, pages 7–12, Lisbon, Por-

tugal, September 2009.

[AH09b] Alejandro Arbelaez and Youssef Hamadi. Exploiting Weak Dependencies in

Tree-Based Search. In ACM Symposium on Applied Computing (SAC), pages

1385–1391, Honolulu, Hawaii, USA, March 2009. ACM.

[AH11a] Alejandro Arbelaez and Youssef Hamadi. Efficient Parallel Local Search for

SAT. Submitted to JAIR, 2011.

[AH11b] Alejandro Arbelaez and Youssef Hamadi. Improving parallel local search for

SAT. In Learning and Intelligent Optimization, Fifth International Confer-

ence, LION 2011 (to appear), 2011.

131

BIBLIOGRAPHY

[AHS09] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Online Heuristic

Selection in Constraint Programming. In International Symposium on Com-

binatorial Search, Lake Arrowhead, USA, July 2009.

[AHS10a] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Building Portfo-

lios for the Protein Structure Prediction Problem. In Edinburgh Workshop on

Constraint Based Methods for Bioinformatics (WCB), Edinburgh, UK, July

2010.

[AHS10b] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous

Search in Constraint Programming. In Eric Gregoire, editor, 22th Interna-

tional Conference on Tools With Artificial Intelligence (ICTAI), volume 1,

pages 53–60, Arras, France, October 2010. IEEE.

[AHS11] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Continuous

Search in Constraint Programming. In Youssef Hamadi, Eric Monfroy, and

Frédéric Saubion, editors, Autonomous Search. Springer-Verlag, 2011.

[AKJ04] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying Support

Vector Machines to Imbalanced Datasets. In Jean-François Boulicaut, Flo-

riana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, 15th European

Conference on Machine Learning, volume 3201 of Lecture Notes in Com-

puter Science, pages 39–50, Pisa, Italy, Sept 2004. Springer.

[ALMS09] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais.

Learning in local search. In 21st IEEE International Conference on Tools with

Artificial Intelligence (ICTAI), pages 417–424, Newark, New Jersey, USA,

November 2009. IEEE Computer Society.

[ASBG07] Ali Al-Shahib, Rainer Breitling, and David R. Gilbert. Predicting Protein

Function by Machine Learning on Amino Acid Sequences – A Critical Eval-

uation. BMC Genomics, 78(2), March 2007.

[AST09] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A Gender-Based

Genetic Algorithm for the Automatic Configuration of Algorithms. In Ian P.

132

BIBLIOGRAPHY

Gent, editor, 15th International Conference on Principles and Practice of

Constraint Programming, volume 5732 of Lecture Notes in Computer Sci-

ence, pages 142–157, Lisbon, Portugal, Sept 2009. Springer.

[AV06] Francisco Azevedo and Hau Nguyen Van. Extra Constraints for the Social

Golfers Problem. In 13th International Conference on Logic for Program-

ming Artificial Intelligence and Reasoning (LPAR), 2006.

[BB05] Roberto Battiti and Mauro Brunato. Reactive Search: Machine Learning for

Memory-Based Heuristics. Technical report, Teofilo F. Gonzalez (Ed.), Ap-

proximation Algorithms and Metaheuristics, Taylor & Francis Books (CRC

Press), 2005.

[BCDP07] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Pe-

tit. Global Constraint Catalogue: Past, Present and Future. Constraints,

12(1):21–62, 2007.

[BCS01] Christian Bessière, Assef Chmeiss, and Lakhdar Sais. Neighborhood-Based

Variable Ordering Heuristics for the Constraint Satisfaction Problem. In Toby

Walsh, editor, 7th International Conference on Principles and Practice of

Constraint Programming, volume 2239 of Lecture Notes in Computer Sci-

ence, pages 565–569, Paphos, Cyprus, November 2001. Springer.

[BE93] Timothy L. Bailey and Charles Elkan. Estimating the Accuracy of Learned

Concepts. In IJCAI, pages 895–901, 1993.

[BEWB05] Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast Kernel

Classifiers with Online and Active Learning. Journal of Machine Learning

Research, 6:1579–1619, Sept 2005.

[BF04] J. Christopher Beck and Eugene C. Freuder. Simple Rules for Low-

Knowledge Algorithm Selection. In Jean-Charles Régin and Michel Rueher,

editors, First International Conference on Integration of AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimization Problems

133

BIBLIOGRAPHY

(CPAIOR), volume 3011 of Lecture Notes in Computer Science, pages 50–64,

Nice, France, April 2004. Springer.

[BHL05] Frederic Boussemart, Fred Hemery, and Christophe Lecoutre. Description

and Representation of the Problems Selected for the First International Con-

straint Satisfaction Solver Competition. In CPAI’05 workshop held with

CP’05, pages 7–26, 2005.

[BHLS04] Frederic Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais.

Boosting Systematic Search by Weighting Constraints. In Ramon López

de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th Eureopean

Conference on Artificial Intelligence, pages 146–150, Valencia, Spain, Aug

2004. IOS Press.

[BHZ06] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional Satisfi-

ability and Constraint Programming: A Comparative Survey. ACM Comput.

Surv., 38(4), 2006.

[Bie10] Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race

2010. Technical Report 10/1, FMV Reports Series, August 2010.

[Bir04] Mauro Birattari. The Problem of Tuning Metaheuristics as Seen from a Ma-

chine Learning Perspective. PhD thesis, Université Libre de Bruxelles, Brux-

elles, Belgium, 2004.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-

mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006.

[BM08] Marco Benedetti and Hratch Mangassarian. QBF-Based Formal Verification:

Experience and Perspectives. Journal on Satisfiability, Boolean Modeling and

Computation, 5:133–191, 2008.

[Bos01] Robert Bosch. Painting by numbers. Optima, (65):16–17, May 2001.

134

BIBLIOGRAPHY

[Bre79] D. Brelaz. New Methods to Color the Vertices of a Graph. Communications

of the ACM, 22:251–256, 1979.

[Bre96] Leo Breiman. Heuristics of Instability and Stabilization in Model Selection.

Annals of Statistics, 24(6):2350–2383, 1996.

[BSPV02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A

Racing Algorithm for Configuring Metaheuristics. In William B. Langdon,

Erick Cantú-Paz, Keith E. Mathias, Rajkumar Roy, David Davis, Riccardo

Poli, Karthik Balakrishnan, Vasant Honavar, Günter Rudolph, Joachim We-

gener, Larry Bull, Mitchell A. Potter, Alan C. Schultz, Julian F. Miller, Ed-

mund K. Burke, and Natasa Jonoska, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, pages 11–18, New York, USA, July

2002. Morgan Kaufmann.

[BT94] Roberto Battiti and Giampietro Tecchiolli. The Reactive Tabu Search. IN-

FORMS Journal on Computing, 6(2):126–140, 1994.

[BTW96] James E. Borrett, Edward P. K. Tsang, and Natasha R. Walsh. Adaptive Con-

straint Satisfaction: The Quickest First Principle. In Wolfgang Wahlster, edi-

tor, 12th European Conference on Artificial Intelligence, pages 160–164, Bu-

dapest, Hungary, August 1996. John Wiley and Sons, Chichester.

[BW01] Rolf Backofen and Sebastian Will. Fast, Constraint-based Threading of HP-

Sequences to Hydrophobic Cores. In Toby Walsh, editor, 7th International

Conference on Principles and Practice of Constraint Programming, volume

2239 of Lecture Notes in Computer Science, pages 494–508, Paphos, Cyprus,

November 2001. Springer.

[CB04] Tom Carchrae and J. Christopher Beck. Low-Knowledge Algorithm Control.

In Deborah L. McGuinness and George Ferguson, editors, Proceedings of the

Nineteenth National Conference on Artificial Intelligence, Sixteenth Confer-

ence on Innovative Applications of Artificial Intelligence, pages 49–54, San

Jose, California, USA, July 2004. AAAI Press / The MIT Press.

135

BIBLIOGRAPHY

[CB05] Tom Carchrae and J. Christopher Beck. Applying Machine Learning to Low-

Knowledge Control of Optimization Algorithms. Computational Intelligence,

21(4):372–387, 2005.

[CB06] Jianlin Cheng and Pierre Baldi. A Machine Learning Information Retrieval

Approach to Protein Fold Recognition. Bioinformatics, 22(12):1456–1463,

2006.

[CB08] Marco Correira and Pedro Barahona. On the Efficiency of Impact Based

Heuristics. In Peter J. Stuckey, editor, 14th International Conference on

Principles and Practice of Constraint Programming, volume 5202 of Lecture

Notes in Computer Science, pages 608–612, Sydney, Australia, September

2008. Springer.

[CDD08] Raffaele Cipriano, Alessandro Dal Palù, and Agostino Dovier. A Hybrid Ap-

proach Mixing Local Search and Constraint Programming Applied to the Pro-

tein Structure Prediction Problem. In Workshop on Constraint Based Methods

for Bioinformatics (WCB), Paris, France, 2008.

[CI96] Byungki Cha and Kazuo Iwama. Adding New Clauses for Faster Local

Search. In AAAI/IAAI, volume 1, pages 332–337, 1996.

[CKL06] Gérard Cornuéjols, Miroslav Karamanov, and Yanjun Li. Early Estimates

of the Size of Branch-and-Bound Trees. INFORMS Journal on Computing,

18(1):86–96, 2006.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Li-

brary for Support Vector Machines, 2001. Software from

http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Third

annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,

New York, NY, USA, 1971. ACM.

136

BIBLIOGRAPHY

[CW06] Wahid Chrabakh and Rich Wolski. GridSAT: A System for Solving Satisfi-

ability Problems Using a Computational Grid. Parallel Comput., 32(9):660–

687, 2006.

[DD17] Chris H. Q. Ding and Inna Dubchak. Multi-Class Protein Fold Recogni-

tion Using Support Vector Machines and Neural Networks. Bioinformatics,

4(2001):341–358, 17.

[DDF03] Alessandro Dal Palù, Agostino Dovier, and Federico Fogolari. Protein Fold-

ing in CLP(FD) with Empirical Contact Energies. In Krzysztof R. Apt,

François Fages, Francesca Rossi, Péter Szeredi, and József Váncza, ed-

itors, Recent Advances in Constraints, Joint ERCIM/CoLogNET Interna-

tional Workshop on Constraint Solving and Constraint Logic Programming

(CSCLP), volume 3010 of Lecture Notes in Computer Science, pages 250–

265, Budapest, Hungary, June 2003. Springer.

[DDP07] Alessandro Dal Palù, Agostino Dovier, and Enrico Pontelli. A Constraint

Solver for Discrete Lattices, its Parallelization, and Application to Protein

Structure Prediction. Softw. Pract. Exper., 37(13):1405–1449, 2007.

[DFSS08] Luis Da Costa, Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. Adap-

tive Operator Selection with Dynamic Multi-Armed Bandits. In Conor Ryan

and Maarten Keijzer, editors, Genetic and Evolutionary Computation Confer-

ence (GECCO), pages 913–920, Atlanta, GA, USA, July 2008. ACM.

[DGS07] Bistra N. Dilkina, Carla P. Gomes, and Ashish Sabharwal. Tradeoffs in the

Complexity of Backdoor Detection. In Christian Bessiere, editor, 13th In-

ternational Conference on Principles and Practice of Constraint Program-

ming, volume 4741 of Lecture Notes in Computer Science, pages 256–270.

Springer, 2007.

[DHM07] Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A General Agnos-

tic Active Learning Algorithm. In John C. Platt, Daphne Koller, Yoram

Singer, and Sam T. Roweis, editors, Proceedings of the Twenty-First Annual

137

BIBLIOGRAPHY

Conference on Neural Information Processing Systems, Vancouver, British

Columbia, Canada, Dec 2007. MIT Press.

[DO08] David Devlin and Barry O’Sullivan. Satisfiability as a Classification Problem.

In Proceedings of the 19th Irish Conference on Artificial Intelligence and

Cognitive Science, 2008.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification

Theory. J. ACM, 7(3):201–215, 1960.

[DpAD10] Abdollah Dehzangi, Somnuk phon Amnuaisuk, and Omid Dehzangi. Using

Random Forest for Protein Fold Prediction Problem: An Empirical Study.

Journal of Information Science and Engineering, 26(6):1941–1956, 2010.

[DT00] K. A. Dowsland and J. M. Thompson. Solving a Nurse Scheduling Prob-

lem with Knapsacks, Networks and Tabu Search. Journal of the Operational

Research Society, 51:825–833, 2000.

[EFW+02] Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov, and

Bruce Samuels. The Adaptive Constraint Engine. In Pascal Van Hentenryck,

editor, 8th International Conference on Principles and Practice of Constraint

Programming, volume 2470 of Lecture Notes in Computer Science, pages

525–542, NY, USA, Sept 2002. Springer.

[EGS02] Bertrand Mazure Eric Gregoire, Richard Ostrowski and Lakhdar Sais. Re-

covering and Exploiting Structural Knowledge from CNF Formulas. In Pas-

cal Van Hentenryck, editor, 8th International Conference on Principles and

Practice of Constraint Programming, volume 2470, pages 185–199, Ithaca,

NY, USA, September 2002. Springer.

[FDSS10] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sèbag. An-

alyzing Bandit-based Adaptive Operator Selection Mechanisms. Annals of

Mathematics and Artificial Intelligence – Special Issue on Learning and In-

telligent Optimization, 2010.

138

BIBLIOGRAPHY

[FHH+05] Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, and Bernhard

Pfahringer. WEKA - A Machine Learning Workbench for Data Mining. In

Oded Maimon and Lior Rokach, editors, The Data Mining and Knowledge

Discovery Handbook, pages 1305–1314. Springer, 2005. Available from

www.cs.waikato.ac.nz/ml/weka.

[FRSS10] Álvaro Fialho, Raymond Ros, Marc Schoenauer, and Michèle Sebag.

Comparison-Based Adaptive Strategy Selection with Bandits in Differential

Evolution. In Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter

Rudolph, editors, 11th International Conference on Parallel Problem Solving

from Nature (PPSN), volume 6238 of Lecture Notes in Computer Science,

pages 194–203, Kraków, Poland, September 2010. Springer.

[GE03] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature

Selection. Journal of Machine Learning Research, 4(2003):1157–1182, 2003.

[Gec06] Gecode Team. Gecode: Generic Constraint Development Environment, 2006.

Available from http://www.gecode.org.

[Gen03] Michel Gendreau. An Introduction to Tabu Search. In Handbook of Meta-

heuristics, volume 57, pages 37–54. Kluwer Academic Publishers, 2003.

[GHBF05] Cormac Gebruers, Brahim Hnich, Derek G. Bridge, and Eugene C. Freuder.

Using CBR to Select Solution Strategies in Constraint Programming. In

Héctor Muñoz-Avila and Francesco Ricci, editors, 6th International Confer-

ence on Case-Based Reasoning, Research and Development, volume 3620

of Lecture Notes in Computer Science, pages 222–236, Chicago, IL, USA,

August 2005. Springer.

[GJK+10] Ian P. Gent, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Neil C. A.

Moore, Peter Nightingale, and Karen E. Petrie. Learning When to Use Lazy

Learning in Constraint Solving. In Helder Coelho, Rudi Studer, and Michael

Wooldridge, editors, 19th European Conference on Artificial Intelligence,

139

BIBLIOGRAPHY

volume 215 of Frontiers in Artificial Intelligence and Applications, pages

873–878, Lisbon, Portugal, August 2010. IOS Press.

[GJM06] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A Fast Scalable

Constraint Solver. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and

Paolo Traverso, editors, 17th European Conference on Artificial Intelligence

(ECAI), volume 141 of Frontiers in Artificial Intelligence and Applications,

pages 98–102, Riva del Garda, Italy, August 2006. IOS Press.

[GKMN10] Ian Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale. Machine Learn-

ing for Constraint Solver Design – A Case Study for the alldifferent Con-

straint. In 3rd Workshop on Techniques for implementing Constraint Pro-

gramming Systems (TRICS), 2010.

[GM04] Alessio Guerri and Michela Milano. Learning Techniques for Automatic

Algorithm Portfolio Selection. In Ramon López de Mántaras and Lorenza

Saitta, editors, ECAI, pages 475–479, Valencia, Spain, August 2004. IOS

Press.

[GMR07] Ian P. Gent, Ian Miguel, and Andrea Rendl. Tailoring Solver-Independent

Constraint Models: A Case Study with Essence’ and Minion. In Ian Miguel

and Wheeler Ruml, editors, 7th International Symposium on Abstraction, Re-

formulation, and Approximation, volume 4612 of Lecture Notes in Computer

Science, pages 184–199, Whistler, Canada, July 2007. Springer.

[GMS03] Ian P. Gent, Iain McDonald, and Barbara Smith. Conditional Symmetry in

the All-Interval Series Problem. In Barbara Smith, Ian P. Gent, and Warwick

Harvey, editors, 3rd International Workshop on Symmetry in Constraint Sat-

isfaction Problems, pages 55–65, Kinsale, County Cork, Ireland, September

2003.

[GS01] Carla P. Gomes and Bart Selman. Algorithm Portfolios. Artif. Intell., 126(1-

2):43–62, 2001.

140

BIBLIOGRAPHY

[GS07] Sylvain Gelly and David Silver. Combining Online and Offline Knowledge

in UCT. In Zoubin Ghahramani, editor, Proceedings of the Twenty-Fourth

International Conference on Machine Learning, volume 227 of ACM Inter-

national Conference Proceeding Series, pages 273–280, Corvalis, Oregon,

USA, June 2007. ACM.

[GSK98] Carla Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search

Through Randomization. In AAAI/IAAI, pages 431–437, 1998.

[GW99] Ian P. Gent and Toby Walsh. CSPLIB: A Benchmark Library for Constraints.

In Joxan Jaffar, editor, 5th International Conference on Principles and Prac-

tice of Constraint Programming, volume 1713 of Lecture Notes in Computer

Science, pages 480–481, Alexandria, Virginia, USA, October 1999. Springer.

Available from www.csplib.org.

[HE79] R. M. Haralick and G. L. Elliott. Increasing Tree Search Efficiency for Con-

straint Satisfaction Problems. In IJCAI, pages 356–364, San Francisco, CA,

USA, 1979.

[Heb08] Emmanuel Hebrard. Mistral, A Constraint Satisfaction Library. In Marc van

Dongen, Christophe Lecoutre, and Olivier Roussel, editors, 2nd International

CSP Solver Competition, 2008.

[Hen99] Martin Henz. Constraint-based Round Robin Tournament Planning. In

Danny De Schreye, editor, International Conference on Logic Programming,

pages 545–557, Cambridge, Massachusetts, 1999. The MIT Press.

[HH05] Frank Hutter and Youssef Hamadi. Parameter Adjustment Based on Perfor-

mance Prediction: Towards an Instance-Aware Problem Solver. Technical

Report MSR-TR-2005-125, Microsoft Research, Microsoft Corporation One

Microsoft Way Redmond, WA 98052, December 2005.

[HHHLB06] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin Leyton-Brown.

Performance Prediction and Automated Tuning of Randomized and Paramet-

ric Algorithms. In Frédéric Benhamou, editor, 12th International Conference

141

BIBLIOGRAPHY

on Principles and Practice of Constraint Programming, volume 4204 of Lec-

ture Notes in Computer Science, pages 213–228, Nantes, France, Sept 2006.

Springer.

[HHLB10] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Tradeoffs in the

Empirical Evaluation of Competing Algorithm Designs. Annals of Mathe-

matics and Artificial Intelligenc (AMAI), Special Issue on Learning and In-

telligent Optimization, 2010.

[HHLBS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.

ParamILS: An Automatic Algorithm Configuration Framework. Journal of

Artificial Intelligence Research, 36:267–306, October 2009.

[HJS09] Youssef Hamadi, Saı̈d Jabbour, and Lakhdar Sais. ManySAT: A Parallel SAT

Solver. Journal on Satisfiability, Boolean Modeling and Computation, JSAT,

6:245–262, 2009.

[HKS01] Zineb Habbas, Michaël Krajecki, and Daniel Singer. The Langford’s Prob-

lem:A Challenge for Parallel Resolution of CSP. In Roman Wyrzykowski,

Jack Dongarra, Marcin Paprzycki, and Jerzy Wasniewski, editors, 4th In-

ternational Conference on Parallel Processing and Applied Mathematics

(PPAM), volume 2328 of Lecture Notes in Computer Science, pages 789–

796, Naleczow, Poland, September 2001. Springer.

[HMS11] Youssef Hamadi, Eric Monfroy, and Frédéric Saubion. What Is Autonomous

Search? In Panos M. Pardalos, Pascal van Hentenryck, and Michela Milano,

editors, Hybrid Optimization, volume 45 of Optimization and Its Applica-

tions, pages 357–391. Springer New York, 2011.

[Hoo99] Holger H. Hoos. On the Run-time Behaviour of Stochastic Local Search

Algorithms for SAT. In AAAI/IAAI, pages 661–666, 1999.

[Hoo02] Holger H. Hoos. An Adaptive Noise Mechanism for WalkSAT. In AAAI/IAAI,

pages 655–660, 2002.

142

BIBLIOGRAPHY

[HRG+01] Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Bart Selman, and

David Maxwell Chickering. A Bayesian Approach to Tackling Hard Com-

putational Problems. In Jack S. Breese and Daphne Koller, editors, 17th

Conference on Uncertainty in Artificial Intelligence (UAI), pages 235–244,

Washington, USA, August 2001. Morgan Kaufmann.

[HTH02] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and Prob-

abilistic Smoothing: Efficient Dynamic Local Search for SAT. In Pascal Van

Hentenryck, editor, 8th International Conference on Principles and Practice

of Constraint Programming, volume 2470 of Lecture Notes in Computer Sci-

ence, pages 233–248, Ithaca, NY, USA, September 2002. Springer.

[Hua07] Jinbo Huang. The Effect of Restarts on the Efficiency of Clause Learning. In

Manuela M. Veloso, editor, 20th International Joint Conference on Artificial

Intelligence, pages 2318–2323, Hyderabad, India, January 2007.

[Hut09] Frank Hutter. Automated Configuration of Algorithms for Solving Hard Com-

putational Problems. PhD thesis, University of British Columbia, Department

of Computer Science, Vancouver, Canada, October 2009.

[HW93] Tad Hogg and Colin P. Williams. Solving the Really Hard Problems with

Cooperative Search. In AAAI, pages 231–236, 1993.

[HW08] Shai Haim and Toby Walsh. Online Estimation of SAT Solving Runtime. In

Hans Kleine Büning and Xishun Zhao, editors, 11th International Conference

on Theory and Applications of Satisfiability Testing (SAT), volume 4996 of

Lecture Notes in Computer Science, pages 133–138, Guangzhou, China, May

2008. Springer.

[HW09a] Shai Haim and Toby Walsh. Online Search Cost Estimation for SAT Solvers.

CoRR, abs/0907.5033, 2009.

[HW09b] Shain Haim and Toby Walsh. Restart Strategy Selection Using Machine

Learning Techniques. In Oliver Kullmann, editor, 12th International Con-

ference on Theory and Applications of Satisfiability Testing, volume 5584

143

BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 312–325, Swansea, UK, June

2009. Springer.

[KHR+02] Henry A. Kautz, Eric Horvitz, Yongshao Ruan, Carla P. Gomes, and Bart

Selman. Dynamic Restart Policies. In AAAI/IAAI, pages 674–681, 2002.

[Khu10] Ashiqur R. KhudaBukhsh. SATenstein: Automatically Building Local Search

SAT Solvers from Components. Master’s thesis, University of British

Columbia, Vancouver, British Columbia, Canada, October 2010.

[KMN10] Lars Kotthoff, Ian Miguel, , and Peter Nightingale. Ensemble Classification

for Constraint Solver Configuration. In David Cohen, editor, 16th Interna-

tional Conference on Principles and Practices of Constraint Programming

(CP’10), volume 6308 of Lecture Notes in Computer Science, St Andrews,

UK, 2010. Springer.

[Knu75] Donald E Knuth. Estimating the Efficiency of Backtrack Programs. Mathe-

matics of Computation, 29(129):121–136, 1975.

[Koh95] Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Esti-

mation and Model Selection. In IJCAI, pages 1137–1145, 1995.

[KSGS09] Lukas Kroc, Ashish Sabharwal, Carla P. Gomes, and Bart Selman. Integrat-

ing Systematic and Local Search Paradigms: A New Strategy for MaxSAT.

In Craig Boutilier, editor, IJCAI, pages 544–551, Pasadena, California, July

2009.

[KSTW06] Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. Estimating

Search Tree Size. In AAAI, Boston, Massachusetts, USA, July 2006. AAAI

Press.

[KXHLB09] Ashiqur R. KhudaBukhsh, Lin Xu, Holger H. Hoos, and Kevin Leyton-

Brown. SATenstein: Automatically Building Local Search SAT Solvers from

Components. In Craig Boutilier, editor, IJCAI, pages 517–524, Pasadena,

California, USA, July 2009.

144

BIBLIOGRAPHY

[Lag08] Mikael Z. Lagerkvist. Techniques for Efficient Constraint Propagation. Li-

centiate thesis, KTH - Royal Institute of Technology, Stockholm, Sweden

2008.

[LB08] Hugo Larochelle and Yoshua Bengio. Classification Using Discriminative

Restricted Boltzmann Machines. In William W. Cohen, Andrew McCallum,

and Sam T. Roweis, editors, Proceedings of the Twenty-Fifth International

Conference on Machine Learning, volume 307 of ACM International Confer-

ence Proceeding Series, pages 536–543, Helsinki, Finland, June 2008. ACM.

[LBNS02] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the

Empirical Hardness of Optimization Problems: The Case of Combinatorial

Auctions. In Pascal Van Hentenryck, editor, 8th International Conference on

Principles and Practice of Constraint Programming, volume 2470 of Lecture

Notes in Computer Science, pages 556–572, Ithaca, NY, USA, September

2002. Springer.

[LBNS06] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical

Hardness Models for Combinatorial Auctions. In Peter Cramton, Yoav

Shoham, and Richard Steinberg, editors, Combinatorial Auctions, chapter 19,

pages 479–504. MIT Press, 2006.

[LBNS09] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical

Hardness Models: Methodology and a Case Study on Combinatorial Auc-

tions. J. ACM, 56(4), 2009.

[LED] LEDA – Library of Efficient Data Types and Algorithms. Available from

http://www.algorithmic-solutions.com/.

[LH05] Chu Min Li and Wen Qi Huang. Diversification and Determinism in Local

Search for Satisfiability. In Fahiem Bacchus and Toby Walsh, editors, 8th

International Conference on Theory and Applications of Satisfiability Testing

(SAT), volume 3569 of Lecture Notes in Computer Science, pages 158–172,

St. Andrews, UK, June 2005. Springer.

145

BIBLIOGRAPHY

[LL98] Lionel Lobjois and Michel Lemaı̂tre. Branch and Bound Algorithm Selection

by Performance Prediction. In AAAI/IAAI, pages 353–358, 1998.

[LL01] Michail G. Lagoudakis and Michael L. Littman. Learning to Select Branching

Rules in the DPLL Procedure for Satisfiability. Electronic Notes in Discrete

Mathematics, 9:344–359, 2001.

[LS07] Mikael Z. Lagerkvist and Christian Schulte. Advisors for Incremental Propa-

gation. In Christian Bessiere, editor, 13th International Conference on Princi-

ples and Practice of Constraint Programming, volume 4741 of Lecture Notes

in Computer Science, pages 409–422, Providence, RI, USA, September 2007.

Springer.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal Speedup of

Las Vegas Algorithms. Optimal Speedup of Las Vegas Algorithms, 47(4):173–

180, 1993.

[LWZ07] Chu Min Li, Wanxia Wei, and Harry Zhang. Combining Adaptive Noise and

Look-Ahead in Local Search for SAT. In João Marques-Silva and Karem A.

Sakallah, editors, 10th International Conference on Theory and Applications

of Satisfiability Testing (SAT), volume 4501 of Lecture Notes in Computer

Science, pages 121–133, Lisbon, Portugal, May 2007. Springer.

[MCC06] Eric Monfroy, Carlos Castro, and Broderick Crawford. Adaptive Enumeration

Strategies and Metabacktracks for Constraint Solving. In Tatyana M. Yakhno

and Erich J. Neuhold, editors, 4th International Conference on Advances in

Information Systems (ADVIS), volume 4243 of Lecture Notes in Computer

Science, pages 354–363, Izmir, Turkey, October 2006. Springer.

[Min93] Steven Minton. An Analytic Learning System for Specializing Heuristics. In

13th International Joint Conference on Artificial Intelligence (IJCAI), pages

922–929. Morgan Kaufmann, 1993.

[Min96] Steven Minton. Automatically Configuring Constraint Satisfaction Programs:

A Case Study. Constraints, 1(1/2):7–43, 1996.

146

BIBLIOGRAPHY

[Mit97] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[MJPL92] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Min-

imizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and

Scheduling Problems. Artif. Intell., 58(1-3):161–205, 1992.

[MM97] Oded Maron and Andrew W. Moore. The Racing Algorithm: Model Selection

for Lazy Learners. Artif. Intell. Rev., 11:1–5, 1997.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Au-

tomation Conference (DAC’01), pages 530–535, 2001.

[MSG97] Bertrand Mazure, Lakhdar Sais, and Éric Grégoire. Tabu Search for SAT. In

AAAI/IAAI, pages 281–285, 1997.

[MSG98] Bertrand Mazure, Lakhdar Sais, and Éric Grégoire. Boosting Complete Tech-

niques Thanks to Local Search methods. Ann. Math. Artif. Intell, 22(3-

4):319–331, 1998.

[MSK97] David A. McAllester, Bart Selman, and Henry A. Kautz. Evidence for Invari-

ants in Local Search. In AAAI/IAAI, pages 321–326, 1997.

[MSR+09] Martin Mann, Cameron Smith, Mohamad Rabbath, Marlien Edwards, Se-

bastian Will, and Rolf Backofen. CPSP-web-tools: A Server for 3D Lattice

Protein Studies. Bioinformatics, 25(5):676–677, 2009.

[NLBH+04] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar,

and Yoav Shoham. Understanding Random SAT: Beyond the Clauses-to-

Variables Ratio. In Mark Wallace, editor, 10th International Conference on

Principles and Practice of Constraint Programming, volume 3258 of Lec-

ture Notes in Computer Science, pages 438–452, Toronto, Canada, September

2004. Springer.

147

BIBLIOGRAPHY

[NLLP10] Morten Nielsen, Claus Lundegaard, Ole Lund, and Thomas Nordahl Petersen.

CPHmodels-3.0–Remote Homology Modeling Using Structure-Guided Se-

quence Profiles. Nucleic Acids Res, 38, 2010.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gre-

gory J. Duck, and Guido Tack. MiniZinc: Towards a Standard CP Modelling

Language. In Christian Bessiere, editor, 13th International Conference on

Principles and Practice of Constraint Programming, volume 4741 of Lecture

Notes in Computer Science, pages 529–543, Providence, RI, September 2007.

Springer.

[OHH+08] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and

Barry O’Sullivan. Using Case-based Reasoning in an Algorithm Portfolio for

Constraint Solving. In Proceedings of the 19th Irish Conference on Artificial

Intelligence and Cognitive Science, August 2008.

[O’S10] Barry O’Sullivan. Automated Modelling and Solving in Constraint Program-

ming. In Maria Fox and David Poole, editors, AAAI. AAAI Press, 2010.

[PBG05] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A Survey of Recent Ad-

vances in SAT-based Formal Verification. STTT, 7(2):156–173, 2005.

[PC03] Nikhil R. Pal and Debrup Chakraborty. Some New Features for Protein

Fold Prediction. In ICANN, pages 1176–1183, Istanbul, Turkey, June 2003.

Springer.

[PDP05] Alessandro Dal Palù, Agostino Dovier, and Enrico Pontelli. A new constraint

solver for 3d lattices and its application to the protein folding problem. In Ge-

off Sutcliffe and Andrei Voronkov, editors, Logic for Programming, Artificial

Intelligence, and Reasoning, 12th International Conference, LPAR, volume

3835 of Lecture Notes in Computer Science, pages 48–63, 2005.

[PE06] Smiljana Petrovic and Susan L. Epstein. Full Restart Speeds Learning. In

Geoff Sutcliffe and Randy Goebel, editors, Proceedings of the Nineteenth

148

BIBLIOGRAPHY

International Florida Artificial Intelligence Research Society Conference

(FLAIRS), pages 104–103, Melbourne Beach, Florida, USA, 2006. AAAI

Press.

[PE08] Smiljana Petrovic and Susan L. Epstein. Random Subsets Support Learning a

Mixture of Heuristics. International Journal on Artificial Intelligence Tools,

17(3):501–520, 2008.

[PG07] Duc Nghia Pham and Charles Gretton. gNovelty+. In Solver description, SAT

competition 2007, 2007.

[PG09] Duc Nghia Pham and Charles Gretton. gNovelty+ (v.2). In Solver description,

SAT competition 2009, 2009.

[Phi03] Ansgar Philippsen. DINO: Visualizing Structural Biology, 2003. Available

from http://www.dino3d.org.

[Pre01] Steven Prestwich. Balance Incomplete Block Design as Satisfiability. In 12th

Irish Conference on Artificial Intelligence and Cognitive Science, 2001.

[PT07] Luca Pulina and Armando Tacchella. A Multi-engine Solver for Quantified

Boolean Formulas. In Christian Bessiere, editor, 13th International Confer-

ence on Principles and Practice of Constraint Programming, volume 4741 of

Lecture Notes in Computer Science, pages 574–589, Providence, RI, USA,

September 2007. Springer.

[PT09] Luca Pulina and Armando Tacchella. A Self-Adaptive Multi-Engine Solver

for Quantified Boolean Formulas. Constraints, 14(1):80–116, 2009.

[PTGS08] Duc Nghia Pham, John Thornton, Charles Gretton, and Abdul Sattar. Com-

bining Adaptive and Dynamic Local Search for Satisfiability. JSAT, 4(2-

4):149–172, 2008.

[Pug04] Jean-Francois Puget. Constraint Programming Next Challenge: Simplicity of

Use. In Mark Wallace, editor, 10th International Conference on Principles

149

BIBLIOGRAPHY

and Practice of Constraint Programming, volume 3258 of Lecture Notes in

Computer Science, Toronto, Canada, September 2004. Springer.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):86–106,

1986.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[RAD10] Emmanuel Rachelson, Ala Ben Abbes, and Sèbastien Diemer. Combining

Mixed Integer Programming and Supervised Learning for Fast Re-Planning.

In Eric Gregoire, editor, 22th International Conference on Tools With Arti-

ficial Intelligence (ICTAI), volume 2, pages 63–70, Arras, France, October

2010. IEEE.

[R.B92] R.Bisiani. Beam Search. In Stuart C Shapiro, editor, Encyclopedia of Artifi-

cial Intelligence, pages 1467–1468. John Wiley and Sons, 1992.

[RBB05] Andrea Roli, Maria J Blesa, and Christian Blum. Random Walk and Paral-

lelism in Local Search. In Metaheuristic International Conference (MIC’05),

Vienna, Austria, 2005.

[RBM+05] Irina Rish, Mark Brodie, Sheng Ma, Natalia Odintsova, Alina Beygelzimer,

Genady Grabarnik, and Karina Hernandez. Adaptive Diagnosis in Distributed

Systems. IEEE Trans. on Neural Networks, 16:1088–1109, September 2005.

[Ref04] Philippe Refalo. Impact-Based Search Strategies for Constraint Program-

ming. In Mark Wallace, editor, 10th International Conference on Principles

and Practice of Constraint Programming, volume 2004 of Lecture Notes in

Computer Science, pages 557–571, Toronto, Canada, Sept 2004. Springer.

[RHK02] Yongshao Ruan, Eric Horvitz, and Henry A. Kautz. Restart Policies with De-

pendence Among Runs: A Dynamic Programming Approach. In Pascal Van

Hentenryck, editor, 8th International Conference on Principles and Practice

150

BIBLIOGRAPHY

of Constraint Programming, volume 2470 of Lecture Notes in Computer Sci-

ence, pages 573–586, Ithaca, NY, USA, September 2002. Springer.

[Ric76] John R. Rice. The Algorithm Selection Problem. Advances in Computers,

15:65–118, 1976.

[RK04] Ryan Rifkin and Aldebaro Klautau. In Defense of One-Vs-All Classification.

J. Mach. Learn. Res., 5(41):101–141, December 2004.

[RK07] Daniel M. Roy and Leslie Pack Kaelbling. Efficient Bayesian Task-Level

Transfer Learning. In Manuela M. Veloso, editor, IJCAI, pages 2599–2604,

Hyderabad, India, January 2007.

[RL09] Olivier Roussel and Christophe Lecoutre. XML Representation of Constraint

Networks: Format XCSP 2.1. CoRR, abs/0902.2362, 2009.

[Rol02] Andrea Roli. Criticality and Parallelism in Structured SAT Instances. In

Pascal Van Hentenryck, editor, 8th International Conference on Principles

and Practice of Constraint Programming (CP’02), volume 2470 of Lecture

Notes in Computer Science, pages 714–719, Ithaca, NY, USA, September

2002. Springer.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of

Constraint Programming (Foundations of Artificial Intelligence). Elsevier

Science Inc., New York, NY, USA, 2006.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. IEEE Transactions on Neural Networks, 9(5):1054–1054, 1998.

[SB07] Dario Landa Silva and Edmund K. Burke. Asynchronous Cooperative Lo-

cal Search for the Office-Space-Allocation Problem. INFORMS Journal on

Computing, 19(4):575–587, 2007.

[SC06] Christian Schulte and Mats Carlsson. Finite Domain Constraint Program-

ming Systems. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors,

151

BIBLIOGRAPHY

Handbook of Constraint Programming, Foundations of Artificial Intelligence,

chapter 14, pages 495–526. Elsevier Science Publishers, Amsterdam, The

Netherlands, 2006.

[Sch02] Robert E. Schapire. Advances in Boosting. In Adnan Darwiche and Nir Fried-

man, editors, 18th Conference in Uncertainty in Artificial Intelligence (UAI

’02), pages 446–452, Alberta, Canada, August 2002. Morgan Kaufmann.

[SF94] Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom

in Constraint Satisfaction. In European Conference on Artificial Intelligence

(ECAI), pages 125–129, 1994.

[SGS07] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining Multi-

ple Heuristics Online. In Proceedings of the Twenty-Second AAAI Conference

on Artificial Intelligence, pages 1197–1203, Vancouver, British Columbia,

Canada, July 2007. AAAI Press.

[SGS08] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Combining Multi-

ple Constraint Solvers: Results on the CPAI’06 Competition Data. In Marc

van Dongen, Christophe Lecoutre, and Olivier Roussel, editors, 2nd Interna-

tional CSP Solver Competition, pages 11–18, 2008.

[SHG09] David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large

Scale Online Bayesian Recommendations. In Juan Quemada, Gonzalo León,

Yoëlle S. Maarek, and Wolfgang Nejdl, editors, 18th International Confer-

ence on World Wide Web (WWW’09), pages 111–120, Madrid, Spain, April

2009. ACM.

[Sim05] Helmut Simonis. Sudoku as a Constraint Problem. In Brahim Hnich, Patrick

Prosser, and Barbara Smith, editors, Fourth International Workshop 4th Inter-

national Workshop on Modelling and Reformulating Constraint Satisfaction

Problems, Barcelona, Spain, October 2005.

[SK93] Bart Selman and Henry A. Kautz. Domain-Independent Extensions to GSAT:

152

BIBLIOGRAPHY

Solving Large Structured Satisfiability Problems. In IJCAI, pages 290–295,

1993.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strategies for Improv-

ing Local Search. In AAAI, pages 337–343, 1994.

[SLB09] Tobias Schubert, Matthew Lewis, and Bernd Becker. PaMiraXT: Parallel sat

solving with threads and message passing. Journal on Satisfiability, Boolean

Modeling and Computation, JSAT, 6:203–222, 2009.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitchell. A New Method for

Solving Hard Satisfiability Problems. In 440-446, editor, AAAI, 1992.

[SM07] Horst Samulowitz and Roland Memisevic. Learning to Solve QBF. In Pro-

ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,

Vancouver, British Columbia, July 2007. AAAI Press.

[SM08] Kate Smith-Miles. Cross-Disciplinary Perspectives on Meta-Learning for Al-

gorithm Selection. ACM Comput. Surv., 41(1), 2008.

[SMJGT09] Kate Smith-Miles, Ross J. W. James, John W. Giffin, and Yiqing Tu. Under-

standing Relationships between Scheduling Problem Structure and Heuris-

tic Performance. In Thomas Stützle, editor, Third International Conference

on Learning and Intelligent Optimization (LION 3), volume 5851 of Lecture

Notes in Computer Science, pages 89–103, Trento, Italy, 2009. Springer.

[SS08] Matthew J. Streeter and Stephen F. Smith. New Techniques for Algorithm

Portfolio Design. In David A. McAllester and Petri Myllymäki, editors, 24th

Conference in Uncertainty in Artificial Intelligence (UAI), pages 519–527,

Helsinki, Finland, 2008. AUAI Press.

[SSH+10] David H. Stern, Horst Samulowitz, Ralf Herbrich, Thore Graepel, Luca

Pulina, and Armando Tacchella. Collaborative Expert Portfolio Management.

In Maria Fox and David Poole, editors, AAAI, pages 179–184, Atlanta, Geor-

gia, USA, July 2010. AAAI Press.

153

BIBLIOGRAPHY

[SSK06] Luai Al Shalabi, Zyan Shaaban, and Basel Kasasbeh. Data Mining: A Prepro-

cessing Engine. In Journal of Computer Science, volume 2, pages 735–739,

2006.

[SSW99] Barbara Smith, Kostas Stergiou, and Toby Walsh. Modelling the Golomb

Ruler Problem. In Workshop on non-binary constraints. 1999.

[ST08] Christian Schulte and Guido Tack. Perfect Derived Propagators. In Peter J.

Stuckey, editor, 14th International Conference on Principles and Practice of

Constraint Programming, volume 5202 of Lecture Notes in Computer Sci-

ence, pages 571–575, Sydney, Australia, September 2008. Springer.

[Tac09] Guido Tack. Constraint Propagation – Models, Techniques, Implementation.

PhD thesis, Saarland University, 2009.

[TH04] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An Implementation

and Experimentation Environment for SLS Algorithms for SAT and MAX-

SAT. In Holger H. Hoos and David G. Mitchell, editors, 7th International

Conference on Theory and Applications of Satisfiability Testing (SAT), vol-

ume 3542 of Lecture Notes in Computer Science, pages 306–320, Vancouver,

BC, Canada, 2004. Springer.

[TH10] Dave A. D. Tompkins and Holger H. Hoos. Dynamic Scoring Functions with

Variable Expressions: New SLS Methods for Solving SAT. In Ofer Strich-

man and Stefan Szeider, editors, 13th International Conference on Theory

and Applications of Satisfiability Testing, volume 6175 of Lecture Notes in

Computer Science, pages 278–292, Edinburgh, UK, July 2010. Springer.

[TPBaFJ04] John Thornton, Duc Nghia Pham, Stuart Bain, and alnir Ferreira Jr. Additive

versus Multiplicative Clause Weighting for SAT. In Deborah L. McGuinness

and George Ferguson, editors, AAAI, pages 191–196, San Jose, California,

USA, July 2004. AAAI Press / The MIT Press.

[Van06] Peter Van Beek. Backtracking search algorithms. In Francesca Rossi, Peter

van Beek, and Toby Walsh, editors, Handbook of Constraint Programming

154

BIBLIOGRAPHY

(Foundations of Artificial Intelligence), chapter 4, pages 85–134. Elsevier

Science Inc., New York, NY, USA, 2006.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning. Springer Verlag, New

York, NY, USA, 1995.

[Wal99] Toby Walsh. Search in a Small World. In Thomas Dean, editor, IJCAI,

volume 2, pages 1172–1177, Stockholm, Sweden, 1999. Morgan Kaufmann.

[WB08] Huayue Wu and Peter Van Beek. Portfolios With Deadlines For Backtracking

Search. International Journal on Artificial Intelligence Tools, 17(5):835–856,

2008.

[Wei] Eric W. Weisstein. Magic Square. From MathWorld–A Wolfram Web Re-

source http://mathworld.wolfram.com/MagicSquare.html.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data

Management Systems). Morgan Kaufmann series in data management sys-

tems. Morgan Kaufmann, 2 edition, June 2005.

[WGS03] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors To Typical

Case Complexity. In Georg Gottlob and Toby Walsh, editors, IJCAI, pages

1173–1178, Acapulco, Mexico, August 2003. Morgan Kaufmann.

[WM97] David Wolpert and William G. Macready. No Fre Lunch Theorems for Opti-

mization. IEEE Trans. Evolutionary Computation, 1(1):67–82, 1997.

[XHHLB07] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. The De-

sign and Analysis of an Algorithm Portfolio for SAT. In Christian Bessiere,

editor, 13th International Conference on Principles and Practice of Con-

straint Programming, volume 4741 of Lecture Notes in Computer Science,

pages 712–727, Providence, RI, USA, Sept 2007. Springer.

155

BIBLIOGRAPHY

[XHHLB08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:

Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelli-

gence Research, 32:565–606, 2008.

[XHLB07] Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Hierarchical Hardness

Models for SAT. In Christian Bessiere, editor, 13th International Confer-

ence on Principles and Practice of Constraint Programming, volume 4741 of

Lecture Notes in Computer Science, pages 696–711, Providence, RI, USA,

September 2007. Springer.

[XHLB10] Lin Xu, Holger Hoos, and Kevin Leyton-Brown. Hydra: Automatically Con-

figuring Algorithms for Portfolio-Based Selection. In Maria Fox and David

Poole, editors, AAAI, pages 210–216, Atlanta, Georgia, USA, July 2010.

AAAI Press.

[XSS09] Yuheua Xu, David Stern, and Horst Samulowitz. Learning Adaptation to

Solve Constraint Satisfaction Problems. In Learning and Intelligent Opti-

mization (LION), 2009.

[ZE08] Zhijun Zhang and Susan L. Epstein. Learned Value-Ordering Heuristics for

Constraint Satisfaction. In The First International Symposium on Search

Techniques in Artificial Intelligence and Robotics, Chicago, Illinois, USA,

July 2008.

[ZHZ02] Wenhui Zhang, Zhuo Huang, and Jian Zhang. Parallel Execution of Stochas-

tic Search Procedures on Reduced SAT Instances. In Mitsuru Ishizuka and

Abdul Sattar, editors, The Pacific Rim International Conferences on Artificial

Intelligence (PRICAI), volume 2417 of Lecture Notes in Computer Science,

pages 108–117, Tokyo, Japan, August 2002. Springer.

156

BIBLIOGRAPHY

157

	Introduction
	Motivation and Context
	Constraint Programming
	Contributions of this thesis
	Thesis outline
	List of Publications

	Formalism
	Constraint Satisfaction Problems
	Complete Search
	Variable and Value ordering

	Incomplete Search
	The Propositional Satisfiability Problem
	Variable Selection

	Constraint Optimization Problems
	Supervised Machine Learning
	Support Vector Machines
	Decision Trees

	Related work
	The Algorithm Selection Problem
	Portfolios for SAT
	Portfolios for QBF
	Portfolios for CSP

	Portfolios for Optimization problems
	Per class learning
	Adaptive Control
	Other work

	Exploiting Weak Dependencies in Tree-based Search
	Introduction
	Constraint propagation
	Exploiting weak dependencies in tree-based search
	Weak dependencies
	Example
	Computing weak dependencies
	The domFD dynamic variable ordering
	Complexities of domFD

	Experiments
	The problems
	Searching for all solutions or for an optimal solution
	Searching for a solution with a classical branch-and-prune strategy
	Searching for a solution with a restart-based branch-and-prune strategy
	Synthesis

	Previous work
	Summary

	Building Portfolios for the Protein Structure Prediction Problem
	Introduction
	The protein structure prediction problem
	Features
	Problem features
	CP features

	Algorithm portfolios
	Algorithm subset selection

	Experiments
	Summary

	Continuous Search in Constraint Programming
	Introduction
	Continuous Search in Constraint Programming
	Dynamic Continuous Search
	Representing instances: feature definition
	Static features
	Dynamic features

	Feature pre-processing
	Learning and using the heuristics model
	Generating examples in Exploration mode
	Imbalanced examples

	Experimental validation
	Experimental setting
	Practical performances
	Exploration time
	The power of adaptation

	Previous Work
	Summary

	Efficient Parallel Local Search for SAT
	Introduction
	Knowledge Sharing in Parallel Local Search for SAT
	Using Best Known Configurations
	Weighting Best Known Configurations
	Ranking
	Normalized Performance

	Restart Policy

	Experiments
	Experimental Settings
	Practical Performances with 4 Cores
	Practical Performances with 8 Cores
	Analysis of the Diversification/Intensification Trade off
	Analysis of the Limitations of the Hardware

	Previous Work
	Complete Methods for Parallel SAT
	Incomplete Methods for Parallel SAT
	Cooperative Algorithms

	Summary

	Conclusions and Perspectives
	Overview of the main contributions
	Perspectives

	Bibliography

