
HAL Id: tel-00598494
https://theses.hal.science/tel-00598494

Submitted on 6 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree automata with global constraints for the
verification of security properties

Camille Vacher

To cite this version:
Camille Vacher. Tree automata with global constraints for the verification of security properties. Other
[cs.OH]. École normale supérieure de Cachan - ENS Cachan, 2010. English. �NNT : 2010DENS0043�.
�tel-00598494�

https://theses.hal.science/tel-00598494
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT
DE L’ECOLE NORMALE SUPERIEURE DE CACHAN

Présentée par

Monsieur VACHER Camille

pour obtenir le grade de

DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN

Domaine :
Informatique

Sujet de la thèse :

Automates d'arbres à contraintes globales pour la
vérification de propriétés de sécurité

Thèse présentée et soutenue à Cachan le 07/12/2010 devant le jury
composé de :

Jean Goubault-Larrecq Professeur Directeur de thèse
Florent Jacquemard Chargé de recherche Co-directeur de thèse
Christof Loeding Professeur Examinateur
Jean-Marc Talbot Professeur Rapporteur
Sophie Tison Professeure Présidente
Igor Walukiewicz Professeur Rapporteur

Nom du Laboratoire : Laboratoire de Spécification et Vérification
ENS CACHAN/CNRS/UMR : 8643
61, avenue du Président Wilson, 94235 CACHAN CEDEX (France)

Remerciements

Je tiens tout d’abord à remercier Igor Walukiewicz et Jean-Marc Talbot
pour m’avoir fait l’honneur d’accepter d’être rapporteurs de cette thèse.
Leur lecture attentive de mon manuscrit et leurs commentaires m’ont
été d’une aide précieuse. Je remercie également Sophie Tison et Christof
Loeding d’avoir accepté de participer au jury.

Merci également à mon directeur de thèse officiel, Jean Goubault-
Larrecq, d’avoir accepter cette responsabilité.

Je remercie Florent Jacquemard, mon co-directeur de thèse, avec
qui j’ai travaillé avec plaisir pendant plus de trois ans. La plupart des
résultats présentés ici doivent leur origine à de longs après-midi passés
ensemble devant un tableau. Qu’il ait su gérer mes excès d’enthousiasme
ou de scepticisme n’est pas le moindre de ses mérites.

Merci à Francis Klay, de France Télécom, pour son accueil, pour les
échanges scientifiques, malheureusement trop peu nombreux, et pour
s’être assuré que tout se déroulait au mieux pour moi tout au long de
ma thèse. Merci également à Yves Quemener, pour avoir fait un suivi
bien apprécié de ma situation administrative durant ces trois années.

Je remercie Guillem Godoy, pour son accueil, sa bonne humeur et
ses idées éclairantes. Ces trois jours de travail en commun à Barcelone
ont constitué une étape cruciale dans le déroulement de ma thèse. Je
lui en suis redevable.

Si cette thèse a pu voir le jour, c’est grâce à la bonne ambiance
qui règne dans les bâtiments du LSV et aux personnes qui s’y trou-
vent, contribuant à en faire un peu plus qu’un simple lieu de recherche.
Merci notamment à ceux et celles avec qui j’ai partagé un bureau, des
soirées, des repas, ou plus que cela. Une pensée donc pour Thomas,
Pierre C., Étienne, Mathilde, Jules, Arnaud, Antoine, Diego, Amélie,
Sylvain, Pierre B., Alban et Jean-Loup. D’autre part, je tiens à re-
mercier Geneviève, Ahmad, Catherine, Audrey, Virginie et Isabelle pour
tous les services rendus pendant mon séjour au LSV.

Ce manuscrit n’est pas que le résultat d’un travail en laboratoire,
mais doit beaucoup à toutes les personnes que j’ai rencontrées ces
dernières années, et avec qui j’ai pu discuter en dehors de tout cadre
scientifique. Parmi elles se trouvent évidemment mes colocataires de

1

2

la rue Saint-Michel à Lyon, des rues Bobillot, Crimée et de l’Ourcq à
Paris, ainsi que de la rue Solférino à Lille. Je lève un verre à leur santé.

Enfin, il est quelques personnes qui me soutiennent depuis le début,
ce qui est d’autant plus apprécié et courageux que la réciprocité n’est
pas mon fort. Pour cela, je présente mes excuses et j’adresse toute mon
affection à Frédérique, Gilles, Barbara, Marthe et Jacques.

Introduction

In system and software verification, one classical problem is to modelize
infinite structures with only finitely many informations. Automata on
words have been used with this approach since decades. They are ba-
sically finite state machines that allow to represent potentially infinite
languages of words. An intuitive way to describe automata is to say
that they have a finite number of states, and each of these states will
correspond to a (potentially infinite) class of words that have the same
behavior when viewed as prefixes of other words. Then, the automaton
will have several transition rules that define the relations between all
these states. The languages recognized by automata are called regular.
The use of automata spread quickly and they are still widely used in
many fields of computer science. Among the most evident reasons of
their success, one can cite their expressiveness, the decidability of many
important problems, and the closure properties of regular languages.

Automata are as expressive as rational expressions: any language
that can be described as a rational expression can be described as an
automaton language. The problem to know whether a word can be
recognized by a given automaton, or whether there even exists such
a word, are decidable, in a reasonable complexity. Moreover, regular
languages can be combined, and automata can recognize the union or
intersection of two regular languages, and also the complement of a
regular language.

Automata have been quickly generalized from words to terms in or-
der to finitely represent infinite languages of structures shaped like trees.
Most of the properties of automata on words are still true on trees. In
particular, the problems and properties mentioned above are still valid
for Tree Automata. They can be used to represent infinite sets of states
of a system or a program (in the latter case, a term can represent the
program itself), messages exchanged in a communication protocol, XML
documents... In these settings, the closure properties of TA languages
permit incremental constructions and verification problems can be re-
duced to TA problems decidable in polynomial time like emptiness (is
the language recognized by a given TA empty) and membership (is a
given term t recognized by a given TA).

Tree automata techniques are widely used in several domains
like automated deduction (see e.g. [CLDG+07]), static analysis of
programs [BT05] or protocols [VGL07, FGT04], and XML process-

3

4

ing [Sch07]. Hence they are an important tool in security issues such
as communications protocol verification, or XML updates analysis. A
severe limitation of standard tree automata (TA) is however that they
are not able to test for equality (isomorphism) or disequality between
subterms in an input term. For instance, the language of terms de-
scribed by a non-linear pattern of the form f(x, x) is not regular (i.e.
there exists no TA recognizing this language). Such tests would also be
useful for expressing integrity constraints . Similar problems are also
frequent in the context of XML documents processing. Intuitively, an
XML document is a textual representation of the storage of data in a
tree structure; in other words, it is a finite labeled unranked tree. XML
documents are commonly represented as labeled trees, and they can be
constrained by XML schemas, which define both typing restrictions and
integrity constraints. All the typing formalisms currently used for XML
are based on finite tree automata. The key constraints for databases
are common integrity constraints expressing that every two distinct po-
sitions of a given type have different values (see e.g. [FL02]). This is
typically the kind of constraints that can not be characterized by TA.

One first approach to overcome this limitation of TA consists in
adding the possibility to make equality or disequality tests at each step
of the computation of the automaton. The tests are performed locally,
between subtrees at a bounded distance from the current computation
position in the input tree. The emptiness problem, whether the language
recognized by a given automaton is empty, is undecidable with such
tests [Mon81]. A decidable subclass is obtained by restricting the tests
to sibling subtrees [BT92] (see [CLDG+07] for a survey).

Another approach to allow such tests is to add an auxiliary memory
containing a tree and permit memory comparison [CLC05]. Pushdown
tree automata [Gue83, CR07] also permit such tests. However, they are
also all limited to local tests, at a bounded distance from the current
position.

A new approach was proposed more recently in [FTT07, FTT08]
with the definition of tree automata with global equality and disequal-
ity tests (TAGED). The TAGED do not perform the tests during the
computation steps but globally on the tree, at the end of the compu-
tation, at positions which are defined by the states reached during the
computation. For instance, they can express that all the subtrees that
reached a given state q are equal, or that every two subtrees that reached
respectively the states q and q′ are different. The emptiness has been
shown decidable for several subclasses of TAGED [FTT07, FTT08], but
the decidability of emptiness for the whole class remained a challenging
open question until this year.

In this thesis, we will mostly work with various formalisms of tree
automata with global constraints, as it seems to be one of the most
adapted in order to be applied to security issues. We will first show
an application of a subclass of TAGED that only do equality tests to

5

the verification of cryptographic protocols. We will follow a classical
approach, which is to decide whether a term can be inferred from an
automata language using term rewriting rules. Closure of TA languages
under term rewriting has been a well-studied field, especially in commu-
nication protocol verification (see e.g. [FGT04, GK00]). However, we
present a result which is, to our knowledge, one of the first concerned
with automata with (dis)equality constraints. The difficulty lies in the
preservation of the equality constraints by the successive rewritings.

Then we will focus on the main aim of this thesis, which is to answer
the question of decidability of emptiness for TAGED. The emptiness
problem of the subclass of TAGED with only disequality constraints
(negative TAGED) has been shown decidable by proving the equivalence
with a set constraint problem. This problem was solved by Charatonik
and Pacholsky in [CP94]. Charatonik then proved (in [Cha99]) the
emptiness decidability of emptiness of another class of automata, DAG-
automata, using similar techniques. In chapter 4, we modify this proof
to get decidability in the TAGED case.

We also prove the emptiness decision problem for a class of tree rec-
ognizers more general than TAGED. We define (in chapter 1) a class
of tree automata with global constraints (TAGC) which, roughly, cor-
responds to TAGED extended with the possibility to express disequali-
ties between subtrees that reached the same state (specifying key con-
straints, which are not expressible with TAGEDs), and with arbitrary
Boolean combinations (including negation) of constraints. We show in
Chapter 5 that emptiness is decidable for TAGC.

The decision algorithm uses an involved pumping argument: every
sufficiently large tree recognized by the given TAGC can be reduced
by an operation of parallel pumping into a smaller tree which is still
recognized. The existence of the bound is based on a particular well
quasi-ordering.

This thesis is organized as follow:

In chapter 1 we give the formal definitions that we will need along
this manuscript. We will mostly introduce the notions of terms and of
automata, give the usual notations, and present some basic properties
on them. We will also introduce term rewriting systems (TRS) that
we will need in chapter 3 and directed acyclic graph representation of
terms, which we will intensively use in chapter 4. Finally we give the
definition of well quasi-orders that we will need in chapter 5.

In chapter 2 we define the general class of Tree Automata with Global
Constraints. We then prove some easy decision results and some closure
properties. Then, we will do a quite exhaustive comparative study with
most of the automata classes that allow to do similar (dis)equalities test.
For each of the presented class, we will give an example of a term that is
recognized by TAGC but not by the class, and, when it exists, of a term
that is recognized by the class but not by the TAGC. We will mostly

6

prove those propositions, but some of them that required an involved
combinatorial argument will just be stated or presented as conjectures.

In chapter 3 we will focus on rigid tree automata (RTA) which are
in fact an easy representation of TAGED that can only do equality
tests. We justify the use of this representation in the context of protocol
verification. We proved some results specific to RTA. Then, we prove the
decidability of the emptiness problem of the rewriting closure of RTA
languages, and give an application to security protocol verification.

In chapter 4 we first prove a result of equivalence of expressiveness
between negative TAGED and t-dag automata. Then, we enhance a
former proof of Charatonik of the emptiness problem of t-dag automata
in order to apply it to the full class of TAGED.

Finally, in chapter 5, we prove the decidability of the emptiness prob-
lem for the whole class of TAGC, which generalizes the class of TAGED.
In particular, they allow to handle key constraints, which is not possible
with TAGED. We first prove that we can reduce to positive conjunctive
constraints by using some arithmetic constraints. Then, we prove the
decidability result on TAGC with those positive conjunctive constraints,
using a pumping argument and a well quasi-order to prove the existence
of a pumping for every big enough term. We then give an extension of
this technique for automata that have (dis)equality constraints both
global and between brother (as in [BT92]. Finally, we apply these re-
sults to prove the decidability of a strict extension of MSO on trees.

Contents

1 Preliminaries 9

1 Ranked Terms . 9

2 Unranked Ordered Labeled Trees 10

3 Term Rewriting . 10

4 DAG Representation of Terms 11

5 Tree Automata . 14

6 Automata on Unranked Ordered Labeled Trees 16

7 Well Quasi-Ordering . 17

2 Tree Automata with Equality and Disequality Tests 19

1 Tree Automata with Global Constraints 19

1.1 Definition and First Examples 19

1.2 Decision Problems 22

1.3 Closure Properties 25

2 Related Models with (Dis)Equalities Tests 26

2.1 TAGED . 26

2.2 Tree Automata with Local Constraints 28

2.3 Tree Automata with One Memory 32

2.4 Automata on DAG Representations of Terms . . 34

2.5 Automatic Clauses 36

3 Rigid Tree Automata and Rewrite Closure 39

1 RTA: Definition, Examples and Properties 40

1.1 Definition . 40

1.2 Examples . 40

1.3 Pumping Lemma 42

1.4 Boolean Closure 43

2 Deterministic and Visibly Rigid Tree Automata 45

2.1 Determinism and Completeness 45

2.2 Visibly Rigid Tree Automata 47

3 Decision problems . 49

3.1 Emptiness . 49

3.2 Intersection non-Emptiness 51

3.3 Finiteness . 51

4 Rewrite Closure . 51

4.1 Linear and Collapsing Rewrite Systems 52

7

8

4.2 Undecidability of Membership Modulo 52
4.3 Linear and Invisibly Pushdown Rewrite Systems 54

5 Application to the Verification of Security Protocols . . 58
5.1 Protocol Model 59
5.2 Protocol Semantics 61
5.3 RTA Construction 62
5.4 Verification of Security Properties 65

6 Conclusion . 68

4 Emptiness Decision for TAGED 71

1 Negative TAGED and t-dag Automata are Equally Ex-
pressive . 72

2 Deciding Emptiness of TAGED 74
2.1 Mapping Nodes to a Set of States 74
2.2 Definitions and Notations 77
2.3 Building a Skeleton 78
2.4 Properties of Semi-Skeleton 86
2.5 Pumping Within a Skeleton 88

3 Conclusion . 92

5 Deciding Emptiness for TAGC 95

1 TAGC with Arithmetic Constraints 96
1.1 Relative Linear Inequalities 96
1.2 Natural Linear Inequalities 99

2 Emptiness Decision Algorithm 108
2.1 Global Pumpings 108
2.2 A Well Quasi-Ordering 113
2.3 Mapping a Run to a Sequence of the Well Quasi-

Ordered Set . 116
3 Equality Tests Between Brothers 119
4 Unranked Ordered Trees 120
5 Monadic Second Order Logic 122

5.1 MSO on Ranked Terms 122
5.2 MSO on Unranked Ordered Terms 125

6 Conclusion . 125

Chapter 1

Preliminaries

1 Ranked Terms

A signature Σ is a finite set of function symbols with arity. We write Σm
for the subset of function symbols of Σ of arity m. Function symbols
of arity 0 are also called constant symbols. Given an infinite set X of
variables, the set of terms built over Σ and X is denoted T (Σ,X), and
the subset of ground terms (terms without variables) is denoted T (Σ).
The set of variables occurring in a term t ∈ T (Σ,X) is denoted vars(t).
A term t ∈ T (Σ,X) is called linear if every variable of vars(t) occurs
at most once in t.

A substitution σ is a mapping from a finite subset of X into T (Σ,X).
The application of a substitution σ to a term t is the homomorphic
extension of σ to T (Σ,X).

The set of positions of a term t is a set of sequences of positive
integers, Pos(t) ⊆ N∗, defined inductively as follow

• if t = a where a ∈ Σ0 or if t = x where x ∈ X then Pos(t) = {ε}

• if t = f(t1, . . . , tn) where f ∈ Σn Pos(t) = {ε} ∪ {1.p | p ∈
Pos(t1)} ∪ · · · ∪ {n.p | p ∈ Pos(tn)}

We denote for all i, 0 ≤ i < |p|, we denote p[i] the i-th number of
p. Positions are compared wrt the prefix ordering: p1 < p2 iff there
exists p 6= ε such that p2 = p1 ·p (where p1 ·p denotes the concatenation
of p1 and p). In this case, p is denoted p2 − p1. Two positions p1, p2
incomparable with respect to the prefix ordering are called parallel, and
it is denoted by p1 ‖ p2. Note that the set of positions is prefix-closed.

A term t can then be seen as a function from its set of positions
Pos(t) into function symbols or variables of Σ ∪ X . More precisely, for
every position p ∈ Pos(t) we define t(p) as

• if p = ε then

– if t = a with a ∈ Σ0 then t(p) = a

– if t = x with x ∈ X then t(p) = x

9

10 Chapter 1 : Preliminaries

– if t = f(t1, . . . , tn) with f ∈ Σn then t(p) = n

• if p = i.p′ and t = f(t1, . . . , tn) then t(p) = ti(p
′)

The subterm of t at position p is denoted t|p. More formally we
define its set of positions of t|p is Pos(t|p) = {p′ | p.p′ ∈ Pos(t)} and
for all p′ ∈ Pos(t|p) we have t|p(p

′) = t(p.p′). The replacement in
t of the subterm at position p by u is denoted t[u]p. More formally
Pos(t[u]p) = {p′ | p ∈ Pos(t), p 6< p′} ∪ {p′ | p′ = p.p′′, p′′ ∈ Pos(u)}
and for all p′ ∈ Pos(t[u]p), t[u]p(p

′) = t(p′) if p 6< p′ and t[u]p(p
′) = u(p′′)

if p′ = p.p′′. The depth d(t) of t is the length of its longest position. A
n-context is a linear term of T (Σ, {x1, . . . , xn}). The application of a
n-context C to n terms t1, . . . , tn, denoted by C[t1, . . . , tn], is defined as
the application to C of the substitution {x1 7→ t1, . . . , xn 7→ tn}.

2 Unranked Ordered Labeled Trees

Until now, we have only considered terms over signatures (or ranked
alphabet). Here we will give a definition of trees over an unranked al-
phabet where each position may have an unbounded (but finite) number
of successors.

Definition 1.1 Let U be an unranked alphabet, and F a ranked alpha-
bet. Let us define Σ = U ∪F . An unranked ordered labeled tree over Σ
is a partial function t : N ∗ → Σ with domain written Pos(t) and such
that

1. Pos(t) is finite, nonempty and closed by prefix;

2. ∀p ∈ Pos(t),

• if p ∈ Fn then {i | p.i ∈ Pos(r)} = {1, 2, . . . , n};

• if p ∈ U then {i | p.i ∈ Pos(r)} = {1, 2, . . . , k} for some
k > 0.

The set of all unranked ordered labeled tree over Σ is denoted T (Σ).
A sequence of unranked trees over Σ, even the empty sequence ε, is
called a hedge.

3 Term Rewriting

A term rewrite system (TRS) over a signature Σ is a finite set of rewrite
rules ℓ → r, where ℓ ∈ T (Σ,X) (it is called the left-hand side (lhs) of
the rule) and r ∈ T (Σ, vars(ℓ)) (it is called right-hand-side (rhs)). A
term t ∈ T (Σ,X) rewrites to s ∈ T (Σ,X) by a TRS R (denoted t −−→R s
) if there is a rewrite rule ℓ → r ∈ R, a position p ∈ Pos(t) and a
substitution σ such that t|p = σ(ℓ) and s = t[σ(r)]p. In this case,

11

t is called reducible. An irreducible term is also called an R-normal-
form. The transitive and reflexive closure of −−→R is denoted −−→∗R . Given
L ⊆ T (Σ,X), we denote R∗(L) = {t

∣

∣ ∃s ∈ L, s −→∗
R

t}.
A TRS R is called left-linear (resp. right-linear)) if every variable

occurs at most once in the left-hand side term (resp. right-hand side
term) of the rule. It is called linear if it is both left-linear and right-
linear. A TRS is called collapsing if every right-hand side term of rules
of R is a variable.

4 DAG Representation of Terms

In Chapter 4, we will extensively use a canonical and succinct graph
representation of ground terms. Intuitively, we will represent a ground
term with a directed acyclic graph, such that each subterm corresponds
to exactly one node in the graph, even if it may occurs several times in
the original ground term. So we have to introduce several notations on
graph.

Definition 1.2 A directed ordered graph is a couple G = (VG, succG)
where

• VG is a finite set of nodes

• for all v ∈ VG there is an arity ar(v) ∈ N

• succG : N × VG → VG is a partial function such that for all node
v, succG(i, v) is defined if and only if i ≤ ar(v)

If succG(i, v) = v′ we say that v′ is the i-th immediate successor
(or simply an immediate successor) of v. If all the nodes of a directed
ordered graph G are of arity at most 1, we may forget the “ordered”
qualification, and, if it exists, we denote succG(v) the only immediate
successor of v. We denote v →G v′ the relation “v′ is an immediate

successor of v”. We denote
+
→G the transitive closure of →G and

∗
→G

its reflexive transitive closure. If v
+
→G v′ we say that v′ is a successor

of v. A subgraph G′ of a directed graph G is closed if G′ contains with
every node v all the successors of v in G.

A directed ordered graph G is said acyclic if there does not exist a

node v ∈ VG such that v
+
→ v. A graph G is rooted at some node u if

u is the only node such that there is no node v ∈ VG such that v → u.
We call u the root of G. Given a directed ordered graph G and a node
v ∈ VG, we denote G|v and we call subgraph of G rooted at v the directed

ordered graph G|v = 〈V ′, succ′〉, where V ′ = {v′ | v
∗
→ v′} and succ′ is

the restriction of succG to V ′.

A position is a finite sequence of integers, and ε denotes the empty
sequence. The set of positions Pos(G) of a directed ordered acyclic
graph G = 〈VG, succG〉 rooted at u is defined inductively as follow:

12 Chapter 1 : Preliminaries

• if VG = {u} then Pos(G) = ε

• otherwise, let ar(u) = n, then
Pos(G) = {ε} ∪ {1.p | p ∈ Pos(G|succG(1,u))} ∪ · · · ∪ {n.p | p ∈
Pos(G|succG(n,u))}

Given a directed ordered graph G rooted at u, and p ∈ Pos(G), we
denote G(p) the node:

• u if p = ε

• G|succ(i,u)(p
′) if p = i.p′

We use G|p as a short notation for G|G(p).
Given a directed ordered acyclic graph a leaf is a node without

immediate successors, The main path of a given node v in G is the
longest path leading from v to a leaf in G; if there are several paths of
the same (biggest) length, then the leftmost of them is the main one.
The length of the main path for a given node v is called the height of
the node and is denoted h(v). The height of a directed acyclic graph G,
denoted h(G), is the maximal height of its nodes.

In a directed ordered acyclic graph, the main successor of a node v is
the immediate successor of v lying on the main path for v. The position
of the main successor (that is, the number identifying this node in the
ordered sequence of successors of v) is called the main position. Note
the “leftmost” requirement above; it implies that if v1, . . . , vn are the
immediate successors of v in G, and vi lies on the main path for v, then
the main paths for v1, . . . , vi−1 are strictly shorter than the path for vi.
A position (resp. a successor) which is not the main position (resp. the
main successor) is called secondary.

We say that a node v lies below a node v0 if the main path for v
is shorter than the main path for v0 (that is, the depth of v is smaller
than the depth of v0).

A directed ordered labeled graph is a triplet G = 〈VG, succG, λG〉
where 〈VG, succG〉 is a directed ordered graph, and λG is mapping from
VG to another set. We will always precise this set when defining a new
labeled graph.

Definition 1.3 A DAG representation of a ground term (t-dag in
short) over a signature Σ is a directed acyclic ordered labeled graph
G = 〈VG, succG, λG〉 such that

• G is rooted at some node u

• λG : VG → Σ is a labeling of nodes of G by function symbols of Σ

• for each node v ∈ VG such that λ(v) = f , the arity of v in G is
equal to the arity of f in Σ

• no two subgraphs of G rooted at two different nodes are isomorphic
(wrt. structure and labelling)

13

The last condition is known as maximal sharing of structure. The
assumption that a t-dag is ordered (that is, the successors of each node
are ordered) is needed to assure that the t-dags representing f(a, b) and
f(b, a) are not isomorphic.

We will now formalize how a t-dag represents a ground term.

Definition 1.4 Let G = 〈V, succ, λ〉 be a t-dag. We define inductively
a mapping termG : V → T (Σ) the following way

• if λ(v) is a constant, then termG(v) = λ(v)

• if λ(v) is a function symbol f of arity n, then termG(v) =
f(termG(succ(1, v)), . . . , termG(succ(n, v)))

We denote term(G) the ground term termG(u) where u is the root of
G, and we say that G represents term(G).

Given a t-dag G representing a term t, we have that h(G) = h(u) =
h(t) where u is the root of G. Due to the maximal sharing property,
it is quite obvious that given a ground term t, the t-dag representing t
is unique up to isomorphism. Let us give a trivial construction of this
t-dag.

Proposition 1.5 Let t be a ground term on a signature Σ. Let us
define the directed oriented labeled graph 〈V, succ, λ〉:

• V = {t′ | ∃p ∈ Pos(t), t|p = t′}

• for all t′ ∈ V , such that t′ = f(t′1, . . . , t
′
n), for all i, 1 ≤ i ≤

n, succ(i, t′) = t′i.

And let λ : V → Σ be defined as follow

• λ(t′) = f if f is a function symbol of arity n and t′ = f(t′1, . . . , t
′
n)

Then 〈V, succ, λ〉 is a t-dag representing t, and we denote it dag(t).

proof. It is obvious that dag(t) is a directed ordered labeled graph
and that the arity or each node is equals to the arity of its labelling.
A subterm t′ of t has either no successor, if t′ is a leaf of t, or all its
successors are subterms of t′, hence, are of height strictly lower than t′.
So dag(t) is also acyclic.

Let t1, t2 be be two different subterms of t, hence, two different nodes
of dag(t). Let us show that they are not isomorphic (in order to prove
the maximal sharing property). If they are not of same height, then the
main path of t1 in dag(t) is of different length than the main path of t2
in dag(t), and they are not isomorphic. Assume that they are of same
height h. Let us prove by induction on h that they are not isomorphic. If
h(t1) = h(t2) = 1, then t1 and t2 are two different leafs of t. Hence, they
are two different constant symbols of Σ, which are also their labelling.

14 Chapter 1 : Preliminaries

Hence, they are not isomorphic wrt λ. Assume now, that two different
nodes of a same height lower than h are necessarily non-isomorphic. Let
h(t1) = h(t2) = h. If λ(t1) 6= λ(t2), they are not isomorphic. Hence,
assume λ(t1) = λ(t2) = f ∈ Σn. We have that t1 = f(t11, . . . , t

1
n) and

t2 = f(t21, . . . , t
2
n). Since t1 6= t2 there exists a position k, 1 ≤ k ≤ n

such that t1k 6= t2k. So t1k and t2k are two different nodes of height lower
than h. Either they are of different height, and then they are clearly
non-isomorphic, are they are both of same height lower than h, and
then, by induction hypothesis, they are not isomorphic. In both cases,
t1 and t2 are not isomorphic. 2

A term and its t-dag representation coincide in many cases. Espe-
cially, they have the same set of positions.

Lemma 1.6 Let t be a ground term, and G = dag(t). Then Pos(t) =
Pos(G), and for all p ∈ Pos(t), G|p represents t|p.

proof. It follows mainly from the remark that given a subterm t′ of t,
such that λ(t′) = f ∈ Σn, t

′ viewed as a term, has the same number n of
direct subterms, than the number of immediate successors he has when
viewed as a node. Also, we have that, for all i, 1 ≤ i ≤ n, succ(i, t′) = t.i.
Then, by induction on the height of t, we prove that Pos(t) = Pos(G).
And then, by recurrence on the length of p, we have that, for all p ∈
Pos(t), G|p represents t|p. 2

5 Tree Automata

Following definitions and notation of [CLDG+07], we consider tree au-
tomata which compute bottom-up (from leaves to root) on (finite)
ground terms in T (Σ). At each stage of computation on a tree t, a
tree automaton reads the function symbol f at the current position p in
t and updates its current state, according to f and the respective states
reached at the positions immediately under p in t.

Definition 1.7 A tree automaton (TA) A on a signature Σ is a tuple
〈Σ, Q, F,∆〉 where Q is a finite set of nullary state symbols, disjoint from
Σ, F ⊆ Q is the subset of final states and ∆ is a set of transition rules of
the form: f(q1, . . . , qn) → q where n ≥ 0, f ∈ Σn, and q1, . . . , qn, q ∈ Q.

The size of A, denoted |A|, is the number of symbols in ∆. When given
the name A of a tree automaton, we might sometimes use the notations
QA or ∆A to denote respectively the set of states of A or the set of its
transition rules.

Definition 1.8 A run of the TA A on a term t ∈ T (Σ) is a function
r : Pos(t) → Q such that for all p ∈ Pos(t) with t(p) = f ∈ Σn
(n ≥ 0), f

(

r(p.1), . . . , r(p.n)
)

→ r(p) ∈ ∆. A run r is called successful
if r(ε) ∈ F .

15

We will sometimes use term-like notation for runs. For instance, a run
{ε 7→ q, 1 7→ q1, 2 7→ q2} will be denoted q(q1, q2).

Definition 1.9 The language L(A, q) of a TA A in state q is the set
of ground terms for which there exists a run r of A such that r(ε) = q.
The language L(A) of A is

⋃

q∈F L(A, q), and a set of ground terms is
called regular if it is the language of a TA.

Definition 1.10 A TA A = 〈Q,F,∆〉 on Σ is deterministic (DTA),
resp. complete, if for every f ∈ Σn, and every q1, . . . , qn ∈ Q, there
exists at most, resp. at least, one rule f(q1, . . . , qn) → q ∈ ∆.

In the deterministic (resp. complete) cases, given a ground term t, there
is at most (resp. at least) one run r of A on t.

Proposition 1.11 Let A be a tree automaton. There exists a deter-
ministic tree automaton B such that L(A) = L(B).

The idea is to take all the subset of states of A as set of states and B,
and all the subsets containing a final state of A as the set of final states
of B. Then the transition rules are of the form f(P1, . . . , Pn) → P ,
P, P1, . . . , Pn ⊆ Q, such that q ∈ P if and only if there exists n states
q1 ∈ P1, . . . , qn ∈ Pn such that the transition rule f(q1, . . . , qn) → q be-
longs to ∆. Hence, for each configuration f ∈ Sigman, P1, . . . , Pn ⊆ Q,
there exists exactly one P ⊆ Q verifying this, and B is actually a deter-
ministic tree automaton. Note that the size of B may be exponential
in the size of A, and that it is a lower bound. Hence, since decidability
results may focus on deterministic tree automata, it is still important
for complexity issues to work with non-deterministic ones.

Tree automata have nice closure properties. One can find the proofs
of the following statement in [CLDG+07].

Proposition 1.12 Let L1 and L2 be two tree regular languages. Then
the following propositions holds

1. L̄1 is regular;

2. L1 ∪ L2 is regular;

3. L1 ∩ L2 is regular.

In the general case, idea is to consider two tree automata A1 and A2

recognizing respectively L1 and L2 and do simple constructions. The
size of the automaton to construct is O(2|A1|) for the complementation,
O(|A1| + |A2|) for the union and O(|A1| × |A2|) for the intersection.
Those sizes and the complexities may vary depending whether you have
deterministic tree automata, and whether you want to preserve deter-
minism.

We present now some classical decision problems on tree automata,
and we will give their complexity here.

16 Chapter 1 : Preliminaries

Definition 1.13 Given a TA A = 〈Σ, Q, F,∆〉:

• the emptiness problem is the problem to decide whether L(A) = ∅

• the universality problem is the problem to decide whether L(A) =
T (Σ)

• the finiteness problem is the problem to decide whether L(A) is
finite

•

Given a TA A = 〈Σ, Q, F,∆〉 and a term t, the membership problem
is the problem to decide whether t ∈ ‘L(A).

The emptiness problem is decidable in linear time, the membership
and the finiteness problems are in PTIME, whereas the universality
problem is EXPTIME-complete (see e.g. [CLDG+07]).

When introducing extensions of TA, we will often refer to those
decision problems. They will be defined the same way, with the name
of the concerned class of automata instead of TA.

6 Automata on Unranked Ordered Labeled
Trees

We defined an automata model for ranked terms. Here we generalize
this model to unranked labeled ordered trees (see definition 1.1 below).
They are called hedge automata, in reference of the denomination of the
sequences of unranked ordered labeled trees.

Definition 1.14 A Hedge Automaton is a tuple A = 〈Σ, Q, F,∆〉
where Σ = U ∪ F where U is an alphabet of unranked symbols, and
F an alphabet of ranked symbols, Q is a finite set of states, F ⊆ Q
is a set of finite states, and ∆ is a set of transition rules of the form
a(R) → q where R ⊆ Q∗ is a regular word language over Q, defined
by an automaton on word. We call the languages R the horizontal lan-
guages.

A run of a hedge automaton A on an unranked tree t is a mapping
r : Pos(t) → Q such that for all position p ∈ Pos(t) with a = t(p) and
q = r(p) there is a transition rule a(R) → q such that r(p.1) . . . r(p.n) ∈
R where n is the number of successors of p. In particular in order to
apply a rule at a leaf, the empty word ε has to be in the horizontal
language of the rule. A run r is said successful if r(ε) ∈ F .

An unranked ordered labeled tree t is accepted by A if there exists
a successful run r of A on t. The language L(A) of A is the set of all
unranked trees accepted by A.

17

7 Well Quasi-Ordering

In chapter 5, we use a pumping lemma that relies on the existence of
two comparable elements in a given infinite sequence. To prove this
existential property, we need to use a well quasi-order.

Definition 1.15 A well quasi-ordering [Gal91] ≤ on a set S is a reflex-
ive and transitive relation such that any infinite sequence of elements
e1, e2, . . . of S contains an increasing pair ei ≤ ej with i < j.

18 Chapter 1 : Preliminaries

Chapter 2

Tree Automata with
Equality and Disequality
Tests

In this chapter, we define an extension of tree automata with global
equality and disequality constraints. We then do a short survey of the
existing classes of tree automata that allow similar tests, and compare
their properties, the complexity of their decision procedures, and their
expressiveness. We will describe many examples of languages of terms
that are, or are not, recognized by a given class of tree automata. To
prove that a language is recognized, we will only give the description of
the corresponding automata: it will be quite obvious that the recognized
languages matches. However, we will formally prove that a language is
not recognized by some class of automata when we state it.

1 Tree Automata with Global Constraints

1.1 Definition and First Examples

We propose here a general class of TA with global constraints that we
introduced in [BCG+10]. It generalizes the class of TAGED that was
firstly introduced in [FTT07].

Definition 2.1 A tree automaton with global constraints (TAGC)
over a signature Σ is a tuple A = 〈Q,Σ, F, C,∆〉 such that 〈Q,Σ, F,∆〉
is a TA, denoted ta(A), and C is a Boolean combination of atomic con-
straints of the form q ≈ q′ or q 6≈ q′, where q, q′ ∈ Q. A TAGC A
is called positive if CA is a disjunction of conjunctions of atomic con-
straints. A TAGC A is called positive conjunctive if CA is a conjunction
of atomic constraints. The subclasses of positive and positive conjunc-
tive TAGC are denoted by PTAGC and PCTAGC, respectively.

Definition 2.2 A run r of the TAGC A on a term t is a run of ta(A)
on t such that r satisfies CA, denoted r |= CA, where the satisfiability

19

20 Chapter 2 : Tree Automata with Equality and Disequality Tests

of constraints is defined as follows. For atomic constraints, r |= q ≈ q′

holds (respectively r |= q 6≈ q′) if and only if for all different positions
p, p′ ∈ Pos(t) such that r(p) = q and r(p′) = q′, t|p = t|p′ holds (re-
spectively t|p 6= t|p′ holds). This notion of satisfiability is extended to
Boolean combinations as usual. As for TAs, we say that r is a run of
A on t.

A run of A on t ∈ T (Σ) is successful if r(ε) ∈ FA. The language
L(A) of A is the set of terms t for which there exists a successful run
of A.

It is important to note that the semantics of ¬(q ≈ q′) and q 6≈ q′

differ, as well as the semantics of ¬(q 6≈ q′) and q ≈ q′. This is because
we have a “for all” quantifier in both definitions. The constraint ¬(q ≈
q′) is satisfied by a run r on a term t if and only if ∃p, p′ ∈ Pos(t), r(p) =
q, r(p′) = q′, t|p 6= t|p′ . The difference with 6≈ is that it has to have a
disequality between one occurrence of each state, and not all, but it
forces the existence of at least one occurrence of each state.

We introduced TAGC as a generalization of Tree Automata with
Global Equality and Disequality constraints (TAGED) which were first
introduced in [FTT07]. They can be defined as PCTAGC where the
disequality constraints are irreflexive, i.e. there is no atomic constraints
of the form q 6≈ q. Hence, there are already several known results on
PCTAGC, and many of them directly generalizes to TAGC. We will
however prove most of them, as they are a good way to get familiar
with the manipulation of these automata.

We will several times characterize the subclasses of TAGC with only
atomic constraints either of type ≈ or of type 6≈. Moreover, in chapter
5, we will introduce new atomic constraints. So from now, we will
always specify between brackets the atomic constraints that are used
in a given automaton (or class of automata). For example, we will use
the notation TAGC[τ], where τ is either ≈ or 6≈, to characterize the
subclass of TAGC with only atomic constraints of type τ (and same for
PTAGC and PCTAGC). And the general class of TAGC introduced in
definition 2.1 will now be referred as TAGC[≈, 6≈].

We will prove many undecidability and expressivity results only for
PCTAGC[≈]. Since they are clearly a subclass of TAGC[≈, 6≈], those
results can be directly generalized to this class.

We will here some examples for the expressivity of the equality con-
straints of the TAGC. The class of regular languages is strictly included
in the class of PCTAGC[≈] languages due to the constraints.

Example 2.3 Let Σ = {a : 0, f : 2}. The set {f(t, t) | t ∈ T (Σ)} is not
a regular tree language (this can be shown using a classical pumping
argument).

However, it is recognized by the following PCTAGC[≈] A =
〈

{q0, q1, qf},Σ, {qf}, q1 ≈ q1, {a → q0 | q1, f(q0, q0) → q0 | q1, f(q1, q1) →
qf}

〉

, where a → q | qr is an abbreviation for a → q and a →

21

qr. An example of successful run of A on t = f(f(a, a), f(a, a)) is
qf
(

q1(q0, q0), q1(q0, q0)
)

. 3

Note that the above language is not regular; this can be shown using
a classic pumping argument.

TA are able to characterize languages of terms which embed a given
pattern. However, they are limited to linear patterns for this purpose.
For instance, as recalled above, the set of terms embedding the pattern
f(x, x) is not a regular term language. The TAGC permit to generalize
this pattern matching ability to arbitrary patterns.

Example 2.4 Let us extend the PCTAGC[≈] of Example 2.3 with the
transitions rules f(q, qf) → qf , f(qf , q) → qf ensuring the propagation of
the final state qf up to the root. The automaton obtained recognizes the
set of terms of T (Σ) containing the pattern f(x, x). 3

The principle of the construction of Examples 2.3 and 2.4 can be gen-
eralized into the following result.

Proposition 2.5 For every term t ∈ T (Σ,X), there exists a
PCTAGC[≈] of size linear in the size of t and constructed in linear
time which recognizes the terms of T (Σ) having a ground instance of t
as a subterm.

proof. The proposition is obvious when t is a variable. Let us assume
that t is not a variable and let us associate one state qs to every strict
subterm s of t (including variables). The PCTAGC[≈] for Proposi-
tion 2.5 has for set of states Q = {qs | s strict subterm of t} ∪ {q, qf},
its constraint is of the form C =

∧

x∈vars(t) qx ≈ qx, (we recall that
vars(t) is the set of variables occurring in t), the subset of final states
is F = {qf}, and its transition set is

∆ = {f(q, . . . , q) → q | f ∈ Σn, n ≥ 0}
∪ {f(q, . . . , q) → qx | f ∈ Σn, n ≥ 0, x ∈ vars(t)}
∪ {f(qs1 , . . . , qsn) → qf(s1,...sn) | f ∈ Σn, f(s1, . . . sn) strict subterm of t}
∪ {f(qs1 , . . . , qsn) → qf | f(s1, . . . sn) = t}
∪ {f(q1, . . . , qn) → qf | f ∈ Σn, ∃i ≤ n, qi = qf}.

The transitions in the first four lines ensure the recognition of the pat-
tern t into the final state qf and the transitions in the last line ensure
the propagation of qf . The equality constraints qx ≈ qx ensure that the
non linearities in t are respected. 2

With disequality constraints, TAGC can recognize languages that
are in some sense the duals of the ones it can recognize with equality
constraints. For example, by replacing the constraint by q1 6≈ q1 in the
example 2.3, the TAGC can recognize the language {f(t1, t2) | t1 6= t2}.
Moreover, reflexive disequality constraints such as q 6≈ q correspond
to monadic key constraints for XML documents, meaning that every

22 Chapter 2 : Tree Automata with Equality and Disequality Tests

M
qM

1
qid

N
qt

2
qd

0
qN

L
qL

2
qid

N
qt

2
qd

0
qN

L
qL

3
qid

N
qt

2
qd

0
qN

L0
qL

4
qid

N
qt

2
qd

0
qN

Figure 2.1: Term and successful run (Ex. 2.6).

two distinct positions of type q have different values. A state q of a
TAGC[≈, 6≈] can be used for instance to characterize unique identifiers
as in the following example.

Example 2.6 The TAGC[≈, 6≈] of our example accepts (in state qM)
lists of dishes called menus, where every dish is associated with one
identifier (state qid) and the time needed to cook it (state qt). We have
other states accepting digits (qd), numbers (qN) and lists of dishes (qL).

The TAGC[≈, 6≈] A = 〈Q,Σ, F, C,∆〉 is defined as follows: Σ =
{0, . . . , 9 : 0, N,L0 : 2,L,M : 3}, Q = {qd, qN , qid, qt, qL, qM}, F = {qM},
and ∆ = {i → qd | qN | qid | qt | 0 ≤ i ≤ 9} ∪ {N(qd, qN) → qN | qid |
qt,L0(qid, qt) → qL,L(qid, qt, qL) → qL,M(qid, qt, qL) → qM}.
The constraint C ensures that all the identifiers of the dishes in a menu
are pairwise distinct (i.e. that qid is a key) and that the time to cook is
the same for all dish: C = qid 6≈ qid ∧ qt ≈ qt.

A term in L(A) together with an associated successful run are depicted
in Figure 2.1. 3

1.2 Decision Problems

We prove here some already known or easy decision problems on TAGC.

Proposition 2.7 Membership is NP-complete for TAGC[≈, 6≈].

proof. Given a TAGC A = 〈Q,Σ, F, C,∆〉 and a term t ∈ T (Σ), a non-
deterministic algorithm consist in guessing a function r from Pos(t) into
Q, and checking that r is a successful run of A on t. The checking can
be performed in polynomial time.

We show NP-hardness for the restricted class of PCTAGC[≈] as it
has already been done in [FTT07] and [JKV09]. We propose a reduction
of 3-SAT for a formula φ into the membership for a PCTAGC[≈] and a
term t representing φ.

Let us consider an instance φ of 3-SAT with variables from a set
V . It is represented as a term t over the signature Σ = {0, 1 : 0,¬ : 1 ∧

23

∧

∨

x

0 1

y

0 1

z

0 1

∧

∨

¬

x

0 1

y

0 1

t

0 1

∨

¬

x

0 1

¬

t

0 1

z

0 1

Figure 2.2: Membership NP-hardness: tree encoding of a 3 SAT in-
stance.

:2,∨ : 3} ∪ {x : 2 | x ∈ V }. Every variable x is represented by a subterm
x(0, 1), a 3 literal clause ℓ1 ∨ ℓ2 ∨ ℓ3 is encoded into ∨(t1, t2, t3) where
t1, t2, t3 encode respectively ℓ1, ℓ2, ℓ3. Finally we encode a conjunction
of disjunctions D1 ∧ · · · ∧ Dn into ∧(t1, . . . ,∧(tn−1, tn)) where each ti,
i ≤ n, is the encoding of Di.

For instance, the tree encoding of the 3-SAT instance (x ∨ y ∨ z) ∧
(¬x ∨ y ∨ t) ∧ (¬y,¬t, z) is depicted in Figure 2.2.

We define an PCTAGC[≈] A = 〈ΣQ,F,C,∆〉 by Q = {q1, q0} ∪
{qx, q¬x | x ∈ V }, F = {q1}, C =

∧

x∈V (qx ≈ qx) ∧ (q¬x ≈ q¬x) and

∆ = {0 → qx|q¬x, 1 → qx|q¬x | x ∈ V }
∪ {x(qx, q¬x) → q0, x(q¬x, qx) → q1 | x ∈ V }
∪ {∨(q0, q0, q0) → q0}
∪ {∨(q, q′, q′′) → q1 | at least one of q, q′, q′′ is q1, and the others are q0}
∪ {¬(q0) → q1,¬(q1) → q0}
∪ {∧(q1, q1) → q1,∧(q0, q1) → q0,∧(q1, q0) → q0,∧(q0, q0) → q0}.

Both the automata A and the tree t are linear in size relatively to the
size of the 3-SAT instance φ. The most important transitions of A
are those of the two above lines involving the states qx and q¬x. The
states q0 and q1 represent the value associated to x (they are propagated
bottom-up along t) and the constraints ensures that the same value is
associated to all occurrences of the variable x in φ.

Let us show now in detail that A recognizes t iff the corresponding
3-SAT instance φ has a solution.

Assume that the given 3-SAT instance has a solution σ : V → {0, 1}
(mapping of propositional variables into truth values). We define a
successful run r of A in t as follows. For each variable x ∈ V and for
each position p ∈ Pos(t) such that t|p = x, we have by construction of
t that t|p.1 = 0 and t|p.2 = 1. If σ(x) = 0, we define r(p.1) = qx and
r(p.2) = q¬x, and if σ(x) = 1, we define r(p.1) = q¬x and r(p.2) = qx.
Both options are possible thanks to the rules 0 → q(¬)x and 1 → q(¬)x,
and since we do the same thing for all occurrence of x in t, the constraints
on qx and q¬x in C are satisfied by r. Only one rule can be applied at
position p: x(qx, q¬x) → q0 if σ(x) = 0 and x(q¬x, qx) → q1 if σ(x) = 1.

24 Chapter 2 : Tree Automata with Equality and Disequality Tests

Therefore, for all x ∈ V and p ∈ Pos(t) such that t|p = x, r(p) = qσ(x).
It is obvious, considering the other rules of A that there is only one
state possible for each other position in r, and that r(ε) = q1 because
σ is a solution. Hence t ∈ L(A).

Conversely, let r be a successful run of A on t. The transition rules
of A ensure that t is a representation of the given 3-SAT instance. We
show that the constraint C on r ensures that this instance is satisfiable.
Let x ∈ V and p1, p2 ∈ Pos(t) such that t|p1 = t|p2 = x. By construction
of t, t|p1.1 = t|p2.1 = 0 and t|p1.2 = t|p2.2 = 1. Only the two transition
rules x(qx, q¬x) → q0 and x(q¬x, qx) → q1 can be applied on p1 and p2.
Assume that r(p1) = q0, then r(p1.1) = qx. If r(p2) = q1, then r(p2.2) =
qx and since t|p1.1 6= t|p2.2 it does not respect the atomic constraint
qx ≈ qx. So the only possible values are r(p2.1) = qx, r(p2.2) = q¬x and
r(p2) = q0, which respect the atomic constraints on both qx and q¬x.
Following the same reasoning, if r(p1) = q1 then r(p2) = q1. So, for all
x ∈ V , there exists ix ∈ {0, 1} such that for all p ∈ Pos(t) such that
t|p = x, r(p) = qix . Hence, by the construction of t and A, it is obvious
that the mapping σ(x) = ix is a solution for the 3-SAT instance.

2

We recall that for plain TA, membership is in PTIME.

The universality problem is known to be undecidable already for the
small subclass of PCTAGC[≈], called positive TAGED in [FTT08] or
rigid tree automata in [JKV09].

Proposition 2.8 [FTT08, JKV09] Universality is undecidable for
PCTAGC[≈].

Given two automata A1 and A1 the inclusion (resp. equivalence)
problem is the problem of deciding whether L(A1) ⊆ L(A2) (resp.
L(A1) = L(A2)). The following corollary is easily derived from the
proposition 2.8.

Theorem 2.9 Inclusion and equivalence are undecidable for
PCTAGC[≈].

proof. The equivalence problem is reducible to inclusion. Hence both
are undecidable as universality is a particular case of equivalence. 2

The following original result is another consequence of proposi-
tion 2.8.

Proposition 2.10 It is undecidable whether the language of a given
PCTAGC[≈] is regular.

proof. We show that universality is reducible to regularity. Let us
define the quotient of a term language L by a term s wrt a function
symbol f : L/s := {t | f(s, t) ∈ L}. This operation preserves regular
languages: for all s and f , if L is regular then L/s is regular.

25

Let A be an input of universality for PTAGC[≈], and let L′ be a
language of PTAGC[≈] over Σ which is not regular (such a language
exists). Let L1 := f

(

L(A), T (Σ)
)

∪ f
(

T (Σ),L′
)

where f is a binary
symbol, possibly not in Σ (f(L, T (Σ)) denotes {f(s, t) | s ∈ L, t ∈
T (Σ)}). It is obvious that L1 is a TAGC language.

If L = T (Σ), then L1 = f
(

T (Σ), T (Σ)
)

and it is regular. Assume
that L(A) 6= T (Σ) and let s ∈ T (Σ)\L(A). By construction, L1/s = L′

which is not regular. Hence L1 is not regular. Therefore L(A) = T (Σ)
iff the TAGC language L1 is regular. 2

The emptiness is the problem to decide, given a TAGC A, whether
L(A) = ∅? The proof that it is decidable for TAGC is rather involved
and is presented in section 2.

1.3 Closure Properties

Let us conclude this first section with the closure properties of the TAGC
languages.

Proposition 2.11 The class of TAGC languages is closed under union
and intersection but not closed effectively under complementation.

proof. We use a classical disjoint union for union and Cartesian product
of state sets for intersection, with a careful redefinition of constraints
on this product.

More precisely, let A1 = 〈Q1,Σ1, F1, C1,∆1〉 and A2 =
〈Q2,Σ2, F2, C2,∆2〉 be two TAGCs. We can assume wlog that Q1 and
Q2 are disjoint.

The TAGC A∪ = 〈Q1 ⊎ Q2,Σ1 ∪ Σ2, F1 ⊎ F2, C1 ∧ C2,∆1 ⊎ ∆2〉
recognizes L(A1) ∪ L(A2).

We define a TAGCA∩ = 〈Q1×Q2,Σ1∪Σ2, F1×Q2∪Q1×F2, C∩,∆∩〉
recognizing L(A1)∩L(A2). The constraint C∩ is obtained from C1∧C2

by replacing every atom q1 ≈ q′1 with q1, q
′
1 ∈ Q1 (resp. q2 ≈ q′2 with

q2, q
′
2 ∈ Q2) by

∧

q2,q
′
2∈Q2

〈q1, q2〉 ≈ 〈q′1, q
′
2〉 (resp.

∧

q1,q
′
1∈Q1

〈q1, q2〉 ≈

〈q′1, q
′
2〉), and similarly for the atoms q1 6≈ q′1, q2 6≈ q′2. The set

of transitions is ∆∩ =
{

f
(

〈q1,1, q2,1〉, . . . , 〈q1,n, q2,n〉
)

→ 〈q1, q2〉
∣

∣

f(qi,1, . . . , qi,n) → qi ∈ ∆i for i = 1, 2
}

.

The effective closure under complementation of TAGC would contradict
Proposition 2.8. 2

Note that the two above constructions transform two PTAGC (resp.
two PCTAGC) into a PTAGC (resp. a PCTAGC). Hence the subclasses
of PTAGC and PCTAGC are also closed under union and intersection.
Using a disjunctive normal form for the constraint of a PTAGC, it is
easy to show that both classes of PTAGC and PCTAGC are equally
expressive.

Corollary 2.12 Let B = 〈Q,Σ, F, C,∆〉 be a PTAGC. Then one can
effectively constructs a PCTAGC A such that L(A) = L(B).

26 Chapter 2 : Tree Automata with Equality and Disequality Tests

proof. Let B = 〈Q,Σ, F, C,∆〉, and let C ′ = C1∨ . . .∨Ck where C1,. . . ,
Ck are conjunctions of atomic constraints of the form q ≈ q′ or q 6≈ q′

for q, q′ ∈ Q, be the disjunctive normal form of the constraint C. It is
obvious that, given the PTAGC B = 〈Q,Σ, F, C ′,∆〉, L(B) = L(B′) For
all 1 ≤ i ≤ k, let Bi = 〈Q,Σ, F, Ci,∆〉. Every such Bi is a PCTAGC. Let
L(A) be the union construction of the proof of proposition 2.11, modulo
state renaming, for

⋃k
i=1 L(Bi). We have that L(A) =

⋃k
i=1 L(Bi) =

L(B′) = L(B). Since the construction in the proof of Proposition 2.11
preserves the positive conjunctive property of the constraints, A is a
PCTAGC recognizing the same language as B. 2

2 Related Models with (Dis)Equalities Tests

The formalism of TAGC allows one to test (dis)equalities globally, and
to have a succinct representation thanks to the grammar of the con-
straints. It is a quite natural extension of TAGED that we will present
in subsection 2.1. But other models of tree automata already existed
that allow to do similar tests, either directly, like the tree automata with
local constraints, or by considering specific applications of their features,
like tree automata with one memory, or dag automata. We here show
the interest of TAGC by doing a short survey of those models. For each
of them, we show how it compares to TAGC in expressiveness.

2.1 TAGED

Definitions and Known Results

Tree Automata with General Equality and Disequality con-
straints [FTT08] were introduced in the context of spatial logics for
XML querying [FTT07].

Definition 2.13 A Tree Automaton with General Equality and Dise-
quality constraints (TAGED for short) is a tuple A = 〈Σ, Q, F,∆,≈A

, 6≈A〉 where

• 〈Σ, Q, F,∆〉 is a tree automaton;

• ≈A is a reflexive and symmetric binary relation on a subset of Q;

• 6≈ is an irreflexive and symmetric binary relation on Q.

A TAGED A is said to be positive (resp. negative) if 6≈A (resp.
≈A) is empty.

A run r of a TAGED on a term t ∈ T (Σ) is a run of the underlying
TA on t with the additional condition that for all p1, p2 ∈ Pos(t), if
r(p1) ≈A r(p2) then t|p1 = t|p2 and if r(p1) 6≈A r(p2) then t|p1 6= t|p2 .

It is quite obvious that TAGED are equivalent to PCTAGC[≈, 6≈]
where 6≈ is irreflexive. In fact, we were working on TAGED when we

27

introduced TAGCto generalize our results. Several results on these
automata have been shown in [FTT08]. The emptiness problem is
EXPTIME-complete for positive TAGED and in NEXPTIME for neg-
ative TAGED. Moreover, the authors of [FTT08] prove decidability for
the emptiness problem of a subclass combining equality and disequality
tests.

Definition 2.14 Let Σ be a ranked alphabet. A vertically bounded
TAGED (vbTAGED) over Σ is a pair (A, k) where A is a TAGED over
Σ and k ∈ N. A run r of k on a tree t ∈ T (Σ) is a run of A on t. It is
an accepting run if r is accepting for A and the number of states from
dom(6≈A) occurring along any root-to-leaf path is bounded by k:

for all position p such that t|p is a leaf,
|{i | i < p ∧ r(i) ∈ dom(6≈A)}| ≤ k

The authors of [FTT08] show that the emptiness problem for vb-
TAGED is decidable in 2NEXPTIME. However they did not solve the
emptiness problem for the full class.

One interesting property of TAGED is that the equality relation can
be reduced to an identity relation.

Theorem 2.15 [FTT08] Every TAGED A is equivalent to a TAGED
A′ (whose size might be exponential in the size of A) such that ≈A′⊆
idQA′ where idQa′

is the identity relation on QA′ . Moreover, A′ can be
built in exponential time.

Such a property allows one to manipulate TAGED more easily. Also,
some results have a lower complexity when using such a TAGED. For
example, the emptiness of a positive TAGED A such that ≈A⊆ idQA

can be done in linear time. In chapter 3 we are concerned with Rigid
Tree Automata. Those are actually positive TAGED respecting this
property.

Comparison with TAGC

The link with PCTAGC is quite obvious.

Proposition 2.16 The class of TAGED is equivalent to the class of
PCTAGC[≈, 6≈] where 6≈ is irreflexive

The requirement of irreflexivity weakens the expressive power of PC-
TAGC[≈, 6≈]. For example, we have seen that with a reflexive disequality
constraint, one can express key constraints on XML documents.

Lemma 2.17 Let Σ = {0 : 0, s : 1, f : 2}. The set L of terms of T (Σ) of
the form f(sn1(0), . . . , f(snk(0), 0)), such that k ≥ 0 and the integers ni,
for i ≤ k, are pairwise distinct, is recognized by a TAGC[≈, 6≈] with an
irreflexive disequality relation, but cannot be recognized by a TAGED.

28 Chapter 2 : Tree Automata with Equality and Disequality Tests

proof. The following PCTAGC[≈, 6≈] recognizes L.

〈

{q0, q, qf},Σ, {qf}, q 6≈ q,

0 → q0 | q | qf ,
s(q0) → q0 | q,
f(q, qf) → qf

〉

.

Assume that there exists a PCTAGC[≈, 6≈] like in proposition 2.16
A recognizing this language L.

There exists an accepting run r of A on the term t =
f(s(0), f(s2(0), . . . f(s|Q|+1(0)))). We have therefore r |= CA (the global
constraint of A, which is positive by hypothesis).

There are two different positions pi = 2i−1.1 and pj = 2j−1.1, 1 ≤
i < j ≤ |Q|+ 1 such that r(pi) = r(pj). Let us show that r′ = r[r|pi]pj
is an accepting run of A on t′ = t[t|pi]pj . Since r(pi) = r(pj) and r is a
run of A on t, by replacing t|pj with t|pi and r|pj with r|pi , r

′ is a run
of ta(A) on t′. Hence we only have to ensure that the constraint CA is
fulfilled by r′.

For all p, p′ ∈ Pos(t′) such that 2j−1.1 is neither a prefix of p nor of
p′, and such that p and p′ are no prefix of 2j−1.1, if r′(p) ≈ r′(p′) is in
C1 (resp. r′(p) 6≈ r′(p′) is in C1), we know that r |= r(p) ≈ r(p′) (resp.
r |= r(p) 6≈ r(p′)), so the constraints are respected in t, hence also in t′

since the positions p and p′ are referring to common subterms of t and
t′.

If a position p = 2j−1.1.v is involved in some constraint, let p′ =
2i−1.1.v. By construction, we have r′|p = r′|p′ and t′|p = t′|p′ . Due
to this last equality, any constraint involving p is satisfied iff the same
constraint with p′ instead of p also holds. And thanks to the equality
r′|p = r′|p′ , this other constraint holds and is satisfied by r′.

Finally, we have to consider constraints that involve a strict prefix
p of 2j−1.1. It is clear that every subterm of t at a position 2ℓ, for
0 ≤ ℓ ≤ |Q|, is unique, so every subterm at such a position can only
satisfy a disequality constraint or an equality with itself (in that case
r(2ℓ) is unique in r). In the latter case, r′(p) is also unique in r′ and
the equality is obviously satisfied. In the other case, it is easy to see
that it also holds in t′ that all subterms at positions 2ℓ, and hence the
subterm at position p, are unique, and satisfy all the disequalities. So
t′ is recognized by A but is not in the language L, a contradiction. 2

2.2 Tree Automata with Local Constraints

Definition and Known Results

A TA with local equality and disequality constraints is a TA whose tran-
sitions can perform local equality and disequality tests on the subterms
of the term in input (see e.g. [BT92, DCC95]).

Definition 2.18 A tree automaton with local equality and disequality
constraints (TAC for short) is a tuple A = 〈Σ, Q, F,∆〉 where

29

• Σ is a signature;

• Q is a finite set of states;

• F ⊆ Q is a set of final states;

• ∆ is a set of transitions of the form f(q1, . . . , qn) −→c q where
f ∈ Σn, q1, . . . , qn, q ∈ Q, and c is a conjunction of constraints of
the form π = π′ or π 6= π′ where π and π′ are positions (sequences
of positive integers).

A run of a TAC on a term t is a function r : Pos(t) → Q such that
for all p ∈ Pos(t) with t(p) = f ∈ Σn (n ≥ 0), there exists a transition
f
(

r(p · 1), . . . , r(p · n)
)

−→c r(p) ∈ ∆ such that for all constraints π = π′

(resp. π 6= π′) in c, we have p · π, p · π′ ∈ Pos(t) and t|p·π = t|p·π′ (resp.
t|p·π 6= t|p·π′).

A TAC is called positive (resp negative) if all its transitions contain
only equalities (resp. disequalities).

Note that the RTA language of Examples 2.3 and 2.4 are recogniz-
able by positives TAC:

A =
〈

{q, qf}, {qf}, {a→ q, b→ q, f(q, q) → q, f(q, q) −−−→1=2 qf}
〉

for Example 2.3, and the same extended with the transitions f(q, qf) →
qf , f(qf , q) → qf for Example 2.4.

The emptiness problem is undecidable in general [Mon81] for posi-
tive TAC. Two decidable subclasses of TAC have been identified: tree
automata with equality and disequality tests between brother posi-
tions [BT92] (TACB), where we have the constraint that for all con-
straint π = π′ or π 6= π′, |π| = |π′| = 1, and Reduction Au-
tomata [DCC95] (RA), that we will note define here; the complexity
of emptiness is at least EXPTIME for these subclasses.

Comparison with TAGC

We can do an interesting comparison if we limit ourselves to positive
conjunctive TAGC The tests of TAC are performed locally, on each
application of a transition rules with constraints, while the ones of PC-
TAGC are performed globally, on all positions labeled by a state of the
domains of ≈ and 6≈. Those different approaches lead to two incompa-
rable expressiveness.

There is a good intuition to understand the respective power of
those two classes. A TAC can test an unbounded number of “classes”
of (dis)equalities (one for each application of a transition rule), but each
“class” has a bounded number of element (the size of the constraints).
Conversely, a PCTAGC A = 〈Σ, Q, F,∆, C〉 can test only a bounded
number of “classes” of (dis)equalities (the size of the constraint C), but
each of these “classes” may test an unbounded number of (dis)equalities
(one for each occurrence of a state occurring in C).

30 Chapter 2 : Tree Automata with Equality and Disequality Tests

Following this intuition it is easy to construct a term language that
is recognized by one of these models but not by the other. For the
sake of simplicity, we will restrict ourselves to positive TAC with test
between brothers one one hand, and to PCTAGC[≈] on the other hand.
A good candidate for a language recognized by a TAC but not by a
PCTAGC[≈] would need to test equalities between two subterms an
unbounded number of times.

Example 2.19 Let Σ = {f : 2, a : 0} and let L = {t | t ∈ T (Σ), ∀p ∈
Post, t(p) = f ⇒ t|p.1 = t|p.2}. The language L is recognized by the
positive TACB A = 〈Σ, Q, F,∆〉 where

• Q = F = {q}

• ∆ = {a→ q, f(q, q) −−−→1=2 q}

Proposition 2.20 The language of the example 2.19 is not recognizable
by a PCTAGC[≈].

proof. Let B = 〈Σ, Q, F,∆, C〉 be a PCTAGC[≈] such that for all t ∈ L,
A recognizes t. We will detail the construction of a term t′ recognized
by B which is not in L. However, we will only give a hint why it is
recognized by B. Let N be the number of states of Q occurring in C. It
is quite obvious that for all i ∈ N∗ there is a unique term of height |i| in
L that we can define inductively as follow: t1 = 0 and ti = f(ti−1, ti−1)
for i > 1. Let t = tN(|Q|+2), and let r be a run of B accepting t. Let

p = 1N(|Q|+2)−1, p is a position of the leftmost leaf of t. Let M be the
number of prefixes p′ of p such that r(p′) is involved in an equality test
wrt r and C, that is, there exists p′′ ∈ Pos(t), p′′ 6= p′ such that the
atomic constraint r(p′) ≈ r(p′′) occurs in C. Obviously M ≤ N . There
are at most N occurrences of states involved in an equality test in the
branch from the root to the leaf at position p. And since |p| = N(|Q|+2),
by the pigeon hole principle, there exists two positions, p1 and p2 on the
branch, such that p1 < p2, |p2 − p1| ≥ |Q|, and for all p′, p1 ≤ p′ ≤ p2,
r(p′) is not involved in an equality test wrt r and C. So there exists
two positions p′1 and p′2, p1 ≤ p′1 < p′2 ≤ p2 such that r(p′1) = r(p′2).

Let p̄1 < · · · < p̄k be all the strict prefixes of p1 such that for all
i, 1 ≤ i ≤ k, r(p̄i) is a state involved in an equality test wrt r and C. If
k > 0 Let us define inductively t̄k = t|p̄k [t|p′2]p′1−p̄k , r̄k = r|p̄k [r|p′2]p′1−p̄k
and t̄i and r̄i the term t|p̄i and the run t|p̄i where for each position p̄
such that r(p̄i.p̄) = r(¯pi+1) or r(p̄i.p̄) = r(¯pi+1), we replace t|p̄i.p̄) by
¯ti+1 and r|p̄i.p̄) by ¯ri+1. We define t′ and r′ as t and r where for each

position p̄ such that r(p̄) = r(p̄1) or r(p̄) ≈ r(p̄1), we replace t|p̄ by t̄1
and r|p̄) by r̄1.

If k = 0, that is there is no prefix p′ of p1 such that the state
occurring at position p′ in r is involved in an equality test, then we just
define t′ and r’ as t′ = t[t|′p2]p′1 and r′ = r[r|′p2]p′1 .

31

This pumping preserves the compatibility with ∆, since the initial
pumping is done between two positions of occurrences of a same state in
r: p′1 and p′2. This initial pumping does not change equality tests done
with states that are at positions p2. The equality tests done with states
that are occurring above p1 are ensured to be answered positively by the
parallel pumping done at each position where a state involved in such an
equality test occurs. Equality tests done only between positions parallel
to p1 are not changed. Proving these statements need an exhaustive case
study that we do not do here. However, a very similar approach is used
and developed later for the proof of lemma 5.20 in chapter 5. Hence, r′

satisfies C and is a successful run of B on t′.

If k > 0, in the subterm t̄k, it is clear that the term at position
(p′1−p̄k) = 1|p

′
1|−|p̄k| is different from the term at position (1)|p

′
1|−|p̄k|−1.2,

because the first one is a pumping of the second one. Hence at each
position p′ such that t′(p′) = t̄k we have that the constraint of the
definition of L that states that all brothers are equals is not respected
at position p′.1|p

′
1|−|p̄k|−1. If k = 0, the brother condition is not respected

at the position 1|p
′
1|−1. Hence t′ does not belong to L. 2

Conversely, a good candidate for a language recognized by a PC-
TAGC and not recognized by a positive TACB would test a single equal-
ity between an unbounded number of subterms. However, the counter-
example will not need to make the equality to occur an unbounded
number of time, but only to occur at two positions not reachable at the
same time by a transition rules testing equality. It is quite easy with
TACB since transition rules can only test equalities between brothers,
but would need further work to be applied to positive TAC.

Example 2.21 Let Σ = {f : 2, g : 1, a : 0} and let L = {t | t ∈
T (Σ), ∀p1, p2 ∈ Pos(t), t(p1) = g∧t(p2) = g ⇒ t|p1 = t|p2. The language
L is recognized by the PCTAGC[≈] A = 〈Σ, Q, F,∆, C〉 where

• F = Q = {q1, q2}

• ∆ = {a → q1, f(q1, q1) → q1, f(q1, q2) → q1, f(q2, q1) →
q1, f(q2, q2) → q1, g(q1) → q2}

• C = q2 ≈ q2

Proposition 2.22 The language of the example 2.21 is not recognizable
by a positive TACB.

proof. Let B = 〈Σ, Q, F,∆〉 be a TACB such that for all t ∈ L, B
recognizes t. Let us define ti recursively as follow: t0 = f(0, 0) and
ti = f(0, ti−1). Let t = f(g(t|Q|+1), f(0, g(t|Q|+1))), and let r be a run of
B accepting t. It is clear that only two transition rules testing equalities
may have been used in r: one at each occurrence of t0. Let p = 1.1. For
all i, 0 ≤ i ≤ |Q|, let us denote pi = p.2i. We have that tpi = t|Q|+1−i.
By the pigeon hole principle, there exist i, j, 0 ≤ i < j ≤ |Q| such that

32 Chapter 2 : Tree Automata with Equality and Disequality Tests

r(pi) = r(pj). Let t′ = t[pj]pi , and r′ = r[pj]pi . Since equalities may
only have been tested on the two occurrences of t0 in t, and that one is
below, pj and pi, and the other one is at a parallel position, r′ is still
compatible with ∆. Hence r′ is a successful run of B on t′, and since
t′ 6∈ L, L(B) 6= L. 2

2.3 Tree Automata with One Memory

Definitions and Known Properties

Like pushdown tree automata [Gue83], TA with one memory
(TA1M) [CLC05, CLJP07] are TA extended in order to carry an un-
bounded amount of information along the states in computations. In-
stead of a stack, a TA1M stores this information in a memory with a
tree structure. More precisely, this memory contains a ground term over
a memory signature Γ. The memory is updated during the bottom-up
computations. The general form of the transitions of TA1M is

f
(

q1(m1), . . . , qn(mn)
)

→ q(m)

where f ∈ Σn, q1, . . . , qn, q are states with an argument carrying the
memories m1, . . . ,mn,m ∈ T (Γ,X). The new current memory m is
built from the memories m1, . . . ,mn which have been reached at the
positions immediately below the current position of computation. For
instance, in the following push transition, the new current memory m
is built by pushing a symbol h ∈ Γn at the top of memories m1, . . . ,mn

(which are variables x1, . . . , xn in this case):

f
(

q1(x1), . . . , qn(xn)
)

→ q
(

h(x1, . . . , xn)
)

. (push)

In a pop transition, the new current memory is a subterm of one of the
memories reached so far:

f
(

q1(x1), . . . , qi(h(y1, . . . , yk)), . . . , qn(xn)
)

→ q(yj) (pop)

The top symbol h of mi is also read in the above pop transition.

In an internal transition, the new current memory is one of the memories
reached:

f
(

q1(x1), . . . , qn(xn)
)

→ q(xi) (internal)

with 1 ≤ i ≤ n.

Moreover, TA1M can perform equality tests on the memory con-
tents, with transitions like

f
(

q1(x1), . . . , qn(xn)
)

−−−−→xi=xj q(xk) (internal=)

where 1 ≤ i, j, k ≤ n.

33

Comparison with TAGC

The internal= transition rules make possible the simulation of some tests
of the TA with constraints by storing some subterms in memory and
comparing them. It even is possible to test an equality an unbounded
number of time.

Proposition 2.23 The language of terms of the example 2.21 is recog-
nized by the TA1M A = 〈Σ, Q, F,∆〉 where

• Q = F = {q1, q2, q3}

• ∆ = {a− > q1(a), g(q1(x)) → q2(g(x)), f(q1(x1), q1(x2)) →
q1(f(x1, x2)), f(q1(x1), q2(x2)) → q3(x2), f(q2(x1), q1(x2)) →
q3(x1), f(q2(x1), q2(x2)) −−−−→x1=x2 q3(x1), f(q2(x1), q3(x2)) −−−−→x1=x2

q3(x1), f(q3(x1), q2(x2)) −−−−→x1=x2 q3(x1), f(q3(x1), q3(x2)) −−−−→x1=x2

q3(x1)}

However, since those automata can only store one memory at a time,
it has a limitation in the equality tests it can perform. It can easily deal
with a bounded number of equality “classes”, if all the equal terms of
different “classes” appear in distinct parallel subterms: in each of these
parallel subterm, the run of the automaton only have to memorize one
subterm. But if is not the case, the memory cannot be used to test
several “classes” of equalities in full generality. Especially, in a term
t, it generally cannot test at the same time that subterms at several
positions are equals to a subterm t′, and that subterms at other positions
are equals to a subterm t′′ of t′. However, since some encoding can be
made by an involved use of both the states and the memory alphabet,
it seems that proving this fact would be difficult. Also, we only state
this as a conjecture.

Example 2.24 Let Σ = {f : 2, g : 1, s : 1, a : 0} and let L =
{f(gn(sm(a)), f(sm(a), gn(sm(a)))) | n,m ∈ N∗}. The language L is
recognized by the PCTAGC[≈] A = 〈Σ, Q, F,∆, C〉 where

• Q = {q1, q2, q3, q4, q5, qf}, F = {qf};

• ∆ = {a → q1, s(q1) → q1, s(q1) → q2, g(q2) → q3, g(q3) →
q3, g(q3) → q4, f(q2, q4) → q5, f(q4, q5) → qf};

• C = (q2 ≈ q2) ∧ (q4 ≈ q4).

Conjecture 2.25 The language of the example 2.24 is not recognizable
by a TA1M.

34 Chapter 2 : Tree Automata with Equality and Disequality Tests

2.4 Automata on DAG Representations of Terms

Definitions and Known Results

One way to test equalities or disequalities in subterms, is to use a DAG
representation of terms and to ensure the maximal sharing properties.
Hence instead of computing on terms, the automata will then compute
on their DAG representations (called t-dags). Charatonik ([Cha99])
introduced the t-dag automata.

Definition 2.26 A t-dag automaton is a tuple 〈Σ, Q, F,∆〉 where Σ is
a finite signature, Q is a finite set of states, F ⊆ Q is the set of final
states, and ∆ is a set of transitions of the form f(q1, . . . , qn) → q with
q, q1, . . . , qn ∈ Q and f ∈ Σn.

Note that up till now there is no difference between t-dag automata
and standard bottom-up tree automata. A t-dag can be determinist
(resp. complete) the same way as a TA (existence of at most (resp.
at least) one transition rule for every f ∈ Σn and every sequence
q1, . . . q)n). The difference is that t-dag automata run on t-dags and
not terms.

Definition 2.27 A run of a t-dag automaton 〈Σ, Q, F,∆〉 on a given
t-dag G = 〈V, succ, λ〉 on Σ is a mapping r from the set of nodes V to
the set of states Q such that for each node v and each f ∈ Σ, if λ(v) = f
, then ∆ contains a transition f(r(succ(1, v)), . . . , r(succ(n, v)) → r(v).
A run r is said successful if it maps the root of G to a final state.
We say that the t-dag automaton A accepts the t-dag G, if there is a
successful run of A on G.

A set of t-dags T is recognizable if there exists a t-dag automaton
A such that T = {G | A accepts G}. We denote L(A) the set of t-dags
recognized by A

The classical TA constructions for recognizing the union or the inter-
section of two recognizable sets also work for t-dag automata as shown
in [Cha99]. However, the complementation does not work, since the de-
terminization procedure does not create an equivalent t-dag automaton,
in the sense that the determinized t-dag automaton does not necessar-
ily recognized the same set of t-dags. In [ANR05], a formal proof that
t-dag automata are not determinizable is given.

If we consider the sets of terms terms(L(A)) represented by the t-
dags recognized by some t-dag automaton, we can compare expressive-
ness of t-dag automata and TA. A recognizable set of terms L can be
described by a t-dag automaton: take a deterministic TA A recognizing
L, and L as a t-dag automaton will recognize dag(L).

The reverse is not true: the description of a recognizable set of t-
dags, whose represented terms is not a regular term language is given
in [ANR05]. Hence, t-dag automata are more expressive than TA.

35

Comparison with TAGC

The t-dag structure seems to allow to test equalities and disequalities,
since equal terms will necessarily have a same state in the run of a
t-dag automaton. In particular, to operate a disequality test between
two subterms, you only have to ensure that they will be labeled by two
different states in the run.

Example 2.28 Let Σ = {f : 2; a : 0}, and L = {f(t, t′) | t, t′ ∈
T (Σ), t 6= t′}. Then the following t-dag automaton A recognizes a lan-
guage of t-dags L′ such that term(L′) = L.

A = 〈Σ, Q, F,∆〉 where

• Q = {q1, q2, qf}

• F = {qf}

• ∆ contains the following transition rules

– a→ q1, a→ q2

– f(q1, q1) → q1, f(q1, q1) → q2

– f(q1, q2) → qf

Actually, we will show in chapter 4 that the t-dag automata seen
as term language recognizers are equivalent to PCTAGC[6≈] where 6≈ is
irreflexive.

However, ensuring that two subterms have the same state labeling
in a run does not mean they are represented by the same node of the
t-dag. Since you cannot force the successors of a node to be equals, you
cannot test equalities with a t-dag automaton

Lemma 2.29 Let Σ = {f : 2; a : 0}, and L = {f(t, t) | t}. There exists
a PCTAGC[≈] recognizing L but there is no recognizable t-dag language
L′ such that term(L′) = L

proof. The term language L is recognized by the PCTAGC[≈] A =
〈Σ, Q, F,∆, C〉 where

• Q = {q1, q2, qf}

• F = {qf}

• ∆ contains the following transition rules

– a→ q1, a→ q2

– f(q1, q1) → q1, f(q1, q1) → q2

– f(q2, q2) → qf

• C = {q2 ≈ q2}

36 Chapter 2 : Tree Automata with Equality and Disequality Tests

Briefly, any term of T (Σ) can be recognized by A in the state q2:
it suffices to label the root by q2 and the other positions by q1. ex-
cepand non-deterministically choose to stop and to label the root by
q2. Hence, the transition rule f(q2, q2) → ensures that A recognizes the
terms f(t1, t2) where t1, t2 can be any term of T (Σ), and the constraint
q2 ≈ q2 forces that t1 and t2 are always equals.

Assume A is a t-dag automaton, with a set of states Q, that rec-
ognizes the t-dag language L′. Let t ∈ T (Σ) be a balanced term of
height greater than |Q|, and G = dag(t). Let r be an accepting run of
A on dag(f(t, t)). Since a same term can occur only once in a dag, then
r(1) = r(2) = r(t). Let q = r(t), then there exists a final state qf in
Q such that the transition rule f(q, q) → qf belongs to A. Since t is of
height greater than |Q|, there is a path on which there are two different
nodes u and v in G such that r(u) = r(v). Let q′ = r(u), and let p1 and
p2 be two positions of G such that G(p1) = u and G(p2) = v. Assume
wlog that p1 < p2. Then, let t

′ = t[t|p2]p1 .

If p1 = ε, then dag(f(t, t′)) and dag(f(t, t)) have the same sets of
vertices. The only difference is that the second child of the root is v
instead of u. Since r(v) = r(u), by keeping the same labeling of nodes
as in r, we have an accepting run of A on dag(f(t, t′)).

If p1 6= ε, then let G′ = dag(t′). Then G′ and G have the same set
of vertices. The only difference is that all the edges oriented to u in G
are oriented to V in G′. Hence, the run r′ of A on G′ by r′(u) = r(u)
respects the transition rules of A and labels the root of G′ by g. Let
G′′ = dag(f(t, t′). All the subterms of t′ at positions p′ < p1 are not
balanced and hence are not subterms of t. Hence the nodes of G′′ at
positions 1.p′ and 2.p′ are distinct. All the subterms of t′ at positions
p′ = p1.p′′ or at positions p′ incomparable with p1 are also subterms
of t at the same positions. Hence there is a unique node of G′′ at
both positions 1.p′ and 2.p′. So the the run r′′ defined as r′′(ε) = qf ,
r′′(1.p) = r(1.p) and r′′(2.p) = r′(p) is a well-defined run of A on G′′,
i.e. each node of G′′ is labeled by a single state. Hence A recognizes
dag(f(t, t′) which is not in L′. 2

2.5 Automatic Clauses

This latter comparison is a bit more informal as the previous ones.
We compare here a subclass of PCTAGC[≈] with a non-automata for-
malism: finite sets of Horn clauses with rigid variables [And81]. This
formalism was used in several related works [DLL07, ACL09]. These
papers do not mention the name of tree automata, they are targeted
at the static analysis of security protocols. In chapter 3, we will apply
tree automata with global equality constraints to the same application.
Therefore, a comparison with this formalism is appropriate.

37

Definitions and Known Results

We do not recall here the definition of Horn clauses. For an intro-
duction on Horn clauses, see e.g. [Pad88]. Following [FSVY91], it is a
common approach to represent tree automata by Horn clause sets. A
tree automata transition f(q1, . . . , qn) → q can indeed be encoded into
the following first order Horn clause (variables are implicitly universally
quantified)

q1(y1), . . . , qn(yn) ⇒ q
(

f(y1, . . . , yn)
)

(reg)

where y1,. . . ,yn are distinct variables and q1, . . . , qn, q are unary predi-
cate symbols. Let us call regular clauses the Horn clauses of the above
form. Given a finite set C of regular clauses (an automaton in these
settings) and a predicate q (a state), the language of C in q, denoted by
L(C, q), is the set of terms t ∈ T (Σ) such that q(t) is a logical conse-
quence of C (q(t) is in the smallest Herbrand model of C). This definition
corresponds exactly to the language of the TA whose transition are en-
coded by the clauses of C.

One advantage of this presentation of tree automata by Horn clause
sets is that it permits to use classical first-order theorem proving tech-
niques in order to decide TA problems. For instance, if C is a finite
set of regular clauses, t ∈ T (Σ) then t ∈ L(C, q) iff C ∪ {q(t) ⇒} is
inconsistent, and L(C, q) 6= ∅ iff C ∪ {q(x) ⇒} is inconsistent. These
sets can be finitely saturated by a resolution calculus with appropriate
strategies [Gou05], hence, the above decision problems can be solved
using first order theorem provers.

Comparison with TAGC

This approach can also be suitable for studying Rigid Tree Automata.
We recall that we define Rigid Tree Automata (definition 3.1) as
PCTAGC[≈] where ≈ is the identity relation on a subset of the set
of states, and that it has been shown to be equally expressive to the
full class of PCTAGC[≈] in [FTT08]. We can fit the same presenta-
tion of tree automata by Horn clause sets as above for RTA, by dis-
tinguishing, in regular clauses, some variables as so called rigid vari-
ables [And81]. We use below uppercase letters X,Y... for rigid variables
and lowercase x, y... for other variables, called flexible variables. Re-
cently [DLL07, ACL09], some models of Horn clauses with rigid vari-
ables (including regular clauses) have been studied in the context of the
verification of security protocols. We recall the definitions and results
of [ACL09] in order to establish connections with RTA.

A set C of clauses with rigid variables X1, . . . , Xn and flexible vari-
ables y1, . . . , ym is satisfiable if there exists a Σ-algebra A such that for
all valuation σ : {X1, . . . , Xn} → A, there exists a model S with do-
main A such that S, σ |= ∀y1, . . . , ym C. It is equivalent to say that for
all valuation σ : {X1, . . . , Xn} → T (Σ), there exists an Herbrand model
L such that L |= ∀y1, . . . , ym σ(C).

38 Chapter 2 : Tree Automata with Equality and Disequality Tests

This semantics permits to redefine the languages of RTA in term of
models of regular clauses with rigid variables. Let us consider an RTA
A = 〈Q,R, F,∆〉 and let us associate a rigid variable Xq to each q ∈ R.
We associate to A the set C of regular clauses with rigid variables

q1(α1), . . . , qn(αn) ⇒ q
(

f(α1, . . . , αn)
)

(reg’)

such that f(q1, . . . , qn) → q ∈ ∆ and for all i ≤ n, αi = Xqi if qi ∈ R and
αi is a flexible variable yi otherwise. Then, we have (X = {Xq | q ∈ R})

⋃

σ:X→T (Σ)

L
(

σ(C), q
)

= L(A, q).

In [ACL09], a translation of clauses with rigid variables into first or-
der clauses (without rigid variables) preserving satisfiability is proposed.
In the case of the above regular clause with rigid variables (reg’), the
translation returns

q1(x, α
′
1), . . . , qn(x, α

′
n) ⇒ q

(

x, f(α′
1, . . . , α

′
n)
)

where x = (xq)q∈R is a sequence of |R| flexible variables, one variable xq
for each rigid state q ∈ R (hence one for each rigid variable Xq). Every
variable α′

i, i ≤ n, is either xqi if αi is the rigid variable Xqi (i.e. if
qi ∈ R) and α′

i is the (flexible) variable αi = yi otherwise. Such clauses
can alternatively be seen as transitions of tree automata extended with
|R| auxiliary registers storing terms of T (Σ). For such an automaton,
the values are stored in the registers once and for all at the beginning of
the computation (in the variables of x) and during the application of a
transition, the current subterm can be compared to the content of one
register (in the case where α′

i = yi).
It is shown in [ACL09] that binary resolution with an appropriate

ordered strategy terminates on such clauses as long as there is only
one unary predicate; [ACL09] consider also other kinds of clauses, some
of them that can be seen as a generalization of RTA to two way and
alternating rigid tree automata.

Hence, in the result of [ACL09], termination is limited to automata
with one state. The resolution strategy of [ACL09] does not terminate
on automata with more than one state and a terminating resolution
strategy for this case is not known. Some progress in this direction
would enable the application of first order theorem proving techniques
to decision problem for RTA. This could permit in particular to con-
sider extensions of RTA with e.g. equational tests or language modulo
equational theories, like what was done in [JRV08] for standard tree
automata using a Horn clauses approach and a paramodulation calcu-
lus. In particular, the latter extension (modulo equational theories) is
related to the problem of Section 4.3 of chapter 3, and in this context,
first order theorem proving tools could provide an efficient alternative
to the complicated decision algorithm described this section.

Chapter 3

Rigid Tree Automata and
Rewrite Closure

As presented in previous chapter, given a TAGED, one can always com-
pute an equivalent TAGED such that the equality relation is the identity
relation on a subset of the states of the automaton. We defined the class
of Rigid Tree Automata (RTA), that we first introduced in [JKV09], as
the class of positive TAGED, where this property is respected. The
additional constraint on the equality relation allows to have decision
procedure with lower complexities. In particular, the emptiness prob-
lem is shown decidable in linear time for RTA whereas membership of a
given tree to the language of a given RTA is NP-complete. On the other
side, positive TAGED give a more succinct way to represent equivalent
languages. In this chapter, the applications that we aim may be intu-
itively modelized into some RTA. We will try as much as possible to keep
the RTA property when operating transformations on our automata, in
order to keep a complexity as low as possible.

Properties like determinism, pumping lemma, Boolean closure, and
several decision problems are studied in detail.

Term rewriting systems (TRS) is a general formalism for the sym-
bolic evaluation of terms by replacement of some patterns by others,
following rewrite rules. Combining tree automata and term rewriting
techniques has been very successful in verification see e.g. [BT05, GK00].
In this context, term rewriting systems (TRS) can describe the transi-
tions of a system, the evaluation of a program [BT05], the specification
of operators used to build protocol messages [AF01] or also transforma-
tion of documents. If a TA A is used to finitely represent an infinite
set L(A) of states of a system, the rewrite closure R∗

(

L(A)
)

of the lan-
guage L(A) using R represents the set of states reachable from states
described by A. When R∗

(

L(A)
)

is again a TA language, the verifi-
cation of a safety property amounts to checking for the existence of an
error state in R∗

(

L(A)
)

(either a given term t or a term in a given
regular language).

This technique, sometimes referred as regular tree model checking,

39

40 Chapter 3 : Rigid Tree Automata and Rewrite Closure

has driven a lot of attention to the rewrite closure of tree automata
languages. However, there has been very few studies of this issue for
constrained TA (see e.g. [JRV08]). The reason is the difficulty to capture
the behavior of constraints after the application of rewrite rules.

In Section 4, we show that it is decidable whether a given term t be-
longs to the rewrite closure of a given RTA language for a restricted class
of linear TRS called invisibly pushdown, whereas this closure is generally
not an RTA language. Linear and invisibly pushdown TRS can typically
specify cryptographic operators like decrypt(encrypt(x, pk(A)), sk(A)) →
x. A potential application of RTA to the verification of security proto-
cola is described in Section 5. Using RTA instead of positive TAGED
is at the same time more intuitive in the field of protocol verification,
where we want terms built by the same rules to be equals, and simpler
to handle with rewrite systems. It is an original use of tree automata
with global constraints, wince they were at first introduced in the field
of databases and semi-structured document verifications.

1 RTA: Definition, Examples and Properties

1.1 Definition

We mentioned in section 2.1 of chapter 2 Rigid Tree Automata as being
positive TAGED (i.e. PCTAGC[≈]) where the equality relation ≈ is
the identity relation on a subset of the set of states.

Definition 3.1 A Rigid Tree Automaton (RTA for short) is a positive
TAGED A = 〈Σ, Q, F,∆,≈A〉 such that ≈A⊆ idQ. A state q of A is
said rigid if q ∈ dom(≈A). We denote R = dom(≈A) and we call it the
set of rigid states of A.

Wemay latter define an RTA the following way: A = 〈Σ, Q, F,R,∆〉,
where R is the set of rigid states, i.e. ≈A is implicitely defined as the
identity relation on R ⊆ Q.

1.2 Examples

The PCTAGC[≈] given in example 2.3 and in proposition 2.5 are actu-
ally rigid tree automata. Hence we have a first idea of what RTA can
do, i.e. testing local equalities, or recognizing terms embedding a non-
linear pattern-matching. However, it is also possible to test equalities
between subterms at arbitrary position in a term.

Example 3.2 Let Σ = {a : 0, g : 1, f : 2}. The set of terms t ∈ T (Σ)
such that s1 = s2 for every two subterms g(s1), g(s2) of t is recogniz-
able by the following RTA: A =

〈

{q, qr}, {qr}, {q, qr},
{

a → q, g(q′) →
qr, f(q

′, q′) → q | q′ ∈ {q, qr}
}〉

. 3

RTA are not limited to testing equalities. Using rigid states also permits
to test some disequality and inequality as well, like the subterm relation.

41

Example 3.3 Let Σ = {a : 0, b : 0, f : 2, < : 2}. The set of terms <(s, t)
such that s, t ∈ T

(

Σ \ {<}
)

and s is a strict subterm of t is recognized
by the following RTA on Σ, 〈{q, qr, q

′, qf}, {qr}, {qf},∆〉, with

∆ =

a → q|qr, b → q|qr,
f(q, q) → q|qr, f(q, qr) → q′, f(qr, q) → q′,
f(q, q′) → q′, f(q′, q) → q′, <(qr, q

′) → qf

.

For instance, a successful run on <
(

a, f(a, b)
)

is qf
(

qr, q
′(qr, q)

)

. The
idea is that in a successful run, the rigid state qr identifies (by a non-
deterministic choice) the subterm s on the left side of <, and, on the
right side t of <, the state q′ is reached immediately above qr and prop-
agated up to the root, in order to ensure that t is a superterm of s.
3

The RTA can also test disequalities between subterms built only with
unary and constant symbols.

Example 3.4 Let Σ = {c : 0, a : 1, b : 1, 6= : 2}. The set of terms of T (Σ)
of the form 6=(s, t), where s, t ∈ T

(

Σ \ {6=}
)

and s is distinct from t is
recognized by the following RTA on Σ, 〈{q, qr, qa, qb, qf}, {qr}, {qf},∆〉,
with

∆ = {c→ q|qr, a(q) → q|qr, b(q) → q|qr, a(qr) → qa, b(qr) → qb}
∪

{

a(qx) → qx, b(qx) → qx | qx ∈ {qa, qb}
}

∪
{

6=(q1, q2) → qf | q1, q2 ∈ {qa, qb, qr}, q1 6= q2
}

.

A successful run on 6=
(

a(a(c)), b(a(c))
)

is qf
(

qa(qr(q)), qb(qr(q))
)

. The
rigid state qr will be placed at the position of the largest common postfix
of s and t and qa or qb are used to memorize the letters immediately
above this position, in order to check that s and t differ when reaching
the top symbol 6= in 6=(s, t). 3

The construction of Example 3.3 cannot be generalized to the char-
acterization of a maximal subterm amongst some subterms. This is
shown in the following counter example, using a pumping argument.

Example 3.5 Let Σ = {0:0, g :1, h :2}, and let Lmax be the set of terms
of the form H

[

gm(0), gn1(0), . . . , gnk(0)
]

where k is an arbitrary positive
integer, m ≥ n1, . . . , nk, H is an k + 1-context made of the symbol h
only, and gn represents n nested symbols g.

Fact 3.6 Lmax is not an RTA language.

proof. Assume that Lmax is recognized by an RTA A with n states and
d rigid states. We can assume wlog that d < n. Let t ∈ Lmax be of the
form H[t0, . . . , td+1] where for each 0 ≤ i ≤ d+ 1, ti = g(d+2−i)(n+1)(0).
Let r be a run of A on t. We show, by a pumping argument, that for
one i ≥ 1, we can increase as much as we want the number of g’s in ti,
while keeping the term recognized by A (a contradiction).

42 Chapter 3 : Rigid Tree Automata and Rewrite Closure

First, note that the ti’s are pairwise distinct. It follows that there
are no rigid states in r at the positions of the symbols h in t, except
rigid states which occur only once in r (such rigid states are not affected
by a modification of some ti). Second, a rigid state of A cannot occur
twice in some ti. By a pigeonhole principle, it follows that there exists
some i > 0 such that the n + 1 smaller (wrt prefix ordering) positions
of ti are not labelled by a rigid state in r. Hence, there exists one non-
rigid state of A labelling two of these n + 1 positions. Let k be the
distance between these two positions. For all j ≥ 0, we can build from r
a successful run of A on t′j := H[t0, . . . , ti−1, g

jk(ti), ti+1, . . . , td+1]. But
for a j sufficiently large, t′j /∈ Lmax, a contradiction. 2

1.3 Pumping Lemma

Following some ideas developed in the proof of Fact 3.6 above, we pro-
pose a weak form, adapted to RTA, of the pumping (or iteration) lemma
for TA. Pumping on runs of RTA is not as easy as for standard TA.
Indeed, we must take care of the position of rigid states in order to pre-
serve recognizability. For this reason, the transformation of a subterm
must be performed in several branches in parallel (instead of one single
branch for TA) in order to preserve the rigidity condition. Moreover,
we cannot repeat a term containing a rigid state, because the same rigid
state cannot label two different positions on the same branch.

Lemma 3.7 For all RTA A = 〈Q,R, F,∆〉, for all terms t ∈ L(A)
such that d(t) > (|Q| + 1)|R|, there exist a context C, two 1-
contexts C ′ and D, with D non-trivial (non-variable), and a term
u such that t = C

[

C ′[D[u]], . . . , C ′[D[u]]
]

and for all n ≥ 0,
C
[

C ′[Dn[u]], . . . , C ′[Dn[u]]
]

∈ L(A).

proof. Let t ∈ L(A) be such that d(t) > (|Q| + 1)|R|, let r be a
successful run of A on t, and let p be a position in Pos(t) of length at
least (|Q|+ 1)|R|.

With the rigidity condition in the definition of successful runs, a
rigid state can occur at most once on a path of r. Hence, there exist
two positions p0 < p′0 < p such that |p′0| − |p0| > |Q| and no rigid state
occurs between p0 and p′0 in r. By a pigeon-hole principle, there exist
two positions p1, p2 with p0 ≤ p1 < p2 ≤ p′0 labeled with the same state
of Q \ R in r. We let u := t|p2 and D = (t|p1)[x1]p2−p1 . This situation
is depicted in Figure 3.1.

In order to preserve the property of being a run while iterating D,
we need to take care of rigid states above p0 in r (rigid states below p′0
and below D are not affected by iteration of D). Let π1 be the maximal
position of a rigid state in r smaller than p0 wrt the prefix ordering.
Let qr = r(π1) and let π2, . . . , πk be the other positions of qr in r. Note
that by definition of r being a run the positions π1, . . . , πk are pairwise
incomparable wrt the prefix ordering. We let C = t[x1]π1 . . . [xk]πk and
C ′ = (t|π1)[x1]p1−π1 (x1, . . . , xk are distinct variables).

43

C

π1

C ′

p1

D
p2

u

π2 . . . πn

Figure 3.1: Pumping lemma

Since r(p1) = r(p2) and there are no rigid states between p1 and p2,
we can construct a run on every C ′[Dn[u]]. Moreover, t|πi = t|πj for all
i, j ∈ {1..k}, hence we may assume wlog that the subruns r|πi are equal
for all i ∈ {1..k}. It follows that we can perform the same operation as in
C ′[Dn[u]] under each r|πi , and that C

[

C ′[Dn[u]], . . . , C ′[Dn[u]]
]

∈ L(A).
2 As usual, such a lemma can be used to show that a language is not
in RTA.

Example 3.8 As a consequence of the above pumping lemma, we can
show that the set B of balanced binary trees built over the signature {a :
0, f : 2} is not an RTA language. Assume indeed that it is recognized by
an RTA A = 〈Q,R, F,∆〉 and let t ∈ L(A) such that d(t) > (|Q|+1)|R|
and C,C ′, D, u be as in Lemma 3.7. By hypothesis, C ′[D[u]] is balanced,
but for any n > 1, C ′[Dn[u]] is not balanced since C ′ and D are not
trivial. It contradicts the fact that C

[

C ′[Dn[u]], . . . , C ′[Dn[u]]
]

∈ L(A)
by Lemma 3.7. 3

1.4 Boolean Closure

We show below that the class of RTA languages is closed under union
and intersection but not under complement. These are not new results,
since they use the same proofs as the ones already done for TAGED
(see [FTT08]). However, we give here a lower bound for intersection,
and an effective example of a RTA language whose complement is not
a RTA language.

Theorem 3.9 Given two RTA A1 and A2, there exist two RTA of
respective sizes O(|A1| + |A2|) and O(2|A1||A2|), constructed respec-
tively in polynomial and exponential time, and recognizing respectively
L(A1) ∪ L(A2) and L(A1) ∩ L(A2).

proof. Let Ai = 〈Qi, Ri, Fi,∆i〉 with i = 1, 2. For L(A1) ∪ L(A2), we
do a classical disjoint union of automata. Let us assume wlog that the

44 Chapter 3 : Rigid Tree Automata and Rewrite Closure

state sets Q1, Q2 of A1 and A2 are disjoint. Like for the union of TA,
the RTA A is obtained by disjoint union of the state sets, rigid state
sets, final state sets and transitions sets.

For L(A1) ∩ L(A2), it is easy to construct a positive TAGED A′

recognizing L(A1) ∩ L(A2) by a Cartesian product operation like for
standard TA.

We can use Lemma 1 of [FTT08] in order to transform this positive
TAGED into an RTA recognizing the same language, at the price of
an exponential blowup. Combining the two above steps results in an
exponential construction for the intersection of RTA. 2

The following lemma shows that the exponential time complexity
for the construction of the intersection automaton in Theorem 3.9 is
a lower bound, with a reduction of the EXPTIME-complete problem of
the non-emptiness of the intersection of n TA.

Lemma 3.10 Given n TA A1, . . . ,An on Σ, we can compute in poly-
nomial time two RTA A× and Ar, both of size O

(

|A1|+ . . .+ |An|
)

, and
such that L(A1) ∩ . . . ∩ L(An) = ∅ iff L(A×) ∩ L(Ar) = ∅.

proof. Let Σd = Σ⊎{0:0, d:2}. Both the RTA constructed will compute
on Σd. Let

Ar =
〈

{q, qr, qf}, {qr}, {qf}, {0 → qf , d(qr, qf) → qf}∪{f(q, . . . , q) → q|qr | f ∈ Σ}
〉

.

It recognizes the set of terms of the form d(t, d(t, . . . d(t, 0))) with t ∈
T (Σ). Let Ai = 〈Qi, Ri, Fi,∆i〉 for all 1 ≤ i ≤ n. We assume wlog that
Q1, . . . , Qn are disjoint and that for each i ≤ n, Fi = {qi}.

Let A× =
〈
⊎n
i=1Qi ⊎ {q0, q

′
1, . . . , q

′
n},

⊎n
i=1Ri, {q

′
1},∆×

〉

, with

∆× =
n
⊎

i=1

∆i ⊎ {0 → q0, d(qn, q0) → q′n} ∪
n−1
⊎

i=1

d(qi, q
′
i+1) → q′i.

This RTA A× recognizes the set of right combs of the form
d(t1, . . . d(tn, 0))) with ti ∈ L(Ai) for all i ≤ n. Hence L(A×) ∩ L(Ar)
is exactly the set of right combs d(t1, . . . d(tn, 0))) such that ti ∈ L(Ai)
for all i ≤ n and t1 = . . . = tn. Therefore, this intersection is empty iff
L(A1) ∩ . . . ∩ L(An) is empty as well. 2

Note that the above construction also works (hence Lemma 3.10
also holds) for n given RTA. With Lemma 3.10, we have a polynomial
time reduction into the non-emptiness of the intersection of two RTA
of the problem of the intersection non-emptiness for n TA (given n TA
A1, . . . ,An, do we have L(A1) ∩ . . . ∩ L(An) 6= ∅?), a problem which
is known to be EXPTIME-complete [Sei94]. Since by Theorem 3.9, the
intersection of two RTA is an RTA, and the emptiness of RTA can be
decided in linear time (Theorem 3.19 below), we conclude that EXP-
TIME is a lower bound for the construction of an RTA for the inter-
section. Moreover, in the above construction, A× is a TA if every Ai

(1 ≤ i ≤ n) is a TA. Hence the intersection of an RTA with a TA also
leads to an exponential construction.

45

2 Deterministic and Visibly Rigid Tree Au-
tomata

Non-determinism is crucial for an RTA recognizing the terms of the form
f(t, t) like in Example 2.3. Indeed, in a bottom-up computation, such
an automaton needs to guess both positions of the two occurrences of t
under the symbol f , and put one rigid state at these positions.

Example 3.11 Let us come back to Example 2.3, where Σ = {a : 0, b :
0, f :2} and the RTA A with transition set {a→ q|qr, b→ q|qr, f(q, q) →
q|qr, f(qr, qr) → qf} recognizing {f(t, t) | t ∈ T (Σ)}. Applying a classi-
cal subset construction to the transition set of A returns a deterministic
set of transitions

{

a→ {q, qr}, b→ {q, qr}, f
(

{q, qr}, {q, qr}
)

→ {q, qr, qf},
f
(

{q, qr, qf}, {q, qr, qf}
)

→ {q, qr, qf}

}

.

However, it is not possible to choose a subset of rigid states amongst the
two states obtained, in order to recognize the above language. 3

In this section, we will study the expressiveness of deterministic
RTA. We will show that they are strictly less expressive than RTA, but
still more expressive than standard TA. Hence RTA cannot be deter-
minized, and moreover, determinism is not sufficient here to provide
the closure by complementation. Therefore, we will define a subclass
of RTA, inspired by a previous work on tree automata with memory
[CLJP07], that can be determinized, but which is still not closed under
complementation.

2.1 Determinism and Completeness

Definition 3.12 A deterministic rigid tree automaton (DRTA) on a
signature Σ is an RTA A whose underlying TA ta(A) is deterministic.

It is well-known that DTA are as expressive as TA, and that every TA
can effectively be determinized, at the price of an exponential blowup.
We show below that it is not the case for RTA: the class of DRTA
languages is strictly included in the class of RTA languages.

Theorem 3.13 DRTA RTA.

proof. Let Σ = {a : 0, f : 2}. The language L = {f(t, t) | t ∈ T (Σ)}
is recognized by the RTA of Example 2.3, without the transitions rules
for symbol b.

We show now that L is not recognized by a DRTA. Assume that
there is a DRTA A = 〈Q,R, F,∆〉 recognizing L. For every term t
such that there exists a run r of A on t, and for every path p ∈ Pos(t)
from the root to a leaf, let us denote |p|R = |{p′ | p′ ≤ p, r(p′) ∈ R}|,

46 Chapter 3 : Rigid Tree Automata and Rewrite Closure

t′ = t′0
p′1

t′1
p′2

t′2
p′

t

t′′ = t′0
p′1

t′2

t

Figure 3.2: Proof that DRTA RTA

the number of rigid states occurring on the path p. Then let us denote
|t|R the maximal |p|R among all the paths p from the root to a leaf of
t. Then, we define maxR = maxt∈L(A)|t|R.

Since each rigid state can only appear once on a path, otherwise it
would not respect the rigid condition, there is at most |R| occurrences
of rigid states on every path. Hence maxR is well-defined and is lower
or equals to |R| Given Let t be a term recognized by A such that |t|R =
maxR. Let r be the unique run of A on t, and p be a path of t from the
root to a leaf such that |p|R = maxR.

We build a tree t′ such that there exists a position p′ ∈ Pos(t′),
|p′| > |Q| − |R| and t′|p′ = t. Since f(t′, t′) is recognized by A, there
exists a (unique) run r′ on t′. Since A is deterministic, we know that
r′|p′ = r. Hence there exists a path in r′ from the position p′ to a
leaf that contains the maximal number of rigid states. So for each
strict prefix p′0 of p′, r′(p′0) ∈ Q \ R. Since |p′| > |Q| − |R|, there
exists two strict prefixes p′1, p

′
2 of p′, such that p′1 is a strict prefix of

p′2 and r′(p′1) = r′(p′2). Let t′′ be the tree t′[t′
p′2
]p′1 . This construction is

illustrated in Figure 3.2.
Then r′′ = r′[r′

p′2
]p′1 is a valid run of A on t′′: no rigid states occur

between the root and p′1, and between p′1 and p′2, so a position p′3 of an
occurrence of a rigid state was either

• a position incomparable (wrt prefix ordering) with p′1, which still
exists with the same subtree and the same rigid states in t′′,

• a position p′2 · π, π ∈ Pos(t′|p′2), and then the position p′1 · π in t′′

has the same subtree and the same rigid state,

• a position p′1 · π, π ∈ Pos(t′|p′1), where π is not a suffix of p′2, and
in this case, this occurrence of the rigid states disappears in t′′.

Therefore, r′′ satisfies the rigid condition on every rigid state of R. Since
r′′(ε) = r′(ε), A recognizes the tree f(t′′, t′) which is not in L. 2

Moreover, the class of regular tree languages is strictly included into
the class of DRTA languages.

47

Theorem 3.14 TA DRTA.

proof. The inclusion TA ⊂ DRTA is immediate since DTA ≡ TA and
DTA are particular cases of DRTA.

Let Σ = {a:0, g :1, f :2}. The language
{

f(g(t), g(t)) | t ∈ T (Σ\{g}
}

is recognized by the DRTA

A =
〈

{q, qr, qf}, {qr}, {qf},
{

a→ q, f(q, q) → q, g(q) → qr, f(qr, qr) → qf}
}〉

.

But this language if not regular. 2

2.2 Visibly Rigid Tree Automata

We propose here a class of restricted RTA which can be determinized.
The definition of the restriction is inspired by the theory of visibly push-
down automata (VPA) [AM04]. VPA define a subset of context-free
languages closed under intersection and complement. They were gener-
alized to tree recognizers in [CR07, CLJP07]. The idea in these works is
that the signature Σ is partitioned into Σ = Σc⊎Σr⊎Σℓ and the opera-
tion performed by the VPA on the stack depends on the current symbol
in the input: if it is a call symbol of Σc, the VPA can only do a push,
for a return symbol of Σr it can do a pop and it must leave the stack
untouched for a local symbol of Σℓ. The transition of a VPA follows
this discipline, determinization is possible for this class of pushdown
automata, and it is closed under intersection and complement.

The RTA have no stack but they permit the comparison between
subterms based on the rigid states. Hence, a natural way for defining a
condition similar to the one of visibly pushdown automata, and enabling
determinization for some RTA, is to restrict the rigid states that can be
reached according to the function symbol in the input. In that sense,
the rigidity of the states is made visible by the input signature.

Definition 3.15 A visibly rigid tree automaton (VRTA) is an RTA
A = 〈Q,R, F,∆〉 on a signature Σ such that there exists a partial func-
tion ν from Σ to R such that for every transition f(q1, . . . , qn) → q ∈ ∆,
q = ν(f) if ν is defined on f and q ∈ Q \R otherwise.

Example 3.16 The RTA of Example 3.2 is visibly rigid, with a func-
tion ν defined only on g by ν(g) = qr. The DRTA in the above proof of
Theorem 3.14 is also visibly rigid, with the same function.

Conversely, the RTA of Example 2.3 (recognizing the terms f(t, t)
with t ∈ T

(

{a : 0, b : 0, f : 2}
)

is not visibly rigid. Intuitively, some non-
determinism is needed for the bottom-up recognition of this language
(because t may contain the symbol f), and it is not compatible with
the visibly rigid condition. Indeed, the above language is not regular,
hence at least one rigid state is necessary for the definition of a RTA
recognizing it. Defining rigid states for ν(a) and ν(b), is pointless (it can
be simulated by standard tree automata). Hence,ν(f) must be defined in
order to ensure the visibly rigid condition, but this would contradict the
recognition a term such as e.g. f(f(a, a), f(a, a)). 3

48 Chapter 3 : Rigid Tree Automata and Rewrite Closure

With the visibly rigid condition, a determinization procedure can be
applied to VRTA.

Theorem 3.17 Given a VRTA A on Σ, a deterministic VRTA A′ on Σ
of size exponential in |A| and such that L(A′) = L(A) can be constructed
in exponential time.

proof. The RTA A′ is obtained by a classical subset construction. Let
A =

〈

Q,R, F,∆
〉

and let A′ =
〈

2Q, 2R, {S ⊆ Q | S ∩ F 6= ∅},∆′
〉

with

∆′ =

{

f(S1, . . . , Sn) → S | S1, . . . Sn, S ⊆ Q,
S = {q ∈ Q | ∃q1 ∈ S1, . . . , ∃qn ∈ Sn, f(q1, . . . , qn) → q ∈ ∆

}

.

The RTA A′ is deterministic. Moreover, because of the visibly rigid
condition for A, every state of A′ occurring in ∆ (i.e. every state of
A′ with a non empty language) is either a subset of Q \ R (and it is
not a rigid state of A′) or is a singleton subset of R (and it is a rigid
state of A′). Hence, given a function ν associated to the VRTA A like
in Definition 3.15, there exists a function ν ′ making A′ a VRTA, defined
by ν ′(f) = {qr} iff ν(f) = qr ∈ R.

We can show by induction on t ∈ T (Σ) that there exists a run r of
A on t iff there exists a run r′ of A′ on t such that for all p ∈ Pos(t),
r(p) ∈ r′(p). The part of the proof which is specific to (V)RTA concerns
the rigidity condition, and uses the above observation about the states
of A′: all the rigid states in a run r′ of A′ are singleton subsets of R.
Hence, for the if direction, given a run r′ of A′ on t, every relabeling r :
Pos(t) → Q extracted from r′ (i.e. such that r(p) ∈ r′(p), p ∈ Pos(t))
satisfies the rigidity condition. Similarly, for the only if direction, a
relabeling r′ : Pos(t) → 2Q embedding a given run r of A on t also
satisfies the rigidity condition. It follows that t ∈ L(A) iff t ∈ L(A′). 2

Being able to determinize VRTA is not enough however to ensure
the closure of this subclass of RTA under complement. Intuitively, the
reason is that for the (unique) run r of a deterministic VRTA to be
successful, a conjunction of two conditions must be realized: the top
state of r must be final and the rigidity condition has to be enforced.
In comparison, for a TA, only the first condition is necessary, and in
order to construct the complement of a deterministic and complete TA,
an inversion of final and non final states is sufficient. But in order to
characterize the complement of a VRTA language, the disjunction of
the negation of the two above conditions is necessary, and VRTA are
not expressive enough in order to characterize a term not satisfying a
rigidity condition.

Theorem 3.18 The class of VRTA languages is not closed under com-
plement.

proof. Let us consider the language Lg of Example 3.2: the set of terms
t ∈ T (Σ), with Σ = {a : 0, g : 1, f : 2}, such that s1 = s2 for every two

49

TA RTA TAGED+

∪ PTIME PTIME PTIME

∩ PTIME EXPTIME EXPTIME

¬ EXPTIME not not

emptiness linear-time linear-time EXPTIME-complete

membership PTIME NP-complete NP-complete

∩-emptiness EXPTIME-complete EXPTIME-complete

universality EXPTIME-complete undecidable undecidable

inclusion EXPTIME-complete undecidable undecidable

finiteness PTIME PTIME

Table 3.1: Summary of closure and decision results

subterms g(s1), g(s2) of t. Lg is recognized by the VRTA A given in
Example 3.2 but its complement is not a language of VRTA.

Assume that the complement T (Σ) \ Lg of Lg is recognized by a
VRTA A′ and let ν ′ be the function associated to A′ like in Defini-
tion 3.15. Since Lg is not regular, L(A′) is neither regular, and hence
A′ has to contain at least one rigid state qr such that L(A′, qr) 6= ∅.
Hence, there exists a function symbol h ∈ Σ such that ν(h) = qr. It
cannot be g, otherwise A′ would not be able to recognize any term of the
form f(g(t1), g(t2)) with t1 6= t2 (such a term is in the complement of
Lg). It cannot be f either, otherwise A′ would not be able to recognize
terms of the form f(g(t1), g(t2)) with t1 = f(t3, t4) and t1 6= t2 (those
terms are also all is in the complement of Lg). Hence h has to be a, but
with rigid states bound to constant symbols, VRTA do not have more
expressive power than standard TA. It follows that there does not exist
any VRTA A′ recognizing T (Σ) \ Lg. 2

It is not known whether or not, in general, the complement of a
VRTA language is an RTA language.

3 Decision problems

All decision problems studied in section 1.2 naturally apply to RTA.
However, the decidability of the emptiness problem for PCTAGC[≈],
i.e. positive TAGED has not been proved. We will do it here, especially
because we have a lower complexity with RTA. We will also study two
decision problems for RTA: intersection non-emptiness, that have not
been studied for TAGED, and finiteness. Table 3.1 provides a summary
of closure and decision results and a comparison with plain TA and full
positive TAGED.

3.1 Emptiness

Emptiness is the problem of deciding, given an RTA A whether L(A) =
∅. We show below that deciding emptiness for an RTA amounts to

50 Chapter 3 : Rigid Tree Automata and Rewrite Closure

decide emptiness for the underlying TA.

Theorem 3.19 The emptiness problem is decidable in linear time for
RTA.

proof. Let A = 〈Σ, Q,R, F,∆〉 and let rigid(A) = 〈Σ, Q,Q, F,∆〉 be
a copy of A where every state is rigid. We show that the emptiness of
L(A) and L

(

rigid(A)
)

and L
(

ta(A)
)

are equivalent. The latter prob-
lem (emptiness for standard TA) is known to be decidable in linear-time
(see e.g. [CLDG+07]) with an algorithm marking the inhabited states of
ta(A) and appropriate data structure for the transitions rules. The idea
of the proof is that if L(ta(A)) is not empty, then the classical “state
marking” algorithm builds a witness which respects the rigidity condi-
tion for all states, and is therefore a witness for L(A) non-emptiness.

In order to establish the above equivalence, we use a similar algo-
rithm for A except that every inhabited state q is marked by a witness
(minimal) term tq ∈ L(rigid(A), q) and a run rq of rigid(A) on tq. At
the beginning, each tq and rq are set undefined. Then we iterate the
following transformation until it is applicable:

if q ∈ Q, tq is undefined, and there exists f(q1, . . . , qn) →
q ∈ ∆ such that tq1 , . . . , tqn are all defined, then let tq :=
f(tq1 , . . . , tqn) and rq := q(rq1 , . . . , rqn).

The above step will be repeated at most |Q| times, and using suitable
data structures (see [CLDG+07]) for the representation of transition
rules ensures that it runs in linear time (note that the update of tq and
rq can be performed in constant times at each step). For all q ∈ Q, the
following facts are equivalent:

i. tq is defined,

ii. L(rigid(A), q) 6= ∅,

iii. L(A, q) 6= ∅.

iv. L(ta(A), q) 6= ∅.

i⇒ ii follows from the construction: if tq is defined then rq is a run of
L(rigid(A)) on tq. This can be shown e.g. by induction on the number
of iteration steps before tq is defined.

ii ⇒ iii and iii ⇒ iv are immediate, because by definition we have
L(rigid(A), q) ⊆ L(A, q) ⊆ L(ta(A), q).

iv ⇒ i can be shown by induction on the number of transition rules
of A. This procedure terminates and at the end, tq is defined iff
L(rigid(A), q) 6= ∅ iff L(A, q) 6= ∅ iff L(ta(A), q) 6= ∅. 2

In the deterministic case, there is at most one labelling of the term t
compatible with the transition rules. It can be computed in PTIME

51

and it can be checked in PTIME that this labelling is a successful run.
Hence the membership problem is decidable in PTIME for DRTA.

3.2 Intersection non-Emptiness

Intersection non-emptiness is the problem of deciding, given a finite
sequence of RTA whether there exists a term recognized by each RTA
of the sequence.

Theorem 3.20 Intersection non-emptiness is EXPTIME-complete for
RTA.

proof. The upper-bound is a consequence of Lemma 3.10, Theorem 3.9
and Theorem 3.19. The lower-bound follows from the EXPTIME-
hardness of the problem for TA [Sei94]. 2

3.3 Finiteness

Theorem 3.21 Finiteness is decidable in PTIME for RTA.

proof. Like for TA [CLDG+07], checking finiteness amounts to detect-
ing (in PTIME) some loops and paths in the accessibility graph of an
RTA. The accessibility graph of a given RTA A = 〈Q,R, F,∆〉 is an ori-
ented graph GA = 〈Q,EA〉 whose set of vertexes is Q and set of edges
is EA := {〈q, q′〉 | ∃f(. . . q . . .) → q′ ∈ ∆}. A path in GA is a finite
sequence of states q1, . . . , qn such that 〈qi, qi+1〉 ∈ EA for all 1 ≤ i < n.
We have that L(A) is infinite iff there exists a state q ∈ Q \R such that
L(A, q) 6= ∅, a loop on q in GA (path starting and ending with q) whose
states are all in Q \ R, and a path in GA starting with q and ending
with a final state of F .

The if direction is easy. The other direction can be shown with
arguments similar as those in the proof of Lemma 3.7. If L(A) is infinite
then it contains a term t of depth larger than (|Q|+ 1)|R|. The idea is
that the loop on q is the path from the variable position up to the root
of the context D in a successful run r of A on t, and the path from q to
a final state is the path from the root of D up to the root of t in r.

Checking that L(A, q) 6= ∅ can be done in linear time according
to Theorem 3.19, and deciding the existence of the loop and the path
can both be done in polynomial time in the size of A. Altogether, the
finiteness of L(A) can be checked in polynomial time. 2

4 Rewrite Closure

Following the motivations presented in the introduction of this chapter,
we study here the closure under term rewriting of RTA languages. We
observe first that in general, the rewrite closure of an RTA language is
not an RTA language (Section 4.1) and even not recursive (Section 4.2)
for linear and collapsing TRS. This is in contrast with TA languages,

52 Chapter 3 : Rigid Tree Automata and Rewrite Closure

which are closed under rewriting with such TRS [Sal88]. We show next
that, under a syntactical restriction, namely for a linear and invisibly
pushdown TRS R, it is decidable whether a given tree belongs to the
rewrite closure of a given RTA language (Section 4.3).

4.1 Linear and Collapsing Rewrite Systems

We show first that the closure of an RTA language under rewriting is
not an RTA language, even for a very restricted class of TRS.

Proposition 3.22 R∗(L) is not an RTA language in general when L
is an RTA language and R a linear and collapsing TRS.

proof. Let Σ = {h : 2, f : 1, g : 1, 0 : 0}, let R = {f(g(x)) → x}, and
let A = 〈Q,R, F,∆〉 be the RTA on Σ with Q = {q0, q1, q2, qr, qf},
R = {qr}, F = {qf}, and

∆ =

{

0 → q0, g(q0) → q0|qr, f(qr) → q1, f(q1) → q1,
h(qr, q1,2) → qf , h(q1,2, q1,2) → q2, h(qf , q1,2) → qf ,

}

where q1,2 is either q1 or q2. Every term of L(A) has the form
H
[

gm(0), f∗(gm(0)), . . . , f∗(gm(0))
]

where H is an k-context made of
the symbol h only (with k ≥ 2), gm represents a nesting of m symbols
g and f∗ represents a nesting of an arbitrary number of f ’s. In other
word, the leftmost argument of the context H contains m symbols g,
and the other arguments of the context consist in an arbitrary number
of f ’s followed by m g’s and finished by a 0. Indeed, the rigid state qr
enforces that each argument has the same number of g’s.

The terms of the closure R∗
(

L(A)
)

of L(A) by R have a similar
form except that the number of g’s in the different arguments might
not be equal. They only have to be all less than or equal to the
number of g’s in the leftmost argument. The intersection of this set
R∗

(

L(A)
)

with the regular tree language containing the terms of the
form H

[

g∗(0), . . . , g∗(0)
]

is the language of Example 3.5, which is not
recognized by RTA. It follows that R∗

(

L(A)
)

is not an RTA language.
2

Note that the terms H
[

gm(0), gn1(0), . . . , gnk(0)
]

in the language of
Example 3.5 are R-normal forms in the above counterexample in the
proof of Proposition 3.22 (since they do not contain the symbol f).
Hence, restricting to the terms of the rewrite closure in normal form
does not help: the intersection of R∗

(

L(A)
)

with R-normal-forms is
not an RTA language in general, when A is an RTA and R a linear and
collapsing TRS.

4.2 Undecidability of Membership Modulo

We show in this section that the rewrite closure of an RTA under a linear
collapsing TRS is even not recursive. Let us call membership modulo
the problem of deciding whether t ∈ R∗(L(A)) given an RTA A, a TRS
R and a ground term t ∈ T (Σ).

53

h

fim

gim

fi1

gi1

ui1

uim

0

k

fim

gim

fi1

gi1

vi1

vim

0

Figure 3.3: Undecidability of membership modulo: encoding of a solu-
tion of PCP.

Theorem 3.23 Membership modulo is undecidable for RTA and linear
and collapsing TRS.

proof. Let Γ be a finite alphabet and let u1, v1 . . . un, vn ∈ Γ∗ be a PCP
instance P . A solution of this PCP instance is a sequence i1, . . . , im of
integers smaller or equal to n such that ui1 . . . uim = vi1 . . . vim .

Let us consider the signature Σ = {gi : 1, fi : 1 | i ≤ n} ∪ {a : 1 | a ∈
Γ}∪ {0 : 0, k : 1, h : 2}, and the language (for all w = a1, . . . , ap ∈ Γ∗, the
term a1(. . . ap(t)) is written w(t))

L = {h(s, k(s)) | s = fim(gim(. . . fi1(gi1(w(0)), 1 ≤ i1, . . . , im ≤ n,m > 0, w ∈ Γ∗}

Let R be a TRS on Σ containing the rules

fi(gi(ui(x))) → x (i ≤ n),
gi(x) → x (i ≤ n),

gj(fi(vi(x))) → x (i, j ≤ n),
k(fi(vi(x))) → x (i ≤ n).

The tree language L is recognizable by an RTA on Σ. Hence the follow-
ing property permits us to conclude the proof of Theorem 3.23.

Lemma 3.24 h(0, 0) ∈ R∗(L) iff P has a solution.

The if direction is easy. Let i1, . . . , im be a solution of P and
let h(s, k(s)) be the term of L corresponding to this solution (i.e.
s = fim(gim(. . . fi1(gi1(w(0))))) and w = ui1 . . . uim(0) = vi1 . . . vim(0)).
This term is depicted in Figure 3.3. The s in the left branch can be
reduced to 0 using the first rule of R, and the s in the second branch
can be reduced to k(fim(vim(0))) using the two next rules of R. This
latter term is in turn reduced to 0 using the last rule of R.

For the only if direction, assume that L ∋ h(s, k(s)) −−→∗R h(0, 0).
In order to show that in this case, s corresponds to a solution, it is

54 Chapter 3 : Rigid Tree Automata and Rewrite Closure

sufficient to make the following observations. First, only the first rule of
R (with ui) can be applied in order to reduce the s in the left branch to
0. Indeed, the only other rule of R applicable to s is gi(x) → x and after
using this rule, only gj(fi(vi(x))) → x can be applied, and s cannot be
reduced to 0. Moreover, assuming s minimal, and having the k at the
top of the right branch imposes us to use only the last three rules of R
in order to reduce k(s) to 0 (it is possible to start the reduction of the
right branch with a sequence of applications of fi(gi(ui(x))) → x but
this would contradict the minimality of s). Altogether, it follows that s
corresponds to a solution of P . 2

4.3 Linear and Invisibly Pushdown Rewrite Systems

We show in this section that the problem of membership modulo be-
comes decidable with some further syntactic restrictions on R, based on
the definition of visibly pushdown automata [AM04].

The VPA (see also Section 2.2) recognize languages of words. They
were generalized into tree recognizers in [CR07, CLJP07]. In [CR07],
Chabin and Rety show that the class of visibly pushdown tree automata
(VPTA) languages is closed under rewriting with so called linear visibly
context-free TRS. We use a similar definition in order to characterize a
class of TRS for which membership modulo is decidable. In the following
definition, we assume a partition of the signature Σ into Σc ⊎ Σr ⊎ Σℓ.

Definition 3.25 A collapsing TRS R is called inverse-visibly push-
down (invisibly pushdown) if for every rule ℓ → x ∈ R, d(ℓ) ≥ 1, x
occurs once in ℓ, and if x occurs at depth 1 in ℓ then ℓ ∈ T (Σℓ,X),
otherwise, ℓ(ε) ∈ Σc, the symbol immediately above x is in Σr and all
the other symbols of ℓ are in Σℓ.

Example 3.26 The TRS R = {fst(pair(x1, x2)) →
x1, snd(pair(x1, x2)) → x2, dec(inc(x)) →
x, decrypt(encrypt(x, pk(A)), sk(A)) → x} is linear and invisibly push-
down with Σc = {fst, snd, dec, decrypt} and Σr = {pair, inc, encrypt},
Σℓ = {pk, sk,A}. 3

The TRS in the proof of Proposition 3.22, {f(g(x)) → x}, is invisibly
pushdown, but not the one in the proof of Theorem 3.23. Indeed, there
exists no partition of Σ making this latter TRS invisibly pushdown.
According to Definition 3.25, having a rule gi(x) → x implies that gi ∈
Σℓ but also having a rule gj(fi(vi(x))) → x implies that gi ∈ Σc.

Theorem 3.27 Membership modulo is decidable for RTA and linear
and invisibly pushdown TRS.

proof. The decision algorithm involves the construction of a visibly
pushdown automata recognizing the language of ancestors of t wrt R
that belong to L(A). We do this in three steps:

55

1. we compute a (big) context-free tree grammar that generates all
terms that can rewrite to a single variable by R rules, such that
there exists a run of A on them where the positions of the rigid
states are not contradictory.

2. we add initial rules to the grammar in order to make it generate
terms that rewrite to t instead of those rewriting to a variable.

3. finally, we transform the tree grammar obtained into a visibly
pushdown tree automaton, and take the subterms under rigid
states as independent languages. We replace each language under
an occurrence of a rigid state by the intersection of all languages
under all occurrences of the same rigid state.

After these constructions have been completed, we only need to check
whether the given visibly pushdown language is empty or not in order
to solve the problem.

Let A = 〈Q,R, F,∆〉 be an RTA, R an inverse-visibly pushdown
TRS and t ∈ T (Σ) a term in normal form. We want to construct a
CF tree grammar which simulates the application of the rules of R
backwards, by expanding subterms into left-hand side of rules, in a way
that the application of rules of A is possible. For this purpose, we shall
use some tuples of the following form 〈 q1

q2
, ℓ, lbl , occ, occx, <〉 where

• q1, q2 ∈ Q,

• ℓ is either the lhs of some rule ℓ → x ∈ R, or the single variable
x,

• lbl is a labeling of ℓ by pairs of states denoted q
q′
,

• occ is a set of pairs 〈qr, p〉 where qr ∈ R and p ∈ Pos(ℓ),

• occx is a subset of occ where each rigid state occurs in at most
one pair,

• < is a strict partial order on the set of rigid states R.

For each tuple ψ of this form, we will denote lq(ψ) for q1, rq(ψ) for q2
and pair(ψ) for q1

q2
. When the use of lbl , occ, occx or < is ambiguous we

will index them with the tuple they are referencing (ex. occψ). W.l.o.g.
we will assume that the rule of R in which ℓ occurs rewrites to the
variable x, and we will denote px the position of this variable in ℓ. For
the rest of the proof, we will need the following definition of a valid
labelling of a term by those tuples.

Definition 3.28 A labelling ξ of a term t by tuples of the form
〈 q1
q2
, ℓ, lbl , occ, occx, <〉 is said to be valid if

1. ∀p ∈ Pos(t), t(p)(lq(ξ(p.1)), . . . , lq(ξ(p.n))) → rq(ξ(p)) ∈ ∆,

56 Chapter 3 : Rigid Tree Automata and Rewrite Closure

2. there do not exist two rigid states qr1 , qr2 and two positions p, p′

such that qr1 <
ξ(p) qr2 and qr2 <

ξ(p′) qr1,

3. there do not exist two positions p and p.w such that a rigid state

qr appears in occ
ξ(p)
x and in occξ(p.w),

4. there do not exist three positions p, p.w and p′ such that a rigid

state qr1 appears in occ
ξ(p)
x , a distinct rigid state qr2 appears in

occξ(p.w), and qr1 <
ξ(p′) qr2.

We will build a set T of tuples by induction. We start with

T0 = {〈
q

q
, x,

q

q
, ∅, ∅, ∅〉 | q ∈ Q\R}∪{〈

qr
qr
, x,

qr
qr
, {(qr, ε)}, {(qr, ε)}, ∅〉 | qr ∈ R}.

The set Ti+1 is built from Ti as follows

• for every ψ ∈ Ti, we add ψ to Ti+1,

• for every lhs ℓ of R and every valid labelling ξ of ℓ by tuples of
Ti, we add the tuple 〈 q1

q2
, ℓ, lbl, occ, occx, <〉 to Ti+1, where:

- q1 = lq(ξ(ε)), q2 = rq(ξ(px)),

- ∀p ∈ Pos(ℓ), lbl(p) = lp(ξ(l))
rp(ξ(l)) ,

- occ = {〈qr, p〉 | qr appears in occ
ξ(p)},

- occx = {〈qr, p〉 | p ≤ px and qr appears in occ
ξ(p)
x },

- qr1 < qr2 iff ∃p, qr1 <
ξ(p) qr2 or ∃p, p.w ∈ Pos(ℓ), qr1 appears

in occ
ξ(p)
x and qr2 appears in occξ(p.w).

By induction, each tuple 〈 q1
q2
, ℓ, lbl , occ, occx, <〉 added in T verifies

1. q1 is the top state of lbl(ε),

2. q2 is the bottom state of lbl(px),

3. < is a partial strict order on R,

4. occx ⊆ occ,

5. each position in occx is a prefix of px.

Since the number of lhs of R, the size of each lhs, the number of (rigid)
states of A are all finite, each step takes a finite (in fact polynomial)
amount of time. Also, the number of distinct tuples that can be added
in some Ti is also finite, so we will eventually reach a set Ti where no
new tuple can be added. We define T as the first Ti where no new tuple
can be added.

The terminal symbols of our CF tree grammar are the function sym-
bols of Σ. Its non-terminals symbols are elements of N = Σ∪{⊤}×T ,
and 〈f, ψ〉 has arity n if f ∈ Σn and every 〈⊤, ψ〉 has arity zero.

57

Let us first define the main production rules of the grammar: for
every f ∈ Σ ∪ ⊤ and every tuple φ = 〈 q1

q2
, ℓ, lbl, occ, occx, <〉,

– if ℓ 6= x, then we have in the grammar all the production rules:

〈f, ψ〉(x1, . . . , xn) := u

where, f ∈ Σn and u is a term of T
(

Σ ∪ N , {x1, . . . , xn}
)

such that
Pos(u) = Pos(ℓ) and defined by, for every position p, u(p) = 〈f ′, ψp〉
with

• ψp ∈ T

• pair(ψp) = lbl(p)

• if 〈qr, p〉 ∈ occ, then qr occurs in occ
ψp

• if 〈qr, p〉 ∈ occx, then qr occurs in occ
ψp
x

• <ψp⊆<

By construction of T there exists a tuple ψ satisfying these conditions.
Moreover,

• f ′ = ℓ(p) if ℓ(p) ∈ Σ (i.e. if p is not a variable position in ℓ),

• f ′ = f(x1, . . . , xn) if p = px (the position of x in ℓ),

• f ′ = ⊤ elsewhere.

– if ℓ = x, then q1 = q2 = q, and we add to our grammar the production
rule

〈f, ψ〉(x1, . . . , xn) := f(x1, . . . , xn)

if f 6= ⊤. We also add to the tree grammar some non-terminal of arity
zero and production rules that generates the terms of L(A, q), which is
a regular language.

With this construction, the rules of our CF tree grammar generate
the terms that rewrite to a single variable x with R, and that have a run
r of A on them and where positions of rigid states are not contradictory
with the rigid conditions. But we still need to ensure that we generate
terms that rewrite to t instead of x and that subterms under rigid states
are equal.

In order to generate terms rewriting to t instead of x, we just need
to add initial rules to the grammar. Let S be the initial non-terminal
symbol (of arity zero). For each valid labelling ξ of t such that lq(ξ(ε))
is a finite state of A, we add to our grammar the production rule:

S := u

where u(p) = (t(p), ξ(p)) for all p ∈ Pos(t).
The CF tree grammar constructed generates all the terms rewriting

to t with R and with a run of A that have non-contradictory positions
of rigid states. Only the rigidity condition is missing.

58 Chapter 3 : Rigid Tree Automata and Rewrite Closure

For the rigidity condition, we need to compare the languages gener-
ated by the grammar’s production rules, starting from the non-terminal
symbols of the form 〈f, ψ〉 with ψ = 〈 qr

qr
, x, qr

qr
, {〈qr, ε〉}, {〈qr, ε〉}, <〉 for

some rigid state qr ∈ R. Let us call such languages the language of
the grammar associated to qr. For this purpose, we use the fact that
R is a linear and invisibly pushdown rewrite system. Indeed, it ensures
that the above languages of the grammar associated to rigid states are
languages of visibly pushdown tree automata (VPTA). Such languages
are closed under intersection, and the emptiness is decidable.

We consider the languages of the grammar associated to rigid states,
beginning by the maximal rigid states according to the partial order.
We compute the intersection of every language that can be generated
at different occurrences of a same rigid state. We do that for each rigid
state. Then, the intersection language of the minimal rigid states (ac-
cording to the partial order) is used in the languages of greater rigid
sates and in the general language of ancestors of t instead of the differ-
ent languages of the different occurrences. We repeat this procedure,
following the partial order, until having replaced each language of an
occurrence of a rigid state by the corresponding intersection. Finally,
we just have to decide the emptiness of the general language to know
whether a term recognized by A (with a run respecting the rigidity
condition for all rigid states) does rewrite to t. 2

5 Application to the Verification of Security
Protocols

In this final section, we would like to present an application of RTA
to the verification of security protocols; this model is also presented
in [JKV] (extends version of [JKV09]). Our purpose is not to propose
new results in this domain, but rather to illustrate the potential of RTA
for the automatic verification of some infinite state systems, in particular
communicating processes.

Using automata for protocol analysis is a quite popular approach, see
e.g. [CLC05, GK00, Gou05]. In particular it is possible to analyze pro-
tocols with infinitely many sessions. But this kind of analysis has lim-
itations due to approximations with regular sets. Such approximations
may conduct to false alarms, as discussed e.g. in [AC02] or [ACL09].
The approach with RTA overcomes several sources of imprecision such
as incorrect chaining of messages sent by agents, or ignoring the mul-
tiple occurrences of variables in the body of messages sent. Moreover,
rigid state also permit to model a local finite memory in which both
honest and dishonest agents can store read messages. This feature is
generally not supported in other models.

59

5.1 Protocol Model

We consider a model of security protocols where a finite number of
agents exchange messages, following a protocol, asynchronously over
an insecure network. The messages are ground terms of T (Σ) build
over cryptographic operators and are interpreted modulo an invisibly
TRS R with rules like the above one for decrypt. For instance, we
assume that Σ contains the binary operator encrypt for encryption of
data (in the first argument) with a public or secret key (in the second
argument), and decrypt for the decryption with the associated secret key.
We also use two unary operators pk and sk, associating to the name of
an agent its public, respectively secret, key. For the name of agents, we
use a finite set of constant function symbols of Σ0, A, B... Amongst
the set of function symbols Σ, we distinguish a subset Σpub of public
function symbols, which represent the function publicly known. Below
we assume that Σpub contains encrypt and decrypt, all the agent’s names,
the function pk (hence we assume that knowing somebody’s name is
sufficient to know his public key), a function inc for incrementation, but
Σpub does not contain the function sk.

We have the following rewrite rules in R (for each agent’s name A)

decrypt(encrypt(x, pk(A)), sk(A)) → x

(a message x encrypted using the function encrypt with the public key
of A, pk(A), can be recovered using decrypt and the secret key of A,
sk(A)).
We also have the symmetric rules

decrypt(encrypt(x, sk(A)), pk(A)) → x

We also consider a binary constructor pair and two unary operators fst
and snd for pairing and projection, and the associated rewrite rules

fst(pair(x1, x2)) → x1, snd(pair(x1, x2)) → x2

As noticed in Section 4.3, the TRS containing the above rules is
linear invisibly (see Example 3.26).

Example 3.29 We consider as a running example a simplified version
of the mutual authentication protocol SPLICE/AS [YOM91], which con-
sists of the following two messages exchanged between a client C and a
server S.

1. C → S : pair
(

pair(C, S), encrypt(pair(C, encrypt(N, pk(S))), sk(C))
)

2. S → C : pair
(

pair(S,C), encrypt(pair(S, inc(N)), pk(C))
)

The purpose of this protocol is to establish a handshake between C and
S: C sends to S some integer value N , encrypted with encrypt and the
public key of S, pk(S). Then, S sends to C in reply the successor of N ,
inc(N), encrypted with encrypt and the public key of C, pk(C), in order

60 Chapter 3 : Rigid Tree Automata and Rewrite Closure

to prove that he was the real receiver of the first message – since only S
has the secret key sk(S) which is necessary in order to recover N from
encrypt(N, pk(S)).

Moreover, in the first message, C further encrypts encrypt(N, pk(S))
using the function encrypt and its secret key of C, sk(C). The purpose
of this second step of encryption is to act as a signature: only C is
supposed to know his secret key, and the receiver of the message S, who
knows C’s public key pk(C) can check whether this part of the message
was really encrypted with sk(C).

Finally, some more information is wrapped in the messages: C re-
calls his name in the signed part of the first message, for the purpose of
the double check of the signature described above; moreover both mes-
sages start with a ”header”, i.e. a pair containing the name of the
sender and the intended receiver.

The original SPLICE/AS protocol [YOM91] contains additional mes-
sages for the distribution of public keys pk(S) and pk(S) by a trusted
authority AS, and timestamps. Here, we make the simplifying assump-
tion that every public key is known by everyone (since everyone can
obtain it from AS), and we skip the timestamps. 3

We consider a simple formal representation of programs executing
cryptographic protocols which should fit with most of the formalisms in
use.

A program is a finite set of agents, and each agent is a finite sequence
of pairs of instructions of the form recv(x).send(s).i where i is a program
point (in an arbitrary domain), x ∈ X and s ∈ T (Σ,X). We assume
that moreover every agent starts with an initial program point and
that all the program points in a program are pairwise distinct. Note
that every message is received as a variable (the argument of recv is
always a variable). Hence recv acts as a variable binder, like in [AF01].
Every agent is supposed to be closed, i.e. every variable x occurring
in a send(s) is in the scope of a binder recv(x). For convenience, we
assume that the variables in different instructions recv(x) of a program
are distinct.

Example 3.30 An example of program executing the simplified version
of the SPLICE/AS protocol of Example 3.29 is made of the two following
agents called C and S.

C : c0.recv(x).send
(

pair
(

pair(C, S), encrypt(pair(C, encrypt(N, pk(S))), sk(C))
))

.c1
S : s0.recv(y).send

(

pair
(

pair(ts, tc), encrypt(pair(ts, inc(tn)), pk(tc))
))

.s1
where ts = snd(fst(y)), tc = fst(fst(y)),

tn = decrypt
(

snd
(

decrypt(snd(y), pk(tc))
)

, sk(S)
)

The terms ts, tc and tn describe the recipes used by S to recover re-
spectively the values S, C and N from the message received y. The
variable x is useless. It is only for technical purpose that we assume
that C receives an arbitrary value before sending the initial message of
the protocol. 3

61

In order to define a semantics for the execution of these programs, we
describe in the next section a model of the network used for the com-
munications.

5.2 Protocol Semantics

The network is assumed to be under the control of an active attacker who
is able to read and divert messages and to sent newly forged messages
under fake identities. The attacker is able to use terms and function
symbols that he knows (like terms sent by honest processes and public
functions such as encrypt or decrypt), in order to forge new messages.

To summarize, in this network model, the communication of one
message m between two agents C and S can be decomposed into three
phases:

• C sends the message m to the attacker (send instruction),

• the attacker analyze the message as much as he can (applying
public functions like decrypt, known public keys like pk(S) and
the rewrite rules of R) and possibly changes m into m′ (but m′

may be equal to m),

• the attacker transfers m′ to S, pretending that the sender is C,
and S reads m′ (recv instruction).

Later, S may reuse m′ in order to prepare an answer to C, following
the rules of the protocol.

A configuration of a program P is a triple (S, σ,N) where S is a
set of programs points (one for each agent), σ is a substitution whose
domain is the variables of P and codomain is a subset of T (Σ) and
N ⊂ T (Σ). Intuitively, S contains the current program point of each
agent of P , σ is the list of messages read by the agents so far with
instructions recv(x), and N represents the set of terms known by the
attacker. Hence, according to the above hypotheses, N corresponds to
the content of the network (at a step of execution defined by S and σ)
i.e. it is the set of all terms which can be read (with recv(x)) by the
agents.

We define now small step semantics for the execution of pro-
grams. Each step changes the running configuration

(

S, σ,N
)

of P
into

(

S′, σ′, N ′
)

if S = {i} ∪ U , the program point i appears in one
agent of P (this agent is unique by assumption that the program points
are pairwise distinct) and in this agent, i is followed by the instructions
recv(x).send(s).i′, x is not in the domain of σ and

• S′ = {i′} ∪ U ,

• σ′ = σ ∪ {x 7→ m} for some m ∈ N ,

• N ′ is the closure of cl(N ∪ {σ(s)}) under application of public
function symbols and R, as defined below.

62 Chapter 3 : Rigid Tree Automata and Rewrite Closure

The closure cl(M) of a set M ⊆ T (Σ) is defined recursively as the
smallest set containing all the terms of M and such that for all f ∈
Σpub of arity n, for all t1, . . . , tn ∈ cl(M), R∗

(

{f(t1, . . . , tn)}
)

⊆ cl(M).
Intuitively, cl(M) represents the set of terms than the attacker can
deduce from the terms of M .

Example 3.31 The following sequence of configurations represents a
valid execution of the program in Example 3.30, where the agent’s mes-
sages are smoothly transferred without tampering.

({c0, s0}, ∅, N0), ({c1, s0}, {x 7→ t0}, N1), ({c1, s1}, {x 7→ t0, y 7→ s0}, N2)

The set N0 in the first configuration contains the initial knowledge of the
attacker. For instance, N0 contains A, pk(A), sk(A) (A is the official
identity of the attacker), the identity of other agents and their public
keys C, S, pk(C), pk(S)... and the terms build with these terms by
application of the public function symbols pair, fst, snd, inc, encrypt,
decrypt, e.g. pair(A,S), pair(A, pair(A,S))... In other word,

N0 = cl
(

{A, pk(A), sk(A), C, S, pk(C), pk(S)}
)

.

Note that this set N0 is infinite but regular.
The term t0 is an arbitrary element of N0, and

N1 = cl(N0 ∪ {s0}),
s0 = pair

(

pair(C, S), encrypt(pair(C, encrypt(N, pk(S))), sk(C))
)

,
N2 = cl(N1 ∪ {s1}),
s1 = pair

(

pair(ts, tc), encrypt(pair(ts, inc(tn)), pk(tc))
)

,
ts = snd(fst(s0)), tc = fst(fst(s0)),
tn = decrypt

(

snd
(

decrypt(snd(s0), pk(tc))
)

, sk(S)
)

.

Note that in the sequence, the two agents exchange the messages
of the protocol, as described in Example 3.29, because s1 −−→∗R
pair

(

pair(S,C), encrypt(pair(S, inc(N)), pk(C))
)

. 3

With the above semantics, every message is build on the top of former
messages (either by an agent or the attacker). The monotonicity of the
definition of the messages sets Ni makes bottom-up RTA suitable for
their representation.

5.3 RTA Construction

We show below that it is possible to build an RTA A recognizing exactly
the sets of messages N (representing the state of the attacker’s knowl-
edge) in reachable configurations of a given program P . By reachable,
we mean reachable from an initial configuration, which is specified pre-
cisely below and is assumed to be part of the problem. The RTA A
models both the behavior of the honest agents and of the attacker. It
uses uses one rigid state to memorize every message received by the

63

honest agents (the codomain of the substitution σ in configuration).
The first component of configurations (program points of all agent) is
encoded directly into the states (as the amount of information needed
is finite).

Assume that the program P contains n agents P1, . . . , Pn. We detail
below the construction of the states and transitions of A. We have in
A one state qi1...in for each tuple of values (i1, . . . , in) of program points
of respectively P1, . . . , Pn.

Example 3.32 For the program of Example 3.30 (for the simplified
version of the SPLICE/AS protocol presented in Example 3.29), with two
agents called C and S, we have the states qc0s0, qc1s0, qc0s1, qc1s1. 3

Intuitively, A will be such that L(A, qi1...in) is the set of messagesN such
that a configuration ({i1 . . . in}, σ,N) is reachable, for some σ. Hence
this language contains the set of terms readable (at this point) by the
agents and the attacker.

For each state qi1...in and each (bound) variable x occurring in P ,
we consider one copy denoted qxi1...in , which is a rigid state.

Example 3.33 For the program of Example 3.30, we have the rigid
states qxc0s0, qyc0s0, qxc1s0, qyc1s0 . . . Intuitively, A will be such that
L(A, qyc1s0) is exactly the set of terms t such that there exists a reachable
configuration ({c1, s0}, {x 7→ t0, y 7→ t}, N), for some t0 and N . 3

Now, we will describe the transitions of A modeling the operations
recv and send of the agents. The idea is that when an agent Pi has an
instruction send(s), then A will perform pattern matching of s, using
transitions similar to the ones described in the construction of Propo-
sition 2.5. Like in Proposition 2.5, we consider for this purpose some
auxiliary states of the form qui1...in for every strict subterm u of s and
tuple (i1, . . . , in) of program points values. Note that for every variable
x ∈ vars(s), one rigid states qxi1...in has already been added above.

Let (i1, . . . , in) be a tuple of program point values, such that ij oc-
curs in the agent Pj and is followed by the instructions recv(x).send(s).i′j .
Then the following transitions are added to A for the recognition of s
(like in Proposition 2.5, we assume that s is not a variable):

g(qu1i1...in , . . . , q
um
i1...in

) → q
g(u1,...,um)
i1...in

s.t. g ∈ Σm, g(u1, . . . , um) strict subterm of s,

g(qu1i1...in , . . . , q
um
i1...in

) → q~i′ s.t. g(u1, . . . um) = s, ~i′ = i1 . . . ij−1i
′
jij+1 . . . in.

Note that since the states qxi1...in are rigid (when x is a variable), the
non linearities in s are respected.

Example 3.34 Let us consider for instance the instructions of the
agent S in the program of Example 3.30

s0.recv(y).send
(

pair
(

pair(ts, tc), encrypt(pair(ts, inc(tn)), pk(tc))
))

.s1

64 Chapter 3 : Rigid Tree Automata and Rewrite Closure

with ts = snd(fst(y)), tc = fst(fst(y)), and tn =
decrypt

(

snd
(

decrypt(snd(y), pk(tc))
)

, sk(S)
)

. We have the follow-
ing transitions in A

fst
(

qyc1s0
)

→ q
fst(y)
c1s0

snd
(

q
fst(y)
c1s0

)

→ qtsc1s0
...

pair
(

q
pair(ts,tc)
c1s0 , q

crypt(...)
c1s0

)

→ qc1s1

3

We need next some transitions in A modeling the behavior of the
attacker. As said above, the purpose of a state qi1...in is to characterize
the set of messages N in a reachable configuration ({i1 . . . in}, σ,N). In
other words, this state characterizes the knowledge of the attacker when
the n agents reached the respective steps i1, . . . , in.

Let us consider first the tuple (i01, . . . , i
0
n) of the initial program

points of the agents P1, . . . , Pn of P . The corresponding set of terms N0

is characterized explicitly by a set of transitions of A using the states
qi01...i0n and qx

i01...i
0
n
(and possibly some auxiliary states used only for that

purpose, see the Example 3.35 below). This set N0 defines a unique
initial configuration ({i01, . . . , i

0
n}, ∅, N0), which was mentioned when we

discussed the reachable configurations, and N0 is assumed to be part
of the verification problem. Note that with this approach, it is possible
to consider an infinite initial knowledge for the attacker. Moreover, the
regular language N0 is defined in a way that cl(N0) = N0, in order to
conform to the above semantics.

Example 3.35 The initial set of the attacker’s knowledge N0 which
was mentioned in Example 3.31 is defined by the following transitions
of A (for the sake of readability, we denote below the state qc0s0 by q0
and the states qc0s0 |q

x
c0s0

|qyc0s0 by qxy0)

A→ qxy0 , A→ qA, C → qxy0 , S → qxy0 ,
pk(q0) → qxy0 , sk(qA) → qxy0 , fst(q0) → qxy0 , snd(q0) → qxy0 , inc(q0) → qxy0 ,
encrypt(q0, q0) → qxy0 , decrypt(q0, q0) → qxy0 , pair(q0, q0) → qxy0 .

where qA is an auxiliary state that occurs only in the above 2 transitions
of A, in order to have sk(A) ∈ N0. 3

Next, we define some transitions modeling the evolution of the at-
tacker’s knowledge during the execution of the protocol. With the tran-
sitions defined above, we know that the states qi1...in characterize the
messages that can be sent to the network by the agents. Moreover,
we want to enrich the languages of these states with the information
that the attacker is able to learn form the messages sent. According
to the semantics presented above, the technique used by the attacker
to learn information from messages consists in applying public function

65

symbols of Σpub at the top of the terms of its knowledge, i.e. the terms
recognized in states qi1...in . It is expressed by transitions of the form:

f(q~i1 , . . . , q ~im) → q~i|q
x
~i

f ∈ Σpub,~i = max
1≤j≤m

~ij , x variable of P

where the operator max is applied componentwise to the vectors ~ij and
refers to an order defined on the program points of each agents by their
order of appearance in the Pj ’s.

Example 3.36 For the program of Example 3.30, we have the following
attacker’s transitions (additionally to the one presented in Example 3.35
above)

pk(qc0s1) → qc0s1 |q
x
c0s1

|qyc0s1 , pk(qc1s0) → qc1s0 |q
x
c1s0

|qyc1s0 ,
pk(qc1s1) → qc1s1 |q

x
c1s1

|qyc1s1 (and idem for fst, snd, inc),
encrypt(qc0s1 , qc0s1) → qc0s1 |q

x
c0s1

|qyc0s1 ,
encrypt(qc0s1 , qc1s0) → qc1s1 |q

x
c1s1

|qyc1s1 , . . . (and idem for decrypt, pair).

3

5.4 Verification of Security Properties

We will see that in our setting, it is possible to express and verify con-
fidentiality and authentication properties for a protocol by a reduction
to decision problems for the RTA A constructed above.

Example 3.37 The protocol of Example 3.29 is supposed to ensure the
authenticity of the message of S and also the confidentiality of inc(N)
(for instance the value inc(N) can be supposed to be reused later as a
key for symmetric encryption of a communication tunnel). However,
both these properties can be attacked with a replay attack described in
the following counter example.

1. C → A(S) : pair
(

pair(C, S), encrypt(pair(C, encrypt(N, pk(S))), sk(C))
)

1′. A → S : pair
(

pair(A,S), encrypt(pair(A, encrypt(N, pk(S))), sk(A))
)

2′. S → A : pair
(

pair(S,A), encrypt(pair(S, inc(N)), pk(A))
)

2. A(S) → C : pair
(

pair(S,C), encrypt(pair(S, inc(N)), pk(C))
)

This counter example involves two parallel sessions of the protocol. In
the first session (messages 1 and 2), the client C contacts the server S,
following the protocol. But the first message is diverted by the attacker,
(i.e. the message 1 stays in the network without being delivered to S)
as indicated by the receiver denoted by A(S). Then the attacker opens
a new session (messages 1′ and 2′), between himself, A, (acting as a
client) and the same server S. It is important to note that in message
1′, the attacker reuses the same number N as in 1.

Actually, the attacker is not able to decrypt encrypt(N, pk(S)), be-
cause he does not know the secret key sk(S). However, he is able to
decrypt encrypt(pair(C, encrypt(N, pk(S))), sk(C)), using the public key

66 Chapter 3 : Rigid Tree Automata and Rewrite Closure

of C. Hence he reuses this ciphertext encrypt(N, pk(S)) in 1′, as a ci-
phertex protecting a fresh value of N . The server, who is not aware that
this is a replay, replies with encrypt(pair(S, inc(N)), pk(A)), a message
that the attacker is able to decrypt, with his own secret key sk(A). Hence
the attacker learns the value inc(N) which is supposed to be shared only
by S and C. It means that N is also compromised if we assume that inc
is invertible, i.e. that there exists a public unary function dec ∈ Σpub

and a rewrite rule dec(inc(x)) = x ∈ R (we did not consider these ad-
ditional symbols and rules in our example above because they are not
necessary for our purpose).

Moreover, the attacker can send the last message 2, impersonating
S (this is denoted by the sender A(S)). Hence this is also an attack on
the authenticity of this message (the server S was actually not involved
in the session of the protocol made of messages 1 and 2). 3

The existence of a confidentiality flaw like the one described in
Example 3.37 is reducible to the problem of membership modulo R
(t ∈ R∗

(

L(A)
)

, see Section 4.2), for the RTA A constructed above.

Example 3.38 The confidentiality attack described in Example 3.37
occurs with two parallel sessions, involving 3 agents: 1 agent C playing
the role of the client in the first session, and 2 agents playing the role
of the server, respectively in the first and second session. The server
agent in the first session is inactive. The role of the client in the second
session is played by the attacker.

We can recognize this attack by analyzing a program made of the
2 agents C and S defined in Example 3.30 plus the following second
instance of a server

S : s′0.recv(y
′).send

(

pair
(

pair(t′s, t
′
c), encrypt(pair(t

′
s, inc(t

′
n)), pk(t

′
c))

))

.s′1
where t′s = snd(fst(y′)), t′c = fst(fst(y′)),

t′n = decrypt
(

snd
(

decrypt(snd(y′), pk(t′c))
)

, sk(S)
)

This agent has the same identity S as the first one in Example 3.30.
Despite the renaming of the variable y into y′ and of the program points
(for technical convenience), this agent is the same as the one of Ex-
ample 3.30. Let us construct the RTA A for this 3 agents as above.
The states of A have the form qcisjs′k or qz

cisjs
′
k
for i, j, k ∈ {0, 1} and

z ∈ {x, y, y′}.
We have that inc(N) ∈ R∗

(

L(A, qc1s0s′1)
)

. Since the closure under R
of the language in state qc1s0s′1 represents the knowledge of the attacker,
it means that the value inc(N) has been compromised. Indeed, following
the construction of A, we have

t1 = pair
(

pair(C, S), encrypt(pair(C, encrypt(N, pk(S))), sk(C))
)

∈ L(A, qc1s0s′0).

This term t1 corresponds to the message 1 (of C) in Example 3.37.
Using the transitions of the attacker, we obtain that

t1′ = pair
(

pair(A,S), encrypt(pair(A, snd(decrypt(snd(t1), pk(C)))), sk(A))
)

∈ L(A, qy
′

c1s0s
′
0
).

67

Note that snd(decrypt(snd(t1), pk(C))) −−→
∗
R encrypt(N, pk(S)). With the

transitions for the pattern matching of the message of the second agent
playing the role of S, we have

t2′ = pair
(

pair(t′s, t
′
c), encrypt(pair(t

′
s, inc(t

′
n)), pk(t

′
c))

)

∈ L(A, qc1s0s′1)

with
t′s = snd(fst(t1′)),
t′c = fst(fst(t1′)),
t′n = decrypt

(

snd
(

decrypt(snd(t1′), pk(t
′
c))

)

, sk(S)
)

.

Next, using again the transitions of the attacker, we obtain

t′ = snd(decrypt(snd(t2′), sk(A))) ∈ L(A, qc1s0s′1),

and we have t′ −−→∗R inc(N). Hence there is a positive answer to the
problem of membership modulo for A, R and inc(N), meaning that there
exists a confidentiality attack. 3

Let us make a few remarks on the above analysis. The construction
of two generic agents like in Example 3.30 is the specification of the
protocol, written by the user. These agents represent the 2 roles (client
and server in the protocol). Adding several instances of each agent in
a program (to be verified) can be done automatically, just by variable
and program point renaming as described above. The second part of
the user specification is the construction of a TA recognizing the initial
attacker’s knowledge N0, like in Example 3.35. The construction of the
rest of the RTA, on the top of the agents and the TA for N0 is automatic
and the definition of the signature Σ and the TRS R are generic and
independent of the protocol.

To summarize, RTA techniques permit an automatic analysis of the
confidentiality property for security protocols, by reduction to the prob-
lem of membership modulo for RTA, given

• a definition of the set of public symbols Σpub,

• a user specification (as programs) of the roles of the protocol,

• the number and identities of the agents playing the different roles
of the protocol (generic results like [CC04] can help),

• a finite representation of the initial knowledge of the attacker N0,
and

• a ground term whose confidentiality must be ensured.

Note that the verification technique described above is exact: it requires
no approximation on the protocol and attacker model (as long as the
protocol is a program in the syntax of Section 5.1). Hence, every attack
reported is a real attack, all the confidentiality attacks are reported and

68 Chapter 3 : Rigid Tree Automata and Rewrite Closure

a negative answer is reported to the problem of membership modulo only
if there exists no confidentiality attack, under the above hypotheses.

Authentication flaws like the one described in Example 3.37 can be
reduced to the problem of emptiness of the intersection between the RTA
A and a TA E (does L(A) ∩ L(E) = ∅). The idea is to add some tags
in the agent’s messages, for instance marking the end of every agent.
The tags are built with function symbols which are not public (hence
they can only be added by the agents, with special instructions), but we
can also consider other public functions that the attacker can apply to
remove the tags (modulo some rules in R for that purpose). Then the
TA E characterizes some traces corresponding to authentication errors.
For instance, the authentication flaw described in Example 3.37 can
be characterized by the fact that C has received a message 2 (in the
first session) and entered program point c1 (this is characterized by the
presence of a tag Tc in the term) while S did not send it, and is still at
program point s0 (this is characterized by the absence of a tag above Tc
in the term). The emptiness of the intersection of L(E) and L(A) (note
that this language is not considered modulo R in this case) means that
there is no authentication flaw.

However, with the above model this approach is quite limited, since
the agents can accept any message in the input. Hence, many false
authentication attacks will be reported. This verification technique,
related to regular tree model checking, would make more sense with a
model with some conditionals in the agents, between instructions recv(x)
and send(s).

6 Conclusion

In this chapter, we have studied the closure of RTA languages under
term rewriting, and proposed an algorithm to decide that a given term
belong to the closure of an RTA language by linear and invisibly push-
down TRS.

This class of tree automata is thought to be well suited for the
automatic verification of some infinite state systems, and in particu-
lar for the verification of traces or equivalence properties of security
protocols, using regular tree model checking like techniques. In this
context, it would be interesting to extend the result of Theorem 3.27
to invisibly pushdown (non-linear) TRS, in order to handle axioms like
decrypt(encrypt(x, y), y) = x. We are also interested about the symmet-
ric form of the TRS of [CR07], whose rhs’s are not single variables but
have the form f(x1, . . . , xn).

In section 2.5, of chapter 2 we have also mentioned the possibility to
define RTA as sets of Horn clauses and the use of general purpose first
order theorem proving tools in order to decide properties like the ones
related to the rewrite closure. Such an approach could be interesting for
instance for the extension of RTA with equational tests like in [JRV08],

69

in order to be able to capture conditionals in the model of security
protocols presented in Section 5.

Another use of TAGED in model checking has been recently studied
in [CHK09]. We did not manage to fully study this work, but it seems
that, even if the application is very close, the use of TAGED is very
different than the one presented here.

In section 2.2, we add a visibly constraints to RTA that allows to
determinize them, but not to complement them. In the context of the
analysis and processing of trees containing data, like XML documents,
it could be interesting to find a decidable class of tree automata with
(dis)equality constraints closed under complement.

70 Chapter 3 : Rigid Tree Automata and Rewrite Closure

Chapter 4

Emptiness Decision for
TAGED

As mentioned in section 2.1 the emptiness decision problem has been
shown decidable for several subclasses of TAGED in [FTT08]. It is de-
cidable for positive TAGED, for negative TAGED but also for vertically
bounded TAGED which allow to mix equalities and disequalities up to
a certain point. The decision procedure of the emptiness problem de-
cidability for vbTAGED uses elegant intermediate results. However, we
did not manage to enhance these techniques to have a positive result
for a full TAGED class.

The decision procedure for negative TAGED is a reduction of the
emptiness problem to a problem of verification of a system of set con-
straints. The proof of decidability of this result has been done in [CP94]:
it translates the system of set constraints into a formula, and show that
if there exists a model for the formula then there exists a finite one.
Then, the rest of the proof shows how to produce an herbrand model
(i.e. a model which is a term) from a generic model. To extend to the
full class of TAGED, we need to add equality tests. Unfortunately they
lead to more complex formula, where the proof of the existence of a
Herbrand formula seems harder. On the other hand, the encoding of
TAGED do not require all the logic formula used for the translation of
set constraints.

Charatonik also proved in [Cha99] the decidability of emptiness
problem for the class of DAG-automata, using similar techniques and
notations as the ones in [CP94]. In fact, we will show an equivalence
between t-dag automata and negative TAGED in the first section. The
idea is that the maximal sharing property of t-dags ensure that two
different nodes necessarily represents two different terms. Hence to pro-
vide the inequality q 6≈ q′ in a term it suffices to guarantee that, in
the dag representation, no node represents a term recognized by both
q and q′. Once again, this technique does not work with equality tests,
because t-dag automata cannot enforce multiple use of a state in a run
to correspond to only one node in the t-dag. However, we managed to

71

72 Chapter 4 : Emptiness Decision for TAGED

enhance the proof in [Cha99] to deal with equalities and be applied to
the decidability of the emptiness problem of the full class of TAGED.
That is what we will do in the second section of this chapter, by defining
a pumping lemma on TAGED.

1 Negative TAGED and t-dag Automata are
Equally Expressive

Negative TAGED recognize terms languages whereas t-dag automata
recognize languages of t-dag representations of terms. As in chapter 2,
we will here compare the expressiveness of these two models by con-
sidering the terms represented by the t-dags of the t-dag automaton
language. The easy way is to build a negative TAGED recognizing the
same language as a t-dag automaton.

Theorem 4.1 Let A = 〈Σ, Q, F,∆〉 be a t-dag automaton. There exists
a negative TAGED B such that, for all t ∈ T (Σ), t is recognized by B if
and only if dag(t) is recognized by A.

proof. Let us define B = 〈Σ, Q, F,∆, 6≈〉 where, for all q1, q2 ∈ Q, q1 6= q2
implies that q1 6≈ q2. Let G = dag(t) be a t-dag recognized by
A and let r be a successful run of on G. Obviously, r′ defined as
∀p ∈ Pos(t), r′(p) = r(G(p)) is an accepting run of the underly-
ing tree automaton ta(B) on t, since the states, the final states, and
the transition rules are the same. For all p1, p2 ∈ Pos(t) such that
r′(p1) = q1 6= q2 = r′(p2), we have that r(G(p1)) 6= r(G(p2)), hence the
nodes G(p1) and G(p2) are distinct. Since G is a t-dag, G|p1 and G|p2
are not isomorphic, which implies that t|p1 6= t|p2 . The disequalities
q1 6≈ q2 are respected, and r′ is a successful run of B on t.

Reciprocally, let t be recognized by a run r′ of B. Since for all
p1, p2 ∈ Pos(t) such that r(p1) 6= r(p2), the disequality constraint 6≈
implies that tp1 6= tp2 , we have that for all subterm t′ of t there exists a
unique state qt′ such that, for all position p, if t|p = t′ then r′(p) = q′.
Considering the construction of proposition 1.5, where each node of
dag(t) corresponds to a subterm of t, we build the run r such that, for
all subterm t′ of t, r(t′) = qt′ . Since the states, the final states, and the
transition rules are the same in A and B, r is a successful run of A on
dag(t). 2

The other way, encoding a negative TAGED into a t-dag automaton,
is a bit more complex, and may involve an exponential blowup of the
size of the automaton.

Theorem 4.2 Let A = 〈Σ, Q, F,∆, 6≈〉 a negative TAGED.

There exists a t-dag automaton B such that for all term t ∈ T (Σ), t
is recognized by A if and only if dag(t) is recognized by B.

73

proof. Let P = 2Q \ {Q′ ⊆ Q | ∃q1, q2 ∈ Q′, q1 6≈ q2}. Let ∆′ be
the set of transition rules of the form {f(Q1, . . . , Qn) → Q′ where f ∈
Σn, Q1, . . . Qn, Q

′ ∈ P and for all q ∈ Q′, there exists q1 ∈ Q1, . . . , qn ∈
Qn such that f(q1, . . . , qn) → q ∈ ∆} Let F ′ = {{qf} | qf ∈ F} We
define the t-dag automaton B = 〈Σ, P, F ′,∆′〉.

⇒: Let t be a term recognized by A and let r be a successful run of
A on t. Let us define a mapping r′ from the nodes of G = dag(t) to
2Q. Using the canonical description of the nodes of G of being the set
of subterms of t, we define r′(t′) = {q | ∃p ∈ Pos(t), t|p = t′, r(p) = q}
for all subterm t′ of t. Since, there is no subterm t′ of t such that
∃p1, p2 ∈ Pos(t), t|p1 = t|p2 = t′ and r(p1) 6≈ r(p2), then, there is no
subterm t′ of t such that r′(t′) contains two different states q1 and q2
such that q1 6≈ q2. Hence, for all subterm t′ of t, r′(t′) ∈ P . Moreover,
since r is an accepting run, r′(t) is a singleton {qf} where qf ∈ F , so
r′(t) ∈ F ′.

Let us show that r′ is compatible with ∆′. Let t′ be a subterm of t
such that t′(ε) ∈ Σn. If n = 0, then, by construction, for all q ∈ r′(t′),
there exists some leaf position p of t such that r(p) = q, hence, there
exists t(p) → r(p) ∈ ∆. So t(p) → r′(t′) ∈ ∆′.

If n > 0, then for all q ∈ r′(t′), there exists a position p such
that t|p = t′ and r(p) = q. Hence, there exists a transition rule
t(p)(q1, . . . , qn) →∈ ∆, such that, for all i, 1 ≤ i ≤ n, r(p.i) = qi
and t|p.i = t′|i. Hence, for all i, 1 ≤ i ≤ n, qi ∈ r′(t′|i), so we have that
t(p)(r′(t′|1), . . . , r

′(t′|n)) → r′(p) ∈ ∆′. So r′ is compatible with ∆′ and
is a successful run of B on G.

⇐: Let G = dag(t) be a t-dag recognized by B, and r′ a successful run
of B on G. Let us define by induction a mapping r from Pos(t) to Q,
such that for all p ∈ Pos(t), r(p) ∈ r′(t|p), and which is compatible
with ∆. We start with r(ε) = qf where r′ = {qf}, qf being a state
of F . By induction, for all position p ∈ Pos(t), such that t(p) ∈ Σn,
n > 0, and r(p) = q ∈ r′(t|p), by construction of ∆′ there exists q1 ∈
r′(t|p.1), . . . , qn ∈ r′(t|p.n) such that t(p)(q1, . . . , qn) → q ∈ ∆. We define
r(p.i) = qi for all i, 1 ≤ i ≤ n, and the position p of r is compatible
with ∆. And for all position p ∈ Pos(t) such that t(p) ∈ Σ0 and
r(p) ∈ r′(t|p), by construction of ∆′ there exists t(p) → r(p) ∈ ∆. The
mapping r is then compatible with ∆, and r(ε) ∈ F , so r is a successful
run of ta(A).

In order to prove that r is a successful run of A, we only have to
prove that the relation 6≈ is respected. For all q1, q2 ∈ Q such that
q1 6≈ q2, there is no set Q′ ⊆ Q,Q′ ∈ P such that Q′ contains both q1
and q2. So, by construction of r, there is no subterm t′ of t, such that
there exists two positions p1, p2 ∈ Pos(t) with r(p1) = q1, r(p2) = q2
and t|p1 = t|p2 = t′. So 6≈ is respected by r and t, and r is a successful
run of A on t 2

74 Chapter 4 : Emptiness Decision for TAGED

2 Deciding Emptiness of TAGED

We use here the same vocabulary and the similar constructions as the
ones introduced by Charatonik in [Cha99] for the emptiness decision
for t-dag automata. The general idea is to prove that for each term
recognized by a TAGED, one can build another term of bounded height
that is also recognized. In order to do this, we will need to work on the
t-dag representation of the terms to preserve the (dis)equality properties
required by the TAGED. The main difference with the pumping for t-
dag automata is that, here, the t-dag is labelled by sets of states, like
in the proof of Theorem 4.2, since each node corresponds to several
positions in the term recognized by the TAGED, instead of states, since
t-dag automata directly runs on t-dags.

We first introduce an example that we will refer to all along this
section.

Example 4.3 Let A = 〈Σ, Q, F,∆,≈A, 6≈A〉 be the TAGED such that

• Σ = {a : 0, g : 1, f : 2, h : 3};

• Q = {q0, q1, q2, q3, q4, qf};

• F = {qf};

• ∆ = {a→ q0, g(q0) → q0, g(q0) → q1
f(q1, q0) → q2,
g(q2) → q3, g(q3) → q3
g(q2) → q4, h(q2, q3, q4) → qf}

• q1 ≈A q1;

• q3 6≈A q4

Let t = h(f(g(g(a)), g(g(a))), g(g(f(g(g(a)), g(a)))), g(f(g(g(a)), a))).
The figure 4.1 gives a graphic representation of t, and of a successful
run of A on t. Note that g(g(a)) is the only term recognized (several
times) by q1, and that the terms recognized respectively by q3 and q4 are
different.

2.1 Mapping Nodes to a Set of States

We begin by defining a mapping from the set of nodes of a t-dag to the
subsets of states of a TAGED, according to a given run.

Definition 4.4 Let t be a term recognized by an accepting run r of A
Let G = (V, succ, λ) = dag(t). We define the function statesr : V → 2Q,
the following way: statesr(v) = {q | ∃p ∈ Pos(t), t|p = term(G|v) ∧
r(p) = q}. For all node v and for all set P ⊆ Q, if statesr(v) = P , we
say that v provides P .

75

h

f

g

g

a

g

g

a

g

g

f

g

g

a

g

a

g

f

g

g

a

a

qf

q2

q1

q0

q0

q0

q0

q0

q3

q3

q2

q1

q0

q0

q0

q0

q4

q2

q1

q0

q0

q0

Figure 4.1: The term and the run of example 4.3

Intuitively, statesr(v) is, in the run r, the set of states recognizing
the term represented by Gv.

The figure 4.2 shows the t-dag representation G of the term t of ex-
ample 4.3, where we write at each node v, the couple λG(v) : statesr(v).

We will present several transformations on t-dags. Given a t-dag
G = (V, succ, λ) = dag(t) and a run r of a TAGED on t, we will define
several subgraphs or t-dag whose set of nodes will be a subset of V .
However, we will always manipulate stater as it is defined on all V (and
hence, on all subset of V). In particular, the following properties will
still hold for every node of V , even if we consider these nodes in the set
of nodes of a smaller t-dag.

Proposition 4.5 Given a t-dag G representing a term t and an accept-
ing run r of a TAGED A on t, the following properties hold:

1. let u be the root of G, then statesr(u) = {qf} for some qf ∈ F

2. if q1 ≈A q2 there exists at most one node v ∈ V such that q1
and/or q2 ∈ statesr(v)

3. if q1 6≈A q2 there is no node v ∈ V such that statesr(v) contains
both q1 and q2

4. ∀v ∈ V labeled by f ∈ Σn, ∀q ∈ statesr(v), ∃f(q1, . . . , qn) → q ∈
∆ such that ∀i, 1 ≤ i,≤ n, qi ∈ statesr(succ(i, v))

proof. 1 - r is an accepting run so there exists some qf ∈ F such that
r(ε) = qf . By definition of statesr, since termG(u) = t = t|ε, we have
that statesr(u) is the singleton {qf}.

2 - If neither q1 nor q2 occur in r, then by definition of statesr there
is no node v such that statesr(q) contains q1 or q2, and we are done.
Otherwise, either q1 or q2 occurs at least once in r. Wlog, assume that q1

76 Chapter 4 : Emptiness Decision for TAGED

h : {qf}

g : {q3}

g : {q3}

f : {q2}

g : {q0, q1}

g : {q0}

a : {q0}

f : {q2}

g : {q4}

f : {q2}

Figure 4.2: The t-dag representation of the term of example 4.3 with
the set statesr(v) for each node v.

77

occurs in statesr(v) for some node v. By definition of statesr, there ex-
ists some position p ∈ Pos(t) such that r(p) = q1, and termG(v) = t|p.
For every node v′ of G such that either q1 or q2 belongs to statesr(v

′),
there exists a position p′ ∈ Pos(t) such that r(p′) = q1 or q2. Since r
satisfies the equality constraints and since ≈A is reflexive and symmet-
ric, we have that t|p = t|p′ . Hence termG(v) = termG(v

′), so v = v′. v
is therefore the unique node of G such that statesr(v) may contain q1
and q2.

3 - If r contains only one of the states q1 or q2, or none of them,
then the property is obviously satisfied. So assume there is at least
one occurrence of each of them in r. Let v1 be a node of G such that
q1 ∈ statesr(v1). By definition of statesr there is a position p1 ∈ Pos(t)
such that termG(v1) = t|p1 and r(p1) = q1. For every node v2 of G such
that q2 ∈ statesr(v2), there exists p2 ∈ Pos(t) such that r(p2) = q2
and termG(v2) = t|p2 . Since r satisfies the disequality condition, we
have that t|p1 6= t|p2 , so termG(v1) 6= termG(v2). Hence v1 6= v2, and
q2 6∈ statesr(v1). By a symmetric reasoning, we have that for every
node v2 such that q2 ∈ statesr(v2), q1 6∈ statesr(v2). So there is no
node v such that statesr(v) contains both q1 and q2.

4 - Let v be a node of G labeled by f ∈ Σn, and let q be a state in
statesr(v). By definition of statesr, there exists a position p ∈ Pos(t)
such that r(p) = q and termG(v) = t|p. By definition of a run, we know
that there exist a rule f(q1, . . . , qn) → q ∈ ∆ where qi = r(p.i) for all
i. For all i, 1 ≤ i ≤ n, we have that termG(succ(i, v)) = t|p.i. Hence,
by definition of statesr, qi = r(p.i) ∈ statesr(vi) for all i. The rule
f(q1, . . . , qn) → q satisfies the wanted condition. 2

2.2 Definitions and Notations

In order to prove the existence of a small enough term for every non-
empty TAGED language, we will need to manipulate some new objects
that we introduce here.

Let G = (V, succ, λ) be a t-dag on a signature Σ, and some linear
ordering < on function symbols of Σ. By induction, we define ≺ on V to
extend the “lies below” partial order into a linear ordering the following
way: let v1, v2 be in V , v1 ≺ v2 if and only if:

• v1 lies below v2; or

• v1 and v2 have the same height, and λ(v1) < λ(v2); or

• v1 and v2 are of same height, λ(v1) = λ(v2) ∈
Σn, and 〈succ(1, v1), . . . , succ(n, v1)〉 is lower than
〈succ(1, v2), . . . , succ(n, v2)〉 wrt the lexicographic extension
of ≺.

Let us define the order ⊏ on tuples of nodes of G:
〈v11, . . . , v

k
1 〉 ⊏ 〈v12, . . . , v

m
2 〉 if and only if

78 Chapter 4 : Emptiness Decision for TAGED

• max1≤i≤k{h(v
i
1)} < max1≤j≤m{h(v

j
2)} or

• 1. max1≤i≤k{h(v
i
1)} = max1≤i≤m{h(v

j
2)} and

2. 〈v11, . . . v
k
1 〉 is strictly smaller than 〈v12, . . . v

m
2 〉 wrt the lexico-

graphic extension of ≺.

Note that since ≺ is a linear ordering on nodes of G, ⊏ is a linear
ordering on tuples of nodes of G.

A pointer is a pair (P, i), where P is a subset of Q and i is
a number. We write P [i] instead of (P, i). Given a t-dag G rep-
resenting a term t, r an accepting run of a TAGED A on t, we
say that the pointer P [i] points to the i-th (according to the order
≺) node v such that statesr(v) = P . By index of a given node v
(in symbols, indr(v)) we mean the number i such that the pointer
statesr(v)[i] points to v. A transition with pointers, is an expression of
the form f(P1[i1], . . . , Pk−1[ik−1], Pk, Pk+1[ik+1], . . . , Pn[in]) → P , where
P, P1, . . . , Pn ⊆ QA We say that such a transition is compatible with
some node v of G if

• k is the main position of v;

• P = statesr(v);

• for all i, 1 ≤ i ≤ n, Pi = statesr(succ(i, v)).

2.3 Building a Skeleton

Our goal here will be to define a directed acyclic graph, whose node set
is a subset of the node set of G, from which we can infer a t-dag rep-
resenting a shorter term, that will be recognized by the same TAGED.
The construction will first keep all the main path of the roof of the
t-dag. But to have a smaller t-dag, it will try to use as less nodes as
possibles for every secondary position. However, we cannot use a sin-
gle node for each set of states in statesr(VG), since it may broke some
(dis)equalities. We define more formally this situation.

Definition 4.6 Let G be a t-dag representing a term t, and r be a
successful run of a TAGED A on t. Let P1, . . . , Pn ⊆ Q and v a node of
G. We say that there is a fork of degree m at the node v and at position
k wrt P1, . . . , Pn if there exists m nodes v1, . . . vm in G such that

• λG(vi) = · · · = λG(vm) = f ∈ Σn;

• for all i, 1 ≤ i ≤ m, k is the main position of vi;

• for all i, 1 ≤ i ≤ m, succ(k, vi) = v;

• and for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, statesr(succ(j, vi)) = Pj.

79

Intuitively, a fork of degree m is a situation where m nodes are
labeled by the same function symbol, have the same main successor,
and all their successors represent terms that are respectively recognized
by the same states by A in r. Since those m nodes represent m different
terms, if we replace all their secondary successors by the same nodes,
we may break some disequality constraints. So to build our skeleton, we
will need to generate m different sequences of nodes providing the sets
P1, . . . , Pn. Note that a fork may be of degree 1. Here is the construction
of our skeleton, respecting these observations.

Definition 4.7 Given a t-dag G representing t, a TAGED A and an
accepting run r of A on t, we want to build a directed acyclic SrG whose
node set is a subset of VG, and such that each node is labeled by a
transition with pointers to some other nodes below.

We apply the following procedure that marks nodes of VG and define
a labeling of each marked node by a transition rule with pointers:

1. Let u be the root of G we mark u and all the nodes in its main
path.

2. For h = h(G) to 1 for each fork of degree m at the node v′ and
position k wrt P1, . . . , Pn, we define

λS(vi) = f(P1[indr(v
1
i
′
)], . . . Pk−1[indr(v

k−1
i

′
)], Pk, Pk+1[indr(v

k+1
i

′
)],

. . . , Pn[indr(v
n
k
′)]) → statesr(vi)

for all i, 1 ≤ i ≤ m, where 〈v11
′
, . . . vk−1

1

′
, vk+1

1

′
, . . . , vn1

′〉 ⊏ . . . ,

⊏ 〈v1m
′
, . . . , vk−1

m
′
, vk+1
m

′
, . . . , vnm

′〉 are the first (according to the
linear ordering ⊏) m sequences of nodes of G providing the sets
P1, . . . , Pk−1, Pk+1, Pn. We say that the fork defines those labels.

Then we mark the nodes pointed by all the pointers Pj [indr(v
j
i

′
)]

and all the nodes on their main path. We say that the fork marked
those nodes.

3. for each marked leaf v of G, we define λS(v) = λG(v) → statesr(v)

We define VS as the set of nodes of VG that have been marked during
the procedure. We define the successor relation succS over VS by v′ =
succS(v) if and only if v′ is the main successor of v in G.

We define the direct acyclic labeled graph SrG = 〈VS , succS , λS〉.

The figure 4.3 shows the result of this construction applied to the
t-dag of figure 4.2. Note that there is a fork of degree 2 involving the
two nodes labeled by f .

We will show that this construction is well-defined and that it sat-
isfies several useful properties. First, we will prove the following lemma
on the construction.

80 Chapter 4 : Emptiness Decision for TAGED

h({q2}[1], {q3}, {q4}[1]) → {qf}

g({q3}) → {q3}

g({q2}) → {q3}

f({q0, q1}, {q0}[1]) → {q2}

g({q0}) → {q0, q1}

g{q0} → {q0}

a→ {q0}

g({q2}) → {q4}

f({q1, q0}, {q0}[2]) → {q2}

Figure 4.3: The graph SrG where G is the t-dag of figure 4.2

81

Lemma 4.8 Let G be a t-dag representing a term t, and r a successful
run of a TAGED A on t. Then, given a fork of degree m occurring in
the procedure of definition 4.7, there is at most m− 1 nodes of indexes
greater than 1 used in the transition rules defined by this fork, and the
maximal index used in such a transition is m.

proof. Given a fork of degree m at a marked node v′ at position k
wrt P1, . . . , Pn that labels m marked nodes v1 . . . vm with λS(vj) =

f(P1[indr(v
1
j
′
)], . . . , Pk, . . . Pn[indr(v

n
j
′)]). Let k1, . . . , kn the numbers

of different nodes v1j
′
, . . . , vnj

′ whose indexes are used in these transi-
tions. We can construct k1.k2.kn different sequences of the form
〈v1

′, . . . , vn
′〉. As we need m different sequences, so we have that

k1.kn ≥ m. Since we take the m first sequences according to ⊏, and
that 〈P1[1], . . . , Pn[1]〉 is the lowest sequence, there is a node of index 1
for each of the subsets of states, so there are (k1−1)+· · ·+(kn−1) nodes
of index greater than 1. And since k1.kn ≥ (k1−1)+· · ·+(kn−1)+1,
it is sufficient to have (k1 − 1) + · · · + (kn − 1) ≥ m − 1. Therefore, a
fork of degree m requires at most m− 1 nodes of index greater than 1.
In particular, the maximal index used in a transition rule defined by a
fork of degree m is m. 2

Theorem 4.9 Given a t-dag G representing t, a TAGED A and an
accepting run r of A on t, the directed acyclic labeled graph SrG is well-
defined. Moreover, for all node v ∈ VS the height of v in SrG is equals
to its height in G, all the indexes of the pointers in the transition λS(v)
are lower or equal to 2|Q|, and the pointers point to nodes below v.

proof. First, when a node is marked, in either the initial step, or during
the loop, we also mark all the nodes in its main path. Hence, since the
successor of a node v in SrG is its main successor in G, we have that its
height is equal in both graphs.

We will then prove the well-definition of VG and λS(v), and the
property on the indexes by proving some invariants in the procedure.

For each height h, 1 ≤ h ≤ h(G), at a given moment of the proce-
dure, we will define the width w(h) as the number of marked nodes
of G of height h. We will define mil1=(h) as the number of nodes
v ∈ VG of index 1 (v is of index 1 if and only if v = statesr(v)[1])
of height h, and mil1<(h) as the number of nodes v ∈ VG of index 1
and of height strictly lower than h. Note that for all h, 1 ≤ h < h(G),
mil1<(h+1) = mil1<(h) +mil1=(h). We define also mil><(h) as the num-
ber of nodes of index greater than 1 and of height lower than h that
are pointed by some transition labelling of some marked node of height
greater or equals to h, and mil>=(h) as the number of nodes of index
greater than 1 and of height h that are pointed by some transition la-
belling some marked node of height greater than h.

For each fork of degree m, we call extra degree the number m − 1.
For each height h, 1 ≤ h ≤ h(G), we denote ex(h) the sums of the extra
degrees of all the forks at the marked nodes of height h− 1.

82 Chapter 4 : Emptiness Decision for TAGED

For each height h, 1 ≤ h ≤ h(G), we will prove the following invari-
ants on the procedure.

1. the step h define λS(v) for all marked node v of height h;

2. The step h only mark nodes of height lower than h;

3. at the end of the step h the following inequations hold:

• w(h) +mil1<(h) +mil><(h) + ex(h) ≤ 2|Q| + ex(h).

• w(h) +mil1<(h) ≤ 2|Q|.

4. for all marked node v, λS(v) points only to nodes of index lower
or equal to 2|Q|;

First, note that to prove the invariant 2, it is enough to prove that
the transitions with pointers that are defined for the marked nodes of
height h, all the pointers point to node of height lower than h.

Let us prove these invariants recursively. For the first step, h =
h(G), w(h) = 1 since the root u of G is the only node of height h, and
it is marked. There is only one fork of degree 1 at the main successor
u′ of u which is at this moment the only marked node of height h − 1.
Since the fork is of degree 1, we have that ex(h) = 0, and we only take
the indexes of the lowest tuple of nodes. The labelling λS(u) is hence
defined and is of the form

f(P1[1], . . . Pk−1[1], Pk, Pk+1[1], Pn[1])

where f = λG(u) ∈ Σn, for all i, 1 ≤ i ≤ n, Pi = statesr(G(i)), and k
is the main position of u. Since the node pointed belong to G they are
necessarily of height lower than u. This transition points only to nodes
of indexes 1 ≤ 2|Q|, and hence mil><(h) = 0. Since there is at most one
node of index 1 for each set of states P ⊆ Q, and since we assume that
statesr(u) is the only set of statesr(VG) containing a final state, we have
that mil1<(h) ≤ 2|Q|−1. Hence at the end of the first step, we have that
w(h) +mil1<(h) ≤ 2|Q| and w(h) +mil1<(h) +mil><(h) ≤ 2|Q| + ex(h).

Assume now that the invariants are true at the step of height h+1,
h > 1. We will prove the correctness of the invariants one by one

Invariant 1: For every marked node v of height h, its main successor
v′ is also marked and is of height h− 1. Therefore, v will be involved in
a fork at v′ and will then be labeled.

Invariant 2: Let us now prove that each node pointed
by a transition rule defined at this step is of height lower
than h. For each fork of degree m at some marked node
v′ of height h − 1, at position k and wrt P1, . . . , Pn, where
〈v11

′
, . . . vk−1

1

′
, vk+1

1

′
, . . . , vn1

′〉, . . . , 〈v1m
′
, . . . , vk−1

m
′
, vk+1
m

′
, . . . , vnm

′〉 are the
first (according to the linear ordering ⊏)m sequences of nodes providing
P1, . . . , Pk−1, Pk+1, . . . , Pn.

83

We have to show that, for all i, 1 ≤ i ≤ m, and for all j, 1 ≤

j ≤ n, j 6= k, h(vji)
′
≤ h. Let vji = succG(j, vi). The sequences

〈v11, . . . v
k−1
1 , vk+1

1 , . . . , vn1 〉, . . . , 〈v
1
m, . . . , v

k−1
m , vk+1

m , . . . , vnm〉 are all dis-
tinct and are such that for all i, 1 ≤ i ≤ n and all j, 1 ≤ j ≤
m, j 6= k, statesr(v

i
j
′

= Pi). Let j be the number such that

〈v1j , . . . v
k−1
j , vk+1

j , . . . , vnj 〉 is the greatest of those sequences wrt ⊑.

For all i, 1 ≤ i ≤ m we have that 〈v1i
′
, . . . , vk−1

i

′
, vk+1
i

′
, . . . , vni

′〉 ⊑
〈v1j , . . . , v

k−1
j , vk+1

j , . . . , vnj 〉, which implies that max1≤s≤n,s 6=k{h(v
s
i
′)} ≤

max1≤s≤n,s 6=k{h(v
s
j)}, and since all vji are of height less or equal to the

main successor of vi, they are all of height lower or equal to h.

Invariant 3: A marked node of height h at which occurs a fork of
degree m, is the common main successor of m different marked nodes of
height h + 1, so the number of marked nodes that are main successors
of marked nodes of height h+1 is w(h+1)− ex(h+1). Since a node of
height h is either a main successor of m nodes for some m, or a node of
index 1, or a node of index greater than 1 pointed by some node of height
h > 1, we have that w(h) ≤ w(h+ 1)− ex(h+ 1) +mil1=(h) +mil>=(h).
Since mil1<(h) = mil1<(h+1)−mil1=(h), we have that w(h)+mil

1
<(h) ≤

w(h+1)+mil1<(h+1)−ex(h+1)+mil>=(h). By recurrence hypothesis,
we have that w(h+1)+mil1<(h+1)+mil><(h+1) ≤ 2|Q|+ex(h+1), from
which we can derive w(h+1)+mil1<(h+1)−ex(h+1) ≤ 2|Q|−mil><(h+
1). Therefore, w(h) + mil1<(h) ≤ 2|Q| − mil><(h + 1) + mil>=(h). By
definition, every node counted in mil>=(h) is also counted in mil><(h +
1), so we clearly have mil>=(h) ≤ mil><(h + 1). Hence, the invariant
w(h) +mil1<(h) ≤ 2|Q| is respected.

For each fork of degree m at a marked node of height h − 1, by
lemma 4.8, the number of nodes of index greater than 1 pointed by some
pointer in a transition defined by this fork is at most m− 1. Hence, the
total number of nodes of index greater than 1 and of height lower than
h pointed by some pointer at some transition labelling a node of height
h is bounded by ex(h). So we have the following inequality: mil><(h) ≤
mil><(h+1)−mil>=(h)+ ex(h). Using the previously proved inequality,
it follows directly that the invariant w(h)+mil1<(h)+mil

>
<(h) = 2|Q|+

ex(h) is also respected.

Invariant 4: from the previous invariant, we can deduce w(h) ≤
2|Q|, so there cannot be a fork of degree greater than w(h) at a marked
node of height h − 1. Then, by lemma 4.8, we have that the maximal
index of a node pointed by a labelling of a marked node of height h is
2|Q|. 2

The use of the order ⊏ ensures that every pointer points to nodes
below. In [Cha99], the order used is the lexicographic extension of �
without consideration of the maximal height amongst the nodes of the
sequences. Hence, assume that at some fork of arity 2, we need two
distinct sequences 〈v11, . . . , v

1
n and 〈v21, . . . , v

n
2 〉. Then, if they are two

different nodes vn ≺ vn
′ in G which are the two lowest nodes such that

84 Chapter 4 : Emptiness Decision for TAGED

stater(vn) = stater(vn
′) = Pn, the two first sequences according to the

lexicographic extension of ≺ will be 〈v1, v2, . . . vn〉 and 〈v1, v2, . . . vn′〉.
But nothing can guarantee that vn

′ lies below the fork.

Intuitively, SrG gives a reduced construction of a t-dag representation
of a term recognized by the same TAGED. It can be seen as a skeleton,
since it only contains the longest paths of the t-dag, but give the hints
to build the whole t-dag. The t-dag that we can infer from SrG will
have less states than G since we bound the number of nodes used at
secondary positions. However, we are not yet able to bound the total
number of states that such a t-dag will have. We will need to operate
some transformations on SrG. To be sure that we keep the properties
that allow one to build a t-dag, we will regroup these properties under
the name of skeleton.

Definition 4.10 Given a t-dag G = 〈VG, succG, λG〉 representing a
term t, given a TAGED A, and an accepting run r of A on t, a
semi-skeleton of G and r is a directed acyclic labeled graph S =
(VS , succS , λS) such that

• VS ⊆ VG,

• VS contains the root of G,

• for each node v in VS, λS(v) is a transition with pointers, com-
patible with v,

• each node v such that λS(v) = f(P1[i1], . . . , Pk, . . . , Pn[in]) →
P has a unique immediate successor succS(v) such that
statesrsuccS(v) = Pk,

• for all pointer P [i] occurring in a transition labelling a node v such
that P [i] points to some node v0 in VG, v0 is in VS.

Moreover, a semi-skeleton S of G is a skeleton if for all pointer P [i]
used in a transition labelling a node v such that P [i] points to some node
v0, v0 lies below v in S.

A node v of S is a milestone if it is either the root u of G or if it is
pointed by some pointer P [i] in a transition labeling some node of S. It
is called an ordinary node if it is neither a milestone nor a node with
more than one predecessor.

Note that each node of a semi-skeleton has at most one immediate
successor. In particular, a semi-skeleton not a t-dag. We want the
properties of a skeleton to characterize SrG.

Proposition 4.11 Let G be a t-dag representing a term t, and r be an
accepting run of a TAGED A on t. SrG is a skeleton, and has at most
22|Q| milestones

85

proof. It follows directly from the above definition and from the theorem
that SrQ is a skeleton. The maximal index of a node pointed in some

transition in SrG is 2|Q|. Since a milestone of SrQ is either such a node
or the root u of G, and since u is the unique node such that statesr(u)
contains a final state, we have that the number of milestones of SrQ is

bounded by 2|Q| × 2|Q| = 22|Q|. 2

As previously mentioned, we want to generate from SrG, and more
generally, from any semi-skeleton, some t-dag with a bounded num-
ber of states which will be eventually represent term recognized by the
TAGED. We define here how we can obtain a directed ordered labeled
graph from a semi-skeleton.

Definition 4.12 Given a semi-skeleton S of a t-dag G and a run r,
the induced graph of S is the unique directed ordered labeled graph G′ =
〈VG′ , succG′ , λG′〉 such that

• VG′ = VS

• for all v ∈ VS, if λS(v) = f(P1[i1], . . . , Pk, . . . , Pn[in]) → P then

– λG′(v) = f

– succG′(k, v) = succS(v)

– for all j = 1, . . . , k − 1, k + 1, . . . , n, succG′(i, v) is the node
pointed by Pj [ij].

We will focus on semi-skeleton whose induced graphs are t-dags:

Definition 4.13 A (semi-)skeleton is said perfect if its induced graph
is a t-dag.

Let us prove that we can build a t-dag from SrG.

Proposition 4.14 Let G be a t-dag representing a term t, and r be an
accepting run of a TAGED A on t. The directed acyclic labeled graph
SrG is a perfect skeleton.

proof. Let G′ = 〈VG′ , succG′ , λG′〉 be the induced graph of SrG. In order
to prove that G′ is a t-dag, we first have to prove that it is acyclic. An
immediate successor of a node v in G′ is either an immediate successor
of v in G or a node pointed by the labelling for v in S. In both cases, it
is a node below v in G, and hence, G′ is an acyclic graph. Moreover, G′

is labeled on Σ, and each node labeled with a function symbol of arity
n has exactly n immediate successors.

We still have to prove that two subdags of G′ rooted at two different
nodes are not isomorphic. Let us first recall that G is a t-dag, and the
height of each node in G′ is equals to its height in SrG which is equals
to its height in G. Let v1

′ and v2
′ be two different nodes in VG′ and let

G1
′ = G′|v1′ and G2

′ = G′|v2′ . If v1
′ and v2

′ have different height, they

86 Chapter 4 : Emptiness Decision for TAGED

cannot represent the same term, and we are done. So we can assume
that v1

′ and v2
′ are of same height. Let us prove that they represent

different terms by induction on their common height.

If v1
′ and v2

′ are of height 1 in G′, then, they are of height 1 in G
and hence, are representing constant symbols. Since v1

′ 6= v2
′ and G is

a t-dag, they represent two different constant symbols.

Assume by induction that no two closed subgraphs of G′ rooted at
nodes of height h are isomorphic, and that v1

′ and v2
′ are of height

h+ 1. If λ(v1
′) 6= λ(v2

′), then G′
1 and G2

′ are not isomorphic. Assume
that λ(v1

′) = λ(v2
′). If their main successors are at different positions

k1 and k2 (assume wlog k1 < k2), then the k1-th immediate successor
of v1

′ has a greater height than the k1-th immediate successor of v2
′

in G′. Hence the closed subgraphs rooted at those two nodes are not
isomorphic and neither are G1

′ and G2
′.

Assume that the main successors of v1
′ and v2

′ are at the same
position k. If they are different, then by induction hypothesis, the closed
subgraphs rooted at them are non-isomorphic and neither are G1

′ and
G2

′. So we can assume that v1
′ and v2

′ are labeled by the same n-ary
symbol f in G′, and that they have the same main successor v′ at the
same position k.

Let f(P 1
1 [i

1
1], . . . , P

1
k , . . . P

1
n) → P 1 be the labelling of v1

′ in S and
f(P 2

1 [i
2
1], . . . , P

2
k , . . . P

2
n [i

2
n]) → P 2 be the labelling of v2

′ in S.

If there exists some j such that P 1
j 6= P 2

j , then P 1
j [i

1
j] and P 2

j [i
2
j]

necessarily point to two different nodes. Hence, the j-th immediate
successors of v1

′ and v2
′ are different, and by induction their closed

subgraphs are non-isomorphic. So neither are G′
1 and G′

2.

Otherwise, we have that P 1
j = P 2

j for all j. So according to the

fork conditions, we have that the two tuples 〈i11, . . . , i
1
k−1, i

1
k+1, . . . , i

1
n〉

and 〈i11, . . . , i
1
k−1, i

1
k+1, . . . , i

1
n〉 are distinct. So there is some j such that

i1j 6= i2j and hence P 1
j [i

1
j] and P 1

j [i
1
j] point to two different nodes. So

succG′(j, v1
′) 6= succG′(j, v2

′), and by induction, their closed subgraphs
are non-isomorphic, and neither are G1

′ and G2
′

2

2.4 Properties of Semi-Skeleton

We are able to build a perfect skeleton from a given t-dag and the run
of a TAGED, and to build its induced graph that we proved to be a
t-dag. It is not sufficient for our purpose, since we want this t-dag to
be recognized by the same TAGED. In this section, we will prove that
this is the case. First, we have to show that given an induced graph of
a perfect semi-skeleton, and that for each node, one can always find a
transition rule of the TAGED consistent with the mapping of the nodes.

Lemma 4.15 Let G = 〈VG, succG, λG〉 be a t-dag representing a term
t, let A = 〈Q,F,∆, C〉 be a TAGED, and r an accepting run of A on
t. Let S = 〈VS , succS , λS〉 be a perfect semi-skeleton of G and r, and
G′ = 〈VG′ , succG′ , λG′〉 its induced graph. Then, for all v ∈ VG′ such that

87

λG′ = f , and for all q ∈ statesr(v), there exists f(q1, . . . , qn) → q ∈ ∆
such that for all i, 1 ≤ i,≤ n, qi ∈ statesr(succ(i, v))

proof. Let v be a node in G′. By definition of a semi-skeleton,
λS(v) = f(P1[i1], . . . , Pk, . . . , Pn[in]) → P such that P = statesr(v),
and Pi = statesr[succG(i, v)] for all i, 1 ≤ i ≤ n. By definition of a
semi-skeleton and by construction of the induced graph, we have that
statesr[succG′(i, v)] = Pi for all i, 1 ≤ i ≤ n. where vi

′ is the i-th im-
mediate successor of v in G′. And by Proposition 4.5, we have that for
all q ∈ P there exists f(q1, . . . , qn) → q ∈ ∆ where for all i, qi ∈ Pi. 2

Now, we can prove that the induced graph of a perfect semi-skeleton
is in the language of the TAGED.

Theorem 4.16 Let G = 〈VG, succG, λG〉 be a t-dag representing a term
t, let A = 〈Q,F,∆, C〉 be a TAGED, and r an accepting run of A on
t. Let S = 〈VS , succS , λS〉 be a perfect semi-skeleton of G and r, and
G′ = 〈VG′ , succG′ , λG′〉 its induced graph. Then G′ represents a term
recognized by A.

proof. We prove this proposition constructively by building a run r′ of
A on the term t′ represented by G′, and showing that this is an accepting
run. We define r′, Pos(r′) = Pos(t′), recursively on the length of the
positions, respecting the following invariant: for all position p, r′(p) ∈
statesr(v) where v is the root of the subdag G′|p.

• for length 0, we define r′(ε) = qf . Since the root of G′ is the root
u of G and statesr(u) = qf with qf the final state used in r, the
invariant is respected

• if r′(p) is defined for all position p of length n, and such that r′(p)
is a state q occurring at statesr(v

′) where v′ is the root of the
subdag G′|p. If t(p) is a function symbol of arity n > 0, then, by
proposition 4.5 there exists a rule f(q1, . . . , qn) → q ∈ ∆ such that
for all i, 1 ≤ i ≤ n, qi ∈ statesr(succG′(i, v′)). For all i, 1 ≤ i ≤ n,
we define r(p.i) = qi. Since succG′(i, v′) is the root of the subdag
G′|p.i, we respect the invariant

Clearly with this construction, we have that r′ is a run of the un-
derlying tree automaton of the TAGED A on t′. Let us prove that it is
an accepting one. First, we have that r′[ε] = qf which is a final state.
So r is an accepting run of the underlying tree automaton, and we only
have to ensure that (dis)equalities are respected.

Let q1 ≈ q2 ∈ C and p1 and p2 be two positions such that r′(p1) = q1
and r′(p2) = q2. According to proposition 4.5, there is at most one node
v of G such that statesr(v) may contain both q1 and q2. We have that
v is the root of both the subdags G′|p1 , G

′|p2 which are, hence, equals.
Especially, t′|p1 = t′|p2 .

Let q1 6≈ q2 ∈ C and p1 and p2 be two positions such that r′(p1) = q1
and r′(p2) = q2. Since that, according to proposition 4.5, no node v of

88 Chapter 4 : Emptiness Decision for TAGED

G is such that statesr(v) may contain both q1 and q2, we have that the
subgraphs of G′ representing t′|p1 and t′|p2 are rooted by two different
nodes v1

′ and v2
′. Since G′ is a t-dag, we hence have that t′|p1 6= t′|p2 .

2

2.5 Pumping Within a Skeleton

We now are able to build a skeleton with a bounded number of mile-
stones from which we can build a t-dag that is recognized by the TAGED
we want. However, bounding the number of milestones is not enough,
since there can be an unbounded number of ordinary nodes. In this sec-
tion, we show than we can pump on ordinary nodes as we would have
done in TA.

Proposition 4.17 Given a (perfect) semi-skeleton S of a t-dag G and
of a run r of a TAGED A, if there exists a sequence (v0, v1, . . . vn) of
ordinary nodes of S such that

• for all i, 0 ≤ i ≤ m− 1, vi+1 is the immediate successor of vi, and

• the set of states provided by v1 and vm are the same.

then the graph S′ obtained from S by removing the nodes v1, . . . , vm−1

and defining vm as the immediate successor of v0 S is a (perfect) semi-
skeleton of G and r.

proof. It is obvious that the set of vertices is still a subset of the vertices
of G. Since the root of G is a milestone, it will not be removed, and nei-
ther will the nodes pointed by any labelling since they are all milestones.
The transitions with pointers label the same nodes, so they still are com-
patible with their respective nodes. Let f(P1[i1], . . . , Pk, . . . , Pn[in]) be
the transition labelling v0. Thus, since v1 and vm provides the same
set of states, and since S is a semi-skeleton, vm provides Pk. The other
nodes’ immediate successors have not changed. So S′ is a semi-skeleton

If S is a perfect semi-skeleton, then its induced graph G′ is a t-dag.
Let G′′ be the induced graph of S′. It is the same graph excepted that
it does not contain the nodes v1, . . . , vm−1 and that succG′′(k, v0) = vm.
It is easy to see that there is a path between two nodes of G′′ if and only
if there is a path between those two nodes in G′. Hence G′′ is acyclic.
Since the labeling and the arity of each node in G′′ are the same than
the ones in G′, it is sufficient to prove that two subgraphs of G′′ rooted
at two different nodes are not isomorphic.

Let v1
′ and v2

′ be two different nodes of G′′. Let G1
′ = G′|v1′ ,

G′
2 = G′|v2′ G1

′′ = G′′|v1′ and G2
′′ = G′′|v2′ . The node vm is a successor

of v1
′ in S′ if and only if v1

′ is v0 or v0 is one of its successors. So if
vm is not a successor of v1

′ in S′, then none of the nodes v1, . . . , vm is a
successor of v1

′ in S. And since v1, . . . , vm are not milestones, none of
these nodes belongs to G′

1, and so no node of G1
′ is removed from S to

obtain S′. Hence G1
′ = G1

′′.

89

If vm is neither a successor of v1
′ in S′ nor one of v2

′, then, since G1
′

is not isomorphic to G2
′, neither are G1

′′ and G2
′′. If vm is a successor of

both v1
′ and v2

′ in S′, then, since they are different, they have different
height in S′, and hence different height in G′′. Hence G1

′′ and G2
′′ are

not isomorphic.
Assume that vm is a successor of v′1 in S′ but not of v2

′. Then we
have G2

′ = G2
′′. If G1

′′ and G2
′′ are isomorphic, they have the same

set of positions. Moreover, let p be the position of vm in G1
′′, then

p is a position of G2
′′, and G1

′′|p and G2
′′|p are isomorphic. Since,

G1
′′|p = G′′|vm = G′|vm and G2

′′|p = G2
′|m it means that G′|vm is

isomorphic to G2
′|p. But vm does not belong to G2

′, so G2
′[p] 6= vm,

and since G′ is a t-dag, G′|vm and G2
′|p are not isomorphic.

Hence G1
′′ and G2

′′ are not isomorphic, so G′′ is a t-dag and S′ is a
perfect semi-skeleton. 2

Note that this transformation does not preserve the skeleton prop-
erty, since a labelling of a node below vm may point to a node that will
be below it in S but not in S′.

The figure 4.4 shows a pumping of the skeleton of figure 4.3. Note
that it only removed one node. Then, a graphic representation of its
induced graph G′ is done in figure 4.5 where at each node v we wrote
λ′G(v) : statesr(v). The order of the edges of the nodes is misleading.
The leftmost edge on the graphic is actually its second edge.

Now, we have all the components we need in order to reduce the empti-
ness problem of TAGED to the existence of a small term recognized by
the automaton.

Theorem 4.18 Let A be a TAGED. The language L(A) is not empty
if and only if it contains a term t such that dag(t) has less than 23|Q| +
22|Q|+1 + 2|Q| nodes.

proof. It is obvious that if such a term exists, L(A) is not empty. Re-
ciprocally, if L(A) is not empty, then, there exists a term t ∈ L(A). Let
r be a successful run of A on t. Let G = dag(t). Then according to
propositions 4.11 and 4.14, SrG is a perfect skeleton of G that has less
than 22|Q| milestones. Since each node that does not have a predeces-
sor is necessarily a milestone, there are at most 2|Q| node with more
than one predecessors. By repeating several times the construction of
proposition 4.17 we can obtain a perfect semi-skeleton such that there
is at most 2|Q| successive ordinary nodes. So there exists a perfect semi-
skeleton with less than (2|Q| + 1)(22|Q| + 2|Q|) = 23|Q| + 22|Q|+1 + 2|Q|

nodes. The induced graph G′ of this perfect-semi skeleton is a t-dag
whose node set is the same and representing a term t′ which is recog-
nized by A according to theorem 4.16. 2

It follows directly from this theorem a non-deterministic procedure
to decide whether the language of a TAGED is empty.

Corollary 4.19 The emptiness problem for TAGED is decidable in
NEXPTIME

90 Chapter 4 : Emptiness Decision for TAGED

h({q2}[1], {q3}, {q4}[1]) → {qf}

g({q2}) → {q3}

f({q0, q1}, {q0}[1]) → {q2}

g({q0}) → {q0, q1}

g{q0} → {q0}

a→ {q0}

g({q2}) → {q4}

f({q1, q0}, {q0}[2]) → {q2}

Figure 4.4: A pumping of the skeleton of figure 4.3

91

h : {qf}

g : {q3}

f : {q2}

g : {q0, q1}

g : {q0}

a : {q0}

g : {q4}

f : {q2}

Figure 4.5: The induced graph of the semi-skeleton of figure 4.4

92 Chapter 4 : Emptiness Decision for TAGED

h

f

g

g

a

a

g

f

g

g

a

a

g

f

g

g

a

g

a

qf

q2

q1

q0

q0

q0

q3

q2

q1

q0

q0

q0

q4

q2

q1

q0

q0

q0

q0

Figure 4.6: The term and the run inferred from the t-dag of figure 4.5

proof. Following the previous theorem, to decide whether the language
of a TAGED A is empty, we can guess a t-dag G with at most O(23|Q|)
nodes, and a labelling states : VG → 2Q and verify that we can deduce
an accepted run of A on the term t represented by G. Such a run exists,
if the root of A is labeled by a single final state, if no node is labeled by
two different states q1, q2 such that q1 6≈ q2, and if each labeling verifies
the property 4 of Proposition 4.5. We can check the labeling of the root
in constant time. Then, for each node of G, we can verify that no two
nodes in disequality relations label G in O(|Q|2), and the property 4
in O(|Q|m) where m is the maximal arity of the function symbols of
Σ. Since we can assume that m is a constant, the verification for each
node can be done in polynomial time. As there are O(23|Q|) nodes to
check, we can verify that G is the t-dag representation of an accepted
term in exponential time. Hence, the emptiness problem for TAGED is
in NEXPTIME.

2

With our running example, given the induced graph of the pumping
of the initial skeleton, we obtain the term and the successful run of the
figure 4.6.

3 Conclusion

In this chapter, we answered positively the open problem of decidability
of the emptiness problem for the TAGEDS [FTT08]. We give an upper
bound on the complexity, NEXPTIME. Indeed, the emptiness decision
problem for t-dag automata presented in [Cha99], that we adapt to
prove our result, has been shown NP-complete. Since we use quite a
same construction but with a data input exponential in size, it could be
possible that emptiness for TAGED is NEXPTIME-complete.

As a direct consequence, our result extends the satisfiability result
of the fragment of the tree query-logic described in [FTT08] (TQL was
introduces in [CG03]). Moreover, it can also be used to encode some

93

structural constraints on XML documents, and satisfies some extension
of MSO on trees. However, these results cannot be applied to the full
class of TAGC, presented in chapter 2 because the disequality is not
limited to irreflexive relations. The emptiness decision procedure for
this full class is more complex and will be presented in the next chapter.

94 Chapter 4 : Emptiness Decision for TAGED

Chapter 5

Deciding Emptiness for
TAGC

We proved in the last chapter that the emptiness problem is decid-
able for TAGED. This result can be used to decide the satisfiability
of structural constraints on XML documents. As we showed in the
example 2.6, some constraints known as “key constraints” cannot be
encoded into a TAGED. Yet, they are common integrity constraints on
XML documents (see [FL02]). Those require to have reflexive disequal-
ity constraints, which are provided by TAGC.

In order to prove the decision result of emptiness to TAGC, there
are two problems to solve. First, the constraints of TAGED are only
positive conjunctive, as for PCTAGC. And second, reflexive disequalities
(constraints of the form q 6≈ q) are not handled by TAGED.

We solve the first problem in the first section of this chapter. We
show that TAGC and PCTAGC are equally expressive. In order to
do this, we add some arithmetic constraints on the number of different
terms occurring in a given state. We show that negations of atomic
constraints ≈ and 6≈ can be eliminated using new states and arithmetic
constraints. Then, we show that TAGC with those arithmetic con-
straints can be encoded by PCTAGC. We also prove some properties of
this extension of TAGC.

The pumping technique described in chapter 4 cannot deal with
reflexive disequality constraints. So in the second section we present a
new pumping lemma and apply it to PCTAGC to prove the decidability
of the emptiness problem. The pumping lies on some well quasi-order,
leading to a non-primitive recursive complexity. The complexity gap
between this emptiness decision procedure, and the one seen in the
previous chapter justifies the interest of presenting both of them, one
being slightly more complex, but dealing with a more expressive class
than the other.

We show that the emptiness decision algorithm can also be applied
to the combination of TAGC with local tests between sibling subtrees a
la [BT92] (section 3), and to unranked ordered labeled trees (section 4).

95

96 Chapter 5 : Deciding Emptiness for TAGC

This demonstrates the robustness of the method.

As an application of our results, in section 5 we present a (strict)
extension of the monadic second order logic on trees whose existential
fragment corresponds exactly to TAGC. In particular, we conclude its
decidability.

1 TAGC with Arithmetic Constraints

We study first the addition of counting constraints to TAGC.

Definition 5.1 Let Q be a set of states. A linear inequality over Q is

an expression of the form
∑

q∈Q

aq.|q| ≥ a or
∑

q∈Q

aq.‖q‖ ≥ a where every

aq and a belong to Z.

Let r be a run on a term t of a TA or TAGC A over F and with state set
Q, and let q ∈ Q. The interpretations of |q| and ‖q‖ wrt r (and t) are
defined respectively by the following cardinalities J |q| Kr = |r−1(q)|
and J ‖q‖ Kr =

∣

∣{s ∈ T (F) | ∃p ∈ Pos(t), r(p) = q, s = t|p}
∣

∣.

This permits to define the satisfiability of linear equalities wrt t and r
and the notion of successful runs for extensions of TAGC with atomic
constraints which can have the form of the above linear inequalities.

Example 5.2 Let us add a new argument to the dishes of to the menu
of Example 2.6 which represents the price coded on two digits by a term
N(d1, d0). We add a new state qp for the type of prices, and other
states qcheap, qmoderate , qexpensive , qchic describing price level ranges, and
transitions 0|1 → qcheap, 2|3 → qmoderate , 4|5|6 → qexpensive , 7|8|9 →
qchic and N(qcheap , qd) → qp,... The price is a new argument of L0,
L and M , hence we replace the transitions with these symbols in input
by L0(qid, qt, qp) → qL, L(qid, qt, qp, qL) → qL, M(qid, qt, qp, qL) → qM .
We can use a linear equality |qcheap |+ |qmoderate | − |qexpensive | − |qchic | ≥
0 to characterize the moderate menus, and |qexpensive | + |qchic | ≥ 6 to
characterize the menus with too many expensive dishes. A linear equality
‖qp‖ ≤ 1 expresses that all the dishes have the same price.

1.1 Relative Linear Inequalities

Let us denote by |.|Z and ‖.‖Z the types of the above linear inequalities,
seen as atomic constraints of TAGC. The class TAGC[|.|Z] has been
studied under different names (e.g. Parikh automata in [KR02], linear
constraint tree automata in [BMSS09]) and it has a decidable emptiness
test. Indeed, the set of successful runs of a given TA with state set Q
describes a context free language (over Q∗), and the Parikh projection
(the set of tuples over N|Q| whose components are the J |q| Kr for every
run r) of such a language is a semi-linear set. The idea for deciding
emptiness for a TAGC[|.|Z] A is to compute this semi linear set and test

97

the emptiness of its intersection with the set of solutions in N|Q| of CA,
(a Boolean combinations of linear inequalities of type |.|Z) which is also
semi-linear. This can be done in NPTIME, see [BMSS09].

Combining constraints of type ≈ and counting constraints of type
|.|Z however leads to undecidability.

Theorem 5.3 Emptiness is undecidable for PTAGC[≈,|.|Z].

proof. We reduce Hilbert’s tenth problem. Let a1 x
i1,1
1 . . . x

i1,m
m + . . . +

an x
in,1

1 . . . x
in,m
m = 0(φ) be a Diophantine equation with m variables

x1, . . . , xm, ij,k ≥ 0 for all j ≤ n, k ≤ m and a1, . . . , an ∈ Z. We
will construct a TAGC[≈, |.|Z] A such that L(A) 6= ∅ iff there exists a
valuation of x1, . . . , xm in N satisfying the above equation.

The most important step of the construction is that we can encode
(non negative) integer multiplication with TAGC[≈, |.|Z].

Let us consider for instance the product x1.x2 and three TAGC
states q1, q2 and q12, whose number of occurrences will represent the
respective valuations of x1, x2 and their product (with our notations,
|q1| = x1, |q2| = x2, |q12| = x1.x2). We use a signature with symbols a
and b of arity 0, f of arity 2, and ∗ of arity 3. For x ≥ 1, let tx be the right
comb f(a, f(a, . . . , f(a, b))) with x occurrences of a and one occurrence
of b. The product x1.x2 is represented by tx1,x2 := f(tx1 , . . . , f(tx1 , b))
with x2 occurrences of tx1 .

Let us now construct a TAGC[≈, |.|Z] A∗ recognizing all
∗(tx1 , tx2 , tx1,x2). During the computation of A∗, in the first argument
tx1 , every leaf labeled with a goes to the state q1, with the transition rule
a→ q1, and tx1 goes to a state r1. For the intermediate steps, we use a
state p1 and transitions b→ p1, f(q1, p1) → p1, and f(q1, p1) → r1. We
proceed in the same manner for tx2 with the states q2, r2, p2. Finally,
for the recognition of the third argument tx1,x2 by A∗, every leaf labeled
with a goes to the state q12, every subterm tx1 goes to a state r′1 and the
term tx1,x2 goes to r12. For this purpose we have the transitions a→ q12,
b → p′1, f(q12, p

′
1) → p′1, f(q12, p

′
1) → r′1, and b → p12, f(r

′
1, p12) → p12,

f(r′1, p12) → r12. Finally, we add a rule ∗(r1, r2, r12) → q∗ to A∗.

Let r be a run of A∗ on a term t = ∗(tx1 , tx2 , t3) similar to the one
presented in Figure 5.1. By construction, the number of occurrences of
q1 in r is x1, i.e. J |q1| Kr = x1. Similarly, J |q2|Kr = x2. Let us consider
the constraint C∗ =

(

|r′1| = |q2| ∧ r1 ≈ r′1
)

(for simplicity, we use linear
equalities representing the conjunction of two linear inequalities). By
imposing the constraint C∗ to the run r of A∗, we ensure that t3, the
third argument of t, contains x2 nested copy of tx1 . It follows that the
number J |q12| Kr of occurrences of q12 in the run r is equal to x1.x2.

The general construction of the TAGC[≈, |.|Z] A = 〈Q,F , F, C,∆〉
associated to the above Diophantine equation (φ) follows the same prin-
ciple, except that we may have several level of nesting in a term like t3
above. For encoding the product of more than two integers, we have in
A some constraints ≈ and |.|Z similar to the above ones, and an addi-

98 Chapter 5 : Deciding Emptiness for TAGC

q∗

r1

q1 p1

q1 p1

r2

q2 p2

q2 p2

r12

r′1

q12 p′1

q12 p′1

p12

r′1 p12

Figure 5.1: A run on ∗(tx1 , tx2 , tx1.x2)

tional constraint
∑

aj .|qj | = 0 where each qj is uniquely associated to
a variable xj , as above.

Let W be the set containing all the variables of (φ), {x1, . . . , xm}

and all the prefixes of the monomials of (φ) x
ij,1
j . . . x

ij,m
m for all j ≤ n

(we consider every monomial as a word over the alphabet {x1, . . . , xm}).
Let us denote the prefix ordering over strings by �, and for every words
v, v′, w such that w = v.v′ (i.e. v � w) we recall that w − v = v′ and
let w ÷ v be the first letter of v′ when this latter word is not empty.
We assume below that W is ordered arbitrarily in a sequence without
duplicates −→w = (w1, . . . , wN).

The signature F contains the symbols a, b, and f with the respective
arity 0, 0 and 2 as above, and two symbols c of arity 0 and g of arity 2.
Let Q = {qw, sw, r

v
w, p

v
w | v, w ∈ W, v � w} ∪ {s0} and F = {swN

}. The
transitions of ∆ are the following: a → qw, b → pvw, f(qw, p

v
w) → pvw,

f(qw, p
v
w) → rvw for all v, w ∈ W with v � w, and f(rvw, p

v.xi
w) → pv.xiw ,

f(rvw, p
v.xi
w) → rv.xiw , for all v, w ∈ W and xi variable of (φ) (i ≤ m),

with v.xi � w. Moreover, we also have: c → s0, g(r
w1
w1
, s0) → sw1 and

g(rw
′

w′ , sw) → sw′ for all w,w′ ∈ W such that w = wi and w
′ = wi+1 in

the sequence −→w , for some i < N .

We can observe that with these transitions, if r is an accepting run of
ta(A) on some term t, then for all w ∈ W, the state sw occurs exactly
once in r at some position pw ∈ 2∗, and the leaves of r|pw.1 are all
labelled by the state qw. Moreover, the state qw occurs only in this
subterm of r.

Finally, the constraint C of A is defined as the conjunction of the
following atomic constraints:

i. |rvw| = |qw÷v| for all v, w ∈ W with v ≺ w,

ii. rvw ≈ rvw′ for all v, w,w′ ∈ W with v � w,w′,

iii.
n
∑

j=1

aj .|qwj
| = 0.

99

In iii., the aj ’s are the coefficients of (φ) and wj = x
ij,1
1 . . . x

ij,m
m (we

assume that the n first elements of the sequence −→w correspond to these
monomials).

With the above observation, the construction of the transition rules
of A, and the above constraints i. and ii. we have that for all run r of
A on a term t, all variables xi of (φ) and all w.xi ∈ W, J |qw.xi | Kr =
J |qw| Kr . J |qxi | Kr. It follows, using the constraint iii, that L(A) 6= ∅ iff
(φ) has a solution in N. 2

1.2 Natural Linear Inequalities

We present now a restriction on linear equalities which enables the re-
duction to PTAGC when combined with ≈ and 6≈ as global constraints.

Definition 5.4 A natural linear inequality over Q is a linear inequality
as in Definition 5.1 whose coefficients aq and a all have the same sign.

Note that it is equivalent to consider inequalities in both direc-
tions whose coefficients are all non-negative, like

∑

aq.|q| ≤ a, with
aq, a ∈ N, to refer to

∑

−aq.|q| ≥ −a. We also consider linear equalities
∑

aq.|q| = a, with aq, a ∈ N, to refer to a conjunction of two natural
linear disequalities. The types of the natural linear inequalities are de-
noted by |.|N and ‖.‖N. Below, we shall abbreviate these two types by
N.

The main difference between the linear inequalities of type |.|Z and
|.|N (and respectively ‖.‖Z and ‖.‖N) is that the former permits to com-
pare the respective number of occurrences of two states, like e.g. in
|q| ≤ |q′|, whereas the latter only permit to compare the number of
occurrences of one state (or a sum of the number occurrences of several
states with coefficients) to a constant as e.g. in |q| ≤ 4 or |q|+2.|q′| ≤ 9.
This difference permits to encode the (in)equalities with additional
states and (dis)equalities constraints, and to reduce TAGC[≈, 6≈,N] to
PCTAGC[≈, 6≈], which we will prove emptiness decidability in next sec-
tion.

The proof that TAGC[≈, 6≈,N] are equally expressive as PTAGC[≈
, 6≈] works in two steps. In the first step (Proposition 5.5) we re-
strict ourselves to positive TAGC (let us recall that PTAGC denotes
the class of positive TAGC[≈, 6≈]) and show that we can get rid of |.|N
and ‖.‖N while keeping the same class of recognized languages. Then,
in Proposition 5.9, we show how to get rid of negative constraints in
TAGC[≈, 6≈,N].

Proposition 5.5 For all PTAGC[≈, 6≈,N] A, one can effectively con-
struct a PTAGC[≈, 6≈] A′ such that L(A′) = L(A).

The first step of this construction consists in rewriting conjunctions of
constraints with |.|N and ‖.‖N into disjunctions of conjunctions of simpler
constraints.

100 Chapter 5 : Deciding Emptiness for TAGC

Lemma 5.6 Every conjunction ϕ of natural linear inequalities
over Q can be effectively rewritten into an equivalent disjunction
∨

1≤i≤n

∧

q∈Q α|q| ∧ α‖q‖ for some n ∈ N, where α|q| (resp. α‖q‖) is
either |q| = aq or |q| ≥ aq for some aq ∈ N, or ⊤ (resp. ‖q‖ = bq or
‖q‖ ≥ bq for some bq ∈ N, or ⊤).

proof. First, we separate the conjunction of inequalities in two parts: we
denote by ϕ|.| the conjunction of atomic constraints of type |.|N (inequal-
ities on occurrences), and ϕ‖.‖ the conjunction of atomic constraints of
type ‖.‖N (inequalities on cardinality). So ϕ = ϕ|.| ∧ ϕ‖.‖. Then, we
further separate the two parts into ϕ|.| = χ|.|∧ψ|.| and ϕ‖.‖ = χ‖.‖∧ψ‖.‖

where χ|.| contains all the inequalities of the form |q| = a or |q| ≥ a
where q occurs there only, and ψ|.| contains all the other inequalities.
Note that each state occurring in χ|.| occurs only in this subformula and
does not occur in ψ|.|. Respectively, χ‖.‖ is the conjunction of all the
inequalities of ϕ‖.‖ of the form ‖q‖ = a or ‖q‖ ≥ a where q does not
occur in another inequality, and ψ‖.‖ contains all the other inequalities.

Let

ψ|.| =
∧

1≤i≤k

∑

q∈Q

aiq.|q| ≤ ai ∧
∧

1≤j≤l

∑

q∈Q

bjq.|q| ≥ bj

for some k and l, with aiq, a
i, bjq, bj ∈ N for all i ≤ k, j ≤ l.

Let q be a state for which either there exists i ≤ k such that aiq 6= 0

or there exists j ≤ l such that bjq 6= 0. Then, we do one of the following
transformations.

1. If there exists some i such that aiq 6= 0, then we define

sq = inf
{

⌊
ai

aiq
⌋
∣

∣ 1 ≤ i ≤ k, aiq 6= 0
}

.

If |q| > sq, then there exists some inequality which can not be satisfied.
So in order to erase the occurrences of |q| in the inequalities, we can
make an enumeration of the values of |q| between 0 and sq.

We replace ϕ|.| by a disjunction
∨

0≤s≤sq
ϕs|.|, where ϕ

s
|.| = χs|.| ∧ ψ

s
|.|

and χs|.| = χ|.| ∧ |q| = s, and ψs|.| is defined as follows: First, we replace

every inequality
∑

q′∈Q a
i
q′ · |q

′| ≤ ai of ψ|.| by
∑

q′∈Q\{q} a
i
q′ · |q

′| ≤

sup{0, ai− s · aiq} and we replace every inequality
∑

q′∈Q b
j
q′ · |q

′| ≥ bi of

ψ|.| by
∑

q′∈Q\{q} b
j
q′ · |q

′| ≥ sup{0, bj − s · bjq}.

Then, for every inequality with no occurrence of a state in the left-
hand side, which can be seen as an inequality between integers with a
0 on the left-hand side:

• if the inequality is true, then we erase it,

• if the inequality is false, then we delete the whole conjunction,
which cannot be satisfied with the value given to |q|.

101

2. Otherwise (for all aiq = 0), there exists some j such that biq 6= 0 and
we define

sq = sup
{

⌈
bj

bjq
⌉
∣

∣ 1 ≤ j ≤ l, bjq 6= 0
}

.

Note that if |q| ≥ sq, then all the inequalities involving q are satisfied.
So in order to erase the occurrences of |q|, we only have to do an enu-
meration of the value of |q| between 0 and sq − 1 and to erase all the
inequalities with an occurrence of |q| if |q| ≥ sq. We replace ϕ|.| by a
disjunction

∨

0≤s≤sq
ϕs|.| where ϕ

s
|.| = χs|.| ∧ ψ

s
|.| and χ

s
|.| = χ|.| ∧ q = s if

s < sq, χ
s
|.| = χ|.| ∧ q ≥ s is s = sq and ψs|.| is defined as above (except

that there is no aiq 6= 0) if s < sq and ψ
sq
|.| is as ψ|.| where every inequality

∑

q∈Q b
j
q ≥ bj where bjq 6= 0 is deleted.

Note that, at this point of the procedure, q does not occur anymore
in any ψs|.| and occurs only once in each χs|.|. While there is still a non-
empty conjunction ψs|.|, we apply the procedure to ϕs|.|. At the end, we

have an expression equivalent to ϕ|.| that can be written
∨

1≤i≤n χ
i
|.| for

some n where each χi|.| is a conjunction of (in)equalities of the form

|q| = a or |q| ≥ a.
We apply the same procedure to ϕ‖.‖, which becomes a disjunction
∨

1≤j≤m χ
j
‖.‖ for some n where each χj‖.‖ is a conjunction of (in)equalities

of the form ‖q‖ = a or ‖q‖ ≤ a. Hence, we have that φ is equivalent to
∨

1≤i≤n

χi|.| ∧
∨

1≤j≤m

χj‖.‖.

Since each q occurs at most once in each χi|.| and once in each χj‖.‖, we
can obtain what we are looking for by rewriting this expression into
disjunctive normal form and adding a ⊤ symbol for each q than does
not occur in χi|.|, and one for each that does not occur in χi‖.‖. 2

Let C be the constraint of a PTAGC[≈, 6≈,N] A. The PTAGC[≈, 6≈
,N] A′, defined as a copy of A where the constraint C ′ is the disjunctive
normal form of C is obviously equivalent to A. By associativity of ∧ one
can rewrite C ′ the following way

C ′ =
∨

1≤i≤n

(Ci+ ∧ CiN)

where, for all i, 1 ≤ i ≤ n, Ci+ is a conjunction of atomic constraints of
the form q ≈ q′ or q 6≈ q′, and CiN is a conjunction of natural arithmetic
constraints. Let Ai be a copy of A with the constraint Ci = Ci+ ∧ CiN.
We have that L(A) = ∪1≤i≤nL(Ai). Since PCTAGC[≈, 6≈] are closed
by union (see proposition 2.11), we only have to prove that each Ai is
equivalent to a PCTAGC.

Lemma 5.7 Given a PTAGC[≈, 6≈,N] A = 〈Σ, Q,F , F, C,∆〉, with
C = C+ ∧ CN, where C+ is a conjunction of atomic constraints of the
form q ≈ q′ or q 6≈ q′, and CN is a conjunction of natural arithmetic

102 Chapter 5 : Deciding Emptiness for TAGC

constraints, one can effectively compute a PTAGC[≈, 6≈] A′ such that
L(A′) = L(A).

proof. First, we just rewrite C+ into a disjunction of conjunction of
simple arithmetic constraints like in Lemma 5.6.

Since PCTAGC are closed by union, it suffices to effectively con-
structs a PCTAGC for each PTAGC[≈, 6≈,N] with constraints of the
form C+∧C ′

N where C ′
N is of the form

∧

q∈Q p|.|(q)∧p‖.‖(q). Let us then
assume that CN

The general idea is to have multiple copies of the states involved
in natural (in)equality constraints, and to create ≈ and 6≈ relations
between them, in order to ensure that the wanted cardinality of the
original state is reached by any successful run. Then we count the first
occurrence of each state, in order to ensure that any successful run also
have the correct number of occurrences of each original state.
First, we compute for each q ∈ Q the number c(q) of copies of this state
that we need, depending on the constraints on q in DN.

• if α‖q‖ is ⊤ then c(q) = 1,

• if α‖q‖ is ‖q‖ = aq then c(q) = aq, each state will recognize only
one of the aq different subterms,

• if α‖q‖ is ‖q‖ ≥ aq then c(q) = aq+1, the extra state will recognize
the possible extra terms.

We construct now a PCTAGC[≈, 6≈] A′ = 〈Q′,F , F ′, C ′
+,∆

′〉 recog-
nizing L(A). Let us define

M = max
(

sup
{

bq
∣

∣ q ∈ Q,α‖q‖is‖q‖ = bq
}

, sup
{

bq
∣

∣ q ∈ Q,α‖q‖is‖q‖ ≥ bq
}

)

.

Intuitively, in a run, M is the maximal number of occurrences of a
given state in a run that is needed to satisfy the arithmetic constraints.

Then we define a new set of copies of states of Q,

Q =
⋃

q∈Q,c(q)>0

{q1, . . . , qc(q)}, and Q′ = Q×
(

{0, . . . ,M + 1}Q
)

.

Hence a state of Q′ is a pair 〈qi, δ〉 where q ∈ Q, 1 ≤ i ≤ c(q), qi ∈ Q
and δ is a mapping δ : Q→ {0, . . . ,M + 1}.

The number M + 1 is needed to deal with constraints of the form
|q| = M . If there are strictly more than M occurrences of q, then the
term should not be accepted. So if more than M occurrences occur,
it suffices to say that M + 1 copies occurred. Hence, when counting
the number of occurrences of a given state, we will bound the count at
M + 1.

The intuition behind the definition of states of Q′ is that the index
i in qi is the number (up to M + 1) of terms encountered so far in the

103

bottom-up computation of the automaton (for the evaluation of ‖q‖),
and δ(q) is the number (up to M + 1) of occurrences of q encountered
so far in the computation (for the evaluation of |q|).

We define the sum m1+m2 of two elements m1,m2 ∈ {0, . . . ,M+1}
as the result of the addition of m1 and m2 in N if it is lower or equals to
M , or as M + 1 otherwise (if the result of the addition in N is greater
than M + 1).

Then, we define the constraints, transitions rules, and final states of
A′.
For each atomic constraint c occurring in C we define a conjunction of
atomic constraints const(c) on Q′ as follow:

• if c = (q1 ≈ q2), then const(c) =
∧

1≤i≤c(q1),1≤j≤c(q2)
, 〈qi1, δ1〉 ≈

〈qj2, δ2〉

• if c = (q1 6≈ q2), then const(c) =
∧

1≤i≤c(q1),1≤j≤c(q2)
, 〈qi1, δ1〉 6≈

〈qj2, δ2〉.

• if c = (‖q‖ = bq) or c = (‖q‖ ≥ bq), then const(c) =
(

∧

1≤i≤bq
〈qi, δ1〉 ≈ 〈qi, δ2〉

)

∧
(

∧

1≤i<j≤bq
〈qi, δ1〉 6≈ 〈qj , δ2〉

)

.

We define C ′
+ =

∧

c∈C′ const(c), where c ∈ C means that c is an
atomic constraint occurring in C.
The set of transition rules ∆′ contains all the transition rules
f(〈qi11 , δ1〉, . . . , 〈q

in
n , δn〉) → 〈qi, δ〉 such that q1,. . . , qn, q ∈ Q,

f(q1, . . . , qn) → q ∈ ∆, for all j ≤ n, 1 ≤ ij ≤ c(qj), i = i1 + . . . in, for
all q′ ∈ Q \ {q}, δ(q′) =

∑

1≤j≤n δj(q
′), and δ(q) = 1 +

∑

1≤j≤n δj(q).

The set of final states F ′ contains the states 〈qif , δ〉, such that qf ∈ F
and δ satisfies the followings conditions for all q ∈ Q

• if α|q| is |q| = aq then
∑

1≤i≤c(q) δ(q
i) = aq,

• if α|q| is |q| ≥ aq then
∑

1≤i≤c(q) δ(q
i) ≥ aq or

∑

1≤i≤c(q) δ(q
i) =

M + 1,

• if α‖q‖ is ‖q‖ = bq or ‖q‖ ≥ bq, then ∀1 ≤ i ≤ bq, δ(q
i) ≥ 1 or

δ(qi) =M + 1.

We now have to prove the correctness of this construction.

Lemma 5.8 For all t ∈ T (Σ) there exists an accepting run r of A on
t iff there exists an accepting run r′ of A′ on t.

proof. only if direction : Let r be an accepting run of A on t, such that
r |= C. First, we compute a labelled tree r : Pos(t) → Q such that for
all p ∈ Pos(t), r(p) is a copy qi ∈ Q of the state r(p) = q.
For every q ∈ Q, if α‖q‖ is ⊤, then there is only one copy q1 of q in Q. So,
for all p with r(p) = q we define r(p) = q1. If α‖q‖ is ‖q‖ = bq (resp. α‖q‖

is ‖q‖ ≥ bq) there exists bq (resp bq + 1) copies of q. Since r |= ϕ, there

104 Chapter 5 : Deciding Emptiness for TAGC

exists exactly (resp. at least) bq different terms t1, . . . , tbq such that
there exists bq positions p1, . . . , pbq verifying r(p1) = · · · = r(pbq) = q
and t|p1 = t1, . . . , t|pbq = tbq . For every position p ∈ Pos(t) such that

r(p) = q and t|p = ti, we define r(p) = qi. And, if α‖q‖ is ‖q‖ ≥ bq,
for every p ∈ Pos(t) such that r(p) = q and t|p is different from all the
t1, . . . , tbq , we define r(p) = qbq+1.

Then, we define r′ : Pos(t) → Q′ as follows. For all position
p ∈ Pos(t), r′(p) = 〈r(p), δp〉 where for all q ∈ Q, δp(q) = J |q| Kr|p
if J |q| Kr|p ≤M and δp(q) =M + 1 otherwise. It is easy to see that the
rules of ∆′ allow us to define such a run of A′ on t. We now have to
check that the constraint C ′ is satisfied by r′ and t.

This construction satisfies the atomic constraints 〈qi1, δ1〉 ≈ 〈qj2, δ2〉

(resp. 〈qi1, δ1〉 6≈ 〈qj2, δ2), that were added to C ′ because every constraint

q1 ≈ q2 (resp. q1 6≈ q2) was already in C. Whatever copies qi1 and qj1 we
have chosen in r in order to replace occurrences of q1 and q2 at positions
p1 and p2 in r, we know that those constraints will be respected because
C already implied that t|p1 = tp2 (resp. t|p1 6= t|p2).

For every state q ∈ Q such that α‖q‖ is ‖q‖ = bq, or α‖q‖ is ‖q‖ ≥ bq,
there are constraints of two types: 〈qi, δ1〉 6≈ 〈qj , δ2〉 for 1 ≤ i < j ≤ bq,
for all δ1, δ2 and 〈qi, δ1〉 ≈ 〈qi, δ2〉 for 1 ≤ i ≤ bq and for all δ1, δ2.
By construction of r′, for all 1 ≤ i ≤ bq all the positions p such that
r′(p) = 〈qi, δ〉, for all δ, have the same subterm t|p = ti. Moreover, for
all 1 ≤ i < j ≤ bq we have that ti 6= tj . So both types of constraints are
respected.

Now we have to make sure that r′ is an accepting run, that is that
r′(ε) ∈ F ′. Since r is an accepting run of A we know that r′(ε) = 〈qif , δ〉
where qf ∈ F and δ(q′) = J |q′| Kr′ if J |q′| Kr′ ≤ M and |q′| = M + 1
otherwise. Since qf ∈ F we just have to make sure that δ satisfies the
conditions. By construction of r′, every occurrence of a state q ∈ Q
in r corresponds to an occurrence of one of the copies qi ∈ Q′ in r′.
So, for all q ∈ Q it holds that J |q| Kr is equals to

∑

1≤i≤c(q)J |q
i| Kr′ and

that
∑

1≤i≤c(q) δ(q
i) is either J |q| Kr if J |q| Kr ≤ M or M + 1 otherwise.

Hence, if α|q| is |q| = aq or |q| ≥ aq, then the associated conditions
on δ are satisfied since ϕ (and in particular α|q|) is satisfied by r. By
construction, for every q ∈ Q such that α‖q‖ is ‖q‖ = bq or ‖q‖ ≥ bq,
we have instantiated each copy qi for all 1 ≤ i ≤ bq at least once in r′.
Hence the associated conditions are also respected: r′ is an accepting of
A′ on t.

if direction : Let r′ be an accepting run ofA′ on t. We define a run r ofA
on t in the following way: for all p ∈ Pos(t), r(p) is the original state q ∈
Q corresponding to the copy qi such that r′(p) = 〈qi, δ〉. By construction
of A′ we have that r is a valid run wrt ∆ and that r(ε) ∈ F . For every
positions p1, p2 ∈ Pos(t) with r(p1) = q1, r(p2) = q2, such that there
exists a constraint q1 ≈ q2 (resp. q1 6≈ q2), there was, by construction of
A′, a constraint 〈qi1, δ1〉 ≈ 〈qj2, δ2〉 (resp. 〈q

i
1, δ1〉 6≈ 〈qj2, δ2〉) for all copies

qi1 of q1 and qj2 of q2 and for all δ1, δ2. In particular, there is in A′ the

105

constraint r′(p1) ≈ r′(p2) (resp. r′(p1) 6≈ r′(p2)), so t|p1 = t|p2 (resp.
t|p1 6= t|p2). Hence, all the constraints of A are satisfied by r and t.

We now have to ensure that the arithmetic constraints in C are
satisfied by r and t. As above, by construction of r′, it is easy to see that
for all q ∈ Q we have that

∑

1≤i≤c(q) δ(q
i) is either J |q| Kr if J |q| Kr ≤M

or M + 1 otherwise. Hence, all the expressions α|q| of C are satisfied.
And for every expression α‖q‖ equal to ‖q‖ = bq, we have exactly bq
copies of q in Q. The constraints 〈qi, δ1〉 ≈ 〈qi, δ2〉 and 〈qi, δ1〉 6≈ 〈qj , δ2〉
for all δ1, δ2, i 6= j ensure that each copy qi is used for only one subterm
ti and that, for all 1 ≤ i < j ≤ bq ti 6= tj . Since all the copies qi are
guaranteed to occur at least once in r′, by the arithmetic constraints,
we know that we have exactly bq different subterms at the positions
labelled by q. And if α‖q‖ is ‖q‖ ≥ bq, the extra copy qbq+1 recognizes
all the extra subterms that are recognized in q if ‖q‖ > bq is satisfied by
r and t. Hence, C is fully satisfied by r and t, and r is a successful run
of A on t. 2 2

We can know construct a PCTAGC[≈, 6≈] equivalent to a given
PTAGC[≈, 6≈,N]. The missing step is to get such an automaton from a
TAGC[≈, 6≈,N].

Proposition 5.9 For all TAGC[≈, 6≈,N] A, one can effectively con-
struct a PTAGC[≈, 6≈,N] A′ s.t. L(A′) = L(A).

proof. Let A = 〈Q,F , F, C,∆〉. We can assume wlog that C = C+ ∧
C− ∧ CN where C+ is a conjunction of atomic constraints of the form
q ≈ q′ or q 6≈ q′, C− is a conjunction of negations of atomic constraints of
the form ¬(q ≈ q′) or ¬(q 6≈ q′), and CN is a conjunction of natural linear
inequalities. Otherwise, we can put C is disjunctive normal form C =
∨n
i=1Ci, where every Ci has the above form, apply the transformation

below to each Ai = 〈Q,F,Ci,∆〉, obtaining A′
i and let A′ be the disjoint

union of the A′
i’s.

We construct below a PTAGC[≈, 6≈,N] A′ = 〈Q′,F , F ′, C ′,∆′〉 rec-
ognizing L(A). The idea for the construction of A′ is to replace the
negative constraints of C− by positive constraints and arithmetic con-
straints, using copies of states of Q. For instance, assume that C−

contains only ¬(q1 ≈ q2). By definition, for every successful run r of
A on a term t ∈ T (F), there exist two positions p1, p2 ∈ Pos(t) such
that r(p1) = q1, r(p2) = q2 and t|p1 6= t|p2 . For expressing this property
without the negative constraint, we add two copies q′1, q

′
2 of respectively

q1 and q2 (i.e. we let Q′ = Q ∪ {q′1, q
′
2}) and define ∆′ by adding to ∆

all the transitions obtained from ∆ by replacing at least one occurrence
of q1 by q′1 or one occurrence of q2 by q′2. We define similarly C ′

+ and
C ′
N from C+ and CN. Also let F ′ = F ∪ {q′i | qi ∈ F, i = 1, 2}. Finally,

we let C ′ = C ′
+ ∧ q′1 6≈ q′2 ∧ C

′
N ∧ |q′1| = 1 ∧ |q′2| = 1.

In general, when C− contains several negative constraints, we have
to take care of the multiple occurrences of states in the different negative
constraints of C−. For instance, let C− = ¬(q1 ≈ q2) ∧ ¬(q1 ≈ q3). For

106 Chapter 5 : Deciding Emptiness for TAGC

a successful run r of A on t, there exist positions p11, p2, p
2
1, p3 ∈ Pos(t)

such that r(p11) = r(p21) = q1, r(p2) = q2, r(p3) = q3 and and t|p11 6= t|p2
and t|p21 6= t|p3 . In order to replace C− by positive constraints as above,
we must decide how many copies of q1, q2 and q3 we will need. If
p11 6= p21, then we can choose two copies q11 and q21 of q1, that will reach
respectively p11 and p21 in a computation of A′ on t. With constraints
q11 6≈ q21, |q11| = 1 and |q21| = 1 as above, we are done. However, if
p11 = p21, then we must have only one copy of q1, because only one state
can reach this position in a computation of A′ on t. We shall enumerate
below all the cases of the number of copies needed for each state, using
the number of finite models of a first-order formula.

Let Q = {q1, . . . , qp} and let C− = d1 ∧ . . .∧ dm ∧ e1 ∧ . . .∧ en where
for all k ≤ m, dk = ¬(quk ≈ qu′

k
) and for all ℓ ≤ n, eℓ = ¬(qvℓ 6≈ qv′

ℓ
).

Let us associate the following closed first order formula to A:

φA = ∃xd1u1 , y
d1
u′1
, . . . xdmum , y

dm
u′m
, xe1v1 , y

e1
v′1
, . . . xenvm , y

en
v′n
.

∧m
k=1 x

dk
uk

6= ydk
u′
k
∧
∧n
ℓ=1 x

eℓ
vℓ

= yeℓ
v′
ℓ

LetN be the number of variables in φA. Every variable of φA is uniquely
associated to an occurrence of a state of Q in C−. For instance, xdkuk
(resp. ydk

u′
k
) is associated to the occurrence of quk is the left (resp. right)

hand side of dk. For a A with the above example of C−, we have
φA = ∃xd11 , y

d1
2 , x

d2
1 , y

d2
4 . xd11 6= yd12 ∧ xd11 6= yd13 .

For each 1 ≤ i ≤ p, we define Xi as the set of variables associated
to occurrences of qi: Xu = {xdkuk | 1 ≤ k ≤ m,uk = i} ∪ {ydk

u′
k
| 1 ≤ k ≤

m,u′k = i} ∪ {xeℓvℓ | 1 ≤ ℓ ≤ n, vℓ = i} ∪ {yeℓ
v′
ℓ
| 1 ≤ ℓ ≤ n, v′ℓ = i}.

It is clear that φA is satisfiable iff it admits a finite model with at
most N elements. Let D be a set of N distinct elements. A solution
of φA is a mapping σ from {xd1u1 , y

d1
u′1
, . . .} into D which makes true the

conjunction of φA. Let sol(φA) be the set of solutions of φA. To each σ ∈
sol(φA), we associate a PTAGC[≈, 6≈,N] Aσ = 〈Qσ, Fσ, Cσ,∆σ〉, where
Qσ contains the states of Q and, for each i ≤ p, ni = |σ(Xi)| copies of
qi: q

1
i , . . . , q

ni

i . The transition set ∆σ contains all the transitions of ∆
plus additional transitions obtained from ∆ by replacing at least one
occurrence of one of the qi by one of its copies qji . The final states set

is defined by Fσ = {qji | q
j
i ∈ Qσ, qi ∈ F}. Finally, we let

Cσ = Cσ+ ∧ CσN ∧
∧

i≤p

j≤ni

(

|qji | = 1 ∧
∧

j′≤ni

j′ 6=j

qji 6≈ qj
′

i

)

where Cσ+ contains all the positive constraints of C+ where some (possi-
bly zero or more) instances of states of Q are replaced by copies, and CσN
is obtained from CN by replacement of every |qi| by |qi|+ |q1i |+ . . .+ |qni

i |
and of every ‖qi‖ by ‖qi‖ + ‖q1i ‖ + . . . + ‖qni

i ‖. Finally, let us rename
the respective states of the Aσ such that there states sets are pairwise

107

disjoint, and let A′ be the disjoint union of all the Aσ (constructed as
in Proposition 2.11). It is clear that A′ is positive. Let us show that
L(A′) = L(A).

Lemma 5.10 L(A′) = L(A).

proof. Let t ∈ L(A′). By construction, there exists a solution σ ∈
sol(φA) such that t ∈ L(Aσ). Let r′ be a successful run of Aσ on t.
By definition of Cσ, for each i ≤ p, there exists ni = |σ(Xi)| copies of
qi: q

1
i , . . . , q

ni

i , and each copy qji occurs exactly once in r′ at a position

called pji (i.e. r−1(qji) = {pji}). Moreover, still by definition of Cσ, the
subterms t|

p
j
i
are pairwise disjoint. The mapping θ which associate to

each variable in Xi the corresponding position pji is isomorphic to σ.
Let r be obtained from r′ by replacement of every subrun r′|

p
j
i
by a run

of ta(A) headed by qi. It is clear by construction of ∆σ that r is a run
of ta(A). Moreover, following the property of θ above, t, r |= C− and
t, r |= C+ ∧ CN. It follows that r is a successful run of A on t.

Conversely, let t ∈ L(A), and let r be a successful run of A on
t. By definition, for every dk = ¬(quk ≈ qu′

k
) in C−, there exists two

positions pdkuk and sdkuk in Pos(t) such that t|
p
dk
uk

6= t|
s
dk
u′
k

, and for every

eℓ = ¬(qvℓ 6≈ qv′
ℓ
) in C− there exists two positions peℓvℓ and seℓ

v′
ℓ
in Pos(t)

such that t|peℓvℓ
= t|seℓ

v′
ℓ

. The set of subterms of t at these positions define

therefore a solution σ of φA. We can construct from r a run successful
run r′ of Aσ on t. The principle of the construction is to replace every
subrun of r at the position e.g. pdkuk by a run of Aσ headed by a copy of
quk . Therefore, t ∈ L(Aσ) ⊆ L(A′). 2 2

Since TAGC[≈, 6≈] are a particular case of TAGC[≈, 6≈,N], one can
construct an equally expressive PCTAGC. Indeed, given a TAGC[≈, 6≈
] A, Proposition 5.9 permits to construct a PTAGC[≈, 6≈,N] B′ with
L(B′) = L(A) and then Proposition 5.5 permits to construct a PTAGC
B with L(B) = L(B′) = L(A). Using DNF for the constraints of B
and the construction of Proposition 2.11 for union (which preserves
the property of being PCTAGC), we obtain a PCTAGCA′ such that
L(A′) = L(A). Hence the following corollary.

Corollary 5.11 Given a TAGC A, one can effectively construct a PC-
TAGC A′such that L(A) = L(A′).

The complexity of this effective construction has not been studied.
However, the constructions used for the propositions and lemma of this
section are all primitive recursive. The decidability procedure that we
will present in next section for PCTAGC implies a non-primitive recur-
sive complexity. Regarding this, we can consider to have the translation
from TAGC into PCTAGC for free.

108 Chapter 5 : Deciding Emptiness for TAGC

2 Emptiness Decision Algorithm

In this section we prove the decidability of the emptiness problem for
TAGC. Using the corollary 5.11 it suffices to prove the decidability of
the emptiness problem for PCTAGC.

The decidability of emptiness for PCTAGC is proved in three steps.
In subsection 2.1, we present a new notion of pumping which allows
to transform a run into a smaller run under certain conditions. In
subsection 2.2, we define a well quasi-ordering ≤ on a certain set S.
In subsection 2.3, we connect the two previous subsections by describ-
ing how to compute, for each run r with height h = h(r), a sequence
eh, . . . , e0 of elements of S satisfying the following fact: there exists a
pumping on r if and only if ei ≤ ej for some h ≥ i > j ≥ 0. Finally, all
of these constructions are used as follows. Suppose the existence of an
accepting run r on a term t. If r is “too high”, the fact that ≤ is a well
quasi-ordering and the property of the sequence imply the existence of
such i, j. Thus, it follows the existence of a pumping providing a smaller
accepting run r′. We conclude the existence of a computational bound
for the height of an accepting run, and hence, decidability of emptiness.

2.1 Global Pumpings

Pumping lemma is a traditional concept in automata theory, and in
particular, they are very useful to reason about tree automata. The
basic idea is to convert a given run r into another run by replacing a
subrun at a certain position p in r by a run r′, thus obtaining a run
r[r′]p. Pumpings are useful for deciding emptiness: if a “big” run can
always be reduced by a pumping, then decision of emptiness is obtained
by a search of an accepting “small” run.

For plain tree automata, a necessary and sufficient condition to en-
sure that r[r′]p is a run is that the resulting states of r|p and r

′ coincide,
since the correct application of a rule at a certain position depends only
on the resulting states of the subruns of the direct children. In this case,
an accepting run with height bounded by the number of states exists,
whenever the accepted language is not empty.

When the tree automaton has global equality and disequality con-
straints, the constraints may be falsified when replacing a subrun by
a new run. For PCTAGC, we will define a notion of pumping ensur-
ing that the constraints are satisfied. This notion of pumping requires
to perform several replacements in parallel. We first define the sets of
positions involved in such a kind of pumping.

Definition 5.12 Let t be a term of T (Σ). Let i be an integer between
0 and h(t). We define Hi as {p ∈ Pos(t) | h(t|p) = i} and Ȟi as
{p.j ∈ Pos(t) | h(t|p.j) < i ∧ h(t|p) > i}.

Example 5.13 According to Definition 5.12, for our running example
(Example 2.6), we have the Hi and Ȟi presented in Figure 5.2. 3

109

i Hi Ȟi

5 {ε} ∅
4 {3} {1, 2}
3 {3.3} {1, 2, 3.1, 3.2}
2 {3.3.3} {1, 2, 3.1, 3.2, 3.3.1, 3.3.2}
1 {2, 3.2, 3.3.2, 3.3.3.2} {1, 3.1, 3.3.1, 3.3.3.1}
0 {1, 2.1, 2.2, 3.1, 3.2.1, ∅

3.2.2, 3.3.1, 3.3.2.1, 3.3.2.2,

3.3.3.1, 3.3.3.2.1, 3.3.3.2.2}

Figure 5.2: Hi and Ȟi (Example 5.13).

The following lemma is rather straightforward from the previous
definition.

Lemma 5.14 Let t be a term of T (Σ). Let i be an integer between 0
and h(r). Then, any two different positions in Hi ∪ Ȟi are parallel, and
for any arbitrary position p in Pos(r) there is a position p̄ in Hi ∪ Ȟi

such that, either p is a prefix of p̄, or p̄ is a prefix of p.

proof. For the first fact, note that any proper prefix p of a position p̄
in Hi ∪ Ȟi satisfies h(t|p) > i. Thus, such a p is not in Hi ∪ Ȟi. For
the second fact, consider any p in Pos(t). If h(t|p) ≤ i holds, then the
smallest position p̄ satisfying p̄ < p and h(t|p̄) ≤ i is in Hi ∪ Ȟi, and we
are done. Otherwise, if h(t|p) > i holds, then the smallest position p̄ of
the form p.1.1 and satisfying h(t|p̄) ≤ i is in Hi ∪ Ȟi, and we are
done. 2

Definition 5.15 Let A be a PCTAGC. Let r be a run of A on a term
t. Let i, j be integers satisfying 0 ≤ j < i ≤ h(r). A pump-injection
I : (Hi∪Ȟi) → (Hj∪Ȟj) is an injection function such that the following
conditions hold:

(C1) I(Hi) ⊆ Hj and I(Ȟi) ⊆ Ȟj.

(C2) For each p̄ in Hi ∪ Ȟi, r(p̄) = r(I(p̄)).

(C3) For each p̄1, p̄2 in Hi ∪ Ȟi, (t|p̄1 = t|p̄2) ⇔ (t|I(p̄1)) = t|I(p̄2))).

Let {p̄1, . . . , p̄n} be Hi∪ Ȟi more explicitly written. The pair formed
by the run r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n and the term t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n
is called a global pumping on r and t with indexes i, j, and injection I.

By the condition C2, r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n is clearly a run of
ta(A) on t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n , but it is still necessary to prove
that it is a run of A. By abuse of notation, when we write
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n , or t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n we sometimes con-
sider that I and {p̄1, . . . , p̄n} are still explicit, and say that it is a global
pumping with some indexes 0 ≤ j < i ≤ h(r).

110 Chapter 5 : Deciding Emptiness for TAGC

M
qM

2
qid

N
qt

2
qd

0
qN

L
qL

3
qid

N
qt

2
qd

0
qN

L0
qL

4
qid

N
qt

2
qd

0
qN

Figure 5.3: Pump-injection of Example 5.16.

Example 5.16 Following our running example, we define a pump-
injection I : (H4 ∪ Ȟ4) → (H3 ∪ Ȟ3) as follows: I(1) = 3.1, I(2) = 2,
I(3) = 3.3. We note that I is a correct pump-injection: I(H4) ⊆ H3 and
I(Ȟ4) ⊆ Ȟ3 hold, thus (C1) holds. For (C2), we have r(1) = r(I(1)) =
qid, r(2) = r(I(2)) = qt, and r(3) = r(I(3)) = qL. Regarding (C3), for
each different p̄1, p̄2 in H4 ∪ Ȟ4, t|p̄1 6= t|p̄2 and t|I(p̄1) 6= t|I(p̄2) hold.

After applying the pump-injection I, we obtain the term t′ and run
r′ of Figure 5.3. 3

Our goal is to prove that any global pumping r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n
is a run on t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n , and in particular, that all global
equality and disequality constraints are satisfied. To this end we first
state the following intermediate statement, which determines the height
of the terms pending at some positions after the pumping action.

Lemma 5.17 Let A be a PCTAGC. Let r be a run of A on a term
t. Let 〈r′, t′〉 be the global pumping on r and t with indexes 0 ≤ j <
i ≤ h(r) and injection I, such that r′ = r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n and
t′ = t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n, Let k ≥ 0 be a natural number and let p
be a position of t such that h(t|p) is i+ k. Then, p is also a position of
t′ and h(t′|p) is j + k.

proof. Position p is obviously a position of t′ since no position in Hi∪Ȟi

is a proper prefix of p. We prove the second part of the statement by
induction on k. First, assume that k = 0. Then, h(t|p) is i. Thus, p
is in Hi, say p is p̄1. Therefore, t′|p is t|I(p̄1). By Condition (C1) of
the definition of pump-injection, I(p̄1) ∈ Hj holds. Hence, h(t′|p) =
h(t|I(p̄1)) = j.

Now, assume that k > 0. Let m be the arity of t(p). Thus,
p.1, . . . , p.m are all the child positions of p in t. Since h(t|p) is i+ k, all
h(t|p.1), . . . , h(t|p.m) are smaller than or equal to i+ k − 1, and at least
one of them is equal to i+ k − 1.

Consider any α in {1, . . . ,m}. If h(t|p.α) is i+ k′ for some 0 ≤ k′ ≤
k − 1, then, by induction hypothesis, h(r′|p.α) is j + k′. Otherwise, if
h(r|p.α) is strictly smaller than i, then p.α is one of the positions in Ȟi,
say p̄1. Moreover, t′|p̄1 is t|I(p̄1), and by Condition (C1) of the definition

111

of I, I(p̄1) belongs to Ȟj . Therefore, h(t|I(p̄1)) < j holds, and hence,
h(t′|p.α) = h(t′|p̄1) = h(t|I(p̄1)) < j ≤ j + k − 1 holds.

From the above cases we conclude that, if h(t|p.α) is i+ k − 1, then
h(t′|p.α) is j+k−1, and if h(t|p.α) is smaller than i+k−1, then h(t′|p.α)
is smaller than j + k − 1. It follows that all h(t′|p.1), . . . , h(t

′|p.m) are
smaller than or equal to j + k − 1, and at least one of them is equal to
j + k − 1. As a consequence, h(t′|p) is j + k. 2

Corollary 5.18 Let A be a PCTAGC. Let r be a run of A on a term
t. Let 〈r′, t′〉 be a global pumping of r and t. Then, h(t′) < h(t).

The following lemma states that equality and disequality relations
are preserved, not only for terms pending at the positions of the domain
of I, but also for terms pending at prefixes of positions of such domain.

Lemma 5.19 Let A be a PCTAGC. Let r be a run of A on a
term t. Let 〈r′, t′〉 be the global pumping with indexes 0 ≤ j <
i ≤ h(r) and injection I, such that r′ = r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n
and t′ = t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n, Let p1, p2 be positions of p satis-

fying h(t|p1), h(t|p2) ≥ i. Then, p1, p2 are also positions of t′ and
(t|p1 = t|p2) ⇔ (t′|p1 = t′|p2) holds.

proof. The first statement follows by Lemma 5.17. We prove the second
part of the statement by induction on h(t|p1) + h(t|p2). We distinguish
the following cases:

i. Assume that h(t|p1) 6= h(t|p2). Then, t|p1 6= t|p2 hold and, moreover,
h(t|p1) = i + k1 and h(t|p2) = i + k2 hold for some different natural
numbers k1 and k2. By Lemma 5.17, h(t′|p1) = j + k1 and h(t′|p2) =
j + k2. Thus, t

′|p1 6= t′|p2 hold, and we are done.

ii. Assume that h(t|p1) = h(t|p2) = i + k for some k. We start by
assuming the case k = 0. Then, h(t|p1) is i. Thus, p1, p2 are in Hi,
say p1 is p̄1 and p2 is p̄2. Therefore, t′|p1 is t|I(p̄1) and t′|p2 is t|I(p̄2).
By Condition (C3) of the definition of pump-injection, (t|p̄1 = t|p̄2) ⇔
(t|I(p̄1) = t|I(p̄2)) holds. Thus, (t|p1 = t|p2) ⇔ (t′|p1) = t′|p2)) holds and
we are done.

Now, we assume that k > 0. Note that, in this case, t′(p1) = t(p1)
and t′(p2) = t(p2) hold. In the case where t(p1) differs from t(p2)), it is
clear that t|p1) 6= t|p2) and t

′|p1) 6= t′|p2 hold, and we are done. Hence,
we consider the remaining case where t(p1) = t(p2) holds. Let m be the
arity of t(p1). Thus, p1.1, . . . , p1.m and p2.1, . . . , p2.m are all the child
positions of p1 and p2 in t, respectively. In order to prove (t|p1 = t|p2) ⇔
(t′|p1) = t′|p2) it suffices to prove (t|p1.α = t|p2.α) ⇔ (t′|p1.α = t′|p2.α) for
all α in {1, . . . ,m}. Thus, we consider any of such α’s and distinguish
the following cases:

i.a. If h(t|p1.α), h(t|p2.α) ≥ i holds, then the result follows by induction
hypothesis.

112 Chapter 5 : Deciding Emptiness for TAGC

i.b. If h(t|p1.α) ≥ i and h(t|p2.α) < i, then t|p1.α 6= t|p2.α holds, and
moreover, h(t|p1.α) = i + k1 for some k1 ≥ 0, and p2.α belongs to Ȟi.
By Lemma 5.17, h(t′|p1.α) = j + k1 holds. By Condition (C1) of the
definition of pump-injection, h(t′|p2.α) < j holds. Thus, t′|p1.α 6= t′|p2.α
holds, and we are done.

i.c. The case where h(t|p1.α) < i and h(t|p2.α) ≥ i hold is analogous to
the previous one.

i.d. If h(t|p1.α), h(t|p2.α) < i, then p1.α, p2.α belong to Ȟi, say p1.α
is p̄1 and p2.α is p̄2. Therefore, t′|p1.α is t|I(p̄1) and t′|p2.α is t|I(p̄2).
By Condition (C3) of the definition of pump-injection, (t|p̄1 = t|p̄2) ⇔
(t|I(p̄1) = t|I(p̄2)) holds. Thus, (t|p1.α = t|p2.α) ⇔ (t′|p1.α = t′|p2.α) holds
and we are done. 2

As a consequence of the previous lemmas, we prove that the result
of a global pumping is a run.

Lemma 5.20 Let A be a PCTAGC. Let r be a run of A on a term
t. Let 〈r′, t′〉 be the global pumping with indexes 0 ≤ j < i ≤
h(r) and injection I such that r′ = r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n and t′ =
t[t|I(p̄1)]p̄1 . . . [t|I(p̄n)]̄(p)n. Then, r′ is a run of A on t′.

proof. By Condition (C2) of the definition of pump-injection, in order
to see that r′ is a run, it suffices to see that all global constraints are
satisfied. Thus, let us consider two different positions p1, p2 of Pos(r′)
involved in an atom of the constraint of A, i.e. either r′(p1) ≈ r′(p2) or
r′(p1) 6≈ r′(p2) occurs in the constraint of A. According to Lemma 5.14,
we can distinguish the following cases:
• Suppose that a position in Hi ∪ Ȟi, say p̄1, is a prefix of both p1, p2.
Then, r′|p1 = r|I(p̄1).(p1−p̄1) and r

′|p2 = r|I(p̄1).(p2−p̄1) hold. Hence, r′|p1
and r′|p2 are also subruns of r occurring at different positions. Thus,
since r is a run, they satisfy the atom involving r′(p1) and r

′(p2).
• Suppose that two different positions in Hi ∪ Ȟi, say p̄1 and p̄2, are
prefixes of p1 and p2, respectively. Then, r′|p1 = r|I(p̄1).(p1−p̄1) and
r′|p2 = r|I(p̄2).(p2−p̄2) hold. By the injectivity of I, I(p̄1) 6= I(p̄2) holds.
Moreover, by Lemma 5.14, I(p̄1) ‖ I(p̄2) holds. Hence, as before, r′|p1
and r′|p2 are subruns of r occurring at different (in fact, parallel) posi-
tions. Thus, they satisfy the atom involving r′(p1) and r

′(p2).
• Suppose that one of p1, p2, say p1, is a proper prefix of a position in
Hi∪ Ȟi, and that p2 satisfies that some position in Hi∪ Ȟi is a prefix of
p2. It follows that h(r

′|p2) is smaller than or equal to j, and r′|p2 is also
a subrun of r. Moreover, p1 is also a position of r, r′(p1) = r(p1) holds,
and h(r|p1) = i + k holds for some k > 0. Hence, t|p1 6= t′|p2 holds.
Since r is a run and r′|p2 is a subrun of r, the atom involving r(p1)
and r′(p2) is necessarily of the form r(p1) 6≈ r′(p2). Thus, the atom
involving r′(p1) and r

′(p2) is necessarily of the form r′(p1) 6≈ r′(p2). By
Lemma 5.17, h(t′|p1) is j + k. Therefore, t′|p1 6= t′|p2 holds, and hence,
such an atom is satisfied for such positions in r′.

113

• Suppose that both p1, p2 are proper prefixes of positions in Hi ∪ Ȟi.
Then, p1, p2 are positions of t satisfying h(r|p1), h(r|p2) ≥ i. Moreover,
r(p1) = r′(p1) and r(p2) = r′(p2) hold. Since r is a run, the atom
involving r(p1) and r(p2) is satisfied in the run r for positions p1 and
p2. By Lemma 5.19, (t|p1 = t|p2) ⇔ (t′|p1) = t′|p2) holds. Thus, the
atom involving r′(p1) and r′(p2) is satisfied in the run r′ for positions
p1 and p2. 2

2.2 A Well Quasi-Ordering

In this subsection we define a well quasi-ordering. It assures the exis-
tence of a computational bound for certain sequences of elements of the
corresponding well quasi-ordered set. It will be connected with global
pumpings in the next subsection.

Definition 5.21 Let ≤ denote the usual quasi-ordering on natural
numbers. Let n be a natural number. We define

• the extension of ≤ to n-tuples of natural numbers as 〈x1, . . . , xn〉 ≤
〈y1, . . . , yn〉 if xi ≤ yi for each i in {1, . . . , n}.

• sum(〈x1, . . . , xn〉) := x1 + · · ·+ xn.

• the extension of ≤ to multisets of n-tuples of natural numbers as
[e1, . . . , eα] ≤ [e′1, . . . , e

′
β] if there is an injection I : {1, . . . , α} →

{1, . . . , β} satisfying ei ≤ e′
I(i) for each i in {1, . . . , α}.

• sum([e1, . . . , eα]) := sum(e1) + · · ·+ sum(eα).

• the extension of ≤ to pairs of multisets of n-tuples of natural num-
bers as 〈P1, P̌1〉 ≤ 〈P2, P̌2〉 if P1 ≤ P2 and P̌1 ≤ P̌2.

As a direct consequence of Higman’s Lemma [Gal91] we have the
following:

Lemma 5.22 Given n, ≤ is a well quasi-ordering for pairs of multisets
of n-tuples of natural numbers.

In any infinite sequence e1, e2, . . . of elements from a well quasi-ordered
set there always exist two indexes i < j satisfying ei ≤ ej . In general,
this fact does not imply the existence of a bound for the length of
sequences without such indexes. For example, the relation ≤ between
natural numbers is a well quasi-ordering, but there may exist arbitrarily
long sequences x1, . . . , xk of natural numbers such that (‡) xi > xj for
all 1 ≤ i < j ≤ k. In order to bound the length of sequences satisfying
(‡), it is sufficient to force that the first element and each next element
of the sequence are chosen among a finite number of possibilities. Indeed
in this this case, by König’s lemma, the prefix trees describing all such
(finite) sequences is finite. As a particular case of this fact we have the
following result.

114 Chapter 5 : Deciding Emptiness for TAGC

Lemma 5.23 There exists a computable function B : N×N→ N such
that, given two natural numbers a, n, B(a, n) is a bound for the length
ℓ of the maximum-length sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of pairs of mul-
tisets of n-tuples of natural numbers such that the following conditions
hold:

1. The tuple 〈0, . . . , 0〉 does not occur in any Ti, Ťi for i in {1, . . . , ℓ}.

2. sum(T1) = 1 and sum(Ť1) = 0.

3. For each i in {1, . . . , ℓ− 1}, sum(Ti+1)+ sum(Ťi+1) ≤ a · sum(Ti)+
sum(Ťi).

4. There are no i, j satisfying 1 ≤ i < j ≤ ℓ and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉

proof. We construct a rooted tree S = (V,E) labelled by sequences of
pairs of multiset of n-tuples, where the depth of each node is equal to the
length of the sequence labeling it and such that the set of internal nodes
of S corresponds exactly to the set of sequences satisfying conditions (1)
to (4). Then we show that S is finite, which implies that B(a, n) exists
and is the maximal depth of S.

Let V = {ε} ∪ W , where W is the set of all the sequences
〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of pairs of multisets of n-tuples satisfying the con-
ditions (1) to (3) and such that there are no i, j, satisfying 1 ≤ i < j < ℓ
and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉. This last condition, that we will refer to as (5),
is weaker than (4). In particular, all sequences satisfying conditions (1)
to (4) belong to W . Let E ⊆ V 2 be the set of edges containing

• ε −→ 〈T1, Ť1〉 for all sequence 〈T1, Ť1〉 of length 1 in W ,

• 〈T1, Ť1〉, . . . , 〈Ti, Ťi〉 −→ 〈T1, Ť1〉, . . . , 〈Ti, Ťi〉, 〈Ti+1, Ťi+1〉 for ev-
ery such couple of sequences in W .

It is quite obvious that S = (V,E) is a tree rooted at ε: ε does not
have an input edge, each sequence of length 1 has a unique input edge
coming from ε, and each sequence of length i > 1 has a unique input
edge coming from its unique prefix sequence of length i− 1.

We will call depth of a node v of S, and note d(v) the number
d(v) = 0 if v = ε and d(v) = ℓ if v is a sequence of length ℓ. It is
obvious that there is always a path of length d(v) + 1 from the root to
a node v ∈ V .

If a sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 in W satisfies the condition (4),
then any sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉, 〈Tℓ+1, Ťℓ+1〉 satisfying the con-
ditions (1) to (3) also belongs to W , because there is is no i, j such that
1 ≤ i < j < ℓ+ 1 and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉.

Since there always exists such a sequence (take 〈Tℓ+1, Ťℓ+1〉 =
〈T1, Ť1〉), then every sequence satisfying condition (1) to (4) is an inter-
nal node of S.

If a sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 in W does not satisfy condition
(4), then, by condition (5), it means that 〈T1, Ť1〉 ≤ 〈Tℓ, Ťℓ〉.

115

Hence no sequence 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉, 〈Tℓ+1, Ťℓ+1〉 can satisfy con-
dition (5), and hence do not belong to W . So any sequence satisfying
conditions (1) to (3) and (5) but not (4) is a leaf of S.

Moreover, with the previous result, we also know that the set of
internal nodes of S is exactly the set of sequences satisfying conditions
(1) to (4), and the set of leaves of S is exactly the set of sequences
satisfying conditions (1) to (3), (5), but not (4).

Let us show that S is finite. First, each node v ∈ V has a fi-
nite branching: ε links to all the sequences of length 1, the number
of which is bounded by condition (2); and each sequence of length i,
〈T1, Ť1〉, . . . , 〈Ti, Ťi〉 can only link to sequences of length i + 1 of the
following form 〈T1, Ť1〉, . . . , 〈Ti, Ťi〉, 〈Ti+1, Ťi+1〉, the number of which is
bounded by condition (3).

We now have to show that there is no infinite branch in S. As-
sume that we have an infinite branch v0, v1, v2, v3, . . . (∀i, vi ∈ V , and
(vi, vi+1) ∈ E). By construction, we have v0 = ε, and for all i ≥ 1 and
all j ≥ i, the prefix of length i of the sequence vj is equal to vi. Consider
the infinite sequence 〈T1, Ť1〉, 〈T2, Ť2〉, . . . where for all i ≥ 1, 〈Ti, Ťi〉 is
the last element of the sequence vi. Since ≤ on pairs of multisets of
n-tuples is a well quasi-ordering, there exists two indexes i, j, such that
i < j and 〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉. Hence, all sequences vk such that k > j
do not satisfy condition (5) and do not belong to V , and there is not
infinite branch in S.

Now we can show the existence of B(a, n). Since S is finite we
can define a number D(S) = maxv∈V d(v). Consider a sequence
〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of length ℓ ≥ D(S), satisfying conditions (1) to
(3). If this sequence belongs to W , since D(S) is the maximal depth of
the nodes in V , it is necessarily a leaf, and hence, does not satisfy (4).
And if it does not belong to W , since it satisfies conditions (1) to (3),
it does not satisfy condition (5), and hence, does not satisfy condition
(4). So there is no sequence of length ℓ ≥ D(S) satisfying conditions
(1) to (4). So B(a, n) = D(S).

D(S) is computable because S is. It can easily be built by a
depth-first algorithm. Initialize S with the root ε linking to all the
sequences 〈T1, Ť1〉 of length 1 (there is a finite and computable num-
ber of them). Now, in order to construct nodes of depth (ℓ + 1)
from nodes of depth ℓ, one can consider each previously built sequence
〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of length ℓ. If 〈T1, Ť1〉 ≤ 〈Tℓ, Ťℓ〉, then we reached
a leaf, and do not add new nodes. Otherwise, we add all the se-
quences 〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉, 〈Tℓ+1, Ťℓ+1〉 satisfying the conditions (1)
to (3) (there is a finite and computable number of them). The algo-
rithm stops when at some depth ℓ, all nodes of depth ℓ are leaves: then
we finished the construction of S, and B(a, n) = D(S) = ℓ. 2

In order to bound the height of a term accepted by a given PCTAGC
A (and of minimum height), Lemma 5.23 will be used by making a to
be the maximum arity of the signature of A, and making n to be the
number of states of A.

116 Chapter 5 : Deciding Emptiness for TAGC

i rHi
rȞi

5 [〈0,0,0,0,0,1〉] []
4 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,1,0,0〉]
3 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,2,0,0〉,

〈0,0,1,0,0,0〉]
2 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,3,0,0〉,

〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉]
1 [〈0,0,0,4,0,0〉] [〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉,

〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉]
0 [〈0,0,1,0,0,0〉, 〈4,0,1,0,0,0〉,

〈0,4,0,0,0,0〉, 〈0,0,1,0,0,0〉,
〈0,0,1,0,0,0〉]

[]

Figure 5.4: Multisets rHi
, rȞi

(Example 5.26).

2.3 Mapping a Run to a Sequence of the Well Quasi-
Ordered Set

We will associate, to each number i in {0, . . . , h(r)}, a pair of multisets
of tuples of natural numbers, which can be compared with other pairs
according to the definition of ≤ in the previous subsection. To this
end, we first associate tuples to terms and multisets of tuples to sets of
positions.

Definition 5.24 Let A be a PCTAGC. Let q1, . . . , qn be the states of
A. Let r be a run of A on a term t. Let P be a set of positions of r. Let
t′ be a term. We define rt′,P as the following tuple of natural numbers:
〈∣

∣{p ∈ P | t|p = t′ ∧ r(p) = q1}
∣

∣, . . . ,
∣

∣{p ∈ P | t|p = t′ ∧ r(p) = qn}
∣

∣

〉

Definition 5.25 Let A be a PCTAGC. Let r be a run of A on a term
t. Let P be a set of positions of r. Let {t1, . . . , tk} be the set of terms
{t′ | ∃p ∈ P : t|p = t′}. We define rP as the multiset [rt1,P , . . . , rtk,P].

Example 5.26 Following our running example, for the represen-
tation of the tuples of natural numbers we order the states as
〈qd, qN , qid, qt, qL, qM 〉. The multisets rHi

and rȞi
are presented in Fig-

ure 5.4. 3

The following lemma connects the existence of a pump-injection with
the quasi-ordering relation.

Lemma 5.27 Let A be a PCTAGC. Let r be a run of A on a term t. Let
i, j be integers satisfying 0 ≤ j < i ≤ h(r). Then, there exists a pump-
injection I : (Hi∪Ȟi) → (Hj∪Ȟj) if and only if 〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉.

proof. ⇒. Assume that there exists a pump-injection I : (Hi ∪ Ȟi) →
(Hj ∪ Ȟj). We just prove rHi

≤ rHj
, since rȞi

≤ rȞj
can be proved

117

analogously. By Condition (C1) of the definition of pump-injection,
I(Hi) ⊆ Hj . We write {t|p |p ∈ Hi} and {t|p |p ∈ Hj} more explicitly
as {ti,1, . . . , ti,α} and {tj,1, . . . , tj,β}, respectively. Hence, it remains to
prove that [rti,1,Hi

, . . . , rti,α,Hi
] ≤ [rtj,1,Hj

, . . . , rtj,β ,Hj
]. To this end we

define the function I ′ : {1, . . . , α} → {1, . . . , β} as follows. For each γ in
{1, . . . , α}, we choose a position p in Hi satisfying t|p = ti,γ , determine
the index δ of the term tj,δ satisfying tj,δ = t|I(p), and define I ′(γ) := δ.
This function I ′ is injective due to Condition (C3) of the definition
of pump-injection. In order to conclude, it suffices to prove rti,γ ,Hi

≤
rtj,I′(γ),Hj

for each γ in {1, . . . , α}. We just prove it for γ = 1. For
proving rti,1,Hi

≤ rtj,I′(1),Hj
it suffices to prove the following statement

for each state q of A:
∣

∣{p ∈ Hi | t|p = ti,1 ∧ r(p) = q}
∣

∣ ≤
∣

∣{p ∈ Hj |
t|p = tj,I′(1) ∧ r(p) = q}

∣

∣.

To this end, since I is injective, it suffices to prove that I({p ∈ Hi |
t|p = ti,1∧r(p) = q}) is included in {p ∈ Hj | t|p = tj,I′(1)∧r(p) = q} for
each state q of A. Thus, consider any p̄ of {p ∈ Hi | t|p = ti,1∧r(p) = q}.
Let p′ be the chosen position for defining I ′(1). In particular, t|p′ = ti,1
and t|I(p′) = tj,I′(1) hold. Note that t|p̄ = t|p′ = ti,1 holds. Thus,
by Condition (C3) of the definition of pump-injection, t|I(p̄) = t|I(p′)
holds. Therefore, t|I(p̄) = tj,I′(1) holds. In order to show the inclusion
I(p̄) ∈ {p | t|p = tj,I′(1) ∧ r(p) = q} it rests to see r(I(p̄)) = q. Note
that, since p̄ belongs to {p | t|p = ti,1 ∧ r(p) = q}, r(p̄) = q holds. By
Condition (C2) of the definition of pump-injection, r(I(p̄)) = r(p̄) = q
holds, and we are done.

⇐. Assume that 〈rHi
, rȞi

〉 ≤ 〈rHj
, rȞj

〉 holds. We have to construct a

pump-injection I : (Hi ∪ Ȟi) → (Hj ∪ Ȟj). We just define I : Hi → Hj

and prove Conditions (C2) and (C3) for p̄, p̄1, p̄2 in Hi. This is because
I : Ȟi → Ȟj can be defined analogously, and Conditions (C2) and (C3)
for the corresponding positions can be checked analogously. Moreover,
for positions p̄′1 ∈ Hi and p̄′2 ∈ Ȟi, Condition (C3) holds whenever
Condition (C1) holds since in this case t|p̄′1 6= t|p̄′2 and t|I(p̄′1) 6= t|I(p̄′2)
hold. Hence, this simple case is enough to prove the whole statement.

We write {t|p | p ∈ Hi} and {t|p | p ∈ Hj} more explicitly
as {ti,1, . . . , ti,α} and {tj,1, . . . , tj,β}, respectively. Since 〈rHi

, rȞi
〉 ≤

〈rHj
, rȞj

〉 holds, rHi
≤ rHj

also holds. Thus, there exists an injective

function I ′ : {1, . . . , α} → {1, . . . , β} satisfying the following statement
for each δ in {1, . . . , α} and each state q of A:
∣

∣{p ∈ Hi | t|p = ti,δ ∧ r(p) = q}
∣

∣ ≤
∣

∣{p ∈ Hj | t|p = tj,I′(δ) ∧ r(p) =
q}
∣

∣ (†).

In order to define I : Hi → Hj , we define I for each of such sets
{p ∈ Hi | t|p = ti,δ ∧ r(p) = q} as any injective function I : {p ∈ Hi |
t|p = ti,δ ∧ r(p) = q} → {p ∈ Hj | t|p = tj,I′(δ) ∧ r(p) = q}, which
is possible by the above inequality (†). The global I is then injective
thanks to the injectivity of I ′. Conditions (C2) and (C3) trivially follow
from this definition. 2

118 Chapter 5 : Deciding Emptiness for TAGC

Example 5.28 Following our running example, we first
prove 〈rH4 , rȞ4

〉 ≤ 〈rH3 , rȞ3
〉. To this end just note that

[〈0, 0, 0, 0, 1, 0〉] ≤ [〈0, 0, 0, 0, 1, 0〉], [〈0, 0, 1, 0, 0, 0〉] ≤ [〈0, 0, 1, 0, 0, 0〉],
and [〈0, 0, 0, 1, 0, 0〉] ≤ [〈0, 0, 0, 2, 0, 0〉] hold. We can define
I : (H4 ∪ Ȟ4) → (H3 ∪ Ȟ3) from this relation according to Lemma 5.27.
Doing the adequate guess we obtain the following definition: I(1) = 3.1,
I(2) = 2, I(3) = 3.3 which is the pump-injection considered above for
our running example. 3

The following lemma follows directly from the definition of the sets
Hi and Ȟi, and allows to connect such definitions with Lemma 5.23.

Lemma 5.29 Let A be a PCTAGC. Let a be the maximum arity of the
symbols in the signature of A. Let r be a run of A on a term t. Then,
the following conditions hold:

(1) |Hh(t)| = 1 and |Ȟh(t)| = 0.

(2) For each i in {1, . . . , h(r)}, |Hi−1|+ |Ȟi−1| ≤ a · |Hi|+ |Ȟi|.

(3) For each i in {0, . . . , h(r)}, |Hi| = sum(rHi
) and |Ȟi| = sum(rȞi

).

proof. Item (1) is trivial by definition of Hi and Ȟi for i = h(r). For
Item (2), it suffices to observe that the positions inHi−1∪Ȟi−1 are all the
positions of Ȟi plus all the child positions in Hi, and that each position
has at most a children. For Item (3) we just prove |Hi| = sum(rHi

), since
|Ȟi| = sum(rȞi

) can be proved analogously. We write {t|p | p ∈ Hi}
more explicitly as {t1, . . . , tα}.

Note that Hi is the disjoint union {p ∈ Hi | t|p = t1}∪ . . .∪{p ∈ Hi |
t|p = tα}. Thus, |Hi| equals |{p ∈ Hi | t|p = t1}|+ . . .+ |{p ∈ Hi | t|p =
tα}|. We conclude by observing that |{p ∈ Hi | t|p = t1}| = sum(rt1,Hi

),
. . . , |{p ∈ Hi | t|p = tα}| = sum(rtα,Hi

) hold. 2

Lemma 5.30 Let B : N × N → N be the computable function of
Lemma 5.23. Let A be a PCTAGC. Let a be the maximum arity of
the symbols in the signature of A. Let n be the number of states of A.
Let r be a run of A on a term t satisfying h(t) ≥ B(a, n). Then, there
is a global pumping on r.

proof. Consider the sequence 〈rHh(r)
, rȞh(r)

〉,. . . , 〈rH0 , rȞ0
〉. Note

that the n-tuple 〈0, . . . , 0〉 does not appear in the multisets of the
pairs of this sequence. By Lemma 5.29, |Hh(t)| = 1 and |Ȟh(t)| = 0

hold, and for each i in {1, . . . , h(t)}, |Hi−1| + |Ȟi−1| ≤ a · |Hi| + |Ȟi|
holds. Moreover, for each i in {0, . . . , h(r)}, |Hi| = sum(rHi

) and
|Ȟi| = sum(rȞi

). Thus, sum(rHh(r)
) = 1, sum(rȞh(r)

) = 0, and for each

i in {1, . . . , h(r)}, sum(rHi−1) + sum(rȞi−1
) ≤ a · sum(rHi

) + sum(rȞi
).

Hence, since h(t) ≥ B(a, n) holds, by Lemma 5.23 there exist i, j sat-
isfying h(t) ≥ i > j ≥ 0 and 〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉. By Lemma 5.27,

There exists a pump-injection I : (Hi ∪ Ȟi) → (Hj ∪ Ȟj). Therefore,
there exists a global pumping on r. 2

119

Theorem 5.31 Emptiness is decidable for PCTAGC.

proof. Let a be the maximum arity of the symbols in the signature of
A. Let n be the number of states of A. Let r be an accepting run of A
on a term t with minimum height.

Suppose that h(r) ≥ B(a, n) holds. Then, by Lemma 5.30, there
exists a global pumping 〈r′, t′〉 on r and t. By Corollary 5.18, h(t′) < h(t)
holds. Moreover, by the definition of global pumping, r′(ε) = r(ε) holds.
Finally, by Lemma 5.20, r′ is a run of A on t′. Thus, t′ contradicts the
minimality of t. We conclude that h(t) < B(a, n) holds.

The decidability of emptiness of A follows, since the existence of suc-
cessful runs implies that one of them can be found among a computable
and finite set of possibilities. 2

Using Lemma 5.11 and Theorem 5.31, we can conclude the decid-
ability of emptiness for TAGC.

Corollary 5.32 Emptiness is decidable for TAGC.

Since, we used TAGC with natural arithmetic constraints to obtain
this reduction, another consequence is the decidability of this class.

Corollary 5.33 Emptiness is decidable for TAGC[≈, 6≈,N].

3 Equality Tests Between Brothers

The constraints of TAGC are checked once for all on a whole run. There
exists another kind of equality and disequality constraints for extending
TA which are tested locally at every transition step, as in the TAC that
we mentioned in section 2.2.

Definition 5.34 A tree automaton with constraints between brothers
(TACB) is a tuple A = 〈Σ, Q,F , F,∆〉 where Σ, Q, F , F are defined as
with TA and the transitions rules of ∆ have the form: f(q1, . . . , qn) −→

c

q, where c is a conjunction of atoms of the form i = j or i 6= j with
1 ≤ i, j ≤ n.

A run of the TACB A on a term t ∈ T (F) is a function r
from Pos(t) into Q such that, for all p ∈ Pos(t), there exists a rule
t(p)

(

r(p.1), . . . , r(p.m)
)

−→c r(p) ∈ ∆ satisfying t(p) ∈ Fm, and more-
over, for all i = j in the conjunction c, t|p.i = t|p.j holds, and for all
i 6= j in the conjunction c, t|p.i 6= t|p.j holds.

The notions of successful runs and languages can be extended
straightforwardly from TA to TACB. Global constraints can also be
added to TACB in the natural way. The automata of the resulting
classes TACB[≈, 6≈, ...] will therefore perform global and local test dur-
ing their computations.

120 Chapter 5 : Deciding Emptiness for TAGC

Example 5.35 Assume that the terms of Example 2.6 are now used
to record the activity of a restaurant, and that we add a second ar-
gument of type qt to L0, L and M , so that the first argument qt will
characterize the theoretical time to cook, and the second qt will char-
acterize the real time that was needed to cook the dish. Let us replace
the transitions with L0, L and M in input by L0(qid, qt, qt) −−−→2=3 qL,

L0(qid, qt, qt) −−−→26=3 q′L, L(qid, qt, qt, qL) −−−→2=3 qL, L(qid, qt, qt, qL) −−−→26=3

q′L, M(qid, qt, qt, qL) −−−→
2=3 qM , M(qid, qt, qt, qL) −−−→

26=3 q′M , where q′L is a
new state meaning that there was an anomaly. We also also add a tran-
sition L(qid, qt, qt, q

′
L) → q′L to propagate q′L and M(qid, qt, qt, q

′
L) → q′M .

The language of the TAGC obtained is the set of records well cooked,
i.e. such that for all dishes, the real time to cook is equal to the theo-
retical time. 3

The emptiness decision algorithm of section 2 still works for this exten-
sion of TAGC with local brother constraints. This is because a global
pumping r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n on a run r can be proved to satisfy the
constraints between brothers in a completely analogous way as in the
proof of Lemma 5.20 and Theorem 5.33.

Theorem 5.36 Emptiness is decidable for TACB[≈, 6≈,N].

4 Unranked Ordered Trees

Our tree automata models and results can be generalized from ranked
to unranked ordered terms. In this setting, F is called an unranked
signature, meaning that there is no arity fixed for its symbols, i.e. that
in a term a(t1, . . . , tn), the number n of children is arbitrary and does not
depend on a. Let us denote by U(F) the set of unranked ordered terms
over F . The notions of positions, subterms etc are defined for unranked
terms of U(F) as for ranked terms of T (F). We extend the definition of
automata for unranked ordered terms, called hedge automata [Mur99],
with global constraints.

Definition 5.37 A hedge automaton with global constraints (HAGC)
is a tuple A = 〈Q,F , F, C,∆〉 where Q, F and C are as in the definition
of TAGC (def. 2.1) and the transitions of ∆ have the form a(L) → q
where a ∈ F , q ∈ Q and L is a regular (word) language over Q∗,
assumed given by a NFA with input alphabet Q.

A run of A on an unranked ordered term t ∈ U(F) is a function r
from Pos(t) into Q such that for all position p ∈ Pos(t) with n child,
there exists a transition t(p)(L) → r(p) in ∆ such that r(p.1) . . . r(p.n) ∈
L. The run r is called successful if moreover r(ε) ∈ F and r |= C,
where satisfiability is defined like in definition 2.1. As above, we use the
notation HAGC[τ1, . . . , τn] where the τi’s can be ≈, 6≈, |.|N, ‖.‖N...

121

a

b

c

d f

g h

7→curry @

@

@

a @

b c

d

@

@

f g

h

Figure 5.5: Currying an unranked term

The emptiness decision results of Corollary 5.32 can be extended
from TAGC to HAGC using a standard transformation from un-
ranked to ranked binary terms, like the extension encoding described
in [CLDG+07], Chapter 8.

Let us associate to the unranked signature Σ the (ranked) signature
F@ := {a : 0 | a ∈ F} ∪ {@ : 2} where @ is a new symbol. The operator
curry, recursively defined in the following, is a bijection from U(F) into
T (F@).

curry(a) = a for all a ∈ F
curry

(

a(t1, . . . , tn)
)

= @
(

curry
(

a(t1, . . . , tn−1)
)

, curry(tn)
)

An example of application of this operator is presented in Figure 5.5.
We extend the application of the operator curry to set of trees by

curry(L) = {curry(t) | t ∈ L}.

Proposition 5.38 For all HAGC[≈, 6≈,N] A over F , one can construct
effectively in PTIME a TAGC[≈, 6≈,N] A′ over F@ such that L(A′) =
curry

(

L(A)
)

.

proof. Let A = 〈Q,F , F, C,∆〉. We call ha(A) the underlying hedge
automaton of A: ha(A) = 〈Q,F , F, true,∆〉 i.e. ha(A) computes the
same way as A but without the global constraints (note however that
the top state of successful runs must be a final state).

We can assume wlog that ∆ contains at most one transition a(L) → q
for each pair 〈a, q〉 ∈ Σ×Q. Otherwise, we can replace two transitions
a(L) → q and a(L′) → q by the unique transition a(L ∪ L′) → q,
preserving the language recognized. Let Ba,q be the NFA recognizing
L in the (unique) transition a(L) → q of ∆ associated to a and q.
Note that such an automaton has Q as input alphabet. Let P be the
union (assumed disjoint) for all transitions in ∆ of the state sets of the
automata Ba,q.

The transitions of the automaton A′, when computing on curry(t)
for some t ∈ U(F), will simulate both the transitions of A (vertical tran-
sitions) and the transitions of the NFAs Ba,q (horizontal transitions).

Let A′ = 〈Q ∪ P,F , F, C,∆′〉 where ∆′ contains the transitions:

a→ q if Ba,q recognizes the empty word,

122 Chapter 5 : Deciding Emptiness for TAGC

a→ inita,q for all q ∈ Q, where inita,q is the initial state of Ba,q,

@(p, q) → p′ if there is a transition p −→q p′ in some Ba′,q′ , and

@(p, q) → q′ if there is a transition p −→q p′ in some Ba′,q′ , where
p′ is a final state of Ba′,q′ .

We can show by induction on t ∈ U(F) that t ∈ L
(

ha(A)
)

iff
curry(t) ∈ L

(

ta(A′)
)

. More precisely, for all t ∈ U(F), to every
run r of ha(A) on t, we can associate a run r′ of ta(A′) on curry(t)
with r′(ε) = r(ε), and reciprocally. Moreover, by construction, there
exists an injective mapping θ from Pos(t) into Pos(curry(t)), such
that for all p ∈ Pos(t), the states r(p) and r′(θ(p)) coincide and
curry(t|p) = curry(t)|θ(p). Since curry is bijective, it follows that the
run r is successful for A iff the run r′ is successful for A′. 2

The following emptiness decision result is a direct consequence of
Proposition 5.38 and Theorem 5.33.

Theorem 5.39 Emptiness is decidable for HAGC[≈, 6≈,N].

5 Monadic Second Order Logic

In this section, we discuss the application of our results to second or-
der logics interpreted over domains defined by terms. We propose a
strict extension of the second order monadic logic of the tree with pred-
icates corresponding to the above equality, disequality and arithmetic
constraints, and show that satisfiability is decidable for this extension
thanks to a correspondence with TAGC[≈, 6≈,N].

5.1 MSO on Ranked Terms

A ranked term t ∈ T (Σ) over Σ can be seen as a model for logical
formulae, with an interpretation domain which is the set of positions
Pos(t). We consider monadic second order formulae interpreted on such
models, built with the usual Boolean connectors, with quantifications
over first order variables (interpreted as positions), denoted x, y . . . and
over unary predicates (i.e. second order variables interpreted as sets of
positions), denoted X,Y . . ., and with the following predicates,

1. equality: x = y, and membership: X(x)

2. labeling: a(x), for a ∈ F

3. navigation: Si(x, y), for all i smaller than or equal to the maximal
arity of symbols of F (we call +1 the type of such predicates),

4. term equality: X ≈ Y , term disequality: X 6≈ Y (predicate types
≈ and 6≈),

5. linear inequalities:
∑

ai.|Xi| ≥ a or
∑

ai.‖Xi‖ ≥ a, where every
ai and a belong to Z (predicate types |.|Z and ‖.‖Z).

123

We write MSO[τ1, . . . , τk] for the set of monadic second order logic
formulae with equality, membership, labeling predicates and other pred-
icates of type τ1, . . . , τk, amongst the above types +1, ≈, 6≈, and |.|Z,
‖.‖Z. We also use the notations |.|N and ‖.‖N for natural linear inequali-
ties and the abbreviations Z and N as in section 1. Let EMSO[τ1, . . . , τk]
be the fragment of MSO[τ1, . . . , τk] containing the formulae of the form
∃X1 . . . ∃Xn φ such that all the atoms of type ≈, 6≈, Z or N involve only
second order variables amongst X1, . . . , Xn.

A variable assignment into a term t ∈ T (Σ) is a function σ mapping
first order variables into positions of Pos(t) and second order variables
into subsets of Pos(t). The validity of a formula φ in a term t ∈ T (Σ)
under the variable assignment σ, denoted t, σ |= φ is defined in the usual
Tarksian manner, with (below, |S| denotes the cardinality of the set S):

t, σ |= x = y iff σ(x) = σ(y)
t, σ |= X(x) iff σ(x) ∈ σ(X)
t, σ |= a(x) iff t(σ(x)) = a
t, σ |= Si(x, y) iff σ(y) = σ(x).i
t, σ |= X ≈ Y iff for all p in σ(X) and p′ in σ(Y), t|p = t|p′

t, σ |= X 6≈ Y iff for all p in σ(X) and p′ in σ(Y), t|p 6= t|p′

t, σ |=
∑

ai.|Xi| ≥ a iff
∑

i ai.|σ(Xi)| ≥ a
t, σ |=

∑

ai.‖Xi‖ ≥ a iff
∑

i ai.
∣

∣{t|p | p ∈ σ(Xi)}
∣

∣ ≥ a

Example 5.40 The following formula of EMSO[≈, 6≈],
∃Xa (∀xXa(x) ↔ a(x)) ∧ Xa 6≈ Xa expresses that all the sub-
terms headed by a in a term t are pairwise different. It other words, a
is used to mark monadic keys in t (see Example 2.6). This can also be
expressed by ‖Xa‖ ≤ 1.

It is well known that MSO[+1] has exactly the same expressiveness
as TA [TW68] and therefore it is decidable. The extension MSO[+1,≈]
is undecidable, see e.g. [FTT07], as well as MSO[+1, |.|Z] [KR02] (the
latter extension is also undecidable for unranked ordered terms when
counting constraints are applied to sibling positions [SSM03]), but the
fragment EMSO[+1, |.|Z] is decidable [KR02].

In [FTT08] the fragment EMSO with ≈ and a restricted form of
6≈ is shown decidable, with a two way correspondence between these
formulae and a decidable subclass of TAGEDs. This construction can
be straightforwardly adapted to establish a two way correspondence
between EMSO[+1,≈, 6≈,N] and TAGC[≈, 6≈,N].

Theorem 5.41 EMSO[+1,≈, 6≈,N] is decidable on ranked terms.

proof. Following the same proof scheme as [FTT08], we show that for
every formula φ in EMSO[+1,≈, 6≈,N], we can construct a TAGC[≈, 6≈
,N] recognizing exactly the set of models of φ. Then, the decidability
of the logic follows from Theorem 5.33.

124 Chapter 5 : Deciding Emptiness for TAGC

We may assume wlog that φ has the form

φ = ∃X1 . . . ∃Xn (φ0(X) ∧ φ≈(X) ∧ φN(X))

where φ0(X) is a MSO[+1] formula with free variables X = X1, . . . , Xn,
and φ≈(X) and φN(X) are Boolean combinations of atoms of the re-
spective form Xi ≈ Xj , Xi 6≈ Xj and

∑

aj .|Xij | ≥ a,
∑

aj .‖Xij‖ ≥ a.

Moreover, we shall also assume that φ≈(X) and φN(X) are conjunctions
of the atoms or negations of atoms of the above form. Otherwise, we put
them into disjunctive normal form and then split φ into an equivalent
formula φ1 ∨ . . . ∨ φk, where each φi, i ≤ k, is of the form requested
(φi = ∃X1 . . . ∃Xn (φi0(X) ∧ φi≈(X) ∧ φiN(X)), with φi0(X) ∈ MSO[+1]
and φi≈(X) and φiN(X) are conjunctions of atoms or negations of atoms
as above) and we solve satisfiability separately for each φi.

First, using the construction of [TW68], we associate to φ0(X) a TA
A0 = 〈Q,F × {0, 1}n, F,∆0〉 which recognizes the set of set of terms
t ⊗ σ ∈ T

(

F × {0, 1}n
)

| t, σ |= φ0(X). Here, the arity of a symbol
〈f, b1, . . . , bn〉 in Σ×{0, 1}n is the arity of f in F and t⊗ σ denotes the
term obtained from t ∈ T (F) by relabeling every position p ∈ Pos(t)
by 〈t(p), b1, . . . , bn〉 where for each i ≤ n, bi = 1 if p ∈ σ(Xi) and bi = 0
otherwise. Note that the size of the above automaton A0 is in general
non-elementary in the size of φ.

Then, following a construction in [NPTT05], we shift in A0 the
bit-vectors from the signature into the state symbols, obtaining A′

0 =
〈Q×{0, 1}n,Σ, F ×{0, 1}n,∆〉 where ∆ contains all the transition rules

f
(

〈q1, b1,1, . . . , b1,n〉, . . . , 〈qm, bm,1, . . . , bm,n〉
)

→ 〈q, b1, . . . , bn〉

such that f ∈ F , 〈f, b1, . . . , bn〉
(

q1, . . . , qm
)

→ q ∈ ∆0 and b1,1, . . . , b1,n,
. . . , bm,1, . . . , bm,n ∈ {0, 1}. This automaton A′

0 recognizes the pro-
jection (on the first components) of the terms recognized by A0, i.e.
it recognizes the set of terms t ∈ T (F) such that there exists σ :
{X1, . . . , Xn} → 2Pos(t) with t, σ |= φ0(X).

Now, let us construct a constraint C by rewriting the atoms of
φ≈(X) ∧ φN(X), following the rules:

Xi ≈ Xj 7→
∧

bi=b′j=1

〈q, b1, . . . , bn〉 ≈ 〈q′, b′1, . . . , b
′
n〉

Xi 6≈ Xj 7→
∧

bi=b′j=1

〈q, b1, . . . , bn〉 6≈ 〈q′, b′1, . . . , b
′
n〉

∑

j

aj .|Xij | ≥ a 7→
∑

j

∑

bij=1

aj .|〈q, b1, . . . , bn〉| ≥ a

∑

j

aj .‖Xij‖ ≥ a 7→
∑

j

∑

bij=1

aj .‖〈q, b1, . . . , bn〉‖ ≥ a

Finally, we can show straightforwardly that the TAGC[≈, 6≈,N] A =
〈Q×{0, 1}n,Σ, F ×{0, 1}n,∆, C〉 recognizes exactly {t ∈ L(A) | t |= φ}.
2 2

125

The above transformation also works in the other direction (this
result is not necessary for the proof of Theorem 5.41 though): for every
TAGC[≈, 6≈,N], we can construct a formula φ in EMSO[+1,≈, 6≈,N],
whose set of models is L(A).

Note that EMSO[+1,≈] is strictly more expressive than MSO,
since the equality between subterms is not expressible in MSO (see
e.g. [CLDG+07]). The TA construction of [TW68] for the decidability
of MSO[+1] involves the closure under projection on components for TA
languages over signatures made tuples of symbols (for the elimination of
∃ quantifiers). TAGC languages are not closed under projection, as it is
already the case for simpler form tree automata with equality [Tre00].

5.2 MSO on Unranked Ordered Terms

In unranked ordered terms of U(Σ), the number of children of a position
is unbounded. Therefore, for navigating in such terms with logical for-
mulae, the successor predicates Si(x, y) of Section 5.1 are not sufficient.
In order to describe unranked ordered terms as models, we replace these
above predicates Si by:

• S↓(x, y) (y is a child of x),

• S→(x, y) (y is the successor sibling of x).

The type of these predicates is still called +1. Note that the above
predicates S1, S2, . . . can be expressed using these two predicates only.

The validity of the above atoms in a term t ∈ U(Σ) under a variable
assignment σ is defined as follows.

t, σ |= S↓(x, y) iff there exists i such that σ(y) = σ(x).i,
t, σ |= S→(x, y) iff there exists p ∈ Pos(t) and i such that σ(x) = p.i

and σ(y) = p.i+ 1.

It is shown in [SSM03] that the extension MSO[+1, |.|Z] is undecid-
able for unranked ordered terms when counting constraints are applied
to sibling positions.

Using the results of Section 4, and an easy adaptation of the au-
tomata construction in the proof of Theorem 5.41, we can generalize
Theorem 5.41 to EMSO over unranked ordered terms.

Theorem 5.42 EMSO[+1,≈, 6≈,N] is decidable on unranked ordered
terms.

6 Conclusion

We have proposed a decision algorithm for the emptiness problem of the
class of TAGC, generalizing the result we had in chapter 4 for TAGED.
Our method for emptiness decision, presented in section 2 appeared to
be robust enough to deal with several extensions like global counting

126 Chapter 5 : Deciding Emptiness for TAGC

constraints, local equality tests between sibling subterms and exten-
sion to unranked terms. It has been since extended to equality modulo
commutativity in a yet unpublished work. Another interesting sub-
ject mentioned in the introduction is the combination of the HAGC
of section 4 with the unranked tree automata with tests between sib-
lings [WL07, LW09]. We come back to this point in the conclusion of
the thesis.

There are some similarities between the technique presented in chap-
ter 4 and the one presented here. They are both handling (dis)equalities
depending on the height of the subterms. For each given height, they
seek for terms below that are able to satisfy the constraints, and at
the same time, to provide the states expecting by the transition rules.
The termination of such a procedure depends on whether the number of
those sets of terms for a given height is finite or not. In chapter 4, this
property is satisfied because we manage to use only a finite number of
milestones. Here, it works because we can order these sets with a well
quasi-order, hence the non-primitive recursive complexity. A deeper
study of these common properties could help in refining the complexity
of those emptiness decision problems.

Another branch of research related to TAGC concerns automata and
logics for data trees, i.e. trees labeled over an infinite (countable) al-
phabet (see [Seg06] for a survey). Indeed, data trees can be represented
by terms over a finite alphabet, with an encoding of the data values
into terms. This can be done in several ways, and with such encod-
ings, the data equality relation becomes the equality between subterms.
Therefore, this could be worth studying in order to relate our results on
TAGC to decidability results on automata or logics on data trees like
those in [Jur07, BMSS09]. Testing (dis)equalities of data with these
techniques does not require the use of different tests at positions that
are may be prefixes one from another. Hence, it would only use a rather
limited class of TAGC, and maybe lead to some better complexity. On
the other hand, representing data as terms allows to manipulate the
structures of the data in order to test relations more complex than sim-
ple (dis)equalities, which are generally avoided by data automata since
it easily leads to undecidability. Therefore, this approach would prob-
ably provide a less expressive model for representing XML data data
documents.

Conclusion

With this thesis, we contribute to a deeper and better understanding
of the tree automata with global equality and disequality constraints.
We provide a model, that is TAGC[≈, 6≈], that generalizes the previously
existing model of TAGED. We proposed an extensive comparative study
of this model, relatively to the previously existing ones.

Our major contributions are the following:

• we provided one of the first result of decidability of membership
for the closure of a language of tree automata with equality con-
straints by a term rewriting system;

• we answer positively the emptiness problem for TAGED, and show
that it is in NEXPTIME;

• we prove the decidability of the emptiness problem for the more
general class of TAGC. This procedure is robust enough to handle
tree automata with both global and local equality and disequality
constraints.

In addition to these results, we also made some more modest contri-
butions, which can help a better understanding of the behavior of tree
automata with global constraints:

• we proved the undecidability of the regularity problem of lan-
guages of tree automata with global equality constraints;

• we showed that the class of TAGED containing only disequality
constraints and the t-dag automata are equally expressive.

We already discussed longly how our result on rewrite closure of the
Rigid Tree Automata could be applied to communication protocols ver-
ification, and more generally how tree automata with global constraints
could help in this domain. It seems that those intuitions were right,
as TAGED have been since applied in a new model-checking result (see
[CHK09]), but the way they are used is apparently slightly different from
our approach. Those applications need efficient implementations of de-
cision algorithms. Some work has been done to encode the membership
decision problem in a SAT-solver in an efficient way in [HHK10]. Both

127

128 Chapter 5 : Deciding Emptiness for TAGC

for communication protocols and for the context of XML programming,
it would be very useful, but also challenging, to have a (quite) efficient
implementation of the emptiness problem for tree automata with global
constraints.

One major problem to handle is a lower bound for the complexity
of the emptiness problem. For TAGED, we show that the problem is in
NEXPTIME, but we do not have a lower bound. However, the proof of
the decidability of emptiness for t-dag automata that inspired our work
has been proved NP-complete. Since, we do a very similar proof using
an automaton which is exponential in the size of the input, it seems
reasonable to assume that one can prove that the emptiness decision
problem is NEXPTIME-complete.

Another complexity issue that this thesis arises, is whether the de-
cidability of the emptiness problem for TAGC is elementary, i.e. does
our solution provide an optimal complexity. In order to prove this, one
will need to find an explicit elementary decision or procedure. However,
the stronger expressiveness of TAGC compared to TAGED, and the ro-
bustness of our decision procedure let us think that there is a complexity
gap between our two results. It is maybe possible to encode this problem
into one that is already known to be, for example, non-primitive recur-
sive. Some recent works provide such problems, like decision problems
on lossy-channel systems, or the Post Embedding Problem [CS07].

An interesting further work would be to compare the expressive-
ness of TAGC with automata on data trees (like the ones studied
in [BMSS09]). As explained earlier, it would require to encode data
on trees as extra subterms, which causes several complications that we
already discussed. Another suggestion, that we were given when pre-
senting our results, is to use query-like techniques to select nodes that
will later be tested for equality or disequality in global constraints. At
a first approach, it seems that we may have a model of automata that
could be both powerful and with a decidable emptiness problem. More-
over, using queries on unranked ordered labeled trees could be a way
to decide emptiness for unranked tree automata with both global con-
straints of TAGC, and constraints between sibling subterms like in the
model UTASC of [LW09] which are not handled by TAGC. Hence, we
would get a very powerful model combining the expressive power of both
TAGC and UTASC.

Bibliography

[AC02] Roberto M. Amadio and Witold Charatonik. On name
generation and set-based analysis in the dolev-yao model.
In 13th International Conference on Concurrency Theory,
CONCUR, volume 2421 of LNCS, pages 499–514. Springer,
2002. ISBN 3-540-44043-7.

[ACL09] Reynald Affeldt and Hubert Comon-Lundh. Verification
of security protocols with a bounded number of sessions
based on resolution for rigid variables. In Formal to Prac-
tical Security, volume 5458 of LNCS, State-of-the-Art Sur-
vey, pages 1–20. Springer, May 2009. URL http://staff.

aist.go.jp/reynald.affeldt/documents/rigid.pdf.

[AF01] Martin Abadi and Cédric Fournet. Mobile values,
new names, and secure communication. In 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL, pages 104–115, 2001.

[AM04] Rajeev Alur and Parthasarathy Madhusudan. Visibly
pushdown languages. In 36th Annual ACM Symposium on
Theory of Computing, STOC, pages 202–211. ACM, 2004.
ISBN 1-58113-852-0.

[And81] Peter B. Andrews. Theorem proving via general matings.
Journal of the ACM, 28(2):193–214, 1981.

[ANR05] Siva Anantharaman, Paliath Narendran, and Michaël Rusi-
nowitch. Closure properties and decision problems of dag
automata. Information Processing Letters, 94(5):231–240,
2005.

[BCG+10] Luis Barguñó, Carles Creus, Guillem Godoy, Florent
Jacquemard, and Camille Vacher. The emptiness problem
for tree automata with global constraints. In 25th Annual
IEEE Symposium on Logic In Computer Science (LICS),
pages 263–272, 2010.

[BMSS09] Mikoljav Bojańczyk, Anca Muscholl, Thomas Schwentick,
and Luc Segoufin. Two-variable logic on data trees and

129

130 Chapter 5 : Deciding Emptiness for TAGC

applications to xml reasoning. Journal of the ACM, 56(3),
2009.

[BT92] Bruno Bogaert and Sophie Tison. Equality and disequal-
ity constraints on direct subterms in tree automata. In
9th Symp. on Theoretical Aspects of Computer Science,
STACS, volume 577 of Lecture Notes in Computer Science,
pages 161–171. Springer, 1992.

[BT05] Ahmed Bouajjani and Tayssir Touili. On computing reach-
ability sets of process rewrite systems. In Term Rewrit-
ing and Applications, 16th International Conference, RTA
2005, Nara, Japan, April 19-21, 2005, Proceedings, volume
3467 of Lecture Notes in Computer Science, pages 484–499.
Springer, 2005.

[CC04] Hubert Comon-Lundh and Véronique Cortier. Security
properties: Two agents are sufficient. Science of Computer
Programming, 50(1-3):51–71, March 2004.

[CG03] Luca Cardelli and Giorgio Ghelli. Tql: A query language
for semistructured data based on the ambient logic. In
Mathematical Structures in Computer Science, page 2004,
2003.

[Cha99] Wiltord Charatonik. Automata on dag representations of
finite trees. Technical report, Max-Planck-Institut für In-
formatik, Saarbrücken, 1999.

[CHK09] Roméo Courbis, Pierre-Cyrille Héam, and Olga
Kouchnarenko. Taged approximations for temporal
properties model-checking. In Proceedings of the 14th
International Conference on Implementation and Appli-
cation of Automata (CIAA’09), volume 5642 of Lecture
Notes in Computer Science, pages 115–124, 2009.

[CLC05] Hubert Comon-Lundh and Véronique Cortier. Tree au-
tomata with one memory, set constraints and crypto-
graphic protocols. Theoretical Computer Science, 331(1):
143–214, 2005.

[CLDG+07] Hubert Comon-Lundh, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Christof Löding, Denis Lugiez, Sophie
Tison, and Marc Tommasi. Tree automata techniques and
applications. http://tata.gforge.inria.f, 2007.

[CLJP07] Hubert Comon-Lundh, Florent Jacquemard, and Nicolas
Perrin. Tree automata with memory, visibility and struc-
tural constraints. In Proceedings of the 10th International
Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS). Springer, 2007.

131

[CP94] Witold Charatonik and Leszek Pacholski. Set constraints
with projections are in NEXPTIME. In Proceedings of the
35th Symposium Foundations of Computer Science, pages
642–653, 1994.

[CR07] Jacques Chabin and Pierre Réty. Visibly pushdown lan-
guages and term rewriting. In 6th International Sympo-
sium on Frontiers of Combining Systems, FroCos, volume
4720 of LNCS, pages 252–266. Springer, 2007. ISBN 978-
3-540-74620-1.

[CS07] Pierre Chambart and Philippe Schnoebelen. Post embed-
ding problem is not primitive recursive, with applications
to channel systems. In V. Arvind and Sanjiva Prasad, ed-
itors, Proceedings of the 27th Conference on Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS’07), volume 4855 of Lecture Notes in Computer
Science, pages 265–276. Springer, New Delhi, India, De-
cember 2007.

[DCC95] Max Dauchet, Anne-Cécile Caron, and Jean-Luc Coquidé.
Automata for Reduction Properties Solving. Journal of
Symbolic Computation, 20(2):215–233, 1995.

[DLL07] Stéphanie Delaune, Hai Lin, and Christopher Lynch. Pro-
tocol verification via rigid/flexible resolution. In 14th Inter-
national Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR, volume 4790 of LNCS,
pages 242–256. Springer, 2007.

[FGT04] Guillaume Feuillade, Thomas Genet, and
Valérie Viet Triem Tong. Reachability Analysis over
Term Rewriting Systems. Journal of Automated Reason-
ing, 33(3-4):341–383, 2004.

[FL02] Wenfei Fan and Leonid Libkin. On XML integrity con-
straints in the presence of DTDs. Journal of the ACM, 39:
368–406, 2002.

[FSVY91] Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi,
and Eyal Yardeni. Logic programs as types for logic pro-
grams. In 6th IEEE Symposium on Logic in Computer
Science, pages 300–309, 1991.

[FTT07] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison.
Satisfiability of a spatial logic with tree variables. In Pro-
ceedings of the 21st International Workshop on Computer
Science Logic (CSL 2007), volume 4646 of Lecture Notes
in Computer Science, pages 130–145. Springer, 2007.

132 Chapter 5 : Deciding Emptiness for TAGC

[FTT08] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison.
Tree automata with global constraints. In 12th Interna-
tional Conference in Developments in Language Theory
(DLT 2008), volume 5257 of Lecture Notes in Computer
Science, pages 314–326. Springer, 2008.

[Gal91] Jean H. Gallier. What’s so special about kruskal’s theorem
and the ordinal γ0? a survey of some results in proof theory.
Annals of Pure Applied Logic, 53(3):199–260, 1991.

[GK00] Thomas Genet and Francis Klay. Rewriting for Crypto-
graphic Protocol Verification. In Proc. of 17th Int. Conf.
on Automated Deduction, CADE, volume 1831 of LNCS,
pages 271–290. Springer, 2000.

[Gou05] Jean Goubault-Larrecq. Deciding H1 by Resolution. In-
formation Processing Letters, 95(3):401–408, 2005.

[Gue83] Irène Guessarian. Pushdown tree automata. Mathematical
Systems Theory, 16(1):237–263, 1983.

[HHK10] Pierre-Cyrille Héam, Vincent Hugot, and Olga
Kouchnarenko. Sat solvers for queries over tree au-
tomata with constraints. In Proceedings of the 2nd
Workshop on Constraints in Software Testing, Verification
and Analysis (CSTVA). IEEE publication, 2010.

[JKV] Florent Jacquemard, Francis Klay, and Camille Vacher.
Rigid tree automata. Information and Computation. To
appear.

[JKV09] Florent Jacquemard, Francis Klay, and Camille Vacher.
Rigid tree automata. In Proceedings of the 3rd Interna-
tional Conference on Language and Automata Theory and
Applications, (LATA’09), volume 5457 of Lecture Notes in
Computer Science, pages 446–457. Springer, 2009.

[JRV08] Florent Jacquemard, Michaël Rusinowitch, and Laurent
Vigneron. Tree automata with equality constraints mod-
ulo equational theories. Journal of Logic and Algebraic
Programming, 75(2):182–208, April 2008.

[Jur07] Alternation-free modal mu-calculus for data trees. IEEE
Comp. Society, 2007.

[KR02] Felix Klaedtke and Harald Ruess. Parikh automata and
monadic second-order logics with linear cardinality con-
straints. Technical Report TR 177, Intitute of Computer
Science at Freiburg University, 2002.

133

[LW09] Christof Löding and Karianto Wong. On nondeterministic
unranked tree automata with sibling constraints. In IARCS
Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2009). Leib-
niz International Proceedings in Informatics, 2009.

[Mon81] Jocelyne Mongy. Transformation de noyaux reconnaiss-
ables d’arbres. Forêts RATEG. PhD thesis, Laboratoire
d’Informatique Fondamentale de Lille, Université des Sci-
ences et Technologies de Lille, 1981.

[Mur99] Makoto Murata. Hedge automata: a formal model for XML
schemata. Technical report, Fuji Xerox Information Sys-
tems, 1999.

[NPTT05] Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and
Sophie Tison. N-ary queries by tree automata. In Founda-
tions of Semistructured Data, 2005.

[Pad88] Peter Padawitz. Computing in Horn clause theories.
Springer-Verlag New York, Inc., New York, NY, USA,
1988. ISBN 0-387-19427-4.

[Sal88] Kai Salomaa. Deterministic tree pushdown automata and
monadic tree rewriting systems. J. Comput. Syst. Sci., 37
(3):367–394, 1988.

[Sch07] Thomas Schwentick. Automata for xml - a survey. Journal
of Computer and System Sciences, 73(3):289–315, 2007.

[Seg06] Luc Segoufin. Automata and logics for words and trees over
an infinite alphabet. In Computer Science Logic, volume
4207 of Lecture Notes in Computer Science. Springer, 2006.

[Sei94] Helmut Seidl. Haskell overloading is dexptime-complete.
Information Processing Letters, 52(2):57–60, 1994. ISSN
0020-0190.

[SSM03] Helmut Seidl, Thomas Schwentick, and Anca Muscholl.
Numerical document queries. In Principle of Databases
Systems (PODS), pages 155–166. ACM Press, 2003.

[Tre00] Ralf Treinen. Predicate logic and tree automata with tests.
In FoSSaCS, pages 329–343, 2000.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite
automata theory with an application to a decision problem
of second-order logic. Mathematical System Theory, 2:57–
82, 1968.

134 Chapter 5 : Deciding Emptiness for TAGC

[VGL07] Kumar Neeraj Verma and Jean Goubault-Larrecq. Alter-
nating two-way ac-tree automata. Information and Com-
putation, 205(6):817–869, 2007.

[WL07] Karianto Wong and Christof Löding. Unranked tree au-
tomata with sibling equalities and disequalities. In Pro-
ceedings of the 34th International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume
4596 of Lecture Notes in Computer Science, pages 875–887.
Springer, 2007.

[YOM91] Suguru Yamaguchi, Kiyohiko Okayama, and Hideo Miya-
hara. The design and implementation of an authentication
system for the wide area distributed environment. IEICE
Transactions on Information and Systems, E74(11):3902–
3909, November 1991.

