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Motivation: Deciphering a Text

Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the mome raths outgrabe.

“That’s enough to begin
with”, Humpty Dumpty
interrupted: “there are plenty
of hard words there.
‘BRILLIG’ means four o’clock
in the afternoon – the time
when you begin BROILING
things for dinner.”
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Motivation: Deciphering a Text

Colorless green ideas sleep furiously

c©J. Soares, chomsky.info
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Motivation: Deciphering a Text

ATGGCCCGGACGAAGCAGACAGCTCGCAAGTCTACCGGC

GGCAAGGCACCGCGGAAGCAGCTGGCCACCAAGGCAGCG

CGCAAAAGCGCTCCAGCGACTGGCGGTGTGAAGAAGCCC

CACCGCTACAGGCCAGGCACCGTGGCCTTGCGTGAGATC

CGCCGTTATCAGAAGTCGACTGAGCTGCTCATCCGCAAA

CTGCCATTTCAGCGCCTGGTGCGAGAAATCGCGCAGGAT

TTCAAAACCGACCTTCGTTTCCAGAGCTCGGCGGTGATG

GCGCTGCAAGAGGCGTGCGAGGCCTATCTGGTGGGTCTC

TTTGAAGACACCAACCTCTGTGCTATTCACGCCAAGCGT

GTCACTATTATGCCTAAGGACATCCAGCTTGCGCGTCGT

ATCCGTGGCGAGCGAGCATAATCCCCTGCTCTATCTTGG

GTTTCTTAATTGCTTCCAAGCTTCCAAAGGCTCTTTTC

AGAGCCACTTA

c©You (HIST1H3J, chromosome 6)
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Structuring DNA

c©D. Searls 1993
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Linguistics of DNA

A good metaphor (“transcription”, “translation”), but also more than
that

What can linguistic models reveal about DNA?
Ex: “A linguistic model for the rational design of antimicrobial peptides”.

Loose, Jensen, Rigoutsos, Stephanopoulos. Nature 2003

Use of Formal Grammars
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Learning the Linguistics of DNA

At [Kerbellec, Coste 08] obtained good results modelling families
of proteins with non-deterministic finite automata

⇓
Choice 1 Go up to context-freeness (long-range correlations, memory), on

DNA sequences
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What is a good context-free grammar

We don’t want to introduce any domain-specific learning bias

Proportion in Human Genome

⇒ Choice 2 Use Occam’s Razor and search for the smallest grammar
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Formalisation of our Problem

Motivation Unveil hierarchical structure in DNA

Choice 1 Model: Context-free grammar

+ Choice 2 Goodness: Occam’s Razor

= The Smallest Grammar Problem: finding the smallest
context-free grammar that generates exactly one sequence

Remark

On the way, don’t forget to be feasible enough to apply on DNA
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Smallest Grammar Problem

Problem Definition

Given a sequence s, find a grammar G (s) of smallest size that generates
only s.

Example

s =“how much wood would a woodchuck chuck if a woodchuck
could chuck wood?”, a possible G (s) (not necessarily smallest) is

S → how much N2 wN3 N4 N1 if N4 cN3 N1 N2 ?
N1 → chuck
N2 → wood
N3 → ould
N4 → a N2N1
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Smallest Grammar Problem
Straight-line grammars

Problem Definition

Given a sequence s, find a straight-line context-free grammar G (s) of
smallest size that generates s.

Remark

Grammars that do not branch (one and only one production rule for every
non-terminal) nor loop (no recursion)
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Smallest Grammar Problem
Definition of |G |

Problem Definition

Given a sequence s, find a straight-line context-free grammar G (s) of
smallest size that generates s.

Size of a Grammar

|G | =
∑

N→ω∈P
(|ω|+ 1)
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Smallest Grammar Problem
Definition of |G |

Problem Definition

Given a sequence s, find a straight-line context-free grammar G (s) of
smallest size that generates s.

Size of a Grammar

|G | =
∑

N→ω∈P
(|ω|+ 1)

S → how much N2 wN3 N4 N1 if N4 cN3 N1 N2 ?
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N2 → wood
N3 → ould
N4 → a N2N1

⇓
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10



Smallest Grammar Problem
Hardness

Problem Definition

Given a sequence s, find a straight-line context-free grammar G (s) of
smallest size that generates s.

Hardness

This is a NP-Hard problema

a
Storer & Szymanski. “Data Compression via Textual Substitution” J of ACM

Charikar, et al. “The smallest grammar problem” 2005. IEEE Transactions on Information Theory
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A Generic Problem

Data
Compression

Algorithmic
Information
Theory

Structure
Discovery

SGP
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SGP: 3 Applications

Structure Discovery (SG)

Find the explanation of a coherent body of data.
SGP: The smallest parse tree is the one that captures the best all
regularities

Data Compression (DC)

Encoding information using fewer bits than the original representation.
SGP: Instead of encoding a sequence, encode a smallest grammar for this
sequence

Algorithmic Information Theory (AIT)

Relationship between information theory and computation. Kolmogorov
Complexity of s = size of smallest Turing Machine that outputs s.
SGP: Change unrestricted grammar by context-free grammar to go from
uncomputable to intractable
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Timeline

1972 Structural Information Theory AIT
Klix, Scheidereiter, Organismische Informationsverarbeitung

1975 SD in Natural Language
Wolff, An algorithm for the segmentation of an artificial language analogue

1980 Complexity of bio sequences AIT
Ebeling, Jiménez-Montaño, On grammars, complexity, and information measures of

biological macromolecules

1982 Macro-schemas DC
Storer & Szymanski, Data Compression via Textual Substitution

1996 Sequitur SD
Nevill-Manning & Witten, Compression and Explanation using Hierarchical

Grammars

1998 Greedy offline algorithm DC
Apostolico & Lonardi, Off-line compression by greedy textual substitution

2000 Grammar-based Codes DC
Kieffer & Yang, Grammar-based codes: a new class of universal lossless source codes

2002 The SGP AIT
Charikar, Lehman, et al., The smallest grammar problem

2006 Sequitur for Grammatical Inferece
SD
Eyraud, Inférence Grammaticale de Langages Hors-Contextes

2007 MDLcompress SD
Evans,et al., MicroRNA Target Detection and Analysis for Genes Related to Breast

Cancer Using MDLcompress

2010 Normalized Compression Distance
AIT
Cerra & Datcu, A Similarity Measure Using Smallest Context-Free Grammars

2010 Compressed Self-Indices DC
Claude & Navarro Self-indexed grammar-based compression.

Bille, et at. Random access to grammar compressed strings
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Structural Information Theory

Klix, “Struktur, Strukturbeschreibung und Erkennungsleistung”
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Information Measures of Biological Macromolecules

Ebeling, Jiménez-Montaño, “On grammars, complexity, and information measures

of biological macromolecules”. Mathematical Biosciences. 1980
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Sequitur for SD

1.2 THESIS STATEMENT 7

a
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Figure 1.1 Hierarchies for Genesis 1:1in (a) English, (b) French, and (c) German

particular class of grammars, and attempt to provide guarantees about identifying
the source grammar from its output.

The hierarchy of phrases provides a concise representation of the sequence, and
conciseness can be an end in itself. When the hierarchy is appropriately encoded,
the technique provides compression. Data compression is concerned with making
efficient use of limited bandwidth and storage by removing redundancy. Most
compression schemes work by taking advantage of the repetitive nature of
sequences, either by creating structures or by accumulating statistics. Building a
hierarchy, however, allows not only the sequence, but also the repeated phrases, to
be encoded efficiently. This success underscores the close relationship between
learning and data compression.

1.3 Some examples
This section previews several results from the thesis. SEQUITUR produces a
hierarchy of repetitions from a sequence. For example, Figure 1.1 shows parts of
three hierarchies inferred from the text of the Bible in English, French, and
German. The hierarchies are formed without any knowledge of the preferred
structure of words and phrases, but nevertheless capture many meaningful
regularities. In Figure 1.1a, the word beginning is split into begin and ning—a root
word and a suffix. Many words and word groups appear as distinct parts in the
hierarchy (spaces have been made explicit by replacing them with bullets). The
same algorithm produces the French version in Figure 1.1b, where commencement is

1.3 SOME EXAMPLES 11

imperfect perfect

Figure 1.5 Illustration of matches within and between two chorales: for chorales O
Welt, sieh hier dein leben and O Welt, Ich muss Dich lassen by J.S. Bach.

original melodies, as indicated by the matching parts between the chorales. The
hierarchy identifies the common first and second half of the top melody, represented
by the light gray box, which also occurs in the second half of the bottom melody. It
also identifies the imperfect and perfect cadences labelled in the figure. A hierarchy
of repetitions is shown in the darker gray box and the white box within it. This
discussion is expanded in Section 7.3.

1.4 Contributions
The thesis makes contributions in the form of new algorithms for forming
hierarchies, for generalising hierarchies and inferring automata, and in applying
these algorithms to a range of sequences.

Grammar formation:

• It is possible to infer a hierarchical representation of a sequence in time linear
in the length of the sequence.

• Two constraints on grammar—digram uniqueness and rule utility—are
sufficient to form a hierarchical grammar from a sequence.

• A quadratic-time algorithm based on dynamic programming permits
visualisation of alternative parses.

• Reparsing can produce a better grammar using retrospective modifications,
while maintaining incremental qualities.

• Domain knowledge can be elegantly incorporated to improve the parsing of
the algorithm.

Nevill-Manning, “Inferring Sequential Structure”. PhD Thesis. 1996

Used in Grammatical Inference [Eyraud, 2006]

18



Contributions

1 Comparison of Practical Algorithms

2 Attacking the Smallest Grammar Problem
What is a Word? Efficiency Issues
Choice of Occurrences
Choice of Set of Words

3 Applications: DNA Compression
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Previous Algorithms

The theoretical ones Charikar,et al.05; Rytter03; Sakamoto03,04; Gagie&Gawrychowski10

The on-line ones : read from left to right. Ex: LZ78, Sequitur, . . .

The off-line ones : have access to the whole sequence :

I Most Frequent (MF): take most frequent repeat, replace all
occurrences with new symbol, iterate. f (w) = occ(w)

I Maximal Length (ML): take longest repeat, replace all occurrences
with new symbol, iterate. f (w) = |w |

I Most Compressive (MC): take repeat that compresses the best,
replace with new symbol, iterate. f (w) = (occ(w)− 1) ∗ (|w | − 1)− 2
Apostolico & Lonardi. “Off-line compression by greedy textual substitution” Proceedings of IEEE. 2000
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Off-line algorithms
An Example

S → how much wood would a woodchuck chuck
if a woodchuck could chuck wood?

⇓
S → how much wood wouldN1huck ifN1ould chuck wood?
N1 → a woodchuck c

⇓
S → how much wood wouldN1huck if N1ould N2wood?
N1 → a woodN2c
N2 → chuck

22
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The off-line ones : have access to the whole sequence :

I Most Frequent (MF): take most frequent repeat, replace all
occurrences with new symbol, iterate. f (w) = occ(w)
Wolff “An algorithm for the segmentation of an artificial language analogue”. British J of Psychology. 1975

Jiménez-Montaño “On the syntactic structure of protein sequences and the concept of grammar complexity”.

B. Mathematical Biology. 1984

Larsson & Moffat. “Offline Dictionary-Based Compression”. DCC. 1999

I Maximal Length (ML): take longest repeat, replace all occurrences
with new symbol, iterate. f (w) = |w |

I Most Compressive (MC): take repeat that compresses the best,
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A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f

1 Initialize Grammar by S → s

2 take repeat ω that maximizes f over G

3 if replacing ω would yield a bigger grammar than G
then

a return G

else
a replace all (non-overlapping) occurrences of ω in G by new symbol N
b add rule N → ω to G
c goto 2

Complexity: O(n3)

24



Relative size on Canterbury Corpus

On-line Off-line

sequence Sequitur IRR-ML IRR-MF IRR-MC (ref.)

alice29.txt 19.9% 37.1% 8.9% 41,000
asyoulik.txt 17.7% 37.8% 8.0% 37,474
cp.html 22.2% 21.6% 10.4% 8,048
fields.c 20.3% 18.6% 16.1% 3,416
grammar.lsp 20.2% 20.7% 15.1% 1,473
kennedy.xls 4.6% 7.7% 0.3% 166,924
lcet10.txt 24.5% 45.0% 8.0% 90,099
plrabn12.txt 14.9% 45.2% 5.8% 124,198
ptt5 23.4% 26.1% 6.4% 45,135
sum 25.6% 15.6% 11.9% 12,207
xargs.1 16.1% 16.2% 11.8% 2,006

average 19.0% 26.5% 9.3%
Extends and confirms partial results of Nevill-Manning & Witten “On-Line and Off-Line Heuristics

for Inferring Hierarchies of Repetitions in Sequences”. 2000. Proc. of the IEEE. 80 (11)
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What is a word?

Something repeated

S → how much wood would a woodchuck chuck
if a woodchuck could chuck wood?

28



A Taxonomy of Repeats

simple repeats: a string that occurs more than 2 times

maximal repeats: a repeat that cannot be extended

MR(s) = {w : @ w ′ ∈ R(s) : ∀o ∈ Occ(w) : ∀o ′ ∈ Occ(w ′) : o * o ′}

super-maximal repeats: a MR that is not contained in another one

SMR(s) = {w : @ w ′ ∈ R(s) : ∃o ∈ Occ(w) : ∀o ′ ∈ Occ(w ′) : o * o ′}

= {w : ∀w ′ ∈ R(s) : @o ∈ Occ(w) : ∀o ′ ∈ Occ(w ′) : o * o ′}

largest-maximal repeats: a MR that has at least one occurrence not
covered by another one:

LMR(s) = {w : ∃w ′ ∈ R(s) : @o ∈ Occ(w) : ∀o ′ ∈ Occ(w ′) : o * o ′}
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What we like of [ε|L|S ]MR

Worst Case Behavior

#
∑

#Occ

r Θ(n2) Θ(n2)
mr Θ(n) Θ(n2)

lmr Θ(n) Ω(n
3
2 )

smr Θ(n) Θ(n)
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Efficiency: Accelerating IRR

IRR computes score on each word in each iteration

Score functions: f = f (|w |, occ(w))

1 by using maximal repeats we reduce IRR from O(n3) to O(n2) with
equivalent final grammar size

2 We use an Enhanced Suffix Array to compute these scores

Inplace update of enhanced suffix array

Up to 70x speed-up (depending on the score function) More
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A General Framework: IRR

IRR (Iterative Repeat Replacement) framework
Input: a sequence s, a score function f

1 Initialize Grammar by S → s

2 take repeat ω that maximizes f over G

3 if replacing ω would yield a bigger grammar than G
then

a return G

else
a replace all (non-overlapping) occurrences of ω in G by new symbol N
b add rule N → ω to G
c goto 2
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Choice of Occurrences

The Minimal Grammar Parsing (MGP) Problem

Given a sequence s and a set of words C , find a smallest straight-line
grammar for s whose constituents (words) are C .

6= Smallest Grammar Problem: in MGP words are given

6= Static Dictionary Parsing [Schuegraf 74]: in MGP words have also to
be parsed

Complexity

mgp can be computed in O(n3)
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MGP: Solution

Given sequences s = ababbababbabaabbabaa, C = {abbaba, bab}

N0

N1

N2
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MGP: Solution

Given sequences s = ababbababbabaabbabaa, C = {abbaba, bab}

N0

N1

N2

A minimal grammar for 〈s, C 〉 is
N0 → aN2N2N1N1a
N1 → abN2a
N2 → bab
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Choice of Occurrences

The Minimal Grammar Parsing (MGP) Problem

Given a sequence s and a set of words C , find a smallest straight-line
grammar for s whose constituents (words) are C .

6= Smallest Grammar Problem: in MGP words are given

6= Static Dictionary Parsing [Schuegraf 74]: in MGP words have also to
be parsed

Complexity

mgp can be computed in O(n3)
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Split the Problem

SGP =

{
1. Find an optimal set of words C
2. mgp (s,C)
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Split the Problem

SG (s) = mgp

(
argmin
C⊆R(s)

(|mgp(s,C )|)

)
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1 Comparison of Practical Algorithms

2 Attacking the Smallest Grammar Problem
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Choice of Set of Words

3 Applications: DNA Compression
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A Search Space for the SGP

Given s, take the lattice 〈2R(s),⊆〉 and associate a score to each node C :
the size of the grammar mgp(s, C ).
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A Search Space for the SGP: Example

Given s = “how much wood would”,R(s) = { wo, w , wo}
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Lattice is a good search space

Theorem

The general SGP cannot be solved by IRR.

There exists a sequence s such that for any score function f , IRR(s, f )
does not return a smallest grammar. Example

Theorem

〈2R(s),⊆〉 is a complete and correct search space for the SGPa

SG(s) =
⋃

C :C is global minimum of 〈2R(s),⊆〉

MGP(s, C )

a
“The Smallest Grammar Problem as Constituents Choice and Minimal Grammar Parsing” 2011 Submitted
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Choice of Words: Hill-climbing

Hill Climbing: given node C , compute scores of nodes C ∪ {wi} and take
node with smallest score.

We can also go down: given node C , compute scores of nodes C \ {wi}
and take node with smallest score

ZZ: succession of both phases. Is in O(n7)
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Results of ZZ wrt IRR-MC

sequence size IRR-MC ZZ

chmpxx 121Knt 28,706 -9.35%
chntxx 156Knt 37,885 -10.41%†

hehcmv 156Knt 53,696 -10.07%
humdyst 39Knt 11,066 -8.93%
humghcs 229Knt 12,933 -6.97%
humhbb 39Knt 18,705 -8.99%
humhdab 66Knt 15,327 -8.7%
humprtb 73Knt 14,890 -8.27%
mpomtcg 59Knt 44,178 -9.66%
mtpacga 57Knt 24,555 -9.64%
vaccg 192Knt 43,701 -10.08%†

average -9.19%
†: partial result (execution of ZZ was interrupted)
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Choice of Words: Size-Efficiency Tradeoff
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Choice of Words: Size-Efficiency Tradeoff

IRRCOO: uses only current state to chose next node
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Choice of Words: Size-Efficiency Tradeoff

IRRCOO: uses only current state to chose next node
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Choice of Words: Size-Efficiency Tradeoff

IRRCOOC: IRRCOO + clean-up
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Choice of Words: Size-Efficiency Tradeoff

IRRMGP* = (IRR-MC + MGP + cleanup)*
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IRRMGP* = (IRR-MC + MGP + cleanup)*
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Results: IRRMGP* on big sequences

Classi- sequence
length IRRMGP*2 size im-

fication name provement

Virus P. lambda 48 Knt 13,061 -4.25%
Bacterium E. coli 4.6 Mnt 741,435 -8.82%
Protist T. pseudonana chrI 3 Mnt 509,203 -8.15%
Fungus S. cerevisiae 12.1 Mnt 1,742,489 -9.68%
Alga O. tauri 12.5 Mnt 1,801,936 -8.78%
Plant A. Thal. chrIV 18.6 Mnt 2,561,906 -9.94%
Nematoda C. Eleg. chrIII 13.8 Mnt 1,897,290 -9.47%

IRRMGP* scales up on bigger sequence finding close to 10% smaller
grammars than state of the art.

2
“Searching for Smallest Grammars on DNA Sequences” 2011 JDA
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More Results
bytes vs. seconds
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Contributions

1 Comparison of Practical Algorithms

2 Attacking the Smallest Grammar Problem
What is a Word? Efficiency Issues
Choice of Occurrences
Choice of Set of Words

3 Applications: DNA Compression
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A Generic Problem

Data
Compression

Algorithmic
Information
Theory

Structure
Discovery

SGP
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Grammar-Based Codes [Kieffer & Yang 00]

s =⇒ Gs =⇒ Rs =⇒ Bs

“how much
wood would a
woodchuck...

S → how much N2 wN3...
N1 → chuck
N2 → wood
N3 → ould
N4 → a N2N1

how much N2 wN3... | chuck | wood |... 10011...

Combine macro schema with statistical schema
Kieffer and Yang showed universality for such Grammar-Based Codes
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Grammar-Based Codes [Kieffer & Yang 00]

s =⇒ Gs =⇒ Rs =⇒ Bs
“how much

wood would a
woodchuck...

S → how much N2 wN3...
N1 → chuck
N2 → wood
N3 → ould
N4 → a N2N1

how much N2 wN3... | chuck | wood |... 10011...

Combine macro schema with statistical schema
Kieffer and Yang showed universality for such Grammar-Based Codes3

3
Kieffer and Yang “Grammar-based codes: a new class of universal lossless source codes”. 2000. IEEE TIT
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Application: DNA Compression

DNA difficult to compress better than the baseline of 2 bits per
symbol

≥ 20 algorithms in the last 18 years

Four Grammar-based specific DNA compressor:
I Greedy Apostolico, Lonardi. “Compression of Biological Sequences by Greedy off-line Textual Substitution”.

2000

I GTAC Lanctot, Li, Yang. “Estimating DNA sequence entropy”. 2000

I DNASequitur Cherniavsky, Lander. “Grammar-based compression of DNA sequences”. 2004

I MDLcompress Evans, Kourtidis, et al. “MicroRNA Target Detection and Analysis for Genes Related to

Breast Cancer Using MDLcompress” 2007
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Grammar-based DNA compressor
bits per symbol

sequence
DNA

GTAC4 Greedy
MDL

AAC-2
DNA

Sequitur Compress Light

chmpxx 2.12 3.1635 1.9022 - 1.8364 1.6415
chntxx 2.12 3.0684 1.9986 1.95 1.9333 1.5971
hehcmv 2.12 3.8455 2.0158 - 1.9647 1.8317
humdyst 2.16 4.3197 2.3747 1.95 1.9235 1.8905
humghcs 1.75 2.2845 1.5994 1.49 1.9377 0.9724
humhbb 2.05 3.4902 1.9698 1.92 1.9176 1.7416
humhdab 2.12 3.4585 1.9742 1.92 1.9422 1.6571
humprt 2.14 3.5302 1.9840 1.92 1.9283 1.7278
mpomtcg 2.12 3.7140 1.9867 - 1.9654 1.8646
mtpacga - 3.4955 1.9155 - 1.8723 1.8442
vaccg 2.01 3.4782 1.9073 - 1.9040 1.7542

4our implementation
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Special characteristics of DNA

Complementary strand

Inexact repeats:
I We used rigid patterns / partial words: motifs of fixed size that may

contain a special don’t care / joker symbol (•)
I “ • ould” matches “ would” and “ could”
I Exceptions are cheap to encode (no need of specifying position)
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Straight-line Grammars with Don’t Cares

S → hN1hN2N3a woN1k chuck if a woN1kN3chuckN2?
N1 → o • • • uc
N2 → wood
N3 → • ould
E → w mwdchdchc
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Classes of rigid patterns

repeated

simple, maximal, irredundant5 (≈ largest-maximal repeats) motifs

but they are not dense enough, have mostly two occurrences which
overlap

our heuristic: start from a (maximal) repeat r , use it as a seed to find
its occurrence-equivalent maximal motif : extension(r)

5
Parida,et al. “Pattern Discovery on character sets and real-valued data: linear bound on irredundant motifs and

polynomial time algorithms” SODA 00
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Classes of rigid patterns

repeated

simple, maximal, irredundant5 (≈ largest-maximal repeats) motifs

but they are not dense enough, have mostly two occurrences which
overlap

our heuristic: start from a (maximal) repeat r , use it as a seed to find
its occurrence-equivalent maximal motif 6: extension(r)

5
Parida,et al. “Pattern Discovery on character sets and real-valued data: linear bound on irredundant motifs and

polynomial time algorithms” SODA 00
6

Ukkonen, “Maximal and minimal representations of gapped and non-gapped motifs of a string” Theoretical CS 2009
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Iterative Motif Replacement

IMR: an algorithm that computes a straight-line grammar with don’t
cares

IRR-like:
1 select in each iteration a maximal repeat r that reduces the most Ĥ(G )

(empirical entropy)

Ĥ(G) = −
X

x∈Σ∪N∪{|}
occG (x) ∗ log

occG (x)

|G |

2 Use it as a seed to compute m =extension(r)
3 Recover the submotif of m that reduces the most Ĥ(G )

More details
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Iterative Motif Replacement: Results
bits per symbol

sequence
DNA

Greedy
MDL

IMRc AAC-2
DNA

Sequitur Compress Light

chmpxx 2.12 1.9022 - 1.6793 1.8364 1.6415
chntxx 2.12 1.9986 1.95 1.6196 1.9333 1.5971
hehcmv 2.12 2.0158 - 1.8542 1.9647 1.8317
humdyst 2.16 2.3747 1.95 1.9331 1.9235 1.8905
humghcs 1.75 1.5994 1.49 1.1820 1.9377 0.9724
humhbb 2.05 1.9698 1.92 1.8313 1.9176 1.7416
humhdab 2.12 1.9742 1.92 1.8814 1.9422 1.6571
humpr 2.14 1.9840 1.92 1.8839 1.9283 1.7278
mpomtcg 2.12 1.9867 - 1.9157 1.9654 1.8646
mtpacga - 1.9155 - 1.8571 1.8723 1.8442
vaccg 2.01 1.9073 - 1.7743 1.9040 1.7542

IMRc encodes explicitly with the structure.
The grammars is encoded with a standard adaptive arithmetic encoder.
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Conclusions
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Summary: The general SGP

We studied the Smallest Grammar Problem from the motivation of
finding meaningful hierarchical structure in DNA sequencs

Approach: to split SGP into two:
1 Choice of Words

F Classes of maximality of repeats; algorithms and bounds
F Efficiency: IRR from O(n3) to O(n2)
F Efficiency: Inplace update of an enhanced suffix array

2 Choice of Occurrences
F MGP Problem and its solution
F Lattice as a search space
F Algorithms that find smaller grammars (≈ 10%) than state of the art
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Summary: Applications

Data Compression: compress with structure. First competitive
grammar-based DNA compressor by extending the notion of
straight-line grammar to rigid motifs

AIT: consistent results using IRRMGP∗ in a Normalised Compression
Distance framework

Structure Discovery: analysis of number of smallest grammar and
their similarity
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Perspectives: Beyond the SGP

Smallest grammar 6= most compressible

SGP does not care about the size of the alphabet

Experiments: huge number of smallest grammar seems to come from
the presence of small words

Back to Structure Discovery:
I “better” grammars with rigid motifs
I go beyond rigid motifs
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Perspectives: Beyond the SGP

The SGP overfits by design. “To learn you have to forget”

Generalise the final grammar. SLG with don’t cares is a first step in
this direction.

Links to Grammatical Inference
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Learn a General Grammar

Class of CF Languages are not learnable [Gold 67]

Class of CF Languages can be learnt from positive examples +
parse trees [Sakakibara, 92]

Several algorithms that work well in practice based on
substitutability, mutual information, frequency, etc.
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The End

S → thDkAforBr attenC. DoAhave Dy quesCs?
A → B
B → you
C → tion
D → an
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Appendix
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Parse Tree Compression and SGP are two extremes

PTC: model is (very) general. Grammar is given to both encoder and
decoder, only derivation is send.

Find the MDL-inspired golden mean
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Heuristic for Selecting a Good Motif

1 Select exact repeat that minimises

H(G ) = −
∑

x∈Σ∪N∪{|}

occG (x) ∗ log
occG (x)

|G |

2 extend it to the left minimising H(G )

3 extend it to the right minimising H(G )

. . . od would a wo. . . chuck could c . . .

. . . • • •

ould

• • . . .

Back
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Enhanced Suffix Array [Abouelhoda, Kurtz, et al 2004]

ABRACADABRA → ABRACADABRA$

i isa lcp sarr suffix
0 3 0 11 $
1 7 0 10 A$
2 11 1 7 ABRA$
3 4 4 0 ABRACADABRA$
4 8 1 3 ACADABRA$
5 5 1 5 ADABRA$
6 9 0 8 BRA$
7 2 3 1 BRACADABRA$
8 6 0 4 CADABRA$
9 10 0 6 DABRA$

10 1 0 9 RA$
11 0 2 2 RACADABRA$
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Enhanced Suffix Array [Abouelhoda, Kurtz, et al 2004]

sarr + lcp + isa = ESA

i isa lcp sarr suffix
0 3 0 11 $
1 7 0 10 A$
2 11 1 7 ABRA$
3 4 4 0 ABRACADABRA$
4 8 1 3 ACADABRA$
5 5 1 5 ADABRA$
6 9 0 8 BRA$
7 2 3 1 BRACADABRA$
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Our update algorithm

i isa lcp sa suffix
0 1 0 25
1 14 0 0 ACGCATCTCCATCGCGCATATCATC
2 18 1 17 ATATCATC
3 11 2 22 ATC
4 6 3 19 ATCATC
5 25 3 10 ATCGCGCATATCATC
6 16 3 4 ATCTCCATCGCGCATATCATC
7 23 0 24 C
8 12 1 16 CATATCATC
9 10 3 21 CATC
10 5 4 9 CATCGCGCATATCATC
11 24 4 3 CATCTCCATCGCGCATATCATC
12 15 1 8 CCATCGCGCATATCATC
13 19 1 14 CGCATATCATC
14 13 5 1 CGCATCTCCATCGCGCATATCATC
15 17 3 12 CGCGCATATCATC
16 8 1 6 CTCCATCGCGCATATCATC
17 2 0 15 GCATATCATC
18 20 4 2 GCATCTCCATCGCGCATATCATC
19 4 2 13 GCGCATATCATC
20 22 0 18 TATCATC
21 9 1 23 TC
22 3 2 20 TCATC
23 21 2 7 TCCATCGCGCATATCATC
24 7 2 11 TCGCGCATATCATC
25 0 2 5 TCTCCATCGCGCATATCATC

Enhanced Suffix array for
ACGCATCTCCATCGCGCATATCATC

Replace each occurrence of
w = CAT by M.
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Our update algorithm

i isa lcp sa suffix
0 1 0 25
1 14 0 0 ACGCATCTCCATCGCGCATATCATC
2 18 1 17 ATATCATC
3 11 2 22 ATC
4 6 3 19 ATCATC
5 25 3 10 ATCGCGCATATCATC
6 16 3 4 ATCTCCATCGCGCATATCATC
7 23 0 24 C
8 12 1 16 CATATCATC
9 10 3 21 CATC
10 5 4 9 CATCGCGCATATCATC
11 24 4 3 CATCTCCATCGCGCATATCATC
12 15 1 8 CCATCGCGCATATCATC
13 19 1 14 CGCATATCATC
14 13 5 1 CGCATCTCCATCGCGCATATCATC
15 17 3 12 CGCGCATATCATC
16 8 1 6 CTCCATCGCGCATATCATC
17 2 0 15 GCATATCATC
18 20 4 2 GCATCTCCATCGCGCATATCATC
19 4 2 13 GCGCATATCATC
20 22 0 18 TATCATC
21 9 1 23 TC
22 3 2 20 TCATC
23 21 2 7 TCCATCGCGCATATCATC
24 7 2 11 TCGCGCATATCATC
25 0 2 5 TCTCCATCGCGCATATCATC

Enhanced Suffix array for
ACGCATCTCCATCGCGCATATCATC

Replace each occurrence of
w = CAT by M.
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Our update algorithm

i isa lcp sa suffix
0 1 0 25
1 14 0 0 ACGCATCTCCATCGCGCATATCATC
2 18 1 17 ATATCATC
3 11 2 22 ATC
4 6 3 19 ATCATC
5 25 3 10 ATCGCGCATATCATC
6 16 3 4 ATCTCCATCGCGCATATCATC
7 23 0 24 C
8 12 1 16 CATATCATC
9 10 3 21 CATC
10 5 4 9 CATCGCGCATATCATC
11 24 4 3 CATCTCCATCGCGCATATCATC
12 15 1 8 CCATCGCGCATATCATC
13 19 1 14 CGCATATCATC
14 13 5 1 CGCATCTCCATCGCGCATATCATC
15 17 3 12 CGCGCATATCATC
16 8 1 6 CTCCATCGCGCATATCATC
17 2 0 15 GCATATCATC
18 20 4 2 GCATCTCCATCGCGCATATCATC
19 4 2 13 GCGCATATCATC
20 22 0 18 TATCATC
21 9 1 23 TC
22 3 2 20 TCATC
23 21 2 7 TCCATCGCGCATATCATC
24 7 2 11 TCGCGCATATCATC
25 0 2 5 TCTCCATCGCGCATATCATC

Steps of the algorithm

1 Delete positions

2 Move some lines

3 Update LCP
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Efficiency

recreating from scratch
our update =

↑ better
1.0
↓ worse

sequence size Φ lcp random max length max comp.
K&S L&S K&S L&S K&S L&S

bible.txt 4MB 13,0 66,8 22,9 64,4 22,5 15,4 3,7
E.coli 4.6MB 23,0 69,1 27,4 53,5 24,0 9,5 2,1
world192 2.5MB 17,4 65,0 21,8 60,7 21,1 16,3 4,5

Back
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Problems of IRR-like algorithms

Example

xaxbxcx |1xbxcxax |2xcxaxbx |3xaxcxbx |4xbxaxcx |5xcxbxax |6xax |7xbx |8xcx

A smallest grammar is:
S → AbC |1BcA|2CaB|3AcB|4BaC |5CbA|6A|7B|8C
A → xax
B → xbx
C → xcx
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Problems of IRR-like algorithms

Example

xaxbxcx |1xbxcxax |2xcxaxbx |3xaxcxbx |4xbxaxcx |5xcxbxax |6xax |7xbx |8xcx
But what IRR can do is like:
S → Abxcx |1xbxcA|2xcAbx |3Acxbx |4xbAcx |5xcxbA|6A|7xbx |8xcx
A → xax
⇓

S → Abxcx |1BcA|2xcAbx |3AcB|4xbAcx |5xcxbA|6A|7B|8xcx
A → xax
B → xbx
⇓

S → AbC |1BcA|2xcAbx |3AcB|4xbAcx |5CbA|6A|7B|8C
A → xax
B → xbx
C → xcx

Back
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Non-Uniqueness of SG

Lemma

There can be an exponential number of global minima in the lattice.

Lemma

Given a fixed node C , there can be an exponential number of minimal
grammars with these constituents.
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Stability of Small Grammars

Measure

UF1: harmonic mean between precision and recall of brackets given by the
parse tree / grammar.
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Stability 1 (of 3)

Given a node C (chosen by ZZ), pick up two random minimal grammar
parsing with these constituents.

UF1 = 77.81% (alice29.txt, with 1000 samples)
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Given a node C (chosen by ZZ), pick up two random minimal grammar
parsing with these constituents.
UF1 = 77.81% (alice29.txt, with 1000 samples)

76



Stability 2 (of 3)

Consider only brackets of size > k
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Stability 3 (of 3)

Consider number of possible parses given a position

Ex: A really unstable zone corresponds to:

‘Fury said to a

mouse, That he

met in the

house,

"Let us

both go to

law: I will

prosecute

YOU. --Come,

I’ll take no

denial; We

must have a

trial: For

really this

morning I’ve

nothing

to do."

Said the

mouse to the

cur, "Such

a trial,

dear Sir,

With

no jury

or judge,

would be

wasting

our

breath."

"I’ll be

judge, I’ll

be jury,"

Said

cunning

old Fury:

"I’ll

try the

whole

cause,

and

condemn

you

to

death."’
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Results on Penn Treebank (POS)

strategy number of brackets UP UR UNCP UNCR

mc 934338 22.5 21.5 43.7 45.2
ml 990109 9.2 9.3 23.2 30.1
mo 965277 21.4 21.1 42.1 43.9
key 960027 12.6 12.3 29.2 33.7
pc 960603 13.0 12.7 29.7 34.2
sequitur 961660 14.0 13.0 31.4 35.4

Results of bracketing the POS tags of the Penn Treebank IRR algorithm,
compared to the gold standard (977205 brackets)

79



Results on Penn Treebank

strategy number of brackets UP UR UNCP UNCR

rbranch 46.7 42.8 64.9 74.3

mc 31652 38.7 30.2 57.8 68.7
ml 33710 27.1 22.6 43.4 57.6
mo 33084 38.0 31.0 56.9 67.6
key 32738 24.4 19.7 41.0 56.3
pc 32792 23.8 19.3 40.8 55.6
sequitur 33112 29.5 24.1 47.1 61.0

Results of bracketing the POS tags of the Penn Treebank 10 (up to 10
words, without punctuation) IRR algorithm, compared to the gold
standard (40535 brackets)
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Structural Information Theory with Grammars

Scheidereiter, “Zur Beschreibung strukturierter Objeckte mit kontextfreien Grammatiken” 1973
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Structural Information Theory with Grammars

K0 (p) ~K( a’ —...q) (2)
BE. ev~4

Babel soil V11 genau die Variablen enthalten, die in der Ablei—
tung von p vorkonanen, und es soil zu jeder Variablen genau eine
Regel existieren.
Es 1st leicht einzusehen, dafi es mehrere Grai~iatiken gibt, die
das Wort p erzeugen. Das Optimalitätsproblem besteht jetzt darin,ama soiche zu Linden, bei der die Kornpiiziertheit von p minimal
ist. Ba es unter relativ einfachen Bedingungen nur endlich viele
soldier Grammatiken giSt, könnte man dutch Probieren eine optiniaje
Linden. Wit wollen einen anderen Weg gehen.
Elite Graimnatik, die genau das Wort p erzeugt, stelit eine Beschrei—
Sung di~ses Wortes dat. Wit suchen nun eine Minimalbeschreibung.
Das 1st für psychologische Untersuchungen interessant, insbesondere
die Frage, weiche inneten Strukturen des Wortes p zu einer Verrin—
gerung des Beschreibungsaufwancjes führen. Der methodische Zugang
zu solchen Untersuchungen 1st iixi Beitrag von KLIX (1973) dargestelit
Wit wollen hier einige wesentliche Eigenschaf ten des so definier—
ten Beschreibungsaufwandes herleiten.
Die Regal S —~.p, die das Wort p in elnem Schritt ableitet, wolien
wit als den trivialen Fall amer Bescireibung ansehen.
Die Kompliziertheit von p 1st dann dutch die Wortlange von p be—
stimmt, durch die innere Wortsttuktur kann det Beschreibungsauf—
wand sinken, d.h.
K0 (P)~IPl
Wit geben jetzt am Theorem an, dam eine Idee zugrunde liegt. den
Beschreibungsaufwand dadurch zu senken, daB gleiche Teilwörter von
p nur einmal. erzeugt werden.
T h e o r e m Wenn q em Teilwort von p 1st mit Jqf~2 und In
p an n versehiedenen Stellen vorkommt mit n)’2, dann existiert
eine Grainniatik G, die p erzeugt, mit

K0(p)~Ipf
Wenn q> 2 oder n>2 ist, danu gilt die Relation <
Beweis: O.B.d.A. habe p die Form
p = r0qr1qr2l...r.qr.1...qr ,
wobei q mid r1 Teiwörter von p sind. Aus n~2 folgt

~2 ~ (4)

132

“Under relatively simple condition, there exists only a finite number of
such grammars, one could find an optimal one by exhaustive search”

Scheidereiter, “Zur Beschreibung strukturierter Objeckte mit kontextfreien Grammatiken” 1973
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