
HAL Id: tel-00592207
https://theses.hal.science/tel-00592207

Submitted on 11 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A floating polygon soup representation for 3D video
Thomas Colleu

To cite this version:
Thomas Colleu. A floating polygon soup representation for 3D video. Human-Computer Interaction
[cs.HC]. Université Rennes 1, 2010. English. �NNT : �. �tel-00592207�

https://theses.hal.science/tel-00592207
https://hal.archives-ouvertes.fr

N° d’ordre : 4142 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du signal

Ecole doctorale MATISSE

présentée par

Thomas Colleu

préparée à l’unité de recherche IRISA / INRIA Rennes Bretagne
Atlantique en collaboration avec l’unité de recherche IETR

et à Orange Labs - France Télécom R&D, Rennes

A floating polygon

soup representation

for 3D video

Thèse soutenue à l’IRISA, Rennes
le lundi 6 Décembre 2010

devant le jury composé de :

Béatrice PESQUET-POPESCU
Professeur, Télécom ParisTech / rapporteur

Marc POLLEFEYS
Professeur, ETH Zurich / rapporteur

Mohamed DAOUDI
Professeur, Télécom Lille 1 / président

Vincent CHARVILLAT
Professeur, ENSEEIHT-IRIT / examinateur

Claude LABIT
Directeur de recherche, INRIA / examinateur

Luce MORIN
Professeur, INSA-IETR / directeur de thèse

Stéphane PATEUX
Ingénieur R&D, Orange Labs / co-directeur de thèse

Acknowledgments

At the heart of this adventure, I would like to thank the duo Luce Morin and Stéphane
Pateux for having guided my research with so much expertise and enthusiasm. Luce
and Stéphane, while our regular meetings always provided me valuable feedbacks and
inspiration, you also supported me when I needed and carefully reviewed all writings
and slides. I owe you my sincere gratitude for all these reasons.

I also want to thank Professor Marc Pollefeys and Professor Béatrice Pesquet-
Popescu for kindly accepting to review my dissertation and for being part of the jury.
Many thanks also to Professor Vincent Charvillat and Professor Mohamed Daoudi for
being part of the jury and providing comments and suggestions. I also express my
thanks to Claude Labit for being part of the jury and for his feedbacks throughout
these three years.

I would like to thank Christine Guillemot leader of the TEMICS team and Ludovic
Noblet leader of the CVA team for giving me the opportunity to work towards a Ph.D
degree. I also want to thank all members and ex-members of these teams, particularly
Raphaele Balter who supervised my work with Stéphane and Luce and whose Ph.D
thesis was a source of inspiration; Gael Sourimant for showing me the way; my office
mates Vincent Jantet, Josselin Gautier and Jérôme Allasia all three for fruitful dis-
cussions as well as sometimes pointless relaxing ones; Dorra Riahi for her contribution
within INSA/IETR.

Many thanks to all colleagues and friends who all contributed at some point to
this thesis (in pseudo-random order): Mathieu Urvoy, Mathieu Moinard, Mathieu Des-
oubeaux, Mathieu Rubeaux, Angélique Drémeau, Shasha Shi, Cédric Herzet, Mehmet
Turkan, Yohan Pitrey, Simon Bos, Julien Fayolle, Ana Charpentier, Jonathan Taquet,
Joachim Zepeda, Jean-Marc Thiesse, SimonMalinowski, Velotiaray Toto-Zarasoa, Fuchun
Xie, Laurent Guillo, Huguette Béchu, Olivier Lemeur, Jean-Jacques Fuchs, Caroline
Fontaine, Teddy Furon, Aline Roumy, Patrick Heas, Maxime Pelcat, Isabelle Amonou,
Nathalie Cammas, Maryline Clare, Gordon Clare, Christophe Daguet, Patrick Gioia,
Joel Houssais, Joel Jung, Gilles Teniou, Philippe Vonwyl, (please forgive me if I forgot
you).

I cannot thank my wife enough, Dina, for her precious support and releasing words
during this thesis and particularly during hard times.

I also express great thanks and gratefulness to my parents, brother and sister as
well as all my friends for their never ending encouragements.

Contents

1 Introduction 9
1.1 Context . 9
1.2 Thesis outline . 11

2 Challenges in multi-view video systems 13
2.1 Acquisition . 13
2.2 Representation . 16
2.3 Transmission . 16
2.4 View-synthesis . 17

2.5 Display . 20
2.6 Introduction of constraints on the targeted system 21

3 Existing representations 25
3.1 Definition of a representation . 26
3.2 Image-based representations . 27

3.3 Depth image-based representations . 31
3.4 Surface-based representations . 37

3.4.1 Polygonal meshes . 37
3.4.2 Point-based surfaces . 41

3.5 Impostor-based representations . 43
3.6 Summary and analysis of pros and cons 48

3.6.1 Construction complexity . 50
3.6.2 Compactness . 50
3.6.3 Compression compatibility . 51
3.6.4 View synthesis complexity . 52
3.6.5 Navigation range and image quality 52

3.6.6 Summary of pros and cons . 53
3.6.7 Conclusion . 55

4 Overview of the proposed representation 59
4.1 Input data . 59
4.2 The polygon soup representation . 60

4.3 Properties of the polygon soup . 64
4.4 Summary . 65

5

6 Contents

5 Construction of the polygon soup 67

5.1 Quadtree decomposition . 68

5.1.1 Re-projection shift . 69

5.1.2 Subdivision method . 69

5.1.3 Results . 72

5.1.4 Summary and discussions. 74

5.2 Redundancy reduction . 77

5.2.1 Priority order for the quads . 77

5.2.2 Reduction method . 80

5.2.3 Results . 83

5.2.4 Summary and discussions . 86

5.3 Conclusion . 86

6 Virtual view synthesis 89

6.1 View projection . 90

6.1.1 Projection principles . 91

6.1.2 Depth-based vs polygon-based view projection 92

6.1.3 Elimination of cracks . 92

6.2 Multi-view blending . 95

6.2.1 Adaptive blending . 95

6.2.2 Ghosting artifacts . 99

6.3 Virtual view enhancement . 101

6.3.1 Inpainting . 101

6.3.2 Edge filtering . 102

6.4 Results . 102

6.5 Conclusion . 104

7 Compression of the polygon soup 109

7.1 Compression method . 110

7.2 Performance with different settings . 112

7.3 Comparative evaluation . 112

7.4 Conclusion . 116

8 Floating geometry 121

8.1 Texture misalignments . 121

8.2 Existing solutions . 125

8.3 Principle of floating geometry . 129

8.4 Results on polygon soup . 133

8.4.1 Floating geometry at the acquisition side 133

8.4.2 Floating geometry at the user side 139

8.5 Conclusion . 142

Contents 7

9 Conclusions and perspectives 145
9.1 Summary of contributions . 145

9.1.1 Chap. 3: Study of existing representations 145
9.1.2 Chap. 4: Overview of the representation 146
9.1.3 Chap. 5: Construction of the polygon soup 146
9.1.4 Chap. 6: Virtual view synthesis 147
9.1.5 Chap. 7: Compression of the polygon soup 147
9.1.6 Chap. 8: Floating geometry . 148

9.2 Perspectives . 148

A Fusion of background quads 151
A.1 Introduction . 151
A.2 Fusion of the background quads . 153
A.3 Results . 154
A.4 Conclusion . 155

B Représentation par soupe de polygones déformables pour la vidéo 3D159
B.1 Introduction . 159
B.2 Représentations existantes . 160
B.3 Une nouvelle représentation . 162
B.4 Construction de la soupe de polygones 163
B.5 Synthèse de vues virtuelles . 165
B.6 Compression de la soupe de polygones 168
B.7 Géométrie déformable . 170
B.8 Conclusion . 172

Chapter 1

Introduction

Contents

1.1 Context . 9

1.2 Thesis outline . 11

1.1 Context

The year 2010 has seen the popularity of 3D video exploding. Starting with the success
of 3D movie ’Avatar’ in cinemas in December 20091 and with electronic companies
announcements of their 3D-ready televisions arriving at home2. Indeed technologies
have been sufficiently improved so that two views of the same scene can be captured at
the same time, processed, transmitted and displayed with good quality. Here, the func-
tionality that justifies the term ’3D’ is stereoscopy [Whe38]. It exploits the binocular
vision of humans such that a better perception of depth is obtained, giving a sensation
of relief3. In fact, there is only one more image compared with traditional 2D video.
But it is sufficient to show the potential of 3D video to improve the description of a
scene and the feeling of depth for the users.

Active research is now focused onmulti-view video in order to increase the number
of images of the same scene at the same time [SKS05, Mag05, KSM+07, DKM+10].
Multi-view video brings mainly two functionalities to the users. The first functionality is
free viewpoint navigation: similarly to the famous ”bullet time effect” in the movie ’The
matrix’, the viewer can change the point-of-view within a restricted area in the scene,
thus having a navigation functionality. The second functionality is auto-stereoscopy:
the viewer enjoys stereoscopic visualization without the use of special glasses which is a
great advantage over actual stereoscopic solutions. Although auto-stereoscopy already
works with two views, it is restricted to only one viewer who must stand still at the

1http://avatarblog.typepad.com/avatar-blog/2010/01/avatar-biggest-movie-of-alltime.html
2http://www.3dtvsource.com/sony-2010-3d-tv-lineup/
3(french) http://www.3d-tvee.com/technologies-3d/explication-de-la-stereoscopie-en-video-351

9

http://avatarblog.typepad.com/avatar-blog/2010/01/avatar-biggest-movie-of-alltime.html
http://www.3dtvsource.com/sony-2010-3d-tv-lineup/
http://www.3d-tvee.com/technologies-3d/explication-de-la-stereoscopie-en-video-351

10 Introduction

correct position in front of the screen. On the contrary multi-view auto-stereoscopy
brings much more freedom in terms of viewing position and number of users4.

With free viewpoint navigation and/or auto-stereoscopy, several applications are
possible. An application providing navigation functionalities is free viewpoint television
(FTV): a remote, a mouse or any other user interface is used to control the viewpoint.
If a user tracking device is used, then the viewpoint can change automatically ac-
cording to the user’s position. As the user moves, he can perceive the depth of the
scene, as demonstrated by Lee in his demo video5. 3DTV is another application that
takes advantage of auto-stereoscopic visualization: a multi-view video is watched in 3D
without special glasses, providing that a multi-view auto-stereoscopic display is used
(figure 1.1). These applications are very promising and would not only be intended
for entertainment but also for medical domain, video conferencing or training as few
examples.

Figure 1.1: Example of the relief sensation in a 3DTV application using a multi-view
auto-stereoscopic TV by Philips.

Setting up amulti-view video system raises many challenges at every stage of the
system. Figure 1.2 represents the different stages of a multi-view video system. First,
multiple views are captured during the acquisition stage, then the data is processed
and formated during the representation stage. These two stages are performed at the
operator side. During the transmission stage, compression/decompression of the data
is usually required in order to minimize the data load and thus reduce the transmission
bandwidth and storage space. At the user side, view synthesis may be performed to
generate all the views required by the display device. Finally, the views are displayed
to the user in a certain way depending on the display device and the user preferences.

The goal of this study is to focus on the representation stage. The representation

4http://www.alioscopy.com/3d-solutions-displays
5http://www.youtube.com/watch?v=Jd3-eiid-Uw

http://www.alioscopy.com/3d-solutions-displays
http://www.youtube.com/watch?v=Jd3-eiid-Uw

Thesis outline 11

Acquisition Representation Transmission View synthesis Display

Operator side User side

Figure 1.2: Overview of a multi-view video system. The representation stage is the
focus of this study.

plays a central role in a multi-view video system. Indeed, it influences the data load to
be transmitted, the compression method to be used, as well as the computational com-
plexity during the view synthesis stage and the final video quality at the display stage.
Existing representations for multi-view video often contain some geometric information
about the scene in addition to color information. They all exhibit advantages but also
drawbacks at some point in the system. We want to analyze these pros and cons, and
propose a new representation that takes into account, in a unified manner, the differ-
ent issues such as data load, compression compatibility, computational complexity and
image quality.

1.2 Thesis outline

This thesis is organized into eight chapters. Chapter 3 presents a study of existing
representations in the context of multi-view video. The conclusions that come out from
this study list a few features that matter for the choice of a representation. Chapter 4
introduces our proposed representation and its properties. The remaining chapters are
dedicated to the construction and validation of this representation. Chapter 5 explains
the construction of the representation. Chapter 6 presents the view synthesis stage and
evaluates the quality of synthesized images. Chapter 7 introduces a new compression
method adapted to the proposed representation. Results of this compression method
are compared with an existing approach studied in the MPEG’s 3DV group. Finally,
chapter 8 introduces a new method for reducing texture misalignments in synthesized
views when using a geometric model. This method is applied and evaluated on the
polygon soup.

12 Introduction

Chapter 2

Challenges in multi-view video

systems

Contents

2.1 Acquisition . 13

2.2 Representation . 16

2.3 Transmission . 16

2.4 View-synthesis . 17

2.5 Display . 20

2.6 Introduction of constraints on the targeted system 21

To better understand the challenges raised by the development of a multi-view video
system, more details about each stage shown in figure 1.2 are now given. Some impor-
tant properties appear several times throughout the system such as the computational
complexity, the data load, the navigation range and the image quality. Usually, techni-
cal choices have to be made to manage all the compromises induced by these properties.
The last section of this chapter introduces some constraints on the multi-view video sys-
tem according to the targeted application scenarios, namely transmission of multi-view
video for FTV or 3DTV.

2.1 Acquisition

An acquisition system for multi-view video is usually made of multiple cameras and
possibly other devices like depth cameras, spotlights, microphones... Many technical
choices have to be made such as the characteristics of the cameras (resolution, frame
rate); how they are arranged together (small baseline, sparse setup); whether they
should be mobile or static; and also how they are synchronized and networked. All these
choices are generally guided by non-technical constraints: the application scenario may
require large free viewpoint navigation or high quality auto-stereoscopic visualization;

13

14 Challenges in multi-view video systems

the scene content may be only indoor in a controlled environment, or outdoor; also
financial and logistical constraints play an important role in the choice of the acquisition
system.

The camera arrangement is particularly important. For auto-stereoscopic visu-
alization, cameras should be placed very close to each other at a distance equivalent
to the eye’s distance (about 6.5 cm). This is a small baseline and specific stereoscopic
cameras have been designed for this purpose (figure 2.1). With this type of camera

(a) An 8-cameras system by 3DTV solutions (b) A 15-cameras system by Heinrich Herz In-
stitut (HHI) [FMZ+08]

Figure 2.1: Examples of small baseline camera systems.

arrangement, cameras are often in a parallel setup such that they lie side-by-side on a
straight rig, and their image planes are coplanar. This results in horizontal-only paral-
lax from one image to another. This set-up has proved to provide higher stereoscopic
image quality [WDK93, YOO06]. Resulting images are said to be rectified, however
since physical rectification is not perfect, an additional image rectification algorithm is
often applied to the images during or after the acquisition process [PKVG99, FTV00].
Real-time processing of image rectification can be achieved if implemented on graph-
ics hardware [YPYW04]. In addition, cameras may not have the same color when
capturing the same object, therefore color calibration [JWV+05] and color correction
[SJYH10, TISK10] are also important for better color consistency between the cameras
.

Increasing the number of cameras also increases the complexity of the system in
terms of computation complexity as well as data load for transmission. Therefore,
large free viewpoint navigation is difficult to obtain with such small baseline systems.
An alternative is to increase the distance between cameras so that to find a compromise
between the system complexity, the desired navigation range, and the final video quality
(figure 2.2). In this case, intermediate views between cameras have to be computed
using so-called view synthesis algorithms as explained in section 2.4. To do so, cameras
must be related to each other, i.e. exact position and orientation of the cameras must
be estimated. This process is called geometric camera calibration [Tsa86, Zha00].

Acquisition 15

(a) An 8-cameras system by microsoft
[ZKU+04]

(b) A 51-cameras system surrounding
the scene by Carnegie Mellon University
[RNK97]

Figure 2.2: Examples of medium or wide camera arrangement systems.

Another type of camera is gaining interest for multi-view video systems. It is called
depth camera (a.k.a z-camera or time-of-flight camera1). An example of such camera
is shown in figure 2.3. This type of camera captures an image of the distance of
the scene: laser beams (often in infrared spectrum) are emitted to the scene, and the
reflections are collected by the device to measure the time of flight. Another alternative
to laser beams is structured light that illuminates the scene with alternating pattern
that helps recovering the depth of the scene [WWCG07]. With these kinds of Z-cameras
the resulting so-called depth map provides important information about the geometry
of the scene. This geometry is particularly useful for intermediate view synthesis.
When no depth camera is available, geometry is usually computed with complex multi-
view reconstruction algorithms. Since depth cameras provide real-time depth maps, it
can be used as a complement or replacement of multi-view reconstruction algorithms
[KBKL09].

Figure 2.3: A depth camera by PMDTechnologies.

1http://en.wikipedia.org/wiki/Time-of-flight_camera

http://en.wikipedia.org/wiki/Time-of-flight_camera

16 Challenges in multi-view video systems

2.2 Representation

During the representation stage, the captured multi-view video is processed and for-
mated to obtain a certain representation of the data. This representation often contains
some geometric information about the scene in addition to color information. The choice
of a representation plays a central role in a multi-view video system. It influences the
data load to be transmitted, the compression method to be used, as well as the compu-
tational complexity during the view synthesis stage and the final video quality at the
display stage. This subject is the heart of this thesis report since a new representation
will be introduced. A more detailed study of existing representations will be given in
the next chapter.

2.3 Transmission

When transmitting the data over a network, it should be transfered fast enough to pro-
vide comfortable visualization at the user side, without big delays. However, compared
to traditional single-view video, the amount of data with multiple views is increased and
the networks may be overloaded. For video, the amount of data is defined by the num-
ber of bits per second (bps) and it is called the bit rate. Therefore, in order to reduce
the bit rate, compression methods adapted to the representation are particularly
important and challenging [Say05, SKS05, MMW07].

It is also of great importance to define compression standards ensuring that videos
can be watched by as many users as possible, just like language is a standard for com-
munication. A well known compression standard is the JPEG one, used for compressing
images. Concerning video compression, two working groups of experts are developing
standards: MPEG (Moving Picture Expert Group) and VCEG (Video Coding Expert
Group). These two groups collaborated in the Joint Video Team (JVT) for defining
video compression standards (e.g. AVC, SVC, MVC). Within MPEG organization,
a sub-group called 3DV is currently studying the representation and compression of
multi-view data for 3D video applications. In addition, the MPEG’s group 3DGC (3D
graphics compression) is working on 3D graphics and mesh compression standards. Ex-
isting standards are: MPEG-4 AVC for single-view video compression; MPEG-4 MVC
for multi-view video compression; MPEG-4 AFX for 3D graphics tools; and MPEG-4
3DMC for 3D mesh compression.

One of the main principle of compression methods is to remove correlation in the
data and encode the representation. For video compression, the spatial and temporal
correlation between pixels is exploited [Gal92, WSBL03]. For example, between two
successive images of a video sequence, two similar blocks of pixels can be related by a
motion vector. Thus, a block of pixels can be predicted by a block in the previous frame
and a motion vector. Similarly, for multi-view video compression, inter-view correlation
(i.e. correlation between the multiple views) can also be removed in addition to spatial
and temporal one [MSMW07a]. Finally the same principles can also be adapted to the
compression of 3D geometric data [DBD08].

Many compression methods, like JPEG and MPEG, are lossy, i.e. some information

View-synthesis 17

is lost in order to reach a target bit rate. This loss involves distortions in the data.
These distortions should be small enough to prevent annoying artifacts. Therefore, the
performance of lossy compression methods are often evaluated with the compromise
between bit rate and distortions (figure 2.4). Moreover, since artifacts vary depending
on the properties of the data, special attention is required to adapt the compression
method to the data properties. This is particularly true for color images and depth
maps: both are pixel images but with different characteristics that require adapted
compression methods. A lot of research activities have been recently dedicated to
compression methods adapted to the properties of the depth maps [MM09, MMS+09,
Mor09, YV09].

 40

 42

 44

 46

 48

 50

 52

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
S

N
R

 [d
B

]

bitrate [bpp]

Figure 2.4: A rate-distortion curve used to evaluate the performances of a lossy com-
pression method. The x-axis gives the bit rate in bits per pixel (bpp) for an image
or bits per second (bps) for video sequence. The y-axis gives the image image quality
generally expressed in decibels (dB) using the so-called PSNR measure. Other quality
measures could be used. A good compression method should exhibit as high quality
as possible, i.e. low distortion, for a given bit rate or as low bit rate as possible for a
given quality.

2.4 View-synthesis

As mentioned above in the acquisition stage, intermediate views between cameras are
frequently needed for free viewpoint navigation or auto-stereoscopic visualization (fig-
ure 2.5). These intermediate views (or virtual views) are computed with image-based
rendering (IBR) algorithms. They use the original images and possibly additional ge-
ometry information and camera parameters [KLTS06, Mag05]. If only original images
are used, then the parallax effect cannot be reproduced into intermediate views. Par-
allax (or disparity) is ”the depth-dependent projection of the 3D scene into the image
when the view point changes” [SKS05]. On the other hand, if geometry and camera

18 Challenges in multi-view video systems

parameters are available then intermediate views can be synthesized between existing
cameras with wide camera arrangement.

Original view

Original view

Original view

Virtual view Virtual view

Figure 2.5: Virtual views are often needed for free viewpoint or auto-stereoscopic visu-
alization.

Modeling geometry and camera parameters are two challenging tasks. The first is
often referred as multi-view reconstruction2 [SCD+06] or stereo analysis3 [SSZ01, Sou10]
and the second as camera calibration [Tsa86, Zha00]. Indeed, although huge progress
has been made in this field, real world scenes and acquisition devices are still difficult
to be accurately modeled, and some typical situations still lead to reconstruction errors
and camera calibration errors. Moreover, such algorithms usually require a lot of com-
putations which is always a drawback for fast processing of the data. This explains the
growing interest for depth cameras that could be used as a complement or replacement
to multi-view reconstruction algorithms.

Virtual view synthesis is mainly based on projection principles. Figure 2.6(a)
shows the projection of a 3D object into the image plane of a camera. The creation of a
pixel in the image plane of a camera can be mathematically modeled using the position
of the 3D point in the scene as well as the camera position and internal parameters.
This process is called projection. Therefore, a virtual view can be synthesized as shown
in figure 2.6(b): a 3D point on the reconstructed geometry is projected into the image
plane of a virtual camera. The color of the 3D point is first computed by inverse
projection (back-projection) of the original image into the 3D space. If not points but
polygons are used as 3D primitives, then the color of the image is mapped onto the
polygon, which is called texture mapping.

During this projection process, special care has to be taken about occlusions, i.e.
when a foreground object occludes the background when viewed from a given viewpoint.
Indeed, in this case occluded 3D point may be projected into the same pixel position as
non-occluded one, but only the front 3D point with smallest depth must be displayed in
the image. Using a Z-buffer or an occlusion compatible scanning order are two solutions
for this issue [Mor09].

2http://vision.middlebury.edu/mview/
3http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/mview/
http://vision.middlebury.edu/stereo/

View-synthesis 19

(a) Image capture (b) Virtual view synthesis

Figure 2.6: Projection principles. (a) Image capture. Projection of a real-world 3D
point into the image plane of the camera resulting in a 2D pixel. (b) Virtual view
synthesis. Back-projection of a pixel to the reconstructed geometry and projection into
a virtual camera.

For synthesizing good quality virtual views, not one but multiple original views are
usually projected, which raises the question of the blending of these multiple views
projected into the virtual view. Some original views may be less reliable than others
depending on the camera position, field of view and resolution of the camera. There-
fore, lower weights should be associated to these views during the blending process.
Such strategy has been studied by Debevec et al. [DTM96] called ’view-dependent
texture mapping’ and by Buehler et al. [BBM+01] called ’unstructured lumigraph ren-
dering’. Moreover, when multiple geometries are used, possible inconsistencies between
these geometries create disturbing artifacts, particularly around depth discontinuities.
These artifacts are known as ghosting artifacts or corona artifacts and require special
processing to be removed.

Finally, additional processing of the virtual view are often needed for hiding
remaining artifacts. Especially, some parts of the 3D scene may be visible in the
virtual view but not in the original views because of occlusions by foreground objects.
When synthesizing a virtual view, these parts become disoccluded, resulting in pixels
with unknown color. These pixels should be filled using some filtering [SMD+08] or
inpainting [OYH09, Dar09] methods that exploit neighboring pixels in order to predict
the unknown ones.

All the above computations needed for intermediate view synthesis represent a cer-
tain complexity. Since real-time visualization is usually desired for interactive 3D
video experience, the view synthesis complexity should always be compatible with the
computation power of the device. Thanks to recent graphics hardware and program-
ming, most view-synthesis methods can run in real-time. This is because of the high
parallel processing capabilities of such hardware. However, if no powerful graphics hard-
ware or any other specialized parallel devices are available, e.g. on a mobile device,

20 Challenges in multi-view video systems

then only low complexity view-synthesis methods can be performed.

Once one or multiple virtual views have been synthesized, a typical problem is the
quality assessment of these images [WB06]. Subjective evaluation is generally con-
sidered as the most reliable method: a group of observers give their opinion about the
quality of the images. The result is given by the mean opinion score (MOS). However,
this method is expensive and slow, thus it cannot be systematically used. Instead,
objective methods for automatic evaluation exist. The aim is to apply a computa-
tional model that can measure the image quality accurately and automatically. Several
objective measures have been developed depending on whether full reference, reduced
reference or no reference images are available for comparison. However, designing such
measures that can predict the way that human visual systems perceive images is still a
challenging task, particularly if the images are used for stereoscopic visualization since
two images are viewed at the same time. In order to evaluate the quality of virtual
views, the most popular method is to compare each view with an original view as ref-
erence: a virtual view is synthesized at the same position and orientation as an original
one such that a full-reference quality measure can be used. An often-used quality mea-
sure is the peak signal-to-noise ratio (PSNR), although this measure does not take into
account the human visual system neither the structure nor statistics of natural images.

2.5 Display

The last stage of a multi-view video system is the display of the images to the users
[KH07]. If only free viewpoint navigation is wanted, then the display may be any clas-
sical 2D screen and navigation would be provided by some user interface like a remote,
a mouse or even a tracking device, along with adapted processing hardware. How-
ever, if stereoscopic visualization is desired, special displays are needed. The challenges
here are to provide the user with an accurate description of the scene with a natural
sensation of depth. Moreover, comfort of visualization and freedom of movements are
important to prevent fatigue. Finally, the cost of the device is an important criterion
for acceptation into the mass market.

Today’s most popular displays are based on the stereoscopy principle: two im-
ages of the scene are displayed, they correspond to the two views of the eyes (figure
2.7). However, to ensure that each eye sees only one image, special glasses must be
worn. Two different techniques are mainly used: alternate frame sequencing of the left
and right images with synchronized shutter glasses and a high frame rate display, or
projection with polarizing glasses and polarizing projectors. The main drawback with
these solutions is that glasses are a source of discomfort and reduce the luminosity of
the images.

In order to eliminate the use of special glasses, auto-stereoscopic screens have
been developed [Dod05]. Instead of glasses, a system that separates images is placed
directly in front of the screen. Two concurrent systems are currently used: parallax
barrier or lenticular lenses (figure 2.8). With this kind of technology, the viewer should
be at the exact position where each eye sees one image, which would be a strong

Introduction of constraints on the targeted system 21

(a) A 3D TV (200 Hz refresh rate) and shutter
glasses by sony.

(b) A 3D polarizing projector with polarizing
glasses by LG.

Figure 2.7: Examples of stereoscopic displays.

constraint in practice. Therefore two solutions exist: those that use head-tracking to
adapt the images to the viewer position, and those that display multiple views creating
multiple viewing zone so that no tracking is needed. This second solution is called
multi-view auto-stereoscopic display and present the advantage that multiple users can
view the images at the same time. However, a drawback is that the resolution of
the images is reduced proportionally to the number of views displayed at the same
time. Another drawback, shared with glasses-wearing displays, is that stereoscopic
visualization provides only horizontal parallax. It means that the eyes must be aligned
horizontally, thus the user cannot tilt his head or lie on a couch. Prototypes of full
parallax displays are being developed and show promising results [JK10]. Up to now,
multi-view auto-stereoscopic displays are mainly intended for professional customers,
but manufacturers plan introducing them to the mass market in the future. The order
of navigation for today’s multi-view auto-stereoscopic displays range about 5̊to 30̊.

Auto-stereoscopic screens do not produce real 3D images but provide a sensation of
depth. On the other hand, volumetric displays [Fav05] and holographic displays
[SCS05] provide a more detailed description of the scene by either filling the 3D space
with imagery or reproducing the light wavefront reflected by the scene. So far, such
systems are under development and not yet mature enough.

2.6 Introduction of constraints on the targeted system

We have seen in this chapter that many choices have to be made at all the stages of
the processing chain. This section introduces some constraints on the multi-view video
system that will be considered in the following. These constraints are guided by the
targeted application scenarios (transmission of multi-view video for Free viewpoint TV
or 3DTV), and by some choices concerning the trade-offs that appear throughout the
system. These constraints will help comparing existing representations with each others

22 Challenges in multi-view video systems

Figure 2.8: Principle of two-views autostereoscopic displays (Image extracted from
[Dod05]). (a) Lenticular: the lenslets direct the pixels’ light so that each of the viewer’s
eyes sees light from only every second pixel. (b) Parallax barrier: a barrier mask is
placed in front of the pixel raster so that each eye sees light from every second pixel.

Introduction of constraints on the targeted system 23

according to this defined system and then help to propose a new representation.� Acquisition: At the acquisition stage, many choices have to be made to cope
with the trade-offs between the number of views, the range of navigation and
the computational complexity of the system. Since free viewpoint navigation is
desired, and transmission is done over a band limited channel, then a medium or
wide camera arrangement setup should be used and thus intermediate views need
to be synthesized. This helps limiting the number of cameras while providing a
given navigation range, but this increases the computational complexity of the
system. In addition, the system should be adapted to any arbitrary scene.� Representation: The need for view synthesis increases the construction complexity
of the representation because some geometry of the scene has to be estimated.
In this study, no constraint about the construction complexity is defined, on the
other hand low complexity at the user side is necessary for real-time applications.� Transmission: The data would be transmitted over a band limited network.� View synthesis: At the user side, important constraints are real-time and high
quality visualization. Although actual auto-stereoscopic displays require rectified
images such that only horizontal parallax is possible, we do not restrict the nav-
igation in order to provide more freedom of navigation and compatibility with
future full parallax displays. However, this arbitrary configuration induces more
complexity at the view synthesis stage. Moreover, for real-time view synthesis,
we do not put constraints upon having 3D graphic devices (e.g. GPU) at the user
side.� Display: Concerning the display device, visualization over multiple types of dis-
plays should be possible. 2D display could be used in addition with free viewpoint
functionalities. Multi-view auto-stereoscopic displays with horizontal or even full
parallax could be used. A combination of multi-view auto-stereoscopic displays
and free viewpoint functionalities is also possible.

24 Challenges in multi-view video systems

Acquisition Representation Transmission View-
synthesis

Display

Medium to
wide camera
arrangement

No complexity
constraint about
the construction of
the representation

Transmission
over band
limited
channel

Real-time
view
synthesis in
all directions
(full parallax)

Multiple
types of
displays

Arbitrary
scene

GPU
available if
need

Navigation
functionality

Table 2.1: Summary of constraints on the multi-view video system considered in this
study.

Chapter 3

Existing representations

Contents

3.1 Definition of a representation 26

3.2 Image-based representations 27

3.3 Depth image-based representations 31

3.4 Surface-based representations 37

3.4.1 Polygonal meshes . 37

3.4.2 Point-based surfaces . 41

3.5 Impostor-based representations 43

3.6 Summary and analysis of pros and cons 48

3.6.1 Construction complexity . 50

3.6.2 Compactness . 50

3.6.3 Compression compatibility 51

3.6.4 View synthesis complexity . 52

3.6.5 Navigation range and image quality 52

3.6.6 Summary of pros and cons 53

3.6.7 Conclusion . 55

This chapter contains a study of existing representations for multi-view video. The
goal is to analyze the pros and cons of each representation. First, the definition of a rep-
resentation is given and the general properties of a representation are introduced. Then
some existing representations are detailed together with associated end-to-end systems.
Here, this is a general study such that the constraints on the system defined previously
are not taken into account. The representations are classified into four families of repre-
sentations: image-based, depth image-based, surface based and impostor based repre-
sentations. Finally, the pros and cons of each representation are analyzed according to
the constrained system that we have defined. Additional material about 3D video and
its data representations can be found in [SKS05, Mag05, SMM+09, AYG+07, Smo10].

25

26 chapitre1

3.1 Definition of a representation

In the context of multi-view video, a representation is the description of the scene
using a certain type of data. For example, an image describes the texture of the scene
from a certain viewpoint, therefore an image is a representation. Similarly, a depth
map is the representation of the geometry of a scene. Texture and geometry are the
main information used to represent a scene. They can be dynamic to incorporate the
motion of the scene. Additional information such as illumination models and camera
parameters may be added to the representation.

The choice of the representation is of central importance in a multi-view video
system. First the representation is computed from the acquisition data, and then it is
compressed and transmitted. At the receiver side, the representation is decompressed,
and rendered on a display device. At each processing stage, the properties of the
representation may be adapted to a certain application and usually raise some trade-
off. It is important to analyze these properties before concluding if it is adapted to a
desired application. Figure 3.1, gives general representation properties corresponding
to each processing stage of a 3D video system. In the following, these properties are
discussed.

Construction
complexity

Compactness Compression
compatibility

View−synthesis
complexity

Navigation range &
image quality

Representation

Figure 3.1: Representation properties

Construction complexity. The construction complexity corresponds to the amount
of processing needed to construct the representation. Estimating the geometry of the
scene for example requires many computations. It influences the processing time of the
system. If real-time processing is required, such as in 3D video conferencing or live
3DTV broadcasting, then a representation with low construction complexity should be
used. However this requires to do some compromise at the user side of the system.
Indeed, such low complexity representation may not contain enough information to
provide navigation functionality or all the complexity may be transferred at the user
side which may reduce interactivity or real-time visualization.

Compactness. The compactness corresponds to the amount of physical data stored
in the representation. On the contrary to the compression process where the data is
seen as a stream of bits, here the data has a physical meaning in the scene such as color
or depth value. Representations using multiple textures and/or multiple geometries
contain redundancies and are less compact than representations using a single texture

Image-based representations 27

and/or a single geometry. Moreover, some representation have level-of-detail and geom-
etry simplification capabilities that help increasing the compactness. However, compact
representations are also sensitive to errors and approximations since the scene is de-
scribed with less data. Therefore, finding appropriate trade-off between compactness
and accuracy is a challenging task for the design of a 3D video scene representation.

Compression compatibility. The compression of a representation corresponds to
the number of bits needed to describe the scene at a certain quality. The compression
of some types of representations like 2D images and videos is highly optimized since it
has been studied for years, whereas some other representations, less popular or more
recent, do not have dedicated and optimized compression methods. The compatibility
with an already standardized compression method is an advantage for fast integration
of the representation into a multi-view video system.

View-synthesis complexity. The view-synthesis complexity corresponds to the amount
of processing needed to synthesize the views at the user side. It is highly related to
the type of representation that is used, and more precisely to the type of rendering
primitives employed. Real-time visualization is usually desired for interactive 3D video
experience. Therefore, the view synthesis complexity should always be compatible with
the performances of the display device. Thanks to recent graphics hardware and pro-
gramming, most view-synthesis methods can run in real-time. However, if no powerful
graphics hardware is available, e.g. on a mobile device, then a representation with low
view-synthesis complexity must be used.

Navigation range and image quality. Each representation contains more or less
accurate description about the scene and its geometry. Intuitively, a representation
made of multiple textures and multiple geometries contains the local details of a scene
and therefore provides higher navigation range and image quality than a representation
made of a single texture and geometry. Artifacts in the synthesized image depend on
the type of rendering primitive, they may be reduced by increasing the level of detail of
the representation when possible. As already mentioned, finding appropriate trade-off
between compactness and image quality is a challenging task for the design of a 3D
video scene representation.

This section has defined some general properties of a representation and we have
shown that the choice of a representation is of central importance in a multi-view video
system. In the following sections, different types of representations are detailed and
their properties are analyzed. The first one is the image-based representation.

3.2 Image-based representations

Image-based representations for multi-view video do not use geometry information at
all. Only the color information or flow of light is transmitted (figure 3.2). In this section,

28 chapitre1

we first describe a system that uses the captured images directly as the representation.
Second, we explain how the flow of light can be described from the input images using
plenoptic modeling. Then, contributions that estimate a geometry of the scene at the
user side are given. They enable to synthesize virtual views and thus reduce the number
of original cameras. Finally, the standardized compression method for multi-view video
is introduced.

Figure 3.2: An image-based representation made of four views.

A first 3D TV system (2004). In the work presented by Wojciech and Pfister
[MP04], a 3DTV prototype system with real-time acquisition, transmission, and display
is presented. Figure 3.3 gives an overview of this system. It consists of an array of 16
cameras arranged in a linear array, 8 producer PCs connected by gigabit Ethernet to
8 consumer PCs, and a multi-projector 3D display (figure 3.4). The video streams are
encoded at full resolution (1300 × 1030) with MPEG-2 video codec and immediately
decoded on the producer PCs.

Figure 3.3: Overview of the 3D TV system [MP04]

The representation used here is image-based because the captured images are di-
rectly encoded and transmitted to the user. This system has the advantage of providing
a ”truly immersive 3D experience”because of its high number of cameras and projectors.

Image-based representations 29

(a) Array of 16 cameras

(b) Array of 16 projectors (c) Front-projection 3D display
with single-lenticular screen

Figure 3.4: Acquisition and display system [MP04]

Moreover, all the data is processed in real-time which fits to an application scenario
like live 3DTV broadcasting. However, transmission of all the data requires a very high
bandwidth. Here, gigabit ethernet (1 Gbit/s) is used to connect producers and con-
sumers PCs into a local area network. But transmitting such data load is not possible
into a wide area network with lower bandwidth (usually range from 1 to 32 Mbit/s)
like digital video broadcasting (DVB) or internet.

In a more recent work presented by Baker et al. [BL09], a similar system providing
real-time capture and display of live multi-view video was set up: 9 cameras and 9 pro-
jectors are used and all the computations can be performed with a single PC. However,
the same drawback as the previous approach remains: transmission of the all images
still requires a high bandwidth.

Plenoptic modeling. Instead of storing all the scene information as pixel arrays,
another method consists in describing the flow of light captured by the cameras. Such a
flow is described by the plenoptic function. It was introduced by Adelson et al. [AB91].
It is characterized by seven dimensions, namely the viewing position (vx, vy, vz), the
viewing direction (θ, φ), the time t and the wavelength λ. Acquiring the full plenoptic
function is not feasible because of the tremendous amount of data required. Therefore,
research is mostly about how to make reasonable assumptions to reduce the sample size
while keeping the rendering quality. Usually, the wavelength is reduced to red, green
and blue components, and the time is sampled to a certain frame rate. One major
strategy to reduce the data size is restraining the viewing space of the viewers.

The most well-knownmethods are Light Field [LH96], and the Lumigraph [GGSC96]:
light rays are recorded by their intersections with two planes. One of the planes is in-

30 chapitre1

dexed with coordinate (u, v) and the other with coordinate (s, t). Figure 3.5 shows
an example where the two planes, namely the camera plane and the focal plane, are
parallel. A light ray is indexed as (u0, v0, s0, t0).

Figure 3.5: Illustration of the light-field parameterization. Image extracted from
[ZC04].

During the rendering process, for each pixel i of the new view, a viewing ray ri is
computed that passes through the two-plane parameterization and generates a partic-
ular sample (ui, vi, si, ti). If such a sample exists in the database, then the appropriate
color value is assigned to the pixel i. If not, the nearest ones are selected and blended.

Another 4D re-parameterization of the plenoptic function is the Ray-Space [Fuj94].
This method is a combination of 4D light field and EPI (Epipolar-Plane Image analysis).
Fuji and Tanimoto exploit this approach in their FTV system [Tan06].

All these methods using such image image-based representations suffer from the
same limitations: a small-baseline camera arrangement must be used for good image
quality because no geometry is available for virtual view synthesis. This results in
either a high number of cameras if large navigation is desired or small navigation range
if only few cameras are used.

Real-time geometry estimation. A way of improving the previous systems and
reducing the bandwidth is to reduce the number of input cameras. However, to keep
the same navigation range, this requires increasing the camera baselines (inter-camera
distance) and virtual views between original cameras have to be synthesized using
some geometry of the scene. Therefore, such solution estimates the geometry of the
scene in real-time, at the user side of the system. In this case, we consider that the
representation is still image-based because the geometry information is not transmitted
but computed at the user side. Examples of real-time techniques compute depth maps
from stereo images [YPYW04, TTN08, SKS+10], or reconstruct a 3D geometric model
using visual hulls and photo-consistency constraints [MWTN04, NNT07]. In the work
presented by Taguchi et al. [TTN08], a full 3D video system is presented. Acquisition

Depth image-based representations 31

is done with an array of cameras and display is performed with real-time synthesis of
virtual views. All these methods make use of the power of graphics hardware in order
to obtain real-time performances. In the work of Sizintsev et al. [SKS+10], depth maps
are estimated from a stereo pair at 32 fps on 640×480 video using off-the-shelf Nvidia
GPU.

Although recent results show good quality geometry estimation with real-time capa-
bilities, the main drawback of this solution is that it transfers computationally expensive
tasks at the user side. This might be a critical point when considering a user application
where computational capabilities are limited such as a mobile device or a television.

Compression of multi-view videos. A particularly challenging task for image-
based representations is to efficiently compress the multiple views. Multi-view Video
Coding (MVC) has gained significant attention recently. Since the different camera sig-
nals contain a large amount of statistical dependencies, the key for efficient MVC lies
in the exploitation of these inter-view redundancies in addition to temporal redundan-
cies: a frame from a certain camera can be predicted not only from temporally related
frames from the same camera, but also from the frames of neighboring cameras. MVC
is now an amendment to H.264/MPEG-4 AVC video compression standard developed
with joint efforts by MPEG/VCEG [JTC08].

Pros and cons of image-based representations. The main advantage of image-
based representations is a potentially high image quality. However, this benefit has to
be paid by a high amount of data since a large amount of small-baseline cameras is
required. In the case where high computational complexity at the user side is not an
issue, then the number of cameras may be reduced and geometry computed in real-time
at the user side.

3.3 Depth image-based representations

In depth image-based representations, depth maps are used together with the original
2D images in order to build a 3D-like representation. Such maps assign a depth value
to each pixel of its associated image as shown in figure 3.6. They are used to synthe-
size virtual views thanks to so-called depth image-based rendering techniques (DIBR).
In this section, we first show the different systems that can be envisioned with such
representation and then detail the existing types of depth image-based representations
(namely 2D+Z, MVD, and LDV) and associated compression methods. Finally impor-
tant issues concerning the use of this representation for view synthesis are explained.

Example of systems. Currently, an ad hoc group of MPEG called 3DV is inves-
tigating a new framework using depth image-based representations and targets the
compression and the generation of additional views at the receiver side [MPE09]. Fig-
ure 3.7 shows several scenarios of acquisitions and displays that share the common

32 chapitre1

Figure 3.6: Color image and its corresponding depth map [ZKU+04]

depth image-based representation. The depth maps may be produced by dense stereo
analysis from multiple cameras1[SSZ01, Sou10]; with depth cameras or 2D/3D conver-
sion processes [YXDL10]. At the receiver, depth image-based rendering is performed
to synthesize images depending on the types of displays.

Figure 3.7: Example of multi-view video systems using depth image-based representa-
tions envisioned by the MPEG’s 3DV group.

Video plus depth (2D+Z). The simplest depth image-based representation consists
of using only one view made up of an image plus a depth map per time instant (2D+Z),
as in figure 3.6. The ATTEST project [FKdB+02] was the first to study all parts of
the 3D processing chain based on the 2D+Z representation. This representation was
designed to replace a pair of stereo images for stereoscopic visualization. Figure 3.8
illustrates the display of a stereo pair of images using video plus depth and depth image-
based rendering. In this illustration, the depth map is obtained using a depth camera,
but it is also often computed by stereo analysis between two original views. There are
mainly two advantages of using 2D+Z instead of stereo images. First, a depth map

1http://vision.middlebury.edu/stereo/

http://vision.middlebury.edu/stereo/

Depth image-based representations 33

is a gray level image which is more compact than a 3 components RGB image and
can be compressed more efficiently [BVG+07]. The compression of video plus depth
has been standardized in the MPEG-C Part 3 specification [MPE06]. Second, a depth
map allows to synthesize any intermediate views, so it provides flexibility for tuning the
stereo visualization and decoupling the display side from the acquisition side. However,
an image plus a depth map is not sufficient to fully reconstruct a second image. Indeed,
some part of the scene may be occluded in the first image. These occluded regions are
not well reconstructed during view synthesis and must be filled using some filtering
methods [SMD+08] or inpainting methods [OYH09, Dar09]. These techniques exploit
the neighboring pixels in order to predict the unknown ones, but only small holes can
be filled without disturbing artifacts, thus only small distance between the original and
synthesized views can be used.

Figure 3.8: Display of a stereo pair of images using 2D+Z representation.

Multi-view video plus depth (MVD). The 2D+Z representation is only dedicated
for stereo video (i.e. with small distance between the two images). For a wider range
of viewpoints, multiple views made of 2D+Z data must be used. It is called MVD
(Multi-view Video plus Depth) and enables to synthesize intermediate views with higher
quality. Indeed, using MVD data, most of the occluded regions in one view can be
filled using the other views [ZKU+04, SMD+08]. Usually, the two views surrounding a
desired virtual view are used and combined together as shown in figure 3.9. Figure 3.10
illustrates the use of MVD for 3D video: three input images and associated depth maps
are used to display nine views with a multi-view auto-stereoscopic display. On the down
side, the data load is increased compared to 2D+Z and the redundancies between the
original views are usually high since the same scene is captured by multiple cameras.

34 chapitre1

Figure 3.9: Synthesis of a virtual view using the MVD representation.[MSMW07b]

Figure 3.10: Display of multiple images using MVD representation.

Depth image-based representations 35

Compressing MVD representation. The compression of depth maps and joint
compression of multi-view plus depth is a very active research field. Since depth maps
are gray level images, they can be compressed with already standardized video codec
such as H.264/MVC as studied by Merkle et al. [MSMW07b]. Moreover, considering
that the quality of synthesized views depends both on the quality of texture images
and depth maps, then an optimized distribution of the bit rate over the texture and
the depth helps minimizing distortions [Mor09, Dar09]. However, depth maps describe
the surface of a scene and have different properties compared to an image describing
the texture. Therefore, rendering intermediate views using compressed depth maps
creates visually disturbing artifacts, especially around depth discontinuities (objects
boundaries) [MSMW07b]. With this in mind, several approaches have been proposed
such as platelet-based depth coding [MMS+08]. This algorithm employs a decomposi-
tion of the depth maps using geometric primitives such that the depth discontinuities
are preserved. Wavelet based coding of depth map has also been proposed in order
to preserve depth discontinuities [Dar09, MM09]. Another approach is the use of scal-
able coding technique with ROI to ensure lossless coding around depth discontinuities
[YV09]. These methods provide a better rendering quality for a given compression rate.

Layered depth video (LDV). Starting from MVD representation, the LDV rep-
resentation aims at reducing the multi-view redundancies while preserving important
information like occluded regions. The idea is to select a certain view as reference
and extract, from the other views, only the information which is not contained in the
reference view, i.e. the occluded areas [SGHS98, BVG+07, MSD+08, JMG09]. Figure
3.11 illustrates this representation. The advantage is that the inter-view redundancies
are reduced while the disocclusion areas are still available. However, the quality of syn-
thesized views may decrease as the synthesis gets further to the reference view, on the
contrary to MVD where all the original views ensure a certain view synthesis quality
along the navigation range. Therefore, it is possible to combine both MVD and LDV
ideas in order to play with the compromise between minimum quality and navigation
range. This solution proposed by Smolic et al. [SMM+09] is called Depth Enhanced
Stereo (DES). It uses two reference views, each associated with LDV representation.
In between these views, the quality of synthesized views is equivalent to MVD, and
for wider navigation on the right or left sides, the additional occlusion layers are used.
Up to now, the compression of such LDV or DES representation is still under study
[MDMW10, JMG09, KB10].

Depth based view synthesis Synthesizing intermediate views using depth maps is
generally performed using a point-based method: each pixel is independently recon-
structed in 3D and then re-projected into the desired intermediate view. As a result,
many small holes appear in the intermediate view creating so-called sampling artifacts
(figure 3.12). These holes must be filled with post-processing techniques [SMD+08].
An alternative to avoid these holes is to transform the depth maps into a surface us-
ing geometric primitives such as triangles [ZKU+04] or quadrilaterals [ESWK04] and
to disconnect these primitives at depth discontinuities so that the background and

36 chapitre1

Figure 3.11: Layered depth video representation. Left: reference view and its associated
depth map. Right: Occluded areas and associated depth maps extracted from MVD
representation [MDMW10].

foreground are not connected. This solution eliminates the post-processing stage but
requires a graphic processor for rendering these polygonal primitives.

Depth image-based representations suffer from a specific artifact when synthesizing
virtual views called ghosting artifact (or corona artifact). Indeed, boundaries around
depth discontinuities have mixed colors between foreground and background that be-
come visible and disturbing after projection into another viewpoint (figure 3.12). Ex-
isting methods for avoiding this kind or artifacts consists in extracting discontinuity
boundaries with an edge detection method, and applying separate process to this area
[ZKU+04, SMD+08]. This process is performed at the user side of the system and
therefore increases the view synthesis complexity.

Finally, for auto-stereoscopic visualization, images are often rectified, i.e. there is
only horizontal parallax between the images. In this case, a simple method of virtual
view synthesis is to use disparity maps instead of depth maps. Disparity is the dif-
ference in position between two corresponding pixels in two images. Thus, only linear
interpolation of the disparity is needed for synthesizing a virtual view, instead of back-
projection to 3D plus re-projection. This method is much less complex and is required
by the MPEG 3DV working group [MPE09]. However only horizontal parallax is sup-
ported in this scenario, which is restrictive for free-view point functionalities and for
future full parallax auto-stereoscopic displays.

Pros and cons of depth image-based representations. Depth image-based rep-
resentations provide good flexibility to play with the trade-off between data load, image
quality and navigation range. Moreover, compression of such representation is very ac-
tive, but special attention must be given to depth discontinuities during the compression
step. Moreover the view synthesis step requires many processings for avoiding specific
artifacts.

Surface-based representations 37

(a) Sampling artifacts. (b) Ghosting artifacts.

Figure 3.12: Two examples of artifacts that require additional processings at the user
side of the system. (a) Sampling artifacts are the small holes that create white lines in
the image. (b) Ghosting artifact is the mixed color between the boundary of the head
and the background.

3.4 Surface-based representations

A surface-based representation models the surface of a scene using a certain type of
geometric primitive. The most common primitives are the polygons and the points, thus
two surface-based representations are described in the following: polygonal meshes and
point-based surfaces.

3.4.1 Polygonal meshes

The surface of a 3D object can be approximated using polygons. A polygonal approx-
imation of a 3D object has faces, edges, vertices and normal vectors to identify the
spatial orientation of the polygon surfaces. These are stored in geometric data tables.
There are several ways of constructing a polygonal mesh. First, a popular one is based
on the shape-from-silhouette reconstruction algorithm, however it is restricted to fore-
ground objects only. If the goal is to model a human body, then a priori knowledge can
be introduced and a computer generated model adapted to the person’s outline can be
used. Finally, another solution is to reconstruct a polygonal mesh from several depth
maps, thus complex scenes can be modeled without restriction concerning the scene.
More details about these techniques are given in the following, and then compression
issues are considered.

Mesh reconstruction from shape-from-silhouette In the work presented by
Mueller et al. [MSM+04a], a shape-from-silhouette algorithm is used to reconstruct

38 chapitre1

a natural scene from multiple cameras. During silhouette segmentation, color-and-
position-based automatic segmentation is applied first to create approximate segmen-
tation that is refined manually afterwards. A hierarchical voxel approach is used in
order to create an octree structure of the volume. If texture mapping is applied at
this stage, visible artifacts would occur. Hence, the voxel model is transformed into
a polygon mesh representation thanks to the marching cubes algorithm [LC87]. This
general approach extracts the outer faces of voxel cubes that are part of the surface.
The result is a very dense mesh of the object surface (figure 3.13). At the rendering
stage, a view-dependent texture mapping algorithm is used.

(a) (b)

Figure 3.13: Transformation of a voxel model into smoothed wireframe [MSM+04a]

Introduction of a priori knowledge In the work presented by Carranza et al.
[CTMS03], an a priori shape model that is adapted to the observed person’s outline is
employed. The model is a triangular mesh. On the contrary to shape-from-silhouette
methods, using this kind of a priori model enables to prevent geometry artifacts. The
body model used throughout the system is a generic model consisting of a hierarchic
arrangement of 16 body segments (head, upper arm, torso, etc.). The model’s kine-
matics are defined via an underlying skeleton consisting of 17 joints connecting bone
segments (figure 3.14). The challenge in this method is to capture the motion of the
body in order to reproduce this motion on the model. To do so, silhouette images of
the person are extracted in each camera view through background subtraction. After
an initialization step, the body pose parameters that maximize the overlap between
projected model silhouettes and input camera silhouettes are estimated for every time
step. More details and videos are available at the project’s webpage2.

Mesh reconstruction from depth maps In the work presented by Merrel et al.
[MAW+07], a view-point based approach for the quick fusion of multiple stereo depth
maps is presented. First, depth maps are computed from a set of images captured by a
moving camera with known pose, using plane-sweeping stereo [Col96, GFM+07]. This

2http://www.mpi-inf.mpg.de/~theobalt/FreeViewpointVideo/free_viewpoint_video.html

http://www.mpi-inf.mpg.de/~theobalt/FreeViewpointVideo/free_viewpoint_video.html

Surface-based representations 39

Figure 3.14: Surface model and the underlying skeletal structure [CTMS03].

algorithm generates potentially noisy, overlapping depth maps. Second, the depth maps
from adjacent viewpoints are recursively merged by minimizing violations of visibility
constraints. Two different approaches are presented, one that favors stability and one
that is based on confidence. In both approaches, one of the viewpoints, typically the
central one, is selected as the reference viewpoint, and a depth is estimated for each pixel
of the reference view. The result is called a fused depth map, and several fused depth
maps are computed throughout the video such that they partially overlap one another.
The fused depth maps are then merged and converted to a consistent triangular surface
with a multi-resolution quad-tree [Paj02]. The algorithm can run at up to 25 frames
per second which makes it suitable for large scale reconstructions, as in the system
proposed by Pollefeys et al. [PNF+08].

In a similar idea, Galpin and Balter [Gal02, BGM06] estimate a set of local 3D
models from a video sequence and estimated depth maps. A depth map is estimated
for a group of frames, and it is then triangulated using Delaunay triangulation. This
forms a local 3D model. One difficulty is that the vertices of two successive models are
not matching points, whereas the models usually represent largely overlapping parts of
the scene. Therefore, the transition between successive 3D models is achieved by using
a single connectivity mesh that gathers the connectivity information and by morphing
the 3D models to obtain a smooth transition.

On the contrary to the depth fusion in [MAW+07] which is based on visibility
constraints with regard to a reference view, the method in [BBH08] presents a point-
based post-processing fusion. After the estimation of depth maps thanks to a stereo
matching algorithm, they are all merged into a single point cloud, and the surface
reconstruction algorithm runs in three steps: downscaling, cleaning and meshing (figure
3.15). During downscaling, the aim is to remove redundant information in the point
cloud. The space is partitioned into a hybrid octree-quadtree structure and each subset
of the tree is replaced by a single representative sample. During cleaning, two kinds
of noise, namely ’outliers’ and ’small scale high frequency noise’ are removed thanks

40 chapitre1

Figure 3.15: Acquisition pipeline: the binocular stereo algorithm generates a 3D point
cloud that is subsequently processed and converted to a triangle mesh [BBH08].

to two types of filtering methods. Finally, the meshing step is done thanks to ’lower
dimensional triangulation’ methods which are fast and run locally, ensuring scalability
and good memory-computational complexity. As a result, the authors claim to produce
the most accurate results among current algorithms for a sparse number of viewpoints
according to the Middlebury datasets. On the contrary to the previous algorithm, the
authors make the assumption that a segmentation of the object from the background
is provided, so that the visual hull is represented as a set of silhouette images. The
algorithm is therefore suitable for foreground objects and not for large scale scenes.

Compactness and compression A polygonal mesh is a global model of the scene,
thus there are no redundancies in the geometry resulting in a compact representation.
Moreover, mesh reconstruction and simplification algorithms adapt the size and number
of polygons to control the level-of-detail of the mesh and thus the trade-off between
compactness and accuracy. In addition, since the number of polygons in a mesh may be
huge, efficient compression methods are necessary. The compression of static meshes
have been studied for long and more recently for dynamic scenes. The compression
of polygonal meshes is studied within the MPEG’s group 3DGC. Recent standards
include the compression method TFAN [MZP09] for static meshes and FAMC [MZP08]
for dynamic meshes, both part of the MPEG-4 AFX standard. More details about
mesh compression can be found the works of Smolic et al. [SMS+07], Mamou [Mam08],
Dugelay et al. [DBD08]. The compression methods for polygonal meshes are efficient for
synthetic scenes or real-world foreground objects. However, arbitrary real-world scenes
contain many depth discontinuities and irregularities that decrease the compression
performances. In the work of Galpin and Balter mentioned above [Gal02, BGM06],
efficient compression of real-world scenes is obtained by using a mesh that connects
depth discontinuities (foreground and background are connected) resulting in strong
artifacts when changing the viewpoint.

Pros and cons of polygon-based representations. Polygonal meshes are widely
used in the computer graphics community, and therefore the available technology for
rendering is optimized, enabling real-time view-synthesis of complex scenes. Moreover,

Surface-based representations 41

polygonal meshes are compact since the representation is made of a global model with
controlled level-of-detail and without redundancies. On the down side, reconstructing
a global model from multiple images or from the fusion of multiple depth maps remains
error prone. More precisely, finding an optimal solution to fuse multiple and possibly
inconsistent depth maps may introduce global errors. Considering polygonal meshes re-
constructed with shape-from-silhouette techniques, they have the advantage to provide
wide navigation range since surrounding cameras spaced far apart are often used, how-
ever only foreground objects of interest are reconstructed with this method. Finally,
the compression of polygonal meshes of arbitrary real-world scenes is still a challenging
task. Up to now, efficient compression method preserving depth discontinuities has not
been proposed in the context of 3D video.

3.4.2 Point-based surfaces

Points can be used instead of polygons, as simpler display primitives for surface repre-
sentation. In point-based schemes, no topology or connectivity information is explicitly
stored. The points are represented by their 3D coordinates, their color and sometimes
their normal for re-lighting effects. The idea of using points, instead of triangle meshes
and textures, was first proposed by [LW85]. In the following, we first introduce the
rendering method called splatting and then describe a full system using a point-based
representation. Finally we discuss the compression methods of such representation.

Splatting as a rendering method. Most point-based rendering systems use splat-
ting to achieve high quality rendering [PZvBG00, RL00, ZPvBG02]. The basic idea in
splatting is to associate each surface point with an oriented tangential disc. The shape
and size of the disc may vary, if it is circular, it projects as an elliptical splat on the
image plane and its radius can be adjusted with respect to the local density. The shade
or colour of the point is warped accordingly so that its intensity decays in the radial
direction from the centre. Often a single image pixel is influenced by several overlap-
ping splats; in this case the shade of the pixel is computed by the intensity-weighted
average of the splat colors.

A full system using a point-based representation Waschbusch et al. [WWCG07],
have studied a system based on a point-cloud representation. It aims at capturing and
rendering 3D video sequences of real-world scenes. Figure 3.16 gives an overview of the
3D video framework.

The acquisition system is composed of multiple sparsely placed 3D video bricks that
contain a low-cost projector, two greyscale cameras and a high-resolution colour cam-
era. While the colour camera captures the texture of the scene, the remaining devices
are used for the computation of the depth of the scene. Indeed, the proposed depth
estimation algorithm makes use of stereo matching and structured light patterns that is
projected onto the scene. The structured light pattern generates artificial textures that
improve the stereo matching process. Therefore, alternating projections of structured

42 chapitre1

Figure 3.16: Overview of the 3D video framework [WWCG07]

light patterns and the corresponding inverses allows for simultaneous acquisition of the
scene textures and geometry.

Once the depth maps have been estimated for each view, all the image pixels are
back-projected into a common 3D world reference frame and they are merged into a
view-independent, point-based 3D data structure. Then, the 3D points have to be rep-
resented as surface or volume elements in order to ensure full surface coverage of the
samples. Hence, every point is modelled by a 3D Gaussian ellipsoid which corresponds
to a probabilistic model describing the positional uncertainty of each point. Finally, the
resulting point-cloud is post-processed to remove the remaining artefacts. At the ren-
dering stage, the GPU and CPU are used cooperatively. Smooth images are generated
using probabilistic EWA volume splatting and view-dependent blending. An example
of a rendered image from a new view point is shown in figure 3.17, the quality is decent
and could be improved by eliminating remaining artefacts at silhouettes using matting
approaches.

Figure 3.17: Rendering from a novel viewpoint [WWCG07]

Impostor-based representations 43

Compression While point-cloud representations show advantages at the construc-
tion and view synthesis stages for highly detailed surfaces sometimes made of millions
of points, efficiently compressing such point-cloud is a challenging task in the context
of 3D video system. Existing compression methods are often based on a subdivision
of the space [DG00, PK03, ZXY07], but a simple prediction scheme was also proposed
by Gumhold et al. [GKIS05]. The point-cloud representation has been included since
2004 into the MPEG-4 AFX standard which is a 3D graphics tools for geometry, texture
and animation. However, only few experiments have been carried out to compress and
transmit a point-cloud representation of a real world scene. In the work of Wuermlin
et al. [WLG04], a point-cloud representation was used for a telecollaboration system
called blue-c [GWN+03]. This 3D video system is able to acquire, process, transmit
and render a model of an animated object at about 5 frames per second. However
the system is restricted to foreground objects only, containing in between 15k and 25k
points. In the work of Waschbusch et al. [WWCG07] (detailed above), the scene repre-
sentation is adapted to arbitrary scenes and not to foreground objects only. However,
the compression of their point-cloud representation is left as a perspective.

Pros and cons of surface-based representations. The main motivation for using
points is the rendering complexity. Indeed, when a highly detailed complex 3-D triangle
model is rendered, the projected size of individual triangles is often smaller than the
size of a pixel in the screen in the image. In this case, the polygon rasterization process
at the rendering pipeline becomes unnecessarily costly, whereas rendering individual
points, rather than polygons, can be much more efficient. On the other hand, low-
resolution approximations of point sets do not generally produce realistic rendering
results. Therefore point-based representations are usually made of a huge amount of
points which is a drawback when transmission with limited bandwidth is needed.

3.5 Impostor-based representations

Another class of representation is based on impostors. This term is used to describe
a technique where flat images are seamlessly integrated into complex 3D scenes. Such
impostor flat images are often called billboards to stress the idea that they face the
camera similarly to billboards that are positioned to face drivers on a highway. In
this section, we first introduce a method that models synthetic objects using billboard
clouds. Then, we detail a system using billboard clouds for real-world scenes. Finally,
a technique using smaller and oriented impostors called microfacets is described.

Billboard clouds for extreme model simplification. In [DDSD03], a billboarding
technique is used to render complex geometric objects. This representation consists in
a set of textured, partially transparent polygons (or billboards), with independent size,
orientation and texture resolution (figure 3.18). A billboard cloud is built by choosing
a set of planes that capture well the geometry of the input model, and by projecting the
triangles onto these planes to compute the textures and transparency maps associated

44 chapitre1

with each plane of the billboard. Billboards clouds are effective in simplifying models
with multiple textures into a small number of textured polygons.

Figure 3.18: Example of a billboard cloud: (a) Original model (5,138 polygons) (b)
false-color rendering using one color per billboard to show the faces that were grouped
(c) View of the (automatically generated) 32 textured billboards (d) the billboards side
by side. [DDSD03]

3D video billboard clouds. As an extension to the previous work, Waschbush et al.
recently introduced 3D video billboard clouds [WWG07] where they reconstruct and
represent a dynamic 3D scene using displacement mapped billboards. It consists in ge-
ometric proxy planes augmented with detailed displacement maps (figure 3.19). Since
the displacement maps are computed using acquired depth maps of the scene, the rep-
resentation used in this system is in fact not purely impostor-based but a combination
of impostor and depth maps representation.

(a) (b) (c)

Figure 3.19: Illustration of the billboard cloud for one object: Billboard plane from one
input view (left), composition of planes from multiple input views to a billboard cloud
(middle), displacement-mapped billboard plane from one input view (right). [WWG07]

Their acquisition system consists of so-called 3D video bricks and the disparity maps
are computed using stereo on structured light algorithm slightly different to the one
described in [WWCG07] section 3.4.2. Alpha mattes are computed in order to segment
the scene into multiple distinct objects. Then, for each object a billboard cloud is
reconstructed consisting in one textured billboard plane per input viewpoint. Each

Impostor-based representations 45

plane provides a least squares optimal approximation of the object geometry from its
particular acquisition view. During rendering, view-dependent geometry and texture
are computed by blending pixels depth and colours. However, the planar approximation
is not sufficient for decent visual quality. Therefore, displacement map is added using
input depth. Since the reconstructed geometry is subject to noise and outliers, a bi-
lateral low-pass filter is employed to smooth the object geometry in space and time.
In order to model complete dynamic scenes into multiple 3D video billboard clouds,
a semi-automatic video cutout technique is used. Finally the moving scene can be
re-rendered from novel viewpoints of a virtual camera.

A video of this method can be watched at the project’s webpage3. The reconstructed
scene shows good visual quality and coherence in time with only 3 or 4 input views.
However, a limitation comes from thin and fast moving structures in the video that are
difficult to handle (figure 3.19). The proposed method is in principle capable to run in
real-time because efficient GPU implementations for both window-based and splatting
are available.

As a future work, the authors would like to look for efficient compression method
for this representation.

Figure 3.20: Thin, fast moving structures like the actor’s arms cannot provide sufficient
spatio-temporal support for high quality filtering. [WWG07]

Microfacet billboarding. Yamazaki et al. [YSK+02] proposed a new impostor-
based representation in order to render complex objects in real-time. The billboards
here are replaced by view-dependent microfacets. These microfacets are extracted from
a voxel model of the scene and their orientation always faces the viewing direction
(figure 3.21). This is a particularity of this representation: while other representations
are made of a single geometry or multiple geometries, here microfacet billboarding is
made of single view-dependent geometry. The geometry of the object is acquired thanks
to a scanner and the texture is obtained with 36 photographs. The whole process can
be separated into two steps: the modeling and the rendering process.

In the modeling process, the surface of the object is built in the form of a polygonal
mesh and is then resampled into a set of voxels. This voxel representation can be
extended to a multi-resolution structure by using octree representation if necessary.

3http://graphics.ethz.ch/publications/papers.php

http://graphics.ethz.ch/publications/papers.php

46 chapitre1

Figure 3.21: A microfacet is a slice which intersects the center of the voxel and always
faces the viewing direction. [YSK+02]

In parallel, the range images are stored for texture clipping in the final step of the
rendering process.

In the rendering process, the object is rendered by a set of microfacets with color
texture. A microfacet is defined as a slice which intersects the center of the voxel and
faces the viewing direction. Each microfacet represents the approximated surface inside
the voxel (figure 3.21). First, view-dependent microfacets are generated, and then the
texture of the object is mapped onto each of them (figure 3.22 (a)). The texture of
each facet is selected from the most suitable texture images according to the view point.
Finally, the background texture is removed from the facets either by texture clipping
using the range image or by alpha matting.

(a) (b)

Figure 3.22: Images obtained by microfacet billboarding rendering of a stuffed cow. (a)
The result of rendering by microfacet billboarding using 756 facets. (b) The textures
mapped onto facets are generated by interpolation of several textures. [YSK+02]

Since facets are used to represent real objects with small geometries, visual artifacts
can occur depending on size, shape and orientation of the microfacets. Therefore, the
authors studied the visual artifacts due to the sampling interval and orientation of the

Impostor-based representations 47

microfacets. In figure 3.23, a comparison of the rendered images using billboarding
facets and fixed facets is shown.

(a) (b)

Figure 3.23: Comparison of the rendered images using billboarding facets (a) and fixed
facets (b). The same number of facets were drawn in each figure. [YSK+02]

The octree structure is useful to control the extent of approximation and the levels
of detail. When the shape of an object is represented by a single voxel and approxi-
mated by a single microfacet, the method is equivalent to image-based representation.
Whereas when the octree is subdivided into the size of the points in the original point
cloud, the rendering becomes closer to point-based representation.

A video of this method can be watched at the project’s webpage4

Pros and cons of impostor-based representations. Such representation helps
simplifying the geometry by using billboards of different size without connectivity,
thus real-time rendering of complex scenes is facilitated. Concerning billboard clouds,
extracting large billboards from real-world scenes is difficult because of the complexity
of shapes, resulting in poor approximation of the scene. Therefore, depth maps are used
for displacement mapping but this increases the data load and thus the advantage of
the compact billboard cloud is lost. On the other hand, microfacet billboarding is more
flexible since the size of the microfacets can be adapted to the desired precision using
the octree structure, and the orientation of the facets is view-dependent for a better
rendering quality. Moreover, the octree structure can be exploited for compression. On
the down side, the texture clipping and transparency inside each microfacet has to be
defined during view synthesis. This is done either by using the depth maps if available
(but this again increases the data load) or by alpha matting which is computationally
expensive.

4http://www.dh.aist.go.jp/~shun/research/microfacet/

http://www.dh.aist.go.jp/~shun/research/microfacet/

48 chapitre1

3.6 Summary and analysis of pros and cons

In this chapter, four families of representations for multi-view video have been pre-
sented, namely image-based, depth image-based, surface-based and impostor-based
representations. Some differences were also distinguished inside each family. Table
3.1 regroups these representations and the references associated to them.

Family Representation References

Image-based

Image-based [MP04, BL09, TTN08,
AB91, LH96, GGSC96,
Fuj94, Tan06]

Depth image-based

MVD [FKdB+02, ZKU+04,
SMD+08, SMM+09]

LDV [SGHS98, BVG+07,
MSD+08, JMG09,
SMM+09]

Surface-based

Polygon mesh [MWTN04, MSM+04b,
MSM+04a, CTMS03,
BBH08, MAW+07]

Point cloud [LW85, PZvBG00, RL00,
ZPvBG02, WWCG07]

Impostor-based

Billboard cloud [DDSD03, WWG07]

Microfacet billboarding [YSK+02]

Table 3.1: Summary of representations and associated references

Before starting the analysis, few precisions about the representations that will be
compared are necessary:� One constraint is that the computational complexity should be transfered at the

operator side as much as possible, in order to reduce complexity at the user side.
Therefore, image-based representations will be considered without computation
of the geometry at the user side, which is a complex task that should be performed
at the operator side.

Summary and analysis of pros and cons 49� Surface-based representations reconstructed with visual hull techniques are usu-
ally applied for foreground objects of interest only, which does not satisfy the
constraint of arbitrary scenes defined for the system. Therefore, the analysis will
focus on surface-based representation reconstructed from depth maps such that
any arbitrary scene is possible. Billboard clouds and microfacets billboarding are
reconstructed from depth maps and can be applied on arbitrary scenes, although
the mentioned contributions focused on single objects.� Billboard clouds without displacement mapping (i.e. without use of depth maps)
will be considered in this analysis so that to clearly distinguish this representation
from the depth image-based representations.

The processing steps associated to each representation are summarized in table 3.2.

Construction Compression View-synthesis

Image-based Color correction Multi-view video
coding
(H.264/MVC)

Image interpolation
or light field
rendering

MVD Depth estimation Block-based coding
(e.g. MVC) + edge
preservation

Depth warping +
post-processing

LDV Depth estimation +
layer extraction

Block-based coding
+ edge preservation
+ layers coding

Depth warping +
post-processing

Polygon
mesh

Depth estimation +
fusion + meshing

Mesh-based object
compression (e.g
TFAN, FAMC)

Polygon warping +
texture mapping

Point cloud Depth estimation Prediction in
subdivided 3D
space (e.g. octree)

Surface splatting

Billboard
cloud

Depth estimation +
billboard approx +
texture clipping

Polygon warping +
texture mapping

Microfacets Depth estimation +
Octree partitioning

Prediction with
octree structure

View-dependent
polygon warping +
texture clipping and
mapping

Table 3.2: Summary of the processing steps for representation.

In the following of this section, the representations are compared to each other

50 chapitre1

according to each property and also according to the constraints on the targeted sys-
tem that we have defined in section 2.6. Finally, a global conclusion will extract the
important observations that come out from this study.

3.6.1 Construction complexity

Depth estimation
+ additional process

Color calibration
Depth

estimation

Point cloud
MVD

Image−based
Polygon mesh

LDV

Microfacets
Billboard cloud

Increasing construction complexity

Figure 3.24: Representations ordered by increasing construction complexity

Figure 3.24 gives a classification of the representations by increasing construction
complexity. Since image-based representations do not reconstruct the geometry of the
scene, only some image processing algorithms may be needed such as color calibra-
tion. Therefore this representation is constructed with low computational complexity.
Reconstruction methods based on depth estimation are more complex because of the
pixel-by-pixel estimation. Finally, the other representations require additional process
after depth estimation. LDV representations compute their layers from MVD. Polygo-
nal meshes fuse depth maps and triangulate point cloud data. Billboards approximate
the geometry from each viewpoints. Microfacets require the transformation of depth
maps into a voxel representation. All these additional processes increase the construc-
tion complexity.

3.6.2 Compactness

Point cloud MVD
Polygon mesh

Microfacets
Billboard cloud

Single geometry Single geometry Extreme

LDV

Image−based

Multi−texture

Multi−geometry

Multi−texture

Simplification

Multi−texture

simplification

Multi−texture

No geometry

Single texture
Single geometry

No simplification

Multi−texture

Increasing compactness

Figure 3.25: Representations ordered by increasing compactness

Summary and analysis of pros and cons 51

Figure 3.25 gives a classification by increasing compactness. Although the point-
cloud representation is a non redundant single geometry, the number of 3D points is
often huge because it is mainly adapted to describe highly detailed scenes. Simplifying
a point-cloud is difficult since a single color is associated to each point and so lower
approximation does not produce realistic results. Therefore, the point-cloud represen-
tation is not compact. The MVD representation uses multiple depth maps that require
less data than 3D points because only gray scale component is used. However, they
contain many redundancies. Therefore MVD is situated next to point-cloud represen-
tations. Polygonal meshes and microfacets representations are both based on a single
geometry and polygonal primitives. Such primitives, allow geometry simplification to a
certain extent, therefore these representations are more compact than the two previous.
The billboard cloud representations uses few planes per view which results in a simple
and compact geometry, but also extreme simplification that roughly models the scene’s
geometry. On the contrary to previous representations, LDV representations is based
a single texture and single geometry. All redundancies are eliminated which makes this
representation very compact. Finally, image-based representation do not use geometry
information at all, which makes it also very compact when compared with the other
representations with the same camera arrangement and input views.

3.6.3 Compression compatibility

MVD
LDV

Polygon mesh

Low activity Under study Standardized

Point cloud
Microfacets

Billboard cloud

Image−based

Increasing compression compatibility

Figure 3.26: Representations ordered by increasing compression activity and standard-
ization

Figure 3.26 gives a classification of the representations by increasing compression
activity and standardization. Point-cloud and microfacets representations are situated
in the ’low activity’ class since only few experiments on real-world data have been
carried out to compress such representations, and no recent contributions show that
point-cloud or microfacets can be efficiently compressed in the context of 3D video.
Billboard cloud representations are made of a few planar polygons only. However, it
seems that the compression of such representation in the context of 3D video has not
been studied a lot up to now. The 3D video group within the normalization group ISO-
MPEG is currently studying the MVD and LDV representations. The compression of
depth maps and joint compression of multi-view plus depth is a very active research
field. The compression of polygonal meshes is studied within the MPEG 3DGC group

52 chapitre1

and compression standards already exists (such as TFAN and FAMC). However, mesh
compression methods seems to be more efficient for a single foreground object than for
a scene with arbitrary discontinuities. Therefore, the MVD, LDV and polygon mesh
representations are situated in the ’under study’ class on the middle of the axis. Finally,
image-based representation has its own standardized compression method (MVC) and
continuous improvements for image compression are studied within the MPEG and
VCEG groups.

3.6.4 View synthesis complexity

Polygon warping

Texture mappingrendering

Billboard cloud

Texture clipping

Surface splatting

LDV Point cloud
MicrofacetsMVDPolygon mesh

Image interpolation

Image−based

Light field
Post−processing
Depth warping

Increasing view−synthesis complexity

Figure 3.27: Representations ordered by increasing view synthesis complexity

Figure 3.27 gives a classification of the representations by increasing complexity of
their view synthesis method. Image-based representations have a low view synthesis
complexity since only image interpolation or light field rendering is done, without any
geometry information. Then polygon mesh and billboard cloud representations are
made of polygonal primitives and thus benefit from the high optimization of graphics
hardware for polygon warping and texture mapping. MVD and LDV representations
require pixel-by-pixel depth warping and additional processes like edge detection and
median filtering for removing sampling artifacts and ghosting artifacts [SMD+08]. Thus
it is considered more complex than the two previous representations. Finally, micro-
facets need the computation of texture clipping in every microfacet, and point clouds
render a huge number of points with surface splatting techniques. These last two re-
quires many computations and are therefore on the right of the complexity axis.

3.6.5 Navigation range and image quality

Multi−texture
No geometry

Multi−texture

Simplification
Extreme geometry

Single geometry
Single texture Multi−texture

Single geometry
Multi−texture

Multi−geometry

Polygon mesh
Point cloud
Microfacets

Image−based Billboard cloud LDV MVD

Increasing navigation range and image quality

Figure 3.28: Representations ordered by increasing navigation range and image quality.

Summary and analysis of pros and cons 53

Figure 3.28 gives a classification of the representations by increasing navigation
range and image quality. Synthesizing intermediate views using image-based repre-
sentations does not compensate the parallax effect due to objects of different depth
in the scene, therefore only small navigation is possible otherwise poor quality image
would be obtained. Adding some geometry about the scene helps increasing the nav-
igation range. Billboard cloud representations use an extreme simplification of the
geometry scene leading to artifacts in detailed areas of the scene. Therefore it is sit-
uated close to image-based representation. Representations having single texture and
geometry such as LDV suffer from global approximation and static appearance of the
scene: reflectance, illumination changes and geometry inaccuracies can not be compen-
sated. Therefore, LDV representations provide average navigation and image quality.
Then representations using multiple textures and single geometry result in higher im-
age quality than the LDV representation since view-dependent details are given. The
three representations polygon mesh, point cloud and microfacets can adapt the size and
number of their primitives to the scene geometry. This allows to play with the trade-off
between compactness and image quality. Inaccuracies due to the single geometry can
be compensated by multi-texturing methods such as floating textures [EDS+08], but
this greatly increase the complexity of the view synthesis process. Finally, representa-
tions that use both multiple textures and geometries are capable of very good quality
images. The MVD representation lies in this category. Depth-based representations
like MVD and LDV suffer from sampling artifacts at the view synthesis stage which
requires additional filtering process. On the contrary, surface elements such as polygons
or splats take into account the continuity of the surface.

3.6.6 Summary of pros and cons

This section sumarizes the pros and cons of each representation. They are given in
table 3.3.

Finally, a diagram is given in figure 3.29 to highlight the pros and cons of the rep-
resentations. In order to simplify the visualization of this diagram, only some elements
from this study have been included: the most popular representations for 3D video
have been kept, namely image-based, MVD, LDV and polygon mesh. Moreover, the
construction complexity is not included in the diagram since no constraints about it
has been defined in our targeted application. Moreover, the view synthesis complexity
property is changed as view synthesis simplicity such that the same interpretation can
be done for each axis: the end of the axis means high advantage and the start of the
axis (center) is low advantage.

This diagram is useful to see that each representation exhibit advantages and draw-
backs with regard to our targeted system and that finding a suitable representation
requires playing with many trade-offs. If only the advantages of each representations
are kept, then a perfect representation would:� be compact by removing redundant information (such as LDV)� be compatible with an efficient compression method that avoids strong artifacts

54 chapitre1

Representation Pros Cons

Image-based Compact; standardized
compression method; Low
construction and view
synthesis complexity

Small navigation range
and image quality

MVD high navigation range and
image quality;
Compression under study

Not compact; Complex
view-synthesis to avoid
artifacts

LDV Compact; Compression
under study

medium navigation range
and image quality;
Complex view-synthesis
to avoid artifacts

Polygon mesh Compact; medium
view-synthesis complexity

Compression more
efficient for single objects
than arbitrary scenes

Point cloud Adapted to highly
detailed scenes

No geometry
simplification (dense
point cloud); Complex
view synthesis

Billboard cloud Compact (Extreme
simplification)

Low navigation range and
image quality

Microfacet billboarding Compact Complex view synthesis

Table 3.3: Table highlighting the main pros and cons of the representations.

Summary and analysis of pros and cons 55

(such as image-based)� avoid complex view synthesis stage (like image-based without geometry, or polygon-
based with geometry)� provide good navigation range and image quality using multiple textures and
geometries (such as MVD)

Figure 3.29: Pros and cons of most popular representations.

3.6.7 Conclusion

A few important conclusions come out from this study:

Applications. Each representation has its own advantages and drawbacks which may
be more adapted to some applications than others. For example, image-based repre-
sentations seems suitable for stereoscopic visualization since only two original views are
needed. However, if more views or some navigation is desired then the image-based rep-
resentation would not be adapted. Representations using a geometric approximation
offer a wider range of view points and are then more suitable for multi-view auto-
stereoscopic visualization or free-view point navigation. No existing representation has
yet proved to be fully suitable for such applications. The representation that raises
most interest is the MVD one because of its navigation range and possible compression
compatibility with existing standards. However this representation is not compact and
its compression is still under study. Therefore, there is a need for representation and
compression for 3D video applications.

56 chapitre1

Geometry information. The geometry information allows synthesizing virtual views
inside the viewing area. This feature is very important since it makes the representa-
tion flexible in many aspects. First, an arbitrary number of views can be synthesized
at the rendering stage; therefore the representation is compatible with many different
display devices, even if they don’t display the same configuration of views. Second, the
camera set-up of the acquisition system is also very flexible since arbitrary viewpoints
can then be generated. This allows separating the acquisition configuration from the
display constraints. But still, the camera set-up has to be precisely calibrated and the
camera baselines should be small enough to allow good quality virtual views. Finally,
geometry information is used for synthesizing virtual views instead of storing all the
required views, thus less data storage is needed. Therefore, a suitable representation
for 3D video should contain geometry information.

Polygonal primitives. Polygonal primitives have several advantages. For compact-
ness, the polygon’s size can be adapted to the geometry so as to keep the number of
polygons low. Then at the rendering stage, polygons do not create cracks or sampling
holes because they model the continuity of the surface. On the contrary, depth warping
techniques require additional filtering process to fill these cracks that appear between
the points. Moreover, real-time rendering can be achieved using graphics hardware and
programming. Therefore, a polygon-based representation may be well adapted to 3D
video applications.

Compactness VS quality. This study has shown that representations having mul-
tiple textures or geometries provide good quality images at the expense of the compact-
ness, which is a classical trade-off. A more compact representation is usually obtained
by using a single texture/geometry, but it is error prone and therefore the image quality
is lowered. Typically, the MVD and LDV representations are two extremes: the first
one keeps all the redundancies whereas the second one removes all of them. No rep-
resentation address simultaneously the problem of compactness and quality at a local
level, i.e. which areas of the scene should have multiple texture/geometry (for quality)
and which areas should have only one (for compactness).

Single VS multiple texture/geometries. Apart from the compactness consider-
ations, using either single texture/geometry or multiple ones both have drawbacks for
synthesizing virtual views. Indeed, the issue when using a single occurrence is that it
must be accurate enough to provide good images for the whole navigation range. In
this study, we have seen that fusing multiple depth maps into a single model is a chal-
lenging task. On the other hand, using multiple texture/geometries raises the problem
of consistency between these multiple occurrences and how to combine them when pro-
jected into a virtual view. Small inconsistencies between views sometimes create visible
artifacts in virtual views. Therefore, both single and multiple texture/geometries have
drawbacks for synthesizing virtual views. At this point, we want to stress the difference
between multiple and view-dependent texture/geometries: the first is a combination

Summary and analysis of pros and cons 57

of multiple occurrences, the second is a transformation of the data. It is possible to
combine the two: multiple view-dependent geometries. The microfacet representation
is based on multiple textures and a single view-dependent geometry: small planar rect-
angles are oriented to face the current view-point. However, since a single geometry
is used and structured in an octree, reconstruction errors are not corrected by the
orientation of the microfacets.

Compression. The compression of the representation is important for bit rate re-
duction and image quality. The image-based representation can be compressed with
the existing multi-view coding standard (MVC) and the polygon mesh representation
can be compressed with the 3D mesh compression standard (TFAN or FAMC). How-
ever, the representation has limited navigation range and the second is mainly designed
for single object rather than arbitrary scenes. Since depth maps allow synthesizing
multiple-viewpoints with arbitrary scene content, many studies are driven so that to
compress these depth maps with block-based coding techniques. The main problem up
to now is to take special care of the depth discontinuities and to find the appropriate
bit rate allocation between color and depth data.

58 chapitre1

Chapter 4

Overview of the proposed

representation

Contents

4.1 Input data . 59

4.2 The polygon soup representation 60

4.3 Properties of the polygon soup 64

4.4 Summary . 65

The goal of this chapter and the following ones is now to present a new represen-
tation for multi-view video according to the conclusions of the previous chapter about
existing representations. The main point for proposing a new representation is that it
must take into account in a unified manner all the processing stages and constraints of
the targeted multi-view video system. This chapter gives an overview of the proposed
representation. First, we detail the input data that are used to validate the representa-
tion. Then we describe the proposed representation and analyze its properties. Finally,
the different processing steps related to the representation are resumed.

4.1 Input data

Depth maps often serve as a starting point to geometric modeling since it provides
depth information for each pixel and each viewpoint. This information can be further
processed to result in any other geometry representation such as a point-cloud or a
polygon mesh. In the following, one depth map per input viewpoint is supposed to be
available. These depth maps may be acquired with depth sensors or estimated with a
stereo algorithm. In addition, camera calibration parameters as well as depth near and
far values are needed. An example of multi-view video plus depth input data is shown
in figure 4.1 with the sequence Breakdancers and Ballet. They have been acquired

59

60 Overview of the proposed representation

by Microsoft 1. Eight views, resolution 1024×768, arranged on a horizontal arc span
about 30̊ of the scene. In the figure, three of the eight views corresponding to cameras
1, 3 and 5 span about 17̊ of the scene. The available intermediate views 2 and 4 can
be used for evaluation of the quality of the synthesized virtual views (see figure 4.3).
Another MVD sequence called Book Arrival2 is illustrated in figure 4.2. The resolution
is also 1024×768. The camera configuration with this last data set is different: the
cameras are rectified and the baseline is much shorter because 16 cameras span about
18.5̊ . For experimentations, three views corresponding to cameras 6, 8 and 10 spanning
about 5̊ will be used. Intermediate cameras 7 and 9 will be used for evaluation of the
synthesized views.

4.2 The polygon soup representation

3D polygons. We propose to construct, from the input MVD data, a representation
called polygon soup (figure 4.4). First of all, the rendering primitives are 3D polygons.
As seen in the previous chapter polygonal primitives have several advantages: they
increase the compactness, model the continuity of the surface, and graphics processors
are optimized to render them. Moreover, all the 3D polygons are not necessarily con-
nected to each others and can overlap, forming a kind of mixture of polygons which is
often called a polygon soup. Here, the disconnection feature is very important. First,
it ensures that foreground and background objects are not connected, thus preserving
depth discontinuities. Second, it allows to easily remove redundant or unreliable poly-
gons, thus increasing the compactness. The overlapping feature is also a key point.
Since multi-texture and multi-geometry are available from the input data, overlapping
polygons (i.e. coming from different views) can be selected or merged depending on the
desired view-point, thus ensuring view-dependent quality of virtual views. In a word,
disconnection and overlapping allow to play with the compactness and image quality
trade-off by removing unnecessary polygons and overlapping necessary ones.

Stored in 2D. The representation forms a 3D polygon soup at the view synthesis
stage. However, for compactness and compression efficiency, the polygons are stored
in 2D with depth values at each corners. These 2D polygons are extracted from the
depth maps using a quadtree decomposition method. In the following, we call the 2D
polygons ’quads’. Figure 4.4 illustrates the relation between the 3D polygon soup and
the quads extracted from the depth maps. As can be seen, one quadtree is extracted
per depth map.

The decomposition of the depth maps into quadtree allows to retrieve the (x, y)
positions of the quads, thus a compression method exploiting this structure can be em-
ployed. Figure 4.5 illustrates a quadtree decomposition and corresponding structure.
Each leaf of the tree corresponds to a quad. Using this structure, it is easy to re-

1Thanks to the Interactive Visual Media Group of Microsoft Research for providing the data sets
2Thanks to the the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute for pro-

viding the data.

The polygon soup representation 61

(a) Texture V5 (b) Texture V3 (c) Texture V1

(d) Depth V5 (e) Depth V3 (f) Depth V1

(g) Texture V5 (h) Texture V3 (i) Texture V1

(j) Depth V5 (k) Depth V3 (l) Depth V1

Figure 4.1: Example of viewpoints 1, 3, 5 and associated depth maps of Breakdancers
and Ballet video sequences.

62 Overview of the proposed representation

(a) Texture V10 (b) Texture V8 (c) Texture V6

(d) Depth V10 (e) Depth V8 (f) Depth V6

Figure 4.2: Example of viewpoints 6, 8, 10 and associated depth maps of Book Arrival
video sequence.

Figure 4.3: Example of input viewpoints. V1, V3, V5 are the input viewpoints and V2,
V4 are used to evaluate the quality of synthesized virtual views.

The polygon soup representation 63

View V5 Depth map Z5

View V3

Depth map Z3

Depth map Z1

View V1

3D polygon soup

Figure 4.4: Polygon soup. Each 3D polygon is defined by a 2D polygon (quad), and by
the depth information at each corner of the quad.

move redundant polygons by pruning the corresponding leaf in the tree. Moreover, the
decomposition can be adapted to the geometry of the scene such that large quads ap-
proximate flat surfaces and small quads preserve geometric details and discontinuities.
Finally, since quads are aligned with blocks of pixels in depth maps, it is also possible
to compress the depth maps with existing block-based video compression methods, but
it would involve that the polygon soup is extracted at the user side of the system.

Figure 4.5: Example of image decomposition and quadtree structure. Each level of the
quadtree gives the size of the quads and each node gives the position of the bottom left
corner of the quads.

Texture mapping. Concerning the texture of the polygons, it is given by the original
images: the block of pixels in the image corresponding to a quad is mapped onto the 3D

64 Overview of the proposed representation

polygon using texture mapping techniques supported by graphics hardware. Since, mul-
tiple images are available, it is possible to texture the polygons with multiple textures
depending on the view-point. This results in a multi-textured appearance of the poly-
gon that better reproduces specular effects of real-world scenes. In addition, this kind
of multi-view videos can be efficiently compressed using the standardized H.264/MVC
compression method. Finally, transmitting the original views ensures maximum image
quality at original view-points.

Dynamic polygon soup. We have seen in the previous chapter that both single
and multiple texture/geometry representations suffer either from global reconstruction
errors or inter-view inconsistencies that reduce the quality of the synthesized images. In
order to deal with these drawbacks, we will present a dynamic version of the polygon
soup. The idea is to allow polygons to be transformed across space and time so as
to adapt to the desired view-point and be consistent with each others. Therefore,
the polygon soup will be view-dependent. We call this dynamic representation ’floating
polygon soup’. This dynamic representation introduces the temporal dimension, indeed
polygons could be transformed not only across the views but also across time in order
to adapt to the movements of the scene. An adapted compression method is then
required to take into account this dynamism. It could be inspired by existing 2D video
compression studies that tracks blocks of images across time and represent them using
so-called ’motion tubes’ representation.

4.3 Properties of the polygon soup

The proposed polygon soup can now be analyzed in terms of the general properties
introduced in the previous chapter:

Construction complexity. Most of the complexity is transfered to the construction
of the representation in order to achieve compactness, and to decrease the view synthesis
complexity.

Compactness. Compactness is achieved by keeping the number of polygons low and
reducing inter-view redundancies.

Compression compatibility. A new quadtree-based compression method will be
introduced for the polygon soup. However, block-based compression is also possible
providing that the quadtree decomposition step is transferred at the user side of the
system.

View synthesis complexity. Virtual views are synthesized using graphics hardware
and polygonal primitives. Polygons avoid the apparition of sampling artifacts compared
with depth-based view synthesis, thus the view synthesis complexity is lower. Moreover,
since unreliable polygons are removed during the construction of the representation, the

Summary 65

polygon soup reduces the ghosting artifacts and thus no additional process are required
to avoid them. Additional process like hole filling and filtering are still required for
high image quality.

Navigation range and image quality. Original views are preserved ensuring max-
imum quality at original viewpoints. Navigation in between original views is done by
view-synthesis using the polygon soup as the geometry of the scene. The dynamic
polygon soup adapts its geometry to every desired viewpoints in order to improve the
quality of synthesized views.

4.4 Summary

In this chapter, an overview of the proposed polygon soup representation has been given.
The polygon soup is a set of 3D polygons possibly disconnected or overlapping with
each others. They are stored as 2D quads using a quadtree decomposition of the depth
maps and redundancies across the views are adaptively reduced by pruning some leaves
of the quadtree. This representation can be compressed either with a quadtree-based or
block-based compression method. The view-synthesis step is performed with polygon
warping and texture mapping using graphics hardware. Additional process may be
needed for filling unknown areas and improving virtual views. The texture is given with
the original images that are compressed with existing H.264/MVC video compression
standard. Finally, a dynamic version of the polygon soup, called floating polygon
soup, allows to increase the quality of synthesized images may take into account the
temporal dimension of the polygons. Possible compression of this representation could
be inspired from the ’motion tubes’ compression method. These different processing
steps are summarized in table 4.1.

In the following chapters, the details of the construction, compression and view
synthesis steps will be given. The last chapter is dedicated to the description of the
floating polygon soup for spatial dimension. The evaluation and compression of the
temporal dimension of the representation is left as a perspective.

66 Overview of the proposed representation

Construction Compression View-synthesis

Polygon soup Depth estimation;
Quadtree
decomposition;
Redundancies
reduction

Quadtree-based
compression or
block-based
compression;

Polygon warping;
Texture mapping;
Post-processing;
Quadtree
decomposition (if
block-based
compression)

Floating polygon
soup

Same as above +
deformation
estimation

Adapted
compression
inspired by
’motion tubes’

Same as above +
floating geometry

Multiple views for
texturing the
polygon soup

Color correction
(if needed)

Compression with
H.264/MVC
standard

View-dependent
texture mapping
on the polygon
soup

Table 4.1: Summary of the processing steps with the polygon soup representation.

Chapter 5

Construction of the polygon soup

Contents

5.1 Quadtree decomposition . 68

5.1.1 Re-projection shift . 69

5.1.2 Subdivision method . 69

5.1.3 Results . 72

5.1.4 Summary and discussions. 74

5.2 Redundancy reduction . 77

5.2.1 Priority order for the quads 77

5.2.2 Reduction method . 80

5.2.3 Results . 83

5.2.4 Summary and discussions . 86

5.3 Conclusion . 86

In the previous chapter, an overview of the proposed polygon soup representation
was given. It is made of 3D polygons stored in 2D with depth values at each corners.
Moreover, some redundant or unreliable polygons are removed from the polygon soup.
This chapter explains the construction of this polygon soup from the input depth maps.
It holds in two steps:

1. A quadtree decomposition of the depth maps. This step extracts a set of 2D quads
for each view (section 5.1). The quadtree structure provides many advantages
for compactness and compression, but special attention must be given to the
decomposition method such that depth discontinuities and geometric details are
preserved.

2. An inter-view redundancy reduction. This step selectively eliminates some redun-
dant or unreliable quads (section 5.2). The aim is to increase the compactness of
the polygon soup while preserving as much as possible the navigation range and
image quality. To do so, some criteria are needed to select the polygons by order

67

68 Construction of the polygon soup

of priority. This second step also helps reducing artifacts around discontinuities
(ghosting artifacts).

Figure 5.1 sums up the different steps of the method. Although three views are con-
sidered here, the proposed framework applies to any number of views.

Figure 5.1: Overview of the construction method.

5.1 Quadtree decomposition

This section describes the extraction of 2D quads from the MVD data, using a quadtree
decomposition.

In a quadtree, each node corresponds to a quad of a certain size and position. Then,
for each quad, four corners have depth values extracted from the depth map. In our
method, the quads are not necessarily connected to their neighbors because all corners
have their own depth values.

The quadtree decomposition for one view aims at providing an accurate model
of the associated depth map with a limited number of quads while preserving depth
discontinuities. Quads are recursively scanned and divided if they contain a depth
discontinuity or if they do not provide a good enough approximation of the depth
map. At this step, only depth information is used. Each depth map is processed
independently so that a quadtree is created for each view.

Quadtree decomposition 69

In this section, we first introduce the notion of re-projection shift as a mean to
evaluate the discontinuity preservation and the geometry preservation (section 5.1.1).
Then the subdivision method is detailed (section 5.1.2).

5.1.1 Re-projection shift

In order to decompose a depth map into a quadtree, some criterion is needed to evaluate
the difference between the original depth map and the quadtree. Here, we introduce
the notion of re-projection shift.

Definition. The ’re-projection shift’ is the relative shift between two pixels re-projected
from one view into another one. Figure 5.2 illustrates this re-projection shift when the
central view is re-projected into the left and right views. Let p1 and p2 be two pixels
in one view, then their re-projection shift in view v is:

s(p1v, p2v)

Errors and re-projection shift. The depth maps and color images are local rep-
resentations estimated for one viewpoint. Inaccuracies in this representation create
artifacts as the virtual view moves aside the original viewpoint. In a word, the errors
that appear in virtual views depend on the re-projection of each viewpoint. Therefore,
it is important to take into account this re-projection shift during the computation of
the quadtree.

5.1.2 Subdivision method

The subdivision method consists in testing if a quad should be subdivided or not, ac-
cording to the criterion presented above. The subdivision method holds in two steps:
discontinuity preservation and geometry preservation. During the discontinuity preser-
vation step, the re-projection shift is used to decide whether a quad should be subdi-
vided or not. Then, during the geometry preservation, the re-projection shift is also
used for the subdivision test. These steps are summarized in figure 5.3, and detailed in
the following.

We first define some notations. Let p be a pixel in one view. Let pl and pr be the
re-projections of p into the left-most and right-most views. s(p1, p2) is the relative shift
between two re-projected pixels p1 and p2.

Discontinuity preservation. Let p1 and p2 be any two adjacent pixels in quad q
in one view. Considering threshold Td, then q is subdivided if:

max
p1,p2

(

s(p1l, p2l), s(p1r, p2r)
)

> Td

where s(p1l,r, p2l,r) is the re-projection shift.
Enforcing this criterion means that the quads in the image are subdivided if neigh-

boring pixels have large re-projection shift, and thus large depth discontinuities. Similar

70 Construction of the polygon soup

p3p2p1

p1 p2

p3

p1 p2

p3

P3

P2P1

Re−projection
shift

Navigation range

(a) Re-projection shift between neighboring pixels. The central view is re-projected
into the left and right views. The re-projection shift is the relative shift between
between two neighboring pixels re-projected into the synthesized view.

p_orig
p_approx p

P_approx

P_orig

Re−projection
shift

(b) Re-projection shift for one pixel with different depth values. It is the relative shift
for one pixel re-projected into a synthesized view using respectively original depth and
depth approximated with the quadtree.

Figure 5.2: Illustration of the re-projection shift between neighboring pixels (a) and for
one pixel with different depth values (b).

Quadtree decomposition 71

(a) Quadtree decomposition

(b) Discontinuity preservation

(c) Geometry preservation

Figure 5.3: Overview of the quadtree decomposition method. (a) Global method. (b)
Detail of the discontinuity preservation step. (c) Detail of the geometry preservation
step.

72 Construction of the polygon soup

procedure is performed for each view. This criterion will lead to have small quads lo-
cated close to depth discontinuities.

Geometry preservation. From the coarse representation obtained, a quad is again
subdivided if the geometry approximation based on the re-projection shift is too high.
First, a quad is represented as 2 triangles (the diagonal of the quad from bottom
left corner to top right corner is used). The plane equations for these 2 triangles are
computed using the depth values of the corners of the quad. Let porig be a pixel at
position (x, y) with original depth value Z, and pq be a pixel at the same position (x, y)
but depth value Zq on approximated by the quad. Then, we define the mean of the
re-projection shift for q when projected into a view v as:

ǫv = Mean
(porig,pq)∈q

(

s(pv
orig, pv

q)
)

where s(pv
orig, pv

q) is the re-projection shift. The quad q is subdivided if:

max(ǫl, ǫr) > Tg

with ǫl and ǫr the approximation errors after projection into the left and right views.
Using this approximation criteria, local errors inside a quad are accepted as soon as
the mean error stays low.

Quad size limitation. In order to limit polygonal artifacts and local geometry er-
rors inside a quad, a parameter QSmax that sets the maximum size of the quads is
introduced. Therefore, any quad will have a size Sq smaller or equal to QSmax:

Sq ≤ QSmax

Note that both ”geometry preservation” and ”quad size limitation” deal with the
compromise between the geometry approximation and the number of quads: when
quads are bigger then there are less quads and more geometry errors.

5.1.3 Results

This section now gives the results of the quadtree decomposition and illustrates the
compromises involved by the thresholds Td, Tg and QSmax.

Discontinuity preservation. The threshold Td controls the compromise between
the discontinuity preservation and number of quads. This compromise is now illus-
trated. First, the geometry preservation step is disabled and the constraint on the
maximum size of the quads is also disabled. Figure 5.4 shows a detail of the quadtree
decomposition of view V5 after re-projection into V1 for Breakdancers sequence. Three
different values of Td have been tested. This figure illustrates that small discontinuities
are unnecessary preserved if Td is low (figure 5.4(a)) which leads to a high number of
quads, and that large discontinuities are not preserved if Td is high (figure 5.4(c)). In

Quadtree decomposition 73

the remaining of this thesis, the value of Td is empirically chosen to Td = 10 pixels (fig-
ure 5.4(b)), however this parameter may be adjusted according to the desired bitrate
after the compression stage.

(a) Td = 4 pix, 46701 quads (b) Td = 10 pix, 19089 quads (c) Td = 25 pix, 14133 quads

Figure 5.4: The value of Td controls the compromise between the discontinuity preser-
vation and the number of quads. When Td is low, small discontinuities are preserved
which leads to many quads subdivisions (a). When Td is high, depth discontinuities are
not preserved, thus the quads connect the foreground to the background (c).

Geometry preservation. The threshold Tg controls the compromise between the
geometry preservation and the number of quads. This compromise is now illustrated.
At this stage, the discontinuity preservation has been processed and the constraint on
the maximum size of the quads is disabled. Figure 5.5 shows a detail of the quadtree
decomposition of view V5 after re-projection into V1. Three different values of Tg have
been tested. This figure illustrates that the geometry is preserved if Tg is low (figure
5.5(a)) but the number of quads is high. On the other hand, the geometry is not
preserved if Tg is high (figure 5.5(c)) but the number of quads is low. In the remaining
of this thesis, the value of Tg is empirically chosen to Tg = 1 pixel (figure 5.5(b)),
however this parameter may be adjusted according to the desired bitrate after the
compression stage.

Quad size limitation. The maximum quad size QSmax controls the compromise
between resolution of the quadtree and the number of quads. This compromise is now
illustrated. At this stage, the discontinuity preservation and geometry preservation
have been processed. Three different values of QSmax have been tested. Figure 5.6
illustrates that the resolution of the quadtree is high if QSmax is low but the number
of quads is high (figure 5.6(a)). On the other hand, the resolution is not low if QSmax

74 Construction of the polygon soup

(a) Tg = 0.5 pix, 44022 quads (b) Tg = 1 pix, 24141 quads (c) Tg = 2 pix, 19533 quads

Figure 5.5: The value of Tg controls the compromise between the geometry preservation
and the number of quads. When Tg is low, the geometry is preserved but the number
of quads is high (a). When Tg is high, the geometry is not preserved, and the number
of quads is low (c).

is high but the number of polygons is low (figure 5.6(c)). In the chapter 7, the value of
the parameter QSmax will be adjusted to the desired bitrate.

Final quadtree decomposition. After applying the discontinuity, geometry and
smoothness preservation steps, one quadtree decomposition is obtained per input views.
Figure 5.7 shows the final quadtree decomposition obtained with the parameters Tg = 1
pixel, QSmax = 16 pixels and Td = 10 pixels for Breakdancers and Ballet and Td = 4
pixels for Book Arrival.

These thresholds have been tuned empirically: an appropriate compromise between
the number of quads and re-projection shift has been chosen and validated with the
subjective evaluation of the quality of synthesized views.

The number of quads obtained with these parameters and for one frame of the
sequences are given in table 5.1. The number of quads used for the central view is
much lower than for the lateral views. This is an advantage of taking into account
the re-projection shift for the quadtree decomposition: for the central view, the re-
projection shift is smaller than the lateral views.

5.1.4 Summary and discussions.

This section has presented our proposed method for decomposing the input depth maps
into quadtrees. Has already explained, the quadtree structure offers several advantages
for compactness and compression. However, the quads must preserve the depth discon-
tinuities and geometric details of the scene. For this purpose, a criterion based on the

Quadtree decomposition 75

(a) QSmax = 4 pix, 64371
quads

(b) QSmax = 16 pix, 25260
quads

(c) QSmax = 64 pix, 24141
quads

Figure 5.6: The value of QSmax controls the compromise between the resolution of
the quadtree and the number of quads. When QSmax is low, the resolution is high
but the number of quads is high (a). When QSmax is high, the resolution is not low,
and the number of quads is low (c).

Breakdancers Ballet Book Arrival

Right view 26505 29091 29082

Central view 18792 20262 19218

Left view 25260 27288 27834

Total 70557 76641 76134

Table 5.1: Number of quads after quadtree decomposition for one frame of sequences
Breakdancers and Ballet and Book Arrival.

76 Construction of the polygon soup

Figure 5.7: Original depth map and quadtree decomposition of Breakdancers.

re-projection shift has been proposed. Using this criterion, the quadtree decomposi-
tion respects three criteria associated with three thresholds: discontinuity preservation,
geometry preservation and quad size limitation. The first criterion prevents the con-
nection of foreground and background objects and therefore avoids strong deformations
in synthesized views. The two other criteria control the quality of the geometry ap-
proximation.

On the contrary to classical criteria based on the depth error, this criterion takes
into account the re-projection shift of each view within the navigation range. It results
in an equivalent quality of approximation of the scene within the navigation range, but
with different quadtree decomposition: more quads for lateral views than the central
one. Therefore, the trade-off between the number of quads and the quality of geometry
approximation is adapted to each view, according to their positions (wide-baseline or
small-baseline), and without changing the threshold values for each views.

With the proposed method, the choice for the threshold values is done empirically
by finding a compromise between the number of quads and the re-projection shift
which is validated by subjective evaluation of the quality of synthesized views. The
evaluation of synthesized views is very important because the measures of geometry
errors do not necessarily match with the quality of synthesized images. Therefore, a
more suitable error measure for the quadtree decomposition could be based on the
quality of synthesized views compared with original ones. In this case the procedure
would be quite similar to the proposed one, i.e. the error would focus on re-projected
data so that the navigation range can be considered. However, the comparison would
be performed between the synthesized views and the original ones rather than between
projected quads and projected depth maps. Nevertheless, one particular issue has to be
considered with such a method: if an error measure such as PSNR is used, then even
small geometry errors (that result in small pixel shift after re-projection compared
to original) can give high error values in textured areas. This error would not be
representative of the geometry distortion, resulting in a lot more quads than necessary.
Therefore, special attention has to be given to the choice of the error measure so that

Redundancy reduction 77

it is adapted to the properties of synthesized views.
Finally, for an automatic tuning of the threshold values, an optimization method

that finds the best compromise between the number of quads and the error measure
could be used.

5.2 Redundancy reduction

The quadtree decomposition obtained previously gives a redundant polygon soup, i.e.
a set of quads with inter-view redundancies, which is not compact. Here, the term
inter-view redundancy means that some quads defined in different views represent the
same scene content, thus they are redundant. In other words, a quad is not redundant
if at least a part of its surface is not already represented by the other polygons. Thus
if two polygons partially overlap, they can have both redundant and non-redundant
areas. The goal of this section is now to explain how the redundancies are reduced.

The main idea is to iteratively generate a polygon soup by selecting quads in a
certain priority order. One iteration of the selection is illustrated in figure 5.8: first, an
original view is predicted using the current polygon soup and view synthesis method.
This prediction shows that some information is missing in the polygon soup compared
with the original view. Then, in order to fill this missing information, the corresponding
quads extracted previously from the original view are selected. As a result, the new
polygon soup is more complete. This process is then iterated with another view.

In addition to the reduction of the redundancies, this process also enables to elim-
inate unreliable quads that create artifacts at the view synthesis stage. For example,
ghosting artifacts around object boundaries are eliminated. These results will be de-
tailed in the view synthesis chapter (chapter 6).

In the following of the section, the properties and method of the redundancy reduc-
tion will be explained. Then the results of this process will be evaluated in terms of
the number of quads.

5.2.1 Priority order for the quads

To better understand the redundancy reduction process, three criteria are defined for
ordering quads by priority.

The view order is important. The original views define which part of the scene
will be described. The central view describes most area of the scene, except areas that
are occluded by foreground objects. On the other hand, the lateral views contain a
portion of these occluded areas. During the redundancy reduction process, the polygon
soup is initialized with the central view, which we call the reference view, and the lateral
views are used to fill the missing areas. Since the representation is built incrementally,
then any view that has already been processed contributes to the representation before
the next view is processed. Therefore the furthest view from the reference one should
be processed before the closest. This scanning order aims to reduce the overall number
of quads: for instance an area which is progressively disoccluded will be represented by

78 Construction of the polygon soup

2

3

New polygon soup

Current polygon soup1

Predicted view

Selection of quads

Figure 5.8: One iteration of the quads selection. 1- Prediction of original view using the
current polygon soup. The white area shows the missing information (e.g disocclusion
area). 2- Some quads extracted from the original view are selected to fill the missing
information. 3- As a result, the new polygon soup is more complete.

Redundancy reduction 79

one large quad from the furthest view, rather than a succession of smaller quads, one
from each closer view.

Small quads are unreliable. Typically, quads situated around depth discontinuities
are small and unreliable because they contain mixed color between foreground and
background objects. This color mix is often responsible for the ghosting artifacts in
synthesized views. Moreover, small quads often correspond to 3D surfaces whose normal
vector is parallel to the image plane. Such 3D surfaces are more reliably represented
using lateral view points (see figure 5.9). In order to preferably select quads which

V1

V2

V3

V1

V2

V3

V1

V2

V3

Small quads

Figure 5.9: Unreliable quads : considering 3 viewpoints (top), small quads are situated
near depth boundaries in each view (middle), redundancy reduction selects preferably
large quads and represent the 3D surface with good resolution. Small quads are used
only if necessary (bottom).

80 Construction of the polygon soup

are both large (to reduce coding cost) and reliable (to enhance rendering quality), the
selection operates as follows: first, all the small quads from the reference view are
discarded because this part of the scene may be better represented from the side views.
Second, quads from the side views are iteratively selected depending on their size: bigger
quads from side views are added before the smaller quads. Finally, if some information
is still missing in the reference view, then the small quads previously discarded are
selected again and added to the polygon soup.

Disocclusions first, then foreground. At each iteration, a new view is used to
fill the missing information. This missing information may be of two types: either a
disocclusion area (i.e. an empty area) or a foreground area (i.e. a foreground area is
visible in the view, but a background area is predicted with the current polygon soup).
In order to preferably select large and reliable quads, disocclusion areas should always
be filled before the foreground is added. Therefore, the redundancy reduction operates
in two rounds: first the disocclusion areas from all the views are filled in a first round,
and then the foreground areas are added only in a second round.

To summarize, the redundancy reduction process is initialized with a reference cam-
era, and the other views are processed from the furthest to the closest to the reference.
Only useful quads are selected in a decreasing order of their size and in the process-
ing order of the views. Two rounds of selection are processed: first, the quads are
selected to fill the disocclusion areas, second, the quads are selected to add the missing
foreground information.

This process is close to the one presented in [MSD+08] for building the LDV rep-
resentation. However, the first difference is that the discarded quads are not only in
the background but also in the foreground regions. The second difference is that the
representation is built incrementally. Finally, the last difference is that the data is not
projected and stored into the reference frame: the texture of the quad is represented as
a square block in its original view, thus avoiding texture degradation due to resampling
occurring with such projection.

As this redundancy reduction process is initialized with a reference view and the
lateral views are used mostly for disocclusion areas, then the range of navigation is
limited around the reference view. Thus, we make the assumption that the lateral
views are situated in that range of navigation. For example if full navigation is desired
all around a scene, then using only one reference view is not enough and multiple
reference views would have to be defined together with their lateral views. Therefore,
these hypothesis are related to the application context of this thesis.

5.2.2 Reduction method

The three rounds of selection used for redundancy reduction are now detailed. Namely,
the initialization, the filling of the disocclusions and addition of the foreground.

Initialization Let Ωk be the polygon soup at iteration k, and q a quad from the
reference view Vref (generally the central view). Vref is used to define the initial

Redundancy reduction 81

polygon soup Ω0. As explained above, small quads are unreliable, thus they are not
selected during this initialization. This can be formulated as:

Ω0 = {q ∈ Vref , Sq ≥ QSmin}

where Sq is the size of q, and where QSmin is the threshold for minimum size of the
quads.

Filling the disocclusions Ω is iteratively completed by selecting quads from Vi

that fill disocclusion areas. Let k be the current iteration, and Ωk−1 the polygon soup
from previous iterations (figure 5.10(left)). Ωk−1 is first projected onto view Vi (figure
5.10(center)). The resulting image contains disocclusion areas, i.e. empty areas in
white in the figure. Then, quads from Vi that help filling the disocclusion areas are
added to Ωk−1 (figure 5.10(right)). This can be formulated in the following equation:

Ωk = Ωk−1 ∪ {q ∈ Vi, Sq ≥ QSmin, ∃p ∈ q|p /∈ Pi(Ωk−1)}

where Pi(Ωk−1) denotes the projection of the current set of selected quads Ωk−1 onto
view Vi. The test p /∈ Pi(Ωk−1) detects if a pixel p overlaps a disocclusion area.

This round of iterations is repeated for decreasing size of the quads S ∈ [QSmin, QSmax].
Since view order is important, the last processed view is the reference one (all side views
have been processed before). This way, small quads unselected during the initialization
are added only if necessary. This method is summarized in algorithm 1.

Figure 5.10: One iteration of filling disocclusions. Left: Ωk−1 polygon soup at iteration
k − 1. Center: Ωk−1 projected in Vi (Disocclusions). Right: Selected quads from Vi.

Adding the foreground The process of adding the missing foreground areas is
similar to filling the disocclusion areas: side views are processed and quads are added
in decreasing order of their size. Then the reference view is processed. In this case,
a depth test is performed instead of disocclusion test to detect if a quad belongs to a
foreground area or not:

Ωk = Ωk−1 ∪ {q ∈ Vi, Sq ≥ QSmin, ∃p ∈ q|Z(p) < Z(Pi(Ωk−1))}

where Z(p) < Z(Pi(Ωk−1)) detects if pixel p has smaller depth than the current depth
obtain by projection of Ωk−1 in Vi. If yes, then q belongs to the foreground.

Figure 5.11 shows the different steps of the process on a detail area of the Break-
dancers sequence.

82 Construction of the polygon soup

Objective: Parse quads in a certain order and fill disocclusions.

input : Initial polygon soup Ω0. Initial threshold QSmin
1 k = 1;
2 while QSmin >= 1 do
3 foreach view Vi (only side views) do
4 Project Ωk−1 in Vi ;
5 foreach quad q ∈ Vi, Sq ≥ QSmin do
6 if fillDisocclusion (q) then
7 Select q and add in Ωk ;

end

end
8 k = k + 1;

end
9 QSmin = QSmin/2;

end
// In the end, process the reference view

10 Project Ωk−1 in Vref ;
11 foreach quad q ∈ Vref do
12 if fillDisocclusion (q) then
13 Select q and add in Ωk ;

end

end

Algorithm 1: Filling the disocclusions

Figure 5.11: The representation is completed step-by-step. (left) Both disocclusion and
foreground information are missing. (center) Disocclusions have been filled. (right)
Foreground has been added.

Redundancy reduction 83

5.2.3 Results

The goal of this section is to evaluate the redundancy reduction by analysing the number
of quads before and after the reduction. The results of image quality after view synthesis
will be given in chapter 6.

The tests of the redundancy reduction were performed on sequences Breakdancers,
Ballet and Book Arrival, with a configuration of 3 views where the central one is
considered as the reference. In the redundancy reduction process, the threshold for the
minimum size of the quads was initialized to QSmin = 8.

Figures 5.12, 5.13 and 5.14 show the final polygon soup, i.e. the final set of selected
quads in each view. As expected, a lot of quads have been removed. A bigger area is
covered in the reference view, and quads from the side views provide information on
disoccluded areas.

The redundancy reduction has efficiently reduced the number of quads. Table 5.2
gives the number of quads for each view after the redundancy reduction for one frame
of the sequences. The central view has the lowest number of quads because most of the
small quads in this view have been removed, and mainly big quads away from depth
discontinuities are present in this view.

Table 5.3 gives the number of quads before and after the redundancy reduction,
as well as the average number of quads for one view before the redundancy reduction.
About 65% of the quads have been removed compared with the full 3 views. Moreover,
compared to a single view, the increase is only of 8% at most.

(a) Left view - 6622 quads (b) Central view - 5173 quads (c) Right view - 11763 quads

(d) Left view (e) Central view (f) Right view

Figure 5.12: Result of quads selection for Breakdancers: final set of selected quads in
each view (a) (b) (c) and associated color information (d) (e) (f).

84 Construction of the polygon soup

(a) Left view - 9974 quads (b) Central view - 5664 quads (c) Right view - 11977 quads

(d) Left view (e) Central view (f) Right view

Figure 5.13: Result of quads selection for Ballet : final set of selected quads in each
view (a) (b) (c) and associated color information (d) (e) (f).

(a) Left view - 9582 quads (b) Central view - 6622 quads (c) Right view - 8878 quads

(d) Left view (e) Central view (f) Right view

Figure 5.14: Result of quads selection for Book Arrival : final set of selected quads in
each view (a) (b) (c) and associated color information (d) (e) (f).

Redundancy reduction 85

Breakdancers Ballet Book Arrival

Right view 11763 11977 8878

Central view 5173 5664 6622

Left view 6622 9974 9582

Total 23558 27615 25082

Table 5.2: Number of quads after redundancy reduction for one frame of sequences
Breakdancers, Ballet and Book Arrival.

BreakDancer Ballet Book Arrival

Full views 70557 76641 76134
↓ from -64 to -67%

Reduced views 23558 27615 25082
↑ from 0 to +8%

1 view 23519 25547 25378

Table 5.3: Number of quads before and after the reduction.

86 Construction of the polygon soup

5.2.4 Summary and discussions

In this section, the proposed method reduces inter-view redundancies such that the
selected quads provide a unique information at least from a small area of its surface.
In the polygon soup, the non-redundant areas of the polygons can overlap with other
polygons extracted from different views. Thus the polygon soup is more compact while
ensuring smooth combination of all the overlapping parts.

For the redundancy reduction, a priority order has been defined depending on the
view position, the quad’s size, and depth of the quads. This priority order aims at
selecting the more reliable quads and as few quads as possible. A particular attention
has been focused on removing small quads around depth discontinuities that often
contain mixed foreground/background colors and are less reliable.

Results have shown that redundancies have been efficiently reduced since about
65% of quads have been removed compared to the full polygon soup. Despite of this
reduction, the original viewpoints can be reconstructed without holes using the polygon
soup which proves that relevant data has not been supressed.

In this section, the selection of quads using an error measure has not been presented.
Despite the priority order of this method, geometry errors due to inaccuracies of the
depth maps or quad approximation may result in texture misalignments or deformation
in the synthesized views. Therefore, using an image-based error measure of synthesized
views could help defining reliable quads and tuning the trade-off between compactness
and image quality. As already discussed in the previous section 5.1.4, special attention
has to be given to the choice of the error measure so that it is adapted to the properties
of synthesized views.

5.3 Conclusion

This chapter has presented the construction of the polygon soup. First, a set of quads
is extracted using a quadtree decomposition of the depth maps. This step preserves
depth discontinuities and geometric details while keeping as few quads as possible. To
do so, an error measure based on the re-projection shift has been presented. Results
have shown that it allows to better control the compromise between compactness and
geometry approximation. Second, the reduction of inter-view redundancies has been
presented. It uses a priority order to select reliable quads while keeping as few quads
as possible. Results have shown that about 65% of quads have been removed compared
to the full polygon soup.

A possible improvement of the construction would be to use an image-based error
measure so that the quality of synthesized views is taken into account for tuning the
parameters. However, to prevent excessive subdivisions of the quads, such a measure
should be adapted to the properties of synthesized views and to the relations between
texture and geometry errors.

In the following, the evaluation of the quality of synthesized views using such poly-
gon soup will be given in the next chapter dedicated to the view synthesis step. Then
the advantages provided by the compactness will be evaluated in the chapter 7 that

Conclusion 87

introduces an adapted compression method.

88 Construction of the polygon soup

Chapter 6

Virtual view synthesis

Contents

6.1 View projection . 90

6.1.1 Projection principles . 91

6.1.2 Depth-based vs polygon-based view projection 92

6.1.3 Elimination of cracks . 92

6.2 Multi-view blending . 95

6.2.1 Adaptive blending . 95

6.2.2 Ghosting artifacts . 99

6.3 Virtual view enhancement . 101

6.3.1 Inpainting . 101

6.3.2 Edge filtering . 102

6.4 Results . 102

6.5 Conclusion . 104

In the previous chapters, an overview of the polygon soup as well as its construction
method have been presented. We have seen that the polygons are extracted and selected
with compactness and geometry preservation in mind. In this chapter, a view synthesis
method adapted to this polygon soup is detailed and the quality of the synthesized
views is evaluated. The method takes as an input the polygon soup and the original
color images.

As seen in the section 2.4, synthesizing virtual views raises many issues: usually
the data has to be projected into the correct viewpoint and multiple contributions of
the same area have to be correctly combined. Also typical artifacts require dedicated
processing and thus increase the view synthesis complexity. This chapter deals with
these issues. It is divided into four sections:� The first section is dedicated to the projection method using a single view and

its associated polygons. The differences between depth-based and polygon-based
projection would be highlighted. In addition, a subdivision of the quads would
be detailed in order to avoid cracks between polygons of different size.

89

90 Virtual view synthesis� The second section deals with the use of multiple views. Many polygons extracted
from multiple views partially overlap with each others when projected onto a
virtual view. A method that blends these overlapping polygons is presented.
Moreover, a typical artifact that usually appears around depth discontinuities
when blending multiple views is the so-called ghosting artifact (or corona artifact).
The polygon soup has been designed to avoid these artifacts. This section will
evaluate the effectiveness of this solution.� The third section concerns the enhancement of the virtual views by image pro-
cessing methods. Synthesized views often contain remaining disoccluded areas
(unknown areas) that couldn’t be predicted by any of the original views. A typ-
ical hole filling method called ’inpainting’ is applied to fill these areas. Finally,
an additional filtering process is performed to provide a more natural appearance
around object boundaries.� To finish, the fourth section evaluates the quality of the synthesized images. A
subjective description of the image quality and artifacts is given, followed by an
objective quality measure widely used in the field of video coding.

The three main processing steps of this chapter are summarized in figure 6.1. Most
of the techniques presented in this chapter are known and already used for other appli-
cations or other representations. Therefore, the main contributions of this chapter is the
adaptation of these techniques to the polygon soup representation, and the evaluation
of the quality of virtual views synthesized using this representation.

View projection Multi−view blending Virtual view enhancement

Input Processing Output

Virtual view
Polygon soup

Original images

Figure 6.1: Overview of the view synthesis stage.

6.1 View projection

This section describes the projection principles used for synthesizing a virtual view.
Only one view made of a color image and its associated polygon soup are considered
here. The type of geometric primitive used for the projection influences the resulting
artifacts that appear in the virtual view. Therefore, a comparison of the depth-based
projection and polygon-based projection is done. Finally, a subdivision method that
avoids cracks between quads of different size is detailed. Figure 6.2 gives an overview
of the view projection step.

View projection 91

Input Processing

Cracks removal
Polygon soup

from one view only
Polygon−based projection Projected view

Output

Figure 6.2: Overview of the view projection stage.

6.1.1 Projection principles

Projection from 3D to 2D. In this paragraph, we briefly explain general projection
principles. Figure 6.3 illustrates the acquisition of a 3D point by a camera represented
with its optical center and image plane. When a 3D point in the scene is captured
by a camera, then a 2D point (pixel) is obtained in the image plane of the camera.
This process is called projection and can be mathematically modeled using the camera
position and parameters and the 3D position of the point. The multiple views of the
video are the results of this projection of the 3D scene into each camera. Therefore, if
the 3D geometry of the scene is known, then any view can be synthesized by projection
of the 3D points into the desired view.

During the view synthesis process, multiple 3D points may be projected into the
same pixel position, e.g. when a foreground object occludes the background from the
desired view. Special care has to be taken so that only the front pixel with smallest
depth is displayed in the view. Using a Z-buffer or an occlusion compatible scanning
order are two possible solutions for this issue [Mor09].

Figure 6.3: Projection of a 3D point into the image plane of the camera.

Depth-based view projection. When synthesizing virtual views using depth maps,
each pixel of the original views has to be reconstructed into 3D before being projected
into the desired view. We call this process back-projection since it is the inverse of
the projection. It is performed using the camera position and parameters as well as
the pixel position and depth. As a result, each pixel is re-projected from one view to

92 Virtual view synthesis

another one. During this process, a unique RGB color is associated to each pixel.

Polygon-based view projection. The polygon soup presented in this work is a set
of quads defined with 2D plus depth data. Similarly to the depth-based view synthesis,
each corner of the quads has first to be back-projected into 3D and then projected into
the desired view. However, at this stage, only corners have been projected, therefore a
last step is needed to convert the projected quads into a pixel image. This is called ras-
terisation. In addition, each corner is associated with a texture coordinate in the image
such that the texture is mapped onto the quad in the synthesized view. Rasterisation
and texture mapping are implemented with openGL and run on a graphics processing
unit. The term ’rendering’ is generally used in the computer graphics community to
describe this generation of an image from a 3D model.

6.1.2 Depth-based vs polygon-based view projection

Figure 6.4 illustrates the difference between point-based and polygon-based view syn-
thesis when only one original view is used. Here, the central view V3 is re-projected
into the right view V1 using a depth map (a) and the quadtree (b). For illustration
purpose, here the quadtree that is used is the one obtained before the redundancy
reduction method. In both sub-figures (a) and (b), large white areas correspond to dis-
occluded areas, i.e. unknown areas that where occluded in view V3. These disoccluded
areas could be filled using the information coming from another view (see next section
6.2). However, with the depth-based view projection (a), many white lines appear all
across the image. They are due to the sampling of pixel positions and depth values
onto integer values. We call these lines sampling artifacts. On the contrary, with the
polygon-based view projection (b), no sampling artifact is visible but still few artifacts
appear in the form of small and rather vertical cracks. These cracks are vertical be-
cause of the horizontal displacement of the virtual camera. If the displacement was
vertical, then horizontal cracks would appear. The elimination of these cracks would
be explained in the next subsection.

The comparison between depth-based and polygon-based view projection shows
that the polygons better model the continuity of the surface of the scene. Indeed, no
sampling artifacts appear in the re-projected view. This advantage helps to reduce
post-processing steps that would be necessary to eliminate sampling artifacts. Thus it
reduces the view synthesis complexity. Typical elimination of the sampling artifacts
consists in a depth test and median filtering process [SMD+08].

6.1.3 Elimination of cracks

After the polygon-based view projection process, cracks appear in the form of thin
white lines or white triangles. They appear when two neighboring quads have different
sizes because the smaller quads are not connected to the center of the bigger one, as
illustrated in figure 6.5 and 6.6.

View projection 93

(a) Depth-based view projection (b) Polygon-based view projection

Figure 6.4: Depth-based and polygon-based view projection. The view V3 is re-
projected into the right view V1.

Figure 6.5: The problem of cracks. Cracks appear between quads of different sizes and
form a white triangle.

94 Virtual view synthesis

Figure 6.6: Cracks (shaded in grey) appear between quads of different sizes. Figure
extracted from [Paj02].

Restriction and triangulation. A method for avoiding these cracks is given in
[SS92] and summarized in [Paj02]. It holds in two steps:

1. Restriction of the quadTree subdivision. It consists in subdividing the quadtree
such that neighboring quads are within one level of each other in the quadtree
hierarchy as shown in figure 6.7.

2. Triangulation. Every quad is triangulated with respect to the size of its neigh-
bor. Due to the constraint of the restricted quadtree hierarchy that the levels of
adjacent quads differ at most by one, the quads can be triangulated such that no
cracks appear as illustrated in figure 6.8.

Considering the polygon soup representation, an exception of the above method
holds when two adjacent quads are separated by a depth discontinuity or when one
adjacent quad is discarded from the polygon soup (i.e. after the redundancy reduction).
Indeed, in this case the two quads are not connected to each other and no cracks appear
but disocclusion areas. Therefore, restriction and triangulation are not applied to such
quads.

Figure 6.7: Example of an unrestricted quadtree subdivision (a), and restricted subdi-
vision (b). Figure extracted from [Paj02].

Results of cracks elimination. This method of cracks elimination is applied on
each quadtree as a pre-process of the view projection step, i.e. at the user side of

Multi-view blending 95

Figure 6.8: Triangulation of a restricted quadtree subdivision. Figure extracted from
[Paj02].

the system. Indeed, since this method increases the number of polygonal primitives
to be rendered, applying it during the construction of the representation would lower
the benefit of the compactness of the representation. Note also that the elimination
of cracks is applied only once for each quadtree, on the contrary to the elimination of
sampling artifacts that is applied at each view synthesis step when using depth-based
view projection.

Figure 6.9 shows the different steps of the crack elimination when applied to a
quadtree. In figure 6.9(c), all the cracks have been eliminated.

6.2 Multi-view blending

When synthesizing a desired viewpoint, one color image plus geometry information is
not sufficient because of occluded areas that become disoccluded in the desired view (as
seen in figure 6.4). Instead, using at least two views surrounding the desired viewpoint
permits to cover more surface of the scene and greatly reduces disocclusions. Figure
6.10 illustrates this notion. First, both view V3 and V1 are projected into the desired
view V2. Large disocclusion areas appear in both images. Then, the two images images
are combined into one and disocclusions are greatly reduced.

However, the combination of multiple polygons coming from different views may ex-
hibit some unnatural color changes or small misalignments due to color and geometry
inconsistencies across the views. Therefore, a strategy is needed so that textures are
correctly combined and views are smoothly interpolated when the viewpoint is chang-
ing. The strategy that we present in the following is called adaptive blending 6.11.

6.2.1 Adaptive blending

Color and geometry information may not be consistent across the views. Illumination
changes and geometry errors are examples of such inconsistencies. As a result, artifacts
may appear in the synthesized view. Figure 6.12 shows a zoomed area of the image
6.10(c) which is a combination of the two projected views V3 and V1. In this case, a
simple depth test is performed to decide whether the contribution of V1 or V3 should be

96 Virtual view synthesis

(a) Before (b) After restriction (c) After triangulation

Figure 6.9: Results of cracks elimination. Cracks are visible before the process (a).
The restriction of the subdivision reduces the difference of level between quads to 1
(b). The triangulation eliminates remaining cracks.

Multi-view blending 97

(a) P 2
3 : Projection of V3 into V2 (b) P 2

1 : Projection of V1 into V2

(c) Combination of P 2
3 and P 2

1

Figure 6.10: Multiview projection: V3 and V1 are projected into the desired view V2

(a) and (b). The combination of this two images greatly reduces the disocclusions.

Adaptive blending
Multiple projected

Input Output

Blended projected
viewsviews

Processing

Figure 6.11: Overview of the multi-view blending stage.

98 Virtual view synthesis

used for each desired pixel. The pixel with smallest depth is the winner. In this figure,
unnatural deformations and misalignments are visible around the shoulders and faces
of the two characters. This shows that another combination strategy is needed.

Figure 6.12: Artifacts due to inconsistencies between views.

Such a strategy has been first studied in [DTM96] called View-dependent texture
mapping and in [BBM+01] called Unstructured lumigraph. The main idea is to adap-
tively blend the contributions of different views using criteria such as the camera posi-
tion, the field of view and the resolution of the cameras. These criteria aim at defining
the reliability of a pixel coming from a certain view so that an adapted weight is at-
tributed to this pixel during the blending process. In the following, the blending process
is implemented with only the camera position criteria.

Algorithm. The idea is to define a weight to each original viewpoint depending on
its distance to the desired virtual view. Using these weights, all the projected views are
blended by weighted averaging. Let Ri be the projected view i and Di its depth map,
then the blending process can be formulated as:

R(p) =

∑

i wi(p)Ri(p)
∑

i wi(p)
(6.1)

where wi(p) are weights computed in two steps:

1. for each pixel p, minimum depth values are searched: Dmin(p) = mini Di(p),

2.

wi(p) =

f(dist(curr, i)) if(Di(p) < Dmin(p) + δ)

0 otherwise
(6.2)

The parameter δ is used to robustly reject occluded pixels, and f(dist(curr, i)) is a
decreasing function of the distance between current viewpoint and viewpoint associated
to view i. In our experiment we used f(dist(curr, i)) = 1

dist(curr,i) .

Multi-view blending 99

Results. Figure 6.13 illustrates this process. In sub-figure (d), each view contribution
is associated with a color (Red, Green, Blue). These colors are blended when multiple
contributions overlap.

(a) V1 contribution - Red (b) V3 contribution - Green (c) V5 contribution - Blue

(d) Weighting factors in virtual V2

Figure 6.13: Synthesis of virtual view V2 using adaptive blending. (a),(b) and (c):
contributions of other views. (d): relative weighting used for each view (Red component
is the weight associated with V1, Green component is associated with V3 and Blue
component is associated with V5).

Finally, figure 6.14 compares the combination of two images with the depth test
strategy (a) and the blending strategy (b). The blending strategy offers a smoother
transition between the quads and reduces the artifacts.

6.2.2 Ghosting artifacts

Ghosting artifacts, or corona artifacts, are strong inconsistencies situated near depth
discontinuities. They are either due to geometry errors or color mix between background
and foreground. For example, if a background area near depth discontinuity is mixed
with the color of the foreground, then the outline of this foreground object will appear
in the background during the view synthesis, creating strong artifacts (figure 6.15(a)).

Existing methods for avoiding this kind of artifact consist in extracting discontinu-
ity boundaries, and applying separate process to this area [ZKU+04, SMD+08]. It is
performed at the user side and thus increases the view synthesis complexity.

100 Virtual view synthesis

(a) Depth test combination

(b) Blending combination

Figure 6.14: Comparison between the depth test combination of multiple views and the
blending combination.

Virtual view enhancement 101

In the polygon soup, ghosting artifacts are automatically eliminated because of the
reduction process (section 5.2) that removes unreliable quads. Therefore, there is no
need for additional process at the view synthesis stage for removing ghosting artifacts.

The advantage of the redundancy reduction is shown in Figure 6.15. On the left is
full polygon soup, i.e. without removing redundant and unreliable quads. The contour
of the head clearly appears in the background, creating a ghosting artifact. Small
quads are situated in the area of the ghosting artifact. On the right is the reduced
polygon soup. As expected, ghosting artifacts are drastically reduced. Quads have
been eliminated and replaced by bigger ones coming from another viewpoint.

Ghosting
artifacts

Many redundancies
and small quads

Removed
artifacts

Reduced redundancies
and bigger quads

Figure 6.15: Reduction of the ghosting artifact. (left) without redundancy reduction,
(right) with redudancy reduction.

6.3 Virtual view enhancement

This section details the enhancement of the virtual views by image processing methods.
Synthesized views often contain remaining disoccluded areas (unknown areas) that
could not be predicted by any of the original views. A typical hole filling method
called ’inpainting’ is applied to fill these areas. Finally, an additional filtering process
is performed to provide a more natural appearance around object boundaries. These
two process are summarized in figure 6.16.

6.3.1 Inpainting

White areas may be observed when synthesizing an intermediate viewpoint. They cor-
respond to non predicted pixels, i.e. pixels that do not appear in any of the available
views. These pixels can be easily reconstructed using some inpainting techniques such

102 Virtual view synthesis

Blended projected
views

Input

Inpainting Edge filtering

Processing

Virtual view

Output

Figure 6.16: Overview of the virtual view enhancement stage.

as [OYH09]. The inpainting method used in this article is the Telea one [Tel04], imple-
mented in openCV: every empty region (i.e. white region with infinite depth) is filled
with its surrounding color.

Figure 6.17 shows a detail of the right arm of the breakdancer when virtual view
V2 is synthesized. Sub-figures (a) and (b) illustrate the inpainting process.

6.3.2 Edge filtering

In the original views, object boundary samples are a color mixture of foreground and
background objects due to initial sampling and filtering during image capturing. How-
ever, when rendering intermediate views, the foreground-background boundaries are
changed, resulting in unnaturally sharp edges. Therefore, as in [SMD+08], foreground
objects are low-pass filtered along the edges to provide a natural appearance. This
filtering also helps to reduce remaining artifacts along depth discontinuities.

Sub-figures 6.17 (b) and (c) show the view synthesis result before and after edge
filtering. In (b), the cap and the T-shirt of the dancer look unnaturally sharp in front
of the background. After filtering, the appearance is more natural and the irregularities
along the leg are less visible.

6.4 Results

In order to evaluate the view synthesis performances, intermediate views were synthe-
sized and compared with the original ones. Figure 6.18 shows the virtual view V2 for
Breakdancers and Ballet sequences. Figure 6.19 shows the virtual view V7 for Book
Arrival sequence.

Subjective quality. These virtual views look realistic and do not exhibit strong
visual artifacts. Looking closer, small areas appear distorted or inconsistent as shown
in figure 6.20. Figure 6.20 (a) and (b) give a detail of the dancer’s face on the right
of Breakdancers. The right cheek of the dancer is distorted and the bright vertical
line in the background is cut instead of being straight. Also the earring of the dancer
is reflected in the original view but not in the synthesized view, which shows that
specular effects are difficult to reproduce. Figure 6.20 (c) and (d) gives a detail of the
background stripes in Ballet. Blocky artifacts appear where the stripes are cut instead
of being straight. These artifacts appear when the quads originating from different
views are not consistent with each other in terms of depth values. This inconsistency

Results 103

(a) Before inpainting (b) After inpainting, before edge filtering

(c) After edge filtering

Figure 6.17: Intermediate view: Illustration of the inpainting and edge filtering method
used to fill white pixels and to provide a more natural appearance. Contrast has been
enhanced for better visualization.

104 Virtual view synthesis

comes from the inaccuracies in the input depth maps and results in projection errors in
the virtual views. A solution for reducing these artifacts will be presented in chapter
8.

Objective quality. The objective quality is evaluated on the luminance components
on each image with the computation of the PSNR value. Typical values for good quality
images vary between 30 to 40 dB or higher.

For comparing the synthesized views with an existing approach based on MVD
data, we used the view synthesis software developed by Nagoya University (VSRS 3.0.1)
[TFS+08] currently studied in the MPEG-3DV group. The PSNR results computed on
25 frames and 2 virtual views are given in table 6.1.

The average result for Breakdancers is 34.5 dB with the quadtree-based approach
and 34.2 dB with the MVD approach. For Ballet, the PSNR is 34.3 dB with the
quadtree-based approach and 35.2 dB with the MVD approach. Finally, for Book
arrival, the PSNR is 35.9 dB with the quadtree-based approach and 36.9 dB with the
MVD approach.

One can notice that the sequence Book arrival yields higher PSNR quality than the
two others. This can be explained by the fact that the baseline between cameras is
shorter and so re-projection errors are smaller. Concerning the polygon soup, a slightly
higher PSNR (+0.3 dB) than MVD is obtained for sequence Breakdancers and a lower
PSNR (-1 dB) is obtained for sequence Ballet and Book Arrival. It shows that the
quadtree decomposition and redundancy reduction steps have slightly decreased the
quality of syntheiszed views for sequence Ballet and Book Arrival.

Breakdancers Ballet Book Arrival

MVD 34.2 dB 35.2 dB 36.9 dB

Polygon soup 34.5 dB 34.3 dB 35.9 dB

Table 6.1: Comparison of PSNR values computed on 25 frames and 2 virtual views.

6.5 Conclusion

Synthesizing intermediate views raises several issues concerning the geometric primi-
tives, the combination of multiple views, and the processing of remaining artifacts. This
chapter has presented the view synthesis stage based on the polygon soup representa-
tion. First, the difference of synthesis results between depth-based and polygon-based
projections has been highlighted. Depth-based projection creates sampling artifacts
that are usually eliminated with a median filtering process. Polygon-based projection
exhibit small cracks between quads of different size. An existing method to remove
these cracks consists in subdividing the quads before projection. This method has been
applied to the polygon soup representation. Second, the combination of overlapping

Conclusion 105

(a) Virtual V2 - PSNR = 35.17dB

(b) Virtual V2 - PSNR = 33.31dB

Figure 6.18: Results of virtual view synthesis.

106 Virtual view synthesis

(a)

Figure 6.19: Virtual view synthesis - View V7 - PSNR = 36.74dB.

polygons has been detailed. It consists in blending the textures of the overlapping areas
once projected into the virtual view. For a view-dependent appearance, the original
views are weighted before blending depending on their distance to the desired virtual
views. As a result, a smoother transition between the polygons is obtained, and incon-
sistencies are softened. In addition, results have shown that the adaptive construction
of the polygon soup automatically reduces ghosting artifacts. Therefore, there is no
need for additional process concerning this kind of artifact. Finally, classical image
processing algorithms have been performed to enhance the virtual views. It includes
inpainting of unknown areas and edge filtering of object boundaries.

The evaluation of the virtual views has shown that good quality images were ob-
tained, at a PSNR of about 34.5 dB for sequences Breakdancers and Ballet, and 35.9 dB
for Book Arrival. However, some artifacts appear: cut of line, blocky artifact, distor-
tions. It is mainly due to geometry inaccuracies or inconsistencies of polygons extracted
from different views. A possible solution to reduce these artifacts will be studied in
chapter 8.

The complexity of the view synthesis stage is important for real-time visualization
and interaction with the users. The different process presented above have not been
implemented for real-time performances, therefore no quantitative results are available
concerning the complexity. However, a few comments must be made about the com-
plexity. First, one of the constraints that we have defined for the multi-view video
system is that it should contain a specialized parallel device such as graphics hardware.

Conclusion 107

(a) Breakdancers - Original View (b) Breakdancers - Synthesized view

(c) Ballet - Original View (d) Ballet - Synthesized view

Figure 6.20: Details of virtual view artifacts.

108 Virtual view synthesis

This hardware is optimized for rendering polygons and can perform very efficiently
image-array operations providing adapted programming. The proposed view-synthesis
method includes quadtree subdivision, projection and texture mapping, blending, in-
painting and edge filtering. Compared to view-synthesis methods using depth image-
based representation like MVD, a smaller set of polygons replace the points, no median
filtering that removes sampling artifacts is needed, neither adaptive processing of edges
that removes ghosting artifacts.

Finally, we have seen in figure 6.20 that specular effects like the reflection of the
earring are not correctly reproduced for the moment. A possible solution would be to
employ a view-dependent texture mapping strategy similarly to Debevec et al. [DTM96]
and Buehler et al. [BBM+01]. With these kind of solutions, multiple textures instead
of one are used for each polygons, and they are weighted according to the position of
the virtual view.

The next chapter is dedicated to the compression of the polygon soup using the
quad-tree structure.

Chapter 7

Compression of the polygon soup

Contents

7.1 Compression method . 110

7.2 Performance with different settings 112

7.3 Comparative evaluation . 112

7.4 Conclusion . 116

Up to now, the polygon soup is constructed at each time instant with a quadtree
decomposition of the input depth maps, and inter-view redundancies are eliminated
using an adaptive pruning of the quadtree leaves. Based on this polygon soup and
input color images, virtual views can be synthesized within the navigation range with
good quality. Transmission over a band limited channel is another issue for multiview
video system. In order to evaluate the representation as a candidate for such system,
the compression of the representation has to be considered.

This chapter is dedicated to the compression of the polygon soup representation,
using the quadtree structure. The compression of the color images used to texture
the polygon soup is not considered here. The goal is to reduce the bit rate of the
polygon soup using a lossy predictive coding method while avoiding strong artifacts in
virtual views. Different parameter values of the polygon soup construction are tested
in order to evaluate their influence on the compression performances. Moreover, a
comparison with an existing MVD coding scheme is given. This comparison focuses on
rate-distortion curves as well as compression artifacts in the synthesized views.

This chapter is organized as follows. First, section 7.1 describes a new quadtree-
based compression method adapted to the polygon soup representation. Then section
7.2 tests different settings of the polygon soup in order to evaluate the advantages of
the redundancy reduction and the influence of the small quads on the compression
performances. Finally, section 7.3 gives the compression performances of the polygon
soup compared with an existing MVD scheme.

109

110 Compression of the polygon soup

7.1 Compression method

A quadtree-based compression of the polygon soup is proposed in this section. The
input of the algorithm is the polygon soup, i.e. multiple pruned quadtrees for each
time instant. The proposed compression method is applied frame by frame such that
no temporal prediction is used. Each quadtree corresponding to one view is coded
independently.

Quadtree structure. The structure of the quadtree is used to recursively define the
position and size of each quad. More precisely, each quadtree is traversed from top to
bottom, and for each quad, two flags are used:� One flag indicates if the quad is activated or if it has been discarded during the

redundancy reduction.� Another flag indicates if the quad is a leaf or if it must be subdivided (node).

Figure 7.1 gives an example of quadtree structure and associated flags. When both
flags are positive (activated,leaf) then four depth values are transmitted corresponding
to the four corners of a quad.

(1 0)

(0 1) (1 0)
(1 1)

(0 1)

(1 1)
(0 1)

(1 1)(1 1)

(activated leaf)

Figure 7.1: Structure of the quadtree and associated flags: (leaf activated)

Depth values. In order to encode the depth values of the selected quads, each corner
is predicted using the adjacent quads already coded. Figure 7.2 shows an example of
a current quad that can be predicted with already coded quads. The corners of the
quads are named with the letters t/b: top/bottom, r/l: right/left.

First, each quad already coded updates a list of predicted depth values for each of
its pixels (depth values are interpolated from the quad corners’ depth). Since adjacent
quads are not necessarily connected to each others, the list can store multiple depth val-
ues for the same pixel position. We denote a depth value in the list as zlist(pixPos, idx)
where pixPos is the pixel position, and idx is the index of the quad that added the

Compression method 111

Current quad

Already coded

Not coded yet

tl
bl br

tr

Figure 7.2: Prediction of depth values from already coded quads.

depth value, idx ∈ [1, 3] i.e. at most three adjacent quads sharing the same corner
position can update the list (they are the quads in dotted line in figure 7.2).

Then during the prediction, this list is used to predict the corners of the current
quad. More precisely, at a given pixel position, the depth value used to predict the
current corner is the one with smallest difference with the current depth:� ẑtl = zlist(tl, idx) with idx = arg min

i
(|ztl − zlist(tl, i)|)� ẑbl = zlist(bl, idx) with idx = arg min

i

(|zbl − zlist(bl, i)|)� ẑtr = zlist(tl, idx) with idx = arg min
i

(|ztr − zlist(tl, i)|)� ẑbr = z̄tr + z̄bl − z̄tl. The bottom right corner is predicted using affine prediction
from the three other previously coded corners.

where ẑ corresponds to a prediction value, z̄ corresponds to a decoded depth value (i.e.
taking into account codded residue added to prediction). If multiple candidate values
are possible for prediction, then the index idx of the chosen value is transmitted with
the predicted value hence with an additional coding cost.

This prediction process helps to preserve connections since corners are predicted in
priority with the adjacent corner with smallest depth difference.

Because of the deactivation of many quads for redundancy reduction, some quads
may not be correctly predicted if neighbors are not activated. In order to still get
a valid prediction in this case, when a node is not activated virtual depth values are
defined using previously defined predictions. This indeed corresponds to do padding of
depth information.

Lossy compression. A prediction residue is then defined to be added to these pre-
dictions. Due to high correlation of depth values these residues are often quantized
to 0. A flag is then introduced to signal 0 value for these residues. If not zero, then
the residue is quantized and ExGolomb code is used to code it. All information is
coded using Context Adaptive Binary Arithmetic Coding (as proposed in [MWS03]).

112 Compression of the polygon soup

Contexts are established depending on the level of a node in the quadtree to take into
account statistical variations among quads size.

7.2 Performance with different settings

For this experiment, the input data and conditions were set as follows:� The quads of views V1, V3, V5 were compressed, but not the texture images.
Therefore, only the bit rate required for the geometry information is studied
here.� Intermediate views V2 and V4 were synthesized and compared with the original
ones.

Three different settings. We want to evaluate the compression method with dif-
ferent settings of the polygon soup. Three settings were compared. The first one
corresponds to the full quadtrees without the redundancy reduction step. Many quads
have to be coded with this setting. The second setting corresponds to the quadtrees af-
ter the redundancy reduction step. Finally, the third one is also the reduced quadtrees
but without any quad of size 1 pixel. Indeed, in the quad representation the number
of quads of size 1 pixel is about 30% of the total number of quads whereas the surface
covered by these quads in the image is very small. In order to reduce the bitrate the
quads of size 1 pixel were not coded at all, so the minimum size of quads is 2 pixel and
this setting is refered to as ’QSmin = 2’.

Results. Figure 7.3 shows the rate-distortion results for the three different settings.
These curves are obtained by varying the quantization step of the compression method
in order to evaluate different bit rates with different distortions. For the same quanti-
zation steps, we can see that the reduced setting reduces the bit rate by at most 0.17
bpp, but the PSNR value is also reduced by 1.5 dB. This shows that the compromise
rate vs distortion can be tuned by removing more or less redundancies.

Then, regarding the performance of the ’QSmin=2’ setting where quads of size
1 pixel where discarded, we can see that the bit rate is again reduced by 0.04 bpp
compared to the reduced setting, while the PSNR quality almost does not decrease.
The lack of these small quads are in fact compensated at the view synthesis step thanks
to the inpainting and edge filtering process (as explained in section 6).

7.3 Comparative evaluation

Compared approach. The existing approach that is used for comparison is based
on the ITU-T H.264 Multi View Coding amendment (MVC version 6.0) [JTC08] for
coding the depth maps and the Nagoya university view synthesis software (VSRS 3.0.1)
[TFS+08] currently studied in the MPEG-3DV group. In the following, we denote this
approach that uses MVD data + MVC compression + VSRS view synthesis as ”the

Comparative evaluation 113

 31

 32

 33

 34

 35

 36

 37

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
S

N
R

 [d
B

]

bitrate [bpp]

No Reduction
Reduced

Reduced - QSMin=2

Figure 7.3: Different settings of the polygon soup. Rate distortion performance for view
synthesis using polygon soup. Average bitrate VS average PSNR for 2 intermediate
views (V2 and V4) and 1 frame of Breakdancers sequence.

MVD approach”. The MVC software is used to compress the depth maps. Inter-view
prediction is activated but no temporal prediction is performed because our proposed
coding scheme does not take the temporal dimension into consideration at the moment.
The central view V3 is coded as I picture, and the two lateral views V1, V5 are coded
as P-pictures with central view as prediction (i.e. PIP inter-view coding structure).
Four different bitrates and qualities are tested by changing the quantization parameter
to typical values: QP = 22, 26, 31, 37. In the VSRS software, the main settings are
activated like half-pel precision; bi-linear filtering; boundary noise removal and view
blending and inpainting.

Results on geometry. For comparing the geometry of both methods after compres-
sion, the compressed quadtrees are converted to depth maps and compared with the
compressed depth maps of the MVD approach. Empty areas corresponding to deacti-
vated quads in the quadtrees are not taken into account. Thus, the PSNR is computed
between compressed depth maps and original depth maps. Figure 7.4 shows results in
terms of rate-distortion performance. The figure shows that the settings (QSmax = 8,
QSmin = 2) outperforms MVC for medium and high bitrates (starting from 0.042
bpp). At most, a gain of 4 dB is obtained at bitrate 0.08 bpp. For low bitrates, MVC
outperforms our method. The setting QSmax = 16 shows that increasing the maxi-
mum size of the quads could provide better results at low bitrates. This indicates that
for low bitrates the quadtree structure must be adapted to a coarser approximation.

114 Compression of the polygon soup

 35

 40

 45

 50

 0 0.02 0.04 0.06 0.08 0.1 0.12

P
S

N
R

 [d
B

]

bitrate [bpp]

MVD
QUAD QSmax=8 QSmin=2

QUAD QSmax=16 QSmin=2

Figure 7.4: Results on geometry. Rate distortion performances for the MVD and
quadtree-based methods. Average bitrate VS average PSNR for 3 views and 25 frames
of Breakdancers sequence.

Results on virtual views. Now the quality of virtual views synthesized with com-
pressed data are compared. The PSNR is computed between the virtual and original
views. Figure 7.5 shows the rate-distortions results of both compression methods for
sequence Breakdancers. The behavior is similar to the previous results on depth. We
can see that the quadtree-based approach gives slightly higher PSNR results at medium
and high bit rates. At most, a PSNR gain of 0.33dB is obtained at 0.08bpp with the set-
tings (QSmax = 8, QSmin = 2). Figure 7.6 shows the rate-distortions results of both
compression methods for sequence Book Arrival. We can see that the quadtree-based
approach gives lower PSNR (-1 dB) at medium and high bit rates.

Subjective image quality. We now analyze the subjective quality of the virtual
views and the artifacts induced by the two compression methods. Figures 7.7 and
7.8 show a detail example of virtual view V2 at frame number 13 and 17 respectively.
Corresponding videos can be watched at this address 1. These views were synthesized
with MVD approach at bitrate 0.041 bpp and quadtree-based approach at bitrate 0.047
bpp (QSmax = 8, QSmin = 2). The bit rate difference is small. The original image is
also shown in order to compare artifacts induced by the coding and rendering steps.

The MVD approach exhibits white ghosting artifacts around the dancer. On the
contrary, the quad based example does not contain such artifacts. In figure 7.8, the
red square in the MVD approach highlights a region that has been inpainted during
view synthesis using VSRS software. Note that brown color of the background should
appear instead of the blurred white color of the dancer’s cloth. On the other hand,

1http://www.irisa.fr/temics/staff/colleu/

Comparative evaluation 115

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12

P
S

N
R

 [d
B

]

bitrate [bpp]

MVD
QUAD QSmax=8 QSMin=2

QUAD QSmax=16 QSMin=2

Figure 7.5: Results on virtual views - sequence Breadancers. Rate distortion perfor-
mance for the MVD and quadtree-based methods. Average bitrate VS average PSNR
for 2 intermediate views (V2 and V4) and 25 frames.

 33

 34

 35

 36

 37

 38

 0 0.02 0.04 0.06 0.08 0.1

P
S

N
R

 [d
B

]

bitrate [bpp]

MVD
QUAD QSMax=8 QSMin=2

Figure 7.6: Results on virtual views- sequence Book Arrival. Rate distortion perfor-
mance for the MVD and quadtree-based methods. Average bitrate VS average PSNR
for 2 intermediate views (V2 and V4) and 25 frames.

116 Compression of the polygon soup

in the quadtree-based approach, this region does not contain such artifact. In the
quadtree-based example of figure 7.8, some distortions appear along the back of the
dancer on the contrary to the MVD approach and original image.

We now give the interpretations of the previous observations:� The ghosting artifacts observed with the MVD approach come from the fact that
MVC compression is not designed to preserve depth discontinuities, and therefore
typical ringing artifacts appear in the depth maps and finally create ghosting
artifacts in the intermediate view. On the contrary, the quadtree-based example
does not contain such artifacts because the quadtree structure and compression
method avoid ringing artifacts.� The quadtree-based approach does not contain the inpainting artifact like the
one observed with the MVD approach because this region has been filled by the
information of view V5 on the contrary to the MVD approach that used only 2
views for the view synthesis: V3 and V1. Using 3 views instead of 2 helps to reduce
the size of unknown areas in the intermediate views.� The dancer’s boundaries with the quadtree-based method in figure 7.8(c) are dis-
torted because of the compression step. Although quads are predicted in priority
from connected neighboring quads, this is not always ensured since quads are
predicted from their top-left neighboring quads which are not always connected.
If a quad is predicted with a disconnected corner, then high prediction residue
are quantized and create high errors.

These results show that the proposed quad-based representation enables to recon-
struct good quality virtual views. It outperforms the MVD approach at medium and
high bitrates in terms of objective quality measures. It provides equivalent overall
visual quality, with no ghosting artifacts.

7.4 Conclusion

In this chapter, an adapted compression technique of the polygon soup has been pre-
sented. The method takes advantage of the quadtree structure that helps to efficiently
retrieve the position and size of each quad. The compression method consists in pre-
dicting the depth values of the quads’ corners using the already coded neighbor quads.
Then, prediction residues are quantized and coded with context adaptive binary arith-
metic coding (CABAC).

The evaluation of the compression method was split in two. First, different settings
of the polygon soup have been compared. It has shown that the redundancy reduction
step clearly reduces the bit-rate (about 0.1 to 0.2 bpp reduction) but also reduces the
PSNR (about 1.5 dB reduction) in the synthesized images. Therefore, the compro-
mise between rate and distortion can be tuned by removing more or less redundancies.
Moreover, the configuration without the quads of size one pixel results in about 0.04

Conclusion 117

(a) Original

(b) MVD 33.5 dB

(c) Quad-based 34 dB

Figure 7.7: Subjective image quality on frame 13. Zoom on virtual view obtained with
MVD and quadtree-based approach at equivalent bit rates.

118 Compression of the polygon soup

(a) Original

(b) MVD 33.1 dB

(c) Quad-based 33.6 dB

Figure 7.8: Subjective image quality on frame 17. Zoom on virtual view obtained with
MVD and quadtree-based approach at equivalent bit rates.

Conclusion 119

bpp reduction without decreasing the PSNR. This shows that these small quads have
a high cost in rate compared to their influence on the image quality.

In the second experiment, the performances of the compression method have been
compared with an existing approach that uses multi-view plus depth representation
(MVD) compressed with multi-view coding technique (MVC). Results have shown that
the proposed method gives good performances at medium and high bit rates. Moreover,
no ghosting artifacts were observed with the quadtree-based method, whereas these
artifacts appear when using the compressed MVD representation.

The compression method studied in this chapter has shown that it is possible to effi-
ciently compress the polygon soup representation proposed in this thesis. The MPEG’s
3DV group is currently studying how to represent and compress the depth informa-
tion of MVD data. Most of the envisioned solutions use an image-based compression
method adapted to preserve the depth discontinuities. The proposed polygon soup and
associated compression technique could be considered as an alternative to these meth-
ods. However, the compression method is not yet mature, and more improvements are
necessary to reduce distortions: first, the method is not efficient at low bit rates. An op-
timization of the parameters of the quadtree during the quadtree decomposition could
help improving the performances at such bit rate. The thresholds that control depth
discontinuities, geometry accuracy and maximum quads’ size can be tuned for this pur-
pose. Second, the object boundaries exhibit small distortions due to the compression
step. An adaptation of the compression method is necessary. A possible improvement
could be to modify the parsing of the quads during the prediction step. Indeed parsing
the quads from the biggest size to the smallest size could help predicting smallest quads
around discontinuities at last, thus prediction from connected neighbors quads and not
only from top left neighbors quads would be possible.

The consideration of the temporal dimension is still to be investigated for our
compression method. Similarly to the video compression approach in Urvoy’s work
[UCP+09], the representation is defined as a set of polygons. The extension to the tem-
poral dimension could consider the temporal evolution of a polygon. A frame would
then be reconstructed by sets of polygons coming from different viewpoints (as already
seen) but also from different temporal time instant. This notion of evolution of the poly-
gons leads to a dynamic version of the polygon soup. In the next chapter, the evolution
of the polygons through space is presented. It aims at reducing texture misalignments
and distortions in the synthesized views.

120 Compression of the polygon soup

Chapter 8

Floating geometry

Contents

8.1 Texture misalignments . 121

8.2 Existing solutions . 125

8.3 Principle of floating geometry 129

8.4 Results on polygon soup . 133

8.4.1 Floating geometry at the acquisition side 133

8.4.2 Floating geometry at the user side 139

8.5 Conclusion . 142

In chapter 6, we have shown that good quality virtual views can be synthesized
using a polygon soup representation. However, some misalignment artifacts appear in
synthesized views. In this chapter we will introduce a novel method called floating
geometry that aims at reducing these artifacts.

First the problem will be explained in more details in section 8.1, then existing
solutions will be given in section 8.2. Section 8.3 is dedicated to the principle of floating
geometry and finally section 8.4 will give the results when floating geometry is applied
on polygon soup.

8.1 Texture misalignments

This section describes the texture misalignments issue. First, texture misalignments
and their resulting artifacts in synthesized views are introduced. Then the causes
for these misalignments are explained in order to better understand how they can be
corrected.

Generally speaking, texture misalignments correspond to position errors of a texture
after the view synthesis process. It usually results in visible artifacts in the synthesized
view. Figure 8.1 shows synthesized views obtained with a polygon soup representation.
Misalignments appear in the form of deformation of important details (e.g. face); cut

121

122 Floating geometry

or misalignments of structured textures (e.g. straight lines); or blur and ghosting when
multiple misaligned textures are blended together.

(a) Breakdancers - Original View (b) Breakdancers - Synthesized view

(c) Ballet - Original View (d) Ballet - Synthesized view

Figure 8.1: Details of artifacts due to texture misalignments: deformation of the face
(b), blur where multiple textures are blended (d), and cut of straight lines (b and d).

Texture misalignments 123

Modeling errors. During the view synthesis process, models of geometry and camera
are used. They are both estimated from the multiple input views and may contain
inaccuracies. Indeed, although huge progress have been made in this field, real world
scenes are still difficult to model and some typical situations still lead to reconstruction
errors and camera calibration errors. The estimation method usually relies on matching
features or regions across multiple views, according to a certain similarity measure.
False match can occur for example in areas with low or repeated textures, or in reflecting
areas. Moreover, both camera and geometry are defined by parametric models and the
parameters are estimated by minimizing an error over a high number of data, thus
errors are usually non zero. All these uncertainties result in geometry and camera
parameters that approximate the observed data, but contain residual errors.

Texture misalignments. The residual errors contained in the camera parameters
or geometry result in texture misalignments after the view synthesis process. This is
now explained in more details. Figure 8.2 shows the synthesis of a virtual view Vv

using input view with approximate camera parameters V1a and approximate geometry
Ga. The view with original camera parameters is V1o and the real-world geometry is
Go. Sub-figure (a) illustrates the texture misalignments due to geometry errors only
(Ga 6= Go; V1a = V1o). The 3D point P is captured in V1o at pixel position p1. Then
during the view synthesis stage (illustrated with arrows), p1 is back-projected on Ga

and re-projected in Vv. The resulting pixel is not aligned with pv which is the direct
projection of P into Vv. This shows that the geometry errors in Ga cause texture
misalignments. Sub-figure (b) illustrates the texture misalignments due to camera
errors only (Ga = Go; V1a 6= V1o). During the view synthesis stage (illustrated with
arrows), p1 is back-projected on Ga using the approximate camera parameters V1a and
re-projected in Vv. As previously, the resulting pixel is not aligned with pv which shows
that camera errors in V1a cause texture misalignments.

In order to simplify the upcoming explanations and illustrations, we will consider
in the following only the texture misalignments due to geometry errors. The same
algorithms can then be similarly applied to texture misalignments due to camera errors.

Single and multiple geometries. Existing geometry representations used for 3D
video may consist in single or multiple geometries. In the single one, a unique geometry
is reconstructed using all the views, resulting in a global error. Figure 8.3(a) illustrates
the view synthesis stage using a single geometry Ga and two views V1 and V2. Texture
misalignments appear due to the global geometry error. On the other side, multiple
geometries are reconstructed from a subset of views so that each view is associated
with a different geometry, like in the multi-view plus depth (MVD) representation.
As a result, the geometries may not be consistent with each other and the superposi-
tion of such geometry results in texture misalignments. Figure 8.3(b) shows the view
synthesis with two multiple geometries Ga1 and Ga2. Texture misalignments appear
due to local errors and geometry inconsistencies. Therefore, both single and multiple
representations suffer from texture misalignments.

124 Floating geometry

(a) Geometry errors (b) Camera parameters errors

Figure 8.2: Texture misalignments due to geometry errors (a) and camera parameters
errors (b). The approximate geometry is Ga and approximate camera is V1a. The 3D
point P is captured by the cameras at pixel positions p1 and pv. The arrows illustrate
the view synthesis process. The re-projection of p1 into Vv is not aligned with pv which
shows the texture misalignment.

(a) Single geometry (b) Multiple geometries

Figure 8.3: Texture misalignments with single geometry (a) and multiple geometries
(b). The arrows illustrate the view synthesis process. In (b), the approximate geometry
Ga1 is associated with view V1 and Ga2 is associated with V2. In both case, geometry
errors cause texture misalignments.

Existing solutions 125

View-dependent texture misalignments. The extent of the misalignment de-
pends not only on the amount of error in Ga but also on the position and orientation
of the virtual view Vv. For example, the closer Vv is from V1, the shorter the misalign-
ment, until the misalignment disappears when Vv is equal to V1. This property will be
exploited in the following such that closer views are more important than further ones:
views will be weighted according to their distance to the synthesized view.

8.2 Existing solutions

This section presents recent contributions that deal with the problem of texture mis-
alignment in virtual views in the context of multi-view video. The first one was intro-
duced by Eisemann et al. [EDS+08] and is called floating textures. The second one is
a modification of the floating textures presented in the same paper. We call it warped
texture coordinates. These two solutions can be thought as texture registration methods
where the first one is performed during the view synthesis whereas the second one is
performed as a pre-process of the view synthesis. A different method was proposed by
Furihata et al. [FYT+10] where the texture misalignment is not treated as a position
error but as an intensity error. We call it residual error feedback. Finally, the Ph.D.
thesis [Bal05] realized by Balter deals with geometry deformation for reducing texture
misalignments.

Floating textures [EDS+08]. The floating textures method has been proposed by
Eisemann et al. for correcting the misalignment of the textures during the view synthe-
sis process. This method is explained using a single geometry representation, but can
also be applied when using multiple geometries. The idea is to compute the optical flow
between synthesized textures coming from multiple views and then use the estimated
motion flow to warp them onto each other into an intermediate position so that to re-
duce texture misalignments. Thus it can be thought as a texture registration method.
Since the desired virtual view may be closer to certain views, an angular weighting
scheme is used to take into account the position and orientation of the virtual view
with respect to the original views during the correction of the textures.

Following the notations of Eisemann et al., each view Vi is projected into the desired
viewpoint Vv resulting in the image Iv

i . The computation of the optical flow between two
synthesized images gives the flow field WIv

i
→Iv

j
from image Iv

i onto image Iv
j . Therefore,

the combined flow field for an image Iv
i is given by:

WIv
i

=
n

∑

j=0

ωjWIv
i

→Iv
j

where ωj is the weight attributed to Iv
j , and n is the number of views used for the

synthesis. The weight ωj for view Vj is inversely proportional to the angle between the
viewing directions of Vj and Vv, as proposed in [BBM+01, DTM96]. The final image is
obtained by warping each image with its combined flow field and summing the resulting
images:

126 Floating geometry

Iv
F loat =

n
∑

i=0

(WIv
i

◦ Iv
i)ωi

where WIv
i

◦ Iv
i warps image Iv

i . Figure 8.4 shows the principle of the floating
textures on the same example as previously using a single geometry for all the views.
Thanks to the computation of the optical flow, the re-projected pixels pv

1 and pv
2 are

matched together and then warped one onto each other into an intermediate position
using the combined flow fields WIv

1
and WIv

2
.

This algorithm ensures a perfect alignment of textures if the computed flowfields
are invertible, i.e. WIv

i
→Iv

j
◦ WIv

j
→Iv

i
= Id. Indeed, in this case it ensures a perfect

warping: WIv
i

→Iv
j

◦ Iv
i = Iv

j . However, in practice, this condition is not exactly real-
ized and therefore some misalignments may remain. Concerning the complexity, for n
views, it requires computing (n − 1)n flow fields for any desired virtual view which is
computationally expensive. In practice, it often suffices to consider only the 3 closest
views to the desired virtual view.

Figure 8.4: Floating textures: pv
1 and pv

2 are matched together and then warped one
onto each other into an intermediate position using the combined flow fields WIv

1
and

WIv
2
.

Warped texture coordinates [EDS+08]. In order to reduce the complexity, a
variation of the floating textures was proposed in the same paper. The idea is to
compute the texture correction as a pre-processing step directly in the original views.

For a given view Vi, all other views are projected into it, resulting in images Ii
j,

and the flow fields WIi→Ii
j
are established. Then during virtual view synthesis, the flow

fields of a view Vi are combined using the same angular weighting scheme as in classical
floating textures:

Existing solutions 127

WIi
=

n
∑

j=0

ωjWIi→Ii
j

This combined flow field WIi
, computed with respect to the virtual view Vv, is

applied to the texture coordinates in image Ii of each 3D vertex. Therefore this method
is called warped texture coordinates. Note that the texture itself is not warped but
only the texture coordinates of each vertex. The final virtual image Iv

out is obtained by
combining all the images synthesized using the warped texture coordinates:

Iv
out =

n
∑

i=0

(WIi
◦ Ii)

vωi

where (WIi
◦ Ii)

v is the projection of Ii into Vv using warped texture coordinates.

Figure 8.5 shows the texture coordinates of 3D vertex Pa in views V1 and V2. Before
computing the warped texture coordinates, Pa is associated with two texture coordi-
nates t1

1, t2
2, i.e. one in each view. However, because of geometry errors, it is clear

that these two texture coordinates do not correspond to the same color. Therefore
texture coordinates are warped depending on the desired viewpoint. After computing
the warped texture coordinates, Pa is then associated to four texture coordinates: (t1

1,
t2
1) for synthesizing view V1, and (t2

2, t1
2) for synthesizing view V2.

Figure 8.5: Warped texture coordinates: before warped texture coordinates, the 3D
point Pa is associated with two texture coordinates (t1

1, t2
2). After, Pa is associated

with four texture coordinates: (t1
1, t2

1) for projection in V1, and (t2
2, t1

2) for projection
in V2.

Figure 8.6 shows the view synthesis step of warped texture coordinates. The two
views V1 and V2 are used to synthesize Vv. The vertex Pa is projected in Vv. Warped
texture coordinates are used for Pa instead of using original texture coordinates t1

1 and
t2
2. Since Vv is situated in between the two views, then the warp is weighted according
to this position and an intermediate texture coordinate between t1

1, t1
2 for V1 and t2

1, t2
2

for V2 is obtained.

128 Floating geometry

Figure 8.6: Virtual view synthesis with warped texture coordinates. The texture coor-
dinates are warped according to the position of the virtual view. The warping is shown
by the arrows newt to the image planes.

The warped texture coordinates require the computation of (n − 1)n flow fields at
the pre-processing step. During the view-synthesis, only simple warping of the tex-
ture coordinates is needed which is computationally efficient. Although this variation
of floating textures helps reducing the computational complexity, the quality of syn-
thesized view may be reduced compared with the classical floating textures since the
texture correction is not computed in the desired view but indirectly in the original
views.

A similar method called harmonised texture mapping was proposed by Takai et al.
[THM10]. In this method, the computation of warped texture coordinates is reduced
to only the vertex positions instead of computed flow fields over the wholes images.
The warped texture coordinates are computed as a pre-processing step together with a
mesh optimization process.

Residual error feedback [FYT+10]. Furihata et al. proposed another solution to
compute the texture correction in a pre-processing step. In this paper, the cameras
are rectified on a horizontal axis and a virtual view is synthesized using the two closest
lateral views. Thus, when synthesizing the virtual view Vv, then the left view Vl and
right view Vr are used.

The pre-processing step of the method consists in computing the intensity residual
error of each view projected into the other one. During view synthesis, the residual
error is fed back into the virtual view and processed according to the position of this
virtual view such that the error increases in proportion to the camera distance. Taking
the example of the left view, the synthesized image compensated by the residual error
feedback can be formulated as:

Īv
l = Iv

l + φv(ǫr
l)

Principle of floating geometry 129

where ǫr
l is the residual error of the projection of Vl into Vr and φv is a function

that processes the error depending on the position of Vv.

The main difference with the previous methods is that the texture misalignment is
computed in terms of intensity error instead of flow field which is computationally less
expensive. Another difference is that the projections are reversed compared with the
previous method: the correction of Vl is computed by comparing Ir

l and Ir (outgoing
projection), whereas in the warped texture coordinates, the correction of Vl is computed
by comparing Il and I l

r (ingoing projection).

Geometry deformation [GBMD04] and 3D scene flow [VBK05]. Galpin and
Balter [GBMD04, GBMP04, Bal05] proposed a deformation of the geometry in order to
reduce texture misalignments. Multiple geometrical models are used. In order to reduce
texture misalignments, the vertices of each model are matched and morphed onto each
other at intermediate positions, during virtual view synthesis. This geometry morphing
is done across time and can be generalized across multiple views in our context. On
the contrary to the above contributions, the match between vertices is not guided by
the texture but by the geometry. The problem of matching geometry with texture
consistency has been studied for example in [ZBVH09]. In this work, a 3D feature
detector and 3D feature descriptor are introduced for matching and tracking surfaces
over temporal sequences.

Concerning geometry deformation across time, Vedula et al. [VBK05] introduced
the 3D scene flow with a volumetric geometry representation. At each time instant,
input views and one single volumetric geometry are available. The 3D scene flow gives
the motion of each voxel of the representation between two frames of the video. It is
computed using 2D optical flow and 3D data.

8.3 Principle of floating geometry

This section presents our proposed method for reducing texture misalignments in syn-
thesized views called floating geometry.

Overview. The idea of the floating geometry is to deform the geometry in order to
keep a consistent geometry over space and time and to reduce texture misalignments.
Indeed, since neither a single geometry nor multiple geometries are free of texture
misalignments in virtual views, we propose to deform the geometry for each virtual
view. Therefore, the goal is not to estimate the real geometry of the scene, but rather
to adapt the geometry for each desired view.

Floating geometry is first computed between every original views, as a pre-process
before the view synthesis step. This computation uses optical flow estimation and
back-projection. Then, for synthesizing a virtual view, the geometry is floated to inter-
mediate positions using the values pre-computed in order to adapt to the virtual view.
Concerning the texture, all views projected into the virtual view are blended to allow
for smooth combination, as described in section 6.2.1.

130 Floating geometry

This method is quite close to the warped texture coordinates method: texture mis-
alignment is computed using optical flow estimation and this is done between original
views as a pre-process. However, the geometry is deformed, instead of texture coordi-
nates. Floating geometry is also close to the 3D scene flow method. In both methods
optical flow is used to guide a 3D deformation from one geometry onto another one.
However, floating geometry is introduced for correcting texture misalignments whereas
3D scene flow focused on time interpolation.

Principle. Starting from n original views, each view Vi is associated with a geometry
Gi and color image Ii (if a single geometry G is used, it is duplicated n − 1 times such
that each view is associated to one geometry Gi).

Floating geometry is first computed as a pre-process in original views: for each view
Vi and for all other views Vj , floating geometry Gj

i is computed such that it is consistent

with Gj and such that the projection Ij
i of Vi in Vj is aligned with Ij (i.e. alignment

of textures). This can be formulated as follows:

Gj
i = π−1

Gj
(W

I
j

i
→Ij

◦ Ij
i)

where W
I

j

i
→Ij

is the flow field between Ij
i and Ij and π−1

Gj
is the back-projection

operator using geometry Gj . This flow field is used to warp Ij
i , and the resulting image

is back-projected in 3D using the geometry Gj in order to obtain the floated geometry

Gj
i .

To summarize, the aim of this process is to obtain a floating geometry Gj
i that

is consistent in 3D with Gj while reducing texture misalignments between Ij
i and Ij.

In practice, not all the pixels are back-projected but only those corresponding to the
vertices of the geometry as illustrated in figure 8.7. In this example, two geometries
G1 and G2 are associated with original views V1 and V2 respectively. It illustrates the
computation of the floating geometry G2

1 that aligns I2
1 with I2: the vertex P1 with

texture p1 is projected in V2 giving p2
1. This pixel is matched and warped onto the pixel

p2, and finally this pixel is back-projected onto the geometry G2 giving the floating
vertex P 2

1 . Thus when synthesizing view V2, the vertex P1 with texture p1 is floated
to vertex P 2

1 which is therefore consistent with G2 and then projected into V2. This
shows that texture misalignments in original views can be reduced and that multiple
geometries can be floated onto each others using floating geometry.

Once floating geometry Gj
i has been computed for all views in a pre-processing step,

then it has to be defined for any virtual view during the view synthesis stage. The key
point here is to ensure texture alignment by keeping the geometries consistent with
each others, thus we want to compute an intermediate geometry Gv

i that depends on
the position of the virtual view. Let Vi be the current view to be projected into Vv.
The floating geometry for each vertex has already been computed for the original left
view Vl and right view Vr around Vv, namely Gl

i and Gr
i . Then the computation of Gv

i

consists in interpolating the geometry between Gl
i and Gr

i , vertex by vertex:

Principle of floating geometry 131

Figure 8.7: Computation of a floating vertex. P1 is projected in V2 giving p2
1 which is

matched with corresponding pixel p2. Finally, p2 is back-projected to the approximate
geometry resulting in the 3D point P 2

1 .

Gv
i = ωlG

l
i + ωrGr

i

where ω is a weight defined by similar weighting scheme as previous methods: ω for
a view V is inversely proportional to the angle between the viewing direction of V and
Vv. Because of this interpolation, a smooth deformation of the geometry is obtained
as the virtual view moves from one original view to another. Figure 8.8 illustrates this
view synthesis step using the same example as in the precedent figure. The view being
projected is Vi = V1 and the left and right views around the virtual view are Vl = V1 and
Vr = V2. The 3D vertex P1 is floated onto an intermediate position P v

1 = ω1P1 + ω2P 2
1 .

Finally, P v
1 is projected into the virtual view, giving the pixel pv

1.
This process is repeated for each view and associated geometry as illustrated in

figure 8.9 where G1 and G2 are floated to Gv
1 and Gv

2 respectively. As a result, the
geometries are consistent with each other, and texture misalignments are reduced both
when synthesizing original views and virtual views.

Pros and cons. We have seen that floating geometry aims at reducing texture mis-
alignments. To do so, the geometry is deformed onto a position guided by motion
estimation between synthesized and original images. For each view, one geometry is
used, and all the geometries are deformed to be consistent with each other for any
virtual view. This method can be used for both single or multiple geometries represen-
tations.

One advantage of floating geometry, as described above, is that it can be extended
to the temporal dimension so that a consistent geometry can be modeled across time
and potentially an efficient temporal coding scheme can be designed.

However, similarly to the floating textures and warped texture coordinates presented
previously, a perfect texture alignment is not guaranteed. Indeed the computed flow

132 Floating geometry

Figure 8.8: Virtual view synthesis with floating geometry. Vertex P1 is floated to an
intermediate position P v

1 between P1 and P 2
1 , then it is projected to the virtual view

giving pixel pv
1.

Figure 8.9: Virtual view synthesis with floating geometry. G1 and G2 are floated to Gv
1

and Gv
2 respectively. As a result, the geometries are consistent with each other, and

texture misalignments are reduced.

Results on polygon soup 133

fields of each views are not constrained to be coherent with each others, such that
combining the flow fields do not inverse the process.

In the figure 8.9, the vertices from Gv
1 and Gv

2 are not perfectly overlapped be-
cause the two geometries have different sets of vertices. This illustrates that there is
no matching between the vertices of the geometries because the motion estimation is
performed between pixels in the original views. If two vertices have the same semantic
meaning in two views, then only in this case they should overlap onto each other. This
is the case for example if a single geometry is used.

8.4 Results on polygon soup

The floating geometry principle is now applied on the polygon soup representation
introduced in this thesis. Two different scenarios are evaluated. First the floating
geometry is computed at the acquisition side of the system, such that transmission
issues are ignored. This scenario involves that all input views and their associated
geometry are available, therefore the floating geometry is computed between multiple
geometries. In this scenario, floating geometry will be first evaluated using one view.
Then, floating geometry will be evaluated with two views and their associated polygon
soup. This will show the improvement of consistency between multiple geometries. In
the second scenario, floating geometry will be computed at the user side where only
the polygon soup without redundancies is available. The advantage is that floating
data has not to be transmitted since it is computed at the user side. In this case, the
reduced polygon soup can be seen as a single geometry since redundancies have been
reduced. This will show that the floating geometry is compatible with the polygon soup
representation and that texture misalignments can be reduced with this method.

During all these experiments on floating geometry, the size of the quads used for
view synthesis is reduced to 2 × 2 pixels such that the resolution of the polygon soup is
increased and so is the precision of the floating geometry. This resolution during view
synthesis must be differentiated with the one during data transmission. Indeed, the size
of the quads is an important parameter for reducing the data before transmission by
using larger quads. However, once transmitted, the quads can be split to very small size
such that a dense polygon soup takes advantage of a dense motion estimation during
floating geometry computation.

For motion estimation, the motion estimator of Urvoy et al. [UCP+09] is used.
This motion estimator uses variable size block matching with some regularization.

8.4.1 Floating geometry at the acquisition side

One view projected into another original one. We first apply the floating ge-
ometry on one polygon soup extracted from one view only, and evaluate the texture
misalignment when projecting this view into another original view. The color images
and polygon soup associated to this other input view are used to compute the floating
geometry. For evaluation, comparison of the synthesized view without and with floating
geometry is performed. In addition, the PSNR between original and synthesized views

134 Floating geometry

is computed. Since only one view is projected, disoccluded areas appear and these
white areas are not included in the PSNR computation.

For this evaluation, V3 is projected into V1 using the polygon soup extracted from
V3 before redundancy reduction (i.e. full quadtree is used). We call this polygon soup
QV3

. The floating geometry is performed such that QV3
is floated onto QV1

giving the
floated polygon soup QV1

V3
. The maximum size of the quads is 2 × 2 pixels.

Figure 8.10 shows the synthesized images I1
3 without floating geometry and with

floating geometry as well as the original image I1. Images of the differences between
original and synthesized images are also given. Without floating geometry, errors are
particularly visible at texture edges, which corresponds to texture misalignments. With
floating geometry, errors are reduced. However, small errors are still visible.

Concerning the objective quality measure, the PSNR has increased by 2.5 dB with
the floating geometry (32.5 dB without vs 35.0 dB with).

This first experiment has shown that applying floating geometry to one polygon soup
extracted from one view helps to reduce texture misalignments when it is projected
into another view. Here, the side view was an original input one such that texture
misalignments could be directly computed and compensated using the color image and
geometry information of this input view.

One view projected into a virtual view. The same experiment is now performed
for a virtual view V2 such that the floating geometry is now interpolated between the
two positions given by the two side views V1 and V3. The original view V3 is projected
into virtual view V2 using the polygon soup QV3

. Since QV2

V3
is not available, then the

geometry is interpolated between QV3
and QV1

V3
.

Figure 8.11 shows the synthesized images I2
3 without floating geometry and with

floating geometry as well as the original image I2. Images of the differences between
original and synthesized images are also given. As previously, the errors are smaller
with the floating geometry than without. Note that the errors without the floating
geometry are smaller than in the previous example (i.e. higher PSNR). This can be
explained by the fact that the viewing angle between V3 and V2 is smaller than the one
between V3 and V1, therefore texture misalignments are also smaller.

Concerning the objective quality measure, the PSNR has increased by 1.2 dB with
the floating geometry (35.47 dB without vs 36.71 dB with). This confirms that the
floating geometry helps to reduce texture misalignments even when synthesizing virtual
views. Note that the PSNR values are both higher than in the previous example, this
confirms that the texture misalignments are smaller when viewing angle is smaller.
This also implies that the gain obtained with the floating geometry is smaller (1.2 db
instead of 2.5 dB previously).

Two views projected into a virtual view. The two previous examples have shown
that floating geometry helps reducing texture misalignments when using one view and
its associated geometry. Since one view is not sufficient to prevent disocclusion areas, we
now apply the floating geometry on the polygon soup representation extracted from two

Results on polygon soup 135

(a) I1
3 - Without floating ge-

ometry - PSNR = 32.5 dB
(b) I1 Original view (c) I1

3 - With floating geome-
try - PSNR = 35.05 dB

(d) Difference without floating geometry (e) Difference with floating geometry

Figure 8.10: One view projected into another original one. Comparison without and
with floating geometry.

136 Floating geometry

(a) I2
3 - without floating geome-

try - PSNR = 35.47 dB
(b) I2 Original view (c) I2

3 - with floating geometry -
PSNR = 36.71 dB

(d) Difference without floating geometry (e) Difference with floating geometry

Figure 8.11: One view projected into a virtual view. Comparison without and with
floating geometry.

Results on polygon soup 137

views: the quadtree of each view is extracted and the floating geometry is computed for
each quadtree. Then virtual view is synthesized using the synthesis methods described
in chapter 6 so that no holes appear anymore and a complete view is synthesized.

In this experiment, virtual view V2 is synthesized using original views V1 and V3

and their associated polygon soup QV1
and QV3

. Figure 8.12 shows the results of
this experiment. The errors with floating geometry are smaller than without. On the
contrary to previous examples, errors that appear in sub-figure (d) without floating
geometry are splitted, with a small shift in between (e.g. on the left, the arm, the
face and the white line in the wall are paired up). This double occurrence of errors
corresponds to texture misalignments coming from the two views. Since geometries of
both views are not consistent with each others, projected textures are not aligned in
the synthesized view. This results in blur or splitting artifacts as can be seen in sub-
figure (a) with the white line in the background or less clearly with the arm and face of
the character. After applying floating geometry, sub-figure (e) shows that the splitting
of the errors is reduced which proves that floating geometry improves the geometry
consistency of multiple models by floating them one onto each other.

Concerning the objective quality measure, the PSNR values are 37.13 dB without
floating geometry and 37.29 dB with floating geometry. These values are high because
the two projected views are blended together giving an average error smaller than
when one single view is used. A slight increase of the PSNR values is obtained with
the floating geometry

Compared to the previous experiment where only one view was used, here the
PSNR has increased by 0.58 dB (from 36.71 dB to 37.29 dB). However, overlapping two
complete views like this creates strong ghosting artifacts around depth discontinuities
as already shown in chapter 6 figure 6.15. These artifacts do not strongly affect PSNR
values but strongly affect the subjective quality since they usually appear inside a
uniform area. Moreover, the strong redundancies between the two views may represent
a data overload considering real time view synthesis capabilities. Therefore, in the next
experiment the redundancy reduction described in 5 is applied between the two views
and the floating geometry is evaluated with this reduced polygon soup.

Two reduced views projected into a virtual view. The floating geometry method
is now combined with redundancy reduction method so that the data load is reduced as
well as ghosting artifacts around discontinuities. On one hand, redundancies between
two views are reduced and a virtual view in between is synthesized. On the other
hand, floating geometry is first computed between two views, then redundancies are
reduced using the floating vertices computed and finally virtual view is synthesized and
compared with the one synthesized without floating geometry.

Figure 8.13 shows the results. Virtual view V2 has been synthesized using V3 and
V1. Redundancies between QV3

and QV1
have been reduced with V3 as the reference

view. The images of differences in sub-figures (d) and (e) show that the errors have
been reduced with the floating geometry.

The PSNR has increased by 1.0 dB with the floating geometry method (from 35.5
dB to 36.5 dB).

138 Floating geometry

(a) Synthesis - without floating
geometry - PSNR = 37.13 dB

(b) I2 Original view (c) Synthesis - with floating ge-
ometry - PSNR = 37.29 dB

(d) Difference without floating geometry (e) Difference with floating geometry

Figure 8.12: Two views projected into a virtual view. Comparison without and with
floating geometry.

Results on polygon soup 139

This experiment has shown that floating geometry, when computed at the acquisi-
tion side of the system, helps reducing texture misalignments when synthesizing virtual
views using a reduced polygon soup.

Summary Floating geometry has been performed at the acquisition side of the sys-
tem. The goal was to evaluate the reduction of texture misalignments, step-by-step,
when all information about original views are available. First, one view only was
projected in original and virtual views. It has shown that texture misalignments are
reduced and PSNR values increased in both original and virtual views. Then, floating
geometry was evaluated using two views. If the views are full, then texture misalign-
ments are slightly reduced but ghosting artifacts appear and redundancies are high.
On the other hand, if the two views are reduced, as in our proposed representation,
then ghosting artifacts are suppressed, redundancies are reduced, and floating geometry
reduces texture misalignments with a PSNR increase of 1dB.

8.4.2 Floating geometry at the user side

A Different scenario. The previous experiments have been performed at the acqui-
sition side such that full polygon soup and original images were available for each view
(as for multiple geometries representation). The floating geometry was thus computed
such that one geometry was floated onto another one. However, if the polygon soup
has to be transmitted, then the extra information due to the floating geometry compu-
tation may be an obstacle to low bit rate transmission. We now consider the scenario
where the reduced polygon soup (as it is described in chapter 5) is transmitted through
a band limited channel and floating geometry is computed using this reduced polygon
soup, at the user side of the system. The difference with the previous experiment is
that the polygon soup is now a single geometry since redundancies have been reduced.
Therefore, the back-projection step of the floating geometry computation is based on
the single geometry itself instead of multiple geometries as in the previous experiment.

Three reduced views projected into a virtual view. In this experiment, orig-
inal views V1, V3 and V5 are used. The reduced polygon soup is first computed, and
then given as an input to the floating geometry computation. Figure 8.14 shows the
results of view synthesis with and without floating geometry. We can see that texture
misalignments around edges have been reduced.

Tables 8.1 and 8.2 give the PSNR values obtained for virtual views V2 and V4 and
sequences Breakdancers and Ballet. For Breakdancers, the PSNR measure has increased
by 1.22 dB (from 35.29 dB to 36.51 dB) for virtual view V2, and by 1.59 dB (from 34.65
dB to 36.24 dB) for virtual view V4. Similarly, for Ballet sequence, the PSNR measure
has increase by 1.29 dB (from 33.71 dB to 35.00 dB) for virtual view V2, and by 1.53
dB (from 35.27 dB to 36.80 dB) for virtual view V4.

Finally, figure 8.15 focuses on strong artifacts already mentioned in this chapter
and chapter 6. Floating geometry succeeded to correct the texture misalignment in the
character’s face (sub-figure (a) and (b)). However, the white line in Breakdancers as

140 Floating geometry

(a) Synthesis - without floating
geometry - PSNR = 35.5 dB

(b) I2 Original view (c) Synthesis - with floating ge-
ometry - PSNR = 36.5 dB

(d) Difference without floating geometry (e) Difference with floating geometry

Figure 8.13: Two reduced views projected into a virtual view. Comparison without
and with floating geometry.

Results on polygon soup 141

(a) Synthesis - without floating
geometry - PSNR = 35.29 dB

(b) I2 Original view (c) Synthesis - with floating ge-
ometry - PSNR = 36.51 dB

(d) Difference without floating geometry (e) Difference with floating geometry

Figure 8.14: Floating geometry computed at the user side. Three reduced views pro-
jected into a virtual view. Comparison without and with floating geometry.

142 Floating geometry

Breakdancers no floating geometry floating geometry gain

virtual view V2 35.29 dB 36.51 dB +1.22 dB

virtual view V4 34.65 dB 36.24 dB +1.59 dB

Table 8.1: Comparison of PSNR values without and with floating geometry using three
views and reduced polygon soup.

Ballet no floating geometry floating geometry gain

virtual view V2 33.71 dB 35.00 dB +1.29 dB

virtual view V4 35.27 dB 36.80 dB +1.53 dB

Table 8.2: Comparison of PSNR values without and with floating geometry using three
views and reduced polygon soup.

well as the stripes in Ballet could not correctly be aligned and artifacts are still visible.
Two reasons may explain this limitation of the method.� First, floating geometry is interpolated between the lateral views around the vir-

tual one. However, if some vertices are occluded in one lateral view but dis-
occluded in the virtual view, then floating geometry cannot be computed and
texture misalignments are not corrected. This occlusion issue also appears in the
warped texture coordinate method but not the floating textures because com-
putations are directly performed in the virtual view. One solution could be to
extrapolate the floating geometry of non-occluded vertices to occluded vertices
such that a correction is performed even if the geometry is occluded.� Another reason comes from the limitation of the motion estimation. Indeed, if the
texture deformation after projection is too strong, the motion estimation between
projected texture and original one may fail. This effect increases as the viewing
angle between views increases. For example, floating geometry computation is
more difficult between views V1 and V5 than between views V1 and V3.

8.5 Conclusion

This chapter has introduced a new method for correcting texture misalignments that
appear in synthesized views and geometry inconsistencies between multiple views. The
method is called floating geometry and consists in deforming the geometric model onto
a position guided by motion estimation between synthesized and original images. This
view-dependent geometry is computed as a pre-process using input views, and it is
interpolated when virtual views are synthesized.

Conclusion 143

(a) Breakdancers - without floating geometry (b) Breakdancers - with floating geometry

(c) Ballet - without floating geometry (d) Ballet - with floating geometry

Figure 8.15: Comparison of artifacts with and without floating geometry.

144 Floating geometry

The method has been evaluated within two scenarios: one scenario where floating
positions are computed at the acquisition side of the system and one scenario where they
are computed at the user side of the system. In the first scenario, all original views and
geometry are available, thus an accurate floating geometry can be computed. However,
the data about floating geometry has then to be transmitted which increases the data
load. In the second scenario, the floating geometry is not transmitted but computed at
the user side, which saves data load but increases the complexity at the user side.

Results have shown that texture misalignments in virtual views can be reduced and
that consistency between multiple geometric models is improved. Moreover, with the
tested data set, results have shown that the floating geometry method is compatible
with the polygon soup representation proposed in this thesis. An increase of up to 1.59
dB in PSNR measure is obtained when synthesizing virtual views at the user side of
the system.

Results have also shown that the efficiency of the floating geometry depends on
the viewing angle between input views. The efficiency decreases as the viewing angle
increases. Moreover, occluded areas have raised an issue since their floating position
cannot be computed although they may need correction when they are disoccluded in
virtual views. An extrapolation of the floating geometry has been mentioned but not
tested yet.

This floating geometry method may be compared to floating textures and warped
texture coordinates methods [EDS+08]. The main difference is that geometry is floated
instead of texture. For both methods, we have seen that perfect texture alignment is
not guaranteed because the computed flow fields are not necessarily coherent with each
others. More experiments and comparisons on the same multi-view video sequences
with free viewpoint navigation could help identifying advantages and drawbacks of
these methods.

The floating geometry method has also been designed with temporal aspects in
mind. Indeed, as the geometry is floated in space between multiple views, it could also
be floated in time. This method could help improving consistency in time and could
also be used for time interpolation or time sub-sampling such that missing intermedi-
ate frames would be interpolated using floating geometry. Moreover, for compression
considerations, the floating information of a polygon could be coded instead of cod-
ing a new quad at each time instant. The concept of motion tubes studied by Urvoy
[UCP+09] could be extended to that purpose.

Chapter 9

Conclusions and perspectives

Contents

9.1 Summary of contributions . 145

9.1.1 Chap. 3: Study of existing representations 145

9.1.2 Chap. 4: Overview of the representation 146

9.1.3 Chap. 5: Construction of the polygon soup 146

9.1.4 Chap. 6: Virtual view synthesis 147

9.1.5 Chap. 7: Compression of the polygon soup 147

9.1.6 Chap. 8: Floating geometry 148

9.2 Perspectives . 148

This thesis has presented a new representation for multi-view video. This repre-
sentation is compact and takes into account in a unified manner the compression and
view-synthesis stages of the system. In this chapter, the contributions of this study
are summarized and possible improvements are presented. Finally, we propose some
directions for future research.

9.1 Summary of contributions

9.1.1 Chap. 3: Study of existing representations

According to the targeted multi-view video system and associated constraints intro-
duced in chapter 1, we have studied the properties of several existing representations
and analysed the pros and cons each of them. This led us to few conclusions for the
choice of a representation adapted to multi-view video:� Geometry information is necessary for synthesizing virtual views if a sparse cam-

era arrangement is used. Multi-view video plus depth (MVD) can be used as an
input for constructing the geometry representation.

145

146 conclusion� Polygonal primitives have several advantages for compactness and view synthesis
performances. Therefore a polygon-based representation may be well adapted to
a multi-view video system.� Using single or multiple textures/geometries influences the compromise between
compactness and quality. The representation should contain both single and
multiple textures/geometries, at a local level. In other words, some areas of the
scene should be represented with multiple textures/geometries (for quality) and
some areas should have only one occurrence (for compactness).� Artifacts in virtual views are often due to inaccuracies of a single model or in-
consistencies between multiple models. The representation should deal with this
issues for good quality of virtual views.� A standardized compression method exists for multi-view video. However, it is
not adapted to the properties of depth maps and no other compression method has
yet been adopted for geometry in the context of multi-view video with arbitrary
scenes. Particularly, depth discontinuities must be preserved and require special
attention within the compression step. Therefore, the representation should be
compatible with an efficient compression method that avoids visual artifacts in
virtual views.

9.1.2 Chap. 4: Overview of the representation

This chapter has introduced our proposed representation and its properties. It is made
of a set of 3D polygons not necessarily connected to each others and possibly overlap-
ping. The polygons are stored as 2D quads with depth values at each corners. They
are extracted from the input depth maps using a quadtree decomposition technique.
The polygons can evolve through space and time. The original color images are used
to texture each polygon.

These choices aim at providing a compact representation which can be efficiently
compressed and allows good quality virtual views with reduced view synthesis com-
plexity. The rest of the thesis was dedicated to the construction and validation of this
representation for a multi-view video system.

9.1.3 Chap. 5: Construction of the polygon soup

This chapter has presented the construction of the polygon soup. First, a set of quads
is extracted using a quadtree decomposition of the depth maps. This step preserves
depth discontinuities and geometric details while keeping as few quads as possible. To
do so, an error measure based on the re-projection shift has been proposed. Results
have shown that it allows to better control the compromise between compactness and
geometry approximation. Second, an original method for the reduction of inter-view
redundancies has been presented. It uses a priority order to select reliable quads while
keeping as few quads as possible. Results have shown that about 65% of quads have
been removed compared to the full polygon soup.

Summary of contributions 147

A possible improvement of the construction would be to use an image-based error
measure so that the quality of synthesized views is taken into account for tuning the
parameters. However, to prevent excessive subdivisions of the quads, such a measure
should be adapted to the properties of synthesized views and to the relations between
texture and geometry errors.

9.1.4 Chap. 6: Virtual view synthesis

This chapter has presented the view synthesis stage based on the polygon soup rep-
resentation. Most of the techniques presented in this chapter are known and already
used for other applications or other representations. Therefore, the main contribution
of this chapter is the adaptation of these techniques to the polygon soup representa-
tion, and the evaluation of the quality of the virtual views. First a method to remove
cracks between polygons of different size has been applied. Second, the blending of
the textures in overlapping areas has been detailed. It provides smoother transitions
between polygons. Finally, classical image processing algorithms have been performed
to enhance the virtual views. It includes inpainting of unknown areas and edge filtering
of object boundaries.

The evaluation of the virtual views has shown that good quality images were ob-
tained, at a PSNR of about 34-35 dB, and without ghosting artifacts. However, some
artifacts appear: cut of line, blocky artifact, distortions. It is mainly due to geometry
inaccuracies or inconsistencies of polygons extracted from different views. A possible
solution to reduce these artifacts is studied in chapter 8.

The different processes have not been implemented yet for real-time performances,
therefore no quantitative results are available concerning the computational complexity.
The proposed view-synthesis method includes quadtree subdivision, projection and
texture mapping, blending, inpainting and edge filtering. Compared to view-synthesis
methods using depth image-based representation like MVD, a smaller set of polygons
replace the points, no median filtering that removes sampling artifacts is needed, neither
adaptive processing of edges that removes ghosting artifacts.

9.1.5 Chap. 7: Compression of the polygon soup

In this chapter, an adapted compression technique of the polygon soup has been pro-
posed. The method takes advantage of the quadtree structure that helps to efficiently
retrieve the position and size of each quad. The compression method consists in pre-
dicting the depth values of the quads’ corners using the already coded neighbor quads.
Then, prediction residues are quantized and coded with context adaptive binary arith-
metic coding (CABAC).

The performances of the compression method have been compared with an existing
approach that uses multi-view plus depth representation (MVD) compressed with multi-
view coding technique (MVC). Results have shown that the proposed method gives a
slightly higher quality of synthesized views (+0.3 dB at most) at medium and high
bit rates. Moreover, no ghosting artifacts were observed with the compressed polygon

148 conclusion

soup representation, whereas these artifacts appear when using the compressed MVD
representation.

The MPEG’s 3DV group is currently studying how to represent and compress the
depth information of MVD data. The proposed polygon soup and associated compres-
sion technique could be considered as an alternative to these methods. However, the
compression method is not yet mature, and more improvements are necessary to reduce
distortions: first, the method is not efficient at low bit rates. An optimization of the
parameters of the quadtree could help improving the performances at such bit rate.
The thresholds that control depth discontinuities and geometry accuracy can be tuned
for this purpose. Second, the object boundaries exhibit small distortions due to the
compression step. An adaptation of the compression method is necessary. A possible
improvement could be to modify the parsing of the quads during the prediction step.
Indeed parsing the quads from the bigger size to the smallest size could help predicting
smallest quads around discontinuities at last, thus prediction from connected neighbors
quads and not only from top left neighbors quads would be possible.

9.1.6 Chap. 8: Floating geometry

This chapter has introduced a dynamic representation that helps reducing texture mis-
alignments that appear in synthesized views. The method is called ”floating geometry”
and consists in deforming the geometric model onto a position guided by motion es-
timation between synthesized and original images. This view-dependent geometry is
computed as a pre-process using input views, and it is interpolated when virtual views
are synthesized. This method is applied to the polygon soup and may be applied to
any other geometry.

Results have shown that texture misalignments in virtual views can be reduced and
that consistency between multiple geometric models is improved. An increase of up to
1.59 dB in PSNR measure is obtained. Results have also shown that the efficiency of
the floating geometry depends on the distance (viewing angle) between input views.
The efficiency decreases as the viewing angle increases. Moreover, occluded areas have
raised an issue since their floating position cannot be computed although they may
need correction when they are disoccluded in virtual views. An extrapolation of the
floating geometry has been mentioned but not tested yet.

9.2 Perspectives

We have already mentioned that the construction of the polygon soup could be tuned
using an image-based error measure, such that photo-consistency is checked across
the views. However, this might result in high subdivision of the quadtree even with
only small geometry errors. Indeed, image-based error measures are not adapted to
errors due to geometry approximation and re-projection. In addition, we have seen
that floating geometry helps reducing texture misalignments due to geometry errors,
but still strong distortions could not be corrected. Therefore, the result of the float-
ing geometry could be used as a feedback loop for the construction of the polygon

Perspectives 149

soup: if strong image errors still appear after the floating geometry, then the original
quads corresponding to the distorted area should be added to the polygon soup. Thus,
redundancies would be added at a local level, and it would allow to better tune the
compactness and image quality trade-off.

Moreover, we have seen that the quality of virtual views decreases as the distance
of projection increases. For large navigation range, the central view which is used as
reference view may have insufficient quality when projected to a large distance. In
this case, the combination of two or more reference views could help preserving a good
navigation range and image quality. This would be similar in spirit with the Depth
Enhanced Stereo (DES) format [SMM+09] (mentioned in section 3.3) that uses two
reference views, each associated with LDV representation.

The consideration of the temporal dimension is still to be investigated for our
compression method. Similarly to the video compression approach in Urvoy’s work
[UCP+09], the representation is defined as a set of polygons. The extension to the tem-
poral dimension could consider the temporal evolution of a polygon. A frame would
then be reconstructed by sets of polygons coming from different viewpoints (as already
seen) but also from different temporal time instant. This notion of evolution of the
polygons leads to a dynamic version of the polygon soup.

The floating geometry method has also been designed with temporal aspects in
mind. Indeed, as the geometry is floated in space between multiple views, it could also
be floated in time. This method could help improving consistency in time and could
also be used for time interpolation or time sub-sampling such that missing intermedi-
ate frames would be interpolated using floating geometry. Moreover, for compression
considerations, the floating information of a polygon could be coded instead of coding
a new quad at each time instant.

150 conclusion

Appendix A

Fusion of background quads

Contents

A.1 Introduction . 151

A.2 Fusion of the background quads 153

A.3 Results . 154

A.4 Conclusion . 155

This annex presents an additional method for reducing the number of quads in the
polygon soup. Since only the number of quads has been evaluated and not yet the
compression and view synthesis stages, it is presented in this annex rather than in the
chapters of this study.

A.1 Introduction

During the construction of the polygon soup, the input depth maps are decomposed into
a quadtree structure. Three criteria are respected during this decomposition: disconti-
nuity preservation, geometry preservation and maximum quad’s size. The discontinuity
preservation is achieved by subdividing the quads until no one connects both foreground
and background areas. This subdivision results in a high number of small quads around
all depth discontinuities. Figure A.1 illustrates this process: a depth discontinuity sep-
arates background quads and foreground quads. Many small quads are created around
the depth discontinuity. This can be seen also in figure A.2 that shows the final polygon
soup extracted from Breakdancers sequence. It is shown from a lateral viewpoint such
that decomposition of the background and foreground areas can be observed.

Although this decomposition method preserves very well depth discontinuities, the
geometry around may be very simple and planar, such that it could be approximated
by big quads. Therefore, using so many small quads is inefficient for the compactness
of the representation.

In order to reduce the number of quads in the polygon soup, we propose to fuse
the background quads that were subdivided because of a depth discontinuity. We will

151

152 Fusion of background quads

Foreground
quads

quads

Depth discontinuity

Background

Figure A.1: Around depth discontinuities, quads are subdivided resulting in background
quads and foreground quads.

High subdivision
of the quads

Figure A.2: High subdivision of the quads situated around depth discontinuities.

Fusion of the background quads 153

see in the following that our proposed method can fuse either background quads or
foreground quads but not both. We have decided to fuse background quads since this
area of the scene is often more smooth and planar than the foreground. To fuse the
quads, few issues have to be solved concerning the depth values and textures of the
new quads, and the modification of the quadtree structure. A method that deals with
these issues is now detailed.

A.2 Fusion of the background quads

The goal is to fuse small quads in the background in order to get bigger quads. This
process is performed on each quadtree obtained after the construction of the polygon
soup, explained in chapter 5. It results in a modified quadtree with fewer and bigger
quads. In the following, background is denoted Bg and foreground Fg. Considering the
quadtree structure, the fusion could be pretty simple: four leaves of the tree just have
to be combined into their father node. However, since the quads are situated around
discontinuities, some of the leaves belong to the Fg and must not be fused with the Bg.
This involves to slightly modify the quadtree structure such that fused Bg quads can
also have children Fg quads. Figure A.3 illustrates this fusion and modification of the
quadtree structure. In order to signal a fused node in the quadtree structure, a 1-bit
flag is used. If ’1’, it means that the node contains a quad and also children quads.

Bg Bg Bg Fg

Before fusion After fusion

Fg

Bg

Figure A.3: Fusion of background quads and modification of the quadtree structure.
Before the fusion, many quads are situated in the Bg but there are also Fg quads that
cannot be fused. After the fusion, the father node contains the fused Bg quad and has
also the child Fg quad. It is a fused node.

Once the quadtree structure is modified, we can explain the fusion process. The
main issue here is to define new corners and transparent texture in the occluded areas.
Indeed, since the fused quad contains also one or more Fg children, it is occluded by
them. Therefore, the occluded corners of the fused Bg quad have to be estimated, and
the occluded area must have transparent texture because it is unknown. Figure A.4
illustrates this problem.

The fusion process consists in parsing the quadtree from bottom to top. We start

154 Fusion of background quads

quads

quads
Foreground

Background

New cornerFused quad

Occluded
area

Figure A.4: Creation of the fused quad: occluded areas must have transparent texture,
and the depth of the new corners must be estimated .

from the leaves and try to fuse children quads while climbing up the tree. Therefore,
one fusion involves maximum four children quads at a time, in the previous figure A.4
the result of all the fusions is shown, not the intermediate fusions.

Each quad has four children quads (except leaves). If there is a discontinuity inside
the quad, it means that some children quads are Bg and some are Fg. Thus we want
to fuse the Bg children quads. To do so, non-occluded corners of the fused quad are
associated with those of its Bg children. Then the computation of the new corners
occluded by Fg children quads is simply performed by interpolating non occluded Bg
children as if the surface was flat. This results in the fused quad. Before creating this
new quad, the geometry preservation criterion has to be checked, which is performed
with the same method explained in section 5.1. If the criterion is not respected, then
the quads are not fused. Finally, the transparent area is managed by an additional
texture image dedicated to the fused quads: it contains transparency in areas delimited
by the Fg children quads. Note that this second texture doesn’t have to be transmitted
since it can be created at the user side using the positions of Fg children quads. On
the other hand, if Fg children quads where also fused, then the transparent area could
not be recovered anymore and additional texture images would have to be transmitted.
This is the reason why only background quads are fused. All this process in summarized
in the algorithm 2 below.

A.3 Results

The aim of the fusion process was to reduce the number of quads in the polygon soup
while preserving the geometry accuracy. Therefore, we now evaluate the performance of
this method in terms of the reduction of number of quads. The small modification of the
quadtree structure requires adapting the compression and view synthesis steps, which
has not been done yet. Therefore, no rate/distortion nor PSNR results are available

Conclusion 155

Objective: Parse a quadtree (bottom-up) and fuse Bg quads when possible.

1 foreach quad do
2 if DiscontinuityInside (quad) then
3 identify Bg and Fg children quads;
4 Compute new corner(s) and fuse Bg children quads ;
5 if PreservesGeometry (fusedQuad) then
6 Insert fused quad in quadtree;
7 Add transparency to occluded area of fused quad;
8 Remove Bg children quads from quadtree;

end

end

end

Algorithm 2: Fusion of background quads

for the moment.

Table A.1 compares the number of quads before and after the fusion of background
quads. A reduction of 26% of quads is achieved for sequence Breakdancers and 20% for
sequence Ballet.

Breakdancers Ballet

Before fusion 23558 27615

After fusion 17334 22186

Quad reduction -26% -20%

Table A.1: Number of quads before and after the fusion process.

Finally, figure A.5 gives a zoomed area of the polygon soup before and after the
fusion. The polygon images show that many small quads have been replaced by bigger
ones and thus the polygon soup is more compact. Finally the color images show that the
image quality is preserved and the transparency is actually applied to the fused quads.
Note that some small cracks appear in the images. Indeed the cracks elimination process
presented in section 6.1 is not implemented in this example.

A.4 Conclusion

This annex has presented a new method for reducing the number of quads in the
polygon soup representation. Starting from each reduced quadtrees obtained after
the construction of the polygon soup, the idea is to fuse background quads that were
subdivided because of depth discontinuities. To do so, each quadtree is parsed from

156 Fusion of background quads

Quads are fused

is preserved
Image quality

Before fusion After fusion
Figure A.5: Comparison of the polygon soup before and after the fusion of background
quads.

Conclusion 157

bottom to top and background quads are fused into a bigger quad while foreground
quads are preserved thanks to a small modification of the quadtree structure.

Results have shown that the number of quads could be reduced from about 20 to
25%. Thus it efficiently reduces the number of quads.

This method has not been fully evaluated. Indeed the view synthesis and compres-
sion steps have to be adapted to the new structure of the quadtree. We can expect that
a lower bit rate would be obtained with this technique, but this has to be verified since
the new quadtree structure requires an additional 1-bit flag at each node of the tree.

Finally, the fused quads can be seen as small billboards since their surface is bigger
than the part of the scene they describe. In this sense, it can be compared to the
impostor-based representations presented in chapter 3. More particularly, both tech-
niques need to define the transparent surface of the polygon, which was also referred
to as texture clipping in the chapter. However, the difference is that texture clipping
had to be transmitted as a mask or computed with alpha matting or with additional
depth maps, which either increase the bit rate or the view synthesis complexity of the
system. In our proposed method, no such drawbacks appear since the transparent areas
are recovered by simply reading the quadtree structure.

158 Fusion of background quads

Appendix B

Représentation par soupe de

polygones déformables pour la

vidéo 3D

Contents

B.1 Introduction . 159

B.2 Représentations existantes . 160

B.3 Une nouvelle représentation 162

B.4 Construction de la soupe de polygones 163

B.5 Synthèse de vues virtuelles . 165

B.6 Compression de la soupe de polygones 168

B.7 Géométrie déformable . 170

B.8 Conclusion . 172

B.1 Introduction

L’année 2010 a été marquée par l’arrivée de la vidéo 3D pour le grand public. Le film 3D
’Avatar’ au cinéma en décembre 2009 a rencontré un énorme succès1, et les compagnies
d’électronique annoncent la démocratisation des téléviseurs ’3D-ready’2. En effet, les
technologies ont suffisamment évolué pour pouvoir capter deux vues au même instant,
les traiter, les transmettre et les afficher avec une bonne qualité. Ici, le terme ’3D’ est
justifié par la visualisation stéréoscopique: la vision binoculaire humaine est exploitée
pour obtenir une meilleure perception de la profondeur, donnant ainsi une sensation
de relief. En fait, il n’y a qu’une seule image en plus comparé à la vidéo 2D classique,

1http://avatarblog.typepad.com/avatar-blog/2010/01/avatar-biggest-movie-of-alltime.html
2http://www.3dtvsource.com/sony-2010-3d-tv-lineup/

159

http://avatarblog.typepad.com/avatar-blog/2010/01/avatar-biggest-movie-of-alltime.html
http://www.3dtvsource.com/sony-2010-3d-tv-lineup/

160 Représentation par soupe de polygones déformables pour la vidéo 3D

mais c’est suffisant pour montrer le potentiel de la vidéo 3D à améliorer la description
d’une scène et la sensation de profondeur pour les utilisateurs.

De nombreux travaux de recherche sont à présent dirigés vers la video multi-vue
afin d’augmenter le nombre d’images d’une scène au même instant [SKS05, Mag05,
KSM+07, DKM+10]. La vidéo multi-vue apporte principalement deux fonctionnalités
aux utilisateurs. La première est la navigation: l’utilisateur peut changer de point de
vue dans la scène. La seconde est la visualisation auto-stéréoscopique: l’utilisateur
profite de la stéréoscopie sans avoir besoin de lunettes spéciales.

La mise en place d’un système de vidéo multi-vue fait apparâıtre de nombreux défis
à toutes les étapes de la châıne: acquisition, représentation, transmission, synthèse de
vue et affichage. L’objectif de cette thèse est de s’intéresser à l’étape de représentation.
Cette étape est très importante car elle influence la quantité de données devant être
transmise, la méthode de compression à utiliser ainsi que la complexité de calcul et
la qualité finale de l’image. Les représentations de données existantes contiennent
souvent des informations sur la géométrie de la scène en plus des images couleurs. Ces
représentations ont leurs avantages et inconvénients. Nous souhaitons les analyser pour
ensuite proposer une nouvelle représentation qui prennent en compte les problèmes de
quantité de données, de méthode de compression, de complexité de calcul et de qualité
d’image.

B.2 Représentations existantes

Dans le contexte de la vidéo multi-vue, une représentation est une description de la scène
en utilisant un certain type de données. Le choix d’une représentation est important
car elle influence les étapes du système: tout d’abord la représentation est construite
à partir des données acquises, puis elle est compressée et transmise. Ensuite, du côté
utilisateur, la représentation est décompressée et des vues sont synthétisées pour être
affichées.

Dans le but de comparer les représentations entre elles, cinq propriétés ont été
analysées: la complexité de construction, la compacité, la compatibilité avec la com-
pression, la complexité de synthèse de vue, la qualité d’image et l’étendue de navigation
possible. De plus, pour faciliter la comparaison entre représentations, le type de système
visé et les contraintes associées à ce système ont été définis.

Quatre familles de représentations ont été étudiées, certaines contenant des sous-
familles, donnant au final sept différentes représentations:� Représentation basée images. Cette représentation n’utilise pas d’information

géométrique, mais uniquement des images capturées par plusieurs caméras. C’est
un avantage pour la compacité et la compression de cette représentation. En
revanche, la qualité des images synthétisées et la navigation autour des images
originales sont très réduites à cause du manque d’information géométrique.� Représentation basée images plus profondeur. Elle utilise, en plus des images orig-
inales, des cartes de profondeur qui associent une valeur de profondeur à chaque

Représentations existantes 161

pixels de l’image. Deux types de représentations basées image plus profondeur
ont été étudiés: multi-vues plus profondeur (MVD: multi-view plus depth) et
profondeur par couche (LDV: layered depth video). La représentation MVD est
illustrée dans la figure B.1. Elle a l’avantage de donner une bonne liberté de
navigation avec des images de grande qualité. Mais la quantité de données est
élevée. A l’inverse, la représentation LDV est compacte mais la navigation et la
qualité d’image sont plus restreintes. Avec ces deux représentations, de nombreux
travaux sont actuellement dirigés vers la compression et la synthèse de vue. La
méthode de compression doit préserver le plus possible les contours de profondeur.
La synthèse de vue fait appel à de nombreux post-traitements qui augmentent la
complexité du côté utilisateur.� Représentation basée surface. Elle modélise la surface d’une scène en utilisant
un certain type de primitive géométrique. Les primitives les plus utilisées sont
les polygones (connectés entre eux pour former un maillage) et les points. Les
maillages de polygones sont très utilisés dans la communauté graphique pour
représenter des modèles synthétiques. Par conséquent les cartes graphiques sont
très performantes pour afficher de tels modèles. De plus, des polygones de grande
taille peuvent être utilisés pour représenter des surfaces planes, ce qui permet
d’augmenter la compacité. La compression des maillages de polygones représen-
tants des objets seuls et souvent synthétiques aboutit à des standards de compres-
sion performants. En revanche, il semble que la compression de scènes arbitraires
contenant des discontinuités de profondeurs soit moins performante et peu de
contributions ont montré leur efficacité pour la vidéo 3D. En ce qui concerne la
représentation utilisant des points comme primitive géométrique, elle est princi-
palement utilisée pour modéliser des scènes complexes avec beaucoup de détails.
En effet, dans ce cas il est plus efficace d’afficher un nuage de points plutôt
qu’un maillage très fin de polygones dont la taille dans l’image peut être plus
petite qu’un pixel. La représentation par points contient donc généralement une
énorme quantité de points, ce qui est un inconvénient pour la compacité de la
représentation.� Représentation basée imposteurs. Elle utilise des plans 3D sur lesquels la texture
des images est plaquée. Ils sont souvent employés pour modéliser des objets com-
plexes: à la place de l’objet complexe est affichée son image, un imposteur. Deux
types d’imposteurs utilisés pour des scènes réelles ont été étudiés: les billboards
(litt. ”panneau d’affichage”) et les microfacettes. Les billboards sont des grands
plans 3D qui permettent une extrême simplification de la scène. A l’inverse, les
microfacettes sont des plans 3D plus petits et toujours orientés face à la caméra.
Ces deux représentations sont très compactes mais aboutissent soit à une faible
navigation et qualité d’image (billboards) soit à une complexité de synthèse de
vues élevée (microfacettes).

L’étude des avantages et inconvénients des représentations existantes a permi de lister
quelques conclusions concernant le choix d’une représentation pour la vidéo 3D:

162 Représentation par soupe de polygones déformables pour la vidéo 3D

Figure B.1: Exemple de vidéo multi-vues plus profondeur (MVD).� L’utilisation d’informations géométriques est nécessaire pour synthétiser des vues
de bonne qualité en utilisant des caméras distantes les unes des autres. Les
cartes de profondeur peuvent êtres utilisées comme données d’entrées pour cette
géométrie.� Les primitives polygonales sont avantageuses pour la compacité et la synthèse de
vues. Une représentation basée sur des polygones pourrait être bien adaptée à la
vidéo 3D.� Utiliser une ou plusieurs textures/géométries influence le compromis entre com-
pacité et qualité. Par conséquent, une représentation doit pouvoir régler ce com-
promis en conservant plusieurs occurrences pour certaines parties d’une scène
(pour la qualité) et en supprimant d’autres parties d’une scène (pour la compac-
ité).� Les artefacts qui apparaissent dans les vues virtuelles sont souvent dus aux im-
précisions de la géométrie ou bien aux inconsistances entre plusieurs géométries.
Ces défauts doivent être pris en compte dans la représentation.� La représentation doit être compatible avec une méthode de compression efficace
et qui ne crée pas d’artefacts visuel gênants.

B.3 Une nouvelle représentation

Cette section décrit la nouvelle représentation proposée dans cette thèse, appelée soupe
de polygones déformables et illustrée en figure B.2. Les données d’entrées utilisées pour
construire la soupe de polygones sont des données multi-vues plus profondeurs (MVD,
figure B.1). Tout d’abord, les primitives géométriques utilisées sont des polygones 3D.
Ces polygones ne sont pas nécessairement connectés entre eux et peuvent se superposer.
Ensuite, ces polygones sont définis en 2D avec des valeurs de profondeur à chaque coin.

Construction de la soupe de polygones 163

Ces polygones 2D sont extraits des cartes de profondeur grâce à une décomposition en
quadtree, on les nomme quads. Pour une meilleure compacité de la représentation, les
redondances inter-vues sont réduites de façon adaptative en supprimant certains quads
de la représentation. Cette soupe de polygones peut être compressée soit par une
méthode basée quadtree, soit par une méthode basée bloc. Concernant les textures, les
images originales acquises par les caméras sont utilisées et plaquées sur les polygones 3D.
Ces images sont compressées avec les méthodes existantes de compression vidéo multi-
vues. Pour les vues synthétisées, des post-traitements sont ajoutés pour améliorer la
qualité finale de l’image. Enfin, nous introduisons la notion de géométrie déformable en
fonction du point de vue afin de réduire les artefacts et désalignements de textures dans
les images synthétisées. Cette déformation peut aussi être appliquée dans le temps afin
de considérer l’évolution temporelle d’un polygone.

View V5 Depth map Z5

View V3

Depth map Z3

Depth map Z1

View V1

3D polygon soup

Figure B.2: Soupe de polygones. Chaque polygone 3D est définit par un polygone 2D
(quad) et par des valeurs de profondeurs à chacun de ses coins.

B.4 Construction de la soupe de polygones

La soupe de polygones est construite à partir des cartes de profondeur. Deux étapes
peuvent être distinguées: la décomposition en quadtree qui extrait un ensemble de
quads pour chaque vue, et la réduction des redondances inter-vues qui supprime les
quads redondants et peu fiables par ordre de priorité. Ces étapes sont illustrées dans
la figure B.3.

Pour éviter l’apparition d’artefacts dans les vues synthétisées, la décomposition des
cartes de profondeur en quadtree doit respecter les discontinuités de profondeur ainsi
que les détails de la géométrie de la scène. Le fait de respecter les discontinuités de
profondeur permet de ne pas utiliser un quad qui relierait à la fois un objet en avant-
plan et un objet en arrière-plan. Le fait de respecter la géométrie de la scène permet
de conserver les détails géométriques tout en utilisant des grands quads dans les zones
planes. Dans ce but, une mesure d’erreur basée sur le décalage de re-projection est

164 Représentation par soupe de polygones déformables pour la vidéo 3D

Figure B.3: Vue d’ensemble de la méthode de construction de la soupe de polygones.

Synthèse de vues virtuelles 165

proposée. Ce critère permet de prendre en compte l’étendue de la navigation et donc
la qualité des vues virtuelles synthétisées. Ainsi, une vue centrale et une vue latérale
n’ont pas la même finesse de décomposition car elles n’ont pas les même re-projections.

La décomposition en quadtree donne une représentation redondante car plusieurs
polygones venant de vues différentes peuvent représenter la même zone de la scène. Par
conséquent, la deuxième étape de la construction de la représentation est de réduire
ces redondances. L’idée est de sélectionner les quads de façon itérative selon un ordre
de priorité permettant d’ajouter d’abord les quads fiables et de grandes tailles. L’ordre
de priorité dépend à la fois de la position des vues, de la taille des quads et de leurs
profondeurs. Une itération consiste à prédire une vue avec l’ensemble des quads déjà
sélectionnés et ajouter les quads manquants en fonction de l’ordre de priorité défini.
En plus de réduire les redondances, cette étape permet aussi de supprimer les quads
peu fiables qui pourraient créer des artefacts gênants dans les vues virtuelles.

Une fois la soupe de polygones construite tous les polygones sont utilisés pour
synthétiser des vues. La figure B.4 illustre la soupe de polygones non-texturée projetée
dans une vue virtuelle en dehors de la fenêtre de navigation afin de bien visualiser les
discontinuités de profondeurs. La compacité de cette représentation est évaluée par le
nombre de quads obtenus. Les résultats évalués sur deux séquences MVD acquises avec
le même arrangement de caméras ont montré que la soupe de polygones contient environ
25 000 quads, ce qui est équivalent au nombre de quads pour une vue non réduite, et que
environ 65% de quads ont été supprimés grâce à l’étape de réduction des redondances.
Dans la suite, la soupe de polygones est évaluée aux étapes de synthèse de vues et
compression.

B.5 Synthèse de vues virtuelles

Afin d’évaluer la qualité des images synthétisées en utilisant la soupe de polygones,
des méthodes classiques de projection et de pré- et post-traitements ont été adaptées
à la soupe de polygones. La synthèse de vues virtuelles est effectuée par projection
des polygones en utilisant une carte graphique et la librairie openGL. La texture des
images est plaquée sur chaque polygone correspondant. Avant cette étape de projection,
une redivision des quadtree est effectuée afin d’éviter les artefacts de fissures entre
polygones de tailles différentes. Après l’étape de projection, il est possible que des
polygones issus de vues différentes se superposent dans la vue virtuelle. Afin d’adoucir
les transitions entre polygones qui se superposent (dues à des inconsistances de couleurs
ou de géométries entre vues), les couleurs de ces polygones projetés dans la vue virtuelle
sont moyennées de façon adaptative avec une pondération dépendant de la position des
vues originales en fonction de la vue virtuelle. Enfin, une dernière étape améliore
l’image finale. Tout d’abord une méthode d’inpainting est appliquée, elle consiste à
remplir les zones restantes qui ne sont pas prédites par la projection des vues (zones
occultées dans les vues originales). Ensuite, un filtre passe-bas est appliqué sur les
contours des discontinuités de profondeurs afin de donner un aspect plus naturel à ces
contours qui sont en général trop nets après l’étape de projection. Ces différentes étapes

166 Représentation par soupe de polygones déformables pour la vidéo 3D

Figure B.4: Soupe de polygones obtenue après les deux étapes de la construction et
projetée dans une vue virtuelle hors de la fenêtre de navigation.

de traitements sont résumées dans le schéma de la figure B.5.

View projection Multi−view blending Virtual view enhancement

Input Processing Output

Virtual view
Polygon soup

Original images

Figure B.5: Vue d’ensemble des étapes de la synthèse de vues virtuelles.

Il est à noter qu’aucun traitement spécifique n’est ajouté pour supprimer les arte-
facts appelés artefacts fantômes (ghosting artifacts en anglais). En effet, lors de la
construction de la représentation, l’ordre de sélection des polygones est fait pour sup-
primer les petits polygones proches des discontinuités et qui sont généralement la cause
de ces artefacts. La figure B.6 illustre l’avantage de supprimer ces petits polygones.

Pour évaluer la qualité des images synthétisées, les points de vues qui ont été syn-
thétisés correspondent à des points de vues de caméras originales. Ainsi, une mesure
d’erreur objective peut être utilisée pour comparer une vue originale avec celle syn-
thétisée. La mesure d’erreur utilisée est le PSNR (Peak Signal to Noise Ratio) qui
donne des résultats en décibels (dB). Des valeurs typiques de PSNR pour des images
de bonnes qualités commencent entre 30 et 40 dB. Les résultats de deux séquences
vidéos sur 25 instants temporels donnent une moyenne d’environ 34 dB. Les images

Synthèse de vues virtuelles 167

Ghosting
artifacts

Many redundancies
and small quads

Removed
artifacts

Reduced redundancies
and bigger quads

Figure B.6: Réduction des artefacts fantômes. (gauche) Sans la suppression des poly-
gones. (droite) Avec la suppression.

de vues synthétisées donnent une idée de la qualité subjective des images. Figure B.7
montre une vue synthétisée en utilisant la représentation par soupe de polygones. La
qualité globale de l’image est bonne et la mesure de PSNR est de 35.17 dB pour cette im-
age. Néanmoins certains désalignements ou certaines déformations apparaissent comme
illustré dans la figure B.8.

Figure B.7: Resultat de la synthèse de vue. PSNR = 35.17 dB

168 Représentation par soupe de polygones déformables pour la vidéo 3D

(a) Breakdancers - vues originale (b) Breakdancers - vue synthétisée

Figure B.8: Zoom sur les distorsions observées dans la vue syntétisée.

B.6 Compression de la soupe de polygones

Une nouvelle méthode de compression basée sur la structure en quadtree est présentée.
La méthode reçoit en entrée la soupe de polygones, c’est-à-dire plusieurs quadtrees dont
certaines branches ont été élaguées pour réduire les redondances. Elle est appliquée sur
chaque quadtree indépendamment et pour chaque instant. La prédiction temporelle
n’est donc pas utilisée ici. La structure du quadtree est utilisée pour définir de façon
récursive les positions et tailles de chaque quad. Ensuite, pour encoder les valeurs de
profondeurs des coins des quads, une prédiction utilisant les quads voisins déjà codés
est utilisée, et les résidus de prédiction sont quantifiés et codés avec le code ExGolonmb.
Enfin, toutes les données sont codées en utilisant le codeur CABAC.

Les performances de cette méthode de compression ont tout d’abord été évaluées
avec 3 configurations de la soupe de polygones: avant réduction des redondances; après
réduction des redondances; et sans les quads de taille 1 pixel. La dernière configuration
est motivée par l’observation que les quads de taille 1 pixel sont très nombreux (30%
du nombre de quads) et couvrent une surface très petite. Ainsi, les éliminer doit
pouvoir réduire le débit sans trop impacter la qualité. La figure B.9 donne les courbes
débit/distorsion correspondant à ces trois configurations. Les résultats correspondent
aux attentes, c’est-à-dire que la réduction des redondances permet de diminuer le débit
mais a aussi un effet négatif sur la qualité des vues synthétisées, et le fait d’éliminer les
quads de taille 1 pixel permet de réduire le débit tout en conservant la qualité des vues
synthétisées. En effet, le manque d’information est compensé par les post-traitements
comme l’inpainting et le filtrage des contours.

Les performances ont ensuite été comparées à une autre solution actuellement

Compression de la soupe de polygones 169

 31

 32

 33

 34

 35

 36

 37

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
S

N
R

 [d
B

]

bitrate [bpp]

No Reduction
Reduced

Reduced - QSMin=2

Figure B.9: Trois configurations différentes. Courbes débit/distorsion évaluées sur des
vues synthétisées avec la séquence Breakdancers.

étudiée par le group MPEG 3DV. Les données utilisées dans cette autre méthode sont
MVD. La méthode de compression utilisée pour coder la profondeur est le codage
multi-vues H.264/MVC 6.0. Ici la prédiction temporelle est désactivée car elle n’est
pas encore prise en compte dans la solution basée sur la soupe de polygones. Enfin
la méthode de synthèse de vues est basée point (VSRS 3.0.1: view synthesis reference
software). La figure B.10 montre que la solution basée soupe de polygones donne un
PSNR légèrement meilleur à moyens et hauts débits. En revanche, cette valeur chute
à bas débits.

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 0 0.02 0.04 0.06 0.08 0.1 0.12

P
S

N
R

 [d
B

]

bitrate [bpp]

MVD
QUAD QSmax=8 QSMin=2

QUAD QSmax=16 QSMin=2

Figure B.10: Courbes débit/distorsion sur vues synthétisées. Comparaison de la méth-
ode basée MVD avec celle basée soupe de polygones. Débit et PSNR moyens calculés
sur 25 instants et pour 2 points de vues avec la séquence Breakdancers.

170 Représentation par soupe de polygones déformables pour la vidéo 3D

B.7 Géométrie déformable

Les artefacts visuels présents dans les vues synthétisées (figure B.8) proviennent prin-
cipalement des erreurs de modélisations de la géométrie et des caméras. Lorsqu’un seul
modèle géométrique est utilisé, les imprécisions ont une influence dans toutes les vues
synthétisées. Lorsque plusieurs modèles géométriques sont utilisés, les imprécisions ont
une influence moins importante mais les différents modèles peuvent être inconsistants
entre eux. A partir de cette constatation, l’idée de la géométrie déformable est de
s’adapter à chaque point de vue que l’on veut synthétiser afin de limiter les désaligne-
ments de texture et les inconsistances entre modèles.

Cette déformation est guidée par l’alignement de texture après la projection du
modèle. Plus précisément, la soupe de polygones est tout d’abord projetée dans chaque
vue originale et la correction 3D de la géométrie est calculée en fonction de l’estimation
de mouvement 2D entre la vue synthétisée et l’originale (figure B.11). .

Figure B.11: Calcul de géométrie déformable. P1 est projeté dans V2 donnant p2
1. p2

1

est ensuite apparié avec p2 grâce à l’estimation de mouvement. Enfin, p2 est projeté en
3D en utilisant la géométrie G2 donnant le point 3D P 2

1 .

Une fois la déformation précalculée pour une vue originale, elle est interpolée pour
les points de vue virtuels de sorte que les textures projetées dans les vues originales
soient toujours alignées et que les transitions d’une vue à l’autre soit douces grâce à
l’interpolation (figure B.12).

Pour évaluer les performances de cette méthode, la qualité des vues synthétisées
avant et après l’application de la déformation a été évaluée. Les résultats ont montré
qu’un gain de 1.53 dB est obtenu lorsque la soupe de polygones est déformée. La figure
B.13 montre une partie zoomée d’une vue synthétisée sans la méthode de déformation
géométrique (gauche) et avec (droite). On peut y voir que le visage du personnage
présentait une déformation pas naturelle et que cela est corrigé grâce à la méthode de
déformation de la géométrie. Néanmoins, on peut aussi voir que la ligne blanche qui
était coupée au lieu d’être droite n’a pas pu être totalement corrigée.

Géométrie déformable 171

Figure B.12: Synthèse de vues virtuelles avec la géométrie déformable. P1 est déformé
sur une position intermédiaire P v

1 entre P1 et P 2
1 . Ensuite, P v

1 est projeté dans la vue
virtuelle donnant le pixel pv

1.

(a) Breakdancers - sans déformation de géométrie (b) Breakdancers - avec déformation de géométrie

Figure B.13: Comparaison des vue synthétisées sans et avec la méthode de déformation
de géométrie.

172 Représentation par soupe de polygones déformables pour la vidéo 3D

B.8 Conclusion

Cette thèse présente une nouvelle représentation pour la vidéo multi-vues. La représen-
tation appelée soupe de polygones est compacte et prend en compte de manière unifiée
les problèmes de compression et de synthèse de vue. Elle contient un ensemble de
polygones 3D pas nécessairement connectés entre eux et pouvant se superposer. Les
polygones sont définis comme des quads 2D avec des valeurs de profondeurs aux quatre
coins. Ils sont extraits de cartes de profondeur disponibles en données d’entrée. Les
polygones 3D peuvent évoluer dans l’espace et le temps. Enfin, les images originales
sont utilisées pour texturer ces polygones.

La construction de la soupe de polygones s’effectue en deux étapes. Tout d’abord,
un ensemble de quads est extrait de chaque carte de profondeur par décomposition en
quadtree. Ensuite, les redondances inter-vues sont réduites en utilisant un ordre de
priorité des quads. Environ 65% de quads sont supprimés grâce à cette étape.

La synthèse de vues virtuelles en utilisant la soupe de polygones utilise des méth-
odes classiques. Tout d’abord, une redivision des quads est appliquée afin d’éviter
l’apparition de fissures entre quads de tailles différentes. Ensuite les polygones sont pro-
jetés dans la vue virtuelle et la texture plaquée sur ces polygones en utilisant une carte
graphique. Les projections qui se superposent sont combinées par moyenne pondérée.
Enfin, les zones vides restantes sont remplies par inpainting et les contours de discon-
tinuités sont adoucis par filtrage. L’évaluation de la qualité des vues synthétisées a
montré des vues de bonnes qualité avec un PSNR de 34-35 dB. Cependant certains
artefacts apparaissent. Une méthode de déformation géométrique est présentée pour
réduire ces artefacts.

Une méthode de compression de la soupe de polygones est présentée. Elle utilise
la structure en quadtree pour retrouver efficacement les positions et tailles des quads.
Les valeurs de profondeur des coins des quads sont prédites grâce aux quads voisins
déjà codés. Les résidus de prédiction sont quantifiés et codés. Toutes les informations
sont codées avec CABAC (context adaptive binary arithmetic coding). Les résultats
ont montré une légère amélioration de la qualité (+0.3 dB) à moyens et hauts débits.

Enfin, une version dynamique de la soupe de polygone est présentée afin de corriger
les désalignements de textures dans les vues synthétisées. Elle consiste à déformer la
géométrie 3D en fonction du mouvement 2D calculé entre les vues synthétisées et les
vues originales. Les résultats ont montré que les textures sont mieux alignées et que
les polygones sont plus consistants entre eux. Une augmentation du PSNR de 1.53 dB
est obtenue pour une vue virtuelle de la séquence Breakdancers.

Afin d’améliorer cette représentation, nous envisageons d’étudier l’aspect temporel.
De la même façon qu’un polygone est déformé en fonction de la vue virtuelle, il pourra
aussi se déformer en fonction de l’instant dans la séquence vidéo. Cette nouvelle di-
mension pourra améliorer la cohérence de la représentation dans le temps et pourra
aboutir à une méthode de compression plus efficace.

Bibliography

[AB91] E.H. Adelson and J.R. Bergen. The plenoptic function and the elements
of early vision. In CMVP’91, pages 3–20, 1991. 29, 48

[AYG+07] A.A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, C.E. Erdem,
C. Weigel, and A. Smolic. Scene representation technologies for 3DTV -
A survey. Circuits and Systems for Video Technology, IEEE Transactions
on, 17:1587–1605, Nov. 2007. 25

[Bal05] Raphaèle Balter. Construction d’un maillage 3D évolutif et scalable pour
le codage vidéo. PhD thesis, Université de Rennes 1, France, may 2005.
125, 129

[BBH08] D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view recon-
struction using robust binocular stereo and surface meshing. In CVPR,
2008. 39, 40, 48

[BBM+01] C. Buehler, M. Bosse, L. McMillan, S.J. Gortler, and M.F. Cohen. Un-
structured lumigraph rendering. In SIGGRAPH 2001, Computer Graph-
ics Proceedings, pages 425–432, 2001. 19, 98, 108, 125

[BGM06] Raphaele Balter, Patrick Gioia, and Luce Morin. Scalable and efficient
coding using 3D modeling. IEEE Transactions on Multimedia, 8:1147–
1155, dec 2006. 39, 40

[BL09] Harlyn Baker and Zeyu Li. Camera and projector arrays for immersive
3D video. In IMMERSCOM ’09, pages 1–6, Brussels, 2009. 29, 48

[BVG+07] W.H.A. Bruls, C. Varekamp, R.K. Gunnewiek, B. Barenbrug, and
A. Bourge. Enabling introduction of stereoscopic (3D) video: Formats
and compression standards. In ICIP, pages 89–92, 2007. 33, 35, 48

[Col96] R.T. Collins. A space-sweep approach to true multi-image matching. In
ARPA, pages 1213–1220, 1996. 38

[CTMS03] J. Carranza, C. Theobalt, M. A. Magnor, and H. Seidel. Free-viewpoint
video of human actors. ACM Trans. Graph., 22:569–577, 2003. 38, 39, 48

173

174 Bibliography

[Dar09] I. Daribo. Coding and rendering of 3D video sequences; and applica-
tions to Three-Dimensional Television (3DTV) and Free Viewpoint Tele-
vision (FTV). PhD thesis, Graduate College of Telecom ParisTech, Paris,
France, November 2009. 19, 33, 35

[DBD08] J. Dugelay, A. Baskurt, and M. Daoudi. 3D Object Processing: Compres-
sion, Indexing and Watermarking. Wiley Publishing, 2008. 16, 40

[DDSD03] X. Décoret, F. Durand, F. X. Sillion, and J. Dorsey. Billboard clouds for
extreme model simplification. In SIGGRAPH ’03, pages 689–696, New
York, 2003. 43, 44, 48

[DG00] Olivier D. and Pierre-Marie G. Geometric compression for interactive
transmission. In VIS ’00, pages 319–326, Los Alamitos, CA, USA, 2000.
43

[DKM+10] Minh N. Do, Chang-Su Kim, Karsten Müller, Masayuki Tanimoto, and
Anthony Vetro. Multi-camera imaging, coding and innovative display:
techniques and systems. Journal of Visual Communication and Image
Representation, 21(5-6):375 – 376, 2010. Special issue on Multi-camera
Imaging, Coding and Innovative Display. 9, 160

[Dod05] N.A. Dodgson. Autostereoscopic 3D displays. Computer, 38(8):31 – 36,
aug. 2005. 20, 22

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and
rendering architecture from photographs: a hybrid geometry- and image-
based approach. In SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, pages 11–
20, New York, NY, USA, 1996. ACM. 19, 98, 108, 125

[EDS+08] M. Eisemann, B. De Decker, A. Sellent, M. Magnor, E. de Aguiar,
N. Ahmed, P. Bekaert, and H. Seidel. Floating textures. Computer
Graphics Forum (Proc. Eurographics EG’08), 27(2), 4 2008. 53, 125,
126, 144

[ESWK04] J. Evers-Senne, J. Woetzel, and R. Koch. Modelling and rendering of
complex scenes with a multi-camera rig. In Conference on Visual Media
Production (CVMP), 2004. 35

[Fav05] G.E. Favalora. Volumetric 3D displays and application infrastructure.
Computer, 38(8):37 – 44, aug. 2005. 21

[FKdB+02] C. Fehn, P. Kauff, M. Op de Beeck, F. Ernst, W. IJsselsteijn, M. Polle-
feys, L. Van Gool, E. Ofek, and I. Sexton. An evolutionary and optimised
approach on 3D-TV. In In Proceedings of International Broadcast Con-
ference, pages 357–365, Amsterdam, Netherlands, 2002. 32, 48

Bibliography 175

[FMZ+08] I. Feldmann, M. Mueller, F. Zilly, R. Tanger, K. Mueller, A. Smolic,
P. Kauff, and T. Wiegand. HHI test material for 3D video. ISO/IEC
JTC1/SC29/WG11MPEG2008/M15413, April 2008. 14

[FTV00] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact
algorithm for rectification of stereo pairs. Mach. Vision Appl., 12(1):16–
22, 2000. 14

[Fuj94] T. Fuji. A basic study in the integrated 3-D visual communication. PhD
thesis, University of Tokyo, 1994. 30, 48

[FYT+10] Hisayoshi Furihata, Tomohiro Yendo, Mehrdad Panahpour Tehrani,
Toshiaki Fujii, and Masayuki Tanimoto. Novel view synthesis with resid-
ual error feedback for ftv. In Andrew J. Woods, Nicolas S. Holliman, and
Neil A. Dodgson, editors, Stereoscopic Displays and Applications XXI,
volume 7524, San Jose, California, USA, 2010. SPIE. 125, 128

[Gal92] Didier J. Le Gall. The mpeg video compression algorithm. Signal Pro-
cessing: Image Communication, 4(2):129 – 140, 1992. 16

[Gal02] F. Galpin. Représentation 3D de séquences vidéo: Schéma d’extraction
automatique d’un flux de modèles 3D, applications à la compression et à
la réalité virtuelle. PhD thesis, Université de Rennes 1, 2002. 39, 40

[GBMD04] F. Galpin, R. Balter, L. Morin, and K. Deguchi. 3D models coding and
morphing for efficient video compression. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, CVPR’2004, pages 334–
341, Washington DC, USA, jun 2004. 129

[GBMP04] F. Galpin, R. Balter, L. Morin, and S. Pateux. Efficient and scalable video
compression by automatic 3D model building using computer vision. In
Picture Coding Symposium, PCS’2004, San Francisco, USA, dec 2004.
129

[GFM+07] D. Gallup, J.M. Frahm, P. Mordohai, Q.X. Yang, and M. Pollefeys.
Real-time plane-sweeping stereo with multiple sweeping directions. In
CVPR07, pages 1–8, 2007. 38

[GGSC96] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The lumigraph.
In SIGGRAPH ’96, pages 43–54, New York, NY, USA, 1996. ACM. 29,
48

[GKIS05] Stefan Gumhold, Zachi Kami, Martin Isenburg, and Hans-Peter Seidel.
Predictive point-cloud compression. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Sketches, page 137, New York, NY, USA, 2005. ACM.
43

176 Bibliography

[GWN+03] Markus Gross, Stephan Würmlin, Martin Naef, Edouard Lamboray,
Christian Spagno, Andreas Kunz, Esther Koller-Meier, Tomas Svoboda,
Luc Van Gool, Silke Lang, Kai Strehlke, Andrew Vande Moere, and Oliver
Staadt. blue-c: a spatially immersive display and 3D video portal for
telepresence. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages
819–827, New York, NY, USA, 2003. ACM. 43

[JK10] D. Jung and R. Koch. Efficient depth-compensated interpolation for full
parallax displays. In Symposium on 3D Data Processing, Visualization
and Transmission, (3DPVT’10), Paris, France, May 2010. 21

[JMG09] Vincent Jantet, Luce Morin, and Christine Guillemot. Incremental-ldi for
multi-view coding. In 3DTV-Con2009, apr 2009. 35, 48

[JTC08] ISO/IEC JTC1/SC29/WG11. Text of ISO/IEC 14496-10:200X/FDAM
1 Multiview Video Coding. Doc. N9978, Hannover, Germany, July 2008.
31, 112

[JWV+05] N. Joshi, B. Wilburn, V. Vaish, M. Levoy, and M. Horowitz. Automatic
color calibration for large camera arrays. Technical Report CS2005-0821,
UCSD CSE, May 2005. 14

[KB10] Paul Kerbiriou and Guillaume Boisson. Looking for an adequate qual-
ity criterion for depth coding. In Three-Dimensional Image Processing
(3DIP) and Applications, volume 7526, page 75260A. SPIE, 2010. 35

[KBKL09] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight sensors in
computer graphics. In M. Pauly and G. Greiner, editors, Eurographics
2009 - State of the Art Reports, pages 119–134, CH-1288 Aire-la-Ville,
March 2009. Eurographics Association, Eurographics. 15

[KH07] J. Konrad and M. Halle. 3-d displays and signal processing. Signal Pro-
cessing Magazine, IEEE, 24(6):97 –111, nov. 2007. 20

[KLTS06] Sing Bing Kang, Yin Li, Xin Tong, and Heung-Yeung Shum. Image-based
rendering. Found. Trends. Comput. Graph. Vis., 2(3):173–258, 2006. 17

[KSM+07] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and C. Zhang.
Multiview imaging and 3DTV. special issue overview and introduction.
IEEE Signal Processing Magazine, 24(6):10–21, November 2007. 9, 160

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3D surface construction algorithm. SIGGRAPH Comput. Graph.,
21(4):163–169, 1987. 38

[LH96] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH ’96,
pages 31–42, New York, NY, USA, 1996. ACM Press. 29, 48

Bibliography 177

[LW85] M. Levoy and T. Whitted. The use of points as a display primitive.
Technical report, Computer Science Department, University of North
Carolina, 1985. 41, 48

[Mag05] Marcus A. Magnor. Video-Based Rendering. AK Peters Ltd, 2005. 9, 17,
25, 160

[Mam08] K. Mamou. Compression de maillages 3D statiques et dynamiques. PhD
thesis, Université René Descartes - UFR de mathématiques et informa-
tiques, 2008. 40

[MAW+07] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.M. Frahm, R.G.
Yang, D. Nister, and M. Pollefeys. Real-time visibility-based fusion of
depth maps. In ICCV, pages 1–8, 2007. 38, 39, 48

[MDMW10] K. Mueller, K. Dix, P. Merkle, and T. Wiegand. Temporal residual data
sub-sampling in ldv representation format. In 3DTV-Conference: The
True Vision - Capture, Transmission and Display of 3D Video (3DTV-
CON), pages 1 –4, jun. 2010. 35, 36

[MM09] M. Maitre and M.Do. Shape-adaptive wavelet encoding of depth maps.
In Picture Coding Symposium, Chicago, US, 2009. 17, 35

[MMS+08] P. Merkle, Y. Morvan, A. Smolic, D. Farin, K. Muller, P.H.N. de With,
and T. Wiegand. The effect of depth compression on multiview rendering
quality. In 3DTV Conference, 2008. 35

[MMS+09] Philipp Merkle, Yannick Morvan, Aljoscha Smolic, Dirk Farin, Karsten
Mueller, Peter H. N. de With, and Thomas Wiegand. The effects of multi-
view depth video compression on multiview rendering. Signal Processing:
Image Communication, 24(1-2):73–88, 2009. 17

[MMW07] K. Muller, P. Merkle, and T. Wiegand. Compressing time-varying visual
content. Signal Processing Magazine, IEEE, 24(6):58 –65, nov. 2007. 16

[Mor09] Yannick Morvan. Acquisition, Compression and Rendering of Depth and
Texture for Multi-View Video. PhD thesis, Eindhoven university of tech-
nology, Netherlands, 2009. 17, 18, 35, 91

[MP04] W. Matusik and H. Pfister. 3D TV: a scalable system for real-time ac-
quisition, transmission, and autostereoscopic display of dynamic scenes.
ACM Trans. Graph., 23:814–824, 2004. 28, 29, 48

[MPE06] ISO/IEC JTC1/SC29/WG11 23002-3 MPEG. Auxiliary video data rep-
resentations. In Doc. N8038, Montreux, Switzerland, 2006. 33

[MPE09] ISO/IEC JTC1/SC29/WG11 MPEG. Applications and requirements on
3D video coding. In Doc. N10857, London, UK, 2009. 31, 36

178 Bibliography

[MSD+08] K. Müller, A. Smolic, K. Dix, P. Kauff, and T. Wiegand. Reliability-
based generation and view synthesis in layered depth video. In MMSP,
pages 34–39, 2008. 35, 48, 80

[MSM+04a] K. Mueller, A. Smolic, P. Merkle, B. Kaspar, P. Eisert, and T. Wiegand.
3D reconstruction of natural scenes with view-adaptive multi-texturing.
In 3DPVT ’04: Proceedings of the 3D Data Processing, Visualization,
and Transmission, 2nd International Symposium, pages 116–123, Wash-
ington, DC, USA, 2004. IEEE Computer Society. 37, 38, 48

[MSM+04b] K. Muller, A. Smolic, P. Merkle, M. Kautzner, , and T. Wiegand. Coding
of 3D meshes and video textures for 3D video objects. In Proc. PCS 2004,
Picture Coding Symposium, San Francisco, USA, 2004. 48

[MSMW07a] P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Efficient prediction
structures for multiview video coding. CirSysVideo, 17(11):1461–1473,
November 2007. 16

[MSMW07b] P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Multi-view video plus
depth representation and coding. ICIP, 1:201–204, 2007. 34, 35

[MWS03] D. Marpe, T. Wiegand, and H. Schwarz. Context-based adaptive binary
arithmetic coding in the h.264/avc video compression standard. IEEE
Trans. Circuits Syst. Video Techn., 13(7):620–636, 2003. 111

[MWTN04] T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara. Real-time 3D shape
reconstruction, dynamic 3D mesh deformation, and high fidelity visual-
ization for 3D video. Comput. Vis. Image Underst., 96(3):393–434, 2004.
30, 48

[MZP08] K. Mamou, T. Zaharia, and F. Preteux. Famc: The mpeg-4 standard for
animated mesh compression. In ICIP’08, pages 2676 –2679, oct. 2008. 40

[MZP09] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. Tfan: A low
complexity 3D mesh compression algorithm. Comput. Animat. Virtual
Worlds, 20(2‐3):343–354, 2009. 40

[NNT07] C. Nitschke, A.i Nakazawa, and H. Takemura. Real-time space carving
using graphics hardware. IEICE - Trans. Inf. Syst., E90-D(8):1175–1184,
2007. 30

[OYH09] K. Oh, S. Yea, and Y. Ho. Hole filling method using depth based in-
painting for view synthesis in free viewpoint television and 3-d video. In
Picture Coding Symposium, Chicago, US, 2009. 19, 33, 102

[Paj02] R. Pajarola. Overview of quadtree-based terrain triangulation and visu-
alization. Technical Report (Technical Report UCI-ICS-02-01), Depart-
ment of Information & Computer Science, University of California, Irvine,
2002. 39, 94, 95

Bibliography 179

[PK03] Jingliang Peng and C. C. Jay Kuo. Octree-based progressive geometry
encoder. In In Internet Multimedia Management Systems IV. Proceedings
of the SPIE, page 301311, 2003. 43

[PKVG99] M. Pollefeys, R. Koch, and L. Van Gool. A simple and efficient rec-
tification method for general motion. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on, volume 1,
pages 496 –501 vol.1, 1999. 14

[PNF+08] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mordohai,
B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha,
B. Talton, L. Wang, Q. Yang, H. Stewénius, R. Yang, G. Welch, and
H. Towles. Detailed real-time urban 3D reconstruction from video. Int.
J. Comput. Vision, 78(2-3):143–167, 2008. 39

[PZvBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
Surfels: surface elements as rendering primitives. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, pages 335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co. 41, 48

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: a multiresolution point
rendering system for large meshes. In SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques,
pages 343–352, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co. 41, 48

[RNK97] Peter Rander, P J. Narayanan, and Takeo Kanade. Virtualized reality:
Constructing time-varying virtual worlds from real events. In Proceedings
of IEEE Visualization ’97, pages 277–283, October 1997. 15

[Say05] Khalid Sayood. Introduction to Data Compression, Third Edition (Mor-
gan Kaufmann Series in Multimedia Information and Systems). Morgan
Kaufmann, 3 edition, December 2005. 16

[SCD+06] Steven M. Seitz, Brian Curless, James Diebel, Daniel Scharstein, and
Richard Szeliski. A comparison and evaluation of multi-view stereo re-
construction algorithms. In CVPR ’06: Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 519–528, Washington, DC, USA, 2006. IEEE Computer
Society. 18

[SCS05] C. Slinger, C. Cameron, and M. Stanley. Computer-generated holography
as a generic display technology. Computer, 38(8):46 – 53, aug. 2005. 21

[SGHS98] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In
ACM SIGGRAPH, pages 231–242, 1998. 35, 48

180 Bibliography

[SJYH10] Feng Shao, Gang-Yi Jiang, Mei Yu, and Yo-Sung Ho. Fast color correc-
tion for multi-view video by modeling spatio-temporal variation. Journal
of Visual Communication and Image Representation, 21(5-6):392 – 403,
2010. Special issue on Multi-camera Imaging, Coding and Innovative
Display. 14

[SKS05] O. Schreer, P. Kauff, and T. Sikora. 3D Videocommunication: Algorithms,
concepts and real-time systems in human centred communication. Book,
John Wiley & Sons, 2005. 9, 16, 17, 25, 160

[SKS+10] M. Sizintsev, S. Kuthirummal, S. Samarasekera, R. Kumar, H.S. Sawh-
ney, and A. Chaudhry. Gpu accelerated realtime stereo for augmented
reality. In 3DPVT’10, 2010. 30, 31

[SMD+08] A. Smolic, K. Muller, K. Dix, P. Merkle, P. Kauff, and T. Wiegand.
Intermediate view interpolation based on multiview video plus depth for
advanced 3D video systems. In ICIP, pages 2448–2451, 2008. 19, 33, 35,
36, 48, 52, 92, 99, 102

[SMM+09] A. Smolic, K. Müller, P. Merkle, P. Kauff, and T. Wiegand. An overview
of available and emerging 3D video formats and depth enhanced stereo
as efficient generic solution. In Picture Coding Symposium, Chicago, US,
2009. 25, 35, 48, 149

[Smo10] Aljoscha Smolic. 3D video and free viewpoint video - from capture to
display. Pattern Recognition, In Press, Accepted Manuscript:–, 2010. 25

[SMS+07] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B.
Akar, G. Triantafyllidis, and A. Koz. Coding algorithms for 3DTV - a
survey. Circuits and Systems for Video Technology, IEEE Transactions
on, 17(11):1606–1621, Nov. 2007. 40

[Sou10] G. Sourimant. A simple and efficient way to compute depth maps for
multi-view videos. In 3DTV-Conference: The True Vision - Capture,
Transmission and Display of 3D Video (3DTV-CON), 2010, pages 1 –4,
jun. 2010. 18, 32

[SS92] R. Sivan and H. Samet. Algorithms for constructing quadtree surface
maps. In the 5th International Symposium on Spatial Data Handling,
volume 1, pages 363–370, Charleston, SC, August 1992. 94

[SSZ01] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In SMBV ’01:
Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision
(SMBV’01), page 131, Washington, DC, USA, 2001. IEEE Computer
Society. 18, 32

Bibliography 181

[Tan06] M. Tanimoto. Overview of free viewpoint television. Signal Processing:
Image Communication, Volume 21, Issue 6:454–461, 2006. 30, 48

[Tel04] Alexandru Telea. An image inpainting technique based on the fast march-
ing method. journal of graphics, gpu, and game tools, 9(1):23–34, 2004.
102

[TFS+08] M. Tanimoto, T. Fujii, K. Suzuki, N. Fukushima, and Y. Mori. Ref-
erence Softwares for Depth Estimation and View Synthesis. ISO/IEC
JTC1/SC29/WG11MPEG2008/M15377, April 2008. 104, 112

[THM10] T. Takai, A. Hilton, and T. Matsuyama. Harmonised texture mapping.
In 3DPVT, Paris, France, May 2010. 128

[TISK10] Mehrdad Panahpour Tehrani, Akio Ishikawa, Shigeyuki Sakazawa, and
Atsushi Koike. Iterative colour correction of multicamera systems us-
ing corresponding feature points. Journal of Visual Communication and
Image Representation, 21(5-6):377 – 391, 2010. Special issue on Multi-
camera Imaging, Coding and Innovative Display. 14

[Tsa86] R.Y. Tsai. An efficient and accurate camera calibration technique for 3D
machine vision. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 364–374, Miami Beach, Fl, 1986. 14, 18

[TTN08] Y. Taguchi, K. Takahashi, and T. Naemura. Real-time all-in-focus video-
based rendering using a network camera array. In 3DTV-Conference,
2008. 30, 48

[UCP+09] Matthieu Urvoy, Nathalie Cammas, Stéphane Pateux, Olivier Déforges,
Marie Babel, and Muriel Pressigout. Motion tubes for the representa-
tion of images sequences. In Proceedings of ICME’09 IEEE International
Conference on Multimedia and Expo, pages 1–4, Cancun Mexico, 07 2009.
119, 133, 144, 149

[VBK05] Sundar Vedula, Simon Baker, and Takeo Kanade. Image-based spatio-
temporal modeling and view interpolation of dynamic events. ACM
Trans. Graph., 24(2):240–261, 2005. 129

[WB06] Zhou Wang and Alan C. Bovik. Modern image quality assessment. Syn-
thesis Lectures on Image, Video, and Multimedia Processing, 2(1):1–156,
2006. 20

[WDK93] A. Woods, T. Docherty, and R. Koch. Image distortions in stereoscopic
video systems. In Proceedings of SPIE: Stereoscopic Displays and Appli-
cations IV, volume 1915, pages 36–48, 1993. 14

182 Bibliography

[Whe38] Charles Wheatstone. Contributions to the physiology of vision—part the
first. on some remarkable, and hitherto unobserved, phenomena of binoc-
ular vision. Philosophical Transactions of the Royal Society of London,
pages 371–394, 1838. 9

[WLG04] Stephan Würmlin, Edouard Lamboray, and Markus Gross. 3D video frag-
ments: dynamic point samples for real-time free-viewpoint video. Com-
puters & Graphics, 28(1):3 – 14, 2004. 43

[WSBL03] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the h.264/avc video coding standard. Circuits and Systems for Video
Technology, IEEE Transactions on, 13(7):560 –576, jul. 2003. 16

[WWCG07] M. Waschbüsch, S. Würmlin, D. Cotting, and M. Gross. Point-sampled
3D video of real-world scenes. Image Commun., 22(2):203–216, 2007. 15,
41, 42, 43, 44, 48

[WWG07] M. Waschbüsch, S. Würmlin, and M. Gross. 3D video billboard clouds. In
Proceedings of Eurographics, volume vol. 26, pages pp. 561–569, Prague,
Czech Republic, 2007. 44, 45, 48

[YOO06] H. Yamanoue, M. Okui, and F. Okano. Geometrical analysis of puppet-
theater and cardboard effects in stereoscopic hdtv images. Circuits and
Systems for Video Technology, IEEE Transactions on, 16(6):744 – 752,
june 2006. 14

[YPYW04] Ruigang Yang, Marc Pollefeys, Hua Yang, and Greg Welch. A unified
approach to real-time, multi-resolution, multi-baseline 2D view synthesis
and 3D depth estimation using commodity graphics hardware. Interna-
tional Journal of Image and Graphics (IJIG, 4:2004, 2004. 14, 30

[YSK+02] S. Yamazaki, R. Sagawa, H. Kawasaki, K. Ikeuchi, and M. Sakauchi. Mi-
crofacet billboarding. In EGRW ’02: Proceedings of the 13th Eurograph-
ics workshop on Rendering, pages 169–180, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association. 45, 46, 47, 48

[YV09] S. Yea and A. Vetro. Multi-layered coding of depth for virtual view
synthesis. In Picture Coding Symposium, Chicago, US, 2009. 17, 35

[YXDL10] Youwei Yan, Feng Xu, Qionghai Dai, and Xiaodong Liu. A novel method
for automatic 2D-to-3D video conversion. In 3DTV-Conference: The
True Vision - Capture, Transmission and Display of 3D Video (3DTV-
CON), 2010, pages 1 –4, jun. 2010. 32

[ZBVH09] Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu P. Ho-
raud. Surface feature detection and description with applications to mesh
matching. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Miami Beach, Florida, June 2009. 129

Bibliography 183

[ZC04] Cha Zhang and Tsuhan Chen. A survey on image-based rendering - rep-
resentation, sampling and compression. Signal Processing: Image Com-
munication, 19(1):1 – 28, 2004. 30

[Zha00] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE
Trans. Pattern Anal. Mach. Intell., 22(11):1330–1334, 2000. 14, 18

[ZKU+04] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.
High-quality video view interpolation using a layered representation.
ACM Trans. Graph., 23(3):600–608, 2004. 15, 32, 33, 35, 36, 48, 99

[ZPvBG02] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus
Gross. Ewa splatting. IEEE Transactions on Visualization and Com-
puter Graphics, 8(3):223–238, 2002. 41, 48

[ZXY07] Jinghua Zhang, Jinsheng Xu, and Huiming Yu. Octree-based 3D anima-
tion compression with motion vector sharing. In ITNG ’07: Proceedings
of the International Conference on Information Technology, pages 202–
207, Washington, DC, USA, 2007. IEEE Computer Society. 43

Abstract

This thesis presents a new representation called floating polygon soup for applications
like 3DTV and FTV (Free Viewpoint Television). The polygon soup is designed for
compactness, compression efficiency, and view synthesis quality. The polygons are
stored in 2D, with depth values at each corner. They are not necessarily connected to
each other and can be deformed (or floated) w.r.t viewpoints and time.
Starting from multi-view video plus depth (MVD), the construction holds in two steps:
quadtree decomposition and multi-view redundancy reduction. It results in a compact
set of polygons replacing the depth maps while preserving depth discontinuities and
geometric details.
Next, compression efficiency and view-synthesis quality are evaluated. Classical meth-
ods such as inpainting and post-processing are implemented and adapted to the poly-
gon soup. A new compression method is proposed. It exploits the quadtree structure
and uses spatial prediction. Results are compared with an existing MVD compression
scheme based on MPEG’s H.264/MVC. A slightly higher PSNR value is obtained at
medium and high bitrates and ghosting artifacts are greatly reduced.
Finally, the polygon soup is floated according to the desired viewpoint. This view-
dependent geometry is guided by motion estimation between synthesized and original
views. This method reduces remaining artifacts and improves the final image quality.

Résumé

Cette thèse présente une nouvelle représentation appelée soupe de polygones déformables
pour les applications telles que 3DTV et FTV (Free Viewpoint TV). La soupe de
polygones prend en compte les problèmes de compacité, efficacité de compression, et
synthèse de vue. Les polygones sont définis en 2D avec des valeurs de profondeurs à
chaque coin. Ils ne sont pas nécessairement connectés entre eux et peuvent se déformer
en fonction du point de vue et de l’instant dans la séquence vidéo.
A partir de données multi-vues plus profondeur (MVD), la construction tient en deux
étapes: la décomposition en quadtree et la réduction des redondances inter-vues. Un
ensemble compact de polygones est obtenu à la place des cartes de profondeur, tout en
préservant les discontinuités de profondeurs et les détails géométriques.
Ensuite, l’efficacité de compression et la qualité de synthèse de vue sont évaluées. Des
méthodes classiques comme l’inpainting et des post-traitements sont implémentées et
adaptées à la soupe de polygones. Une nouvelle méthode de compression est proposée.
Elle exploite la structure en quadtree et la prédiction spatiale. Les résultats sont com-
parés à un schéma de compression MVD utilisant le standard MPEG H.264/MVC. Des
valeurs de PSNR légèrement supérieures sont obtenues à moyens et hauts débits, et les
effets fantômes sont largement réduits.
Enfin, la soupe de polygone est déformée en fonction du point de vue désiré. Cette
géométrie dépendante du point de vue est guidée par l’estimation du mouvement entre
les vues synthétisées et originales. Cela réduit les artefacts restants et améliore la
qualité d’image.

	1 Introduction
	1.1 Context
	1.2 Thesis outline

	2 Challenges in multi-view video systems
	2.1 Acquisition
	2.2 Representation
	2.3 Transmission
	2.4 View-synthesis
	2.5 Display
	2.6 Introduction of constraints on the targeted system

	3 Existing representations
	3.1 Definition of a representation
	3.2 Image-based representations
	3.3 Depth image-based representations
	3.4 Surface-based representations
	3.4.1 Polygonal meshes
	3.4.2 Point-based surfaces

	3.5 Impostor-based representations
	3.6 Summary and analysis of pros and cons
	3.6.1 Construction complexity
	3.6.2 Compactness
	3.6.3 Compression compatibility
	3.6.4 View synthesis complexity
	3.6.5 Navigation range and image quality
	3.6.6 Summary of pros and cons
	3.6.7 Conclusion

	4 Overview of the proposed representation
	4.1 Input data
	4.2 The polygon soup representation
	4.3 Properties of the polygon soup
	4.4 Summary

	5 Construction of the polygon soup
	5.1 Quadtree decomposition
	5.1.1 Re-projection shift
	5.1.2 Subdivision method
	5.1.3 Results
	5.1.4 Summary and discussions.

	5.2 Redundancy reduction
	5.2.1 Priority order for the quads
	5.2.2 Reduction method
	5.2.3 Results
	5.2.4 Summary and discussions

	5.3 Conclusion

	6 Virtual view synthesis
	6.1 View projection
	6.1.1 Projection principles
	6.1.2 Depth-based vs polygon-based view projection
	6.1.3 Elimination of cracks

	6.2 Multi-view blending
	6.2.1 Adaptive blending
	6.2.2 Ghosting artifacts

	6.3 Virtual view enhancement
	6.3.1 Inpainting
	6.3.2 Edge filtering

	6.4 Results
	6.5 Conclusion

	7 Compression of the polygon soup
	7.1 Compression method
	7.2 Performance with different settings
	7.3 Comparative evaluation
	7.4 Conclusion

	8 Floating geometry
	8.1 Texture misalignments
	8.2 Existing solutions
	8.3 Principle of floating geometry
	8.4 Results on polygon soup
	8.4.1 Floating geometry at the acquisition side
	8.4.2 Floating geometry at the user side

	8.5 Conclusion

	9 Conclusions and perspectives
	9.1 Summary of contributions
	9.1.1 Chap. 3: Study of existing representations
	9.1.2 Chap. 4: Overview of the representation
	9.1.3 Chap. 5: Construction of the polygon soup
	9.1.4 Chap. 6: Virtual view synthesis
	9.1.5 Chap. 7: Compression of the polygon soup
	9.1.6 Chap. 8: Floating geometry

	9.2 Perspectives

	A Fusion of background quads
	A.1 Introduction
	A.2 Fusion of the background quads
	A.3 Results
	A.4 Conclusion

	B Représentation par soupe de polygones déformables pour la vidéo 3D
	B.1 Introduction
	B.2 Représentations existantes
	B.3 Une nouvelle représentation
	B.4 Construction de la soupe de polygones
	B.5 Synthèse de vues virtuelles
	B.6 Compression de la soupe de polygones
	B.7 Géométrie déformable
	B.8 Conclusion

