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Chapter 1

Introduction

1.1 Context and Motivation

1.1.1 Molecular Shape Recognition

The main topic of this memoir is the development of computational techniques to represent and com-

pare the three-dimensional structures and properties of molecules. In the context of large biomolecules

such as proteins, this involves comparing and classifying their shapes in order to study the relation-

ships between protein structure and function, and it intimately involves predicting how pairs of proteins

might fit together or “dock” to form a biomolecular complex. In the context of small organic molecules,

it involves comparing and classifying the shapes of candidate drug molecules in order to predict how

then might bind to specific protein targets. Therefore, the material in this memoir lies at the interface

between computational biology and chemoinformatics.

According to the on-line Wikipedia,1 computational biology is described as “... an interdisciplinary

field that applies the techniques of computer science, applied mathematics and statistics to address

biological problems. The main focus lies on developing mathematical modeling and computational

simulation techniques. By these means it addresses scientific research topics with their theoretical

and experimental questions without a laboratory...” On the other hand, the term chemoinformatics was

first used by Frank Brown (1998) to describe “... the use of computing and informatics techniques in

chemistry in order to transform data into information and information into knowledge for the intended

purpose of making better decisions faster in the area of drug lead identification and optimization.”

Historically, computational biology and chemoinformatics have often been treated as separate

disciplines. However, because the three dimensional (3D) structures of both large biomolecules and

small drug molecules are central to their function (Bourne & Weissig, 2003; Pevsner, 2003; Petsko

& Ringe, 2004), and because drug molecules generally work by modulating the behaviour of their

biomolecular targets (Larson, 2006), it is important to consider these two fields together from a sci-

1http://en.wikipedia.org/wiki/Computational_biology
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entific point of view. Furthermore, I believe that from an informatics point of view it is important to

consider all scientific domains equally in order to be able to identify computational or algorithmic tech-

niques which are well known in one domain but which might usefully be extended and transferred to

another.

1.1.2 The Importance of Molecular Structure

In biology, it is axiomatic that a protein’s amino acid sequence determines its 3D molecular structure,

and that a protein’s 3D structure determines its specific function. However, due to the enormous vol-

ume and considerable complexity of biological data, it is necessary to use advanced computational

and visualisation techniques to store and manipulate it. In the current “post-genomic era,” in which

the entire gene sequences of more and more organisms are being determined routinely, scientific

attention is turning towards transforming this basic sequence information into structural and hence

functional knowledge. Therefore, the ability to represent and manipulate molecular structures in the

computer will become an increasingly important aspect of computational biology. Indeed, computa-

tional techniques are already being employed in many areas of the Life Sciences to help make sense

of and to exploit the vast quantities of sequence and structural data that is already available. For ex-

ample, biologists often perform sequence-based alignments and structural superpositions of proteins

to gain insights into their biological function, and they may also use computational protein-protein

“docking” software to try to predict how pairs of proteins interact at the molecular level. Similarly,

medicinal chemists often use protein-ligand docking software to help identify small molecules which

might dock onto a given protein target and consequently modulate its behaviour for therapeutic pur-

poses (Jensen, 1999; Dean, 1995; Petsko & Ringe, 2004). Indeed, modeling protein-ligand docking

is becoming an increasingly important strategy for structure-based drug discovery (Richards, 2002;

Congreve et al., 2005).

1.1.3 Experimental and Computational Bottlenecks

At the experimental level, X-ray crystallography and nuclear magnetic resonance (NMR) are often

considered as the “gold standard” techniques for determining high resolution structures of proteins

and other macromolecules. However, determining a protein’s 3D structure is considerably more dif-

ficult than determining its sequence. For example, although some 12,000 distinct protein structures

have been deposited in the Protein Data Bank (PDB; Sussman et al.., 1998) and new structures are

currently being added to the PDB at a rate of over 100 per week, these figures represent only a very

small proportion of the total number of known protein sequences. Hence there is an on-going need

to be able to create 3D structural models of proteins. Furthermore, only a small proportion of the

3D structures deposited in the PDB correspond to protein-protein complexes, and less than 2% of all

known structures comprise protein-protein hetero-complexes. Additionally, due to a number of practi-
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cal difficulties it seems unlikely that it will become possible to solve the structures of protein complexes

using high-throughput structural genomics techniques in the foreseeable future (Russell et al., 2004).

Hence, the use of computational techniques such as homology model-building and protein docking

will become increasingly important ways to help understand the molecular mechanisms of biological

systems (Aloy et al., 2004; Aloy & Russell, 2006).

When considering molecular structures, it is always important to remember that biomolecules

and many small ligand molecules are intrinsically dynamical entities at physiological conditions. For

example, the individual atomic positions within a protein rapidly and continuously fluctuate under

thermal motion. At longer time-scales, the conformations2 of the amino acid residues within a protein

can flip from one local minimum to another. At even longer time-scales, larger structural subunits such

as α-helices and β-sheets may undergo substantial motions which can be very difficult to predict using

computational techniques.

Although the fundamental forces between atoms and molecules are almost fully understood at a

theoretical level, the practical applications of computer simulation and manipulation in 3D space of

large biomolecules such as proteins are often severely limited by the computational costs involved.

For example, performing a molecular dynamics (MD) simulation on a single protein domain can in-

volve several days or even weeks of computation. Although some progress is being made, reliably

calculating how a pair of proteins interact or “dock” at the molecular level remains a considerable com-

putational challenge. If the flexible nature of protein structures is explicitly taken into account, docking

calculations can take up to around 50 CPU-days per complex. Even the task of optimally superposing

similar protein structures remains a non-trivial computational problem (Sippl & Wiederstein, 2008).

Similarly, structure based drug discovery can be very computationally expensive due to the sheer

size of the chemical databases which must be screened. There is therefore a need to develop new

computational techniques with which to represent and manipulate the 3D structures of proteins and

other molecules, and to simulate protein-protein and protein-ligand interactions in a tractable way.

1.1.4 Protein-Protein Interactions

If DNA represents the biological blueprint for life, then proteins make up the molecular machinery. Pro-

teins often perform their functions by interacting with other proteins to form protein-protein complexes.

These complexes may exist as short-lived transitory associations, as in e.g. enzyme catalysis, or as

long-lived multimeric systems such as the ribosome, transcription factors, cell surface and ion channel

2In chemistry, the term conformation is used to describe the relative positions of the atoms within a molecule. Molecules

which have the same number, type, and covalent connectivity of atoms may exist in different 3D conformations. A molecule

in one conformation can often be transformed into another conformation through rotations about one or more interatomic

covalent bonds. There is often a small energy barrier associated with such rotations, but thermal motion often provides

sufficient energy to overcome these barriers. Nonetheless, over sufficiently long time scales, proteins typically adopt the

conformation with the lowest total energy.

3



proteins. However, despite knowing the blueprints, we currently know very little about how proteins

operate at the molecular level. For example, genome-wide proteomics studies (Uetz et al., 2000; Ito

et al., 2001; Gavin et al., 2002; Ho et al., 2002) are providing a growing list of putative protein-protein

interactions (PPIs), but understanding the function of these predicted interactions requires further bio-

chemical and structural analysis. For example, yeast is one of the most studied organisms and is

known to have around 6,000 proteins, giving rise to between about 38,000 and 75,000 PPIs. Around

50% of these PPIs have been observed experimentally. On the other hand, the human genome en-

codes around 30,000 proteins, giving from 154,000 to 370,000 PPIs, of which only around 10% are

known to date (Aloy & Russell, 2004; Hart et al., 2006). Therefore, developing automated approaches

which can “mine” and transfer protein interactions from yeast to human will be an important strategy

for populating the human protein interaction network (Bork et al., 2004). Understanding how proteins

interact is crucially important for understanding the molecular mechanisms of disease. For exam-

ple, therapeutic drugs often work by modulating or blocking PPIs, and therefore PPIs represent an

important class of drug target (Arkin & Wells, 2004; González-Ruiz & Gohlke, 2006).

1.1.5 Protein Docking

Protein docking is the task of calculating the 3D structure of a protein complex starting from the indi-

vidual unbound or model-built structures of the constituent proteins. Like all good scientific problems,

the protein docking problem is easy to state but hard to solve. Because protein structures are intrin-

sically dynamic, they can often change conformation on complexation. Hence this computationally

intensive task could be likened to trying to assemble the pieces of a complex 3D jigsaw puzzle in

which the given parts do not fit together perfectly. In order to make the calculation tractable, most pro-

tein docking algorithms begin by assuming that the structures to be docked are rigid. This essentially

reduces the problem to a six-dimensional (6D) rotational-translational search space, but it can also

cause many incorrect or false-positive docking orientations to be produced. Therefore, the general

goal of rigid body docking algorithms is to find a reasonably small number of feasible orientations for

a pair of 3D structures which may subsequently be refined and re-scored using more conventional

but more computationally intensive techniques. For recent reviews, see Ritchie (2008) and references

therein.

In the current state of the art, many protein docking algorithms use rigid-body fast Fourier trans-

form (FFT) correlation techniques to find putative initial docking orientations. This approach was first

introduced by Katchalski-Katzir et al. (1992) to calculate rapidly shape complementarity within a 3D

Cartesian grid, but it was later extended to include additional terms representing electrostatic inter-

actions (Gabb et al., 1997; Mandell et al., 2001), or both electrostatic and desolvation contributions

(Chen & Weng, 2003). However, because this approach relies on a Cartesian grid, it is inherently lim-

ited to computing translational correlations, and new FFT grids must be computed for each rotational

4



increment of the rotating molecule. This makes it difficult to incorporate any prior knowledge about

a complex in order to focus the calculation around a known or hypothesized binding site. Because

fully covering the search space requires many thousands of rotational samples, Cartesian docking

algorithms commonly take several hours to complete, and the efficiency of the approach decreases

with increasing complexity of the potential. In order to simulate protein flexibility during docking cal-

culations, several groups use FFT techniques to dock ensembles of rigid body structures (Grünberg

et al., 2004; Mustard & Ritchie, 2005; Smith et al., 2005), and this further increases the computa-

tional cost of FFT-based approaches. Due to the increasing use of such multi-term knowledge-based

potentials and ensemble docking techniques, there is a growing need to develop more sophisticated

and versatile FFT approaches.

1.1.6 Spherical Polar Fourier Docking Correlations

Many current protein docking algorithms use FFTs to calculate translational correlations (Eisenstein &

Katchalski-Katzir, 2004). In other words, they place the proteins to be docked in a 3D Cartesian grid,

and they use an existing 3D FFT library to accelerate the calculation of the translational correlation of

one moving protein with respect to the other fixed protein. The FFT part of such docking calculations

can be computed rapidly, but it must be repeated for thousands of rotational increments of one of the

proteins. Furthermore, many of the translational steps sampled correspond to unrealistic interpen-

etrations of the two proteins. Additionally, if one bears in mind that two of the rotational degrees of

freedom are redundant when the translational component is zero, it follows that many of the orienta-

tions sampled in translational FFTs will be almost redundant when such FFTs are applied to multiple

rotated starting orientations. In other words, Cartesian-based FFT algorithms evaluate many almost

redundant orientations during a 6D correlation search.

The main theme of this memoir is that protein docking and molecular shape recognition tasks are

inherently rotational problems, and that therefore they should be described using angular coordinate

systems so that they can be mapped more naturally to rotational FFTs. As indicated above, conven-

tional grid-based FFT docking algorithms typically partition the 6D search space into three rotational

and three translational degrees of freedom. However, this allows only three (translational degrees) of

freedom to be accelerated by the FFT. On the other hand, a spherical polar coordinate system has one

translational and five angular dimensions, and therefore allows the possibility to use FFT techniques

to accelerate the calculation in at least five and potentially all six of the degrees of freedom.

My main contribution to the field of protein docking has been to explore and demonstrate the utility

of this spherical polar proposition using what I call spherical polar Fourier (SPF) correlations. The

basic idea is to represent the shape and electrostatic properties of proteins (or other biomolecules

such as DNA and RNA) as high order Fourier expansions of orthonormal spherical harmonic (SH)

and Gauss-Laguerre (GL) basis functions. Much of the mathematical theory of this approach is “well

5



known” in the sense that it derives from the quantum mechanical description of the electronic orbitals

of an atom. Nonetheless, I was the first to use this approach to represent the shapes of entire

macromolecules, and I showed that this representation is exceptionally well suited for calculating the

overlap between pairs of 3D functions (i.e. molecular properties) very rapidly using FFT techniques.

These ideas have been implemented in the Hex docking program (Ritchie & Kemp, 2000). During

a docking calculation, Hex can evaluate many millions of trial orientations per second on an ordinary

personal computer (PC). This software has been used successfully in the CAPRI blind docking ex-

periment (Janin et al., 2003; Méndez et al., 2003; Méndez & Wodak, 2005), and is therefore well

respected internationally. With over 12,000 internet downloads, Hex is used world-wide in academia

and industry, and has been cited in over 200 scientific publications.

Very recently, Garzon et al. (2009) described a docking correlation approach (“FRODOCK” – fast

rotational docking) based on a shape plus electrostatic plus desolvation scoring function in which

three rotational degrees of freedom are accelerated by a 3D FFT. FRODOCK is reported to be almost

as fast as Hex. However, because FRODOCK lacks the special radial functions used in Hex, it must

use concentric spheres to represent the shapes of proteins and it must perform the 3D translational

part of the docking search by explicitly resampling the potential function of the moving partner at a

large number of translational samples. Therefore I would claim that my SPF approach continues to

define the state of the art in FFT-based protein docking.

1.1.7 Virtual Drug Screening

One of the main activities conducted during the early stages of a drug development project is to use

computational techniques to identify or predict small drug-like molecules which might bind to a given

protein target and hence change its function. This is often called virtual screening (VS). Structural

genomics initiatives are producing protein structures at an increasingly rapid rate, and each new pro-

tein to be characterised could serve as a potential new drug target. Therefore, there is a growing

and timely opportunity to exploit this emerging structural knowledge for therapeutic purposes. Phar-

maceutical companies now have compound databases that contain chemical structure information for

literally millions of compounds. Developing improved ways of searching such databases could lead

to faster and more cost-effective development of new drug molecules. However, although current

protein-ligand docking tools such as Autodock can successfully screen a modest number (i.e. of the

order of thousands) of ligands against a given protein target (Park et al., 2006), they are too slow for

high throughput VS (HTVS) of corporate chemical databases containing millions of compounds (Kho-

dade et al., 2007). Hence there is a need to develop improved database searching and protein-ligand

docking techniques for structure-based drug discovery.

Broadly speaking, there are two main approaches to virtual screening. In receptor-based ap-

proaches, the structure of the protein target is known or has been modelled, and the goal is to find
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suitable ligands which will e.g. bind near the receptor active site and consequently antagonize (block)

the native receptor function. In ligand-based approaches, the structure of the protein target is gener-

ally not known, and the goal is to find new ligands which are similar to known antagonists. Some drug

molecules act as agonists (i.e. they activate or enhance the native receptor function), but the screening

principles are essentially the same as for antagonists. Due to the computational expense of receptor-

based (i.e. docking) approaches, HTVS campaigns often employ a combination of approaches, in

which ligand-based similarity criteria are used as an initial filter, and candidate compounds that sur-

vive this filter are subsequently docked to the protein target. The VSM-G approach nicely exemplifies

this filtering principle (Beautrait et al., 2008). If sufficient computational resources are available, it is

possible to bypass the ligand-based filter and perform receptor-based screening directly. For exam-

ple, in the high-profile THINK screen-saver project, over 1,000,000 PCs around the world were made

available to provide over 80,000 years of CPU time to screen twelve cancer targets against a virtual

ligand database of some 3.5 billion compounds (Davies et al., 2002). However, only the largest cor-

porations and government institutions can afford to employ comparable high performance computing

(HPC) resources for HTVS.

1.1.8 Spherical Harmonic Virtual Screening

In my opinion, the current state of the art for efficient 3D molecular shape comparison is based on

Gaussian representations of molecular shape (Grant et al., 1996) and the more recent SH surface

envelope approach, which was developed independently by myself at Aberdeen (Ritchie & Kemp,

1999; Mavridis et al., 2007), Bernard Maigret at Nancy (Cai et al., 2002; Yamagishi et al., 2006), and

Tim Clark at Erlangen (Lin & Clark, 2005). At Aberdeen, my focus was on exploiting the rotational

properties of the SH functions to develop a very fast way of superposing and quantitatively comparing

the 3D shapes of molecular surfaces. At Nancy, Dr Maigret’s work has focused on using SH represen-

tations to provide a fast receptor-based filter for virtual screening (Beautrait et al., 2008). At Erlangen,

Prof Clark developed the ParaSurf program to represent key quantum mechanical molecular surfaces

properties using the SH representation. To complement the Erlangen work, I developed the ParaFit

program which can superpose 3D molecular structures calculated by ParaSurf program at rate of up

to one hundred molecules per second on a single processor. ParaFit and ParaSurf are currently being

marketed by Cepos Insilico Ltd.

1.2 Document Summary and Structure

This document presents a summary of my contributions to the fields of computational molecular shape

representation and protein-protein docking using efficient Fourier-like representations of molecular

shapes and other properties. As stated above, much of the mathematical theory used here is well
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known to theoretical chemists and nuclear physicists, but is generally not well known beyond those

specialised fields. Nonetheless, formal mathematical proofs are generally not given here. The inter-

ested reader can find such material elsewhere in many excellent reference books on special functions

and on quantum mechanics (Talman, 1968; Luke, 1969; Hochstadt, 1971; Biedenharn & Louck, 1981;

Sakurai, 1994; Bransden & Joachain, 1997). Instead, the approach taken in the following chapters

is to present as axioms any necessary mathematical formulae or results, and to use these as ba-

sic building blocks from which to develop computationally efficient 2D and 3D representations and

correlation algorithms using only relatively straightforward calculus techniques.

It is worth noting that in the last few years, SH surface representations are increasingly being

applied to a broad range of object recognition and registration tasks in areas spanning e.g. anatomy

(McPeek et al., 2008; McPeek et al., 2009), civil engineering (Garboczi, 2002; Grigoriu et al., 2006),

cryo-electron microscopy (Kovacs & Wriggers, 2002), medical imaging (Frank, 2002b; Edvardson &

Smedby, 2003; Huang et al., 2005), and computer graphics and the internet (Kautz et al., 2002;

Funkhouser et al., 2003; Kazhdan et al., 2003; Novotni & Klein, 2003; Shen et al., 2009b; Shen

et al., 2009a). However, to my knowledge, I remain the only person to have described augmenting the

angular SH functions with orthonormal radial functions to construct 3D spherical polar basis functions

and to have used this representation successfully to accelerate the calculation of both rotational and

translational correlations in 3D space. Therefore, the approaches presented here are novel in the

context of protein-protein docking and in 3D shape recognition in general.

The rest of this document is structured as follows. Chapter 2 summarizes some useful math-

ematical properties of the special functions and demonstrates how they may be used to construct

orthogonal basis functions for the representation of 2D and 3D molecular shapes and other proper-

ties. Chapter 3 develops this scheme by discussing the action of rotation and translation operators

in Hilbert spaces using the Wigner rotation matrices for the spherical harmonics and using a spheri-

cal Bessel transform approach to calculate closed form expressions for the corresponding translation

matrix elements. Hence these Chapters describe the basic machinery necessary for performing six

dimensional Fourier correlations.

Chapter 4 shows how the overall approach may be applied to the task of superposing, comparing,

and classifying known protein structures using 3D SPF shape-density representations, and how these

representations may be exploited to perform efficient protein docking calculations using 1D, 3D, and

5D rotational FFT correlations. This chapter also describes how a simple 2D SH surface-matching

approach may be used to search large chemical databases for high throughput virtual drug screening.

Finally, Chapter 5 presents an overview of on-going projects and future objectives. The Appendix lists

several peer-reviewed journal articles in which the above work has been published. Unless noted

otherwise, all of the molecular graphics figures in this document were produced as screen-shots from

my Hex program.
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Chapter 2

Mathematical Foundations

The main purpose of this chapter is to introduce the mathematical concepts and machinery necessary

to represent and manipulate molecular shapes in computationally useful and efficient ways. Much of

this material describes the classical special functions of mathematics, which are primarily used here

to provide orthonormal basis functions for Fourier-like expansions in 3D space (Luke, 1969; Lebedev,

1972). Because these expansions will involve relatively high order polynomials, it is important to

develop efficient methods of calculation which do not sacrifice numerical accuracy. It is also important

to use reliable and efficient spatial sampling techniques. Hence this chapter also briefly describes

icosahedral tessellation of the sphere.

2.1 The Special Functions

The special functions play an important role in physics and engineering applications because they

often appear as the solutions to certain differential and integral equations (Lebedev, 1972). Conse-

quently, they can be used to represent and model many natural phenomena, ranging from electrostat-

ics and electromagnetism to quantum theories of matter. The special functions are smooth analytic

polynomials, the terms of which often exhibit certain simple, or “special”, patterns. For example, all

of the special functions may be calculated by three-term recursion formulae (Erdélyi et al., 1953a).

Similarly, many integrals involving products of special functions often have relatively concise solutions.

Before the days of modern computers, these properties greatly facilitated difficult hand calculations.

Nowadays, of course, it is possible to programme and calculate much higher order functions than

could ever be done by hand. Nonetheless, it is still useful to study the special functions and their

properties because using a well-chosen recursion formula or integral transform can lead to dramatic

increases in computational performance.
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2.1.1 Analytic Functions

In mathematics, analytic functions are smooth infinitely differentiable functions of one or more vari-

ables. The most fundamental example of an analytic function is the power series

f(x) =
∞

∑

l=0

alx
l, (2.1)

where the particular values of the coefficients, al, distinguish one function from another. Such a power

series may be differentiated any number of times, m, to give

dm

dxm
f(x) ≡ f (m)(x) =

∞
∑

l=0

l(l − 1)(l − 2)...(l −m+ 1)alx
l−m. (2.2)

By noting that each coefficient al may be isolated by evaluating the l-th derivative of f(x) at x = 0,

al =
f (l)(0)

l!
, (2.3)

the above sum may be written in the form of a Taylor series

f(x) =
∞

∑

l=0

f (l)(0)

l!
xl. (2.4)

In other words, if the form of f(x) is already known and is easily differentiable, the coefficients of its

power series may be calculated using Eq 2.3. For example, cosx is given by

cosx = 1 − x2

2!
+
x4

4!
− x6

6!
+ ...

=
∞

∑

l=0

(−1)lx2l

(2l)!
.

(2.5)

These days, we take it for granted that all modern programming languages shall provide built-

in routines to calculate standard trigonometric and transcendental functions, typically using power

series similar to the above. On the other hand, when the form of f(x) is not known in advance, as

is commonly the case in data fitting and analysis problems, it is often not straightforward to isolate

and calculate each coefficient. Instead, the coefficients must be calculated “simultaneously” by least-

squares techniques, for example, and this can be computationally expensive and error-prone.

2.1.2 Homogeneous 3D Polynomials

Here, the goal is to represent molecular shapes and other molecular properties as high order polyno-

mial expansions in three-dimensional (3D) space. Hence, for example, we seek a representation of

the form

f(x) =

∞
∑

l=0

(alx+ bly + clz)
l, (2.6)
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with coefficients al, bl, and cl, and where x = (x, y, z) are the usual 3D Cartesian coordinates. Eq 2.6

is sometimes called a solid harmonic function (Hobson, 1931) because one can change to spherical

polar coordinates r = (r, θ, φ) by making the substitutions

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ,

(2.7)

to obtain

f(r) ≡ f(x) =
∞

∑

l=0

rl(al sin θ cosφ+ bl sin θ sinφ+ cl cos θ)l, (2.8)

which is clearly a sum of all possible combinations of trigonometric powers, or harmonic frequencies.

The relationship between the 3D Cartesian and spherical polar coordinates is shown in Figure 2.1.

r

r=(r,θ,φ)

x

y

z

θ

φ

Figure 2.1: The relationship between Cartesian (x, y, z) and spherical polar (r, θ, φ) coordinates.

Unfortunately, Equations 2.6 and 2.8 are not very useful for practical purposes because not all of

the powers, and hence expansion coefficients, are linearly independent. For example, considering

the powers of two, one finds

(ax+ by + cz)2 = a2x2 + b2y2 + c2z2 + 2abxy + 2acxz + 2bcyz. (2.9)

But from Eq 2.7, it is clear that

x2 + y2 + z2 = r2, (2.10)

and therefore x2, y2, and z2 are linearly dependent. Thus, in fact, only five of the six second order

Cartesian powers are linearly independent. In a similar manner, it can be shown that only seven of the

ten third order harmonic Cartesian powers are linearly independent, and so on. In general, a reliable

way to enumerate all of the linearly independent polynomial powers in 3D space is to write

f(r) =

∞
∑

l=0

rl

(

clPl0(cos θ) +

l
∑

m=1

(

alm cosmφ+ blm sinmφ
)

Plm(cos θ)

)

, (2.11)
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where Plm(cos θ) are the Legendre polynomials. However, before considering the Legendre poly-

nomials in further detail, it is first worthwhile to review some of the basic properties of the simpler

trigonometric, or circular, functions.

2.1.3 The Circular Functions

The trigonometric sine and cosine functions are often called circular functions because they describe

the relationship between an angular coordinate φ and the Cartesian x and y coordinates along the

path of a circle

x = cosφ,

y = sinφ.
(2.12)

If a circle of unit radius is drawn at the origin in the complex plane, its coordinates may be represented

compactly as a single complex number1

w = cosφ+ i sinφ, (2.13)

where i =
√
−1 is the imaginary unit, and where the real and complex parts of w correspond to

the x and y coordinates, respectively. One of the principal results of complex analysis is that the

trigonometric functions may be related to the exponential function through Euler’s formula

eiφ = cosφ+ i sinφ. (2.14)

From this, many further relations follow. For example, De Moivre’s formula

(cosφ+ i sinφ)m = cosmφ+ i sinmφ (2.15)

follows directly from the fact that

(eiφ)m = ei(mφ). (2.16)

If one puts φ = 2π/n, then the n complex numbers, ei2πm/n, for 0 ≤ m < n comprise the vertices

of a regular polygon in the complex plane, and are sometimes called the n-th roots of unity. These

special points feature prominently in fast Fourier transform (FFT) theory (Kammler, 2000). The use of

FFTs in the present work will be described in Chapter 4.

When the circular functions need to be calculated at regular intervals, they may be calculated

efficiently using recursion formulae. For example, by writing

cosmφ = cos(φ+ (m− 1)φ), (2.17)

sinmφ = sin(φ+ (m− 1)φ), (2.18)

1Many text-books use z to represent a complex variable, but I will use w here in order to let x, y, and z correspond to

the usual 3D Cartesian coordinates without confusion.
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and by applying the identities (which may be derived from De Moivre’s formula)

cos(α+ β) = cosα cosβ − sinα sinβ, (2.19)

sin(α+ β) = sinα cosβ + cosα sinβ, (2.20)

one obtains the stable recursion formulae

cosmφ = 2 cosφ cos(m− 1)φ− cos(m− 2)φ, (2.21)

sinmφ = 2 cosφ sin(m− 1)φ− sin(m− 2)φ. (2.22)

2.1.4 Orthogonal Functions and Hilbert Spaces

The circular functions are orthogonal in the sense that
∫ 2π

0
eimφe−ijφdφ = 2πδmj , (2.23)

where δmj is the Kronecker delta

δmj =







1 if m = j

0 otherwise.
(2.24)

In other words, the total overlap between any distinct pair of basis functions is zero. Orthogonal

functions play a central role in the theory of Hilbert spaces. A Hilbert space is essentially an algebraic

extension of the notion of an ordinary Euclidean space, in which the space is defined by an infinite

list of orthogonal basis functions (corresponding to the axes of a Euclidean space) and where any

point in that space may be described as a linear combination of basis functions (corresponding to a

coordinate vector in Euclidean space) (Debnath & Mikusinski, 1999). One practical application of a

Hilbert space is to represent an arbitrary function, f(φ), in the domain 0 ≤ φ < 2π as a Fourier series

f(φ) =

∞
∑

m=0

ame
imφ, (2.25)

where the functions eimφ serve as a set of orthogonal basis functions and the expansion coefficients,

am, serve as “coordinates” with respect to the basis set. Using the orthogonality property, the m-th

coefficient may be determined by multiplying each side of Eq 2.25 by e−imφ and integrating to obtain

am =
1

2π

∫ 2π

0
f(φ)e−imφdφ. (2.26)

Provided that f(φ) satisfies some basic conditions about continuity and smoothness (which is nor-

mally the case for most physical problems), it can be shown that expansions such as Eq 2.25 converge

monotonically in the sense that

lim
N→∞

∣

∣

∣

∣

f(φ) −
N

∑

m=0

ame
imφ

∣

∣

∣

∣

= 0. (2.27)
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Consequently, for practical purposes, one can often represent a complicated function to sufficient

accuracy by making a suitable choice for the expansion order, N .

Notationally, it is often useful to use normalised orthogonal, or orthonormal, basis functions such

as

ψm(φ) =
1√
2π
eimφdφ (2.28)

so that the orthogonality property may be written concisely as
∫ 2π

0
ψm(φ)ψj(φ)∗ = δmj (2.29)

where ψj(φ)∗ denotes the complex conjugate of ψj(φ) (i.e. changing i to −i). With this convention,

the Fourier expansion of some function, f(φ), becomes

f(φ) =

∞
∑

m=0

amψm(φ) (2.30)

and the expansion coefficients are determined using

am =

∫ 2π

0
f(φ)ψm(φ)∗dφ. (2.31)

Algebraically, the action of multiplying both sides by some function and integrating is often called an

integral transform. When working with Hilbert spaces or special functions (Debnath & Mikusinski,

1999), it is often the case that performing a suitable integral transform is a useful way to proceed

(Debnath & Bhatta, 2007).

2.1.5 The Gamma Function and Related Factorials

Euler’s Gamma function, Γ(w), may be defined by the integral
∫ ∞

0
e−ttwdt = Γ(w + 1). (2.32)

The Gamma function may be considered as a generalised factorial function in the sense that

Γ(w + 1) = wΓ(w)

= w(w − 1)Γ(w − 1)

= w(w − 1)(w − 2)Γ(w − 2)

... etc.

(2.33)

When w = 0, it can be seen from Eq 2.32 that Γ(0) = 1. When w is a real integer, the Gamma

function reduces to an ordinary factorial

Γ(n+ 1) = n(n− 1)(n− 2)...Γ(0)

= n!
(2.34)
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For the special case of w = 1/2, Eq 2.32 may be used again to show that

Γ(1/2) =
√
π. (2.35)

For other values of w, the Gamma function may be estimated rather accurately using Lanczos’ for-

mula (Lanczos, 1964). Here, we are mostly concerned with evaluating Gamma functions or products

of Gamma functions of integer or half-integer argument up to around w = 128. Hence, some care

is required in order to avoid numerical overflow and to preserve high arithmetic precision. It is there-

fore convenient to introduce some further notation which will facilitate cancelling common factors in

complex expressions. Specifically, the falling factorial, [w]k, may be defined as

[w]k = w(w − 1)(w − 2)...(w − k + 1). (2.36)

Similarly, the rising factorial, (w)k, may be defined as

(w)k = w(w + 1)(w + 2)...(w + k − 1). (2.37)

For integer arguments, these factorials become

[n]k = n(n− 1)(n− 2)...(n− k + 1) =
n!

(n− k)!
(2.38)

and

(n)k = n(n+ 1)(n+ 2)...(n+ k − 1) =
(n+ k − 1)!

(n− 1)!
. (2.39)

In particular, Γ(n+ 1/2) may be calculated using the identity

Γ(n+ 1/2) =
√
π(1/2)n (2.40)

and the fact that

(1/2)n =

(

1

2

)(

3

2

)(

5

2

)

...

(

2n− 1

2

)

= (1.3.5.7...(2n− 1))

(

1

2

)n

.

(2.41)

Sometimes it is also useful to define a general binomial coefficient as
(

α

m

)

=
Γ(α+ 1)

Γ(α+ 1 −m)m!
. (2.42)
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2.1.6 Symbolic Simplification of Factorials

Several of the expressions used here involve multiplication and division of relatively high order fac-

torials. However, because these expressions often contain many terms which can be cancelled, it is

useful to implement a symbolic method of simplifying them as far as possible before performing any

arithmetic. For example, a binomial coefficient may be calculated as

(

n

m

)

=
n!

(n−m)!m!
=

(01 × 11 × 21...n1)

(01 × 11 × 21...(n−m)1)(01 × 11 × 21...m1)
. (2.43)

Clearly, arbitrary combinations of factorials can be accumulated by adding and subtracting integer

powers of the factors in the numerator and denominator, respectively. For example,
(

6

2

)

= 0−1 × 1−1 × 2−1 × 30 × 40 × 51 × 61 =
5 × 6

2
. (2.44)

Furthermore, any such expression can be symbolically reduced further to products of powers of prime

numbers. For example,

5 × 6

2
= 20 × 31 × 51. (2.45)

A small set of utility functions has been implemented in C to carry out such manipulations automat-

ically for the above integer factorials and powers, and to perform any remaining arithmetic using the

GMP high precision mathematical library.2 For example, using these utilities an expression such as

x =
n!

Γ(n+ 1/2)
(2.46)

can be evaluated using the fragment of C code shown in Figure 2.2.

#include <math.h>

double x;

sp_init(); // initialise working memory

sp_fac(n, +1); // set numerator = n!

sp_rise2(n, -1); // set divisor = (1/2)_n

x = sp_ans() / sqrt(M_PI); // simplify and supply result

Figure 2.2: C programming example to illustrate symbolic simplification and evaluation of expressions involving
products of factorials.

2http://gmplib.org/.
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2.1.7 The Jacobi Polynomials

The Jacobi polynomials, P (α,β)
k (x), may be defined as (Erdélyi et al., 1953a)

P
(α,β)
k (x) =

1

2k

k
∑

j=0

(

k + α

j

)(

k + β

k − j

)

(x+ 1)j(x− 1)k−j . (2.47)

In some applications, it is convenient to use the shifted expansion (Keister & Polyzou, 1997)

P
(α,β)
k (x) =

Γ(k + α+ 1)

k!Γ(k + λ)

k
∑

j=0

(−1)j

(

k

j

)

Γ(k + j + λ)

Γ(j + α+ 1)

(

1 − x

2

)j

, (2.48)

where λ = α+ β + 1. The inverse expansion is given by (Erdélyi et al., 1953b)

(1−x)k = 2kk!Γ(k+α+1)
k

∑

j=0

(−1)j (2j + λ)Γ(j + λ)

(k − j)!Γ(k + j + λ+ 1)Γ(j + α+ 1)
P

(α,β)
j (x). (2.49)

The Jacobi polynomials are orthogonal with respect to a weight factor (1 − x)α(1 + x)β in the sense

that
∫ 1

−1
(1 − x)α(1 + x)βP

(α,β)
k (x)P (α,β)

n (x)dx =
Γ(k + α+ 1)Γ(k + β + 1)

k!Γ(k + λ)

2λ

2k + λ
δkn. (2.50)

When k ≥ 2, the Jacobi polynomials may be calculated via the stable recursion formula

2(k + 1)(k + α+ β + 1)(2k + α+ β)P
(α,β)
k+1 (x) =

(2k + α+ β + 1)
[

(2k + α+ β)(2k + α+ β + 2)x+ α2 − β2
]

P
(α,β)
k (x)−

2(k + α)(k + β)(2k + α+ β + 2)P
(α,β)
k−1 (x).

(2.51)

The Jacobi polynomials are the most general type of orthogonal function in the interval [−1, 1]. The

Gegenbauer (or ultra-spherical) polynomials arise when α = β. The Legendre polynomials appear

when α = β = 0, and the Chebychev polynomials correspond to the special case of α = β = −1/2.

2.1.8 The Legendre Polynomials

The Legendre polynomials, Pl(µ), of order l ≥ 0 may be defined using Rodrigues’ formula

Pl(µ) =
1

2ll!

dl

dµl
(µ2 − 1)l. (2.52)

More generally, the associated Legendre polynomials, Plm(µ), of order l and degree m ≤ l, may be

defined as

Plm(µ) = (−1)m (1 − µ2)m/2

2ll!

dl+m

dµl+m
(µ2 − 1)l. (2.53)
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From now on, the term “Legendre polynomial” will be taken to mean the general polynomial, Plm(µ),

where |m| ≤ l. Legendre polynomials in which m is negative may be calculated using the identity

(Hobson, 1931)

Plm(µ) = (−1)mPl|m|(µ). (2.54)

The natural domain of the Legendre polynomials is −1 ≤ µ < 1, or with the change of variable,

µ = cos θ, the domain becomes 0 ≤ θ < π. Thus these polynomials may equally be defined as

Plm(θ) = (−1)m (sin θ)m

2ll!

dl+m

dµl+m
(cos θ)l. (2.55)

The Legendre polynomials are orthogonal in the sense that

∫ 1

−1
Pkm(µ)Plm(µ)dµ =

2

(2l + 1)

(l +m)!

(l −m)!
δkl. (2.56)

An explicit power series expression for the Legendre polynomials may be obtained by expanding

(µ2 − 1)l as a binomial series and by differentiating it l +m times:

Plm(µ) = (1 − µ2)m/2
l

∑

k= l+m+1

2

(−1)k+l+m

2ll!

(

l

k

)

(2k)!

(2k − l −m)!
µ2k−l−m, (2.57)

where the lower summation bound is taken using integer truncation. Often, the Legendre polynomials

are calculated using recursion relations. For example, the conventional recursion formula, modified to

include the Condon-Shortley phase factor (Condon & Odabasi, 1980), starts with

Pll(θ) = (−1)l (2l)!

l!

(

sin θ

2

)l

(2.58)

and continues down to m = 0 with (Hobson, 1931)

Plm(θ) = −2(m+ 1) cot(θ)Pl,m+1(θ) −
Pl,m+2(θ)

(l −m)(l +m+ 1)
, (2.59)

where Plm(θ) = 0 when m > l. This has very good numerical stability (Wiggins & Saito, 1971;

Libbrecht, 1985).

2.1.9 The Spherical Harmonics

The regular solid SH functions, Ylm(r), are usually expressed as complex functions of the spherical

polar coordinates (Hobson, 1931):

Ylm(r) = rlYlm(θ, φ), (2.60)
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where −l ≤ m ≤ +l. Here, we are mostly concerned with the surface harmonic functions, Ylm(θ, φ),

sometimes called tesseral harmonics, obtained by setting r = 1. The SHs are separable

Ylm(θ, φ) = ϑlm(θ)ψm(φ), (2.61)

where ϑlm(θ) are normalised Legendre polynomials

ϑlm(θ) =

[

(2l + 1)

2

(l −m)!

(l +m)!

]1/2

Plm(cos θ), (2.62)

and where ψm(φ) are normalised circular functions

ψm(φ) =
1√
2π
eimφ. (2.63)

Thanks to the orthogonality of the circular and Legendre functions, the SHs are orthonormal in the

sense that
∫ 2π

0

∫ π

0
Ylm(θ, φ)Yl′m′(θ, φ)∗ sin θdθdφ = δll′δmm′ . (2.64)

The SHs are important in many areas of physics because they appear as solutions to Laplace’s

equation. Many natural phenomena such as e.g. gravitation, electrostatics, and fluid and heat flow

may be described by conservative potentials (i.e. those that depend only on the spatial position of a

particle). Laplace’s equation states that for a conservative potential, ψ(r):

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

ψ(r) = 0. (2.65)

This is often written using the “Laplacian” operator, ∇2,

∇2ψ(r) = 0. (2.66)

Using standard calculus techniques to change variables, the Laplacian may be written in polar coor-

dinates as:

∇2 =
1

r

(

∂2

∂r2

)

r +
1

r2
Λ2 (2.67)

where Λ2 is the “Legendrian” operator:

Λ2 =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
. (2.68)

The angular part of Laplace’s equation has solutions:

Λ2Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ). (2.69)
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In other words, the SHs are eigenfunctions of the Legendrian operator. The radial part of Laplace’s

equation is then found to admit two solutions of the form rl and r−(l+1) which correspond to the

regular and irregular solid harmonics, respectively.

The regular solid SHs may be written in terms of Cartesian coordinates by substituting the identity

zm = (r cos θ)m (2.70)

into the power series definition of the normalised Legendre polynomials, Eq.s 2.56 and 2.57, and

similarly by noting that

(x+ iy)m = (r sin θ(cosφ+ i sinφ))m

= (r sin θ)meimφ,
(2.71)

to give

Ylm(x) =

[

2l + 1

4π

(l −m)!

(l +m)!

]1/2 l
∑

k= l+m+1

2

(

l

k

)

(−1)k+l+m(2k)!

2ll!(2k − l −m)!

(x+ iy)mz2k−l−m

r2k
. (2.72)

2.1.10 Spherical Harmonic Coupling Coefficients

When calculating certain integrals involving SH functions, it is often useful to expand a product of SHs

as a linear combination (Biedenharn & Louck, 1981)

Ylm(θ, φ)Yl′m′(θ, φ) =
∑

kj

[

(2l + 1)(2l′ + 1)

4π(2k + 1)

]1/2

C l l′k
000 C

l l′ k
mm′jYkj(θ, φ), (2.73)

where C l l′ k
mm′j is the Clebsh-Gordan coupling coefficient. Wigner’s formula for the Clebsh-Gordan

coefficient is given by

Cj1 j2 j
m1 m2 m = δm1+m2,m

[

(2j + 1)
(j + j1 − j2)!(j − j1 + j2)!(j1 + j2 − j)!

(j1 + j2 + j + 1)!

]1/2

×
[

(j +m)!(j −m)!

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

]1/2

×
∑

k

(−1)j2+m2+k (j2 + j +m1 − k)!(j1 −m1 + k)!

(j − j1 + j2 − k)!(j +m− k)!(j1 − j2 −m+ k)!k!
,

(2.74)

where the summation is over all values of k for which the factorials are well defined. Whenm1 = m2 =

m = 0, the coupling coefficient vanishes unless j1 + j2 + j is even, in which case the expression can

be reduced to

Cj1 j2 j
0 0 0 =

[

(2j + 1)
(j1 + j2 − j)!(j1 − j2 + j)!(j2 − j1 + j)!

(j1 + j2 + j + 1)!

]1/2 (−1)l−jl!

(l − j1)!(l − j2)!(l − j)!
,

(2.75)
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where l = (j1 + j2 + j)/2. From the permutational symmetries of the Clebsch-Gordan coefficients,

Cj1 j2 j
m1 m2 m = (−1)j1+j2−jCj2 j1 j

m2 m1 m

= (−1)j1+j2−jCj1 j2 j
m1 m2 m,

(2.76)

it follows that

Cj1 j2 j
m m 0 = (−1)j1−j2−jCj1 j2 j

m m 0 (2.77)

and

Cj1 j2 j
m m 0 = Cj2 j1 j

m m 0. (2.78)

Wigner’s 3-j symbol, which will appear in the next chapter, is closely related to the Clebsch-Gordan

coefficients, and is given by

(

j1 j2 j

m1 m2 m

)

=
(−1)m+j1−j2
√

2j + 1
Cj1 j2 j

m1 m2 m. (2.79)

High order 3-j symbols may be calculated efficiently by recursion, and by using Wigner’s formula only

to seed the recursion. For example, the recurrence relations of Sakurai (1994) for fixed j1, j2, and j

are

[

(j +m)(j −m+ 1)
]1/2

Cj1 j2 j
m1,m2,m−1 =

[

(j1 +m1 + 1)(j1 −m1)
]1/2

Cj1 j2 j
m1+1,m2,m

−
[

(j2 +m2 + 1)(j2 −m2)
]1/2

Cj1 j2 j
m1,m2+1,m

(2.80)

and

[

(j −m)(j +m+ 1)
]1/2

Cj1 j2 j
m1,m2,m+1 =

[

(j1 −m1 + 1)(j1 +m1)
]1/2

Cj1 j2 j
m1−1,m2,m

−
[

(j2 −m2 + 1)(j2 +m2)
]1/2

Cj1 j2 j
m1,m2−1,m.

(2.81)

The required coefficients Cj1 j2 j
m m 0 can be calculated by evaluating Eqs 2.80 and 2.81 alternately in

a “zig-zag” path in the m1/m2 plane (Sakurai, 1994). Since these recursion formulae are not es-

pecially stable, numerical errors can be reduced by using both upwards recursion from Cj1 j2 j
000 , and

downwards recursion from Cj1 j2 j
m,m,0 . The accuracy of the calculation can be assessed from the various

orthogonality relations of the Clebsch-Gordan coefficients (Biedenharn & Louck, 1981). Although a

detailed numerical analysis has not been performed, I find that rounding errors become significant

once j1 and j2 reach about 20, even when using quadruple precision hardware arithmetic. For large

quantum numbers, a successful approach is to use Wigner’s formula (Eq 2.74) and to reduce all fac-

torials symbolically to products of primes (see Section 2.1.6) prior to completing the calculation in

256-bit arithmetic using the GMP library.
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2.1.11 Real Spherical Harmonics

The real SHs, ylm(θ, φ), may be found by taking linear combinations of the complex functions

ylm(θ, φ) =



















(Ylm(θ, φ) + Ylm(θ, φ)∗)/
√

2 if m > 0

Yl0(θ, φ) if m = 0

−i(Ylm(θ, φ) − Ylm(θ, φ)∗)/
√

2 if m < 0.

(2.82)

Hence the real SHs are also eigenfunctions of Laplace’s equation. Expanding the various terms and

using Eq 2.54 gives

ylm(θ, φ) =



















ϑlm(θ)(cosmφ)/
√
π if m > 0

ϑlm(θ)/
√

2π if m = 0

ϑlm(θ)(sinmφ)/
√
π if m < 0, i.e. m > 0.

(2.83)

Thus the real SH functions may be written as

ylm(θ, φ) = ϑl|m|(θ)ϕm(φ) (2.84)

where

ϕm(φ) =



















cosmφ/
√
π if m > 0

1/
√

2π if m = 0

sinmφ/
√
π if m < 0.

(2.85)

Figure 2.3 shows the shapes of the real SHs up to l=2.

It is often considerably more efficient to represent real quantities using real SHs because this

allows all complex arithmetic to be avoided. However, as shown in Chapter 4, when using FFTs to

accelerate calculations, it is also useful to be able to switch between complex and real bases. Hence

it is useful to write linear combinations such as Eq 2.82 in matrix form as

ylm(θ, φ) =
l

∑

m′=−l

U
(l)
mm′Ylm(θ, φ), (2.86)

where U (l) is a unitary matrix, i.e. the complex conjugate transpose of U (l) is the inverse matrix

(Biedenharn & Louck, 1981). Noting that all the off-diagonal elements of U (l) are zero, the change of

basis equations can be shown more explicitly in matrix form as


















yll

ylm

yl0

ylm

yll



















=



















1√
2

0 0 0 (−1)l

√
2

0 1√
2

0 (−1)m

√
2

0

0 0 1 0 0

0 i(−1)m

√
2

0 −i√
2

0
i(−1)l

√
2

0 0 0 −i√
2





































Yll

Ylm

Yl0

Ylm

Yll



















. (2.87)
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Figure 2.3: The shapes of the real SH functions up to order l=2. Starting from the sphere, y00, at the top left
of this figure, the adjacent three functions have l=1, and the five functions in the final row and column have l=2.
The three functions on the main diagonal have m=0; functions with positive values of m are shown above the
main diagonal, and those with negative m indices are shown below the main diagonal.

2.1.12 The Laguerre Polynomials

The generalised Laguerre polynomials, L(α)
k (t), may be defined by Rodrigue’s formula

L
(α)
k (t) =

t−αet

k!

dk

dtk
(

e−tek+α
)

. (2.88)

An equivalent binomial expansion is given by (Erdélyi et al., 1953b)

L
(α)
k (t) =

k
∑

j=0

(

k + α

k − j

)

(−t)j

j!
. (2.89)

The Laguerre polynomials have positive real roots within the interval [0, k + α + (k − 1)
√

(k + α)].

High order polynomials may be calculated efficiently using the stable recursion

(k + 1)L
(α)
k+1(t) = (2k + α+ 1 − t)L

(α)
k (t) − (k + α)L

(α)
k−1(t), (2.90)

along with the identities

L
(α)
0 (t) = 1 (2.91)

and

L
(α)
1 (t) = α+ 1 − t. (2.92)

The Laguerre polynomials are orthogonal with respect to a weight factor, e−ttα, in the sense that
∫ ∞

0
e−ttαL

(α)
k (t)L

(α)
k′ (t)dt =

Γ(k + α+ 1)

k!
δkk′ . (2.93)
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2.1.13 GTO and ETO Radial Basis Functions

Although the solid harmonics are natural candidates for representing smooth conservative potentials,

in order to be able to represent arbitrary 3D molecular shapes it would be desirable to use radial

functions such as the Laguerre polynomials which exhibit radial nodes or zeros similar to the angular

zeros of the SHs. Taking into account the orthogonality condition for the Laguerre polynomials in the

previous section, it therefore seems reasonable to consider radial functions of the form:

R
(α)
k (r) = N

(α)
k e−t/2tα/2L

(α)
k (t) (2.94)

where N (α)
k is a normalisation factor and where t is a suitably scaled radial distance. Because the 3D

volume element is given by

dV = r2dr sin θdθdφ, (2.95)

the manner in which the radial distance r is scaled onto the formal parameter t will then fix the value

of α. Specifically, by choosing a scale factor λ and making a change of variable

t = r2/λ (2.96)

one obtains

r2dr =
λ3/2

2
t1/2dt, (2.97)

and this entails putting α = l+1/2 in order to maintain the form of the orthogonality relation, Eq 2.93.

Because these functions will be used together with the SHs, the assignment k = n − l − 1 is made

below to ensure that the products of such radial functions with the SHs will enumerate distinct com-

binations of products of powers of x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. Without giving

a formal proof, this will ensure that the final set of orthogonal basis functions will be complete. Some

further working then gives

Rnl(r) =

[

2

λ3/2

(n− l − 1)!

Γ(n+ 1/2)

]1/2

e−ρ2/2ρlL
(l+1/2)
n−l−1 (ρ2), (2.98)

where now ρ2 = r2/λ.

These Gauss-Laguerre (GL) functions are orthonormal in the sense that
∫ ∞

0
Rnl(r)Rn′l(r)r

2dr = δnn′ . (2.99)

Because these functions have a Gaussian pre-factor, 3D GL plus SH basis functions are often called

Gaussian-type orbitals (GTOs) in the quantum chemistry literature. The Gaussian factor ensures that

these functions tend to zero for large radial parameter values. Indeed, from Section 2.1.12, the zeros

of these functions are bounded within the range [0, n− 1/2 + (n− l− 2)
√

(n− 1/2)]. When docking
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R25,0(r)
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R30,0(r)

Figure 2.4: The shapes of some example GTO radial basis functions, scaled to 30Å.

typical protein domains, setting a scale factor of λ = 20 gives good results for globular domains with

an average radius of up to around 30Å (Ritchie, 1998). Figure 2.4 shows the shapes of some GTO

basis functions.

It is also possible to make a linear change of variable

t = ρ = Λr, (2.100)

with scale factor Λ. This entails setting α = 2l+ 2 to satisfy the orthogonality condition. Some further

working then gives the orthonormal functions

Snl(r) =

[

(2Λ)3
(n− l − 1)!

(n+ l + 1)!

]1/2

e−ρ/2ρlL
(2l+2)
n−l−1(ρ). (2.101)

In quantum chemistry, these radial functions are often called exponential-type orbitals (ETOs). I use

ETOs to represent the electrostatic properties of proteins.

It is worth pointing out that when I started looking for suitable radial functions during my PhD thesis

(Ritchie, 1998), I was inspired by Schrödinger’s equation for the hydrogen atom which has the form

ψnlm(r) = Nnle
−ρ/2ρlL

(2l+1)
n−l−1(ρ)Ylm(θ, φ), (2.102)

where Nnl is a normalisation factor and ρ is a scaled distance. In Schrödinger’s equation, the index n

corresponds to the principal quantum number of the hydrogen atom which by convention counts from

unity. I followed the same numbering convention in my early publications. This tends to make some of

the formulae below slightly more verbose than necessary, but I continue to using this convention for

consistency.

2.1.14 The Bessel Functions

Finally, the Bessel functions are introduced here because they provide an analytic way to describe the

relationship between different coordinate frames in polar coordinates. In other words, they provide
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the analytic machinery with which to calculate translations of polar Fourier expansions. The general

Bessel function, Jν(w), of degree ν and complex argument w may be defined as (Hochstadt, 1971)

Jν(w) =

(

w

2

)ν ∞
∑

k=0

(−1)k(w/2)2k

Γ(ν + k + 1)k!
. (2.103)

The spherical Bessel function, jl(w), of integer degree l is related to Jν(w) by

jl(w) =

√

π

2w
Jl+1/2(w). (2.104)

By using

(α)n =
Γ(α+ n)

Γ(α)
, (2.105)

in Eq 2.103, it is straightforward to show that jl(w) can be calculated as

jl(w) =
1

2

∞
∑

k=0

C
(l)
k

(

w

2

)2k+l

(2.106)

in which the coefficients, C(l)
k , are given by

C
(l)
k =

−2C
(l)
k−1

k(2k + 2l + 1)
, (2.107)

and where

C
(l)
0 =

1

(1/2)l+1
. (2.108)

For w ≤ 2, Eq 2.106 converges rapidly and the summation can be terminated once the desired level of

accuracy has been obtained. For large w (i.e. up to around w ≃ 100), the spherical Bessel functions

can be calculated using the recursion relation

jl(w) =
(2l − 1)

w
jl−1(w) − jl−2(w) (2.109)

with

j0(w) =
sinw

w
(2.110)

and

j1(w) =
sinw

w2
− cosw

w
. (2.111)

Thus the spherical Bessel functions are seen to have a sinusoidal form which decays according to an

inverse power of distance from the origin.
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It can be shown that spherical Bessel functions are orthogonal in the sense that (Gottfried, 1966)
∫ ∞

0
jl(βr)jl(βr

′)β2dβ =
π

2r
δ(r − r′), (2.112)

where

δ(x) =







1 if x = 0,

0 otherwise.
(2.113)

If the spherical Bessel transform of a function f(r) is defined as

f̃l(β) =

√

2

π

∫ ∞

0
f(r) jl(βr) r

2dr, (2.114)

then using Eq 2.112 it can be shown that the inverse transform is given by

f(r) =

√

2

π

∫ ∞

0
f̃l(β) jl(βr)β

2dβ. (2.115)

Thus the spherical Bessel transform is seen to be its own inverse. Similarly, it is straightforward to

prove that the spherical Bessel transforms of orthogonal functions are themselves orthogonal. In

other words, if, for example,
∫ ∞

0
Rkl(r)Rnl(r)r

2dr = δkn, (2.116)

then
∫ ∞

0
R̃kl(β)R̃nl(β)β2dβ = δkn. (2.117)

These properties will be invoked in section 3.4 to develop analytic translation expressions for 3D SPF

expansions.

2.2 3D Shape-Density Representations of Molecules

In quantum mechanical theories of matter, molecules are often treated as fixed arrangements of

atomic nucleii surrounded by clouds of electrons. Mathematically, this may be represented as a

superposition of electronic wave functions centred on the nuclear coordinates, which together define

a probabilistic model of how the electrons are distributed throughout space. However, large protein

molecules typically consist of hundreds of amino acids, thousands of atoms, and tens of thousands of

electrons. Therefore, even with the largest supercomputers, it is essentially impossible to represent

and calculate the properties of large proteins using ab initio electronic wave functions. Even small

organic molecules often consist of tens of atoms and hundreds of electrons, and it becomes very
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expensive to apply ab initio techniques to large numbers of small molecules. Hence approximate

representations are often currently used to describe both small and large molecules.

A common and straightforward way to display the structures of molecules using computer graphics

is simply to draw each atom of the molecule as a sphere of a given radius. The user then sees

a space-filling union of all of the atomic spheres (see Figure 2.5). Usually, each type of atom is

assigned an effective radius, the van der Waals (VDW) radius, calculated from crystal packing data.

However, this “hard sphere” representation does not realistically model the fundamentally smooth

nature of molecular electron density, and it does not provide an easy way to calculate accurately the

total surface area or the volume of a molecule, for example.

However, Grant and Pickup (1995) showed that assigning a single Gaussian density function to

each atomic position gives a remarkably effective way to describe the overall matter density of small

molecules. For example, by writing

ρi(r) = αe−β(r/ri)
2

, (2.118)

where ρi(r) is the density function for the i-th atom, ri is its VDW radius, and where α and β are

adjustable parameters, the overall matter density of a molecule of NA atoms is then given by the sum

of the atomic densities

ρ(r) =

NA
∑

i=1

ρi(r). (2.119)

Furthermore, the overlap between pairs of such Gaussian functions has a particularly simple form

(Boys, 1950). Grant and Pickup (1995) exploited this property to develop the very efficient ROCS

(Rapid Overlay of Chemical Structures) small-molecule shape-matching program (Grant et al., 1996).

Following Grant and Pickup (1995), I use α = 2.70 and β = 2.3442. Therefore, at a distance ri from

the centre of atom i, the density takes the constant value of 2.7e−2.3442 = 0.259. Hence a good esti-

mate of the VDW surface may be calculated by summing the atom density contributions at each node

in a 3D grid, and by contouring the grid using a density threshold of ρ = 0.259. Figure 2.5 shows the

contoured Gaussian density representation of lorazepam, a typical small drug molecule. Contouring is

performed using my own implementation of the “marching tetrahedra” algorithm (Guéziec & Hummel,

1995).

In addition to calculating a smooth VDW surface, it is often also useful to be able to calculate the

so-called solvent accessible surface (SAS). If a spherical probe molecule of a given radius, usually

1.4Å, is rolled over the VDW surface of a molecule without ever penetrating it, then the surface swept

out by the probe’s centre defines the SAS. Figure 2.6 shows a sketch of the SAS and the VDW

surfaces.

When using the atomic Gaussian approach to represent molecular volumes, the SAS may be

calculated by contouring a Gaussian surface in which the radius of each atom is extended by that of
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Figure 2.5: Illustrations of a small drug molecule, lorazepam, drawn using (from left to right) “licorice sticks”
to represent the covalent bonds between the atoms, VDW spheres, a contoured Gaussian surface with surface
triangles outlined in white, and the contoured Gaussian surface without outlining. In all representations, the
atoms are coloured by atom type: carbon in green; oxygen in red; nitrogen in blue; chlorine in blue-green. In
the Gaussian surfaces, surface triangles are coloured using a distance-weighted colour mixing rule which gives
a smooth gradation of shades across the surface.

VDW Surface

SAS

Interior

Skin

Figure 2.6: Schematic illustration of the molecular VDW surface, the SAS, and the “surface skin” and interior
volumes.

the probe radius. Figure 2.7 shows the SAS for lorazepam. In Chapter 4 it is shown that the volume

bounded by the SAS and VDW surfaces, which I call the “skin volume,” plays an essential role in

calculating protein shape complementarity during docking calculations.

Figure 2.7: Comparison of (from left to right) VDW hard-sphere, extended VDW hard-sphere, and Gaussian
SAS surfaces of lorazepam.
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2.3 Icosahedral Tesselations of the Sphere

If one considers a conventional spherical grid, such as that formed by the lines of latitude and longitude

on a map of the world, it is clear that the grid lines become very concentrated towards the north and

south poles. A much fairer way to divide the surface of a sphere is to construct a spherical tessellation

using the faces of a regular icosahedron, as illustrated in Figure 2.8. Here, icosahedral tessellations

are calculated by constructing spherical triangles from the icosahedral faces and by using geodesic

curves to subdivide the surface of each spherical triangle. This allows each icosahedral face to

be divided into an integral number of subdivisions. I use the near-regular distribution of vertices of

an icosahedral tessellation to sample rotational space evenly and to provide a fast way to estimate

the integrals over the sphere which arise in the calculation of the SH molecular surface expansion

coefficients, as described below.

(a) (b) (c) (d)

Figure 2.8: Illustrations of the icosahedron (a) and its dual, the dodecahedron (b). Subdividing the spherical
triangular patches of the icosahedron gives the tessellation shown in (c). The dual tessellation (d) is obtained
by connecting the centres of the triangular faces in (c). In this example, 6 subdivisions are made along each
icosahedral edge to give an icosahedral tessellation of 362 vertices and 720 faces. The dual tessellation has
720 vertices which define 12 pentagonal and 350 hexagonal faces.

2.4 2D Spherical Harmonic Molecular Surfaces

The SHs may be used as orthogonal “building blocks” with which to construct functions parameterised

by the spherical coordinates, (θ, φ). For example, the radial distance of a globular protein domain may

be encoded as a sum of real SHs to order L using

r(θ, φ) =
L

∑

l=0

l
∑

m=−l

almylm(θ, φ), (2.120)

where alm are the expansion coefficients. Multiplying each side of Eq 2.120 by ykj(θ, φ) and integrat-

ing over the sphere gives

∫ 2π

0

∫ π

0
r(θ, φ)ykj(θ, φ) sin θdθdφ = almδklδjm. (2.121)
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Thanks to the orthogonality of the basis functions, this reduces to

alm =

∫ 2π

0

∫ π

0
r(θ, φ)ylm(θ, φ) sin θdθdφ. (2.122)

In other words, each coefficient is uniquely determined by the degree of overlap with its corresponding

basis function. Using the icosahedral tessellation of the sphere, this integral may be estimated as

alm =

NV
∑

i=1

r(θi, φi)ylm(θi, φi)Ai, (2.123)

where the sum is over the NV vertices of the tessellation, (θi, φi) are the angular coordinates of the

i-th tessellation vertex, and Ai is the area of the corresponding face in the dual mesh. Because finite

area elements will not sum exactly to 4π, a somewhat more accurate way to calculate the coefficients

is to use:

alm =

(

4π
∑NV

i=1Ai

) NV
∑

i=1

r(θi, φi)ylm(θi, φi)Ai. (2.124)

Thus, armed with an icosahedral tessellation of the sphere, the task of calculating a SH surface

largely reduces to the task of sampling the surface at each of the tessellation vertices and then using

Eq 2.124 to calculate the SH expansion coefficients.

Figure 2.9 shows the VDW surface of lorazepam sampled onto an icosahedral tessellation of the

sphere, along with the resulting smooth SH surface. Figure 2.10 shows the SH surfaces of lorazepam

reconstructed at various expansion orders. Figure 2.11 shows the L=16 SH surfaces of two protein

molecules, an antibody and lysozyme, taken from the HyHel-5/lysozyme complex (PDB code 3HFL).

Comparing these figures, it can be seen that low order SH expansions can capture the shapes of small

globular molecules rather well, and using expansions above L=8 gives very little apparent difference in

resolution. On the other hand, the overall shapes of the larger protein molecules are clearly discernible

with L=16 expansions, but much of the atomic detail of these large molecules is missing. Furthermore,

because SH representations must be single-valued, or star-like, with respect to radial rays from the

chosen origin, the detailed shapes of cavities or pockets within a protein cannot be represented.

Nonetheless, Chapter 4 shows that low order SH surface representations provide an effective way to

search large databases of small molecules.

2.5 3D Spherical Polar Fourier Expansions

In order to capture the detailed shapes of large protein molecules sufficiently well to be able to per-

form docking calculations, it is necessary to augment the SH basis functions with suitable orthonormal

radial basis functions. This essentially entails abandoning the notion of tangible surfaces, and adopt-

ing a mass-density model of protein shape. Hence for 3D representations, each scalar property of
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Figure 2.9: The VDW surface of lorazepam sampled onto an icosahedral tessellation (left) and the correspond-
ing L=16 SH surface (right) calculated using Eq 2.124 and reconstructed from the SH expansion coefficients.
Note that the slightly “broken” appearance of the left-hand image is an artefact of the simple triangle depth-
sorting algorithm that was used to achieve the transparency effect. The same depth-sorting algorithm is used
on the right, but fewer incorrect surface triangle depths are calculated because the SH surface is smoother.

Figure 2.10: The SH surfaces of lorazepam at various expansion orders.

Figure 2.11: Comparison of a pair of 2D SH molecular surfaces to expansion order L=16 (right) with the
original atomic Gaussian density representation (left) of the HyHel-5 antibody Fv domain (large protein domain)
and hen egg lysozyme (small domain). The two domains are separated by 15Å for clarity.

interest, A(r), is encoded as a Fourier-like expansion of orthonormal SH and radial basis functions

up to a given order N as

A(r) =
N

∑

n=1

n−1
∑

l=0

l
∑

m=−l

anlmRnl(r)ylm(θ, φ). (2.125)
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I use GTOs to represent steric shape and the more diffuse ETOs to represent electrostatic properties.

The notation used here follows the quantum chemistry convention in which the radial index n, or prin-

cipal quantum number, counts from unity. Hence the highest harmonic order and highest polynomial

power in any individual coordinate is L=N-1.

It is worth noting that these are not the only type of radial function that could be used for 3D

shape representation. For example, Mak et al. and Sael et al. recently described using Zernike

polynomials (Novotni & Klein, 2003) with the SHs to construct rotationally invariant descriptors with

which to compare protein shapes (Mak et al., 2008; Sael et al., 2008). However, rotationally invariant

representations cannot be used to superpose or dock proteins because all orientational information

is destroyed. The question of whether there might be better radial functions than the GL functions is

considered in more detail in Section 5.9.

2.5.1 Calculating 3D Shape Density Functions

Following a similar approach to the 2D surface case, 3D shape-density representations of the molec-

ular VDW interior (τ ) and “surface skin” (σ) volumes may be defined as density functions:

τ(r) =







1 if r ∈ protein atom

0 otherwise,
(2.126)

and

σ(r) =







1 if r ∈ surface skin

0 otherwise.
(2.127)

Writing these functions as SPF expansions to order N gives, for example,

τ(r) =
∑

nlm

aτ
nlmRnl(r) ylm(θ, φ). (2.128)

By sampling protein shapes onto a regular Cartesian grid, the expansion coefficients may be deter-

mined by summing non-zero cells in the grid:

aτ
nlm =

∫

τ(r)Rnl(r) ylm(θ, φ)dV

≃
∑

k

Rnl(rk) ylm(θk, φk)∆V,
(2.129)

where the summation runs over the non-zero grid cells, k, ∆V is the volume of each grid cell, and

(rk, θk, φk) are the polar coordinates of the centre of the k’th cell. I normally use a Cartesian sampling

grid with 0.6Å3 cells. Figure 2.12 shows some example SPF representations of the complex between

the HyHel-5 antibody and hen egg lysozyme (PDB code 3HFL), calculated from the GTO expansion
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Figure 2.12: SPF steric density isosurfaces of various 3D GTO expansions for the complex between the HyHel-
5 antibody Fv domain (left) and hen egg lysozyme (right). The subunits are separated by 15Å for clarity. The
bottom right pair shows atomic Gaussian representations of the VDW surfaces from which the SPF expansions
are derived.

coefficients at various orders L=N-1. This Figure shows that individual protein atoms begin to be

resolved clearly with high order expansions of around L=28.

In a similar manner, the surface skin volume may be “voxelised” onto a Cartesian grid by using the

SAS normal vectors calculated from the tetrahedral contouring algorithm to fill the volume between

the SAS and the VDW surface with a large number of sampling spheres. Figure 2.13 illustrates this

idea. The surface skin coefficients, aσ
nlm, may then be computed by summing non-zero grid voxels as

before.

Sampling
Spheres

Surface 
Normals

Figure 2.13: Schematic illustration of sampling the surface skin volume using small sampling spheres placed
tangentially on the interior of the contoured and triangulated SAS.

2.5.2 Calculating Protein Electrostatic Properties

Classically, the electrostatic energy of a charge distribution, ρ(r), under the influence of a potential,

φ(r), is given by (Jackson, 1975)

E =
1

2

∫

ρ(r)φ(r)dV. (2.130)
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In conventional molecular dynamics packages the parameters necessary to evaluate electrostatic

interactions are often tabulated as point charges for each type of atom in a molecule. Hence it is

convenient to use such point charges to calculate 3D SPF expansions. However, because these

charge models usually assume the presence of hydrogen atoms, and because hydrogen atoms are

normally not resolved in X-ray protein structures, it is first necessary to add polar hydrogens to a pro-

tein molecule. This is done automatically in the Hex program using standard amino acid geometries to

infer or guess the hydrogen positions. Atom charges are then assigned from the AMBER parameter

set (Weiner et al., 1984). The SPF charge density coefficients may be calculated by equating an ETO

expansion for ρ(r) to the classical expression for the charge density due to a set of point charges, qi,

at positions xi ≡ ri using

ρ(r) =
∑

i

qi δ(x− xi) =
N

∑

n′=1

n′−1
∑

l′=0

l′
∑

m′=−l′

aρ
n′l′m′Sn′l′(r)yl′m′(θ, φ), (2.131)

where δ(x) is the 3D Dirac delta

δ(x) =







1 if x = (0, 0, 0),

0 otherwise.
(2.132)

Then, multiplying both sides of Eq 2.131 by Snl(r)ylm(θ, φ) and integrating immediately gives the

result

aρ
nlm =

∑

i

qi Snl(ri)ylm(θi, φi). (2.133)

The expansion coefficients for the in vacuo potential may be calculated from the charge density

by solving Poisson’s equation

∇2φ(r) = −4πρ(r). (2.134)

Substituting the series expansion for each side, applying ∇2 to the basis functions, multiplying both

sides of the result by Sn′l′(r)yl′m′(θ, φ) and integrating gives

N
∑

n=l+1

aφ
nlm

∫ ∞

0

(

S′′
nl(r) + 2S′

nl(r)/r − l(l + 1)Snl(r)/r
2
)

Sn′l(r)r
2dr = −4πaρ

n′lm, (2.135)

where S′ denotes ∂S/∂r, etc. Then, integrating by parts the term in S′
nl(r) gives

N
∑

n=l+1

aφ
nlmG

(l)
nn′ = −4πaρ

n′lm, (2.136)

where each element of G(l) has the symmetric form

G
(l)
nn′ = −

∫ ∞

0

(

S′
nl(r)S

′
n′l(r)r

2 + l(l + 1)Snl(r)Sn′l(r)
)

dr. (2.137)
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It can be seen that for each l and m, Eq 2.136 represents a set of simultaneous equations in the

coefficients, aφ
n′lm, which can be determined by inverting each G(l) matrix. The elements of G(l)

may be calculated by direct manipulation of the series expansion for the Laguerre polynomials. For

example, writing

Snl(r) =
n−l−1
∑

k=0

Dnlk e
−ρ/2ρl+k, (2.138)

where ρ = 2Λr and

Dnlk = (−1)k

(

(n− l − 1)!(n+ l + 1)!
)1/2

(n− l − k − 1)!(k + 2l + 2)!k!
, (2.139)

allows Eq 2.137 to be simplified term by term to give the symmetrical expression

G
(l)
nn′ =

1

4

n−l−1
∑

k=0

n′−l−1
∑

k′=0

DnlkDn′lk′(2l+ k+ k′)![(k− k′)2 − (k+ k′)− 2(2l+1)(l+1)]. (2.140)

Each G(l) matrix may then be inverted using standard numerical techniques. With this approach, the

charge density and potential expansions to order N=30 can be calculated for a typical protein in under

one second. It is worth noting that Poisson’s equation is normally solved using numerical integration

on a 3D grid, which can be expensive and error-prone. Provided the point charges are not too far away

from the origin the analytic solution presented here is effectively exact up to the chosen expansion

order. Figure 2.14 shows the ETO electrostatic potential on the surface of hen egg lysozyme protein

(PDB code 1LZA) calculated to order N=30.

Figure 2.14: The ETO electrostatic potential calculated to order N=30 for lysozome (PDB code 1LZA). The
image on the left shows the electrostatic potential on the contoured N=30 SPF density isosurface. The image
on the right shows the same potential on the original contoured atomic Gaussian density. Red and blue colours
represent negative and positive potentials, respectively. In these images the lysozyme is oriented to show its
catalytic cleft (red) in the upper left region of the molecule.
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Chapter 3

Spherical Polar Fourier Correlations

3.1 Operator Notation and 3D Coordinate Operations

In computer graphics applications, for example, in which complex graphical objects are often repre-

sented as lists of connected polygons, it is relatively straightforward to locate such objects within a

scene by multiplying the coordinates of the component polygon vertices by suitably chosen 4 × 4

homogeneous rotation and translation matrices. On the other hand, in order to compare a pair of

similar molecular shapes, or to dock a pair of complementary molecules, it is necessary to rotate

and translate one or both molecules in order to find the relative orientation that gives the best su-

perposition or contraposition, respectively. However, if the molecules are represented as Fourier-like

expansions, and the goal is to transform such expansions directly, it is not so immediately obvious

how the corresponding coordinate operations might be represented and implemented.

Therefore, it is useful to begin by defining abstract coordinate operators, R̂ and T̂ , which will

respectively rotate and translate Euclidean or Hilbert space objects or representations, as appropriate.

For example, if R̂z(α) represents an operator which rotates a molecule (object) about the z axis by

an amount α, and if the molecule is represented by an SPF expansion with coefficients anlm, then we

wish to find suitably rotated coefficients a′nlm such that the rotated molecule may be represented as

R̂z(α)σ(r) =
N

∑

n=1

n−1
∑

l=0

l
∑

m=−l

a′nlmRnl(r)ylm(θ, φ). (3.1)

Now there is a direct analogy between rotations and translations in a Hilbert space and the corre-

sponding coordinate operation in Euclidean space. For example, a positive “active” rotation of the

expansion coefficients (object) is completely equivalent to an opposite “passive” rotation of the basis

functions (coordinate axes). In other words, Eq 3.1 may equally be written as

R̂z(α)σ(r) ≡ σ(R̂z(α)−1r) =
N

∑

k=1

k−1
∑

j=0

j
∑

p=−j

akjpRkj(r)yjp(θ, φ− α), (3.2)
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where the subscripts on the right-hand side have been re-labelled to facilitate the next step. If desired,

the form of the rotation operator on the left-hand side may be instantiated as a 3 × 3 matrix

R̂z(α)−1 = Rz(−α) =







cosα − sinα 0

sinα cosα 0

0 0 1






. (3.3)

Now, by equating the summations in Equations 3.1 and 3.2, multiplying both sides byRnl(r)ylm(θ, φ)

and integrating, one obtains

a′nlm = anlp

∫ 2π

0
ψm(φ)ψp(φ− α). (3.4)

In other words, by considering the overlap between the original and the transformed basis functions,

one can calculate (at least in principle) the transformed expansion coefficients. In practice, this is

straightforward for pure z-rotations, but it is much more difficult for general rotations and translations.

Nonetheless, this is essentially the starting point used in Section 3.4 for calculating translations. How-

ever, it is first appropriate to consider rotations in further detail.

Because a rotation always involves an axis and a rotation angle, three angular parameters are

necessary to describe a general rotation in 3D space (i.e. two angles fix the orientation of the axis,

and the third angle specifies the amount of rotation about that axis). When working with SHs, it is

usual to follow the Euler “z-y-z” convention for rotations in 3D space, in which an active rotation of

an object is described by successive rotations of γ about the z axis, β about the y axis, and finally α

about the z axis (again). This may be represented as

R̂(α, β, γ) = R̂z(α)R̂y(β)R̂z(γ) (3.5)

where the right-most operator is applied first. As will be seen below, rotations about the z axis are

straightforward to implement for SH expansions. Hence the Euler z-y-z convention is a natural choice

with which to represent 3D rotations. When applied to Cartesian coordinates, the general Euler

rotation operator may be instantiated as

R(α, β, γ) =







cosα cosβ cos γ − sinα sin γ − cosα cosβ sin γ − sinα cos γ cosα sinβ

sinα cosβ cos γ + cosα sin γ cosα cos γ − sinα cosβ sin γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ






.

(3.6)

Conversely, from the form of Eq 3.6, it can be seen that a general rotation matrix, R, may be decom-

posed into the three Euler rotation angles according to

β = cos−1(R22)

γ = cos−1(−R20/ sinβ)

α = cos−1(R02/ sinβ).

(3.7)
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The special cases of R22 = 1 and R22 = −1 may be resolved by putting γ = 0 and α = cos−1(R00)

or α = cos−1(R11), respectively.

Although a given task may require the application of an arbitrary coordinate transformation to a

polar Fourier expansion, a general translation is much harder to calculate than a general rotation in a

SH basis. Hence, it is expedient to calculate translations only with respect to the z axis, and to define

a general motion as a composition of one or more rotations and a single z-translation. For example, if

T represents a general 4 × 4 homogeneous transformation,

T =













R00 R01 R02 Tx

R10 R11 R12 Ty

R20 R21 R22 Tz

0 0 0 1













, (3.8)

and if

r =
√

T 2
x + T 2

y + T 2
z

θ = cos−1(Tz/r)

φ = cos−1(Tx/r sin θ)

(3.9)

(where φ = 0 if θ = 0), then T may be decomposed as

T = R2 T z(r)R1, (3.10)

where T z(r) represents a pure translation of r along the positive z axis, and where R1 and R2 are

pure rotations. It is then straightforward to see that

R2 = Rz(φ)Ry(θ) (3.11)

and

R1 = T z(−r)Ry(−θ)Rz(−φ)T . (3.12)

Because R1 will normally resolve to three distinct Euler rotation angles, it can be seen that a general

3D transformation may be characterised by one translational and five angular parameters.

3.2 Addition Theorems and Correlations

An addition theorem is an algebraic relationship between the parameters of a function such as f(a+b)

in terms of the individual parameters, f(a) and f(b). A simple example of an addition theorem is

ei(α+β) = eiαeiβ. (3.13)
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In terms of operators, the action of applying two consecutive rotations of α and β about an axis in 3D

space may also be considered as a kind of addition theorem. For example, considering Eq 3.13 it is

natural to expect to be able to write

R̂z(α+ β) = R̂z(α)R̂z(β), (3.14)

and indeed using Euler’s formula (Eq 2.14) it is straightforward to show that the corresponding 3 × 3

matrix representation of Eq 3.14 is given by







cos(α+ β) sin(α+ β) 0

− sin(α+ β) cos(α+ β) 0

0 0 1






=







cosα sinα 0

− sinα cosα 0

0 0 1













cosβ sinβ 0

− sinβ cosβ 0

0 0 1






.

(3.15)

This matrix equation simultaneously embodies the “text book” geometric addition theorems

cos(α+ β) = cosα cosβ − sinα sinβ (3.16)

and

sin(α+ β) = sinα cosβ + cosα sinβ. (3.17)

More sophisticated addition theorems have been found which involve the special functions. For

example, a translational addition theorem for the regular solid SHs may be expressed as (Biedenharn

& Louck, 1981):

Ylm(x+ T ) =
∑

kj

[

4π(2l + 1)

(2l − 2k + 1)(2k + 1)

(

l +m

k + j

)(

l −m

k − j

)]1/2

Ykj(x)Yl−k,m−j(T ), (3.18)

where the summation runs over all values of k and j for which the factorials are well defined.

More generally, two coordinate systems r = (r, θ, φ) and r′ = r − T = (r′, θ′, φ), as illustrated

in Figure 3.1, may be related functionally using Raleigh’s plane wave addition theorem (Bransden &

Joachain, 1997). For example, multiplying the vector equation

r = T + r′ (3.19)

by an arbitrary complex vector ik and exponentiating each side gives:

eik.r = eik.T e.ik.r′ (3.20)

Writing the direction vectors in spherical polar coordinates, k = (β,Θ,Φ), r = (r, θ, φ), r′ =

(r′, θ′, φ′), and T = (R, γ, δ), Raleigh’s addition theorem relates the two coordinate systems ac-

cording to:

eik.r = 4π
∞

∑

l=0

l
∑

m=−l

iljl(βr)Ylm(Θ,Φ)∗Ylm(θ, φ). (3.21)
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When the translation is restricted to the positive z direction it can be shown that Raleigh’s equation

may be simplified to obtain a spherical Bessel addition theorem:

jl(βr)Ylm(θ, φ) =
∞

∑

l′=0

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k jk(βR)jl′(βr

′)Yl′m(θ′, φ), (3.22)

where the angular coefficient A(ll′|m|)
k is given by

A
(ll′|m|)
k = (−1)(k+l′−l)/2+m(2k + 1)

[

(2l + 1)(2l′ + 1)
]1/2

(

l l′ k
0 0 0

)(

l l′ k
m m 0

)

, (3.23)

From the permutational symmetries of the second 3–j symbol, the right hand side is independent

of the sign of m thus justifying the use of |m| to label the matrix elements. Because the first 3–j

symbol vanishes whenever l + l′ + k is odd, it can be seen that the non-vanishing coefficients are

always real and that the summation on k need only be calculated for even increments with k =

|l − l′|, |l − l′| + 2, ..., l + l′. For a negative translation, it can be shown that an additional factor of

(−1)l−l′ appears in the above expression. For full details, see e.g. Appendix A of Ritchie (2005).

θ

θ

z

A

B

r

r

x

R

Figure 3.1: Illustration of the coordinate systems used to represent translations. The position of a point x with
respect to the coordinate system whose origin is at position A is x = r = (r, θ, φ), whereas the same point has
the coordinates x = r′ = (r′, θ′, φ) with respect to the coordinate system whose origin is at position B. The two
coordinate systems A, and B, are related by a translation R in the z direction.

Addition theorems are often very useful when calculating correlations. In classical Fourier analy-

sis, the correlation between a pair of functions, f(φ) and g(φ), is conventionally defined as

(f ∗ g)(α) ≡
∫ 2π

0
f(φ)∗g(φ+ α)dφ. (3.24)

In other words, a correlation is the degree of overlap between one function and a shifted version of the

other function. Of course, for molecular shape matching and docking purposes, the aim is to calculate

overlap integrals in 3D space in which one or both of the functions have been rotated or translated

by specific amounts. However, the concise notation used in Eq 3.24 for one-dimensional correlations
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cannot easily be extended to describe multi-dimensional correlations unambiguously. Hence I prefer

to use the operator notation defined above. Thus, for example, Eq 3.24 would be expressed as

(f ∗ g)(α) ≡
∫ 2π

0
f(φ)∗[g(R̂(α)φ)]dφ ≡

∫ 2π

0
f(φ)∗[R̂(−α)g(φ)]dφ. (3.25)

3.3 Rotating Spherical Polar Fourier Expansions

3.3.1 The Wigner Rotation Matrices

It can be shown that the SH functions of each order, l, transform amongst themselves under a general

Euler rotation according to (Rose, 1957; Biedenharn & Louck, 1981)

R̂(α, β, γ)Ylm(θ, φ) =
∑

m′

Ylm′(θ, φ)D
(l)
m′m(α, β, γ) (3.26)

where R̂(α, β, γ) represents a rotation operator expressed in terms of the Euler angle parameterisa-

tion (α, β, γ). The unitary rotation matricesD(l)(α, β, γ) are originally due to Wigner (1939). However,

it seems he never published a full derivation. Probably the most elegant and direct way to calculate

general rotations of SHs is to use a Boson operator technique (Sakurai, 1994). The result is (Bieden-

harn & Louck, 1981)

D
(l)
m′m(α, β, γ) = e−im′αd

(l)
m′m(β)e−imγ , (3.27)

where

d
(l)
m′m(β) =

[

(l +m′)!(l −m′)!(l +m)!(l −m)!
]1/2×

min(l−m′,l+m)
∑

k=max(0,m−m′)

(−1)k+m′−m(cosβ/2)2l+m−m′−2k(sinβ/2)2k+m′−m

(l +m− k)!k!(m′ −m+ k)!(l −m′ − k)!
.

(3.28)

The d(l) matrix elements have the useful symmetries

d
(l)
m′m(β) = (−1)m′−md

(l)
mm′(β)

= (−1)m′−md
(l)
m′m

(β). (3.29)

From a programming point of view, this means that approximately three quarters of the elements of

each d(l) matrix may be calculated trivially. When |m′| = l or |m| = l, the summation in Eq 3.28

reduces to a single term and one obtains, for example,

d
(l)
m′l =

[

(2l)!

(l −m′)!(l +m′)!

]1/2

(cosβ/2)l+m′

(sinβ/2)l−m′

. (3.30)

Like the other special functions, there exist several three-term recursion relations which may be ex-

ploited for efficient calculations. For example, except at the poles, the relation

2(m cosβ −m′)
sinβ

d
(l)
m′m =

[

(l+m+1)(l−m)
]1/2

d
(l)
m′,m+1+

[

(l−m+1)(l+m)
]1/2

d
(l)
m′,m′−1 (3.31)

may be used to calculate consecutive matrix elements efficiently starting from Eq 3.30.
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3.3.2 Real Wigner Rotation Matrices

Linear combinations of complex SHs such as Eq 2.82 preserve rotational symmetry, and the real SH

functions also transform amongst themselves under rotation. This behaviour may be represented as

R̂(α, β, γ)ylm(θ, φ) =
∑

m′

ylm′(θ, φ)R
(l)
m′m(α, β, γ). (3.32)

where R(l) is a real rotation matrix. If Eq. 2.82 is written as a sum,

ylm(θ, φ) =
∑

m′

U
(l)
mm′Ylm′(θ, φ), (3.33)

then it can be shown that for each order, l, the real rotation matrix, R, is given by the matrix equation

R(l) = U (l)D(l)U (l)†, (3.34)

where U † is the complex conjugate transpose of U . Recognising that all non-diagonal elements of U

are zero, it is relatively straightforward, but tedious, to simplify Eq. 3.34 symbolically. The result is

R
(l)
m′m =



























































































d
(l)
m′m(β) cos(mγ +m′α) + (−1)m′

d
(l)
m′m

(β) cos(mγ −m′α) ; m′ > 0,m > 0

d
(l)
0m(β)

√
2 cos(mγ) ; m′ = 0,m > 0

(−1)m′+1d
(l)
m′m(β) sin(mγ +m′α) + d

(l)
m′m

(β) sin(mγ −m′α) ; m′ < 0,m > 0

d
(l)
m′0(β)

√
2 cos(m′α) ; m′ > 0,m = 0

d
(l)
00(β) ; m′ = 0,m = 0

(−1)m′+1d
(l)
m′0(β)

√
2 sin(m′α) ; m′ < 0,m = 0

(−1)md
(l)
m′m(β) sin(mγ +m′α) + (−1)m+m′

d
(l)
m′m

(β) sin(mγ −m′α) ; m′ > 0,m < 0

(−1)md
(l)
0m(β)

√
2 sin(mγ) ; m′ = 0,m < 0

(−1)m+m′

d
(l)
m′m(β) cos(mγ +m′α) + (−1)m+1d

(l)
m′m

(β) cos(mγ −m′α) ; m′ < 0,m < 0.

(3.35)

Setting β = γ = 0 gives a single rotation, α, about the z-axis which has a particularly simple form.

Since

R̂(α, 0, 0) ylm(θ, φ) = ylm(θ, φ− α), (3.36)

the identities

cos(α± β) = cosα cosβ ∓ sinα sinβ (3.37)

and

sin(α± β) = sinα cosβ ± cosα sinβ (3.38)
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may be used to show that

R̂(α, 0, 0) ylm(θ, φ) = ylm(θ, φ) cosmα+ ylm(θ, φ) sinmα. (3.39)

With a little more work, the identity

d
(l)
m′m(β = 0) = δm′m (3.40)

can be substituted into the rotation matrix element expressions (Eq 3.35), and Eq 3.32 may be sim-

plified to obtain the same result. For a general rotation, in which β 6= 0, all rotation matrix elements

must be calculated but the amount of computation can be reduced greatly by using the symmetries of

the d(l) matrices (Eq 3.29).

3.4 Translating Spherical Polar Fourier Expansions

Much of QM is concerned with calculating integrals over products of electronic wave functions cen-

tred on different nuclear coordinates. However, although these integrals depend on the distance(s)

between the nuclear centres, there is very little literature on the notion of relating such integrals to

the action of a translation operator. Instead, it seems that the usual practice in QM is to re-calculate

any necessary overlap integrals whenever any of the nuclear coordinates change. No doubt, this is

the correct way to proceed in QM where the task is to evaluate as accurately as possible very large

numbers of relatively low order multi-centre integrals. However, for protein docking and molecular

shape-matching purposes, we need to calculate the overlap between considerably higher order basis

functions about just two expansion centres, and we need to repeat these calculations over potentially

very many distinct rotational orientations of one or both molecules. Therefore, it is imperative to de-

velop an explicit matrix representation of the translation operator in order to avoid needlessly having

to re-calculate very many high order overlap integrals during a correlation search.

3.4.1 Overlap Integrals as Translation Matrix Elements

A straightforward way to find the general form of the translation matrices is firstly to consider the

overlap between a fixed “body” A, or scalar function A(r), and a moving body B, or function B(r),

under an active translation of B by T = (R, 0, 0) along the positive z axis, as illustrated above in

Figure 3.1. Symbolically, this may be expressed as

C(T ) =

∫

A(r)B(T−1r) dV. (3.41)

Substituting the expansions of A(r) and B(r) gives

C(T ) =
∑

nlm

∑

n′l′m′

anlmbn′l′m′

∫

Rnl(r)ylm(θ, φ)Rn′l′(r
′)yl′m′(θ′, φ′) dV (3.42)
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where r = (r, θ, φ) and r′ = r− T = (r′, θ′, φ′), and where the shorthand notation
∑

nlm etc. is used

to indicate summation over the subscript ranges given in Eq 2.125. In this case, φ and φ′ remain

coincident so the circular functions, ϕm(φ), may be integrated out, and Eq 3.42 reduces to a sum over

2D integrals in the (r, θ) plane. Because the value of each of these integrals depends only on the

distance R and is independent of the sign of m (see below), we may write:

T
(|m|)
nl,n′l′(R) =

∫

Rnl(r)ϑlm(θ)Rn′l′(r
′)ϑl′m(θ′)r2dr sin θdθ, (3.43)

and

C(R) =
∑

nlm

∑

n′l′m′

anlmbn′l′m′T
(|m|)
nl,n′l′(R)δmm′ , (3.44)

and interpret each T
(|m|)
nl,n′l′(R) as a matrix element of the translation operator. For example, from

Eq 3.44 it can be seen that the two sums

bRnlm =
∑

n′l′

T
(|m|)
nl,n′l′(R)bn′l′m (3.45)

and, after re-labeling the subscripts,

aR
nlm =

∑

n′l′

T
(|m|)
n′l′,nl(R)an′l′m (3.46)

represent a positive translation of the body B, or equivalently a negative translation of the body A,

respectively. The translation matrices are obviously five-dimensional quantities. However, because

they do not depend on the sign of m, it is useful to consider each matrix as being composed of
∑N−1

m=0 = N two-dimensional arrays, each indexed by
∑

nl = N(N+1)/2 possible values for each pair

of nl subscripts. The matrix elements vanish trivially where |m| > l. Furthermore, the notation used

here is intended to be consistent with the usual convention for the complex and real SH rotation matrix

elements, D(l)
m′m(α, β, γ) and R(l)

m′m(α, β, γ), respectively, in the sense that a positive z-translation of

the basis functions is expressed as

Rnl(r
′)ylm(θ′, φ) =

∞
∑

n′=1

n′−1
∑

l′=0

T
(|m|)
n′l′,nl(R)Rn′l′(r)yl′m(θ, φ). (3.47)

In the rest of this section it will be shown that the translation matrix elements for SPF basis func-

tions may be calculated as sums over 1D inverse spherical Bessel transforms. Firstly, from Sec-

tion 2.1.14, if the spherical Bessel transform of Rnl(r) is defined as

R̃nl(β) = (2/π)1/2

∫ ∞

0
Rnl(r)jl(βr)r

2dr, (3.48)

then the inverse transform is given by

Rnl(r) = (2/π)1/2

∫ ∞

0
R̃nl(β)jl(βr)β

2dβ. (3.49)
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Next, multiplying both sides of the spherical Bessel addition theorem, Eq 3.22, by (2/π)1/2R̃nl(β)β2

and integrating with respect to β (i.e. applying the above inverse transform) gives

Rnl(r)Ylm(θ, φ) =

(

2

π

)1/2 ∞
∑

l′=0

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

∫ ∞

0
R̃nl(β)jk(βR)jl′(βr

′)β2dβ Yl′m(θ′, φ).

(3.50)

Then, multiplying each side byRn′j′(r
′)Yj′m′(θ′, φ) and integrating over all space in the corresponding

variables gives

T
(|m|)
n′j′,nl(R) =

(

2

π

)1/2 ∞
∑

l′=0

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

∫ ∞

0

∫ ∞

0
δj′l′Rn′j′(r

′)jl′(βr
′) R̃nl(β)jk(βR)β2dβ r′2dr′.

(3.51)

Finally, recognising the integral in r′ as the spherical Bessel transform of Rn′l′(r
′), the result reduces

to a finite sum of terms:

T
(|m|)
n′l′,nl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

∫ ∞

0
R̃n′l′(β)R̃nl(β)jk(βR)β2dβ. (3.52)

This generalises the expression given by Danos and Maximon (1965) for translating multipole expan-

sions to the more general case for arbitrary orthonormal radial functions, Rnl(r). By similar argu-

ments, it can also be shown that

T
(|m|)
nl,n′l′(R) = T

(|m|)
n′l′,nl(−R) = (−1)l′−lT

(|m|)
n′l′,nl(R). (3.53)

Consequently, nearly half of all matrix elements can be found by symmetry. Given that the original

basis functions form a complete orthonormal set, it is straightforward to show that the translation

matrices are also orthonormal in sense that

∞
∑

n′=1

n′−1
∑

l′=0

T
(|m|)
n′l′,nl(R)T

(|m|)
n′l′,n′′l′′(R) = δnn′′δll′′ . (3.54)

Evaluating this equation provides a convenient way to verify the correctness of the following calcula-

tions.

The following sections will develop explicit closed form expressions for the translation matrix ele-

ments for the GTO and ETO basis functions.

3.4.2 The GTO Translation Matrix Elements

From Eq 2.98, the normalised GTO radial functions are given by

Rnl(r) =

[

2

λ3/2π1/2

(n− l − 1)!

(1/2)n

]1/2

e−ρ2/2ρlL
(l+1/2)
n−l−1 (ρ2) ; ρ2 = r2/λ. (3.55)
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The GTO functions are eigenfunctions of the spherical Bessel transform (derived from (Erdélyi et al.,

1953c), p42, Eq 3)

R̃nl(β) = (−1)n−l−1

[

2λ3/2

π1/2

(n− l − 1)!

(1/2)n

]1/2

e−x2/2xlL
(l+1/2)
n−l−1 (x2), (3.56)

where x2 = λβ2. Here, it is convenient to use Eq 2.89 to expand Eq 3.56 as a power series

R̃nl(β) =

[

4λ3/2

π1/2

]1/2
∑

j

Xnlje
−x2/2x2j+l, (3.57)

where
∑

j serves as shorthand notation for
∑n−l−1

j=0 , and where the coefficients Xnlj are given by

Xnlj =

[

(n− l − 1)!(1/2)n

2

]1/2 (−1)n−l−j−1

j!(n− l − j − 1)!(1/2)l+j+1
. (3.58)

Substituting Eq 3.57 twice into Eq 3.52 and collecting coefficients of x2k using

C
(nl,n′l′)
k =

∑

j

∑

j′

δk,j+j′XnljXn′l′j′ (3.59)

gives for the GTO translation matrix elements

T
(|m|)
n′l′,nl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

n−l+n′−l′−2
∑

j=0

C
(nl,n′l′)
j

4

π1/2

∫ ∞

0
x2j+l+l′jk(xR/λ

1/2)x2dx. (3.60)

Applying the relation (from (Erdélyi et al., 1953c), p30, Eq 13)

4

π1/2

∫ ∞

0
e−x2

x2m+kjk(xy)x
2dx = m!e−y2/4(y2/4)k/2L(k+1/2)

m (y2/4), (3.61)

then gives the final analytic result

T
(|m|)
n′l′,nl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

n−l+n′−l′−2
∑

j=0

C
(nl,n′l′)
j M !e−R2/4λ(R2/4λ)k/2L

(k+1/2)
M (R2/4λ),

(3.62)

where M = j + (l + l′ − k)/2.

3.4.3 The ETO Translation Matrix Elements

From Eq 2.101, the normalised ETO radial functions are given by

Snl(r) =

[

(2Λ)3
(n− l − 1)!

(n+ l + 1)!

]1/2

e−ρ/2ρlL
(2l+2)
n−l−1(ρ), (3.63)
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where ρ = 2Λr with scale factor Λ. I set Λ = 1/2 for protein-protein electrostatic calculations (Ritchie

& Kemp, 2000). Using an argument based on orthogonality, Keister and Polyzou (1997) recently

proved that the spherical Bessel transform of these functions may be written in terms of the Jacobi

polynomials, P (α,β)
k (t)

S̃nl(β) =
2

(1/2)n

[

(n− l − 1)!(n+ l + 1)!

πΛ3

]1/2 sl

(s2 + 1)l+2
P

(l+3/2,l+1/2)
n−l−1

(

s2 − 1

s2 + 1

)

, (3.64)

where s = β/Λ. Following a similar treatment to the GTO case, the shifted series expansion (Keister

& Polyzou, 1997)

P
(µ,ν)
k (t) =

1

k!

Γ(k + µ+ 1)

Γ(k + µ+ ν + 1)

k
∑

j=0

(−1)j

(

k

j

)

Γ(k + j + µ+ ν + 1)

Γ(j + µ+ 1)

(

1 − t

2

)j

(3.65)

may be used to collect factors of 1/(s2 + 1) = (1 − t)/2 to write Eq 3.64 as a power series

S̃nl(β) =

[

2

πΛ3

]1/2
∑

j

Ynlj
sl

(s2 + 1)l+j+2
(3.66)

where

Ynlj =

[

1

2

(n− l − 1)!

(n+ l + 1)!

]1/2 (−1)j(2n+ 1)(n+ l + j + 1)!

j!(n− l − j − 1)!(1/2)l+j+2
. (3.67)

Substituting Eq 3.66 twice into Eq 3.52 and collecting coefficients of 1/(s2 + 1)k using

D
(nl,n′l′)
k =

∑

j

∑

j′

δk,j+j′YnljYn′l′j′ (3.68)

gives for the ETO translation matrix elements

U
(|m|)
n′l′,nl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

n−l+n′−l′−2
∑

j=0

D
(nl,n′l′)
j

2

π

∫ ∞

0

s2M+k

(s2 + 1)J+2
jk(sΛR)s2ds, (3.69)

where M = (l+ l′ − k)/2 and J = j + l+ l′ + 2. It is shown in Appendix B of Ritchie (2005) that the

remaining integral may be calculated in closed form as

2

π

∫ ∞

0

s2M+k

(s2 + 1)J+2
jk(sΛR)s2ds =

M
∑

q=0

(

M

q

)

(−1)M+q

2J+1−q(J + 1 − q)!
(ΛR)kk̂J−k−q+1/2(ΛR),

(3.70)

where k̂σ(z) is a reduced Bessel function of the second kind. For half-integral degree, these functions

may be calculated using the recurrence relations (Weniger & Steinborn, 1983)

k̂1/2(z) = e−z,

k̂3/2(z) = (1 + z)e−z,

k̂n+3/2(z) = (2n+ 1)k̂n+1/2(z) + z2k̂n−1/2(z).

(3.71)

Thus, the ETO translation matrix elements may also be calculated analytically, although compared to

the GTO basis an additional inner summation is necessary.
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3.4.4 Non-Orthogonal Translation Matrices

Translations of SPF expansions in both the GTO and ETO bases can be computed more economically

by eliminating the inner summation on the subscript j in Eq.s 3.62 and 3.69. This is equivalent to

calculating overlap integrals that correspond to expansions of non-orthogonal radial basis functions.

For example, substituting Eq 3.57 into Eq 3.52 and applying Eq 3.61 directly gives the factorisation

T
(|m|)
n′l′,nl(R) =

∑

j′

∑

j

Xn′l′j′ T̄
(|m|)
j′l′,jl(R)Xnlj , (3.72)

where each T̄ (|m|)
j′l′,jl(R) is an overlap integral in a non-orthogonal basis

T̄
(|m|)
j′l′,jl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k M !e−R2/4λ(R2/4λ)k/2L

(k+1/2)
M (R2/4λ) (3.73)

now withM = j+j′+(l+l′−k)/2. This corresponds to expandingRnl(r) as a sum of non-orthogonal

functions, R̄nl(r)

Rnl(r) = (−1)n−l−1
∑

j

XnljR̄jl(r). (3.74)

It can be shown that these functions correspond to the non-orthogonal GL basis proposed by Chiu

and Moharerrzadeh (1999). With this factorisation, translated expansion coefficients, aR
nlm, in the

original orthogonal basis may be calculated using the sequence

ājlm =
∑

n

Xnljanlm, (3.75)

āR
jlm =

∑

j′l′

T̄
(|m|)
jl,j′l′(R)āj′l′m, (3.76)

aR
nlm =

∑

j

Xnlj ā
R
jlm. (3.77)

In a similar manner, ETO translations may be calculated in a non-orthogonal basis by substituting

Eq 3.66 into Eq 3.52 and collecting powers of 1/(s2 + 1) directly to give

U
(|m|)
n′l′,nl(R) =

∑

j′

∑

j

Yn′l′j′Ū
(|m|)
j′l′,jl(R)Ynlj (3.78)

where the non-orthogonal matrix elements, Ū (|m|)
j′l′,jl(R), are given by

Ū
(|m|)
j′l′,jl(R) =

l+l′
∑

k=|l−l′|
A

(ll′|m|)
k

M
∑

q=0

(

M

q

)

(−1)M+q

2J+1−q(J + 1 − q)!
(ΛR)kk̂J−k−q+1/2(ΛR) (3.79)

with M = (l + l′ − k)/2 and now J = j + j′ + l + l′ + 2.
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3.4.5 Numerical Results

Using the orthogonality property of the rotation matrices, and from visual inspection of rotated 2D and

3D molecular surfaces, it is relatively straightforward to verify that the SH rotation expressions are

correct, and that an arbitrary Euler rotation preserves the vector length of the expansion coefficients

when working in ordinary C double precision arithmetic.

In order to verify the implementation of the translation matrix calculations, numerical results from

the analytic expressions were compared with those from a 2D numerical integration of Eq 3.42 using

a regular 200 × 200 grid in the (r, cos θ) plane, and also with a 1D integration of Eq 3.52 using 200

steps in β using log-numerical scheme. Full details are given in Ritchie (2005). This comparison

showed that in order to achieve satisfactory numerical precision for all matrix elements up to N=32

for subsequent calculations in C using ordinary “double precision” instructions (15 decimal digits), it

is necessary to perform the calculations using the GMP extended precision library using 160-bit arith-

metic for the GTO translation matrices, and using 192-bit arithmetic for the ETO translation matrices.

Calculating non-orthogonal expansions was found to be twice as fast as using orthogonal expansions

(Ritchie, 2005). However, when translation matrices are needed at a range of regular fixed inter-

vals, it is more efficient to calculate them once in the orthogonal bases and to store them on disc for

subsequent use. On the other hand, the non-orthogonal expansions would be more suitable when

calculating translations for irregular or unpredictable intervals during a minimisation calculation, for

example. In any case, because the rigid body shape matching and docking search spaces can be

partitioned into five rotational and one translational degrees of freedom, the analytic expressions for

the translation matrices developed here now provide the necessary machinery with which to calculate

high order analytic SPF correlations in up to six dimensions.
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Chapter 4

Computational Biology Applications

4.1 Molecular Shape Recognition

The term recognition is often used to describe the identification of both similar and complementary re-

gions of a pair of proteins or other molecules (Cherfils & Janin, 1993; Dean & Callow, 1987; Katchalski-

Katzir et al., 1992; Vakser & Aflalo, 1994; Jones et al., 1995). For a pair of molecules to be considered

similar, both their shapes and their physico-chemical characteristics (e.g. electrostatic properties, hy-

drophobicity, and hydrogen-bonding propensities) must match over the regions of interest. Conversely,

these properties must be contraposed appropriately to give a complementary arrangement. Thus the

tasks of rotating and translating a pair of molecules to find similar or complementary surface regions

may be interpreted as two closely related facets of a common recognition problem. If the molecules

are assumed to be rigid, then both tasks are characterised by a six-dimensional (6D) search space,

as illustrated in Figure 4.1. However, in the similarity case, if both molecules are initially located at the

origin, the translational component will often be small and two of the rotation angles, e.g. (βA, γA),

will be almost redundant.

4.1.1 SPF Protein Shape Superposition

To demonstrate the SPF correlation technique, this section describes the superposition of a pair of

similar proteins, where each protein is represented as a single 3D GTO shape density expansion

(Eq 2.125). Letting A(r) and B(r) represent the shapes of proteins A and B, respectively, and placing

each protein initially at the origin, it is convenient to express the correlation as

E ≡ E(βA, γA, R, αB, βB, γB) =

∫

[T̂z(−R)R̂(0, βA, γA)A(r)][R̂(αB, βB, γB)B(r)] dV, (4.1)
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Figure 4.1: Schematic illustration of the 6D rigid body shape-matching (left) and docking (right) search spaces
in terms of one translational coordinate, R, and five Euler rotational coordinates, (βA, γA) and (αB , βB , γB),
assigned to the receptor and ligand, respectively. The distance between the molecular centres will be small and
two of the rotation angles will be almost redundant.

where T̂z(−R) translates the rotated A(r) by R along the negative z axis. Substituting the SPF

representation for each of the terms gives

E =
N

∑

nln′l′mm′m′′

T
(|m′|)
n′l′,nl(R)R

(l′)
mm′(0, βA, γA)an′l′m′R

(l)
mm′′(αB, βB, γB)bnlm′′ . (4.2)

Hence the goal is to find the rotational and translational parameters which maximise the above sum.

In this and the following sections, the short-hand summation notation used above will be used for

brevity, where it is understood from the context that the summation will range over the allowed values

of all subscripts, e.g. |m| ≤ l < N , etc.

Clearly, the cost of calculating directly Eq 4.2 scales in the order of O(N7) operations for each

trial orientation, and it would be prohibitively expensive to calculate this sum repeatedly in an ex-

haustive 6D search. However, a much more efficient strategy is to compute the sum in stages using

pre-calculated rotation and translation matrix elements. For example, assuming all rotation matrix

elements have been pre-calculated for a specific (β, γ) rotation, a vector of O(N3) coefficients for

molecule A may be rotated in O(N3) ×O(N) = O(N4) operations using

anlm(βA, γA) =
∑

m′

R
(l)
mm′(0, βA, γA)anlm′ . (4.3)

Assuming all translation matrix elements have also been pre-calculated, a vector of coefficients rep-

resenting a specific (β, γ,R) orientation may be calculated in O(N3) × (O(N) + O(N2)) = O(N5)

operations using

anlm(R, βA, γA) =
∑

n′l′

T
(|m|)
nl,n′l′(−R)an′l′m(βA, γA). (4.4)
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Similarly, vectors of rotated instances of molecule B may be calculated in O(N3) × O(N) = O(N4)

operations per orientation using

bnlm(βB, γB) =
∑

m′

R
(l)
mm′(0, βB, γB)bnlm′ . (4.5)

The final degree of freedom is a twist rotation about the z axis. This could be included in the above

formula, but because this rotation may be written as

bnlm(αB, βB, γB) =
∑

m′

R
(l)
mm′(αB, 0, 0)bnlm′(βB, γB) (4.6)

=
∑

m′

bnlm′(βB, γB) cosm′αB + bnlm′(βB, γB) sinm′αB, (4.7)

it is more efficient to calculate the intermediate quantities

Pm =
∑

nl

anlm(βA, γA)bnlm(βB, γB), (4.8)

and

Qm =
∑

nl

anlm(βA, γA)bnlm(βB, γB), (4.9)

and to perform the correlation by iterating over all combinations of (R, βA, γA) and (βB, γB) orienta-

tions in order to calculate the αB rotations using a real Fourier series:

E =
∑

m

Pm cosmαB +Qm sinmαB. (4.10)

For high order expansions, the calculation of Eq 4.10 over multiple angular samples, M , may

be performed in O(M logM) operations by using a 1D FFT. However, when N<16, it is faster to

compute Eq 4.10 for each value of αB explicitly in O(MN) time. In any case, the overall 6D shape-

matching algorithm may be implemented as a nested sequence of transformations, as summarised in

Figure 4.2. Despite the relatively high cost of rotating and translating individual 3D coefficient vectors,

each distinct (R, βA, γA) orientation of molecule A and each distinct (βB, γB) orientation of molecule

B is calculated only once. Thus, the main cost of the superposition search algorithm lies in the O(N2)

combinatorial iteration to compare pairs of transformed A and B vectors, each of which has an inner

cycle over the twist angle, αB .

Figure 4.3 shows some GTO steric density representations of a pair of globular protein domains,

the Streptococcal pyrogenic exotoxin A1 superantigen (PDB code 1B1Z) (Papageorgiou et al., 1995)

and the Staphylococcus aureus exotoxin SEC3 (PDB code 1JCK) (Fields et al., 1996). These globular

proteins have a relatively low sequence identity of 46% but share a highly similar fold. Hence they

may be superposed well by conventional least-squares fitting of conserved Cα coordinates. However,
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begin 6D Superposition
foreach (βA, γA)

calculate a(βA, γA) using anlm′(βA, γA) =
∑

m′ R
(l)
mm′(0, βA, γA)anlm′

endfor
foreach (βB, γB)

calculate b(βB, γB) using bnlm(βB, γB) =
∑

m′ R
(l)
mm′(0, βB, γB)bnlm′

endfor
foreach R

load T (R) from disc
foreach (βA, γA)

calculate a′ using a′nlm =
∑

n′l′ T
(|m)|
nl,n′l′(R)anlm(βA, γA)

foreach (βB, γB)
calculate P using Pm =

∑

m′ a′nlm′bnlm′(βB, γB)
calculate Q using Qm =

∑

m′ a′nlm′bnlm′(βB, γB)

foreach αB

calculate c[αB] =
∑

m(Pm cosmαB +Qm sinmαB)
endfor
save C[R, βA, γA, αB, βB, γB] = max

αB

(c[αB])

endfor
endfor

endfor
end

Figure 4.2: Pseudo-code summary of the 6D superposition search algorithm. Icosahedral tessellations of the
sphere are used to generate a near regular pattern of (β, γ) rotational samples for the receptor (A) and ligand
(B) rotations, respectively. Vectors of rotated coefficients are calculated once and stored for each rotational
sample. The receptor coefficient vectors are then translated for each translational search step, and an inner
iteration over the twist angle is performed for each pair of receptor and ligand vectors to complete the 6D search.
Arrays of cosmαB and sinmαB are also pre-calculated outside the main loop. Because the search iterates
over a discrete number of rotational and translational steps, the final correlation score may be saved using a
single integer identifier (details not shown).

in this illustration the superposition was performed by maximising the overlap between the respec-

tive GTO steric density expansions using correlations with N=6. A near-identical superposition (not

shown) was also achieved by correlating electrostatic charge densities in the ETO basis. From Fig-

ure 4.3, it can be seen that the high order GTO expansions capture the detailed shape of each protein

remarkably well, although the low order expansions still encode sufficient information to allow a very

good global superposition to be calculated. The superposition shown was calculated by searching

over some 21× 106 trial orientations generated from 162 (β, γ) icosahedral angular samples for each

protein, 128 twist samples in αB , and 40 distance steps of 0.25Å. The entire calculation required

about 8 seconds on a 2GHz Pentium Xeon processor.
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Figure 4.3: Illustration of the GTO shape representation and superposition of a pair of globular proteins,
the superantigens SpeA and SEC3. (A) From top left to bottom right: the steric density functions of SpeA
and SEC3 shown at expansion orders N=6, 12, 16, 20, 25, and 30. Each pair is in the same superposed
orientation, separated horizontally for clarity, with SpeA on the left and SEC3 on the right. For visualisation,
each surface shape was contoured from the 3D density function. Expansions to N=32 are visually almost
indistinguishable from the N=30 expansions, and are not shown here. (B) The corresponding backbone traces
of the superposition with SpeA in yellow and SEC3 in cyan (top), the separated backbones with SpeA on the left
and SEC3 on the right (centre), and the original molecular surfaces from which the GTO density representations
were derived (bottom).

4.1.2 Clustering CATH Protein Structure Super-Families

The BLAST sequence alignment software (Altschul et al., 1990) is probably familiar to all biologists as

the standard tool for searching genomic nucleotide or amino acid sequence databases. Biologists of-

ten perform sequence alignments as a first step in determining the function and evolutionary origin of

an unknown protein or gene sequence. However, this typically requires that there be at least 20% sim-

ilarity between a known sequence and the query sequence1. Nonetheless, proteins can have much

lower sequence similarities than this, yet still share the same overall fold. In other words, in Nature,

protein folds are more highly conserved than protein sequences. Hence aligning and clustering pro-

tein structures can be a useful way to analyse the functional and evolutionary relationships between

proteins, even when they have very low sequence similarity (Kolodny et al., 2005). However, whereas

symbolic techniques such as the Smith-Waterman and Needleman-Wunsch algorithms for aligning

protein sequences have become standard tools in bioinformatics, it remains an open question as to

how best to align the 3D structures of proteins (Sippl & Wiederstein, 2008). Most existing structural

alignment algorithms are based on comparisons of the Cα backbone traces or vectors formed by the

1Proteins with sequence identities in the range 20-35% are sometimes said to be in the twilight zone between similar

and non-similar structures (Rost, 1999)
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Cα-Cβ atoms of each non-glycine amino acid, for example. However, these approaches are signifi-

cantly more computationally expensive than the symbolic techniques because they typically entail the

calculation of multiple least-squares rotation matrices which is expensive in the context of dynamic

programming alignment algorithms. For example, current structural alignment algorithms such as e.g.

SSM (Taylor & Orengo, 1989), DALI (Holm & Sander, 1991), SAP (Taylor, 1999), CE (Shindyalov &

Bourne, 1998), and VAST (Madej et al., 1995), typically consume several seconds of central proces-

sor unit time (CPU-seconds) per pair-wise alignment (Kolodny et al., 2005). Hence there is a need to

develop fast sequence-independent ways of comparing protein structures.

Within the framework of my ANR Chaires d’Excellence grant at the LORIA, Lazaros Mavridis is

currently employed as a postdoctiral assistant on the “3D-Blast” project, which aims to apply 3D SPF

techniques to the above task. As a preliminary evaluation of our approach, we performed some

alignment and clustering experiments on several proteins selected from the CATH protein structure

database (Orengo et al., 1997; Cuff et al., 2008). Lazaros recently presented this work at the 3DSIG

satellite meeting of Intelligent Systems in Molecular Biology (ISMB2009-3DSIG), and a paper has

been accepted for the publication in the proceedings of the Pacific Symposium on Biocomputing

conference (PSB-2010). The rest of this section and the next section summarise the results obtained

thus far.

Although Section 4.1.1 described superposing a pair of proteins by maximising the overlap be-

tween their van der Waals volumes, it is convenient to use a normalised scoring function when com-

paring multiple proteins. Hence the following calculations use a Carbo similarity score (Carbo et al.,

1980) calculated as:

S =
a.b′

|a|.|b| , (4.11)

where b′ denotes a vector of rotated shape-density coefficients of molecule B, |b| denotes the magni-

tude of that vector, and the inner product notation is short-hand for

a.b′ =
N

∑

nlm

anlmb
′
nlm, (4.12)

This cosine-like scoring function gives values that range from zero (no similarity) to unity (two identical

proteins in perfect alignment).

In the CATH classification, proteins are assigned to a super-family according to their fold class,

architecture, topology, and homology. This is essentially a hierarchical scheme, with the top-level class

consisting of four possible fold types: All-α (i.e. the protein structure consists entirely of α-helical

secondary structure elements), All-β (the protein structure consists entirely of β-sheet secondary

structure elements), α+β (the structure contains both α-helices and β-sheets), and “irregular” (no

identifiable secondary structure elements). Each of the four levels in the CATH hierarchy is identified

by a numeric code. Additionally, CATH names each protein according to its four-letter PDB code, its
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chain letter, and the number of domains (e.g. 1IOMA02). For each clustering experiment, five or six

super-families with the same architecture were selected in such a way as to give around 30 protein

structures for each CATH fold class. Hence the aim of these experiments is to assess how well our

approach can identify proteins with the same topology and homology within a given fold architecture.

The details of the CATH super-families used here are shown in Table 4.1.

Table 4.1: The 23 CATH super-families used in the protein clustering experiments.

Class + Topology + Protein Name Representative
Architecture Homology and Function Structure

230.10 Citrate synthase 1iomA02
All-α 120.10 Trypsin/Alpha-Amylase Inhibitor 1beaA00

Orthogonal Bundle 225.10 NK - Lysin 1l9lA00
(1.10) 167.10 G-Protein Signalling Regulator 1dk8A02

30.10 HMG DNA Binding Domain 1qrvA00
109.10 LexA repressor 1jhfB00
150.10 Urease 1ejxB00

All-β 110.10 LIM domain PINCH protein 1g47A00
Ribbon 77.10 Hemagglutinin 1jsdA02
(2.10) 160.10 Endothelial Growth Factor 165 1kmxA00

10.10 PDC-109 1h8pA02
130.10 Ribonuclease A 1dy5A00

α+β 170.10 Elastase 1u4gA01
Roll 150.10 DNA Polymerase 1ok7A01

(3.10) 110.10 Ubiquitin Conjugating Enzyme 2grrA00
120.10 Flavocytochrome B2 1cyoA00
280.10 MYOD Helix-Loop-Helix Domain 1nlwE00
290.10 Bacteriorhodopsin Fragment 1bctA00

Irregular 410.10 Factor Xa Inhibitor 1g6xA00
(4.10) 490.10 HiPIP 1iuaA00

400.10 LDLR 2fcwB02
320.10 Dihydrolipoamide Transferase 1w85I00

For the All-α class, five CATH super-families were selected as listed in Table 4.1. For each pair of

proteins in this set, a correlation search was performed to find the orientation that gives the maximum

Carbo similarity score (Eq 4.11). Ward’s agglomerative clustering (Ward, 1963) was then applied to

the resulting table of pair-wise similarity scores to give a total of five clusters. The clustering results

in Figure 4.4 show that the 1.10.230.10 and 1.10.167.10 super-families are correctly assigned to two

separate groups. Although there exist some difference in the clusters produced for the remaining

super-families, it can be seen that there is still a very good agreement between the calculated SPF

clusters and the CATH hierarchy. The most notable exception is that suposin (PDB code 1N69) is

grouped with the 1.10.30.10 super-family. From visual inspection of Figure 4.4 it can be seen that the

overall fold of suposin is much closer to that of the 1.10.30.10 super-family than the CATH assignment
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of 1.10.225.10. This suggests that the automatic SPF classification could potentially help the CATH

curators resolve unusual or ambiguous cases.

Figure 4.4: SPF clustering results of the All-α class using N=6 correlations and requesting five clusters.

For the All-β class, six super-families were clustered. As can be seen in Figure 4.5, SPF clus-

tering correctly distinguishes all six groups, but two proteins are mis-placed according to the CATH

classification. These are the carboxy-terminal LIM domain (PDB code 1CTL) and the influenza virus

haemagglutinin (PDB code 2VIR) which are grouped with the singleton heparin-binding domain (PDB

code 1KMX). This seems to occur because 1CTL and 2VIR are calculated to be less similar to the

other members of their respective CATH super-families, and they are grouped with 1KMX largely

because all three proteins have similar steric bulk.

For the α+β class, five CATH super-families were clustered. Figure 4.6 shows that the 3.10.130.10

and 3.10.120.10 super-families are correctly assigned into two groups. The remaining three super-

families (3.10.110.10, 3.10.150.10, and 3.10.170.10), present a similar case to the All-β results

whereby one super-family group (3.10.110.10) is split into two, and two super-family groups (3.10.170.10

and 3.10.150.10) are merged into one. Nonetheless, despite these differences the overall consistency
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Figure 4.5: SPF clustering results of the All-β class using N=6 with six clusters.

of the SPF clustering with the CATH hierarchy is clearly very good.

For the irregular class, six super-families were clustered. Like the All-β example, SPF clustering

is completely consistent with the CATH hierarchy. However, two proteins are misplaced with respect

to the CATH classification, namely bikunin from the inter-alpha-inhibitor complex (PDB code 1BIK)

and the tick anticoagulant protein (PDB code 1D0D), which are grouped with the 4.10.490.10 super-

family. This seems to be due to the difference in size between those proteins and the rest of their

super-family of factor Xa inhibitors. For example, Figure 4.7 shows that bikunin has a repeat of the

same motif as the other factor Xa inhibitors. Hence it is sterically too large to be clustered with the

other Xa inhibitors, and is instead placed with the larger proteins of the 4.10.490.10 super-family.

4.1.3 Searching the CATH Protein Structure Database

As a second test of the utility of the approach, the entire CATH database of some 12,000 structures

was searched using SPF density functions as queries. When searching such a large database for

protein structures which match a given query, it would be desirable to be able to eliminate rapidly

many database proteins which have substantially different shapes from the query and which cannot

59



Figure 4.6: SPF clustering results of the α+β class using N=6 with five clusters.

possibly overlay it well in any orientation. Noting that expansion coefficients with the same values of

m transform amongst themselves under rotation, it is natural to use the vector interpretation of SH

coefficients to construct rotationally invariant (RI) fingerprints (RIFs) as:

An =
n−1
∑

l=0

m=l
∑

m=−l

a2
nlm. (4.13)

If the coefficients anlm define the shape density of a protein, then the rotation-invariant descriptors An

together encode the protein’s radial mass distribution. By analogy to Eq 4.11, the RIF similarity score

is written as:

SRIF =

∑N
n=1AnBn

(

∑N
n=1A

2
n

)1/2(
∑N

n=1B
2
n

)1/2
. (4.14)

For the initial database search experiment, asparagine synthetase (PDB code 12AS, CATH super-

family 3.30.930.10) was selected as the query structure. The 3.30.930.10 super-family has 27 mem-
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Figure 4.7: SPF clustering results of the Irregular class using N=6 with six clusters.

bers, and these were treated as "positives" while the remaining proteins in the database were treated

as "negatives" with respect to the query. If a scoring function were to reproduce exactly the CATH

classification, the 27 positives would appear at the top of the ranked list. However, such an ideal

outcome is seldom observed in practice. Therefore, Receiver-Operator-Characteristic (ROC) curves

(Egan, 1975; Fawcett, 2006) are used to analyze objectively the precision/recall characteristics of the

scoring functions. In a ROC analysis, each element of the ranked list is considered in turn, and the

number of positives and negatives in the sublists to each side of the current element are counted.

Here, the high similarity sublist is called the "hit list". A true positive (TP) is assigned when an element

in the hit list contains an original positive, and a false positive (FP) is assigned if that element contains

a negative. Conversely, a true negative (TN) is assigned when an original negative falls outside the

hit list, and a false negative (FN) is assigned if that position is occupied by a positive member. ROC

plots are produced by plotting the true positive rate (TPR) on the y axis against the false positive rate
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(FPR) on the x axis, where TPR and FPR are given by:

TPR =
TP

TP + FN
(4.15)

and

FPR =
FP

FP + TN
. (4.16)

The quality of a scoring function can quickly be assessed from the shape of a ROC plot. For example,

a random scoring function would give a diagonal line (TPR=FPR), whereas a perfect scoring function

would give a horizontal line (TPR=1) with a maximum value for the area under the curve (AUC=1).

Because it is relatively time-consuming to calculate high order correlations, different rotational and

rotationally invariant parameters were tested to explore the extent to which queries may be performed

more rapidly without sacrificing accuracy. In each case, the asparagine synthetase structure (PDB

code 12AS, CATH super-family 3.30.930.10) was superposed onto each protein in the database using

N=6 SPF correlation searches, and the database structures were ranked in order to similarity to the

query. Figure 4.8 shows the resulting ROC curves obtained for a range of expansion orders when

querying the CATH database. This figure shows that the overall approach gives very good precision

and recall for all expansion orders above N=2, and that there is very little benefit in using expansion

orders greater than N=6. Figure 4.9 shows the 27 members of this super-family which were treated

as TPs with respect to the query. To analyze the results further, the TPs were clustered into 5 groups.

The query belongs to Group 1, and all members of this group were found in the top 10 hits when N≥6.

Groups 2 and 3 have similar β-sheet structures to Group 1, but different arrangements of α-helices.

All proteins in Groups 2 and 3 are ranked in the top 20% of the database, and all proteins in Group 4

are ranked in the top 30%. Finally, the singleton Group 5 is an obvious outlier due to its extra α-helical

domain.

Figure 4.8 also shows the results for the RIF scoring function. Compared to the rotation-dependent

scoring function, the RIF function generally performs remarkably well. However, the two functions be-

have rather differently on the first percentages of the database. For example, the rotational searches

give a TPR of around 40% on the first 0.1% of the database, whereas the RIF searches give a TPR of

only around 10%. Hence the RIF function is not sufficiently sensitive to be used on its own but it could

usefully be used as a fast pre-filter on the database so that the more expensive rotation-dependent

function need only be applied to the most promising candidates.

In order to test the above notion, the CATH database was searched using the RIF and rotational

scoring functions in tandem using several protein structures as queries: asparagine synthetase, ALF4-

activated Giα1 protein (PDB code 1AGR), chicken cysteine-rich protein (PDB code 1B8T), dihydrolipo-

yllysine-residue acetyl transferase (PDB code 1W4E), and UbcH7 (PDB code 1C4Z). Using a RIF

pre-filter similarity threshold of 0.99, which selects from 2% to 15% of the database for rotational re-

scoring, each tandem search takes less than 10 minutes compared to 75 minutes for full rotational
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Figure 4.8: ROC plot analyses obtained when querying the entire CATH database with the 12asA00 structure.
A: rotation-dependent (ROT) scoring function, Eq 4.11; B: close-up view of (A); C: RIF scoring function,Eq 4.14;
D: close up view of (C).

searches on a 2.3GHz Pentium Xeon processor. Figure 4.10 shows the AUCs for the top 1% of the

database for the rotational, RIF, and the tandem searches. This figure shows that tandem searches

achieve the same high level of performance as the rotational searches. Table 4.2 presents the overall

AUCs obtained for these searches. The very high values in this table confirm the utility of the SPF

scoring functions.

Table 4.2: Summary of AUC values obtained when searching the entire CATH database.

Query RIF ROT RIF+ROT
12AS 0.944 0.907 0.929
1AGR 0.960 1.000 1.000
1B8T 0.964 0.983 0.997
1W4E 0.995 0.999 0.997
1C4Z 0.968 0.995 0.995

This table lists the AUC values obtained when searching the entire CATH database with the given protein
structures (listed by PDB code) as queries for the RIF, rotational (ROT), and tandem (RIF+ROT) searches.

Overall, the above results show that low resolution SPF expansions provide a reliable and fast

sequence-independent way to superpose and compare protein structures. We believe that the SPF

approach could provide an automatic and objective way to enhance the quality of protein structure

classifications, and we are working to provide a web interface for real-time protein structure queries.
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Figure 4.9: Clustering the 3.30.930.10 super-family into five groups. The representative member of each group
is shown along with the query protein 12asA00.

4.2 SPF Protein-Protein Docking

In order to express protein shape complementarity in a suitable form for calculating SPF docking

correlations, it is useful to define a surface skin function, σ(r), as a shape density function which

describes the volume bounded by the VDW surface and the SAS surface of each protein. In other

words,

σ(r) =







1 if r ∈ surface skin,

0 otherwise.
(4.17)

This density function may be calculated numerically on a grid in a similar way to the calculation of

the VDW density function, τ(r). The use of a surface skin representation to model protein shape

complementarity is justified by considering Figure 4.11. This figure suggests that a good strategy for

finding complementary orientations between a pair of proteins is to maximise the overlap between the

interior shape density of one protein with the exterior skin region of the other. Steric clashes may be

penalised with an interior-interior shape-density overlap penalty term. Using these ideas, the shape

complementarity score, E, for proteins A and B may be written as

E =

∫

σAτBdV +

∫

τAσBdV −
∫

QτAτBdV, (4.18)
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Figure 4.10: ROC plot AUCs obtained when searching the entire CATH database using the five selected query
proteins, but considering only the top 1% of the hits found by the rotational (ROT), RIF, and tandem (RIF+ROT)
scoring functions.

where σA ≡ σA(rA), etc., and where Q is a positive interior-interior penalty factor. I currently use

Q = 11. When the SAS is calculated using a 1.4Å probe radius, the first two terms give an expression

for the volume of water expelled from the protein surfaces upon association (see Figure 4.11). With a

suitable scale factor, this expelled volume can be used as a first-order approximation to the hydropho-

bic free energy of association (Richmond, 1984). By putting QB = σB −QτB , Eq 4.18 can be written

as a two-term pseudo-energy expression

ESHAPE = K

∫

(

σAτB + τAQB

)

dV, (4.19)

where K is a negative constant which gives negative scores to favourable orientations.

τ
σ(r)

(r)

Figure 4.11: Schematic illustration of shape complementarity using 3D density functions. Here, solid lines
represent the VDW surfaces, and dashed lines represent the SASs. The function τ(r) is defined as unity inside
the VDW surface and zero everywhere else; σ(r) is defined as unity within the volume bounded by the SAS and
the VDW surface, and zero everywhere else. When a pair of proteins are brought together in a complementary
arrangement, there is a large overlap (shaded region) between σ(r) of one protein and τ(r) of the other, and
vice-versa.
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4.2.1 Protein-Protein Docking using 1D FFTs

From Section 2.5.2, the in vacuo electrostatic interaction energy of a pair of proteins with charge

densities ρA(r) and ρB(r) and with electrostatic potentials φA(r) and φB(r), respectively, is given by

EELEC =
1

2

∫

(

ρA(r)φB(r) + ρB(r)φA(r)
)

dV. (4.20)

Therefore, representing each function as a spherical polar ETO expansion at the origin using the S(r)

radial functions, Eq 2.101 immediately gives the electrostatic correlation expression

EELEC(R, βA, γA, αB, βB, γB) =
1

2

N
∑

nlm

(

a′ρnlmb
′φ
n′l′m′ + a′φnlmb

′ρ
n′l′m′

)

, (4.21)

where a′ρnlm and a′φnlm denote rotated and translated expansion coefficients of the charge density and

electrostatic potential of protein A, etc. according to Equations 4.3–4.6.

Similarly, from Eq 4.18, the shape-density pseudo-energy may be expanded as

ESHAPE(R, βA, γA, αB, βB, γB) = K
N

∑

nlm

(

a′σnlmb
′τ
n′l′m′ + a′τnlmb

′Q
n′l′m′

)

. (4.22)

Hence an overall shape plus electrostatic pseudo-energy for the system can be calculated as

ETOTAL(R, βA, γA, αB, βB, γB) = EELEC(R, βA, γA, αB, βB, γB)+ESHAPE(R, βA, γA, αB, βB, γB).

(4.23)

This docking correlation expression has been implemented as a nested series of 1D FFTs, as

described in Section 4.1.1. In order to obtain satisfactory docking results it is necessary to use (β, γ)

angular search increments of around 7.5◦ generated from icosahedral tessellations of 812 vertices,

and to use SPF expansions to at least order N=25. However, because the expansion order may be

varied independently of the angular search step sizes, the calculation can be accelerated significantly

by performing a low resolution shape-only scan of the search space using N=16, and by re-scoring

only the best 20,000 orientations using high order N=25 shape plus electrostatic correlations, for

example. The results obtained using this approach on a number of protein-protein complexes have

been published (Ritchie & Kemp, 2000). When electrostatic interactions are important in a particular

complex, the electrostatic term can often help to boost the score of orientations that resemble the

correct solution. However, in some cases, the electrostatic contribution worsens the quality of the

predictions. Unfortunately, it is not always obvious whether electrostatics should be included in any

particular case. In essentially all cases studied, shape complementarity is found to be considerably

more important than electrostatics. In Eq 4.18, I set K = -0.6 KJ/mol/Å3, which typically makes

the shape component about five times larger than the electrostatic contribution to the overall score.

Nonetheless, the above approach was also used successfully on several of the docking targets in the
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CAPRI blind docking experiment (Ritchie, 2003; Mustard & Ritchie, 2005). Figure 4.12 shows the best

orientations achieved by Hex for two of the blind docking targets in the first rounds of the CAPRI blind

docking experiment.

Figure 4.12: Blind docking result for CAPRI Targets 3, HA/HC63 (left), and 6, α-Amylase/AMD9 (right). The
best docking solution obtained for the HA/HC63 complex was the 4th solution submitted to CAPRI. This solution
has 43/63 correct residue contacts. The deviation between the coordinates of the antibody Fv fragment and
those of the crystal structure of the complex is 7.43Å RMS. The HC63 Fv fragment is coloured as VH: white;
VL: cyan; H1: orange; H2: yellow; H3: green; L1: red; L2: yellow; L3: blue. The crystallographic orientation of
the Fv is shown in light green. The HA chains are coloured as A: light blue; C: pink; E: dark blue; F: orange.
The docking solution obtained for the AMB9/α-amylase complex (right) was the 5th solution submitted. This
prediction has 53/65 correct residue contacts and a deviation of 2.16Å RMS between the predicted and actual
AMB9 coordinates. The α-amylase is in blue and the AMB9 VHH domain is in white. The active-site amylase
residues are coloured ASP-197: red; GLU-233: yellow; ASP-300: green. The VHH CDR loops are coloured as
CRD1: red; CDR2: green; CDR3: blue. The crystallographic orientation of the VHH is shown in light green.

4.2.2 Focusing Docking Correlations

Compared to conventional Cartesian grid FFT approaches, in the SPF approach it is relatively straight-

forward to use prior knowledge about a protein-protein interaction to focus and accelerate the docking

calculation. For example, if it is known that even just one residue from each protein is involved in the

interaction, this is sufficient to set up an initial docking orientation and to restrict or focus the docking

search around the initial interface. This is illustrated in Figure 4.13. Using this approach to constrain

the search space can significantly enhance the quality of docking predictions (Ritchie et al., 2008).

4.2.3 Docking Very Large Proteins

Because the radial basis functions fall off rapidly beyond about 30Å from the chosen origin, the above

approach is not directly suitable for docking very large proteins, such as CAPRI Targets 2 and 3.

However, it is not necessary to rely on a single coordinate origin. For example, the surface of the

larger “receptor” protein may be covered with multiple copies of the smaller “ligand” protein, and a
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θΑ θΒ

Figure 4.13: Illustration of a focused docking search using prior knowledge of one interaction residue on each
docking partner. This figure shows the starting orientation for the HyHel-5 antibody/lysozyme complex, in which
the antibody H-33:TRP (left) and the lysozyme Y-53:TYR (right) residues have been highlighted in yellow. The
orientation shown was set up automatically in Hex by rotating the Cα atom of each highlighted residue onto the
intermolecular z axis. The docking correlation may then be constrained to search around the initial orientation
by restricting the allowed ranges for the θA and θB search angles.

focused docking search may be performed around each initial position of the ligand. Figure 4.14

illustrates this approach for CAPRI Target 2, a complex between the large VP6 viral surface protein

and an antibody Fv domain.

The docking covering algorithm is as follows: First, if knowledge of the ligand binding surface is

available, the ligand molecule is oriented along the negative z axis to face the receptor. Second, a low

resolution L=5 spherical harmonic surface is calculated for the receptor by sampling its surface onto

an icosahedral tessellation of the sphere, as shown in Figure 4.14(B). At each triangular facet of the

surface, a normal vector is calculated and a 15Å radius sphere is centred on each outward normal,

tangential to the surface. This covers the surface with spheres. In the third step, the surface spheres

are culled by iteratively identifying and striking out that sphere which has the greatest volume overlap

with its neighbours. This procedure is repeated until no overlap volume exceeds 5Å3. This yields a

fairly even distribution of the surviving spheres over the surface of the receptor. Finally, each surviving

sphere (normal vector) is used to define a local intermolecular axis for docking, with the initial axis

(ligand) orientation being transferred onto the outward normal, and a local coordinate origin for the

receptor being defined at an equal distance along the inward normal. Figure 4.14(C) shows the result

of applying the surface spheres algorithm to only the C chain of the VP6 trimer, and Figure 4.14(D)

shows the trimer covered with 23 generated MCV Fv starting orientations.

4.2.4 Clustering Docking Solutions

Because the macromolecular surface sphere covering procedure tends to over-sample the orienta-

tional search space, all low energy solutions are clustered in order to identify distinct orientations.
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Figure 4.14: The four stages of the macromolecular surface sampling algorithm, illustrated schematically for
the antibody MCV/VP6 complex (CAPRI target 2). (A) The hypervariable loops of the MCV Fv fragment (the
“ligand”) are initially oriented to face the VP6 trimer (the “receptor”). The VP6 chains are coloured as A: blue;
B: yellow; C: pink. (B) A low resolution (L=5) spherical harmonic surface is calculated for the receptor (2,252
surface triangles). (C) The spherical harmonic receptor surface after applying the sphere covering algorithm to
the C chain of the receptor. (D) Multiple initial docking orientations for the ligand are generated from the sphere
centres. This example shows 23 MCV Fv fragments distributed over the VP6 C chain.

The clustering algorithm first orders the docking solutions by energy, and allocates the lowest energy

solution as the “seed” member of the first cluster. The list of remaining solutions is then scanned for

unallocated entries, and any orientations for which the ligand Cα atoms fall within 2Å RMS of the cor-

responding atoms in the seed member are allocated to the current cluster. The list is then re-scanned

for the next unallocated low energy solution which becomes the next cluster’s seed, and the procedure

is repeated until all solutions have been allocated to a cluster.

Even when it is not necessary to use multiple ligand starting orientations, this clustering algorithm

provides a useful way to reduce the number of “false-positives” generated by a docking search. For

example, in an exhaustive search such as ours, many similar but nonetheless distinct orientations

may be found, and these would tend to “push a good solution down the list” if clustering were not

used. Clustering is also useful when using energy minimisation because multiple docking solutions

can coalesce to a single minimised orientation.

4.2.5 Protein Docking Using PCA-Selected Probe Potentials

One of the difficulties in macromolecular docking is to devise a reliable energy-based scoring function

with which to evaluate trial docking orientations. Shape complementarity is very effective as an ini-

tial filter, but it would be desirable to incorporate chemical interactions in the scoring scheme to help
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distinguish the true complex from the many false-positives generated by a docking correlation search.

However, there is no direct way to infer which of the several types of intermolecular interactions (elec-

trostatics, hydrogen bonding, desolvation, salt bridges, dispersion forces, etc.) provide the driving

force for binding in any particular case. Therefore, as part of the PhD thesis project of Alessandra

Fano, we investigated the use of principal component analysis (PCA) of Molecular Interaction Fields

(MIFs) to select the most significant types of chemical interaction for a given docking target. We tested

this approach by attempting to dock the unbound components of the complex between streptomyces

subtilisin (here called SUP) and its natural inhibitor (SSI). This complex provides a good test because

it is known to be a difficult case using current techniques.

First, we used the GRID program (Goodford, 1985) to generate 3D potential energy maps for

several types of probe atom placed in a grid about the surfaces of each protein. Only points with

potential values above a given threshold were retained; all other points were discarded. Figure 4.15

illustrates this approach for the SSI protein. A similar calculation was performed for SUP. Although

the aim is to match distributions of such potentials with complementary distributions of potentials

on the docking partner, it would be impractical to use all possible potential energy maps during a

docking calculation. Hence, we used PCA to select the most relevant and significant types of probes

to guide the docking search. PCA is a standard chemoinformatics approach to extract information

from very large data sets. PCA is commonly used in small-molecule 3D quantitative structure-activity

relationship (3D-QSAR) drug design studies (Pastor & Cruciani, 1995), and it has also been used to

map receptor-ligand binding sites (Matter & Schwab, 1999). However, Alessandra’s approach is the

first time that PCA of probe potentials has been used to score macromolecular docking. The main

reason for performing a PCA on the MIFs is that those probes which contribute most to the variance

in the energy maps should be expected to be the ones which are most likely to be the best indicators

of complementarity for the system under consideration.

Figure 4.15: Left: the SSI protein placed within a 3D grid. Right: surface probe positions colour-coded by
GRID potential – red: proton donor; blue: proton acceptor; green: hydrophobic.

In a PCA, the matrix of probe potentials is decomposed in two smaller matrices of loadings and
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scores, respectively. The loadings measure the weight of the original variables in the analysis, and

the scores give a simplified picture of the objects (the probes in our case) in terms of a small number

of new uncorrelated variables (the principal components, or PCs). Plotting the object scores against

the PCs allows those objects (or clusters of objects) that explain most of the variance to be identified.

The PCA plots shown in Figure 4.16 show the distribution of six most significant probes (C sp3, NH

amide, N+ sp3, carbonyl O, and carboxyl O-) in the first two components of the chemometric space for

SUP and SSI. It is interesting to note the mirror-like symmetry in the horizontal plane. This suggests

good chemical complementarity between the proteins. These plots show that only three probes (N+,

O-, and Dry) are sufficient to explain most of the variance in the potential maps. Hence only those

three probes were used in the subsequent docking calculations.

Figure 4.16: Left: the PCA plot for SUP showing the contributions of the six most significant probe potential
types (C sp3, NH amide, N+ sp3, carbonyl O, carboxyl O-, and Dry) to the first two principal components, PC1
and PC2. PC1 and PC2 explain 69.3% and 21.5% of the total variance, respectively. Right: similarly, the PCA
plot for SSI. PC1 and PC2 explain 74.3% and 16.0% of the total variance, respectively.

For any given probe type, the PCA-selected probe potentials may be transformed into smooth

continuous functions for docking within Hex in the same way that point charges are transformed to

give a charge density function (see Section 2.5.2). For example, by treating the N+ probe positions

for protein A as a sum over point potentials, φN+(xi), one can write the total potential as:

φN+(x) =
∑

i

φN+(xi)δ(x− xi). (4.24)

This may then be represented as a truncated SPF series in the usual way

φN+(r) ≃
∑

nlm

aN+
nlmRnl(r)ylm(θ, φ), (4.25)

where the expansion coefficients are calculated using (c.f. Eq 2.133):

aN+
nlm =

∑

i

φN+(ri)Rnl(ri)ylm(θi, φi). (4.26)
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Similar expressions may be written for the other potential types. The overall interaction energy may

then be estimated as

EGRID =
1

2

∫

[

τA(r)
(

φN+
B (r)+φO−

B (r)+φDry
B (r)

)

+ τB(r)
(

φN+
A (r)+φO−

A (r)+φDry
A (r)

)]

dV.

(4.27)

It should be noted that this expression does not specifically favour complementary pairings of indi-

vidual probe types, nor does it penalise unfavourable pairings. However, by construction, it should

give a deep minimum when the proteins are contraposed in a tightly fitting orientation. Hence this en-

ergy term should boost the score for complementary shape-based docking orientations. Figure 4.17

shows the calculated SPF N+ potential on the SAS of the SSI protein, along with the corresponding

O- potential on SUP.

Compared to the shape-only and shape plus electrostatic docking calculations described above,

we found that adding the above grid potential to the shape correlation function improved the rank of the

first near-native solution by at least a factor of 2 (specifically, the best shape-only solution was found

at rank 13, shape plus electrostatics gave rank 10, and shape plus grid gave rank 5). Unfortunately,

because it required several manual steps to perform the PCA analyses and to import the data from

GRID into Hex, it was not possible to perform more extensive tests during the Alessandra’s time

in Aberdeen. However, this work demonstrated for the first time the utility of correlating chemical

potentials in docking calculations. The overall approach was subsequently used to produce some

useful docking models of the CCR5 cell surface co-receptor protein and the MIP-1β and RANTES

chemokine proteins (Fano et al., 2006).

Figure 4.17: Left: the N+ potential (blue regions) calculated on the SAS (shown in white) of SSI. Blue dots show
the positions of the original N+ GRID points, red dots show the O- positions and green dots show hydrophobic
points. Right: the N+ (blue) and O- (red) probe hot-spots on the SSI and SUP SAS surfaces, respectively. This
image shows the binding orientation of the complex but with the two proteins slightly separated for a better view.
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4.2.6 Multi-Dimensional FFT Protein-Protein Docking

Because the FFT allows a problem that formally requires O(N2) operations to be computed in

O(N logN) steps, it is reasonable to expect that greater computational speed-ups should be achieved

when the FFT is applied to as many degrees of freedom as possible. This section describes how the

SPF approach may be used to develop three-dimensional (3D) and five-dimensional (5D) docking

correlation expressions. In order to achieve this, it is convenient to use both real and complex SH

functions, where the two types of function are related by the unitary transformation matrix, U (l) (see

Section 2.1.11),

ylm(θ, φ) =
∑

m′

U
(l)
mm′Ylm′(θ, φ). (4.28)

If a particular 3D property is initially sampled as a real expansion, it may be expressed in complex

form using

A(r) =
N

∑

nlm

AnlmRnl(r)Ylm(θ, φ) (4.29)

where the complex expansion coefficients, Anlm, are related to the original real coefficients by

Anlm =
∑

m′

U
(l)
m′manlm′ . (4.30)

The correlation between a pair of complex properties, A(r) and B(r), may then be written as

E =

∫

(T̂ (−R)R̂(0, βA, γA)A(r))∗(R̂(αB, βB, γB)B(r))dr, (4.31)

where the asterisk denotes complex conjugation. Substituting the SPF expansions then gives the

complex version of Eq 4.1

E =
∑

kjsmnlv

D(j)∗
ms (0, βA, γA)A∗

kjsT
(|m|)
kj,nl (R)D(l)

mv(αB, βB, γB)Bnlv. (4.32)

Now, summing over the k and n radial subscripts gives

E =
∑

jsmlv

D(j)∗
ms (0, βA, γA)S

(|m|)
js,lv (R)D(l)

mv(αB, βB, γB), (4.33)

where the S(|m|)
js,lv (R) are the matrix elements of a reduced translation/overlap matrix given by

S
(|m|)
js,lv (R) =

∑

kn

A∗
kjsT

(|m|)
kj,nl (R)Bnlv. (4.34)

Eq 4.33 may be cast in exponential form by noting that a rotation of β about the y axis may always be

calculated as a rotation of β about a rotated z axis using (Edmonds, 1957)

R̂y(β) ≡ R̂z(−π/2)R̂y(−π/2)R̂z(β)R̂y(π/2)R̂z(π/2), (4.35)
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and by re-writing the dl
mm′(β) matrices of a general Wigner rotation

D
(l)
mm′(α, β, γ) = e−imαdl

mm′(β)e−im′γ , (4.36)

as the corresponding product of complex exponentials

dl
mm′(β) =

∑

t

eimπ/2dl
mt(−π/2)e−itβdl

tm′(π/2)e−im′π/2. (4.37)

Then, writing

∆l
tm = dl

tm(π/2)

= dl
mt(−π/2),

(4.38)

and collecting constant coefficients

Γtm
lm′ = ei(m−m′)π/2∆l

tm∆l
tm′

= im−m′

∆l
tm∆l

tm′

(4.39)

allows the Wigner rotation matrix elements to be written in a completely exponential form

D
(l)
mm′(α, β, γ) =

∑

t

Γtm
lm′e−imαe−itβe−im′γ . (4.40)

Substituting Eq 4.40 twice into Eq 4.33 then gives the fully factorised result

E =
∑

jsmlvrt

Γrm
js S

(|m|)
js,lv (R)Γtm

lv e
−i(rβA−sγA+mαB+tβB+vγB), (4.41)

where the summation ranges over all subscript values that satisfy |r| ≤ j, |s| ≤ j, |t| ≤ l, |v| ≤ l, and

|m| ≤ min(l, j) ≤ L. In this equation, r and t enumerate azimuthal frequency components, and s, v,

and m enumerate circular frequencies. I call Eq 4.41 the docking correlation master equation.

Equation 4.41 clearly has the form of a complex five-dimensional (5D) Fourier series. Hence it

may be calculated using a multi-dimensional FFT. However, because Euler rotation angles have the

ranges 0 ≤ α, γ < 360o and 0 ≤ β < 180o, it is useful to change the sign of the γA rotation and to

scale the β rotation angles so that all rotational coordinates map to the natural phase and period of

the FFT. If this is not done, the FFT calculation will over-sample the β coordinates to give duplicate

solutions, each at half the desired resolution. Scaling the β coordinates eliminates this effect and

allows a smaller FFT grid to be used, thus halving the amount of computer memory required for each

β dimension and speeding up the FFT calculation.

Dealing with the sign of γA is straightforward. For example, putting γ′A = −γA, and writing

eisγA =
∑

q

ηsqe
−iqγ′

A , (4.42)
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and using the orthogonality of the exponentials to solve for the coefficients, ηsq, gives

ηsq = δsq. (4.43)

Similarly, the β rotations may be scaled by putting β′ = 2β and writing

e−itβ =
∑

u

λtue
−iuβ′

, (4.44)

and again using the orthogonality of the exponentials to solve for the coefficients λtu. In this case, it

can be shown using basic trigonometric relations that the coefficients are given by

λtu =



















2i/π(2u− t) if t is odd,

1 if t = 2u,

0 otherwise.

(4.45)

In other words, there exist exact solutions when t is even, and convergent power series solutions when

t is odd. However, for current purposes, the coefficients λtu may be determined to reproduce exactly

a finite set of Mβ rotational samples by treating Eq 4.44 as a discrete Fourier transform analysis

equation

λtu =
1

Mβ

Mβ−1
∑

n=0

e−πitn/Mβe2πiun/Mβ . (4.46)

Other angular ranges (e.g. when performing a focused docking search) may be scaled onto the natural

FFT period in a similar manner. Substituting the above changes of variable into Eq 4.41 and applying

an inverse Fourier transform to the result gives

E[p, q,m, u, v;R] =
∑

rt

∑

jl

Γrm
jq S

(|m|)
jq,lv (R)Γtm

lv λrpλtu. (4.47)

Collecting coefficients as

Λum
lv =

∑

t

Γtm
lv λtu (4.48)

finally gives

E[p, q,m, u, v;R] =
∑

jl

Λpm
jq S

(|m|)
jq,lv (R)Λum

lv . (4.49)

This equation may be considered as an analytic recipe for calculating the array elements of a 5D

FFT grid. Applying a forward Fourier transform to the elements of this array will produce a 5D array

of E(βA, γA, αB, βB, γB, R) function values for unique combinations of Euler rotation angles. Hence

Eq 4.49 may be interpreted as an analytic generating function for 5D FFT docking correlations.
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4.2.7 Multi-Dimensional FFTs

Although it is gratifying to be able to obtain a very compact formula for generating 5D FFT correlations,

it does not automatically follow that a high order GF such as Eq 4.49 will be the most efficient to

calculate in practice. For example, in Eq 4.49 it can be seen that the double sum over the jl subscripts

means that the cost of initialising each 5D FFT grid cell scales as O(N2) and therefore the overall

cost of setting up a 5D FFT scales as O(N7). Therefore, it is expedient to calculating Eq 4.49 as

W pqm
lv (R) =

∑

j

Λpm
jq S

(|m|)
jq,lv (R) (4.50)

and

E[p, q,m, u, v;R] =
∑

l

W pqm
lv (R)Λum

lv . (4.51)

Thus, by using a temporary array, W , the O(N7) “set-up cost” of a 5D FFT can be computed prac-

tically using two O(N6) steps. The double sum in the expression for the reduced overlap matrix,

Eq 4.34, may be calculated efficiently in a similar way. Nonetheless, using a large intermediate array

makes significant additional demands on the available computer memory. One way to reduce the

memory requirement is to set γA = 0 in the correlation expression and to explicitly rotate the receptor

expansion coefficients to give

S
(|m|)
jq,lv (R, γA) =

N
∑

kn

A∗
kjq(γA)T

(|m|)
kj,nl (R)Bnlv (4.52)

where Akjq(γA) represents a rotated expansion coefficient. The 4D FFT array elements may then be

calculated from the 4D GF

E[p,m, u, v;R, γA] =
∑

jql

Λpm
jq S

(|m|)
jq,lv (R, γA)Λum

lv . (4.53)

Thus, in principle, a 6D docking search could be performed by iterating over pairs of (R, γA) samples

and for each pair by calculating a 4D FFT over the remaining rotation angles. However, this approach

can immediately be seen to be impractical because the triple sum in Eq 4.53 indicates that the set-up

cost of initialising a 4D FFT grid is still O(N7). On the other hand, the GF complexity falls significantly

if the βA rotation angle is dropped from the FFT. For example, by explicitly transforming the real

receptor expansion coefficients using Eq.s 4.3 and 4.4, and then calculating

Anlm(R, βA, γA) =
∑

m′

U
(l)
m′manlm′(R, βA, γA), (4.54)

the 3D GF is found to be

E[m,u, v;R, βA, γA] =
∑

l

Sm
lv (R, βA, γA)Λum

lv (4.55)
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where

Sm
lv (R, βA, γA) =

∑

n

A∗
nlm(R, βA, γA)Bnlv. (4.56)

Hence (assuming pre-calculated receptor coefficient vectors, as before) it can be seen that the set-up

cost for a 3D rotational FFT essentially scales as O(N2) per FFT grid cell. For the sake of com-

pleteness, the 2D GF has the same structure and set-up complexity as above, and may be stated

as

E[m,u;R, βA, γA, γB] =
∑

lv

Sm
lv (R, βA, γA, γB)Λum

lv (4.57)

where

Sm
lv (R, βA, γA, γB) =

∑

n

A∗
nlm(R, βA, γA)Bnlv(γB). (4.58)

Therefore, like the 4D case, 2D correlations may be dismissed as being computationally impractical.

The 1D GF (FFT set-up complexity O(N3) per αB twist angle search) was implemented previously in

real form (see Sections 4.2 and 4.1.1) and is given by

E[m;R, βA, γA, βB, γB] =
∑

nl

A∗
nlm(R, βA, γA)Bnlm(βB, γB). (4.59)

4.2.8 Multi-Property FFTs

It is well known that the correlation between two pairs of real properties may be calculated simultane-

ously using one complex FFT. For example, if the in vacuo electrostatic potential and charge density

of a system of two proteins, A and B, are written as

φ(r) = φA(r) + φB(r)

ρ(r) = ρA(r) + ρB(r),

(4.60)

and if linear combinations of the SPF expansions are formed as

A = UT (aφ + iaρ)

B = UT (bρ + ibφ), (4.61)

where UT is the transpose of the complex-to-real unitary transformation matrix U (c.f. Equations 4.28,

and 4.30), then the electrostatic interaction energy for a pairwise orientation may be calculated as

E = Re(A∗B). (4.62)
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Similarly, dropping summation subscripts and using matrix notation for the 6D electrostatic interaction

energy GF (Eq 4.49) gives

E[p, q,m, u, v;R] = ΛpqmSqmv(R)Λuvm. (4.63)

However, from the linearity of this expression, it follows that multiple interaction energy correlations

e = 0, 1, 2, ... may be computed simultaneously by first summing the distance-dependent part of each

potential/density interaction

(

Sqmv
e (R)

)

jl
=

∑

kn

Ae∗
kjqT

(|m|)
kj,nl (R)Be

nlv, (4.64)

to give

E[p, q,m, u, v;R] = Λpqm
(

∑

e

Sqmv
e (R)

)

Λuvm. (4.65)

Thus, arbitrary combinations of correlations, including those which use different radial functions, may

be evaluated together in a single 5D FFT with very little additional cost.

4.2.9 Multi-Resolution FFTs

It is worth noting that there is no requirement for the FFT grid dimensions to correspond exactly to

the polynomial order of the SPF basis functions. For example, a low order GF may be evaluated on a

high order FFT grid and vice-versa. This corresponds to padding the FFT grid with zeros or excluding

frequency components that exceed the grid boundaries, respectively. Therefore, it is important to con-

sider carefully both the polynomial expansion order and the FFT grid dimensions, because each can

significantly influence overall performance. It was shown previously (Ritchie & Kemp, 2000; Ritchie,

2003) that the use of polynomial expansion orders in the range L=24 to 30 is often sufficient to give

satisfactory resolution when docking globular protein domains. According to Shannon sampling the-

ory, this implies that an angular FFT grid dimension of at least M=2L=48 should be used for thorough

rotational sampling. This corresponds to using an angular search increment of 360o/48 = 7.5o, which

is somewhat finer than the rotational step sizes conventionally used in Cartesian FFT algorithms.

Nonetheless, because two of the five rotational degrees of freedom can be described using Euler

angles which range from 0 to 180◦, it is evident that a 5D FFT grid of e.g. 483 × 242 cells can be

accommodated in less than one gigabyte (Gb) of computer memory if grid values are stored as single

precision floating point complex numbers (8 bytes per grid cell).

4.2.10 FFT Performance Comparison

As a first test of the utility of the multi-dimensional FFT approach, the HyHel-5/lysozyme complex

(Figure 4.13) was docked at a range of expansion orders, L, using the conformation of the bound
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antibody Fv fragment and unbound lysozyme. Table 4.3 presents a comparison of the accuracy

and execution times of shape-only and shape plus electrostatic correlations for this example. All

calculations sampled 53 translational steps of ±0.75Å from the initial orientation of the complex. To

facilitate comparison of the 3D and 5D correlations with the existing 1D radix-2 FFT implemented in

Hex, Mα = 64 was used for the twist angle dimension. The 3D and 5D grids each used Mγ = 48 and

Mβ = 24 to give (β, γ) increments of 7.5o. The remaining rotational degrees of freedom in the 3D and

1D cases respectively used one and two icosahedral tessellations of the sphere, each of 812 vertices,

to generate rotational samples with an average angular separation of around 7.7o. Considering that

the Euler grids tend to over-sample near the poles, this scheme gives broadly equivalent sampling

densities with around 1.7, 2.5, and 3.5 billion docking orientations for the 1D, 3D, and 5D cases,

respectively.

Table 4.3: Comparison of shape-only and shape plus electrostatic docking correlation times.

1D Shape-Only 1D Shape+Electro 3D Shape-Only 3D Shape+Electro 5D Shape-Only 5D Shape+Electro

L Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16 646 (6.8) 28.7 428 (8.0) 52.0 864 (7.1) 15.1 254 (8.2) 18.1 – 37.5 669 (6.0) 40.3
20 336 (1.2) 52.7 20 (1.3) 102.7 410 (1.2) 23.5 17 (1.3) 29.2 336 (7.9) 39.3 29 (1.3) 46.5
24 417 (1.2) 92.4 52 (1.2) 184.2 501 (1.2) 33.2 53 (1.2) 51.2 833 (1.2) 53.0 82 (1.2) 56.2
26 49 (1.2) 123.3 15 (1.2) 243.1 48 (1.2) 43.5 15 (1.6) 69.0 45 (1.2) 58.7 13 (1.6) 63.1
28 54 (1.5) 158.1 8 (1.2) 315.6 22 (5.2) 54.2 11 (1.3) 92.2 19 (5.5) 64.5 13 (1.2) 71.7
30 113 (2.2) 203.5 43 (1.3) 403.0 47 (1.6) 69.8 20 (1.6) 122.5 61 (1.6) 74.3 19 (1.6) 108.0

In this table, L is the polynomial order of the expansion, Rank is the rank of the first orientation found in which
the ligand is within 10Å RMS (shown in parentheses) of the crystal structure after clustering with the default
Hex clustering threshold. A hyphen indicates no near-native orientation found within the top 2000 solutions.
Time is the total computation time in minutes on a single processor 1.8GHz Pentium Xeon PC. The 3D and
5D FFT calculations used the Kiss FFT library.2 For those calculations, the time spent within the FFT library is
essentially constant at 13.1 and 34.3 minutes, respectively. All timings exclude the calculation of the translation
matrix elements.

As expected, Table 4.3 shows that high order expansions generally assign a better rank to near-

native orientations than low order expansions, but this trend is not necessarily monotonic. The best

combination of a good rank and low ligand root mean squared deviation (RMSD) from the complex

is typically obtained with L=28 or L=30. This table also shows that shape-only 3D FFTs are around

three times faster than the 1D calculation and, surprisingly, are also generally faster than 5D FFTs.

However, due to the linearity of the GF, the cost of including electrostatics in 3D and 5D correlations

is low compared to the cost of computing 1D shape plus electrostatic FFTs. Indeed, 5D FFTs of

shape plus electrostatics are faster than 3D FFTs when L≥26. These differences would become

more pronounced if more potentials were included in the calculation.
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4.2.11 Protein Docking Benchmark Results

The above approach was applied to the 84 complexes of the Protein Docking Benchmark (Mintseris

et al., 2005) using shape-only and shape plus electrostatic correlations (Ritchie et al., 2008). As

suggested by Table 4.3, a two-stage search protocol using 3D shape-only rotational FFT scans with

L=20 followed by 1D shape plus electrostatic re-scoring with L=30 was used to obtain a good trade-off

between speed and accuracy.

To provide a consistent pseudo-random starting orientation, all proteins were initially oriented by

least-squares fitting to the complex, and a small off-grid rotation, R̂(α, β, γ)=R̂(11◦, 9◦, 0), was then

applied to the ligand. The orientations calculated in each docking run were clustered using a greedy

algorithm with a 9Å clustering threshold (Kozakov et al., 2005), and the lowest energy member of

each cluster was selected as the “solution” for that cluster. All other members of each cluster were

discarded.

Seven different docking runs were performed for each complex to assess the shape-based and

electrostatic components of the scoring function, and to investigate the difference between blind dock-

ing and the use of prior knowledge of one or both protein’s binding sites. The results are shown in

Table 4.4. The first set of figures in this table give the results for blind shape-only docking of bound

subunits, presented as the rank and deviations of the first solution found within 10 Å RMS deviation

of the complex (here called a “hit”) along with the total number of such hits found within the top 2000

solutions. This threshold broadly corresponds to the definition of an “acceptable” prediction under the

CAPRI assessment criteria (Méndez et al., 2003). Although the final goal is to dock unbound sub-

units, consideration of bound docking results provides a practical way to identify complexes which will

a priori be expected to be difficult to dock acceptably in the unbound case. Encouragingly, acceptable

solutions are found within the top 10 in 33 cases, and within the top 20 in 37 cases. This shows that

the Hex shape-based scoring function can often identify near-native crystallographic orientations.

However, these results also show that Hex fails to find an acceptable bound-bound solution for 22

of the Benchmark complexes. Visual inspection of these complexes shows that several (1AK4, 1GHQ,

1KTZ, 1BJ1, 1QFW, 2QFW, and 1ATN) have particularly small interface areas, which would therefore

be expected to be difficult for any shape-based docking algorithm to identify. Furthermore, several

of the other failing complexes include at least one large protein domain (e.g. 1KLU, 1ML0, 1KKL,

1HE8, 1N2C, 1DE4, 1H1V, and 2HMI) which cannot accurately be encoded in the standard Hex radial

function. Hence, these cases will also be difficult for the Hex scoring function. Of the remaining

failing complexes, several are antibody/antigen complexes (e.g. 1DQJ, 1E6J, 1WEJ, 2VIS), and it is

generally not necessary to perform completely blind docking calculations on such well understood

systems.

The rest of Table 4.4 presents results for docking unbound structures. As expected, the rank of

the best shape-only blind docking solution is often considerably poorer compared to docking bound
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Table 4.4: Hex Results for the Docking Benchmark (version 2).

B-B Shape-Only U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec
Blind Search Blind Search Blind Search One Constraint One Constraint Two Constraints Two Constraints

Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

Rigid-Body (63)
1AVX 46 (4.8) 20 108 (8.9) 7 111 (8.9) 4 40 (8.9) 12 75 (9.0) 14 18 (9.0) 43 12 (9.0) 45
1AY7 40 (8.9) 16 645 (9.9) 4 – – 99 (3.5) 20 234 (9.8) 1 17 (6.7) 39 17 (9.7) 18
1BVN 1 (1.1) 29 63 (9.1) 20 389 (9.6) 7 29 (9.6) 35 3 (6.6) 36 4 (5.1) 49 2 (9.6) 39
1CGI 1 (0.7) 24 42 (9.4) 17 47 (4.6) 9 20 (9.4) 14 42 (9.8) 11 4 (9.4) 31 4 (4.6) 24
1D6R 273 (1.3) 24 447 (7.7) 1 119 (7.6) 4 49 (7.7) 8 31 (7.7) 8 8 (7.7) 37 5 (7.7) 31
1DFJ 167 (4.2) 14 17 (9.5) 14 1 (4.2) 30 3 (9.5) 24 1 (4.2) 30 2 (9.5) 32 1 (4.2) 35
1E6E 1 (2.1) 14 109 (5.6) 10 5 (2.2) 24 24 (5.6) 19 3 (1.5) 29 5 (5.6) 38 1 (7.7) 49
1EAW 1 (1.0) 17 9 (5.0) 20 1 (4.0) 37 7 (5.0) 25 1 (4.0) 35 1 (5.0) 42 1 (4.0) 42
1EWY 19 (7.7) 16 76 (9.1) 12 24 (9.7) 14 114 (8.1) 12 103 (6.8) 7 9 (8.1) 37 9 (7.6) 23
1EZU 2 (0.9) 13 – – – – – – – – 86 (6.7) 10 287 (6.2) 4
1F34 1 (1.4) 25 124 (6.7) 11 – – 48 (7.1) 15 – – 11 (5.4) 22 26 (6.5) 11
1HIA 3 (1.2) 30 51 (8.7) 6 8 (8.9) 15 72 (8.7) 21 15 (9.9) 22 15 (6.7) 33 6 (8.3) 32
1MAH 1 (0.9) 16 2 (1.2) 20 1 (1.1) 28 1 (1.2) 27 1 (1.2) 30 1 (1.2) 33 1 (1.2) 30
1PPE 1 (1.0) 42 2 (9.7) 47 4 (3.0) 31 1 (9.7) 49 1 (3.0) 46 1 (3.0) 43 1 (3.0) 45
1TMQ 1 (2.1) 19 356 (5.9) 9 427 (6.0) 6 45 (5.9) 21 264 (2.3) 7 7 (5.9) 39 10 (6.6) 38
1UDI 1 (1.6) 17 8 (6.2) 9 20 (6.2) 10 4 (6.2) 22 7 (6.2) 25 1 (6.2) 32 5 (6.2) 37
2MTA 11 (1.4) 18 136 (9.0) 4 79 (9.8) 20 38 (9.0) 17 12 (8.4) 24 15 (7.7) 33 15 (8.7) 31
2PCC 1007 (9.1) 1 – – 18 (6.9) 33 14 (9.3) 20 12 (5.1) 31 5 (9.3) 37 14 (6.3) 44
2SIC 3 (0.7) 10 57 (8.8) 8 – – 21 (8.9) 10 44 (1.0) 9 4 (8.9) 31 4 (1.0) 35
2SNI 1 (1.5) 18 256 (9.6) 7 101 (9.6) 6 39 (7.1) 15 40 (4.4) 11 5 (7.1) 31 5 (4.4) 25
7CEI 5 (1.3) 17 61 (8.7) 5 4 (8.4) 19 11 (8.7) 17 3 (8.4) 22 2 (8.7) 29 1 (8.4) 35
1AHW 6 (1.9) 10 234 (8.0) 3 7 (8.0) 12 31 (8.0) 12 5 (8.0) 40 3 (8.0) 42 5 (8.0) 38
1BVK 44 (1.5) 6 – – 508 (6.7) 7 134 (9.4) 7 184 (6.8) 10 71 (9.9) 23 22 (6.8) 24
1DQJ – – – – – – 216 (8.6) 6 440 (9.9) 2 22 (8.6) 24 73 (8.1) 11
1E6J – – – – – – 26 (8.9) 12 16 (8.4) 22 2 (8.9) 37 4 (8.4) 41
1JPS 24 (1.3) 5 – – 36 (8.8) 11 170 (6.6) 9 14 (6.6) 27 15 (6.6) 29 1 (8.8) 30
1MLC 62 (1.2) 5 408 (3.6) 2 – – 25 (3.6) 13 22 (3.7) 28 3 (3.6) 29 2 (3.7) 23
1VFB 23 (1.1) 3 – – – – 97 (9.1) 14 51 (7.1) 10 14 (9.1) 36 12 (7.1) 35
1WEJ – – – – – – 26 (1.7) 13 2 (1.7) 20 8 (1.7) 29 1 (1.7) 37
2VIS – – – – – – – – – – – – – –
1A2K 29 (5.4) 12 – – – – – – – – 186 (9.3) 5 274 (9.1) 4
1AK4 – – – – – – – – – – – – – –
1AKJ 30 (8.4) 25 209 (9.6) 10 17 (9.4) 27 110 (6.3) 15 23 (2.7) 35 23 (9.6) 36 5 (9.6) 48
1B6C 3 (1.8) 19 593 (9.0) 2 755 (8.9) 2 88 (9.0) 5 133 (8.5) 5 19 (9.0) 27 7 (9.7) 36
1BUH 28 (1.0) 9 743 (7.7) 2 289 (7.8) 4 52 (7.7) 14 19 (7.7) 13 28 (7.7) 19 8 (7.7) 18
1E96 133 (1.1) 5 – – 302 (8.6) 2 246 (9.4) 6 119 (8.6) 8 37 (9.7) 13 43 (8.5) 20
1F51 3 (1.4) 21 371 (9.6) 5 – – 149 (9.6) 12 58 (9.3) 3 9 (7.6) 19 8 (7.5) 27
1FC2 605 (6.5) 2 – – – – – – – – – – 297 (7.7) 10
1FQJ 7 (1.0) 14 41 (8.0) 12 7 (7.9) 14 14 (8.0) 21 7 (7.7) 28 5 (7.8) 31 4 (7.7) 41
1GCQ 1 (1.0) 16 – – – – – – – – 92 (6.2) 6 – –
1GHQ – – – – – – 828 (8.9) 2 – – 30 (8.9) 13 175 (6.7) 6
1HE1 1 (1.5) 24 37 (6.4) 18 88 (6.3) 15 10 (6.4) 26 28 (7.2) 25 2 (7.6) 39 9 (7.2) 39
1I4D 31 (1.5) 19 – – – – – – – – 505 (8.1) 1 481 (9.4) 1
1KAC 36 (1.2) 7 687 (8.7) 1 271 (8.9) 5 7 (4.4) 19 4 (4.4) 26 4 (4.4) 33 2 (4.4) 32
1KLU – – – – – – – – – – 591 (9.7) 2 – –
1KTZ – – – – – – – – – – 238 (9.4) 4 25 (6.0) 10
1KXP 1 (1.1) 22 36 (9.4) 13 1 (7.5) 13 15 (9.4) 19 1 (6.9) 30 7 (9.4) 24 1 (6.9) 29
1ML0 – – – – – – 7 (9.1) 8 33 (7.0) 11 1 (9.1) 22 3 (5.6) 27
1QA9 86 (5.9) 7 – – 161 (9.9) 3 587 (7.5) 8 481 (6.8) 4 25 (5.3) 28 23 (4.5) 28
1RLB 409 (8.8) 2 – – – – – – – – 305 (6.3) 7 384 (6.3) 6
1SBB – – – – – – – – – – – – – –
2BTF 5 (0.8) 8 – – – – 133 (8.6) 13 16 (6.7) 22 32 (8.6) 19 4 (6.7) 34
1BJ1 – – – – – – – – – – 7 (6.7) 13 10 (6.9) 10
1FSK 10 (1.3) 16 5 (1.8) 16 6 (1.4) 10 1 (1.8) 31 1 (1.8) 31 1 (1.8) 43 1 (1.8) 46

(continued)

81



Table 4.2: (continued).

B-B Shape-Only U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec
Blind Search Blind Search Blind Search One Constraint One Constraint Two Constraints Two Constraints

Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

1I9R 5 (5.7) 14 82 (2.1) 8 4 (2.1) 15 23 (2.1) 19 13 (2.1) 26 7 (2.1) 29 5 (2.1) 26
1IQD 42 (0.7) 8 – – 760 (1.4) 3 276 (6.1) 7 5 (6.1) 16 5 (9.4) 27 3 (6.1) 29
1K4C 24 (0.7) 4 21 (9.6) 1 – – 4 (9.6) 3 311 (9.6) 2 2 (9.6) 17 46 (9.6) 19
1KXQ 6 (5.5) 10 488 (7.1) 5 35 (6.3) 12 48 (7.1) 16 27 (7.1) 15 27 (7.1) 18 24 (7.1) 16
1NCA 1 (1.1) 11 116 (1.2) 5 139 (1.9) 3 20 (1.2) 13 8 (0.9) 16 2 (9.9) 22 3 (0.9) 30
1NSN 11 (1.7) 8 142 (1.5) 6 – – 18 (1.5) 19 14 (1.5) 12 6 (1.5) 22 3 (1.5) 23
1QFW – – – – – – – – – – 333 (6.3) 3 37 (6.3) 6
2QFW – – – – – – – – – – 522 (9.7) 1 – –
2JEL 10 (1.1) 10 164 (6.0) 3 – – 7 (6.0) 27 4 (5.6) 29 6 (6.0) 39 2 (6.0) 38
Mean 25 (4.1) 11 242 (8.4) 5 156 (8.1) 7 66 (7.6) 13 46 (7.0) 14 15 (7.3) 25 13 (6.7) 25

Medium Difficulty (13)
1ACB 36 (0.9) 8 694 (8.3) 3 674 (8.5) 2 156 (8.3) 7 163 (8.3) 1 10 (8.3) 33 88 (8.4) 14
1KKL – – – – – – 48 (8.6) 18 94 (8.4) 10 8 (8.7) 40 14 (8.0) 31
1BGX 1 (3.0) 3 – – – – – – – – – – – –
1GP2 – – – – 419 (6.9) 5 – – 137 (7.1) 8 113 (5.6) 12 68 (7.1) 17
1GRN 1 (1.3) 13 914 (9.1) 2 586 (2.5) 5 661 (7.1) 4 27 (6.3) 23 14 (7.4) 31 20 (6.3) 29
1HE8 – – – – – – – – – – – – – –
1I2M 1 (1.8) 17 – – 29 (5.4) 24 754 (8.5) 3 15 (8.5) 24 107 (6.7) 14 21 (8.5) 24
1IB1 10 (5.0) 13 – – – – – – – – 14 (9.8) 13 22 (9.9) 7
1IJK 189 (3.0) 10 1012 (8.7) 3 – – 145 (8.7) 5 383 (8.7) 1 14 (8.7) 18 70 (8.7) 5
1K5D 406 (5.9) 4 – – 146 (7.6) 3 – – 128 (9.1) 5 377 (7.6) 4 21 (9.7) 17
1M10 429 (9.1) 4 514 (9.5) 2 48 (9.2) 4 130 (9.5) 4 46 (9.3) 6 13 (9.5) 8 124 (8.4) 12
1N2C – – – – – – – – – – – – – –
1WQ1 1 (1.5) 26 125 (7.1) 10 16 (7.2) 17 34 (7.1) 14 13 (7.1) 20 6 (7.1) 27 3 (7.1) 33
Mean 50 (5.5) 8 782 (9.5) 1 329 (8.2) 5 306 (8.8) 5 153 (8.7) 8 58 (8.4) 15 66 (8.6) 15

Difficult (8)
1ATN – – – – – – – – – – – – – –
1DE4 – – 946 (8.6) 1 15 (8.4) 3 164 (8.6) 3 – – 184 (8.5) 8 35 (9.9) 8
1EER 1 (4.0) 25 609 (9.2) 8 43 (9.2) 16 106 (7.6) 18 30 (7.7) 18 34 (7.6) 23 39 (7.7) 13
1FAK – – – – – – – – – – 768 (7.0) 2 221 (7.0) 8
1FQ1 162 (5.6) 5 – – – – 469 (8.4) 2 – – 82 (8.4) 5 508 (8.4) 3
1H1V – – – – – – – – – – – – – –
1IBR 4 (3.0) 27 – – – – – – – – 314 (8.8) 4 68 (8.4) 6
2HMI – – – – – – – – – – – – – –
Mean 168 (7.8) 7 933 (9.7) 1 399 (9.7) 2 549 (9.3) 3 359 (9.3) 3 325 (8.8) 5 238 (8.9) 5

In this table, B-B and U-U denote bound-bound and unbound-unbound docking, respectively. A hyphen denotes
no acceptable solution within the top 2000, in which case a value of 10Å is used when calculating the mean
RMS deviation. Means of ranks were calculated using the MLR formula, Eq 4.66. For the antibody/antigen
complexes (1AHW, 1BVK, 1DQJ, 1E6J, 1DQJ, 1JPS, 1MLC, 1VFB, 1WEJ, 2VIS, 1BJ1, 1FSK, 1I9R, 1IQD,
1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW, 2JEL, 1BGX, 2HMI), the Cα coordinates of heavy chain residue
37 were used as the antibody coordinate origin. For all other structures, the centre of mass was used as the
coordinate origin. It should be noted that the Docking Benchmark includes several antibody complexes (1BJ1,
1FSK, 1I9R, 1IQD, 1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW, 2JEL, 2HMI) for which only the bound antibody
Fab coordinates are available.

components, with only 6 complexes being ranked within the top 20. On the other hand, including the

ETO electrostatic interaction term in the correlation often improves the rank of the best solution, giving

16 complexes within the top 20. However, using electrostatic correlations can worsen the prediction

in some cases, but it is not clear how to predict which those cases might be ab initio.
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Nonetheless, in practice, it is becoming increasingly rare that completely blind docking is neces-

sary because, like the antibody families, biochemical or biophysical knowledge is often available to

indicate the identities of key interaction residues. Hence, four further constrained docking runs were

performed for each complex to simulate such data-driven docking scenarios. Here, the range of the

FFT searches were constrained by applying the restriction βA ≤ 45◦ to simulate using knowledge of

the receptor binding site (tabulated as “One Constraint”), and additionally βB ≤ 45◦ corresponding to

using knowledge of both the receptor and ligand binding sites (“Two Constraints”). These constraints

each reduce the size of the search space and corresponding FFT grid dimensions by a factor of

about four, and speed up the FFT scan correspondingly. Thus, for constrained docking runs, overall

calculation times of just a few minutes arise largely from the L=30 re-scoring stage. Specifying a

receptor constraint of βA = 45◦ would physically correspond to spinning an antigen over the antibody

hypervariable loop region in an antibody/antigen complex, as illustrated in Figure 4.1, for example.

In general, Hex allows a given receptor and ligand residue to be rotated onto the z axis before each

docking run. Hence, for example, by setting small values for the βA and βB angular ranges, it is

straightforward to focus a docking calculation around a given pair of residues in a known or hypothe-

sized protein-protein interface.

As can be seen from Table 4.4, the above rather loose constraints are often sufficient to improve

considerably the rank of near-native solutions. For example, using only the receptor constraint is

sufficient to increase the rate of acceptable solutions from 6 to 17 within the top 20. Adding the Hex

electrostatic correlation term boosts this improvement to 28 within the top 20. Applying a similar ligand

constraint further improves the success rate to 48 in the top 20 and 35 in the top 10 for shape only

correlations, or 45 in the top 20 and 37 in the top 10 for shape plus electrostatics. In other words,

the electrostatic component helps significantly to identify the general orientation of the binding mode,

and it can also help to distinguish a near-native orientation from amongst high ranking shape-based

orientations, although the improvement in the latter is less dramatic. It is worth noting that constrained

docking also improves the results for several complexes that rigid-body docking indicated would be

difficult (specifically 1GHQ, 1KTZ, 1ML0, 1BJ1, 1QFW, 1KKL, and 1DE4).

In order to compare such trends more objectively, Table 4.4 presents overall average results for

each set of calculations. Here, we calculate the mean rank using the mean of the logarithm of the

rank (MLR) of each first acceptable hit according to:

MLR = exp{ 1

NC

NC
∑

i=1

ln(min(Ranki, 1000))}, (4.66)

whereNC is the number of complexes in each Benchmark category. Limiting poor results to a value of

1000 in this formula helps to prevent outliers from adversely biasing the overall score. Hence the MLR

score ranges from 1 (rank 1 hits for all complexes) to 1000 (no hits for any complex). The MLR figures

in Table 4.4 readily show the benefit of using just one, or preferably two, loose constraints to enrich

the number of high ranking predictions in each Benchmark category. This benefit is most dramatic
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in the Rigid-Body category, although using two constraints also significantly enhances the results for

both the Medium Difficulty and Difficult categories.

Overall, blind 3D shape-only docking correlations find acceptable solutions within the top 20 in 6

cases, whereas including electrostatics in the calculation gives 16 solutions within the top 20. Applying

a single loose angular constraint to focus the calculation around the receptor binding site is sufficient

to produce acceptable solutions within the top 20 in 28 cases. Further constraining the search to the

ligand binding site in a similar manner gives up to 48 solutions within the top 20.

In terms of raw processing speeds, 3D shape-only and shape plus electrostatic FFTs are found

to be around three times faster than the 1D FFT initially implemented in Hex (see Section 4.1.1) but,

surprisingly, 3D FFTs are also often faster than 5D FFTs. On the other hand, thanks to the linearity of

the FFT, multiple properties may be correlated simultaneously in the 5D FFT, and this is expected to

be particularly advantageous when calculating high order correlations of multi-term knowledge-based

protein-protein interaction potentials.

4.2.12 Simulating Protein Flexibility During Docking

It should be emphasized that rigid-body docking is normally only the first stage of a docking calcula-

tion. If a protein complex consists of N atoms, there are 3N-6 internal degrees of freedom available to

the constituent atoms. Because proteins often consist of a few hundred amino acid residues, or equiv-

alently several thousand atoms, the dimensionality of this space is truly vast. However, the internal

atomic coordinates are not completely independent but are in fact highly constrained by the covalent

bonds between the atoms. Nonetheless, using MD to simulate the atomic fluctuations and internal

motions within large proteins is computationally very expensive. On the other hand, it is known from

both experimental and MD simulation evidence that often only a relatively small number of bond tor-

sion angles change significantly when two proteins form a complex. The unsolved challenge, however,

is to identify and incorporate into the calculation only those flexible regions of a protein that need to

be modelled during docking.

Currently, the most promising approach to reduce the dimensionality of the flexible docking prob-

lem seems to be the use of so-called “slow-mode” or normal mode analysis (NMA) techniques (Hinsen

et al., 1999). These approaches are derived from the use of matrix diagonalisation techniques to anal-

yse the large-scale atomic fluctuations within a protein during MD simulations. It is often observed

that only a small number of the most significant eigenvectors, or principal components, of the fluctu-

ation matrix can account for the bulk of the motion within a protein. In other words, there are only a

few (typically no more than around 20) of mutually independent degrees of freedom (Amadei et al.,

1993). More recently, techniques have been developed to compute rapidly and approximately the

principal components whilst avoiding the computational expense of performing a full MD simulation

(Tirion, 1996; de Groot et al., 1997).
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As part of her PhD project at Aberdeen to simulate protein flexibility during protein-protein docking

simulations, Diana Mustard investigated the use of an eigenvector analysis based approach to sample

protein conformational space and hence to generate multiple feasible protein conformations for rigid-

body docking in Hex. The overall idea is that protein flexibility would be simulated by docking multiple

rigid-body conformations generated from the initial protein structures. This approach was applied

to nine of the protein complex targets (targets T8–T14, T18, and T19) of the CAPRI blind docking

experiment (Mustard & Ritchie, 2005), and was presented at the Second CAPRI Evaluation Meeting

(2004) in Gaeta, Italy.

In order to generate a large number of initial 3D protein conformations, we used the distance-

constraint based CONCOORD and DISCO programs (de Groot et al., 1997) to generate an ensemble

of pseudo-random 3D structures. This ensemble of structures may be considered as permissible

sample points within the multi-dimensional conformational space of the protein. Figure 4.18 shows

some of the conformations of the Laminin protein (CAPRI target T8) generated by CONCOORD.

To capture the most significant fluctuations within this space, the essential dynamics (ED) approach

constructs a square covariance matrix C of the means of the deviations of each atom’s coordinates

xi from its initial unbound position ui:

Cij = < (xi − ui)(xj − uj) >, (4.67)

where the subscripts i, j = 1...3N label the components of the Cartesian coordinates of the N atoms

under consideration, and where the angle-brackets denote taking the average over all pseudo-random

structures sampled. Hence a least 3N conformational samples are required for an ED analysis.

Because the covariance matrix is square-symmetric, it may be factorised according to:

C = T .Λ.T T (4.68)

where T is the matrix of eigenvectors, ek, and Λ is a diagonal matrix of eigenvalues, λk. The eigenvec-

tors and eigenvalues represent the principal components and squared magnitudes of the coordinate

fluctuations in C, respectively. If the eigenvectors are considered in order of decreasing size of their

corresponding eigenvalues, most of the fluctuation is found within the first few eigenvectors. Hence

the distance constraint essential dynamics (DCED) technique captures much of the internal motion of

a protein whilst avoiding most of the computational expense of running a full MD simulation (Amadei

et al., 1993). Figure 4.19 shows that the first few eigenvectors capture most of the internal motion

within the Laminin protein.

Here, we adapted the above approach to generate feasible conformations for rigid-body docking in

Hex by first performing a DCED analysis on the initial conformation of the starting structure. Because

the eigenvectors are orthonormal and span the conformational coordinate space of the protein, any

3D conformation may, in principle, be constructed from an appropriate combination of eigenvectors.

For example, denoting vectors of bound and unbound protein coordinates by B and U (with U =
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Figure 4.18: Multiple rigid-body conformations of the Laminin protein (CAPRI target T8) generated by CON-
COORD.

Figure 4.19: The magnitudes of the largest eigenvectors for the Laminin protein (CAPRI target T8). This figure
shows that first few eigenvectors describe most of the internal motion.

{ui; i = 1...3N}, etc.), we may write

B = U +
∑

k

αkek. (4.69)

The coefficients αk represent the weights with which the eigenvectors should be combined in order

to obtain the bound conformation from the coordinates of the unbound structure. When the unbound

and bound coordinates are known, we call the quantity

V = B − U (4.70)

the “docking vector.” If the coordinates of both the bound and unbound structures are available, the

weights αk may be solved exactly using a projection:

αk = V .ek. (4.71)
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This provides a useful way to evaluate the approach using the structures of known protein complexes.

Figure 4.20 shows the Cα RMS deviation between the calculated and actual bound conformations as

a function of the number of eigenvectors used in Eq 4.69. This shows that the first few eigenvectors

can account for much of the backbone conformational change that takes place on binding. Of course,

in predictive docking the desired bound conformation is not available, and indeed the initial unbound

conformation may have been model-built. Nonetheless, it is reasonable to assume that following

an ED analysis of the starting structure, there will exist some combination of the most significant

eigenvectors which will transform the initial structure into one that resembles more the bound form. In

other words, we assume that each conformation is accessible from the other through the fluctuation

modes embedded in its structure. The task then reduces to calculating the weights with which a

sufficient number of eigenvectors should be combined.
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Figure 4.20: RMS deviation between the calculated and actual bound conformations of the CAPRI ligand
structures as a function of the number of eigenvectors used in Eq 4.69. Eigenvectors are combined using
weights αk calculated from a projection (Eq 4.71) of the unbound-bound docking vector (Eq 4.70). The plots
show that most of the conformational change that occurs on binding may be accounted for by the first few
eigenvectors.

In our approach, the DCED analysis is applied to the heavy atoms Cα, C, O, N, and Cβ (if present).

Then, each candidate backbone conformation Bnj is constructed as:

Bnj = U +
n

∑

k=1

αkjek (4.72)

where the subscript j enumerates samples along the kth eigenvector, αkj = ±δ,±2δ, etc. We use

δ = 0.25Å. Thus each candidate conformation deviates from all others by an integral multiple of 0.25Å

RMS. However, many of these conformations will have infeasible covalent bond lengths and angles.
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Hence, we arbitrarily define any covalent bond which differs by more than 1% from the original struc-

ture as a “bad bond,” and we reject any conformation with more than five bad bonds. Figure 4.21

shows the distribution of bad bonds for the Laminin protein eigenstructures. In our current implemen-

tation, up to n=8 eigenvectors are sampled subject to the constraint that |αkj | ≤
√
λk, and this can

produce up to around 105 candidate backbone conformations. Applying our simple bond length filter

typically reduces this number to less than 100. Because these candidate structures have locally very

similar backbone geometries to the starting conformation, side chain atom coordinates are transferred

directly from the starting structure. We call the resulting 3D protein structures “eigenstructures.” In the

current study, eigenstructures were generated for just one of the proteins in each complex (typically

the unbound or smaller component) to avoid the computational expense of multiple cross-dockings.

Figure 4.21: Bond length violations in the first 8 eigenvectors for the Laminin protein.

Table 4.3 summarises the number of conformational models generated and filtered for the CAPRI

targets using the above procedure. This table omits the very flexible T9 LiCT structure, and T18 is

also omitted because the TAXI ligand in that target does not have a contiguous backbone, as required

by CONCOORD. The final three columns of RMS deviations show that in all cases conformations can

be generated which have a lower Cα deviation from the bound form than the initial unbound structure.

For example, when using a projection on the first eight eigenvectors, the unbound-bound Cα deviation

for T8 is reduced by 0.58Å RMS from 1.88 to 1.30Å RMS. For T17, the corresponding reduction is

0.70Å RMS. With blind eigenvector sampling using a fixed step size, the reduction available in the

RMS deviations is less than the theoretical optimum, but it can still be significant in favourable cases

(e.g. 0.26 and 0.21Å RMS, for T8 and T17, respectively). Hence, Table 4.3 shows that improved
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backbone conformations may be generated with relatively little effort in the DCED approach.

Table 4.3: Summary of the eigenstructures generated for the targets in CAPRI rounds 3–5.

Target Ligand AA EV CS ES B/UB B/ES(opt) B/ES(δ)
T8 Laminin 162 8 405,405 624 1.88 1.30 1.62
T10 TBEV-B 395 6 8,505 49 11.33 10.90 11.13
T12 Dockerin 138 5 1,215 19 0.44 0.37 0.42
T13 SAG1 129 8 54,675 52 0.96 0.92 0.94
T14 PP1 294 8 59,535 229 0.88 0.83 0.85
T15 ImmD 87 5 2,025 6 0.15 0.11 0.15
T16 GH10 257 8 120,285 49 1.19 1.12 1.16
T17 GH11 188 8 54,675 33 5.09 4.39 4.88
T19 PrP 121 7 28,431 54 1.59 1.26 1.47

This table summarises the number of conformational models generated and filtered for targets T8–T19 of
CAPRI rounds 3–5. The table columns are labelled as follows: AA: the number of amino acids in the ligand
structure; EV: the number of eigenvectors used; CS: the number of candidate structures generated from the
eigenvectors using a step size of δ = 0.275Å; ES: the number of eigenstructures remaining after applying the
bond length filter; B/UB: the Cα RMS deviation between the bound and unbound structures; B/ES(opt): the
best possible RMS deviation between the bound conformation and the optimal eigenstructure calculated from
projections of the first 8 eigenvectors; B/ES(δ): the lowest Cα RMS deviation between the bound conformation
and the best eigenstructure found when using a fixed step size (δ) search along the first 8 eigenvectors.

In order to investigate the utility of our eigenstructure docking approach, we retrospectively docked

ED-generated eigenstructures for several of the CAPRI targets which were amenable to analysis

by the DCED approach. Because the crystal structures of the complexes had been revealed, we

chose to start each docking run with the eigenstructures initially superposed onto the Cα atoms of

the complex. All docking runs in this test used shape-only N=30 correlations and 45 degree angular

search constraints on each protein. In some cases, the eigenvector step size and bond length filter

parameters were modified slightly (e.g. for T8 and T14) in order to achieve a more manageable list

of eigenstructures (< 100) to be docked. Each list of eigenstructures was then seeded with the

conformations of the unbound and bound ligand structures in order to facilitate comparison of docking

the three types of structure. Due to the large number of orientational samples generated, all docking

solutions were sorted and clustered as described previously (Ritchie, 2003). The total computational

cost was around 12 CPU-hours per complex on a 1.8GHz AMD Athlon processor.
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Table 4.4: Eigenstructure docking results for the CAPRI rounds 3–5 targets.

Target Docked ES Bound RMS Unbound RMS ES RMS
T8 94 84(1/2) 9.71 30(40/94) 8.80 30(1/94) 8.24
T11 37 19(1/5) 5.52 2(29/183) 9.55 2(1/183) 9.20
T12 40 1(1/90) 0.64 1(23/90) 1.53 1(6/90) 1.53
T13 52 5(1/9) 1.17 1(32/306) 0.96 1(1/306) 6.24
T14 60 16(1/3) 9.95 10(10/177) 8.81 10(1/177) 8.81
T15 39 20(6/17) 7.80 8(20/77) 3.47 8(1/77) 4.94
T17 33 3(1/8) 1.56 – – 12(1/43) 8.64
T19 40 1(1/12) 0.95 13(46/66) 7.70 13(1/66) 5.28

This table lists the number of ligand eigenstructures docked for each target followed by the cluster rank of the
first solution with a Cα deviation of 10Å RMS or less obtained when docking bound, unbound, and DCED-
generated eigenstructures, respectively. Figures in brackets (n/m) give the rank of the orientation (n) within the
cluster of given size (m). A hyphen denotes no low RMS solution found within the first 512 clusters.

Overall, our initial studies on DCED eigenstructures seem very promising. We have shown that

the first few eigenvectors intrinsically encode much of the backbone conformational flexibility observed

on binding. The results with the CAPRI targets show that docking multiple eigenstructures generated

from the first eight eigenvectors is sufficient to give better docking predictions than docking only the

initial unbound or model-built structures. However, there is clearly scope to improve the quality of the

generated conformations. For example, increasing the number of eigenvectors sampled and using a

variable step size to search along each eigenvector should give better coverage of the conformational

space accessible to each protein. Additionally, using a more sensitive method of estimating and

possibly minimising the internal energies of the generated eigenstructures should give more physically

realistic structures within that space. However, it will also be necessary to make the docking scoring

function more selective in order to identify a near-native conformation of the complex from a large

repertoire of physically realistic decoys.

4.3 Small-Molecule Virtual Screening

Broadly speaking, there are two main approaches to virtual screening. In receptor-based approaches,

the structure of the protein target is known or has been modelled, and the goal is to find suitable

ligands which will bind near the receptor active site and consequently antagonise (block) the native

receptor function, for example. In ligand-based approaches, the structure of the protein target is

generally not known, and the goal is to find new ligands which are similar to known antagonists.

Some drug molecules act as agonists (i.e. they activate or enhance the native receptor function),

but the screening principles are essentially the same as for antagonists. Due to the computational

expense of receptor-based (i.e. docking-based) approaches, high throughput virtual screening (HTVS)
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campaigns often employ a combination of approaches, in which ligand-based similarity criteria are

used as an initial filter, and candidate compounds which survive this filter are subsequently docked to

the protein target.

Currently, the most commonly used techniques for rapidly searching large chemical databases in

ligand-based virtual screening employ bit-string representations of molecular properties and topolo-

gies such as Daylight, UNITY, and MACCS fingerprints. However, by their nature, these represen-

tations have a tendency to find close chemical analogues to the given query, which may not be

sufficiently novel to be worth pursuing in a drug development programme. On the other hand, the

pharmacological action of most drug molecules is governed by their interaction with their biological

targets via ligand-receptor binding. Therefore, molecules that have similar overall shapes might rea-

sonably be expected to bind to a protein in similar ways. However, comparing 3D molecular shapes is

significantly more computationally expensive than comparing bit-strings (Lemmen & Lengauer, 2000).

In my opinion, the current state of the art for efficient 3D molecular shape comparison is based on

Gaussian representations of molecular shape (Grant et al., 1996) and the more recent SH surface en-

velope approach, which was developed independently by myself at Aberdeen (Ritchie & Kemp, 1999;

Mavridis et al., 2007), Tim Clark at Erlangen (Lin & Clark, 2005), and Bernard Maigret at Nancy (Cai

et al., 2002; Yamagishi et al., 2006). At Aberdeen, the focus was to exploit the rotational properties

of the SH functions to develop a very fast way of superposing and quantitatively comparing the 3D

shapes of molecular surfaces. At Erlangen, the aim was to represent key QM molecular surfaces

properties using the SH representation. At Nancy, the main objective was to use SH representations

to provide a fast shape-based filter for protein-ligand docking. This approach has recently been incor-

porated into the VSM-G project (Beautrait et al., 2008). To complement the Erlangen work, I recently

developed the ParaFit program which can superpose 3D molecular structures calculated by ParaSurf

at a rate of up to one hundred molecules per second on a single processor. ParaFit and ParaSurf are

currently being marketed by Cepos Insilico Ltd.

4.3.1 The ParaFit Program

ParaFit superposes and compares molecules using SH expansions of the molecular surface and local

surface properties calculated by ParaSurf (Lin & Clark, 2005). By exploiting the special rotational

properties of the spherical harmonic basis functions (Wigner, 1939; Rose, 1957), computation times

can be reduced by several orders of magnitude compared to conventional shape matching algorithms

(Ritchie & Kemp, 1999; Ritchie & Kemp, 2000). ParaFit provides three main calculation modes. In the

default “fitting” mode, ParaFit superposes one or more moving molecules onto a single fixed reference

molecule. The program can also perform all-versus-all superpositions in which each molecule is

superposed in turn onto all others. In this “matrix” mode, a table of distance scores is written out in a

format suitable for subsequent clustering analysis, for example. In addition to superposing molecules,
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ParaFit may also be used to align molecules to the coordinate axes in order to place them in a

standard or “canonical” orientation. This is often a useful first step in QSAR studies. ParaFit can

also apply arbitrary coordinate transformations to a given list of SDFs (Structure Description Files)

created by ParaSurf. These transformations could be supplied as part of a processing pipeline by

other superposition programs that do not have the capability to rotate complex QM properties such

as quadrupole and octupole moments and atomic orbital charge density matrix elements. The ability

of ParaFit to rotate all of the orientation-dependent QM information in an SDF eliminates the need to

recalculate expensive QM quantities for new molecular orientations.

4.3.2 Spherical Harmonic Surface Shape Similarity

SH molecular surface shapes are represented as two-dimensional radial expansions of the form

r(θ, φ) =
L

∑

l=0

l
∑

m=−l

almylm(θ, φ), (4.73)

where ylm(θ, φ) are normalized real spherical harmonic functions and alm are the expansion coeffi-

cients. The coordinates are defined with respect to the harmonic coordinate origin (CoH), which is

usually equivalent to the molecular centre of gravity (CoG). In order to calculate a superposition be-

tween a pair of molecules, ParaFit translates the CoH of the moving molecule (B) to that of the fixed

reference molecule (A) and then searches for the rotation that minimizes the “distance” between the

corresponding pairs of spherical harmonic expansions:

DEuclidean =

∫ π

0

∫ 2π

0

(

rA(θ, φ) − R̂(α, β, γ)rB(θ, φ)
)2

sin θdθdφ. (4.74)

By rotating the expansion coefficients using the real Wigner rotation matrices (Eq 3.35), and by ex-

ploiting the orthonormality of the basis functions, this expression reduces to

DEuclidean = |a|2 + |b|2 − 2a.b′. (4.75)

where b′ represents the vector of rotated SH expansion coefficients of the moving molecule, etc. This

function has units of Å2 and clearly depends on the relative size of the molecules being compared.

This is called a Euclidean distance function due to its analogy to Euclidean distances in ordinary

3D space. However, when comparing multiple molecules, it is often convenient to use normalized

similarity functions in which identical molecules give a score of unity. For example, dividing by the

sum of the magnitudes of the SH shape vectors gives the Hodgkin similarity score:

SHodgkin =
2a.b′

|a|2 + |b|2 = 1 − DEuclidean

|a|2 + |b|2 . (4.76)

ParaFit also implements the Carbo and Tanimoto similarity functions:

SCARBO =
a.b′

|a|2.|b|2 . (4.77)
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and

STANIMOTO =
a.b′

|a|2 + |b|2 − a.b′
. (4.78)

ParaFit uses the Tanimoto function as its default similarity function. It is generally not obvious which

of the above scoring functions is to be preferred. In my experience they all give good pairwise super-

positions with the default L=6 SH expansion order.

ParaFit superposes molecules using a brute-force rotational search over the three Euler rotation

angles. Conceptually, each moving molecule is rotated with respect to the fixed reference molecule,

and the Euler rotation that gives the greatest similarity (or smallest distance) score is recorded. This

is essentially a Fourier correlation search in Euler angle coordinates. However, because good super-

positions may be achieved using only low order harmonic expansions, it is not necessary to use fast

Fourier transform (FFT) techniques to accelerate the calculation unless L≥16 (see Section 4.1.1).

In addition to using low order correlation searches, ParaFit’s superposition calculations are accel-

erated in two further ways. The first technique exploits the fact that harmonic expansions to order L

can have no more than L2 local maxima. Hence, ParaFit initially uses relatively large angular search

steps of around 8◦ to cover the search space. In order to sample angular space evenly and efficiently,

these angular samples are generated from the vertices of an icosahedral tessellation of the sphere

(Section 2.3). For a given angular step size, this gives around 30% fewer sample points than a naïve

equi-angular grid (Ritchie & Kemp, 1999). Once the approximate location of maximum similarity has

been identified, it is then refined using a localized grid search in steps of 2◦. Both angular step sizes

may be adjusted by the user.

The second acceleration technique is used when comparing multiple molecules. Rather than

separately rotating each of the moving molecules in turn, it is much more efficient to rotate the SH ex-

pansions of only the reference molecule and to compare these against each of the moving molecules.

Thus, relatively expensive SH rotations are applied to just one rather than N molecules. Once the

optimal rotations have been found, the moving molecules are rotated using the inverse of the cor-

responding reference rotations. Using these techniques, a pair of molecules may be superposed in

around 0.05 seconds on a 1.8GHz Pentium Xeon processor, and computation times may be further

reduced by a factor of up to five when multiple molecules are compared in a single ParaFit run.

4.3.3 Rotation-Invariant Fingerprints and Canonical Orientations

Although pairs of molecules may be superposed and compared very quickly using the above tech-

niques, it is necessary to develop even faster comparison techniques in order to search very large 3D

structural databases (e.g. > 106 molecules) for HTVS. It is therefore natural to use the vector inter-

pretation of SH coefficients to construct a rotationally invariant fingerprint (RIF) for each SH molecular

shape. Noting that expansion coefficients with the same value of l transform amongst themselves
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under rotation, the RIF coefficients are defined as:

Al =

( m=l
∑

m=−l

a2
lm

)1/2

(4.79)

and

AL =

( L
∑

l=0

A2
l

)1/2

. (4.80)

By analogy to Equation 4.75, the RIF distance score between a pair of molecules may be calculated

as

DRIF = A2
L +B2

L − 2
L

∑

l=0

AlBl. (4.81)

A detailed study of the performance of the above rotation-dependent and rotation-invariant scoring

functions has been published (Mavridis et al., 2007). This study showed that very good superpositions

may be obtained using only L=3 expansions, and that using expansion orders above L=6 gives little

or no improvement in the quality of the results compared to high order L=15 comparisons which were

treated as the “gold standard”.

Although RIF comparisons may be calculated very rapidly, they are significantly less accurate

than the more expensive rotational correlation searches. Therefore, we investigated the possibility

of comparing molecular shapes in standard “canonicalised” orientations as a way of retaining much

of the precision of the rotational comparisons whilst avoiding the computational expense of a full

rotational search. Here, a canonical orientation is calculated by rotating a SH surface shape expansion

to L=6 such that its largest radial extent is aligned with the global z axis, and by then applying a pure z

axis rotation to place its maximal equatorial extent on the positive x axis. This procedure is somewhat

similar to aligning the moments of inertia with the principal axes (Lanzavecchia et al., 2001), but using

expansions with L>2 eliminate any ambiguity with respect to 180◦ axis flips. Figure 4.22 illustrates

the canonical orientations of four benzodiazepine molecules.

4.3.4 Clustering and Classifying The Drug and Odour Datasets

In order to compare the SH surface comparison approach with other traditional molecular similarity

measures, cluster analyses of two molecular datasets, here called “Drug” and “Odour,” were per-

formed and results were compared with conventional physico-chemical (PC) clustering of the Drug

dataset and with the vibrational frequency based clustering results of the Odour dataset obtained

previously by Takane and Mitchell (2004). This work was also carried out as part of the PhD thesis

project of Lazaros Mavridis.

The Drug dataset was initially classified by my colleague Dr Brian Hudson into six broad phar-

macological categories and up to seven sub-groups based on known pharmacological mechanisms
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Figure 4.22: Illustration of the canonical alignment of four GABA receptor agonists, the benzodiazepines lLo-
razepam, diazepam, temazepam, and clonazepam. Left: The L=6 SH molecular surface and canonicalised
orientation of Lorazepam; Middle: The four canonicalised benzodiazepines together; Right: the same orienta-
tions rotated by 90◦ about the z axis.

of action. This gave a total of 22 drug classes, as shown in Table 4.5. It should be noted that this

classification is not unique because many of these compounds have multiple modes of action and

are used for a variety of therapeutic purposes. Nonetheless, the expert classification does provide an

indication of pharmacological similarity against which calculated clusters may be compared.
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Table 4.5: Pharmacological classification of the 73 molecules of the Drug dataset.

Name Class World Drug Index Keywords
MINOCYCLINE AB 1 ANTIBIOTICS
DOXYCYCLINE AB 1 ANTIBIOTICS
TETRACYCLINE AB 1 ANTIBIOTICS
CEFPROZIL AB 1 ANTIBIOTICS
CLINDAMYCIN AB 1 ANTIBIOTICS
IBUPROFEN AI 1 ANALGESICS; ANTIINFLAMMATORIES; ANTIPYRETICS
ASPIRIN AI 1 ANALGESICS; ANTIINFLAMMATORIES; ANTIPYRETICS; ANTICOAGULANTS
DICLOFENAC AI 1 ANALGESICS; ANTIINFLAMMATORIES; PROSTAGLANDIN-ANTAGONISTS
NAPROXEN AI 1 ANALGESICS; ANTIINFLAMMATORIES; PROSTAGLANDIN-ANTAGONISTS; ANTIPYRETICS
CODEINE AI 1 ANALGESICS; ANTITUSSIVES; NARCOTICS
CARISOPRODOL AI 1 ANALGESICS; RELAXANTS
LORATADINE AI 2 ANTIHISTAMINES-H1
CETIRIZINE AI 2 ANTIHISTAMINES-H1
PROMETHAZINE AI 2 ANTIHISTAMINES-H1; SEDATIVES
TRIAMCINOLONE AI 3 CORTICOSTEROIDS
METHYLPREDNISOLONE AI 3 CORTICOSTEROIDS
BUDESONIDE AI 3 CORTICOSTEROIDS
PREDNISONE AI 3 CORTICOSTEROIDS
CLONAZEPAM CN 1 ANTICONVULSANTS
GABAPENTIN CN 1 ANTICONVULSANTS
PHENYTOIN CN 1 ANTICONVULSANTS
TOPIRAMATE CN 1 ANTICONVULSANTS
SERTRALINE CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
FLUOXETINE CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
NORTRIPTYLINE CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
AMITRIPTYLINE CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
PAROXETINE CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
CITALOPRAM CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
BUPROPION CN 2 ANTIDEPRESSANTS; PSYCHOSTIMULANTS
OLANZAPINE CN 3 PSYCHOSEDATIVES; DOPAMINE-ANTAGONISTS; NEUROLEPTICS
RISPERIDONE CN 3 PSYCHOSEDATIVES; NEUROLEPTICS; ANTISEROTONINS; DOPAMINE-ANTAGONISTS
LORAZEPAM CN 3 PSYCHOSEDATIVES; TRANQUILIZERS
BUSPIRONE CN 3 PSYCHOSEDATIVES; TRANQUILIZERS
DIAZEPAM CN 3 PSYCHOSEDATIVES; TRANQUILIZERS
TEMAZEPAM CN 3 PSYCHOSEDATIVES; TRANQUILIZERS; ANTICONVULSANTS
TRAZODONE CN 3 PSYCHOSEDATIVES; TRANQUILIZERS; PSYCHOSTIMULANTS; ANTIDEPRESSANTS
CYCLOBENZAPRINE CN 3 PSYCHOSEDATIVES; TRANQUILIZERS; RELAXANTS
ZOLPIDEM CN 3 PSYCHOSEDATIVES; TRANQUILIZERS; SEDATIVES
FENOFIBRATE CV 1 ANTIARTERIOSCLEROTICS
GEMFIBROZIL CV 1 ANTIARTERIOSCLEROTICS
SIMVASTATIN CV 1 ANTIARTERIOSCLEROTICS; HMG-COA-REDUCTASE-INHIBITORS
PRAVASTATIN CV 1 ANTIARTERIOSCLEROTICS; HMG-COA-REDUCTASE-INHIBITORS
WARFARIN CV 2 ANTICOAGULANTS
NIFEDIPINE CV 3 CARDIANTS; CALCIUM-ANTAGONISTS
DILTIAZEM CV 3 CARDIANTS; CALCIUM-ANTAGONISTS
VERAPAMIL CV 3 CARDIANTS; CALCIUM-ANTAGONISTS; PROTEIN-KINASE-C-INHIBITORS
TRIAMTERENE CV 4 DIURETICS
SPIRONOLACTONE CV 4 DIURETICS; ALDOSTERONE-ANTAGONISTS
HYDROCHLOROTHIAZIDE CV 4 DIURETICS; CARBONIC-ANHYDRASE-INHIBITORS; HYPOTENSIVES
FUROSEMIDE CV 4 DIURETICS; PROTEIN-KINASE-C-INHIBITORS
VALSARTAN CV 5 HYPOTENSIVES
TERAZOSIN CV 5 HYPOTENSIVES
CAPTOPRIL CV 5 HYPOTENSIVES; ANGIOTENSIN-ANTAGONISTS
FOSINOPRIL CV 5 HYPOTENSIVES; ANGIOTENSIN-ANTAGONISTS
DOXAZOSIN CV 5 HYPOTENSIVES; SYMPATHOLYTICS-ALPHA
BISOPROLOL CV 5 HYPOTENSIVES; SYMPATHOLYTICS-BETA; ANTIARRHYTHMICS
CARVEDILOL CV 5 HYPOTENSIVES; SYMPATHOLYTICS-BETA; VASODILATORS
CLONIDINE CV 5 HYPOTENSIVES; SYMPATHOMIMETICS-ALPHA
ATENOLOL CV 6 SYMPATHOLYTICS-BETA
METOPROLOL CV 6 SYMPATHOLYTICS-BETA
TIMOLOL CV 6 SYMPATHOLYTICS-BETA
FAMOTIDINE GI 1 GASTRIC-SECRETION-INHIBITORS; ANTIHISTAMINES-H2
RANITIDINE GI 1 GASTRIC-SECRETION-INHIBITORS; ANTIHISTAMINES-H2; ANTIULCERS
LANSOPRAZOLE GI 2 GASTRIC-SECRETION-INHIBITORS; H-K-ATPASE-INHIBITORS
OMEPRAZOLE GI 2 GASTRIC-SECRETION-INHIBITORS; H-K-ATPASE-INHIBITORS; ANTIULCERS
GLIPIZIDE OT 1 ANTIDIABETICS
METFORMIN OT 1 ANTIDIABETICS
METOCLOPRAMIDE OT 2 ANTIEMETICS; DOPAMINE-ANTAGONISTS
ALLOPURINOL OT 3 ANTIGOUTS; ANTIRHEUMATICS
CARBIDOPA OT 4 ANTIPARKINSONIANS; DOPA-DECARBOXYLASE-INHIBITORS
ESTRADIOL OT 5 ESTROGENS
FLUCONAZOLE OT 6 FUNGICIDES
TAMOXIFEN OT 7 PROTEIN-KINASE-C-INHIBITORS; ESTROGEN-ANTAGONISTS

Each drug molecule has been assigned a two-letter code by a chemoinformatics expert according to its main
pharmacological class as follows, AB: antibiotic; AI: anti-inflammatory; CN: central nervous system; CV: cardio-
vascular; GI: gastro-intestinal; OT: other. The numeric digits indicate sub-classes within each of the six main
pharmacological classes.
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For the PC clustering, 11 molecular descriptors (including polarizibility, radius of gyration, molec-

ular weight, logP, etc.) were calculated for the Drug dataset using Cerius-2,3 and these were auto-

scaled and clustered using Ward’s agglomerative clustering algorithm (Ward, 1963) to produce a total

of 22 clusters, as shown in Figure 4.23. For the SH clustering, a shape-only distance matrix for

the same group of molecules using L=6 expansions was calculated and Ward’s algorithm was applied

directly to produce 22 clusters. These are also shown in Figure 4.23. This figure shows that both clus-

tering methods often group similar classes of drug into the same or similar clusters. For example, both

the PC and SH clustering approaches group the antibiotics (AB) together, and both approaches group

many of the tranquilizer and anti-depressant drugs (central nervous system; CN) closely together. This

would suggest that classifying molecules using SH surfaces is at least as good as traditional methods

based on overall molecular properties. Indeed, comparison of the two dendrograms suggests that

the SH clustering tends to place more of the pharmacologically related molecules into more closely

related groups than the PC clustering. For example, the SH clustering places the gastro-intestinal

(GI) drugs in the same group, whereas these drugs are distributed over four distinct groups in the PC

clustering. For the CN compounds, one group contains the benzodiazepines clonazepam, lorazepam

and diazepam, and a second group primarily contains compounds related to GPCR activity such as

the serotonin re-uptake inhibitors amitryptiline, nortryptiline, citalopram, fluoxetine, and paroxetine as

well as the serotonin receptor antagonist olanzapine. These features of the cluster analysis are not

conclusive but are nevertheless encouraging.

As a further test of the SH approach, the 46 molecules of the Odour dataset was clustered into

ten groups using SH shape descriptors to L=6 using both rotational superpositions and by comparing

the molecules in their pre-aligned canonical orientations. Takane and Mitchell (2004) originally clus-

tered this dataset into ten distinct groups using eigenvalue (EVA) descriptors derived from quantum

mechanical vibrational frequency calculations. Hence the same number of clusters was used in the

present study to facilitate comparison with the SH results. Figure 4.25 shows the resulting SH clusters

along with the corresponding 3D superpositions. Both the SH and EVA methods give broadly similar

groupings. However, the SH clustering nicely distinguishes the camphoraceous and bitter almond

molecules as two separate groups, whereas the earlier EVA clustering study splits the camphors into

two sub-groups, one of which includes one jasmine and two rose odours (see Table 3 of Takane and

Mitchell, 2004). The EVA clustering also splits the bitter almond odours into three distinct groups,

whereas the SH clustering correctly assigns these molecules to two neighbouring sub-groups. The

SH clustering also locates all but one of the rose and jasmine odours in two closely related sub-groups.

Overall, Figure 4.25 shows a striking correspondence between the SH shape-based classification and

the corresponding molecular shape superpositions.

The clustering results of both the Drug and Odour datasets show that SH shape comparisons

often give chemically meaningful groupings. Our results for the Odour dataset show a striking corre-

3http://www.accelrys.com/.
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Figure 4.23: Dendrograms of the 73 molecules of the Drug dataset, calculated using Ward’s agglomerative
clustering algorithm to give 22 clusters. Left: conventional chemical clustering using 11 auto-scaled macro-
scopic PC descriptors. Right: L=6 SH surface shape clustering.

spondence between the SH-based classification and the corresponding molecular shape superposi-

tions. Indeed, SH shape clustering achieves comparable or better clusters than previous work based

on more computationally expensive quantum mechanics-based vibrational frequency analysis. The

analysis of the drug dataset is also encouraging in that, despite using only shape expansions, it is

possible to identify similar pharmacological groupings which appear to be at least as good as those

produced using traditional PC analyses.

Figure 4.26 shows the results of clustering the Odour dataset using SH surface comparisons of

molecules in their canonical orientations. By comparing these results with Figure 4.25, it can be seen

that comparing molecules in canonical orientations is almost as reliable as performing full pair-wise

rotational comparisons. Furthermore, if the molecular SH coefficient vectors are compared in their

canonicalised orientations, the computational cost of the comparison is essentially no more than that
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of a rotationally invariant comparision.

Further experiments on the Drug dataset, which has been augmented with a large number of

similar decoy molecules, have confirmed that canonical comparisons are much more accurate than

rotational invariant comparisons (Mavridis et al., 2007). It can therefore be concluded that for best

database performance with the SH representation, molecular SH coefficients should be pre-calculated

and stored in the database using canonicalised orientations.

Figure 4.24: The 46 molecules in the Odour dataset of Takane and Mitchell (2004). These molecules may be
classified into 7 principal odours: bitter, ambergris, camphoraceous, rose, jasmine, muguet, and musk.

4.3.5 Virtual Screening HIV Entry-Blockers

According to the World Health Organization, about 33 million people currently live with Acquired Im-

mune Deficiency Syndrome (AIDS).4 The principal cause of AIDS is infection by the human immun-

odeficiency virus (HIV), which at the molecular level begins with binding of the gp120 viral envelope

glycoprotein to both the CD4 cell surface receptor and one of CXCR4 or CCR5 chemokine coreceptors

which consequently leads to fusion of the viral capsid with the cell membrane. Current antiretroviral

therapies (ARTs) against AIDS are generally based on reverse transcriptase inhibitors and protease

inhibitors. Despite advances in the development of these agents which block HIV transcription and

assembly, there remain problems regarding drug resistance, latent viral reservoirs, and drug induced

toxic effects, which can all compromise effective control of the virus. Hence there is considerable in-

terest in developing new classes of anti-HIV drugs with different modes of action. One very promising

approach towards this goal has been the development of so-called entry-blocking drugs which inter-

fere with the initial interaction between the viral gp120 protein and the host CXCR4 and CCR5 cell

surface receptor proteins. Many small molecule CXCR4 and CCR5 antagonists have already been

identified, and the first commercial HIV entry blocker, Maraviroc, was recently released. However,

there remains an on-going need to develop new and more potent HIV entry blockers (Carrieri et al.,

4http://www.who.int/hiv/en/.
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Figure 4.25: SH surface shape clustering of the Odour dataset. Left: the dendrogram obtained using L=6 SH
shape similarity calculations. Right: the corresponding 3D molecular superpositions.

2009).

As part of my contribution towards the above goal, over the last five years I have developed

some very rewarding and productive collaborations with my computational chemistry colleagues Prof

Antonio Carrieri at the University of Bari (Italy) and Prof Jordi Teixidó at the Institut Químic de Sarriá

which is part of the Universitat Ramon Llul in Barcelona (Spain). Both of these collaborations involved

extended visits to my group in Aberdeen of PhD students Alessandra Fano from Bari and Violeta

Pérez-Nueno from Barcelona.

The SH shape matching approach implemented in the ParaFit and ParaSurf programs was thor-

oughly evaluated by Violeta Pérez-Nueno as part of her PhD project in VS of HIV entry inhibitors. In

order to perform VS of ligands for the CXCR4 and CCR5 receptor proteins, Violeta first compiled a

large dataset of 248 CXCR4 and 354 CCR5 known inhibitors from the literature, which mainly consist

of 5 compound families for the CXCR4 inhibitors and 13 compound families for the CCR5 inhibitors.

She also assembled a database of 4696 presumed inactive decoy compounds with similar physico-

chemical properties to the actives assembled from the Maybridge Screening Collection5. Retrospec-

5http://www.maybridge.com/

100



Figure 4.26: SH canonical surface shape clustering of the Odour dataset. Left: the dendrogram obtained
using L=6 with ten clusters; Right: the corresponding 3D molecular superpositions.

tive VS of the CXCR4 inhibitors was then performed by using AMD3100 (a known high-affinity ligand

for CXCR4) as the “query” molecule, and by calculating the similarity between it and each of the 248

known CXCR4 ligands and 4696 decoys. Similarly, the CCR5 inhibitors were screened using the high

affinity TAK779 molecule as the query which was compared against each of the 354 known CCR5

ligands and the 4696 decoys.

In computational chemistry, it is common practice to assess VS experiments using either enrich-

ment factor (EF) plots or Receiver-Operator-Characteristic (ROC) plots. Both approaches are broadly

equivalent to plotting recall against precision in conventional information retrieval analyses. However,

ROC plots are becoming increasingly popular because they provide a more objective way to com-

pare experiments that use different numbers of positive and negative instances. Nonetheless, EF

plots were used initially in the present case because existing spreadsheet macros were available to

perform the calculations. For both kinds of analysis, the compounds are sorted into a ranked list

according to their similarity with the query, and the list is then analysed to assess how many of the

actives appear near the top of the list. More specifically, in an EF analysis, at each position in the list

the ratio of the number of known actives (or hits), Hitssampled, relative to the number of compounds

101



sampled this far, Nsampled, is compared to the ratio of the total number of actives, Hitstotal, relative to

total number of molecules in the database, Ntotal. In other words, the EF is calculated at each position

of the ranked list using:

EF =
Hitssampled/Nsampled

Hitstotal/Ntotal
. (4.82)

Figure 4.27 shows the VS enrichment plots obtained when comparing the ParaFit 2D SH shape-

matching function and the Hex 3D density matching function with the industry-standard ROCS shape-

only and shape-plus-chemical “Combo” scoring functions. This figure shows that the ROCS Combo

score gives the best EFs when using AMD3100 and TAK779 as queries. However, it can also be

seen that the ParaFit 2D shape Tanimoto gives generally better results than ROCS shape Tanimoto

and often gives comparable results to the ROCS Combo score for both CXCR4 and CCR5 inhibitors.

The Hex 3D shape Tanimoto functions performs well for the CXCR4 inhibitors at first percentages

of database screened, but the EFs are considerably lower for the CCR5 inhibitors. For the CXCR4

inhibitors, the Hex shape Tanimoto and ROCS Combo score give EFs comparable to the theoreti-

cal maximum (19.9%) at the first percentage of database screened. For the CCR5 inhibitors, the

ROCS Combo score and the ParaFit Tanimoto score give EFs comparable to the theoretical maxi-

mum (14.3%) at the first percentage of database screened. Moreover, for the CXCR4 inhibitors, the

four shape matching scoring functions perform well at the next percentages of database screened.

However, the CCR5 inhibitor EFs are generally not as good as the CXCR4 EFs, although the relative

utility of the different scoring functions is similar in both cases. The lower EFs obtained for CCR5 ap-

pear to be because the query conformation is not able to superpose well onto all of the CCR5 ligand

families. The query superposes well onto actives from the same scaffold (which are retrieved first) but

it cannot superpose well to actives with different scaffolds.

This study also compared the utility of ligand-based VS with receptor-based VS of both the CXCR4

and CCR5 proteins using a variety of protein-ligand docking tools. It is worth noting that, at least for

these receptors, the ligand-based screening approaches showed better VS enrichments than any of

the receptor-based approaches (Pérez-Nueno et al., 2008).

4.3.6 Clustering and Classifying Diverse CCR5 Ligands

Several earlier computational docking studies have indicated that different CCR5 ligands bind in fun-

damentally different ways within the CCR5 extracellular pocket. Furthermore, considering that it is

very difficult to superpose all the different families of CCR5 active compounds, there is good evidence

to support a hypothesis that the known binders belong to two or more groups and that the members

of each group bind to the same general region of the extracellular pocket. In order to explore this hy-

pothesis further, Violeta and I developed a simple method of calculating a “consensus” SH molecular

shape representation, r̃(θ, φ), by taking the average of the individual SH molecular surface shapes
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Figure 4.27: VS enrichment curves for the CXCR4 and CCR5 inhibitors. The enrichment curves on the left
show the relative ability of the ROCS, ParaFit, and Hex programs to identify known inhibitors from a database
of inhibitor and decoy molecules for the CXCR4 and CCR5 proteins. The dotted line represents the enrichment
that would be obtained if inhibitors were retrieved at random. The bar charts on the right show close-up views
of the EFs for the first 1%, 5%, and 10% of the screened databases.

for selected groups of N molecules:

r̃(θ, φ) =
1

N

N
∑

k=1

L
∑

l=0

l
∑

m=−l

ak
lmylm(θ, φ). (4.83)

However, before computing the average, each molecule in the consensus must first be rotated to

minimise the distance between it and the remaining N-1 molecules. Because these rotations are

not known a priori, the consensus shape is constructed iteratively as follows. First, all-against-all

rotational pair-wise superpositions are calculated in order to find the two most similar surface shapes.

Then, the average of these two shapes is taken as the initial seed shape for the consensus, and the

remaining N-2 SH shapes are rotated into superposition with the seed shape. The overall average of

all SH coefficients is then computed to give the first estimate of the consensus shape. The consensus

average is then refined by superposing the member molecular shapes back onto the average and by

recalculating a new average shape. This procedure is repeated until convergence to optimal overlap

between each molecule and the consensus shape is reached. This typically requires just three or four

cycles. Hence calculating a consensus shape is a quick process.

Figure 4.28(a) shows the consensus shape calculated from the three most active compounds

of different scaffold families in the CXCR4 inhibitor database. Figure 4.28(b) shows the consensus
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shape computed from all the CXCR4 inhibitors in the database. Visual inspection of these figures

shows that the first consensus shape captures rather well the overall shape of the three selected

inhibitors, whereas the all-molecule consensus has much less local surface detail, yet still broadly re-

tains the gross features of the member shapes. Figure 4.28(c) shows the consensus shape calculated

for the three most active compounds of different scaffold families in the CCR5 inhibitor database. Fig-

ure 4.28(d) shows the consensus shape of all the CCR5 active inhibitors. In this case, it can be seen

that using all database compounds to construct the consensus query produces a much more spheri-

cal average shape than the CXCR4 inhibitors due to the greater number and diversity of compounds

in the CCR5 database.

Figure 4.28: CXCR4 and CCR5 antagonist consensus shapes. (a) The image on the left shows the consen-
sus shape calculated from the three most active compounds of different scaffold families in the CXCR4 inhibitor
database. The following three images show the superpositions of these compounds onto the consensus. (b)
The consensus shape calculated from all CXCR4 database actives, and example superpositions onto the con-
sensus of two randomly selected compounds. (c) On the left, the consensus shape calculated from the three
most active compounds of different CCR5 database scaffold families. On the right, the superpositions of these
compounds onto the consensus. (d) Consensus shape calculated from all CCR5 actives, along with example
superpositions onto the consensus of two randomly selected actives.

Figure 4.29 shows the performance of the CXCR4 consensus VS queries compared to docking-

based and shape-based VS using a single high affinity ligand (AMD3100). This Figure shows that the

consensus shape queries give higher AUCs than the other approaches, although the single-ligand

ParaFit query also performs well. As might be expected from consideration of Figure 4.28, the three-

ligand consensus performs considerably better than the all-ligand consensus, due to the high degree

of smoothing and loss of surface detail in the all-ligand shape. On the other hand, considering the

very good performance of the single high affinity ligand and the marginally superior performance of

the three-ligand query suggests that all three ligands share highly similar shapes (as confirmed by

Figure 4.28(a)) which probably all bind in similar way within the CXCR4 pocket.
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Figure 4.29: ROC plot analyses of ligand-based and receptor-based VS using AMD3100 and consensus
pseudo-molecule shape queries against the CXCR4 inhibitor database.

For the more difficult problem of understanding the binding modes of the diverse CCR5 ligands,

we supposed that if all of the members of a group bind within the same region of the receptor pocket,

then they should all share a significant degree of shape similarity, and that it might be possible to

describe these similarities by constructing a consensus “pseudo-molecule”. Indeed, because most of

the ligand conformations had been calculated using molecular modelling software, and that some of

these conformations might therefore be incorrect, we further supposed that calculating a consensus

shape might smooth out some of these errors and possibly provide a better query shape with which

to perform ligand-based VS. However, it is not clear a priori which actives might belong to which

group, nor is it clear how best to superpose all of the molecules within a hypothesized consensus

group. Hence we decided to proceed iteratively by performing an initial round of Ward’s hierarchical

clustering using conventional chemical descriptors (for full details, see Pérez-Nueno et al. 2008) to

obtain a total of ten clusters. SH consensus surface shapes were calculated for each cluster, and an

all-against-all SH comparison of each consensus surface was calculated using ParaFit. The resulting

pair-wise Tanimoto similarity coefficients were then used in a further round of Ward’s hierarchical

clustering. Figure 4.30 shows a dendrogram of the resulting super-clusters in which the initial ten

consensus shape surfaces are clustered to give four main groups, A, B, C, and D. The members of

105



these four groups were re-aligned to form four “super-consensus” (SC) pseudo-molecular SH surface

shapes. Figure 4.31 shows the 3D molecular overlays, the SH shapes of the ten initial clusters, and

the four SC shapes calculated from the clustered consensus surfaces.

Figure 4.30: Dendrogram of the ten initial CCR5 antagonist groups clustered using Ward’s clustering of SH
distances between the consensus surface shapes of each group. Four main super-consensus groups, labelled
A, B, C, and D, are identified.

Figure 4.32 shows the VS results obtained using the four SC shapes as database search queries.

SC C gives the best overall VS performance with an AUC of 0.91. It is perhaps not surprising that this

SC query performs very well because it includes the three most active compounds in the database and

also a large number of other actives (i.e. 184/424) with similar shapes to the 4-piperidine derivatives,

SCH derivatives and 1,3,4-trisubstituted pyrrolidinepiperidine derivatives. The SC A query (87/424

actives) also performs rather well with an AUC of 0.79, and the SC D query (84/424 actives) performs

reasonably well (AUC=0.63). However, the ROC plot for SC B shows that this query exhibits good

sensitivity and selectivity in the first percentages of the database screened, but the overall AUC is low

(0.41) because the database contains relatively few members of the two SC B families (i.e. a total

of only 69/424). However, if the members of clusters B and D are grouped together to form a single

SC, as might be suggested by the dendrogram in Figure 4.30, the screening performance becomes

essentially random (AUC=0.51). Thus, despite the small populations of these two groups, their mem-

bers have significantly different overall shapes, and they should be classified as two distinct structural

groups for VS purposes. Performing a similar exercise with other combinations of SC clusters shows

similar but less dramatic reductions in AUCs compared to the AUCs of the unmerged clusters (details

not shown). This behaviour suggest that the CCR5 inhibitor families may be clustered into no fewer

than four main groups.

Because Hex primarily uses a shape-density representation for its protein-protein docking calcu-

lations, it was immediately possible to apply SPF rigid body docking to locate the four SC pseudo-

molecular shapes into the CCR5 extracellular pocket. Although protein-protein docking calculations
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Figure 4.31: Molecular superpositions and consensus shapes of the ten Ward’s clusters used to calculate the
final four CCR5 super-consensus shapes.

usually generate multiple false-positive orientations, in the present highly constrained case there are

very few ways in which the SC “ligands” can fit satisfactorily into the pocket, and in fact only three pos-

sible binding sites within the CCR5 trans-membrane (TM) helix regions which could accommodate the

four SC shapes were found. These are shown in Figure 4.33. These SC-based docking predictions

are consistent with existing experimental data (see Pérez-Nueno et al., 2008, and references 11, 13,

14, and 16 therein for full details).

In order to confirm that the SC queries are properly matched with their predicted target sites, the

three proposed binding sites were each treated as if they were separate targets for docking-based VS

using rigid body docking of the corresponding SC pseudo-molecules. In other words, when docking

to Site 1, compounds belonging to SC A were treated as actives, and compounds belonging to SC B,

C, and D were treated as inactives. Similarly, when docking to Site 2, compounds belonging to SC

C were treated as actives, and compounds belonging to SC A, B, and D were treated as inactives.

Similarly for Site 3, compounds belonging to SC B and D were treated as actives, and compounds

belonging to SC A and C were treated as inactives. Figure 4.34 shows the docking VS performance

for each of the three proposed CCR5 binding regions. Comparing Figures 4.34 and 4.32, it can be
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observed that docking VS onto Sites 1, 2, and 3 (AUC=0.83, 0.96, and 0.85, respectively) improves

the SC A, C and B/D shape matching AUCs (AUC=0.79, 0.91, and 0.41/0.63, respectively). Given that

SCs A and C already give good shape matching enrichments, reassigning the B and D members as

inactives only marginally improves the corresponding AUCs. However, treating the large set of C and

A members as inactives for Site 3 gives much higher AUCs for the SC B and D queries, which clearly

supports the notion that the CCR5 antagonists bind to at least three main sites within the extracellular

pocket.

Figure 4.32: ROC plot validation of the CCR5 inhibitor SC pseudo-molecules.

The results of this study showed that SH consensus shapes can provide effective 3D query struc-

tures for shape-based VS. For the CXCR4 and CCR5 ligands studied here, our results show that

well-chosen consensus shape queries can give better (CXCR4) or significantly better (CCR5) virtual

screening enrichments than conventional single-molecule VS queries. However, for CXCR4, these re-

sults are nonetheless broadly similar to the basic ParaFit one-molecule shape matching approach be-

cause the inhibitors for this target share rather similar molecular shapes which individually match quite

well the selected query shape. For CCR5, which has a much larger and more diverse set of inhibitor

families, the SC family C and the SC all-family queries both give very good overall VS performance.

However, this seems to be at least partly because a high proportion of all scaffold families cluster into

the family C super-consensus grouping. Hence, by construction, the spherical harmonic consensus

shape derived from these family members provides a single representative pseudo-molecular shape

which recognises well many of the individual member structures.
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Figure 4.33: CCR5 binding pocket sub-sites proposed by the consensus VS and docking results. Here, the
SC A pseudo-molecule is docked onto Site 1, the SC C pseudo-molecule is docked onto Site 2, and the SC B
and SC D pseudo-molecules are docked onto Site 3, which overlaps the SC A and SC C sub-sites.

Regarding the more challenging problem of understanding how so many diverse inhibitor families

might bind within the CCR5 pocket, our consensus shape-based approach provides a straightforward

way to identify clusters of inhibitor families from a large set of known actives which is broadly con-

sistent with previous computational models and current experimental data. Nonetheless, the only

completely reliable way to verify the validity of docking-based predictions is through comparison with

known crystallographic structures, but unfortunately such gold standard references are not available

for CXCR4 and CCR5. Hence any comparison with previous docking studies can, at best, serve only

to add further support to the original prediction. On the other hand, for practical purposes, an unbiased

and objective way to validate a computational prediction even when no crystal structure is available is

to test its utility in the context of VS. The VS results obtained here using four SC shape-based simi-

larity and docking queries give significantly enhanced VS enrichments compared to single-molecule
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Figure 4.34: ROC plot validation of docking VS onto the three identified CCR5 sub-sites for the CCR5 antag-
onists.

queries. These results lend strong support both to the validity of the notion of SC structures, and

to the hypothesis that the members of these SC clusters bind within at least three main sites in the

CCR5 extracellular pocket.
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Chapter 5

Summary and Perspectives

5.1 Summary

The preceding chapters have introduced the mathematical machinery with which to calculate SH and

SPF representations of the shape and physical properties of proteins and other small molecules. It has

been shown that the SPF representation leads to a novel and very efficient way to perform exhaustive

protein-protein docking calculations using high order rotational FFT correlations. This approach has

been implemented and explored in the Hex docking program, which has become the principal vehicle

and practical test-bed for much of my research. Hex performs respectably well on many of the protein

docking benchmark examples, and it has given good results on several of the blind CAPRI docking

targets. Hex is at least one order of magnitude faster than conventional Cartesian grid-based docking

correlation approaches, and it is now one of the most widely used academic protein-protein docking

programs in the world. Similarly, it has been shown that the mathematically simpler SH surface

representation provides a powerful way to carry out very fast clustering and virtual drug screening of

small-molecule databases. The ParaFit program is currently marketed by Cepos Insilico Ltd. as one

of the fastest virtual screening tools currently available.

5.2 Future Challenges

Naturally, greater and greater speed is always desirable, and this is especially true for highly interac-

tive graphical applications. On the other hand, in science there is nearly always a need for greater

accuracy, and one should always be willing to exchange any gain in speed for more sensitive and

more accurate calculations. Furthermore, in the life sciences, there is also an on-going need to be

able to apply scientific software to larger and larger biological systems. The recent exponential growth

in experimentally determined genomic and protein structure information at multiple levels of resolution

and a similar expansion in small-molecule chemical databases means that there are now tremendous
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opportunities to exploit protein and chemical structure information for scientific and therapeutic pur-

poses. My on-going objective is to help biologists and medicinal chemists to exploit fully this growing

wealth of data by continuing to develop novel computational techniques to represent and manipulate

complex biological and chemical molecular structure information.

But the recent explosion of data also means that we now need to raise our sights and aim at

much bigger scientific targets and challenges. Instead of being content trying to dock pairs of proteins

one by one, we should now be aiming to dock hundreds proteins in order to assemble and simu-

late large nanometre-scale macromolecular assemblies such as the trans-membrane nuclear pore

complex (NPC), and molecular motors such as bacterial flagella and eukaryotic cillia, for example.

We should even be aiming to probe the exquisitely sensitive and selective protein-protein recogni-

tion process itself by cross-docking thousands of pairs of proteins in order to simulate and verify the

large volumes of PPI data produced by high-throughput TAP-MS and Y2H experiments. Similarly,

we should be aiming to search vast virtual compound databases for novel drug molecules to screen

potential new drug candidates against multiple protein structures in order to predict unexpected or

unwanted side-effects, for example. Of course, these are obviously very grand goals. And equally

obviously, I am not the first one to have thought of them. But in my opinion, setting high targets is

usually a good way to achieve at least an acceptable outcome. The following sections briefly describe

some of the more modest directions in which I will continue my research efforts under my current ANR

grant, and some possibly more ambitious ideas which I would like to develop.

5.3 Incorporating Knowledge-Based Potentials in Protein Docking

I am continuously working to improve the state of the art in FFT-based docking and to make new de-

velopments available in the Hex docking software. The novel 5D polar Fourier method of scanning the

rigid-body docking space which I recently developed (Section 4.2) is at least one order of magnitude

faster than conventional 3D Cartesian FFT docking approaches, and offers several avenues for future

development. For example, as the number of known protein complexes continues to grow, so-called

knowledge-based protein-protein interaction potentials will become increasingly more accurate and

reliable (Ritchie, 2008). However, because such potentials are usually expressed as a sum of contri-

butions from multiple atom or residue types (Kozakov et al., 2006), they are costly to calculate using

conventional 3D FFT techniques. Nonetheless, while developing the 5D FFT expression, I showed

that the contributions from each term in a knowledge-based potential may be summed before per-

forming the rigid body FFT search. In other words, the cost of calculating multi-term potentials in a

5D FFT will be only marginally more than that of calculating simple shape-based correlations. I am

collaborating with Dima Kozakov and Sandor Vajda at Boston University to use the 5D FFT approach

to calculate the accurate multi-term “Decoys as Reference State” (DARS) protein-protein potential

(Kozakov et al., 2006). This novel approach will be able to scan the enormous 6D search space much
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more rapidly and reliably than is currently possible. Combining our two state of the art approaches

will place our two groups several years ahead of the field.

5.4 Modelling Protein Flexibility During Docking

The project with Diana Mustard to simulate protein flexibility during docking used an essential dynam-

ics approach to generate multiple protein “eigenstructures” to represent snap-shots of the allowed

conformational space (Mustard & Ritchie, 2005). We found that docking such conformational snap-

shots gives promising results but is computationally expensive. More recently, Rueda et al. (2009)

showed that using protein conformational snapshots from NMA consistently improved the quality of

their protein-ligand docking simulations. May and Zacharias (2008) published some very promising

protein-protein docking results based on a GNM approach, which models a protein as an elastic net-

work of harmonic springs connecting the backbone Cα atoms. One advantage of GNMs is that all the

information necessary for the eigenvector analysis may be derived directly from the Hessian interac-

tion matrix, thus avoiding the need to generate multiple pseudo-random conformations. Nonetheless,

there is still scope for improvement. For example, one drawback of the current GNM approach (and of

eigenvector approaches in general) is the need to diagonalise large matrices, the cost of which scales

as O(N3). Hence existing approaches have so far been limited to using only the coordinates of the

Cα atoms, and have had to perform a single diagonalisation for each protein before the docking run.

In the Eigen-Hex project, we will apply a fresh GNM analysis for each putative rigid body dock-

ing pose. Thus each eigenvector analysis will take into account the accessible fluctuations of each

protein in the context of the constraints presented by its docking partner. Although this approach will

involve many matrix diagonalisations, we will reduce the computational expense by using the “building

block” approach of Tama et al. (2000) in which a protein is subdivided into small blocks of up to six

amino acids per block, each of which is treated as a rigid rotational-translational block (RTB). Tama et

al. showed that the normal modes obtained from this approximation are almost as accurate as using

one amino acid per block, yet the computational cost is dramatically reduced (Tama & Sanejouand,

2001). By using the resulting eigenvectors to generate new putative conformational poses and rapidly

energy-minimising each new pose using soft molecular mechanics (Ritchie, 2003), each rigid body

pose will be flexibly steered into a locally optimal binding mode. However, even using efficient RTB

eigenvectors (and perhaps also sparse matrix diagonalisation techniques), this approach will be com-

putationally intensive because each promising conformation will need to be re-scored using a full

molecular mechanics force field. Hence the calculations will be distributed over multiple processors. I

am currently investigating these ideas with Vishwesh Venkatraman who recently joined my group as

a postdoc funded by my ANR grant.
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5.5 Automating Data-Driven Protein-Protein Docking

As structural genomics initiatives continue to populate the space of protein 3D structures, using struc-

tural database systems to perform docking by homology (which one might describe as “docking us-

ing case-based reasoning”) will obviously become an increasingly powerful approach to predicting

protein interactions. Although the PDB currently contains only a very small fraction of all possible

protein-protein complexes, several groups have recently developed PPI databases (for reviews, see

e.g. Mathivanan et al. 2006 and Ritchie 2008), and these are becoming important assets with which

to predict the structures of protein complexes. The growing number and coverage of such databases

now offers the prospect of developing automated ways of transferring knowledge of existing protein-

protein interactions to unknown but homologous cases. Even in cases where there are no direct

structural homologues of a docking target system, it is still extremely useful to be able to incorporate

knowledge about key interaction residues into the docking protocol. Indeed, knowledge of even a

single interaction residue can help focus the scope of a docking calculation, and dramatically improve

the quality of the result (Ritchie, 2008).

If one considers the various approaches used by the different CAPRI participants, it is clear that

several predictors have become skilled at finding and understanding prior knowledge about the tar-

gets from the literature. However, this is a time-consuming and error-prone activity, and it would be

desirable to develop automated data-mining approaches which can emulate the experts’ knowledge

acquisition steps for data-driven docking. I would like to develop a generic way to incorporate knowl-

edge from external data sources into docking calculations by incorporating ambiguous interaction

restraint (AIR) terms (Nilges, 1995) into the docking energy function, for example. However, it is not

yet clear how best to translate activities carried out by human experts into simple rules that can be

executed and applied within a database.

The ANR funded “KDD-Dock” doctoral thesis project of Anisah Ghoorah which I am supervising

in collaboration with my LORIA colleagues Marie-Dominique Devignes and Malika Smaïl-Tabbone

represents a first step towards applying formal Knowledge Discovery in Database (KDD) techniques

to the task of extracting information from existing PPI databases to help guide protein docking cal-

culations. KDD often involves processing huge volumes of data using a variety of data mining tech-

niques in order to extract useful and reusable rules or “knowledge units.” Common data mining tech-

niques include lattice-based classification, frequent item-set search, and association rule extraction

approaches (Napoli, 2005). However, it is often first necessary to collect the data into a single large

table in order to apply data mining. This can be a difficult task if the data is distributed over several ta-

bles or data sources because it requires squeezing the data into a single regular table (e.g. by making

a database view from one or more joins or aggregations, for example). On the other hand, relational

data mining (RDM) approaches can perform data mining on multiple tables, but they cannot easily be

applied to large datasets due to their algorithmic complexity. Nonetheless, it is possible to combine
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RDM with more efficient conventional approaches (Helma et al., 2004; Muggleton, 2005; Phuong &

Ho, 2005). Hence the overall aim of this project is to apply KDD techniques to existing PPI databases

to discover simple rules about protein interfaces which could be transformed into AIRs for docking

calculations.

In the longer term, I also believe that improving our ability to identify PPI information from the

literature and using hidden markov models (HMMs) to detect protein interface sites will be further

useful strategies for constraining and guiding docking calculations. I would therefore like to develop

collaborations along these lines with my Orpailleur colleagues.

5.6 Performing 3D Protein Structure Alignment and Classification

Although Lazaros Mavridis began work on the ANR funded “3D-Blast” project only in March 2009, the

early results reported in Sections 4.1.2 and 4.1.3 are extremely promising. We have already shown

that the SPF approach is sufficiently sensitive to superpose and cluster protein structures in very good

agreement with CATH classification, which is one of most widely accepted protein structures reference

resources. We have also shown that it should soon be possible to perform fast sequence-independent

structural queries on the entire CATH database in interactive time by using rotationally invariant and

rotational correlation searches in tandem. Although it will be very interesting to perform large-scale

clustering experiments on the entire CATH database, we do not propose that our SPF-based cluster-

ing approach should completely replace CATH. Rather, we see it as providing an independent and ob-

jective way to complement the time-consuming expert classification currently used in CATH. We also

expect it could help resolve difficult or ambiguous cases, and provide a way to identify unexpected or

novel similarities that might exist beyond the “twilight zone” of conventional sequence alignment. Ex-

tending our approach to provide substructure querying and matching could become useful additional

capabilities with which to perform more detailed structure-function analyses. For example, as part

of his Masters project at the LORIA, Emmanuel Bresso is currently investigating how this approach

might be used to perform a large-scale study of the structural determinants of phosphorylation sites

on protein surfaces.

5.7 Exploring Visuo-Haptic Steered Protein Docking

One of the main challenges in protein docking today is to distinguish near-native binding modes from

a list of highly plausible false-positives (Ritchie, 2008). Although progress continues to be made in

developing automated docking approaches, there has been remarkably little research on how human

skills and abilities might also be exploited to help improve docking results. Experience from the CAPRI

blind docking experiment suggests that human skill can still make a very important contribution to the

quality of a set of docking predictions. Many CAPRI participants, and no doubt most laboratory re-
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searchers, devote a considerable amount of time viewing and analyzing candidate docking solutions

using 3D molecular graphics tools. Typically, the feasibility of each docking prediction is assessed

visually to consider the snugness of fit between the calculated interaction surfaces. However, beyond

developing better energy-based scoring functions, it is not clear how this activity could be automated.

Nonetheless, Gillet et al. (2005) demonstrated that the ability to feel and manipulate tangible plastic

molecular models provides an unparalleled level of intuition and information about the shapes and

properties of macromolecules. Unfortunately, creating 3D physical models of molecules (“3D print-

ing”) remains a slow and expensive process. On the other hand, some recent virtual reality work

on modelling protein-ligand interactions has shown that the interaction forces between proteins and

small ligands can usefully be simulated and experienced physically using haptic feedback techniques

(Nagata et al., 2002; Wollacott & Mertz, 2005). Therefore, it would be very worthwhile to explore such

an approach in the context of protein-protein docking.

Uniquely, the Hex docking software already has a built-in stereographic molecular visualisation ca-

pability with which to view the calculated docking poses, but like most conventional molecular graphics

software it lacks haptic feedback. Nonetheless, the interactive nature of the existing software means

it will be relatively straightforward to add this capability and to explore its utility. The basic idea is

that the user would view and manipulate before his eyes the proteins almost literally as if holding one

protein in each hand. Twisting the wrists (pitch and roll motions) would be transformed into Euler

rotation angles with which to rotate the proteins. Moving the hands together or apart would control the

Cartesian positions of the molecules. This would provide a much more natural way of manipulating

and inspecting docking poses than the conventional 2D mouse control that is currently implemented in

Hex, for example. Additional visual feedback would be provided by colour-coding the protein surfaces

according to docking energy and steric clashes, for example. If key interaction or restraint residues

have been identified, these will be highlighted graphically in data-driven docking runs. Exploring in-

teractive protein docking in this way would fit very well with the above plans regarding data-driven

docking and developing fast energy and scoring functions. For example, gradient-based techniques

can be used to calculate the forces necessary for inertial haptic feedback, and it would be very inter-

esting to explore ways of visualizing interactively energy funnels around a putative docking pose. It

is worth noting that the LORIA has excellent virtual reality facilities and several teams are working in

related areas. Hence further synergies and innovations could emerge through a project of this kind.

5.8 Developing SH Consensus Shape Virtual Screening

Understanding how proteins interact is crucially important for understanding the molecular mecha-

nisms of disease. For example, therapeutic drugs often work by modulating or blocking PPIs, and

therefore PPIs represent an important class of drug target (González-Ruiz & Gohlke, 2006). There-

fore, searching chemical databases to find small ligand molecules which might bind to specific pro-
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teins and modelling those interactions computationally will become increasingly important strategies

for structure-based drug discovery (Richards, 2002; Congreve et al., 2005). Although it is clearly desir-

able to know the three-dimensional structure of the protein target, this is often not possible especially

for large trans-membrane protein structures which are very difficult to crystallise, for example.

Nonetheless, in ligand-based VS, the structure of the protein target is generally not known, and the

overall approach is to use knowledge of existing high affinity ligands in order to find or design further

similar molecules which might bind to the protein target in a similar way. Indeed several studies to

compare receptor-based docking and ligand-based shape matching VS approaches, have shown that

ligand-based methods perform at least as well as and often better than docking (Hawkins et al., 2007).

However, despite the relative success of ligand-based VS, there remain the confounding problems of

how to choose the initial query compounds and which of their conformations should be used (Hawkins

et al., 2007). Additionally, it is increasingly the case that pharmaceutical companies have developed

multiple ligands for a given target. However, traditional shape matching approaches normally use just

one conformation of a compound as the query, but it is not known a priori if this is the correct query

to use to screen an entire database. For example, other compound families could also be active for

the same target but they might only be found in the database if a different query conformation is used.

In other words, conventional VS assumes there is only one binding mode for a given protein target.

This may be true for some targets, but it is certainly not true in all cases. Several recent studies have

shown that some protein targets bind different ligands in different ways, e.g. CCR5 (Kellenberger

et al., 2007), CXCR4 (Wong et al., 2008), CDK2 (Wong et al., 2006), HIVRT (Lewis et al., 2003),

FXA (Taha et al., 2005), and LXR (Williams et al., 2003). Hence there is a need to develop new VS

approaches which can detect such cases and which can associate specific sub-sets of ligands with

their corresponding receptor binding sites.

As summarised in Section 4.3.5, the work with Violeta Pérez-Nueno on SH-based VS demon-

strated that the SH representation provides an effective and rapid way to identify ligands which are

globally similar to a given query molecule, and that the SH approach implemented in ParaSurf and

ParaFit gives comparable results to the industry-standard ROCS Gaussian superposition program

(Grant et al., 1996). We also showed that by using the SH representation, it is straightforward to

construct the average or “consensus” shape of a group of molecules by calculating the average of

their coefficient vectors, and that clustering such consensus-shapes indicates that the CCR5 ligands

may be classified into four main families which appear to bind within three main sub-sites in the CCR5

extra-cellular pocket. Because we achieved very good results for the CCR5 and CXCR4 systems, we

wish to develop and extend the consensus clustering approach and apply it to other protein targets.

Consequently, in August 2009 Violeta and I submitted an application for a Marie Curie Intra-European

Fellowship which would allow her to develop these ideas at the LORIA.
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5.9 Implementing FG-Based Protein-Ligand Virtual Screening

As well as being used to represent the shapes of small molecules, SH representations have also

been used successfully to characterise the surface shapes of protein binding pockets (Cai et al.,

2002; Morris et al., 2005), and to perform high-throughput receptor-based VS (Yamagishi et al., 2006).

However, it is not yet clear whether SH surface representations can accurately match ligand shapes

to protein pockets because, mathematically, the surface envelope representation does not help solve

the translational part of the matching problem. In my opinion, one must employ more sophisticated

3D SPF representations, similar to those used in Hex, in order to provide a higher level of sensitivity

in a HTVS filter whilst avoiding the need for expensive HPC facilities. Furthermore, because it has

been suggested that 3D ligand shape matching may actually be superior to docking for VS purposes

(Hawkins et al., 2007), there are considerable opportunities and potentially high rewards in developing

SPF-based approaches for ligand-based HTVS filters.

Although the GL radial basis functions described here work very well for protein-protein docking,

I believe the most computationally useful way to represent and compare the 3D shapes of small

molecules is to use SPF expansions in which the existing GL radial basis functions are replaced by the

Gegenbauer polynomials. There are two main reasons why I believe the Gegenbauer polynomials will

provide a more appropriate basis set with which to develop new 3D receptor-based and ligand-based

HTVS techniques. Firstly, these polynomials do not have an exponential decay factor like the GL

polynomials, but instead their natural domain is the unit hypersphere. This means that with a suitable

choice of scale factor, the Gegenbauer polynomials will allow a given level of detail to be encoded

more compactly using lower order expansions than would be the case with the GL functions. Secondly,

because an addition theorem exists for the Gegenbauer polynomials (Srinivasan et al., 2005), it should

be possible to calculate the effects of translations as well as rotations by transforming only the original

expansion coefficients, as is currently the case with the existing GL basis functions. As far as I

know, there does not exist a translation theorem for the Zernike polynomials. Therefore, despite

promising recent results with rotationally invariant Zernike shape representations (Mak et al., 2008;

Sael et al., 2008; Venkatraman et al., 2009), the Zernike basis would seem to be less attractive than

the GL or Gegenbauer bases. It is worth noting that so-called rotationally invariant descriptors may be

obtained trivially from all such orthonormal basis set expansions simply by summing the magnitudes

of the expansion coefficients (Mavridis & Ritchie, 2009). In any case, the above considerations are

important because the computational cost of calculating the initial SPF expansion coefficients scales

in the order of O(N3), and the cost of rotating and translating such representations broadly scale as

O(N4), and O(N5), respectively, where N is the polynomial order of the expansion. Therefore, by

choosing the type of radial expansion and scale factor wisely, one can reduce the expansion order and

hence significantly speed up shape matching and docking calculations without sacrificing resolution.

It is envisaged that the new 3D-Snap software will be able to operate in either a ligand-based or
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receptor-based screening mode, or both. In other words, if the input is a small molecule, the program

will search its database for similar molecules using 3D rotational superposition correlations. If the input

is a protein target, the program will search for molecules which can dock into a specified binding site

on the target protein. In this case, the binding site will be indicated by providing the coordinates and

radius of a dummy atom on the protein, for example. If the input is an existing protein-ligand complex,

the program will search its database for similar ligands and it will then dock them into the binding

site implied by the location of the ligand. It will be possible to search the database using different

filtering modes. For example, for any given query shape, ultra-fast rotationally invariant comparisons

will be used to eliminate almost instantly a large proportion of the database. More sensitive matching

will then be performed using explicit FFT rotational correlations. When appropriate, receptor-ligand

docking correlations will only be applied to candidate ligands that pass the initial shape-based filters.

Hence it will only be necessary to perform full docking calculations on a relatively small subset of the

database.

With a given ligand binding site, the current version of Hex can perform rigid-body docking in

around one CPU-minute because the calculation largely reduces to a rotational correlation in which

the ligand spins within the binding site, and only a limited translational search is required to complete

the docking manoeuvre. However, Hex is not designed for accessing a database or for working with

a filtering pipeline, and it would be inappropriate to overload the structure of that software. Hence the

new program, 3D-Snap, is proposed. Nonetheless, much of 3D-Snap will be implemented by adapting

and re-using a lot of low level software from Hex. By using new FG-based shape representations of

the ligand and only a relatively small region of the protein centred on the binding site, it will be pos-

sible to perform very fast but accurate matching/docking correlations. The overall approach is shown

schematically in Figure 5.1. From previous experience it is expected that each docking correlation will

require just a few CPU-seconds.

Figure 5.1: Schematic illustration of the proposed protein-ligand FG docking correlation calculation. Left: a
fibroblast growth factor receptor kinase (FGFRK) domain with an ATP analogue ligand near the ligand binding
site (PDB code: 1AGW). Centre: FG representations of the ligand and the local region around the FGFRK
ligand binding site. Right: the calculated FGFRK-ligand complex. Because the ligand binding site is normally
known a priori, it is not necessary to scan the entire protein surface during docking. Instead, a fast SPF
correlation may be performed by spinning and translating the ligand within a small spherical region local to the
binding site (centre). This illustration is drawn using GL functions instead of the proposed hyperspherical FG
basis functions.
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Although I have quite a lot of experience of calculus and special function theory, it will likely in-

volve a non-trivial amount of work to develop the necessary translation expressions to fully exploit

the proposed FG approach, and it is difficult to predict how much time this might require. I would not

normally expect a postdoc to be able to undertake this part of the project. Nonetheless, it should be

noted that neither the 3D-Blast nor 3D-Snap projects critically depend on the FG basis functions for

their success. Thus, software development and testing of both of these projects may proceed using

the existing GL basis functions from Hex.

This approach will be developed and evaluated using standard HTVS protein targets and ligand

datasets, such as those provided by the public DUD (Directory of Useful Decoys) dataset and ZINC

database (Irwin & Shoichet, 2005; Huang & Shoichet, 2006). Although the proposed protein-ligand

docking calculations would not be as accurate as AutoDock, this approach would provide an additional

fast filter that could precede the conventional force-field based protein-ligand docking stage. I believe

that by building a filtering and docking pipeline using 3D FG representations and fast 3D and 5D

SPF correlation techniques, it will be possible to scan millions of ligands with comparable accuracy to

AutoDock in around one day on readily affordable modern GPU hardware (described in more detail

below). Successfully achieving this level of performance would revolutionise structure-based drug

discovery efforts.

5.10 Harnessing State of the Art Graphics Processors

Recent advances in graphics processor unit (GPU) technology have made available incredible com-

putational power on the desktop at an affordable price. Developments in GPU technology were initially

driven by the demands of the computer graphics gaming industries, but many scientific calculations

have since been adapted to run on GPUs (Owens et al., 2007). Indeed, it is now possible to perform

calculations on a desktop computer that most scientists could only dream of just a few years ago.

For example, the current state of the art GPU from nVidia contains 240 arithmetic processor units

which together can deliver almost 1000 billion floating point operations per second (i.e. 1 Teraflop).

This corresponds to over 100 times the computational power of a conventional desktop workstation.

Until recently, it required considerable skill and specialist hardware knowledge to write programs for

GPUs. However, with the advent of the SIMT (simultaneous instructions on multiple threads) hard-

ware model, and with new software development tools such as Brook (Buck et al., 2004) and CUDA1,

it is now much easier to deploy scientific software on GPUs. For example, for MD simulations, Buck

et al. (2004) achieved nearly a 10-fold speed-up for the Gromacs software using Brook, and Stone et

al. (2007) reported speed-ups of up to a factor of 36 for NAMD using CUDA. Although there remain

significant difference between the Brook and CUDA programming models, it would appear that the

1http://www.nvidia.com/.
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forthcoming OpenCL2 specification will soon become the industry standard programming model for

cross-platform parallel processing. Naturally we will track any new developments such as OpenCL.

I have recently implemented the 1D and 3D Hex docking correlations in CUDA to obtain a speed-

up of at least 45 times compared to the same calculation on a single conventional CPU (Ritchie &

Venkatraman, 2010; Macindoe et al., 2010).

Furthermore, as part of the HPASSB project, we have extended Hex to use up to eight CPUs and

two GPUs simultaneously on a single desktop machine. This now allows exhaustive shape-based

docking calculations to be performed in a matter of seconds, thus opening the possibility of allowing

biologists to perform truly interactive “steered” docking on their desktop. It will allow much more

sophisticated models of protein flexibility to be incorporated into the calculations by trading greater

speed for higher accuracy. However, despite using efficient computational techniques, the Eigen-Hex

and 3D-Snap projects will be computationally demanding. Performing flexible docking in Eigen-Hex

will involve cross docking and energy minimising multiple protein conformations. Similarly, performing

virtual drug screening on large compound databases will involve comparing and filtering in the order of

millions of compounds. Therefore, developing efficient algorithms using modern parallel programming

models to exploit state of the art hardware will be an import aspect of future developments in structural

systems biology.

5.11 Modelling Macromolecular Assemblies

Developing high performance algorithms will also be very important in large-scale macromolecular

modelling projects. Figure 5.2 shows the crystal structures of the seven component Arp2/3 complex

(Robinson et al., 2001) which is responsible for initiating actin polymerisation in eukaryotic cells,

and the ten component yeast RNA polymerase II elongation complex (Gnatt et al., 2001) which is

involved in transcribing DNA into messenger RNA. Intriguingly, Inbar et al. (2005) demonstrated that it

is possible to build these multi-component structures from the unbound component proteins by using

a combinatorial assembly technique which requires only pair-wise docking results. It seems that

the combinatorial assembly approach works so well because each putative pair-wise arrangement

provides substantial steric constraints on how subsequent structures might be added to the emerging

complex. In other words, there are sufficient mutual steric constraints to permit a single near-native

solution to be identified. This ground-breaking work demonstrated the feasibility of assembling very

large multi-component structures. However, further research is required to develop more practical

search techniques which do not require an exhaustive combinatorial search.

Although X-ray crystallography is undoubtedly the gold standard structure determination tech-

nique, the resolution available in cryo-electron microscopy (cryo-EM) has improved considerably over

the years, and is beginning to approach that of crystallography (Stowell et al., 1998). One advantage

2http://www.khronos.org/opencl/.
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Figure 5.2: Two examples of crystallographically solved multimolecular assemblies. The structure on the left is
the seven component Arp2/3 complex (PDB code 1K8K) which is responsible for initiating actin polymerisation
in eukaryotic cells. The structure on the right is the ten component yeast RNA polymerase II complex (PDB
code 1I6H) which is responsible for transcribing DNA into messenger RNA.

of cryo-EM is that it can provide low resolution structures of very large macro-molecular assemblies

which may be difficult or impossible to solve using conventional crystallographic techniques (Frank,

2002a). In other words, cryo-EM can provide the overall shapes of very large assemblies but it is

still necessary to fill in the atomic detail in such structures. For example, the structure of the large

trans-membrane vacuolar ATPase motor (see Figure 5.3), was recently solved in this way (Muench

et al., 2009). FFT correlation techniques are increasingly being used to fit high resolution X-ray protein

structures into low resolution cryo-EM density maps (Wriggers et al., 1999; Roseman, 2000; Kovacs

et al., 2003). Such fitting or “interior docking” techniques are likely to remain very powerful approaches

for determining atomic resolution structures of very large complexes which are unlikely to be solved

using crystallographic techniques (Rossmann, 2000; Rossmann et al., 2007).

Figure 5.3: Left: illustration of the ATPase molecular motor structure showing the component protein domains
docked into the low resolution cryo-EM density map (shown in grey). Right: schematic diagram of the modelled
arrangement of the stators (grey), and rotors (blue). These images are taken from Muench et al. (2009).

On an even larger scale, Alber et al. recently showed that the overall architecture of the very

large nuclear pore complex (NPC), comprising a total of 456 proteins, may be modelled by combining
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diverse multi-resolution data on the component protein structures and their interactions (Alber et al.,

2007a; Alber et al., 2007b). Figure 5.4 shows the predicted positions of the main sub-structures in this

remarkable model. This model nicely exemplifies the future need to be able to use hybrid approaches

which can integrate diverse sources of experimental data and PPI knowledge to bridge the resolution

gap between different experimental structural data collection techniques (Elad et al., 2009; Lindert

et al., 2009).

Figure 5.4: Left: schematic overview of the NPC model-building process of Alber et al. requiring the integration
of diverse experimental data and spatial constraints. Right: localisation of the main sub-structures in the final
model. These images are taken from Alber et al. (2009a and 2009b).

The ATPase motor and the NPC are just two examples of molecular machines. Improving our

ability to model the structural biology of such molecular machines would make an enormous contri-

bution towards understanding dynamical processes within the cell (Stein et al., 2007). As well as

helping to understand the fundamental machinery of life, being able to model the structural biology of

viruses such as HIV (Ganser-Pornillos et al., 2008), and how they assemble themselves could lead to

the development of novel assembly-inhibiting therapeutic molecules (Sticht et al., 2005). I believe the

SPF algorithms and techniques presented here will have a useful role to play in the many fascinating

future challenges in structural systems biology.
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