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The Problem of Molecular Shape Recognition Protein Docking — Another Molecular Recognition Problem

e Are these molecules similar? e A six-dimensional puzzle — do these proteins fit together?

e First, superpose them.

e Yes, they fit!

e Next, apply a similarity scoring function... Aah — Muguet!

e It is mostly a rotational problem: ONE translation plus FIVE rotations...
e But how to superpose molecules and calculate similarity automatically?

e But proteins are flexible => multi-dimensional space!

e So, how to calculate whether two proteins recognise each other?



Protein-Protein Interactions and Therapeutic Drug Molecules What Are High Performance Algorithms?

¢ Protein-protein interactions (PPIs) define the machinery of life

e Fast Fourier Transforms (FFTs) ...
e Humans have about 30,000 proteins, each having about 5 PPls

e Principle Component Analyses (PCAs) ...

Protein-Protein ~ Small-Molecule , 5
Docking Virtual Screening e So what’s new ?

e Treat docking and shape matching as rotational problems

e Spherical Polar Fourier (SPF) correlations

l e SPF approach leads to high order 5D FFTs

Therapeutic Drugs e Mapping docking calculations to GPUs

e Coupling SPF and Knowledge-Based techniques

e Understanding PPIs could lead to immense scientific advances

e Small “drug” molecules often inhibit or interfere with PPIs

Protein Docking Using FFTs (The Old Way!) The Spherical Harmonics

. L. L. . i e The spherical harmonics (SHs) are examples of classical “special functions”
e Conventional approaches digitise proteins into 3D Cartesian grids...

e Spherical polar coordinates: r = (r, 0, ¢)
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e The spherical harmonics are products of Legendre polynomials and circular functions:
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e ...and use FFTs to calculate translational correlations:

e Real SHs: Yim (0, @) = Pi(6) cosme + Py, (0) sinme
ClAz, Ay, Az] = Zw’y,z Alz,y,z] X Blx + Az,y + Ay, z + Az] '
e Complex SHs: Yim(0, ¢) = P, (0)e™®
e BUT - have to rotate one protein and repeat, which is expensive!
- - o Orthogonal: fylmyk:jdg = lemYk]dQ = Jlkémj

e POLAR coords allow the rotational nature of problem to be exploited o Complex< Real: €M — cosme + i sin m



Spherical Harmonic Molecular Surfaces

e Use SHs as orthogonal shape “building blocks”:

e Normally, L=6 is sufficient for good overlays
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Ritchie and Kemp (1999) J. Comp. Chem. 20 383-395

o 7(0,0) = Xl Xre s UmYim (6 D)
o Reals SHs:  y;,,,(0, @)
o Coefficients: ay,,

e Solve the coefficients by numerical integration

FFT-Based Surface Shape Matching

e For multiple rotational samples: e —> FFT(«)

e 3D FFTs are possible: Df,ll)m,(a, Byy) =3, I‘sl)tm, X e~imag=ithg—im'y

e Vector Interpretation: {aim ; Im| <I< L} —a

o Distance Interpretation: D = [ (r4(8,¢) — r5(6, ¢))2dﬂ = |a|? + |b|* — 2a.b
e Overlap Interpretation: S = [74(0,¢)rp(0,$)d2 = a.b

e Carbo Similarity:

S =a.b/(|al.|b])

e Use icosahedral sampling and 1D or 3D FFTs for very fast rotational superpositions:

e Encode distance from origin as SH series to order L:

Some Theory — Addition Theorems and Rotations
e An addition theorem is a relation between f(a + b) and f(a) and f(b) ...

e Example: eiate) — gia ¢ it

e Addition theorems are useful for shifting coordinate systems:

e e.g. z-rotation: Yim (0, ¢ + a) = e ™Y, (0, ¢)

e Calculating a general 3D rotation (3 Euler angles) is thanks to Wigner

e Rotated SHs: Yim (0, ¢') = 3,0 DO (@, 8,7) Yo (8, ¢)

e Here, we wish to fix the coordinate system and rotate the objects (molecules)
T(ea ¢) = Zlm Aleim(O’ ¢)

e Rotated “Object”: 7(0,¢) = >, [>w DY (s B,7) At Yirm (6, ¢)

e “Object”:

Can We Avoid Performing Rotational Comparisons?

o Rotation-invariant descriptors:
o Rl coefficients: A, = /3. a7 and A= ./, A}
e RI “distance”: Dpg; = A2 + B2 — 250  A\B,

e Canonical orientations:
e First, align principal radii to the axes using L=6

e Then, compare using Carbo: S = a.b/(|al.|b|)

e We find that canonical shape comparison is much better than rotation-invariant

e So, for a large database, store all molecules in canonical orientations...

Mavridis, Hudson, Ritchie (2007), J Chem Inf Model 45(5) 1787-1796



Clustering the Odour Dataset Odour Dataset Clustering Results

Clustering Superposed Pairs Clustering Canonical Orientations

e 7 classes: bitter, ambergris, camphoraceous, rose, jasmine, muguet, musk N .

o Takane et al. (2004) Org Biomol Chem 2 3250-3255 # &% "' :}
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¢ Following Takene et al., the 46 molecules were clustered into 10 groups...

o (Takene et al. originally clustered them on quantum mechanics vibrational frequencies)
Mavridis, Hudson, Ritchie (2007), J Chem Inf Model 45(5) 1787-1796

SH-Based Virtual Screening of HIV Entry Inhibitors SH Consensus Shapes Can Improve VS Screening Performance

¢ Database of 248 CXCR4 and 354 CCR5 inhibitors 4+ 4696 decoys e The Consensus shape is the “average” of a group of shapes...

e Performed SH-based VS to distinguish actives from decoys...
CXCR4 Inhibitors

N
® 7(0,¢) = % Z Z a’fmylm(e’ ®)

k=1 lm
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Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509-533.
Pérez-Nueno et al. (2008) J Chem Inf Model 48, 509-533.



Clustering and Classifiying Diverse HIV Entry Inhibitors

e We clustered the 354 known inhibitors for CCR5

e We classified the inhibitors into four main clusters; merging clusters worsens the AUCs

e Therefore, the CCR5 ligands form no less than FOUR main groups

e Docking with Hex indicates these groups bind within THREE sub-sites in the CCR5 pocket

Pérez-Nueno, Ritchie, et al., (2008) J Chem Inf Model 48(11) 2146-2165

Docking Needs a 3D “Spherical Polar Fourier” Representation

e Need to introduce special orthonormal Laguerre-Gaussian radial functions, R,,;(r)

o RBu(r) = NPe 2o PLI5 D ()

~ Riso(r)
| 30
‘ Rs0,0(r)
L/ 30
N Ras0(r)
‘ 30
‘ Ryo0(r)
L 30

e Surface Skin:

e Parametrise as:

e Translations:

{1; r € surface skin
o(r) =

0; otherwise

p=r%/q, q=20.

Solvent Accessible Surface Surface Skin
Molecular Surface \ Sampling
N “./ Spheres

Protein Interi

1; r € protein at«

Interior: T(r) = {

0; otherwise

o(r) = Ynly S Yo 1 @5 Rt (1) i (0, )

a,,(R) = Z]n\il’

T4, (R)ag,,

nl,n/l’

But What About the Docking Problem?

SPF Protein Shape-Density Reconstruction and Superposition

N
Shape-density: T(r) = Z ar, Ru(r)yim(0, @)

nlm

o Similar proteins may be superposed using only low resolution expansions (N=6), top left

Ritchie (2003) Proteins, 52 98-106



Protein Docking Using SPF Density Functions (The New Way!)

w0 "

Favourable: /(UA(EA)TB(EB) + Ta(r4)oB(rp))dV
Unfavourable: /TA(EA)TB(EB)dV
Score: Sap = /(UATB + 7a0p — QTaTE)dV Penalty Factor: @ =11

SAB = Z (G‘Zlmb;lm + a’:zlm(bzlm - Qb;lm))

nlm

Orthogonality:

Search: 6D space = 1 distance + 5 Euler rotations: (R, 34,74, B, 8B, VB)

Ritchie and Kemp (2000) Proteins, 39, 178-194

Docked Orientation for CAPRI Target 6 — Amylase/AMD9

e CAPRI “high accuracy” (Ligand RMSD < 1A)

Ritchie (2003) Proteins, 52, 98-106.

Docked Orientation for CAPRI Target 3 — Hemagglutinin/HC63

e CAPRI “medium accuracy” ( 1A < Ligand RMSD < 5A)

Ritchie (2003) Proteins, 52, 98-106.

Simulating Flexibility During Docking using “Essential Dynamics”

e Generate distance-constrained samples in CONCOORD, then apply PCA

e Covariance matrix, C:
Cij = < (zi — i) (z; — T;) >

e Calculate eigenvectors, E:

C=EAE"

e Estimate Unbound to Bound:

n
B~U+ Zakgk
k=1

)

0 500 1000 1500 2000 2500
Eigenvectors

e The first few eigenvectors encode most of the internal fluctuations
o We were the first to show that this could improve rigid body docking...

Mustard and Ritchie (2005), Proteins 60, 269-274



Using PCA to Predict Chemical Complementarity

e We used “GRID” to calculate chemical potentials around proteins

Chemical probes
0, 0-,

N, NH, N+,
Csp3, Dry

Colour codes
R (+). G (hyd), B (-)

e We then applied PCA to the potential grids

PC2

1SUP 3881

®

PC2

.
Cd Diy ®o-

PCL PCL

e This showed that N+, O—, and “Dry” explained 70-75% of the variance...
Fano et al. (2006) J Chem Inf Model 46, 1223-1235.

5D FFT Correlations from Complex Overlap Expressions

Complex SHs, Y;,,:

Complex coefficients:

Complex overlap:

Collect coefficients:

To give:

And finally:

Yim(0,0) = Y ULYu(6, 6)

t

Anlm == Z anltUt(»,ly)l
t

E= Y DY0,8a,74) AL, TV (R)DY, (5, B, vE) Buiw

kjsmnlv

js,lv kjsTkj,nl
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jsmlv
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Ritchie, Kozakov, Vajda (2008) Bioinformatics 24 1865-1873

Protein Docking Using GRID Probe Potentials

e Docking the subtilisin/SSl-inhibitor using GRID probe potentials:

N+ = blue
O- =red
Dry = green

e We developed a probe-shape energy correlation:

1 _ . _ r
= [ 183 +05 +0R7) wro+ (037 + 65 + 65  malav
e This gave better prediction (rank 5) than shape+elec (10) or shape (13)
e Promising, but not enough time to automate it all... To be revisited!

Fano et al. (2006) J Chem Inf Model 46, 1223-1235.

nVidia Graphics Processors (GPUs)

e Modern GPUs have very high ( ~ teraflop) compute performance

e SIMT architecture = simultaneous instructions, multiple threads

e nVidia GPUs:

o Grid of threads model

o Uniform architecture/interface — “CUDA”
e 16—-32 multi-processors

e 240-512 arithmetic “cores”

e 4—6 Gb main memory

e ONLY ~ 16 Kb memory per multi-processor
e Need to aim for “high arithmetic intensity” on each multi-processor...

e Thankfully, matrix multiplications etc. fit these constraints perfectly



GPU Implementation — Perform Multiple FFTs Protein Docking on GPUs

o Next, calculate multiple 1D FFTs of the form: e With Multi-threading, we can use as many GPUs and CPUs as are available
p— E —imap E o T HEX Results - Tandem Blind Docking Search Performance (N=16; N=25)
SAB(aB) € Anlm(R’ /BA”YA) X Bnlm(/BB’ ’YB) 375 IXCPU ~2XCPU ~4xCPU ~6XCPU ~8XCPU 24GPU zchu_nGPu 4XCPU_2XGPU - 6XCPU_2XGPU PU_2xGPU
m nl
4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)
300
5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations
m=L o B 25
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e For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs

¢ 3D FFTs in (ap,Bp,7p) can be calculated in a similar way... e With 2 GPUs, docking takes only about 15 seconds — very important for large-scale!

Ritchie and Venkatraman (2010), Bioinformatics, 26, 2398-2405 e Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore?
Protein Docking — Comparison with ZDOCK and PIPER Protein Docking — Comparison with ZDOCK and PIPER
e Hex: 52000 x 812 rotations, 50 translations (0.8A steps) e Hex: 52000 x 812 rotations, 50 translations (0.8A steps)
e ZDOCK: 54000 x 6 deg rotations, 92A 3D grid (1.2A cells) e ZDOCK: 54000 x 6 deg rotations, 92A 3D grid (1.2A cells)
e PIPER: 54000 x 6 deg rotations, 128A 3D grid (1.0A cells) ¢ PIPER: 54000 x 6 deg rotations, 128A 3D grid (1.0A cells)
e Hardware: GTX 285 (240 cores, 1.48 GHz) e Hardware: GTX 285 (240 cores, 1.48 GHz)
Kallikrein A / BPTI (233 / 58 residues)# Kallikrein A / BPTI (233 / 58 residues)#
ZDOCK PIPER! PIPERf Hex Hex Hex! ZDOCK PIPER! PIPERf Hex Hex Hex!

FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU FFT 1xCPU 1xCPU 1xGPU 1xCPU 4xCPU 1xGPU

3D 7,172 468,625 26,372 224 60 84 3D 7,172 468,625 26,372 224 60 84

(3D)*| (1,195) (42,602) (2,398) 224 60 84 (3D)*| (1,195) (42,602) (2,398) 224 60 84

1D - - - 676 243 15 1D - - - 676 243 15
# execution times in seconds # execution times in seconds
* (times scaled to two-term potential, as in Hex) * (times scaled to two-term potential, as in Hex)

e Next mission? — give Hex a better potential function!



Current Work
and

Future Perspectives

3D-Blast — Comparing Protein Fold Family Consensus Shapes

e We can now also work with consensus protein backbone shapes:

A
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e This could provide a new way to index and search 3D structural databases...

Mavridis et al. (2011), manuscript submitted.

Clustering CATH Protein Structure Superfamilies
e “CATH?” is a “gold standard” classification of protein structures
o Auto/expert curated: ~ 12,000 structures, ~ 1,200 folds

e QOur first test — can we cluster the members of five selected families?
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Mavridis and Ritchie (2010), Pacific Symposium Biocomputing, 281-292.

3D-Snap — Fast and Faithful 3D Virtual Drug Screening

e 3D functions should give better VS performance than 2D SH surfaces...

e Ligand-ligand, ligand-pocket, pocket-pocket will all be possible...

e Consensus 3D shapes should work well too...
e | also want to explore new basis functions:

e e.g. Gegenbauer polynomials (best for rotation + translation?)



EigenHex — Flexible Protein Docking

Knowledge-Based Docking: CAPRI Target 40 — API-A/Trypsin
e Apply eigenvector analysis to the top 1,000 Hex orientations

o We searched SCOPPI and 3DID for similar domain interactions to the target

I l e This helped to identify two key inhibitory loops on API-A around L87 and K145

o " h Peptidase Trypsin API-A Trypsin
verall approac i ;
- PP : ‘ VAE@;/&\ \Trypsin Site B ) Site A
v" Hex docking @," e Ca elastic network model (ENM) o L T ‘
N on GPUs A\ g \%M
l e Use up to 20 eivenvectors
EigenHex N NEI:Stick e Search using PSO Kunitz
S li etwor! . “ " . | "
arping Model e Score using “DARS” potential egume

Results so far

e DARS works very well... ‘}

Particle-Swarm Optimisation

Amylase
l e Still need a better scoring function

e Focused Hex docking + MD refinement gave NINE “acceptable” solutions in CAPRI
Ranked List of
Predictions

Using Known Protein Interfaces to Predict Unknown Interactions

Assembling Multi-Component Protein Complexes
¢ KBDOCK - A PPI Database for Knowledge-Based Docking

e Multi-component assembly is a highly combinatorial problem
Kunitz legume Kunitz BPTI

e First, generate multiple pair-wise predictions
Potato inhibit Trypsin Lys

o Next, perform breadth-first search using a particle-swarm approach

Lectin C

e The challenge — how to score the trial orientations efficiently?

Venkatraman and Ritchie (2011), manuscript submitted.
Ghoorah et al. (2011), manuscript in preparation.



Assembling Molecular Machines?

e A recent example — the ATPase motor

ADP + Pi

ATP

e There are hundreds (perhaps thousands?) more such machines!

Figure from Muench et al. (2009) J. Mol Biol 386 989-999

Conclusions

e Molecular shape recognition is an important aspect in:
e Virtual drug screening
¢ Protein-ligand interactions

e Macromolecular assembly
e SPFs provide a novel and useful techinique for shape recognition

e Shape-based techniques will be increasingly useful in many areas:
e Computational chemistry
e Structural biology

e ... and beyond!

Putting It All Together?

e The Nuclear Pore Complex has some 650 protein components...

Quantitative ~ Affinity  Overlay Electron Immuno-  Bioinformatics and
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Prote Com
Data shape shay
translation
into spatial o
restraints -
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= analysis ):;;}, =1
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e It required an immense multi-disciplinary effort to build this model
e The challenge — can we do this automatically?

Figures from Alber et al. Nature (2007) 450, 683-694 and 695-701.
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