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The Problem of Molecular Shape Recognition

• Are these molecules similar?

• First, superpose them.

• Next, apply a similarity scoring function... Aah – Muguet!

• But how to superpose molecules and calculate similarity automatically?

Protein Docking – Another Molecular Recognition Problem

• A six-dimensional puzzle – do these proteins fit together?

• Yes, they fit!

• It is mostly a rotational problem: ONE translation plus FIVE rotations...

• But proteins are flexible => multi-dimensional space!

• So, how to calculate whether two proteins recognise each other?



Protein-Protein Interactions and Therapeutic Drug Molecules

• Protein-protein interactions (PPIs) define the machinery of life

• Humans have about 30,000 proteins, each having about 5 PPIs

• Understanding PPIs could lead to immense scientific advances

• Small “drug” molecules often inhibit or interfere with PPIs

What Are High Performance Algorithms?

• Fast Fourier Transforms (FFTs) ...

• Principle Component Analyses (PCAs) ...

• So what’s new ?

• Treat docking and shape matching as rotational problems

• Spherical Polar Fourier (SPF) correlations

• SPF approach leads to high order 5D FFTs

• Mapping docking calculations to GPUs

• Coupling SPF and Knowledge-Based techniques

Protein Docking Using FFTs (The Old Way!)

• Conventional approaches digitise proteins into 3D Cartesian grids...
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• ...and use FFTs to calculate translational correlations:

C[∆x, ∆y, ∆z] =
∑

x,y,z A[x, y, z] × B[x + ∆x, y + ∆y, z + ∆z]

• BUT – have to rotate one protein and repeat, which is expensive!

• POLAR coords allow the rotational nature of problem to be exploited

The Spherical Harmonics

• The spherical harmonics (SHs) are examples of classical “special functions”

• Spherical polar coordinates: r = (r, θ, φ)
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• The spherical harmonics are products of Legendre polynomials and circular functions:

• Real SHs: ylm(θ, φ) = Plm(θ) cos mφ + Plm(θ) sin mφ

• Complex SHs: Ylm(θ, φ) = Plm(θ)eimφ

• Orthogonal:
∫

ylmykjdΩ =
∫

YlmYkjdΩ = δlkδmj

• Complex↔Real: eimφ = cos mφ + i sin mφ



Spherical Harmonic Molecular Surfaces

• Use SHs as orthogonal shape “building blocks”:

• Encode distance from origin as SH series to order L:

• r(θ, φ) =
∑L

l=0

∑l
m=−l almylm(θ, φ)

• Reals SHs: ylm(θ, φ)

• Coefficients: alm

• Solve the coefficients by numerical integration

• Normally, L=6 is sufficient for good overlays

Ritchie and Kemp (1999) J. Comp. Chem. 20 383–395

Some Theory – Addition Theorems and Rotations

• An addition theorem is a relation between f(a + b) and f(a) and f(b) ...

• Example: ei(α+φ) = eiα × eiφ

• Addition theorems are useful for shifting coordinate systems:

• e.g. z-rotation: Ylm(θ, φ + α) = e−imαYlm(θ, φ)

• Calculating a general 3D rotation (3 Euler angles) is thanks to Wigner

• Rotated SHs: Ylm(θ′, φ′) =
∑

m′ D
(l)
m′m(α, β, γ)Ylm′(θ, φ)

• Here, we wish to fix the coordinate system and rotate the objects (molecules)

• “Object”: r(θ, φ) =
∑

lm AlmYlm(θ, φ)

• Rotated “Object”: r(θ, φ)′ =
∑

lm[
∑

m′ D
(l)
mm′(α, β, γ)Alm′]Ylm(θ, φ)

FFT-Based Surface Shape Matching

• For multiple rotational samples: eiα =⇒ FFT (α)

• 3D FFTs are possible: D
(l)
mm′(α, β, γ) =

∑

t Γ
(l)
mtm′ × e−imαe−itβe−im′γ

• Vector Interpretation: {alm ; |m| ≤ l ≤ L} → a

• Distance Interpretation: D =
∫ (

rA(θ, φ) − rB(θ, φ)
)2

dΩ = |a|2 + |b|2 − 2a.b

• Overlap Interpretation: S =
∫

rA(θ, φ)rB(θ, φ)dΩ = a.b

• Carbo Similarity: S = a.b/(|a|.|b|)

• Use icosahedral sampling and 1D or 3D FFTs for very fast rotational superpositions:

Can We Avoid Performing Rotational Comparisons?

• Rotation-invariant descriptors:

• RI coefficients: Al =
√

∑

m a2
lm and AL =

√

∑

l A
2
l

• RI “distance”: DRI = A2
L + B2

L − 2
∑L

l=0 AlBl

• Canonical orientations:

• First, align principal radii to the axes using L=6

• Then, compare using Carbo: S = a.b/(|a|.|b|)

z

x

• We find that canonical shape comparison is much better than rotation-invariant

• So, for a large database, store all molecules in canonical orientations...

Mavridis, Hudson, Ritchie (2007), J Chem Inf Model 45(5) 1787-1796



Clustering the Odour Dataset

• 7 classes: bitter, ambergris, camphoraceous, rose, jasmine, muguet, musk

• Takane et al. (2004) Org Biomol Chem 2 3250–3255

• Following Takene et al., the 46 molecules were clustered into 10 groups...

• (Takene et al. originally clustered them on quantum mechanics vibrational frequencies)

Odour Dataset Clustering Results

Clustering Superposed Pairs Clustering Canonical Orientations

Mavridis, Hudson, Ritchie (2007), J Chem Inf Model 45(5) 1787-1796

SH-Based Virtual Screening of HIV Entry Inhibitors

• Database of 248 CXCR4 and 354 CCR5 inhibitors + 4696 decoys

• Performed SH-based VS to distinguish actives from decoys...

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509–533.

SH Consensus Shapes Can Improve VS Screening Performance

• The Consensus shape is the “average” of a group of shapes...

r̃(θ, φ) =
1

N

N
∑

k=1

∑

lm

ak
lmylm(θ, φ)

Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509–533.



Clustering and Classifiying Diverse HIV Entry Inhibitors

• We clustered the 354 known inhibitors for CCR5

• We classified the inhibitors into four main clusters; merging clusters worsens the AUCs

• Therefore, the CCR5 ligands form no less than FOUR main groups

• Docking with Hex indicates these groups bind within THREE sub-sites in the CCR5 pocket

Pérez-Nueno, Ritchie, et al., (2008) J Chem Inf Model 48(11) 2146-2165

But What About the Docking Problem?

Docking Needs a 3D “Spherical Polar Fourier” Representation

• Need to introduce special orthonormal Laguerre-Gaussian radial functions, Rnl(r)

• Rnl(r) = N
(q)
nl e−ρ/2ρl/2L

(l+1/2)
n−l−1 (ρ); ρ = r2/q, q = 20.
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• Surface Skin: σ(r) =

{

1; r ∈ surface skin

0; otherwise
Interior: τ (r) =

{

1; r ∈ protein atom

0; otherwise

• Parametrise as: σ(r) =
∑N

n=1

∑n−1
l=0

∑l
m=−l a

σ
nlmRnl(r) ylm(θ, φ)

• Translations: aσ
nlm(R) =

∑N
n′l′ T

(|m|)
nl,n′l′(R)aσ

n′l′m

SPF Protein Shape-Density Reconstruction and Superposition

Shape-density: τ (r) =

N
∑

nlm

aτ
nlmRnl(r)ylm(θ, φ)

• Similar proteins may be superposed using only low resolution expansions (N=6), top left

Ritchie (2003) Proteins, 52 98–106



Protein Docking Using SPF Density Functions (The New Way!)

τ
σ(r)

(r)

Favourable:

∫

(σA(rA)τB(rB) + τA(rA)σB(rB))dV

Unfavourable:

∫

τA(rA)τB(rB)dV

Score: SAB =

∫

(σAτB + τAσB − QτAτB)dV Penalty Factor: Q = 11

Orthogonality: SAB =
∑

nlm

(

aσ
nlmbτ

nlm + aτ
nlm

(

bσ
nlm − Qbτ

nlm

))

Search: 6D space = 1 distance + 5 Euler rotations: (R, βA, γA, αB, βB, γB)

Ritchie and Kemp (2000) Proteins, 39, 178–194

Docked Orientation for CAPRI Target 3 – Hemagglutinin/HC63

• CAPRI “medium accuracy” ( 1Å ≤ Ligand RMSD ≤ 5Å)

Ritchie (2003) Proteins, 52, 98–106.

Docked Orientation for CAPRI Target 6 – Amylase/AMD9

• CAPRI “high accuracy” (Ligand RMSD ≤ 1Å)

Ritchie (2003) Proteins, 52, 98–106.

Simulating Flexibility During Docking using “Essential Dynamics”

• Generate distance-constrained samples in CONCOORD, then apply PCA

• Covariance matrix, C:

Cij = < (xi − xi)(xj − xj) >

• Calculate eigenvectors, E:

C = E.Λ.ET

• Estimate Unbound to Bound:

B ≃ U +
n

∑

k=1

αkek

• The first few eigenvectors encode most of the internal fluctuations

• We were the first to show that this could improve rigid body docking...

Mustard and Ritchie (2005), Proteins 60, 269–274



Using PCA to Predict Chemical Complementarity

• We used “GRID” to calculate chemical potentials around proteins

Chemical probes
O, O–,
N, NH, N+,
Csp3, Dry

Colour codes
R (+), G (hyd), B (-)

• We then applied PCA to the potential grids

• This showed that N+, O–, and “Dry” explained 70–75% of the variance...
Fano et al. (2006) J Chem Inf Model 46, 1223–1235.

Protein Docking Using GRID Probe Potentials

• Docking the subtilisin/SSI-inhibitor using GRID probe potentials:

N+ = blue

O– = red

Dry = green

• We developed a probe-shape energy correlation:

E =
1

2

∫

[(

φN+
A + φO−

A + φDry
A

)

∗ τB +
(

φN+
B + φO−

B + φDry
B

)

∗ τA

]

dV

• This gave better prediction (rank 5) than shape+elec (10) or shape (13)

• Promising, but not enough time to automate it all... To be revisited!

Fano et al. (2006) J Chem Inf Model 46, 1223–1235.

5D FFT Correlations from Complex Overlap Expressions

Complex SHs, Ylm: ylm(θ, φ) =
∑

t

U
(l)
mtYlt(θ, φ)

Complex coefficients: Anlm =
∑

t

anltU
(l)
tm

Complex overlap: E =
∑

kjsmnlv

D(j)∗
ms (0, βA, γA)A∗

kjsT
(|m|)
kj,nl (R)D(l)

mv(αB, βB, γB)Bnlv

Collect coefficients: S
(|m|)
js,lv (R) =

∑

kn

A∗
kjsT

(|m|)
kj,nl (R)Bnlv

To give: E =
∑

jsmlv

D(j)∗
ms (0, βA, γA)S

(|m|)
js,lv (R)D(l)

mv(αB, βB, γB)

And finally: E =
∑

jsmlvrt

Γrm
js S

(|m|)
js,lv (R)Γtm

lv e−i(rβA−sγA+mαB+tβB+vγB)

Ritchie, Kozakov, Vajda (2008) Bioinformatics 24 1865–1873

nVidia Graphics Processors (GPUs)

• Modern GPUs have very high ( ∼ teraflop) compute performance

• SIMT architecture = simultaneous instructions, multiple threads

• nVidia GPUs:

• Grid of threads model

• Uniform architecture/interface – “CUDA”

• 16–32 multi-processors

• 240–512 arithmetic “cores”

• 4–6 Gb main memory

• ONLY ∼ 16 Kb memory per multi-processor

• Need to aim for “high arithmetic intensity” on each multi-processor...

• Thankfully, matrix multiplications etc. fit these constraints perfectly



GPU Implementation – Perform Multiple FFTs

• Next, calculate multiple 1D FFTs of the form:

SAB(αB) =
∑

m

e−imαB
∑

nl

Aσ
nlm(R, βA, γA) × Bτ

nlm(βB, γB)

4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)

5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations

• 3D FFTs in (αB, βB, γB) can be calculated in a similar way...

Ritchie and Venkatraman (2010), Bioinformatics, 26, 2398–2405

Protein Docking on GPUs

• With Multi-threading, we can use as many GPUs and CPUs as are available

• For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

• With 2 GPUs, docking takes only about 15 seconds – very important for large-scale!

• Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore7

Protein Docking – Comparison with ZDOCK and PIPER

• Hex: 52000 x 812 rotations, 50 translations (0.8Å steps)

• ZDOCK: 54000 x 6 deg rotations, 92Å 3D grid (1.2Å cells)

• PIPER: 54000 x 6 deg rotations, 128Å 3D grid (1.0Å cells)

• Hardware: GTX 285 (240 cores, 1.48 GHz)

Kallikrein A / BPTI (233 / 58 residues)#

ZDOCK PIPER† PIPER† Hex Hex Hex‡

FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU

3D 7,172 468,625 26,372 224 60 84

(3D)⋆ (1,195) (42,602) (2,398) 224 60 84

1D – – – 676 243 15

# execution times in seconds

* (times scaled to two-term potential, as in Hex)

Protein Docking – Comparison with ZDOCK and PIPER

• Hex: 52000 x 812 rotations, 50 translations (0.8Å steps)

• ZDOCK: 54000 x 6 deg rotations, 92Å 3D grid (1.2Å cells)

• PIPER: 54000 x 6 deg rotations, 128Å 3D grid (1.0Å cells)

• Hardware: GTX 285 (240 cores, 1.48 GHz)

Kallikrein A / BPTI (233 / 58 residues)#

ZDOCK PIPER† PIPER† Hex Hex Hex‡

FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU

3D 7,172 468,625 26,372 224 60 84

(3D)⋆ (1,195) (42,602) (2,398) 224 60 84

1D – – – 676 243 15

# execution times in seconds

* (times scaled to two-term potential, as in Hex)

• Next mission? – give Hex a better potential function!



Current Work

and

Future Perspectives

Clustering CATH Protein Structure Superfamilies

• “CATH” is a “gold standard” classification of protein structures

• Auto/expert curated: ∼ 12,000 structures, ∼ 1,200 folds

• Our first test – can we cluster the members of five selected families?

• Most structures are
correctly grouped

• Global shape-density
matching does not al-
ways agree with the ex-
pert “topology”

• We should consider
shape-density as a data-
base “view”?

Mavridis and Ritchie (2010), Pacific Symposium Biocomputing, 281–292.

3D-Blast – Comparing Protein Fold Family Consensus Shapes

• We can now also work with consensus protein backbone shapes:

• This could provide a new way to index and search 3D structural databases...

Mavridis et al. (2011), manuscript submitted.

3D-Snap – Fast and Faithful 3D Virtual Drug Screening

• 3D functions should give better VS performance than 2D SH surfaces...

• Ligand-ligand, ligand-pocket, pocket-pocket will all be possible...

• Consensus 3D shapes should work well too...

• I also want to explore new basis functions:

• e.g. Gegenbauer polynomials (best for rotation + translation?)



EigenHex – Flexible Protein Docking

• Apply eigenvector analysis to the top 1,000 Hex orientations

Overall approach

• Cα elastic network model (ENM)

• Use up to 20 eivenvectors

• Search using PSO

• Score using “DARS” potential

Results so far

• DARS works very well...

• Still need a better scoring function

Knowledge-Based Docking: CAPRI Target 40 – API-A/Trypsin

• We searched SCOPPI and 3DID for similar domain interactions to the target

• This helped to identify two key inhibitory loops on API-A around L87 and K145

• Focused Hex docking + MD refinement gave NINE “acceptable” solutions in CAPRI

Using Known Protein Interfaces to Predict Unknown Interactions

• KBDOCK – A PPI Database for Knowledge-Based Docking

Ghoorah et al. (2011), manuscript in preparation.

Assembling Multi-Component Protein Complexes

• Multi-component assembly is a highly combinatorial problem

• First, generate multiple pair-wise predictions

• Next, perform breadth-first search using a particle-swarm approach

• The challenge – how to score the trial orientations efficiently?

Venkatraman and Ritchie (2011), manuscript submitted.



Assembling Molecular Machines?

• A recent example – the ATPase motor

• There are hundreds (perhaps thousands?) more such machines!

Figure from Muench et al. (2009) J. Mol Biol 386 989–999

Putting It All Together?

• The Nuclear Pore Complex has some 650 protein components...

• It required an immense multi-disciplinary effort to build this model

• The challenge – can we do this automatically?

Figures from Alber et al. Nature (2007) 450, 683–694 and 695–701.

Conclusions

• Molecular shape recognition is an important aspect in:

• Virtual drug screening

• Protein-ligand interactions

• Macromolecular assembly

• SPFs provide a novel and useful techinique for shape recognition

• Shape-based techniques will be increasingly useful in many areas:

• Computational chemistry

• Structural biology

• ... and beyond!

And Finally – Special Thanks for the French Translation!

Anisah Ghoorah

Matthieu Chavent

Malika Smäıl-Tabbone

Yasmine Asses

Bernard & Françoise Maigret

French + English documents: http://www.loria.fr/∼ritchied/hdr/


