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French and spanish abstracts

Résumé en français / French abstract

Les nanofils sont des structures avec une taille latérale de l’ordre du nanomètre. Nous
pouvons trouver des nanofils de différents matériaux, dont les semiconducteurs III-V, qui
se distinguent par leurs applications potentielles dans les dispositifs optiques tels que les
photo-détecteurs, diodes émettrices de lumière (LEDs) et lasers.

Les nanofils peuvent être été fabriqués par croissance avec la méthode Vapeur Liquide
Solide (VLS). Les nanofils III-V peuvent également être réalisés sans catalyseur avec des
méthodes comme l’épitaxie par jets moléculaires (MBE) ou la MOCVD (“Metal Organic
Chemical Vapor Deposition”). Il est possible d’alterner les matériaux le long de l’axe de
croissance des nanofils et de faire ainsi croître des “hétérostructures” de nanofils comprenant
barrières tunnels et boîtes quantiques. Il est également possible de déposer une ou plusieurs
“coquilles” autour du nanofil pour réaliser des hétérostructures radiales.

Ces hétérostructures de nanofils peuvent accomoder des désaccords de maille beaucoup
plus importants que les hétérostructures planes conventionnelles. En effet, les nanofils de
semiconducteurs peuvent relaxer efficacement les contraintes en déformant leur surface.
L’épaisseur critique au delà de laquelle les dislocations apparaissent est donc d’autant plus
grande que la section des fils est petite, ce qui permet de faire croître des hétérostructures
originales.

Les systèmes qui constituent le sujet principal de ce thèse sont les hétérostructures de
nanofils constituées de GaN et d’AlN. Ces matériaux cristallisent dans la structure wurtzite,
où ils forment des liaisons ionocovalentes dans une maille hexagonale. Nous nous at-
tacherons à modéliser leurs propriétés à l’échelle atomique, en lien avec des études ex-
périmentales. Nous chercherons en particulier à affiner l’interprétation d’une expérience
de spectroscopie optique où a été mis en évidence un fort “effet Stark confiné” dans ces
hétérostructures, i.e. un décalage vers le rouge de la luminescence lié à la présence d’un
champ électrique interne. Les phases wurtzite présentent en effet une polarisation électrique
spontanée (pyroélectricité), qui est responsable de l’apparition de champs électriques impor-
tants. Ces expériences sont introduites dans le chapitre 1.

Les contraintes résiduelles dans ces hétérostructures ont tout d’abord modélisées avec
un champ de forces de valence de type “Keating” (chapitre 2). L’énergie élastique dans ce
modèle est la somme d’un terme radial, qui décrit le coût de l’allongement des liaisons avec
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les premiers voisins, et d’un terme angulaire, qui décrit le coût de la modification des angles
de liaisons. Deux constantes élastiques, α et β , sont associées respectivement à chacun de
ces termes. Le modèle de Keating a été initialement développé pour des matériaux cubiques
(zinc-blende) où toutes les liaisons sont équivalentes. Nous l’avons adapté à des structures
wurtzites arbitraires où l’une des liaisons avec les quatre premiers voisins est plus longue
que les autres. Nous avons établi les expressions reliant α et β aux constantes élastiques
macroscopiques ci j, qui nous ont permis ce calculer les valeurs de α et β pour GaN et AlN,
et InN wurtzite.

Nous avons ensuite appliqué ce modèle à différentes hétérostructures GaN/AlN. Puisque
le modèle de Keating ne considère que la relaxation élastique (aucune dislocation), la com-
paraison entre les positions atomiques obtenues par la simulation et les positions obtenues
avec une méthode expérimentale telle que la microscopie peut suggérer la présence ou con-
firmer l’absence de dislocations dans un système. De fait, la comparaison entre les champs
de contraintes théoriques et expérimentaux dans des hétérostructures GaN/AlN présentant
une coquille d’AlN a permis de mettre en évidence la présence de dislocations dans la co-
quille. A l’inverse, dans des super-réseaux de nanofils GaN/AlN de rayon plus petit, l’accord
entre la simulation et la diffraction de rayons X aussi bien que les images de TEM suggère
une relaxation élastique parfaite du système.

Dans le chapitre 3, nous présentons les différentes approches possibles pour le calcul des
propriétés électroniques et optiques des nanofils, en commençant par l’approximation de la
masse effective. Celle-ci est une méthode de milieux continus qui peut être utilisée pour
modéliser le voisinage du minimum de bande de conduction. Cette méthode reste la plus
utilisée dans les matériaux semiconducteurs car elle permet souvent d’établir des expressions
analytiques et de dégager des tendances. Toutefois, elle n’est pas suffisamment quantitative
dans les milieux très confinés, et sa mise en oeuvre dans la bande de valence des matériaux
wurtzite reste complexe. Nous introduisons ensuite la méthode des liaisons fortes, qui permet
une description atomistique de la structure électronique des matériaux même très confinés.
L’idée de cette méthode est de développer les fonctions d’ondes des électrons et des trous
dans une base d’orbitales atomiques (s, p, d, . . . ) des différents atomes. Les interactions
entre orbitales sont limitées aux premiers, seconds ou troisièmes voisins selon les modèles et
sont ajustées pour reproduire la structure électronique des matériaux massifs, puis transférées
aux nanostructures. Cette méthode a déjà été utilisée avec succès par le passé pour calculer
la structure électronique de toutes sortes de nanostructures de semiconducteurs.

Nous décrivons ensuite la structure électronique de GaN et AlN massif dans les structures
cubique et wurtzite. Nous montrons les similitudes et différences entre les deux phases. La
structure électronique de la bande de valence est, en particulier, très complexe. Les matériaux
cubiques présentent trois bandes de valence, dont deux, dégénérées en Γ (trous lourds et
trous légers), sont séparées de la troisième (“split-off”/spin-orbite). La dégénérescence trous
lourds/trous légers est levée par le champ cristallin dans la wurtzite, qui présente trois bandes
de valence distinctes, appelées “A”, “B”, et “C”, dont l’ordre dépend du matériau. Cet ordre
est notamment différent dans GaN et AlN.
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Nous décrivons ensuite un modèle pour la prise en compte de l’effet des contraintes
en liaisons fortes. Ce modèle comprend une correction des termes “intrasites” qui lève la
dégénérescence des orbitales p et d sous contrainte uniaxiale. Nous proposons une paramétri-
sation de ce modèle pour GaN et AlN.

Enfin, nous présentons une application des liaisons fortes à un système différent, celui
des nanofils InAs/InP en phase cubique. Nous discutons en particulier l’effet des contraintes
sur la hauteur des barrières d’InP dans des nanofils d’InAs.

Dans le chapitre 4, nous faisons une description détaillée du système GaN/AlN. Comme
nous avons l’intention de comprendre les propriétés électroniques des insertions de GaN dans
des nanofils d’AlN, nous discutons d’abord le confinement quantique dans deux situations
limites : Puits quantiques de GaN/AlN, et fils de GaN purs. Nous décrivons ensuite les
propriétés pyro- et piézoélectriques de ces matériaux. Comme les quatre premiers voisins
d’un atome ne sont pas équivalents dans la structure wurtzite, le barycentre des anions et
des cations ne coïncide pas dans la maille, ce qui entraîne l’apparition d’une polarisation
électrique spontanée (pyroélectricité). Les contraintes, qui déplacent les cations par rapport
aux anions, viennent ensuite modifier cette polarisation (piezoélectricité). Cette distribution
de polarisation crée des champs électriques internes qui peuvent être très importants. Ils
sont, en particulier, responsables de “l’effet Stark” dans les hétérostructures GaN/AlN : Le
champ électrique sépare les électrons et les trous, ce qui entraîne un décalage vers le rouge
des raies de luminescence, en deçà même de la bande interdite des matériaux massifs. Nous
discutons cet effet dans les puits de GaN dans AlN. Nous montrons que le décalage vers le
rouge augmente avec l’épaisseur du puits, et que la bande interdite s’annule dans des puits
d’environ 5 nm d’épaisseur.

L’effet Stark a également été mis en évidence dans des hétérostructures de nanofils
GaN/AlN, dans l’équipe NPSC de l’INAC. Le décalage vers le rouge mesuré est toutefois
beaucoup plus petit que dans les puits et les boîtes quantiques de GaN. Ce sont ces expéri-
ences que nous nous efforcerons d’interpréter à la fin du chapitre 4 et dans le chapitre 5.
Nous avons tout d’abord calculé les énergies de luminescence dans une approche “simple”
qui ne tient compte que de la polarisation pyro- et piézoélectrique comme sources de champ
électrique. Nous montrons que les champs électriques dans les fils devraient être compara-
bles à ceux trouvés dans des hétérostructures planes, ce qui ne permet pas d’expliquer les
résultats expérimentaux. Il manque donc dans cette approche des phénomènes d’écrantage
qui réduisent l’amplitude du champ électrique.

Dans le chapitre 5, nous étudions les différents phénomènes qui écrantent le champ élec-
trique dans ces hétérostructures. Nous démontrons que le champ électrique interne est ca-
pable de déplacer des charges dans le système. En particulier, il peut arracher des électrons
aux états de surface occupés à l’extrémité des fils et les transférer sous l’hétérostructure
GaN/AlN. Le gaz d’électrons ainsi formé réduit le champ électrique dans le système. Nous
calculons de façon auto-cohérente le champ électrique écranté avec un modèle de Debye-
Hückel, en incluant les états de surface qui peuvent capturer ou libérer des porteurs. Nous
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obtenons alors un bon accord entre les énergies de luminescence calculées avec le modèle de
liaisons fortes et les mesures expérimentales. Nous proposons également un modèle analy-
tique approché pour aider la conception des hétérostructures GaN/AlN.
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Resumen en español / Spanish abstract

Los nanohilos son estructuras con un tamaño lateral del orden del nanometro. Podemos
encontrar nanohilos de distintos materiales, entre los cuales destacan los semiconductores
III-V, los cuales se remarcan por sus aplicaciones en dispositivos ópticos como fotodetec-
tores, diodos emisores de luz (LEDs) y lassers. Los primeros nanohilos se crearon con el
método Vapor Líquido Sólido (VLS), el cuál utiliza oro como catalizador, los nanohilos III-
V se crean actualmente utilizando métodos como el " Molecular Beam Epitaxy" (MBE) o el
" Metal organic chemical vapeur depositon" (MOCVD), que pueden hacer crecer nanohilos
sin catalizador. Los primeros sistemas similares a un modelo teórico simple como un poten-
cial unidimensional, es decir, un pozo cuántico, se han creado utilizando heteroestructuras
de nanohilos, las cuales crecen de manera epitaxial. Es posible crear heteroestructuras de
dos tipos, axiales y radiales también llamados " core-shell" Uno de los aspectos interesantes
de los nanofils comparado al material masivo es que la pequeña sección transversal permite
una relajación lateral, permitiendo la combinación de los materiales con distintos parámetros
de malla. Por otra parte esta diferencia en las parametradas de malla crea un estres cerca de
la unión de dos materiales, donde el material con un mayor parámetro de malla está bajo
compresión y el material con un más pequeño parámetro de malla está bajo tensión. Los
sistemas, que son el tema principal de esta tesis, son las heteroestructuras de nanofils consti-
tuidas de GaN y AlN. Estos materiales cristalizan en la estructura wurtzita, y ellos formando
enlaces ionocovalentes formando una estructura hexagonal. El estres presente en la het-
eroestructura se modelizaa utilizando el campo de fuerza de Valencia de Keating. En cuál la
energía elástica por átomo se forma por dos términos cuando los átomos se desplazarán de
su posición de equilibrio, el primero considera los cambios de distancia entre los primeros
vecinos (bond stretching), el en segundo lugar considera el cambio en los ángulos formados
entre los primeros vecinos (bond bending). En este modelo aparecen un par de constantes
alfa y beta para bond stretching y bond bending respectivamente, estos constantes son ajus-
tadas a cada material. La energía elástica obtenida con el modelo de Keating se compara a
la energía elástica del modelo macroscópico donde aparecen el constante C11, C12 y C44,
y las constantes apha y la beta son ajustada de manera que puedan reproducir las constantes
macroscópicas. Este modelo inicialmente se creó para la estructura zicblenda y a contin-
uación se adaptó a la estructura wurzita, nosotros la adaptamos a la estructura wurzite no
ideal, la cual considera que la distancia entre primeros vecinos que son paralelos al eje c es
mayor que las otras tres distancias entre vecinos, produciendo el tetrahedre formado por las
enlaces no tenga en su centro un átomo. En ese caso la energía elástica por átomo se forma
por dos términos bond stretching y dos términos bond bending, el para cada tipo de conex-
ión, (los enlaces paralelos al eje c, y los enlaces no paralelos al eje c), y dos para cada tipo
d’ ángulo. Este modelo simple de dos constantes reproduce de manera razonable todas las
constantes elásticas para GaN, AlN e InN wurtzita. Puesto que el modelo de Keating VFF
considera solamente la relajación elástica (sin dislocaciones), la comparación entre las posi-
ciones atómicas obtenidas por las simulaciones y las posiciones obtenidos por un método
experimental como TEM puede sugerir la presencia o la ausencia de las dislocaciones en
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un sistema. En el capítulo 2 presentamos la aplicación de modelo de Keating en los dos
casos. Primero lugar discutimos de las inserciones de GaN en nanocolumnas de AlN, donde
la diferencia entre las imágenes de TEM y las simulaciones indican la presencia de las dis-
locaciones. En segundo lugar, discutimos unas superredes de nanohilos de GaN/AlN con
un radio más pequeño donde el acuerdo entre la simulación y la difracción de los rayos X
así como las imágenes de TEM sugieren una relajación elástica perfecta del sistema. En el
capítulo 3 examinamos la estructura electrónica del GaN y AlN, comenzando con la aprox-
imacon más simple, la masa efectiva. Puede emplearse para que se modele la proximidad
del minimo de la banda de conducción que se describe como una parábola, y el tiempo de
cálculo es independiente del número d’ átomos. Este modelo es eficaz, simple y preciso
para el tratamiento de la banda de conducción en grandes sistemas. Con todo él falla en
los sistemas muy confinados como nanocristales porque la aproximación parabólica no re-
produce las bandas a alta energía. Mientras que el modelo de electrones casi libres es una
representación razonablemente buena de la estructura elctronica de los metales simples, el
método de enlaces fuertes proporciona una representación más fiel de los sistemas donde
los iones se localizan en lps enlaces químicos de diferente grado de covalencia. La idea
principal de este método es considerar una base de orbitales de atómicos y la interacción del
uno con el otro que forma las órbitas moleculares. En le enfoque semiempirico de enlaces
fuertes se hacen algunas aproximaciones habitualmente. Las interacciones se limitan a los
primeros, segundos o en tercero vecinos más cercanos. Esto es justificado por el hecho de
que las orbitales distantes tienen el translape despreciable. En este trabajo empleamos los
modelos a primeros vecinos más cercanos. Las orbitales se asumen ortogonales. Los tér-
minos en a tres centros se desprecian en los Hopping términos. En el capítulo 3 se muestra
la estructura de bandas para GaN y AlN para la estructura zicblend y wurtzita, utilizando el
método de enlaces fuertes. Si hacemos un zoom de la estructura zicblende de GaN alrededor
del punto gamma, podemos distinguir una banda de conducción y tres bandas de Valencia
que se llaman los huecos pesados, huecos ligeros y banda de split off. El gap de GaN en
esta estructura es directo mientras que le gap de AlN es indirecto. En la fase de wurtzita le
gap de los dos materiales es directo. En wurtzita GaN y AlN, el fondo de la banda de con-
ducción y la parte superior de las bandas de Valencia se encuentran en el punto gamma. La
banda de conducción más baja es una combinación lineal d’ orbital s mientras que la banda
de valencia más alta es un comination lineal de orbitales p. Al final del capítulo 3 describen
l’ efecto del estres sobre la estructura de bandas y sel exemplifica con la modelización de
estres en nanohilos de InAs e InP, utilizando el método de enlaces fuertes. En el capítulo 4
hacen una descripción detallada del sistema de GaN/AlN. Como tenemos la intención de in-
cluir las propiedades electrónicas de las inserciones de GaN en nanohilos de AlN, discutimos
primero el confinamiento cuántico en dos situaciones límite: Pozos cuánticos de GaN/AlN
(t/R « 1) e hilos puros de GaN (t/R»1) , t siendo el grosor de la capa de GaN y el R el ra-
dio del hilo). GaN y AlN en la fase de wurtzita son propensos a la polarización eléctrica
espontánea, ya que el distancia entre primeros vecinos más cercanos no son equivalentes, el
baricentro de los aniones y los cationes no coinciden en la célula unidad. Esto conducen a
l’ existencia de una diferente densidad de cero de dipolo en el cristal (piroelectricidad). Le

6



Resumen en español / Spanish abstract

estres desplaza los aniones con respecto a los cationes y redistribuirán la carga entre ellos,
aumentando o disminuyendo por lo tanto esta densidad de dipolo (piezoelectricidad). Esta
distribución de densidad de dipolo puede ser responsable de grandes campos eléctricos en
heteroestructuras y dispositivos de GaN/AlN. Le efecto Stark es un fenómeno encontrado
en las heteroestructuras bajo la presencia de un campo eléctrico. En este caso el campo es
creado por los potenciales piroeléctrico y piezoeléctricos. La estructura electrónica de una
heteroestructura es modificada debida al campo eléctrico. De esta forma obtendremos gaps
ópticos más pequeños en presencia de este campo eléctrico, y disminuiremos el gap óptico
de la heterosturctura cuando aumentamos la longitud de la inserción de GaN. Esto se mani-
fiesta por un desplazamiento hacia el rojo en las medidas de fotoluminiscencia. Al final del
capítulo 4 se muestran como le efecto Stark es muy sensible a la geometría del sistema, en
elemplicifando con cálculos en hijos de AlN con inserciones de GaN. Se observó experi-
mentalmente un fuerte desplasamiento hacia el rojo (debajo del gap en GaN masivo) para un
mayor grosor de disco, una firma de l’ efecto Stark cuántico confinado. Este desfase hacia el
rojo es sin embargo más pequeño que el esperado en comparación con pozos de quantum de
GaN/AlN. En el capitulo 5 se modelan las propiedades electroincas de las heterostructuras
de nanohilos de GaN/AlN en un marco atomisctico de enlaces fuertes. Calculamos primero
el estres con un método de campo de fuerza de valencia de Keating y luego calculamos el
campo pyro y piezoeléctrico Explicamos el doblameinto de la banda con un enfoque semi-
classique de Debye-Huckel, no haciendo ninguna pretensión con respecto al pining del nivel
de Fermi, pero incluyendo una distribución de los estados de superficie que actúan como
trampas o fuente de carreras. Probamos que el componente piezolectrico del campo puede
ser reducido significativamente por la relajación eficaz de estres en la geometría del nanohilo,
que la polarización espontánea y piezoeléctrica crean un gas d’ electrones a la interface in-
ferior de GaN/AlN y son probablemente bastante grande para crear un gas de huecos en la
barrera superior d’ AlN. Estos gases de electrón y de huecos reducen el campo eléctrico en
los puntos cuánticos de GaN y reducen el desfase hacia el rojo. que para grosores cuidadosa-
mente elegidos de punto cuántico y barrera el punto cuántico de GaN esta vacío al equilibrio,
compatible con l’ observación de transitan d’ exciton y de biexiton.

7



ABSTRACTS

8



Chapter 1

Introduction

1.1 The nanowires

The nanowires are structures with a lateral size of the order of few nanometers. Different
kinds of nanowires have been designed; there are metallic nanowires (Ni, Au, Pt, ...), insu-
lator nanowires (SiO, TiO, ...), and semiconductor nanowires. The semiconductors can be
formed with elements of column IV, like Si, Ge, C, and with compounds of the III-V group.
Here we can find nanowires of nitrides, like GaN, AlN, InN, nanowires of arsenides like
InAs, AlAs, or nanowires of phosphides like InP, GaP, and AlP, for example. Ternary solid
solutions have also been used for alloys like GaInN, GaAlN, etc...

In this work, we study the properties of semiconductor nanowires – mainly III-V semi-
conductors – with a special focus on GaN/AlN systems. This latter system crystallizes in
the wurtzite structure, which exhibits, in particular, spontaneous (pyroelectric) polarization.
When a stress is applied, it also shows piezoelectricity. Spontaneous polarization and piezo-
electricity generate large internal electric fields which modify the electronic and optical prop-
erties of the system.

The nanowires can be homogeneous or heterogeneous (commonly known as heterostruc-
tures) with, in this latter case, a radial structure (figure 1.1) or an axial structure (figure 1.2).
The work presented in this thesis is focused on such heterostructures.

1.2 Application of nanowires

The nanowires have become structures of great interest due to their multiple applications
in:

Electronic devices (1), for instance field-effect transistors.
Bioelectronic, bio-chemical sensors (2) like gas or humidity sensors (3).
Solar cells (4).
Thermoelectricity (5).
Optoelectronic devices (6) like photodetectors, and light-emitting diodes (7) and lasers.
Let us now discuss some examples of these applications.

9



1. INTRODUCTION

Figure 1.1: Radial heterostructure - Transmission electron microscopy (TEM) image of an
“core-shell” Si-Ge nanowire [from reference (8)].

The efficient radiative recombination in III-V semiconductors has permitted the develop-
ment of light-emitting devices that efficiently convert electrical energy into incoherent light.
This has a growing number of rather diversified applications, like displays, lighting, traffic
signs and signals, light surfaces for accelerated photosynthesis and medicine for diagnosis
(10).

Much research has been done to develop high brightness blue-light-emitting diodes to be
used in full colour displays and indicators. For these purposes, II-VI materials (such as ZnSe
and SiC) and III-V nitride semiconductors have recently been investigated.

In 1993, Nakamura showed that it is possible to create blue light-emitting diodes from
InGaN/AlGaN heterostructures (7). The high crystallographic quality of III-V nanowires is
of particular interest since it potentially provides a solution for overcoming the problems
inherent to the high density of dislocations usually found in bi-dimensional (2D) layers of
this material. As a matter of fact nitride nanowires can be viewed as a juxtaposition of non-
coalescent grains, which leads to the suppression of threading edge dislocations formed due
to the coalescence of adjacent grains in the usual growth conditions of 2D layer.

It has been shown by various groups that GaN nanowires, grown without catalyst by
molecular beam epitaxy, are high quality materials exhibiting remarkable optical properties
as compared to those made of standard 2D layers. As a practical consequence of these
excellent optical properties, it has been shown that nitride wire-like heterostructures present
a potential interest for the realization of efficient light emitting devices (LED’s) in the visible
and UV ranges.

1.3 Growth of nanowires

The first wires were developed in the first half of the 60’s at the Bell telephone laborato-
ries, using the VLS (vapor-liquid-solid) technique (11).

In this technique, droplets of liquid gold are deposited on a substrate, for instance Si, and
they are heated until they turn into small droplets of Au-Si. Next, these droplets are exposed
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Figure 1.2: Axial heterostructure - Transmission electron microscopy (TEM) image of an InAs
nanowire of 40 nm diameter containing four InP barriers [from reference (9)].

11
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to an atmosphere of SiCl4 and H2 (vapor). The droplets act as (liquid) chemical catalysts
adsorbing the silicon from the gas until supersaturation occurs. At that point, the Si atoms
condense and crystallize (solid) between the substrate and the droplets. The final diameter
of the wires is mainly determined by the initial diameter of the droplets, while the length of
the nanowires increases until the growth is stopped.

This technique has been improved in 1998 with a reduction of the size of the droplets by
using the Laser Ablation Method (12). This technique leads to nanowires of homogeneous
diameter in the nanometric scale.

As for III-V nanowires, they can be grown with or without catalysts. There are two main
techniques, which will be described below: the Molecular-Beam Epitaxy (MBE) and the
Metal-Organic Chemical Vapour Deposition (MOCVD).

1.3.1 Molecular Beam Epitaxy (MBE)

In this technique, performed under ultra high vacuum conditions, pure elements are evap-
orated from source cells onto a heated substrate, where they condensate. At low deposition
rates, the growth process can be monitored and a crystal may be built one atomic layer at
a time (13). In favorable cases (small lattice mismatch), the resultant layer is epitaxial to
the substrate. Nitride semiconductors are usually grown with “plasma-assisted” MBE where
active nitrogen is produced by a plasma source.

Nitride nanowires can be grown with MBE without catalysts (14). The nanowires nucle-
ate from small GaN islands spontaneously formed on the substrate by Stranski-Krastanov or
Volmer-Weber growth. As the “vertical” growth along [0001] is much faster than the “lat-
eral” growth perpendicular to [0001], these islands indeed turn into elongated, nanowire-like
structures.

1.3.2 Metal-Organic Chemical Vapor Deposition (MOCVD)

In the MOCVD, gazeous precursors of the semiconductor elements are mixed with trans-
port gases and injected into a reactor. These precursors are pyrolysed onto a heated substrate
and react with the surface. At variance with MBE, which is mostly a physical deposition in
ultra-high vacuum conditions, MOCVD involves complex gas phase and surface chemical
reactions (10), and is performed at higher gas pressures (typically 800 mbar for GaN). Metal-
organic molecules such as trimethyl-gallium or trimethyl-aluminum are used as precursors
for Gallium and Aluminium, while ammonia (NH3) is used as a source for nitrogen.

Catalyst-free GaN nanowires have been grown with MOCVD on a sapphire substrate
covered with a thin dielectric layer (15). Holes opened in the dielectric layer served as a
mask for the growth of the nanowires.

12



1.4 Heterostructures

1.4 Heterostructures
1.4.1 Definition

A heterojunction is formed when a layer of material “A” is deposited onto a layer of ma-
terial “B”. A heterostructure is an ensemble of such heterojunctions. If a narrow bandgap
material “A” is sandwiched between two layers of a wider bandgap material “B”, as illus-
trated in fig 1.3, it forms a quantum well (17). The carriers (electrons, holes) injected in the
structure tend to be collected by the quantum well where they can, for example, recombine
by emitting photons. If, on the opposite, a large bandgap material “A” is sandwiched between
two layers of a narrow bandgap material “B”, it forms a tunneling barrier, which can be used
to control the flow of carriers.

Figure 1.3: Heterostructure - Band structure of a heterostructure.

The design of heterostructures is limited by the lattice mismatch between the different
materials. A layer “A” deposited on a thick layer “B” with a different lattice parameter will
be strained and accumulate elastic energy. When the thickness of layer “A” reaches a critical
thickness hc, the strains are relieved by the formation of misfit dislocations or by a transition
to a Stranski-Krastanov growth mode (20).

1.4.2 Axial and radial nanowire heterostructures

In nanowires, it is possible to grow two kinds of heterostructures: axial heterostructures
(18), where the layers are stacked along the growth axis, as in figure 1.2, and radial het-
erostructures (19), also known as “core-shell” structures (see figure 1.1).

To create axial heterostructures, the reactants are switched once a given layer reaches the
expected thickness. Changes in reactants are repeated to generate the desired heterostruc-
ture, as illustrated in figure 1.4. The sharpness of the interfaces depends on the actual growth
mechanism (e.g., the catalyst might need to be purged in the VLS growth). Axial nanowire
heterostructures resemble planar heterostructures, but with finite lateral size. As discussed
in the next paragraph, this enhances strain relaxation and increases the critical thickness. If
the radius of the nanowire and thickness of the layers can be made small enough, quantum
dot-like structures, confined in all three directions of space, can be inserted in the nanowire.

13
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The possibility to control the number and position of the quantum dots embedded in ax-
ial heterostructures is one important advantage of nanowires with respect to quantum dots
obtained by Stranski-Krastanow growth (20).

Figure 1.4: Axial heterostructure - a) Nanowire growth using reactant A. b) Switch from
reactant A to reactant B and formation of the heterostructure. c) Formation of a sequence of
crystalline layers by changing the reactants.

To create core-shell heterostructures, a complete homogeneous nanowire is grown first.
The growth conditions are then changed so that the growth does not selectively takes place in
the catalyst or in specific directions, and the reactants are switched. If this switch of reactants
is repeated, it is even possible to grow a multi-shell structure, as shown in figure 1.5.

1.4.3 Strains in heterostructures

One of the interesting aspects of nanowire compared to conventional planar heterostruc-
tures is their ability to relax strains. Indeed, the nanowires can distort their free surface to
relieve internal misift strains at the interfaces between heterolayers. As a consequence, the
nanowires can accomodate much larger lattice mismatches than 2D heterostructures (21).

As explained above, strain relaxation in 2D heterostructures occurs by the formation of
dislocations beyond a critical thickness hc which depends on the lattice mismatch between
the materials. These dislocations are extended defects which degrade the electrical and opti-
cal properties of the heterostructures, and should therefore be avoided as far as possible. In
nanowire heterostructures, the critical thickness increases with decreasing wire radius as the
free surfaces allow more efficient elastic strain relaxation. For a given lattice mismatch, it
has even been predicted that the critical thickness becomes infinite below a critical radius Rc

(22; 23), allowing the growth of arbitrary coherent heterostructures with can not be achieved
with planar technologies, such as the heterostructure of figure 1.2.
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Figure 1.5: Core-shell heterostructure. - a) Nanowire grown using reactant A. b) Switch form
reactant A to reactant B, formation of a shell around the initial wire. c) Formation of a multi-shell
structure.

1.5 Nitride nanowires

The systems, which are the main subject matter of this thesis, are the nanowire het-
erostructures made of GaN and AlN. Both materials form ionocovalent bonds and crystallize
in the wurtzite structure. We will describe this hexagonal structure in detail in chapter 2.

One of the specifics of wurtzite materials is the existence of large internal electric fields.
These built-in electric fields are due to the existence of a spontaneous polarization in the
system (pyroelectricity). The bonds between anions and cations are not, indeed, equivalent
in the wurtzite structure, so that the unit cell exhibits a non-zero electric dipole. This dipole is
further affected by strains (piezoelectricity). We will investigate the polarization and electric
field in nitride nanowires in detail in chapters 4 and 5. For now, we discuss experimental data
clearly showing the existence of a large electric field in GaN/AlN nanowire heterostructures
(24). The detailed interpretation of these experimental results will be the focus of chapter 5.

The system consists of GaN quantum disks between two AlN barriers, on top of 30 nm
diameter GaN pillars (see figure 1.6). These wires were grown by plasma-assisted MBE
under nitrogen-rich conditions (24). The thickness of the quantum disks ranges from 1 to
4 nm. J. Renard et al. (24) have measured the photoluminescence spectra obtained by
exciting the samples with a doubled argon laser emitting at 244 nm (see figure 1.7). In such
a photoluminescence experiment, electrons are transferred by the laser from the valence band
to the conduction band, leaving holes in the former, i.e. electron-hole pairs are generated.
The electrons and holes thermalize to the lowest conduction band and higher valence band
states, where they can recombine by emitting photons. The energy of the emitted photons is
therefore comparable to the bandgap of the material (up to a so called excitonic correction
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Figure 1.6: The system - a) GaN quantum disks embedded in AlN nanowires, b) HRTEM image
from reference (24).

due to the attractive Coulomb interaction between the electron and the hole). The intensity
of the luminescence depends on the overlap between the electron and hole wave functions,
and on the competition with non-radiative recombination channels such as impurities.

Figure 1.7: Photoluminescence spectra - Room-temperature macrophotoluminescence spectra
of ensembles of GaN/AlN axial nanowire heterostructures containing single GaN quantum dots.
The different curves correspond to increasing GaN insertion thickness from ∼ 1 nm to ∼ 4 nm.

The signal around 3.4-3.45 eV comes from electron-hole pairs recombining in the GaN
base of the nanowires. The other peak is attributed to the GaN insertions. It is broadened by
the dispersion of the size of the disks. The position of this peak monotonously decreases as a
function of the disk thickness. In particular, in the thickest insertions, the photoluminescence
occurs around 2.7 eV, hence at energies well below the band gap of bulk GaN. This redshift is
due to the electric field in the insertion, which separates the electrons from the holes (“Stark
effect”). This experiment will be analyzed in detail in chapters 4 and 5.

16



1.6 Conclusion and outline of this thesis

1.6 Conclusion and outline of this thesis

As shown in this introduction, nanowires can be grown with various shapes and compo-
sitions, and provide new opportunities to explore the physics of one-dimensional systems.
GaN/AlN nanowire heterostructures show, in particular, interesting optical properties such
as a strong Stark effect.

In this thesis, we model the structural and electronic properties of nitride nanowires,
with a particular focus on the Stark effect experiments of Ref. (24). We use, for that pur-
pose, atomistic methods, which provide a description of the nanowires at the atomic scale.
In chapter 2, we discuss the structural properties of GaN/AlN nanowire heterostructures.
We introduce the zinc-blende and wurtzite crystal structures encountered in these materials,
and derive a valence force field model for the wurtzite phase. This valence force field al-
lows the calculation of the atomic positions in strained nanowire heterostructures, assuming
coherent growth (no dislocations). We compare the predictions of this model with various
TEM and X-Ray experiments. In chapter 3, we introduce the tight-binding method for the
electronic structure. We discuss, in particular, the effects of strains on the band structure of
nitrides. In chapter 4, we review the properties of GaN/AlN heterostructures. We discuss the
spontaneous polarization, piezoelectricity and built-in electric fields. We attempt simple cal-
culations of the Stark effect in GaN/AlN nanowire heterostructures, which do not, however,
match the experiments. These calculations actually point to the importance of the screen-
ing of the electric field by, e.g., charged surface defects. Finally, in chapter 5, we make a
complete simulation of the electrostatics of these nanowires, including such complex screen-
ing effects. We get a much better agreement with the experiment, and are able to provide a
detailed interpretation of the physics of these heterostructures.
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Chapter 2

Structural properties of nitride
nanostructures

2.1 Introduction

Strains have significant effects on the electronic and optical properties of lattice mis-
matched semi-conductor heterostructures such as quantum dots or nanowires. They indeed
shift the conduction and valence band edges (26) and might give rise to piezoelectric fields
(27) which tend to separate the electrons from the holes (28; 29). In inhomogeneous sys-
tems, the strains εαβ can be conveniently computed with continuum elasticity theory (30),
which is believed to hold down to nanometer-size systems (31). These strains can then be
used directly as input for electronic structure calculations within the effective mass or k ·p
approximations (32; 33), which are also continuous medium theories. The strains εαβ do
not, however, provide enough information for atomistic electronic structure methods such as
tight-binding (34; 35) or pseudopotentials (36; 37), which need atomic positions as input.
Indeed, the atomic positions can hardly be reconstructed from the strains, whose analytic
structure is very complex around, e.g., surfaces and interfaces, and which do not character-
ize the internal strains (38) within the unit cell (i.e., the displacement of one sublattice with
respect to an other). Therefore, the atomic positions used as input for such methods are usu-
ally computed with semi-empirical force fields such as Keating’s Valence Force Field (VFF)
(39), Tersoff (40), or Stillinger-Weber potentials (41).

There is a a clear trade-off between the range and complexity of these force fields and
their transferability. In the elastic limit (no plastic relaxation), Keating’s VFF model provides
a good balance between accuracy and efficiency. This first nearest neighbor force field has
originally been developed for diamond and zinc-blende materials (39). It gives an excellent
account of the elastic properties of silicon and germanium, and a reasonable description of
those of III-V materials. The latter can be improved with the introduction of long range
interactions arising from the charge transfer between anions and cations (42), at the expense
of a larger computational cost. In principle, Keating’s model can also be applied to wurtzite
materials. To our knowledge, the relations between the macroscopic elastic constants ci j and
Keating’s bond-bending and bond-stretching constants have only been established for ideal
wurtzite materials with equal bond lengths and angles (43; 44).
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In this chapter we introduce the two main polytypes encountered in III-V materials, the
zinc-blende (ZB) and the wurtzite (WZ) structures. We then present the application of Keat-
ing’s Valence Force Field (VFF) model to arbitrary wurtzite materials. We finally discus the
application of the model to GaN/AlN core-shell and axial nanowire heterostructures.

2.2 The III-V semiconductor structures

The III-V semiconductor crystals form ionocovalent bindings, being tretravalent with a
sp3 hybridisation. These tetrahedrons can be organized in two types of lattice structures: the
zinc-blende and the wurtzite.

In the case of the zinc-blende there are two sublattices one for cations and another one
for anions. In the case of the wurtzite structure there are four sublattices which can also be
considered as two hexagonal compact sublattices. In both cases, one cation of one sublattice
is surrounded by four anions of the another sublattice, and one anion is surrounded by four
cations forming such tetrahedrons.

2.2.1 The Zinc-Blende structure

The arrangement of atoms in the Zinc-Blende structure can be described as two cubic
face centered structures shifted one with respect to the other by a distance of a

√
3/4 in the

[111] direction. One sublattice is occupied by anions and the other one by cations. It can
also be considered as a cubic diamond structure but alternating two different ions.

Figure 2.1: The Zinc-Blende cubic cell. The atoms of one sublattice are in red, the atoms of
the other in green. -

We show the conventional cubic cell in the figure. 2.1, where the [111] direction goes
along the diagonal of the cube from the bottom left corner to the top right corner. The
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primitive cell is formed by one cation and one anion, and the primitive translation vectors
are:

a =
1
2

a(0,1,1)

b =
1
2

a(1,0,1)

c =
1
2

a(1,1,0) (2.1)

The unit-cell positions are

R1 = 0

R2 =
1
2

a+
1
2

b+
1
2

c , (2.2)

where a is the lattice constant.

2.2.2 The Wurtzite structure

Figure 2.2: The Wurtzite unit cell - Three unit cells form an hexagon. The atoms of one
sublattice are in red, the atoms of the other in green.

The wurtzite structure can be described as two identical hexagonal close-packed sublat-
tices, shifted along the c axis by cu. The wurtzite unit cell is shown in figure 2.2.

The lattice vectors are:

a = a(1,0,0)

b = a(1,
√

3,0)/2

c = c(0,0,1) , (2.3)
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and the unit-cell positions are

R1 = 0

R2 = uc

R3 =
1
3

a+
1
3

b+
1
2

c

R4 =
1
3

a+
1
3

b+

(
u+

1
2

)
c . (2.4)

Sublattice 1 and 3 are occupied by the cations while sublatice 2 and 4 are occupied by
anions. At variance with the zinc-blende structure, the four nearest neighbors bonds are
not equivalent in the wurtzite structure. The bonds oriented along c indeed have a different
length (r′0) than the other bonds (r0) and make different bond angles. We will see in chapter
4 that this is responsible for the spontaneous polarization of the material and the existence of

large internal electric fields. Only in the particular case u = 3
8 and c = a

√
8
3

are the bonds

equivalent ( “ideal wurtzite material”)

2.3 The Valence Force Field model of Keating

The VFF Model has been introduced by P. N. Keating in 1966 (39). It gives the forces
induced on neighboring atoms when one atom moves from its equilibrium position in a
tetrahedrally-bonded solid. These forces gives to the solids their rigidity against compres-
sive, tensile, and shear stresses.

2.3.1 Keating’s model for the Zinc-Blende structure

The valence force field model (VFF) of Keating has originally been introduced for dia-
mond and zinc-blende materials. The elastic energy per atom reads in this approximation:

Ui =
3α

16r2
0

4

∑
j=1

(
r2

i j − r2
0
)2

+
3β

8r2
0

4

∑
j=1

4

∑
k> j

(
ri j · rik +

r2
0

3

)2

, (2.5)

where ri j is the vector from a given atom i to one of its four nearest neighbors j. The first
term accounts for the changes in bond lengths, while the second term mostly accounts for
the changes in bond angles. The macroscopic elastic constants c11, c12 and c44 are related to
the “bond-stretching” constant α , “bond-bending” constant β and equilibrium bond length
r0 = a

√
3/4 by comparing equation 2.5 with the energy in the continuous elasticity theory
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for a cubic structure (45);

c11 =
α +3β

a
(2.6a)

c12 =
α −β

a
(2.6b)

c44 =
4αβ

a(α +β )
. (2.6c)

Note that the ci j’s are not independent and fulfill the relation 2c44(c11 + c12) = (c11 −
c12)(c11 + 3c12). This relation is much better satisfied in group IV diamond like materials
than in III-V or II-VI ion-covalent materials where interactions are longer-ranged (42). It is
nonetheless possible to achieve a reasonable description of the elasticity of most semicon-
ductor materials in the above approximation.

2.3.2 Keating’s model for the non-ideal Wurtzite structure

We can therefore generalize Keating’s first nearest neighbor valence force field model to
the wurtzite materials in the following way:

Ui =
3α

16r2
0

3

∑
j=1

(
r2

i j − r2
0
)2

+
3α ′

16r′20

(
r2

i4 − r′20
)2

+
3β

8r2
0

3

∑
j=1

3

∑
k> j

(
ri j · rik − r2

0 cosθ0
)2

+
3β ′

8r0r′0

3

∑
k=1

(
ri4 · rik − r0r′0 cosθ ′

0
)2 (2.7)

where the b′ bond of atom i is assumed to be j = 4. For the sake of generality, we have
introduced two bond stretching constants α and α ′ for the b and b′ bonds, as well as two
bond bending constants β and β ′. It is easily verified that in the unstained but non-ideal
wurtzite lattice, the elastic energy is minimum and zero.

r′0, r0, cosθ ′
0 and cosθ0 (see figure 2.2) can easily be related to the structural parameters

a, c and u:
r′0 = cu (2.8a)

r0 =

√
3c2v2 +4a2

2
√

3
(2.8b)

cosθ ′
0 =

−
√

3cv√
3c2v2 +4a2

(2.8c)

cosθ0 =
3c2v2 −2a2

3c2v2 +4a2 =
3cos2 θ ′

0 −1
2

, (2.8d)

where v = 1−2u. Note that cosθ ′
0 = cosθ0 = −1/3 in an ideal wurtzite material.
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We shall now relate the macroscopic elastic constants ci j of the material to the micro-
scopic constants α , α ′, β and β ′. To this end (39), we will identify the second-order devel-
opment of equation (2.7) as a function of strains to the macroscopic elastic energy of the unit
cell. Under homogeneous strain, the lattice vectors and unit-cell positions transform as:

a′ = T̂ a;b′ = T̂ b;c′ = T̂ c (2.9a)

R′
1 = T̂ R1

R′
2 = T̂ R2 + t′

R′
3 = T̂ R3 + t

R′
4 = T̂ R4 + t+ t′ , (2.9b)

where T̂ = 1̂+ ε̂ and:

ε̂ =




εxx εxy εxz

εxy εyy εyz

εxz εyz εzz



 (2.10)

is the strain tensor. t = (t1, t2, t3) and t′ = (t ′1, t
′
2, t

′
3) define rigid translations of the different

sublattices (internal strains) that might be allowed by the reduced symmetry. We next intro-
duce Eqs. (2.9) into equation (2.7), sum Ui over the four unit cell positions, expand the VFF
energy to second order in εi j, ti, and t ′i , then minimize the resulting expression with respect to
the ti and t ′i . We finally identify the VFF energy of the unit cell with the macroscopic elastic
energy:

U = Ω

{
1
2

C11
(
ε2

xx + ε2
yy

)
+

1
2

C33
(
ε2

zz

)
+C12 (εxxεyy)+

C13 (εxxεzz + εyyεzz)+2C44
(
ε2

xz + ε2
yz

)
+(C11 −C12)

(
ε2

xy

)}
(2.11)

where Ω is the volume of the unit cell. We get:

c11 =
a2

2
√

3c

(
4A2 +13AB+B2

)(
8A′u2 +3B′w2

)
+162AB(A+B)v2

(2A+B) [6(A+2B)v2 +8A′u2 +3B′ (1−8uv)]
(2.12a)

c33 =
3
√

3c3

4a2

[
(A+2B)

(
8A′u2v2 +3B′v4

)
+16A′B′u2

]

6(A+2B)v2 +8A′u2 +3B′ (1−8uv)
(2.12b)

c12 =
a2

2
√

3c

(A−B)
[
(4A−B)

(
8A′u2 +3B′w2

)
+54ABv2

]

(2A+B) [6(A+2B)v2 +8A′u2 +3B′ (1−8uv)]
(2.12c)

c13 =

√
3c

2

(A−B)
(
8A′u2 +3B′vw

)
v

6(A+2B)v2 +8A′u2 +3B′ (1−8uv)
(2.12d)

c44 =

√
3c

4
(2A+B)B′

(2A+B+B′)
(2.12e)

c66 =
c11 − c12

2
, (2.12f)

where A = α/r2
0, A′ = α ′/r′20 , B = β/r2

0, B′ = β ′/(r0r′0), and w = 1− 4u. The internal
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translations which minimize the elastic energy moreover read:

t = −aξ

(
εxy,

εxx − εyy

2
,0
)

(2.13a)

t′ = c
(
ζ1εxz,ζ1εyz,ζ2 (εxx + εyy)−ζ ′

2εzz

)
, (2.13b)

with internal strain parameters:

ξ =
−2√

3

A−B

2A+B
(2.14a)

ζ1 =
Aw+Bv−2B′u

2A+B+B′ (2.14b)

ζ2 =
2a2

c2

(A−B)v

6Av2 +8A′u2 +12Bv2 +3B′w2 (2.14c)

ζ ′
2 =

−3Av3 +8A′u3 −6v
(
Bv2 +B′wu

)

6Av2 +8A′u2 +12Bv2 +3B′w2 . (2.14d)

Note that we could have introduced two different sets of bond-bending constants for the
anions and cations but that only the average would have appeared in the above expressions.

2.3.3 Keating’s model for the ideal Wurtzite structure

Keating’s VFF model can be readily applied to ideal wurtzite materials (with lattice pa-
rameters c = a

√
8/3 and u = 3/8) where all nearest neighbor bond lengths and angles are

equal. As we use a first nearest neighbor model the expression for the Keating VFF is the
same as the zinc-blende structure.

The elastic constants c11, c33, c12, c44 and c66, and internal strain parameters then read
(43; 44):

c11 =

√
3

12r0

1
2α +β

1
α +β

(
6α3 +β 3 +37α2β +28αβ 2) (2.15a)

c33 =

√
3

4r0

1
α +β

(
3α2 +β 2 +20αβ

)
(2.15b)

c12 =

√
3

12r0

1
2α +β

α −β

α +β

(
6α2 −β 2 +7αβ

)
(2.15c)

c13 =

√
3

12r0

α −β

α +β
(3α −β ) (2.15d)

c44 =

√
3

3r0

β

α +β
(2α +β ) (2.15e)

c66 =
c11 − c12

2
(2.15f)

(2.15g)
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ξ =
2√
3

α −β

2α +β
(2.15h)

ζ =
α −β

4(α +β )
(2.15i)

where r0 = 3c/8 = a
√

3/8 is the equilibrium bond length.

2.3.4 GaN, AlN and InN elastic constants

As an illustration, bond-stretching and bond-bending constants for wurtzite GaN, AlN
and InN are given in Table 2.1. We have assumed α = α ′ and β = β ′, which were fitted to
c11 + c33/2 + c12 + 2c13 and c13/c33. This simple, two constants model yields a reasonable
account (within 7% for c44) of all the elastic constant of wurtzite GaN, AlN and InN.

The bulk modulus

B =
C33 (C11 +C12)−2C2

13

C11 +C12 +2C33 −4C13
, (2.16)

and the ratio

R =
ε⊥
ε‖

= 2
C13

C33
, (2.17)

of the perpendicular to parallel bi-axial [0001] strain are compared with the data of reference
(46). The internal strain parameters ζ2 and ζ3 of GaN and AlN are also compared with the
ab initio values deduced from reference (47).

At the interface between, e.g. GaN and AlN, we take the average of cosθ0, cosθ ′
0 and β

on Al-N-Al and Ga-N-Ga bond pairs for the Al-N-Ga bond pair.
Finally, we would like to emphasize that this model provides a local description of the

elasticity of wurtzite materials similar to continuum elasticity theory. It misses, in particular,
the long range electro-mechanical couplings due to pyro- and piezo-electricity. Although
these couplings are actually often neglected (“semi-coupled” approach), they can be signifi-
cant in some III-V devices (48; 49). If needed, electro-mechanical couplings might be taken
into account in this model by introducing transverse or piezo-electric charges on the atoms
that couple the macroscopic pyro- and piezo-electric fields (50).

2.4 Applications

Since the Keating VFF model only accounts for elastic relaxation (no dislocations), the
comparison between the atomic postions obtained by the simulation and the positions ob-
tained by an experimental method like TEM can suggest the presence or absence of disloca-
tions in a system.

Next we will present the application of the Keating’s VFF to the two cases. First we
discuss GaN insertions in AlN nanocolumns, where the differences between the TEM im-
ages and the simulation actually points to the presence of dislocations. Second we discus
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GaN AlN InN
a 3.189 3.112 3.545 Å
c 5.185 4.982 5.703 Å
u 0.3768 0.3819 0.3790
α 88.35 83.79 67.38 N/m
β 20.92 19.83 10.01 N/m
c11 389.9 391.6 226.6 GPa

(390.0) (396.0) (223.0)
c33 404.9 373.6 223.4 GPa

(398.0) (373.0) (224.0)
c12 138.9 141.1 112.6 GPa

(145.0) (137.0) (115.0)
c13 110.6 105.4 93.3 GPa

(106.0) (108.0) (92.0)
c44 111.6 107.6 49.5 GPa

(105.0) (116.0) (48.0)
B 2116 206.0 141.4 GPa

(210.0) (207.2) (140.6)
R 0.547 0.564 0.835

(0.533) (0.579) (0.821)
ζ2 0.08 0.08 0.09

(0.09) (0.09)
ζ3 0.16 0.17 0.20

(0.17) (0.19)

Table 2.1: AlN GaN elastic constants -Lattice parameters, bond-stretching and bond-bending
constants for wurtzite GaN, AlN and InN. The elastic constants ci j computed from equations
(2.12) and (2.13) are given and compared to experimental and ab-initio data (between parenthe-
sis).
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GaN/AlN nanowire superlattices with smaller radius where the agreement between the sim-
ulation and the X-Ray diffraction as well as the TEM suggests a perfect elastic relaxation of
the system.

2.4.1 Structural properties of GaN insertions in AlN nanocolumns

The crystallographic perfection of III-V nitride nanowires (NWs), is of particular interest
as it potentially provides a solution to overcome the problems inherent to the high density
of dislocations usually found in bi-dimensional (2D) layers of this material family. As a
matter of fact, nitride NWs can be viewed as a juxtaposition of non-coalesced grains, which
leads to the suppression of threading edge dislocations formed at the coalescence of adjacent
grains in usual conditions for 2D layer growth. As a further characteristics of NWs, it is now
admitted that the large height/diameter aspect ratio and the large surface/volume ratio favors
an elastic relaxation of the strain induced by the heteroepitaxy of these objects on various
substrates (23).

Restricting ourselves to the case of GaN NWs grown without catalyst by molecular beam
epitaxy, it has been shown by various groups that it results in high quality material exhibit-
ing remarkable optical properties when compared to those of standard 2D layers (52) (53)
(54) (55) (56). As a practical consequence of these excellent optical properties, it has been
shown that nitride wire-like heterostructures present a potential interest for the realization of
efficient light emitting devices (LEDs) in the visible (57; 58) and UV range (59).

It has been proposed that the growth of nitride nanowires is governed by the diffusion
of metallic species along the side of the nanowires before incorporation on their top. This
leads to a very large vertical to lateral growth rate ratio of about 32 in the case of GaN.
However due to the reduced diffusion length of Al compared to Ga and to its enhanced
probability of incorporation on the nanowires sides, the formation of AlN/GaN wire-like
heterostructures is often accompanied by the growth of a thin AlN shell around the GaN
insertion. This experimental feature raises the issue of strain relaxation in GaN/AlN core-
shell heterostructures through dislocation formation beyond a given critical thickness.

As a matter of fact, the full understanding of the optical properties of GaN insertions in
GaN/AlN nanowires heterostructures requires a careful determination of their strain sate and
of the way the AlN shell affects it.

The investigated sample consisted of successive GaN inclusions, 30 nm in diameter and
2.5 nm in height, separated by 12 nm thick AlN regions, as shown in figure 2.3a. The sample
was grown by PA-MBE under N-rich atmosphere The presence of a thin AlN shell around
the wire can be noticed.

We will show that the 2.5 nm thick GaN insertions are partially relaxed, due to the pres-
ence of dislocations in the external AlN capping layer, in close relationship with the mor-
phology of GaN insertions and with the AlN capping mechanism. The observed plastic
relaxation in AlN is consistent with the small critical thickness expected for GaN/AlN radial
heterostructures (22; 60).
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The microstructure of the sample was analyzed by high resolution transmission electron
microscopy (HRTEM). The strain component along the nanowire axis, εzz, was obtained with
the Geometrical Phase Analysis (GPA) method. To perform the analysis, the 002 reflexion
was selected in the Fourier transform of the HRTEM image, which enables to get the varia-
tion of the (002) lattice plane spacing with respecto to a reference region chosen as the AlN
side part and taken as fully relaxed (61). εzz was calculated as εzz = (d002 −d002,ref)/d002,ref

with d002,ref = 1
2cAlN,bulk, (irrespective of the material) and is given in figure 2.3b. Concern-

ing AlN, we note an in-plane tensile strain in the central part with respect to the reference
side one, leading to a decrease of the AlN c-lattice spacing (≈ −1%) with respect to the
reference region. Concerning the GaN inclusions, we notice that εzz is maximal in the cen-
tral part, where it reaches about 6% and that it remains almost constant along the growth
direction (Fig 2.3b). On the other hand, a lateral gradient is observed, with a decrease from
the central part to the side one where it reaches about 4% , a value close to the GaN relaxed
one.

Figure 2.3: The GaN/AlN sample HRTEM image - (a) HRTEM showing the GaN insertions
in AlN (b) Mapping of strain component εzz obtained from GPA. The reference region was taken
in the AlN side part (c) εzz profile taken along the white arrow shown in (b).

29



2. STRUCTURAL PROPERTIES OF NITRIDE NANOSTRUCTURES

These experimental results were compared with our results computed using the Keat-
ing’s VFF model for the nonideal WZ . We considered [0001] oriented AlN nanowires with
hexagonal cross section (radius R ∼ 15) nm and

{
11̄00

}
facets. The GaN insertion was

modelled as a slice of a sphere. Periodic boundary conditions were applied along the c axis
on a supercell of length L = 14.5 nm. The dangling bonds were saturated with hydrogen
atoms which have however little influence on the relaxation. The conjugate gradients algo-
rithm was used to minimize the elastic energy with respect to the atomic positions and the
period of the superlattice (62).

To make the calculation easily comparable to HRTEM results, the atomic columns were
then projected in a (11̄00) plane. The deformation εzz was computed from the average col-
umn positions using a finite difference scheme. Relaxed AlN was taken as reference for
both materials. The εzz map in a 2.5 nm thick GaN insertion with radius R=15 nm is plotted
in 2.4. As expected, the GaN layer mostly undergoes bi-axial compressive strain from the
AlN nanowire and therefore tends to be dilated along the c axis (εzz > 4%) despite the AlN
shell (63). The strain appears to be maximal at the basis of the GaN layer where it peaks in
the corners. The decrease of εzz towards the upper edge results from strain relaxation and
from the increase of the AlN content in each projected atomic column. As a whole, this
feature markedly departs from the GPA results, especially in the vicinity of the corners of
GaN insertions.

Figure 2.4: Calculated mapping of εzz - in a 2.5 nm thick GaN insertion with radius R=15 nm.

These discrepancies can be explained by the presence of a relaxation mechanism not
taken into account in the calculations, such as the presence of dislocations. In fact, the
appearance of dislocations in nanowires has been theoretically predicted in either axial (22)
or coaxial heterostructures (60). The prediction depended on the lattice mismatch and wire
radius, or core radius and shell thickness, respectively. A closer look at the HRTEM images
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indeed reveals the insertion of an extra (0002) plane at the GaN/AlN interface as illustrated
in figure 2.6 for three successive inclusions. Furthermore, from this image, one can point out
that the dislocations occur at the same position along the oblique side of the three inclusions,
corresponding to the same AlN shell thickness, namely about 3 nm. This is in qualitative
agreement with what has been predicted [7] for coaxial nanowire heterostructures.

Figure 2.5: HRTEM image showing the presence of dislocations - (a) HRTEM image showing
a dislocation at the AlN/GaN interface for three successive inclusions. (b) Enlargement showing
the insertion of an extra (0002) plane in AlN.

In summary, we have shown that for thick GaN insertions which we found to be partially
relaxed, strains release occured throught the formation of mistfit dislocations during the cap-
ping process. The location of dislocations in AlN further suggests that the rounded shape
of GaN insertions is a determining feature, leading to a local radial thickening of the AlN
capping layer beyond the critical thickness.

2.4.2 In-situ X-Ray diffraction in the growth of GaN/AlN superlattices

Whereas the above heterostructure did relax plastically upon the growth of the AlN shell,
the GaN/AlN superlattices discussed in this paragraph show a completely different (elas-
tic) behavior. The diameter (∼ 25 nm) and period (∼ 5nm) of these superlattices is indeed
smaller than in the previous case, with no noticeable shell. The small diameter is expected
to favor elastic strain relaxation, making them virtually free of dislocations. It is the goal of
this section to address this issue by a combination of in-situ X-ray diffraction experiments,
high resolution transmission electron microscopy (HRTEM) and theoretical calculations on
GaN/AlN NW superlattices.

In-situ grazing incidence X-ray diffraction experiments were performed at the BM32
beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The
substrate consisted of (111) Si. A thin AlN buffer layer (about 2-3 nm thick) was deposited
onto the (111) Si substrate in order to ensure optimal vertical alignment of the GaN NWs
which were used as a base for the AlN/GaN superlattice. Standard conditions were used for
NW growth, namely a metal/N ratio of about 0.3 and a growth temperature in the 800-850°C
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range (64) The growth of the AlN buffer layer, of the GaN NW base and of the GaN/AlN su-
perlattice subsequently deposited was studied by performing h-scans along the [101̄0] direc-
tion in the reciprocal space near the in-plane AlN (303̄0) reflexion (radial scans are sensitive
to strain. Note that in the following the reciprocal lattice unit h refers to the Si reciprocal
space. The latter is obtained for Si described in a hexagonal cell whose [0001] direction is
parallel to the cubic [111] axis. The hexagonal cell parameters are therefore ah,Si =

√
2

2 ac,Si,
ch,Si =

√
3ac,Si, where ac,Si is the lattice parameter of the Si cubic cell. This means that the

room temperature h value corresponding to the (30-30) reflection of bulk AlN and bulk GaN
are equal to 3.706 and 3.62, respectively. On line monitoring of the GaN/AlN superlattice
growth is shown in figure 2.6 The diffraction peak at h = 3.605 corresponds to the GaN NW
base. The peak shift with respect to room temperature value (at h = 3.62) is consistent with
the expected thermal expansion of GaN (65; 66) as the NW growth was performed in the
800-900 °Ctemperature range. The diffraction peaks near h = 3.65 correspond to the step-by
step deposition of the GaN/AlN NW superlattice.

Figure 2.6: Superlattice X-Ray spectra - a) Sets of h-scans (radial scans) near the in-plane GaN
(30h̄30) reflection, indexed in the Si hexagonal cell, taken at different steps of the AlN/GaN NW
superlattice deposition. The X-ray beam incidence angle is 0.2° and the energy 10260 eV. The
vertical dashed line at h = 3.605 represents bulk (relaxed) GaN h-position at 1100K. b) X-Ray
diffraction peaks computed from atomic positions calculated in a purely elastic model (valence
force field approach).

The strains in the GaN/AlN nanocolumns were computed with Keating’s Valence Force
Field (VFF). The lattice parameters a and c of GaN and AlN at the growth temperature T =
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1100 K are taken from Refs. (65) and (66). The bond-stretching and bond-bending constants
of the VFF were fitted to the macroscopic elastic constants ci j extrapolated at T = 1100 K
(67).

Figure 2.7: HRTEM image of the GaN/AlN NW superlattice - Five AlN/GaN bi-layers grown
on a GaN basis are visible. The arrow indicates growth direction.

The nanocolumns are modeled as 23 nm diameter and 100 nm long GaN pillars with the
heterostructure on top. These dimensions were measured in HRTEM images to be discussed
below. At variance with the previous case no significant shell could be observed around the
superlattice. Up to six 2.3 nm thick AlN and five 2 nm thick GaN layers were added one at a
time. For each layer, the structure was relaxed with the VFF. The scattered X-Ray amplitude
was computed from the atomic positions using a kinematical approximation around the GaN
(300) reflection. For each h value, the intensity was integrated over the outgoing angle
between 0 and 2.5° corresponding to the actual detector aperture.

The calculated in-plane strains εxx + εyy are ploted in figure 2.8. The calculated X-Ray
spectra are given in figure 2.6b. Both the GaN pillar and the superlattice diffraction peaks
are slightly shifted towards small h values with respect to the experimental data, due to the
uncertainty in determining the real growth temperature. However, despite this shift indicating
that the actual growth temperature was lower than expected, calculations exhibit an excellent
agreement with the experimental data reported in figure 2.6 a. In particular, the diffraction
peak computed after the addition of a new GaN layer progressively shifts to the right while
the diffraction peak computed after the addition of a new AlN layer emerges almost straight
at h = 3.655. The position of the peaks rapidly stabilizes as the inner layers of the superlattice
almost end in elastic equilibrium with the average alloy (45% GaN-55% AlN) suggested by
the nominal thicknesses of GaN and AlN layers, thanks to the efficient strain relaxation
allowed by the free surfaces. These trends are very well reproduced by the experimental
data, as a first clue that the GaN/AlN NW superlattice is in elastic equilibrium with the GaN
base.

At this stage, it has to be emphasized that, due to the reduced NW diameter, the presence
of a single misfit dislocation at an AlN/GaN interface would lead to a significant relaxation
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Figure 2.8: Superlattice in plane strain simulation - Mapping of the in plane strain εxx + εyy

using Keating’s VFF for the nonideal WZ cell.

of the 2.4% in-plane lattice mismatch between AlN and GaN. If this was repeated for each
AlN and GaN layer of the superlattice, as in the 2D case (68), one would not expect a single
diffraction peak at the average alloy position, in contradiction with the actual experimental
observations.

This statement was further confirmed by HRTEM experiments on the same sample as
described above using a Jeol 4000EX microscope operated at 400 kV. For that purpose a
cross-sectional specimen was prepared by sandwiching a slice of the NW sample together
with a Si one using epoxy, and mechanically thinning the region of interest. The HRTEM
image taken along the [11-20] zone axis and given in figure 2.7 shows the top part of a typical
NW (23 nm in diameter), consisting in a GaN pillar (dark contrast), followed by five 2 nm
thick GaN inclusions separated by 2.3 nm thick AlN spacers (light contrast).

A profile of c along the growth axis obtained with the GPA method and integrated over
a 7 nm wide region in the central part of the NW is given in figure 2.9a. In order to make a
comparison with HRTEM results, the local c parameter was computed with Keating’s VFF
from the average projections of the atomic columns perpendicular to the wire (see reference
(61)) using room temperature GaN and AlN lattice parameters. The result, shown in figure
2.9b, puts in evidence an increase of c in the GaN insertions with respect to the relaxed
material, which is in satisfactory agreement with the HRTEM profile. It can be noticed that
this c value (0.522 nm), if introduced in the Poisson formula, leads to an in-plane parameter a

= 0.315 nm, corresponding to 55% AlN-45% GaN alloy, i.e. also consistent with the nominal
composition expected from the thickness of the AlN and GaN layers in the NW superlattice.

The agreement between the experiments reported above and the calculation performed in
the framework of a purely elastic model is consistent with the fact that no dislocations could
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Figure 2.9: Profile of the c parameter - along the growth axis and taken in the central part
of a NW, a) obtained from the Geometrical Phase Analysis of the HRTEM image. The arrows
indicate growth direction. For convenience, the x-axis origin has been taken as the top of GaN
pillar basis before the growth of the first AlN layer. b) Computed with Keating’s valence force
field.
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be identified in figure 2.7 at the interface between AlN and GaN. This further supports the
conclusion that the GaN/AlN NW superlattice is in elastic equilibrium with the GaN base.
More generally, the issue of the critical thickness in axial NW heterostructures has been
theoretically adressed by Ertekin et al. (22) and by Glas (23). These authors have used a
thermodynamical approach based on the classical model of Matthews for the determination
of the critical thickness in 2D heterolayers (51). They find that the critical thickness is far
larger in nanowires than in 2D heterostructures thanks to the additional relaxation allowed
by the NW free surfaces. In particular, they both predict the existence of a critical radius
below which an infinitely long circular section can be grown on a mismatched basis. The
value of the critical radius was found to depend on the lattice mismatch between the two seg-
ments as well as on the type and the Burgers’vector value of the dislocations introduced to
minimize the total elastic energy. Although a precise determination of the critical thickness
of axial NW heterostructures should take into account their exact hexagonally-faceted shape
and consider the kinetical aspects of dislocation formation, the above mentionned theoretical
approach was found to realistically predict the critical radius for various experimental sys-
tems (23). In the present case, an extrapolation of the theoretical data to GaN/AlN, assuming
the formation of misfit dislocations with a Burgers’ vector in the 0.1-0.3 nm range, leads to
a critical radius of about 10 to 30 nm, respectively (reference (22)). Although the radius (11
nm) of the heterostructures considered here lays in the lower limit of this range, the exper-
imental data are clearly consistent with a purely elastic strain relaxation mechanism. This
further emphasizes the potential of NWs for the growth of dislocation-free superlattices.
Whereas it is now well established that the diameter of catalyst-free GaN NWs grown by
plasma-assisted MBE is typically in the 20-50 nm range, it has been recently demonstrated
that this also holds in the case of AlN NWs (69). Therefore it can be safely concluded that
the results reported here for the 2.4 % lattice mismatched AlN/GaN model system should
also hold a fortiori for AlGaN/GaN or AlGaN/AlN heterostructures in the whole composi-
tion range, opening the path to the control of their growth and to the understanding of their
optical properties.
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Chapter 3

Electronic properties of nanostructures

3.1 Introduction

Recent breakthroughs made in the catalytic growth of semiconductor nanowires have al-
lowed the synthesis of high-quality heterostructures with outstanding optical and transport
properties. The composition of the nanowires can actually be modulated along the growth
axis (axial heterostructures), as well as radially (core-shell structures). Strains are present in
these devices and have an influence on the optical and electrical properties. Therefore mod-
eling the electrical properties of such devices requires a detailed description of the effects
of strains on the band structure. Over the past decades, ab initio methods such as density
functional theory (DFT) have provided comprehensive information about the deformation
potential of semiconductors. However, such ab initio methods require heavy computational
resources and are not, therefore, suitable for the calculation of the electronic properties of
large systems, of up to 10 million atoms. For that reason, the physics and electronics com-
munity is actively developing more efficient semiempical approaches, such as the k ·p, the
empirical pseudopotential, or the tight-binding (TB) methods which can work out the elec-
tronic structure of strained semiconductor devices with a large number of atoms

In this chapter we discuss the effective mass, k ·p and tight binding (TB) methods point-
ing out their strenghts and weaknesses. We present the band structure of the bulk materials
studied during this work (GaN and AlN). We describe the effect of strains on the electronic
structure using TB. Finally we present an application of the TB method to InP/InAs heteros-
tuctures under strain.

3.2 The effective mass approximation

The effective mass approximation (EMA) is the simplest and the most widely used k ·p
method. It can be used to model the vicinity of the conduction band minimun which is
described as a parabola:

E(k) =
h̄2k2

2m∗ (3.1)

where k is the wave vector and m∗ is the effective mass taken as an empirical constant.
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

In an external, slowly variating potential v(r), the wave functions of the electrons are
written:

ϕ(r) = ψ(r)uc(r) (3.2)
where uc(r) is the conduction band Bloch function at k = 0 and ψ(r) is the so called “enve-
lope function”. The latter fulfills the equation

− h̄2

2m∗∆ψ +V ψ = Eψ , (3.3)

In this method the atomic network is replaced by a continuous medium characterized by the
confinement potentials for the electrons. The calculation time is thus independent of the
number N of atoms.

The k ·p models reproduce the principal bands of a bulk material around one k point in
the first Brillouin zone. The model with four and six bands are employed to describe the
maxima of the valence bands, while the models with eight bands can describe the maxima
of the valence bands and the minimum of the conduction band simultaneously for direct gap
semiconductors.

3.2.1 The quantum cubic box

Here we show an example of the use of the EMA. We consider an electron moving in
a cubic box with dimensions (lx, ly, lz) and “hard wall” boundaries. The potential V (r) is
therefore:

V (x,y,z) = Vx(x)+Vy(y)+Vz(z) , (3.4)
where:

Vx(x) = 0 if | x |≤ lx

2
and Vx(x) = +∞ otherwise

Vy(y) = 0 if | y |≤ ly

2
and Vy(y) = +∞ otherwise

Vz(z) = 0 if | z |≤ lz

2
and Vz(z) = +∞ otherwise . (3.5)

The x, y and z variables can be separated and the eigenvalues and wavefunctions split in three
parts:

ψ(x,y,z) = ψx(x)ψy(y)ψz(z) , (3.6)
E = Ex +Ey +Ez , (3.7)

where: [
− h̄2

2m∗
d2

dx2 +Vx(x)

]
ψx(x) = Exψx(x) . (3.8)

Similar equations hold along y and z.

The general solution of equation 3.8 for x ≤ lx

2
is:

ψx(x) = Asin(kxx)+Bcos(kxx) . (3.9)
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3.2 The effective mass approximation

Outside the box the potential is infinite and the only possible solution is ψ = 0. Taking the
origin at the center of the cubic box, we must therefore fulfill the continuity condition:

ψx

(
± lx

2

)
= 0 , (3.10)

This implies:

A = 0 and kx =
π

lx
+

2nπ

lx
, n ∈ N

∗ (3.11)

or:

B = 0 and kx =
2nπ

lx
, n ∈ N

∗ . (3.12)

Therefore, kx =
πnx

lx
, nx strictly positive integer and:

Ex =
h̄2k2

x

2m∗ =
h̄2π2

2m∗
n2

x

l2
x

. (3.13)

Summing over x,y and z, we finally get:

E(nx,ny,nz) =
h̄2π2

2m∗

(
n2

x

l2
x

+
n2

y

l2
y

+
n2

z

l2
z

)
. (3.14)

We notice that the energy is inversely proportional to the square of the box dimensions.
In figure 3.1 we show the results for a cubic box with lx = ly = lz. We can observe that the

density of states increases when the energy increases. Also, we can compare the eigenstates
of the cubic box case with hydrogen-like orbitals. In particular the eigenstate corresponding
to (1,1,1) (in blue on the figure 3.1) is not degenerate and is comparable to the s orbital of an
H atom. In the same way, the eigenstates corresponding to (1,1,2),(1,2,1) and (2,1,1) (in
pink on the figure 3.1) are triple degenerate and are comparable with the p orbitals. Higher
lying eigenstates lack this correspondence with atomic orbitals due to the cubic instead of
spherical symmetry of the problem.

3.2.2 EMA Limitations

In principle the effective mas approximation is only valid for a weak and slowly varying
potential. This model is effective, simple and accurate for the treatment of the conduction
band in large systems. Yet it fails in highly confined systems such as small nanocystals be-
cause the parabolic approximation does not reproduce the conduction bands at high enough
energy.

The 4 and 6 bands k ·p model for the valence band are much more difficult to solve, but
suffer for the same deficiencies in highly confined systems.

In the EMA and k ·pmethod only a few bands are explicitly accounted and these models
are only valid in regions of the Brillouin zone close to the Γ point. However, In many
applications one also needs to describe states away from the Γ point. The far (deep or high)
bands can play a significant role in the confined states energy (70). This effect is more
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

Figure 3.1: Cubic quantum box - Eigenvalues for a cubic potential box with lx = ly = lz. The

energy is given in units of
h̄2π2

2m∗l2 . The values of (nx,ny,nz) are given in parenthesis.

40



3.3 The Tight Binding method

evident in the case of strained systems, because the strains are known to couple bands of
different symmetries.

3.3 The Tight Binding method

While the nearly free electron model is a reasonably good representation of the electronic
structure of simple metals, the tight binding (TB) method provides a more faithful represen-
tation of systems where the electrons are localized in chemical bonds of different degrees of
co-valency. The main idea of this method is to consider a basis set of atomic orbitals, and
the interaction between them forming molecular orbitals.

We consider a single particle Hamiltonian H:

H = − h̄2

2m
∇2 + veff , (3.15)

where the effective potential veff describes both, the ionic and average electron-electron in-
teractions and is written as a sum of atomic potentials:

veff(r) = ∑
k

vk(r−Rk) , (3.16)

where vk is a spherical atomic potential, centered on the atom at position Rk. In the TB
approach the single particle wave functions are written as linear combinations of atomic
orbitals:

ψ(r) = ∑
i,α

Ciαϕα(r−Ri) , (3.17)

where ϕα(r−Ri) is on orbital of type α (s, px, py, ...) centered on an atom i and Ciα is an
expansion coefficient. At this point we can write the Schrödinger equation Hψ = Eψ as:

∑
i,α

CiαH | ϕα(r−Ri)〉 = E ∑
i,α

Ciα | ϕα(r−Ri)〉 , (3.18)

and then project onto an orbital ϕβ (r−R j):

∑
i,α

Ciα

〈
ϕβ (r−R j) | H | ϕα(r−Ri)〉 = E ∑

i,α

Ciα

〈
ϕβ (r−R j) | ϕα(r−Ri)

〉
. (3.19)

We define:
H jβ ,iα =

〈
ϕβ (r−R j) | H | ϕα(r−Ri)〉 (Hamiltonian matrix elements) (3.20)

S jβ ,iα =
〈
ϕβ (r−R j) | ϕα(r−Ri)

〉
(Overlap matrix elements) . (3.21)

Equation 3.19 then reads:

∑
i,α

H jβ ,iαCiα = E ∑
i,α

S jβ ,iαCiα . (3.22)

In order to simplify the notation we introduce an index I which labels each orbital of each
atom (I = i,α):

∑
I

HJ,ICI = E ∑
I

SJ,ICI ∀J . (3.23)

Using matrix notation, this can be written:

ĤĈ = EŜĈ , (3.24)
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

where Ĥ is the Hamiltonian operator, Ŝ the overlap matrix, and Ĉ the vector of expansion
coefficients.

The diagonal elements HI,I have the form:

HI,I =
∫

ϕ∗
α(r−Ri)

[
− h̄2

2m
∇2 + vi(r−Ri)

]
ϕα(r−Ri)d

3r = ε0 , (3.25)

and they are called the on-site energies. The off-diagonal elements HJ,I are called the hopping
terms.

In the semi-empirical tight binding approach further approximations are usually made:

• The interactions are limited to first, second or third nearest neighbors. This is justified
by the fact that distant orbitals have negligible overlap. In this work we have used
first nearest neighbor models. As a consequence the Ĥ and Ŝ matrices are “sparse”
(mostly contain zeros), so that equation 3.23 can be solved with fast iterative methods
for sparse matrices.

• The orbital are assumed orthogonal (Ŝ = Î). This can in principle be achieved trough a
so called Löwdin transformation, though at the expense of longer range interactions.

• The so called three center terms ∑k 6=i, j vk(r−Rk) are neglected in the hopping terms
HJ,I:

HJ,I =
∫

ϕ∗
β (r−R j)

[
− h̄2

2m
∇2 + vi(r−Ri)+ v j(r−R j)+ ∑

k 6=i, j

vk(r−Rk)

]
ϕα(r−Ri)d

3r .

(3.26)

This two center approximation allows for a convenient separation between the bond
length and angular dependence of the TB matrix elements (Slater-Koster relations (34)).
For example the interaction between two p orbitals can always be splitted into a ppσ inter-
actio (for p components aligned along the bond), and a ppπ interaction (for p components
perpendicular to the bond, see figure 3.2).

The independent TB matrix elements of the Hamiltonian are finally considered as ad-
justable parameters fitted to reproduce the bulk band structures, then transferred to the nanos-
tructures.

The quality of the TB band structure depends on the basis set used in the model. The
minimal sp3 model (one s orbital and tree p orbitals) is quite accurate for the valence band
of usual semiconductors, but less for the conduction bands, especially at high energy. The
sp3d5 model (with 5 more d orbitals) improves the description of the conduction bands. The
most accurate results are however obtained with the sp3d5s∗ model which includes an extra
s orbital. This is the model we have used in this work.

The TB method provides a faithful description of the band structure over the whole first
Brillouin zone, at variance with k ·p methods. It therefore expected to be more accurate in
highly confined systems, at the expense of a larger numerical cost.
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3.3 The Tight Binding method

Figure 3.2: Linear Combination of Atomic Orbitals - The different two-center interactions
involved in the Slater-Koster relations.
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

During this work we have mostly used the first nearest neighbors, two-center orthogonal
tight binding model of Jancu et al. (78). This set of parameters is transferable from the
zinc-blende to the wurtzite phase. Since the bond lengths are different in the two phases, the
dependence of the hopping two-center integrals Vµν on the interatomic distances dµν (µ and
ν being tow orbitals on different atoms) is modeled by a power law (“Harrison law”):

Vµν(dµν) = Vµν(d0)

(
d0

µν

dµν

)η

, (3.27)

where d0
µν is the equilibrium distance and η an exponent. The on-site energies, nearest neigh-

bors two-center integrals and exponents are given in tables 3.1, 3.2 and 3.3. Note that the p

and d orbitals are not degenerate in the wurtzite phase, as expected from the lower symmetry
of the crystal.

On-site energy Ga N (in GaN) Al N (in AlN)
Es 4.75010 -8.93790 6.07280 -8.97170
Epx

11.45010 2.06260 11.53680 2.16790
Epy

11.45010 2.06260 11.53680 2.16790
Epz

11.45010 2.06260 11.53680 2.16790
Edyz

27.93580 28.43213 29.49800 29.85100
Edxz

27.93580 28.43213 29.49800 29.85100
Edxy

27.46280 28.92097 29.09210 30.14210
Ed

x2−y2 27.46280 28.92097 29.09210 30.14210

Ed3z2−r2 28.40880 27.94330 29.90390 29.55990
Es∗ 35.05070 28.82530 35.00410 28.82530

Table 3.1: On-site parameters EI = HI,I for the wurtzite phase - Parameters from Jancu et al.

(78), in eV.

3.4 GaN and AlN band structures

In this section, we describe the band structure of the bulk materials studied in this work,
GaN and AlN, using the tight binding models.

3.4.1 Band structure of GaN and AlN in the zinc-blende structure

The electronic band structure of GaN and AlN in the zinc-blende structure are shown in
figures 3.3 and 3.4. It is known that the band gap of GaN in the zinc-blend structure is 4.59
eV and the band gap of AlN in the zinc-blende structure is 4.90 eV (46).

If we do a zoom of the band structure of GaN around the Γ point (see figure 3.5) we can
distinguish one conduction band (CB) and three valence bands (VB) which are called the
heavy holes (HH), light holes (LH), and the split off (SO) bands.

44



3.4 GaN and AlN band structures

Hopping term Energy Hopping term Energy
sGasNσ -2.5495 sAlsNσ -2.6261

s∗Gas∗Nσ -3.9997 s∗Als
∗
Nσ -4.4940

sGas∗Nσ -3.7569 sAls
∗
Nσ -2.9127

s∗GasNσ -2.0860 s∗AlsNσ -1.8773
pGasNσ 3.9210 pAlsNσ 3.7546
sGa pNσ 4.0489 sAl pNσ 3.9269
pGas∗Nσ -4.2911 pAls

∗
Nσ -4.0680

s∗Ga pNσ -2.0861 s∗Al pNσ -1.8328
pGa pNσ 4.7429 pAl pNσ 4.3117
pGa pNπ -1.4302 pAl pNπ -1.2842
dGasNσ -3.9072 dAlsNσ -3.8483
sGadNσ -1.2252 sAldNσ -1.0331
dGas∗Nσ -2.0963 dAls

∗
Nσ -2.1897

s∗GadNσ -1.7553 s∗AldNσ -1.5559
dGa pNσ -1.9007 dAl pNσ -2.1306
pGadNσ -1.3286 pAldNσ -1.2470
dGa pNπ 2.2761 dAl pNπ 2.5342
pGadNπ 3.2195 pAldNπ 3.1629
dGadNσ -1.2016 dAldNσ -1.0791
dGadNπ 6.0757 dAldNπ 6.4201
dGadNδ -4.4436 dAldNδ -4.5012

Table 3.2: Hopping terms - Parameters from Jancu et al. (78), in eV.

Power law GaN AlN
ηssσ 3.65 3.55
ηs∗sσ 1.98 1.05
ηspσ 4.91 4.71
ηs∗pσ 1.05 1.36
ηsdσ 1.02 1.12
ηs∗dσ 4.32 4.70
ηppσ 4.09 3.56
ηppπ 3.35 2.25
ηpdσ 1.24 2.02
ηpdπ 1.02 1.05

Table 3.3: Power law parameters - Parameters from Jancu et al. (78).
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

As can be seen in the figures 3.3 and 3.4 the band gap of GaN in this structure is direct
while the bandgap of AlN is indirect.

Figure 3.3: Electronic band structure of ZB GaN - Tight-binding band structure of bulk zinc-
blende GaN.

3.4.2 Band structure of GaN and AlN in the wurtzite structure

The band structure of GaN and AlN in the wurtzite phase are shown in figures 3.6 and
3.7. We can see that in the WZ structure the band gap of both materials is direct. This
phase is more interesting because the band gap difference is bigger than in the zinc-blende
materials; the band gap of GaN is 3.51 eV while the gap of AlN is 6.25 eV

In wurtzite GaN and AlN, the bottom of the conduction band and the top of the valence
bands are found at the Γ point in the BZ. The lowest conduction band is a linear combination
of s orbitals while the highest valence band is a linear combination of p orbitals. The three
valence bands originating from these three orbitals are split by the crystal field and spin-orbit
couplings into "A", "B" and "C" bands ( see figure 3.8) with different symmetries

In figures 3.9 and 3.10 we notice that the order of the A B and C bands is different
for GaN and AlN. In GaN the fundamental band gap is between the conduction and the A
band, while in AlN the fundamental bandgap is between the conduction and the C band. The
crystal field splitting is indeed negative in AlN, while it is positive in GaN.

3.5 Effect of strain on the band structure

In this subsection we discus the effects of strains on the conduction and valence bands.
When a stress is applied to the system, the band structure is indeed modified (33; 71). We
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3.5 Effect of strain on the band structure

Figure 3.4: Electronic band structure of ZB AlN - Tight-binding band structure of bulk zinc-
blende AlN.

Figure 3.5: Band structure of bulk zinc-blende GaN - around the Γ point.
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Figure 3.6: Electronic band structure of WZ GaN - Tight-binding band structure of bulk
wurtzite GaN.

Figure 3.7: Electronic band structure of WZ AlN - Tight-binding band structure of bulk
wurtzite AlN.
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3.5 Effect of strain on the band structure

Figure 3.8: Valence bands in the zinc-blende and wurtzite crystal structures. -

Figure 3.9: Valence band structure of bulk wurtzite GaN - around the Γ point.
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Figure 3.10: Valence band structure of bulk wurtzite AlN - around the Γ point.

focus here on the wurtzite structure, which is the main interest of this thesis.

3.5.1 Deformation potentials

The effect of an arbitrary stress on the conduction band, CB, can be described by a simple
shift of the bands, which is given by:

CB = CB(0)+aczεzz +acx(εxx + εyy) , (3.28)
where acz and acx are the deformation potentials of the conduction band and εi j are the
components of the strain tensor. CB(0) denotes the energy of the first conduction band in the
absence of applied stress.

For the sake of simplicity we neglect spin-orbit coupling in the following. The valence
bands A and B are then degenerate.

Let us now consider the effect of an applied bi-axial (0001) stress on the valence bands.
An applied bi-axial (0001) stress is characterized by a strain tensor whose components sat-
isfy εxx = εyy = ε‖ and εzz = ε⊥. The resulting shift of the A/B and C bands are given by:

A/B = A/B(0)+2D2ε‖ +2D4ε‖ +D1ε⊥ +D3ε⊥ , (3.29)
and:

C = C(0)+2D2ε‖ +D1ε⊥ . (3.30)
Here Di, i = 1, . . . ,4 are the valence bands deformations potentials. Note that under a bi-axial
strain the A and B valence bands remain degenerate.

Additionally, we can consider the effect of a deformation given by εxx =−εyy and εi j = 0
otherwise. In this case the A and B bands will split and the difference in energy between
them is proportional to the deformation potentials, D5, according to (33):

A = A(0)−2D5εxx , (3.31)
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3.5 Effect of strain on the band structure

and:
B = B(0)+2D5εxx , (3.32)

We see that the splitting between the A and B valence bands is just given by 4D5εxx. Under
these conditions the C valence band is unaffected by the applied strain, i.e.,

C = C(0) . (3.33)

Finally we can consider a shear deformation given by εyz 6= 0 or εxz 6= 0 (while εi j = 0
otherwise). Again the degeneracy between the A and B bands is lifted under the influence
of such a shear deformation. The splitting is proportional, in this case, to the deformation
potential D6:

A =
1
2

(
A(0)+

√
A(0)2 +8D2

6ε2
yz

)
, (3.34)

and:

B =
1
2

(
B(0)−

√
B(0)2 +8D2

6ε2
yz

)
, (3.35)

while, again, the C valence band energy remains unchanged:

C = C(0) . (3.36)

The deformation potentials of GaN and AlN are not all well characterized (in particular
D5 and D6). We report in table 3.4 a set of deformation potentials proposed by Vurgaftman
and Meyer1 (see reference (46)). The deformation potentials of the TB model of Jancu et al.
are reported in table 3.6 for GaN. Jancu et al. did not attempt to reproduce these deformation
potentials which are not actually very well given. We have therefore tried to improve this
description as described in the next paragraph.

Potential GaN AlN
acx -4.5 0.61 eV
acz -6.8 -20.11 eV
D1 -3.7 -17.11 eV
D2 4.5 7.9 eV
D3 8.2 8.8 eV
D4 -4.1 -3.9 eV
D5 -4.0 -3.4 eV
D6 -5.5 -3.4 eV

Table 3.4: Deformation potentials for GaN and AlN, adapted from reference (46). The deforma-
tion potentials control band-structure effects associated with applied strains.

1The value of D1, and the values of acx and acz for AlN deduced from Ref. (46) seem, however, highly
doubtful.
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3.5.2 GaN and AlN TB parameters including the effect of strains

The modeling of the electrical properties of semiconductor heterostructures for opto-
electronic applications requires a detailed description of the effects of strains on the band
structure. The TB method can work out the electronic structure of strained semiconductor
devices and has proved to be successful in predicting the electronic properties of semicon-
ductor nanostructures such as nanocrystals or nanowires. The use of an atomic-orbital basis
set with interactions limited to a few nearest neighbors (so the resulting matrices are sparse)
allows the calculation of the wave function of million atom systems (72; 73). In this re-
spect, the first nearest neighbor sp3d5s∗ model is one of the most accurate and efficient TB
description of semiconductor materials.

The effects of strains are accounted for in TB models through the bond-length depen-
dence of the nearest-neighbor parameters Vµν (where µ and ν are indices associated with
two orbitals on different atoms), which is usually fitted to a power law as we saw in equa-
tion (3.27). Although some hydrostatic and uniaxial deformation potentials can be repro-
duced that way (74), much better accuracy can be achieved with the introduction of strain-
dependent on-site parameters (See Refs. (75), (76) and (77)). In their original sp3d5s∗

parametrization, Jancu et al. (78) introduced a term that lifts the degeneracy among the
dyz,dxz, and dxy orbitals as a function of the applied uniaxial strain. This approach was later
generalized to arbitrary strains by Boykin (76) and Niquet (77).

Let us illustrate the model of Niquet et al (77), for the simplified case of the s orbitals
in the zinc-blende structure (see reference (77) for a complete description). The model of
Niquet et al. is based on a first-order expansion of the on-site matrix elements as a function
of the nearest neighbors distances, assuming that the total potential is the sum of central
atomic contributions.

Consider the on-site potential of the s-orbital of atom i on sublattice 1 (which we denote
Vs) that just interacts with its first nearest neighbors on sublattice 2. This on-site potential
contains two contributions, one coming from the effective potential of sublattice 1 (ν1), the
other coming from the effective potential of the sublattice 2 (ν2). The latter term depends
on the distance between the center of the s-orbital s and its first nearest-neighbours, di j =
|Ri −R j|,

Vs = V1 +
NN

∑
j

V2(di j) , (3.37)

where the sum is over all the first nearest-neighbours, and:

V1 = 〈si | ν1(| r−Ri |) | si〉 , (3.38)

V2(di j) = 〈si | ν2(| r−R j |) | si〉 i 6= j , (3.39)
where ν1/2 are the atomic potentials.

This last term V2 can be developed to first-order in powers of the changes in bond lengths,
di j−d0, where d0 is the unstrained bond length. This yields a strain independent contribution
as well as a term dependent on the bond lengths:
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V2(di j) = V2(d0)+
3
4

αs

di j −d0

d0
+ ... , (3.40)

where we have introduced a new TB parameter, αs which is yet to be determined. Hence the

expression for the s-orbital on-site potential becomes:

Vs = V1 +
NN

∑
j

V2(d0)+
3
4

αs

NN

∑
j

di j −d0

d0
, (3.41)

The third term on the right-hand side can be related to the hydrostatic deformation
δΩ

Ω0
=

εxx + εyy + εzz. The quantity
δΩ

Ω0
gives the first-order variation of the volume of the material

under an applied strain, with respect to the volume of the unstrained material, Ω0, and can

approximated as:

δΩ

Ω0
≈ 3

4

NN

∑
j

di j −d0
i j

d0
i j

. (3.42)

Then to first-order in the εαβ ’s we obtain:

Vs = V1 +
NN

∑
j

V2(d0)+αs

(
δΩ

Ω0

)
. (3.43)

The on site energy of the s-orbital is given therefore by the unstrained on-site energy plus a

term proportional to the fractional change of volume associated with the strain:

Es = E0
s +αd

∆Ω

Ω0
. (3.44)

Similar arguments apply for the on-site, p-orbital terms. For the particular case of the px

orbitals we get:

Ex = E0
p +αp

∆Ω

Ω0
+

NN

∑
j

βp(di j)
[
l2
i j −1/3

]
, (3.45)

where new TB parameters, αp and βp have been introduced. A similar equation holds for py

and pz. An important feature of this model is the inclusion of couplings between different

p-orbitals. These are obtained from Slater-Koster relations and, together with the diagonal

terms yield an on-site p-orbital block matrix given by:

Ĥp =

(
E0

p +αp
∆

Ω0

)
Î +

NN

∑
j

βp(d)




l2 − 1

3 lm ln

ml m2 − 1
3 mn

nl nm n2 − 1
3



 . (3.46)

Note that a non-zero value of βp lifts the p-orbital degeneracy, which is what we physically

expect to happen under an applied strain. Similar parameters with similar effects are used
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for the d orbitals.

Ĥd =

(
E0

d +αd

∆

Ω0

)
Î +

NN

∑
j

βd(d)





l2 − 1
3 −lm −ln mn − 1√

3
mn

−ml m2 − 1
3 −mn −ln − 1√

3
ln

−nl −nm n2 − 1
3 0 2√

3lm

mn −ln 0 n2 − 1
3

1√
3u

− 1√
3
mn − 1√

3
ln 2√

3
lm

1√
3

u −n2 + 1
3





. (3.47)

This model can be applied to wurtzite materials. In that case the angular terms will not
be non zero even in the untrained latice. The degeneracy petween the p orbitals and between
the d orbitals will therefore be lifted, as expected from the lower symmetry of the wurtzite.

The TB parameters α and βp/d are obtained from a fit to the experimental/ab-initio band-
structure under applied strain. As discussed in the previous Section the changes in the band
structure associated with the applied strain can be understood in terms of the deformation
potentials D1, ..., D6. The unstrained parameters used for the fit are as given by Jancu et al.

(78).
However our treatment of strains is very different from the one in reference (78), which

only uses a Harrison-type parametrization and does not take into account the strain-induced
splitting of the p orbitals.

In Table 3.5 we show the values of the TB parameters obtained from the above-mentioned
fit, in GaN. In Table 3.6 we compare the experimental/ab-initio deformation potentials with
those given by Jancu’s parameters without our one-site corrections.

We see that the latter definitely improve the deformation potentials of GaN. The value
of βd however seems unusually large (more than twice the value found in other III-V ). We
have therefore used this set of parameters with caution in practice. We have mostly used
Jancu’s original parametrization and checked the critical results against our corrected set.
We did not usually find significant differences for the key quantities (band gap energies). To
clarify these parametrization issues we should reattempt a complete fit of the GaN and AlN
band structures (including the on-site, two center integrals and power law exponents) to get
a really consistent set of parameters, as has been done in reference (77) for Si and Ge. This
is left as a possible option for future work.

Parameter Ga N (in GaN)
αs -5.13373 -0.57284
βp -1.28041 -1.28041
βd 15.48319 15.48319

Table 3.5: Gallium and Nitrogen tight-binding parameters (in eV) obtained from fits to strained
band-structures.
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Parameter Ref. (46) Jancu et al. Ref. (78) This work
acx -4.5 -4.26 -6.87
acz -6.8 -4.33 -6.89
D1 -3.7 0.67 -3.07
D2 4.5 4.30 4.54
D3 8.2 3.56 7.59
D4 -4.1 -1.86 -3.78
D5 -4.0 - 2.89 -4.27
D6 -5.5 -2.28 -3.03

Table 3.6: Comparison between the deformation potentials of GaN as given: by the
experiment/ab-initio (Ref. (46), second column); as obtained by Jancu et al. (Ref. (78), third
column); as obtained in this work (fourth column).

We do hope that this Section serve its purpose of illustrating how the TB method can be
used to describe the effect of strains on the band-structure of realistic, atomistic, models of
materials of technological relevance.

3.6 Application: Tight-binding modeling of strains in InP
and InAs nanowires

As a first illustrative application of the tight-binding methodology used in this work we
would like to take a small detour from GaN and AlN –the main material building blocks of
the nanostructures considered in this Thesis– and address the effect of strains in other III-V
materials, in this case InP and InAs nanowire heterostructures. The calculations presented in
this Section were performed in the initial stages of my Thesis work.

Nanowires heterostructures are very attractive because of their potential advantages over
quantum well heterostructures: because of the large surface/volume ratio nanowire het-
erostructures are able to relax strains very efficiently by distorting the surface and thus can
be built from materials with very different lattice constants. The InAs/InP system has, in
particular, attracted much attention (79): Resonant tunneling diodes, field effect transistor,
Coulomb blockade devices, quantum memories, have all been realized with InAs nanowires
splitted by InP tunnel barriers. Light has also been emitted from single InAsP quantum dots
embedded in doped InP nanowires.

The residual strains in nanowire heterostures might, however, have a significant impact
on their electronic and optical properties and this is the subject we investigate in this Section.

3.6.1 Electronic structure of InP barrieres in InAs nanowires

In this section, we discuss the properties of InP and InAsP barriers embedded in InAs
nanowires. Their heights indeed determine the tunneling and thermionic currents through,
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3. ELECTRONIC PROPERTIES OF NANOSTRUCTURES

e.g., nanowire resonant tunneling diodes (80), or the retention time of nanowire memories
(81; 82). The actual shape of these barriers depends on the piezoelectric and self-consistent
electronic potentials, hence on the bias voltage and on the details of the tunneling device
(doping profile, ...) (83). These potentials will be neglected in the present work,which focus
on the effect of strains on the height of In(As)P conduction band barriers.

The conduction band offset between bulk, untrained InAs and InP is ∆bulk
c ≃ 0.60 eV

(84). In an InAs/InP heterostructure, the InP barriers are put under tensile strain by the InAs
layers, which tends to lower the conduction band energy Ec. The first-order shift δEc is
actually proportional to the hydrostatic strain (26; 84):

δEc = ac (εxx + εyy + εzz) , (3.48)

where ac = −5.2 eV is the conduction band deformation potential of InP. In an InAs/InP
planar (2D) heterostructure bi-axially strained to InAs (εxx = εyy = ε‖ = 3.23%, εzz = ε⊥ =
−2.04%), the conduction band barrier height would therefore be:

∆2D
c = ∆bulk

c +ac

(
2ε‖ + ε⊥

)
= 0.38 eV. , (3.49)

The tight-binding model, which includes non-linear effects beyond equation (3.48), yields
∆2D

c = 0.40 eV. This is significantly smaller than the unstrained band offset ∆bulk
c .

The conduction band barrier height in InAs/InP nanowires heterostrucuture (NWHETs)
is expected to range between the 2D (∆2D

c = 0.4 eV) and bulk (∆bulk
c = 0.6 eV) limits. The

strains are, however, much more inhomogeneous in nanowire heterostructures, especially in
thin InP layers. As an illustration, the local conduction band energy Ec(r) in an InAs/InP
NWHET with R = 10 nm and tInP = 4 nm is plotted in figure 3.11. Ec(r) has been computed
as the TB conduction band energy of the underlying bulk material with the same strains as
in the nanowire. It is measured with respect to the conduction band edge of bulk, unstrained
InAs, and therefore tends to zero far away from the InP layer. The latter is almost completely
relaxed at the surface of the nanowire, but is still significantly dilated deeper inside. As
a consequence, the barrier is lower along the axis of the nanowire than at its surface. In
thick InP layers, which are almost free of strains, the conduction band energy is close to the
unstrained value Ec(r) ≃ 0.6 eV everywhere except around the interfaces.

To get a better understanding of tunneling in NWHETs, we can define an effective one-
dimensional potential profile Vc(z) in the spirit of the effective mass approximation (32). Let
εc(kz) and Ψc,kz

(r) = eikzzuc,kz
(r) be the confinement energy and wavefunction for the lowest

conduction subband of a homogeneous InAs or InP nanowire, where kz is the longitudinal
wave vector and uc,kz

(r) is periodic along the nanowire. The subband minimum at kz = 0 can
be characterized by its effective mass m∗(R):

εc (kz) ∼ ε0
c (R)+

h̄2k2
z

2m∗ (R)
. (3.50)

Analytical expressions for the confinement energy ε0
c (R) and effective mass m∗(R) in

InAs and InP nanowires have been given in reference (85). Neglecting inter-subband cou-
plings in an effective mass-like approximation, the wavefunctions of the NWHET can be
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Figure 3.11: Conduction band energy Ec(r) in an InAs/InP nanowire heterostructure - with
R = 10 nm and tInP = 4 nm. Ec is measured with respect to the conduction band edge of bulk,
untrained InAs. The dots are the As/P atoms in the (yz) plane of the plot. The vertical, dash-
dotted lines delimit the InP layer. The spacing between isolevel curves is 50 meV, the white
dashed line being Ec = 0 and the white solid line Ec = 0.5 eV.
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written as Ψ(r) = ϕ(z)uc,0(r), where the envelope function ϕ(z) satisfies the equation:

− d

dz

h̄2

2m∗ (z)

d

dz
ϕ (z)+

[
ε0

c (z)+∆(z)+δVc (z)
]

ϕ (z) = εϕ (z) , (3.51)

ε0
c (z) and m∗(z) are the conduction band edge energy and effective mass of an homogeneous

InAs or InP nanowire, ∆(z) = 0 in InAs, ∆(z) = ∆bulk
c in InP is the unstrained conduction

band profile in the heterostructure, and δVc(z) ∼ 〈uc,0|δEc(r)|uc,0〉 is the strain potential,
the expectation value of δEc(r) being computed in an unit cell centered around z. Inter-
subband couplings (that would mix uc,0 with higher-lying modes) are expected to be small
for energies ε close to the conduction band edge of the InAs nanowire.

Figure 3.12: Effective potential of an InP barrier in a InAs nanowire - with radius R = 10
nm.

The effective potential Vc(z) = ε0
c (z)+∆(z)+δVc(z) is plotted in figure 3.12 for InAs/InP

NWHETs with radius R = 10 nm and various tInP. The reference of energies is the conduction
band edge ε0

c,InAs(R) of a homogeneous InAs nanowire, so that Vc(z) → 0 when z →±∞. As
expected, the barrier height is close to the 2D limit (0.4 eV) in thin layers, and tends to (but
does not reach) the bulk value (0.6 eV) in thick ones. The barrier is, moreover, rounded by
strain relaxation around the interfaces. There is, interestingly, a small barrier on the InAs
side of the interfaces due to the transfer of (compressive) strains from the InP layer (arrows
in figure 3.13). This additional barrier might hinder the transport of low-energy electrons at
small bias in tunneling devices.

As pointed out before, Vc(z) never reaches the bulk limit in thick layers (and actually falls
below the 2D limit in the thinnest ones). Indeed, lateral confinement raises the conduction
band energy ε0

c (R) faster in InAs than in InP, which lowers the effective barrier. We might
therefore split the barrier height ∆c [computed as the maximum of Vc(z)] in two parts:

∆c =
[
ε0

c,InP (R)− ε0
c,InAs (R)

]
+∆str

c , (3.52)

58
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Figure 3.13: Conduction band barrier height ∆str
c in InAs/InP nanowire heterostructures -

as a function of tInP/R. The bulk and 2D barrier heights are reported on the figure. The dashed
line is equation (3.53).

where ∆str
c accounts for the strained band offset and is free of quantum confinement effects.

The maximum barrier height is thus ∆max
c ≃ ε0

c,InP(R)−ε0
c,InAs(R)+∆bulk

c , i.e. about 0.57 eV
for R = 10 nm and about 0.59 eV for R = 20 nm. This value lies in the experimental range
(0.57–0.60 eV) deduced from the temperature dependence of the thermionic current through
InAs/InP nanowire heterostructures (79; 86).

∆str
c is finally plotted in figure. 3.13 for InAs/InP NWHETs with different radius. It shows

a clear dependence on tInP/R, and can be fitted for 0 ≤ tInP/R ≤ 3.5 by:
∆str

c

∆bulk
c

= f (tInP/R) = 1− 0.34

1+0.92(tInP/R)+4.15(tInP/R)2.41 , (3.53)

which is plotted as a dashed line in figure. 3.13. The effects of the residual strains on the
conduction band barrier are negligible when tInP & 1.5R. However, most tunneling devices
are in the tInP ≪ R range where the height of the barrier can be reduced by ≃ 30%. This
should be taken into account in the assessment and optimization of the performances of
these devices (80; 81; 82).

Alloying InP with InAs provides further control over the barrier height. Thin InP barriers
might, moreover, be non intentionally alloyed with the InAs nanowire. We have, therefore,
also computed the conduction band height of InAsxP1−x tunnel barriers embedded in InAs
nanowires, as a function of their thickness tInAsP, and as a function of the As concentration
x. As evidenced in figure. 3.14, ∆str

c nicely scales with the conduction band offset ∆bulk
c (x) ≃

0.6(1−x) eV between bulk, unstrained InAs and InAsxP1−x. As a matter of fact, the bowing
parameters of the alloy are small, and the conduction band deformation potentials ac of InAs
and InP close enough to limit non-linear effects:

∆str
c ≃ ∆bulk

c (x) f (tInAsP/R) , (3.54)
where f (x) is defined by equation. (3.53). As discussed previously around equation. (3.52),
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Figure 3.14: Normalized conduction band barrier InP/InAs - Normalized conduction
band barrier height ∆str

c /∆bulk
c (x) in InAs/InAsxP1−x nanowire heterostructures as a function of

tInAsP/R, for various As concentrations x (R = 10 nm). The bulk and 2D (x = 1) barrier heights
are reported on the figure. The dashed line is equation (3.53).

the actual barrier height ∆c will be slightly lower than ∆str
c due to the imbalance between

lateral confinement in the InAs and InAsxP1−x segments. A linear interpolation between
the confinement energies of pure InAs and InP nanowires (85), ∆c ≃ (1 − x)[ε0

c,InP(R)−
ε0

c,InAs(R)]+∆str
c , though crude, is nonetheless a reasonable approximation in the R & 10 nm

range.
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Chapter 4

The GaN/AlN system

4.1 Introduction

Wide band gap nitride semiconductor are now widely used for light emission in the blue
and ultraviolet range. Thanks to large band offsets, GaN/AlN heterostructures have also
become promising candidates for fast telecommunication devices based on inter-subband
transitions. One of the specifics of nitride heterostructures is the existence of large internal
electric fields due to spontaneous polarization or strains (piezoelectricity). They might sep-
arate the electrons from the holes in Stranski-Krastanov GaN quantum dots, consequently
reducing the band gap and oscillator strength (quantum confined Stark effect). It is there-
fore essential to understand and tailor the electric field in nitride heterostructures to suit a
particular application.

In this chapter, we make a detailed description of the GaN/AlN system. As we intend
to understand the electronic properties of GaN insertions in AlN nanowires, we first discuss
quantum confinement in two limiting situations : GaN/AlN quantum wells (t/R ≪ 1), and
pure GaN wires (t/R ≫ 1, t being the thickness of the GaN layer and R the radius of the
wire). We then discuss the spontaneous and piezoelectric polarizations in these materials
and the associated built-in electric fields, focusing again on GaN/AlN as an example. We
last review the experiments on the Stark shift in GaN/AlN nanowire heterostructures. We
show that simple calculations can not explain the magnitude of the experimental electric
field, and that complex screening mechanisms must be introduced (Chapter 5).

4.2 Quantum confinement in GaN quantum wells and wires

4.2.1 Quantum confinement in GaN/AlN quantum wells

When the width of a quantum well is close to or smaller than the exciton Bohr radius, the
band gap becomes higher than in the bulk material due to quantum confinement.

As an example we consider the quantum well formed by a GaN layer embedded in AlN
as shown in figure 4.1.
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4. THE GAN/ALN SYSTEM

We can easily solve the conduction band problem in the effective mass approximation
(EMA). Taking the conduction band of GaN as the origin of energy, the EMA read:

− h̄2

2m∗
d2

dz2 ψ(z)+V ψ(z) = Eψ(z), z < − t

2
(4.1)

− h̄2

2m∗
d2

dz2 ψ(z) = Eψ(z), − t

2
≤ z ≤ t

2
(4.2)

− h̄2

2m∗
d2

dz2 ψ(z)+V ψ(z) = Eψ(z),
t

2
< z , (4.3)

where V = 1.93 eV is the conduction band offset between GaN and AlN.

Figure 4.1: Finite well in the effective mass approximation -

The bound solutions of these equations are then in each region (for even wave functions):

ψ(z) = Bexp(αz), z < − t

2
(4.4)

ψ(z) = Acos(kz), − t

2
≤ z ≤ t

2
(4.5)

ψ(z) = Bexp(−αz),
t

2
< z , (4.6)

where:

k =

√
2m∗E

h̄
(4.7)

α =

√
2m∗(V −E)

h̄
=
√

k2
0 − k2 , (4.8)

and k0 =

√
2m∗V
h̄

.

In order to proceed it is necessary to enforce appropriate boundary conditions: ψ(z) and
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4.2 Quantum confinement in GaN quantum wells and wires

d

d z
ψ(z) must be continuous at each interface. At the interface z = −t/2, the continuity of

the wave function implies:

Acos
(

kt

2

)
= Bexp

(
−αt

2

)
, (4.9)

while the continuity of its derivative implies:

− kAsin
(

kt

2

)
= −αBexp(

−αt

2
) . (4.10)

Dividing equation 4.10 by equation 4.9, we finally get:

k tan
(

kt

2

)
−
√

k2
0 − k2 = 0 . (4.11)

The ground-state values of k and E can be obtained with a simple iterative method.
The GaN quantum well will moreover be strained by AlN. We assume for simplicity

that the GaN is biaxially strained by thick AlN barriers, although this approximation can
in principle only hold below the critical thickness. As discussed in chapter 3, such a strain
results in a rigid shift of the conduction band by:

∆CB = aczεzz +acx(εxx + εyy) , (4.12)
where εxx = εyy = −2.415% and εzz = 1.273% were obtained with Keating’s valence force
field for a comparison with tight-binding calculations.

Figure 4.2: EMA and TB conduction band edge of a GaN/AlN quantum well - as a function
of its thickness.

In figure 4.2 we show (blue dots) the conduction band edge calculated with the tight-
binding model (Jancu’s parameters). The green line (X symbols) is the conduction band
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energy calculated with the EMA using the TB effective mass m∗ = 0.1976 (m∗ = 0.2 experi-
mentally). As expected, the conduction band energy increases with decreasing thickness due
to quantum confinement. The EMA is slightly overestimating the conduction band energy
(with respect to TB) in insertions with thickness smaller than two nanometers. This results
from the non-parabolicity of the conduction band at high energy, as discussed in Chapter
2. The EMA is however close to the TB result in thicker GaN insertions. The small shift
between the EMA and TB energies in thick GaN insertions comes from non-linear effects
beyond equation 4.12 in tight-binding.

The TB valence band edge and band gap energy of the quantum wells is plotted in figures
4.3 and 4.4. Quantum confinement is much weaker on the valence band than on the conduc-
tion band side due to the larger hole effective masses, and due to the mixing between the A,
B and C bands. From figure 4.4, we conclude that quantum confinement is significant only
in GaN/AlN quantum wells with thickness below 4 nm.

Figure 4.3: TB valence band edge of a GaN/AlN quantum well - as a function of its thickness.

4.2.2 Quantum confinement in GaN nanowires

We now study quantum confinement in GaN nanowires. The conduction band edge, va-
lence band edge and band gap energies of homogeneous GaN nanowires are plotted as a
function of their diameter in figures 4.5, 4.6 and 4.7. As in quantum wells, confinement is
much stronger on the conduction than on the valence band side. It is significant for diame-
ters below 10 nm. Most experimental GaN nanowires, whose diameter is in the 20-50 nm
range, will not, therefore, show much sign of lateral quantum confinement. In particular, we
expect the electronic properties of GaN/AlN nanowire heterostructures to be dominated by
the “vertical” confinement along the heterostructure.
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Figure 4.4: TB band gap energy of a GaN/AlN quantum well - as a function of its thickness.

Figure 4.5: TB conduction band edge of a GaN nanowire - as a function of its diameter.
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Figure 4.6: TB valence band edge of a GaN nanowire - as a function of its diameter.

Figure 4.7: TB band gap energy of a GaN nanowire - as a function of its diameter.
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4.3 The spontaneous polarization and piezoelectricty

GaN and AlN in the wurtzite phase are subject to spontaneous electric polarization. In-
deed, as the first nearest neighbor bonds are not equivalent (one bond being longer than the
three others), the barycentre of anions and cations do not coincide in the unit cell. This leads
to the existence of a non-zero dipole density in the crystal (pyroelectricity). Strains further
move the anions with respect to the cations and redistribute charge among them, thereby
increasing or decreasing this dipole density (piezoelectricity). The spontaneous polarization
and piezoelectricity can be responsible for large electric fields in GaN/AlN heterostructures
and devices, as shown later in this section.

4.3.1 Pyroelectricity description

The symmetry of the wurtzite unit cell allows for the existence of a non-zero spontaneous
polarization Psp oriented along the c axis. The pyroelectric polarization density therefore
reads:

Psp =




0
0
P0



 (4.13)

where the z direction corresponds to the c axis. The values of P0 in GaN and AlN are given
in table 4.1.

4.3.2 Piezoelectricity description

The strains move the atoms and change the polarization density. The total polarization
density can therefore be written P = Psp +Ppiezo, where:

Ppiezo =




2e15εxz

2e15εyz

e31 (εyy + εxx)+ e33εzz



 (4.14)

and e13, e33 and e15 are the piezoelectric coefficients. The piezoelectric constants of GaN
and AlN are also given in table 4.1.

GaN AlN
P0 −0.034 −0.090 C/m2

e15 −0.326 −0.418 C/m2

e31 −0.527 −0.536 C/m2

e33 0.895 1.536 C/m2

Table 4.1: Spontaneous polarization and piezo-electric constants - of GaN and AlN (46).
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Figure 4.8: Bound charge density - equivalent to an uniform polarization.

4.3.3 Equivalent bound charge density

The distribution of dipole density due to spontaneous polarization and strains is equiva-
lent to a distribution of “bound” charges:

ρp = −∇ ·P (4.15)
wherever P is continuous. At surfaces and interfaces, P is discontinuous and must be re-
placed with a density of surface charges:

σp = (P1 −P2) ·n12 (4.16)
where P1 and P2 is the polarization density on each side of the interface, and n12 is the unit
vector going from side 1 to side 2 (see figures 4.8 and 4.9).

4.4 The internal electric field: Case of GaN/AlN quantum
wells

The polarization due to pyroelectricity and piezoelectricity generates an internal electric
field, which has important consequences on the electronic and optical properties of GaN/AlN
heterostructures.

We have investigated in section 4.2 the electronic structure of a quantum well without
electric field. We now discuss the electronic structure of the same quantum well under the
influence of the pyro- and piezoelectric fields, as a first illustration.

The effect of an electric field E on a GaN/AlN quantum well is depicted in figure 4.10
The field, which is oriented along the z axis, derives from a potential V (z) = −eEz. This
potential attracts the electrons on one side of the well, and the holes on the other, effectively
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Figure 4.9: Equivalent bound charge density - at an interface between two polarized domains.

separating the two particles and shifting the band gap to lower energy. In the following
subsection, we establish the expression of the electric field in the quantum well as a function
of the spontaneous and piezoelectric polarizations. We then compute the band gap of the
quantum well under this electric field with the tight-binding method.

Figure 4.10: Electronic structure of an heterostructure under electric field - in blue without
any potential, in red the electronic structure under the influence of a homogeneous electric field.

4.4.1 Analytical solution of Poisson’s equation in GaN/AlN quantum
wells

We assume that the GaN quantum well is biaxially strained by the AlN barriers. The
strains are therefore zero in AlN, while in GaN:

εxx = εyy = ε‖ =
aAlN −aGaN

aGaN
= −0.0241 , (4.17)
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εzz = ε⊥ = −2C13

C33
ε‖ = 0.0129 . (4.18)

The spontaneous polarization in the AlN barriers is therefore:

Pz(AlN) = P0(AlN) = −0.090 C/m2 , (4.19)

while the spontaneous and piezoelectric polarization in the GaN quantum well is:

Pz(GaN) = P0(GaN)+2e31(GaN)ε‖ + e33(GaN)ε⊥ = −0.0029 C/m2 . (4.20)

The polarization is discontinous at each GaN/AlN interface. It is thus equivalent to a distri-
bution of surface charges:

σ = P(GaN)−P(AlN) = 0.093 C/m2 (4.21)

at z = t/2 and:
σ = P(AlN)−P(GaN) = −0.093 C/m2 (4.22)

at z = −t/2.
The system hence behaves as a parallel plate capacitor. The electric field E = Ezz is

therefore uniform in each layer. Using the integral version of Maxwell equation:

∇ · ε0εE = ρ(r) , (4.23)

on a cylinder crossing the upper interfaces (Gauss theorem), we get:

ε0 (εAlNEAlN − εGaNEGaN) = σ . (4.24)

where εGaN and εAlN are the dielectric constants of GaN and AlN, and EGaN and EAlN are the
electric fields in GaN and AlN. We would get the same relation on the lower interface.

We impose periodic boundary conditions on a superlattice with length L, which implies:

EAlN (L− t)+EGaNt = 0 . (4.25)

This yields:

EAlN = − t

L− t
EGaN . (4.26)

Enforcing V (z = −L/2) = V (z = L/2) = 0 instead would lead to the same relation. Finally:

EGaN = −σ

ε0

L− t

tεAlN +(L− t)εGaN
(4.27)

In the limit of a single quantum well (L → ∞), we get:

EGaN = − σ

ε0εGaN
= −11.7 MV/cm . (4.28)

which is a really high electric field.

4.4.2 The Stark effect in quantum wells

As explained in the introduction of this section, this large electric field separates the
electrons from the holes in the quantum well. If the [0001] direction points upwards, the
electrons are attracted to the upper interface, and the holes to the lower one (Stark effect).
They will be trapped by the electric field, respectively below the conduction band edge and
above the valence band edge of the unpolarized quantum well.
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Figure 4.11: Conduction band edge of a GaN/AlN quantum well - in blue, without pyro- and
piezoelectric (P.P.) potentials; in green, including the pyro- and piezoelectric potentials.

Figure 4.12: Valence band edge of a GaN/AlN quantum well - in blue, without pyro- and
piezoelectric (P.P.) potentials; in green, including the pyro- and piezoelectric potentials.
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Figure 4.13: Bandgap energy of a GaN/AlN quantum well - in blue, without pyro- and piezo-
electric (P.P.) potentials; in green, including the pyro- and piezoelectric potentials.

This is illustrated in figures 4.11, 4.12 and 4.13, which represent the tight-binding con-
duction band edge, valence band edge and band gap energy in a GaN/AlN quantum well as
a function of its thickness. The pyro- and piezoelectric potential was computed with a finite
differences method on a real space grid, which, in this simple case, yields the same result as
the analytical treatment [equation 4.28]. The potential was then transferred from the finite
difference grid to the atoms, and added to the diagonal of the tight-binding hamiltonian1.

The bandgap energy of the GaN/AlN quantum well decreases almost linearly with the
well thickness, as expected for a constant electric field. The bandgap energy is almost zero
in ≃ 4.5 nm thick GaN layers. Although thick GaN films would practically show plastic
relaxation, this calculation shows that the strong built-in electric fields in GaN/AlN het-
erostructures profoundly affect their electronic properties.

1To add this potential V (r) to the tight-binding hamiltonian, we asume that it is varying slowly enough at
the atomic scale to consider only on-site corrections:

〈ϕiα |V | ϕ jβ

〉
=

∫
d3rϕ∗

iα(r)V (r)ϕ jβ (r) (4.29)

≃ δi j

∫
d3rϕ∗

iα(r)V (r)ϕ jβ (r) , (4.30)

because the atomic orbitals are localized around each atom.

〈ϕiα |V | ϕ jβ

〉
≃ V (Ri)δi j

∫
d3rϕ∗

iα(r)ϕ jβ (r) (4.31)

≃ V (Ri)δi jδαβ , (4.32)
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4.5 The Stark effect in nanowires

This work is motivated by experimental studies performed at the laboratory of "Nano-
physics and Semiconductors" also from INAC. They have measured interesting optical prop-
erties in GaN/AlN nanowire heterostructures.

The system consists of GaN quantum disks between two AlN barriers, on top of 30 nm
diameter GaN pillars (see figure 4.14). These wires were grown along the c axis ([0001])
by plasma-assisted MBE under nitrogen-rich conditions (24). The thickness of the quantum
disks ranges from 1 to 4 nm. As discussed in the previous sections, we expect significant
vertical confinement by the heterostructure, but little lateral confinement by the nanowire.
Still, as we will see, these nanostructures show features typical of one-dimensional systems,
such as strain relaxation and surface effects.

Figure 4.14: The system - a) GaN quantum disks embedded in AlN nanowires, b) HRTEM
image from reference (24).

4.5.1 Experimental evidence of the Stark effect

J. Renard et al. (24) have measured the macrophotoluminescence spectra obtained by
exciting the samples with a continuous wave frequency doubled argon laser emitting at 244
nm, at low power density (see Figure 4.15). The signal around 3.4-3.45 eV comes from the
GaN base of the nanowires. The other peak is attributed to the GaN insertions. The position
of this peak monotonously decreases as a function of the insertion thickness. In particular, in
the thickest insertions, the photoluminescence occurs around 2.7 eV, hence at energies well
below the band gap of GaN – a clear sign of the Stark effect.

The height of the GaN insertions has been measured in various samples, in order to corre-
late the spectral position of the emission with the insertion thickness. For that purpose, high

because the orbitals of a given atom are orthogonal. The matrix elements of the Hamiltonian thus read:

Hiα; jβ = 〈ϕiα | H | ϕ jβ

〉
(4.33)

Hiα; jβ = 〈ϕiα | H0 +V | ϕ jβ

〉
(4.34)

Hiα; jβ = 〈ϕiα | H0 | ϕ jβ

〉
+V (Ri)δi jδαβ , (4.35)

where H0 is the unperturbed (no electric field) tight-binding Hamiltonian. The potential V then appears as a
diagonal correction.

73



4. THE GAN/ALN SYSTEM

Figure 4.15: Photoluminescence spectra - Room-temperature macrophotoluminescence spec-
tra of ensembles of NWs containing single GaN/AlN axial heterostuctures with different heights
[from reference (24)].

Figure 4.16: PL energy - as a function of the insertion thickness [from reference (24)]. The
dots and triangles are previous results obtained on quantum wells [reference (99)] and Stranski-
Krastanov quantum dots [reference (100)], respectively.
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resolution transmission electron microscopy were performed on several NWs of each sam-
ple. The photoluminescence (PL) energy is plotted as a function of the insertion thickness in
Figure 4.16 (squares). The dots and triangles are previous results obtained on quantum wells
[reference (99)] and Stranski-Krastanov (SK) quantum dots [reference (100)]. The QW data
(dots) are in good agreement with the tight-binding results of figure 4.13. The PL energy
of the nanowires decreases with increasing insertion thickness, but not as much as in quan-
tum wells and SK dots. This has been tentatively attributed to the strain relaxation in the
nanowires, which decreases the piezoelectric field.

4.5.2 First simple calculations

In order to understand the behavior of the GaN/AlN nanowire heterostructures, we have
computed, as a first step, the electronic properties of GaN quantum dots in infinite AlN
nanowires (see Figure 4.17). The latter are oriented along the c axis and have a diameter of
30 nm. A single GaN quantum dot with a thickness from 1 to 5 nm is inserted in the middle.
Periodic boundary conditions are applied on supercell with length L ∼ 80 nm, to prevent any
elastic or electrostatic interaction between the GaN layers.

4.5.2.1 Strain relaxation

The strains in the nanowires were relaxed with the Valence Force Field model introduced
in Chapter 2. The elastic energy of the heterostructure was minimized with respect to the
atomic positions with a conjugate gradients algorithm. The residual strains were then com-
puted from the final atomic positions.

Figure 4.17: Hydrostatic deformation - in an AlN nanowire with a 5 nm thick GaN insertion.

The hydrostatic strain
δΩ

Ω
= εxx + εyy + εzz is plotted in a plane containing the axis of

the nanowire in figure 4.17, for a 5 nm thick GaN insertion. The hydrostatic strain is the
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variation of the volume of the unit cell with respect to the unstrained material. As expected,
the GaN layer is compressed by the majority material, AlN. The strains are however very
inhomogeneous, being still significant at the center of the GaN layer, but almost completely
relaxed at the surface. The GaN layer indeed deforms the surface of the nanowire outwards
to relieve the inner strains. This transfers tensile strains to the AlN nanowire, which relax
over a few nanometers on each side of the GaN insertion.

Figure 4.18: In-plane strain - εxx + εyy in an AlN nanowire with a 5 nm thick GaN insertion.

Figure 4.19: Vertical strain - εzz in an AlN nanowire with a 5 nm thick GaN insertion.

As discussed in this chapter, the built-in fields in [0001] oriented heterostructures are
mostly due to the non-zero polarization along the c axis. The piezoelectric component of
this polarization depends on εxx + εyy and εzz (see equation 4.14). These deformations are
plotted in figures 4.18 and 4.19, respectively. The in-plane strain εxx + εyy shows the same
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features as the hydrostatic strain. The “vertical” strain εzz is opposite to the in-plane strains,
as the material compensates the compression along x and y by a dilatation along z to mitigate
volume variations (i.e., hydrostatic strains). The residual in-plane strains at the center of the
GaN layer, εxx + εyy ≃ −2.8%, are much smaller than twice the lattice mismatch between
GaN and AlN (−4.8%), which shows that strain relaxation is very efficient. We can therefore
expect from figures 4.18 and 4.19 a significant reduction of the piezoelectric field due to
strain relaxation.

4.5.2.2 Built-in potentials

The electrostatic potential in the nanowires was computed from the spontaneous and
piezoelectric polarization with a finite differences method. The electrostatic potential in
nanowires with 1 and 5 nm thick GaN insertions is shown in figure 4.20 and figure 4.21,
respectively.

Figure 4.20: Electrostatic potential - along the axis of an AlN nanowire with a 1 nm thick GaN
insertion.

The electric field is almost homogeneous in the GaN layer. It reaches ∼ 10 MV/cm in
1 nm thick layers, a value very close to the 2D limit (equation 4.28). Thin GaN layers are,
indeed, little relaxed and mostly behave as quantum wells. There is no significant reduction
of the electric field due to finite size effects (finite cross sectional area). As expected, the
electric field decreases with increasing GaN thickness, down to ∼ 8 MV/cm in 5 nm thick
insertions, due to strain relaxation. The electric field is much more inhomogeneous in the
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Figure 4.21: Electrostatic potential - along the axis of an AlN nanowire with a 5 nm thick GaN
insertion.

AlN nanowire, and rapidly decreases away from the interfaces with the GaN layer. The ten-
sile strains transferred from GaN to AlN indeed generate a piezoelectric polarization which
tend to screen the electric field at the interfaces. We will discuss in the next paragraph the
electronic structure and Stark effect in these nanowires.

4.5.2.3 Cutting the nanowires

The strains and potentials in the nanowires have been computed in 80 nm long supercells
to prevent any electrostatic interaction between the GaN layers. These supercells contain
around 10 millions of atoms and are, therefore, too large for tight-binding calculations (which
can be routinely performed on 1-2 million atoms systems on single CPUs). Such supercells
are, anyway, unnecessary long for electronic structure calculations. Due to the large band
offsets between GaN and AlN, the lowest electron and hole states of the heterostructures
would indeed be converged with much thinner (< 4 nm) AlN barriers on each side of the
GaN layer.

Once the strains and potentials have been calculated, we therefore cut a slice in the
nanowire containing the GaN layer and 4 nm thick AlN barriers on each side. The bonds
broken by this operation are saturated with hydrogen atoms. The electronic structure of this
slice of the nanowire is then computed with the tight-binding method, using the original
electrostatic potential. We have carefully checked the convergence of the electron and hole
energies with respect to the AlN barriers thickness.
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4.5.2.4 Electronic structure

The slice used to compute the electronic properties of the 5 nm thick GaN layer is dis-
played in figure 4.22, along with the lowest energy electron and hole wave functions. As
expected, the electric field separates the electron from the hole, which would decrease the
oscillator strength, increase the recombination time and reduce the photoluminescence in-
tensity.

Figure 4.22: The slice of nanowire - used to compute the electronic properties of the 4 nm thick
GaN layer, and the lowest hole and electron wavefunctions.

The band gap energy of the GaN layers is plotted as a function of their thickness in figure
4.23 (blue line). The experimental luminescence energies of the GaN/AlN nanowire het-
erostructures of reference (24) are also reported on this figure for comparison (red dots). The
calculated band gap decreases much faster than the experimental band gap, being almost zero
in 5 nm thick layers. We are thus strongly overestimating the electric field in the nanowires.

Figure 4.23: The band gap energy - of GaN layers embedded in AlN nanowires as a function
of their thickness (blue line). The red dots are the experimental photoluminescence energies of
reference (24)
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Our present model for the Stark effect clearly misses important effects. First of all, the ex-
perimental structures feature finite size AlN barriers grown on top of a GaN pillar. This might
strongly influence the electric field, due to the presence of an additional GaN/AlN interface
(between the pillar and heterostructure) and of an AlN/air surface a few nanometers away
from the quantum dot. Second, the large electric fields encountered in these heterostructures
are likely able to transfer charges from one part of the system to an other, which would screen
the electric field. In particular, the electric field can pull out electrons from surface states,
which might accumulate in the GaN pillar below the heterostructure. We will investigate this
scenario in detail in Chapter 5, showing that it indeed provides a clue to the reduction of the
Stark effect evidenced experimentally in these nanowires.

4.5.3 GaN/AlN nanowires superlattices

As a side study we have also investigated the electronic properties of short-period GaN/AlN
nanowire superlattices (figure 4.24). These superlattices are modeled as above, but with a
shorter supercell length L allowing for electrostatic interactions between the GaN layers. At
variance with the previous case, the wire is not cut any more, and the electronic structure is
computed in the same supercell as the strains and potential.

Figure 4.24: A short-period GaN/AlN superlattice - characterized by the thicknes of the GaN
quantum dots and AlN barriers.

The bandgap energy of the nanowires is plotted as a function of the thickness of the GaN
layers in figure 4.25, for different AlN barriers. It decreases with increasing barrier thickness,
due to the electrostatic interactions between the layers. Indeed, the system behaves as a series
of parallel plate capacitors (the GaN layers) brought closer and closer to each other. The
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charges accumulated on a given interface tend to screen those accumulated on the neighbors,
which decrease the electric field as the thickness of the barriers is reduced. This effect can
directly be evidenced in equation 4.27, which shows a clear L dependence. As a consequence
the Stark effect can be strongly reduced in short-period GaN/AlN nanowire superlattices.

Figure 4.25: Band gap energy in GaN/AlN nanowires superlattices - as a function of the
thickness of the GaN layer for different AlN barriers.

4.6 Conclusions

In this chapter, we have discussed the pyro- and piezo-electric fields in nitride materi-
als. We have investigated their effects on GaN/AlN quantum well as an example. We have
shown that the built-in electric fields could efficiently separate the electrons from the holes
and reduce the band gap (Stark effect), even below the bulk value. We have then modeled the
Stark effect in GaN/AlN nanowire heterostructures, in connection with recent experiments
on this system. Our present approach however fails to reproduce the magnitude of the exper-
imental electric field. This is likely due to our simplified geometry and the lack of screening
mechanisms in the calculation. We will investigate these issues in detail in the next chapter.

81



4. THE GAN/ALN SYSTEM

82



Chapter 5

The Stark effect in GaN/AlN nanowire
heterostructures

5.1 Introduction

Wide band gap nitride semiconductors are now widely used for light emission in the
blue and ultraviolet range (87; 88; 89). Thanks to large band offsets, GaN/AlN heterostruc-
tures are also promising candidates for fast telecommunication devices based on intersub-
band transitions (90) or for high-temperature single photon emitters (91). One specific
aspect of nitride heterostructures is the existence of large internal electric fields due to
spontaneous electric polarization (pyroelectricity) and strains (piezoelectricity) (92). These
built-in fields might transfer charges in the devices, leading for example, to the formation
of two dimensional (2D) electron gases at the interfaces between GaN and AlN1 layers
(48; 93; 94; 95; 96). They might also separate electrons from holes in GaN quantum wells
and Stranski-Krastanov (SK) quantum dots, thereby reducing the band gap and oscillator
strength (quantum confined Stark effect) (97; 98; 99; 100).

The built-in pyro- and piezo-electric fields open a new avenue to tailor the electric and
optical properties at the nanoscale, since the band-gap can be controled by modifying the
geometry and composition of the quantum dot/nanowire heterostructure. It is therefore es-
sential to understand the built-in electric field in nitride heterostructures to suit a particular
application.

Whereas 2D layers usually feature a large density of dislocations, nitride nanowires offer
the opportunity to make defect-free heterostructures thanks to the efficient strain relaxation
associated with the large surface to volume ratio (22; 23). Single GaN quantum disks (QDs)
between two AlN barriers have for example been grown on top of GaN pillars (20–50 nm
diameter) with plasma-assisted molecular beam epitaxy (see figure 5.1) (56). The exciton and
biexciton luminescence of 1 nm thick GaN QDs has been observed, showing the potential of
such heterostructures for nitride optoelectronic devices (56). A strong red shift (below the
bulk GaN band gap) has been subsequently observed for larger disk thickness, a signature of
the quantum confined Stark effect (24), i.e. the optical gap decreases with the QD thickness.

1Such heterostructures are also formed between GaN and alloys such as GaxAl1−xN. Although these alloys
are also interesting, will not be considered in this Thesis.
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This redshift is however smaller than expected from a comparison with GaN/AlN quantum
wells ((99); see also figure 4.16 in Chapter 4).

The goal of this chapter is to explain the dependence of the optical energy gap on QD
thickness and how geometrical relaxation and screening effects influence this dependence,
for the case of GaN/AlN QDs. GaN/GaAlN SK dots have been modeled before with k ·p
or tight-binding approaches (29; 101; 102; 103; 104). The key role played by the charges
transferred by band bending, which screen the electric field, has been emphasized in 2D
GaN/GaAlN layers (48; 93; 94; 95; 96). In this Chapter, we model the electronic proper-
ties of GaN/AlN nanowire heterostructures in an atomistic tight-binding framework (63; 72).
We first compute strains with a valence force field method (105), and then we calculate the
pyro- and piezoelectric field. We account for band bending with a semi-classical Debye-
Hückel approach, making no assumption about the pinning of the Fermi level, but including
a distribution of surface states which act as a source or trap of carriers. We show: (i) that
the piezoelectric component of the field can be significantly reduced by the efficient strain
relaxation in the nanowire geometry ; (ii) that the spontaneous and piezoelectric polariza-
tions create an electron gas at the lower GaN/AlN interface and are likely large enough to
create a hole gas in the upper AlN barrier. These electron and hole gases screen the electric
field in the GaN QD and reduce the Stark shift ; (iii) that for carefully chosen dot and bar-
rier thicknesses (realized experimentally) the GaN QD is empty at equilibrium, consistent
with the observation of exciton and biexciton transitions. We discuss the magnitude of the
electric field and the electronic stucture of the QDs as a function of the dimensions of the
heterostructure.

The rest of this chapter is organized as follows: We review the methods in section 5.2,
then discuss the electric field in GaN/AlN nanowire heterostructures in section 5.3, where we
introduce a simple 1D model for the pyro- and piezoelectric field that reproduces the main
trends. We finally discuss the electronic structure of the GaN QDs and compare our calcula-
tions with the available experimental data in section 5.4, where we analyze the dependence
of the electronic and optical properties of the QDs on the geometry of the heterostructures.

5.2 Methodology

In this section, we introduce the methods used to compute the structural and electronic
properties of the GaN/AlN heterostructures.

Each nanowire is modeled as a 30 nm diameter and 150 nm long (106) cylindrical GaN
pillar oriented along z = [0001], with the heterostructure on top. The latter consists of a
lower AlN barrier with thickness tinf, a GaN quantum disk with thickness tQD and a upper
AlN barrier with thickness tsup (see figure 5.1). The dangling bonds at the surface of the
nanowire are saturated with hydrogen atoms.

The strains in the nanowire are computed with Keating’s valence field model (39). The
elastic energy of the nanowire is minimized with respect to the atomic positions using a
conjugate gradients algorithm. The components of the strain tensor, εαβ , on each atom are
then calculated from the atomic positions using a method similar (107) to reference (31).
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Figure 5.1: Atomistic model of a GaN/AlN nanowire heterostructure - Atomistic model of
an AlN/GaN/AlN nanowire heterostructure grown on top of an GaN pillar. The radius of the
nanowires is R = 15 nm.
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The pyro- and piezoelectric polarization density, P, is next computed from the strains on
each cation (Ga or Al) :

P =




0
0
P0



+




2e15εxz

2e15εyz

e31(εxx + εyy)+ e33εzz



 , (5.1)

where P0 is the spontaneous polarization, and e13, e33 and e15 are the piezoelectric constants
of either GaN or AlN (see Table 5.1). Poisson’s equation for the total, built-in potential Vp(r)
is given by

κ0∇r ·κ(r)∇rVp(r) = ∇r ·P(r) , (5.2)
and is then solved on a finite difference grid (108) (see appendix I of reference (109) for de-
tails). κ(r) is the inhomogneous dielectric constant, which we take κ = 9 inside the nanowire
and κ = 1 outside. The experimental static dielectric are 8.9-9.5 for GaN and 8.5 for AlN
((110)).

The large pyro- and piezoelectric field Ep = −∇Vp in the heterostructure bends the con-
duction and valence bands and can therefore transfer charges from one part of the system to
another. It is for example known that the spontaneous polarization in GaAlN layers grown on
GaN pulls out electrons from the GaAlN surface, which accumulate in a 2D electron gas at
the GaN/GaAlN interface (48; 93; 94; 95; 96). These electrons leave positive charges at the
GaAlN surface, which can be ionized surface donors, emptied surface states or even a hole
gas. This redistribution of charges creates, in turn, an electric field opposite to Ep, which can
screen the latter to a large extent.

Here the effects of band bending have been self-consistently computed in a semi-classical
Debye-Hückel approximation. The local density of electrons, n(r), and the local density of
holes, p(r) are calculated as (111):

n(r) = NcF1/2 [−β (Ec − eV (r)−µ)] (5.3a)

p(r) = NvF1/2 [+β (Ev − eV (r)−µ)] , (5.3b)
where Nc and Nv are the effective conduction and valence band density of states of the mate-
rial at point r, Ec and Ev are its conduction and valence band edge energies (see Table 5.1),
V (r) is the total electrostatic potential, and µ is the chemical potential or Fermi energy. F1/2
is the Fermi integral of order one-half and β = 1/(kT ), where T = 300 K is the temperature.
We have, additionally, assumed that the nanowires were non-intentionally n-doped, with a
concentration of donor impurities (silicon, oxygen or vacancies) Nd = 2× 1017 cm−3. The
density of ionized impurities is (111):

N+
d (r) =

Nd

1+2e−β [Ec−Eb−eV (r)−µ]
, (5.4)

where Eb is the binding energy of the donor, which typically ranges from a few tens to a few
hundreds of meV.

As mentioned previously, surface states can play an important role in the electrostatics
of nitride nanowires. They might act as a source (48; 94; 95; 96) or as a trap (113; 114) of
carriers, effectively pinning the chemical potential in the band gap. Little is however known
about the electronic structure of nitride surfaces (115). On one hand, density functional
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GaN AlN
P0 (C/m2) −0.034 −0.090
e13 (C/m2) −0.53 −0.54
e33 (C/m2) 0.89 1.56
e15 (C/m2) −0.33 −0.42
Nv (cm−3) 4.6×1019 4.8×1020

Nc (cm−3) 2.3×1018 6.3×1018

Ev (eV) 0.0 −0.8
Ec (eV) 3.50 5.45

Eb (meV) 30 170
E+

1 (eV) 0.25 1.00
E+

2 (eV) 1.25 3.00
E−

1 (eV) 2.25 4.25
E−

2 (eV) 3.25 5.25

Table 5.1: The material parameters for GaN and AlN (29; 46; 112)
.

theory (DFT) calculations on reconstructed GaN and AlN surfaces (116; 117; 118; 119; 120)
suggest the existence of occupied (donor-like) surface states above the valence band edge
and empty (acceptor-like) surface states below the conduction band edge (as expected from
simple considerations). On the other hand, the extensive literature about 2D electron gases in
[0001] GaN/GaAlN heterostructures (48; 94; 95; 96) suggests the existence of dense (≃ 1013

cm−2eV−1) surface donor states only ≃ 1.5 eV below the conduction band of Ga1−xAlxN
alloys (x ≃ 0.4). Although the nature of these surface donors is still debated, oxygen has
often been put forward (121). It is not clear however that the same picture holds for non-
polar Ga(Al)N surfaces and for surfaces of pure AlN, where the oxide is not the same. The
situation is particularly tricky in nanowires, which expose different (polar and non-polar)
surfaces. For the sake of simplicity, we assume in this work the existence of a uniform
density of occupied surface states in the [E+

1 ,E+
2 ] energy range above the valence band edge,

and of a uniform density of empty surface states in the [E−
1 ,E−

2 ] energy range below the
conduction band edge. The density of ionized occupied surface states is therefore:

N+
s (r) = kT D+

s ln
1+ 1

2eβ [E+
2 −eV (r)−µ]

1+ 1
2eβ [E+

1 −eV (r)−µ]
, (5.5)

while the density of electrons trapped in the empty surface states is:

N−
s (r) = kT D−

s ln
1+2e−β [E−

1 −eV (r)−µ]

1+2e−β [E−
2 −eV (r)−µ]

. (5.6)

D+
s and D−

s are the density of occupied and empty surface states, respectively (per unit
surface and energy). The values of E+

1 , E+
2 , E−

1 and E−
2 used in this work are also reported

87



5. THE STARK EFFECT IN GAN/ALN NANOWIRE HETEROSTRUCTURES

in Table 5.1. We have varied D+
s = D−

s between 5×1012 cm−2eV−1 and 5×1013 cm−2eV−1.
Their effects will be discussed in paragraph 5.3. We will show, in particular, that the electric
field in the QD is weakly dependent on the model for the surface states up to large D+

s and
D−

s .
In practice, the carrier densities n(r) and p(r) are computed on each Ga, Al and N atom,

while the surface state densities N+
s (r) and N−

s (r) are computed on each hydrogen atom. The
charge on each atom is then transferred to the finite difference mesh, and Poisson’s equation
for the total electrostatic potential V (r) is solved self-consistently with the Newton-Raphson
method (122):

κ0∇r ·κ(r)∇(r)V (r) = ∇r ·P(r)

+
[
n(r)− p(r)−N+

d (r)+N−
s (r)−N+

s (r)
]

e . (5.7)
The chemical potential µ is adjusted to ensure overall charge neutrality of the nanowire.

Finally, the electronic structure of the GaN QD in the potential V (r) is computed with a
sp3d5s∗ tight-binding model (34; 78; 123; 124). In order to access the relevant states directly,
a slice containing the GaN QD and 4 nm of each AlN barrier is cut from the nanowire. The
bonds broken by this operation are saturated with hydrogen atoms, and a few conduction
and valence band states are computed with a Jacobi-Davidson algorithm (125; 126). The
convergence of the electronic structure of the QD with respect to the thickness of the AlN
barriers has been checked.

5.3 The built-in electric field in GaN/AlN nanowire het-
erostructures

In this section we discuss the built-in pyro- and piezo-electric electric fields in GaN/AlN
nanowire heterostructures emphasizing/enquiring about how self-consistent screening by
charge carriers modifies the built-in fields. It will be shown that screening effects can sub-
stantially reduce these fields, thus resulting in a reduction of the Stark red-shift. This reduc-
tion is associated with the formation of a 2D layer of holes at the terminating surface of the
heterostructure. These screening effects turn out to be essential to explain the experimental
results obtained in reference (24).

For definitiveness we will first consider a particular case of a nanowire heterostructure
with tQD = 4 nm and tinf = tsup = 8 nm as geometrical parameters (See figure 5.1) which
clearly illustrates the redshift reduction associated with self-consistent screening effects. We
then propose a simplified model that reproduces these trends fairly well.

Finally we will investigate the effect of varying the geometrical parameters of our het-
erostructure model. We will see how the length of the barriers sourronding the quantum dot
becomes an important factor, in order of keep the quantum dot clean of free carriers.

5.3.1 Example: AlN (8 nm)/GaN (4 nm)/AlN (8 nm)

We focus as an illustration on a 30 nm diameter nanowire with a tQD = 4 nm thick GaN
QD and tinf = tsup = 8 nm thick AlN barriers. We set D+

s = D−
s = 1013 cm−2eV−1.
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Figure 5.2: Conduction and valence band-edge energies of a AlN (8 nm)/GaN (4 nm)/AlN
(8 nm) nanowire heterostructure. - The conduction band-edge energy, εc(r) = Ec−eV (r), and
the valence band-edge energy, εv(r) = Ev −eV (r), along the axis of a nanowire with tQD = 4 nm
and tinf = tsup = 8 nm. The reference of energy is the chemical potential µ = 0. The position of
the AlN barriers is outlined in gray, and the top surface is at z = 0.

The conduction band edge energy εc(r) = Ec − eV (r) and the valence band edge energy
εv(r) = Ev − eV (r) are plotted along the axis of the nanowire in figure 5.2. The reference
of energy for this plot is the chemical potential µ = 0. The top of the nanowire is located at
z = 0 and the position of the AlN barriers is outlined in gray.

The band discontinuities at the GaN/AlN interfaces are clearly visible. The heterostruc-
ture undergoes a strong vertical electric field, which is almost homogeneous in the AlN
barriers and in the GaN QD. The latter is empty of carriers (electrons and holes). The chem-
ical potential is however pinned at the valence band edge at the top surface of the nanowire,
and crosses the conduction band at the interface with the GaN pillar. Electrons therefore
accumulate in the GaN pillar, while holes accumulate in the upper AlN barrier.

This redistribution of charges follows from the pyro- and piezoelectric polarizations.
Leaving aside piezoelectricity for the moment, the spontaneous polarization in GaN is Pz =
−0.034 C/m2, while the spontaneous polarization in AlN is Pz = −0.090 C/m2. This polar-
ization is equivalent to a distribution of charges σ = −0.090 C/m2 at the top surface, and
σ = ±(0.090−0.034) = ±0.056 C/m2 at each GaN/AlN interface. Such a charge distribu-
tion, if unscreened, would create huge vertical electric fields and potentials of the order of
10 to 20 V in the nanowire (see figure 5.3).

The pyro- and piezoelectric field however bends the conduction and valence bands and
tends to draw positive charges at the top of the nanowire, which screen the polarization.
The potential actually rises the occupied surface states of the upper AlN barrier above the
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Figure 5.3: unscreened and screened pyro- and piezoelectric potentials - The bare (un-
screened) and screened pyro- and piezoelectric potentials along the axis of the nanowire (tQD = 4
nm, tinf = tsup = 8 nm). The position of the AlN barriers is outlined in gray, and the top surface
is at z = 0.

Fermi energy. They therefore empty, leaving positive charges at the surface and releasing
electrons in the GaN pillar. At moderate electric field, the surface states would be able to
provide enough charge to reach equilibrium, and the chemical potential would lie in the
band gap at the top AlN surface. Here the electric field is however large enough to empty the
N+

tot = D+
s (E+

2 −E+
1 ) = 2×1013 cm−2 occupied surface states. The chemical potential then

sinks into the valence band; a gas of holes forms at the top surface and provides the missing
charges.

According to this picture, the charge in the system is mostly distributed at the top AlN
surface and at the GaN/AlN interfaces. As a consequence, the electric field is typical of
a series of parallel plate capacitors, being almost homogeneous in the GaN QD and AlN
barriers. This is further emphasized in figure 5.4, which represents the electrostatic potential
V (r) in a (xz) plane containing the axis of the nanowire. The equipotential lines are indeed
parallel to the interfaces. Finite size electrostatic effects are therefore limited in the GaN QD
and barriers in this range of dimensions.

The effective density of states in the conduction and valence bands of GaN and AlN are
large enough to “lock” the potential at the interface with the GaN pillar and at the top surface
(as a small variation of potential leads to exponential variations of the charge densities once
the Fermi energy is in the bands). Hence,

µ ≃ Ev(AlN)− eV (z = 0) (5.8a)
at the top surface, and

µ ≃ Ec(GaN)− eV (z = −thet) (5.8b)
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5.3 The built-in electric field in GaN/AlN nanowire heterostructures

Figure 5.4: The electrostatic potential - V (r) in the (xz) plane containing the axis of the
nanowire (tQD = 4 nm, tinf = tsup = 8 nm). The GaN and AlN layers are delimited by dotted
lines.

at the interface z = −thet = −(tinf + tQD + tsup) with the GaN pillar. The voltage drop ∆V =

V (z = −thet)−V (z = 0) across the heterostructure is therefore:

e∆V ≃ Ec(GaN)−Ev(AlN)

≃ Eg(GaN)+Ev(GaN)−Ev(AlN) . (5.9)

The voltage drop across the heterostructure is thus primarily defined by the band gap Eg(GaN)

of GaN and the valence band offset between GaN and AlN once the Fermi energy is pinned in

the valence band of AlN at the top surface. The validity of this assumption will be discussed
in the next paragraphs.

5.3.2 A simple 1D model

We can derive a simple 1D model for the electric field EQD in the GaN QD from the
above observations. For that purpose, we neglect finite size effects (R → ∞) and doping.
We assume that the polarization is homogeneous in the lower AlN barrier (Pz = Pinf), GaN
quantum disk (Pz = PQD) and upper AlN barrier (Pz = Psup, see figure 5.5). This polarization
is equivalent to a charge density σsup = ∆Psup = PQD −Psup on the upper QD interface and
σinf =−∆Pinf =−(PQD−Pinf) on the lower QD interface. We also assume that the difference
of potential ∆V across the heterostructure is set by band structure effects [equation (5.9) or
equivalent if other pinning of the Fermi level]. The electric field is then homogeneous in
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Figure 5.5: The 1D model used for the analysis of the electric field in the GaN QD. -

each layer and fulfills the continuity and integral equations:

κ0κ (Einf −EQD) = ∆Pinf (5.10a)

κ0κ
(
Esup −EQD

)
= ∆Psup (5.10b)

tinfEinf + tQDEQD + tsupEsup = ∆V . (5.10c)

We therefore get:

EQD = − 1
κ0κ

tinf + tsup

thet
∆P̄+

∆V

thet
(5.11)

where:

∆P̄ =
tinf∆Pinf + tsup∆Psup

tinf + tsup
(5.12)

is an average polarization discontinuity at the interfaces of the QD. Additionally, the electric

field in the barriers is:

Einf =
1

κ0κ

[
∆Pinf −

tinf + tsup

thet
∆P̄

]
+

∆V

thet
(5.13a)

Esup =
1

κ0κ

[
∆Psup −

tinf + tsup

thet
∆P̄

]
+

∆V

thet
. (5.13b)

The above equations hold as long as the QD is empty – which is also often desired ex-

perimentally. Neglecting quantum confinement in a first approximation, the QD is empty

as long as the conduction band edge is above the Fermi energy, and the valence band edge

below the Fermi energy throughout the dot. Assuming EQD < 0 (which is the case here), the

QD is therefore free from holes if Ev(GaN)− eV (z = −tsup − tQD) < µ , and free from elec-

trons if Ec(GaN)− eV (z = −tsup) > µ . Using Eqs. (5.8), (5.9) and (5.13), these conditions
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respectively translate into the following constraints on tinf and tsup:

tinf <
Eg(GaN)

eEinf
(5.14a)

tsup <
∆V

Esup
. (5.14b)

Assuming fixed pyro- and piezoelectric polarizations, Einf and Esup are independent on tinf

and tsup for given tQD and thet. Equations (5.14) then show that the QD can be empty only in

a finite range of positions within the heterostructure. The QD is indeed filled with electrons

if it is too far from the surface, and filled with holes if it is too far from the pillar. The QD

might actually never be empty if it is too thick. Note, however, that quantum confinement

will practically hinder the charging of the QDs by rising the electron and hole energies. The

above constraints thus provide safe bounds for the design of nanowire heterostructures.

Equations (5.11) and (5.13) also give an estimate of the charge densities σs and σp accu-

mulated at top surface and interface with the pillar, respectively. The continuity equation for

the electric field indeed reads at this interface:

κ0κ
(
Einf −Epil

)
= σp , (5.15)

where Epil is the electric field in the pillar. Since Epil decreases rapidly away from the

interface,

σp ≃ κ0κEinf . (5.16)

Assuming that the tip of the nanowire is charge neutral at equilibrium, we then get:

σs ≃−
(
σp −∆Pinf +∆Psup

)
. (5.17)

We can further split σs and σp into polarization and induced charges:

σp = ∆Ppil −npe (5.18a)

σs = Psup +nse , (5.18b)

where ∆Ppil = Ppil −Pinf, np is the density of the electron gas at the interface with the pillar,

and ns is the density of charges (ionized surface states+holes) at the top surface. The latter

thus finally read:

npe ≃ Ppil −PQD +
tinf + tsup

thet
∆P̄−κ0κ

∆V

thet
(5.19a)

nse ≃ −PQD +
tinf + tsup

thet
∆P̄−κ0κ

∆V

thet
. (5.19b)

Note that thet must be large enough for the electron gas to form at the interface with the pillar

(np > 0) (94), but this is usually not limiting the design of the heterostructure.

We can get a rough estimate of EQD, np and ns by neglecting piezoelectricity [Pinf =
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Psup = P0(AlN), Ppil = PQD = P0(GaN)]. We then get from equations (5.11) and (5.19b):

EQD = − 1
κ0κ

tinf + tsup

thet
[P0(GaN)−P0(AlN)]+

∆V

thet
(5.20a)

npe =
tinf + tsup

thet
[P0(GaN)−P0(AlN)]−κ0κ

∆V

thet
(5.20b)

nse = −tQDP0(GaN)+
(
tinf + tsup

)
P0(AlN)

thet
−κ0κ

∆V

thet
. (5.20c)

As a simple example, the pyroelectric field in a 4 nm thick QD embedded in an infinitely long
nanowire (thet → ∞) would be |EQD|= 7.03 MV/cm. In a finite heterostructure with thet = 20
nm, the induced charges screen this field down to |EQD| = 3.47 MV/cm. The density of the
electron gas at the interface with the GaN pillar is then np = 1.73× 1013 cm−2, while the
total density of charges (surface states+holes) at the top surface is ns = 3.85× 1013 cm−2.
Therefore, the Fermi level is actually pinned in the valence band of AlN as long as the total
(donor) surface states density is lower than N+

crit = 3.85× 1013 cm−2. This critical density,
although large, is yet not unreasonable for bare nanowire surfaces. We will however give
further evidence in paragraph 5.4 that the Fermi level is pinned at (or at least close to) the
valence band edge of AlN.

Figure 5.6: Conduction and valence band-edge energies of a AlN (16 nm)/GaN (4 nm)/AlN
(16 nm) nanowire heterostructure. - The reference of energy is the chemical potential µ = 0.
The position of the AlN barriers is outlined in gray. The electric field is not constant in the
barriers due to the inhomogeneous strains and piezoelectricity.

We have tested this simple 1D model against the numerical solution of equations (5.3)–
(5.7). It gives an excellent account of the electric field in the QD when thet . 2R. The effects
of the non-intentional doping are indeed negligible with respect to the amount of charges
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transferred by the pyro- and piezoelectric field. This model however tends to overestimate
np (as the electric field in the pillar actually decreases over tens of nanometers) and thus ns

(by around 25% in the above example). Also, the piezoelectric polarization and field become
inhomogeneous in thick heterostructures, as the strains are maximum at the interfaces and
relax in between (72; 109) (see figure 5.6). The 1D model above is nonetheless very helpful
in understanding trends and guiding the design of nanowire heterostructures.

5.3.3 Discussion

The amplitude of the electric field |EQD|, computed with equations. (5.3)–(5.7) as the
difference of potential along the QD axis divided by tQD, is plotted in figure. 5.7a as a
function of tinf and tsup (tQD = 4 nm). As expected from equation. (5.20a), the electric
field increases with the total thickness thet of the heterostructure, and ranges from ≃ 3.5
MV/cm for thet ≃ 12 nm to > 7 MV/cm for thet = 36 nm. The electric field is slightly
higher than expected from the spontaneous polarization, and does not fulfill the symmetry
relation EQD(tinf, tsup) = EQD(tsup, tinf) due to piezoelectricity. This is further emphasized
in figure 5.7b, which represents the average ∆P̄ obtained by inverting equation (5.11) with
the data of figure 5.7a. Three horizontal lines are also plotted on this figure for reference.
∆Ppyro = 0.056 C/m2 is the spontaneous polarization discontinuity at the GaN/AlN interface,
which should provide a lower bound for ∆P̄. ∆PGaN = 0.105 C/m2 is the spontaneous and
piezoelectric polarization discontinuity in an heterostructure biaxially strained onto GaN,
and ∆PAlN = 0.093 C/m2 is the polarization discontinuity in an heterostructure biaxially
strained onto AlN, which are the expected limits for thin and thick barriers, respectively. The
actual ∆P̄ lies between these bounds, as an evidence for piezoelectricity. The piezoelectric
field, though still significant, is lower than in a 2D AlN/GaN/AlN quantum well, due to strain
relaxation. The variations of ∆P̄ result from a complex interplay between strain relaxation
and charging (see discussion below). It is nonetheless worthwhile to note that a very good
approximation to the electric field can be obtained with a constant ∆P̄ ≃ 0.077 C/m2 (for
given tQD and R) in a wide range of tinf and tsup. The value of ∆P̄ slightly increases with
decreasing tQD, up to ∆P̄ ≃ 0.082 C/m2 for tQD = 1 nm.

As discussed above, the QDs might not be empty if they are are too far from the surface
or from the pillar. equations (5.3)–(5.7) do not, however, properly take quantum confinement
into account. We have therefore refined the assessment of the charge state of the QDs with
the tight-binding model: we have tentatively assumed that the QDs were empty (setting
Nv = Nc = 0), and checked the position of the tight-binding band edges with respect to the
Fermi energy. We find that all the QDs of figure 5.7 are actually empty, except those with
tsup = 4 nm and tinf ≥ 8 nm, which are filled with holes. As expected from equation (5.19b),
the total charge density in the AlN barriers increases with thet, from ns = 2.39×1013 cm−2

for tinf = tsup = 4 nm, to ns = 3.54×1013 cm−2 for tinf = tsup = 8 nm, and ns = 4.25×1013

cm−2 for tinf = tsup = 16 nm. The Fermi energy is therefore pinned in the valence band of
AlN at the top surface in all heterostructures considered here (ns > N+

tot = 2×1013 cm−2).
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Figure 5.7: (a) The amplitude of the electric field |EQD| in the GaN QD as a function of tinf and
tsup (tQD = 4 nm). (b) The average polarization discontinuity ∆P̄ deduced from (a) and equation
(5.11). The two dots between parentheses are charged with holes.
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We would like finally to discuss the role of the lateral surface states. The top surface
states play a key role by releasing electrons in the GaN pillar, thereby screening the pyro-
and piezo-electric field. The occupied lateral surface states of the upper and lower AlN bar-
rier also act as a (secondary) source of electrons. Most of these extra electrons (as well as the
donor electrons) are, however, trapped by the empty lateral surface states of the GaN pillar.
As a consequence, the GaN pillar is effectively depleted far away from the heterostructure,
and the Fermi level is pinned ≃ 1.25 eV below the conduction band edge (see figure. 5.2)
(114). This does not, however, have significant influence on the physics of the heterostruc-
ture.

5.4 Electronic properties of GaN/AlN nanowire heterostruc-
tures

We now discuss the electronic and optical properties of the GaN/AlN nanowire het-
erostructures, and compare our results with experimental data.

Figure 5.8: The band gap energy of GaN QDs as a function of the electric field - (tQD = 4
nm). The dotted line is a guide to the eye. The corresponding (tinf, tsup) are given (in nm) between
parenthesis. The red square is the experimental structure discussed in the text.

The tight-binding band gap energy Eg of empty 4 nm thick GaN QDs is plotted as a
function of the electric field EQD in figure 5.8. The corresponding values of tinf and tsup are
reported between parenthesis. The excitonic correction is not included in this calculation
and should further decrease the optical band gap by at most ≃ 25 meV. The band gap energy
is strongly red-shifted (below the bulk value) by the electric field (Stark effect). It depends
almost linearly on EQD and spans around 1 eV in the investigated range of tinf and tsup. The
ground-state electron and hole wave functions of a particular QD (tinf = tsup = 8 nm) are
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Figure 5.9: The lowest hole (a) and highest electron (b) wave functions in a GaN QD (tQD = 4
nm ; tinf = tsup = 8 nm). Gallium atoms appear in white, Aluminium atoms in gray.
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Figure 5.10: The calculated (TB) and experimental (24) (Exp.) band gap energies of the GaN
QDs. Experimental GaN/AlN quantum wells (99) (QW) and Stranski-Krastanov (SK) quantum
dots (100) with similar sizes are also reported for comparison.

plotted in figure 5.9. As expected, the electron is confined at the upper interface, while the
hole is confined at the lower interface of the QD. The electron and hole are, interestingly,
both localized around the axis of the nanowire, where the strains are maximum, hence the
piezoelectric field slightly larger than at the surface. This helps preventing one of the carriers
from being trapped by the charged lateral surface states (114).

Finally, we compare our theoretical predictions with the experimental results of reference
(24). In this work, the room-temperature luminescence of 1 to 4 nm thick GaN QDs embed-
ded in 30 nm diameter nanowires showed clear evidence of the quantum confined Stark
effect. We have therefore computed the electronic structure of a 1 nm thick QD (tinf = 10
nm, tsup = 8 nm), of a 2.5 nm thick QD (tinf = 9 nm, tsup = 10 nm) and of a 4 nm thick QD
(tinf = 8 nm, tsup = 7 nm). The thickness of the barriers was chosen after a detailed analysis
of the experimental TEM images (127). The calculated and experimental band gap energies
are plotted in figure 5.10. All the dots are empty, which is consistent with the observation
of the biexciton in the 1 nm thick QDs (56). The electric field ranges from 5.6 MV/cm for
tQD = 4 nm to 7.3 MV/cm for tQD = 1 nm. It is, as expected, much smaller than in GaN/AlN
quantum wells (99) (QWs) and Stranski-Krastanov (100) dots (SKs) with similar sizes due to
to strain relaxation and screening by the electron gas and surface charges (see the comparison
between QWs, SKs and QDs in figure 5.10).

The calculation reproduces the luminescence energies of the 1 and 2.5 nm thick QDs
within the error bars, and the downward trend of the electric field with increasing QD size
evidenced in the experiment. This agreement supports the conclusion that the Fermi level is
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actually pinned in or close to the valence band of AlN at the top surface. Still, the calculation
underestimates the luminescence energy of the 4 nm thick QDs, where the Stark effect is the
largest, by about 0.3 eV. Looking at figure 5.8, this suggests that the electric field in this QD
is overestimated by ≃ 20 %. The reason for this discrepancy is unclear at present. Increasing
the density of surface states to pin the Fermi level in the bandgap of AlN increases the electric
field and ultimately charges the dots. The experimental data have, moreover, been collected
at low enough excitation power to prevent screening by photogenerated multiple electron-
hole pairs (102; 127). The calculated electric field might be affected by the electromechanical
couplings (49; 128) (influence of the electric field on strains), by the uncertainties in the
pyro- and piezoelectric constants of GaN and especially AlN, and by their dependence on
strains (non-linear piezoelectricity) (63; 129). A simple 1D model however shows that the
electromechanical couplings should reduce the electric field by at most ≃ 5%. Plastic strain
relaxation in the AlN barriers and slight alloying between GaN and AlN can not be excluded
either, but would not be specific to the 4 nm QDs. Further experiments (for different barrier
and QD thicknesses) might therefore be needed to get a more complete picture.

5.5 Conclusion

We have modeled the quantum confined Stark effect in AlN/GaN/AlN nanowire het-
erostructures using a tight-binding approach. We have taken strain relaxation and band bend-
ing into account in the calculation of the pyro- and piezoelectric field. We have shown that
strain relaxation reduces the piezoelectric polarization, and that the electric field pulls out
electrons from the occupied states of the top surface. These electrons accumulate in the GaN
pillar below the heterostructure, thereby screening the pyro- and piezoelectric field. We sug-
gest that the electric field is likely strong enough to pin the Fermi level in or close to the
valence band edge of AlN at the top surface. As a consequence, the electric field is signifi-
cantly reduced with respect to GaN/AlN quantum wells or Stranski-Krastanov quantum dots.
This is in agreement with recent experimental data on GaN/AlN nanowire heterostructures
(24). The calculation however overestimates the electric field in thick quantum dots, which
calls for further experiments with different geometries. We have, for this purpose, provided
a simple 1D model for the electric field to help the design of such heterostructures.
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Chapter 6

Conclusions

Wide band gap nitride semiconductors are now widely used for light emission in the
blue and ultraviolet range. Thanks to large band offsets, GaN/AlN heterostructures are also
promising candidates for fast telecommunication devices based on intersubband transitions
or for high-temperature single photon emitters.

One of the interesting aspects of nanowires compared to bulk material is that their small
cross section allows for lateral relaxation, making it possible to combine two materials with
different lattice parameters, which grow without obvious dislocations up to a critical cross
section. There are, however, residual strains in such nanowire heterostructures, which can
still have significant impact on their electronic and optical properties.

In order of study these strains, we have adapted Keating’s valence force field model –
initially devised for the zinc-blende structures – to arbitrary wurtzite structures. We have
derived, in particular the relations between the macroscopic elastic constants ci j and the
microscopic bond-bending and bond-stretching constants α and β for arbitrary c/a and u.
This model gives a satisfactory description of the elasticity of nitride materials (GaN, AlN
and InN). It does directly provide atomic positions suitable for atomistic electronic structure
methods like tight-binding.

In this thesis, we have demonstrated the potential accuracy of this valence force field by
successfully comparing the results with experimental data like X-Ray diffraction or GPA in
TEM images. In the case of GaN/AlN nanowire superlattices without capping, the agreement
between experiments and the calculation is consistent with the fact that no dislocations could
be identified in the sample at the interfaces between GaN and AlN. In core-shell systems,
however, differences between theory and experiment have been observed. Since Keating’s
model only takes into account elastic relaxation, such discrepancies can be used to diagnose
the presence of dislocations associated with plastic relaxation (not accounted for in Keating’s
model).

The electronic structure of GaN/AlN heterostructures was calculated using the tight-
binding method, where the electron and hole states are written as linear combinations of
atomical orbitals. In this work we have considered first nearest neighbours two-center sp3d5s∗

tight-binding models. The effect of strains on the electronic structure of the system can be
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characterized by the so-called deformation potentials; at the tight-binding level these are
taken into account by a suitable modification of the on-site parameters.

GaN/AlN heterostructures are interesting systems which, due to the low symetry of the
wurtzite structure and the ionicity of the bonds, exhibit particular phenomena such as spon-
taneous polarization and piezoelectricity. This generates a strong electric field along the c

axis, which separates the electron from the holes and lowers the bandgap (Stark effect). As
an example, we have analyzed a recent experiment on GaN quantum disks embedeed be-
tween AlN barriers grown on top of a GaN pillar. The photoluminescence of these disks
shifts to the red (below the bulk bandgap) as their thickness increases, a clear sign of the
quantum-confined Stark effect. The magnitude of the shift is however lower than in quan-
tum wells or Stranski-Krastanov quantum dots with similar dimensions. We have atually
observed in our calculations that the Stark effect is strongly dependent on the geometry of
the system. In particular, the electric field is significantly reduced in nanowire by charge
redistributions. The electric field indeed pulls out electrons from the occupied states of the
top surface. These electrons accumulate in the GaN pillar below the heterostructure, thereby
screening the pyro- and piezoelectric field, in agreement with the experimental data. We
suggest that the electric field is likely strong enough to pin the Fermi level in or close to
the valence band edge of AlN at the top surface. The calculation however overestimates the
electric field in the thickest disks, which calls for further experiments with different geome-
tries. We have, for this purpose, provided a simple 1D model for the electric field to help the
design of such heterostructures

As future lines of research, several questions need to be adressed regarding these systems:

• The study of the electronical and optical properties of core-shell nanowire heterostruc-
tures, in order to understand the photoluminecesnce spectra of this kind of systems.

• The electronic and optical properties of nanowires oriented in a non-polar direction,
where the electric field due to spontaneous polarization is oriented along the diameter
of the wire and not along the growth axis.

• A new fit of the GaN and AlN tight-binding parameters to have a better account of the
effect of strains on the electronic structure.

• For a more complete description of these systems, the effects of the electric field on
the strains, i.e. electro-mechanical couplings, need to be addressed. They could be
introduced in the Keating model through atomic effective charges.

• The calculation of the excitonic contribution to the optical gap.
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Résumé

Nous avons modélisé les propriétés structurales et électroniques d’hétérostructures de
nanofils de nitrures GaN/AlN à l’aide de méthodes de simulation atomistiques. Nous avons
tout d’abord construit un champ de forces “à la Keating” pour les matériaux wurtzite afin
de calculer les positions atomiques et la distribution des contraintes dans ces hétérostruc-
tures. Grâce à ce modèle, nous avons pu suggérer la présence ou confirmer l’absence de
dislocations dans différentes hétérostructures de nanofils GaN/AlN caractérisées expérimen-
talement par microscopie électronique et diffraction de rayons X. Nous avons ensuite étudié
les propriétés électroniques et optiques de ces nanostructures avec la méthode des liaisons
fortes. Nous nous sommes particulièrement intéressés à l’effet des champs électriques in-
ternes sur les nanofils GaN/AlN. Les expériences de spectroscopie optique ont en effet mis
en évidence un important décalage vers le rouge (effet Stark confiné) des raies de lumines-
cence de ces fils, consécutif à la séparation des électrons et des trous par les champs pyro- et
piezoélectriques. Ce décalage est toutefois inférieur à celui mesuré sur des puits et des boîtes
de dimensions équivalentes. Pour l’expliquer, nous avons montré qu’il était essentiel de tenir
compte de l’écrantage du champ électrique par les charges déplacées par celui-ci, et en par-
ticulier depuis les états de surface des nanofils. Nous avons notamment proposé un modèle
analytique simple pour comprendre les tendances et aider la conception des hétérostructures
de nanofils de nitrures.
Mots-clés : Nanofils, nitrures, polarisation spontanée, piezoélectricité, effet Stark, confine-
ment, liaisons fortes.

Abstract

We have modeled the structural and electronic properties of nitride GaN/AlN nanowire
heterostructures with atomistic simulation methods. We have first derived a Keating-like
valence force field model for arbitrary wurtzite materials in order to compute the atomic po-
sitions and strain distribution in these heterostructures. With this model, we have been able
to suggest the presence or confirm the absence of dislocations in various GaN/AlN nanowire
heterostructures characterized by electron microscopy or X-Ray diffraction. We have then
studied the electronic and optical properties of these nanostructures with the tight-binding
method. We have been particularly interested in the effect of the internal electric field on
GaN/AlN nanowires. Optical spectroscopy experiments have indeed evidenced a strong red-
shift of the luminescence of these nanowires (quantum confined Stark effect), due to the
separation of the electrons and holes by the pyro- and piezoelectric field. This redshift is
however smaller than measured in quantum wells and quantum dots with similar dimen-
sions. To explain this, we have shown that it is essential to account for the screening of the
electric field by the charges displaced by the latter, in particular from the surface states of the
nanowire. We have proposed a simple analytical model to understand the main trends and
help the design of nitride nanowire heterostructures.
Keywords : Nanowires, nitrides, spontaneous polarization, piezoelectricity, Stark effect,
confinement, tight-binding.
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