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Introduction

This document aims at presenting a part of the works that I undertook in the field of numer-
ical modeling and simulation applied to the mechanics of highly-compressible fluids and high
energy density plasmas, between 2003 and 2009 at Bordeaux University. At the start of 2003,
I integrated the research unit CELIA (CEntre des Lasers Intenses et Applications), created
and under joint supervision of the CEA (Commissariat à l’Energie Atomique), the University
of Bordeaux, and the CNRS (Centre National de la Recherche Scientifique). More specifically,
working in the Interaction-Inertial Confinement Fusion-Astrophysics group (Interaction-Fusion
par Confinement Inertiel-Astrophysique) directed by Pr. Vladimir Tikhonchuk. The creation
of this research unit, and the important participation of scientists of the CEA is a part of an
academic research program engaged by the CEA in the context of the LMJ (Laser Mega Joule)
program. The principle objective of this team concerns the numerical modeling and simulation
of direct drive Inertial Confinement Fusion (ICF) applied to the production of energy by fusion.
I took the responsibility for the conception and development of a multi-functional hydrody-
namic code, named CHIC (Code d’Hydrodynamique et d’Implosion du Celia). Being coupled
with various physical modules and diagnostic packages, this two-dimensional Lagrangian code
allows the theoretical developments, conception and interpretation of various experiments in
the domain of high energy density physics. After five years of collaborative work with Guy
Schurtz and Jérôme Breil, the CHIC code has been developed, validated and became actually a
backbone of the simulation capabilities of the plasma physics group of the CELIA. My research
had as principle objective the conception and development of robust numerical schemes dedi-
cated to the numerical simulation of experiments concerning the physics of hot dense plasma
created by laser in the domain of ICF, laboratory astrophysics and laser processing. The phys-
ical processes at play in such systems are strongly coupled, complex and highly non-stationary.
Let us emphasize that the hydrodynamic flow resulting from an ICF experiment is a source of
very intense shock and rarefaction waves. This fluid flow undergoes unsteady phenomena with
characteristic time scales ranging from 10−12 s to 10−8 s. These phenomena are characterized
by very intense thermodynamic processes wherein the density of the material under consider-
ation can be compressed up to several thousand times its nominal value, the pressure ranges
from the atmospheric pressure (1 bar) to 100 Gbars and the temperatures may vary between
15 K and 500 MK. Furthermore, it is very difficult to realize them experimentally. This is a
reason why numerical simulations are indispensable for both the conception and the interpre-
tation of ICF experiments. Roughly speaking, the underlying two-dimensional mathematical
model is a system of partial differential equations at the center of which we find the equations
of compressible gas dynamics written under Lagrangian form, coupled to equations of electron
and photon transport characterized by equations of non-linear diffusion. The main contribution
of the present work consists of the development of two robust and accurate schemes devoted
respectively to the numerical resolution of Lagrangian hydrodynamics and diffusion. The for-
mer numerical scheme is called EUCCLHYD (Explicit Unstructured Cell-Centered Lagrangian
HYDrodynamics) whereas the latter is named CCLAD (Cell-Centered LAgrangian Diffusion).
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The remainder of this document is organized as follows. In Chapter 1, we briefly describe
the physical and numerical context related to ICF. Then, we present in Chapter 2 the Eulerian
and Lagrangian forms of the conservation laws of fluid mechanics. The description of the EU-
CCLHYD scheme is performed in Chapter 3. We detail the construction of this unstructured
high-order cell-centered Lagrangian scheme utilizing a general formalism based on a sub-cell
force discretization. The two-dimensional Cartesian and axisymmetric versions of this scheme
are thoroughly studied and several numerical results, which assess its robustness and its accu-
racy, are displayed. Chapter 4 is devoted to the presentation of the CCLAD scheme that solves
accurately the anisotropic diffusion equation on distorted unstructured two-dimensional grids in
both Cartesian and axisymmetric geometry. The robustness and the accuracy of this diffusion
scheme is evaluated by means of various analytical test cases. Finally, concluding remarks and
perspectives about future works are given in Chapter 5.

A list of selected publications corresponding to the aforementioned works is given hereafter
in the ascending chronological order.
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Chapter 1

Physical and numerical context of

ICF

It is known since the work performed by Hans Bethe and Carl Friedrich von Weizsäcker that
thermonuclear fusion of hydrogen is at the origin of the energy that is radiated by stars. The
thermodynamic conditions needed to produce these self-sustained fusion reactions can be ob-
tained on earth in the 50’s only by means of nuclear explosions. The project to domesticate this
energy for civil use requires the confinement of fusible material brought to temperatures in the
order of several hundred million degrees. Two methods of confinement are under development:
the first consists of trapping particles forming the fusion plasma using an intense magnetic field,
known as Magnetic Confinement Fusion (MCF). The international project ITER1(International
Thermonuclear Experimental Reactor) that is installed at the CEA center in Cadarache (France)
is a result of 60 years of research in this domain. The second one, relied on a hydrodynamic
confinement, that is obtained by the implosion at a very high velocity of a spherical shell of
a fusible material. The Deuterium-Tritium (DT) fuel is thus confined only by the effect of
its own inertia, and thus is termed Inertial Confinement Fusion (ICF). The pressures that
allow such implosions are of the order of several hundred million times the atmospheric pres-
sure. They are obtained by the ablation pressure created by intense laser beams that deliver
to targets millimeters in size a power in the order 500 Terawatts (TW) over a few millionths
of a second. The LMJ2(Laser Mega Joule), currently under construction at the CEA-CESTA
site and NIF3 (National Ignition Facility) constructed in the Lawrence Livermore National Lab-
oratory (LLNL) in the USA, will allow the thermonuclear fusion of hydrogen isotopes with a
net energy gain of the order of ten. LLNL also develops an advanced energy project called
LIFE4(Laser Inertial Fusion Engine), which is based on physics and technology developed for
the NIF. Let us also mention the HiPER5 project, which proposes a construction of the Euro-
pean High Power laser Energy Research facility dedicated to demonstrating the feasibility of
laser driven fusion as a future energy source. HiPER is being designed to enable a broad array
of new science including extreme material studies, astrophysics in the laboratory, miniaturized
particle accelerators and a wide range of fundamental physics research. The physical processes
at play in such systems are numerous and complex: interaction of the laser light with a target
and formation of a plasma, transport of the absorbed energy by electron heat conduction and by
radiation, ablation of matter, formation of shock waves and acceleration of the target, implosion

1Refer to http://www.iter.org/.
2Refer to http://www-lmj.cea.fr/.
3Refer to https://lasers.llnl.gov/.
4Refer to https://lasers.llnl.gov/about/missions/energy_for_the_future/life/.
5Refer to http://www.hiper-laser.org/.

1



������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

DTgas ρ = 10−4 g cm−3

ρ = 0.25 g cm−3

LASER

Elas = 200 kJ

Eabs = 130 kJ

DTice

Re = 1044 µm

λlas = 0.351 µm

Ri = 833 µm

Mtarget = 6 10−4 g

Figure 1.1: All DT target for HiPER.

of the fuel to extremely high densities, ignition of a chain fusion reaction and propagation of
a divergent thermonuclear wave. These highly non-stationary processes are mutually coupled
and it is very difficult to realize them experimentally. This a reason why numerical simulations
are indispensable for both the conception and the interpretation of ICF experiments.

The remainder of this chapter is organized as follows. In Section 1.1 we present briefly
the phenomenology of the Inertial Confinement Fusion. A detailed discussion of this vast and
complex subject is beyond the scope of this document, thus interested readers should refer to
the textbooks [90, 11, 43, 52]. In Section 1.2 we briefly describe the ICF code CHIC (Code
d’Hydrodynamique et d’Implosion du Celia).

1.1 ICF phenomenology

1.1.1 ICF target

Inertial Confinement Fusion is a process where fusion reactions are triggered by compressing
and heating a fuel target by means of a high energy beams of laser light. The best fuel from
energy perspective is a one to one mix of deuterium (D) and tritium (T) which are both isotopes
of hydrogen. This is due to the fact that the following fusion reaction has the highest cross
section and for the lowest temperatures of the order of 100− 300 MK

D+T −→4 He + n + 17.6MeV. (1.1)

This equation states that the fusion of DT produces an α particle (4He) with an energy of
3.6 MeV plus a neutron (n) with an energy of 14 MeV. The fusion target is generally a spherical
shell filled with a low-density gas of a mass density ρgas ≤ 10−3 g/cm3. The shell is composed
of an outer region which forms the ablator and inner region of frozen deuterium-tritium (DT)
which forms the main fuel. We have plotted in Figure 1.1 a schematic view of the all DT target
that has been designed in the context of the HiPER project [57]. The outer radius of the target
is Re = 1044 µm and the thickness of the shell is ∆Rs = 211 µm. Note that in this case, the
shell is composed uniquely of frozen DT with density ρice = 0.25 g/cm3 and filled with DT gas
(ρgas = 10−4 g/cm3). The total mass of the target is Mtarget = 6. 10−4 g. Let us point out that
in reality, the frozen fuel is contained in the plastic shell of a thickness of a few microns.
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Figure 1.2: Indirect drive laser fusion.
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Figure 1.3: Direct drive laser fusion.

1.1.2 Indirect drive versus direct drive

In laser-driven ICF the energy is delivered to the spherical target by means of a high-power
laser. There are typically two schemes to deliver energy. In the first scheme, termed as indirect
drive, the target is held inside a cylindrical vessel with walls coated of a heavy material (gold)
having good radiation properties, which is called the holhraum (German word for cavity), refer
to Figure 1.2. The laser beams penetrate inside the holhraum and irradiate the wall. The
absorbed laser energy is then partially re-radiated as X-rays, which drive the capsule implosion.
Due to the smoothing induced by the re-emitted X-rays, this approach is less sensitive to the
irradiation non-uniformity of the laser beams. The indirect drive scheme has been chosen for
the current ICF projects NIF and LMJ. In the second scheme, termed as direct drive, the laser
energy is directly delivered to the outer region of the target and transferred to electrons by
means of inverse bremsstrahlung absorption process [43], refer to Figure 1.3. This latter scheme
has a higher laser-target coupling efficiency than the former. This is the reason why the direct
drive approach has been chosen to investigate the feasibility of energy production by means of
inertial fusion. However, the direct drive scheme is more sensitive to the non-uniformity of the
laser irradiation due the discrete distribution of laser beams. It requires a large number of very
uniform beams to ensure a spherical implosion and to avoid the occurrence of hydrodynamic
instabilities of Richtmyer-Meshkov or Rayleigh-Taylor type.

1.1.3 Ignition conditions

The fuel conditions that must be achieved for efficient burn and high yield relative to the driver
energy can be obtained from an analysis of the burn of an inertially confined fuel mass according
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to the fusion reaction (1.1). The number of fusion reactions n per second satisfies the differential
equation

dn

dt
= ND(t)NT(t)〈σv〉,

where 〈σv〉 denotes the averaged reaction cross section which is a function of the temperature
T . In addition, ND(t) and NT(t) are the number of D and T particles per unit volume at time
t. For a one to one mix of DT, with an initial density ND(0) = NT(0) =

1
2N0, the number of

remaining D and T particles at time t writes ND(t) = NT(t) =
1
2N0 − n(t). Defining the burn

fraction, φ, as φ = 2 n
N0

leads to

dφ

dt
=
N0

2
(1− φ)2〈σv〉.

Assuming that the average reaction cross section is constant and integrating the above equation
over the time interval [0, τ ] yields

φ

1− φ
=
N0

2
〈σv〉τ. (1.2)

Here, τ represents the confinement time of the fuel. Considering a sphere of DT fuel of radius
Rf and mass density ρf , the confinement time is estimated as the duration of the hydrodynamic

expansion of the sphere, that is, τ ∼ Rf

af
, where af = af (T ) denotes the isentropic sound speed

of the fuel. Knowing that the particle density is proportional to the mass density of the fuel,
i.e., N0 ∼ ρf , equation (1.2) transforms into

φ

1− φ
=
ρfRf

Hb
,

where Hb = Hb(T ) is uniquely a function of the temperature. For the range of temperatures
T ∈ [3. 108K, 1. 109K] corresponding to the thermonuclear combustion, this function is nearly
constant and can be approximated by Hb = 7 g/cm2, refer to [90, 11]. Finally, the burn fraction
of the fuel, φ, within the above range of temperatures writes as

φ =
ρfRf

ρfRf +Hb
, (1.3)

This fundamental criteria is called the ρr requirement to achieve ignition. This is the counterpart
of the Lawson confinement criteria employed in the context of MCF [90]. For instance, to burn
30 % of the fuel, we need to compress it to reach an areal mass density of ρfRf = 3 g/cm2.
Bearing this in mind, the mass of the DT sphere is rewritten as

Mf =
4

3
π
(ρfRf )

3

ρ2f
.

Hence, the mass of fuel required for a given ρr scales as the inverse of the squared density.
From this it follows that for a ρr of 3 g/cm2, at a normal liquid density of 0.21 g/cm3, the
mass of fuel required is equal to 2.5 kg. It represents an unrealistic quantity of DT which
would lead to an amount of energy of the order of a nuclear explosion. The solution to obtain
a mass of fuel compatible with the context of laboratory experiments consists in employing a
fuel compressed to high density. Indeed, at a density of 250 g/cm3, the sphere of DT would
have ρfRf = 3 g/cm2 with a mass of 1.8 10−3 g which is a quite reasonable value. Let us point
out that the above value for the density of the compressed fuel is 1000 times the density of the
cryogenic DT at normal conditions. Therefore, ignition achievement necessitates a very strong
compression which can be obtained by means of a high-power laser.

4



Inner shell Shell stagnation Fuel combustionTarget heating

Hot spot ignitioncompression

Laser beams Ablator expansion Thermal energy transport

Figure 1.4: Main stages of laser-driven inertial fusion.

1.1.4 Main stages of laser-driven ICF

The four main stages of laser-driven ICF are displayed in Figure 1.4. The first stage corresponds
to the laser irradiation of the target with a laser intensity approximately equal to Ilaser =
1015 W/cm2. This sudden release of a huge amount of energy heats up the outer part of the
shell (the ablator), creates the ablated plasma and compresses the remaining shell. Then starts
the second stage which consists of the acceleration and isentropic implosion of the compressed
shell. As the ablated plasma expands outward, momentum conservation involves an inward
acceleration of the inner part of the shell which results in a compression of the fuel. The
absorbed energy is transported inwardly by means of electron heat conduction and radiation.
An ablation pressure of the order of 100 Mbars leads to an acceleration of the target to velocities
about 300 km/s within a few nanoseconds. The time evolution of the laser intensity is designed
to compress the fuel in an optimal fashion by following an almost isentropic path. This goal
is accomplished by performing a laser pulse shaping which allows to launch a sequence of
shock waves characterized by a precisely controlled timing. This amounts to approximate an
isentropic compression by a succession of shock waves, refer to [168]. A typical laser pulse has
been plotted in Figure 1.5. It has three characteristic parts: the pre-pulse that launches a shock
through the solid shell, compresses and moves it inside, the raising part that accelerates the
shell approximately isentropically to the velocity that will enable the fuel assembly; and the
high intensity part that launches a shock through the shell and heats a small portion of the
compressed fuel which is called the hot spot. The hot spot creation corresponds to the third
stage. Due to the laser pulse shaping, it coincides with the stagnation of the shell which has
been continuously decelerated by the bounces of the shock waves at the center of the target. It is
worth to mention that the mass of the hot spot represents approximately less than one hundredth
of the total fuel mass. This tiny mass of heated compressed fuel requires a ρr approximately
equal to 0.2 g/cm2 to ignite. Then it sparks the combustion in the remaining cold fuel. This
results in the fourth stage wherein a thermonuclear burn front propagates radially outward in
the main fuel producing high gain.

Here, we have briefly described the basic scheme of ICF knowing that nowadays more efficient
alternative schemes for the inertial fusion energy production are under consideration. The
interested reader may refer to [158].
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Figure 1.5: Typical shape of the laser pulse (black curve) consisting of a pre-pulse of a power
of a few TW following by the raising part and the main pulse at the level of 50 TW. The red
curve corresponds to the power absorbed by the plasma.

1.2 CHIC: a two-dimensional code for modeling high energy

density physics

The CHIC code has been developed at CELIA laboratory (Bordeaux University). It has as main
objective the numerical simulation of experiments concerning the physics of hot dense plasma
created by laser in the domain of ICF, laboratory astrophysics and laser processing. This bi-
dimensional code allows the theoretical developments, conception and interpretation of various
experiments in the domain of high energy density physics. The detailed presentation of the
underlying theoretical models is beyond the scope of the current work. The reader interested
by this topic may report to the thoroughly review presented by Atzeni in [9]. This laser fusion
code employs a single fluid, two-temperature (ions and electrons) description of the plasma flow.
Roughly speaking this description consists of a system of integral-differential equations at the
center of which we find the equations of compressible gas dynamics, coupled to equations of
electron and photon transport characterized by equations of non-linear diffusion, the equations
of laser energy transport and energy deposition, fusion reactions, etc.

As we have seen before, the hydrodynamic flow resulting from an implosion of an ICF tar-
get is a source of very intense shock and rarefaction waves. This fluid flow undergoes unsteady
phenomena with characteristic time scales ranging from 10−12 s to 10−8 s. These phenomena
are characterized by very intense thermodynamic processes wherein the density of the material
under consideration can be compressed up to several thousand times its nominal value, the
pressure ranges from the atmospheric pressure (1 bar) to 100 Gbars and the temperatures may
vary between 15 K and 500 MK. During the target implosion, the size of the domain occupied
by the fluid varies strongly over time. Moreover, the target being composed of several distinct
materials, this flow generally contains several interfaces that need to be followed with accuracy
during implosion. For all these reasons, we utilize the Lagrangian description of the gas dynam-
ics equations which amounts to write it using the reference frame attached to the fluid motion.
The Lagrangian formalism and its links with the classical Eulerian formalism are presented for
the conservation laws of fluid mechanics in Chapter 2. The gas dynamics equations in the CHIC
code are solved through the use of a cell-centered two-dimensional Lagrangian scheme which
is called EUCCLHYD (Explicit Unstructured Cell-Centered Lagrangian HYDrodynamics).
This finite volume scheme is based on a total energy formulation. It conserves the momentum
and the total energy and satisfies an entropy inequality. It relies on a nodal solver that can be
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Figure 1.6: Schematic overview of the CHIC code.

interpreted as a two-dimensional extension of the Godunov acoustic solver. This scheme, that
constitutes the numerical basis of the CHIC code, is thoroughly presented in Chapter 3.

Returning to the physical context of an imploding ICF target, let us recall that the laser
energy is absorbed in low density plasma corona and the transport of the absorbed energy to
dense plasma layers is assured by the electrons and photons. This energy transfer is described
by a set of non-linear diffusion equations coupled to Lagrangian hydrodynamics. The radi-
ation hydrodynamic simulations generally produce highly deformed meshes which makes the
discretization of a diffusion equation a delicate procedure. Indeed, the classical finite volume
schemes where the face conduction flux is discretized using a two-point finite difference approx-
imation are not accurate enough and even inconsistent. Thus, on highly deformed meshes the
isotherms produced by such schemes follow cell lines, a consequence of which is a degradation of
the simulation precision. To address this issue, a robust and accurate finite volume cell-centered
scheme, called CCLAD (Cell-Centered LAgrangian Diffusion), has been developed and imple-
mented into the CHIC code. This scheme that also takes into account an anisotropic diffusion
operator (Braginski conduction model for self-generated transverse magnetic field modeling) is
detailed in Chaper 4. The coupling between Lagrangian hydrodynamics (EUCCLHYD) and
diffusion (CCLAD) constitutes the numerical basis of the CHIC code.

This numerical basis is completed by various physical modules which are schematically dis-
played in Figure 1.6. These are: a library of tabular equations of state and opacities, a module
calculating the propagation of the laser beams using a tri-dimensional ray tracing method, a
module calculating energy transfer by radiation in the multigroup diffusion approximation, a
Magneto Hydro Dynamic (MHD) module that describes the evolution of self-generated trans-
verse magnetic fields, as well as a thermonuclear combustion module.

Let us point out that the accuracy and precision of the numerical simulations produced by
this code is based not only on their intensive numerical validation using representative test cases,
but also on the physical validation obtained from conclusive results of a number of experiments
performed on high-power lasers, refer to [143, 138, 68, 10, 87, 88].
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Chapter 2

Eulerian and Lagrangian formalisms

for conservation laws in fluid

mechanics

The main objective of this chapter is to recall classical notions of continuum mechanics that are
required for the subsequent development of numerical methods. In continuum mechanics, there
are two possible kinematic representations to describe the motion of a material. These are the
Lagrangian description and the Eulerian description. The first one consists in describing the
flow by following the pathlines of material parcels as they move through space and time. The
second one consists in observing the flow at fixed locations in the space as time evolves. Here,
we intend to present not only the Lagrangian and the Eulerian descriptions of the conservation
laws of fluid mechanics using both integral and local forms but also the links between these two
formulations. The writing of this chapter relies on the following references [148, 25, 141, 156,
63, 86, 44, 81, 41, 125, 146, 55, 115].

The remainder of this chapter is organized as follows. In Section 2.1, we start by introducing
basic important concepts related to the kinematics of fluid motion such as the Lagrangian and
Eulerian descriptions, the deformation gradient tensor and the material derivative. We recall
the fundamental Reynolds transport formula that expresses the time rate of change of the
volume integral of a fluid variable over a moving fluid domain. This formula, which is the basis
to derive the integral form of the conservation laws, is also generalized to take into account
the jump discontinuity of a fluid variable accross a moving discontinuity. In Section 2.2, we
present the various Eulerian forms of the conservation laws of fluid mechanics. Basic concepts of
thermodynamics are introduced. The constitutive laws modeling problem is addressed through
the use of the Second Law of thermodynamics. Finally, the Rankine-Hugoniot relations, which
express the conservation of the mass, the momentum and the total energy accross a moving
discontinuity are derived by means of the generalized Reynolds transport formula. In Section 2.3,
the Lagrangian integral and local forms of the conservation laws are derived by transforming the
Eulerian conservation laws through the use of the Lagrange-Euler map. The Rankine-Hugoniot
relations are written under the Lagrangian form. The study of the correspondence between the
Eulerian and the Lagrangian Rankine-Hugoniot relations reveals the fundamental role of the
Piola indentity. We conclude this chapter by introducing in Section 2.4, the Arbitrary Eulerian
Lagrangian form of the conservation laws.
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Figure 2.1: Notation for the flow map.

2.1 Kinematics of fluid motion

2.1.1 Lagrangian and Eulerian descriptions

Let us introduce the d-dimensional Euclidean space Rd, where d is an integer ranging from 1 to
3. The space R

d is equipped with an orthonormal basis and an orthogonal coordinate system.
For d = 3, the basis and the coordinate system are respectively denoted (ex, ey, ez) and (x, y, z).
Notation related to d = 2 and d = 1 are obviously deduced. The position vector of a point is
denoted by x = (x, y, z)t. Let D be a region of Rd filled by a moving fluid. The fluid flow is
described mathematically by the continuous transformation, Φ, of D into itself as

Φ :X 7−→ x = Φ(X, t). (2.1)

Here, t, which is a non-negative real number, denotes the time andX = (X,Y, Z) is the position
at time t = 0 of a particle moving with the fluid which occupies the position x at time t > 0.
It turns out that x is determined as a function of X and t, and the fluid flow is represented
by the transformation x = Φ(X, t). By definition Φ satisfies Φ(X, 0) = X. For a fixed time,
transformation (2.1) determines the image of the region initially filled by the fluid. For a fixed
X, the time evolution of (2.1) describes the trajectory of a fluid particle initially located at X.
We assume that Φ has continuous derivatives up to the second order in all variables, except
possibly at certain singular surfaces, curves or points. We also assume that it has an inverse
denoted Φ−1 and defined by

Φ−1 : x 7−→X = Φ−1(x, t). (2.2)

Let us consider ω = ω(t) a moving sub-region of D at time t. ω corresponds to the image
of a fixed sub-region Ω in the flow map, i.e., ω = {x = Φ(X, t)|X ∈ Ω}. The boundaries
of ω and Ω are respectively denoted ∂ω and ∂Ω, and their unit outward normals are n and
N , refer to Fig 2.1. At this point, we can introduce the two usual descriptions of the flows,
namely the Lagrangian description and the Eulerian description. The Lagrangian description,
otherwise called material description, consists in observing the fluid by following the motion of
fluid particles from their initial location. The independent variables used for this description
are (X, t). On the other hand the Eulerian description, otherwise called spatial description,
consists in observing the fluid at fixed locations in the space. The independent variables used
for that description are (x, t). We notice that through the use of transformation (2.1) any fluid
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quantity f which is expressed in terms of the Eulerian variables (x, t) can also be expressed in
terms of the Lagrangian variables (X, t) and conversely. To emphasize the used variables, we
write either

f = f(x, t) or f = f(X, t).

For the sake of conciseness, same notation is used to denote the value of the physical quantity
whatever the description employed. This amounts to write the following trivial equalities

f(X, t) = f(x, t) = f(Φ(X, t), t). (2.3)

To be more precise, f(X, t) is the value of the physical quantity experienced at time t by the
fluid particle initially located at X whereas f(x, t) is the value of f experienced by the fluid
particle which is located at position x at time t.

2.1.2 Material time derivative and velocity

Let f be a fluid variable with a sufficient smoothness to allow the computation of its first
partial derivatives with respect to both Lagrangian and Eulerian variables. First, we introduce
the material derivative of f which measures the rate of change of f following a fluid particle
along its motion as

d

dt
f ≡ ∂

∂t
f(X, t). (2.4)

Note that it corresponds to the partial time derivative in the Lagrangian description. The
velocity of a fluid particle is denoted U and is defined as the material derivative of the position
vector x

U(X, t) =
d

dt
x =

∂

∂t
Φ. (2.5)

As defined, U is a function of the Lagrangian variables, however it is possible to also express it
in terms of the Eulerian variables writing U = U(x, t). Knowing the velocity field expressed in
terms of the Eulerian coordinates, it is thus possible to determine the fluid flow by solving the
system of ordinary differential equations

d

dt
x = U(x, t), x(0) =X, (2.6)

which corresponds to the trajectory equations of the fluid flow. Considering the physical quan-
tity f expressed in terms of the Eulerian variables, that is f = f(x, t), we compute its material
derivative employing (2.3) and the chain rule of composite derivative to get

d

dt
f =

∂

∂t
f + (

∂

∂t
Φ) ·∇xf, (2.7)

where ∇x denotes the gradient operator with respect to Eulerian coordinates, which writes in
the chosen coordinate system as ∇xf = ( ∂

∂xf,
∂
∂yf,

∂
∂zf)

t. Substituting the velocity definition
into (2.7) leads to

d

dt
f =

∂

∂t
f +U ·∇xf. (2.8)

This last equation may be interpreted as expressing, for an arbitrary physical quantity f =
f(x, t), the time rate of change of f apparent to a viewer located on the moving particle
instantaneously at the position x. Let f denotes a vector valued function, we compute its
material derivative applying (2.8) componentwise to finally get

d

dt
f =

∂

∂t
f + (∇xf)U , (2.9)

where ∇xf represents the gradient tensor defined by (A.24).
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2.1.3 Deformation gradient tensor

Let X0 be the initial position vector of a specific fluid particle and D0 a subset of the three-
dimensional space that contains this particle. Its image in the fluid flow transformation writes
x0 = Φ(X0, t). Let x = Φ(X, t) denotes the vector position of a fluid particle at time t which
was initially located in the vicinity of X0, i.e., X ∈ D0. A first-order Taylor expansion of the
transformation Φ in the Lagrangian variable yields

x =Φ(X0 +X −X0, t)

=Φ(X0, t) +∇XΦ(X0, t)(X −X0) +O(|X −X0 |2).

Here, ∇XΦ denotes the gradient tensor of Φ with respect to the Lagrangian coordinates, it
represents the Jacobian matrix of the transformation characterizing the fluid flow. This Jacobian
matrix is also named the deformation gradient tensor and is defined as

F = ∇Xx, (2.10)

since x = Φ(X, t). This matrix, which is defined in terms of the Lagrangian variables, is
invertible and its determinant, J , satisfies J = detF > 0 since F(X, 0) = Id where Id denotes the
identity tensor. Before we proceed any further, let us recall a fundamental interpretation of the
Jacobian determinant. Let dV denotes a Lagrangian volume element and dv its corresponding
volume in the Eulerian space through the transformation of the flow, then these two volumes
are related through the following formula

dv = JdV. (2.11)

This formula shows that the Jacobian is a measure of the volume change produced by the fluid
deformation.

Using definition (2.10), we rewrite the previous Taylor expansion as

x− x0 = F(X0, t)(X −X0) +O(|X −X0 |2). (2.12)

Passing to the limit X →X0 in the above equation leads to

dx = FdX, (2.13)

where dX and dx are infinitesimal displacement vectors respectively in the initial and final
configurations of the flow. It turns out that the deformation gradient tensor quantifies the
change in shape of infinitesimal displacement vectors through the fluid motion. To be more
precise, let us introduce the right Cauchy-Green deformation tensor as

C = FtF. (2.14)

It can be regarded as quantifying the squared length of infinitesimal fibers in the final configura-
tion of the flow. Let dX = LN be an infinitesimal fluid fiber in the initial configuration, where
N is its unit vector and L its length. Through the flow, this fiber transforms into dx = ln.
Here, l and n denote the length and the unit vector of the fiber in the final configuration. This
length can be computed as

l2 = dx · dx
= FdX · FdX
= FtFdX · dX
= L2FtFN ·N .
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We finally obtained that the ratio of the squared lengths between the initial and final configu-
ration writes as

l2

L2
= CN ·N . (2.15)

We note that C is a symmetric definite positive tensor.

2.1.4 Material derivative of the Jacobian matrix and its determinant

The material derivative of the Jacobian matrix, F, is computed as

d

dt
F =

d

dt
∇Xx

=∇XU thanks to (2.5)

=(∇xU) (∇Xx).

Here, we have introduced the velocity gradient tensor as∇xU . Using previous notation, material
derivative of the Jacobian matrix reads

d

dt
F = (∇xU)F. (2.16)

The velocity gradient tensor is the basic measure of deformation rate and quantifies the relative
velocities of two material particles which Eulerian coordinates are x and x+dx. Let us introduce
the stretch rate tensor, D, and the spin tensor, W, which are respectively the symmetric and
the skew-symmetric parts of the velocity gradients

D =
1

2
(∇xU +∇xU

t), W =
1

2
(∇xU −∇xU

t). (2.17)

By definition ∇xU = D +W and Dt = D, Wt = −W. Being given an infinitesimal fiber in the
final configuration, dx = ln, we compute its rate of stretching as

d

dt
dx =

dl

dt
n+ l

dn

dt
. (2.18)

We can also compute it recalling that dx = FdX

d

dt
dx =

d

dt
FdX

=l(∇xU)n. thanks to (2.16)

Dot-multiplying by n the right-hand side of the two last equations yields

dl

dt
= l(∇xU)n · n. (2.19)

Here, we have used the fact that n · dn
dt = 0 since n2 = 1. Now, using the decomposition of the

velocity gradient into its symmetric and skew-symmetric parts leads to

dl

dt
= lDn · n, (2.20)

since Wt = −W. Therefore, the stretch rate tensor quantifies the rate of stretching of an
infinitesimal fiber following the fluid motion.
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The end of this paragraph is devoted to the computation of the material derivative of the
determinant of the Jacobian matrix. Knowing that J = detF, we make use of the chain rule of
composed derivatives (A.26) in the following manner

dJ

dt
=
∂

∂F
(detF) :

dF

dt
=(detF)F−t : ∇xUF thanks to (A.27) and (2.16)

=JF−tFt : ∇xU thanks to (A.17a)

=J tr(∇xU).

Let us point out that if S and T are two arbitrary second-order tensors, their inner product is
defined by S : T = tr(StT), refer to Appendix A.1.3. Noticing that the right-hand side of the
last line in the previous equation is proportional to the trace of the velocity gradient tensor
which is nothing but the divergence of the velocity field (refer to (A.29)), material derivative of
the determinant of the Jacobian matrix finally reads

dJ

dt
= J∇x ·U . (2.21)

Here ∇x ·U denotes the divergence of the velocity with respect to Eulerian coordinates, which
writes in the chosen coordinate system ∇x · U = ∂u

∂x + ∂v
∂y + ∂w

∂z , where (u, v, w) denote the
components of the velocity field. Introducing the stretch rate tensor, equation (2.21) admits
also the equivalent form

dJ

dt
= J trD. (2.22)

It turns out that the trace of D is a measure of rate of change of volume.

2.1.5 Transport formula for volume integrals

Let ω = ω(t) denotes an arbitrary moving volume and let f(x, t) be a scalar valued function
representing some physical quantity. Transport formula consists in expressing the time rate of
change of the integral of the physical quantity f over the moving volume ω, i.e,

d

dt

∫

ω(t)
f(x, t) dv. (2.23)

We shall write two versions of the transport formula, depending on whether the volume ω is
moving with the fluid velocity or not. First, we derive the Reynolds transport formula which
corresponds to a volume moving with the fluid velocity. Second, we derive the generalized
Reynolds transport formula which applies to a volume moving with an arbitrary velocity. In
writing these formulas, we make the assumption that function f is continuously differentiable
over ω. Then, we conclude by investigating the case of a piecewise continuously differentiable
function, which undergoes jump discontinuity across a discontinuity surface moving within
the volume under consideration. Let us emphasize that these formulas are of fundamental
importance to derive not only the balance equations of fluid mechanics but also the Rankine-
Hugoniot jump relations. Reference books for this part are [63, 141, 55].

Reynolds transport formula

Here, we consider f = f(x, t) as a continuously differentiable function over the region ω moving
with the fluid velocity U . Since ω is time-dependent, we cannot compute the time derivative
(2.23) directly. To do so, we shall use the following change of variables

∫

ω
f(x, t) dv =

∫

Ω
f(X, t)J dV. (2.24)
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In writing this equality, we have introduced the fixed Lagrangian coordinate,X, as new variable
of integration and used the fact that for this change of variable the change of volume element is
ruled by (2.11). The initial volume occupied by the fluid, Ω is mapped into ω at time t through
the flow transformation, i.e., ω = Φ(Ω, t). Thanks to the above change of variables, we can
compute the time derivative (2.23) as follows

d

dt

∫

ω
f(x, t) dv =

∫

Ω
J(
df

dt
+ f

dJ

dt
) dV

=

∫

Ω
J [
df

dt
+ f∇x ·U ] dV thanks to (2.21)

=

∫

ω
(
df

dt
+ f∇x ·U) dv. thanks to (2.11)

Substituting the definition of the material derivative (2.8) in the right-hand side of the last line
leads to the transport theorem otherwise named the Reynolds transport formula

d

dt

∫

ω
f(x, t) dv =

∫

ω
[
∂f

∂t
+∇x · (fU)] dv. (2.25)

Through the use of the divergence theorem (A.33b), Reynolds transport formula can also be
written under the following form

d

dt

∫

ω
f(x, t) dv =

∫

ω

∂f

∂t
dv +

∫

∂ω
fU · n ds, (2.26)

where n denotes the outward unit normal to the boundary ∂ω. This equation states that the
rate of increase of the total amount of f attached to the moving volume ω is balanced by the rate
of increase of the total amount of f inside ω plus the net rate of outward flux of f transferred
by the fluid through the boundary ∂ω.

To extend the Reynolds transport formula to the vector valued function f , we proceed with
the computation of the time derivative of its volume integral as before

d

dt

∫

ω
f(x, t) dv =

∫

Ω
J [
df

dt
+ f∇x ·U ] dV

=

∫

ω
(
df

dt
+ f∇x ·U) dv

=

∫

ω
[
∂f

∂t
+ (∇xf)U + f∇x ·U ] dv. thanks to (2.9)

The use of tensor identity (A.31b) in the right-hand side of the last line yields the vector form
of the transport formula

d

dt

∫

ω
f(x, t) dv =

∫

ω
[
∂f

∂t
+∇x · (f ⊗U)] dv, (2.27)

where symbol ⊗ denotes the tensor product of two vectors defined by (A.1) and (A.2). Pro-
ceeding with the divergence theorem (A.33a) as before yields

d

dt

∫

ω
f(x, t) dv =

∫

ω

∂f

∂t
dv +

∫

∂ω
f(U · n) ds. (2.28)

A straightforward application of the Reynolds transport formula consists in deriving the
continuity equation from the principle of mass conservation. This fundamental principle cor-
responds to the postulate that the mass of fluid in a material volume ω does not change as ω
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moves with the fluid. Let ρ = ρ(x, t) denotes the mass density of the fluid, i.e., the mass per
unit volume. Mass conservation writes as

d

dt

∫

ω
ρ(x, t) dv = 0. (2.29)

Expressing the integrand in terms of the Lagrangian coordinate and integrating between initial
and final time yields

∫

ω
ρ(x, t) dv =

∫

Ω
ρ(X, t)J dV

=

∫

Ω
ρ0(X) dV,

where ρ0 is the initial density field. From this equation, it follows easily that

d

dt
(ρJ) = 0, (2.30a)

ρJ = ρ0. (2.30b)

Here, we have derived two forms of the Lagrangian equation of continuity. Combining (2.25)
for f = ρ and (2.29), we derive the Eulerian equation of continuity in its integral form

∫

ω
[
∂ρ

∂t
+∇x · (ρU)] dv = 0.

Since ω is an arbitrary volume, this last equation implies

∂ρ

∂t
+∇x · (ρU) = 0, (2.31)

which is the local form of the Eulerian equation of continuity. It is a necessary and sufficient
condition for a motion to conserve the mass of each moving fluid volume. A by-product of the
transport theorem and mass conservation is obtained by computing the time rate of change of
the integral over a moving volume of the density times an arbitrary function

d

dt

∫

ω
ρf dv =

d

dt

∫

Ω
ρJf dV

=

∫

Ω
ρJ
df

dt
dV. thanks to (2.30a)

Coming back to the Eulerian coordinates in the right-hand side of the last line, we finally get

d

dt

∫

ω
ρf dv =

∫

ω
ρ
df

dt
dv. (2.32)

This formula, which is also valid for vector valued function, will be of great interest when we
will perform the spatial discretization of the gas dynamics equations.

Generalized Reynolds transport formula

In this paragraph, we aim at deriving the counterpart of the Reynolds transport formula in
the case of an arbitrary motion which is different to the fluid motion. This arbitrary motion is
characterized by the one-to-one continuously differentiable abstract map, Ψ, defined as

Ψ : Ωξ −→ ω,

ξ 7−→ x = Ψ(ξ, t).
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Here, ω denotes a sub-region of the Eulerian configuration and Ωξ its pre-image under the
abstract map Ψ. Let us note that map Ψ is parameterized by the time t ≥ 0. We also assume
that Ψ(ξ, 0) = ξ. The velocity field, V = V (ξ, t), associated to this map is defined as

V =
∂

∂t
Ψ(ξ, t). (2.33)

Let f be a smooth scalar valued function which represents a fluid property, we can express f
either in terms of Eulerian coordinates x or in terms of the initial configuration coordinates
ξ, since f = f(x, t) = f(Ψ(ξ, t), t). Using the chain rule, we define the time derivative of
f = f(x(ξ, t), t) following the particle initially located at ξ

df

dt

∣∣∣
ξ
=
∂f

∂t
+ V ·∇xf. (2.34)

The subscript ξ in the above equation emphasizes the fact that the time derivative is performed
ξ being held fixed. Let us point out that this time derivative is the counterpart of the material
time derivative (2.8) associated to the Lagrangian-to-Eulerian map. We readily obtain that
these times derivatives are linked by

df

dt

∣∣∣
ξ
=
df

dt
+ (V −U) ·∇xf,

where U is the fluid velocity. Proceeding with map Ψ as we did with the Lagrangian-to-Eulerian
map, we introduce the determinant of its Jacobian matrix as

Jξ(ξ, t) = det(∇ξΨ). (2.35)

Here, ∇ξΨ denotes the Jacobian matrix of map Ψ. Since Ψ is always one-to-one, it follows
that det(∇ξΨ) never vanishes and therefore, by continuity, Jξ(ξ, t) > 0. If dv and dVξ denote
respectively volume elements in the Eulerian and initial configurations, then they are related
by the Jacobian as dv = JξdVξ. Proceeding as we did in Section 2.1.4, one can show that the
abstract time derivative of the Jacobian Jξ is given by

d

dt

∣∣∣
ξ
Jξ = Jξ∇x · V . (2.36)

Combining this equation and (2.34), one deduces

d

dt

∣∣∣
ξ
(fJξ) = Jξ[

∂f

∂t
+∇x · (fV )]. (2.37)

Bearing this in mind, we compute the time derivative of the volume integral
∫
ω=Ψ(Ωξ,t)

f(x, t) dv
as

d

dt

∫

ω=Ψ(Ωξ,t)
f(x, t) dv =

∫

Ωξ

d

dt
|ξ[f(x(ξ, t), t)Jξ] dVξ

=

∫

Ωξ

Jξ[
∂f

∂t
+∇x · (fV )] dVξ. thanks to (2.37)

Then, pulling back to the Eulerian configuration in the integral of the righ-hand side yields

d

dt

∫

ω=Ψ(Ωξ,t)
f(x, t) dv =

∫

ω
[
∂f

∂t
+∇x · (fV )] dv.
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Finally, applying the divergence formula yields the transport formula with respect to the arbi-
trary motion Ψ

d

dt

∫

ω=Ψ(Ωξ,t)
f(x, t) dv =

∫

ω

∂f

∂t
dv +

∫

∂ω
fV · n ds. (2.38)

Comparing the above transport formula to the transport formula (2.26) corresponding to the
fluid motion leads to the very important result

d

dt

∫

ω=Ψ(Ωξ,t)
f(x, t) dv =

d

dt

∫

ω=Φ(Ω,t)
f(x, t) dv −

∫

∂ω
f(U − V ) · n ds. (2.39)

Let us recall that Φ and U denote respectively the fluid map and the fluid velocity. Here, U−V
is the relative velocity of the fluid with respect to the arbitrary motion. The above equation
states that the time derivative of the volume integral of f following the arbitrary motion is
equal to the time derivative of the volume integral of f following the fluid motion decreased
by the flux of f transferred through the boundary ∂ω with the relative fluid velocity U − V .
We remark that if the arbitrary motion coincides with the fluid motion, i.e., V = U , then
transport formula (2.38) collapses to the classical transport formula (2.26). Transport formula
(2.39) will be of great importance to derive the Arbitrary Lagrangian Eulerian integral form of
the conservation laws of fluid mechanics, refer to Section 2.4.

Transport formula and discontinuity surfaces

In this section, we aim at deriving the counterpart of formulas (2.26) and (2.28) for piecewise

continuously differentiable functions. Let f = f(x, t) be a vector valued function defined over
the Eulerian volume ω at time t. We assume that this function undergone a jump discontinuity
across a surface, σ, located within the volume, ω, and we also let the fluid velocity, U , be
discontinuous at σ. Namely, ω is divided into two non-overlapping volumes ω1 and ω2 over which
f is continuously differentiable, σ being the intersection surface of ω1 and ω2, i.e., σ = ω1 ∩ω2,
refer to Fig. 2.2. At any point, xσ, located on the discontinuity surface we define its unit normal,
nσ, pointing in the direction of ω2. We also define its displacement velocity, w = w(xσ, t), which
can differ from the fluid velocity U . The jumps of the function f across the discontinuity surface
σ is defined as

JfK = f2 − f1,
where for an arbitrary xσ ∈ σ, the one-sided limits of f on both sides of the discontinuity
surface are defined as

f1 = lim
h→0+

f(xσ − hnσ), f2 = lim
h→0+

f(xσ + hnσ).

Let us define over each sub-region, ωi, i = 1, 2, the following piecewise continuous velocity field

V (x, t) =

{
U(x, t) if x ∈ ωi ∪ (∂ωi \ σ),
w(x, t) if x ∈ σ.

This velocity field follows from an arbitrary motion Ψ which is assumed to be a one-to-one
continuous map. Let Ωξ,i be the pre-image of ωi by the map Ψ, i.e., ωi = Ψ(Ωξ,i, t). Knowing
that f is continuously differentiable over each sub-region ωi, we apply the generalized Reynolds
transport formula (2.38) to obtain

d

dt

∫

ω1=Ψ(Ω1,ξ,t)
f(x, t) dv =

∫

ω1

∂f

∂t
dv +

∫

∂ω1\σ
f(U · n) ds+

∫

σ
f1(w · nσ) ds,

d

dt

∫

ω2=Ψ(Ω2,ξ,t)
f(x, t) dv =

∫

ω2

∂f

∂t
dv +

∫

∂ω2\σ
f(U · n) ds−

∫

σ
f2(w · nσ) ds.
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ω = ω1 ∪ ω2 ∪ σ

Figure 2.2: Notation for a moving discontinuity σ in the Eulerian frame.

Summing the two previous equations yields

d

dt

∫

ω1=Ψ(Ω1,ξ,t)
f(x, t) dv +

d

dt

∫

ω2=Ψ(Ω2,ξ,t)
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv +

∫

∂ω
f(U · n) ds−

∫

σ
JfK(w · nσ) ds.

The velocity field, V , of the arbitrary motion, Ψ, coincides with the fluid velocity, U , everywhere
except on the discontinuity surface, σ. Therefore:

d

dt

∫

ω1=Ψ(Ω1,ξ,t)
f(x, t) dv +

d

dt

∫

ω2=Ψ(Ω2,ξ,t)
f(x, t) dv =

d

dt

∫

ω=Φ(Ω,t)
f(x, t) dv.

Combining the two previous equations, we get

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv +

∫

∂ω
f(U · n) ds−

∫

σ
JfK(w · nσ) ds. (2.40)

The third term in the right-hand side corresponds to the flux through σ resulting from the
jump across this surface. We notice that this term cancels when JfK → 0 and we recover the
classical transport formula (2.28). Substituting tensor identity (A.1) in the surface integrals of
the right-hand side, Equation (2.40) rewrites

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv +

∫

∂ω
(f ⊗U)n ds−

∫

σ
Jf ⊗wKnσ ds. (2.41)

Finally, replacing the second term in the right-hand side by means of the divergence formula
(A.36), we obtain

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

[
∂f

∂t
+∇x · (f ⊗U)] dv +

∫

σ
Jf ⊗ (U −w)Knσ ds. (2.42)

Proceeding with the scalar valued function, f , as before yields successively

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv +

∫

∂ω
f(U · n) ds−

∫

σ
JfK(w · nσ) ds. (2.43)
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d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

[
∂f

∂t
+∇x · (fU)] dv +

∫

σ
Jf(U −w)K · nσ ds. (2.44)

Last equation results from application of divergence formula (A.35) for piecewise continuously
differential scalar valued functions.

Comment 1 It is important to notice that the above transport formulas can be applied in the
particular case of a fixed region ω crossed by a moving discontinuity σ. With this assump-
tion, keeping the same notation as before, transport formula for scalar valued and vector valued
function write

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv −

∫

σ
JfK(w · nσ) ds, (2.45a)

d

dt

∫

ω
f(x, t) dv =

∫

ω1∪ω2

∂f

∂t
dv −

∫

σ
Jf ⊗wKnσ ds. (2.45b)

These formulas are obtained using once more the generalized Reynolds transport formulas over
each sub-regions ωi considering the arbitrary motion, Ψ, determined by the following piecewise
continuous velocity field

V (x, t) =

{
0 if x ∈ ωi ∪ (∂ωi \ σ),
w(x, t) if x ∈ σ.

We shall use transport formulas (2.45) when deriving the jump relations associated to conser-
vation laws written under Lagrangian formalism.

Comment 2 Let us remark that a straightforward application of transport formula (2.44) to the
mass density, i.e., f = ρ, yields mass conservation equation through the discontinuity surface
σ. The principle of mass conservation (2.29) leads to

∫

ω1∪ω2

[
∂ρ

∂t
+∇x · (ρU)] dv +

∫

σ
Jρ(U −w)K · nσ ds = 0.

Since ρ and U are continuously differentiable over ω1 and ω2, by virtue of the continuity equation
(2.31), volume integrals in the left-hand side cancel and mass conservation equation reduces to

∫

σ
Jρ(U −w)K · nσ ds = 0.

Since this equation holds for any arbitrary surface, we deduce

Jρ(U −w)K · nσ = 0, ∀xσ ∈ σ. (2.46)

This amounts to write
ρ1(U1 −w) · nσ = ρ2(U2 −w) · nσ.

Therefore, jump relation (2.46) simply states the continuity of mass flux through the discon-
tinuity surface. This is one of the Rankine-Hugoniot relations which will be derived later for
conservation laws of fluid mechanics.

2.1.6 Transport formula for surface integrals

Let us consider f = f(x, t) a scalar valued function representing some physical quantity. We
propose to compute the time rate of change of the integral of f over the surface s = s(t) which
is moving with fluid. This computation will be done expressing the integrand by means of
the Lagrangian coordinates after performing the classical change of variables x 7→ X. To this
end, we need to know how the surface element transforms between Eulerian and Lagrangian
configurations.
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Figure 2.3: Area elements transformation.

Nanson formula

Knowing that the Eulerian and Lagrangian volume elements are related by dv = JdV , the
aim of this paragraph is to determine an analogous formula to relate Eulerian and Lagrangian
area elements. Let us consider a material fluid volume Ω and X a fluid particle located on its
boundary ∂Ω. Let dS be the area element in the vicinity of this fluid particle, characterized
by its unit outward normal N . Through the flow transformation, at time t, the material fluid
volume and the material position vector are mapped into ω = Φ(Ω, t), x = Φ(X, t). Let ds
and n denote the area element centered at the position vector x and its outward unit normal in
the Eulerian space, refer to Fig. 2.3. The element volume dV is computed as the infinitesimal
volume corresponding to the cylinder characterized by the base dS and displacement vector dX

dV = dX ·NdS. (2.47)

Using the same reasoning, the corresponding element volume in the Eulerian space writes as

dv = dx · nds. (2.48)

Substituting dv = JdV and dx = FdX in equations (2.47) and (2.48), we obtain

JNdS · dX =FdX · nds
=Ftnds · dX.

Since this equality holds for an arbitrary displacement vector dX, we deduce

nds = JF−tNdS, (2.49)

where the superscript, −t, applied to tensor F denotes the transpose of its inverse. This formula
expresses the transport of an orientated area element through the flow deformation. It is known
as the Nanson formula. This formula will be one of the main ingredient to derive the Lagrangian
forms of the conservation laws of fluid mechanics.

Time rate of change of a surface integral

Having in mind the Nanson formula, we can compute the time rate of change of a surface
integral. First, let us notice that

∫

s(t)
f(x, t)n ds =

∫

S(t)
f(X, t)JF−tN dS.
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Here s = s(t) denotes the moving surface in the Eulerian configuration, S is its pre-image in
the Lagrangian configuration, i.e., s(t) = Φ(S, t) where Φ is the flow map. Second, let us recall
that the material derivative of an arbitrary matrix G is given by

d

dt
G−1 = −G−1 d

dt
(G)G−1. (2.50)

This intermediate result is obtained by time differentiating G−1G = Id. Applying this to the
tensor deformation gradient and using (2.16) yields

d

dt
F−1 = −F−1∇xU . (2.51)

Combining the above results, we compute the material derivative of the surface integral as

d

dt

∫

s(t)
f(x, t)n ds =

∫

S(t)

d

dt
[f(X, t)JF−t]N dS

=

∫

S(t)
{[df
dt

+ f∇x ·U ]Id − f(∇xU)t}JF−tN dS thanks to (2.21) and (2.51)

=

∫

s(t)
{[df
dt

+ f∇x ·U ]Id − f(∇xU)t}n ds. thanks to (2.49)

Using the definition of the material derivative in the Eulerian configuration (2.7) leads to the
final formula

d

dt

∫

s(t)
f(x, t)n ds =

∫

s(t)
[
∂f

dt
+∇x · (fU)]n ds−

∫

s(t)
f(∇xU)tn ds. (2.52)

2.2 Eulerian forms of fluid mechanics conservation laws

We recall the classical conservation laws of fluid mechanics with thermal conduction, which
express respectively mass, momentum and total energy conservation. Their detailed derivation
can be found in many textbooks of fluid mechanics [63, 141, 148]. These conservation laws are
expressed using an integral form since this is how they are derived physically. Moreover, the
integral form allows to hold general fluid flows such as those containing discontinuities.

2.2.1 Eulerian integral form of fluid mechanics conservation laws

Conservation Laws of fluid mechanics

Let ω be a moving fluid region and ∂ω its boundary surface. The first conservation law results
from the principle of mass conservation, which states that the mass contained in the moving
fluid volume is conserved. It has been already written, refer to (2.29), however we recall it for
sake of completeness

d

dt

∫

ω
ρ(x, t) dv = 0,

where ρ denotes the mass density of the fluid.
The second conservation law corresponds to the principle of balance of momentum, which

states that the rate of increase of momentum of ω is balanced by the momentum supplied by
applied forces. This is nothing but the second Newton’s law applied to moving fluid region ω
as

d

dt

∫

ω
ρU dv =

∫

∂ω
τ ds+

∫

ω
ρg dv. (2.53)
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Here, g denotes a volume force defined per unit mass of fluid such as gravity, τ represents a
force defined per unit area acting on the boundary surface ∂ω. Let n be the unit outward
normal located at x ∈ ∂ω, the force τ = τ (x, t,n), acting on the plane passing through point
x and characterized by the unit normal n, is completely defined by

τ(x, t,n) = Tn,

where T is a second-order tensor named the Cauchy stress tensor. The interesting reader can
refer to [63] for the proof of this fundamental result. Satisfaction of the principle of balance of
angular momentum requires that this stress tensor must be symmetric, i.e., Tt = T, refer to
[148].

The third conservation law expresses the principle of balance of total energy. Namely, the
rate of increase of total energy of ω is balanced by the energy supplied by the power of applied
forces, heat conducted through the surface ∂ω and heat volume source

d

dt

∫

ω
ρE dv =

∫

∂ω
τ ·U ds−

∫

∂ω
q · n ds+

∫

ω
ρ(g ·U + r) dv. (2.54)

In this equation E is the specific total energy, i.e., total energy per unit mass, which writes as
the sum of the specific kinetic energy plus the specific internal energy, E = 1

2 | U |2 +ε. In
addition, q = q(x, t) is the heat flux vector. It represents the rate at which energy is transferred
out of the volume through a unit area of the surface. r = r(x, t) is the heat supply per unit
mass and unit time absorbed by the fluid and furnished from the external world. Equation
(2.54) is nothing but the first law of thermodynamics [45] which states that the rate of change
of the total energy of a material volume is equal to the rate at which work is being done on
the volume plus the rate at which heat is conducted into the volume. Gathering the previous
results, we write the integral form of the conservation laws as

d

dt

∫

ω
ρdv = 0,

d

dt

∫

ω
ρU dv −

∫

∂ω
Tn ds =

∫

ω
ρg dv,

d

dt

∫

ω
ρE dv −

∫

∂ω
TU · n ds+

∫

∂ω
q · n ds =

∫

ω
ρ(g ·U + r) dv.

We complete the above system by adding the Geometric Conservation Law (GCL) which ex-
presses the time rate of change of the moving fluid volume, i.e.,

∫
ω dv. This equation is obtained

by computing the material derivative of the moving fluid volume as follows

d

dt

∫

ω
dv =

d

dt

∫

Ω
J dV,

=

∫

Ω
J∇ ·U dV, thanks to (2.21),

=

∫

ω
∇ ·U dv.

Application of the divergence theorem to the right-hand side of the last equation yields

d

dt

∫

ω
dv −

∫

∂ω
U · n ds = 0.

This last equation is strongly linked to the trajectory equation which describes the motion of
an arbitrary point, x, located on the moving boundary, ∂ω, as

dx

dt
= U(x, t), x(0) =X.
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Summary of the Eulerian integral conservation laws

Here, we summarize the conservation laws which govern the time evolution of mass, volume,
momentum and total energy of a moving fluid domain ω.

d

dt

∫

ω
ρdv = 0, (2.55a)

d

dt

∫

ω
dv −

∫

∂ω
U · n ds = 0, (2.55b)

d

dt

∫

ω
ρU dv −

∫

∂ω
Tn ds =

∫

ω
ρg dv, (2.55c)

d

dt

∫

ω
ρE dv −

∫

∂ω
TU · n ds+

∫

∂ω
q · n ds =

∫

ω
ρ(g ·U + r) dv. (2.55d)

Let us point out that the above system is not closed since the expressions of the Cauchy stress
tensor, T, and the heat flux, q, in terms of the other fluid variables, are still missing. In addi-
tion, some thermodynamic relations among the fluid variables are also missing. These particular
points will be investigated later in Section 2.2.3 determining not only the constitutive laws for
T and q but also the equation of state by means of thermodynamic arguments. We also re-

mark that this integral form of the conservation laws over a moving fluid domain is

particularly well adapted to describe the time evolution of fluid flow contained in

regions undergoing large shape changes, due to sudden strong compression or ex-

pansion. This formulation, known as the control volume formulation of the conservation laws,
is widely used to derive numerical methods within the framework of finite volume discretizations
over moving grids. Although this formulation makes use of a control volume attached to the
Eulerian configuration, it is often referred to as the updated Lagrangian formulation of the
conservation laws. This comes from the fact that in the discretized version of this approach,
the control volume moving with the fluid flow needs to be updated by means of the trajectory
equation.

Initial and boundary conditions for the Eulerian integral form

Let us suppose that the heat supply, r, the volume force, g, the constitutive laws for the
Cauchy stress, T, and the heat flux, q are given. Usually the above unsteady conservation laws
are solved in a finite moving domain D = D(t), which is an open set of the d-dimensional space
R
d. Therefore, a proper modelling of the fluid flow governed by the system of conservation

laws (2.55) requires not only to prescribe initial conditions but also boundary conditions at the
boundary, ∂D, of the domain D. Knowing that the fluid flow transformation, Φ, maps the inital
domain occupied by the fluid, D0, into D(t), initial conditions are prescribed for all x ∈ D0 as

ρ(x, 0) = ρ0(x), (2.56a)

U(x, 0) = U0(x), (2.56b)

E(x, 0) = E0(x). (2.56c)

Here, ρ0, U0 and E0 denote respectively the initial density, velocity and specific total energy.
Let us note that it also possible to define an initial condition for specific internal energy instead
of using (2.56c), since E = 1

2 | U |2 +ε.
Concerning the boundary conditions, depending on whether the heat flux is neglected or

not, we distinguish the two following cases.
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• q = 0: Depending on the problem we want to solve, we can prescribe either kinematic
or dynamic boundary conditions along the boundary of the domain. To set up these
boundary conditions, we subdivide the boundary as ∂D = ∂Dk ∪ ∂Dd, where ∂Dk and
∂Dd are the subsets of the boundary corresponding respectively to the kinematic and the
dynamic boundary conditions. With this notation, boundary conditions are implemented
for all time t > 0 as follows

U(x, t) = U⋆(x, t), ∀x ∈ ∂Dk, (2.57a)

T(x, t)n = τ ⋆(x, t), ∀x ∈ ∂Dd, (2.57b)

Here, U⋆ and τ ⋆ denote the prescribed boundary velocity and force, n is the unit outward
normal to ∂Dd. Let us emphasize that the dynamic boundary condition (2.57b) is a
natural boundary condition in the sense that it is automatically included in the integral
form of the conservation law (2.55c). It is important to note that (2.57a) corresponds to
a solid-wall boundary condition for a wall moving at speed U⋆. At free surfaces, such as
those encountered for fluid expanding in vacuum, the dynamic boundary condition (2.57b)
collapses to a stress-free boundary condition, i.e., Tn = 0.

• q 6= 0: There is heat propagation throughout the fluid by means of conduction. In this
case, a boundary condition attached to this physical phenomenon has to be imposed. The
natural corresponding boundary condition, in the sense that it is automatically included
in the integral form of the conservation law (2.55d), consists in prescribing the heat flux
at the boundary as follows

q(x, t) · n = q⋆(x, t), ∀x ∈ ∂D, (2.58)

where q⋆ denotes the prescribed normal heat flux. Anticipating the study made in Sec-
tion 2.2.3 concerning heat flux constitutive law, we point out that it is also possible to
prescribe other types of boundary condition for heat conduction as we shall see in Com-
ment 4.

2.2.2 Eulerian local form of fluid mechanics conservation laws

Under conditions of sufficient smoothness, the local form of the conservation laws are deduced
from the integral form (2.55) employing the transport formula (2.25) for f = (ρ, ρE) and the
transport formula (2.27) for f = ρU . This substitution leads to

∫

ω

∂ρ

∂t
+∇ · (ρU) dv = 0,

∫

ω

∂

∂t
(ρU) +∇ · (ρU ⊗U) dv −

∫

∂ω
Tn ds =

∫

ω
ρg dv,

∫

ω

∂

∂t
(ρE) +∇ · (ρEU) dv −

∫

∂ω
TU · n ds+

∫

∂ω
q · n ds =

∫

ω
ρ(g ·U + r) dv.

Transformation of the surface integrals, present in the left-hand side of the two last equations,
into volume integrals by means of the divergence formulas (A.33a) and (A.33b) leads to

∫

ω

∂ρ

∂t
+∇ · (ρU) dv = 0,

∫

ω

∂

∂t
(ρU) +∇ · (ρU ⊗U) dv −

∫

ω
∇ · Tdv =

∫

ω
ρg dv,

∫

ω

∂

∂t
(ρE) +∇ · (ρEU) dv −

∫

ω
∇ · (TU) dv +

∫

ω
∇ · q dv =

∫

ω
ρ(g ·U + r) dv.
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Knowing that the previous equations hold for any arbitrary moving fluid volume, we deduce
that the local form of the conservation laws with respect to the spatial (Eulerian) configuration
writes

∂ρ

∂t
+∇x · (ρU) = 0, (2.59a)

∂

∂t
(ρU) +∇x · (ρU ⊗U)−∇x · T = ρg, (2.59b)

∂

∂t
(ρE) +∇x · (ρEU)−∇x · (TU) +∇x · q = ρ(g ·U + r). (2.59c)

Assuming that the variables describing the flow are sufficiently smooth, introduction of the
material derivative in system (2.59) leads to the following non-conservative local form of the
gas dynamics equations

ρ
d

dt
(
1

ρ
)−∇ ·U = 0, (2.60a)

ρ
d

dt
U −∇x · T = ρg, (2.60b)

ρ
d

dt
E −∇x · (TU) +∇x · q = ρ(g ·U + r). (2.60c)

Note that the momentum equation has been derived by means of the identity (A.31b) and
using mass conservation (2.59a). Dot multiplying momentum equation by the velocity vector,
we obtain the balance equation of kinetic energy

ρ
d

dt
(
1

2
| U |2)− (∇x · T) ·U = ρg ·U . (2.61)

Subtracting kinetic energy equation from total energy equation yields internal energy equation

ρ
d

dt
ε−∇x · (TU) + (∇x · T) ·U +∇x · q = ρr.

Expanding the second term in the left-hand side using tensor identity (A.31a) and combining
it with the third term, we finally get

ρ
d

dt
ε+ [∇x · (T− Tt)] ·U − Tt : ∇xU +∇x · q = ρr.

Let us emphasize that symmetry of the stress tensor is not only required to ensure angular
momentum conservation but also to ensure Galilean invariance1 of internal energy equation. To
this end, the second term in the left-hand side must cancel for any arbitrary velocity field. This
involves the symmetry of the stress tensor, i.e., T = Tt. Having this in mind, internal energy
equation writes

ρ
d

dt
ε− T : ∇xU +∇x · q = ρr. (2.62)

Introducing the symmetric part of the velocity gradient, by means of identity (A.18), internal
energy equation is rewritten

ρ
d

dt
ε− T : D+∇x · q = ρr, (2.63)

1Galilean invariance is a principle of relativity which states that the fundamental laws of physics are the same
in all inertial frames. This means that the corresponding partial differential equations remain invariant under
linear uniform motions, i.e., under transformations of the form x

⋆ = x+At, where A is a uniform velocity.
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where D is the stretch rate tensor defined by (2.17).
Employing the symmetry of T and tensor identity (A.18), we show that the integral form of

kinetic energy balance writes as

d

dt

∫

ω

1

2
ρ | U |2 dv =

∫

ω
ρg ·U dv +

∫

∂ω
TU · n ds−

∫

ω
T : Ddv. (2.64)

This equation states that the time rate of change of kinetic energy of an arbitrary moving volume
is equal to the rate at which work is being done by volume and surface forces, diminished by a
dissipation term. This term renders the interaction of stress and strain, it corresponds to the
rate at which work is being done in changing shape of fluid volume. The counterpart of this
dissipation term is recovered in the integral form of the specific internal energy balance, which
is obtained by integrating (2.62) over the arbitrary moving volume ω

d

dt

∫

ω
ρε dv =

∫

ω
T : Ddv −

∫

∂ω
q · n ds+

∫

ω
ρr dv. (2.65)

2.2.3 Basic concepts of thermodynamics

We intend to recall basic notions of thermodynamics which are required to the describe the
thermodynamic closure of the conservation laws system (2.59). For a complete description of
this subtle subject, the reader might refer to [45].

Notation

In what follows, the fluid under consideration consists of a single homogeneous medium, that is
a one-phase system. Its description is characterized by the following state variables: the specific
volume τ = 1

ρ , the specific entropy η, the specific internal energy ε, the pressure P and the
temperature T . Its is assumed that P and T are strictly positive variables. The thermodynamics
structure of the fluid system is given by the fundamental equation of state

ε = ε(η, τ). (2.66)

Pressure and temperature are defined by

P = −(
∂ε

∂τ
)η, T = (

∂ε

∂η
)τ . (2.67)

These definitions involve the fundamental differential relation

Tdη = dε+ Pdτ, (2.68)

which is known as the Gibbs relation [45]. We complete the set of state variables by introducing
the specific enthalpy as

h = ε+ Pτ. (2.69)

Differentiating specific enthalpy definition and substituting it into Gibbs relation yields

Tdη = dh− τdP. (2.70)

Before concluding this paragraph, let us point out that the equation of state is an intrinsic
property of the material studied. It can be specified under various forms depending on the
number of states variables which are employed. For practical applications involving thermal
processes it is usual to define the equation of state by expressing the specific internal energy
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and the pressure in terms of the density and the temperature, i.e., P = P (ρ, T ) and ε = ε(ρ, T ).
For applications wherein temperature is not required, an equation of state written under the
form P = P (ρ, ε) is sufficient. This is precisely the case for ideal gas which is characterized by
an equation of state written as

P = (γ − 1)ρε, (2.71)

where γ stands for the polytropic index, which is an intrinsic characteristic of the gas.

The First Law of thermodynamics

The one-phase system under consideration is said to undergo a reversible or quasi static process
if it is in equilibrium with its surroundings at each instant. Let us consider a one-phase system
initially at rest which undergoes a reversible process. First Law of thermodynamics states that
the infinitesimal change in internal energy per unit mass, dε, is equal to the sum of the heat
per unit mass supplied to the system, δQ, and the work per unit mass done by the system
dW during the quasi static process, i.e., dε = dQ + δW . In our case, the work per unit mass
done by the system reduces to the mechanical work per unit mass done by the pressure, that is
δW = −Pdτ . The minus sign in the previous formula ensures that a positive work corresponds
to a work supplied to the system. With the previous notation, the differential form of the First
Law writes as

dε = δQ− Pdτ. (2.72)

It is important to note that the First Law of thermodynamics corresponds to a conservation
principle. In addition, employing the Gibbs relation (2.68), we deduce that the infinitesimal
entropy change per unit mass, dη of a one-phase system undergoing a infinitesimal reversible
process is given by

dη =
δQ

T
, (2.73)

where δQ is the infinitesimal heat per unit mass supplied to the system during the reversible
process and T is the temperature. Using the definition of the specific enthalpy, First Law
rewrites as

dh = δQ+ τdP. (2.74)

Being given an infinitesimal heat supply δQ, it is interesting to quantify the corresponding
change in temperature for the one-phase system under consideration. This is done by defining
the specific heat capacity as

C =
δQ

dT
.

More precisely, making use of the two previous statements of the First Law, we define specific
heat capacities for constant volume, Cv, and constant pressure, Cp, respectively as

Cv = (
∂ε

∂T
)τ , Cp = (

∂h

∂T
)P . (2.75)

Let us point out that the specific heats are intrinsic characteristics of the material under consid-
eration. For an ideal gas, the specific internal energy and specific enthalpy depends uniquely on
the temperature, thus dε = CvdT and dh = CpdT . In addition, if we assume constant specific
heats, specific internal energy and specific enthalpy are expressed as ε = CvT, h = CpT . In
this case, the specific heat coefficients satisfy the Meyer relation, that is Cp − Cv = R

M , where
R is the universal gas constant and M the molar mass of the fluid under consideration. In
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addition, the ratio of specific heats is given by
Cp

Cv
= γ, where γ is the polytropic coefficient of

the gas. Combining the previous results allows to write the equation of state under the form

ε = CvT, P = ρ
R
MT, (2.76)

where the specific heat at constant volume is given by Cv = R
M(γ−1) . Eliminating the tempera-

ture in the above equation of states allows to recover the classical form P = (γ − 1)ρε.

The Second Law of thermodynamics

Knowing that for a reversible infinitesimal transformation the change of entropy per unit mass
reads dη = δQ

T , the Second Law of thermodynamics states that for an arbitrary infinitesimal
transformation the change of entropy per unit mass writes under the form

dη =
δQ

T
+ dηirr, with dηirr ≥ 0. (2.77)

The first term in the right-hand side corresponds to entropy exchange with surroundings due
to heat transfer. This is the reversible part of entropy change. The second term, which is al-
ways non-negative, characterizes the irreversible part of entropy change due to non-equilibrium
process. At this point, let us introduce some vocabulary. We define an adiabatic process as a
thermodynamic process in which no heat is transferred to or from the system under considera-
tion, i.e., δQ = 0. A reversible adiabatic process is said to be isentropic. In this case, we have
δQ = 0, dηirr = 0 and thus dη = 0.

Bearing this in mind, let us give the Second Law statement for a moving fluid domain ω.
To this end, we define the entropy of the moving fluid domain as being

∫

ω
ρη dv.

Following the approach of [45, 63, 148, 40], the Second Law of thermodynamics statement for
the moving fluid domain ω is introduced by means of the fundamental inequality

d

dt

∫

ω
ρη dv ≥

∫

ω
ρ
r

T
dv −

∫

∂ω

q · n
T

ds. (2.78)

Noticing that
∫
ω ρr dv−

∫
∂ω q·n ds is the rate at which heat is supplied to the fluid within ω, refer

to (2.65), it turns out that the right member of this inequality is the macroscopic counterpart
of the δQ

T term present in (2.77). The left member of this inequality is the rate at which entropy
increases in the arbitrary fluid volume ω. The first term in the right member is the supply of
entropy due to the heat supply r. The second term of the right member represents the rate at
which entropy is introduced into the fluid by conduction of heat through the boundary of the
fluid volume. This inequality expresses that the rate of increase of entropy is no less than that
increase due to heat conduction into the fluid plus heat supply. Let us point out that the equal
sign will hold in the above fundamental inequality (2.78) uniquely for a reversible process. We
remark that the Second Law has been written under integral form. Applying transport formula
and divergence formula to (2.78) yields the local form of the Second Law

ρ
dη

dt
≥ ρ

r

T
−∇x · (

q

T
). (2.79)

Note that this local form has been obtained under condition of sufficient smoothness for the
fluid variables.

29



2.2.4 Constitutive laws modeling

Now, we present the consequences of the fundamental inequality (2.78) regarding the modeling
of the fluid constitutive laws. Namely, we express the thermodynamic constraints that must
satisfy the stress tensor and the heat flux. To this end, we express the rate of change of entropy
in terms of the stress tensor and the heat flux by means of the Gibbs formula (2.68) as

ρT
dη

dt
=
dε

dt
+ ρP

d

dt
(
1

ρ
)

=
dε

dt
+ P∇x ·U thanks to (2.60a)

=T : D+ P trD−∇x · q + ρr. thanks to (2.63)

For classical fluids, it is usual to introduce the following decomposition for the stress tensor

T = −P Id + V. (2.80)

Here, P denotes the thermodynamic pressure introduced previously. Second-order tensor V

stands for the viscous stress tensor. A fluid for which V = 0 is called a perfect fluid. In this
particular case, the stress tensor reduces to the spherical tensor T = −P Id. This corresponds
to a fluid wherein tangential stresses are negligible. Using decomposition (2.80), time rate of
change of entropy becomes

ρT
dη

dt
= V : D−∇x · q + ρr. (2.81)

Here, we have utilized identity Id : D = tr(D). Equation (2.81) represents the rate of change
of entropy following a fluid particle. The first term in the right-hand side is the rate per unit
volume at which heat is generated by the deformation of fluid elements. Since this term involves
a dissipation of kinetic energy into internal energy, it is called the dissipation function. The
second term in the right-hand side corresponds to the conduction of heat from neighboring fluid
elements. The last term is due to the heat supply. Dividing equation (2.81) by temperature
and integrating it over the moving region ω, we finally obtain the following integral balance

d

dt

∫

ω
ρη dv =

∫

ω

1

T
(V : D− q · ∇xT

T
) dv +

∫

ω
ρ
r

T
dv −

∫

∂ω

q · n
T

ds. (2.82)

Comparison of this equation to the fundamental inequality (2.78) shows that the first term in the
right-hand side corresponds to the irreversible part of entropy production. Consistency with the
Second Law of thermodynamics (2.78) implies that this term must be necessarily non-negative.
Since the temperature is positive, this involves the following inequality

V : D− q · ∇xT

T
≥ 0. (2.83)

This condition is satisfied provided that the viscous stress tensor and the heat flux vector satisfy
the following inequalities

V : D ≥ 0, q ·∇xT ≤ 0. (2.84)

These are the constraints imposed by thermodynamics on the modeling of the constitutive
laws that characterize the fluid. The first constraint simply expresses that viscous deformation
converts mechanical energy into heat while the second states that heat flux direction is opposite
to temperature gradient. For classical fluids, i.e., linearly viscous fluids, one can show that V
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is a linear function of the stretch rate tensor D and q is a linear function of ∇xT , refer to [41].
More precisely V and q are expressed as

V =λ tr(D)Id + 2µD, (2.85a)

q =− K∇xT. (2.85b)

Here, the scalars, λ, µ, are the viscosity coefficients, and the second-order tensor, K, is the
conductivity tensor. Let us mention that fluids for which the viscous stress is governed by
(2.85a) are called Newtonian fluids. The second constitutive law corresponds to the Fourier
Law. Thermodynamic constraints (2.83) and (2.84) imposes that viscosity coefficients satisfy
µ ≥, λ+ 2

3µ ≥ 0 and tensor conductivity is a symmetric positive definite tensor. Let us note that
these results can also be obtained using the framework of irreversible thermodynamics which
postulates that a thermodynamical system tends to equilibrium at a rate linearly dependent on
its displacement from equilibrium. The reader might refer to [45] for having more details about
this subject.

Comment 3 Let us notice that a proper modeling of constitutive laws requires not only to
satisfy thermodynamics constraints deduced from the Second Law of thermodynamics but also
to be consistent with the principle of material objectivity or material frame indifference. This
latter principle, states that constitutive laws must be invariant under a change of spatial frame.
More precisely, if a constitutive equation is satisfied for a motion x = x(X, t) it must be also
satisfied for the motion x⋆ = x⋆(X, t) related to the first motion by

x⋆ = Q(t)x+ c(t),

where Q is a second-order tensor characterizing an orthogonal transformation, i.e., QQt =
Id and c a vector. For a detailed presentation of this topic, interested reader can refer to
[25, 44, 41, 125]. For instance, the linear constitutive law (2.85a) for the viscous stress is
derived in [41] by means of the principle of material objectivity.

Comment 4 Introducing the heat flux constitutive law (2.85b), i.e., q = −K∇xT , into the
internal energy equation (2.63) leads to

ρ
d

dt
ε−∇x · (K∇xT ) = ρr + T : D. (2.86)

Let us recall that K is the conductivity tensor of the fluid, T : D is the stress power and r
is the heat supply per unit mass. In addition, d

dt denotes the material derivative, i.e., d
dt() =

∂
∂t() +U ·∇x(). Knowing that specific internal energy can be expressed in terms of density and
temperature by means of the equation of state ε = ε(ρ, T ), it turns out that the above equation
is a non-linear convection-diffusion equation governing temperature evolution. In addition, if
the fluid under consideration is an ideal fluid, internal energy equation can be recast as

ρCv
dT

dt
−∇x · (K∇xT ) = ρr + T : D, (2.87)

where Cv = Cv(T ) is the specific heat capacity at constant volume. Suppose that the fluid
variables except the temperature are known, to solve the above equation on the moving com-
putational domain D, we must supplement it by initial and boundary conditions. The initial
condition writes as

T (x, 0) = T 0(x), ∀x ∈ D0, (2.88)
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where D0 denotes the initial computational domain. Concerning the boundary conditions, there
are three possible types. The first type, named Dirichlet boundary condition, consists in specify-
ing the temperature on the boundary of the domain. The second type, named Neumann boundary
condition, amounts to prescribe the heat flux, q, on the boundary. Note that we have already
introduced it in the study devoted to the general boundary conditions of the conservation laws,
refer to the last paragraph of Section 2.2.1. The third type, named Robin boundary condition,
corresponds to a weighted combination of Dirichlet and Neumann boundary conditions. Let
∂D = ∂DD ∪ ∂DN ∪ ∂DR be a partition of the boundary domain corresponding to the three
previous types. The boundary conditions associated to the internal energy equations write under
the general form

T (x, t) = T ⋆(x, t), ∀x ∈ ∂DD, (2.89a)

q(x, t) · n = q⋆N (x, t), ∀x ∈ ∂DN , (2.89b)

αT (x, t) + βq(x, t) · n = q⋆R(x, t), ∀x ∈ ∂DR. (2.89c)

Here, T ⋆, q⋆N and q⋆R denote respectively prescribed temperature and fluxes. In addition, α =
α(x, t) and β = β(x, t) are specified real valued functions. Note that β is an adimensional
variable, whereas α has the dimension of an inverse length.

2.2.5 Jump equations describing moving discontinuity

Motivations

In this section, we assume that the fluid variables, i.e., ρ,U , E,T, q are only piecewise continu-
ously differentiable whereas the source terms, i.e., g, r are continuous. Let σ be the propagating
surface at which the fluid variables are discontinuous. The motion of this discontinuity surface
at point xσ ∈ σ is governed by the velocity w = w(xσ, t). At σ, the partial differential equations
corresponding to the local form of conservation laws developed in Section 2.2.2 do not exist in
the classical sense due to the occurrence of Dirac measures. To circumvent this difficulty, we
shall use the integral form of the conservation laws (2.55) since it is defined almost everywhere.
The application of the transport formulas for piecewise continuously differentiable functions,
which have been presented in Section 2.1.5, allows to derive jump conditions at σ for the fluid
variables.

Rankine-Hugoniot relations for conservation laws

The jump conditions, otherwise named Rankine-Hugoniot conditions, express the conservation
of mass, momentum and total energy across the discontinuity surface. We recall briefly their
derivation following the approach described in [63]. Note that we use the notation that has
been introduced in Section 2.1.5. Knowing that the jump condition associated to the mass
conservation has been already derived in Section 2.1.5, we just recall its final form

Jρ(U −w)K · nσ = 0, ∀xσ ∈ σ.

Here, the symbol JK denotes the jump through the discontinuity surface. Knowing that σ divides
the fluid region into the subregions ω1 and ω2, nσ is the unit outward normal to σ with respect
to ω1, refer to Fig. 2.2. If f is a fluid variable, JfK = f2 − f1 where f1 and f2 are the one-sided
limits of f from the negative and the positive direction with respect to nσ. To derive the jump
relation associated to momentum, we first apply transport formula (2.42) to ρU to obtain the
material derivative of momentum written under the form

d

dt

∫

ω
ρU(x, t) dv =

∫

ω1∪ω2

[
∂

∂t
(ρU) +∇ · (ρU ⊗U)] dv +

∫

σ
JρU ⊗ (U −w)Knσ ds.
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Secondly, we apply divergence formula (A.36) to express the contribution of the surface integral
of the stress force as ∫

∂ω
Tn ds =

∫

ω1∪ω2

∇ · Tdv +

∫

σ
JTKnσ ds.

Combining the previous equations according to the integral conservation law of momentum
(2.55c), we finally obtain

∫

ω1∪ω2

[
∂

∂t
(ρU) +∇ · (ρU ⊗U)−∇ · T] dv +

∫

σ
{JρU ⊗ (U −w)K − JTK}nσ ds =

∫

ω
ρg dv.

Knowing that the fluid variables are continuously differentiable over ω1 and ω2, the local form
of the momentum equation (2.59b) is satisfied over each sub-domains which involves the can-
cellation of the volume integrals. Hence, momentum conservation reduces to

∫

σ
{JρU ⊗ (U −w)K − JTK}nσ ds = 0.

Since this equation holds for any arbitrary surface, jump relation for momentum writes as

JρU ⊗ (U −w)Knσ − JTKnσ = 0, ∀xσ ∈ σ.

Proceeding with total energy conservation law as before yields the last jump relation

JρE(U −w)K · nσ + Jq − TUK · nσ = 0, ∀xσ ∈ σ.

Combining the previous results, we can write a system of three jump relations expressing re-
spectively the conservation of mass, momentum and total energy across a discontinuity surface
propagation with speed w

Jρ(U −w)K · nσ = 0, (2.90a)

JρU ⊗ (U −w)Knσ − JTKnσ = 0, (2.90b)

JρE(U −w)K · nσ + Jq − TUK · nσ = 0. (2.90c)

Let us remark that these jump relations are expressed in terms of the normal velocity of the
discontinuity w · nσ. Moreover, they do not depend on the choice made for the direction of
the unit vector nσ. We assume that the Cauchy stress tensor and the heat flux are expressed
in terms of the fluid variables by some constitutive laws. Suppose we fix the fluid variables
denoted by subscript 1, i.e., (ρ1,U1, E1), and attempt to determine the set of fluid variables
(ρ2,U2, E2) which can be connected to (ρ1,U1, E1) by a discontinuity satisfying (2.90) for some
w · nσ. This gives a system of d + 2 equations in d + 3 unknowns in R

d. Therefore, we will
obtain a family of solutions depending on one parameter.

We conclude this paragraph by studying the system of jump relations. First, let us note
that jump equation (2.90a) is equivalent to

ρ1(U1 −w) · nσ = ρ2(U2 −w) · nσ.

This relation states that the mass flux crossing the discontinuity surface is continuous. This
amounts to set

m = ρi(Ui −w) · nσ, i = 1, 2 (2.91)

where m denotes the mass flux. Knowing that U −w is the relative velocity of the fluid with
respect to the discontinuity velocity, we point out that m > 0 corresponds to the case where the
fluid is crossing the discontinuity surface in the direction given by the unit normal nσ. Using
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the above equation, it is straightforward to show that the discontinuity normal velocity writes
as

w · nσ =
JρUK · nσ

JρK
. (2.92)

Knowing that m
ρi

= (Ui −w) · nσ, Equation (2.90a) is rewritten as

mJ
1

ρ
K = JUK · nσ. (2.93)

Using the definition of the dyadic product (A.1), we transform (2.90b) into

JρU(U −w) · nσK − JTKnσ = 0.

Then, substituting mass flux m in the first term of the previous equation, we obtain

mJUK − JTKnσ = 0. (2.94)

In writing the momentum jump under this form, we clearly observe that it corresponds to
momentum conservation through the discontinuity surface. Proceeding with total energy jump
(2.90c) as before yields

mJEK + JqK · nσ − JTUK · nσ = 0. (2.95)

It remains to determine the jump relation associated to internal energy ε = E − 1
2 | U |2. To

this end, we start deriving the jump relation of kinetic energy dot-multiplying momentum jump
relation (2.94) by U = 1

2(U2 +U1)

mJ
1

2
| U |2K − JTKnσ ·U = 0.

For an arbitrary tensor T, through the use of the transpose definition (A.6), last equation
rewrites as

mJ
1

2
| U |2K − JTtKU · nσ = 0. (2.96)

Subtracting (2.96) to total energy jump equation (2.95) and noticing that JTUK = JTKU+TJUK,
yields the internal energy jump equation

mJεK + JqK · nσ − TJUK · nσ − JT− TtKU · n = 0.

In deriving this equation, we have considered the Cauchy stress tensor as an arbitrary tensor
forgetting that it is symmetric. This explains the occurrence of the last term in the left-hand
side of the above equation. To ensure the Galilean invariance of the internal energy jump
equation, this term must cancel, i.e., T − Tt = O. Let us emphasize that symmetry of the
Cauchy stress tensor is required not only to ensure conservation of angular momentum but also
to ensure Galilean invariance of the internal energy jump relation. Knowing that Cauchy stress
tensor is symmetric leads to the final form of the internal energy jump relation

mJεK + JqK · nσ − TJUK · nσ = 0. (2.97)

Gathering the previous results, jump relations at the discontinuity surface write as

mJ
1

ρ
K − JUK · nσ = 0,

mJUK − JTKnσ = 0,

mJεK + JqK · nσ − TJUK · nσ = 0,

where a bar over a variable denote the average, i.e., T = 1
2(T2 + T1). Let us remark that these

relations depend only on the difference between the one-sided fluid velocity, i.e., (U2 − U1).
Therefore, these jump relations satisfy the principle of Galilean invariance.
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Entropy inequality

We proceed as before to derive the jump relation associated to entropy inequality (2.78). First,
applying transport formula (2.44) for piecewise continuously differentiable function ρη leads to

d

dt

∫

ω
ρη(x, t) dv =

∫

ω1∪ω2

[
∂

∂t
(ρη) +∇ · (ρηU)] dv +

∫

σ
Jρη(U −w)K · nσ ds.

Substituting this in the entropy inequality yields the following inequality
∫

ω1∪ω2

[
∂

∂t
(ρη) +∇ · (ρηU)] dv +

∫

σ
Jρη(U −w)K · nσ ds ≥

∫

ω
ρ
r

T
dv −

∫

∂ω

q · n
T

ds.

Secondly, expressing the surface integral, in the left-hand side of the above inequality, through
the use of the divergence formula for piecewise smooth function (A.35) yields

∫

ω1∪ω2

{ρdη
dt

+∇x · (
q

T
)− ρ

r

T
} dv +

∫

σ
Jρη(U −w) +

q

T
K · nσ ds ≥ 0.

Here, note that we have made use of the following equality: ρdη
dt = ∂

∂t(ρη) +∇ · (ρηU), which
holds since the fluid variables are smooth over each sub-regions ω1 and ω2. Knowing that the
local form (2.79) of the entropy inequality holds over ω1 and ω2, the above inequality is satisfied
provided that the integrand of the second integral is non-negative. This amounts to write the
following jump inequality

Jρη(U −w) +
q

T
K · nσ ≥ 0. (2.98)

Introducing the mass flux in the above equation leads to

mJηK + J
q

T
K · nσ ≥ 0. (2.99)

Let us point out that the above inequality depends on the choice made for the direction of the
unit normal nσ.

Contact discontinuity and shock wave

Depending on the value ofm , we can distinguish the two following cases of discontinuity surface.

Contact discontinuity This corresponds to a discontinuity surface across which there is no
mass flux, i.e., m = 0. Therefore, jump relations reduce to

JUK · nσ = 0,

JTKnσ = 0,

JqK · nσ − TJUK · nσ = 0,

J
q

T
K · nσ ≥ 0.

Let us emphasize that normal component of the velocity and normal stress are continuous at
contact discontinuity. Moreover, the normal velocity of the contact discontinuity is equal to the
normal velocity of the fluid, i.e., w ·nσ = Ui ·nσ, i = 1, 2. Let Ut,1,Ut,2 denotes the tangential
one-sided velocities, i.e., Ui = (Ui · nσ)nσ +Ut,i, i = 1, 2. Knowing that the normal velocities
are continuous at σ, velocity jump reduces to a tangential velocity jump, i.e., JUK = JUtK, and
the last equation in the above system becomes

JqK · nσ − TJUtK · nσ = 0.
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We finally remark that if JUtK 6= 0, there is a sliding motion in the vicinity of σ which induces a
discontinuity of the normal heat flux. Moreover, for of a perfect fluid, i.e., T = −P Id, the last
but one jump relation involves the continuity of the normal heat flux, i.e., q1 · nσ = q2 · nσ =
q · nσ. In this case, last inequality reduces to q · nσJ 1

T K ≥ 0, which simply means that heat
flows from hot region to cold region.

Shock wave This corresponds to a discontinuity surface across which there is a mass flux,
i.e., m 6= 0. A shock wave is characterized by the discontinuity of all the fluid variables. We
shall see later that the jump relations corresponding to a shock wave can be further investigated
in the case of a perfect fluid.

2.2.6 Eulerian forms of the gas dynamics equations

Gas dynamics equations, otherwise named Euler equations, are deduced from the conservation
laws of fluid mechanics by setting T = −P Id and q = 0. Namely, gas dynamics equations
characterize fluids in which viscous stress and heat conduction are negligible. We also make the
assumption that the supply heat is equal to zero, i.e., r = 0.

Eulerian integral form of the gas dynamics equations

Applying the assumption of a non-viscous and non-conductive fluid to the system of conservation
laws (2.55) yields the integral Eulerian form of gas dynamics equations

d

dt

∫

ω
ρ dv = 0, (2.100a)

d

dt

∫

ω
dv −

∫

∂ω
U · n ds = 0, (2.100b)

d

dt

∫

ω
ρU dv +

∫

∂ω
Pn ds =

∫

ω
ρg dv, (2.100c)

d

dt

∫

ω
ρE dv +

∫

∂ω
PU · n ds =

∫

ω
ρg ·U dv. (2.100d)

Knowing that the heat flux has been neglected, thermodynamic constraint imposed by the
Second Law of thermodynamics (2.101) collapses to

d

dt

∫

ω
ρη dv ≥ 0. (2.101)

To solve the above system on a computational domain, it has to be completed by initial and
boundary conditions as it has been already mentioned at the end of Section 2.2.1. Knowing that
the stress tensor reduces to the spherical tensor T = −P Id, kinematic and dynamic boundary
conditions (2.57) transform to

U(x, t) · n = U⋆
n(x, t), ∀x ∈ ∂Dk, (2.102a)

P (x, t) = P ⋆(x, t), ∀x ∈ ∂Dd, (2.102b)

where U⋆
n and P ⋆ are the prescribed normal velocity and pressure. Solid-wall boundary condition

(2.102a) states that the normal component of the velocity is prescribed. This due to the fact
that inviscid fluids are free to slip along the wall.

We conclude this paragraph by pointing out that this Eulerian integral form of the gas
dynamics conservation laws is also referred as to the integral updated Lagrangian formulation.
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Eulerian local forms of the gas dynamics equations

Proceeding with the local Eulerian form of the conservation laws as before yields the local
Eulerian form of the gas dynamics equations

∂ρ

∂t
+∇x · (ρU) = 0, (2.103a)

∂

∂t
(ρU) +∇x · (ρU ⊗U) +∇P = ρg, (2.103b)

∂

∂t
(ρE) +∇x · (ρEU) +∇ · (PU) = ρg ·U . (2.103c)

Thermodynamic closure of the previous system is ensured by the equation of state which relates
pressure, density and internal energy as follows P = P (ρ, ε). For smooth fluid variables, gas
dynamics equations can also be written under the non-conservative form

ρ
d

dt
(
1

ρ
)−∇x ·U = 0, (2.104a)

ρ
d

dt
U +∇xP = ρg, (2.104b)

ρ
d

dt
E +∇x · (PU) = ρg ·U . (2.104c)

In addition the local form of the fundamental inequality writes

ρ
dη

dt
≥ 0. (2.105)

Let us notice that the rate of change of entropy following a fluid particle, given by Equation
(2.81), now reduces to the trivial equation

ρT
dη

dt
= 0, (2.106)

since q = 0 and V = O. This equation states that for smooth flows, entropy is conserved
along the trajectory of fluid particles. Such a flow is named isentropic flow. At first glance, the
latter equation might seem to be paradoxical with respect to the fundamental inequality (2.105)
since it means that entropy is conserved along fluid particle trajectory. To solve this paradox,
it is important to note that Equation (2.81) has been derived under conditions of sufficient
smoothness for the fluid variables. Hence, Equation (2.106) is only valid for sufficiently smooth
fluid flows. For non-smooth fluid flows, such as those generated by shock waves, we have shown
that entropy undergoes a jump at discontinuity surfaces present in the flow, refer to (2.98), and
hence Equation (2.106) is not valid anymore. In this case, the relevant form of the gas dynamics
equations is the integral form (2.100), which must be completed by the fundamental inequality
(2.101) to ensure the consistency with the Second Law of thermodynamics. This very important
requirement, which ensures the dissipation of kinetic energy into internal energy through shock
waves, will be one of the cornerstones to achieve a relevant numerical discretization of the gas
dynamics equations.
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Rankine-Hugoniot relations for gas dynamics equations

Substituting T = −P Id and q = 0 in the jump equations (2.93), (2.94), (2.95) and (2.98) yields
the gas dynamics Rankine-Hugoniot relations

mJ
1

ρ
K − JUK · nσ = 0, (2.107a)

mJUK + JP Knσ = 0, (2.107b)

mJEK + JPUK · nσ = 0, (2.107c)

mJηK ≥ 0. (2.107d)

These jump relations state the conservation of mass, momentum and total energy across the
moving discontinuity surface σ. Here, m denotes the mass flux across σ. Let us recall that
the normal velocity of σ is given by (2.92). Equation (2.107c) can be replaced by the internal
energy jump relation which is deduced from (2.97)

mJεK + P JUK · nσ = 0, (2.108)

where the bar denotes the average, i.e., P = 1
2(P1 + P2). Depending on whether or not the

mass flux cancels, the discontinuity surface can be either a contact discontinuity (m = 0) or a
shock wave (m 6= 0). Proceeding as in Section 2.2.5, we distinguish the two following cases.

Contact discontinuity In this case, there is no mass flux crossing σ. Pressure and normal
component of the velocity are continuous at the contact discontinuity, i.e., JP K = 0 and JUK ·
nσ = 0. The normal component of the shock velocity is equal to the normal component of the
fluid velocity, i.e., w ·nσ = U1 ·nσ = U2 ·nσ. However, density, internal energy and tangential
component of the velocity may be discontinuous at σ.

Shock wave In this case, there is a mass flux crossing σ. Since, m 6= 0 mass flux is eliminated
in (2.107d) through the use of (2.107a). Moreover, projecting vector equation (2.107b) onto
the unit normal nσ and the tangent plane to shock wave, we obtain the final form of the
Rankine-Hugoniot relations governing shock wave propagation

mJ
1

ρ
K − JUK · nσ = 0, (2.109a)

mJUK · nσ + JP K = 0, (2.109b)

JUtK · nσ = 0, (2.109c)

JεK + P J
1

ρ
K = 0, (2.109d)

mJηK ≥ 0. (2.109e)

We notice that all the fluid variables are discontinuous at σ except the tangential component
of the velocity. Equation (2.109d) determines all the possible thermodynamical states (1ρ2

, P2)

which may be reached across a shock wave from an initial state (1ρ1
, P1). This equation, other-

wise named Hugoniot relation, writes explicitly as

ε2 − ε1 +
1

2
(P1 + P2)(

1

ρ2
− 1

ρ1
) = 0. (2.110)

Being given an equation of state written under the form P = P (1ρ , ε), (2.110) determines a curve

in the thermodynamical plane (1ρ , P ) known as the Hugoniot curve. Last equation of system
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(2.109) ensure thermodynamic consistency with the Second Law. This equation states that the
specific entropy of a fluid particle crossing the shock wave is always increasing in the direction
of the mass flux. It allows to determine the physical relevant solution of system (2.109), that
is a compressive shock. In other words, across shock wave which satisfies entropy inequality
(2.109e), density and pressure increase in the direction of the mass flux. For an ideal gas
equation of state, i.e., P = (γ − 1)ρε, it is possible to solve analytically the Rankine-Hugoniot
equations, refer to [134, 81, 168] and also Appendix B.

One-dimensional Eulerian gas dynamics

Making the assumption of one-dimensional flow with slab symmetry, gas dynamics equations
write under local form as

∂

∂t
ρ+

∂

∂x
(ρu) = 0, (2.111a)

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂x
P = ρg, (2.111b)

∂

∂t
(ρE) +

∂

∂x
(ρEu) +

∂

∂x
(Pu) = ρgu. (2.111c)

Let us recall that thermodynamics closure is ensure by an equation of state which takes the
form P = P (ρ, ε), where ε = E − 1

2u
2. The above system consists of a set of partial differential

equations which are valid provided that fluid variables are continuously differentiable. The
occurrence of discontinuity waves in the flow is taken into account by means of the Rankine-
Hugoniot jump relations that follow from (2.107)

mJ
1

ρ
K − JuK = 0, (2.112a)

mJuK + JP K = 0, (2.112b)

mJEK + JPuK = 0. (2.112c)

In writing this equation we have defined the unit normal at the discontinuity by nσ = ex where
ex is the unit normal in the direction of positive x coordinate. Here, m denotes the mass flux
of fluid particles crossing the discontinuity. It is defined by m = ρ1(u1−w) = ρ2(u2−w) where
w denotes the speed of the discontinuity wave. Second Law of thermodynamics is enforced by
the entropy jump relation

mJηK ≥ 0.

This inequality states that the specific entropy of a fluid particle crossing the discontinuity is
always increasing in the direction of the flow.

2.3 Lagrangian form of the fluid mechanics conservation laws

After having studied the conservation laws of fluid mechanics written under Eulerian formalism,
we aim at deriving their Lagrangian form.

2.3.1 Lagrangian integral form of the conservation laws

We start the derivation by writing the integral Lagrangian form. To this end, we transform the
Eulerian integral form (2.55) by means of the change of variables which relates Lagrangian, X,
and Eulerian, x, coordinates, i.e., the mapping x = Φ(X, t).
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Notation

Let us recall notation that has been introduced in Section 2.1. If Ω denotes a region of the
initial (Lagrangian) configuration, then its image by the fluid flow map in the actual (Eulerian)
configuration is ω = ω(t) defined by ω(t) = {x = Φ(X, t) | X ∈ Ω}. The volume element in
the Eulerian configuration, dv, is expressed in terms of the volume element in the Lagrangian
configuration, dV , by means of the relation dv = J dV , where J denotes the Jacobian of the
fluid flow map. Let ∂ω and ∂Ω denote the boundary of the Eulerian and Lagrangian regions,
and n ds, N dS their respective orientated surface elements. These orientated surface elements
are related by means of the Nanson formula (2.49), i.e., nds = JF−tNdS where F−t is the
transpose of the inverse of the Jacobian matrix of the fluid flow map.

Integral Lagrangian form derivation

Having this in mind, this enables the Eulerian integral form of the conservation laws (2.55) to
be transformed into the Lagrangian integral form as follows

d

dt

∫

Ω
ρJ dV = 0, (2.113a)

d

dt

∫

Ω
J dV −

∫

∂Ω
JU · F−tN dS = 0, (2.113b)

d

dt

∫

Ω
ρJU dV −

∫

∂Ω
JTF−tN dS =

∫

Ω
ρJg dV, (2.113c)

d

dt

∫

Ω
ρJE dV −

∫

∂Ω
JTU · F−tN dS +

∫

∂Ω
Jq · F−tN dS =

∫

Ω
ρJ(g ·U + r) dV. (2.113d)

Equation (2.113b) states the time rate of change of the volume. It has been derived by trans-
forming the Geometric Conservation Law (2.55b). The remaining equations correspond to mass,
momentum and total energy balance written in the Lagrangian configuration. Knowing that T
is the Cauchy stress tensor, then JTF−t represents the first Piola-Kirchhoff stress tensor, other-
wise called Piola-Lagrange stress tensor [141, 63]. It naturally appears when writing the balance
of momentum with respect to the Lagrangian configuration, refer to [117, 86]. Indeed, the force
element acting on the Eulerian surface element nds, writes as Tnds. By means of (2.49), we
express this force element with respect to the Lagrangian configuration as JTF−tNdS. Us-
ing similar arguments, it is clear that vector JF−1q corresponds to the Lagrangian heat flux.
Indeed, knowing that q · n ds represents the rate at which energy is crossing the boundary in
the Eulerian frame, its counterpart in the Lagrangian frame is obtained through the use of the
Nanson’s formula, that is

q · n ds =q · JF−t dS

=JF−1q ·N dS.

Second Law of thermodynamics is expressed by transforming the fundamental inequality
(2.78) into

d

dt

∫

Ω
ρJη dV ≥

∫

Ω
ρJ

r

T
dV −

∫

∂Ω

1

T
q · JF−tN dS. (2.114)

Geometric conservation law for the deformation gradient

System (2.113) has to be completed by adding the conservation law associated to the deformation
gradient F. The time derivative of the relation that defines the deformation gradient tensor,
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i.e., F = ∇XΦ = ∇Xx, provides its evolution equation written under local form

d

dt
F−∇XU = O. (2.115)

Integrating this equation over the Lagrangian volume Ω and applying divergence formula (A.34a)
to the right-hand side yields the integral form of the deformation gradient conservation law

d

dt

∫

Ω
F dV −

∫

∂Ω
U ⊗N dS = O. (2.116)

Comment 5 Knowing the fluid velocity and the initial condition F = Id, equation (2.115)
allows us to compute the deformation gradient tensor at any time. However, to recover the fluid
flow map Φ from the deformation gradient F requires the compatibility conditions

∇X ×F i = 0, i = X,Y, Z. (2.117)

Here, F i is the vector whose jth component is Fij and ∇X× denotes the curl operator. Being
given an arbitrary vector U = U(X) its curl is defined as

∇X ×U = (
∂w

∂Y
− ∂v

∂Z
,
∂u

∂Z
− ∂w

∂X
,
∂v

∂X
− ∂u

∂Y
)t.

Compatibility condition (2.117) states that vector F i is curl-free, hence it is a conservative
vector which derives from a scalar potential. Namely, F i takes the form

F i = ∇XΦi,

where Φi denotes the corresponding scalar potential which allows to define the fluid flow map.
Let us remark that if the compatibility conditions (2.117) are satisfied at initial time then the
compatibility conditions will be satisfied for all time.

Initial and boundary conditions for the Lagrangian integral form

We want to solve system (2.113) on the fixed computation domain D0. Proceeding as we did for
the Eulerian form, refer to last paragraph of Section 2.2.1, yields the following initial conditions
prescribed for all X ∈ D0

ρ(X, 0) = ρ0(X), (2.118a)

U(x, 0) = U0(X), (2.118b)

E(X, 0) = E0(X), (2.118c)

F(X, 0) = Id. (2.118d)

Compared to the Eulerian initial conditions (2.56), note that we have added (2.118d) specifying
the initial condition for the deformation gradient F. Concerning the boundary conditions,
depending on whether the heat flux is neglected or not, we distinguish the two following cases.

• q = 0: Depending on the problem we want to solve, we can prescribe either kinematic
or dynamic boundary conditions along the boundary of the fixed domain D0. Let ∂D0 =
∂D0

k ∪ ∂D0
d be a partition corresponding respectively to the kinematic and the dynamic

boundary conditions. With this notation, boundary conditions are implemented for all
time t > 0 as follows

U(X, t) = U⋆(X, t), ∀X ∈ ∂D0
k, (2.119a)

JTF−t(X, t)N = T
⋆(X, t), ∀X ∈ ∂D0

d, (2.119b)
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Here, U⋆ and T
⋆ denote the prescribed boundary velocity and force per unit surface, N

is the unit outward normal to ∂D0
d. Let us note that the dynamic boundary condition has

been applied to Lagrangian normal N using the first Piola-Kirchhoff stress tensor JTF−t.
This boundary condition is equivalent to its Eulerian counterpart (2.119b) provided that
the Lagrangian and Eulerian prescribed forces per unit mass are related by T

⋆ dS = τ ⋆ ds.

• q 6= 0: The natural corresponding boundary condition, in the sense that it is automatically
included in the integral form of the conservation law (2.113d), consists in prescribing the
heat flux at the boundary as follows

JF−1q(X, t) ·N = Q⋆(X, t), ∀X ∈ ∂D0, (2.120)

where Q⋆ denotes the prescribed normal heat flux. Let us point out that this boundary
condition has been imposed using the Lagrangian heat flux JF−1q. It is equivalent to its
Eulerian counterpart provided that the prescribed Eulerian and Lagrangian heat fluxes
are related by Q⋆ dS = q⋆ ds. We conclude by remarking that it is also possible to
impose others boundary conditions such as Dirichlet or Robin boundary conditions, refer
to Comment 4.

2.3.2 Lagrangian local form of the conservation laws

To obtain the local Lagrangian form of the conservation laws, we simply transform the integral
form obtained previously by applying the divergence formula after having made an assumption
of sufficient smoothness for the fluid variables. Before we proceed any further, let us focus
more precisely on the transformation of the divergence and gradient operators between the
Lagrangian and the Eulerian configuration.

Transformation of the divergence and gradient operators between Eulerian and

Lagrangian configurations

Let us consider a vector U = U(x, t) and a scalar function P = P (x, t) which are expressed
in terms of the spatial coordinates. Let us recall the definition of the divergence and gradients
operators in terms with respect to Eulerian coordinates

∇x ·U =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, ∇xP = (

∂P

∂x
,
∂P

∂y
,
∂P

∂z
)t.

where (u, v, w) denotes the components of the velocity field in the orthogonal coordinate sys-
tem (x, y, z). Here, subscript x emphasizes the fact that the divergence and gradient operators
are expressed with respect to Eulerian coordinates. Now, if we consider U and P as func-
tions expressed in terms of Lagrangian coordinates, then we define the divergence and gradient
operators with respect to Lagrangian coordinates as follows

∇X ·U =
∂u

∂X
+
∂v

∂Y
+
∂w

∂Z
, ∇XP = (

∂P

∂X
,
∂P

∂Y
,
∂P

∂Z
)t.

Divergence operator transformation We investigate how the divergence operator trans-
forms when pulling back to the Lagrangian configuration. To this end, we apply the divergence
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theorem twice as follows
∫

ω
∇x ·U dv =

∫

∂ω
U · n ds

=

∫

∂Ω
U · JF−tN dS thanks to (2.49)

=

∫

∂Ω
JF−1U ·N dS

=

∫

Ω
∇X · (JF−1U) dV.

Coming back to the Lagrangian coordinates in the left-hand side of the previous equation, one
gets ∫

ω
∇x ·U dv =

∫

Ω
J∇x ·U dV.

The combination of the previous results leads to

∫

Ω
J∇x ·U dV =

∫

Ω
∇X · (JF−1U) dV.

Since this formula is valid for any arbitrary volume Ω, we deduce the final formula which
expresses the transformation of the divergence operator into the Lagrangian configuration

∇x ·U =
1

J
∇X · (JF−1U). (2.121)

Now, developing the right-hand side of (2.121) through the use of identity (A.31a) yields

∇x ·U =
1

J
∇X · (JF−t) ·U + F−1 : ∇XU .

If U is an arbitrary constant vector, the previous identity yields

∇X · (JF−t) = O. (2.122)

This is the Piola identity which is well known in continuum mechanics [117, 146]. This result
can be recovered by integrating the left-hand side of (2.122) over a Lagrangian fluid volume Ω
and applying the divergence formula as

∫

Ω
∇X · (JF−t) dV =

∫

∂Ω
JF−tN dS

=

∫

∂ω
n ds, thanks to (2.49)

=

∫

ω
∇x · Id dv, thanks to (A.33a)

=0.

Here, Id is the unit tensor. Using the second line of the above equation yields the following
geometric identity ∫

∂Ω
JF−tN dS =

∫

∂ω
n ds = 0. (2.123)

We recover the well known geometric interpretation that the integral of the unit outward normal
over a closed surface is equal to zero.
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We notice that formula (2.121) which applies for vector can be easily extended to the case of
second-order tensor. Being given T an arbitrary second-order tensor, divergence formula reads

∫

ω
∇x · Tdv =

∫

∂ω
Tn ds

=

∫

∂Ω
TJF−tN dS thanks to (2.49)

=

∫

Ω
∇X · (TJF−t) dV.

Recalling that dv = JdV , we finally obtain

∇x · T =
1

J
∇X · (JTF−t). (2.124)

Comment 6 Let us remark that in the case of a two-dimensional fluid flow the compatibil-
ity conditions (2.117) are equivalent to the Piola identity (2.122). This result is obtained by
computing the components of the divergence of JF−t

JF−t =

(
FY Y −FY X

−FXY FXX

)
, ∇X · (JF−t) =

(
∂
∂XFY Y − ∂

∂Y FY X

− ∂
∂XFXY + ∂

∂Y FXX

)
.

Now, using the notation introduced in Comment 5, we note that the right-hand side of the last
equation corresponds to the non-zero components of ∇X ×FX and ∇X ×FY , which ends the
proof.

Gradient operator transformation We express the relation between the gradient operator
expressed in terms of the Eulerian coordinates and its counterpart expressed in terms of the
Lagrangian coordinates. To this end, we apply (2.124) using a scalar tensor defined by T = P Id

where P = P (X, t) = P (x, t) is a scalar function. On the one hand ∇x · (P Id) = ∇xP , on the
other hand (2.124) is rewritten

∇xP =
1

J
∇X · (JF−tP ). (2.125)

Developing the right-hand side, employing tensor identity (A.31d) and the Piola identity (2.122),
we finally obtain the following variant of (2.125) which relates the gradient operator in both
configuration as

∇xP = F−t∇XP. (2.126)

Note that this last result could have been obtained employing the chain rule of composed
derivatives.

Diffusion operator transformation Combining the previous results, we propose to derive
the formula expressing the transformation of the divergence diffusion operator, i.e., ∇x · (∇x).
To this end, let us consider the vector valued function q, defined by q = −K∇xT , where K is
a positive definite second-order tensor and T a scalar valued function. Here, q corresponds to
the heat flux vector, T is the temperature and K the conductivity tensor. Let us recall that the
expression of q in terms of ∇xT is nothing but the Fourier law that governs heat propagation
[81]. Using Fourier law, the diffusion operator is defined by

∇x · q = −∇x · (K∇xT ). (2.127)
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Here, the diffusion operator is written with respect to Eulerian coordinates. To transform it
into Lagrangian frame, we first transform the divergence of the flux using (2.121)

∇x · q =
1

J
∇X · (JF−1q).

Second, we transform the gradient operator present in the Fourier law according to (2.125), i.e.,
q = −KF−t∇XT . Finally, the diffusion operator expresses as

∇x · q = − 1

J
∇X · (JF−1KF−t∇XT ), (2.128)

where in the right-hand side T is expressed in terms of Lagrangian coordinates. This allows to
define an effective Lagrangian conductivity tensor which depends on the gradient deformation
tensor as

KL = JF−1KF−t

We note that this tensor is also positive definite. If A denotes an arbitrary vector, then KLA ·
A = KF−tA · F−tA, thus KLA ·A > 0, since K is positive definite. Let us consider the case of
an isotropic material, i.e., K = κId, where κ > 0 denotes the heat conductivity. Then, (2.127)
reduces to

∇x · q = − 1

J
∇X · (JκF−1F−t∇XT ). (2.129)

Let us point out that the isotropic Eulerian diffusion operator has been transformed into an
anisotropic Lagrangian diffusion operator. In this case, the anisotropic Lagrangian conductivity
tensor is symmetric positive definite and corresponds to the inverse of the right Cauchy-Green
tensor, i.e., C = FtF, refer to Paragraph 2.1.3.

Transformation of the integral conservation laws into their local form Under condi-
tion of sufficient smoothness for the fluid variables, transforming the surface integrals present
in the system (2.113) into volume integrals by means of the divergence formula yields

d

dt

∫

Ω
ρJ dV = 0,

d

dt

∫

Ω
J dV −

∫

Ω
∇X · (JF−1U) dV = 0,

d

dt

∫

Ω
ρJU dV −

∫

Ω
∇X · (JTF−t) dV =

∫

Ω
ρJg dV,

d

dt

∫

Ω
ρJE dV −

∫

Ω
∇X · (JF−1TU) dV +

∫

Ω
∇X · (JF−1q) dV =

∫

Ω
ρJ(g ·U + r) dV.

The requirement that these equations hold for arbitrary Lagrangian region Ω necessitates that
the integrands vanish. This allows to write the Lagrangian local form of the conservation laws

d

dt
(ρJ) = 0, (2.130a)

d

dt
J −∇X · (JF−1U) = 0, (2.130b)

d

dt
(ρJU)−∇X · (JTF−t) = ρJg, (2.130c)

d

dt
(ρJE)−∇X · (JF−1TU) +∇X · (JF−1q) = ρJ(g ·U + r). (2.130d)
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Let us recall that F is the deformation gradient tensor, which is also the Jacobian matrix of the
flow map, and J the determinant of this transformation, i.e., J = detF. This system has to be
completed by adding the local conservation law of the deformation gradient (2.115). Proceeding
with the entropy inequality (2.114) as before yields its local form

d

dt
(ρJη) ≥ ρJ

r

T
−∇X · (JF−1 q

T
). (2.131)

We notice that the mass conservation equation reduces to a simple differential equation which
after integration reads ρJ = ρ0, where ρ0 = ρ0(X) denotes the initial density. Substituting
mass conservation in the system (2.130) yields

ρ0
d

dt
(
1

ρ
)−∇X · (JF−1U) = 0, (2.132a)

ρ0
d

dt
(ρU)−∇X · (JTF−t) = ρ0g, (2.132b)

ρ0
d

dt
(ρE)−∇X · (JF−1TU) +∇X · (JF−1q) = ρ0(g ·U + r). (2.132c)

Comment 7 Let us remark that it is possible to derive the local Lagrangian form of the con-
servation laws (2.130) by directly transforming the local Eulerian form of the conservation laws
(2.59). This is done employing the following identities

d

dt
(fJ) = J [

∂f

∂t
+∇ · (fU)], (2.133a)

d

dt
(fJ) = J [

∂f

∂t
+∇ · (f ⊗U)], (2.133b)

where f and f denote arbitrary scalar valued and vector valued functions. These formulas
are easily obtained by combining the definition of the material derivative (2.8) and (2.21). To
transform the local Eulerian conservation laws (2.59) into Lagrangian form, we first make use
of formulas (2.133a) and (2.133b) respectively for f = ρ, ρE and f = ρU . We finally get

d

dt
(ρJ) = 0,

d

dt
(ρJU)− J∇x · T = ρJg,

d

dt
(ρJE)− J∇x · (TU) + J∇x · q = ρJ(g ·U + r).

This system is completed by the time rate of change of the Jacobian (2.21) and finally writes

d

dt
(ρJ) = 0, (2.134a)

d

dt
J − J∇x ·U = 0, (2.134b)

d

dt
(ρJU)− J∇x · T = ρJg (2.134c)

d

dt
(ρJE)− J∇x · (TU) + J∇x · q = ρJ(g ·U + r). (2.134d)

Let us emphasize that system (2.134) is not completely written in Lagrangian form since the
divergence and gradient operators are still expressed in terms of the Eulerian coordinates. To
achieve the transformation we have to use the formulas (2.121) and (2.125) which transform
the divergence and gradient operators into the Lagrangian frame. Substituting these formulas
into (2.134) allows to recover the local Lagrangian formulation (2.130).

46



NΣ

∂Ω2∂Ω1

Ω1
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Σ

W

Ω = Ω1 ∪ Ω2 ∪ Σ

Figure 2.4: Notation for a moving discontinuity Σ in the Lagrangian frame.

2.3.3 Jump equations at moving discontinuity in Lagrangian representation

In deriving the local Lagrangian form of the conservation laws, we have made the assumption
of a sufficient smoothness for fluid variables. In this paragraph, we aim at deriving the jump
equations corresponding to the Lagrangian conservation laws when the fluid variables experience
a jump at a moving discontinuity surface. In order to do so, we need to write the transport
formula associated to piecewise differentiable functions in Lagrangian configuration.

Transport formulas for piecewise continuously differentiable functions in Lagrangian

framework

For this purpose, let us consider a Lagrangian fluid region Ω, which is split into the two sub-
regions Ω1 and Ω2 by a moving discontinuity surface Σ, i.e., Ω = Ω1 ∪ Ω2Σ, refer to Fig. 2.4.
Let us assume that Σ is sufficiently smooth to define at each point XΣ ∈ Σ a unit outward
normalNΣ with respect to Ω1. LetW =W (XΣ, t) be the velocity of the discontinuity surface.
Knowing that Ω is a fixed region, the time derivative of the volume integral over Ω of a piecewise
continuously differentiable scalar (resp. vector) valued function f = f(X, t) (resp. f = f(X, t))
is given by

d

dt

∫

Ω
f(X, t) dV =

∫

Ω1∪Ω2

df

dt
dV −

∫

Σ
JfK(W ·NΣ) dS, (2.135a)

d

dt

∫

ω
f(X, t) dX =

∫

Ω1∪Ω2

df

dt
dV −

∫

Σ
Jf ⊗W KNΣ dS. (2.135b)

These equations are the transport formulas in the Lagrangian configuration, refer to Comment 1
for their derivation. Let us recall that JfK = f2 − f1 where fi, i = 1, 2 are the one-sided values
of f on both sides of Σ.

Lagrangian jump relations for physical conservations laws

Applying (2.135) to the Lagrangian conservation laws (2.113) and using the divergence formulas
for piecewise continuously differentiable functions yields the following Lagrangian jump relations
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JρJK(W ·NΣ) = 0, (2.136a)

JJK(W ·NΣ) + JJF−1UK ·NΣ = 0, (2.136b)

JρJUK(W ·NΣ) + JJTF−tKNΣ = 0, (2.136c)

JρJEK(W ·NΣ) + JJF−1(TU − q)K ·NΣ = 0. (2.136d)

These jump relations express respectively mass, volume, momentum and total energy conser-
vation across the discontinuity surface Σ moving with speed W . Equation (2.136a) shows that
we can set

M = ρ1J1(W ·NΣ) = ρ2J2(W ·NΣ). (2.137)

M is nothing but the mass flux swept by the moving discontinuity. With this notation, system
(2.136) rewrites

MJ
1

ρ
K + JJF−1UK ·NΣ = 0, (2.138a)

MJUK + JJTF−tKNΣ = 0, (2.138b)

MJEK + JJF−1(TU − q)K ·NΣ = 0. (2.138c)

Following the naming used in the Eulerian framework, the case M = 0 corresponds to a contact
discontinuity, whereas the case M 6= 0 corresponds to a shock wave.

Kinematical jump condition

The above system is completed by the jump relation corresponding to the conservation law
(2.116) of the deformation gradient F

JFK(W ·NΣ) + JUK ⊗NΣ = O. (2.139)

In deriving this equation, we have assumed that the deformation gradient tensor is a piecewise
continuously differentiable tensor valued function. Let us emphasize that this smoothness as-
sumption on F corresponds to the continuity of the fluid flow map, Φ, since F = ∇XΦ. The
above jump equation for the deformation gradient is also known as Hadamard kinematic com-
patibility condition [141]. Let us investigate further the consequences of this kinematical jump
condition. First, let us point out that if (W ·NΣ) = 0, (2.139) reduces to JUK⊗NΣ = O which
yields JUK = 0. Thus, if the discontinuity is a contact, then the velocity field is continuous.
Second, if (W ·NΣ) 6= 0, then the kinematical jump condition rewrites

JFK = − 1

(W ·NΣ)
JUK ⊗NΣ.

Therefore, if the velocity field is continuous, then the deformation gradient is also continuous.
If A denotes an arbitrary vector valued smooth function, then the second-order tensor JFK is
characterized by

JFKA = − (A ·NΣ)

(W ·NΣ)
JUK.

It turns out that JFK is proportional to the projection along NΣ onto JUK. Thus, setting
A =NΣ and A = TΣ, where TΣ is a unit vector of the tangent plane to Σ, second-order tensor
JFK is fully determined by its projections onto NΣ and TΣ as follows

JFKNΣ = − 1

(W ·NΣ)
JUK, JFKTΣ = 0. (2.140)
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This means that the tangential component of the deformation gradient is continuous, whereas
its normal component experiences a jump which is proportional to the velocity jump.

Comment 8 In Lagrangian frame, under the assumption of a continuous fluid flow map, defor-
mation gradient jump relation involves the continuity of the fluid velocity at contact discontinuity
surface. This result seems paradoxical in comparison to what happens for contact discontinuity
in the Eulerian frame. Let us recall that in this case, the tangential component of the fluid
velocity can suffer a jump at the discontinuity surface. The occurrence of such a situation in
Lagrangian frame would imply sliding and shear on both sides of the discontinuity surface, and
thus the loss of continuity for the flow map at the contact surface. The discontinuity of Φ at the
contact would also involve the appearance of a Dirac measure for the deformation gradient which
would necessitate specific mathematical treatment. This shows one fundamental difference be-
tween Lagrangian and Eulerian representation in their respective ability to cope with shear flow.
This also explains why sliding surfaces require specific treatment in the context of numerical
algorithms devoted to Lagrangian hydrodynamics.

Correspondence between Lagrangian and Eulerian jump relations

Let us pursue this paragraph by showing that the Lagrangian jump relations imply the Eulerian
jump relations that have been derived in Section 2.2.5. Let us point out that the Eulerian
discontinuity surface σ is related to the Lagrangian discontinuity Σ by means of the fluid flow
map Φ. Therefore, we have the following correspondence between oriented element surfaces
along the discontinuity surfaces in each configuration

nσ ds = J1F
−t
1 NΣ dS = J2F

−t
2 NΣ dS, (2.141)

where nσ denotes the unit outward normal to σ with respect to ω1, refer to Section 2.2.5.
Equation (2.141) has been obtained my means of Nanson formula (2.49). It simply states the
continuity of the Eulerian normal nσ. We notice, that (2.141) is also a consequence of the jump
relation associated to the Piola identity (2.122). This jump relation is readily derived applying
divergence formula for piecewise continuously differentiable function as follows

∫

Ω1∪Ω2

∇X · (JF−t) dV +

∫

Σ
JJF−tKNΣ dS =

∫

∂Ω
JF−tN dS.

By virtue of the local form and the integral form of Piola identity, respectively (2.122) and
(2.123), the above equation reduces to

JJF−tKNΣ = 0, (2.142)

which is nothing but Equation (2.141). Bearing this in mind, we cast Lagrangian jump relations
(2.138) into the following form

MJ
1

ρ
K + JUK · JF−tNΣ = 0, (2.143a)

MJUK + JTKJF−tNΣ = 0, (2.143b)

MJEK + JTU − qK · JF−tNΣ = 0, (2.143c)

where the bar notation over a quantity denotes its average, i.e., f = 1
2(f1 + f2). In writing

(2.143), we have made use of the following identities

JA ·BK = JAK ·B +A · JBK,

JSAK = JSKA+ SJAK,
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where A, B and S denote respectively two arbitrary vectors and an arbitrary second-order
tensor. Now, comparing the above Lagrangian jump relations to the Eulerian jump relations
(2.93), (2.94) and (2.95), and recalling JF−tNΣ dS = nσ ds, it turns out that Eulerian form
results from the Lagrangian form provided that we ensure the correspondence relation

−m ds =M dS, (2.144)

where m denotes the Eulerian mass flux given by m = ρi(Ui −w) · nσ, i = 1, 2. This relation
states that the mass crossing the discontinuity surface is identical regardless the configuration
employed. The minus sign in the above equation is due to the fact that m stands for the
mass flux crossing the discontinuity in the Eulerian frame whereas M stands for the mass flux
swept by the moving discontinuity in the Lagrangian frame. Let us investigate further the
physical consequences of this relation by expressing both the Lagrangian and Eulerian mass
flux. According to the definition of Lagrangian and Eulerian mass fluxes, (2.144) transforms
into

ρi(w −Ui) · nσ ds = ρiJiW ·NΣ dS, i = 1, 2

ρi(w −Ui) · (JiF−t
i )NΣ dS = ρiJiW ·NΣ dS, i = 1, 2

thanks to (2.49). After simplification, we finally obtain

F
−1
i (w −Ui) ·NΣ =W ·NΣ. (2.145)

This explains how the discontinuity speed transforms between Lagrangian and Eulerian config-
urations. Let us give a physical interpretation of this relation. Let XΣ = XΣ(t) be the vector
position of a point attached to the discontinuity surface Σ during its motion in the Lagrangian
frame. Let xσ be the image of XΣ in the continuous flow map Φ, i.e., xσ = Φ(XΣ(t), t).
Knowing that the Eulerian discontinuity, σ, is itself the image of the Lagrangian discontinuity,
Σ, in the flow map yields xσ ∈ σ. Bearing this in mind, the respective speeds of the Lagrangian
and Eulerian discontinuities read as

W =
d

dt
XΣ, w =

d

dt
xσ, i = 1, 2. (2.146)

Now, recalling that xσ = Φ(XΣ(t), t) and employing the chain rule leads to

d

dt
xσ = (∇XΦ)i

d

dt
XΣ + (

∂

∂t
Φ)i.

Here, we have made use of subscript i to denote the one-sided values of the Jacobian matrix
and the time derivative of the fluid map on both sides of the discontinuity. Substituting the
discontinuity speeds expressions by means of (2.146) into the above equation leads to

w = FiW +Ui, i = 1, 2. (2.147)

It turns out that Equation (2.145) simply states the continuity of the normal component of the
Lagrangian discontinuity speed. Note also that (2.147) rewrites as the following jump relation

JFKW + JUK = 0. (2.148)

We point out that this jump relation is not a new one since it follows from the kinematical jump
equation (2.139). First, if (W ·NΣ) = 0, then (2.139) implies that JUK = 0, thus (2.148) is
trivially satisfied. Second, if (W ·NΣ) 6= 0, multiplying (2.139) by the vector W and recalling
that from definition of the dyadic product (A.1), (JUK ⊗ NΣ)W = JUK(W · NΣ), leads to
(2.148).

We conclude by noticing that a rigorous demonstration of the equivalence between La-
grangian and Eulerian Rankine-Hugoniot equations, in the context of elastic flow, can be found
in [128].
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Jump relation for entropy inequality

We conclude this section by deriving the Lagrangian jump relations corresponding to the funda-
mental entropy inequality (2.114). Employing the transport formula (2.135a) and the divergence
formula for piecewise continuously differentiable functions as before yields the entropy jump re-
lation

−JρJηK + JJF−1 q

T
K ·NΣ ≥ 0.

Introducing the Lagrangian mass flux M in the above equation leads to

−MJηK + JJF−1 q

T
K ·NΣ ≥ 0. (2.149)

Using Piola identity, i.e., JF−tNΣ dS = nσ ds and the correspondence M dS = −m ds, we are
able to show that the Eulerian entropy inequality (2.99) results from the Lagrangian entropy
inequality.

2.3.4 Lagrangian forms of the gas dynamics equations

Here, we make the assumption that the fluid under consideration is a perfect fluid, that is the
viscous stress and the heat conduction are negligible. Moreover, there is no heat supply, . i.e.,
r = 0.

Lagrangian integral form of the gas dynamics equations

Setting T = −P Id, q = 0 and r = 0 in the Lagrangian integral conservation laws (2.113) yields
the gas dynamics equations written under integral Lagrangian form

d

dt

∫

Ω
ρJ dV = 0, (2.150a)

d

dt

∫

Ω
J dV −

∫

∂Ω
JU · F−tN dS = 0, (2.150b)

d

dt

∫

Ω
ρUJ dV +

∫

∂Ω
JPF−tN dS =

∫

Ω
ρgJ dV, (2.150c)

d

dt

∫

Ω
ρEJ dV +

∫

∂Ω
JPU · F−tN dS =

∫

Ω
ρg ·UJ dV. (2.150d)

The thermodynamical closure of this system is ensured by an equation of state written under the
form P = P (ρ, ε) where ε is the specific internal energy. Let us recall that the evolution of the
deformation gradient F is governed by the integral conservation law (2.116). The consistency of
the above system with the Second Law of thermodynamics is ensured by the following entropy
inequality

d

dt

∫

Ω
ρJη dV ≥ 0. (2.151)

Let us point out that this inequality reduces to an equality in case of smooth flow.
System (2.150) is completed by initial and boundary conditions. The initial conditions are

given by (2.118). Regarding boundary conditions, since the fluid under consideration is a perfect
fluid (2.119) collapses to

U(X, t) ·N = U⋆
n(X, t), ∀X ∈ ∂D0

k, (2.152a)

P (X, t) = P ⋆(X, t), ∀X ∈ ∂D0
d, (2.152b)

where U⋆
n and P ⋆ are the prescribed normal velocity and pressure which are identical to their

Eulerian counterparts.
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Lagrangian local form of the gas dynamics equations

Proceeding with the Lagrangian local form of the conservation laws as before, we deduce the
Lagrangian local form of the gas dynamics equations. Let us emphasize that this local form,
which consists in writing the conservation laws as partial differential equations, is valid for
continuously differentiable fluid variables. Bearing this in mind, local form of the gas dynamics
equations writes

d

dt
(ρJ) = 0,

d

dt
J −∇X · (JF−1U) = 0,

d

dt
(ρJU) +∇X · (JPF−t) = ρJg,

d

dt
(ρJE) +∇X · (JF−1PU) = ρJg ·U .

By means of mass conservation equation, i.e., ρJ = ρ0, previous system takes the form

ρ0
d

dt
(
1

ρ
)−∇X · (JF−1U) = 0, (2.153a)

ρ0
d

dt
U +∇X · (JPF−t) = ρ0g, (2.153b)

ρ0
d

dt
E +∇X · (JF−1PU) = ρ0g ·U . (2.153c)

Rankine-Hugoniot equations for Lagrangian gas dynamics

When the fluid variables are not smooth the integral form of the gas dynamics equations remain
valid, but their formulations as partial differential equations hold only in the weak sense. If the
fluid variables experience a jump discontinuity across a moving surface, the solution satisfies
the Rankine-Hugoniot jump relations, which are deduced from the transport formula for dis-
continuous solutions. For Lagrangian gas dynamics, Rankine-Hugoniot equations follow from
(2.138) by setting T = −P Id and q = 0

MJ
1

ρ
K + JJF−1UK ·NΣ = 0, (2.154a)

MJUK − JPJF−tKNΣ = 0, (2.154b)

MJEK − JJF−1(PU)K ·NΣ = 0. (2.154c)

Let us recall that M is the mass flux swept by the discontinuity. These jump relations are
associated to the physical conservation laws of mass, momentum and total energy. They must be
completed by adding the jump equation associated to the deformation gradient tensor (2.139).
Moreover, consistency with the Second Law of thermodynamics is ensured by the following
entropy inequality which follows from (2.149)

−MJηK ≥ 0. (2.155)

The correspondence M dS = −m ds allows to recover the Eulerian entropy inequality (2.109e)
from its Lagrangian counterpart. Namely, the specific entropy of a fluid particle that crosses
discontinuity in the direction of the unit normal is always increasing.
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Figure 2.5: Leftward (left) and rightward (right) shock waves displayed in a (X, t) diagram of
the Lagrangian frame. Shock waves have been colored red.

One-dimensional Lagrangian local form of the gas dynamics equations

For a one-dimensional flow with slab symmetry, several simplification occur. For instance, F and
J reduce to the partial derivative ∂x

∂X . Having this in mind Lagrangian gas dynamics equations
readily write

ρ0
d

dt
(
1

ρ
)− ∂

∂X
u = 0, (2.156a)

ρ0
d

dt
u+

∂

∂X
P = ρ0g, (2.156b)

ρ0
d

dt
E +

∂

∂X
(Pu) = ρ0gu, (2.156c)

where u and g denote the X-components of the velocity and the body force.
The one-dimensional Lagrangian Rankine-Hugoniot equations follow from (2.154) by setting

J = F = ∂x
∂X

MJ
1

ρ
K + JuK = 0, (2.157a)

MJuK − JP K = 0, (2.157b)

MJEK − JPuK = 0. (2.157c)

In writing these equations, we have set NΣ = eX where eX is the unit rightward vector. With
this choice, the state labelled by subscript 1 (resp. 2) corresponds to the left (resp. right)
state. To ensure consistency with the Second Law of thermodynamics, the above equations are
completed by the jump inequality related to specific entropy

−MJηK ≥ 0.

Here, M = ρ1J1W = ρ2J2W is the mass flux swept by the discontinuity wave and W is the
Lagrangian speed of the wave. If W > 0 (resp. W < 0), the discontinuity wave is a rightward
(resp. leftward) shock wave. For one-dimensional flow, the correspondence between Eulerian
and Lagrangian mass flux writes M = −m, where m = ρ1(u1 − w) = ρ2(u2 − w) denotes the
mass flux crossing the discontinuity wave and w is the Eulerian wave speed. Depending on
whether M is positive or not, we distinguish the two following cases.

• M > 0 : The discontinuity is a rightward shock wave which is crossed by leftward fluid
particles since m < 0, refer to Fig. 2.5 (right). According to entropy inequality, specific
entropy increase is ruled by η1 > η2.
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• M < 0 : The discontinuity is a leftward shock wave which is crossed by rightward fluid
particles since m > 0, refer to Fig. 2.5 (left). According to entropy inequality, specific
entropy increase is ruled by η2 > η1.

2.4 Arbitrary Lagrangian Eulerian integral form of the conser-

vation laws of fluid mechanics

Numerical schemes in compressible fluid dynamics make use of two classical kinematic descrip-
tions: the Lagrangian description and the Eulerian description. Lagrangian algorithms are
characterized by computational cells that move with fluid velocity. They allow an easy and
natural tracking of free surfaces and interfaces between different materials. However, they suf-
fer from a lack of robustness when they are facing large flow distortions. On the other hand,
Eulerian algorithms are characterized by a fixed computational grid through which fluid moves.
They can handle large distortions without any difficulties. However, the numerical diffusion
inherent in advection terms discretization leads to an inaccurate interface definition and a loss
in the resolution of flow details. The Arbitrary Lagrangian-Eulerian (ALE) description has
been initially introduced in the seminal paper [71] to solve to a certain extent the shortcomings
of purely Lagrangian and purely Eulerian descriptions by combining the best features of both
aforementioned approaches. The main feature of the ALE methodology is to move the compu-
tational grid with a prescribed velocity field to improve the accuracy and the robustness of the
simulation. In this section we aim at recalling the derivation of ALE integral and local forms
of the conservation laws of fluid mechanics. The interest of the ALE form lies in the fact that
it encompasses both Lagrangian and Eulerian forms.

To derive the ALE integral form of the conservation laws, we shall make use of the transport
formula (2.39) corresponding to an arbitrary motion which differs the fluid motion. For a scalar
valued function f , this formula writes as

d

dt

∫

ω=Ψ(Ωξ,t)
f(x, t) dv =

d

dt

∫

ω=Φ(Ω,t)
f(x, t) dv −

∫

∂ω
f(U − V ) · n ds.

Here, Φ and Ψ are respectively the arbitrary motion map and the fluid map, whereas vectors
V and U stands for the arbitrary velocity and the fluid velocity. In addition, ω denotes a
subset of the Eulerian configuration whose pre-images in arbitrary motion and fluid motion
are respectively Ωξ and Ω. Left-hand side of the above transport formula represents the time
derivative of integral of f over the volume ω following the arbitrary motion. The first term in
the right-hand side corresponds to the time derivative of integral of f over ω following the fluid
motion. Applying the above transport formula to f = (ρ, 1ω, ρU , ρE) yields the intermediate
system

d

dt

∫

ω=Ψ(Ωξ,t)
ρ dv =

d

dt

∫

ω=Φ(Ω,t)
ρ dv −

∫

∂ω
ρ(U − V ) · n ds,

d

dt

∫

ω=Ψ(Ωξ,t)
1ω dv =

d

dt

∫

ω=Φ(Ω,t)
1ω dv −

∫

∂ω
1ω(U − V ) · n ds,

d

dt

∫

ω=Ψ(Ωξ,t)
ρU dv =

d

dt

∫

ω=Φ(Ω,t)
ρU dv −

∫

∂ω
ρU(U − V ) · n ds,

d

dt

∫

ω=Ψ(Ωξ,t)
ρE dv =

d

dt

∫

ω=Φ(Ω,t)
ρE dv −

∫

∂ω
ρE(U − V ) · n ds.
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Here, 1ω denotes the indicator function of the set ω, i.e.,

1ω(x) =

{
1 if x ∈ ω,

0 if x /∈ ω.

It remains to replace in each equation of the above system, the time derivative of the volume
integral following the fluid motion using the integral form of the conservation laws which has
been derived in Section 2.2.1. More precisely, making use of the balance equations (2.55a)-
(2.55d), yields the final form of the ALE integral conservation laws

d

dt

∫

ω=Ψ(Ωξ,t)
ρ dv +

∫

∂ω
ρ(U − V ) · n ds = 0, (2.158a)

d

dt

∫

ω=Ψ(Ωξ,t)
dv −

∫

∂ω
V · n ds = 0, (2.158b)

d

dt

∫

ω=Ψ(Ωξ,t)
ρU dv −

∫

∂ω
Tn ds+

∫

∂ω
ρU(U − V ) · n ds =

∫

ω
ρg dv, (2.158c)

d

dt

∫

ω=Ψ(Ωξ,t)
ρE dv −

∫

∂ω
(TU − q) · n ds+

∫

∂ω
ρE(U − V ) · n ds =

∫

ω
ρ(g ·U + r) dv.

(2.158d)

These equations state respectively the balance of mass, volume, momentum and total energy
over the volume ω, which is moving following the arbitrary motion characterized by the pre-
scribed velocity field V . Let us remark that (2.158b) expresses the time rate of change of the
fluid volume contained in ω in its motion with the arbitrary velocity V . This equation, also
named Geometric Conservation Law (GCL), is strongly linked to the trajectory of the fluid
particles given by

d

dt
x = V (x, t), x(0) = ξ, (2.159)

where ξ denotes the initial location of a fluid particle located at x at time t in the arbitrary
motion. To set up completely the ALE formulation, it remains to determine the velocity, V ,
which characterizes the arbitrary motion. Usually, this arbitrary velocity field is defined at the
vertices of the computational grid attached to the numerical discretization of the conservation
laws. It is prescribed in order to improve the accuracy and the robustness of the numerical
simulations and thus strongly depends on the practical study under consideration. There is a
huge literature devoted to this topic, interested reader might consult [51] and the references
herein for more informations about this subject.

We conclude by giving the ALE integral form of the fundamental inequality which ensures
consistency with the Second Law of thermodynamics. The ALE version of the fundamental
inequality follows from (2.78) by applying once more the transport formula relative to the
arbitrary motion as

d

dt

∫

ω=Ψ(Ωξ,t)
ρη dv +

∫

∂ω
ρη(U − V ) · n ds ≥

∫

ω
ρ
r

T
dv −

∫

∂ω

q · n
T

ds. (2.160)

Comment 9 ALE formulation has the interesting feature to encompass various Eulerian in-
tegral forms of the conservation laws. This versatility is due to the fact that the velocity V
can be arbitrarily chosen. For instance, by setting V = 0, the arbitrary motion Ψ collapses
to identity and thus ALE integral form of the conservation law reduces (2.158) to the classical
Eulerian integral form of the conservation laws over the fixed domain ω = Ωξ. This latter form
is extensively used to construct finite volume discretizations of the conservation laws applied to

55



aerodynamics [65]. Now, enforcing the arbitrary motion to coincide with the fluid motion, i.e.,
V = U , allows to recover the Eulerian integral form of the conservation laws over a domain ω
which moves with the fluid velocity (2.55). This form, otherwise called updated Lagrangian, will
be of great interest to construct finite volume discretizations of the conservation laws, devoted
to the numerical simulation of multi-material fluid flows which suffer large expansions or com-
pressions. That is, flows for which the domain occupied by the fluid encounters large changes
in its shape as time evolves. This updated Lagrangian form is the cornerstone to develop com-
putational methods devoted to the numerical simulation of Lagrangian hydrodynamics.
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Chapter 3

Cell-centered schemes for

Lagrangian hydrodynamics

Fluid dynamics relies on two kinematic descriptions: the Eulerian description and the La-
grangian description. In the former, the conservation laws are written using a fixed reference
frame whereas in the latter they are written through the use of a moving reference frame that
follows the fluid motion. Lagrangian representation is particularly well adapted to describe
the time evolution of fluid flows contained in regions undergoing large shape changes due to
strong compressions or expansions. Moreover, in this representation, there is no mass flux across
the boundary surface of a control volume moving with the fluid velocity. Therefore, Lagrangian
formalism provides a natural framework to track accurately material interfaces present in multi-
material compressible fluid flows. All these reasons incite the use of the Lagrangian description
to model the compressible flows encountered in the context of Inertial Confinement Fusion, refer
to Chapter 1. Indeed, the hydrodynamic flow resulting from the implosion of an ICF target
is a source of very intense shock and rarefaction waves. The size of the domain occupied by
the fluid varies strongly over time. Furthermore, the target being composed of several distinct
materials, this type of flow generally contains several interfaces that need to be followed with
accuracy during implosion.

Bearing this context in mind, our main motivation consists in deriving a robust and ac-
curate numerical method that solves the compressible gas dynamics equations written under
Lagrangian form. Before we proceed any further in the description of this method, we start by
presenting a brief historical overview about Lagrangian numerical methods. For a thoroughly
presentation of the classical computational methods in Lagrangian and Eulerian hydrocodes,
the interested reader may refer to the review paper of Benson [23].

In contrast to Eulerian methods, Lagrangian methods are characterized by a moving com-
putational grid. Thus, in the Lagrangian framework, one has to discretize not only the physical
conservation laws but also the vertex velocity to define the mesh motion. Moreover, the numeri-
cal fluxes of the physical conservation laws must be determined in a compatible manner with the
vertex velocity. More precisely, the zone volume that is computed directly from its coordinates
must be equal to the zone volume that is deduced from solving the discrete volume equation,
otherwise called the Geometric Conservation Law (GCL). This critical requirement related to
the GCL is the cornerstone on which any proper multi-dimensional Lagrangian scheme should
rely.

The most natural method to fulfill this requirement consists in employing a staggered dis-
cretization wherein the velocity is located at the nodes whereas the thermodynamic variables
(density, pressure and specific internal energy) are defined at the cell center. This choice leads to
solve a partial differential equation for the specific internal energy. Although it is written under
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a non-conservative form, the adding of an artificial viscosity term renders this equation com-
patible with the Second Law of thermodynamics. This term, that mimics the physical viscosity,
ensures a proper transformation of kinetic energy into internal energy through shock waves.
The first staggered scheme has been introduced for one-dimensional flows by Von Neumann
and Richtmyer during the 40’s in Los Alamos and published later in their seminal paper [164].
The bi-dimensional extension to elastic-plastic flows has been derived by Wilkins in [166]. In
its initial version, this scheme did not conserve the total energy, in addition it was sensitive to
numerical spurious modes. Since two decades, many improvements have been done in order to
solve theses flaws. In their paper [36], Caramana and Shashkov show that with an appropriate
discretization of the subzonal forces resulting from subzonal pressures, hourglass motion and
spurious vorticity can be eliminated. The introduction of a compatible discretization of the
divergence and gradient operators leads to a compatible staggered scheme which conserves the
total energy [31, 35]. Regarding the artificial viscosity, its discretization has also been consid-
erably improved. First, by introducing formulations for multidimensional shock wave compu-
tations in [34] and then by using a discretization based on mimetic finite difference method in
[32, 92]. With all these improvements, staggered Lagrangian schemes are accurate and robust
numerical methods, which can produce impressive results, even on unstructured polygonal grids
[33]. We want also to mention the recent papers [30, 110] wherein two-dimensional staggered
discretizations are developed by constructing artificial viscosities which relies on the use of an
approximate Riemann solver.

Up to our knowledge, the interpretation of the staggered schemes of Wilkins and Goad
[166, 64] by means of the finite element method has been initially introduced by Lascaux at the
beginning of the 70’s in [82, 83]. This finite element interpretation has been further developed
producing various interesting staggered schemes. In [14], Barlow presents a compatible finite
element Lagrangian hydrodynamics algorithm used in a multi-material Arbitrary Lagrangian
Eulerian (ALE) strategy. We also note the development of a variational multi-scale stabilized
approach in finite element computation of Lagrangian hydrodynamics, where a piecewise linear
approximation was adopted for the variables [145, 144]. The case of Q1/P0 finite element is stud-
ied in [147], where the kinematic variables are represented using a piecewise linear continuous
approximation, while the thermodynamic variables utilize a piecewise constant representation.
More recently, a high-order extension of the staggered discretization based on a curvilinear finite
element method has been derived in [50], the corresponding artificial viscosity being described
in [78].

The staggered grid schemes employed in most hydro-codes have been remarkably successful
over the past decades in solving complex multi-dimensional compressible fluid flows. However,
they clearly have some theoretical and practical deficiencies. Mesh imprinting and symmetry
breaking are important examples. The need to use artificial viscosities, hourglass filters and
sub-zonal pressure schemes is also undesirable. A staggered scheme is also inelegant as all
variables are not conserved over the same space. High resolution cell-centered Lagrangian
Godunov schemes can overcome some of these problems. In contrast to staggered approach,
these conservative schemes are based on a cell-centered placement of all the fluid variables and
solve the total energy equation. The numerical face fluxes are determined by means of one-
dimensional approximate Riemann solvers in the direction normal to the cell interface. The
main difficulty lies in the definition of consistent Lagrangian nodal velocities with which to
move the computational mesh. This probably explains why progress has been slow in extending
these ideas to Lagrangian schemes, while Eulerian Godunov methods have been well established
for a long time.

A first attempt has been done by Dukowicz and his co-workers while developing CAVEAT
code in Los Alamos during the 80’s. In [8, 7] they proposed to use a weighted least squares
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algorithm to compute the vertex velocity by requiring that the vertex velocity projected in the
direction of a face normal should equal the normal velocity resulting from the approximate
Riemann solver. It turns out that this algorithm is capable of generating additional spurious
components in the vertex velocity field. Thus, it leads to an artificial grid motion which requires
a very expensive treatment [54]. This flaw follows from the fact that the volume flux is not
compatible with the node motion in the sense that the GCL is not satisfied.

A solution to circumvent this problem consists in deriving cell-centered discretizations based
on a total Lagrangian formulation of the gas dynamics equations. That it is, a formulation
wherein the divergence and gradient operators are expressed in terms of the Lagrangian coor-
dinates. In this framework, the computational grid is fixed, however one has to follow the time
evolution of the Jacobian matrix associated to the Lagrange-Euler flow map. In addition, a new
difficulty arises due to the fact that the gas dynamics system written under total Lagrangian
form is only weakly hyperbolic [72, 98, 116, 49, 47]. This loss of strict hyperbolicity is related to
the supplementary conservation law that results from the time evolution of the deformation gra-
dient tensor. Following this approach, a Lagrangian Discontinuous Galerkin-type method has
been successfully developed in [6]. However, the use of this method is limited to a representation
in the initial configuration since it cannot be rigorously interpreted as a moving mesh method.
This issue has been addressed by Després and Mazeran in [49] where they propose a first-order
cell-centered discretization of the gas dynamics equations that can be written in both total and
updated Lagrangian forms thus leading to a moving mesh finite volume scheme which satisfies
exactly the GCL. The numerical fluxes are defined at the node in the following manner: there
is a unique nodal velocity and one nodal pressure per each cell surrounding the node. These
fluxes are computed through the use of a node-centered approximate Riemann solver. This
scheme conserves the momentum and the total energy and also satisfies an entropy inequality.
It has been called GLACE in [38] where a high-order multi-dimensional extension is provided,
the acronym GLACE being shorthand for Godunov-type LAgrangian scheme Conservative for
total Energy. A thorough study of the properties of the GLACE node-centered solver reveals
a strong sensitivity to the cell aspect ratio which can leads to severe numerical instabilities
[136]. This problem is critical for ICF Lagrangian simulations characterized by computational
grids that frequently contain very high aspect ratio cells. To overcome this difficulty, we have
proposed an alternative scheme [108] that successfully solves the cell aspect ratio problem and
keeps the compatibility between fluxes discretization and vertices velocity computation. This
first-order scheme is also characterized by node-based fluxes, it conserves the momentum and
the total energy, and fulfills a local entropy inequality. Its main feature lies in the discretiza-
tion of the pressure gradient, which is designed using two pressures at each node of a cell,
each nodal pressure being associated with the direction of the unit outward normals related to
the edges originating from the node. These nodal pressures are linked to the nodal velocity
thanks to approximate Riemann invariants. This scheme, which is called EUCCLHYD (Ex-
plicit Unstructured Cell-Centered Lagrangian HYDrodynamics), has been extended to higher
order using first a classical MUSCL-type approach [109], and then a prolongation of works
initiated by Ben-Artzi and Falcovitz [21] concerning the Generalized Riemann Problem [105].
The application of this scheme to the tri-dimensional geometry is presented in [111]. The ex-
tension to the bi-dimensional axisymmetric geometry is described in [104]; this latter version
being absolutely necessary for simulations of the implosion of an ICF target of a spherical sym-
metry. More recently, we have contributed to the implementation of a general formulation of
cell-centered schemes for Lagrangian hydrodynamics that is based on the use of the concept
of sub-cell forces which has been initially introduced in the context of staggered discretization
[35]. This formulation covers different centered schemes proposed previously and is described in
[107, 106]. This framework, adapted here to cell-centered discretization, should provide deeper
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understanding of relations between cell-centered and staggered Lagrangian schemes. Note that
this formulation has quite a lot in common with the approach taken very recently in [12]. In
this work, the author also draws an analogy between forces and the momentum fluxes in the
momentum equation and uses this to produce a total energy conservation equation expressed in
work form as it is has been done in [107], which allows the total energy to be evolved for forces
which include terms that appear as a pressure average and a linear vector artificial viscosity.
Last, it is worth pointing out the recent work presented in [126] which consists in a high-order
curvilinear finite volume method that solves the Lagrangian gas dynamics. This original GCL
satisfying approach relies on a weak formulation to compute the nodal velocity using an acous-
tic Riemann solver approximation. Let us emphasize that in its first-order version this method
naturally recovers the first-order EUCCLHYD scheme.

We conclude this review by saying that cell-centered finite volume schemes [38, 105] that
fulfill the GCL compatibility requirement seem to be a promising alternative to the usual stag-
gered finite difference discretizations [35] for compressible Lagrangian hydrodynamics. These
cell-centered Godunov-type discretizations exhibit the good property of being naturally conser-
vative. This point is of great importance since convergent conservative schemes are known to
converge to weak solutions in the presence of shocks by the Lax-Wendroff theorem [85]. Further-
more, they do not require the use of an artificial viscosity since the numerical dissipation built
in the approximate Riemann solver automatically converts kinetic energy into internal energy
through shock waves. Last, these cell-centered schemes allow a straightforward implementa-
tion of conservative remapping methods when they are used in the context of the Arbitrary
Lagrangian Eulerian (ALE) strategy.

The aim of the present work is to develop a general formalism to derive cell-centered schemes
for two-dimensional Lagrangian hydrodynamics on unstructured grids that meet the compati-
bility GCL requirement. For a general polygonal grid, the discrete equations that govern the
time rate of change of volume, momentum and total energy are obtained by means of a control
volume formulation of the gas dynamics equations written using a cell-centered placement of
the physical variables. The motion of the vertices of the grid is deduced from the trajectory
equations, once the vertex velocity is defined. The general formalism that we present relies
on a sub-cell force-based discretization wherein the sub-cell force form is determined in such
a manner that the resulting scheme satisfies an entropy inequality. Invoking the fundamental
conservation principles of the momentum and the total energy leads to the construction of a
node-centered solver that determines the nodal velocity. The high-order extension of this gen-
eral cell-centered scheme is derived through the use of a non-trivial two-dimensional extension
of the Generalized Riemann Problem (GRP) methodology [21] in its acoustic version. This
general framework is developed for both two-dimensional Cartesian and cylindrical geometries.

The remainder of this chapter is organized as follows. In Section 3.1, we recall briefly
the high-order cell-centered discretization of the one-dimensional Lagrangian hydrodynamics.
The high-order sub-cell force-based discretization in two-dimensional Cartesian geometry is
thoroughly described in Section 3.2. The robustness and the accuracy of this formulation are
demonstrated in Section 3.3 by means of various numerical tests. Finally, the extension to
axisymmetric geometry is described in Section 3.4, which is followed by the presentation of the
corresponding numerical results in Section 3.5.

3.1 High-order discretization for one-dimensional Lagrangian

hydrodynamics

The aim of this section is to recall the one-dimensional cell-centered Lagrangian discretization
wherein the numerical fluxes are computed using approximated Riemann solvers. This topic is
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quite well known and has been investigated by several authors, refer for instance to [159, 21,
122, 60, 65, 47, 139, 46, 61].

3.1.1 Governing equations

For the sake of completeness, we recall hereafter the local Lagrangian form of the one-dimensional
gas dynamics equation with slab symmetry (refer to (2.156) page 53)

ρ0
d

dt
(
1

ρ
)− ∂

∂X
u = 0,

ρ0
d

dt
u+

∂

∂X
P = 0,

ρ0
d

dt
E +

∂

∂X
(Pu) = 0.

Note that the body force has been suppressed. Let us recall, that X denotes the Lagrangian
coordinate and ρ0 = ρ0(X) > 0 is the initial density. In the above system, all the fluid
variables are expressed in terms of X and t. In many textbooks [65, 21, 47], the above system is
rewritten through the use of the mass coordinate. This other Lagrangian coordinate is defined
as dm = ρ0(X)dX. Introducing this change of coordinates in the above system yields

d

dt
(
1

ρ
)− ∂

∂m
u = 0,

d

dt
u+

∂

∂m
P = 0,

d

dt
E +

∂

∂m
(Pu) = 0.

A thoroughly study of this system from both mathematical and numerical point of view has
been performed in [122]. However, one must have in mind that the use of the mass coordinate
is restricted to one-dimensional system since it is not possible to extend it to multi-dimensional
framework. For this reason, we shall not use anymore this representation.

In what follows, we aim at deriving a moving mesh discretization of the one-dimensional
gas dynamics equation. To this end, we introduce the updated Lagrangian form of the gas
dynamics equation through the use of the trajectory equation. Namely, considering a fluid
particle initially located at X, we denote by x(X, t) its position at time t. If u = u(x, t) denotes
the x-component of the fluid velocity, then the fluid paths are solution of the trajectory equation

dx

dt
= u, x(X, 0) = X. (3.1)

Here, x stands for the Eulerian coordinate. Expressing the fluid variables in terms of the
Eulerian coordinate and noticing that mass conservation amounts to write dm = ρ0(X)dX =
ρ(x(X, t), t)dx, the above system rewrites as

ρ
d

dt
(
1

ρ
)− ∂u

∂x
= 0, (3.2a)

ρ
d

dt
u+

∂P

∂x
= 0, (3.2b)

ρ
d

dt
E +

∂

∂x
(Pu) = 0, (3.2c)

where this time d
dt = ∂

∂t + u ∂
∂x denotes the material derivative. The specific internal energy

ε is defined by ε = E − 1
2u

2. The thermodynamic closure is given by the equation of state
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P = P (ρ, ε). To ensure the thermodynamic consistency of the above system with the Second
Law of thermodynamics, it must be completed by the following entropy inequality

ρ
dη

dt
≥ 0, (3.3)

where η denotes the specific entropy. The specific entropy is related to the other thermodynamic
variables by means of the fundamental Gibbs relation

Tdη = dε+ Pd(
1

ρ
), (3.4)

where T denotes the temperature.

3.1.2 Mathematical properties of the one-dimensional system of the gas dy-

namics equations

Before we proceed any further with the numerical discretization of system (3.2), we recall some
important properties related to its mathematical structures. These notions, which are presented
hereafter for the sake of completeness, can be found in [122, 65, 47, 21, 134]. Assuming that
the fluid variables are continuously differentiable, we are going to transform (3.2) in a more
convenient form using as primary variables (P, u, η). To this end, we start by deriving the
equation relative to specific entropy which follows directly from the Gibbs relation (3.4)

ρT
dη

dt
= ρ

dε

dt
+ ρP

d

dt
(
1

ρ
). (3.5)

From the specific internal energy definition, it follows that dε
dt = dE

dt − udu
dt . Thus, multiplying

(3.2b) by u and subtracting the resulting equation from (3.2c) leads to

ρ
dε

dt
+ P

∂u

∂x
= 0. (3.6)

Finally, replacing (3.6) and (3.2a) in (3.5) provides the final form of the entropy equation

ρT
dη

dt
= 0. (3.7)

This equation states that for smooth flows, entropy is conserved along fluid particle paths.
This corresponds to an isentropic flow, where the entropy level of each fluid particle does not
change with time, but may vary from particle to particle. In addition, if the initial specific
entropy is uniform, i.e., η(x, 0) = η0, then it remains uniform at later time, i.e., η(x, t) = η0.
This particular situation, wherein the flow has uniform and constant entropy, corresponds to a
homoentropic flow.

Now, considering the equation of state written under the form P = P (ρ, η) and differenti-
ating it with respect to ρ and η yields

dP = (
∂P

∂ρ
)ηdρ+ (

∂P

∂η
)ρdη.

This leads to define the isentropic sound speed, a, as

a2 =

(
∂P

∂ρ

)

η

. (3.8)
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In writing this definition, we have made the fundamental assumption that the equation of state
is such that (∂P∂ρ )η > 0. Using the above definition and the fact that the flow under consideration
is isentropic leads to

dP

dt
= a2

dρ

dt
. (3.9)

Using this latter equation and the equation satisfied by entropy, we express the system of gas
dynamics equations in terms of the variables (P, u, η) as

dP

dt
+ ρa2

∂u

∂x
= 0, (3.10a)

du

dt
+

1

ρ

∂P

∂x
= 0, (3.10b)

dη

dt
= 0. (3.10c)

Recalling that the material derivative is given by d
dt =

∂
∂t + u ∂

∂x , the above system also writes
under the equivalent form

∂P

∂t
+ u

∂P

∂x
+ ρa2

∂u

∂x
= 0, (3.11a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= 0, (3.11b)

∂η

∂t
+ u

∂η

∂x
= 0. (3.11c)

This latter system is put under the compact form

∂

∂t



P
u
η


+ A

∂

∂x



P
u
η


 = 0,

where the matrix A is defined by

A =



u ρa2 0
1
ρ u 0

0 0 u


 (3.12)

This matrix admits three distinct real eigenvalues which write

λ− = u− a, λ0 = u and λ+ = u+ a. (3.13)

Therefore, system (3.11) is strictly hyperbolic. Each eigenvalue defines a family of character-
istic curves, these curves are denoted (C−), (C0) and (C+), and they are defined as the integral
curves of the following equations

(C−)
dx

dt
= u− a, (C0)

dx

dt
= u, (C+)

dx

dt
= u+ a. (3.14)

We observe that the specific entropy is conserved along (C0), which coincides with the trajectory
equation. Moreover, along the characteristic curves C±, one can easily show that the following
equations hold

dP ± ρadu = 0. (3.15)

For a homoentropic flow, the density and the sound speed can be expressed uniquely in terms
of the pressure and the above differential forms can be integrated in the form

u±
∫

dP

ρ(P )a(P )
= cst. (3.16)

The quantities in the left-hand side are called Riemann invariants.
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3.1.3 First-order space discretization

Let Ω = [Xb, Xe] be the domain initially filled by the fluid. This domain is partitioned into I
cells Ωi = [Xi− 1

2

, Xi+ 1

2

]. The vertex motion is given by the discretized trajectory equation

d

dt
xi+ 1

2

= ui+ 1

2

, xi+ 1

2

(0) = Xi+ 1

2

, (3.17)

where ui+ 1

2

denotes the vertex velocity. Let ωi(t) = [xi− 1

2

(t), xi+ 1

2

(t)] denotes the Eulerian

moving cell corresponding to the Lagrangian cell Ωi in the flow map. Let ( 1
ρi
, ui, Ei) be the

mass averaged values of (1ρ , u, E) over the cell ωi(t). We recall that in the Lagrangian framework
the mass mi of the cell ωi(t) is constant

mi = ρi(t)∆xi(t), ∀t > 0, (3.18)

where ∆xi = xi+ 1

2

− xi− 1

2

denotes the volume of the cell. Using the transport formula (2.32)

page 16, the integration of (3.2) over ωi leads to the following set of evolution equations for the
discrete variables ( 1

ρi
, ui, Ei)

mi
d

dt
(
1

ρi
)− (ui+ 1

2

− ui− 1

2

) = 0, (3.19a)

mi
d

dt
ui + Pi+ 1

2

− Pi− 1

2

= 0, (3.19b)

mi
d

dt
Ei + (Pu)i+ 1

2

− (Pu)i− 1

2

= 0, (3.19c)

where ui+ 1

2

, Pi+ 1

2

and (Pu)i+ 1

2

denotes the numerical fluxes at node xi+ 1

2

. Here, we make the

fundamental assumption that
(Pu)i+ 1

2

= Pi+ 1

2

ui+ 1

2

.

We notice that (3.18) is consistent with (3.19a) since the time differentiation of (3.18) using
(3.17) leads to (3.19a).

The fluxes ui+ 1

2

and Pi+ 1

2

are obtained by exactly or approximately solving the Riemann

problem at the cell interface xi+ 1

2

for the left state Φl = (1ρ i−1
, ui−1, Ei−1)

t and the right state

Φr = (1ρ i
, ui, Ei)

t.

3.1.4 The Riemann problem

The purpose of this section is to recall basic notions related to the resolution of the Riemann
problem for gas dynamics equations. Using the exact solution, we show how to construct
approximate solutions which will be useful to derive numerical fluxes at cells interface.

Exact solution

The Riemann problem and its solution in terms of p− u curves is discussed in many references
[65, 21, 139]. Here, we recall briefly the main steps leading to its resolution in the case of
perfect gas equation of state, following the approach presented in [53]. The Riemann problem
is illustrated in Figure 3.1 by means of an x− t diagram. The data of the initial discontinuity
are specified by (1ρ l

, ul, Pl)
t on the left side and (1ρr

, ur, Pr)
t on the right side. At later time, the

initial discontinuity is solved by a system of waves which consists of a contact discontinuity, a
leftward wave and a rightward wave. Those waves may be either a shock or a rarefaction wave.
The pressure P ⋆ and the velocity u⋆ are unique except in the case of cavitation. Moreover,
these quantities are continuous across the contact discontinuity while the specific volume is
discontinuous and is denoted 1

ρ⋆
l
on the left side of the interface and 1

ρ⋆r
on the right side.
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x

t

leftward wave

contact discontinuity

rightward wave
1
ρ⋆r




1
ρl

ul
Pl







1
ρr

ur

Pr




1
ρ⋆l

u⋆P ⋆

Figure 3.1: x− t diagram for the Riemann problem.

The case of shock waves In this situation, the left, intermediate and right states are linked
by the Rankine-Hugoniot relations, refer to (2.157), which write for the leftward wave

Ml(
1

ρ⋆l
− 1

ρl
) = u⋆ − ul, (3.20a)

−Ml (u
⋆ − ul) = P ⋆ − Pl, (3.20b)

ε⋆l − εl +
P ⋆ + Pl

2
(
1

ρ⋆l
− 1

ρl
) = 0, (3.20c)

η⋆l − ηl ≥ 0. (3.20d)

The counterpart for the rightward wave writes

Mr(
1

ρ⋆r
− 1

ρr
) = −(u⋆ − ur, ) (3.21a)

Mr (u
⋆ − ur) = P ⋆ − Pr, (3.21b)

ε⋆r − εr +
P ⋆ + Pr

2
(
1

ρ⋆r
− 1

ρr
) = 0, (3.21c)

η⋆r − ηr ≥ 0. (3.21d)

Here, Ms > 0 is the fluid mass swept over by the shock wave in unit time per unit area and
the subscript s represents l or r for leftward or rightward wave. Let us note that Ms is defined
implicitly by

M2
s = −P

⋆ − Ps
1
ρ⋆s

− 1
ρs

,

ε⋆s − εs +
1

2
(P ⋆ + Ps)

(
1

ρ⋆s
− 1

ρs

)
= 0, and ε = ε(ρ, P ).

By virtue of (3.20d) and (3.21d), one can show that P ⋆ ≥ Ps, refer to Appendix B page 221.
Namely, to be coherent with the Second Law of thermodynamics a shock wave must be a
compressive wave.1Using Appendix B, for a gamma gas law, i.e., Ps = (γs − 1) ρsεs, the mass
swept by the shock expresses as

Ms =

√
ρs
2
[(γs + 1)P ⋆ + (γs − 1)Ps]. (3.22)

1This statement is valid provided that the equation of state is such that its Hugoniot curve is convex with
respect to the specific volume.
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The case of rarefaction waves Through the rarefaction waves, the left, intermediate and
right states are linked by means of the Riemann invariants and the isentropy of the flow. This
leads to write for the leftward wave

−(u⋆ − ul) =

∫ P ⋆

Pl

dP

ρ(P )a(P )
, (3.23a)

ε⋆l − εl +

∫ ρ⋆
l

ρl

Pd(
1

ρ
) = 0, (3.23b)

The analogous relations for the rightward wave write

u⋆ − ur =

∫ P ⋆

Pr

dP

ρ(P )a(P )
, (3.24a)

ε⋆r − εr +

∫ ρ⋆r

ρr

Pd(
1

ρ
) = 0. (3.24b)

Let us remark that equations (3.23b) and (3.24b) are nothing but the integrals of the isentropy
relation, i.e., dη = 0. We also note that (3.23a) and (3.24a) can be put under a form similar to
(3.20b) and (3.21b). To this end, we define Ms for rarefaction wave as follows

Ms =
Ps − P ⋆

∫ Ps

P ⋆

dP

ρ(P )a(P )

,

knowing that P ⋆ ≤ Ps since the wave under consideration is a rarefaction wave. For a gamma
gas law, one obtains

Ms =
γs − 1

2as

Ps − P ⋆

1−
(
P ⋆

Ps

) γs−1

2γs

, (3.25)

where as =
√
γs

Ps

ρs
is the sound speed.

The interface pressure P ⋆ and velocity u⋆ are then obtained by solving the non-linear system

−Ml (u
⋆ − ul) = P ⋆ − Pl, (3.26a)

Mr (u
⋆ − ur) = P ⋆ − Pr, (3.26b)

where the swept mass flux Ms =Ms(Ps, P
⋆) is defined by

Ms =





Ps − P ⋆

∫ Ps

P ⋆

dP

ρ(P )a(P )

if P ⋆ ≤ Ps,

√
−P

⋆ − Ps
1
ρ⋆s

− 1
ρs

if P ⋆ > Ps.

(3.27)

This non-linear system can be solved using an iterative method such as the Newton algorithm
[21]. Its numerical solution produce an exact Riemann solver [139, 66]. For practical appli-
cations, this type of solver is scarcely employed due to its rather expensive cost. In what
follows, we recall the construction of two approximate Riemann solvers which will be useful for
developing efficient numerical schemes.
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Approximate solutions

The first approximate Riemann solver is derived by noticing that in the limit of weak waves,
P ⋆ − Ps → 0, the swept mass flux, Ms tends to the limit Ms → ρsas for both shock and
rarefaction waves. Replacing the swept mass flux Ms by the acoustic impedance, zs = ρsas,
into (3.26), leads to a linear system satisfied by (u⋆, P ⋆). Its solution readily writes

u⋆ =
zlul + zrur
zl + zr

− Pr − Pl

zl + zr
, (3.28a)

P ⋆ =
zlPr + zrPl

zl + zr
− zlzr
zl + zr

(ur − ul) . (3.28b)

These formulas correspond to the well known acoustic approximate Riemann solver other-
wise called Godunov acoustic solver [66]. This solver is cheap and quite versatile. Since, its use
only requires the knowledge of the isentropic sound speed, it can handle tabulated equations
of state. However, this solver can produce non physical intermediate densities, (ρ⋆l , ρ

⋆
r), in the

case of very strong shock waves. To illustrate this flaw, let us consider a rightward shock waves,
using (3.21a) and Mr = ρrar one obtains

1

ρ⋆r
=

1

ρr

[
ar − (u⋆ − ar)

ar

]
.

We note that for a shock wave such that u⋆ − ur > ar, one has 1
ρ⋆r
< 0, which is clearly not

acceptable. For Eulerian schemes, this drawback is fatal since the intermediate densities are
required to compute the mass flux. This non-physical behavior is not so serious in the case of
Lagrangian schemes since the intermediate densities are not needed to compute the fluxes.

To correct this non-physical behavior, we construct an approximate solver by using the
following approximation for the swept mass flux

Ms = ρs(as + Γs | u⋆ − us |), (3.29)

where Γs is a material dependent parameter to be defined. This approximation has been initially
proposed by Dukowicz [53] for shock wave. We note that in case of a rightward shock wave,
u⋆ − ar > 0 thus using the previous approximation the intermediate density writes

1

ρ⋆r
=

1

ρr

[
ar + (Γr − 1)(u⋆ − ar)

ar + Γr(u⋆ − ar)

]
.

This intermediate density is always positive, regardless the strength of the shock wave, provided
that Γr > 1. In the limit of infinite strength shock waves one gets

ρr
ρ⋆r

→ Γr − 1

Γr
.

This limit allows to define the value of the parameter Γ for a gamma gas law, recalling that in
this case ρr

ρ⋆r
→ γr−1

γr+1 , hence Γr = γr+1
2 . We note that with this definition of the Γ parameter

the approximation (3.29) allows us to approach the asymptotic behavior of the swept mass flux
not only for the weak shock wave but also for the infinite strength shock wave.

3.1.5 Semi-discrete entropy inequality

We compute the rate of entropy production corresponding to the semi-discretized system (3.19).
From Gibbs formula (3.4) it follows that the rate of entropy production within cell ωi writes

miTi
d

dt
ηi = mi[

d

dt
εi + Pi

d

dt
(
1

ρi
)].
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Knowing that dεi
dt = dEi

dt − ui
dui

dt and subtracting ui(3.19b) from (3.19c) leads to

mi
d

dt
εi + Pi+ 1

2

(ui+ 1

2

− ui)− Pi− 1

2

(ui− 1

2

− ui) = 0. (3.30)

From (3.19a) we obtain the pressure work

miPi
d

dt
(
1

ρi
)− [Pi(ui+ 1

2

− ui)− Pi(ui− 1

2

− ui)] = 0. (3.31)

Finally, adding (3.30) and (3.31) we get

mi[
d

dt
εi + Pi

d

dt
(
1

ρi
)] = (Pi − Pi+ 1

2

)(ui+ 1

2

− ui)− (Pi − Pi− 1

2

)(ui− 1

2

− ui). (3.32)

This last formula shows that the entropy production depends on the jump between the averaged
quantities ui, Pi and the solution of the Riemann problem ui+ 1

2

, Pi+ 1

2

at each cell interface. By

applying the relations (3.26b) and (3.26a) at cell interfaces Xi− 1

2

and Xi+ 1

2

we obtain

Mi,i− 1

2

(ui− 1

2

− ui) = Pi− 1

2

− Pi, for the rightward wave at xi− 1

2

, (3.33a)

−Mi,i+ 1

2

(ui+ 1

2

− ui) = Pi+ 1

2

− Pi, for the leftward wave at xi+ 1

2

. (3.33b)

In these formulasMi,i− 1

2

(Mi,i+ 1

2

) denotes the mass swept over by the rightward (leftward) wave

emanating from xi− 1

2

(xi+ 1

2

). Substituting (3.33a) and (3.33b) into (3.32) yields

mi[
d

dt
εi + Pi

d

dt
(
1

ρi
)] =Mi,i+ 1

2

(ui+ 1

2

− ui)
2 +Mi,i− 1

2

(ui− 1

2

− ui)
2 ≥ 0. (3.34)

Since Mi,i− 1

2

and Mi,i+ 1

2

are always positive, the right-hand side of (3.34) is always positive.

Thus, the semi-discrete scheme satisfies a local entropy inequality. In the case of the acoustic
approximate Riemann solver we have Mi,i− 1

2

= Mi,i+ 1

2

= zi and the entropy production in cell

ωi is written

mi[
d

dt
εi + Pi

d

dt
(
1

ρi
)] = zi[(ui+ 1

2

− ui)
2 + (ui− 1

2

− ui)
2] ≥ 0. (3.35)

The right-hand side of (3.34) and (3.35) corresponds to the dissipation associated to the nu-
merical viscosity of the scheme. In this sense, the right-hand side of (3.34) is closely related to
the entropy production associated to the von Neumann Richtmyer staggered scheme [139]. In
the framework of vNR staggered scheme the velocity is vertex centered and the cell pressure
is augmented by an artificial shock viscosity contribution denoted by q which is used in the
momentum and the internal energy equations. The original form of q is proportional to the
square of the jump velocity [164], refer also to Equation (B.12) in Appendix B. Typically q is
set to zero when the flow is expanding and consequently the entropy production is set to zero.
Thus, vNR scheme is able to preserve isentropic flows. On the other hand, entropy inequality
(3.34) shows that first-order Godunov scheme is unable to preserve isentropic flows except for
the uniform ones. We observe in the right-hand side of (3.35) that the entropy production
term is proportional to the square of the jump between the nodal and the cell-centered velocity.
This term can be dramatically reduced by employing a high-order extension based on piecewise
linear reconstruction of the pressure and the velocity. In this case the flux computation will be
performed by replacing the left and right cell-centered states by the left and right extrapolated
states resulting from the piecewise linear reconstruction. Thus the jump between the nodal and
the cell-centered velocity turns into the jump between the nodal velocity and the extrapolated
velocity at the node. This results in a decreasing entropy production.
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3.1.6 First-order time discretization

We assume that at time t = tn all the fluid variables are known and cell-centered, we will denote
them with the superscript n. Let ∆t = tn+1 − tn denote the time increment. We discretize the
system (3.19) using a standard forward Euler scheme

mi(
1

ρn+1
i

− 1

ρni
)−∆t(un

i+ 1

2

− un
i− 1

2

) = 0, (3.36a)

mi(u
n+1
i − uni ) + ∆t(Pn

i+ 1

2

− Pn
i− 1

2

) = 0, (3.36b)

mi(E
n+1
i − En

i ) + ∆t(Pn
i+ 1

2

un
i+ 1

2

− Pn
i− 1

2

un
i− 1

2

) = 0, (3.36c)

where un
i+ 1

2

and Pn
i+ 1

2

are the fluxes at node xi+ 1

2

obtained by solving the Riemann problem for

the left state Φl = ( 1
ρni−1

, uni−1, E
n
i−1)

t and the right state Φr = ( 1
ρni
, uni , E

n
i )

t. In the case of the

approximate acoustic Riemann solver we have the explicit formulas

u⋆
i+ 1

2

=
zni u

n
i + zni+1u

n
i+1

zni + zni+1

− Pn
i+1 − Pn

i

zni + zni+1

, (3.37a)

P ⋆
i+ 1

2

=
zni+1P

n
i + zni P

n
i+1

zni + zni+1

− zni z
n
i+1

zni + zni+1

(uni+1 − uni ), (3.37b)

where zni = ρni a
n
i is the acoustic impedance and ani is the isentropic sound speed. Boundary

conditions are implemented knowing that in the Lagrangian framework either the pressure or
the velocity is prescribed at the boundary

• At x = xb

imposed pressure P ⋆
b

P 1

2

= P ⋆
b ,

u 1

2

= un1 −
Pn
1 − P 1

2

zn1
.

imposed velocity u⋆b

P 1

2

= Pn
1 + zn1 (u 1

2

− un1 ),

u 1

2

= u⋆b.

• At x = xe

imposed pressure P ⋆
e

PI+ 1

2

= P ⋆
e ,

uI+ 1

2

= unI +
Pn
I −P

I+1
2

zn
I

.

imposed velocity u⋆e

PI+ 1

2

= Pn
I − znI (uI+ 1

2

− unI ),

uI+ 1

2

= u⋆e .

We note that the previous set of discrete equations (3.36) leads to a first order accurate scheme
both in space and time. In addition, the vertex motion is given by

xn+1
i+ 1

2

= xn
i+ 1

2

+∆t un
i+ 1

2

. (3.38)

with x0
i+ 1

2

= Xi+ 1

2

. This last equation corresponds to the discretization of (3.17). To complete

the Lagrangian phase, we evaluate the new specific internal energy εn+1
i = En+1

i − 1
2(u

n+1
i )2.

Finally, we compute the pressure Pn+1
i = P (ρn+1

i , εn+1
i ), the sound speed an+1

i and the acoustic
impedance zn+1

i .
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The time step is evaluated following the well known Courant Friedrich Levy (CFL) stability
condition [139]. At time tn we compute

∆te = Ce min
i=1,··· ,I

∆xni
ani

,

where Ce is a strictly positive coefficient and ai is the sound speed in the cell Ωi. Knowing ∆tn,
the current time step, the evaluation of the next time step ∆tn+1 is performed as follows

∆tn+1 = min(∆te, Cm∆tn), (3.39)

where Cm is a multiplicative coefficient, which allows the time step to increase. For numerical
applications, we use Ce = 0.25 and Cm = 1.01.

3.1.7 Discrete entropy inequality

We are going to show in this subsection that the first-order scheme corresponding to the ap-
proximate acoustic solver satisfies a discrete entropy inequality provided that the time step is
small enough. The first-order time discretization of the Gibbs formula writes

miT
n
i (η

n+1
i − ηni ) = mi[ε

n+1
i − εni + Pn

i (
1

ρn+1
i

− 1

ρni
)].

First, we compute the time increment of internal energy as

mi(ε
n+1
i − εni ) = mi[E

n+1
i − En

i − 1

2
(un+1

i − uni )(u
n+1
i + uni )],

replacing the time increments of total energy and momentum by means of (3.36c) and (3.36b)
in the right-hand side of the above equation leads to

mi(ε
n+1
i − εni ) = ∆t[−Pn

i+ 1

2

(un
i+ 1

2

− uni ) + Pn
i− 1

2

(un
i− 1

2

− uni )−
∆t

2mi
(Pn

i+ 1

2

− Pn
i− 1

2

)2]. (3.40)

Using (3.36a), the pressure work writes

miP
n
i (

1

ρn+1
i

− 1

ρni
) = ∆tPn

i [(u
n
i+ 1

2

− uni )− (un
i− 1

2

− uni )]. (3.41)

Finally, combining (3.40) and (3.41) yields

miT
n
i (η

n+1
i −ηni ) = ∆t[(Pn

i −Pn
i+ 1

2

)(un
i+ 1

2

−uni )− (Pn
i −Pn

i− 1

2

)(un
i− 1

2

−uni )−
∆t

2mi
(Pn

i+ 1

2

−Pn
i− 1

2

)2].

This equation corresponds to the rate of entropy production within cell ωi. From the approxi-
mate acoustic solver it follows

Pn
i − Pn

i+ 1

2

= zni (u
n
i+ 1

2

− uni ),

Pn
i − Pn

i− 1

2

= −zni (uni− 1

2

− uni ),

where zni = ρni a
n
i is the acoustic impedance. Using the above expressions, the entropy production

rate can be recast as

miT
n
i (η

n+1
i − ηni ) = zni ∆tQ(un

i− 1

2

− uni , u
n
i+ 1

2

− uni ), (3.42)
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In writing this equation, we have introduced the quadratic form, Qi, defined by Qi(v, w) =

(1−αi)v
2 − 2αivw+ (1−αi)w

2 for all (v, w) ∈ R
2 and αi =

zni ∆t
2mi

. The 2× 2 matrix associated
to this quadratic form writes

AQi
=

(
1− αi −αi

−αi 1− αi

)
,

and we have Qi(v, w) = AQi

(
v
w

)
·
(
v
w

)
. Noticing that detAQi

= 1− 2αi, we claim that AQi
is

positive definite provided αi ≤ 1
2 . Thus, the entropy inequality is satisfied under the following

condition

∆t ≤ mi

zni
=

∆xni
ani

. (3.43)

We notice that we recover the well known CFL condition related to the von Neumann stability
analysis [139]. Thus, the condition (3.43) ensures not only the stability but also the thermo-
dynamic consistency of the discretized scheme. However, it is important to notice that the
right-hand side of (3.42) is equal to zero only for uniform flows. For non uniform flows, under
the condition (3.43), we will always havemiT

n
i (η

n+1
i −ηni ) > 0. Therefore, the numerical scheme

does not preserve isentropic flows. This fact can lead to bad numerical results, especially con-
cerning the specific internal energy for flows wherein strong expansions occur. However, this
flaw can be corrected using high-order scheme.

3.1.8 The high-order extension using the Generalized Riemann problem

Here, we derive a high-order extension of the previous scheme using the Generalized Riemann
Problem methodology, which was introduced by [19, 21] following the pioneering works of van
Leer [159] and Kolgan [160, 79]. Let us assume a piecewise linear representation of the pressure
and the velocity at time tn, that is, for all x ∈ [xn

i− 1

2

, xn
i+ 1

2

]

ũ(x) = uni + δuni (x− xni ),

P̃ (x) = Pn
i + δPn

i (x− xni ),

where xni = 1
2(x

n
i− 1

2

+ xn
i+ 1

2

) is the midpoint of [xn
i− 1

2

, xn
i+ 1

2

]. In these equations δuni and δPn
i

denote the slopes of the velocity and the pressure which can be determined using for instance
a least squares method.

The generic high-order Godunov-type scheme can be written under the following form

mi(
1

ρn+1
i

− 1

ρni
)−∆t(u

n+ 1

2

i+ 1

2

− u
n+ 1

2

i− 1

2

) = 0, (3.44a)

mi(u
n+1
i − uni ) + ∆t(P

n+ 1

2

i+ 1

2

− P
n+ 1

2

i− 1

2

) = 0, (3.44b)

mi(E
n+1
i − En

i ) + ∆t[(Pu)
n+ 1

2

i+ 1

2

− (Pu)
n+ 1

2

i− 1

2

] = 0. (3.44c)

The grid motion is governed by the discrete trajectory equation

xn+1
i+ 1

2

= xn
i+ 1

2

+∆tu
n+ 1

2

i+ 1

2

.

Here, u
n+ 1

2

i+ 1

2

, P
n+ 1

2

i+ 1

2

and (Pu)
n+ 1

2

i+ 1

2

are the time-averaged numerical fluxes at node xi+ 1

2

over the

time interval [tn, tn+1]. The main feature of GRP methodology consists in deriving these mid-
point fluxes analytically by solving the generalized Riemann problem at each point (xn

i+ 1

2

, tn).
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In what follows, we describe the main steps to compute these fluxes. First, we define the
second-order approximation of the above numerical fluxes by means of the following Taylor
expansion

u
n+ 1

2

i+ 1

2

= un
i+ 1

2

+
∆t

2
(
d

dt
u)n

i+ 1

2

,

P
n+ 1

2

i+ 1

2

= Pn
i+ 1

2

+
∆t

2
(
d

dt
P )n

i+ 1

2

.

Regarding the total energy flux, (Pu)
n+ 1

2

i+ 1

2

, it is deduced from the previous formulas by setting

(Pu)
n+ 1

2

i+ 1

2

= Pn
i+ 1

2

un
i+ 1

2

+
∆t

2
[Pn

i+ 1

2

(
d

dt
u)n

i+ 1

2

+ un
i+ 1

2

(
d

dt
P )n

i+ 1

2

].

In the above formulas, un
i+ 1

2

and Pn
i+ 1

2

are obtained by solving a classical Riemann problem

at the interface xn
i+ 1

2

using the extrapolated values of the pressure and the velocity computed

from their piecewise linear reconstruction on each side of the interface.
We observe that once a Riemann solver has been chosen, the GRP scheme amounts to

compute the time derivatives ( d
dtu)

n
i+ 1

2

, ( d
dtP )

n
i+ 1

2

. To determine these time derivatives one has

to solve the generalized Riemann problem for system (3.2) subject to the piecewise linear initial
data

Φ(x, 0) =

{
Φl + δΦlx if x < 0,

Φr + δΦrx if x > 0,
(3.45)

where Φ = (1ρ , u, E)t and δΦ denotes the corresponding slopes vector. The associated Riemann
problem is the initial value problem for (3.2) with the piecewise constant values Φl and Φr (zero
slopes in (3.45)). Following [21], the associated Riemann solution is denotedRA(x/t,Φl,Φr). It
can be obtained approximately or exactly. The initial structure of the solution Φ(x, t) to (3.2)
and (3.45) is determined by the associated Riemann solution and is described asymptotically
as

lim
t→0

Φ(λt, t) = RA(λ,Φl,Φr), λ = x/t. (3.46)

The solution Φ(x, t) to the generalized Riemann problem can be represented by an asymptotic
expansion in terms of x and t whose zero-order term is given by equation (3.46). To compute
the time derivatives, it is sufficient to evaluate the first-order perturbation built into Φ(x, t),
that is, to evaluate

(
d

dt
P )⋆ = lim

t→0

d

dt
P (0, t), (

d

dt
u)⋆ = lim

t→0

d

dt
u(0, t).

This problem, which corresponds to the linear GRP, is completely solved in the monograph [21].
For our application, instead of dealing with the general problem, we specialize to the acoustic

case which is by far more simple. This particular case is exposed in [21, 89], we recall it not
only for sake of completeness but also because we will also use it to construct a two-dimensional
high-order extension. Let us assume that the initial flow variables are all continuous at x = 0
so that Φl = Φr, but we allow jumps in their slopes δΦl 6= δΦr. Hence, the GRP solution
is continuous at x = t = 0. The waves emanating from the origin are just the characteristics
curves which are displayed in Figure 3.2. Following [89], we rewrite the first two equations of
(3.2) as

d

dt
P + ρa2

∂u

∂x
= 0, (3.47a)

d

dt
u+

1

ρ

∂P

∂x
= 0. (3.47b)
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t

C+C−

Φ(x, 0) = Φr + δΦrxΦ(x, 0) = Φl + δΦlx

x

C0

Figure 3.2: Characteristic curves in the acoustic case corresponding to the piecewise linear
initial data Φl = Φr, δΦl 6= δΦr. Note that the characteristic curves have been plotted in the
frame attached to the fluid motion.

Linearizing the above system around the state Φ⋆ = Φl = Φr yields

d

dt
P + ρ⋆(a⋆)2

∂u

∂x
= 0,

d

dt
u+

1

ρ⋆
∂P

∂x
= 0.

This system can be recast in the more compact form

d

dt

(
P
u

)
+M⋆ ∂

∂x

(
P
u

)
= 0,

where the matrix M⋆ is given by

M⋆ =

(
0 ρ⋆(a⋆)2
1
ρ⋆ 0

)
.

Noticing that M⋆ admits the two eigenvalues −a⋆ and a⋆, we diagonalize the above system to
finally obtain

d

dt
(P − z⋆u)− a⋆

∂

∂x
(P − z⋆u) = 0,

d

dt
(P + z⋆u) + a⋆

∂

∂x
(P + z⋆u) = 0.

Here, z⋆ denotes the acoustic impedence defined by z⋆ = ρ⋆a⋆ and P±z⋆u are the two linearized
Riemann invariants respectively associated to the characteristics curves C±. To achieve the
determination of the time derivatives it remains to express the partial derivatives with respect
to x in terms of the pressure and velocity slopes as follows

(
d

dt
P )⋆ − z⋆(

d

dt
u)⋆ = a⋆(δPr − z⋆δur),

(
d

dt
P )⋆ + z⋆(

d

dt
u)⋆ = −a⋆(δPl + z⋆δul).

In writing these equations, we have proceeded with the substitution of the partial derivatives in
an upwind manner, that it is, by replacing the partial derivatives in the first (second) equation
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with slopes variables associated to the right (left) state. Now, to take into account a possible
initial weak discontinuity (Φl 6= Φr with ‖Φl −Φr‖ ≪ 1) we rewrite the previous system as

(
d

dt
P )⋆ − zr(

d

dt
u)⋆ = ar(δPr − zrδur), (3.48a)

(
d

dt
P )⋆ + zl(

d

dt
u)⋆ = −al(δPl + zlδul). (3.48b)

Finally, it turns out that the time derivatives for pressure and velocity at the contact discon-
tinuity satisfy a 2 × 2 linear system characterized by a positive determinant. Thus, it always
admits a unique solution which writes

(
d

dt
P )⋆ =

ar(δPr − zrδur)zl − al(δPl + zlδul)zr
zl + zr

, (3.49a)

(
d

dt
u)⋆ = −al(δPl + zlδul) + ar(δPr − zrδur)

zl + zr
, (3.49b)

Let us note that no supplementary information concerning the equation of state is needed for
the time derivatives computation, therefore this methodology can also apply to fluids charac-
terized by tabulated equation of state supplying the sound speed. Now, we are in position
to give a summary of the acoustic GRP method applied to the one-dimensional Lagrangian
hydrodynamics.

3.1.9 Summary of the one-dimensional GRP acoustic methodology

The algorithm to construct a high-order discretization of the one-dimensional gas dynamics
equations using the GRP methodology in its acoustic version proceeds through the following
steps

Step 0. Construct a piecewise linear representation of the velocity field and the pressure at
time tn over the cell Ωn

i

uni (x) = uni + δuni (x− xni ), Pn
i (x) = Pn

i + δPn
i (x− xni ).

This piecewise linear reconstruction can be computed using a least squares procedure
[103]. The advantage of such a procedure is that linear fields are preserved, even for
irregular mesh. Note that a classical limitation procedure has to be applied to the slopes
in order to achieve a monotonic piecewise linear reconstruction, for instance refer to [21].

Step 1. Given the piecewise linear pressure and velocity at time tn over the cell ωn
i , we solve

the Riemann problem for (3.2) at each grid point xn
i+ 1

2

to define the Riemann solution

un
i+ 1

2

=
zni u

n
i (x

n
i+ 1

2

) + zni+1u
n
i+1(x

n
i+ 1

2

)

zni + zni+1

−
Pn
i+1(x

n
i+ 1

2

)− Pn
i (x

n
i+ 1

2

)

zni + zni+1

,

Pn
i+ 1

2

=
zni P

n
i+1(x

n
i+ 1

2

) + zni+1P
n
i (x

n
i+ 1

2

)

zni + zni+1

− zni z
n
i+1

zni + zni+1

[uni+1(x
n
i+ 1

2

)− uni (x
n
i+ 1

2

)].

Here, we have written the solution corresponding to the approximate acoustic Riemann
solver.
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Step 2. Determine the time derivatives (dudt )
n
i+ 1

2

and (dPdt )
n
i+ 1

2

using (3.49) where the left (resp.

right) state corresponds to the cell ωn
i (resp. ωn

i+1). The midpoint numerical fluxes are
computed according to the Taylor expansion

u
n+ 1

2

i+ 1

2

= un
i+ 1

2

+
∆t

2
(
d

dt
u)n

i+ 1

2

,

P
n+ 1

2

i+ 1

2

= Pn
i+ 1

2

+
∆t

2
(
d

dt
P )n

i+ 1

2

.

Step 3. Evaluate the new cell averages ( 1
ρn+1
i

, un+1
i , En+1

i ) using the updating formulas

mi(
1

ρn+1
i

− 1

ρni
)−∆t(u

n+ 1

2

i+ 1

2

− u
n+ 1

2

i− 1

2

) = 0,

mi(u
n+1
i − uni ) + ∆t(P

n+ 1

2

i+ 1

2

− P
n+ 1

2

i− 1

2

) = 0,

mi(E
n+1
i − En

i ) + ∆t[(Pu)
n+ 1

2

i+ 1

2

− (Pu)
n+ 1

2

i− 1

2

] = 0,

and advance the grid by means of the discrete trajectory equation

xn+1
i+ 1

2

= xn
i+ 1

2

+∆tu
n+ 1

2

i+ 1

2

.

We note that the above algorithm is slightly different from the one proposed in [21] in the
sense that we are computing the slopes using a least squares procedure (Step 0), whereas in the
original approach the slopes are updated using the time derivatives (dudt )

n
i+ 1

2

and (dPdt )
n
i+ 1

2

. This

modification does not matter since high-order accuracy is still achieved. It has been done here
in the perspective of the two-dimensional extension.

3.2 High-order discretization for two-dimensional Lagrangian

hydrodynamics in Cartesian geometry

The goal of this section is to derive a general formalism that relies on the use of a sub-cell force-
based discretization. We aim at constructing a family of conservative cell-centered schemes
for two-dimensional Lagrangian hydrodynamics on general unstructured grids that satisfies the
GCL and an entropy inequality. This formalism is based on the following crucial arguments.

• GCL compatibility requirement: the volume flux is expressed as a function of the
vertex velocity by computing the time rate of change of the volume of a polygonal cell.

• Sub-cell force discretization: in each cell, momentum flux is written as the summation
of the sub-cell forces that are acting at each vertex of the cell. We note that the sub-cell
force concept has been firstly introduced in staggered discretization [35] to derive compat-
ible conservative staggered schemes. In the present work, the sub-cell force corresponds
to the integral of the pressure gradient over a sub-cell, knowing that a sub-cell is the
quadrilateral obtained by joining the cell center, a particular vertex and the midpoints of
the two edges impinging at this vertex. The total energy flux is simply deduced from the
momentum flux by dot-multiplying sub-cell force by its corresponding vertex velocity.
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• Thermodynamic consistency: to achieve the discretization, it remains to construct
an approximation of the sub-cell force and to compute the vertex velocity. The former
task is completed by deriving an expression of the sub-cell force that is consistent with
thermodynamics. Namely, after computing the time rate of change of entropy within a
cell using the semi-discrete gas dynamics equations, we deduce a general way of writing
the sub-cell force so that a cell entropy inequality is satisfied. In this manner, the sub-
cell force writes as a pressure contribution plus a tensorial viscous contribution, which
is proportional to the difference between the cell-centered and the vertex velocities. To
satisfy the second law of thermodynamics, the local 2 × 2 sub-cell tensor involved in
the viscous part of the sub-cell force must be positive semi-definite. This tensor is the
cornerstone of the scheme. Some particular expressions of this tensor are given, they allow
to recover known schemes such as those described in [49] and [108], and to make the link
with a node-centered approximate Riemann solver.

• Conservation principle: the vertex velocity is computed by invoking the global conser-
vation of the total energy. This last statement amounts to write that the summation of
the sub-cell forces over the sub-cells surrounding a vertex is equal to zero. This balance
equation also ensures the momentum conservation and leads to a node-centered solver
that uniquely determines the nodal velocity.

The high-order extension of this family of cell-centered schemes is achieved using a one-step
time discretization, wherein the fluxes are computed by means of a Taylor expansion. The time
derivatives of the fluxes are obtained through the use of a node-centered solver [105, 106] which
can be viewed as a two-dimensional extension of the Generalized Riemann Problem (GRP)
methodology introduced by Ben-Artzi and Falcovitz [21].

3.2.1 Governing equations

Let D be an open set of R2, filled with an inviscid fluid and equipped with the orthonormal
frame (0, x, y) and the orthonormal basis (ex, ey) which is naturally completed by the unit vector
ez = ex × ey. We are interested in discretizing the integral updated Lagrangian formulation
of the gas dynamics equations, refer to (2.100) page 36. This formulation, which consists in
following a control volume moving with fluid velocity, writes as

d

dt

∫

ω(t)
ρ dv = 0, (3.50a)

d

dt

∫

ω(t)
dv −

∫

∂ω(t)
U · n ds = 0, (3.50b)

d

dt

∫

ω(t)
ρU dv +

∫

∂ω(t)
Pn ds = 0, (3.50c)

d

dt

∫

ω(t)
ρE dv +

∫

∂ω(t)
PU · n ds = 0. (3.50d)

Here, ω(t) denotes the moving control volume and n is the unit outward normal to the boundary
surface ∂ω(t). The variables ρ, U , P and E denote respectively the density, velocity, pressure
and specific total energy of the fluid. Let us recall that equations (3.50a)-(3.50d) express the
conservation of mass, volume, momentum and total energy. The second equation expresses the
time rate of change of the volume of the fluid and is often named Geometric Conservation Law
(GCL). It is strongly linked to the trajectory equation

d

dt
x = U(x(t), t), x(0) =X, (3.51)
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Figure 3.3: Notation for a polygonal cell.

where x = x(t) is the position vector of a material point at time t > 0, which was initially
located at X.

The thermodynamic closure of the set of the above system is obtained by means of the
equation of state (EOS) P = P (ρ, ε), where ε = E − 1

2 | U |2 denotes the specific internal
energy.

3.2.2 Compatible cell-centered discretization

We discretize the previous set of equations over a partition of the domain D into polygonal
cells. Let us introduce the notation and the assumptions that are necessary to develop our
cell-centered discretization.

Notation and assumptions

Each polygonal cell is assigned a unique index c and is denoted by ωc(t). A generic point (vertex)
is labelled by the index p, its corresponding position vector is xp. For a cell c, we introduce
the set P(c) which is the counterclockwise ordered list of points of cell c. Conversely, for a
given point p, we introduce the set C(p) containing the cells that surround point p. Being given
p ∈ P(c), p− and p+ are the previous and next points with respect to p in the counterclockwise
ordered list of vertices of cell c. The length and the unit outward normal related to the edge
[p, p+] are lpp+ and npp+ , refer to Figure 3.3. The control volume formulation (3.50) applied to
the polygonal cell ωc(t) leads to

mc
d

dt
(
1

ρc
)−

∫

∂ωc(t)
U · n ds = 0, (3.52a)

mc
d

dt
Uc +

∫

∂ωc(t)
Pn ds = 0, (3.52b)

mc
d

dt
Ec +

∫

∂ωc(t)
PU · n ds = 0. (3.52c)

Here, ∂ωc(t) is the boundary of the cell ωc(t) and mc denotes the mass of the polygonal cell,
which is constant according to (3.50a). For a flow variable φ, we define its mass averaged value
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over the cell ωc(t) as

φc =
1

mc

∫

ωc(t)
ρφ dv.

We notice that the first equation corresponds to the GCL since mc = ρcvc where vc is the
volume of cell c. We have obtained a set of semi-discrete evolution equations for the primary
variables ( 1

ρc
,Uc, Ec). The thermodynamic closure is given by the EOS, Pc = P (ρc, εc) where

ǫc = Ec − 1
2 | Uc |2. The motion of the grid is ruled by the semi-discrete trajectory equation

written at each point

d

dt
xp = Up(xp(t), t), xp(0) =Xp. (3.53)

To proceed with the space discretization, it remains not only to compute the numerical fluxes
related to volume, momentum and total energy but also to determine the nodal velocity to
compute the grid motion.

Geometric Conservation Law compatibility

Here, the expression GCL compatibility means that we are deriving a discrete divergence oper-
ator for the volume equation (3.50b) by requiring consistency of the divergence of the velocity
field with the time rate of change of volume of a cell [112]. Noticing that mc = ρcvc, Eq. (3.52a)
rewrites

d

dt
vc =

∫

∂ωc(t)
U · n ds. (3.54)

This equations states that the time rate of change of the cell volume vc must be equal to the
volume swept by the element boundary during its displacement with the fluid velocity. Assuming
that the volume vc(t) in the left-hand side can be computed exactly, this amounts to require
the exact computation of the volume flux in the right-hand side also. In this manner, we obtain
a compatible discretization of the volume flux. Using the triangulation displayed in Figure 3.4,
the polygonal cell volume writes

vc(t) =
1

2

∑

p∈P(c)

[
xp(t)× xp+(t)

]
· ez. (3.55)

We remark that the volume is expressed as a function of the position vectors of the vertices.
Using the chain rule derivative, time differentiation of Eq. (3.55) yields

d

dt
vc =

∑

p∈P(c)

∇xpvc ·
d

dt
xp,

where ∇xpvc is the gradient of the cell volume, vc with respect to the position vector xp. This
gradient is computed directly through the use of (3.55)

∇xpvc =
1

2
∇xp

[
(xp+ − xp−)× ez · xp

]

=
1

2
(xp+ − xp−)× ez.

We define the normal vector at corner pc by setting

lpcnpc = ∇xpvc =
1

2
(xp+ − xp−)× ez, (3.56)
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Figure 3.4: Triangulation of the polygonal cell ωc.

where the length, lpc, is determined knowing that n2
pc = 1. We notice that this corner vector

can be expressed in terms of the two outward normals impinging at node p as

lpcnpc =
1

2
(lp−pnp−p + lpp+npp+). (3.57)

It turns out that the corner vector lpcnpc is the fundamental geometric object that allows to
define uniquely the time rate of change of cell volume as

d

dt
vc =

∑

p∈P(c)

lpcnpc ·Up. (3.58)

Here, we have used the trajectory equation (3.53), i.e., d
dtxp = Up. Let us point out that the

corner vector lpcnpc satisfies the fundamental geometrical identity

∑

p∈P(c)

lpcnpc = 0. (3.59)

This equation states that the summation of the outward normals to a closed polygonal contour
is equal to zero. This result is nothing but the discrete form of the Piola identity, refer to (2.123)
page 43. This also implies that the volume of a polygonal cell moving in a uniform flow does
not change. We claim that with this purely geometric derivation we have completely defined
the volume flux. Moreover, this definition is by construction compatible with mesh motion. We
also remark that this result can be used to derive the discrete divergence operator, (∇ · U)c
over cell c. Knowing that by definition

(∇ ·U)c =
1

vc

∫

∂ωc(t)
U · n ds,

combining (3.54) and (3.58) we get

(∇ ·U)c =
1

vc

d

dt
vc =

1

vc

∑

p∈P(c)

lpcnpc ·Up.

Let us remark that property (3.59) shows that the null space of the discrete divergence op-
erator is spanned by the set of constant vectors. We recover the compatible discretization of
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Figure 3.5: Sub-cell ωpc related to polygonal cell ωc and point p.

the divergence operator currently used in the derivation of the compatible Lagrangian hydro-
dynamics scheme [31, 165, 35]. This kind of formalism was used in staggered and cell-centered
(Free-Lagrange) discretizations long time ago [112, 149]. We also note that the fundamental
role played by the corner vector has been recently rediscovered in [38].

Sub-cell force-based discretization

It remains to discretize momentum and total energy equations. To this end, we adapt to cell-
centered discretization the fundamental concept of sub-cell force initially introduced in [35] in
the context of staggered discretization. Before we proceed any further, let us introduce some
supplementary notation. Being given a polygonal cell, ωc, for each vertex p ∈ P(c), we define
the sub-cell ωpc by connecting the centroid of ωc to the midpoints of edges [p−, p] and [p, p+]
impinging at node p, refer to Figure 3.5. In two dimensions the sub-cell, as just defined, is
always a quadrilateral regardless of the type of cells that compose the underlying grid. Let us
point out that the set of the sub-cells of a given cell consists of a partition of this cell, i.e.,
ωc = ∪p∈P(c)ωpc. Using the sub-cell definition, cell ωc and its boundary ∂ωc can be decomposed
as

ωc =
⋃

p∈P(c)

ωpc, ∂ωc =
⋃

p∈P(c)

∂ωpc ∩ ∂ωc. (3.60)

This decomposition allows to rewrite the momentum flux as a summation of contributions
coming from each sub-cell boundary

∫

∂ωc

Pn ds =
∑

p∈P(c)

∫

∂ωpc∩∂ωc

Pn ds.

Thus, we define the sub-cell force related to cell c and point p as

Fpc =

∫

∂ωpc∩∂ωc

Pn ds. (3.61)

This definition enables us to rewrite momentum equation (3.52b) as

mc
d

dt
Uc +

∑

p∈P(c)

Fpc = 0,
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which is the Newton law applied to a particle of mass mc moving with velocity Uc. We also use
the sub-cell-based decomposition to write the total energy flux

∫

∂ωc

PU · n ds =
∑

p∈P(c)

∫

∂ωpc∩∂ωc

PU · n ds.

ωpc contribution to the total energy flux is expressed in terms of sub-cell force Fcp using the
approximation

∫

∂ωpc∩∂ωc

PU · n ds =

(∫

∂ωpc∩∂ωc

Pn ds

)
·Up

= Fpc ·Up.

Using the above notation, total energy equation (3.52c) rewrites

mc
d

dt
Ec +

∑

p∈P(c)

Fpc ·Up = 0.

This leads to the mechanical interpretation that the time variation of total energy results from
the summation over the sub-cell of the rate of work done by sub-cell force Fpc. Gathering the
previous results, system (3.52) transforms into

mc
d

dt
(
1

ρc
)−

∑

p∈P(c)

lpcnpc ·Up = 0, (3.62a)

mc
d

dt
Uc +

∑

p∈P(c)

Fpc = 0, (3.62b)

mc
d

dt
Ec +

∑

p∈P(c)

Fpc ·Up = 0. (3.62c)

The cell-centered discrete unknowns ( 1
ρc
,Uc, Ec) satisfy a system of semi-discrete evolution

equations wherein the numerical fluxes are expressed as functions of the nodal velocity, Up,
and the sub-cell force Fpc. Let us recall that thermodynamic closure is given by the EOS,
Pc = P (ρc, εc) where ǫc = Ec − 1

2 | Uc |2 and grid motion is governed by the semi-discrete
trajectory equation (3.53). To complete the discretization, it remains to compute the nodal
velocity and construct an approximation of the sub-cell force. These tasks will be achieved
by investigating the properties of the scheme regarding its thermodynamic consistency and its
conservation for momentum and total energy.

Thermodynamic consistency

We derive a general form of the sub-cell force requiring that the semi-discrete scheme (3.62)
satisfies a semi-discrete entropy inequality within cell ωc. This semi-discrete entropy inequality
by mimicing its continuous counterpart, will ensure that kinetic energy will be dissipated into
internal energy through shock waves. Thanks to Gibbs formula, the time rate of change of
entropy within cell c writes

mcTc
d

dt
ηc =mc

[
d

dt
εc + Pc

d

dt

(
1

ρc

)]

=mc

[
d

dt
Ec −Uc ·

d

dt
Uc + Pc

d

dt

(
1

ρc

)]
.
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where ηc is the specific entropy and Tc the temperature in cell c. By substituting (3.62a) and
dot-multiplying (3.62b) by Uc we get

mcTc
d

dt
ηc = −

∑

p∈P(c)

[Fpc · (Up −Uc)− lpcPcnpc ·Up] .

Recalling that the corner vector lpcnpc satisfies the geometrical identity (3.59), the time rate of
change of entropy has the final form

mcTc
d

dt
ηc = −

∑

p∈P(c)

[(Fpc − lpcPcnpc) · (Up −Uc)] . (3.63)

Assuming that Tc > 0, to satisfy the second law of thermodynamics the right-hand side of
Eq. (3.63) must be non-negative. A sufficient condition to obtain this consists in defining the
sub-cell force as

Fpc = lpcPcnpc −Mpc(Up −Uc), (3.64)

where Mpc is a 2 × 2 positive semi-definite matrix, i.e., MpcU · U ≥ 0, ∀U ∈ R
2. The

sub-cell-based matrix, Mpc, has the dimension of a length times a density times a velocity, i.e.,
[Mpc] = L ρ U . Moreover, its definition must be compatible with the principle of material frame-
indifference [24], namely it should not depend on the frame of reference used to describe it. In a
nutshell, Mpc must be invariant by uniform translation and must transform as M⋄

pc = RMpcRt

for any rigid rotation R. From now on, we suppose that the latter assumptions hold.
Substituting (3.64) into (3.63) leads to the entropy inequality

mcTc
d

dt
ηc =

∑

p∈P(c)

Mpc (Up −Uc) · (Up −Uc) ≥ 0, (3.65)

Let us remark that entropy production within cell c is directly governed by the sub-cell matrix
Mpc and the velocity jump between the nodal and the cell-centered velocity, ∆Upc = Up −Uc.

Conservation principles

We achieve the determination of the sub-cell force by invoking the conservation principles of
total energy and momentum. Knowing that the total energy over the whole grid is defined as

E(t) =
∑

c

mcEc(t), the conservation principle of total energy amounts to write

d

dt
E = −

∫

∂D
PU · n ds,

where the right-hand side expresses the rate of pressure work on the boundary, ∂D, of the
domain, D, occupied by the fluid. By definition of total energy, this last equation rewrites

∑

c

mc
d

dt
Ec = −

∫

∂D
PU · n ds. (3.66)

Before we proceed any further, let us discretize the right-hand side. To this end, let us introduce
some specific notation, assuming that the boundary is a closed contour. Let p be a node located
on the boundary ∂D, we denote by p− and p+ the previous and next points on the boundary
with respect to p in the counterclockwise ordered list of points located on ∂D. The curvilinear
boundary ∂D is discretized using the decomposition ∂D = ∪p∂Dp. Here, ∂Dp = [i−, p]∪ [p, i+],
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where i± is the midpoint of the segment [p±, p]. Using this decomposition, the boundary term
contribution is discretized as

∫

∂D
PU · n ds =

∑

p∈∂D

∫

∂Dp

PU · n ds

=
∑

p∈∂D

(∫

∂Dp

Pn ds

)
·Up.

The term between parentheses in the right-hand side of the second line represents a corner force
that acts from the exterior boundary onto boundary points. Then, it is natural to set

F ⋆
p =

∫

∂Dp

Pn ds, (3.67)

where F ⋆
p is the boundary corner force acting onto point p. Using the previous and substituting

the specific total energy equation (3.62c) into (3.66) yields

∑

c

∑

p∈P(c)

Fpc ·Up =
∑

p∈∂D

F ⋆
p ·Up.

This equation represents the balance of total energy over the entire domain. Now, interchanging
order of double sum in the left-hand side leads to

∑

p


 ∑

c∈C(p)

Fpc


 ·Up =

∑

p∈∂D

F ⋆
p ·Up,

where C(p) is the set of cells surrounding point p. Finally, left-hand side of the above equation
is divided into two parts depending on the points location

∑

p∈Do


 ∑

c∈C(p)

Fpc


 ·Up +

∑

p∈∂D


 ∑

c∈C(p)

Fpc


 ·Up =

∑

p∈∂D

F ⋆
p ·Up, (3.68)

where Do is the interior of the domain D. Knowing that the total energy balance (3.68)
must hold regardless the value of the nodal velocity, total energy conservation is

ensured if and only if

∀ p ∈ Do,
∑

c∈C(p)

Fpc = 0, (3.69a)

∀ p ∈ ∂D,
∑

c∈C(p)

Fpc = F
⋆
p . (3.69b)

It remains to check that these conditions also lead to momentum conservation. Let Q denotes
the total momentum over the entire domain, i.e., Q =

∑

c

mcUc. We compute its time rate of
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change as follows

d

dt
Q =

∑

c

mc
d

dt
Uc

=−
∑

c

∑

p∈P(c)

Fpc, thanks to (3.62b)

=−
∑

p∈Do

∑

c∈C(p)

Fpc −
∑

p∈∂D

∑

c∈C(p)

Fpc, by interchanging the double sum

=−
∑

p∈∂D

F ⋆
p , thanks to (3.69)

=−
∑

p∈∂D

∫

∂Dp

Pn ds, thanks to (3.67).

We conclude that up to the boundary terms contribution, momentum is conserved over the
entire domain. Hence, conditions (3.69a) and (3.69b) turn out to ensure not only total energy
but also momentum conservation. Moreover, as we shall show it in next section, they also
provide a vectorial equation that enables us to determine the nodal velocity.

Comment 10 The fundamental equation (3.68) can be interpreted as discrete variational for-
mulation wherein the point velocity Up is a test function. It can also be viewed as a principal
of virtual work.

3.2.3 Node-centered solver for the grid velocity

Remembering that the general sub-cell force form reads Fpc = lpcPcnpc −Mpc(Up −Uc), where
Mpc is a 2× 2 positive semi-definite matrix, and using the conservation condition (3.69), we are
now in position to write the 2× 2 system that determines the nodal velocity Up.

Abstract formulation

In the general case this system writes

∀ p ∈ Do, MpUp =
∑

c∈C(p)

(lpcPcnpc +MpcUc) , (3.70a)

∀ p ∈ ∂D, MpUp =
∑

c∈C(p)

(lpcPcnpc +MpcUc)− F ⋆
p , (3.70b)

where Mp denotes the 2× 2 node-centered matrix defined as

Mp =
∑

c∈C(p)

Mpc. (3.71)

We emphasize that we have divided the nodal velocity determination into two cases depending
on the node location. As Mpc is positive semi-definite, Mp also shares the same property. To
enforce the solvability of Eq. (3.70a) and Eq. (3.70b), we assume that the matrix Mpc is positive
definite. This ensures that Mp matrix is invertible. Therefore, provided that the Mpc matrix
is defined, the nodal velocity, Up is uniquely determined by inverting equations (3.70a) and
(3.70b). We recall that Mpc has the physical dimension of a length times a density times a
velocity. If Mpc does not depend on the nodal velocity, hence (3.70a) and (3.70b) are linear
equations and their resolutions can be easily obtained. Conversely, if Mpc depends explicitly on
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p

ωp =
⋃
c∈C(p)ωpc

Figure 3.6: Fragment of a polygonal grid in the vicinity of an interior point p. The boundary,
∂ωp, of the dual cell, ωp, is displayed using red dashed line.

the nodal velocity, one has to solve non-linear equations by using an iterative method such as
fixed point algorithm. In this latter case, the invariance by translation requirement necessitates
that Mpc is expressed as instance as a function of the difference between the cell and the nodal
velocity, i.e., Mpc ≡ Mpc(Up − Uc). We shall see in the next paragraphs two expressions for
Mpc that are based on the use of approximate Riemann problems. Before discussing, boundary
conditions implementation, let us a give an interpretation of the two terms that determine the
nodal velocity. For a given interior node, assuming that Mpc does not depend on the nodal
velocity, from (3.70a) it follows that the nodal velocity writes

Up = M−1
p


 ∑

c∈C(p)

lpcPcnpc +
∑

c∈C(p)

MpcUc


 .

The second term between brackets in the right-hand side is simply a weighted interpolation
of cell velocities at point p, whereas the first corresponds to a discretization of the pressure
gradient at point p. This interpretation is easy to obtain by computing the pressure gradient
integral over the union of sub-cells that share point p. To this end, we define the dual cell ωp

and its boundary ∂ωp as

ωp =
⋃

c∈C(p)

ωpc, ∂ωp =
⋃

c∈C(p)

∂ωpc ∩ ωo
c , (3.72)

where ωo
c denotes the interior of cell c, refer to Figure 3.6. Accordingly, the mean pressure

gradient at point p is defined by

(∇P )p =
1

vp

∫

∂ωp

Pn ds, (3.73)

where vp is the volume of the dual cell ωp. Using the sub-cell decomposition, (3.73) rewrites

(∇P )p =
1

vp

∑

c∈C(p)

∫

∂ωpc∩ωo
c

Pn ds

=− 1

vp

∑

c∈C(p)

lpcPcnpc.
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Figure 3.7: Fragment of a polygonal grid in the vicinity of point p located on the boundary ∂D.

Here, we have used the fact that the boundary of the sub-cell ωpc is a closed polygonal contour,
thus the outward unit normals to ∂ωpc ∩ ωo

c sum to −lpcnpc. Using the mean pressure gradient
at node p, the nodal velocity rewrites as

Up =
∑

c∈C(p)

M−1
p MpcUc − vpM

−1
p (∇P )p .

This formula can be viewed as a two-dimensional generalization of the point velocity obtained
using an acoustic Riemann solver, refer to Eq. (3.28a) page 67.

Boundary conditions implementation

We conclude this section by describing the boundary conditions implementation. In Lagrangian
formalism, this task is quite simple as we have to consider only two types of boundary conditions,
refer to (2.102) page 36. Namely, on the boundary of the domain, ∂D, either the pressure
or the normal component of the velocity is prescribed. We present a boundary conditions
implementation which is fully compatible with the node-centered solver previously developed.
To this end, let us consider a generic point p located on the boundary, we denote p− and p+ its
previous and next neighbor with respect to p in the counterclockwise ordered list of boundary
points. Without loss of generality we make the assumption that ∂D is a closed contour. The
two outward normals to the edges located on the boundary impinging on point p are l−p n

−
p and

l+p n
+
p , where l

±
p is equal to the half of the length of the segment [p, p±], refer to Figure 3.7.

These outward normals are linked to the corner vectors lpcnpc as follows
∑

c∈C(p)

lpcnpc = l−p n
−
p + l+p n

+
p . (3.74)

Once more, this follows from the fact that the dual cell contour is closed (red dashed line in
Figure 3.7). Now, let us distinguish between the two following cases.

• Prescribed pressure: the boundary corner force acting onto point p defining by (3.67)
writes

F ⋆
p = l−p Π

−,⋆
p n−

p + l+p Π
+,⋆
p n+

p ,

where Π±,⋆
p are the prescribed pressures on both sides of point p. Substituting this ex-

pression of the boundary corner force into (3.70b) leads to

MpUp =
∑

c∈C(p)

(lpcPcnpc +MpcUc)−
(
l−p Π

−,⋆
p n−

p + l+p Π
+,⋆
p n+

p

)
. (3.75)
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Due to (3.74), we note that this formula preserves uniform fluid flows. Namely, if (Pc,Uc) =
(P 0,U0), ∀ c, then Up = U

0.

• Prescribed normal velocity: let V±,∗
p denotes the prescribed normal velocity on both

sides of point p. If the two outward normals n−
p and n+

p are not colinear, then Up is
defined as the unique solution of the 2× 2 linear system

Up · n−
p =V−,∗

p

Up · n+
p =V+,∗

p .

On the other hand, Up satisfies (3.70b) written as

MpUp =
∑

c∈C(p)

(lpcPcnpc +MpcUc)− (
∑

c∈C(p)

lpcnpc)Π
⋆
p,

where Π⋆
p stands for an averaged pressure acting onto point p. This pressure is an auxiliary

unknown, for which we can write the supplementary equation

(
l−p n

−
p + l+p n

+
p

)
·Up = l−p V−,∗

p + l+p V+,∗
p .

Note that this equation follows from the prescribed velocity boundary condition. Com-
bining the above results, we write the 3 × 3 system satisfied by the nodal velocity, Up,
and the auxiliary unknown, Π⋆

p

MpUp + (
∑

c∈C(p)

lpcnpc)Π
⋆
p =

∑

c∈C(p)

(lpcPcnpc +MpcUc) , (3.76a)

(
∑

c∈C(p)

lpcnpc) ·Up = l−p V−,∗
p + l+p V+,∗

p . (3.76b)

The 3× 3 matrix associated to the above system writes under block forms as

Ap =




Mp

∑

c∈C(p)

lpcnpc

∑

c∈C(p)

lpcnpc 0


 .

Recalling that Mp is positive definite, we deduce that Ap is also positive definite. Thus,
system (3.76) always admits a unique solution.

At this point, we can conclude that the sub-cell force formalism provides a general framework
allowing to construct compatible cell-centered schemes satisfying an entropy inequality and the
mechanical conservation principles. The numerical fluxes and the nodal velocity are computed
in a compatible manner by means of a node-centered solver which permits to consistently derive
boundary conditions. The key point in designing these schemes lies in the definition of the corner
matrix Mpc. We shall investigate this latter point in the two next paragraphs, by presenting
two examples of such a construction and making the link with approximate Riemann solvers.

First example: GLACE scheme

This first example consists of a cell-centered scheme, introduced by Després and Mazeran in [49]
and named GLACE in [38]. The acronym GLACE is shorthand for Godunov-type LAgrangian
scheme Conservative for total Energy. This scheme can be rewritten by means of the sub-cell
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force-based approach by introducing one nodal pressure, Πpc, at each corner pc. This amounts
to introduce the sub-cell force

F GLACE

pc = lpcΠpcnpc. (3.77)

The corner pressure Πpc is expressed in terms of the cell pressure and the velocity jump between
cell and node velocity, through the use of the following Riemann invariant written along the
corner normal direction npc

Πpc − Pc = zc(Up −Uc) · npc, (3.78)

where zc = ρcac is the acoustic impedance. Combining (3.77) and (3.78), we obtain the expres-
sion of the sub-cell force associated to GLACE scheme

F GLACE

pc = lpcPcnpc − zclpc(npc ⊗ npc)(Up −Uc). (3.79)

Comparing the above expression and the generic form of the sub-cell force (3.64), we deduce
that the corner matrix corresponding to GLACE scheme is given by

MGLACE

pc = zclpc(npc ⊗ npc). (3.80)

We note that MGLACE

pc is proportional to the orthogonal projection onto direction npc. It is easy
to check that this 2 × 2 matrix is symmetric positive but only semi-definite as its kernel is
spanned by n⊥

pc, where n
⊥
pc denotes the unit vector directly orthogonal to npc. From (3.65) it

follows that the entropy production associated to this scheme writes

mcTc
d

dt
ηGLACE

c =
∑

p∈P(c)

MGLACE

pc (Up −Uc) · (Up −Uc).

We point out that sub-cell entropy production can go to zero for flows wherein (Up−Uc) ⊥ npc.
This fact probably explains why GLACE scheme exhibits, for certain flows, severe numerical
instabilities such as hourglass modes, refer to [38, 136]. Moreover, the fact that MGLACE

pc is only
semi-definite can lead to singularities in the boundary conditions implementation, which are
solved by an ad hoc treatment [38].

Finally, we assess the ability of GLACE scheme to recover the one-dimensional acoustic
solver in the case of a one-dimensional flow aligned for instance with the x direction of a
Cartesian grid. Let ∆x and ∆y denote the mesh spacing along x and y directions. Without loss
of generality, we compute the nodal velocity of the point located at the origin, assuming that the
initial flow is characterized by the state (ρl, ul, Pl) on the left side of the interface defined by the
y axis, and the state (ρr, ur, Pr) on its right side, where ul and ur denote the x components of
the velocity flow on both sides, refer to Figure 3.8. The four quadrangular cells surrouding the
origin are labelled from 1 to 4. The four corner unit normals related to the origin are denoted
ni, i = 1 . . . 4 and given by

n1 =
1√

∆x2 +∆y2

(
∆y

∆x

)
, n2 =

1√
∆x2 +∆y2

(−∆y

∆x

)
,

n3 =
1√

∆x2 +∆y2

(−∆y

−∆x

)
, n4 =

1√
∆x2 +∆y2

(
∆y

−∆x

)
.

Their corresponding lengths are li =
√

∆x2 +∆y2, i = 1 . . . 4. Remembering that the corner
matrices are given by MGLACE

i = zili(ni ⊗ ni), i = 1 . . . 4, where z1 = z4 = zl and z2 = z3 = zr,
we compute the velocity of the origin, UGLACE

O , as the solution of the linear system

MGLACE

O UO =
4∑

i=1

liPini +MGLACE

i Ui,

88



x

y

∆x
2

∆y
2

1 2

34

n3

n2

(ρl, ul, Pl) (ρr, ur, Pr)

(ρl, ul, Pl) (ρr, ur, Pr)

O

n4

n1

Figure 3.8: Notation for the nodal solver associated to the GLACE scheme on a quadrangular
grid. The unit normals n1 to n4 correspond to the four corner normals related to the origin.

where MGLACE

O =
∑4

i=1M
GLACE

i , P1 = P4 = Pl, P2 = P3 = Pr, U1 = U4 = ulex and U2 = U3 =
urex. With these data, a straightforward computation shows that the nodal velocity of the
origin is aligned with the x axis and its x component is given by

UGLACE

O =

(
zlul + zrur
zl + zr

−
√
∆x2 +∆y2

∆y

Pr − Pl

zl + zr

)
ex.

Let us emphasize that we do not recover exactly the one-dimensional acoustic solver. The

discrepancy with the usual formula lies in the geometric factor

√
∆x2+∆y2

∆y . This factor, which
has no physical dimension, can become singular in the case of a mesh characterized by a high-
aspect ratio, i.e., when ∆y ≪ ∆x. Let us point out that this situation occurs frequently
for Lagrangian hydrodynamics numerical simulations wherein high aspect ratio grids are used.
This is typically the case for computations devoted to the numerical simulation of Inertial
Confinement Fusion.

Second example: EUCCLHYD scheme

The second example consists of a cell-centered Lagrangian scheme, which has been initially
presented in [108] and revisited in [105, 111]. This scheme is called EUCCLHYD which stands
for Explicit Unstructured Cell-Centered Lagrangian HYDdrodynamics. It aims at correcting
the flaws associated to GLACE scheme, particularly the one related to the high aspect ratio
dependency. The EUCCLHYD scheme differs from the GLACE scheme in the sense that two
nodal pressures denoted by Π−

pc and Π+
pc are introduced per corner pc. For each corner, we also

define the half-edge outward normals l−pcn
−
pc and l+pcn

+
pc, where n

−
pc and n+

pc are unit outward
normals to edges [p−, p], [p, p+] and l±pc is equal to the half of the length of the corresponding
edges, refer to Figure 3.9. A simple geometric argument shows that

lpcnpc = l−pcn
−
pc + l+pcn

+
pc.
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Figure 3.9: Notation related to EUCCLHYD scheme at corner pc for a polygonal cell.

With these notations, sub-cell force writes

F EUCCL

pc = l−pcΠ
−
pcn

−
pc + l+pcΠ

+
pcn

+
pc. (3.81)

The two nodal pressures are expressed as functions of the cell pressure and the jump between
cell and point velocity, by means of the two following Riemann invariants written along each
half-edge normal direction

Π−
pc − Pc = zc(Up −Uc) · n−

pc, (3.82a)

Π+
pc − Pc = zc(Up −Uc) · n+

pc. (3.82b)

Combining (3.81) and (3.82), we obtain the expression of the sub-cell force associated to EUC-
CLHYD scheme

F EUCCL

pc = lpcPcnpc − zc
[
l−pc(n

−
pc ⊗ n−

pc) + l+pc(n
+
pc ⊗ n+

pc)
]
(Up −Uc). (3.83)

From the comparison between this last expression and the generic form of the sub-cell force
(3.64), we deduce that the corner matrix corresponding to EUCCLHYD scheme writes

MEUCCL

pc = zc
[
l−pc(n

−
pc ⊗ n−

pc) + l+pc(n
+
pc ⊗ n+

pc)
]
. (3.84)

We observe that MEUCCL

pc is always symmetric positive definite provided that n−
pc and n+

pc are
not colinear. This situation can exceptionally occur at some corners for degenerate polygonal
cells containing hanging nodes. However, one can show that the MEUCCL

p matrix which follows
from the sum of the MEUCCL

pc is always symmetric positive definite and thus invertible. Moreover,
MEUCCL

pc being positive definite, entropy production is always positive and can go to zero only
for uniform flows. Up to our knowledge, this scheme does not exhibit hourglass instabilities and
thus does not necessitate any hourglass filter.

Now, let us assess the ability of this scheme to recover the one-dimensional acoustic solver
in the case of a one-dimensional flow aligned for instance with the x direction of a Cartesian
grid. To this end, we use exactly the same set up as previously. Some elementary algebra shows
that the velocity of point O is written

UEUCCL

O =

(
zlul + zrur
zl + zr

− Pr − Pl

zl + zr

)
ex.

Contrary to GLACE scheme, EUCCLHYD scheme recovers exactly the one-dimensional acoustic
solver without any dependency to the grid aspect ratio.

We pursue this paragraph devoted to EUCCLHYD scheme by presenting a least squares
interpretation2 of the nodal solver. Let us recall that the nodal velocity, for an interior point,

2We thank Burton Wendroff for having suggested this interpretation.
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Figure 3.10: Fragment of grid: notation related to point p and face f .

is obtained by solving the linear system
∑

c∈C(p)

F EUCCL

cp = 0, where the sub-cell force writes

F EUCCL

pc = (l−pcn
−
pc + l+pcn

+
pc)Pc + zc

[
l−pc(n

−
pc ⊗ n−

pc) + l+pc(n
+
pc ⊗ n+

pc)
]
(Up −Uc).

Here, we have adopted a point of view which is corner-based, i.e., in the equation that determines
the nodal velocity the sum is made over the sub-cells (corners) surrounding point p. Let us
change our viewpoint by summing over the edges that impinge on point p. To this end, we
denote by F(p) the set of faces that are connected to point p, and we use the label f to denote
such a generic face. As the number of cells surrounding point p is equal to the number of faces
connected to it, the above equation transforms into

∑

c∈C(p)

F EUCCL

pc =
∑

f∈F(p)

lf (Pr − Pl)nf − lf [(zl + zr)(Up · nf )− zl(Ul · nf ) + zr(Ur · nf )]nf

=−
∑

f∈F(p)

lf (zl + zr)

[
(Up · nf )−

zl(Ul · nf ) + zr(Ur · nf )− (Pr − Pl)

zl + zr

]
nf .

Here, we have changed the notations using the subscripts r (resp. l) to denote the physical
variables located on the right side (resp. left side) of face f , with respect to the direction of the
unit normal nf , refer to Figure 3.10. By setting

V⋆
f =

zl(Ul · nf ) + zr(Ur · nf )− (Pr − Pl)

zl + zr
,

we recover the normal velocity corresponding to the solution of the one-dimensional acoustic
Riemann problem in the direction of the unit normal nf . Using the above notation, the nodal
velocity is the solution of the linear system

∑

f∈F(p)

lf (zl + zr)
[
(Up · nf )− V⋆

f

]
nf = 0. (3.85)

A straightforward calculation shows that the left-hand side of this equation is nothing but the
gradient of the quadratic functional defined by

I(U) =
1

2

∑

f∈F(p)

lf (zl + zr)
[
(U · nf )− V⋆

f

]2
.
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Therefore, the solution of (3.85) corresponds to the minimum of the functional I, i.e., Up =
argminU∈R2I(U). It turns out that the nodal velocity is obtained from a weighted least squares
procedure. This approach results from the over-determined system obtained by equating the
projection of nodal velocity onto the edge normal with the normal velocity coming from the
1D acoustic Riemann solver. Here, the face-based weight is given by lf (zl + zr). This least
squares interpretation shows that our nodal solver is quite close to the nodal solver developed
in CAVEAT [8, 7], except that the face-based weights differ. In CAVEAT scheme [7], the face-
based weight is designed in a heuristic manner, namely it is equal to the sum of the material
densities on either side of each face. This choice results in a grid velocity which is not compatible
with the Geometric Conservation Law. Finally, we want to mention that it is also possible to
improve the robustness of this nodal solver giving up the acoustic approximation by introducing
the generalized non-linear corner impedances

z±pc = ρc
[
ac + Γc | (Up −Uc) · n±

pc |
]
, (3.86)

recalling that ac is the isentropic sound speed and Γc is a material dependent parameter, which
is given by γ+1

2 in case of a gamma gas law. Note that this formula is the two-dimensional
extension of the swept mass flux proposed by Dukowicz [53] to approximate one-dimensional
Riemann problem, refer to Eq. (3.29) page 67. We also mention that we recover the acoustic
approximation simply by setting Γc = 0 in the above formula. Using this new approximation,
Riemann invariants rewrite

Π±
pc − Pc = z±pc(Up −Uc) · n±

pc.

Hence, the corner matrix is modified as

MEUCCL

pc = z−pcl
−
pc(n

−
pc ⊗ n−

pc) + z+pcl
+
pc(n

+
pc ⊗ n+

pc). (3.87)

The equation that solves the nodal velocity becomes non-linear due to the dependency of the
corner matrix to the nodal velocity. This non-linearity is solved by means of an iterative
algorithm such as fixed point method. In practice, it takes few iterations to converge.

Other possible schemes

In this paragraph, we propose a methodology to define other possible schemes. Here, we assume
that the corner matrix, Mpc, is symmetric positive definite, hence it admits two distinct positive
eigenvalues, λ−pc and λ+pc. Their corresponding eigenvectors are the unit vectors ν−pc and ν+pc,
which form an orthonormal basis. Bearing this in mind, the corner matrix could be defined as
follows

Mpc = ζ−pcλ
−
pc(ν

−
pc ⊗ ν−pc) + ζ+pcλ

+
pc(ν

+
pc ⊗ ν+pc). (3.88)

In writing these equations, we suppose that λ±pc is homogeneous to a length whereas ζ±pc is a
generalized impedance which could be defined as

ζpc = ρc
[
ac+ | (Up −Uc) · ν±pc |

]
.

Finally, it turns out that the determination of a symmetric positive definite corner matrix
amounts to define per corner, two lengths and two orthonormal vectors in a relevant manner.
Here, relevant means that these lengths and orthonormal vectors should be defined as local
functions of the fluid flow.
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3.2.4 High-order extension based on the acoustic GRP method

We aim at deriving the high-order extension of the compatible cell-centered discretization pre-
sented in the previous section. To construct a high-order extension, many methods are available.
The most obvious one, consists in defining a monotonic piecewise linear reconstruction of the
pressure and the velocity by means of a slope limiter. The nodal velocity is computed through
the use of the node-centered solver wherein the input data are defined as the nodal extrapolated
values of the pressure and the velocity. The time discretization is simply based on a two-steps
Runge-Kutta procedure. Such a methodology has been successfully developed in [109, 111].
However, this approach is rather expensive since it needs a two-step integration in time. This
point becomes particularly crucial when coupling the hydrodynamic scheme with more complex
physics. For this reason, we prefer to use a one-step time integrator based on the GRP (Gen-
eralized Riemann problem) method of Ben-Artzi and Falcovitz [19, 20, 18, 21, 22, 89]. This
method consists in solving the higher-order Riemann problem with piecewise linear polynomi-
als, whereby the approximate solution is given as a time power series expansion right at the
interface, thus providing a numerical flux for a high-order Godunov-type method. Here, we
are using the acoustic version of the GRP method. This approximation provides a framework
in which the solution of the GRP is simple to compute and easy to handle. In the case of
one-dimensional Lagrangian hydrodynamics, this method has been completely derived in the
monograph [21]. Note that we have also recalled it for sake of completeness in Sec. 3.1.8 page 71.
In what follows, we present the non-trivial extension of the acoustic GRP methodology to our
two-dimensional Lagrangian scheme.

Second-order time discretization

Let us introduce the time discretization of the semi-discrete system (3.62) page 81. All the
physical and geometric variables are assumed to be known at the beginning of time step tn and
we denote them using the superscript n. Their updated values at time tn+1 = tn +∆t, where
∆t is the current time step, are obtained by means of the following system

mc

(
1

ρn+1
c

− 1

ρnc

)
−
∑

p∈P(c)

∫ tn+1

tn
(lpcnpc)(t) ·Up(t) dt = 0, (3.89a)

mc

(
Un+1

c −Un
c

)
+
∑

p∈P(c)

∫ tn+1

tn
Fpc(t) dt = 0, (3.89b)

mc

(
En+1

c − En
c

)
+
∑

p∈P(c)

∫ tn+1

tn
Fpc(t) ·Up(t) dt = 0. (3.89c)

Here, the sub-cell force Fpc is a time-dependent function which writes

Fpc(t) = (lpcnpc)(t)Pc(t)−Mpc[Up(t)−Uc(t)],

where the corner matrix, Mpc is assumed to be positive definite. As this matrix is generally
expressed in terms of geometric variables such as lengths and unit normal vectors, it also time-
dependent. The motion of the grid is governed by the discrete trajectory equation

xn+1
p = xn

p +

∫ tn+1

tn
Up(t) dt, x0

p =Xp. (3.90)

We want to perform a one-step time integration of the numerical fluxes, which is at least second-
order accurate. To this end, we make use of the following Taylor expansions of the nodal velocity
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and the sub-cell force

∀t ∈ [tn, tn+1],





Up(t) = Up(t
n) + (t− tn)

d

dt
Up(t

n) +O((t− tn)2),

Fpc(t) = Fpc(t
n) + (t− tn)

d

dt
Fpc(t

n) +O((t− tn)2).

Employing these Taylor expansions, integrals over the time interval [tn, tn+1] of the nodal ve-
locity and the sub-cell force are approximated by

∫ tn+1

tn
Up(t) dt = ∆t

[
Un

p +
∆t

2

d

dt
Un

p

]
,

∫ tn+1

tn
Fpc(t) dt = ∆t

[
F n
pc +

∆t

2

d

dt
F n
pc

]
,

where d
dtU

n
p and d

dtF
n
pc denote the time derivative of the nodal velocity and the sub-cell force

evaluated at time tn. Let us introduce the time centered values

U
n+ 1

2
p = Un

p +
∆t

2

d

dt
Un

p ,

F
n+ 1

2
pc = F n

pc +
∆t

2

d

dt
F n
pc.

From the first above equation, it follows that the second-order time discretization of the trajec-
tory equation writes

xn+1
p = xn

p +∆tU
n+ 1

2
p , x0

p =Xp.

Now, observe that the position vector of point p can be parameterized as

xp(t) = x
n
p + (t− tn)U

n+ 1

2
p , ∀t ∈ [tn, tn+1].

This shows that the corner vector, lpcnpc(t), has a linear dependency with respect to time.
Thus, the Taylor expansion of the corner vector is computed exactly by

lpcnpc(t) = lnpcn
n
pc + (t− tn)

d

dt
[lpcnpc(t

n)].

Finally, setting l
n+ 1

2
pc n

n+ 1

2
pc = lnpcn

n
pc +

∆t
2

d
dt(lpcnpc)

n, the volume flux is computed as

∫ tn+1

tn
(lpcnpc)(t) ·Up(t) dt = ∆tl

n+ 1

2
pc n

n+ 1

2
pc ·Un+ 1

2
p .

Gathering the previous results yields the following formal second-order time discretization of
system (3.89)

mc

(
1

ρn+1
c

− 1

ρnc

)
−∆t

∑

p∈P(c)

l
n+ 1

2
pc n

n+ 1

2
pc ·Un+ 1

2
p = 0, (3.91a)

mc

(
Un+1

c −Un
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc = 0, (3.91b)

mc

(
En+1

c − En
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc ·Un+ 1

2
p = 0. (3.91c)
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The grid displacement is computed using the discrete trajectory equation

xn+1
p = xn

p +∆tU
n+ 1

2
p , x0

p =Xp. (3.92)

Here, the time-centered variables are defined by

l
n+ 1

2
pc n

n+ 1

2
pc = lnpcn

n
pc +

∆t

2

d

dt
(lpcnpc)

n, (3.93a)

U
n+ 1

2
p = Un

p +
∆t

2

d

dt
Un

p , (3.93b)

F
n+ 1

2
pc = F n

pc +
∆t

2

d

dt
F n
pc. (3.93c)

To achieve the above second-order time discretization it remains to compute the time derivatives
of both nodal velocity and sub-cell force. This will be the main task of a next paragraph invoking
the conservation principle of total energy. Regarding the time derivative of the corner normal,
it will be computed using its geometric definition.

Discrete geometric conservation law

We show that the previous time discretization fulfills the discrete geometric conservation law
(DGCL) [123, 51]. This means that the zone volume that is computed directly from its co-
ordinates is equal to the zone volume that is deduced from solving the discrete volume equa-
tion (3.91a). This result is of first importance and shows the consistency of our cell-centered
discretization. To demonstrate this, the change in coordinate zone volume (∆vc)

crd during
the time step ∆t = tn+1 − tn, where the position vectors are incremented by an amount
∆xp = x

n+1
p − xn

p , ∀ p ∈ P(c), is defined as

(∆vc)
crd = vn+1

c − vnc . (3.94)

We compute the right-hand side of this equation using formula (3.55) page 78

(∆vc)
crd =

1

2

∑

p∈P(c)

[
xn+1
p × xn+1

p+
− xn

p × xn
p+

]
· ez.

Replacing the expressions of the position vectors at time tn+1 and using the fact the sum is
cyclic yields

(∆vc)
crd =

∑

p∈P(c)

{
1

2

[
xn
p+ − xn

p− +
1

2

(
∆xp+ −∆xp−

)]
× ez

}
·∆xp. (3.95)

On the other hand, the change in volume deduced from the discrete volume equation (3.91a)
writes

(∆vc)
gcl =

∑

p∈P(c)

l
n+ 1

2
pc n

n+ 1

2
pc ·∆xp, (3.96)

since by the discrete trajectory equation (3.92), ∆xp = ∆tU
n+ 1

2
p . The definition of the corner

vector (3.57) page 79, and the definition of its time-centered discretization (3.93a) shows that
{
1

2

[
xn
p+ − xn

p− +
1

2

(
∆xp+ −∆xp−

)]
× ez

}
= l

n+ 1

2
pc n

n+ 1

2
pc .

Hence, the zone volume computed from its coordinates and the zone volume that results from
the discrete volume equation are rigorously equal.
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Comment 11 We have shown that the above second-order time discretization fulfills the dis-
crete geometric conservation law (DGCL) [51]. This means that the zone volume that is com-
puted directly from its coordinates is equal to the zone volume that is deduced from solving the
discrete volume equation (3.91a). This result is of first importance and shows the consistency of
our cell-centered discretization. We point out that this property is not straightforward for usual
two-dimensional staggered discretization [17] unless a special discretization is employed [100].

Conservation principles

Let us investigate total energy conservation over the entire domain at the discrete level. To this
end, we transpose at the discrete time level, the reasoning developed in Section 3.2.2 page 82.
Recalling that total energy over the whole grid at time tn is defined by En =

∑
cmcE

n
c , its

conservation over the time interval [tn, tn+1] writes as

En+1 − En = −
∫ tn+1

tn

∫

∂D
PU · n ds dt,

where the right-hand side expresses the time rate of pressure work on the boundary, ∂D, of the
domain, D, occupied by the fluid. By definition of total energy, this last equation rewrites

∑

c

mc(E
n+1
c − En) = −

∫ tn+1

tn

∫

∂D
PU · n ds dt. (3.97)

Introducing as before the boundary corner force acting onto point p yields

F ⋆
p (t) =

∫

∂Dp

Pn ds.

Substituting the specific total energy equation (3.91c) into (3.97) leads to

∑

c

∑

p∈P(c)

F
n+ 1

2
pc ·Un+ 1

2
p =

∑

p∈∂D

F
⋆,n+ 1

2
p ·Un+ 1

2
p . (3.98)

where F
⋆,n+ 1

2
p is a time-centered evaluation of the prescribed boundary force acting onto point

p. This boundary force is expressed as

F
⋆,n+ 1

2
p = F n,⋆

p +
∆t

2

d

dt
F n,⋆
p . (3.99)

Here, F n,⋆
p denotes the value of the prescribed boundary force at time tn whereas ∆t

2
d
dtF

n,⋆
p

represents its time derivative at time tn. Interchanging the order of summation in the left-hand
side of (3.98) yields

∑

p

(
∑

c∈C(p)

F
n+ 1

2
pc ) ·Un+ 1

2
p =

∑

p∈∂D

F
⋆,n+ 1

2
p ·Un+ 1

2
p ,

where C(p) is the set of cells surrounding point p. Splitting the left-hand side of the above
equation into two parts depending on the points location leads to

∑

p∈Do

(
∑

c∈C(p)

F
n+ 1

2
pc ) ·Un+ 1

2
p +

∑

p∈∂D

(
∑

c∈C(p)

F
n+ 1

2
pc ) ·Un+ 1

2
p =

∑

p∈∂D

F
⋆,n+ 1

2
p ·Un+ 1

2
p , (3.100)
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where Do is the interior of the domain D. The total energy conservation principle requires that
the above equation must hold regardless the value of the nodal velocity. This amounts to state
the following necessary and sufficient condition to have total energy conservation

∀ p ∈ Do,
∑

c∈C(p)

F
n+ 1

2
pc = 0, (3.101a)

∀ p ∈ ∂D,
∑

c∈C(p)

F
n+ 1

2
pc = F

⋆,n+ 1

2
p . (3.101b)

Substituting the expression of the time-centered sub-cell force, F
n+ 1

2
pc = F n

pc +
∆t
2

d
dtF

n
pc and

invoking the fact that (3.101a) and (3.101b) must be satisfied regardless of the time step value
leads to the following necessary and sufficient conditions that respectively determine the sub-cell
force and its time derivative at time tn

∀ p ∈ Do,
∑

c∈C(p)

F n
pc = 0, (3.102a)

∀ p ∈ ∂D,
∑

c∈C(p)

F n
pc = F

⋆,n
p . (3.102b)

∀ p ∈ Do,
∑

c∈C(p)

d

dt
F n
pc = 0, (3.103a)

∀ p ∈ ∂D,
∑

c∈C(p)

d

dt
F n
pc =

d

dt
F ⋆,n
p . (3.103b)

Condition (3.102) corresponds to the sub-cell forces balance at point p, whereas condition (3.103)
represents the balance of the time derivative of the sub-cell forces acting onto point p. We claim
that these conditions also provide momentum conservation over the entire domain, the proof is
left to the reader.

Node-centered solver for the grid velocity at time tn

For the high-order extension, the grid velocity at time tn is obtained employing the following
nodal extrapolation of the sub-cell force

F n
pc = lnpcP̃c(x

n
p )n

n
pc −Mn

pc

[
Un

p − Ũc(x
n
p )
]
, (3.104)

where P̃c = P̃c(x) and Ũc = Ũc(x) denote some piecewise linear representations of the pressure
and the velocity over the cell ωc, which will be determined later. Knowing that Mn

pc is a 2× 2
positive definite matrix, and using the conservation condition (3.102) leads to the 2× 2 system
that solves the nodal velocity Un

p

∀ p ∈ Do, Mn
pU

n
p =

∑

c∈C(p)

[
lnpcP̃c(x

n
p )n

n
pc +Mn

pcŨc(x
n
p )
]
, (3.105a)

∀ p ∈ ∂D, Mn
pU

n
p =

∑

c∈C(p)

[
lnpcP̃c(x

n
p )n

n
pc +Mn

pcŨc(x
n
p )
]
− F ⋆,n

p , (3.105b)
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where Mn
p denotes the 2× 2 node-centered matrix defined as

Mn
p =

∑

c∈C(p)

Mn
pc. (3.106)

The nodal velocity determination has been divided into two cases depending on the node loca-
tion. Noticing that Mn

p is positive definite, Un
p is uniquely defined by solving systems (3.105a)

and (3.105b). For the details concerning boundary conditions implementation and also the two
examples of definition of the corner matrix, refer to Section 3.2.3 page 84.

Node-centered solver for the time derivative of the grid velocity at time tn

In this paragraph we aim at describing the node-centered solver which allows to compute the
time derivative of the grid velocity at time tn. To this end, we shall use the conservation
condition (3.103) that has been derived in the last paragraph. Knowing that the sub-cell force
reads Fpc = lpcPcnpc −Mpc(Up −Uc), we time differentiate it using the chain rule

d

dt
Fpc = lpcnpc

d

dt
Pc −Mpc(

d

dt
Up −

d

dt
Uc) +

d

dt
(lpcnpc)Pc −

d

dt
(Mpc)(Up −Uc).

Here, we have assumed that all the variables that are involved in the sub-cell force expression
are time-dependent. Regarding the corner matrix, this assumption is quite reasonable as the
corner matrix, in the two examples given in Section 3.105 page 97, is expressed in terms of
geometric quantities.

First, we compute the time derivative of the physical variables by writing the gas dynamics
equations in non-conservative form using the variables (P,U , η)

d

dt
P + ρa2∇ ·U = 0, (3.107a)

d

dt
U +

1

ρ
∇P = 0, (3.107b)

d

dt
η = 0, (3.107c)

where a denotes the isentropic sound speed and η the specific entropy. We recall that for
a sufficiently smooth flow these equations are equivalent to the conservative form of the gas
dynamics equations, refer to [65]. By means of (3.107a) and (3.107b) we express the time
derivative of pressure and velocity within cell c in terms of velocity divergence and pressure
gradient

d

dt
Pc =− ρca

2
c (∇ ·U)c , (3.108)

d

dt
Uc =− 1

ρc
(∇P )c . (3.109)

We point out that (∇ ·U)c and (∇P )c stand for the averaged values over cell c of the velocity
divergence and the pressure gradient, which will be computed in the next paragraph using a
piecewise linear reconstruction based on a least squares approach.

Now, to achieve the computation of the time derivative of the sub-cell force it remains to
express the time derivatives of the corner normal and the corner matrix. We recall that the
corner normal and the corner matrix are expressed as functions of the normal vectors to the
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two edges of cell c impinging at node p as follows

lpcncp = l−pcn
−
pc + l+pcn

+
pc,

MGLACE

pc = zclpc (npc ⊗ npc) , GLACE scheme

MEUCCL

pc = zc
[
l−pc
(
n−
pc ⊗ n−

pc

)
+ l+pc

(
n+
pc ⊗ n+

pc

)]
, EUCCLHYD scheme

Here, zc = ρcac denotes the acoustic impedance. We recall that the normal vectors l−pcn
−
pc,

l+pcn
+
pc and lpcnpc are defined in terms of the position vectors as follows

l−pcn
−
pc =

1

2

(
xp − xp−

)
× ez,

l+pcn
+
pc =

1

2

(
xp+ − xp

)
× ez,

lpcnpc =
1

2

(
xp+ − xp−

)
× ez,

where ez = ex × ey. Thus, their corresponding time derivatives are given by

d

dt

(
l−pcn

−
pc

)
=

1

2

(
Up −Up−

)
× ez,

d

dt

(
l+pcn

+
pc

)
=

1

2

(
Up+ −Up

)
× ez,

d

dt
(lpcnpc) =

1

2

(
Up+ −Up−

)
× ez.

Regarding the two above expressions of the corner matrix, their time derivatives are computed
following the chain rule

d

dt
MGLACE

pc = zc

[
d

dt
(lpcnpc)⊗ npc + (lpcnpc)⊗

d

dt
npc

]
, GLACE scheme (3.110)

d

dt
MEUCCL

pc = zc
∑

±

[
d

dt

(
l±pcn

±
pc

)
⊗ n±

pc +
(
l±pcn

±
pc

)
⊗ d

dt
n±
pc

]
. EUCCLHYD scheme (3.111)

We point out that the computation of the time derivative of the unit normals n±
pc and npc is

also required. It can be deduced quite easily using the previous formulas and the chain rule
derivative as follows

d

dt
n±
pc =

d

dt

(
l±pcn

±
pc

l±pc

)
.

We remark that for both formulations we have not taken into account the time derivative of
the acoustic impedance. This is due to the fact that acoustic impedance is just a multiplicative
coefficient to get the correct physical dimension in the definition of the corner matrix. Combining
the previous results, we write the time derivative of the sub-cell force at time tn as

d

dt
F n
pc = −ρnc (anc )2 (∇ ·U)nc l

n
pcn

n
pc−Mn

pc

[
d

dt
Un

p +
1

ρnc
(∇P )nc

]
+Pn

c

d

dt
(lnpcn

n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c ).

Finally, substituting this last expression in the conservation condition (3.103a) we obtain the
system satisfied by the time derivative of the nodal velocity for an interior node

∀ p ∈ Do, Mn
p

d

dt
Un

p = −
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2lnpcn

n
pc (∇ ·U)nc

]

+
∑

c∈C(p)

[
Pn
c

d

dt
(lnpcn

n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c )

]
. (3.112)
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For a node located on the boundary, using (3.103b), we immediately get

∀ p ∈ ∂D, Mn
p

d

dt
Un

p = −
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2lnpcn

n
pc (∇ ·U)nc

]

+
∑

c∈C(p)

[
Pn
c

d

dt
(lnpcn

n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c )

]
− d

dt
F ⋆,n
p . (3.113)

As the matrixMn
p is positive definite, the previous systems are invertible and thus provide always

a unique time derivative for the nodal velocity. Concerning boundary conditions implementation
for the time derivative of the grid velocity, we follow the methodology exposed previously
computing the time derivative of the prescribed boundary force. To achieve the computation
of the numerical fluxes, it remains to compute the averaged pressure gradient and velocity
divergence within cell c using a piecewise monotonic linear reconstruction.

Comment 12 Here, we have constructed a node-centered solver to compute the time derivatives
of both grid velocity and sub-cell force. We point out that this solver has been derived using the
sub-cell force framework. It is nothing but a two-dimensional extension of the acoustic GRP
solver [21, 39].

Piecewise monotonic linear reconstruction

To perform the piecewise linear monotone reconstruction of the pressure and velocity, we used
a classical least squares procedure [16, 15], followed by a slope limitation procedure. Let W ≡
W (x) denotes a fluid variable (pressure or velocity components), which has a piecewise linear
representation in cell c defined by

W̃c(x) =Wc + (∇W )c · (x− xc) , (3.114)

where Wc is the mean value of W in cell c and (∇W )c is the gradient of W that we are looking
for. We note that xc =

1
vc

∫
ωc
x dv is the cell centroid so that the reconstruction is conservative.

The gradient in (3.114) is computed by imposing that

W̃c(xd) =Wd for d ∈ C(c),

where C(c) is the set of the neighboring cells of cell c. This problem is generally over-determined
and thus this gradient is obtain by using a least squares procedure. Thus, it is the solution of
the following minimization problem

(∇W )c = argminG∈R2

∑

d∈C(c)

[Wd −Wc −G · (xd − xc)]
2 .

A straightforward computation shows that this solution is written

(∇W )c = M−1
c

∑

d∈C(c)

(Wd −Wc) (xd − xc) , (3.115)

where Mc is the 2× 2 matrix which reads

Mc =
∑

d∈C(c)

(xd − xc)⊗ (xd − xc) .

We notice that Mc is symmetric positive definite and thus always invertible. The main feature

of this least squares procedure is that it is valid for any type of unstructured mesh
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and moreover it preserves the linear fields. This last point is particularly important in
view of computing isentropic compression properly.

To preserve monotonicity, we limit the value that the gradient is allowed to take. For each
cell, we introduce the slope limiter φc ∈ [0, 1] and the limited reconstructed field as

W̃ lim
c (x) =Wc + φc(∇W )c · (x− xc) , (3.116)

where (∇W )c denotes the approximate gradient given by (3.115). The coefficient φc is deter-
mined by enforcing the following local monotonicity criterion

Wmin
c ≤ W̃ lim

c (x) ≤Wmax
c , ∀x ∈ c, (3.117)

where we have set

Wmin
c = min

[
min
d∈C(c)

{Wd},Wc

]
and Wmax

c = max

[
max
d∈C(c)

{Wd},Wc

]
.

Since the reconstructed field is linear we note that it is sufficient to enforce the following con-
ditions at any point p ∈ P(c)

Wmin
c ≤ W̃ lim

c (xp) ≤Wmax
c , (3.118)

so that the quantity W in the cell c does not lie outside the range of the average quantities in
the neighboring cells. Thanks to this formula, we can define the slope limiter as

φc = min
p∈P(c)

φc,p

knowing that

φc,p =





µ( Wmax
c −Wc

W̃c(xp)−Wc

) if W̃c(xp)−Wc > 0,

µ( Wmin
c −Wc

W̃c(xp)−Wc

) if W̃c(xp)−Wc < 0,

1 if W̃c(xp)−Wc = 0.

Here, µ denotes a real valued function characterizing the limiter. By setting µ(x) = min(1, x)
we recover the Barth-Jespersen limiter which consists of the multi-dimensional extension [16]
of the van Leer’s classical method. We can also define a smoother -in the sense that it is
more differentiable- limiter by setting µ(x) = x2+2x

x2+x+2
. This limiter has been introduced by

Venkatakrishnan [162] in order to improve the convergence towards steady solutions for the
Euler equations.

Comment 13 These limiters are known to preserve two-dimensional linear fields provided that
the neighboring cells whose cell-means are actually involved in the limiting are chosen in a good
neighborhood. The characterization of such a neighborhood has been derived by Swartz in [155].
The definition is as follows: one has chosen a good neighborhood for a given central cell if and
only if the convex hull of the centroids of its associated neighbors contains that central cell. We
make such a choice in performing our limitation.

We conclude this section by investigating the limitation procedure applied to the velocity field.
We point out that the previous limiting algorithm has been developed for scalar variables. For
vectors, limiting is usually applied separately to each component. However, such a procedure is
frame dependent and thus leads to rotational symmetry distortion. Namely, component limiters
do not preserve symmetry since a rotation of the coordinate axis produces different results. This
drawback is crucial in the framework of Lagrangian hydrodynamics since we are dealing with
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moving mesh discretizations which are particularly sensitive about symmetry loss. To correct
this flaw, we have to construct a limiting procedure which is frame invariant for vectors. One
possible choice is to use the Vector Image Polygon (VIP) methodology derived in [101, 102].
This method consists in constructing the VIP as the convex hull of the vector-space points
corresponding to the neighbor vectors. If a slope-extrapolated vector lies inside the VIP, the
slope is monotonicity preserving, otherwise, slope limiting is required. On the other hand, the
slope is set to zero by analogy with the scalar case. Here, we describe an alternative procedure to
perform a limitation of vector field which preserves rotational symmetry. First, let us introduce
a piecewise linear representation of the velocity field

Ũc(x) = Uc + (∇U)c (x− xc) , (3.119)

where (∇U)c denotes the constant gradient tensor of the velocity field in cell c. This tensor
has been obtained using the least squares procedure applied to each component. At this point,
we define in each cell c the local orthonormal basis (ξc,ηc) where ξc ×ηc = ez. This local basis
must be frame invariant. Among the possible choices, we define it by using the eigenvectors of
the right Cauchy-Green tensor related to the deformation that maps the two flow configurations
between time tn and time tn+1, refer to (2.14) page 12 for the definition of this tensor. To define
a limiter for the velocity slopes within cell c, we locally transform the Cartesian coordinates
into coordinates given by the orthonormal basis (ξc,ηc). The decomposition of the vector V in
this basis reads V = Vξξc + Vηηc, where Vξ = (V · ξc) and Vη = (V ·ηc). This can be rewritten
under the more concise form

(
Vξ
Vη

)
= AcV , where Ac =

(
ξc,x ξc,y
ηc,x ηc,y

)
.

A straightforward computation shows that AcA
t
c = I, thus its inverse reads A−1

c = At
c. Trans-

forming Uc and (3.119) with respect to the local basis (ξ,η), and applying the scalar limitation
procedure to the ξ and η components of the velocity field leads to define one slope limiter for
each direction

φξ,c = min
p∈P(c)

φξ,c,p and φη,c = min
p∈P(c)

φη,c,p.

These slope limiters are given by

φξ,c,p =





µ(
Umax
ξ,c

−Uξ,c

Uξ,c,p−Uξ,c
) if Uξ,c,p − Uξ,c > 0,

µ(
Umin
ξ,c

−Uξ,c

Uξ,c,p−Uξ,c
) if Uξ,c,p − Uξ,c < 0,

1 if Uξ,c,p − Uξ,c = 0,

φη,c,p =





µ(
Umax
η,c −Uη,c

Uη,c,p−Uη,c
) if Uη,c,p − Uη,c > 0,

µ(
Umin
η,c −Uη,c

Uη,c,p−Uη,c
) if Uη,c,p − Uη,c < 0,

1 if Uη,c,p − Uη,c = 0.

Here, U
min /max
ξ,c and U

min /max
η,c are the minimum and maximum value resulting from projections

of the neighboring cells velocities onto the local directions. We have also set
(Uξ,c

Uη,c

)
= AcUc

and
(Uξ,c,p

Uη,c,p

)
= AcŨc(xp). Finally, we transform this pair of limiters back into the Cartesian

coordinates and conclude that the limited gradient tensor is

(∇U)limc = Φc(∇U)c, (3.120)

where Φc is the 2× 2 matrix which reads

Φc = At
c

(
φξ,c 0
0 φη,c

)
Ac =

(
ξ2c,xφξ,c + η2c,xφη,c ξc,xξc,yφξ,c + ηc,xηc,yφη,c

ξc,xξc,yφξ,c + ηc,xηc,yφη,c ξ2c,yφξ,c + η2c,yφη,c

)
.
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Thus, the limited velocity field reconstruction within cell c writes as

Ũ lim
c (x) = Uc + Φc(∇U)c (x− xc) . (3.121)

We claim that we have defined a tensorial limitation procedure for the velocity vector which is
frame invariant and thus preserves rotational symmetry.

An heuristic justification for the nodal extrapolation

In deriving the node-centered solver, we have employed the node-extrapolated values of the
piecewise reconstructed pressure and velocity to define the sub-cell force, refer to (3.104) page 97.
This nodal extrapolation is quite unusual in the context of high-order finite volume methods.
In what follows, we give an heuristic justification to illustrate the relevancy of such an extrap-
olation. First, we recall that the sub-cell force at time tn reads

F n
pc = lnpcP̃c(x

n
p )n

n
pc −Mn

pc

[
Un

p − Ũc(x
n
p )
]
,

where P̃c(x
n
p ) and Ũc(x

n
p ) are the node-extrapolated values of the pressure and velocity. Let us

introduce F n,pres
pc = lnpcP̃c(x

n
p )n

n
pc, which corresponds to the pressure contribution to the sub-cell

force. Recalling that the piecewise linear representation of the pressure writes as

P̃c(x) = Pn
c + (∇P )nc · (x− xn

c ),

let us compute the sum of the pressure contribution to the sub-cell force

∑

p∈P(c)

F n,pres
pc =

∑

p∈P(c)

lnpcP
n
c n

n
pc +

∑

p∈P(c)

lnpc(∇P )nc · (xn
p − xn

c )n
n
pc.

Note that the first term in the right-hand side cancels owing to the geometric identity (3.59)
page 79. Using the definition of the dyadic product, refer to (A.1) page 213, The second term
can be recast as ∑

p∈P(c)

F n,pres
pc = (

∑

p∈P(c)

lpcnpc ⊗ xp)(∇P )c.

In writing this last equation, we have dropped the superscript n for the sake of simplicity. The
contribution of the centroid position vector cancels owing to geometric identity (3.59) page 79.
It remains to compute the tensor between parentheses. To this end, we recall that

lpcnpc ⊗ xp =
1

2

(
(yp − yp−)xp (yp − yp−)yp
−(xp − xp−)xp −(xp − xp−)yp

)
+

1

2

(
(yp+ − yp)xp (yp+ − yp)yp
−(xp+ − xp)xp −(xp+ − xp)yp

)
.

Shifting the indices p→ p+ and p− → p in the first term of the summation leads to

∑

p∈P(c)

lpcnpc ⊗ xp =




1
2

∑

p∈P(c)

(yp+ − yp)(xp + xp+) 0

0 −1
2

∑

p∈P(c)

(xp+ − xp)(yp + yp+)


 .

We achieve the computation by noticing that

vc =
1

2

∑

p∈P(c)

(yp+ − yp)(xp + xp+) = −1

2

∑

p∈P(c)

(xp+ − xp)(yp + yp+),
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where vc denotes the volume of the cell. It turns out that we have demonstrated the following
tensorial identity

∑

p∈P(c)

lpcnpc ⊗ xp = vcId, (3.122)

which is valid for any polygonal cell. Here, Id is the unit tensor of R2. Finally, we obtain

∑

p∈P(c)

F n,pres
pc = vc(∇P )c, (3.123)

which shows the consistency of the pressure contribution to the sub-cell force with the pressure
gradient. This consistency results from the tensorial identity (3.122) and from the choice of
having utilized a nodal extrapolation. Note that the above tensorial identity has been also
derived in a more general framework in [48], it is one of the main ingredients to show the weak
consistency of the GLACE scheme.

GRP algorithm for the two-dimensional Lagrangian scheme

Here, we summarize the GRP algorithm corresponding to the high-order discretization of our
two-dimensional cell-centered Lagrangian scheme in its abstract formulation. The physical
variables and the geometry are given at time tn.

Step 0. Construct a piecewise monotonic linear representation of the velocity field and the
pressure over the cell ωn

c at time tn

Ũ lim
c (x) = Un

c + Φc(∇U)nc · (x− xn
c ),

P̃ lim
c (x) = Pn

c +Φc(∇P )nc · (x− xn
c ),

where xn
c denotes the centroid of ωn

c , (∇U)nc and (∇P )nc are respectively the velocity and
the pressure gradient in ωn

c whereas Φc and Φc denote their respective slope limiters.

Step 1. Compute the nodal velocity Un
p and the sub-cell force F n

cp by means of the node-
centered solver

Un
p = (Mn

p )
−1

∑

c∈C(p)

[
lnpcP̃

lim
c (xn

p )n
n
pc +Mn

pcŨ
lim
c (xn

p )
]
,

F n
pc = lnpcP̃

lim
c (xn

p )n
n
pc −Mn

pc

[
Un

p − Ũ lim
c (xn

p )
]
.

Here, the superscript n is used for geometric quantities such as lengths and unit normals
to emphasize that they are evaluated at time tn. We note that the input data for the
nodal solver are the extrapolated pressure and velocity at node p. In addition, we recall
that Mn

p =
∑

c∈C(p)M
n
pc.

Step 2. Compute the time derivatives of nodal velocity and sub-cell force, d
dtU

n
p ,

d
dtF

n
pc, by
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means of the node-centered solver for the time derivatives

d

dt
Un

p = −(Mn
p )

−1
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2lnpcn

n
pc (∇ ·U)nc

]

+ (Mn
p )

−1
∑

c∈C(p)

[
Pn
c

d

dt
(lnpcn

n
pc)−

d

dt
Mn

pc(U
n
p −Un

c )

]
,

d

dt
F n
pc = −ρnc (anc )2 (∇ ·U)nc l

n
pcn

n
pc −Mn

pc

[
d

dt
Un

p +
1

ρnc
(∇P )nc

]

+ Pn
c

d

dt
(lnpcn

n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c ).

Deduce from this the computation of the time-centered values

U
n+ 1

2
p = Un

p +
∆t

2

d

dt
Un

p ,

F
n+ 1

2
pc = F n

pc +
∆t

2

d

dt
F n
pc.

Step 3. Compute the motion of the mesh thanks to the discrete kinematic equation

xn+1
p − xn

p = ∆tU
n+ 1

2
p ,

and update the geometrical quantities. Then, evaluate the new cell averages ( 1
ρn+1
c

,Un+1
c , En+1

c )

using the updating formulas

mc

(
1

ρn+1
c

− 1

ρnc

)
−∆t

∑

p∈P(c)

l
n+ 1

2
pc n

n+ 1

2
pc ·Un+ 1

2
p = 0,

mc

(
Un+1

c −Un
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc = 0,

mc

(
En+1

c − En
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc ·Un+ 1

2
p = 0.

Finally, compute the new thermodynamic state as Pn+1
c = P (ρn+1

c , εn+1
c ), where εn+1

c =
En+1

c − 1
2 | Un+1

c |2.

3.2.5 Practical issues

Treatment of exceptional points

Exceptional points are grid points at the termination of lines internal to the computational
domain, and where boundary conditions are therefore not applied, refer to Figure 3.11. These
points occur naturally in most applications in order to improve spatial grid anisotropy, and the
consequent time step reduction, that will otherwise arise for grids with highly tapered regions or
at a center of convergence. In the framework of compatible staggered Lagrangian hydrodynam-
ics, a specific treatment has been successfully introduced in [99] to deal with exceptional points.
Here, we present the methodology that we have developed for our cell-centered compatible dis-
cretization. Before we proceed any further, we investigate the capability of the EUCCLHYD
node-centered solver to handle such exceptional point without any special treatment. To this
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Figure 3.11: Fragment of a grid that containing an exceptional point displayed using red color.
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Figure 3.12: Exceptional point located at the origin and surrounded by three cells.

end, let us consider the case of an exceptional point located at the origin and surrounded by
three cells as displayed in Figure 3.12. The left-side cell is a degenerate pentagon characterized
by a flat angle at the vertex which corresponds to the exceptional point. The right-side cells
are two rectangles. We assume that the initial fluid flow around the origin is defined by the
state (ρl, ul, Pl) on the left side of the interface y = 0 and the state (ρr, ur, Pr) on its right
side. ul and ur denote the x components of the one-dimensional velocity field. The three cells
around the origin are labelled from 1 to 3 in the counterclockwise order. With these notations
the half-edge outward normals write

l−1 n
−
1 =

∆yb
2

(
1

0

)
, l+1 n

+
1 =

∆yt
2

(
1

0

)
,

l−2 n
−
2 =

∆xr
2

(
0

1

)
, l+2 n

+
2 =

∆yb
2

(−1

0

)
,

l−3 n
−
3 =

∆yt
2

(−1

0

)
, l+3 n

+
3 =

∆xr
4

(
0

−1

)
.

Recalling that the corner matrices are defined byMi = zi[l
−
i (n

−
i ⊗n−

i )+l
+
i (n

+
i ⊗n+

i )], i = 1 . . . 3,
where z1 = zl and z2 = z3 = zr, we compute the velocity of the exceptional point by solving
the linear system

MOUO =
3∑

i=1

liniPi +MiUi,
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where MO =
∑3

i=1Mi, lini = l−i n
−
i + l+i n

+
i , P1 = Pr, P2 = P3 = Pr, U1 = ulex and U2 = U3 =

urex. With this set up, after some elementary algebra one gets

UO =

(
zlul + zrur
zl + zr

− Pr − Pl

zl + zr

)
ex.

This is exactly the interface velocity that one would obtain using the one-dimensional acoustic
solver. This shows the ability of the EUCCLHYD solver to deal with exceptional point in case
of one-dimensional flows without any special treatment. However, in case of two-dimensional
flows, one has to implement a special treatment to these exceptional points to prevent the
occurrence of distorted polygonal cells. Generally, this special treatment consists in enslaving
their velocity to that of their neighboring points in order to prevent large excursions of the
numerical solution about them. We describe hereafter the special procedure applied within the
node-centered solver to take into account exceptional point. Let us consider an exceptional
point surrounded by three cells as displayed in Figure 3.11. Let p denotes the exceptional point
and d the corresponding pentagonal cell. The two neighboring points to p are p− and p+ in
the counterclockwise order with respect to cell d. We introduce the vectors l−pdn

−
pd and l+pdn

+
pd,

which are half-edge outward normals to the edges impinging at point p. The sum of these two
vectors is the corner normal associated to point p and cell d, which reads lpdnpd. The fact that
the sum of the corner normals surrounding point p is equal to zero yields

∑

c∈C(p)\d

lpcnpc + lpdnpd = 0, (3.124)

where C(p) is the set of cells surrounding point p. We assume that the velocity of the regular
points has been already computed using the standard node-centered solver. In particular,
velocities of the two neighboring points to p are known and we denote them Up− and Up+ .
Point p differs from regular points in the sense that it is not a dynamical point. Namely, its
motion is enslaved to the motion of its neighboring points. Thus, the normal velocity of the
exceptional point is obtained by means of a linear interpolation of the normal velocity of its
neighbors, as follows

lpdnpd ·Up = l−pdn
−
pd ·Up− + l+pdn

+
pd ·Up+ . (3.125)

This means that point p can only slide along segment [p−, p+]. We remark that this scalar
equation is not sufficient to determine the velocity of point p. To this end, we have to write
the necessary and sufficient condition that provides total energy and momentum conservation.
This condition writes as follows ∑

c∈C(p)\d

Fpc = F
⋆
p , (3.126)

where Fpc = lpcPcnpc−Mpc(Up−Uc) is the standard sub-cell force acting from cell c ∈ C(p) \ d
onto point p and F ⋆

p is an exceptional force acting from cell d to point p which enforces the
enslavement of point p to the edge [p−, p+]. This latter force is expressed in terms of the
exceptional nodal pressure Π⋆

p as follows

F ⋆
p = −lpdnpdΠ

⋆
p. (3.127)

This unknown extra pressure can be viewed as an average pressure which enslaves point p. The
combination of the previous equations leads to the 3× 3 system satisfied by the nodal velocity
and pressure

MpUp + (
∑

c∈C(p)\d

lpcnpc)Π
⋆
p =

∑

c∈C(p)\d

(lpcnpcPc +MpcUc), (3.128a)

(
∑

c∈C(p)\d

lpcnpc) ·Up = −l−pdn−
pd ·Up− − l+pdn

+
pd ·Up+ , (3.128b)
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where Mp =
∑

c∈C(p)\dMpc is symmetric positive definite. This system has always a unique
solution as its matrix written below in block form




Mp

∑

c∈C(p)\d

lpcnpc

∑

c∈C(p)\d

lpcnpc 0




is a 3 × 3 symmetric positive definite matrix. We note that this system is quite similar to the
system (3.76) derived for the boundary condition corresponding to a prescribed normal velocity.
This is not a surprise since the method we have employed to deal with the exceptional point
amounts to prescribe an internal boundary condition.

Time step control

For numerical applications, the time step is evaluated following two criteria. The first one is a
standard CFL criterion. The second one is more intuitive, but reveals very useful in practice:
we limit the variation of the volume of cells over one time step.

CFL criterion We propose a CFL like criterion in order to ensure a positive entropy pro-
duction in cell c during the time step. At time tn, for each cell c we denote by λnc the minimal
value of the distance between two points of the cell. We define

∆te = Cemin
c

λnc
anc
,

where Ce is a strictly positive coefficient and ac is the sound speed in the cell. The coefficient
Ce is computed heuristically and we provide no rigorous analysis which allows such formula.
However, extensive numerical experiments show that Ce = 0.25 is a value which provides stable
numerical results. The rigorous derivation of this criterion can be obtained by computing the
time step which ensures a positive entropy production in cell c during the time interval [tn, tn+1].
This task can be achieved employing a two-dimensional generalization of the one-dimensional
analysis which has been performed in Section 3.1.7 page 70.

Criterion on the volume variation We estimate the volume of cell c at t = tn+1 using the
Taylor expansion

vn+1
c = vnc +

d

dt
vc(t

n)∆t.

Here, the time derivative d
dtvc is computed by using (3.58) page 79. Let Cv be a positive

coefficient, Cv ∈]0, 1[. We look for ∆t such that

|vn+1
c − vnc |
vnc

≤ Cv.

To this end, let us define

∆tv = Cv min
c





vnc

| d
dt
vc(tn)|




.

For numerical applications, we choose Cv = 0.1. Last, the estimation of the next time step
∆tn+1 is given by

∆tn+1 = min (∆te,∆tv, Cm∆tn) , (3.129)

where ∆tn is the current time step and Cm is a multiplicative coefficient which allows the time
step to increase. We generally set Cm = 1.01.
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3.3 Numerical tests in two-dimensional Cartesian geometry

In this section, we perform several numerical tests to assess the robustness and the accuracy of
the schemes presented previously. Almost all the simulations are run using a perfect gas EOS
written under the form P = (γ−1)ρε, where γ denotes the polytropic index. First, we present a
comparison between first-order GLACE and EUCCLHYD discretizations to highlight their re-
spective strength and weakness on demanding test cases representative of strongly compressible
fluid flows. Then, we run the high-order discretization of EUCCLHYD scheme to evaluate its
performance on several well known test cases such as Sod, Sedov, Saltzman and Noh problems.

3.3.1 Comparison between first-order GLACE and EUCCLHYD discretiza-

tions

In this section, all problems are running with the first-order GLACE and EUCCLHYD dis-
cretizations using a purely acoustic node-centered solver.

Checkerboard problem

This test case, which is taken from [136], aims at assessing the sensitivity of both formulations
to hourglass instability. The initial domain [0, 1]× [0, 1] is paved with 10× 10 square cells. The
initial thermodynamic conditions are characterized by (ρ0, P 0) = (1, 1) and a polytropic index
γ = 5

3 . Let (i, j) denote the logical coordinates of a generic cell of the mesh, the indices i and
j are ranging from 1 to 10. The initial velocity field corresponding to the cell labelled (i, j)
is set to U0

i,j = [(−1)i+j , 0]. The stopping time is tfinal = 1 and we use a constant time step

∆t = 10−2. The map of the x-component of the initial velocity field is displayed in Figure 3.13
(left). We have also displayed the x-component of the velocity field and the grid obtained
after 5 time steps for GLACE scheme. We remark that for this scheme the initial x-velocity
perturbation has triggered an hourglass pattern in y direction which cannot be damped. On
the other hand, we observe on Figure 3.14 (left) that EUCCLHYD scheme has damped this
initial x-velocity perturbation. After 100 time steps, refer to Figure 3.14 (right), the x-velocity
has almost vanished due to the dissipation of kinetic energy into internal energy. This simple
test case, shows the great sensitivity of the GLACE scheme to hourglass instability. It also
demonstrates the ability of EUCCLHYD scheme to damp consistently such instabilities. The
discrepancy between these two schemes is strongly related to their entropy production.

Sedov problem on a Cartesian grid

We consider the Sedov problem for a point-blast in a uniform medium with cylindrical symmetry.
An exact solution based on self-similarity arguments is available, see for instance [74]. The initial
conditions are characterized by (ρ0, P 0,U0) = (1, 10−6,0) and the polytropic index is set equal
to 7

5 . We set an initial delta-function energy source at the origin prescribing the pressure in the
cell containing the origin as follows

Por = (γ − 1)ρor
E0

vor
,

where vor denotes the volume of the cell that contains the origin and E0 is the total amount
of released energy. By choosing E0 = 0.244816, as it is suggested in [74], the solution consists
of a diverging shock whose front is located at radius R = 1 at time t = 1. Knowing that for
an infinite strength shock wave the density ratio tends to γ+1

γ−1 , refer to Appendix B page 221,
we deduce that the peak density reaches the value 6. The initial domain, [0, 1.2] × [0, 1.2],
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Figure 3.13: Checkerboard problem. Grid and map of the x-component of the velocity field at
initial time (left) and after 5 time steps for GLACE scheme (right).
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Figure 3.14: Checkerboard problem. Grid and map of the x-component of the velocity field for
EUCCLHYD scheme after 5 time steps (left) and after 100 time steps (right).
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Figure 3.15: Sedov problem on Cartesian grid. Grids at final time for first-order GLACE scheme
(left) and EUCCLHYD scheme (right).
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Figure 3.16: Sedov problem on Cartesian grid. Density in all the cells as functions of the
cell-center radius at final time for first-order EUCCLHYD scheme.
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is paved using 30 × 30 equally space zones. We have displayed in Figure 3.15 the grids at
final time obtained with both schemes. We can observe a quite good agreement regarding the
shock location on the grid obtained with EUCCLHYD scheme. This agreement is confirmed
by the observation of Figure 3.16, where we have plotted the density in all cells as functions
of the radius of the cell-center versus the analytical solution. GLACE scheme fails to solve
correctly this problem as the final grid is completely folded. We note the formation of a strong
jet aligned with the first bissectrix of the domain. This jet formation is probably a consequence
of an inadequate entropy production of the scheme.

Collapse of a ring

In this test case, we study the ability of both schemes to compute the collapse of a ring on
itself. This test case is taken from [98, 116]. The internal and the external radii of the ring are
set to rint = 9.5 and rext = 10. The computational domain is defined in polar coordinates by
(r, θ) ∈ [rint, rext] × [0, π2 ] where r =

√
x2 + y2 and θ = arctan( yx). The initial conditions are

(ρ0,U0, P 0) = (7.82,−2 105 rextr er, 10
−6), where er denotes the unit radial vector. We note that

the initial velocity field is divergence free. The ring is initially filled with a material characterized
by a stiffened gas EOS, which is written under the form P = (γ−1)ρε+Π∞, where γ = 3.5 and
Π∞ = 350 109. The simulations are performed on a 20×9 polar grid paved using equally spaced
zones in the radial and the angular directions. Pressure boundary conditions, P ⋆ = 10−6, are
prescribed at the inner and outer radii while symmetry boundary conditions are imposed on x
and y axis. The final time is set to tfinal = 37 10−6. The density maps and the grids obtained for
both schemes are plotted in Figure 3.17. We remark that the compression is better rendered at
final time by GLACE scheme than by EUCCLHYD scheme. This fact is confirmed by inspecting
Figure 3.18 where we have displayed the density as functions of the cell-center radius against the
density that results from a one-dimensional reference computation obtained using 2000 zones.
Note that this reference solution has been computed using a high-order cell-centered scheme
which solves the one-dimensional Lagrangian gas dynamics equations in cylindrical geometry.
In this figure, the density plot associated with GLACE formulation almost coincides with the
reference density whereas the density corresponding to EUCCLHYD scheme is very far from it.
This discrepancy is due to an overestimate of entropy production in EUCCLHYD formulation
that prevents the ring from compressing. We shall see in next section that this flaw is corrected
using the high-order extension of this latter scheme.

3.3.2 High-order EUCCLHYD results

From now on, we will only consider numerical results obtained with the high-order GRP ex-
tension of the EUCCLHYD scheme. In this case the monotonicity of the piecewise linear
reconstruction is ensured by means of a slope limiter. Here, we utilize the Barth-Jespersen
and the Venkatakrishnan limiters that have been defined page 101. Let us point out that the
comparison between this two limiters has been perfomed in [105]. It shows that the Venkatakr-
ishnan limiter is more diffusive than the Barth-Jespersen one. In the aforementioned reference,
we have performed the convergence analysis of the present high-order scheme employing a test
problem characterized by a smooth analytical solution. This study shows that the high-order
EUCCLHYD scheme exhibits an almost second-order rate of convergence.

Sod problem

We consider a two-material variant of the very well known Sod problem which has been initially
defined in [153]. It consists of a shock tube of unity length. The interface is located at x = 0.5.
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Figure 3.17: Collapse of a ring. Grids and density maps at final time: GLACE scheme (left)
and EUCCLHYD scheme (right).

At the initial time, the states on the left and the right sides of x = 0.5 are constant. The left state
is a high pressure fluid characterized by (ρl, Pl, ul) = (1, 1, 0), the right state is a low pressure
fluid defined by (ρr, Pr, ur) = (0.125, 0.1, 0). The left material is characterized by γl =

7
5 and

the right material by γr = 5
3 . The computational domain is defined by (x, y) ∈ [0, 1] × [0, 0.1].

The initial mesh is a Cartesian grid with 100× 2 equally spaced cells. The boundary conditions
are wall boundary conditions, that is, the normal velocity is set to zero at each boundary. The
numerical results obtained with the high-order acoustic EUCCLHYD scheme are presented in
Figure 3.19 and 3.20 as spatial distributions of density, pressure, internal energy and velocity
with the numerical solutions plotted as discrete points, and the corresponding exact solution
shown as solid lines. Monotonicity is ensured by the Barth-Jespersen limiter. The numerical
results show the classical improvement of the high-order solution relative to the first-order one.
We also note that our results are very similar to those obtained by Ben-Artzi and Falcovitz in
[21].

Sedov problem on various grids

We compute the Sedov problem with the same set up than previously using high-order EU-
CCLHYD scheme in its non-linear version. That is, the node-centered solver is defined by
means of the generalized non-linear corner impedances (3.86) page 92. Monotonicity is ensured
through the use of the Venkatakrishnan limiter. First, we run Sedov problem with a 30 × 30
Cartesian grid on the domain (x, y) ∈ [0, 1.2]× [0, 1.2]. Then, keeping the same conditions, we
make use of an unstructured grid produced by a Voronoi tessellation. This grid, which contains
775 polygonal cells, is displayed in Figure 3.21 (left). The third and last grid has been plotted
in Figure 3.21. It is made of three structured zones paved with quadrangular cells. The central
square zone is meshed with 15 × 15 cells and the two remaining curvilinear zones are meshes
with 45×15 cells. The junction of these three zones is a triple point, that is a vertex surrounding
by three cells.

We observe that high-order EUCCLHYD formulation preserves very well the one-dimensional
cylindrical symmetry of the solution regardless the grid that has been employed to compute it,
refer to Figures 3.22, 3.23 and 3.24. Moreover, the shock location and its level are accurately
resolved without any spurious oscillations. We point out that the quality of the mesh in the
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Figure 3.18: Collapse of a ring. Density as functions of cell-center radius for first-order
GLACE and EUCCLHYD schemes versus the one-dimensional reference solution at stopping
time tfinal=37 10−6 .
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Figure 3.19: Two-material Sod problem. Numerical versus analytical solution for the density
(left) and the pressure (right).

vicinity of the triple point is particularly good as it can be seen in Figure 3.25.

Saltzman problem

This test case taken from [54] is a well known difficult problem that allows to evaluate the
robustness of Lagrangian schemes. It consists of a strong piston-driven shock wave calculated
using an initially nonuniform mesh. The computational domain is defined by (x, y) ∈ [0, 1] ×
[0, 0.1]. The skewed initial mesh, displayed in Figure 3.26, is obtained transforming a uniform
100× 10 Cartesian grid with the mapping

{
xsk = x+ (0.1− y) sin(πx),

ysk = y.

The initial conditions are (ρ0, ε0,U0) = 1, 10−6,0) and the polytropic index is γ = 5
3 . At

x = 0, a unit inward normal velocity is prescribed, the other boundaries are reflective wall. The
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Figure 3.20: Two-material Sod problem. Numerical versus analytical solution for the internal
energy (left) and the velocity (right).

Figure 3.21: Initial unstructured grids for Sedov problem: polygonal grid resulting from a
Voronoi tessellation (left), unstructured quadrangular grid (right).
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Figure 3.22: Sedov problem on Cartesian grid at stopping time t = 1. Density map (left) and
density in all the cells as function of cell center radii versus analytical solution (right).
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Figure 3.23: Sedov problem on polygonal grid at stopping time t = 1. Density map (left) and
density in all the cells as function of cell center radii versus analytical solution (right).
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Figure 3.24: Sedov problem on unstructured grid at stopping time t = 1. Density map (left)
and density in all the cells as function of cell center radii versus analytical solution (right).

Figure 3.25: Sedov problem on unstructured grid at stopping time t = 1. Zoom in the vicinity
of the triple point.

117



Figure 3.26: Saltzman problem. Initial skewed grid.

Figure 3.27: Saltzman problem grid at time t = 0.75.

analytical solution is a one-dimensional infinite strength shock wave that moves at speed D = 4
3

in the right direction. Thus, the shock wave hits the face x = 1 at time t = 0.75. Behind the
shock, the density is equal to 4. We run this test using the Venkatakrishnan limiter. We have
displayed in Figure 3.27 the grid at time t = 0.75 which corresponds to the first bounce of the
shock wave. We remark that the one-dimensional solution is very well preserved. Moreover,
the location of the shock wave and the shock plateau are in good agreement with the analytical
solution, refer to Figure 3.28. In Figure 3.29, we have plotted the grid and the density map at
time t = 0.95. Although the mesh is more wavy than before, it still exhibits a good quality.
The computation is run until time t = 0.99 without any robustness problem. The
corresponding grid is displayed in Figure 3.30. These results, in which no spurious modes
appear, show the robustness of the high-order EUCCLHYD scheme.

Collapse of a ring revisited

Here, we rerun the problem corresponding to the collapse of a ring which has been presented in
previous section. This time, we are using high-order EUCCLHYD scheme in its acoustic version
and the monotonicity is ensured by the Barth-Jespersen limiter. We have plotted in Figure 3.31,
the density as function of cell-center radius for first and high-order EUCCLHYD scheme versus
the reference one-dimensional converged solution. We remark, that the high-order extension
brings a dramatic improvement of the numerical solution compared to the first-order solution.
This is essentially due to a lower rate of entropy production.

Noh problem on various grids

The Noh problem [124] is a well known test problem that has been used extensively to validate
Lagrangian scheme in the regime of infinite strength shock waves. In this test case, a cold gas
with unit density is given an initial inward radial velocity of magnitude 1. The initial pressure
is given by P 0 = 10−6. A diverging cylindrical shock wave is generated which propagates at
speed D = 1

3 . The density plateau behind the shock wave reaches the value 16. In order to
demonstrate the robustness and the accuracy of high-order EUCCLHYD scheme, we run this
test with various options using various types of grids. The monotonicity is provided through
the use of the Barth-Jespersen limiter and we use the non-linear node-centered solver defined
by means of the generalized non-linear corner impedances (3.86) page 92.
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Figure 3.28: Saltzman problem. Density in all the cells as function of the cell center x-coordinate
versus analytical solution at time t = 0.75.
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Figure 3.29: Saltzman problem. Grid and density map at time t = 0.95.
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Figure 3.30: Saltzman problem. Grid at time t = 0.99.
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Figure 3.31: Collapse of a ring. Density as function of cell center radius for first and high-
order EUCCLHYD scheme versus a one-dimensional reference solution at stopping time tfinal =
37 10−6.
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Figure 3.32: Noh problem on polar grids. Grids and density maps at stopping time tfinal = 0.6.
Computations are performed with 100 equal radial zones. The left side result corresponds to a
polar mesh made of 9 equal angular zones whereas the right side result corresponds to a polar
mesh made of 3 equal angular zones.

One-dimensional Noh problem on polar grids In this paragraph, we run Noh problem
using polar grids with equi-angular zoning. The initial computational domain is defined in polar
coordinates by (r, θ) ∈ [0, 1]×[0, π2 ]. First, we address the problem of wave front invariance. This
requirement which has been introduced in [34] in the framework of staggered schemes, points
out that the artificial viscosity should have no effect along a wave front of constant phase. In the
case of our cell-centered scheme, there is no artificial viscosity, however we have to check that
the numerical viscosity inherent to our scheme satisfies this wave front invariance requirement.
To examine this, we run the Noh problem with two polar grids characterized by the same zoning
in the radial direction and two different angular zonings, respectively 3 and 9 angular zones.
The boundary conditions on the x and y axis are wall boundary conditions whereas a pressure
given by P ⋆ = P 0 is prescribed at the outer radius r = 1. The density maps at the stopping
time tfinal = 0.6 are displayed in Figure 3.32. We note that the symmetry is perfectly preserved.
The shock location and the shock plateau agree with the analytical solution. In Figure 3.33,
we have plotted the density as function of radius for these two different angular zonings. The
small difference between the two curves shows that the wave front invariance requirement is
pretty well satisfied. Second, we compare the pure acoustic version of high-order EUCCLHYD
scheme to the non-linear version running the Noh problem on a 100 × 3 uniform polar grid.
The corresponding numerical densities are plotted in Figure 3.34 as function of radius at the
stopping time. The shock plateau and the shock location are almost the same, however in the
acoustic case, we note the appearance of density peaks located near the origin and the shock
front. These peak occurrences are probably due to the fact that the acoustic formulation does
not produce enough dissipation in this case.

Two-dimensional Noh problem on a 50 × 50 Cartesian grid To assess the robustness
of our scheme, we run the Noh problem on a 50 × 50 Cartesian grid. This configuration leads
to a more severe test case since the mesh is not aligned with the flow. Monotonicity is ensured
by Venkatakrishnan limiter. We have displayed the grid and the density map in Figure 3.35.
We note that the cylindrical symmetry is quite well preserved and that the shock is located at
a circle whose radius is approximately 0.2. The results for this test case are almost as good
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Figure 3.33: Noh problem on polar grids. Density as function of cell-center radius at stopping
time tfinal = 0.6 versus analytical solution.
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Figure 3.34: Noh problem on a 100× 3 polar grid. Density as a function of radius for the Noh
problem at stopping time tfinal = 0.6. Pure acoustic and non-linear node-centered solver versus
analytical solution.
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Figure 3.35: Grid and density map for the Noh problem at time tfinal = 0.6 on a 50 Cartesian
grid. Whole grid (left) and zoom on the shocked region (right).

as those obtained by Campbell and Shashkov [32] using their staggered scheme with a mimetic
tensorial artificial viscosity.

Two-dimensional Noh problem on a non-conformal grid We finish this section with the
computation of the Noh problem on a non-conformal grid to illustrate the ability of high-order
EUCCLHYD scheme to handle non-conformal grids. This grid is constructed using a polar grid
and adding to it one level of refinement, refer to Figure 3.36 (left). Thus, we get a grid made of
triangles, quadrangles and pentagons. We put the stress on the fact that no special treatment
is required in the node-centered solver to handle such a grid. We have displayed the grid at
the stopping time tfinal = 0.6 in Figure 3.36 (right). We point out that the symmetry is well
preserved and the shock location agrees with the analytical solution. The density in all the

Figure 3.36: Noh problem on a non-conformal grid. Initial grid (left) and zoom on the final
grid at tfinal = 0.6 (left).
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cells as function of radius of the cell centroid is plotted in Figure 3.37. The shock location and
the shock plateau are in good agreement with the analytical solution. We notice some small
overshoots in the density plateau corresponding to the location of the non-conformal cells. These
overshoots are probably a consequence of the loss of convexity of the pentagonal cells located
at the interface where the refinement occurs.
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Figure 3.37: Noh problem on a non-conformal grid. Density versus cell centroid radius at
t = 0.6.

Study of the linear phase of the Richtmyer-Meshkov instability

Here, we reproduce a test case that has been initially presented in [105]. This test case is
devoted to the study of the linear phase of the Richtmyer-Meshkov instability [140] for a piston-
driven flow. This hydrodynamic instability occurs when a shock wave hits a perturbed interface
separating two materials with distinct densities. This situation is frequently encountered during
the implosion of an Inertial Confinement Fusion target. For sufficiently small perturbations,
analytical solutions can be derived using linear perturbation theory [167]. In this context, the
linear theory shows that the amplitude of the perturbation grows linearly as function of time.
We first study the unperturbed fluid configuration, which consists of the collision of a shock
wave with a flat contact discontinuity. Such a collision produces a transmitted shock wave and
a reflected wave that can be either a shock or a rarefaction depending on the density ratio
between the two materials present on both side of the interface. This shock-contact interaction
defines a one-dimensional Riemann problem, which can be solved analytically.

We are going to study the configuration displayed in Figure 3.38. The interface is located
at x = 0 and the computational domain corresponding to the shock tube is defined by (x, y) ∈
[−5, 4.2] × [0, 0.5], since the y = 0 line is a symmetry axis for this problem. For the initial
and boundary conditions described in Figure 3.38, the incident piston-driven shock hits the
interface at time t = 3.015. This interaction leads to transmitted and reflected shock waves,
which also later interact with the piston and the right boundary wall. The time history of
the shock-contact interaction is displayed in Figure 3.39 using a classical (t−x) diagram which
shows the Eulerian x coordinate of selected points versus time. We can observe in this figure the
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Figure 3.38: Shock tube configuration for the shock-contact interaction problem.
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Figure 3.39: t − x diagram for the shock-contact interaction problem. The piston path is
displayed using blue color whereas the interface path is plotted using red color.

incident, transmitted and reflected shock waves. We run a computation for the unperturbed
configuration with the high-order EUCCLHYD scheme (BJ limiter) using 460 equally-spaced
cells in the x direction and one cell in the y direction. The density as function of x coordinate
is plotted in Figure 3.40 versus analytical solution at time t = 5. We point out the very good
agreement between numerical and analytical solutions. Moreover, we note that transmitted and
reflected shocks are sharply resolved. The perturbed configuration is investigated by initializing
the perturbed interface as

x(y) = α0 cos(
2π

λ
y), for y ∈ [−λ

2
,
λ

2
], (3.130)

where α0 denotes the initial amplitude and λ is the wavelength of the perturbation. The shape
of the perturbed interface is displayed in Figure 3.38. For a small enough initial amplitude,
linear theory predicts that the perturbation amplitude, α(t), grows linearly as function of time,
after the shock has interacted with the interface. Using a direct two-dimensional simulation
of the perturbed configuration, we shall recover this important result and compare the nu-
merical perturbation amplitude with the one obtained through the use of the linear theory.
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Figure 3.40: Interaction of a shock wave with a contact discontinuity. Density as function of x
coordinate versus analytical solution at time t = 5.

The corresponding numerical simulations are performed as follows. The computational domain,
(x, y) ∈ [−5, 4.2] × [0, 0.5], is paved with 460 × 25 equally spaced cells. Note that we have set
λ = 1 and meshed only a half wavelength due to the symmetry of the problem about x axis. We
run three computations utilizing respectively the first-order EUCCLHYD scheme and its high-
order extension with Venkatakrishan and Barth-Jespersen limiters. The perturbed interface is
defined by setting α0 = 10−4 and moving the vertices initially located on the line x = 0 onto
the curve defined by equation (3.130). The numerical computation of the perturbed amplitude,
α(t), is obtained as follows

α(t) =
1

α0
[xpert(t)− xunpert(t)]. (3.131)

Here, xpert(t) (resp. xunpert(t)) is the abscissa of a point located on the perturbed (resp. un-
perturbed) interface. Using this formula for the three previous computations, we compute the
corresponding perturbation amplitudes and compare them to the reference one resulting from
the linear theory [167]. We have plotted in Figure 3.41 (left) the numerical perturbation am-
plitudes as function of time versus the reference amplitude resulting from the linear theory.
We remark that the high-order computations recover quite well the linear theory whereas the
first-order calculation exhibits a highly damped evolution of the perturbation. This damping is
the consequence of the numerical dissipation inherent to the first-order scheme. Concerning the
high-order results, we note that the perturbation amplitude obtained using the Barth-Jespersen
limiter is closer to the linear theory curve than the perturbation amplitude obtained using the
Venkatakrishnan limiter. This follows from the fact that the Venkatakrishnan limiter is more
diffusive than the Barth-Jespersen one. We have also performed a computation using a finer
grid with 920 × 50 cells with the Barth-Jespersen limiter. We observe in Figure 3.41 (right)
that the resulting amplitude perturbation follows the linear theory, i.e the slopes are identical.
These results demonstrate the ability of the high-order EUCCLHYD scheme to simulate very
accurately complex phenomena such as hydrodynamic instabilities.
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Figure 3.41: Shock-contact interaction problem. Numerical perturbation amplitudes as function
of time versus linear theory. Comparison between first-order, high-order Barth-Jespersen and
Venkatakrishnan for the 460 × 24 grid (left). Convergence analysis for the high-order Barth-
Jespersen computations (right).

3.4 High-order discretization for two-dimensional Lagrangian

hydrodynamics in cylindrical geometry

This section deals with high-order cell-centered discretizations of the Lagrangian hydrodynam-
ics equations written in cylindrical geometry. The present discretizations are extensions, in
two-dimensional axisymmetric geometry, of the cell-centered Lagrangian schemes described in
Section 3.2. They can also be viewed as a generalization of the work developed in [104] by
means of sub-cell force. This axisymmetric extension is motivated since in many application
problems, such as inertial confinement problems, physical domains have axisymmetric features.
In this framework, the importance of preserving spherical symmetry is well recognized, par-
ticularly for the numerical simulations of implosions. Concerning the critical issue related to
spherical symmetry preservation many works have been done in the framework of staggered-grid
hydrodynamics. The most widely used method that preserves symmetry exactly on polar grids
with equiangular zoning is the area-weighted method. In this approach one uses a Cartesian
form of the momentum equation in cylindrical coordinates system, hence integration is not per-
formed with respect to the true volume in cylindrical coordinates, but rather with respect to
area. However, due to the loss of compatibility between gradient and divergence operators, this
formulation, in its usual form, does not allow the conservation of total energy as it has been
explained by Whalen [165]. This flaw has been corrected in [35] by constructing a compatible
area-weighted scheme which preserves total energy. In [113, 114], Shashkov and Margolin use a
curvilinear grid to construct conservative symmetry preserving discretizations. Their strategy
use high-order curves to connect the nodes, so that planar, cylindrical and spherical symmetry
are exactly maintained while differential operators are discretized in a compatible way. It is
worth to mention that this method preserves symmetry even on polar mesh with non-equal
angles. In [37], Caramana and Whalen show how to achieve the problem of exactly preserving
a one-dimensional symmetry, in a two-dimensional coordinate system distinct from that sym-
metry. This result is attained through a modification of the pressure gradient operator used to
compute the force in a staggered-grid hydrodynamics algorithm. Regarding the control volume
discretization, a general methodology is described in [112], where a discrete divergence operator
is derived by requiring consistency of the divergence of the velocity field with the time rate of
change of volume of a cell. The discrete gradient operator is deduced from the discrete diver-
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gence using conservation of total energy which implies the adjointness of the discrete gradient
and divergence operators. We want also to mention the recent paper [13] wherein a new stag-
gered discretization for 2D Lagrangian hydrodynamics is presented. This area-weighted scheme
is total energy conserving and symmetry preserving on polar equiangular grids.

Here, we propose an alternative discretization wherein all conserved quantities, including
momentum, and hence cell velocity are cell-centered. The main feature of this discretization
lies in the fact that the interface fluxes and the node velocity are computed coherently thanks
to an approximate Riemann solver located at the nodes. Indeed, the rate of change of any
Lagrangian volume is computed coherently with the nodes displacement. Regarding the ax-
isymmetric extension of these Godunov-type schemes, we observe that recent developments
have been described in [116, 152]. However, we note that these extensions are only first-order
discretizations and therefore not sufficiently accurate for real-life applications. It is also worth
to mention that a special cell-centered method, which preserves symmetry, has been developed
in [154]. In what follows, two schemes, which are compatible with the GCL, are obtained
through the use of a sub-cell force-based discretization. These two schemes differ in the way
the momentum equation is discretized. The first one, which uses a gradient operator compati-
ble with the divergence operator, corresponds to the control volume scheme, while the second
one corresponds to the area-weighted scheme. Both formulations share the same discretization
for the total energy equation. We note that in both schemes numerical fluxes are computed
using the same node-centered solver which can be viewed as two-dimensional extension of an
approximate Riemann solver. The control volume scheme conserves momentum, total energy
and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does
not preserves spherical symmetry. On the other hand, the area-weighted formulation conserves
total energy and preserves spherical symmetry for one-dimensional spherical flow computed on
equiangular polar grid. The genuinely two-dimensional high-order extension of both schemes is
constructed utilizing the GRP methodology in its acoustic approximation.

3.4.1 Lagrangian hydrodynamics in pseudo-Cartesian geometry

In this section, we aim at writing the gas dynamics equations using a set of generalized orthog-
onal coordinates which encompasses both Cartesian and cylindrically symmetric coordinates.
According to [8], this unified representation is termed pseudo-Cartesian geometry. Utilizing
this generalized coordinates, we derive the expressions of the divergence and gradient operators
which shall be useful for the subsequent space discretizations.

Governing equations

Let us recall briefly that in the Lagrangian formalism the rates of change of mass, volume,
momentum and total energy are computed assuming that the computational volumes follow the
material motion. This representation leads to the following set of equations for an arbitrary
moving control volume ω(t)

d

dt

∫

ω(t)
ρ dv = 0, (3.132a)

d

dt

∫

ω(t)
dv −

∫

ω(t)
∇ ·U dv = 0, (3.132b)

d

dt

∫

ω(t)
ρU dv +

∫

ω(t)
∇P dv = 0, (3.132c)

d

dt

∫

ω(t)
ρE dv +

∫

ω(t)
∇ · (PU) dv = 0. (3.132d)
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Figure 3.42: Notation related to the pseudo Cartesian geometry.

where d
dt denotes the material, or Lagrangian, time derivative. Here, as usual, ρ, U , P , E

denote the mass density, velocity, pressure and specific total energy of the fluid. Equations
(3.132a), (3.132c) and (3.132d) express the conservation of mass, momentum and total energy.
The thermodynamic closure of the set of equations (3.132) is obtained by using an equation of
state written under the form P = P (ρ, ε), where the specific internal energy, ε, is related to the
specific total energy by ε = E − 1

2 | U |2 .
Note that the above equations are not written under the usual form, that is, we have not yet

applied the divergence theorem to replace the volume integrals by surface integrals. This task
will be performed later after having defined the divergence and gradient operators through the
use of the generalized pseudo-Cartesian coordinates. Before, we proceed any further, let us first
introduce the pseudo-Cartesian representation. We note that the case of Cartesian or cylindrical
geometry can be combined by introducing the pseudo-Cartesian frame (O, x, y), equipped with
the orthonormal basis (ex, ey), through the use of the pseudo radius

R(y) = 1− α+ αy,

where α = 1 for cylindrical geometry and α = 0 for Cartesian geometry. We remark that
y corresponds to the radial coordinate in the cylindrical case. This means that we assume
rotational symmetry about x axis, refer to Figure 3.42. We note that if we refer to standard
cylindrical coordinates, (z, r), then x corresponds to z and y to r. In this framework, the
volume v(t) =

∫
a(t)R da is obtained by rotating the area a(t) about the x axis. Thus, the

volume element, dv, writes dv = R da, where da = dxdy is the area element in the pseudo-
Cartesian coordinates. Note that we have omitted the factor 2π due to the integration in the
azimuthal direction, namely we consider all integrated quantities to be defined per unit radian.
The surface s(t) =

∫
l(t)R dl, which bounds the volume v(t), is obtained by rotating, l(t), the

boundary of the area a, about the x axis. Thus, the surface element, ds, writes ds = R dl,
where dl is the line element along the perimeter of a(t).

Divergence and gradient operators in pseudo-Cartesian geometry

To construct a finite volume discretization of system (3.132), we are going to express the volume
integrals of the divergence and gradient operators in terms of surface integrals. Using the
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pseudo-radius, R, the divergence operator expressed in pseudo-Cartesian coordinates writes as

∇ ·U =
∂u

∂x
+

1

R
∂

∂y
(Rw),

where (u,w) are the components of the vector U . Regarding the gradient operator, it writes as
usual

∇P =
∂P

∂x
ex +

∂P

∂y
ey.

The divergence theorem states the
∫

v
∇ ·U dv =

∫

s
U · n ds,

where n is the unit outward normal to the boundary surface s. Now, using the fact that the
surface element ds expresses as ds = Rdl, the divergence formula rewrites as

∫

v
∇ ·U dv =

∫

l
U · nR dl. (3.133)

The volume integral of the gradient operator follows from the vector identity

U ·∇P = ∇ · (PU)− P∇ ·U .

Integrating by part this identity over the volume v and using the divergence formula leads to
∫

v
U ·∇P dv =

∫

l
PU · nR dl −

∫

a
P∇ ·UR da.

Assuming that U is a constant vector yields
∫

v
∇P dv =

∫

l
PnR dl − αey

∫

a
P da. (3.134)

This result is obtained by noticing that the divergence of a constant vector in pseudo-Cartesian
geometry is given by ∇·U = α

RU ·ey. In deriving this equation, we have used the above vector
identity which ensures the compatibility between the volume integral of the gradient operator
with that of the divergence operator. Note that for α = 0, we recover the classical Cartesian
expression of the volume integral of the gradient operator. In the context of a finite volume
discretization, the use of (3.134) leads to the control volume (CV) formulation.

An alternative approach to express the volume integral of the gradient operator consists in
making the following approximation

∫

v
∇P dv =

∫

a
∇PR da (3.135)

=R̄
∫

a
∇P da.

Here, we have used the mean value theorem, namely R̄ is defined as the averaged pseudo-radius

R̄ =
1

| a |

∫

a
R da, (3.136)

where | a |=
∫
a da is the surface of the area a. We remark that in the case of Cartesian

geometry R̄ = 1 since α = 0. Finally, applying the divergence formula to the surface integral
in the right-hand side of (3.135) yields

∫

v
∇P dv = R̄

∫

l
Pn dl. (3.137)
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This results in the Cartesian expression of the gradient operator weighted by the averaged
pseudo-radius. This alternative approach leads to the so-called area-weighted (AW) formu-
lation. We point out that, in this case, the compatibility between the volume integrals of the
divergence and gradient operators has been lost. Let us note that formulas (3.137) and (3.134)
coincide in the case of the Cartesian geometry since α = 0 and R̄ = 1.

In what follows, we shall derive and thoroughly analyze the discrete schemes deduced from
the control volume and the area-weighted formulations.

Comment 14 We remark that if the scalar P is constant over the volume v, then equation
(3.134) yields the following geometric identity

∫

l
nR dl = α | a | ey. (3.138)

This formula can also be written component-wise

∫

l
nxR dl = 0,

∫

l
nyR dl = α | a |,

where (nx, ny) are the components of the unit outward vector n. For α = 0, we recover the well
known result, that for a closed contour, the integral of the normal over this contour is equal to
zero. Note that this result does not hold anymore in the case of cylindrical geometry.

3.4.2 Compatible control volume cell-centered discretization

In this section, we develop a compatible cell-centered discretization of the gas dynamics equa-
tions written in pseudo-Cartesian geometry. This finite volume discretization constructed by
means of the expressions of the divergence and gradient operators (3.133) and (3.134) is called
control volume discretization. It is obtained by extending to pseudo-Cartesian geometry the
concept of sub-cell force that has been introduced previously, refer to Section 3.2.2 page 80.
The present sub-cell force-based discretization is performed over a domain D which is paved
using a collection of polygonal cells without gap or overlaps.

Notation and assumptions

Using the divergence formula (3.133) and the gradient operator definition given by (3.134), we
rewrite the set of equations (3.132) as

mc
d

dt

(
1

ρc

)
−
∫

∂ωc(t)
U · nR dl = 0, (3.139a)

mc
d

dt
Uc +

∫

∂ωc(t)
PnR dl = αacPcey, (3.139b)

mc
d

dt
Ec +

∫

∂ωc(t)
PU · nR dl = 0. (3.139c)

Here, ac is the area of the cell ωc(t) and mc its mass, which is constant according to equation
(3.132a). For any fluid variable φ, φc denotes its mass density average, i.e.,

φc =
1

mc

∫

ωc(t)
ρφ dv.
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Figure 3.43: Triangulation of the polygonal cell ωc in cylindrical geometry.

We have written a set of semi-discrete evolution equations for the cell-centered variables ( 1
ρc
,Uc, Ec)

for which the thermodynamic closure is given by the equation of state, Pc = P (ρc, εc) where
the cell specific internal energy is computed as εc = Ec − 1

2 | Uc |2. The motion of the grid is
ruled by the trajectory equation written at each point

d

dt
xp = Up(xp(t), t), xp(0) =Xp,

where xp denotes the position vector of point p and Up its velocity. Let us note that by setting
α = 0 in the previous set of equations we recover system (3.52) which has been introduced in
Cartesian geometry, refer to page 77. To achieve the discretization, it remains to determine not
only the numerical fluxes, namely the surface integrals in the above system, but also the nodal
velocity to move the grid.

Geometric conservation law in cylindrical geometry

Let vc =
∫
ωc(t)

R da be the measure of the volume obtained by rotating the polygonal cell ωc

about x axis. Equation (3.139a) rewrites as the geometric conservation law

d

dt
vc −

∫

∂ωc(t)
U · nR dL = 0. (3.140)

Proceeding with the volume equation as in the case of Cartesian geometry, we use the fact that
vc is a function of the position vector xp of point p for all p ∈ P(c). To this end, let us compute
this volume performing the triangular decomposition displayed in Figure 3.43. That is, using
the Guldin theorem, we compute it summing the elementary volumes obtained by rotating each
triangle O, p, p+ about x axis, and we finally get

vc(t) =
1

2

∑

p∈P(c)

1

3

[
RO +Rp(t) +Rp+(t)

] [
xp(t)× xp+(t)

]
· ez, (3.141)

where ez = ex × ey. Let us remark that RO denotes the pseudo radius corresponding to the
origin, which is defined by RO = 1 for Cartesian geometry and RO = 0 for cylindrical geometry.
As in Cartesian geometry, we note that the zone volume is expressed as a function of the position
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vectors and the pseudo radii of its vertices. Applying the chain rule, time differentiation of the
cell volume yields

d

dt
vc =

∑

p∈P(c)

∇xpvc ·
d

dt
xp,

where ∇xpvc is the gradient of the cell volume with respect to the position vector xp. This
gradient is computed directly through the use of (3.141) and after some algebra one obtains

∇xpvc =
1

2

[
1

3
(Rp− + 2Rp)(xp − xp−)× ez +

1

3
(Rp+ + 2Rp)(xp+ − xp−)× ez

]
.

This last formula allows to define the corner area vector as

Apcnpc =
1

2

[
1

3
(Rp− + 2Rp)(xp − xp−)× ez +

1

3
(Rp+ + 2Rp)(xp+ − xp−)× ez

]
, (3.142)

where Apc is the corner area that can be computed knowing that n2
pc = 1. Noticing that the

half-edge outward normals are given by l−pcn
−
pc =

1
2(xp−xp−)×ez and l+pcn+

pc =
1
2(xp+−xp)×ez,

we rewrite (3.142) as

Apcnpc =
1

3
(Rp− + 2Rp)l

−
pcn

−
pc +

1

3
(Rp+ + 2Rp)l

+
pcn

+
pc. (3.143)

As noticed by Whalen in [165], the corner area vector turns out to be the fundamental geometric
object that allows to define uniquely the time rate of change of the cell volume as

d

dt
vc =

∑

p∈P(c)

Apcnpc ·Up. (3.144)

We point out that (3.144) is the extension of (3.58) page 79 to cylindrical geometry. This last
result allows to define the discrete divergence operator over cell ωc as follows

(∇ ·U)c =
1

vc

d

dt
vc =

1

vc

∑

p∈P(c)

Apcnpc ·Up. (3.145)

We also note that applying (3.145) to a constant vector, we can recover the discrete analogous
of the geometric identity (3.138)

∑

p∈P(c)

Apcnpc = αacey. (3.146)

It is also interesting to observe that this identity can be directly recovered proceeding as follows
∑

p∈P(c)

Apcnpc =
∑

p∈P(c)

1

3
(Rp− + 2Rp)l

−
pcn

−
pc +

1

3
(Rp+ + 2Rp)l

+
pcn

+
pc

=
∑

p∈P(c)

(Rp +Rp+)l
+
pcn

+
pc, shifting indices p− → p and p→ p+

=
∑

p∈P(c)

α(yp + yp+)l
+
pcn

+
pc, using the definition ofRp

=
1

2

∑

p∈P(c)

α(yp + yp+)

(
yp+ − yp

−(xp+ − xp)

)
.

We conclude by noticing that first
∑

p∈P(c) yp
+2 − y2p = 0, as the summation is cyclic, and

second −1
2

∑
p∈P(c)(yp + yp+)(xp+ − xp) = ac which ends the proof.

We claim that we have completely defined the volume flux in terms of the corner area vector
and the nodal velocity. Moreover, this derivation is compatible with the mesh motion.

133



Sub-cell force-based discretization

Proceeding with the discretization as in the Cartesian case, we discretize momentum and total
energy equations by means of sub-cell force. Introducing, the partition of each polygonal cell
ωc into sub-cells ωpc for p ∈ P(c), the sub-cell force that acts from sub-cell ωpc onto point p is
defined as

Fpc =

∫

∂ωpc∩∂ωc

PnR dl. (3.147)

We also use the sub-cell-based partition to write the total energy flux

∫

∂ωc

PU · nR dl =
∑

p∈P(c)

∫

∂ωpc∩∂ωc

PU · nR dl.

As previously the sub-cell contribution to the total energy flux is expressed in terms of sub-cell
force Fcp using the approximation

∫

∂ωpc∩∂ωc

PU · nR dl =

(∫

∂ωpc∩∂ωc

PnR dl

)
·Up

= Fpc ·Up.

Substituting the previous results into system (3.139) yields

mc
d

dt
(
1

ρc
)−

∑

p∈P(c)

Apcnpc ·Up = 0, (3.148a)

mc
d

dt
Uc +

∑

p∈P(c)

Fpc = αPcacey, (3.148b)

mc
d

dt
Ec +

∑

p∈P(c)

Fpc ·Up = 0. (3.148c)

We have expressed the numerical fluxes in terms of the corner area vector, the sub-cell force
and the nodal velocity. To complete the discretization it remains to determine the sub-cell force
and the nodal velocity. This task will be achieved by invoking the thermodynamic consistency
and the conservation principle of total energy.

Thermodynamic consistency

We derive a general form of the sub-cell force requiring that the semi-discrete scheme (3.148)
satisfies a semi-discrete entropy inequality. Thanks to Gibbs formula, the time rate of change
of entropy within cell c writes

mcTc
d

dt
ηc = mc

[
d

dt
εc + Pc

d

dt

(
1

ρc

)]
,

where ηc is the specific entropy and Tc the temperature in cell c. We first compute the time
rate of change of specific internal energy by dot-multiplying (3.148b) by Uc and subtracting it
from (3.148c) to obtain

mc
d

dt
εc = −

∑

p∈P(c)

Fpc · (Up −Uc)− αPcacey.
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We rearrange the second term in the right hand-side through the use of the geometric identity
(3.146) and rewrite the above equation as

mc
d

dt
εc = −

∑

p∈P(c)

[Fpc · (Up −Uc) +ApcPcnpc ·Uc]. (3.149)

We compute the time rate of change of pressure work by multiplying (3.148a) by Pc

mcPc
d

dt

(
1

ρc

)
=
∑

p∈P(c)

ApcPcnpc ·Up.

Adding the above equation and (3.149) leads to the following final form of the time rate of
change of specific entropy within cell c

mcTc
d

dt
ηc = −

∑

p∈P(c)

[(Fpc −ApcPcnpc) · (Up −Uc)] . (3.150)

The sub-cell force-based discretization satisfies a local entropy inequality provided that the
right-hand side of (3.150) is non-negative. A sufficient condition to ensure this consists in
postulating the following form for the sub-cell force

Fpc = ApcPcnpc −Mpc(Up −Uc), (3.151)

where Mpc is a 2×2 positive semi-definite matrix, i.e., MpcU ·U ≥ 0, ∀U ∈ R
2. Note that

the above expression of the sub-cell force is the natural extension to pseudo-Cartesian geometry
of the expression initially derived in Cartesian geometry, refer to (3.64) page 82. The physical
dimension of Mpc corresponds to an area times a density times a velocity. As in the Cartesian
case, the matrix expression must satisfies the principle of Galilean invariance. From now on, we
assume that Mpc is positive semi-definite. Substituting (3.151) into (3.150) yields the entropy
inequality

mcTc
d

dt
ηc =

∑

p∈P(c)

Mpc (Up −Uc) · (Up −Uc) ≥ 0, (3.152)

as the right-hand side is a positive semi-definite quadratic form. We remark that entropy
production within cell c is directly governed by the sub-cell matrix Mpc and the velocity jump
between the nodal and the cell-centered velocity, ∆Upc = Up −Uc.

Conservation principles

As in the Cartesian case, we invoke the conservation of total energy to determine a balance
equation satisfied by the sub-cell forces surrounding a given node.

Recall that total energy over the entire domain is defined as E(t) =
∑

c

mcEc(t), its conser-

vation amounts to write
d

dt
E = −

∫

∂D
PU · nR dl,

where the right-hand side expresses the time rate of pressure work on the boundary, ∂D, of the
domain, D, occupied by the fluid. By definition of total energy, this last equation rewrites

∑

c

mc
d

dt
Ec = −

∫

∂D
PU · nR dl. (3.153)

135



Substituting the specific total energy equation (3.148c) into (3.153) yields the balance of total
energy over the entire domain

∑

c

∑

p∈P(c)

Fpc ·Up =
∑

p∈∂D

F ⋆
p ·Up, (3.154)

where F ⋆
p is the boundary corner force acting from the exterior boundary onto point p that

results from the discretization of the right-hand side of (3.153). More precisely, F ⋆
p is the

analogous of (3.67) page 83 in pseudo-Cartesian geometry

F ⋆
p =

∫

∂Dp

PnR dl, (3.155)

where ∂Dp is a subdivision of the curvilinear boundary attached to point p, which is defined
page 83. Now, interchanging order of double sum in the left-hand side of (3.154) yields

∑

p

(
∑

c∈C(p)

Fpc) ·Up =
∑

p∈∂D

F ⋆
p ·Up,

where C(p) is the set of cells surrounding point p. Finally, the left-hand side of the above
equation is divided into two parts depending on the points location

∑

p∈Do

(
∑

c∈C(p)

Fpc) ·Up +
∑

p∈∂D

(
∑

c∈C(p)

Fpc) ·Up =
∑

p∈∂D

F ⋆
p ·Up, (3.156)

where Do is the interior of the domain D. Knowing that the total energy balance (3.68)
must hold regardless the value of the nodal velocity, total energy conservation is

ensured if and only if

∀ p ∈ Do,
∑

c∈C(p)

Fpc = 0, (3.157a)

∀ p ∈ ∂D,
∑

c∈C(p)

Fpc = F
⋆
p . (3.157b)

We note that we recover exactly the same conservation condition than the one obtained in
Cartesian geometry, refer to (3.68) page 83. This result is remarkable in the sense that it is
written under the same form regardless the geometry employed. It demonstrates the generality
of the sub-cell force formalism. Now, it remains to investigate in what extent the previous
condition leads to momentum conservation. If Q denotes the total momentum over the entire
domain, i.e., Q =

∑

c

mcUc, its time rate of change is given by

d

dt
Q =

∑

c

mc
d

dt
Uc

=−
∑

c

∑

p∈P(c)

Fpc + α(
∑

c

Pcac)ey, thanks to (3.148b)

=−
∑

p∈Do

∑

c∈C(p)

Fpc −
∑

p∈∂D

∑

c∈C(p)

Fpc + α(
∑

c

Pcac)ey, interchanging order of double sum

=−
∑

p∈∂D

F ⋆
p + α(

∑

c

Pcac)ey, thanks to (3.157)

=−
∫

∂D
PnR dl + α(

∑

c

Pcac)ey, thanks to (3.155).
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Figure 3.44: Notation related to EUCCLHYD scheme at corner pc for a polygonal cell in
pseudo-Cartesian geometry.

We conclude that up to the boundary terms and the radial source term contributions, momen-
tum is conserved over the entire domain. Hence, conditions (3.157a) and (3.157b) turn out to
ensure not only total energy but also momentum conservation.

Node-centered solver

The node-centered solver that solves the grid velocity is obtained as the consequence of total
energy conservation. Substituting the expression of the sub-cell force (3.151) into condition
(3.157) yields

∀ p ∈ Do, MpUp =
∑

c∈C(p)

(ApcPcnpc +MpcUc) , (3.158a)

∀ p ∈ ∂D, MpUp =
∑

c∈C(p)

(ApcPcnpc +MpcUc)− F ⋆
p . (3.158b)

As in Cartesian geometry, Mp is the sum of the corner matrices around node p, which is defined

as Mp =
∑

c∈C(p)

Mpc. We construct the natural extension of EUCCLHYD scheme to cylindrical

geometry by defining the corner matrix as

Mpc = z−pcR−
pcl

−
pc(n

−
pc ⊗ n−

pc) + z−pcR+
pcl

+
pc(n

+
pc ⊗ n+

pc), (3.159)

where the radii R±
pc are defined as

R±
pc =

1

3
(Rp± + 2Rp). (3.160)

Using the above notation and according to (3.143) page 133 the corner vector expresses as

Apcnpc = R−
pcl

−
pcn

−
pc +R+

pcl
+
pcn

+
pc. (3.161)

We recall that l±pcn
±
pc are the half-edge outward normals, refer to Figure 3.44, and z±pc are the

non-linear impedances, refer to (3.86) page 92. One can easily check that this definition leads
to symmetric positive definite corner matrix. Therefore, Mp is also symmetric positive definite
and thus always invertible, which allows to define uniquely the nodal velocity Up by solving
equations (3.158a) and (3.158b).
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Figure 3.45: Fragment of an equal angle polar grid and notation for a one-dimensional spherical
flow.

Spherical symmetry preservation of the node-centered solver

Here, we show that the nodal solver based on the above definition of the Mpc matrix, preserves
the spherical symmetry in the case of a one-dimensional spherical flow computed on an equal
angle polar grid. To this end, let us consider the point p surrounded by four quadrangular
cells as displayed in Figure 3.45. To simplify the computation, we use the orthonormal basis
(er, eθ) located at point p. Due to the spherical symmetry of the flow, the thermodynamical
quantities and the magnitude of the radial cell-centered velocities are equal in cells having the
same centroid radius, refer to Figure 3.45. The four points that are directly connected to point
p are labelled from 1 to 4 in the counterclockwise order. The unit normals and the length of
the edges impinging at point p are denoted ni and li with i = 1 . . . 4. In the local basis (er, eθ),
these unit normals write

n1 =

(
0

−1

)
, n2 =

(
cos ∆θ

2

− sin ∆θ
2

)
, n3 =

(
0

1

)
, n4 =

(− cos ∆θ
2

− sin ∆θ
2

)
.

We also introduce the radius attached to the edge connecting point p by setting

Rpi =
1

3
(2Rp +Ri), for i = 1 . . . 4.

Now, using the acoustic approximation, we evaluate the Mp matrix and the RH vector which
corresponds to the right-hand side of (3.158a). The nodal velocity is the solution of the linear
system MpUp = RH . Some elementary calculations provide the entries of the matrix Mp

Mp,rr = (zl + zr)l2(Rp2 +Rp4) cos
2 ∆θ

2
,

Mp,rθ =Mp,θr = (zl + zr)l2(Rp4 −Rp2) cos
∆θ

2
sin

∆θ

2
,

Mp,θθ = (zl + zr)l2(Rp2 +Rp4) sin
2 ∆θ

2
+ 2(zll1Rp1 + zrl3Rp3).
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The components of the right-hand side write

RHr = [zlul + zrur − (Pr − Pl)] l2(Rp2 +Rp4) cos
∆θ

2
,

RHθ = [zlul + zrur − (Pr − Pl)] l2(Rp4 −Rp2) sin
∆θ

2
.

In writing the above equations, we have used the fact that l2 = l4 due to the symmetry of the
grid. Solving the linear system MpUp = RH yields the nodal velocity expressed in the local
basis (er, eθ) as

Up =
zlul + zrur − (Pr − Pl)

zl + zr

1

cos ∆θ
2

er.

The nodal velocity is radial, thus the nodal solver preserves the spherical symme-

try on equal angle polar grid. Moreover, We have recovered the classical one-dimensional
acoustic Godunov solver modified by a geometrical factor which corresponds to the projection of
the cell velocity direction onto the radial vector er. This geometrical factor has no consequence
since cos ∆θ

2 → 1 when ∆θ → 0. We point out that the symmetry preservation is due to the
fact that the mesh is equally spaced in the angular direction. If the mesh does not satisfy this
assumption, then l2 6= l4 and thus the nodal velocity is not radial anymore.

High-order extension based on the acoustic GRP method

To develop the high-order extension of our control volume discretization in cylindrical geometry,
we proceed as in the case of Cartesian geometry by using the Generalized Riemann Problem
methodology in the acoustic approximation. The second-order time discretization of the semi-
discrete scheme (3.148) writes

mc

(
1

ρn+1
c

− 1

ρnc

)
−∆t

∑

p∈P(c)

〈Apcnpc〉n+
1

2 ·Un+ 1

2
p = 0, (3.162a)

mc

(
Un+1

c −Un
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc = α(Pcac)

n+ 1

2ey, (3.162b)

mc

(
En+1

c − En
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc ·Un+ 1

2
p = 0, (3.162c)

where 〈Apcnpc〉n+
1

2 stands for the mean value of the corner area vector over the time interval
[tn, tn+1]. The grid motion is defined through the use of the discrete trajectory equation which
reads as usual

x
n+ 1

2
p = xn

p +∆tU
n+ 1

2
p , xp(0) =Xp.

As in Cartesian geometry, time-centered nodal velocity and sub-cell force are expressed using
the following Taylor expansions

U
n+ 1

2
p = Un

p +
∆t

2

d

dt
Un

p ,

F
n+ 1

2
pc = F n

pc +
∆t

2

d

dt
F n
pc,

where the time derivatives of the nodal velocity and the sub-cell force will be determined using
total energy conservation. The source term in momentum equation (3.162b) is discretized as

(Pcac)
n+ 1

2 = Pn
c a

n
c +

∆t

2

(
anc

d

dt
Pn
c + Pn

c

d

dt
anc

)
. (3.163)
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Here, the cell-centered time derivative of pressure is computed using the gas dynamics equation
written in non-conservative form, refer to (3.107) page 98.

d

dt
P = −ρa2∇ ·U .

The time derivative of the area ac is evaluated by time differentiating the geometric identity
(3.146) page 133

d

dt
ac =

∑

p∈P(c)

d

dt
(Apcnpc) · ey. (3.164)

Finally, the intermediate value of the corner area vector, 〈Apcnpc〉n+
1

2 is discretized so that the
GCL is rigorously satisfied at the discrete level. Knowing that by definition

〈Apcnpc〉n+
1

2 =
1

∆t

∫ tn+1

tn
(Apcnpc)(t) dt,

the previous requirement involves that the integral in the right-hand side of the above equation
must be computed exactly. As the integrand is a quadratic function of time, exact integration
is obtained if one employs Simpson quadrature rule, which yields

〈Apcnpc〉n+
1

2 =
1

6

[
(Apcnpc)(t

n) + 4(Apcnpc)(t
n+ 1

2 ) + (Apcnpc)(t
n+1)

]
, (3.165)

where tn+
1

2 = tn + ∆t
2 . Using this discretization of the corner area vector we conclude that the

zone volume computed from its coordinates and the zone volume that results from solving the
discrete volume equation (3.162a) are rigorously equal.

Conservation principle for the discrete scheme We show that the requirement of total
energy conservation for the discrete scheme (3.162) allows to derive a node-centered solver which
solves not only the nodal velocity but also its time derivative. As the demonstration coincides
with the one that has been done in Cartesian geometry, refer to page 96, we only recall the
main result which consists in the following necessary and sufficient condition to have total energy
conservation at the discrete level

∀ p ∈ Do,
∑

c∈C(p)

F
n+ 1

2
pc = 0, (3.166a)

∀ p ∈ ∂D,
∑

c∈C(p)

F
n+ 1

2
pc = F

⋆,n+ 1

2
p . (3.166b)

Here, we have subdivided this condition in two cases depending on whether the points are
located inside the domain or on its boundary. Substituting the expression of the time-centered

sub-cell force, F
n+ 1

2
pc = F n

pc+
∆t
2

d
dtF

n
pc and invoking the fact that (3.166a) and (3.166b) must be

satisfied regardless of the time step ∆t leads to the following necessary and sufficient conditions
that concern, firstly the sub-cell force at time tn

∀ p ∈ Do,
∑

c∈C(p)

F n
pc = 0, (3.167a)

∀ p ∈ ∂D,
∑

c∈C(p)

F n
pc = F

⋆,n
p , (3.167b)

140



and secondly its time derivative at time tn

∀ p ∈ Do,
∑

c∈C(p)

d

dt
F n
pc = 0, (3.168a)

∀ p ∈ ∂D,
∑

c∈C(p)

d

dt
F n
pc =

d

dt
F ⋆,n
p , (3.168b)

where F
⋆,n+ 1

2
p is a time-centered evaluation of the prescribed boundary force acting onto point

p, which reads

F
⋆,n+ 1

2
p = F n,⋆

p +
∆t

2

d

dt
F n,⋆
p . (3.169)

where F n,⋆
p denotes the value of the prescribed boundary force at time tn and ∆t

2
d
dtF

n,⋆
p its time

derivative at time tn. These two values are supposed to be known.
Let us emphasize that the above conditions exactly coincide with the ones that have been

derived in Cartesian geometry. This underlines, once more, the general feature of the sub-cell
force formalism. Condition (3.167) corresponds to the sub-cell forces balance at point p, whereas
condition (3.168) represents the balance of the time derivative of the sub-cell forces acting onto
point p. We claim that these conditions also provide momentum conservation over the entire
domain, the proof is left to the reader.

Node-centered solver for the grid velocity The nodal velocity is obtained by solving the
system which results from the conservation condition (3.167) wherein the sub-cell force F n

pc is
expressed as follows

F n
pc = An

pcP̃c(x
n
p )n

n
pc −Mn

pc

[
Un

p − Ũc(x
n
p )
]
. (3.170)

In this equation, P̃c = P̃c(x) and Ũc = Ũc(x) denote the piecewise linear representations of the
pressure and the velocity over the cell ωc. Substituting the above expression in (3.167) leads to
the system satisfied by the nodal velocity

∀ p ∈ Do, Mn
pU

n
p =

∑

c∈C(p)

[
An

pcP̃c(x
n
p )n

n
pc +Mn

pcŨc(x
n
p )
]
, (3.171a)

∀ p ∈ ∂D, Mn
pU

n
p =

∑

c∈C(p)

[
An

pcP̃c(x
n
p )n

n
pc +Mn

pcŨc(x
n
p )
]
− F ⋆,n

p , (3.171b)

where Mn
p denotes the 2 × 2 positive semi-definite node-centered matrix defined as Mn

p =∑

c∈C(p)

Mn
pc. Note that the second system allows to define the boundary conditions, refer to

page 84 for more details.

Node-centered solver for the time derivative of the grid velocity Using the chain
rule, time differentiation of the sub-cell force in pseudo-Cartesian geometry yields

d

dt
Fpc = Apcnpc

d

dt
Pc −Mpc(

d

dt
Up −

d

dt
Uc) +

d

dt
(Apcnpc)Pc −

d

dt
(Mpc)(Up −Uc).

Here, we have assumed that all the variables that are involved in the sub-cell force expression
depend on time. Regarding the corner matrix, this assumption makes sense as the corner matrix
derived page 137 writes

Mpc = z−pcR−
pcl

−
pc(n

−
pc ⊗ n−

pc) + z−pcR+
pcl

+
pc(n

+
pc ⊗ n+

pc).
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Using the gas dynamics equations written in non-conservative form, refer to (3.107), we recall
that the time derivative of pressure and velocity within cell c read

d

dt
Pc =− ρca

2
c (∇ ·U)c ,

d

dt
Uc =− 1

ρc
(∇P )c ,

where the cell-averaged velocity divergence and pressure gradient result from a piecewise linear
reconstruction based on a least squares approach, refer to page 100.

To achieve the computation of the time derivative of the sub-cell force it remains to express
the time derivatives of the area corner vector and the corner matrix. We recall that the area
corner vector and the corner matrix are expressed as functions of the normal vectors related to
the half-edges impinging on point p as follows

Apcncp = R−
pcl

−
pcn

−
pc +R+

pcl
+
pcn

+
pc,

Mpc = z−pcR−
pcl

−
pc

(
n−
pc ⊗ n−

pc

)
+ z+pcR+

pcl
+
pc

(
n+
pc ⊗ n+

pc

)
,

where R±
pc =

1
3(2Rp+R±

p ). Recalling that the normal vectors l−pcn
−
pc, l

+
pcn

+
pc are defined in terms

of the position vectors, their time derivatives are easily computed. Using chain rule derivative,
one obtains the time derivative of the area corner vector. Concerning the corner matrix, its
time derivative writes

d

dt
Mpc =

∑

±

z±pc

[
d

dt

(
R±

pcl
±
pcn

±
pc

)
⊗ n±

pc +
(
R±

pcl
±
pcn

±
pc

)
⊗ d

dt
n±
pc

]
.

Combining the previous results, we write the time derivative of the sub-cell force at time tn as

d

dt
F n
pc = −ρnc (anc )2 (∇ ·U)nc An

pcn
n
pc−Mn

pc

[
d

dt
Un

p +
1

ρnc
(∇P )nc

]
+Pn

c

d

dt
(An

pcn
n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c ).

Finally, substituting this last expression in the conservation condition (3.103a), we obtain the
system satisfied by the time derivative of the nodal velocity for an interior node

∀ p ∈ Do, Mn
p

d

dt
Un

p = −
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2An

pcn
n
pc (∇ ·U)nc

]

+
∑

c∈C(p)

[
Pn
c

d

dt
(An

pcn
n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c )

]
. (3.172)

For a node located on the boundary, using (3.103b), we readily get

∀ p ∈ ∂D, Mn
p

d

dt
Un

p = −
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2An

pcn
n
pc (∇ ·U)nc

]

+
∑

c∈C(p)

[
Pn
c

d

dt
(An

pcn
n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c )

]
− d

dt
F ⋆,n
p . (3.173)

GRP algorithm for the two-dimensional Lagrangian scheme in pseudo-Cartesian

geometry We summarize the high-order discretization of the two-dimensional Lagrangian
hydrodynamics equations written in pseudo-Cartesian geometry using the control volume for-
mulation. We assume that all the physical and geometric variables are known at time tn.
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Step 0. Construct a piecewise monotonic linear representation of the velocity field and the
pressure over the cell ωn

c at time tn

Ũ lim
c (x) = Un

c + Φc(∇U)nc · (x− xn
c ),

P̃ lim
c (x) = Pn

c +Φc(∇P )nc · (x− xn
c ),

where xn
c denotes the centroid of ωn

c , (∇U)nc and (∇P )nc are the velocity and the pressure
gradient in ωn

c . In addition, Φc and Φc denote their respective slope limiters.

Step 1. Compute the nodal velocity Un
p and the sub-cell force F n

cp by means of the node-
centered solver

Un
p = (Mn

p )
−1

∑

c∈C(p)

[
An

pcP̃
lim
c (xn

p )n
n
pc +Mn

pcŨ
lim
c (xn

p )
]
,

F n
pc = An

pcP̃
lim
c (xn

p )n
n
pc −Mn

pc

[
Un

p − Ũ lim
c (xn

p )
]
.

Here, the superscript n is used for geometrical quantities such as lengths and normals to
emphasize the fact that they are evaluated at time tn. We note that the input data for
the nodal solver are the extrapolated pressure and velocity at node p. The corner matrix,
Mn

pc, is the cornerstone of the scheme, we recall that Mn
p =

∑
c∈C(p)M

n
pc.

Step 2. Compute the time derivatives of nodal velocity and sub-cell force, d
dtU

n
p ,

d
dtF

n
pc, by

means of the node-centered solver for the time derivatives

d

dt
Un

p = −(Mn
p )

−1
∑

c∈C(p)

1

ρc

[
Mn

pc (∇P )nc + (znc )
2An

pcn
n
pc (∇ ·U)nc

]

+ (Mn
p )

−1
∑

c∈C(p)

[
Pn
c

d

dt
(An

pcn
n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c )

]
,

d

dt
F n
pc = −ρnc (anc )2 (∇ ·U)nc An

pcn
n
pc −Mn

pc

[
d

dt
Un

p +
1

ρnc
(∇P )nc

]

+ Pn
c

d

dt
(An

pcn
n
pc)−

d

dt
(Mn

pc)(U
n
p −Un

c ).

Deduce from this the computation of the time-centered values

U
n+ 1

2
p = Un

p +
∆t

2

d

dt
Un

p ,

F
n+ 1

2
pc = F n

pc +
∆t

2

d

dt
F n
pc.

Step 3. Compute the motion of the mesh thanks to the discrete kinematic equation

xn+1
p − xn

p = ∆tU
n+ 1

2
p ,

and update the geometrical quantities. Then, evaluate the new cell averages ( 1
ρn+1
c

,Un+1
c , En+1

c )
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using the updating formulas

mc

(
1

ρn+1
c

− 1

ρnc

)
−∆t

∑

p∈P(c)

〈Apcnpc〉n+
1

2 ·Un+ 1

2
p = 0,

mc

(
Un+1

c −Un
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc = α(Pcac)

n+ 1

2ey,

mc

(
En+1

c − En
c

)
+∆t

∑

p∈P(c)

F
n+ 1

2
pc ·Un+ 1

2
p = 0.

Finally, compute the new thermodynamic state as Pn+1
c = P (ρn+1

c , εn+1
c ), where εn+1

c =
En+1

c − 1
2 | Un+1

c |2.

3.4.3 Compatible area-weighted cell-centered discretization

Here, we derive a compatible area-weighted cell-centered discretization to solve the crucial
problem of symmetry preservation. It is well known that spherical symmetry in cylindrical
geometry is not preserved with the control volume scheme because the areas along the angular
direction are not equal even when the angles between the radial lines are equal, refer to [35,
37, 104]. Thus for pressures that are radially symmetric the force is not in the radial direction,
leading to a symmetry violation. However, for an equal angle zoned grid cylindrical symmetry
is preserved in Cartesian geometry. This is because the lengths along the angular direction are
then equal. This is precisely this fact that is used here to construct area-weighted schemes in
cylindrical geometry that preserve spherical symmetry on equal angle zoned polar grid

Area-weighted discretization of the momentum equation

The area-weighted formulation is derived by modifying the expression of the sub-cell force in
the momentum equation corresponding the control volume formulation. This modification is
performed to ensure the symmetry preservation for the momentum equation. It is obtained by
considering the alternative expression of the discrete gradient operator (3.137) that has been
derived page 130 ∫

v
∇P dv = R̄

∫

l
Pn dl,

where R̄ denotes the mean pseudo-radius defined by

R̄ =
1

| a |

∫

a
R da.

The definition of the area-weighted sub-cell force follows from the above equation by setting

F aw
pc = R̄c

∫

∂ωpc∩∂ωpc

Pn dl. (3.174)

Here, ∂ωpc denotes the boundary of the sub-cell ωpc related to point p and cell c. The mean
pseudo-radius over the cell ωc, R̄c, is defined according to the above expression by setting

R̄c =
vc
ac
, (3.175)

where ac is the area of the cell ωc and vc its volume obtained by rotating it about x axis. The
difference between the area-weighted and the control volume expression of the sub-cell forces
writes

F cv
pc − F aw

pc =

∫

∂ωpc∩∂ωc

P (R− R̄c)n dl. (3.176)
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In writing this equation, we have used the definition of the control volume sub-cell force (3.147)
page 134. It is interesting to note that these expressions are consistent in the sense that their
difference tends to zero when the volume of the sub-cell tends to zero. We also remark that the
area-weighted sub-cell force can be rewritten under the form

F aw
pc = R̄cF

ca
pc , (3.177)

where F ca
pc =

∫
∂ωpc∩∂ωc

Pn dl denotes the sub-cell force that has been defined in Cartesian
geometry.

Using the above definitions, the discretization of the momentum equation that results from
the use of the area-weighted sub-cell force writes as

mc
dUc

dt
+ R̄c

∑

p∈P(c)

F ca
pc = 0. (3.178)

Substituting mc = ρcvc and the definition of the cell-averaged pseudo-radius (3.175) into the
above equation leads to the equivalent form of the momentum equation

µc
dUc

dt
+
∑

p∈P(c)

F ca
pc = 0, (3.179)

where µc = ρcac corresponds to the mass defined in Cartesian geometry. Note that this mass is
not a Lagrangian quantity in the sense that it is not constant anymore. This latter equation,
shows that the area-weighted discretization of the momentum equation corresponds to the dis-
cretization that has been used in Cartesian geometry. This is the reason why this discretization
preserves spherical symmetry on equal angle zoned polar grids.

Area-weighted discretization of the gas dynamics equations

Finally, the area-weighted discretization of the Lagrangian gas dynamics equations follows from
the control-volume discretization (3.148) page 134 replacing the control volume discretization
of the momentum equation (3.148b) by its area-weighted discretization derived in the latter
paragraph

mc
d

dt
(
1

ρc
)−

∑

p∈P(c)

Apcnpc ·Up = 0, (3.180a)

mc
d

dt
Uc +

∑

p∈P(c)

F aw
pc = 0, (3.180b)

mc
d

dt
Ec +

∑

p∈P(c)

F cv
pc ·Up = 0. (3.180c)

To complete the definition of the area-weighted scheme, we give hereafter the expressions of the
area-weighted and control volume sub-cell forces F aw

pc and F cv
pc . Noticing that the area-weighted

sub-cell force is equal to the cell-averaged pseudo-radius times the sub-cell force that has been
derived in Cartesian geometry, leads to

F aw
pc = R̄c[lpcPcnpc −Mca

pc(Up −Uc)]. (3.181)

Here, Mca
pc denotes a positive definite corner matrix defined in Cartesian geometry. For instance,

this matrix can be chosen as

Mca
pc = z−pcl

−
pc(n

−
pc ⊗ n−

pc) + z+pcl
+
pc(n

+
pc ⊗ n+

pc)].
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Note that this expression corresponds to the general non-linear version of the EUCCLHYD
scheme in Cartesian geometry that has been introduced page 92. Let us recall that the coefficient
z±pc given by (3.86), is the generalized non-linear corner impendance that follows from the use of
the Dukowicz approximate Riemann solver. Concerning the control volume sub-cell force, F cv

pc ,
it is defined according to (3.151) page 135 as

F cv
pc = ApcPcnpc −Mpc(Up −Uc).

The corner matrix, Mpc, in the above equation reads

Mpc = z−pcR−
pcl

−
pc(n

−
pc ⊗ n−

pc) + z−pcR+
pcl

+
pc(n

+
pc ⊗ n+

pc),

where the pseudo-radius R±
pc is given by

R±
pc =

1

3
(Rp± + 2Rp).

Using this notation, we recall that the corner area vector Apc expresses as

Apc = R−
pcl

−
pcn

−
pc +R+

pcl
+
pcn

+
pc.

Let us point out that using the above definitions, the present area-weighted discretization coin-
cides with the one that has been derived in [104]. This area-weighted discretization is compatible
with the Geometric Conservation Law since the volume equation (3.180a) coincides with the
one derived in the control volume preservation. We also observe that the total energy equation
(3.180c) remains unchanged. Therefore, the principle conservation of the total energy still holds
under the condition (3.157) page 136. This implies that the node-centered solver corresponding
to the area-weighted discretization coincides with the node-centered solver (3.158) derived for
the control volume formulation, refer to page 137. From this, it follows that the high-order
extension of the area-weighted discretization is constructed in a similar manner to that was
employed for the control volume discretization, refer to Section 3.4.2 page 139. However, the
area-weighted discretization does not satisfy an entropy inequality. This is due to the fact that
the are-weighted sub-cell force has been derived using a definition of the discrete gradient op-
erator that is not compatible with the definition of the discrete divergence operator. Namely,
the discrete area-weighted gradient operator does not follows from an integration by part of the
vector identity U ·∇P = ∇·(PU)−P∇·U . Using Gibbs formula and (3.180), the computation
of the rate of entropy production within cell ωc is readily obtained and writes

mc
dε

dt
+mcPc

d

dt
(
1

ρc
) = −

∑

p∈P(c)

(F cv
pc −ApcPcnpc) · (Up −Uc) +

∑

p∈P(c)

(F cv
pc − F aw

pc ) ·Uc.

Now, replacing the control volume sub-cell force by its above expression in the first sum of the
right-hand side yields

mc
dε

dt
+mcPc

d

dt
(
1

ρc
) =

∑

p∈P(c)

Mpc(Up −Uc) · (Up −Uc) +
∑

p∈P(c)

(F cv
pc − F aw

pc ) ·Uc. (3.182)

The first sum is non-negative as Mpc is positive semi-definite, it also corresponds to the rate
of entropy production associated to the control volume scheme, refer to (3.152) page 135. Re-
garding the second term in the right-hand side, it has no definite sign, thus it is not possible to
obtain an entropy inequality for the area-weighted scheme.
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3.5 Numerical tests in two-dimensional cylindrical geometry

In this section, we present classical test cases to assess the robustness and the accuracy of the
high-order control volume and area-weighted schemes. For each problem, we use a perfect gas
equation of state which is taken to be of the form P = (γ−1)ρε, where γ is the polytropic index.
The computations have been made using the Dukowicz approximation for the nodal solver [53],
namely the coefficient Γc in the mass swept flux is set equal to γ+1

2 .

3.5.1 Spherical Sod problem

Here, we consider the extension of the classical Sod shock tube [153] to the case of spherical
geometry. The present problem consists of a spherical shock tube of unity radius. The interface
is located at r = 0.5. At the initial time, the states on the left and on the right sides of the
interface are constant. The left state is a high pressure fluid characterized by (ρl, Pl, ul) =
(1, 1, 0), the right state is a low pressure fluid defined by (ρr, Pr, ur) = (0.125, 0.1, 0). The
gamma gas law is defined by γ = 7

5 . The computational domain is defined in polar coordinates

by (r, θ) ∈ [0, 1] × [0, Π2 ] where r =
√
(x2 + y2) and θ = arctan( yx). The initial grid is a polar

grid with 100× 9 equally spaced zones both in the radial and angular direction. The boundary
conditions are wall boundary conditions, that is, the normal velocity is set to zero at each
boundary.

The aim of this test case is to assess the symmetry preservation ability for the area-weighted
and control volume schemes. In what follows, we define a numerical indicator that measures
the loss of symmetry preservation. The polar grid is described using logical j−lines radially
outward and logical i−lines in the angular direction. For the logical i−line, let us introduce the
averaged radius

r̄i =
1

J + 1

J+1∑

j=1

ri,j ,

where J + 1 denotes the number of logical j−lines and ri,j is the radius of the node located
at the intersection of the logical i−lines and the logical j−line. Then, we define the difference
between the averaged radius and the generic radius along the logical i−line

∆ri = max
j=1,...,J+1

| ri,j − r̄i | .

Finally, we introduce the global indicator which characterizes the symmetry preservation by
setting

∆r = max
i=1,...,I+1

∆ri,

where I + 1 denotes the number of logical i−lines.

We run the spherical Sod problem using the high-order area-weighted scheme and the first
and high-order control volume scheme. The corresponding ∆r indicators are displayed in Fig-
ure 3.46 as function of time, using a logarithmic scale. We remark that symmetry preservation
is ensured to numerical roundoff for the area-weighted scheme. As expected, the control volume
scheme does not ensure symmetry preservation. However, it is interesting to note that the high-
order extension performs better than the first-order version, as it can be seen in Figure 3.47.

We have also displayed in Figure 3.48 the numerical density computed with the high-order
area-weighted scheme as function of the cell center radius versus a reference solution. This
reference solution has been computed using a one-dimensional second-order spherical Lagrangian
code with 10,000 cells. We note the good agreement between the numerical and the reference
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Figure 3.46: Symmetry preservation indicator as function of time for the spherical Sod problem.

Figure 3.47: Spherical Sod problem computed with the control volume scheme. Grids at the
stopping time for the first-order scheme (left) and the high-order scheme (right).
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Figure 3.48: Spherical Sod problem. Density as function of the cell center radius versus reference
solution at time t = 0.2.

solution. One can clearly see the non-oscillatory behavior of the proposed high-order scheme.
We emphasize that in particular the beginning and the end of the rarefaction fan are difficult
to capture and that especially here, our high-order scheme performs quite well.

3.5.2 Kidder’s isentropic compression

In [76], Kidder has constructed an analytical solution of the self-similar isentropic compression
of a shell filled with perfect gas. This analytical solution is useful in order to assess the ability
of a Lagrangian scheme to properly compute a spherical isentropic compression. This last point
is a fundamental requirement in the domain of the numerical simulation of Inertial Confinement
Fusion, refer to Chapter 1. Here, we want to check that the high-order area-weighted scheme
does not produce spurious entropy during the isentropic compression.

Following [27], we recall the main features of this solution in order to define the set up of
the test case. Initially, the shell has the internal (resp. external) radius Rb (resp. Re). Let
Pb, Pe, ρb, and ρe be the pressures and densities located at Rb and Re. Since the compression

is isentropic, we define s = Pe

ργe
, and we have ρb = ρe

(
Pb

Pe

) 1
γ
. Let r(R, t) be the radius at time

t > 0 of a fluid particle initially located at radius R. Looking for a solution of the gas dynamics
equation under the form r(R, t) = h(t)R, using the isentropic feature of the flow and setting
γ = 1 + 2

ν , where ν = 1, 2, 3 indicates planar, cylindrical or spherical symmetry, we finally get
the self-similar analytical solution for t ∈ [0, τ [

ρ(r(R, t), t) = h(t)
− 2

γ−1 ρ0

[
r(R, t)

h(t)

]
,

u(r(R, t), t) =
d

dt
h(t)

r(R, t)

h(t)
,

P (r(R, t), t) = h(t)
− 2γ

γ−1P0

[
r(R, t)

h(t)

]
.

Here, τ denotes the focusing time of the shell which is written

τ =

√
γ − 1

2

R2
e −R2

b

a2e − a2b
,
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where a2 = sγργ−1 is the square of the isentropic sound speed. The particular form of the

polytropic index enables us to get the analytical expression h(t) =

√
1−

(
t

τ

)2

, which is valid

for any t ∈ [0, τ [. Note that h(t) goes to zero when t goes to τ , hence τ corresponds to the
collapse of the shell on itself. For R ∈ [Rb, Re], the initial density and pressure, ρ0, P0, are
defined by

ρ0(R) =

(
R2

e −R2

R2
e −R2

b

ργ−1
b +

R2 −R2
b

R2
e −R2

b

ργ−1
e

) 1

γ−1

,

P 0(R) = s
(
ρ0(R)

)γ
.

Note that the initial velocity is equal to zero since the shell is assumed to be initially at rest.
The isentropic compression is obtained imposing the following pressure laws at the internal and
external faces of the shell:

P (r(Rb, t), t) = Pbh(t)
− 2γ

γ−1 ,

P (r(Re, t), t) = Peh(t)
− 2γ

γ−1 .

We point out that the velocity field is a linear function of the radius r which is a typical property
of self-similar isentropic compression.

For numerical applications, we consider the spherical shell characterized by Rb = 0.9 and
Re = 1. We set Pb = 0.1, Pe = 10, and ρe = 10−2. Due to spherical symmetry we have ν = 3,
hence γ = 5

3 . The previous values lead to ρb = 6.31 10−4, s = 2.15 104 and, τ = 6.72 10−3.
The initial computational domain is defined in polar coordinates by (r, θ) ∈ [0.9, 1]× [0, π6 ],

where r =
√
(x2 + y2) and θ = arctan( yx). The computational domain is paved using equally

spaced zones in the radial and the angular directions. Kidder’s problem is run with the three
following polar grids: 25×15, 50×30 and 100×60. The stopping time is chosen to be very close
to the focusing time setting ts = 0.99τ . The computations are performed with the high-order
scheme using the Barth-Jespersen limiter. To precisely estimate the entropy production of the
numerical scheme we define the entropy parameter as

αs =
P

sργ
,

where P is the pressure resulting from the numerical scheme. It is worth noting that for a
perfect isentropic compression αs should be equal to one.

We have plotted in Figure 3.49 the radial component of the velocity versus the analytical
solution at the stopping time. We note that the linear feature of the velocity is very well
preserved. We can also see the convergence of the numerical solutions toward the analytical
one. In order to evaluate the entropy production, we have displayed in Figure 3.50 the entropy
parameter for the high-order GRP scheme. It turns out that the high-order GRP extension
dramatically decreases the value of the entropy parameter and reaches the analytical value.
Therefore, we can conclude that our GRP high-order area-weighted scheme is able to compute
properly isentropic compressions.

3.5.3 Sedov problem

We consider the Sedov problem for a point-blast in a uniform medium with spherical symmetry.
An exact solution based on self-similarity arguments is available, see for instance [74]. The
initial conditions are characterized by (ρ0, P0,U0) = (1, 10−6,0) and the polytropic index is set
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Figure 3.49: Kidder’s isentropic compression. Radial component of the velocity as function of
radius versus analytical solution at stopping time ts = 0.99τ .
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Figure 3.50: Kidder’s isentropic compression. Entropy parameter, αs, as a function of radius
versus analytical solution at stopping time ts = 0.99τ .
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Figure 3.51: Grid at the stopping time for the Sedov problem run with the Cartesian grid.
area-weighted scheme (left) and control volume scheme (right).

equal to 7
5 . We set an initial delta-function energy source at the origin prescribing the pressure

in the cell containing the origin as follows

Por = (γ − 1)ρor
E0
vor

,

where vor denotes the volume of the cell and E0 is the total amount of released energy. Choosing
E0 = 0.425536, as it is suggested in [74], the solution consists of a diverging shock whose front
is located at radius r = 1 at time t = 1. The peak density reaches the value 6.

First, we run a computation using a square grid with an edge of length 1.2 divided into
30 × 30 square zones. Then, keeping the same conditions, we run the Sedov problem on a
polygonal grid produced by a Voronoi tessellation. For each grid we use successively the control
volume scheme and the area-weighted scheme with their high-order extension.

The final mesh for both schemes corresponding to the Cartesian grid are displayed in Fig-
ure 3.51. The results are quite similar for both formulation. We note that the spherical shape
of the shock wave is quite well preserved. As it can be seen in Figure 3.52 the shock location is
very well resolved without any spurious oscillations. The peak density reached by the numerical
solution is in good agreement with the theoretical value. Similar results corresponding to the
polygonal grid are presented in Figures 3.53 and 3.54. Once more, we note the spherical shape
of the shock wave and the good agreement with the analytical solution. These last results reveal
the ability of our high-order Lagrangian scheme to handle unstructured grids.

3.5.4 Noh problem

The Noh problem [124] is a well known test problem that has been used extensively to validate
Lagrangian scheme in the regime of strong shock waves. In this test case, a cold gas with unit
density is given an initial inward radial velocity of magnitude 1. Then, a diverging spherical
shock wave is generated which propagates at speed D = 1

3 . The density plateau behind the
shock wave reaches the value 64. In order to demonstrate the robustness and the accuracy of our
GRP area-weighted scheme, we shall run this test using polar grids with equi-angular zoning.
The initial computational domain is defined in polar coordinates by (r, θ) ∈ [0, 1]× [0, π2 ].
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Figure 3.52: Density in all the cells as a function of cell center radii for the Sedov problem
on the Cartesian grid at time t = 1. area-weighted scheme (left) and control volume scheme
(right).

Figure 3.53: Grid at the stopping time for the Sedov problem run with the polygonal grid.
Area-weighted scheme (left) and control volume scheme (right).
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Figure 3.54: Density in all the cells as a function of cell center radii for the Sedov problem
on the polygonal grid at time t = 1. Area-weighted scheme (left) and control volume scheme
(right).

First, we address the problem of wave front invariance. This requirement which has been
introduced in [34] in the framework of staggered schemes, points out that the artificial viscosity
should have no effect along a wave front of constant phase. In the case of our cell-centered
scheme, there is no artificial viscosity, however we have to check that the numerical viscosity
inherent to our scheme satisfies this wave front invariance requirement. To examine this, we run
the Noh problem with two polar grids characterized by the same zoning in the radial direction
and two different angular zonings. The density maps at the stopping time t = 0.6 are displayed
in Figure 3.55. We note that the symmetry is perfectly preserved. The shock location and the
shock plateau agree quite well with the analytical solution. In Figure 3.56, we have plotted
the density as a function of radius for these two different angular zonings. The small difference
between the two curves shows that the wave front invariance requirement is quite well satisfied.
Finally, we assess the convergence of our scheme computing the Noh problem with the three

following polar grids: 100×9, 200×9 and 400×9. We can observe in Figure 3.57 the convergence
of the numerical solutions toward the analytical one.

To assess the robustness and the accuracy of our control volume formulation, we have run
the Noh problem using an equiangular 100 × 3 polar grid, knowing that this scheme does not
preserve symmetry. The final grid for the first-order control volume scheme is displayed in
Figure 3.58 (left). We note the severe distortion of the grid due to the loss of symmetry of
the scheme. The grid obtained using the high-order extension of the control volume scheme is
displayed in Figure 3.58 (right) and the corresponding density is plotted in Figure 3.59. We note
the dramatic improvement induced by the high-order extension of the control volume scheme.
Using this high-order extension, symmetry is not perfectly achieved, however the quality of the
numerical result has been considerably enhanced.
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Figure 3.55: Mesh and density map for the Noh problem at time t = 0.6. The computations
are performed using the high-order area-weighted scheme with 100 equal radial zones. The left
side result corresponds to a mesh composed of 3 equal angular zones whereas the right side one
corresponds to a mesh composed of 9 equal angular zones.
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Figure 3.56: Density as a function of radius for the Noh problem at stopping time t = 0.6.
Comparison between the numerical results obtained using the high-order area-weighted scheme,
respectively with a 3 equal angular zones grid and a 9 equal angular zones grid.
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Figure 3.57: Noh problem: convergence analysis for the high-order area-weighted scheme, den-
sity as a function of radius at the stopping time t = 0.6.

Figure 3.58: Noh problem run using the control volume scheme: grid at the stopping time for
the first-order scheme (left) and the high-order scheme (right).
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Chapter 4

Cell-centered diffusion schemes for

Lagrangian hydrodynamics

In this chapter, we present a finite volume scheme to solve diffusion equations on two-dimensional
unstructured grids. This scheme is the extension to anisotropic diffusion of the work initially
described in [28]. In deriving this numerical method, we aim at developing numerical modeling
of physical phenomena encountered in plasma physics. More precisely, we are concerned by heat
transfer within laser-heated plasma flows such as those obtained in the domain of direct drive
Inertial Confinement Fusion [11]. Let us emphasize that for such flows, the heat conduction
equation is strongly coupled to the gas dynamics equations describing the plasma motion. These
latter equations, otherwise called Lagrangian hydrodynamics equations, are solved employing
a Lagrangian numerical method wherein the computational grid is moving with the fluid. In
addition, the thermodynamic variables, that is, the density, the pressure, the specific internal
energy and the temperature are located at the cell center. Bearing in mind this coupling be-
tween Lagrangian hydrodynamics and diffusion, leads to the following requirements concerning
the diffusion scheme under consideration:

• It should be a finite volume scheme wherein the primary unknown, i.e., the temperature,
is located at the cell center.

• It should be sufficiently accurate and robust scheme to handle highly distorted grids which
result from the fluid motion.

The present work aims at describing a finite volume scheme which fulfils the previous require-
ments. On that account, we denominate it using the acronym CCLAD which stands for Cell-
Centered LAgrangian Diffusion. Before describing the main features of CCLAD scheme, let us
briefly give an overview of the existing cell-centered diffusion schemes.

It is well known, see [58], that the standard finite volume algorithms, such as the five-
point scheme, behave poorly on highly skewed quadrilateral grids. In this situation, the five-
point scheme produces a numerical solution wherein the diffusion front is aligned with the grid
distortions. This undesirable behavior is due to the crude finite difference approximation used
for discretization of the face fluxes.

Kershaw, in his pioneering work [75] has proposed a nine-point scheme on structured quadri-
lateral grids, which partially resolves the above mentioned difficulties. His scheme consists of
a cell-centered variational method based on a smooth mapping between the logical mesh coor-
dinates and the spatial coordinates. This algorithm reduces to the classical five-point scheme
on an orthogonal grid. In addition, it leads to a diffusion matrix, which is symmetric posi-
tive definite. Although this method is restricted to structured quadrilateral grids, it has been
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successfully used in many Lagrangian codes devoted to the numerical simulation of Inertial
Confinement Fusion, see for instance [120]. Note that Kershaw’s scheme has been recently ex-
tended to unstructured grids [137] and to anisotropic diffusion [135]. However, the underlying
assumption of a smooth mapping used by Kershaw is too restrictive. As it has been shown in
[118], a mesh refinement with Kershaw’s scheme does not give a convergent solution unless the
mesh becomes smooth as it is refined. Moreover, it appears that the normal flux continuity
across cell interfaces is not ensured.

These drawbacks have motivated the work of Morel and his co-authors. In [118] they devel-
oped a cell-centered diffusion scheme, which treats rigorously material discontinuities and gives
a second order accuracy regardless of the smoothness of the mesh. However, this scheme has
two disadvantages: there are cell-edge unknowns in addition to the cell-centered unknowns and
the diffusion matrix is asymmetric.

A significant improvement was provided by Shashkov and Steinberg. In [151], [150] they
derived an algorithm using the Support Operators Method (SOM), also named mimetic finite
difference method. This method, see [149], constructs discrete analogs of the divergence and
flux operators that satisfy discrete analogs of important integral identities relating the contin-
uum operators. By this way, the discrete flux operator is the negative adjoint of the discrete
divergence in an inner scalar product weighted by the inverse conductivity. This SOM diffu-
sion scheme gives the second order accuracy on both smooth and non smooth meshes either
with or without material discontinuities. It has a non local stencil and a dense symmetric
positive definite matrix representation for the diffusion operators. The introduction of both
cell-centered and face-centered unknowns in [119] leads to a variant of this scheme, which has
a local stencil. Many extensions of this algorithm have been recently developed. One can find
in [73, 80, 91, 67, 93], developments that take into account non-isotropic materials, polygonal
and non-conformal meshes, and also polyhedral meshes. This method has been also recently
applied to solve the three-dimensional diffusion equation in multi-material domains containing
mixed cells [62].

In [121], the authors present mimetic preconditioners for mixed discretizations of the dif-
fusion equation. In this paper, SOM is used with two fluxes per edge in order to construct
the local flux discretization. Recently, Lipnikov, Shashkov and Yotov developed a local flux
mimetic finite difference method in [95, 96], which is very similar to our derivation. They also
use two degrees of freedom per edge to approximate the flux. They obtained a symmetric, cell-
centered finite difference scheme. Moreover, they demonstrated theoretically the second-order
convergence for the temperature in the case of simplicial meshes.

In [2],[3] and [1] Aavatsmark and co-authors have proposed an alternative approach named
Multi-Point Flux Approximation (MPFA). There, the flux is approximated by a multi-point
flux expression based on transmissibility coefficients. These coefficients are computed using
continuity of the flux and the temperature across the cell interfaces. This method has only cell-
centered unknowns and a local stencil. In [77], Klausen and Russel present the relationships
between the Mixed Finite Element Method (MFEM), the Control Volume Mixed Finite Element
Method (CVMFEM), the SOM and the MPFA. The latter can be applied in the physical space
to quadrilateral and to unstructured grids. For quadrilaterals, which are not parallelograms
the MPFA provides a second order scheme [4] but the diffusion matrix is non-symmetric. In
[5], the authors develop a MPFA method for quadrilateral grids in the reference space and its
relationship to the MFEM. This approach yields a system of equations with a symmetric matrix.
It shows a second-order convergence on smooth distorted grids. However for rough grids the
reference space method suffers from a reduction or loss of convergence.

The relation between the finite volume and the MFEM is also studied by Thomas and
Trujillo in [157]. These authors use a sub-triangulation, identical to the one used in the present
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paper. They are also able to eliminate auxiliary unknowns. However, the degrees of freedom
for the scalar unknown are located on the vertices of the mesh.

Another class of finite volumes schemes for solving anisotropic diffusion equations on two
and three-dimensional unstructured grids has been developed by Hermeline [69, 70]. This type
of scheme, termed as Discrete Duality Finite Volume (DDFV) scheme, also arises from the
construction of discrete analogs of the divergence and flux operators which fulfil the discrete
counterpart of vector calculus identities. However, this method requires to solve the diffusion
equation not only over the primal grid but also over a dual grid. Namely, there are both cell-
centered and vertex centered unknowns. Compared to a classical cell-centered finite volume
scheme, the DDFV method necessitates twice as much degrees of freedom over quadrangular
grids. Let us point out that this method might be difficult to use in the context of the coupling
between Lagrangian hydrodynamics and diffusion.

We also mention the papers [42] and [56] where local expressions for the diffusion flux has
been derived in the context of finite volume scheme for the diffusion equation. In the same
framework, Le Potier has derived a local flux approximation in [131] and [129] which is very
similar to the MPFA symmetric method and to our method.

We conclude this non-exhaustive review by quoting recent works concerning the develop-
ment of monotone finite volume methods for diffusion equation which preserve the positivity of
the solution. It is well known that high-order linear methods, such as the multi-point flux ap-
proximation, mixed finite element and mimetic finite difference methods, are not monotone on
strongly anisotropic meshes or for diffusion problems with strongly anisotropic coefficients. On
the other hand, the finite volume method with linear two-point flux approximation is monotone
but not even first-order accurate in these cases. This flaw has been corrected by constructing
monotone finite volume schemes wherein the discretization is based on a non-linear two-point
flux approximation [130, 94, 97]. The drawback of these methods lies in the fact that they
require the solution of a global non-linear problem by means of an iterative procedure such as
a fixed point algorithm, even in the case of a linear diffusion equation.

Finally, it seems that the diffusion scheme derived from the SOM has the best combination
of ideal properties of any previous finite-difference scheme. The only drawback lies in the
fact that there are both cell-centered and face-centered unknowns. For instance, using a bi-
dimensional computational domain D paved with CD triangular (quadrangular) cells one has
asymptotically 2.5CD (3CD) unknowns. In addition, the treatment of the supplementary face-
centered unknowns leads to a more complicated algorithm than usual when coupling the diffusion
scheme to hydrodynamics.

This disadvantage has motivated us to propose the CCLAD scheme, which retains as well
as possible the good properties of the SOM diffusion scheme.

The main feature of CCLAD scheme lies in introduction of two half-edge normal fluxes and
two half-edge temperatures on each edge. A local variational formulation written for each cell
corner provides the discretization of the half-edge normal fluxes. This discretization shows that
the half-edge normal fluxes depend on the half-edge temperatures defined on the two edges
impinging on a node and also on the corresponding cell-centered temperature. The continuity
of both half-edge temperatures and half-edge normal fluxes written for each edge surrounding
the node leads to a local, positive definite linear system provided that the conductivity tensor is
definite positive. The resolution of the above linear system allows to eliminate locally the half-
edge temperatures as functions of the mean cell temperatures. At each node, we can construct
a local discrete effective conductivity tensor which is symmetric positive definite provided the
conductivity tensor is also symmetric positive definite. Collecting the contribution of each nodal
tensors, leads to a global diffusion matrix which is positive semi-definite. Finally, the time
discretization results in a linear system satisfied by the cell-centered unknowns, which always
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admits a unique solution. Let us emphasize that the node-based construction of CCLAD scheme
is particularly well adapted to unstructured grids and to the treatment of boundary conditions.

In summary, CLADD scheme has the following properties.

• It is characterized by cell-centered unknowns and a local stencil; it reduces to a nine-point
scheme on quadrangular distorted grids.

• It has a positive definite (resp. symmetric) representation for the diffusion operator if the
conductivity tensor is positive definite (resp. symmetric).

• For triangular grids, it preserves linear solutions and gives the second order accuracy with
or without material discontinuities.

• For rectangular grids, in the case of isotropic diffusion, it reduces to the standard five-
point scheme and the treatment of discontinuous conductivity coefficients is equivalent to
the well known harmonic averaging procedure.

• For non-orthogonal grids, it gives an accuracy which is almost second-order with or without
material discontinuities.

It is interesting to note that CCLAD scheme, like the MPFA reference space method [5]
suffers from a reduction or the loss of convergence on quadrangular random grids i.e., the grids
with perturbations of order h, where h is the mesh size parameter. However, such grids are
seldom encountered in real life simulations wherein the numerical method solving the diffusion
equation is coupled to Lagrangian hydrodynamics. Moreover, let us point out that in the context
of Arbitrary Lagrangian Eulerian (ALE) computations, the rezoning procedure inherent to the
ALE algorithm produces smooth grid for which our scheme exhibits an almost second-order
convergence.

The remainder of this chapter is organized as follows. In Section 4.1 we first give the
problem statement introducing the governing equations, the notation and assumptions and our
motivation regarding the underlying physical model. This is followed by Section 4.2 which is
devoted to the space discretization. In this section we derive the half-edge fluxes approximation
by means of a sub-cell-based variational formulation. We also describe the elimination of the
half-temperatures in terms of the cell-centered unknowns to achieve the construction of the
global discrete diffusion operator. After stating the main properties of the semi-discrete scheme,
we conclude this section by giving indications related to boundary conditions implementation
and by presenting the extension of CCLAD scheme to cylindrical geometry. We pursue by
presenting the time discretization in Section 4.3. Finally, the robustness and the accuracy of
CCLAD scheme are assessed using various representative test cases in Section 4.4.

4.1 Problem statement

4.1.1 Governing equations

Let D be an open set of the d-dimensional space R
d, occupied by a thermally and possibly

electrically conductive material. Let x denotes the vector position of an arbitrary point inside
the domain D and t > 0 the time. The unsteady thermal state of the domain under consideration
is described by means of the specific internal energy field ε = ε(x, t). In the absence of fluid
motion, heat propagation throughout the domain is governed by a partial differential equation,
which is known as the heat conduction equation (refer to Comment 4) and writes as

ρ
∂ε

∂t
+∇ · q = ρr. (4.1)
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Here, ρ is a positive real valued function, which stands for the mass density of the material.
The source term, r, corresponds to the specific heat supplied to the material. Specific internal
energy is expressed in terms of the mass density and the temperature, T , through the use of an
equation of state written under the form ε = ε(ρ, T ). Introducing the specific heat capacity at
constant volume Cv = ( ∂ε

∂T )ρ leads to rewrite the heat conduction equation as

ρCv
∂T

∂t
+∇ · q = ρr. (4.2)

In writing this equation, we have assumed that either ε does not depend on density or ρ does
not depend on time. Let us note that Cv is a positive real valued function, it is also an intrinsic
material properties which may depend on temperature. In the sequel, we assume that ρ, Cv, and
r are known functions. The vector valued function, q, stands for the heat flux. It is expressed
in terms of the temperature gradient by means of the generalized Fourier law

q = −K∇T.

The second-order tensor K is the conductivity tensor which is also an intrinsic property of the
material under consideration. Let us point out that this representation for the flux based on
the linear relation between the flux and the temperature gradient fails if the particle mean
free path becomes comparable to the temperature scale length. This occurs very often in laser
driven plasma flows. There more complicated models are employed related either to local flux
limitation (flux limiters) or to the non-local relation between the flux and the temperature
gradient, refer to [11]. In the sequel, we will study uniquely classical heat transfer phenomena
wherein the heat flux is described using the above Fourier law.

According to the Second Law of thermodynamics, Fourier law has to obey the constraint

q ·∇T ≤ 0. (4.3)

This requirement on the constitutive law of the heat flux simply states that heat flux direction is
opposite to temperature gradient, that is, heat flows from hot region to cold region. Mathemat-
ically speaking, this thermodynamic constraint amounts to state that the conductivity tensor
is a positive definite tensor

Kφ · φ > 0, ∀φ ∈ R
d. (4.4)

Depending on the material under consideration, the conductivity tensor may be either sym-
metric, i.e., Kt = K or may satisfy K(−B) = Kt(B) if the material is in the magnetic field
B, [45]. For an isotropic material, heat flux does not depend on the space directions and thus
conductivity tensor reduces to

K = κ Id, (4.5)

where κ denotes the heat conductivity, which is a positive scalar valued function and Id denotes
the unit tensor.

Being given the material properties, ρ, C,K and the heat supply r, we want to solve the heat
conduction equation (4.2) on the computational domain D. To do so, we need to define initial
and boundary conditions. The initial condition is prescribed as

T (x, 0) = T 0(x), ∀x ∈ R
d, (4.6)

where T 0 denotes the initial temperature field. Regarding the boundary conditions, three types
can be imposed on the boundary of the domain, ∂D. These are: Dirichlet, Neumann and
Robin boundary conditions, they consists in specifying respectively the temperature, the flux
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and a weighted combination of the temperature and the flux. Introduction of the partition
∂D = ∂DD ∪ ∂DN ∪ ∂DR of the boundary domain, allows to write the boundary conditions as

T (x, t) = T ⋆(x, t), ∀x ∈ ∂DD, (4.7a)

q(x, t) · n = q⋆N (x, t), ∀x ∈ ∂DN , (4.7b)

αT (x, t) + βq(x, t) · n = q⋆R(x, t), ∀x ∈ ∂DR. (4.7c)

Here, T ⋆, q⋆N and q⋆R denote respectively the prescribed temperature and fluxes. In addition,
α = α(x, t) and β = β(x, t) are real valued specified functions.

Comment 15 Let us remark that the normal component of the heat flux at the interface between
two media 1 and 2 with different properties is continuous,

(K∇T )1 · n12 = (K∇T )2 · n12,

where n12 is the unit normal to the interface. The temperature itself is also continuous.

4.1.2 Underlying physical models

In deriving a numerical method to solve the heat conduction equation (4.2), we aim at developing
numerical modeling of physical phenomena encountered in plasma physics. More precisely, we
are concerned by heat transfer within laser-heated plasma flows such as those obtained in the
domain of direct drive Inertial Confinement Fusion, refer to [11]. In this context, the energy
released by the laser is transferred throughout the plasma flows by means of electron heat
conduction. Omitting the pressure work term, which results from coupling to hydrodynamics,
the electron temperature, Te, is governed by a heat conduction equation similar to (4.2). In
the classical regime, the electron heat flux, qe is given by the Spitzer-Härm law: qe = −κe∇Te,
where the electron thermal conductivity, κe, depends on the electron temperature as a power

law, i.e., κe(Te) ∼ T
5

2
e , refer to [43, 169]. This corresponds to an isotropic nonlinear heat

conduction equation. However, in presence of magnetic fields, this isotropic model for heat
conduction is not valid anymore. Such a situation occurs frequently for laser driven plasma
wherein the density and pressure gradients are not colinear. In this particular case, a self-
generated magnetic field, B, is created by the rotational component of the ambipolar electric
field, E = − 1

eNe
∇Pe, where e is the electron charge, Ne is the electron density per unit volume

and Pe is the electron pressure, refer to [43]. Knowing that the magnetic field is governed by
the Faraday law, i.e., ∂B

∂t +∇×E = 0, we deduce that the time evolution of the magnetic field
is governed by the following equation

∂B

∂t
=

1

e
∇(

1

Ne
)×∇Pe. (4.8)

The magnetic field dramatically modifies electron heat transport leading to a anisotropic elec-
tron conductivity. It implies not only a reduction of the magnitude of the heat flux but also its
rotation. Using plasma kinetic theory, Braginskii [26] has obtained the following expression of
the electron heat flux with magnetic field

qe = −κ‖(∇Te · b)b− κ⊥[∇Te − (∇Te · b)b]− κ∧b×∇Te, (4.9)

where b = B

|B| is unit vector corresponding to the direction of the magnetic field and κ‖, κ⊥
and κ∧ are scalar conductivities given in [26]. Let us consider a two-dimensional plasma flow
in planar geometry. Let (ex, ey, ez) be the orthonormal basis of R3 and suppose that the two-
dimensional flow is contained in the frame (x, y) equipped with the orthonormal basis (ex, ey).
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Figure 4.1: Normalized Braginskii transport coefficients κ⊥ and κ∧ versus normalized parameter
Ωeτei.

By virtue of (4.8), it is obvious that the self-generated magnetic field is transverse to the two-
dimensional flow, that is, B = Bez. Setting b = B

|B| , we have b = bez, where b
2 = 1. Bearing

this in mind, the electron heat flux expression (4.9) collapses to

qe = −κ⊥∇Te − κ∧b×∇Te. (4.10)

Developing the above equation over the Cartesian frame (x, y) allows to write the electronic
heat flux

qe = −Ke∇Te, (4.11)

where the second-order tensor Ke corresponds to the electronic conductivity defined by

Ke =

(
κ⊥ −bκ∧
bκ∧ κ⊥

)
. (4.12)

The Braginskii transport coefficients κ‖, κ⊥ and κ∧ can be expressed in terms of the Spitzer-
Härm conductivity, κe, as

κ‖ = κe, κ⊥ = κef⊥(Ωeτei), κ∧ = κef∧(Ωeτei),

where f⊥, f∧ are the functions describing the magnetization of the heat flux. In addition,
Ωe ∼| B |, is the electron cyclotron frequency and τei the electron-ion collision frequency. Note
that Ωe has the dimension of the reciprocal of time, thus parameter Ωeτei is dimensionless; it
describes the effect of the magnetic field on the electron heat conductivity as a ratio between
the electron gyration time in the magnetic field and the electron collision time. Bearing this
in mind we have displayed in Figure 4.1 the normalized Braginskii transport coefficients with
respect to the normalized parameter Ωeτei knowing that f⊥(x) = 1

1+x2 , f∧(x) = x
1+x2 . For a

weak magnetic field, that is, Ωeτei ∈ [0, 1], we have κ⊥ > κ∧, whereas for a strong magnetic
filed κ⊥ < κ∧. In the limit | B |→ 0, the normalized parameter Ωeτei also tends to zero and the
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Braginskii coefficients behave as follows: κ⊥ → κe and κ∧ → 0. In this regime, the anisotropic
conductivity tensor Ke recovers the isotropic Spitzer-Härm conductivity, i.e., Ke → κeI2.

We conclude this section by remarking that Ke is not symmetric and transforms as Ke(−b) =
Kt
e(b). This non-symmetry of the conductivity tensor is a consequence of the presence of the

magnetic field, this behavior is known as the Righi-Leduc effect, refer to [45] chapter XI. It
rotates the heat flux vector without changing its absolute value. This property corresponds to
the following result: for all arbitrary vector φ

Keφ · φ = κ⊥ | φ |2 .

Since κ⊥ is positive, the above result shows that Ke is a positive definite tensor which satisfies
the thermodynamic requirement (4.4). It is interesting to note that for an arbitrary vector φ,
Keφ can be decomposed as follows

Keφ = κ⊥φ+ bκ∧Rπ
2
φ, (4.13)

whereRπ
2
denotes the counterclockwise rotation through the angle π

2 . The above equation states
that the anisotropic conductivity tensor acts as an isotropic conductivity tensor supplemented
by a rotation tensor which follows directly from the magnetic field. Finally, computing the
divergence of the anisotropic heat flux (4.10) yields

∇ · qe = −∇ · (κ⊥∇Te) +A ·∇Te, (4.14)

where A = [− ∂
∂y (bκ∧),

∂
∂x(bκ∧)]

t. Under this form the anisotropic diffusion operator appears
as the sum of an isotropic diffusion operator plus an advection operator characterized by the
velocity-like vector A. This decomposition suggests to solve the anisotropic heat conduction
equation discretizing separately the isotropic diffusion operator and the advection operator.
However, such a splitting strategy may suffer from a lack of robustness in case of strong magnetic
fields, refer to [142]. That is why, we prefer to develop a computational method devoted to the
discretization of the whole anisotropic diffusion operator. This computational method, which
will be presented in the sequel, is the natural extension to anisotropic heat conduction of the
finite volume scheme that has been initially derived in [28].

4.1.3 Notation and assumptions

Our motivation is to describe a finite volume scheme that solves the anisotropic heat conduction
equation on two-dimensional unstructured grids. Before we proceed any further, let us introduce
the notation and the assumptions required for the present work. Let D be an open set of the
two-dimensional space R

2. We aim at constructing a numerical scheme to solve the following
initial-boundary-value problem

ρCv
∂T

∂t
+∇ · q = ρr, (x, t) ∈ D × [0,T], (4.15a)

T (x, t) = T 0(x), x ∈ D, (4.15b)

T (x, t) = T ⋆(x, t), x ∈ ∂DD, (4.15c)

q(x, t) · n = q⋆N (x, t), x ∈ ∂DN , (4.15d)

where T > 0 denotes the final time. Equation (4.15a) is a partial differential parabolic equation
of second order for the temperature T , wherein the conductive flux, q, is defined according to

q = −K∇T. (4.16)
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Figure 4.2: Notation related to polygonal cell ωc and one of its sub-cell ωpc.

We suppose that the second-order tensor K is positive definite to ensure thermodynamic con-
sistency. In addition, we make the assumption that there exists h > 0 such that

Kφ · φ ≥ h | φ |2, ∀φ ∈ D. (4.17)

This condition states that the diffusion operator in (4.15a) is strongly elliptic [127], this ensures
the well-posedness of problem (4.15) by means of the Lax-Milgram theorem [133].

Having defined the problem we want to solve, let us introduce some notation necessary to
develop the discretization scheme. Let ∪cωc denotes a partition of the computational domain
D into polygonal cells ωc. The counterclockwise ordered list of vertices (points) of cell c is
denoted by P(c). In addition, p being a generic point, we define its position vector denoted as
xp and the set C(p) which contains all the cells surrounding point p. Being given p ∈ P(c), p−

and p+ are the previous and next points with respect to p in the ordered list of vertices of cell
c. Let ωc be a generic polygonal cell, for each vertex p ∈ P(c), we define the sub-cell ωpc by
connecting the centroid of ωc to the midpoints of edges [p−, p] and [p, p+] impinging at node
p, refer to Figure 4.2. In two dimensions the sub-cell, as just defined, is always a quadrilateral
regardless of the type of cells that compose the underlying grid. The boundaries of the cell ωc

and the sub-cell ωpc are denoted respectively ∂ωc and ∂ωpc. Finally, considering the intersection
between the cell and sub-cell boundaries, we introduce half-edge geometric data. As the name
implies, a half-edge is a half of an edge and is constructed by splitting an edge down its length.
More precisely, we define the two half-edges related to point p and cell c as ∂ω−

pc = ∂ωpc∩ [p−, p]
and ∂ω+

pc = ∂ωpc ∩ [p, p+]. The unit outward normal and the length related to half-edge ∂ω±
pc

are denoted respectively n±
pc and l

±
pc.

To proceed with the construction of numerical scheme, let us integrate (4.15a) over ωc and
make use of the divergence formula. This leads to the weak form of the heat conduction equation

d

dt

∫

ωc

ρCvT (x, t) dv +

∫

∂ωc

q · n ds =

∫

ωc

ρr(x, t)dv, (4.18)

where n denotes the unit outward normal to ∂ωc. We shall first discretize this equation in the
spatial variable x. The physical data, ρ, Cv and r are supposed to be known functions with
respect to space and time variables. We represent them using a piecewise constant approxima-
tion over each cell ωc. The piecewise constant approximation of any variable will be denoted
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using subscript c. The tensor conductivity K space approximation is also constructed using
a piecewise constant representation over each cell, which is denoted by Kc. Concerning the
unknown temperature field, the discretization method we are going to use is the finite volume
method for which the finite dimensional space to which the approximate solution belongs is also
the space of piecewise constant functions. Bearing this in mind, (4.18) rewrites

mcCvc
d

dt
Tc +

∫

∂ωc

q · n ds = mcrc, (4.19)

Here, mc denotes the mass of the cell, that is, mc = ρc | ωc | where | ωc | stands for the volume
of the cell. Let us point out that Tc = Tc(t) is nothing but the mean value of the temperature
over ωc

Tc(t) =
1

| ωc |

∫

ωc

T (x, t) dv.

To define completely the space discretization it remains to discretize the surface integral in the
above equation. To do so, let us introduce the following piecewise constant approximation of
the normal heat flux over each half-edge

q±pc =
1

l±pc

∫

∂ω±
pc

q · n ds. (4.20)

The scalar q±pc stands for the half-edge normal flux related to the half-edge ∂ω±
pc. Knowing that

∂ωc = ∪p∈P(c)∂ω
±
pc, the discretized heat conduction equation writes as

mcCvc
d

dt
Tc +

∑

p∈P(c)

l−pcq
−
pc + l+pcq

+
pc = mcrc. (4.21)

We conclude this paragraph by introducing as auxiliary unknowns the half-edge temperatures
T±
pc defined by

T±
pc =

1

l±pc

∫

∂ω±
pc

T (x, t) ds. (4.22)

In writing this equation, we have also assumed a piecewise constant approximation of the
temperature field over each half-edge.

By virtue of Comment 15, the piecewise constant approximations of the normal

heat flux and temperature along each edge are defined such that these half-edge-

based quantities are continuous across each edge. To exhibit these continuity conditions,
let us consider two neighboring cells, denoted by subscripts c and d, which share a given edge,
refer to Figure 4.3. This edge corresponds to the segment [p, p+], where p and p+ are two
consecutive points in the counterclockwise numbering attached to cell c. It also corresponds
to the segment [r−, r], where r− and r are two consecutive points in the counterclockwise
numbering attached to cell d. Obviously, these four labels define the same edge and thus their
corresponding points coincide, i.e., p ≡ r, p+ ≡ r−. The sub-cell of cell c attached to point
p ≡ r is denoted ωpc, whereas the sub-cell of cell d attached to point r ≡ p is denoted ωrd.
This double notation, in spite of its heaviness, allows to define precisely the half-edge fluxes and
temperatures at the half-edge corresponding to the intersection of the two previous sub-cells.
Namely, viewed from sub-cell ωpc (resp. ωrd), the half-edge flux and temperature are denoted
q+pc and T+

pc (resp. q−rd and T−
rd). Bearing this notation in mind, continuity conditions at the

half-edge (ωpc ∪ ωrd) for the half-edge fluxes and temperatures write explicitly as

q+pc + q−rd = 0, (4.23a)

T+
pc = T−

rd. (4.23b)
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Figure 4.3: Continuity conditions for the half-edges fluxes and temperatures at a half-edge
shared by two sub-cells attached to the same point. Labels c and d denote the indices of two
neighboring cells. Labels p and r denote the indices of the same point relatively to the local
numbering of points in cell c and d. The neighboring sub-cells are denoted by ωpc and ωrd. The
half-edge fluxes, q±pc, q

±
rd and temperatures, T±

cp, T
±
rd are displayed using blue color.

The continuity condition for the heat flux follows from the definition of the unit outward normals
related to (ωpc ∪ ωrd), i.e., n

+
pc = −n−

rd.

To achieve the space discretization of (4.21), it remains to construct a consistent approxi-
mation of the half-edge normal flux, that is, to define a numeric half-edge-based flux function
h±pc such that

q−pc = h−pc(T
−
pc − Tc, T

+
pc − Tc), q+pc = h+pc(T

−
pc − Tc, T

+
pc − Tc). (4.24)

Here, h±pc denotes a real valued function which is continuous with respect to its arguments. Let
us note that we have expressed this function in terms of the temperature difference Tc − T±

pc

since the heat flux is proportional to the temperature gradient. The next steps in the design of
our finite volume scheme will be the following:

• Construction of the half-edge numerical fluxes by means of a local variational formu-

lation over the sub-cell.

• Elimination of the half-edge temperatures through the use of the continuity condition

(4.23) across sub-cell interface.

These tasks will be the main topics of the next section.

4.2 Space discretization

Before proceeding any further, we start by giving a useful and classical result concerning the
representation of a vector in terms of its normal components. This result leads to the expression
of the standart inner product of two vectors, which will be one the tools utilized to derive the sub-
cell variational formulation. Here, we recall briefly the methodology which has been thoroughly
exposed by Shashkov in [149, 119].
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4.2.1 Expression of a vector in terms of its normal components

Let φ be an arbitrary vector of the two-dimensional space R
2 and φpc its piecewise constant

approximation over the sub-cell ωpc. Let φ±pc be the half-edge normal components of φpc, that
is,

φpc · n−
pc = φ−pc,

φpc · n+
pc = φ+pc.

Introducing the corner matrix Jpc = [n−
pc,n

+
pc], the above 2× 2 linear system rewrites

Jtpcφ =

(
φ−pc
φ+pc

)
,

where superscript t denotes the transpose matrix. Provided that n−
pc and n+

pc are not colinear,
the above system has always a unique solution written under the form

φpc = J−t
pc

(
φ−pc
φ+pc

)
. (4.25)

This equation allows to express any vector in terms of its normal components on two non-
colinear unit vectors. This representation allows to compute the inner product of two vectors
φpc and ψpc as follows

φpc ·ψpc = (JtpcJpc)
−1

(
ψ−
pc

ψ+
pc

)
·
(
φ−pc
φ+pc

)
. (4.26)

The 2× 2 matrix Hpc = JtpcJpc is defined by

Hpc =

(
n−
pc · n−

pc n−
pc · n+

pc

n+
pc · n−

pc n+
pc · n+

pc

)
=

(
1 − cos θpc

− cos θpc 1

)
, (4.27)

where θpc denotes the measure of the angle between the two half-edges of sub-cell ωpc impinging
at point p, refer to Figure 4.4. This matrix admits an inverse provided that θpc 6= kπ, where k
is an integer. Under this condition, H−1

pc is readily obtained

H−1
pc =

1

sin2 θpc

(
1 cos θpc

cos θpc 1

)
.

This matrix, which is symmetric definite positive, represents the local metric tensor associated
to the sub-cell ωpc. Let us remark that we have recovered exactly the expressions initially
derived in [119].

4.2.2 Half-edge fluxes approximation based on a local variational formulation

Sub-cell-based variational formulation

We construct an approximation of the half-edge fluxes by means of a local variational formulation
written over the sub-cell ωpc. Contrary to the classical cell-based variational formulation used
in the context of Mimetic Finite Difference Method [73], the present sub-cell-based variational
formulation leads to a local explicit expression of the half-edges fluxes in terms of the
half-edges temperatures and the mean cell temperature. The local and explicit feature of the
half-edge fluxes expression is of great importance, since it allows to construct a numerical scheme
with only one unknown per cell.
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Our starting point to derive the sub-cell-based variational formulation consists in writing
the partial differential equation satisfied by the flux. From the heat flux definition (4.16), it
follows that q satisfies

K−1q +∇T = 0. (4.28)

Let us point out that the present approach is stronlgy linked to the mixed formulation utilized
in the context of mixed finite element discretization [157, 5, 95]. Dot-multiplying this equation
by an arbitrary vector φ ∈ D and integrating over the cell ωpc yields

∫

ωpc

φ · K−1q dv = −
∫

ωpc

φ ·∇T dv, ∀φ ∈ D. (4.29)

Integrating by part the right-hand side and applying the divergence formula leads to the fol-
lowing variational formulation

∫

ωpc

φ · K−1q dv =

∫

ωpc

T∇ · φ dv −
∫

∂ωpc

Tφ · n ds, ∀φ ∈ D. (4.30)

This sub-cell-based variational formulation is the base to construct a local and explicit numerical
approximation of the half-edge fluxes. Replacing T by its piecewise constant approximation Tc
in the first integral of the right-hand side and applying the divergence formula to the remaining
volume integrals leads to

∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc

φ · n ds−
∫

∂ωpc

Tφ · n ds.

Partitioning the sub-cell boundary as ∂ωpc = (∂ωpc ∩ ∂ωc) ∪ (∂ωpc ∩ ωc) in the latter equation
yields

∫

ωpc

φ·K−1q dv = Tc

∫

∂ωpc∩∂ωc

φ·n ds+Tc

∫

∂ωpc∩ωc

φ·n ds−
∫

∂ωpc∩∂ωc

Tφ·n ds−
∫

∂ωpc∩ωc

Tφ·n ds.

Replacing T by Tc in the fourth surface integral of the right-hand side and noticing that the
second integral is equal to the last one allows to write the sub-cell-based variational formulation
under the form

∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc∩∂ωc

φ · n ds−
∫

∂ωpc∩∂ωc

Tφ · n ds. (4.31)

At this point it is interesting to remark that this sub-cell-based formulation is a sufficient
condition to recover the classical cell-based variational formulation. Since the set of sub-cells of
ωc is a partition of this cell, we have

ωc =
⋃

p∈P(c)

ωpc, ∂ωc =
⋃

p∈P(c)

(∂ωpc ∩ ∂ωc).

Thus, by summing (4.31) over all the sub-cells of ωc, we obtain

∫

ωc

φ · K−1q dv = Tc

∫

∂ωc

φ · n ds−
∫

∂ωc

Tφ · n ds. (4.32)

This last equation corresponds to cell-based variational formulation of the partial differential
equation (4.28). This form is used in the context of Mimetic Finite Difference Method [73] to
obtain a discretization of the heat flux. More precisely, it leads to a | P(c) | × | P(c) | linear
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Figure 4.4: Fragment of a polygonal cell ωc. Notation for the sub-cell ωpc: The half-edge fluxes,
q±pc, and temperatures, T±

pc are displayed using blue color.

system satisfied by the edge-based normal components of the heat flux. This results in a non
explicit expression of the edge-based normal components of the flux with respect to the edge-
based temperatures and the mean cell temperature, which leads to a finite volume discretization
characterized by edge-based and cell-based unknowns. In contrast to this approach, the sub-cell
based variational formulation (4.31) yields a finite-volume discretization with one unknown per
cell.

Returning to the sub-cell based variational formulation, we discretize the right-hand side
of (4.31) by introducing the half-edge normal components of φ and the piecewise constant
approximation of the half-edge temperatures as follows

∫

ωpc

φ · K−1q dv = −[l−pc(T
−
pc − Tc)φ

−
pc + l+pc(T

+
pc − Tc)φ

+
pc]. (4.33)

Assuming a piecewise constant representation of the test function allows to compute the volume
integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ · K−1q dv = wpcφpc · K−1
c qpc, (4.34)

Here, Kc denotes the piecewise constant approximation of the conductivity tensor and φpc, qpc
are the piecewise constant approximations of vectors φ and q, refer to Figure 4.4. In addition,
wpc denotes some positive corner volume related to sub-cell ωpc, which will be determined
later. Note that the corner volumes associated to the same cell ωc must satisfy the consistency
condition ∑

p∈P(c)

wpc =| ωc | . (4.35)

Namely, the corner volumes of a cell sums to the volume of the cell. This is the minimal
requirement to ensure that constant functions are exactly integrated using the above quadrature
rule. Now, combining (4.34) and (4.33) and using the expression of the vectors q and φ in terms
of their half-edge normal components leads to the following variational formulation

wpc(J
t
pcKcJpc)

−1

(
q−pc
q+pc

)
·
(
φ−pc
φ+pc

)
= −

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
·
(
φ−pc
φ+pc

)
. (4.36)
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Knowing that this variational formulation must hold for any vector φpc, this implies

(
q−pc
q+pc

)
= − 1

wpc
(JtpcKcJpc)

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (4.37)

This equation constitutes the approximation of the half-edge normal fluxes over a sub-cell. This
local approximation is coherent with expression of the constitutive law (4.16) in the sense that
the numerical approximation of the heat flux is equal to a tensor times a numerical approxima-
tion of the temperature gradient. This tensor can be viewed as an effective conductivity tensor
associated to the sub-cell ωpc. Thus, it is natural to set

Kpc = JtpcKcJpc. (4.38)

Let us emphasize that this corner tensor inherits all the properties of the conductivity tensor
Kc. Namely, Kc being positive definite, Kpc is also positive definite. This comes from the fact
that

Kpcφ · φ = Kc(Jpcφ) · (Jpcφ), ∀φ ∈ R
2.

Using a similar argument, note that if Kc is symmetric, Kpc is also symmetric. Recalling that
Jpc = [n−

pc,n
+
pc], we readily obtain the expression of the corner tensor Kpc in terms of the unit

normal n±
pc

Kpc =

(
Kcn

−
pc · n−

pc Kcn
+
pc · n−

pc

Kcn
−
pc · n+

pc Kcn
+
pc · n+

pc

)
. (4.39)

Let us remark that in the isotropic case, i.e, Kc = κcId, the corner tensor collapses to

Kpc = κcHpc, (4.40)

where κc denotes the piecewise constant scalar conductivity over cell ωc and Hpc is the second-
order tensor defined by (4.27).

We conclude by claiming that a sub-cell-based variational formulation has allowed to con-
struct the following numerical approximation of the half-edge normal fluxes

(
q−pc
q+pc

)
= − 1

wpc
Kpc

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (4.41)

Here, wpc is a positive volume weight, which will be determined later, and the corner conduc-
tivity tensor, Kpc is expressed by (4.39).

Comment 16 It is interesting to remark that the corner tensor Kpc is a linear function with
respect to the piecewise constant approximation of the conductivity tensor Kc. This follows
directly from (4.38). In addition, the corner tensor corresponding to the transpose of Kc is the
transpose of Kpc, i.e., Kpc(K

t
c) = Kt

pc(Kc).

Fundamental inequality satisfied by the discrete approximation of the half-edge

fluxes

The goal of this paragraph is to show that the discrete approximation of the half-edges normal
fluxes (4.41) derived from the sub-cell-based variational formulation satisfies a discrete version
of the fundamental inequality (4.3), which follows from the Second Law of thermodynamics.
This discrete analogous of the fundamental inequality states that for half-edge fluxes defined
according to (4.41) the following inequality holds

∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc ≥ 0, (4.42)
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where C(p) denotes the set of cells surrounding point p. To prove this inequality, let us introduce
Ip as being the nodal quantity defined by

Ip =
∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc. (4.43)

We shall prove that Ip is always non-negative using the sub-cell variational formulation derived
in Section 4.2.2. From (4.36) it follows that for all vector φ the following identity holds

wpcK
−1
pc

(
q−pc
q+pc

)
·
(
φ−pc
φ+pc

)
= −

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
·
(
φ−pc
φ+pc

)
,

where wpc is the positive volume weight and Kpc the definite positive corner conductivity tensor.
Applying this identity for φ = q and rearranging the right hand-side yields

wpcK
−1
pc

(
q−pc
q+pc

)
·
(
q−pc
q+pc

)
= (l−pcq

−
pc + l+pcq

+
pc)Tc − (l−pcq

−
pcT

−
pc + l+pcq

+
pcT

+
pc).

We notice that the left-hand side of the above equation is always non-negative since Kpc is
positive definite. Summing the above equation over all the cells surrounding point p leads to

∑

c∈P(c)

wpcK
−1
pc

(
q−pc
q+pc

)
·
(
q−pc
q+pc

)
=
∑

c∈P(c)

(l−pcq
−
pc + l+pcq

+
pc)Tc −

∑

c∈P(c)

(l−pcq
−
pcT

−
pc + l+pcq

+
pcT

+
pc). (4.44)

It is interesting to mention that the above equation is the discrete analogous of the following
integral identity

−
∫

ωp

∇T · q dv =

∫

ωp

T∇ · q dv −
∫

∂ωp

Tq · n ds, (4.45)

where ωp denotes the dual cell which results from the union of the sub-cells surrounding point
p, i.e., ωp =

⋃
c∈C(p) ωpc. Returning to (4.44), we observe that the second term in the right-hand

side vanishes due to the continuity condition of the fluxes at the half-edges impinging at point
p, refer to (4.23a). Finally, (4.44) turns to

Ip =
∑

c∈C(p)

wpcK
−1
pc

(
q−pc
q+pc

)
·
(
q−pc
q+pc

)
≥ 0. (4.46)

Let us emphasize that inequality (4.42) follows directly from the fact that we have used a
variational formulation to derive the numerical approximation of the flux. This inequality will
be of great importance to prove several crucial results regarding the properties of our finite
volume scheme.

Volume weight computation

In this paragraph, we aim at deriving practical formulas to compute the volume weight, wpc,
present in the flux approximation (4.41). To begin with, let us consider a triangular cell, ωc,
characterized by its counterclockwise ordered vertices p−, p and p+, refer to Figure 4.5. We

state that the flux approximation (4.41) preserves linear fields over triangular cells

provided that the volume weight is such that

wtri
pc =

1

3
| ωc | . (4.47)

To prove this result, let us consider Th = Th(x) a piecewise linear approximation of the
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Figure 4.5: Notation for a triangular cell. Half-edge degrees of freedom are displayed in blue
color.

temperature field, i.e.,

Th(x) = Tc + (∇T )c · (x− xc), ∀x ∈ ωc. (4.48)

Here, xc =
1
3(xp−+xp+xp+) is the centroid of ωc and Tc = Th(xc) denotes the mean temperature

of the cell. In addition, (∇T )c corresponds to the uniform temperature gradient of the cell.
Using the piecewise constant approximation of the conductivity tensor, Kc, this gradient is
rewritten (∇T )c = −K−1

c qc, where qc is the piecewise constant approximation of the flux. With
this notation, (4.48) transforms into

Th(x) = Tc − K−1
c qc · (x− xc), ∀x ∈ ωc. (4.49)

Expressing the two vectors qc and (x − xc) in terms of their half-edge normal components by
means of (4.25) yields

Th(x) = Tc − K−1
pc

(
q−pc
q+pc

)
·
[
(x− xc)

−
pc

(x− xc)
+
pc

]
, ∀x ∈ ωc, (4.50)

where Kpc = JtpcKcJpc. Since this equation holds for all points in ωc, we apply it to x−
pc and x

+
pc

given by

x−
pc =

2xp + xp−

3
, x+

pc =
2xp + xp+

3
. (4.51)

This results in

Th(x
±
pc)− Tc = −K−1

pc

(
q−pc
q+pc

)
·
[
(x±

pc − xc)
−
pc

(x±
pc − xc)

+
pc

]
.

Knowing that

x−
pc − xc =

1

3
(xp − xp+) = −2

3
l+pct

+
pc,

x+
pc − xc =

1

3
(xp − xp−) =

2

3
l−pct

−
pc,
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where t±pc are the half-edge unit tangent vectors such that n±
pc × t±pc = ez, refer to Figure 4.5,

using t−pc · n+
pc = sin θpc and t

+
pc · n−

pc = − sin θpc leads to

Th(x
−
pc)− Tc = −2

3
l+pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·
(
1
0

)
,

Th(x
+
pc)− Tc = −2

3
l−pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·
(
0
1

)
.

Rearranging the above equations allows to express the half-edge normal components of the flux
as (

q−pc
q+pc

)
= − 3

2l−pcl
+
pc sin θpc

Kpc

[
l−pc(Th(x

−
pc)− Tc)

l+pc(Th(x
+
pc)− Tc)

]
. (4.52)

In writing this equation we have obtained an expression of the half-edge fluxes which is exact for
a linear approximation of the temperature field over a triangular cell. The comparison between
this formula and the general formula obtained previously shows that the volume weight is given
by wpc = 2

3 l
−
pcl

+
pc sin θpc, which is nothing but one third of the cell volume. In addition, this

comparison reveals that the piecewise constant half-edge approximations of the temperature
have a clear geometrical interpretation since T±

pc = Th(x
±
pc), refer to Figure 4.5.

Having defined the volume weight for triangular cells, we conclude this paragraph by giving
some indications about the volume weight definition for other types of cells. For quadrangular
cells, according to [73], a reasonable choice is to set

wquad
pc = l−pcl

+
pc sin θpc. (4.53)

This results in a corner volume equal to the half of the area of the triangle formed by points
p−, p and p+, refer to Fig 4.5. Unfortunately this choice does not allow to preserve linear
solution on quadrangular grids, except on grids made of parallelograms, refer to Comment 18.
However, the numerical results obtained on quadrangular grids with this choice appeared to be
quite satisfactory as we shall see in the section devoted to the numerical results. For general
polygonal cells, two possible choices are obtained setting

wpoly1
pc =

1

| P(c) | | ωc |, wpoly2
pc =| ωpc |, (4.54)

where | P(c) | is the total number of sub-cells in cell c. Since the behavior of the numerical
method will not be assessed on general polygonal grids, we do not pursue investigations about
an optimal choice of the volume weight for polygonal cell.

Comment 17 Let us point out that all these volume weights must be positive and consequently
they have been defined assuming that we are dealing with valid cells, that it, is convex cells. The
occurence of non-convex cells can be treated using the rough remedy which consists in replacing
the original volume weight by its absolute value.

4.2.3 Finite difference approximation of the half-edge fluxes

In this section, we aim at deriving a finite difference approximation of the half-edge fluxes which
preserves linear solutions regardless the shape of the cell. Doing so, we enforce the accuracy of
our space discretization. However, since this approximation does not result from a variational
formulation, in general, we cannot insure the transfer of the good properties of the conductivity
tensor to the discrete approximation. For instance, it will not be possible to ensure that the
inequality (4.42) holds for a finite difference approximation of the fluxes.
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Let ωc be an arbitrary cell and ωpc its sub-cell associated to point p. To define a finite
difference approximation which is linear preserving, we reuse the piecewise linear approximation
of the temperature over ωc introduced in the latter paragraph as

Th(x) = Tc − K−1
c qc · (x− xc), ∀x ∈ ωc.

Let us recall, that xc is the centroid of the cell, i.e., xc =
1

|ωc|

∫
ωc
x dv, and Tc is the cell averaged

temperature. In writing the above equation we have used the piecewise constant definition of
the heat flux, i.e., qc = −Kc(∇T )c. Let i± denotes the midpoint of the segment [p, p±] and
xi± its corresponding position vector. Assuming that the half-edge temperature T±

pc is given by
T±
pc = Th(xi±) leads to

T−
pc − Tc = −K−1

c qc · (x−
i − xc),

T+
pc − Tc = −K−1

c qc · (x+
i − xc).

(4.55)

Setting µ±
pc = x±

i − xc and using (4.25), we transform (4.55) by expressing the vectors qc and
µ±
pc in terms of their normal components

T−
pc − Tc = −K−1

c J−t
pc

(
q−pc
q+pc

)
· J−t

pc

(
µ−
pc · n−

pc

µ−
pc · n+

pc

)
,

T+
pc − Tc = −K−1

c J−t
pc

(
q−pc
q+pc

)
· J−t

pc

(
µ+
pc · n−

pc

µ+
pc · n+

pc

)
.

Introducing the sub-cell conductivity tensor Kpc defined by (4.38) and after some manipulations,
the above equation rewrites as

(
T−
pc − Tc
T+
pc − Tc

)
= −

(
µ−
pc · n−

pc µ−
pc · n+

pc

µ+
pc · n−

pc µ+
pc · n+

pc

)
K−1
pc

(
q−pc
q+pc

)
.

The rows of the first matrix in the right-hand side corresponds to the half-edge normal compo-
nents of vectors µ−

pc and µ+
pc. This matrix is non-singular provided these two vectors are not

colinear. Assuming this and solving the above linear system leads to the final expression of the
half-edge normal fluxes

(
q−pc
q+pc

)
= − 1

∆pc
Kpc

(
µ+
pc · n+

pc −µ−
pc · n+

pc

−µ+
pc · n−

pc µ−
pc · n−

pc

)(
T−
pc − Tc
T+
pc − Tc

)
, (4.56)

where ∆pc = (µ−
pc ·n−

pc)(µ
+
pc ·n+

pc)− (µ−
pc ·n+

pc)(µ
+
pc ·n−

pc) is the determinant of the matrix defined
by the normal components of µ±

pc. Equation (4.56) constitutes a finite difference approximation
of the half-edge normal fluxes which is linear preserving since it has been deduced from a
piecewise linear approximation of the temperature field. However, the matrix form of this
approximation reveals that the property transfer, which characterizes the flux approximation
derived through the use of variational formulation, does not hold here. This is due to the fact
that the matrix defined by the normal components of µ±

pc is not a symmetric positive definite
matrix in general. Using such an approximation for the normal flux, leads to a finite volume
discretization characterized in general by a non-symmetric discrete diffusion operator, which
renders the resolution of the corresponding linear system less easy. The main advantage in
using this scheme lies in the fact that it preserves linear solution regardless the shape of the
cells. We postpone further investigation about this non-symmetric formulation to a forthcoming
paper, knowing that here, we have chosen to develop our finite volume discretization using the
approximation of the normal fluxes resulting from the sub-cell-based variational formulation.
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Comment 18 It is interesting to investigate further the finite difference approximation (4.2.3)
in the case where ωpc is a parallelogram. In this particular case, we have µ−

pc = −l+pct+pc and
µ+
pc = l−pct

−
pc where t

−
pc and t

+
pc denote the unit tangent vectors to the two half-edges impinging at

point p. Bearing this in mind, we have µ−
pc · n−

pc = −l+pc sin θpc and µ+
pc · n+

pc = l−pc sin θpc. Using
these results, the finite difference approximation (4.2.3) turns into

(
q−pc
q+pc

)
= − 1

l−pcl
+
pc sin θpc

Kpc

(
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

)
. (4.57)

We have recovered a form which coincides with the one resulting from the variational formulation
(4.41). In addition, we can identify the volume weight as being wpc = l−pcl

+
pc sin θpc, which is

exactly the weight (4.53) introduced in the latter paragraph for quadrangular cells. This shows,
that the flux approximation resulting from the sub-cell-based variational formulation, with the
latter definition of the volume weight, is able to preserve linear solution on quadrangular grids
made of parallelograms.

4.2.4 Elimination of the half-edge temperatures

From (4.41), it appears that the numerical approximation of the half-edge fluxes at a corner
depends on the difference between the mean cell temperature and the half-edges temperatures.
The mean cell temperature is the primary unknown whereas the half-edge temperatures are
auxiliary unknowns, which can be eliminated by means of continuity argument (4.23a). Namely,
we use the fact that the half-edge normal fluxes are continuous across each half-edges impinging
at a given point. This local elimination procedure, which will be describe below, yields a
linear system satisfied by the half-edge temperatures. We will show that this system admits
always a unique solution which allows to express the half-edge temperatures in terms of the
mean temperatures of the cells surrounding the point under consideration. Therefore, this local
elimination procedure results in a finite volume discrete scheme with one unknown per cell.

Local notation around a point

To derive the local elimination procedure, we shall introduce some convenient notation. Let p
denotes a generic point which is not located on the boundary ∂D. The treatment of boundary
points is postponed to Section 4.2.7, which is devoted to boundary conditions implementation.
Let C(p) be the set of cells that surround point p. The edges impinging at point p are labelled
using the subscript c ranging from 1 to Cp, where Cp denotes the total number of cells surround-
ing point p. The cell (sub-cell) numbering follows the edge numbering, that is, cell ωc (sub-cell
ωpc) is located between edges c and c + 1, refer to Figure 4.6. The unit outward normal to
cell ωc at edge c is denoted by nc

c whereas the unit outward normal to cell ωc at edge c + 1 is
denoted by nc+1

c . Assuming the continuity of the half-edge temperatures leads to denote by T c

the unique half-edge temperature of the half-edge c impinging at point p. Note that we have
omitted the dependency on point p in the indexing each time this is possible to avoid too heavy
notion. With this notation, the expression of the half-edge fluxes (4.41) turns into

(
qcc
qcc+1

)
= − 1

wpc
Kpc

[
lc(T c − Tc)

lc+1(T c+1 − Tc)

]
, ∀c ∈ C(p). (4.58)

Here, qcc (resp. qcc+1) denotes the half-edge normal flux at edge c (resp. c+ 1) viewed from cell
c. In addition lc denotes the half of the length of edge c. In writing these equations, we assume
a periodic numbering around the point p. According to (4.39), the sub-cell conductivity tensor
is defined as

Kpc =

(
Kcn

c
c · nc

c Kcn
c
c+1 · nc

c

Kcn
c
c · nc

c+1 Kcn
c
c+1 · nc

c+1

)
, ∀c ∈ C(p), (4.59)
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Figure 4.6: Notation for sub-cells surrounding point p.

where Kc is the piecewise constant approximation of the conductivity tensor in cell c. Combining
(4.58) and (4.59) yields the explicit expressions

qcc = −αc[lc(Kcn
c
c · nc

c)(T c − Tc) + lc+1(Kcn
c
c+1 · nc

c)(T c+1 − Tc)], (4.60a)

qcc+1 = −αc[lc(Kcn
c
c · nc

c+1)(T c − Tc) + lc+1(Kcn
c
c+1 · nc

c+1)(T c+1 − Tc)], (4.60b)

where we have introduced the inverse of the volume weight setting αc =
1

wpc
. Shifting index c,

i.e., c→ c− 1, in (4.60b) leads to the following expression for the half-edge normal flux at edge
c viewed from cell c− 1

qc−1
c = −αc−1[lc−1(Kc−1n

c−1
c−1 · nc−1

c )(T c−1 − Tc−1) + lc(Kc−1n
c−1
c · nc−1

c )(T c − Tc−1)]. (4.61)

Linear system satisfied by the half-edge temperatures

Bearing this in mind, we are now in position to proceed with the elimination of the half-edge
temperatures by writing the continuity of the half-edge normal fluxes at each edge c. This
continuity condition at edge c reads as

lcq
c−1
c + lcq

c
c = 0, ∀c ∈ C(p). (4.62)

Let us remark that this continuity condition provides Cp equations for the Cp auxiliary unknowns
T c. Substituting (4.61) and (4.60a) into the continuity condition yields

αc−1lc−1lc(Kc−1n
c−1
c−1 · nc−1

c )T c−1+

[αc−1l
2
c (Kc−1n

c−1
c · nc−1

c ) + αcl
2
c (Kcn

c
c · nc

c)]T c+

αclclc+1(Kcn
c
c+1 · nc

c)T c+1 =

αc−1lc[lc−1(Kc−1n
c−1
c−1 · nc−1

c ) + lc(Kc−1n
c−1
c · nc−1

c )]Tc−1+

αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c+1 · nc

c)]Tc.
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To write this equation under a more concise form, let us introduce T = (T1, . . . , TCp
)t as the

vector of the cell-centered temperatures around point p and T = (T 1, . . . , T Cp
)t as the vector of

the half-edge temperatures around point p. The continuity condition (4.62) amounts to write
that T satisfies the following Cp × Cp linear system

MT = ST . (4.63)

Let us remark that M is a tridiagonal cyclic matrix. This cyclic form is natural consequence
of the periodic numbering we have used in solving continuity equations (4.62). The non-zero
terms corresponding to the cth row of this matrix write as





Mc,c−1 = αc−1lc−1lc(Kc−1n
c−1
c−1 · nc−1

c ),

Mc,c = αc−1l
2
c (Kc−1n

c−1
c · nc−1

c ) + αcl
2
c (Kcn

c
c · nc

c),

Mc,c+1 = αclclc+1(Kcn
c
c+1 · nc

c).

(4.64)

From the first equation it follows that

Mc+1,c = αclclc+1(Kcn
c
c · nc

c+1).

The comparison of this term with Mc,c+1 shows that M is symmetric if and only if the conduc-
tivity tensor, Kc is also symmetric. Regarding S, it is a bidiagonal cyclic matrix, the non-zero
terms corresponding to the cth row are:

{
Sc,c−1 = αc−1lc[lc−1(Kc−1n

c−1
c−1 · nc−1

c ) + lc(Kc−1n
c−1
c · nc−1

c )],

Sc,c = αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c+1 · nc

c)].
(4.65)

We remark that M can be decomposed as

M = LNL. (4.66)

Here, L is the diagonal matrix defined by Lc,d = lcδc,d, where δc,d denotes the Kronecker symbol,
i.e., δc,d = 1 if c = d and δc,d = 0 if c 6= d. Matrix N is also a tridiagonal cyclic matrix and its
non-zero components read as

Nc,c−1 = αc−1(Kc−1n
c−1
c−1 · nc−1

c ),

Nc,c = αc−1(Kc−1n
c−1
c · nc−1

c ) + αc(Kcn
c
c · nc

c),

Nc,c+1 = αc(Kcn
c
c+1 · nc

c).

Let us write this matrix explicitly in the particular case Cp = 4, which corresponds to a point
surrounding by 4 cells

N =




α4(K4n
4
1·n

4
1)+α1(K1n

1
1·n

1
1) α1(K1n

1
2·n

1
1) 0 α4(K4n

4
4·n

4
1)

α1(K1n
1
1·n

1
2) α1(K1n

1
2·n

1
2)+α2(K2n

2
2·n

2
2) α2(K2n

2
3·n

2
2) 0

0 α2(K2n
2
2·n

2
3) α2(K2n

2
3·n

2
3)+α3(K3n

3
3·n

3
3) α3(K3n

3
4·n

3
3)

α4(K4n
4
1·n

4
4) 0 α3(K3n

3
3·n

3
4) α3(K3n

3
4·n

3
4)+α4(K4n

4
4·n

4
4)


 .

A closer inspection of the above matrix reveals an interesting block-structure. Namely, N can
be decomposed as

N =
4∑

c=1

αcNc,
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where Nc are 4× 4 sparse matrices which read

N1 =




K1n
1
1 · n1

1 K1n
1
2 · n1

1 0 0
K1n

1
1 · n1

2 K1n
1
2 · n1

2 0 0
0 0 0 0
0 0 0 0


 , N2 =




0 0 0 0
0 K2n

2
2 · n2

2 K2n
2
3 · n2

2 0
0 K2n

2
2 · n2

3 K2n
2
3 · n2

3 0
0 0 0 0


 ,

N3 =




0 0 0 0
0 0 0 0
0 0 K3n

3
3 · n3

3 K3n
3
4 · n3

3

0 0 K3n
3
3 · n3

4 K3n
3
4 · n3

4


 , N4 =




K4n
4
1 · n4

1 0 0 K4n
4
4 · n4

1

0 0 0 0
0 0 0 0

K4n
4
1 · n4

4 0 0 K4n
4
4 · n4

4


 .

This decomposition extends readily to the general case as

N =

Cp∑

c=1

αcNc, (4.67)

where Nc is the Cp × Cp defined by

Nc =




0 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · Kcn
c
c · nc

c Kcn
c
c+1 · nc

c . . . 0
0 · · · Kcn

c
c · nc

c+1 Kcn
c
c+1 · nc

c+1 . . . 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0




. (4.68)

The non-zero terms of this matrix consist of 2× 2 block which is located at the intersection of
the cth and c+ 1th columns and rows. In addition, this 2× 2 block coincides with the sub-cell
conductivity matrix Kpc defined by (4.59).

Bearing this decomposition in mind, we claim that M is a positive definite matrix, that
is,

MT · T > 0, ∀T ∈ R
Cp . (4.69)

To prove this fundamental result we proceed in two steps. First, we note that M is positive
definite if and only if N is positive definite. This first result follows from

MT · T =(LNL)T · T , thanks to (4.66)

=L[(NL)T ] · T
=N(LT ) · (LT ),

since L is symmetric, i.e., Lt = L. Second, we prove that N is positive definite by computing
NT · T using the decomposition (4.67)

NT · T =

Cp∑

c=1

αcNcT · T

=

Cp∑

c=1

αcKpc

(
T c

T c+1

)
·
(
T c

T c+1

)
.

Since αc is positive and Kpc is positive definite, the right-hand side of the last equation is always
positive, which ends the proof. This shows that matrix M inherits the properties of the corner
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conductivity matrix Kpc which results from the discretization of the half-edge normal fluxes.
Particularly, M is symmetric provided that Kpc is also symmetric. This properties transfer
from Kpc to M also emphasizes that the first step in the numerical scheme derivation, i.e., the
half-edge normal fluxes discretization, must be performed with great care. We state that

the linear system (4.63) has always a unique solution which provides the half-edge

temperatures in terms of the mean cell temperatures surrounding a given point p

T = (M−1S)T , (4.70)

where the matrices M and S are defined respectively by (4.64) and (4.65). The solution of
the corresponding tridiagonal cyclic system is easily obtained by using the numerical algorithm
proposed in [132].

Comment 19 It is important to note that the solution of the linear system (4.70) has to pre-
serve uniform temperatures field. Thus, matrix M−1S satisfies the following property

(M−1S)1Cp
= 1Cp

, (4.71)

where 1Cp
∈ R

Cp is vector whose all entries are equal to 1. This means that 1Cp
is the eigenvector

of M−1S associated to the eigenvalue 1.

It is interesting to mention that matrices M et S exhibit a linear dependency on the conductivity
tensor K. This result is a direct consequence of the definitions (4.64) and (4.65). In addition,
the matrix M associated to the transpose of K corresponds to the transpose of the matrix M

associated to K, i.e.,

M(Kt
1, . . . , λK

t
Cp
) = Mt(K1, . . . ,KCp

). (4.72)

By way of contrast, the matrix S associated to the transpose of K does not correspond the
transpose of the matrix S associated to K since S is a bidiagonal matrix. In this case, we need
to introduce the new matrix S̃ defined as

S̃(K1, . . . ,KCp
) = S(Kt

1, . . . , λK
t
Cp
). (4.73)

From this definition and (4.64), the non-zero entries of S̃ write explicitly

{
S̃c,c−1 = αc−1lc[lc−1(Kc−1n

c−1
c · nc−1

c−1) + lc(Kc−1n
c−1
c · nc−1

c )],

S̃c,c = αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c · nc

c+1)].
(4.74)

Here, we have used the fact that Kt
cn ·m = Kcm · n for all vectors (n,m) ∈ R

2 × R
2. Note

that S̃ = S if and only if the conductivity tensor is symmetric.

Maximum principle for the half-edge temperatures in the case of a symmetric

positive definite conductivity tensor

In this paragraph, we aim at deriving sufficient conditions such that the half-edges temperatures
satisfy a maximum principle, in the case of a symmetric positive definite conductivity tensor.
More precisely, suppose that the mean cell temperatures are such that 0 < Tc ≤ Θ for all
c ∈ C(p), we want to exhibit conditions related to matrices M and S so that the half-edge
temperatures satisfy also 0 < T c ≤ Θ for all c ∈ C(p), where Θ > 0 is a given temperature. To
derive these sufficient conditions, we need to introduce the notion of M-matrix. Following the
definition of [161], a real matrix A with non-positive off-diagonal entries is an M-matrix if A
is non-singular and the entries of A−1 are non-negative. A useful characterization of M-matrix
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is given by the following proposition: if A is a symmetric positive definite matrix with non-
positive off-diagonal entries, then it is an M-matrix. This latter kind of matrix is sometimes
called Stieltjes matrix [161]. Bearing this in mind, we are going to find a sufficient condition to
ensure that M is an M-matrix. First, let us point out that M is symmetric definite positive since
by assumption the conductivity tensor, Kc, is symmetric definite positive. Thus, observing the
off-diagonal entries of M given by (4.64), a sufficient condition to ensure that M is an M-matrix
consists in prescribing

(Kcn
c
c+1 · nc

c) ≤ 0, ∀c ∈ C(p). (4.75)

Since Kc is symmetric positive definite, Schwartz inequality leads to

| (Kcn
c
c+1 · nc

c) |
(Kcn

c
c+1 · nc

c+1)
1

2 (Kcnc
c · nc

c)
1

2

≤ 1.

Hence, there exists a unique νc ∈ [0, π] such that

cos νc = − (Kcn
c
c+1 · nc

c)

(Kcn
c
c+1 · nc

c+1)
1

2 (Kcnc
c · nc

c)
1

2

, ∀c ∈ C(p). (4.76)

Defining the symmetric positive definite tensor Uc as being the square root of Kc, i.e., Kc = U2
c ,

the angle νc rewrites as

cos νc = − (Ucn
c
c+1 · Ucn

c
c)

(Ucn
c
c+1 · Ucn

c
c+1)

1

2 (Ucnc
c · Ucnc

c)
1

2

, ∀c ∈ C(p).

This shows that π−νc is the measure of the angle between the vectors Ucn
c
c+1 and Ucn

c
c, which

are the images of the unit normal vectors nc
c+1 and nc

c in the transformation associated to the
local metric defined by tensor Kc. With this notation, sufficient condition (4.75), turns into the
more explicit form

νc ∈ [−π
2
,
π

2
], ∀c ∈ C(p). (4.77)

Assuming this condition, we have M−1
c,d ≥ 0 for all (c, d) ∈ C2(p). Recalling that T = (M−1S)T ,

to ensure the maximum principle for T it remains to exhibit a sufficient condition such that the
entries of S are non-negative. Introducing the angle νc in the expressions of S entries (4.65),
this condition readily writes as

cos νc ≤ min(
lc
lc+1

(Kcn
c
c · nc

c)
1

2

(Kcn
c
c+1 · nc

c+1)
1

2

,
lc+1

lc

(Kcn
c
c+1 · nc

c+1)
1

2

(Kcnc
c · nc

c)
1

2

), ∀c ∈ C(p). (4.78)

This condition results in a limitation of the permitted values of νc, this limitation expressing in
terms of the cell aspect ratio with respect to the local metric defined by Kc.

Finally, we claim that the maximum principle for the half-edge temperatures holds provided
the sufficient conditions (4.77) and (4.78) are satisfied. Indeed, assuming (4.77) and (4.78)
implies that the entries of M−1S are non-negative. In addition, by virtue of Comment 4.71 we
have ∑

d∈C(p)

(M−1S)c,d = 1, ∀c ∈ C(p).

Thus, the entries of M−1S satisfy the following inequality

0 ≤ (M−1S)c,d ≤ 1, ∀(c, d) ∈ C(p)2.
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Therefore, each component of T = M−1ST is a convex combination of the components of T
since

T c =
∑

c∈C(p)

(M−1S)c,dTd.

Using the above arguments it is clear that if Td ∈ [0,Θ] then T c ∈ [0,Θ], which ends the proof.
We conclude by stating the following maximum principle for the half-edge temperatures:

being given a symmetric positive definite conductivity tensor and assuming that the following
geometric conditions hold for all c ∈ C(p)

νc ∈ [−π
2
,
π

2
],

cos νc ≤ min(
lc
lc+1

(Kcn
c
c · nc

c)
1

2

(Kcn
c
c+1 · nc

c+1)
1

2

,
lc+1

lc

(Kcn
c
c+1 · nc

c+1)
1

2

(Kcnc
c · nc

c)
1

2

),

where νc is the angle defined by (4.76). If the mean cells temperature are such that Tc ∈ [0,Θ]
for all c ∈ C(p) then the half-edge temperatures satisfy T c ∈ [0,Θ] for all c ∈ C(p).

Let us notice that these geometric conditions are quite difficult to use since they also depend
on the local value of the conductivity tensor. We will see in the next paragraph that they are
easier to interpretate in the case of an isotropic conductivity.

The case of isotropic conductivity

It is interesting to investigate the particular case of an isotropic conductivity, i.e., Kc = κc Id,
where κc > 0 denotes the piecewise constant approximation of the scalar conductivity κ in cell
c. If θc denotes the measure of the angle between edges c and c + 1 then nc

c · nc
c+1 = − cos θc.

It follows from (4.64) that the cth row of matrix M reduces to





Mc,c−1 = −αc−1κc−1lc−1lc cos θc−1,

Mc,c = αc−1κc−1l
2
c + αcκcl

2
c ,

Mc,c+1 = −αcκclclc+1 cos θc.

(4.79)

It turns out that M is a symmetric matrix. Using the result of the previous paragraphs, we
know that M is definite positive. However, it is quite instructive to demonstrate this directly.
Recalling that θc 6= kπ, where k is an integer, implies that Mc,c >| Mc,c−1 | + | Mc,c+1 | for all
c ∈ C(p), thus M is strictly diagonally dominant. Noticing that all the diagonal entries of M
are positive real numbers allows to claim that this matrix is nonsingular and all its eigenvalues
are positive [161]. In addition, the off-diagonal entries are negative provided that θc ∈ [−π

2 ,
π
2 ]

for all c ∈ C(p). Namely, M is an M-matrix provided that the previous angular condition
holds. Let us note that we have recovered the angular condition (4.77). Indeed by setting
Kc = κc Id into the definition of νc (4.76), we find that νc coincides with θc. Bearing this in
mind, we deduce from the previous paragraph the isotropic version of the maximum principle
for the half-edge temperatures: under the geometric conditions

∀c ∈ C(p),





θc ∈ [−π
2
,
π

2
],

cos θc ≤ min(
lc+1

lc
,
lc
lc+1

),
(4.80)

if the mean cell temperatures are such that 0 < Tc ≤ Θ for all c ∈ C(p), then the half-edge
temperatures satisfy the inequality 0 < T c ≤ Θ, for all c ∈ C(p), where Θ > 0 is a given
temperature. Note the second condition ensure that the entries of S are non-negative. This
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Figure 4.7: Limit angle θlimc versus sub-cell aspect ratio ζ = lc
lc+1

. The permitted angular

domain to satisfy the geometric condition (4.80) is the region located between the red and the
blue curves.

condition could have been obtained proceeding directly with S entries knowing that in the
isotropic case they simply write

{
Sc,c−1 = αc−1κc−1lc(lc − lc−1 cos θc−1),

Sc,c = αcκclc(lc − lc+1 cos θc).
(4.81)

To investigate further the impact of the geometric conditions, being given the half-edge lengths
lc and lc+1, let us introduce the limit angle θlimc = arccos[min( lc+1

lc
, lc
lc+1

)]. Condition (4.80) is

equivalent to the requirement that θc ∈ [−π
2 ,−θlimc ] ∪ [θlimc , π2 ]. In Figure 4.7, we have plotted

the limit angle variation in terms of the sub-cell aspect ratio ζ = lc
lc+1

. Note that we have only
displayed the positive value knowing that the negative value is obtained by symmetry about
zero. The permitted values of the sub-cell angle θc to ensure that the geometric conditions
hold is the domain delimited at the bottom by the curve θc = θlimc (ζ) and at the top by the
straight line θc =

π
2 . This graph shows that for moderate aspect ratios the geometric condition

(4.80) is not too much restrictive. However, for high aspect ratios, this conditions becomes very
restrictive in the sense that the permitted angles are closed to right angles.

Comment 20 We note that in the case of a rectangular grid, the present scheme recovers
the well known five-point scheme. In this case, each vertex of the grid is surrounded by four
rectangular grids, thus θc =

π
2 for all c = 1 . . . 4. Defining the volume weights wpc according to

(4.53) yields αc =
1

lclc+1
. We obtain that M reduces to the diagonal matrix defined as

Mc,d = lc(
κc−1

lc−1
+

κc
lc+1

)δc,d.

Regarding S, its cth row writes as

Sc,c−1 = lc
κc−1

lc−1
, Sc,c = lc

κc
lc+1

.
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The half-edge temperatures are readily deduced from the solution of the diagonal 4 × 4 linear
system (4.63)

T c =

κc−1

lc−1
Tc−1 +

κc

lc+1
Tc

κc−1

lc−1
+ κc

lc+1

.

Substituting the above result in the half-edge flux expression (4.60a) leads to

qcc =
1

lc−1

κc−1
+ lc+1

κc

(Tc − Tc−1).

We have recovered the expression of the normal flux which corresponds to the classical five-point
scheme characterized by a weighted harmonic averaging of the scalar conductivity at the cell
interface.

4.2.5 Construction of the diffusion matrix

After having expressed the half-edge temperatures in terms of the mean cell temperatures, we
are now in position to achieve the construction of the scheme by gathering the previous results.

Local diffusion matrix at a generic point

We start by deriving the local diffusion matrix at a generic point p. To this end, we first recall
the semi-discrete scheme which has been obtained in Section 4.1.3

mcCvc
d

dt
Tc +

∑

p∈P(c)

l−pcq
−
pc + l+pcq

+
pc = mcrc.

In this equation, the half-edge fluxes (q−pc, q
+
pc) attached to sub-cell ωpc, express in terms of the

half-edge temperatures by means of (4.41). In addition, the half-edge temperatures express in
terms of the mean cell temperatures surrounding point p through the use of the solution of
the linear system (4.70). Therefore, to write the semi-discrete scheme in terms of the primary
unknowns, that is, the mean cell temperatures, it remains to substitute the expression of the
half-edge temperatures in terms of the mean cell temperatures into the half-edge normal fluxes.
To perform this substitution, it is convenient to define the contribution of the sub-cell ωpc to
the diffusion flux as

Qpc = l−pcq
−
pc + l+pcq

+
pc. (4.82)

Using the local notation at point p introduced in Section 4.2.4, it turns out that Qpc rewrites
as

Qpc = lcq
c
c + lc+1q

c
c+1.

Using the expression of the half-edge fluxes in terms of the half-edge temperatures (4.60) yields

Qpc =− αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c · nc

c+1)](T c − Tc) (4.83)

− αclc+1[lc(Kcn
c
c+1 · nc

c) + lc+1(Kcn
c
c+1 · nc

c+1)](T c+1 − Tc).

Recalling the definition of the matrix S̃ from (4.74)

S̃c,c−1 = αc−1lc[lc−1(Kc−1n
c−1
c · nc−1

c−1) + lc(Kc−1n
c−1
c · nc−1

c )],

S̃c,c = αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c · nc

c+1)],

leads to recast (4.83) under the more compact form

Qpc = −S̃c,c(T c − Tc)− S̃c+1,c(T c+1 − Tc).
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Due to the sparse structure of S̃, this last equation turns into

Qpc = −
∑

d∈C(p)

S̃tc,d(T d − Tc).

Finally, recalling that the vector of half-edge temperatures, T , is expressed in terms of the
vector of the mean cell temperatures, T , through the use of the solution of the linear system
(4.70), i.e., T = (M−1S)T , allows to write Qpc as

Qpc = −
∑

d∈C(p)

Γ
p
c,d(Td − Tc). (4.84)

Here, Γp denotes the Cp × Cp matrix defined at point p by

Γp = S̃tM−1S. (4.85)

In deriving (4.84), we have used that
∑

d∈C(p) Γ
p
c,d =

∑
d∈C(p) S̃

t
c,d which follows from the fact that

1C(p) is the eigenvector of M
−1S associated to the eigenvalue 1, refer to Comment 19. Let us note

that the entries of Γp have the physical dimension of a conductivity. Thus, Γp can be viewed as
the effective conductivity tensor at point p. More precisely, it follows from (4.84) that the entry
Γp
c,d stands for the effective conductivity between cells c and d through the point p. We claim

that the effective conductivity tensor at point p, Γp, is symmetric positive definite

provided that the physical conductivity tensor is symmetric positive definite. To
prove this, observe that

ΓpT · T =(S̃tM−1S)T · T
=M−1(ST ) · (S̃T ).

Since Kc is symmetric positive definite, by virtue of (4.73) one deduces that S̃ = S, in addition
M is symmetric positive definite, which ends the proof.

In the general case, for which the physical conductivity tensor, Kc, is only positive definite,
we make the conjecture that Γp is also positive definite since we are not able to prove this result
directly.

Comment 21 We want to mention that in the case of a symmetric positive definite conductivity
tensor, under the geometrical conditions (4.77) and (4.78), the entries of the matrix Γp are non-
negative.

The global diffusion matrix

Gathering the previous results, leads to write the finite volume semi-discrete scheme over cell c
as follows

mcCvc
d

dt
Tc −

∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d(Td − Tc) = mcrc, (4.86)

where Γp is the effective conductivity tensor defined at point p by (4.85). To put the above
equation under a more compact form, let us introduce the following global notation. Let T be
the vector of the cell averaged temperatures, that is, T = (T1, . . . TCD

)t, where CD denotes the
total number of cells covering the domain D. Let us denote by M and Cv the CD ×CD diagonal
matrices whose entries are given by mcδc,d and Cvcδc,d. We also introduce R = (r1, . . . , rCD

)t

as the source term vector. Finally, let A be the CD × CD matrix which stands for the global
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diffusion matrix associated to the above semi-discrete scheme. Observing (4.86), we readily
deduce that its diagonal and off-diagonal entries write as

Ac,c =
∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d, (4.87a)

Ac,d = −
∑

p∈P(c)

Γ
p
c,d. (4.87b)

Bearing this notation in mind, our semi-discrete finite volume scheme reads

MCv
dT

dt
+ AT = MR. (4.88)

This results in a differential system satisfied by the vector of the cell averaged temperatures.
Note that the above system has been derived without taking into account the boundary condi-
tions.

In writing the entries of the global diffusion matrix, we have to pay attention to the fact
that indices in the left-hand side of (4.87) refer to the global numbering of the cells, whereas in
the right-hand side they refer to the local numbering of cells surrounding point p. In addition,
index p refers to the local numbering of points belonging to cell c.

Let us point out that the global diffusion matrix results in assembling the small1 node-
based Cp × Cp matrices Γp. This node-based underlying data structure allows to handle easily
general unstructured grids. However, the assembling of the global diffusion matrix requires the
knowledge of the local matrix Γp at each grid point p. This matrix is computed as Γp = S̃tM−1S

where matrices S̃, M and S are sparse Cp × Cp matrices explicitly given by formulas (4.74),
(4.65) and (4.64). Within the framework of a time-marching algorithm, these matrices have to
be stored at the beginning of each time step for each grid point. In addition, the computation
of the inverse matrix M−1 is performed using an efficient algorithm well adapted to cyclic
tridiagonal matrices [132].

The stencil of the finite volume discretization (4.86) results directly from the structure of
the above diffusion matrix. Being given a point p, its surrounding cells c and d are connected
through point p by means of the diffusion exchange term Γp

c,d. Therefore, the stencil of cell c
corresponds to the set of neighboring cell d which shares a point with itself, refer to Figure 4.8.
For a quadrangular grid, this results in a nine-point scheme.

4.2.6 Properties of the semi-discrete scheme

In this section, we state two fundamental properties which characterize our semi-discrete finite
volume scheme. The first one concerns the positive semi-definiteness of matrix A and the second
one consists of the L2-stability of the semi-discrete scheme.

Positive semi-definiteness of the global diffusion matrix

We claim that the global diffusion matrix is positive semi-definite, that is,

AT · T ≥ 0, ∀T ∈ R
CD . (4.89)

Let us emphasize that this statement will be of fundamental importance to ensure the solvability
of the linear system associated to the time discretziation of (4.88). This result follows directly

1For quadrangular grids, Cp = 4.
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Figure 4.8: Stencil of the finite volume scheme for a given cell ωc in a fragment of an unstructured
grid. The degrees of freedom are displayed using red squares. The blue arrow shows the diffusion
flux exchange through point p between cell c and d.

from the discrete inequality (4.42) satisfied by the numerical approximation of the half-edge
fluxes (4.41). To prove (4.89), let us remark that the cth entry of vector AT writes as

(AT )c =
∑

p∈P(c)

(l−pcq
−
pc + l+pcq

+
pc).

Using the above equation allows to rewrite the left-hand side of (4.89) as

AT · T =

CD∑

c=1

∑

p∈P(c)

(l−pcq
−
pc + l+pcq

+
pc)Tc.

Now, switching round the order of summation in the right-hand side leads to

AT · T =

PD∑

p

∑

c∈C(p)

(l−pcq
−
pc + l+pcq

+
pc)Tc,

=

PD∑

p

Ip,

where PD denotes the total number of points inside D and Ip is given by (4.43). By virtue of
(4.42), the nodal quantity Ip is non-negative, thus the right-hand side of the above equation is
also non-negative, which ends the proof.

We conclude this paragraph by claiming that the global diffusion matrix inherits some
properties of the small matrix Γp. Namely, if Γp is symmetric positive definite2, A is also
symmetric positive but only semi-definite since by construction for a given row, the diagonal
entry is equal to the sum of the off-diagonal entries, refer to (4.87). In addition, under the
geometrical conditions (4.77) and (4.78), the diagonal entries of A are non-negative whereas the
off-diagonal entries are non-positive, refer to Comment 21.

2This is precisely the case when the physical conductivity tensor is symmetric positive definite.
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L2-stability of the semi-discrete scheme

In this section, we prove the stability of our semi-discrete finite volume scheme, in absence of
source term, i.e., r = 0, in the sense of the discrete weighted L2 norm defined as follows

‖T ‖2w2 =

CD∑

c

mcCvcT
2
c , (4.90)

where mc and Cvc denote the piecewise constant approximation over cell c of the mass and
the specific heat capacity, which are positive quantities. To study the L2 stability of the semi-
discrete scheme, we first recall that in absence of source term, vector T satisfies the following
semi-discrete system

MCv
dT

dt
+ AT = 0,

where M and Cv are the diagonal mass and heat capacity matrix. Dot-multiplying the above
equation by T yields

MCv
dT

dt
· T + AT · T = 0.

Knowing that A is positive semi-definite leads to

d

dt
(MCvT · T ) ≤ 0. (4.91)

In writing this equation, we have supposed that M and Cv does not depend on time. In addition,
we are ignoring the contribution of the boundary terms, assuming for instance periodic boundary
conditions. Using the definition (4.90) of the weighted L2 norm, the above equations rewrites
as

d

dt
(
1

2
‖T ‖2w2) ≤ 0. (4.92)

This inequality ensures that the weighted L2 norm of the semi-discrete solution remains bounded
by the weighted L2 norm of the initial data, which corresponds to the L2-stability of our semi-
discrete finite volume scheme. This L2-stability is a direct consequence of the half-edge normal
fluxes construction through the use of the sub-cell variational formulation. Once more, this
shows the great importance of deriving the numerical approximation of the normal fluxes using
a variational formulation.

4.2.7 Boundary conditions implementation

This section describes indications related to boundary conditions implementation. Let us point
out that boundary conditions treatment relies on a straightforward extension of the half-edge
temperatures elimination procedure which has been developed in Section 4.2.4 for internal nodes.
The boundary conditions are prescribed at the two boundary half-edges connected to a point
located on the boundary, they will be either of Neumann type (prescribed normal flux) or of
Dirichlet type (prescribed temperature). Here, we are going to expose the main steps of the
Neumann boundary conditions discretization without going into the detail of the computations.
Concerning the Dirichlet boundary conditions discretization the interesting reader can refer to
[28].

Let us consider a boundary node, p, which is surrounded by internal cells. As before, we
denote by Cp the number of cells surrounding point p. Note that the number of half-edges
impinging on point p is equal to Cp + 1. The edges impinging at point p are labelled using the
subscript c ranging from 1 to Cp+1. The cell (sub-cell) numbering follows the edge numbering,
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Figure 4.9: Fragment of an unstructured grid in the vicinity of a boundary point where are
imposed Neumann boundary conditions. The prescribed fluxes, q⋆1 and q⋆

Cp+1 are displayed
using green color.

that is, cell ωc (sub-cell ωpc) is located between edges c and c+ 1, refer to Figure 4.9. The unit
outward normal to cell ωc at edge c is denoted by nc

c whereas the unit outward normal to cell ωc

at edge c+ 1 is denoted by nc+1
c . The prescribed heat fluxes on the first and the last half-edge

are denoted respectively by q⋆1 and q⋆
Cp+1. Let us recall that the half-edge fluxes corresponding

to the internal edges are expressed in terms of the half-edge and the mean cells temperatures
using for c = 2, . . . ,Cp

{
qc−1
c = −αc−1[lc−1(Kc−1n

c−1
c−1 · nc−1

c )(T c−1 − Tc−1) + lc(Kc−1n
c−1
c · nc−1

c )(T c − Tc−1)],

qcc = −αc[lc(Kcn
c
c · nc

c)(T c − Tc) + lc+1(Kcn
c
c+1 · nc

c)(T c+1 − Tc)].

(4.93)
Here, qcc (resp. q

c−1
c ) denotes the half-edge normal flux at edge c viewed from cell c (resp. c−1).

In addition, T c is the temperature on the cth half-edge whereas Tc corresponds to the mean
temperature of cell c.

The elimination of the half-edge temperatures is obtained by writing the flux continuity
conditions (4.62) for all internal half-edges. This system of Cp−1 equations is completed by the
two boundary conditions for the first and last half-edges. Finally, this results in the following
system

l1q
1
1 = l1q

⋆
1, (4.94a)

lcq
c−1
c + lcq

c
c = 0, for c = 2, . . . ,Cp, (4.94b)

lC+1q
C
C+1 = lC+1q

⋆
C+1. (4.94c)

Substituting (4.93) into (4.94b) leads to the following (Cp+1)× (Cp+1) linear system satisfied
by the Cp + 1 half-edges temperatures

MT = ST −B. (4.95)

Here, T ∈ R
Cp+1 denotes the vector of half-edge temperatures whereas T ∈ R

Cp is the vector
of cell centered temperatures. In addition, M and S are respectively a (Cp + 1) × (Cp + 1)
tridiagonal matrix and a (Cp + 1) × Cp bidiagonal matrix. Their entries are computed de-
veloping (4.94). Boundary conditions are taken into account by means of B ∈ R

Cp+1 with
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B = (l1q
⋆
1, . . . , lCp+1q

⋆
Cp+1)

t. Proceeding with the matrices M and S as before, one can show

that (4.95) always admits a unique solution. This allows to compute the contribution of the
sub-cell ωpc to the diffusion flux as

Qpc = −
∑

d∈C(p)

Γ
p
c,d(Td − Tc) + (S̃M−1B)c. (4.96)

Here, Γp denotes the effective conductivity tensor at boundary point p, it is a Cp × Cp matrix
defined by Γp = S̃tM−1S, where the matrix S̃ is deduced from S by means of (4.73). From the
above equation, we collect the contributions to the entries of the global diffusion matrix, A,
following

Ac,c =
∑

p∈P(c)

∑

d∈C(p)

Γ
p
c,d,

Ac,d = −
∑

p∈P(c)

Γ
p
c,d.

Having taken into account the boundary conditions, the semi-discrete finite volume scheme
(4.88) turns into

MCv
dT

dt
+ AT = MR+ S,

where S ∈ R
CD is the source term vector which represents the boundary conditions contribution.

According to (4.96), its cth entry reads as Sc = −(S̃M−1B)c.

We conclude by stating that using similar arguments to those employed in Section 4.2.6,
it is possible to show that matrix A is still positive semi-definite. Moreover, for homogeneous
Neumann boundary conditions, i.e., q⋆1 = q⋆

Cp+1 = 0, the L2-stability of the semi-discrete scheme
still holds.

4.2.8 Extension to cylindrical geometry

The purpose of this section is to present the straightforward extension of CCLAD scheme to
cylindrical geometry. To this end, let us introduce some notation. First, we note that the case of
Cartesian or cylindrical geometry can be combined by introducing the pseudo Cartesian frame
(O, x, y), equipped with the orthonormal basis (ex, ey), through the use of the pseudo radius

R(y) = 1− α+ αy,

where α = 1 for cylindrical geometry and α = 0 for Cartesian geometry. We remark that
y corresponds to the radial coordinate in the cylindrical case. This means that we assume
rotational symmetry about x axis, refer to Figure 4.10. We note that if we refer to standard
cylindrical coordinates, (r, z), then x corresponds to z and y to r. In this framework, the volume
v is obtained by rotating the area a about the x axis. Thus, the volume element, dv, writes
dv = R da, where da = dxdy is the area element with respect to Cartesian coordinates (x, y).
Note that we have omitted the factor 2π due to the integration in the azimuthal direction,
namely we consider all integrated quantities to be defined per unit radian. The surface s, which
bounds the volume v, is obtained by rotating, l, the boundary of the area a, about the x axis.
Thus, the surface element, ds, writes ds = R dl, where dl is the line element along the perimeter
of a.

In view of subsequent spatial discretization, we shall express the volume integral associated
to the divergence operator using the Green formula. We recall that, in the pseudo Cartesian

192



O
x

y

ex

ey

a
l(t)

n

R

v =

∫

a
R da

s =

∫

l
R dl

Figure 4.10: Notation related to cylindrical geometry.

frame, for an arbitrary vector φ ∈ R
2, the divergence operator writes

∇ · φ =
∂φ

∂x
+

1

R
∂

∂y
(Rψ)

=
∂φ

∂x
+
∂ψ

∂y
+ α

ψ

R

=
1

R

[
∂

∂x
(Rφ) + ∂

∂y
(Rψ)

]
,

where (φ, ψ) are the components of the vector φ. The gradient operator writes as usual

∇T =
∂T

∂x
ex +

∂T

∂y
ey.

Let us replace the volume integral form of the divergence operator by its surface integral form,
employing the previous notation

∫

v
∇ · φ dv =

∫

a

1

R

[
∂

∂x
(Rφ) + ∂

∂y
(Rψ)

]
R da

=

∫

a

[
∂

∂x
(Rφ) + ∂

∂y
(Rψ)

]
da

=

∫

l
φ · nR dl,

where n is the unit outward normal to the contour l. Thus, the Green formula using pseudo
Cartesian coordinates reads ∫

v
∇ · φ dv =

∫

l
φ · nR dl. (4.97)

Applying this Green formula, the weak form of the heat conduction equation (4.18) rewrites
as

d

dt

∫

ωc

ρCvT (x, t) dv +

∫

∂ωc

q · nR dl =

∫

ωc

ρr(x, t)dv, (4.98)

where ωc denotes a generic cell of the computational domain, ∂ω its boundary and n the
corresponding unit outward. Introducing as before a piecewise constant approximation of the
physical variables allows to transform (4.98) into

mcCvc
d

dt
Tc +

∫

∂ωc

q · nR dl = mcrc, (4.99)
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where the mass of the cell is given as usual by mc = ρc | ωc |, whereas the cell volume is
obtained rotating the polygonal cell ωc about x axis, i.e, | ωc |=

∫
ωc

dv =
∫
ωc

R da. In addition,
Tc = Tc(t) denotes the mean cell temperature defined by

Tc(t) =
1

| ωc |

∫

ωc

T (x, t) dv.

To complete the space discretization it remains to discretize the surface integral in the above
equation. To this end, we proceed as before introducing the piecewise constant approximation
of the normal heat flux over each half-edge impinging on point p

q±pc =
1

l±pc

∫

∂ω±
pc

q · n dl. (4.100)

The scalar q±pc stands for the half-edge normal flux related to the half-edge ∂ω±
pc, refer to Fig-

ure 4.2. Note that the above piecewise constant approximation of the half-edge fluxes, coincides
exactly with the one used in Cartesian geometry, refer to (4.20). Using the partition of the cell
into sub-cells, i.e., ∂ωc = ∪p∈P(c)∂ω

±
pc, the discretized heat conduction equation writes as

mcCvc
d

dt
Tc +

∑

p∈P(c)

Rp(l
−
pcq

−
pc + l+pcq

+
pc) = mcrc, (4.101)

where Rp = 1 − α + αyp and yp is the y-coordinate of point p. Note that the above equation
has been derived by means of the following quadrature rule

∫

∂ω−
pc∪∂ω

+
pc

q · nR dl = Rp(l
−
pcq

−
pc + l+pcq

+
pc).

Now, the space discretization is achieved by using the half-edge flux approximation which has
been previously constructed in Section 4.2.2. Then, the construction of the scheme is performed
using the same steps than before. Let us point out that the above quadrature rule has been
specifically chosen to ensure spherical symmetry preservation when solving heat conduction
equation over equal angle polar grids. In addition, one has to use the volume weight defined for
quadrangular cells by 4.53, as it has been already noticed in [119].

4.3 Time discretization

In this section, we describe the time discretization related to our finite volume scheme. Let
us recall that the semi-discrete scheme resulting from the space discretization writes under the
form of the following system of differential equations

MCv
dT

dt
+ AT = MR+ S, (4.102)

where T is the cell centered temperatures vector, M and Cv denote respectively the diagonal
mass and heat capacity matrices, whereas A is the global diffusion matrix. In addition, R is the
heat supply vector and S is the vector taking into account the prescribed boundary conditions.
The above system is completed by prescribing the initial condition T (0) = T

0. We solve the
previous system over the time interval [0,T] using the subdivision

0 = t1 < t2 < . . . < tn < tn+1 < . . . < tN = T.
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We denote by ∆tn the generic time step, i.e., ∆tn = tn+1 − tn. The time approximation of
a quantity at time tn is denoted using the superscript n, for instance T

n = T (tn). Knowing
that explicit time discretization of the diffusion operator requires a stability constraint on the
time step which is quadratic with respect to the smallest cell size, we prefer to use an implicit
time discretization for this term. Depending on whether the heat capacity and the conductivity
tensor depend on the temperature or not, the above system might be linear or not with respect
to temperature. This leads us to separate the description of the time discretization in two cases.

4.3.1 Linear case

In this case, we assume that the heat capacity and the conductivity tensor does not depend
on temperature. Integrating (4.102) over the time interval [tn, tn+1] yields the first-order time
implicit discrete scheme

MCv
T

n+1 − T
n

∆tn
+ AT n+1 = MRn + S

n. (4.103)

The cell centered temperatures vector is updated by solving the following linear system

(
MCv

∆tn
+ A)T n+1 =

MCv

∆tn
T

n +MRn + S
n.

Let us recall that An is positive semi-definite. Knowing that the entries of the diagonal matrix
MCv is always positive, we deduce that matrix MCv

∆tn + A is positive definite which implies that
the above linear system always admits a unique solution. Note that, if A is symmetric, the
matrix of the linear system is also symmetric. In this latter case, it also interesting to mention
that in the absence of source term and for homogeneous boundary conditions, if the geometric
conditions (4.77) and (4.78) hold, then MCv

∆tn +A is an M-matrix, which means that the positivity
of the temperature field is preserved by the scheme. The above linear system is solved using
classical linear system solvers. For instance, in the case of a symmetric positive matrix, one
can use an Incomplete Cholesky Conjugate Gradient (ICCG), whereas in the case of a positive
definite matrix one can utilize the Generalized Minimal Residual method (GMRES), refer to
[84].

4.3.2 Non-linear case

In this case, which frequently occurs in plasma physics, the material properties depend on
temperature. It is more convenient to rewrite the heat conduction equation using the specific
internal energy as

ρ
∂ε

∂t
+∇ · q = ρr.

Let us recall that the specific internal energy, ε, expresses in terms of the density and the
temperature by means of an equation of state written under the form ε = ε(ρ, T ). Here, the
specific heat capacity is computed as the partial derivative of the specific internal energy with
respect to temperature, the density being fixed, i.e., Cv = ( ∂ε

∂T )ρ. The semi-discrete system
corresponding to the above partial differential equation writes

M
dE

dt
+ AT = MR+ S, (4.104)

where E denotes the specific internal energy vector which depends on ρ and T through the use
of the equation of state. Assuming the absence of fluid motion, E exhibits only a non-linear
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dependency on T . Integrating (4.104) over the time interval [tn, tn+1] leads to the first-order
time implicit discretization

M
E
n+1 − E

n

∆tn
+ An

T
n+1 = MRn + S

n. (4.105)

In writing this equation, we have made the choice of an explicit treatment of the non-linear
dependency on temperature of the diffusion matrix. Namely, An corresponds to an evaluation
of the diffusion matrix wherein the conductivity tensor has been computed using the temper-
ature at the beginning of the time step. The above equation results in a non-linear system of
differential equations, which requires an iterative method to be solved. This iterative method
consists in defining a sequence of approximations of (4.105) by using a Newton-like method. To
this end, let us denote by T

q the sequence of temperatures vector, where q is natural integer.
We initialize this sequence by setting for q = 0, T 0 = T

n. Introducing the increment of the
temperatures vector as ∆T = T

q+1 − T
q allows to define the specific internal energies vector

increment as
E(T q+1) = E(T q) + Cv(T

q)∆T . (4.106)

This equation has been obtained through the use of the first-order Taylor expansion

ε[T q
c + (∆T )c] = ε(T q

c ) + (
∂ε

∂T
)ρ(T

q
c )(∆T )c,

where (∆T )c is the cth entry of vector ∆T . Substituting, the Taylor expansion (4.106) into
(4.105) leads to the following linear system satisfied by ∆T

[
M

∆tn
Cv(T

q) + An

]
∆T = −

{
M

∆tn
[E(T q)− E

n] + An
T

q −MRn − S
n

}
. (4.107)

Let us point out that this linear system admits always a unique solution since the matrix
between bracket in the left-hand side is positive definite. The updated value of the sequence,
T

q+1, is computed as T
q+1 = T

q + ∆T by solving the above linear system in ∆T . This
process is repeated until a sufficiently accurate solution is reached. More precisely, we assess
the convergence of the iterative method by computing the value of a residual characterizing the
accuracy at which the non-linear equation is solved. A relevant choice for the residual consists
in defining it as being equal to a certain norm of the left-hand side. Setting

R
q =

M

∆tn
[E(T q)− E

n] + An
T

q −MRn − S
n,

we define the stopping criterion of the iterative procedure as

‖Rq‖
‖R0‖

≤ η, (4.108)

where η is a fixed in advance positive real number. The usually employed norm is the maximum
norm, i.e., ‖Rq‖∞ = maxc(R

q
c). The main advantage in using this stopping criterion lies in the

fact that it provides an indication on the accuracy at which the energy conservation is ensured.

4.4 Numerical results

The aim of this section is to assess the robustness and the accuracy of CCLAD scheme against
analytical test cases using various types of triangular and quadrangular grids. We conclude this
section by presenting two tests which are not very far from the problems encountered in the
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context of the numerical simulation of Inertial Confinement Fusion. We also want to mention
that CCLAD scheme has been successfully used within a set of two-dimensional hydrodynamic
simulations, which were performed to reproduce experimental measurements resulting from laser
plasma experiments, wherein electron heat transport was strongly modified by self-generated
magnetic fields, refer to [143].

4.4.1 Methodology for convergence analysis

Most of the test cases presented in this section are performed using a standard test problem
which consists in solving the following diffusion equation over the domain D = [0, 1]2

ρCv
∂T

∂t
−∇ · (K∇T ) = ρr, (4.109a)

T (x, 0) = T 0(x), (4.109b)

where r = r(x) is a source term. Most of the analytical solutions being stationary, we compute
them starting with the initial condition T 0(x) = 0, and we run the numerical simulation until
the steady state is reached. Density and the specific heat capacity are specified such that ρ = 1
and Cv = 1. The boundary conditions, the source term and the heat conductivity tensor, K,
will be prescribed for each test case.

Bearing this in mind, let us describe the methodology used to perform the convergence
analysis. Knowing that the computational domain is paved using CD cells, we define the mesh
resolution as

h =

√
| D |
CD

,

where | D | denotes the domain volume. Let T̂ = T̂ (x) be the steady analytical solution of
(4.109). Being given a computational grid characterized by h, we denote by T̂ h

c the value of
the analytical solution computed at the centroid of the cell ωc, i.e., T̂

h
c = T̂ (xc). If T

h
c denotes

the cell averaged temperature corresponding to the numerical solution obtained by the finite
volume scheme, we define the asymptotic numerical errors based on the maximum norm and
the l2 norm as

Eh
max = max

c=1...CD

| T h
c − T̂ h

c |, (4.110a)

Eh
l2 =

√√√√
CD∑

c=1

(T h
c − T̂ h

c )
2 | ωc |. (4.110b)

The asymptotic error for both norms is estimated by

Eh
α = Cαh

qα +O(hqα+1), for α = max, l2,

where qα denotes the order of truncation error and Cα the convergence rate-constant which is
independent of h. Having computed the asymptotic errors corresponding to two different grids
characterized by mesh resolutions h1 and h2 < h1, we deduce an estimation of the order of
truncation error as

qα =
log(E

h1
α

E
h2
α

)

log(h1

h2
)
. (4.111)
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4.4.2 Anisotropic linear problem with discontinuous conductivity tensor

This problem consists in finding the steady solution of (4.109) with r = 0 and an anisotropic
discontinuous conductivity tensor given by

K(x, y) =





(
Kxx
l K

xy
l

K
yx
l K

yy
l

)
if 0 ≤ x ≤ 1

2 ,

(
Kxx
r K

xy
r

K
yx
r K

yy
r

)
if 1

2 ≤ x ≤ 1.

The one-dimensional solution, i.e., T̂ = T̂ (x) which corresponds to Dirichlet boundary condi-
tions: T̂ (0) = 0 and T̂ (1) = 1, writes as

T̂ (x) =





2Kxx
r

Kxx
l + Kxx

r

x, if 0 ≤ x ≤ 1

2
,

Kxx
r − Kxx

l

Kxx
r + Kxx

l

+
2Kxx

l

Kxx
l + Kxx

r

x, if
1

2
≤ x ≤ 1.

This is a linear continuous solution for which the heat flux q̂ = −K∇T writes as

q̂ = −







2

Kxx
l Kxx

r

Kxx
l + Kxx

r

2
K
yx
l Kxx

r

Kxx
l + Kxx

r


 if 0 ≤ x ≤ 1

2 ,



2

Kxx
l Kxx

r

Kxx
l + Kxx

r

2
Kxx
l K

yx
r

Kxx
l + Kxx

r


 if 1

2 ≤ x ≤ 1.

The normal component of the heat flux is continuous at the interface x = 1
2 whereas its tangential

component undergone a jump discontinuity since in general Kyx
l Kxx

r 6= Kxx
l K

yx
r .

The boundary conditions applied on the top and the bottom boundaries of the computa-
tional domain are Dirichlet boundary conditions deduced from the analytical solution. For
the numerical applications we have defined the entries of the conductivity tensor as Kxx

l = 1,
K
xy
l = K

yx
l = −1, Kyy

l = 4 and Kxx
r = 10, Kxy

r = K
yx
r = −3, Kyy

r = 2. To assess the ability of our
finite volume scheme to preserve this linear solution, we run this test problem on a triangular
grid and on various quadrangular grids.

Triangular grid

We compute the steady numerical solution using a triangular grid which is made of 246 cells.
This grid is displayed in Figure 4.11(left). Note that the unstructured grid has been constructed
such that the interface x = 1

2 coincides with the cell interfaces. The temperature isolines
of the numerical solution are plotted in Figure 4.11(right). These are vertical straight lines
which match perfectly with the analytical solution. In addition, we observe that the obtained
asymptotic errors are equal to zero up to machine precision. As expected, our finite volume

scheme preserves linear solutions on triangular grids.
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Figure 4.11: Anisotropic linear problem with discontinuous conductivity tensor: Triangular grid
(left) and temperature isolines of the numerical steady solution (right).

Quadrangular grids

The numerical solution computed using a 10×10 Cartesian grid also matches perfectly with the
analytical solution and the temperature isolines plot is identical to the one obtained previously,
refer to Figure 4.11(right). This result is coherent with the fact that the flux approximation
used in our finite volume scheme preserves linear solutions on cells which are parallelograms.
Next, we study the accuracy of our scheme for a sequence of distorted grids which result from
an analytical transformation of Cartesian grids. Following the approach described in [151], we
first introduce the smooth distorted grids resulting from the mapping defined on the unit square
by

{
x(ξ, η) = ξ + a0 sin(2πξ) sin(2πη),

y(ξ, η) = η + a0 sin(2πξ) sin(2πη).
(4.112)

The three smooth grids resulting from this mapping with a0 = 0.1 are displayed in Figure 4.12.
We also define randomly distorted grids by means of the following mapping defined on the unit
square by

{
x(ξ, η) = ξ + a0h cos(2πθ),

y(ξ, η) = η + a0h sin(2πθ),
(4.113)

where h corresponds to the mesh spacing of the initial Cartesian grid and θ is a random number
chosen in [0, 1]. We have plotted the three random grids obtained with this mapping for a0 = 0.2
in Figure 4.13. Note that we do not apply this mapping to the nodes located on the line ξ = 0.5
in order to preserve the interface.

The convergence analysis for smooth grids is performed computing the asymptotic errors
and the corresponding orders of truncation error using formulas (4.110) and (4.111). The results
displayed in Table 4.1(a) show that the convergence rate is almost second-order in the l2 norm
and a little bit less in the maximum norm. Proceeding with the convergence analysis for random
grids as before, we have displayed the corresponding results in Table 4.1(b). We observe an
erratic behavior regarding the asymptotic errors and the rate of convergence in both norms
which clearly shows a lack of convergence for our scheme with this type of random grids. Note
that this behavior has been already observed in the case of isotropic diffusion test cases [28].
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Figure 4.12: Smooth distorted quadrangular grids: 10× cells (left), 20 × 20 cells (middle) and
40× 40 cells (right).
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Figure 4.13: Random distorted quadrangular grids with interface ξ = 1
2 preserved: 10× cells

(left), 20× 20 cells (middle) and 40× 40 cells (right).

Table 4.1: Anisotropic linear problem with discontinuous conductivity tensor: asymptotic errors
in both maximum and l2 norms and corresponding truncation error orders for quadrangular
grids.

(a) Smooth grids.

h Eh
max qhmax Eh

l2 qhl2
1.00D-1 8.93D-3 1.51 3.26D-3 1.75

5.00D-2 3.14D-3 1.53 9.67D-4 1.89

2.50D-2 1.09D-3 - 2.63D-4 -

(b) Random grids.

h Eh
max qhmax Eh

l2 qhl2
1.00D-1 5.25D-3 0.47 1.77D-3 0.67

5.00D-2 3.78D-3 0.10 1.11D-3 0.50

2.50D-2 3.57D-3 - 7.87D-4 -
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Figure 4.14: Triangular grids: 254 cells (left), 988 cells (middle) and 3984 cells (right).

h Eh
max qmax Eh

l2 ql2

6.27D-2 2.87D-2 2.15 9.83D-3 2.09

3.18D-2 6.66D-3 1.57 2.38D-3 2.05

1.58D-2 2.22D-3 - 5.66D-4 -

Table 4.2: Anisotropic linear problem with a non-uniform symmetric positive definite conduc-
tivity tensor: asymptotic errors in both maximum and l2 norms and corresponding truncation
error orders for triangular grids.

4.4.3 Anisotropic linear problem with a non-uniform symmetric positive def-

inite conductivity tensor

This test problem has been presented in [130]. Once more, it consists in finding the steady
solution of (4.109). However, it is characterized by an anisotropic non-uniform conductivity
tensor which writes for all (x, y) ∈ [0, 1]2

K(x, y) =

(
y2 + ηx2 −(1− η)xy

−(1− η)xy x2 + ηy2

)
,

where η is a positive parameter characterizing the level of anisotropy. This tensor is symmetric
positive definite. Its eigenvalues are λ+ = x2 + y2 and λ− = η(x2 + y2). Thus, its condition
number is equal to 1

η . The source term, r, is computed such that the analytical solution (4.109)
is given by

T̂ (x, y) = sin2(πx) sin2(πy).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the computational
domain, i.e., T (x, t) = 0, ∀x ∈ ∂D. For numerical applications, we choose η = 10−2. We assess
the accuracy of our finite volume scheme by running this test problem on sequence of triangular
and distorted quadrangular grids.

Triangular grids

We run this test problem on a sequence of three triangular grids which are displayed in Fig-
ure 4.14. The convergence analysis results corresponding to the numerical simulations using the
three triangular grids are displayed in Table 4.2. They show that our finite volume scheme has
a second-order convergence rate in l2 norm on triangular grids.

Quadrangular grids

Concerning the quadrangular grids we perform the convergence analysis on three types of grids:
rectangular, smooth and random. We start by giving in Table 4.3(a) the convergence analysis

201



Table 4.3: Anisotropic linear problem with a non-uniform symmetric positive definite conduc-
tivity tensor: asymptotic errors in both maximum and l2 norms and corresponding truncation
error orders for quadrangular grids.

(a) Rectangular grids.

h Eh
max qmax Eh

l2
ql2

1.00D-1 3.97D-2 2.08 1.69D-2 2.07

5.00D-2 9.40D-3 2.02 4.03D-3 2.02

2.50D-2 2.32D-3 - 9.95D-4 -

(b) Smooth grids.

h Eh
max qmax Eh

l2 ql2

1.00D-1 1.09D-1 1.84 2.66D-2 2.06

5.00D-2 3.04D-2 1.88 6.37D-3 2.01

2.50D-2 8.26D-3 - 1.58D-3 -

(c) Random grids.

h Eh
max qmax Eh

l2 ql2

1.00D-1 8.25D-2 1.04 2.96D-2 1.62

5.00D-2 4.02D-2 1.31 9.60D-3 1.41

2.50D-2 1.62D-2 - 3.61D-3 -
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Figure 4.15: Random distorted quadrangular grids: 10× cells (left), 20× 20 cells (middle) and
40× 40 cells (right).

data for a sequence of three rectangular grids. These data demonstrate that our finite volume
scheme exhibits a second-order rate of convergence on rectangular grids. Next, we pursue our
investigations using the sequence of the three smooth distorted grids plotted in Figure 4.12.
The convergence analysis results obtained with these three grids are presented in Table 4.3(b).
Once more, we observe a second-order convergence rate in l2 norm, whereas the convergence
rate in maximum norm is almost second-order. Finally, we achieve the convergence analysis of
the present problem by performing computations on a sequence of three random grids which
are displayed in Figure 4.15. Note that these grids differ from the previous ones plotted in
Figure 4.13 since this time all the nodes have been displaced according to (4.113). The results of
the convergence analysis corresponding to this sequence of random grids are given in Table4.3(c).
In comparison to the previous results, these ones are representative of an erratic behavior which
clearly does not correspond to second-order.
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Figure 4.16: Kershaw grids: 36 cells (left), 324 cells (middle) and 1296 cells (right).

4.4.4 Anisotropic linear problem with a non-uniform non-symmetric con-

ductivity tensor

Here, we aim at assessing the accuracy of our finite volume scheme on an analytical problem
characterized by a non-symmetric positive definite conductivity tensor which writes for all
(x, y) ∈ [0, 1]2 as

K(x, y) =

(
a by

−by a

)
,

where a and b are positive real numbers. Note that this tensor is always positive definite since
for all φ ∈ R

2 we have Kφ · φ = a | φ |2. The interest of this test case lies in the fact
that the above non-symmetric positive definite tensor is representative of the structure of the
electron heat conductivity tensor used in plasma physics in the presence of a magnetic field,
refer to Section 4.1.2. Setting r = 0, the one-dimensional analytical steady solution of (4.109)
corresponding to the Dirichlet boundary conditions, T̂ (0) = 0 and T̂ (1) = 1, writes as

T̂ (x) =
exp( bax)− 1

exp( ba)− 1
, ∀x ∈ [0, 1].

The boundary conditions prescribed at the top and bottom boundaries of the computational
domain are Dirichlet boundary conditions deduced from the above analytical solution. For
numerical applications, we choose a = 1 and b = 2.

We study the convergence analysis for this problem using three different types of quadran-
gular grids. We reuse the smooth and the random grids which has been introduced previously.
We also make use of the Kershaw grids [75]. These highly skewed grids are displayed in Fig-
ure 4.16. For each type of grids, we perform a sequence of three computations increasing the
mesh refinement. The resulting asymptotic errors and rate of convergence in both maximum
and l2 norms are displayed respectively in Tables 4.4(a) and 4.4(b) for smooth and Kershaw
grids. From these results it follows that our finite volume scheme exhibits a rate of convergence
which is located between first-order and second-order for these types of grids. The results as-
sociated to the sequence of random grids are displayed in Table 4.4(c). Once more, they reveal
an erratic behavior of our scheme regarding its convergence on random grids.
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Table 4.4: Anisotropic linear problem with a non-uniform non-symmetric conductivity tensor:
asymptotic errors in both maximum and l2 norms and corresponding truncation error orders
for quadrangular grids.

(a) Smooth grids.

h Eh
max qmax Eh

l2 ql2

1.00D-1 1.56D-2 1.24 6.86D-3 1.48

5.00D-2 6.59D-3 1.57 2.45D-3 1.81

2.50D-2 2.22D-3 - 6.99D-4 -

(b) Kershaw grids.

h Eh
max qmax Eh

l2 ql2

1.67D-1 7.32D-2 1.27 3.54D-2 1.50

5.55D-2 1.81D-2 1.32 6.81D-3 1.76

2.78D-2 7.24D-3 - 2.01D-3 -

(c) Random grids.

h Eh
max qmax Eh

l2 ql2

1.00D-1 9.63D-3 0.92 3.07D-3 1.09

5.00D-2 5.08D-3 0.16 1.43D-3 0.17

2.50D-2 4.56D-3 - 1.27D-3 -

4.4.5 Isotropic non-linear problem

In this section, we investigate the numerical solution of the following non-linear heat conduction
equation

ρCv
∂T

∂t
−∇ · (κ(T )∇T ) = 0,

T (x, 0) = T 0(x).

The isotropic heat conductivity, κ, is a non-linear function with respect to temperature. Here,
we define κ(T ) = T

5

2 , this type of non-linearity corresponds to the so-called Spitzer-Härm
conductivity which is frequently used in plasma physics to describe electron thermal heat flux
in the local regime, refer to [169].

The above diffusion equation is solved over a cylindrical domain D defined by r ∈ [0, 1]
and θ ∈ [0, π2 ], where (r, θ) denote the classical polar coordinates, which express in terms of

the Cartesian coordinates (x, y) as r =
√
x2 + y2 and θ = arctan y

x . The mass density and the
heat capacity are given by ρ = 1 and Cv = 1. The initial condition is defined by T 0(x) = 1.
We prescribe symmetry boundary conditions along axis x = 0 and y = 0 and we impose the
normal flux q⋆ = 1000 at the outer radius r = 1. The unsteady solution is computed until
time T = 3.25 10−3. At this time a non-linear heat wave has propagated into the cold medium.
This wave is characterized by a sharp transition zone displaying a strong temperature gradient.
Due to the boundary conditions and the geometry of the domain, the solution of the diffusion
equation exhibits a cylindrical symmetry, namely T (x) ≡ T (r).

Unfortunately, the non-linear equation under consideration does not admit exact analytic
solutions. That is why, we compute with our finite volume scheme a reference numerical solution
using a 50 × 20 polar grid which is displayed in Figure 4.17(left). Note that this numerical
solution preserves perfectly the cylindrical symmetry. Next, we construct a distorted grid from
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Figure 4.17: Isotropic non-linear problem: 50×20 polar grid (left) and its distorted counterpart
(right).

the polar grid applying the following mapping: (x, y) ∈ D 7−→ (x′, y′) ∈ D such that

x′ =
√
r cos θ,

y′ = r sin θ,

where (r, θ) are the polar coordinates corresponding to the Cartesian coordinates (x, y). The
resulting distorted grid is plotted in Figure 4.17(right). Now, we compute the numerical solution
of the non-linear test problem on the above distorted grid, using three different schemes. These
are: the classical five-point scheme, the Kershaw scheme [75] and the present finite volume
scheme. The numerical solution resulting from the five-point scheme is displayed in Figure 4.18.
We have displayed the temperatures in all cells as function of the cell center radius versus the
reference solution. In this figure, we observe the main flaw of the five-point scheme: in spite
of its robustness, it produces a numerical solution wherein the temperature front is aligned
with the grid distortion. The corresponding numerical solution is not able to preserve the
cylindrical symmetry. In addition, the comparison to the reference solution, shows that the
timing of the thermal wave is completely wrong. Let us emphasize that this test case is not
a fake problem. It is representative of situations which frequently occur in the framework of
plasma physics simulation wherein the heat conduction equation is coupled with a numerical
method solving Lagrangian hydrodynamics equations. In this case, grid distortions are induced
by fluid motion and thus the use of the five-point scheme to solve the heat conduction equation
is not recommended at all. This weakness of the five-point scheme follows from the fact that
its construction is based on a two-point flux approximation3, which becomes inaccurate in the
presence of strong grid distortions. The correction of this flaw requires the use of finite volume
schemes based on more accurate flux approximations. For the problem under consideration, we
are going to compare the numerical solutions obtained using both Kershaw scheme and our finite
volume scheme. As it can be observed in Figure 4.19, these two numerical methods, which are
nine-point schemes on quadrangular grids, bring us the expected improvement in reproducing
quite well the one-dimensional solution. To compare more precisely these two schemes, we have
displayed in Figure4.20 an enlarged view in the vicinity of the thermal front. Contrary to our

3The two-point flux approximation corresponds to a finite difference approximation of the normal flux at an
edge, wherein the gradient is approximated through the use of the temperatures of the two cells sharing that
edge.

205



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  0.2  0.4  0.6  0.8  1

T
E

M
P

E
R

A
T

U
R

E

r

1D REFERENCE SOLUTION
FIVE-POINT SCHEME

Figure 4.18: Isotropic non-linear problem: temperatures in all the cells versus cell center radius
at the stopping time T = 3.25 10−3. The computation is performed using the five-point scheme
on the 50× 20 distorted polar grid.
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Figure 4.19: Isotropic non-linear problem: temperatures in all the cells versus cell center radius
at the stopping time T = 3.25 10−3 for the 50 × 20 distorted polar grid. Comparison between
Kershaw scheme (left) and the present finite volume scheme (right).
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Figure 4.20: Isotropic non-linear problem: temperatures in all the cells versus cell center radius
at the stopping time T = 3.25 10−3 for the 50 × 20 distorted polar grid. Comparison between
Kershaw scheme and the present finite volume scheme in the vicinity of the thermal front.

finite volume scheme, we notice that Kershaw scheme produces some temperature undershoots
located in the cold medium in front of the thermal wave and thus does not respect the maximum
principle.

4.4.6 Anisotropic non-linear problem

The goal of this section consists in assessing our finite volume scheme against a test case which
is representative of electron heat transport in a magnetized plasma [29]. In this situation, the
classical isotropic Spitzer-Härm conductivity has to be replaced by the anisotropic Braginskii
tensor conductivity, refer to Section 4.1.2. We aim at solving the electron heat conduction
equation in this particular context to assess the ability of our finite volume scheme to handle
such a physical phenomenon. To this end, let us consider a two-dimensional plasma at rest and
confined in the domain D = [0, δ]× [0, δ], where δ = 20µm. The initial electron temperature of
the plasma is defined for all x ∈ D as

T 0
e (x) =

{
103K if 0 ≤ x ≤ 18µm,

3 107K if 18µm ≤ x ≤ 20µm.

The density and the specific heat capacity of the plasma are given by ρ = 0.025 g/cm3 and
Cv = 5107 erg/K/g. Let us point out that these values correspond roughly to a layer of a hot
underdense Deuterium-Tritium plasma contacting with the cold material of the same density.
The magnetization of the plasma results from the prescribed magnetic field B = Bz(x, y)ez,
where the z-component is given by Bz(x, y) = B0 exp(−4 r

δ )
4 with r2 = (x− δ

2)
2 + (y− δ

2)
2 and

B0 = −107G. The Bz(x, y) contours are plotted in Figure 4.21. The electron temperature,
Te(x, t) is governed by the anisotropic heat conduction equation

ρCv
∂Te
∂t

−∇ · (Ke∇Te) = 0.

According to (4.12) the anisotropic Braginskii conductivity tensor, Ke, writes

Ke =

(
κ⊥ κ∧
−κ∧ κ⊥

)
,
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Figure 4.21: Anisotropic non-linear problem: contours of z-component of the prescribed mag-
netic field.

where the Braginskii transport coefficients are expressed in terms of the Spitzer-Härm conduc-
tivity by means of functions describing the magnetization of the heat flux, refer to Figure 4.1
and [26]. To better understand the action of the above anisotropic conductivity tensor, observe
that for any arbitrary vector φ ∈ R

2

Keφ = κ⊥φ− κ∧Rπ
2
φ,

where Rπ
2
is the counterclockwise rotation through the angle π

2 . This equation shows that the
action of Ke decomposes in an isotropic part, which corresponds to a multiplication by κ⊥,
completed by a rotation. This last term follows directly from the magnetic field since κ∧ is
directly proportional to the magnitude of the magnetic field. This corresponds to the so-called
Righi-Leduc effect.

Bearing this in mind, we proceed to compute numerical solutions of the above problem using
our finite volume scheme. The computational domain has been paved using a 50×50 Cartesian
grid and stopping time is T = 25 10−12 s. We prescribe Neumann homogeneous boundary
conditions at the boundaries of the computational domain. The first computation has been
done suppressing the Righi-Leduc term, that is, setting κ∧ = 0. In this case the conductivity
tensor reduces to the isotropic form Ke = κ⊥ Id. The corresponding temperature contours are
displayed in Figure 4.22(left) wherein we can observe a leftward thermal wave propagating from
hot to cold region. Note that the propagation of the thermal wave is strongly inhibited by the
presence of the magnetic field. This follows from the fact that the Braginskii coefficient κ⊥ is
a decreasing function with respect to the magnitude of magnetic field, refer to Figure 4.1. The
second computation is performed using the complete form of the anisotropic conductivity tensor,
that is, including the Righi-Leduc effect. This term, as it can be observed in Figure 4.22(right),
rotates the temperature contours.
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Figure 4.22: Anisotropic non-linear problem: temperature contours at time T = 25 10−12 s,
obtained respectively using the anisotropic conductivity tensor without Righi-Leduc term, i.e.,
κ∧ = 0 (left), and with Righi-Leduc term (right).
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Chapter 5

Conclusion and perspectives

This document presents a part of the numerical works that have been performed between
2003 and 2009 at the CELIA laboratory. These research works have as main objective the
conception and the development of robust and accurate numerical schemes dedicated to the
numerical simulation of experiments concerning high energy density physics such as the ICF,
the laboratory astrophysics and the laser processing. Bearing this context in mind, we have
constructed the EUCCLHYD and CCLAD schemes that respectively solve the two-dimensional
Lagrangian hydrodynamics equations and the two-dimensional anisotropic diffusion equation.
These schemes, which have been thoroughly described in this document, are the numerical basis
of the CHIC code that has been developed at CELIA.

More precisely, CCLAD is a cell-centered high-order finite volume scheme devoted to the
numerical resolution of the non-linear anisotropic heat conduction equation on two-dimensional
unstructured distorted grids composed of triangular or quadrangular cells. This scheme, which
can be used either in Cartesian or cylindrical geometry, has been derived utilizing a sub-cell
variational formulation, it is characterized by cell-centered unknowns and has a local stencil.
Its robustness and its accuracy have been demonstrated by means of various test cases. In the
future, we intend to extend this scheme to the three-dimensional geometry.

Regarding the EUCCLHYD scheme, its has been derived employing a sub-cell force-based
discretization which applies to unstructured polygonal grids. This general formalism, which has
been described in both Cartesian and cylindrical geometry, allows to construct a family of cell-
centered Lagrangian schemes, wherein numerical fluxes are expressed in terms of sub-cell forces.
The general form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-
discrete entropy inequality. Sub-cell force and nodal velocity are computed consistently with
the cell volume variation by means of a node-centered solver, which results from the total energy
conservation. The high-order extension of this family of cell-centered schemes is achieved using
a one-step time discretization, wherein the fluxes are computed by means of a Taylor expansion.
The time derivatives of the fluxes are obtained through the use of a node-centered solver which
can be viewed as a two-dimensional extension of the Generalized Riemann Problem methodology
introduced by Ben-Artzi and Falcovitz [21]. The robustness and the accuracy of this scheme
are assessed using representative test cases of compressible fluid flows. In the future, we aim at
studying alternative very high-order extensions of this cell-centered Lagrangian scheme by using
a Discontinuous Galerkin approach [163]. We intend to revisit the three-dimensional extension
that has been derived in [111] by means of the sub-cell force concept. Furthermore, we have
in mind to pursue the investigations undertaken in [110], which concern the study of the links
between the sub-cell force-based staggered and cell-centered discretizations. We also want to
enrich the capability of this discretization which is limited to the gas dynamics equations by
extending it to include material strength modeling. We have chosen to limit our investigation to
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the case of hypo-elastic constitutive laws for material characterized by Elastic Perfectly Plastic
behavior [166].

We conclude by noticing that as all Lagrangian methods, the present scheme suffers from
a lack of robustness when the vorticity and shear within the flow become too important. The
consequence of this is the appearance of non-convex, or even tangled, cells. To remedy this type
of problem, we have developed a multi-material Arbitrary Lagrangian Eulerian (ALE) method
within the code CHIC, which is described in [59]. The main elements of this ALE algorithm are
an explicit Lagrangian phase in which the solution and the grid are updated, a rezoning phase
in which a new grid is defined by improving the geometric quality of the cells and a remapping
phase in which the Lagrangian solution is conservatively interpolated onto the new grid.

212



Appendix A

Notation and reminder related to

vectors and tensors

In this appendix, we aim at recalling notation and formulas related to vectors and tensors
which are required to derive the mathematical modeling of fluid mechanics. We do not intend
to present the complete rigorous tensor theory, which is beyond the scope of the present chapter,
but rather introduce useful formulas. The present description has been constructed collecting
materials from [24, 148, 25, 141, 63, 86].

In all what follows, we consider Rd, where d is nonnegative integer ranging from 1 to 3, as
a d-dimensional Euclidean space. Namely, Rd is a d-dimensional vector space equipped with an
inner product and an orthonormal basis (e1, e2, . . . , ed). An arbitrary vector in R

d, x, is defined
by its coordinates, (x1, x2, . . . , xd), as x =

∑d
i=1 xiei. The inner product of two vectors x and

x′ is defined by x · x′ =
∑d

i=1 xix
′
i. The inner product of x with itself is always nonnegative

and allows us to define the Euclidean norm on R
d as

‖x‖ =
√
x · x =

√√√√
d∑

i=1

x2i .

A.1 Introduction to second-order tensors

A.1.1 Definitions

Let a and b be two vectors of Rd. The tensor product, otherwise named dyadic product, of a
and b is denoted by a⊗ b and defined as

∀x ∈ R
d , (a⊗ b)x = (b · x)a. (A.1)

This relation defines a linear transformation of Rd which is characterized by a matrix whose
components are written

(a⊗ b)ij = aibj , (i, j = 1, 2 . . . , d). (A.2)

Having in mind the notion of tensor product of two vectors, we define a second-order tensor
on R

d as the sum of tensor products of vectors in R
d. This definition involves that the set of

second-order tensors defined on R
d is a d2-dimensional vector space equipped with the basis

ei ⊗ ej (i, j = 1, 2 . . . , d). This definition involves that an arbitrary tensor, T, can be written

T =

d∑

i=1

d∑

j=1

Tijei ⊗ ej , (A.3)
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where Tij are components of the tensor T. Let us remark that to any second-order tensor T

corresponds the linear transformation of Rd defined by

x′ = Tx, x′i =
d∑

j=1

Tijxj .

Note that the second-order tensor T corresponds either to the previous linear transformation
or to the matrix defined by its components Tij in an orthonormal basis. We conclude this
paragraph recalling the following basic definitions which coincide with the classical definition
of linear algebra for matrices.

• Zero tensor: this tensor, which is denoted by O, maps every vector x into the zero vector

Ox = 0. (A.4)

• Identity or unit tensor: this tensor, which is denoted by Id, maps every vector into itself

Idx = x. (A.5)

The components of the matrix associated to the unit tensor are given by Iij = δij , where
δij stands for the Kronecker symbol which takes the values δij = 1 if i = j and δij = 0 if
i 6= j.

• Transpose of a tensor: the transpose of the tensor T is the unique tensor Tt defined by

Tx · x′ = x · Ttx′. (A.6)

Components of transpose of T are given by T t
ij = Tji.

• Symmetric and skew tensors: a tensor T is symmetric if Tt = T, it is skew if Tt = −T.
Every tensor can expressed uniquely as the sum of a symmetric tensor and a skew tensor
as

T =
1

2
(T+ Tt) +

1

2
(T− Tt). (A.7)

• Trace of a tensor: the trace of a tensor T is the scalar denoted by tr(T) and defined as

tr(T) =
d∑

i=1

Tii. (A.8)

If S and T are two second-order tensors, it is straightforward to check that

tr(ST) = tr(TS). (A.9)

• Determinant of a tensor: the determinant of a tensor T is the scalar denoted by detT and
defined as the determinant of its corresponding matrix. It is computed by means of the
following formula

detT =
d∑

i=1

Tij(−1)i+jMij =
d∑

j=1

Tij(−1)i+jMij , (A.10)

where Mij denote the minors of matrix T, that is the determinant formed by omitting the
ith row and jth column of T.
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• Inverse of a tensor: the inverse of a tensor T is the tensor denoted by T−1. It is defined
provided that detT 6= O. It satisfies TT−1 = Id and its components are given by

T−1
ij =

1

detT
(−1)i+jMji. (A.11)

• Positive definite tensor: a tensor T is positive definite if for an arbitrary vector x the
following property holds

Tx · x > 0. (A.12)

A.1.2 Properties of the dyadic product of two vectors

The dyadic product of two vectors satisfies the following important properties

tr(a⊗ b) =a · b, (A.13a)

(a⊗ b)t =b⊗ a, (A.13b)

T(a⊗ b) =(Ta)⊗ b, (A.13c)

(a⊗ b)T =a⊗ (Ttb), (A.13d)

(x⊗ x′)(a⊗ b) =(x′ · a)x⊗ b, (A.13e)

The demonstration of these properties are left to the reader.

A.1.3 Inner product of second-order tensors

Let S and T be two second-order tensors. The inner product of S and T is a scalar denoted by
S : T and defined as

S : T = tr(StT). (A.14)

The inner product can also be expressed in terms of the tensor components as

S : T =
∑

i

∑

j

SijTij . (A.15)

We note that S : T = T : S and S : Id = tr(S). This inner product defines a scalar product over
the space of second-order tensor. The corresponding norm is the Frobenius norm defined as

‖T‖ =
√

tr(TtT) =

√∑

i

∑

j

T 2
ij . (A.16)

Using the previous definition, one can show easily the following identities

L : (ST) = (StL) : T = (LTt) : S, (A.17a)

(x⊗ x′) : (a⊗ b) = (x · a)(x′ · b), (A.17b)

L : (a⊗ b) = a · (Lb) = (a⊗ b) : L. (A.17c)

Let T be a symmetric second-order tensor and S be an arbitrary second-order tensor, then their
inner product satisfies the following identity

T : S = T :
1

2
(S+ St). (A.18)

This results from the symmetry of T and property of the trace operator (A.9).
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A.2 Eigenvalues and eigenvectors of a tensor

Let T be a second-order tensor. Let λ be a scalar and U a vector such that TU = λU .
Then λ is called an eigenvalue and U and eigenvector. Note that the eigenvalues and the
eigenvectors are independent of the choice of the basis, that is they are invariant under change
of basis. Eigenvalues are computed by finding the roots of the characteristic polynomial equation
PT(λ) = 0, where PT(λ) = det(T−λId). A second-order tensor can have at most d eigenvectors
and eigenvalues since the space is d-dimensional. We note that if a tensor is positive definite,
then its eigenvalues are positive, since by definition TU ·U = λ‖U‖2 > 0. If a tensor T admits
d real eigenvalues, λi, i = 1 . . . d, then its trace and its determinant can be expressed in terms
of these eigenvalues as

tr(T) =
d∑

i=1

λi, detT = Πd
i=1λi. (A.19)

Therefore, the trace and the determinant are scalar invariants of a tensor.

We conclude this section by recalling the fundamental property satisfies by symmetric ten-
sors. If T is symmetric, it admits d real eigenvalues, λi, i = 1 . . . d, whose corresponding
eigenvectors are mutually orthogonal. Therefore, the normalized eigenvectors, Ui, i = 1 . . . d,
form the orthonormal basis of the spectral decomposition which writes as

T =
d∑

i=1

λiUi ⊗Ui. (A.20)

This expression is the spectral decomposition of the symmetric tensor T.

A.3 Tensor analysis

In this section, we recall the definition of the divergence and the gradient of a vector and a
second-order tensor. It is assumed that the functions employed here are sufficiently smooth so
that the limits and derivatives taken are always defined.

A.3.1 Derivative of tensor with respect to a scalar

Let L = L(t) be a tensor function of scalar t. The derivative of L with respect to t is the
second-order tensor defined by

d

dt
L = lim

h→0

L(t+ h)− L(t)

h
. (A.21)

Using this definition, the derivative of the dyadic product of the two vectors a = a(t) and
b = b(t) is given by

d

dt
(a⊗ b) = da

dt
⊗ b+ a⊗ db

dt
. (A.22)

A.3.2 Derivative of scalar valued functions of vectors

Let f = f(x) be a real valued function of the vector x. Then, the derivative of f(x) with
respect to x in the direction a is the vector ∇f defined as

∇f · a = lim
h→0

f(x+ ha)− f(x)

h
. (A.23)
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Vector ∇f is the gradient of f , which writes with respect to the orthonormal basis

∇f =
d∑

i=1

∂f

∂xi
ei.

A.3.3 Derivative of vector valued functions of vectors

Let f = f(x) be a vector valued function of the vector x. Then, the derivative of f(x) with
respect to x in the direction a is the second-order tensor ∇f defined as

(∇f)a = lim
h→0

f(x+ ha)− f(x)
h

. (A.24)

On the orthonormal basis, the gradient tensor ∇f read as

∇f =

d∑

i=1

d∑

j=1

∂fi
∂xj

(ei ⊗ ej).

A.3.4 Derivative of scalar valued functions of second-order tensors

Let f = f(S) be a scalar valued function of the second-order tensor S. Then, the derivative of
f(S) with respect to S in the direction of the second-order tensor T is the second-order tensor
∂f
∂S defined as

∂f

∂S
: T = lim

h→0

f(S+ hT)− f(S)

h
. (A.25)

On the orthonormal basis, this second-order tensor writes as

∂f

∂S
=

d∑

i=1

d∑

j=1

∂f

∂Sij
(ei ⊗ ej).

Let us consider the composed scalar valued function f = f(S(t)), then its derivative with respect
to the scalar variable t is given by

df

dt
=
∂f

∂S
:
dS

dt
. (A.26)

A.3.5 Derivative of the determinant of a tensor

The derivative of the determinant of a second-order tensor T with respect to itself is the second-
order tensor

∂

∂T
(detT) = T−t detT, (A.27)

where T−t denotes the transpose of the inverse of T. The proof of this result consists in
computing the partial derivative of the determinant with respect to its component through the
use of (A.10)

∂

∂Tij
(detT) =

d∑

i=1

(−1)i+jMij .

Then, comparing this result with the definition of the inverse (A.11) it is clear that

∂

∂Tij
(detT) = T−1

ji detT,

which ends the proof.
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A.3.6 Divergence of a vector and a tensor

Let U = U(x) be a vector function of x, its divergence is a scalar denoted by ∇·U and defined
as

∇ ·U =
d∑

i=1

∂Ui

∂xi
. (A.28)

Let us remark that the divergence of a vector can also be defined as

∇ ·U = tr(∇U). (A.29)

This alternative definition is more intrinsic since it does not require the use of the components
of U provided that the tensor gradient of U is well defined.

Let T be a second-order tensor, its divergence is a vector denoted by ∇·T whose components
are expressed in terms of the tensor components as follows

(∇ · T)i =
∑

j

∂Tij
∂xj

. (A.30)

A.3.7 Tensor identities

Having in mind the previous notation and definitions it is straightforward to demonstrate the
following important identities.

∇ · (TU) = ∇ · (Tt) ·U + Tt : ∇U , (A.31a)

∇ · (U ⊗ V ) = (∇U)V +U∇ · V , (A.31b)

∇(ρU) = ρ∇U +U ⊗∇ρ, (A.31c)

∇ · (ρT) = ρ∇ · T+ T∇ρ, (A.31d)

where ρ, U , V and T are respectively arbitrary scalar, vectors and second-order tensor.

Comment 22 Let us remark that tensor identity (A.31a) allows to propose the following in-
trinsic definition of the divergence of a tensor. Let T be a second-order tensor and U a constant
arbitrary vector. The divergence of T is the vector denoted ∇ · T such as

(∇ · T) ·U = ∇ · (TtU), ∀U . (A.32)

A.4 Integral transformation formulas

The Green formula, otherwise named divergence formula, states that the volume integral of the
divergence of a function is equal to the total flux of this function through the surface enclosing
the volume. We recall its formulations for vectors and second-order tensors. All the real, vector
and tensor valued functions are assumed to be continuously differentiable with respect to the
spatial variables. Let ω be a domain of the d-dimensional space enclosed by a surface ∂ω, then
for arbitrary second-order tensor T and vector U

∫

ω
∇ · Tdv =

∫

∂ω
Tn ds, (A.33a)

∫

ω
∇ ·U dv =

∫

∂ω
U · n ds, (A.33b)
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nσ

∂ω2∂ω1

ω1

ω2

σ

ω = ω1 ∪ ω2 ∪ σ

Figure A.1: Volume ω is split into two sub-volumes ω1 and ω2 by the discontinuity surface σ.

where n denotes the unit outward normal to the enclose surface ∂ω. Let f denotes a scalar
valued function, then using the previous results it is straightforward to demonstrate the following
useful formulas

∫

ω
∇U dv =

∫

∂ω
U ⊗ n ds, (A.34a)

∫

ω
∇f dv =

∫

∂ω
fn ds. (A.34b)

We conclude this section by extending the divergence theorem to the case of piecewise continu-
ously differentiable functions. To this end, we assume that ω is divided into two non-overlapping
volumes ω1 and ω2 over which U and T are continuously differentiable. Let σ be the intersection
surface of ω1 and ω2, i.e. σ = ω1 ∩ ω2, refer to Fig. A.1. This is the surface of discontinuity for
functions U and T. Let xσ be the position vector of a point located on this surface and nσ the
unit normal to σ located at xσ and pointing in the direction of ω2. The jumps of the functions
U and T through the discontinuity surface σ are defined as

JUK =U2 −U1,

JTK =T2 − T1,

where for an arbitrary xσ ∈ σ

U1 = lim
h→0+

U(xσ − hnσ), U2 = lim
h→0+

U(xσ + hnσ),

T1 = lim
h→0+

T(xσ − hnσ), T2 = lim
h→0+

T(xσ + hnσ).

U being continuously differentiable separately over ω1 and ω2, application of divergence formula
(A.33b) yields

∫

ω1

∇ ·U dv =

∫

∂ω1\σ
U · n ds+

∫

σ
U1 · nσ ds,

∫

ω2

∇ ·U dv =

∫

∂ω2\σ
U · n ds−

∫

σ
U2 · nσ ds.
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The sum of the two previous equations leads to

∫

ω1∪ω2

∇ ·U dv +

∫

σ
JUK · nσ ds =

∫

∂ω
U · n ds. (A.35)

This equation consists of a generalization of divergence formula (A.33b) to piecewise continu-
ously differentiable vector function. The second term in the left-hand side corresponds to the
flux through σ resulting from the jump across this surface. We notice that this term cancels
when JUK → 0. Proceeding with the tensor valued function as before yields

∫

ω1∪ω2

∇ · Tdv +

∫

σ
JTKnσ ds =

∫

∂ω
Tn ds. (A.36)

Applying the same reasoning formulas (A.34a) and (A.34b) transform into

∫

ω1∪ω2

∇U dv +

∫

σ
JUK ⊗ nσ ds =

∫

∂ω
U ⊗ n ds, (A.37a)

∫

ω1∪ω2

∇f dv +

∫

σ
JfKnσ ds =

∫

∂ω
fn ds. (A.37b)
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Appendix B

Properties of the Rankine-Hugoniot

equations

The purpose of this appendix is to recall some useful properties of the solution of the one-
dimensional Rankine-Hugoniot relations.

B.1 Notation

The Rankine-Hugoniot equations for one-dimensional Lagrangian gas dynamics write as

MJ
1

ρ
K + JuK = 0,

MJuK − JP K = 0,

MJEK − JPuK = 0,

−MJηK > 0.

These equations, which have been derived in Section 2.3.4, govern the jumps of the fluid vari-
ables at a discontinuity surface. Here, the jump of a fluid variable, f , is denoted by JfK and
corresponds to the difference of the one-sided limits of f on both sides of the discontinuity
surface, i.e., JfK = f2 − f1. Let us assume that the mass swept by the discontinuity surface,
M , is positive. This particular case corresponds to a rightward shock wave. Now, instead of
denoting by subscripts 1 and 2 the one-sided limits on both sides of the shock wave, we only
use the subscript 0 to label the one-sided limit located on the right side of the discontinuity.
In addition, it will be convenient to denote the specific volume, 1

ρ , by τ . With this notation
Rankine-Hugoniot relations recast as

M(τ − τ0) + u− u0 = 0, (B.1a)

M(u− u0)− (P − P0) = 0, (B.1b)

M(E − E0)− (Pu− P0u0) = 0, (B.1c)

η − η0 > 0. (B.1d)

Equations (B.1a)-(B.1c) state respectively mass, momentum and total energy conservation
across the shock wave. Last equation follows from the Second Law of thermodynamics and
states that the specific entropy of a fluid particle crossing the shock wave is always increasing.
The thermodynamic closure of the above system is given by the equation of state P = P (τ, ε)
where ǫ = E − 1

2u
2 is the specific internal energy.
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B.2 Study of the Hugoniot curve

In this section we aim at studying the thermodynamics properties of a shock wave following the
approach developed in [168]. To do so, it is useful to determine the jump relation undergone by
specific internal energy. This jump relation is obtained in two steps. First multiplying (B.1b)
by 1

2(u+ u0) yields the specific kinetic energy jump relation

M
1

2
(u2 − u20)−

1

2
(u+ u0)(P − P0) = 0.

Second, subtracting this last equation from (B.1d) and substituting (B.1a) leads to

ε− ε0 +
1

2
(P + P0)(τ − τ0) = 0. (B.2)

This determines all the possible thermodynamic states (τ, P ) which may be reached across a
shock wave from an initial state (τ0, P0). Being given an equation of state, (B.2) determines a
curve in the thermodynamic plane (τ, P ) known as the Hugoniot curve. Eliminating the velocity
jump between (B.1a) and (B.1b) provides the useful relation

M2 = −P − P0

τ − τ0
. (B.3)

This relation determines a straight line in the thermodynamic plane (τ, P ) named the Rayleigh
line. We also remark that (B.3) implies that along the Hugoniot curve, the pressure, P , is
monotonically decreasing in τ . To investigate the behavior of the thermodynamic variables
through a shock wave, we shall compute entropy variation along the Hugoniot curve. According
to the fundamental Gibbs relation entropy variation writes as

Tdη = dε+ Pdτ, (B.4)

where T denotes the temperature, which is a positive variable. Differentiating Hugoniot equation
yields

dε+
1

2
(τ − τ0)dP +

1

2
(P + P0)dτ = 0.

Combining this equation with Gibbs relation leads to

Tdη =
1

2
(τ − τ0)

[
P − P0

τ − τ0
− dP

dτ

]
dτ. (B.5)

We assume that the thermodynamic variables are sufficiently smooth to allow a Taylor expan-
sion of the term between brackets in the right-hand side in the vicinity of the origin (τ0, P0).
Performing this Taylor expansion up to third-order terms yields

Tdη = −1

4
(τ − τ0)

2d
2P

dτ2
(τ0)dτ +O((τ − τ0)

3). (B.6)

At this point, we make the fundamental assumption that the equation of state is such that
the Hugoniot curve is convex, i.e. d2P

dτ2
> 0. In addition, we recall that a shock wave is an

irreversible process across which entropy is always increasing according to the Second Law of
thermodynamics, that is, Tdη ≥ 0. Therefore, (B.6) implies that dτ ≤ 0, that is the specific
volume decreases across a shock wave. Since along Hugoniot curve, pressure is decreasing in τ ,
this also implies that the pressure increases across the shock. We conclude by saying that

for a material characterized by a convex Hugoniot curve, shock wave satisfying
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the Second Law of thermodynamics are compressive shock wave. This result has
been obtained for an arbitrary equation of state under the assumption of a weak shock wave.
Integrating (B.6) along Hugoniot curve yields

∫ τf

τ0

Td η = − 1

12
(τf − τ0)

3d
2P

dτ2
(τ0) +O((τf − τ0)

4),

where τf is a final state such that
τ0−τf
τ0

≪ 1. Applying the mean value formula to the integral
in the left-hand side leads to

T̃ (ηf − η0) = − 1

12
(τf − τ0)

3d
2P

dτ2
(τ0) +O((τf − τ0)

4), (B.7)

where T̃ is some intermediate temperature between T0 and Tf . This equation states that the
entropy jump in the vicinity of the origin (τ0, P0) of the Hugoniot curve is cubic with respect
to the specific volume jump.

We conclude this paragraph by giving the analytical expression of the Hugoniot curve for
an ideal gas equation of state, i.e., P = (γ − 1) ετ . Substituting the equation of state into (B.2)
leads to

P = P0
(γ + 1)τ0 − (γ − 1)τ

(γ + 1)τ − (γ − 1)τ0
. (B.8)

Let us point out that this curve admits a vertical asymptote at τ = τ0
γ−1
γ+1 at which the pressure

becomes infinite and a horizontal one at P = −P0
γ−1
γ+1 , refer to Fig. B.1. Alternatively, we can

express the specific volume as function of the pressure by inverting the above equation

τ = τ0
(γ + 1)P0 + (γ − 1)P

(γ + 1)P + (γ − 1)P0
. (B.9)

Passing to the limit P
P0

→ +∞ in the above equation yields τ
τ0

→ γ−1
γ+1 . This shows that for an

infinite strength shock wave, the ratio of density reaches the limit value γ+1
γ−1 .

B.3 Pressure jump across a shock wave for an ideal gas

Combining Hugoniot equation (B.9) and (B.3), we express the mass flux swept by the shock in
terms of the pressures P and P0 as

M2 =
ρ0
2
[(γ + 1)P + (γ − 1)P0]. (B.10)

Introducing the pressure jump JP K = P − P0 in the above equation, it rewrites as

M2 =
γ + 1

2
ρ0JP K + ρ20c

2
0

, where c0 =
√

γP0

ρ0
denotes the sound speed. Substituting the latter expression into (B.1b)

yields the following quadratic equation in pressure jump

JP K2 − γ + 1

2
ρ0JuK

2JP K − ρ20c
2
0JuK

2 = 0. (B.11)

Since its discriminant is positive, it admits two solutions. The relevant physical solution writes

JP K = ρ0

[
γ + 1

4
JuK +

√
(
γ + 1

4
)2JuK2 + c20

]
JuK. (B.12)
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P

τ
0

P0

−γ−1
γ+1P0

γ−1
γ+1τ0

τ0

Figure B.1: Hugoniot curve for an ideal gas. Vertical and horizontal asymptotes are plotted in
blue.

Let us point out that for infinite strength shock wave, pressure jump tends to JP K ∼ ρ0
γ+1
2 JuK2,

that is pressure jump is quadratic in velocity jump. In the case of weak shock wave, pressure
jump tends to JP K ∼ ρ0JuKc0, that is pressure jump is linear in velocity jump. We conclude by
writing the expressions of the mass flux swept by the shock wave and its velocity W .

M = ρ0

[
γ + 1

4
JuK +

√
(
γ + 1

4
)2JuK2 + c20

]
, (B.13a)

W =
γ + 1

4
JuK +

√
(
γ + 1

4
)2JuK2 + c20. (B.13b)
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[87] E. Lescoute, T. De Rességuier, J.-M. Chevalier, J. Breil, P.-H. Maire, and G. Schurtz.
Ejection of spalled layers from laser shock-loaded metals. J. Appl. Phys., 108, 2010.
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