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UNIVERSITÉ JOSEPH FOURIER de GRENOBLE
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Chapitre 1

Introduction

Ce document présente des travaux de recherche réalisés durant la période
allant de 2000 à 2005 et portant sur la modélisation de scènes dynamiques à
partir de plusieurs caméras. Ce thème constitue un axe de recherche actif du
domaine de la vision par ordinateur depuis de nombreuses années. L’objectif
général est la capacité à produire une description opératoire du contenu d’une
scène à partir de plusieurs vidéos. Au même titre que dans la vision humaine,
et selon une théorie computationnelle de celle-ci, cette description a pour objet
d’alimenter des processus cognitifs qui mènent de la perception à l’action. Le
contenu de cette description peut alors être varié, en fonction de l’action visée.
Il peut s’agir d’information sur les formes, comme la géométrie et l’apparence,
pour la navigation d’un robot ou pour virtualiser la réalité et en modifier les
aspects visuels. La description peut aussi porter sur la sémantique de la scène,
par exemple ce qui est en mouvement et de quelle manière, pour en permettre
son interprétation.

Motivation

Les applications de la modélisation de scènes dynamiques sont multiples que
ce soit en video-surveillance, en robotique ou, plus proche de nos préoccupa-
tions, dans le domaine du multimédia. C’est en effet dans ce dernier que réside
la motivation principale des travaux présentés ici, à savoir la mise en oeuvre
d’applications interactives où univers réels et virtuels se mélangent. Ces appli-
cations nécessitent une description de la réalité qui soit compatible avec celle
des environnements virtuels ; et du niveau de compatibilité qui existe entre ces
représentations dépend le niveau d’interaction accessible. Typiquement une des-
cription des formes observées permet le mélange de formes réelles et virtuelles
et la visualisation interactive du résultat, mais limite les interactions possibles
à des contacts simplifiés entre objets réels et virtuels. Pour des interactions plus
avancées, comme la manipulation d’objets virtuels, la description devra être plus
riche et contenir, par exemple, des informations sur le mouvement de la main.
À un niveau encore supérieur, une description des activités, ou des actions, qui
se déroulent dans la scène observée permettra à un système de détecter une
situation et d’y réagir de manière automatique.

Problématique

La problématique qui a été la notre dans ces travaux concerne l’acquisition
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2 CHAPITRE 1. INTRODUCTION

d’information pour des applications interactives. Cette acquisition peut être vue
comme une châıne de traitement de l’information dont les entrées sont les images
produites au cours du temps par plusieurs caméras, éventuellement en nombre
important, et dont la sortie est une séquence temporelle de modèles de types
variables : des surfaces ou des modèles articulés typiquement. Les difficultés qui
se présentent dans ce cadre sont multiples. En effet, si la géométrie de points
observés par plusieurs caméras est bien connue, plusieurs ouvrages traitent de ce
problème[Har 00, Fau 01, For 03], le problème de la modélisation de surfaces non
rigides dans le temps reste ouvert, d’autant plus si l’on considère la contrainte
temps-réel souvent nécessaire aux systèmes interactifs. Dans les très nombreux
travaux qui couvrent ce thème, assez peu considèrent le problème pratique de
l’acquisition et du traitement de vidéo multiples, encore moins proposent des
solutions qui fonctionnent en temps réel. Néanmoins, nos travaux s’inscrivent
dans la lignée de ceux, précurseurs, de l’université de Carnegie Mellon sur la
virtualisation[Nar 98, Che 00] d’évènements réels, et de ceux de l’ETH de Zurich
autour du projet Blue C [Gro 03, W0̈4] qui modélise et immerge dans un espace
virtuel des personnes distantes à l’aide de caméras et d’écrans LCD géants.
Dans les processus hors-lignes, citons l’approche du Max Planck Institute sur
Free Viewpoint Video[Car 03b] qui consiste à construire un modèle articulé et
texturé d’une personne à partir de plusieurs vidéos. Enfin toujours dans les
processus hors-lignes, l’université de Surrey [Sta 03, Hil 04] s’est aussi intéressée
à la modélisation d’avatars à partir de vidéos de personnes.

Contributions

Dans les travaux présentés dans ce document, nous considérerons le problème
de la modélisation à partir de plusieurs images de manière dynamique, c’est à
dire pour des séquences d’images dans le temps. Notre ambition dans ce do-
maine est double : il s’agit de proposer un cadre technologique qui permette
la réalisation d’applications aussi bien temps réel que hors-ligne ; il s’agit par
ailleurs de proposer des solutions aux problèmes scientifiques qui se posent et de
mettre en oeuvre ces solutions. Nos contributions sur ce thème sont multiples
et concernent les aspects scientifiques : que ce soit sur la reconstruction à partir
de silhouettes ou sur la capture de mouvement, ainsi que les aspects pratiques
comme la mise en oeuvre de la plateforme d’acquisition Grimage. D’une ma-
nière plus générale, et en rapport avec les travaux mentionnés précédemment,
nos contributions ont mené à la réalisation d’une plateforme d’interactions tri-
dimensionnelles où l’ensemble du corps agit sur les mondes virtuels.

Approche

Les problèmes que pose la mise en oeuvre de ces applications sont nombreux.
Ils vont de l’acquisition d’images à la modélisation tridimensionnelle ainsi qu’à
la gestion des interactions. Ce document traite plus particulièrement des pro-
blèmes scientifiques concernant la modélisation. S’il n’y pas de philosophie gé-
nérale dans les travaux que nous avons menés sur ce thème, quelques directions
fortes se dégagent néanmoins. En premier lieu notre approche a une structure
ascendante (bottom-up) où les données, les images, servent à produire des infor-
mations tridimensionnelles sur les formes observées en faisant intervenir peu de
connaissances a priori. L’idée ici est de produire une description géométrique
quelque soit le contenu de la scène. Ce modèle est bien adapté au contexte qui
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est le notre, à savoir des scènes dynamiques et donc des contenus tridimension-
nels pour lesquels il est difficile d’avoir une connaissance a priori. En deuxième
lieu, notre approche modélise les formes observées au sens de surfaces en mouve-
ment dans l’espace et non de points ou de segments. Pour cela, les informations
géométriques que nous considérons dans les images sont les silhouettes qui ca-
ractérisent la projection de l’ensemble de la forme observée et non d’une partie
de cette dernière.

Contexte matériel

Fig. 1.1 – La plateforme Grimage.

Les recherches présentés dans ce document sont très fortement liées à la
plateforme d’acquisition Grimage (figure 1.1). Cette plateforme est constituée de
PCs en grappe, de caméras standard et de multiples projecteurs constituant un
mur d’écrans de haute résolution. L’ensemble des tâches à gérer sont distribuées
sur l’ensemble des ressources disponibles à l’aide d’un intergiciel[All 05]. Cette
plateforme a été mise en oeuvre durant la période des travaux reportés ici et
a permis d’acquérir les données nécessaires à la validation de nos méthodes.
Plus remarquablement, elle a montré, au travers de nombreuses démonstrations
publiques, l’impact qu’une application interactive même simple pouvait avoir
sur les gens et a confirmé l’intérêt que présente ses applications pour tout un
chacun.

Contenu du document

L’architecture générale de la châıne d’acquisition que nous avons constituée
est montrée figure 1.2. Les différents éléments de cette châıne ont fait l’objet
de travaux de recherche et développement. Ce document traite uniquement des
contributions scientifiques qui ont été faites pour la mise en oeuvre de cette
châıne d’acquisition. Ces contributions ne concernent pas toutes les parties de la
châıne d’acquisition mais une majorité d’entre elles. En particulier l’acquisition
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Fig. 1.2 – L’architecture du système d’acquisition.

d’images, l’extraction de silhouettes ou le calibrage classique des caméras pour
lesquels des solutions satisfaisantes existent ne seront pas évoqués ici, même si
elles ont fait l’objet d’un travail de développement important. Le document est
constitué d’une partie introductive en Français suivi d’articles publiés dans la
période de 2000 à 2005. L’organisation des diverses parties est celle de la châıne
d’acquisition. Dans un premier temps, les notions utiles à la compréhension
du document seront introduites dans le chapitre 1. Le problème du calibrage
de caméra à l’aide des silhouettes, qui constitue une excellente alternative à
une calibration standard, sera ensuite évoquée dans le chapitre 2. L’estimation
des formes observées qui constitue une partie importante de nos travaux sera
traitée en profondeur dans le chapitre 3. L’estimation du mouvement lorsqu’une
personne est observée sera enfin étudiée dans le chapitre 4 avant de livrer un
bilan et des perspectives à ces travaux.



Chapitre 2

Définitions

Dans ce chapitre, nous introduisons diverses notions relatives aux silhouettes
et utiles à la lecture de l’ensemble du document. Ces notions concernent les
formes 3D associées à un ensemble de silhouettes, ainsi que l’étude de leurs
structures topologiques. En dehors de Laurentini [Lau 94] qui a donné la défini-
tion théorique de l’enveloppe visuelle dans le cas où une infinité de point de vue
existent, peu d’auteurs se sont intéressés aux formes dans l’espace définis par un
ensemble de silhouettes. C’est l’objet des travaux introduits dans ce chapitre. Il
s’agit de fournir non seulement un cadre formel à l’étude de l’enveloppe visuelle
mais aussi de mettre en évidence sa structure et d’introduire les formes visuelles
dont l’enveloppe visuelle est la boite englobante. Les définitions correspondantes
sont le résultat d’études réalisées à l’INRIA ainsi qu’en collaboration avec Svet-
lana Lazebnik et Jean Ponce de l’université de l’Illinois à Urbana Champaign.
Elles se trouvent dans plusieurs publications [Laz 01, Boy 03, Lap 06] qui se
trouvent respectivement pages [41,48,56] de ce document.

2.1 Les primitives

Nous considérons un ensemble d’images calibrées dans lesquelles les zones
d’intérêts - correspondant à un ou plusieurs objets de la scène observée - ont
été identifiées. Les primitives qui nous intéressent sont celles qui permettent de
décrire les régions d’intérêt dans l’image, ainsi que les régions correspondantes
dans l’espace, c’est à dire celles se projetant dans une ou plusieurs silhouettes.

2.1.1 Les primitives associées à un point de vue

La région 2D dans laquelle un objet, un tore par exemple dans la figure
2.1, se projette dans une image constitue une silhouette de cet objet. Chaque
silhouette définie une région 3D, son cône de vue, qui contient l’ensemble des
points de l’espace se projetant sur la silhouette, comme cela est illustré dans
la partie droite de la figure 2.1. Pour une scène complexe, la silhouette peut
être constituée de plusieurs parties présentant des trous et non nécessairement
connexes dans l’image. Pour gérer ces situations complexes, nous associons à
chaque contour fermé de l’image un cône et nous considérons le cône de vue
d’une silhouette comme l’intersection des cônes des contours constituant cette
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6 CHAPITRE 2. DÉFINITIONS

silhouette (voir [Boy 03] page 48). L’intérêt de cette démarche est de pouvoir
facilement ramener le calcul de l’intersection de plusieurs cônes de vue à celui
de l’intersection de contours dans les images. Par ailleurs, un cône de vue est
tangent à la surface de la scène observée le long d’une courbe appelée contour
d’occultation ou rim en Anglais, comme illustré 2.2.

Fig. 2.1 – Les silhouettes, en noir, d’un tore et, à droite, le cône de vue associée
à une silhouette.

2.1.2 Les primitives associées à plusieurs points de vue

Les surfaces de deux cônes de vues d’une même scène s’intersectent selon
des courbes dites courbes d’intersection de cônes. Ces courbes d’intersection
n’appartiennent pas à la surface observée, sauf aux points frontières [Cip 95]
qui sont des points particuliers de la surface observée où 2, ou plus, contours
d’occultations s’intersectent. Courbes d’intersection et contours d’occultations
se rejoignent donc aux points frontières comme cela est illustré dans la figure
2.2. Les bandes de cônes ou cône strips sont les parties de la surface d’un cône
de vue qui se trouvent à l’intérieur d’autres cônes.

Les surfaces de 3 cônes de vue s’intersectent en des points particuliers appelés
points triples (voir l’exemple de la figure 2.3). Ces points n’appartiennent pas à
la surface observée sauf dans le cas particulier où les points de vue des cônes et
le point observé sont coplanaires. Dans ce cas, le point triple est aussi le point
frontière des cônes considérés 2 à 2. Des situations de ce genre se présentent
notamment lorsque les points de vue sont colinéaires. Les surfaces de 4 cônes de
vue ne s’intersectent pas dans une situation générique ; le cas de points de vue
colinéaires constituant un exemple de situation non-générique.

2.2 Les maillages

Plusieurs images, issues de différents points de vue, définissent plusieurs
contours d’occultations sur la surface de la scène observée. Ces contours consti-
tuent un maillage que nous appelons simplement le maillage des contours d’oc-
cultations, ou le rim mesh en Anglais. Par ailleurs, les cônes de vue associés
aux différents points de vue ont un volume commun dans l’espace, l’enveloppe
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Fig. 2.2 – L’intersection de 2 cônes de vue : l’exemple d’un objet sphérique.

visuelle, délimité par un autre maillage constitué de courbes d’intersection de
cônes, de points frontières et de points triples. Ces 2 maillages, l’un sur la surface
observée et l’autre sur la surface de l’enveloppe visuelle, sont étroitement liés ;
ils se rejoignent aux points frontière. Nous avons identifié ces maillages dans
[Laz 01], page 41, ils permettent de comprendre la structure de l’enveloppe vi-
suelle, et donc d’en faciliter son calcul. Ils permettent aussi de relier l’enveloppe
visuelle à la surface observée, menant ainsi à la définition des formes visuelles.

rims triple points

B C

A

A

B C

Fig. 2.3 – A gauche l’intersection de 3 cônes de vue pour un objet sphérique et
à droite le graphe correspondant pour le maillage des contours (traits épais) et
celui l’enveloppe visuelle (traits fins). Les points frontières sont représentés par
des disques et les points triples par des carrés.

La figure 2.3 montre un exemple de ces maillages dans le cas d’un objet sphé-
rique. le maillage des contours d’occultation relie entre eux les points frontières
et le maillage de l’enveloppe visuelle relie points frontières et points triples au
travers des courbes d’intersection de cônes. Sur la figure apparaissent aussi en
couleurs les bandes de contribution des différents cônes. L’enveloppe visuelle est
donc constituée de bandes de cônes à l’intérieur desquelles circulent les contours
d’occultations, qui matérialisent le contact entre l’enveloppe visuelle et la sur-
face. Cet exemple intuitif illustre un cas théorique simple. Dans la pratique, en
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raison des occultations, l’enveloppe visuelle est constituée de bandes de cônes
qui ne contiennent pas nécessairement un contour d’occultation. Par ailleurs,
toujours en pratique et en raison des imprécisions numériques, les cônes de vue
ne sont pas exactement tangents et les points frontières deviennent alors des
facettes connectant entre eux des points triples. De fait, comme nous le verrons
dans la partie estimation 4, l’enveloppe visuelle réelle est constituée de facettes
reliant des points triples.

2.3 Les formes dans l’espace

Nous nous intéressons dans cette partie aux formes 3D qui correspondent
à un ensemble de silhouettes donné. Ces formes incluent bien sur l’enveloppe
visuelle, qui est souvent définie de manière intuitive comme le volume maximal
compatible avec les silhouettes, mais aussi d’autres formes dont celle observée
qui se trouve à l’intérieur de l’enveloppe visuelle. L’enveloppe visuelle est en
effet la boite englobante de toutes les formes compatibles avec un ensemble de
silhouettes. Son intérêt est de fournir un modèle relativement proche de la scène
observée lorsque le nombre de caméras est important. Néanmoins, il existe de
meilleures approximations de la surface observée, dont les surfaces auxquelles
l’enveloppe visuelle est tangente. L’objectif des travaux introduits dans cette
partie est donc, dans un premier temps, de fournir une définition mathématique
reliant les primitives définies précédemment aux enveloppes visuelles, ce qui en
permet le calcul simplifié et rapide. Cette définition se trouve dans [Boy 03],
page 48. Dans un deuxième temps, nous nous intéresserons aux formes visuelles,
une famille plus large de formes dans l’espace qui inclut l’enveloppe visuelle
et les formes auxquelles l’enveloppe visuelle est tangente. L’intérêt est de four-
nir une meilleure approximation de la surface observée, en particulier lorsque
le nombre de caméras est faible, tout en conservant la rapidité de calcul. Les
formes visuelles ont été étudiées dans [Lap 06], page 56. Cette partie résume les
définitions, des détails se trouvent dans les publications [Boy 03, Lap 06]. Les
méthodes d’estimation des formes sont quant à elles discutées dans le chapitre 4.

2.3.1 L’enveloppe visuelle

Le terme d’enveloppe visuelle, visual hull a été introduit par Laurentini [Lau 94]
pour décrire l’objet maximal dont les silhouettes correspondent à celles don-
nées. Dans le cas où un objet est observé suivant une infinité de points de vue,
l’enveloppe visuelle correspond alors à l’objet observé sans ses concavités1. Les
contours d’occultations glissent en effet sur les concavités et les silhouettes ne
fournissent donc aucune information sur ces parties. Une autre manière de défi-
nir l’enveloppe visuelle est de considérer le volume à l’intersection de l’ensemble
des cônes de vue. Cette définition, équivalente à celle de l’objet maximal, s’avère
en revanche plus pratique dans le cadre de l’estimation de l’enveloppe visuelle.
C’est celle qui est utilisée par la majorité des méthodes d’estimation, en parti-
culier les méthodes volumiques. En revanche, les méthodes précises déterminent
la surface de l’enveloppe visuelle et considèrent les contours des silhouettes dans
les images. Nous avons donc proposé dans [Boy 03] une définition de l’enveloppe

1Il est entendu ici les régions de l’espace dont les points ne peuvent être vus depuis des
lignes de vue qui n’intersectent pas l’objet observé.
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visuelle basée sur les contours dans les images. Cette définition étend par ailleurs
le concept de l’enveloppe visuelle définie auparavant pour des caméras ayant un
espace d’observation commun à celui de caméras ayant des points de vue quel-
conques. En effet, une caméra ne voit pas nécessairement l’ensemble de la scène
et son influence dans le calcul de l’intersection des cônes de vue doit être limitée
à son domaine de visibilité. Les détails se trouvent dans le papier, page 48.

Fig. 2.4 – L’exemple du tore, de gauche à droite : les cônes de vues ; l’enveloppe
visuelle intersection ; la surface du tore à l’intérieur de l’enveloppe visuelle.

2.3.2 Les formes visuelles

L’enveloppe visuelle constitue une boite englobante dont les faces sont tan-
gentes à la surface observée. Comme cela a été dit précédemment, cette boite
englobante est plus ou moins précise en fonction du nombre de point de vue.
Des méthodes existent pour améliorer l’enveloppe visuelle à l’aide de l’infor-
mation photo-métrique, lorsque celle-ci est cohérente dans plusieurs images, par
exemple [Her 04, Sin 05, Fur 06]. Notre objectif ici est différent, il s’agit de four-
nir une meilleure approximation à partir des silhouettes uniquement. L’intérêt
est que le modèle produit constitue une meilleure initialisation que l’enveloppe
visuelle sans nécessiter l’usage d’informations parfois difficile à obtenir, comme
par exemple la cohérence photo-métrique lorsque peu de vues sont disponibles.
L’idée directrice est que l’enveloppe visuelle est constituée de bandes de cônes
de vue et qu’à l’intérieur de ces bandes se situe le contour d’occultation où s’ef-
fectue le contact entre la surface et l’enveloppe visuelle. Les formes visuelles,
visual shapes, partagent donc avec l’enveloppe visuelle la notion de bandes de
cônes ; toutes les formes visuelles associées à ensemble donné de silhouettes pos-
sèdent les mêmes bandes de cônes mais de largeurs différentes. En particulier,
en réduisant la largeur des bandes, on obtient, à la limite, des formes visuelles
dont le contact avec l’enveloppe visuelle se réduit à une courbe à l’intérieur des
bandes. Le choix de la position de la courbe à l’intérieur des bandes peut se faire
ensuite en supposant la surface de la forme lisse par exemple.

Les formes visuelles englobent l’enveloppe visuelle qui matérialise la limite de
ces formes pour un ensemble donné de silhouettes. Il est à noter que le processus
de rétrécissement des bandes de cônes s’obtient naturellement, dans les parties
non concaves, en augmentant le nombre de points de vue considéré lors du calcul
de l’enveloppe visuelle. Une conséquence de cela est que pour un grand nombre
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de points de vue, la différence entre les formes visuelles sera faible. Plus de
détails concernant les formes visuelles sont donnés dans [Lap 06] page56.

Fig. 2.5 – Exemples de formes visuelles, de gauche à droite : l’enveloppe vi-
suelle et différent niveaux de subdivision de cette dernière. Toutes ces formes
produisent les même silhouettes.



Chapitre 3

Estimation du calibrage à

l’aide des silhouettes

Dans le chapitre précédent, nous avons introduit plusieurs notions liées aux
silhouettes, en particulier les cônes de vue. Dans ce chapitre, nous allons voir
que les cônes de vues d’une même scène vérifient certaines contraintes et que ces
contraintes peuvent servir à déterminer le calibrage des caméras. Le calibrage
est une étape importante des processus de modélisation à partir d’images. Il
consiste à déterminer les caractéristiques et les poses des caméras impliquées
dans le processus de modélisation. Ce calibrage peut être faible ; la structure
projective de l’enveloppe visuelle peut, en effet, être déterminée à partir de la
géométrie épipolaire orientée [Laz 01]. Néanmoins, dans un contexte pratique
un calibrage complet est souvent nécessaire, en particulier pour les applications
de réalité mixte où les modèles produits sont insérés dans des environnements
virtuels. Le calibrage des caméras peut être obtenu par des méthodes stan-
dards, à l’aide d’objets de références dans la scène par exemple. La plateforme
Grimage dispose de logiciels pour effectuer cela dans une étape préliminaire à
l’acquisition. Cependant, l’expérience pratique montre qu’un calibrage n’est va-
lide que pour une durée limitée et que les méthodes de calibrage standards, qui
nécessitent la mise en place d’objets de référence dans la scène, sont donc peu
adaptées pour des recalibrage fréquents. L’idée introduite ici est donc d’explorer
la possibilité d’utiliser les silhouettes, qui sont disponibles naturellement dans
le processus de modélisation, pour effectuer le calibrage des caméras, et plus
particulièrement pour remettre à jour ce calibrage. Les travaux correspondants
apparaissent dans [Boy 06] page 65.

Utiliser les silhouettes pour obtenir des informations sur la configuration des
caméras n’est pas une idée nouvelle ; Rieger, en 1986, a identifié des points qui
appartiennent à plusieurs contours d’occultations sur la surface, les points fixes,
et propose d’utiliser ces points pour déterminer la rotation de la caméra. Ces
points furent par la suite appelés points frontières [Cip 95] et plusieurs méthodes
en font usage pour déterminer le calibrage des caméras [Jos 95, Sin 04, Fur 04].
Néanmoins, les points frontières sont difficiles à localiser dans les images et ne
fournissent que des contraintes locales sur les cônes de vue. Une autre direction
est suivie dans les travaux introduits ici et repose sur l’idée que les cônes de vue
d’une même scène s’intersectent intégralement dans l’espace lorsque le calibrage

11
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est exact. Une idée similaire apparâıt dans [Her 06] où la cohérence entre la
projection de l’enveloppe visuelle dans une image et la silhouette dans cette
image est considérée pour le calibrage de tables tournantes.

Dans la suite du chapitre, les contraintes fournies par un ensemble de sil-
houettes sont tout d’abord discutées et des critères pratiques pour le calibrage
sont ensuite étudiés.

3.1 La cohérence géométrique des silhouettes

Le calibrage à l’aide de silhouettes repose sur un principe simple : toutes les
lignes de vue des silhouettes sont issues d’une même scène et donc tous les cônes
de vue doivent s’intersecter de manière exacte dans l’espace. Ce principe de co-
hérence géométrique s’applique lorsque les silhouettes ainsi que le calibrage sont
exacts. Dans un processus de calibrage, l’hypothèse faite est que les silhouettes
sont exactes ; la cohérence géométrique que les cônes de vue doivent alors vérifier
sert à estimer les caractéristiques des caméras. Dans les images, cette cohérence
géométrique se caractérise par le fait que la projection de l’enveloppe visuelle,
ou l’intersection des cônes de vue, recouvre entièrement les silhouettes. La figure
3.1 illustre ce principe.

Fig. 3.1 – La cohérence géométrique des cônes de vue : les projections de l’en-
veloppe visuelle (en noir) recouvrent les silhouettes (en gris) en totalité lorsque
le calibrage est exact (à gauche) ; partiellement seulement dans le cas contraire
(à droite).

Une première remarque concernant le principe énoncé précédemment est qu’il
n’identifie pas nécessairement de façon unique un calibrage. En effet, plusieurs
configurations des caméras peuvent éventuellement générer le même ensemble
de silhouettes, c’est le cas notamment lorsque l’objet observé présentent des
symétries : une sphère par exemple a la même silhouette suivant un nombre
infini de points de vue. Néanmoins, les symétries parfaites n’existent pas avec les
objets réels et la considération de plusieurs objets simultanément, ou d’un même
objet à différentes positions dans une séquence d’images, limite ces situations.
Une deuxième remarque est que la cohérence géométrique dont il est question
est globale dans le sens où l’ensemble des silhouettes sont impliquées. Elle a, par
contre, des conséquences plus locales, entre 2 cônes de vue en particulier ainsi
qu’aux points particuliers que constituent les points frontières.
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3.1.1 La contrainte de tangence des cônes de vue 2 à 2

Si l’on considère les cônes de vue de la même scène 2 à 2, alors la cohérence
géométrique implique que toutes les lignes de vue d’un cône intersectent l’autre
et vice-versa. Cette contrainte de tangence des cônes 2 à 2 est illustrée dans la
figure 3.2.

S i S j

P(C ) P(C )

C j
C

i

O

j ii j

Fig. 3.2 – Dans l’image i, à gauche, la silhouette S〉 est incluse dans la projection
Pi(S|) du cône associé à la silhouette S| et inversement dans l’image j à droite.

Cette contrainte à l’intérêt d’être facile à vérifier dans les images. En re-
vanche, pour un nombre n élevé d’images la complexité en O(n) du nombre
de contraintes peut s’avérer rédhibitoire. Un autre aspect important ici est de
savoir si le respect de ces contraintes locales par paires de cônes implique en
retour le respect de la contrainte globale de cohérence géométrique ? la réponse
est que les 2 contraintes ne sont pas exactement équivalentes ; la différence pro-
vient du fait qu’avec la cohérence géométrique globale, les cônes doivent non
seulement être tangents 2 à 2 mais présenter en plus une intersection commune
dans l’espace.

3.1.2 Le lien avec les points frontières

Les points frontières sont des points particuliers où les surfaces de 2 cônes
sont tangentes. Ces points appartiennent à la surface de l’objet observé ainsi qu’a
l’enveloppe visuelle (cf. 2). Leur intérêt pour le calibrage de caméras provient
du fait qu’ils représentent des points sur la surface de l’objet pour lesquels 2,
ou plus, projection images sont disponibles. La contrainte qui en découle, la
contrainte épipolaire généralisée[Cip 95], est que les droites épipolaires de ces
points doivent être tangentes à la silhouette, comme cela est illustré figure 3.3.
De nombreuses méthodes de calibrage en font usage, notamment [Jos 95, Sin 04,
Fur 04], néanmoins la localisation des points frontières dans les images reste une
opération difficile.

Le lien avec les contraintes évoquées précédemment est que la cohérence géo-
métrique implique la présence de points frontières et le respect de la contrainte
épipolaire généralisée en ces points. Pour la contrainte de tangence des cônes,
cette dernière est équivalente au respect de la contrainte épipolaire généralisée à
un sous-ensemble des points frontières : ceux qui appartiennent aux enveloppes
convexes des silhouettes. Réciproquement, et de la même manière que pour la
contrainte de tangence des cônes, les points frontières lient les images 2 à 2
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S i S j
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CjC
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point frontière

Fig. 3.3 – Les points frontières sont les points qui se projettent sur 2, ou plus,
contours de silhouettes. Une fois identifiés dans les images, ils fournissent des
contraintes sur la configuration des caméras.

et ne constituent donc pas une équivalence exacte de la cohérence géométrique
globale.

3.2 Les critères de calibrage

Les cônes de vue associés à un ensemble de silhouettes doivent vérifier cer-
taines contraintes géométriques comme cela a été vu dans la partie précédente.
Ces contraintes géométriques sont satisfaites lorsque le calibrage des caméras est
exact, sous les hypothèses que les silhouettes sont exactes et qu’une seule confi-
guration des caméras produit le jeux de silhouettes considéré. Les critères de
calibrage qui en découlent évaluent le respect de ces contraintes et peuvent être
d’ordres différents : quantitatif ou qualitatif. Les critères quantitatifs sont des
fonctions de distances dont l’objectif principal est d’être utilisées dans des pro-
cessus d’optimisation. Une distance reste par contre relative à une métrique et
son interprétation n’est pas toujours aisée. Il existe donc aussi des critères qua-
litatifs dont la signification est plus évidente qu’une distance mais dont l’usage
dans un processus d’optimisation peut s’avérer délicat.

3.2.1 Critères quantitatifs

Un critère quantitatif correspond à une mesure de distance et plusieurs pos-
sibilités s’offrent à nous si l’on considère les critères de cohérence évoqués pré-
cédemment. Pour la cohérence globale, une possibilité est de mesurer le recou-
vrement entre la projection de l’enveloppe visuelle et la silhouette : la différence
entre les 2 surfaces peut par exemple servir de mesure. Cette idée est utilisée
dans [Her 06] ou les pixels des silhouettes n’appartenant pas à la projection de
l’enveloppe visuelle sont dénombrés dans les images. Ce critère s’avère en pra-
tique plus qualitatif que quantitatif et nous reviendrons dessus dans la partie
suivante. Une autre mesure possible basée sur les points frontières consiste à éva-
luer la cohérence épipolaire en ces points : la distance entre un point frontière
et la droite épipolaire de son correspondant dans une autre image par exemple.
Ce critère évalue la tangence des cônes 2 à 2 et non directement la cohérence
globale.

Dans [Boy 06] page 65, nous proposons un critère quantitatif qui évalue la
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distance entre 2 cônes. Cette distance est basée sur celle entre une ligne de
vue et un cône. L’intérêt par rapport aux critères mentionnés plus haut est
qu’il s’agit bien d’une distance, donc d’une fonction continue et différentiable
facilement utilisable dans une optimisation, et que le critère ne dépend pas des
points frontières et ne nécessite donc pas leurs localisations. La mise en oeuvre se
fait simplement, par une approche des moindres carrés. Ce critère reste associé
à la tangence des cônes 2 à 2 et non à la cohérence globale des silhouettes.
Néanmoins, mentionnons ici que la cohérence globale se prête mal aux critères
quantitatifs car toutes les configurations ou les cônes de vue ne définissent pas
d’enveloppe visuelle sont considérées comme équivalentes, or il s’agit là d’une
vaste majorité des configurations. En revanche, la cohérence globale débouche
sur des critères qualitatifs qui permettent d’évaluer finement un calibrage comme
nous le verrons dans la partie suivante. La figure 3.4 illustre le principe de
l’optimisation d’un calibrage à l’aide de la distance entre cônes de vue.

Fig. 3.4 – Une illustration de la minimisation des distances entre cônes de vue.
De gauche à droite : la configuration initiale des caméras pour laquelle il n’y a
pas d’enveloppe visuelle ; en rouge les configurations intermédiaires des caméras
obtenues à des itérations successives de l’algorithme d’optimisation.

Dans l’exemple ci-dessus, le calibrage des caméras s’obtient par optimisation
des paramètres des caméras. Une question cruciale est alors comment obtenir
des valeurs initiales pour ces paramètres ? comme élément de réponse, notons
que dans de fréquentes situations, ces valeurs initiales sont disponibles, c’est le
cas notamment de beaucoup de plateformes d’acquisition où les caméras sont
fréquemment aux mêmes positions. Par ailleurs, notons aussi que les points
frontières permettent d’obtenir de telles valeurs même si leur localisation est
imparfaite.

3.2.2 Critères qualitatifs

Les critères quantitatifs ne permettent pas toujours d’interpréter un résul-
tat. Dans le cadre du calibrage à partir de silhouettes, nous avons donc proposé
des critères qui permettent d’évaluer la qualité combinée d’un ensemble de sil-
houettes et d’une configuration de caméras. Ces critères sont tous basés sur la
cohérence globale des silhouettes et donc sur le fait que les cônes de vue as-
sociés aux silhouettes définissent une enveloppe visuelle et que cette dernière
recouvre complètement, après projection dans les images, les silhouettes. Le
premier critère est celui mentionné précédemment, et par ailleurs proposé dans
[Her 06], qui consiste à compter dans les silhouettes les pixels appartenant à la
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Fig. 3.5 – La mesure de la cohérence globale des silhouettes par pixel dans les
images : à gauche les silhouettes et la configuration des caméras sont exactes, à
droite la configuration des caméras a été modifiée.

projection de l’enveloppe visuelle. Ce critère évalue bien la cohérence globale
des silhouettes mais présente le désavantage d’un niveau de discrétisation peu
précis ; pour chaque pixel, la cohérence globale est représentée par 2 niveaux
seulement, correspondant au fait que le pixel soit à l’intérieur ou non de la pro-
jection de l’enveloppe visuelle. Une amélioration naturelle de ce critère consiste
à compter, pour chaque pixel, le nombre de cônes qu’intersecte sa ligne de vue.
Pour n caméras, ce nombre doit être n−1. D’autres améliorations sont possibles
pour affiner encore plus le critère, comme cela est précisé dans [Boy 06] page 65
et illustré dans la figure 3.5



Chapitre 4

Estimation des formes

visuelles

Une partie centrale des travaux présentés dans ce mémoire concerne l’estima-
tion des formes observées à partir de plusieurs point de vue, ces formes pouvant
évoluer dans le temps. Ce thème constitue un axe de recherche important de la
communauté vision depuis plusieurs décennies. Plusieurs raisons expliquent cet
engouement dont notamment le fait que le processus de vision humain permet
de percevoir les formes tridimensionnelles et que cela enrichit de manière consi-
dérable notre perception du monde. Du point de vue de la vision artificielle,
l’intérêt de la modélisation tridimensionnelle est double ; il s’agit bien sur de
produire de manière automatique des modèles réalistes de notre environnement
mais aussi d’obtenir par ce biais une représentation compacte qui englobe tous
les points de vue d’un objet ou d’une scène, et permet donc de reproduire ces
points de vue à volonté. Les applications qui en découlent couvrent un éventail
assez large : la navigation, la modélisation, la reconnaissance et plus particu-
lièrement dans le cadre des travaux présentés ici, les interactions entre mondes
virtuels et réels.

L’estimation de formes à partir de plusieurs vues peut se faire à l’aide de
différentes primitives dans les images : des points, des contours ou des régions.
Nous considérons dans ce document les silhouettes qui sont les régions dans
l’image correspondant aux objets d’intérêts d’une scène. Dans le cadre de l’es-
timation de formes, les silhouettes présentent de sérieux avantages par rapport
aux autres primitives. À la différence des points ou contours, les silhouettes ne
souffrent pas des occultations et ne sont pas dépendantes de critères, souvent
instables, comme la cohérence photo-métrique. Elles peuvent toujours être ex-
traites dans les images, par des techniques standard de soustraction de fond
notamment. Par ailleurs, un ensemble de silhouettes définit directement une
forme dans l’espace, une surface ou un volume, et non une représentation dis-
crète de cette forme comme cela est le cas avec des primitives de types points ou
contours. De plus, de nombreuses méthodes relativement simples à implémenter
sont apparues pour estimer cette forme. Pour ces raisons, les silhouettes sont
très largement utilisées dans la communauté vision.

17



18 CHAPITRE 4. ESTIMATION DES FORMES VISUELLES

Parmi les premiers travaux de modélisation à partir de silhouettes, ceux de
Baumgart en 1974 [Bau 74] constituent une contribution majeure où les princi-
paux éléments de ce type de modélisation sont identifiés : les silhouettes dans
les images définissent par rétro-projection des régions dans l’espace à l’intérieur
desquels se trouve les objets d’intérêts et Baumgart propose de calculer l’inter-
section de ces régions à l’aide des opérateurs d’Euler. Cette intersection définit
un volume dans l’espace qui englobe les objets à modéliser de manière plus ou
moins précise en fonction du nombre de point de vue considéré. Ce volume ap-
proximant sera par la suite communément appelé enveloppe visuelle, à l’initiative
de Laurentini[Lau 94]. Depuis Baumgart, les silhouettes ont été très largement
utilisées dans les communautés de la vision par ordinateur et du graphisme.
Les méthodes de calcul qui en découlent suivent deux directions distinctes : une
direction déterministe où les silhouettes et le calibrage des caméras sont sup-
posés exactes ; et une direction probabiliste où des incertitudes sont introduites
dans ces données. La structure de ce chapitre reflète cet aspect. Les approches
déterministes que nous proposons ont été motivées par le besoin de méthodes
de modélisation précises et rapides, notamment dans le cadre d’application in-
teractive et donc temps réel. Elles sont présentées dans la première partie de ce
chapitre. Ces méthodes présentent en revanche une forte dépendance à la qua-
lité des silhouettes dans les images et du calibrage des caméras. Pour remédier
à cela, nous avons aussi étudié une approche probabiliste dont les principes sont
introduits dans la deuxième partie du chapitre. Enfin, la troisième partie du
chapitre traite de l’implémentation distribuée des algorithmes déterministes sur
une grappe de PC en vue d’applications interactives.

4.1 Approches déterministes

Les approches déterministes reposent sur l’hypothèse que les silhouettes,
ainsi que le calibrage des caméras, sont exacts. Cette hypothèse est bien sur
très forte, néanmoins elle s’avère réaliste lorsque l’environnement d’acquisition
est contrôlé, soit lorsque l’environnement est statique et d’aspect de préférence
uniforme, et lorsque les caméras sont fixes. Les approches existantes se classent
ensuite en deux catégories principales, les approches volumiques et les approches
surfaciques, à laquelle s’ajoute une approche purement image proposée par Ma-
tusik et al. [Mat 00] qui n’estime pas l’enveloppe visuelle mais ces projections
images. Les approches volumiques considèrent une discrétisation de l’espace en
cellules élémentaires appelés voxels (volume élément par analogie avec les pixels).
L’espace discret ainsi obtenu est ensuite sculpté de façon à ne conserver que les
voxels appartenant à l’enveloppe visuelle, en d’autres termes, les voxels se pro-
jetant à l’intérieur de toutes les silhouettes considérées. Dans cette catégorie,
une première approche de Martin et Aggarwal [Mar 83] utilisait des cellules
parallélépipédiques alignées avec les axes de coordonnées. Par la suite, des amé-
liorations furent proposés, notamment les octrees [Chi 86] et des méthodes de
calcul efficaces [Sze 93, Nie 94, Che 00]. Les approches reposant sur une dis-
crétisation de l’espace présentent un avantage certain qui est la robustesse. En
revanche, elles sont clairement limitées par le compromis entre précision et com-
plexité qui découle de la discrétisation.

Les approches surfaciques suivent une stratégie différente, les éléments de
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la surface de l’enveloppe visuelle sont estimées en intersectant les cônes de
vue associés aux silhouettes. C’est la direction que prend initialement Baum-
gart [Bau 74], bien avant les discrétisations voxéliques rendues possibles par
l’extension des capacités de mémoire des ordinateurs. Cette direction sera en-
suite reprise à la fin des années 90 en raison de la précision du résultat qui peut
être obtenue[Sul 98]. Baumgart utilisait à l’origine les opérateurs d’Euler pour
effectuer l’intersection deux à deux des cônes de vue polyédriques associés à des
silhouettes polygonales dans les plans images. Dans la même veine, les repré-
sentations Brep (Boundary representation) peuvent être utilisées pour effectuer
ce calcul [Li 02], ainsi que les représentations CSG (Constructive Solid Geome-
try) [Isi 02]. Ces dernières approches ont le mérite de la simplicité : des librairies
standards du domaine public, CGAL [CGA ] par exemple, peuvent réaliser cette
opération. En revanche, elles n’utilisent pas la spécificité du problème, à savoir
que les cônes de vue ne sont pas des polyèdres généraux mais des polyèdres
infinis issus de la rétro-projection de silhouettes planes, avec pour conséquence
pour ces approches peu de robustesse et donc de fréquentes situations sans ré-
sultat, ainsi que des temps de calcul dissuasifs pour de nombreuses applications.

L’enveloppe visuelle constitue une boite englobante de l’objet, ou de la scène,
observé. Partant de cette constatation, plusieurs travaux proposent d’estimer
une surface à laquelle l’enveloppe visuelle est tangente. Dans [Cip 92, Vai 92,
Boy 95], des premières solutions locales sont proposées ; elles permettent de dé-
terminer des points de contact entre surface et enveloppe visuelle le long des
lignes de vue des sommets des silhouettes. D’autres approches [Cro 98, Kan 01,
Bra 04, Lia 05] exploitent le principe de dualité entre points et plans dans l’es-
pace 3D et estiment la surface localement duale de l’enveloppe visuelle, c’est à
dire la surface ayant un point de contact dans chaque face de l’enveloppe vi-
suelle. Les approches qui estiment une surface tangente à l’enveloppe produisent
de meilleures approximations que celle que constitue l’enveloppe visuelle. Néan-
moins, les travaux mentionnés n’exploitent pas l’ensemble des informations four-
nies par les silhouettes et souffrent de singularités fréquentes qui rendent leur
exploitation difficile.

Comme cela a été vu dans le chapitre des définitions, nous regroupons les
notions d’enveloppe visuelle et de surface duale de l’enveloppe visuelle sous une
seule et même définition, celle des formes visuelles, dont l’intérêt est de fournir
un cadre unifié pour la description de formes 3D dont les projections images
correspondent à un ensemble donné de silhouettes. Pour estimer ces formes,
nous avons développé des méthodes appartenant à la catégorie des approches
surfaciques en raison de leur précision et de leur rapidité. Ces méthodes calculent
les intersections des lignes de vue des sommets des silhouettes avec les formes
visuelles. Ces intersections sont ensuite maillées à l’aide de la triangulation de
Delaunay pour produire une surface constituée de facettes triangulaires. Dans le
cas de l’enveloppe visuelle, la surface ainsi obtenue est proche de l’intersection
des cônes de vues sans être exactement cette dernière du fait que les intersections
ne sont pas calculées sur toute la surface des cônes de vue mais uniquement pour
les lignes de vue des sommets des silhouettes. Dans le cas de l’enveloppe visuelle,
il est possible de déterminer la surface de manière exacte sans prendre en compte
l’ensemble des lignes de vue des cônes et nous avons proposé une méthode dans
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ce sens.

4.1.1 Les formes visuelles par triangulation de Delaunay

Fig. 4.1 – Les différentes étapes de l’estimation des formes visuelles à l’aide de
la triangulation de Delaunay : en haut le calcul de points sur la surface à partir
des silhouettes ; en bas la triangulation de Delaunay de ces points et la sculpture
de cette triangulation.

Dans cette partie, nous introduisons la méthode d’estimation des formes
visuelles dont l’origine se trouve dans l’article [Boy 03], page 48, dans le cas
de l’enveloppe visuelle et dont la généralisation aux formes visuelles se trouve
dans l’article [Lap 06], page 56. Les principales étapes de cette méthode sont
illustrées dans la figure 4.1.

Les formes visuelles associées à un ensemble de silhouettes sont, par défi-
nition, incluses dans les cônes de vue des silhouettes et tangentes à ces cônes.
Une première étape commune à l’ensemble des approches déterministes que nous
proposons va donc consister à calculer les intersections des surfaces des cônes de
vue avec les formes visuelles. Comme cela a été mentionné précédemment, ces
intersections ne sont pas calculées sur l’ensemble de la surface d’un cône mais
uniquement le long des lignes de vue des sommets des silhouettes. Ces intersec-
tions, ou contribution des lignes de vue, sont appelés segments de vue dans le cas
de l’enveloppe visuelle (figure 4.2). Pour les autres formes visuelles, et comme
l’enveloppe visuelle contient l’ensemble des ces formes, il est facile de déduire
que les contributions des lignes de vue sont alors incluses dans les segments de
vue.
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Fig. 4.2 – Les segments de vue le long de la ligne de vue pour 2 silhouettes.

La détermination des ces segments de vue est une opération simple qui
consiste à intersecter, dans les images, les droites épipolaires avec les silhouettes,
puis à conserver la partie commune des intervalles ainsi obtenus (voir [Boy 03]
page 48 pour plus détail). Cette opération peut être effectuée rapidement comme
cela sera discuté dans la partie implémentation temps réel de ce document.

Contributions des lignes de vue aux formes visuelles

Dans le cas général, l’intersection d’une ligne de vue avec la forme visuelle
correspond à un sous-ensemble des segments de vue le long de cette ligne. Ce
sous-ensemble peut aller du segment de vue dans son intégralité pour l’enveloppe
visuelle, jusqu’au point de contact unique pour une surface à laquelle l’enveloppe
visuelle est tangente. Dans ce dernier cas, la position du point de contact à l’inté-
rieur du segment visuel ne peut être déterminée sans hypothèse supplémentaire.
Nous supposons que le la surface recherchée est localement d’ordre 2, dans un
voisinage délimité par les extrémités du segment de vue. La position du point
de contact peut alors être déterminée de manière linéaire, comme nous l’avons
montré dans des travaux antérieurs [Boy 97].

Les approches duales mentionnées précédemment [Cro 98, Kan 01, Bra 04,
Lia 05] calculent aussi localement un point sous l’hypothèse d’une surface loca-
lement lisse. L’idée est, pour un sommet d’une silhouette, d’estimer localement
la surface à l’aide des plans tangents fournis par : les voisins du sommet sur
la silhouette où il se trouve ; les voisins sur 2 silhouettes proches. Le voisinage
ainsi constitué ne permet pas d’assurer que le point de contact sera sur l’enve-
loppe visuelle, dans la pratique il en sera même fréquemment très éloigné. C’est
la que réside une importante différence avec notre approche qui assure que le
point de contact sera bien à l’intérieur du segment de vue et qui considère le
meilleur voisinage possible pour l’estimation locale de la surface et de son point
de contact, celui défini par les points extrémités du segment de vue. Une autre
différence est que notre approche traite indifféremment les scènes quelle que soit
leur topologie. Par ailleurs toutes les formes visuelles associées à un ensemble
donné de silhouettes ont, par construction, la même topologie et donc celle de
l’enveloppe visuelle.
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Fig. 4.3 – les formes visuelles d’un corps humain pour, de gauche à droite, 2,
4 et 6 silhouettes : au milieu l’enveloppe visuelle ; en bas la forme visuelle ne
possédant qu’un point de contact avec les segments de vue.

Triangulation des contributions

Une fois les contributions le long des lignes de vue des sommets des sil-
houettes déterminées, il reste à construire un maillage ou une surface qui lie ces
contributions. Nous utilisons la triangulation de Delaunay pour cela. Les don-
nées d’entrée sont les points extrémités des segments de contributions le long
des lignes de vue : les extrémités des segments de vue dans le cas de l’enveloppe
visuelle et le point de contact unique dans le cas de la surface duale de l’en-
veloppe visuelle. La triangulation de Delaunay dans R3 de ces points fournis
alors un ensemble de tétraèdres (figure 4.1) qui vont ensuite être filtrés pour
éliminer ceux qui se projettent à l’extérieur d’une, ou plus, silhouette. Les tétra-
èdres restant constituent la forme visuelle résultat et leur frontière extérieure sa
surface. La figure 4.3 montre des exemples de formes visuelles pour différentes
contributions le long des lignes de vue.
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4.1.2 L’enveloppe visuelle par une approche exacte

Les méthodes présentées dans la partie précédente calculent une approxima-
tion de la surface de la forme visuelle. Cette approximation résulte, en premier
lieu, du fait que l’ensemble des points constituant le contour des silhouettes ne
sont pas pris en considération mais uniquement les sommets des silhouettes poly-
gonales ; en deuxième lieu, les jonctions entre ces contributions, ou leur maillage,
ne sont pas définies de façon exacte et nous supposons qu’elles appartiennent
à la triangulation de Delaunay. Le cas de l’enveloppe visuelle représente alors
une exception, sa surface est entièrement constituée de contributions le long des
lignes de vue issues des contours des silhouettes et est donc parfaitement défi-
nie. Dans le cas de silhouettes polygonales, cette surface est celle du polyèdre
intersection de l’ensemble des cônes de vue associés aux silhouettes considérées
et peut être déterminée de manière exacte, comme nous l’avons expliqué dans
[Fra 03].

L’approche que nous introduisons ici, [Fra 03], page 76, s’appuie sur la struc-
ture de l’enveloppe visuelle. Celle-ci est composée uniquement de morceaux de
cônes de vue, les bandes, ou strips. Ces bandes contiennent les segments de vue
des sommets des silhouettes (figure 4.2) qui en constituent une description par-
tielle. L’idée est alors de compléter les segments de vue pour reconstituer les
bandes dans leur intégralité. L’algorithme de calcul de l’enveloppe visuelle se
décompose donc en trois étapes principales, illustrée figure 4.4 :

1. Le calcul des segments de vue (décrit précédemment).

2. Les segments de vue sont complétés en parcourant, à partir des extrémités
des segments, les courbes d’intersection des cônes de vue. On ajoute de
cette manière des segments de courbes d’intersection de cônes ainsi que des
points triples lorsque 2 courbes, en d’autre terme 3 cônes, s’intersectent

3. Le maillage déterminé est parcouru pour déterminer les facettes qui com-
posent l’enveloppe visuelle.

(a) (b) (c)

Fig. 4.4 – Les 3 étapes du calcul de la surface de l’enveloppe visuelle d’une
sphère (et pour 3 cônes de vue) : (a) les segments de vue ; (b) le maillage ; (c)
les facettes polygonales.

L’étape 2 de l’algorithme d’identification du maillage se base sur la propriété
remarquable que l’enveloppe visuelle polyédrique ne contient, dans les situations
génériques, que des sommets de valence 3. Cela signifie que localement le voisi-
nage d’un sommet est entièrement déterminé lorsque ces 3 sommets voisins sont
identifiés. L’intérêt est de rendre l’algorithme efficace au sens où les calculs sont
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minimisés et consistent à intersecter des segments en 2D. Néanmoins, les algo-
rithmes de type CSG évoqués précédemment peuvent présenter des complexités
théoriques équivalentes à celui introduit ici. L’expérience prouve en revanche
que le calcul d’intersection de polyèdres, sur lequel débouchent les approches
CSG, est difficile à mettre en oeuvre de manière robuste et rapide.

4.2 Une approche probabiliste pour l’enveloppe

visuelle

Les données nécessaires au calcul des formes visuelles, et de l’enveloppe vi-
suelle en particulier, sont les silhouettes et le calibrage des caméras d’acquisition
des silhouettes. Ces données sont en pratique entachées d’erreurs, en raison no-
tamment du bruit présent dans toute la châıne d’acquisition et de la difficulté
d’extraire des silhouettes précises. C’est pourquoi des approches probabilistes
prenant en compte les incertitudes sur ces données ont vu le jour. Snow et
al. [Sno 00] ont notamment proposé une approche dans laquelle la décision de
présence d’un objet d’intérêt ne se fait pas au niveau du pixel dans les images,
comme cela est le cas avec les approches utilisant les silhouettes, mais de manière
globale pour des voxels dans l’espace d’acquisition. L’idée est de minimiser une
énergie prenant en compte, pour chaque voxel, les informations provenant de
l’ensemble des pixels sur lesquels le voxel se projette ainsi que les décisions d’oc-
cupation des voxels voisins. Une approche similaire dans le principe, mais non
voxélique [Zen 04], propose de déterminer les silhouettes dans les images, non
pas de manière individuelle, mais en tenant compte de la cohérence géométrique
qui doit exister entre toutes les silhouettes d’une même scène. Ces approches
ont le mérite d’intégrer l’information issue de plusieurs images et de minimiser
ainsi les erreurs d’imprécisions. Elles ne proposent pas toutefois de modèles d’in-
certitudes explicites. Une autre direction intéressante a été suivie par Grauman
et al. [Gra 03a] et consiste à choisir les silhouettes qui correspondent le mieux
aux données images dans une base apprise a priori. L’avantage est que les sil-
houettes correspondent alors de manière exacte à un modèle 3D, même avec une
calibrage et des données images imprécises, l’inconvénient majeur étant que les
modélisations possibles restent limitées par la base d’apprentissage.

Les approches mentionnées estiment des valeurs d’occupation binaires, pour
des pixels ou des voxels. Les grilles stochastiques d’occupation améliorent cela
dans le sens où une probabilité, au lieu d’une décision, est estimée pour l’oc-
cupation. Elles ont été à l’origine proposées dans la communauté robotique
pour modéliser l’environnement d’un robot à partir de données issues de cap-
teurs [Mor 85]. Elles se sont avérées particulièrement efficaces pour fusionner des
données imprécises provenant de multiples capteurs. Le cas des capteurs images
a par ailleurs été traité dans cette communauté, dans un contexte par contre
restreint de localisation d’objets [Mar 98]. Des grilles de probabilité ont aussi
été utilisées en vision par ordinateur, [Bro 01] par exemple, mais principalement
pour estimer des cohérences photo-métriques, ce qui s’avère être un problème
plus complexe que celui que nous cherchons à résoudre ici.

L’approche que nous décrivons succinctement ici, [Fra 05] page 87, utilise
les grilles d’occupation pour modéliser la scène. Dans cette approche, les images
sont considérées comme des matrices de capteurs où chaque capteur-pixel fournit
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une information sur la présence d’un objet le long de sa ligne de vue. L’ensemble
de ces informations est alors fusionné dans la grille d’occupation pour fournir
une probabilité en chaque voxel.

4.2.1 La formulation Bayésienne du problème

Fig. 4.5 – La probabilité X d’un voxel de la grille est déterminée à partir des
intensités I des pixels à un instant donné, du modèle B du fond pour ces pixels
et des variables binaires cachées F d’appartenance des pixels à la silhouette.

La scène observée est supposée être composée d’objet d’intérêts situés de-
vant un fond statique. Les données du problème sont, en dehors du calibrage
des caméras, les images à un instant donné et les données apprises du fond,
sous la forme d’un modèle statistique pour les intensités d’un pixel des images
du fond, une distribution Gausienne par exemple. Chaque pixel représente la
réponse bruitée d’un capteur à l’ensemble des voxels de la grille d’occupation
recherchée et la résolution du problème nécessite la modélisation des relations
entre ces variables. Nous avons choisi le formalisme de Bayes dans lequel ces
relations sont régies par une loi de probabilité conjointe à partir de laquelle
nous allons, par inférence, déterminer la vraisemblance d’occupation de chaque
voxel. Les aspects importants de cette modélisation sont que pour rendre le pro-
blème soluble certaines interdépendances entre variables ne sont pas considérées.
Nous faisons notamment l’hypothèse que les voxels sont statistiquement indé-
pendant, comme cela est classique avec les grilles d’occupation. Un deuxième
aspect important est que pour permettre la prise en compte d’incertitudes dans
le processus de formation des images, nous introduisons un jeu de variables ca-
chées qui caractérisent la présence ou non d’un objet d’intérêt devant chaque
pixel. Ces variables d’état binaires, une pour chaque pixel, caractérise l’appar-
tenance d’un pixel à une silhouette et permettent de modéliser les incertitudes
sur le calibrage : plusieurs voxels peuvent expliquer l’état d’un pixel, et sur les
intensités dans l’image : par exemple les intensités du fond et du pixel courant
peuvent être similaire alors que le pixel appartient à la silhouette. La résolu-
tion du problème se fait ensuite en marginalisant la probabilité conjointe. Les
détails de la modélisation sont données dans [Fra 05] page 87. Les figures 4.6 et
4.7 montrent quelques résultats. La figure 4.7 illustre notamment l’intérêt d’une
approche multi-images pour améliorer la soustraction de fond.
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Fig. 4.6 – Un exemple de grille d’occupation vue en coupes horizontales (haut),
et verticales (bas). En rouge les zones à fortes probabilités, en vert les zones
équiprobables, en bleu les zones à faibles probabilités.

4.3 Implémentations temps réel

Une partie importante des travaux présentés dans ce document a été dé-
veloppée dans un contexte pratique, celui de la plateforme Grimage, avec pour
objectif de permettre les interactions entre mondes réels : un acteur par exemple,
et mondes virtuels : un environnement constitué d’objets virtuels. Cet objectif
nécessite la mise en oeuvre de méthodes temps-réel, en particulier pour la mo-
délisation 3D présentée dans ce chapitre. Le développement de ces méthodes
temps-réel requiert un travail spécifique pour que les algorithmes de modélisa-
tion, même s’ils sont à l’origine rapides, puissent fonctionner avec des contraintes
fortes, un nombre important de caméras notamment. Dans cette partie, nous
introduisons les travaux que nous avons réalisés sur ce thème et qui sont par
ailleurs détaillés dans les articles [Fra 04, All 06] pages [95,104]. Ces travaux
s’inscrivent dans la lignée de ceux, précurseurs, de l’université de Carnegie Mel-
lon sur la virtualisation[Nar 98, Che 00], et de ceux de l’ETH de Zurich autour de
l’impressionant projet Blue C [Gro 03, W0̈4] ainsi que plusieurs approches voxé-
liques dont [Bor 00, Kam 00, Ari 01, Wu 03]. L’originalité de notre approche par
rapport à celles mentionnées réside tout d’abord dans la partie matérielle : nous
utilisons un nombre flexible de composants standards interchangeables (camé-
ras, PCs, projecteurs, etc.), puis dans les modèles 3D produits : leur qualité
ne dépend pas d’un niveau de discrétisation comme cela est le cas des modèles
voxéliques.

2 critères importants interviennent dans la mise en oeuvre de la modélisation
en temps réel : le débit et la latence. Le premier caractérise le nombre de modèles
qui peuvent être produits en un temps fixe et le deuxième le temps qu’il faut pour
produire un modèle. Pour traiter ces 2 aspects, nous avons travaillé à différents
niveaux de profondeur dans les méthodes : tout d’abord la distribution des
algorithmes sur l’ensemble des ressources de calcul pour contrôler le débit, puis
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(a) (b) (c)

Fig. 4.7 – Une illustration d’application de la grille d’occupation, la soustrac-
tion de fond multi-images : (a) une soustraction monoculaire classique ; (b) la
projection de la grille dans l’image, l’intensité représente la probabilité d’occu-
pation (noir = 1, blanc = 0) ; (c) la silhouette obtenue par seuillage de l’image
en (b)).

la parallélisation au sein des algorithmes pour améliorer la latence.

4.3.1 Le schéma de distribution

La distribution des taches sur l’ensemble des ressources est faite selon le
schéma de la figure 4.8. Le principe est que chaque caméra se voit attribuée un
PC pour effectuer les pré-traitements des images : l’acquisition et la soustraction
de fond. Les PCs restant sont alors répartis entre la modélisation, la gestion de
l’affichage ou d’autres taches éventuelles.

Affichage, interaction, etc.

1
Soustraction

Acquisition

Acquisition

Acquisition

Acquisition

Soustraction

Soustraction

Soustraction
8

2

3

........

Modélisation

Modélisation 2

1

Camera 1

Camera 3

Camera 2

Camera 8

Fig. 4.8 – La configuration à 8 caméras de la plateforme Grimage : chaque
ellipse représente un PC.

Dans le schéma de distribution présenté, plusieurs ressources de calcul sont
attribuées à l’étape de modélisation, qui est l’étape la plus coûteuse du processus.
Cette étape est donc elle-même décomposée et parallélisée de manière à réduire
son coût.
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4.3.2 La parallélisation des méthodes de modélisation

Les approches considérées ici sont les approches déterministes présentées
au paragraphe 4.1. Elles se décomposent en 3 étapes principales pour chaque
trame : la détermination des segments de vue ; la détermination du maillage ;
l’extraction de la surface. Ces 3 étapes sont consécutives, une étape ne peut
en effet démarrer sans les résultats de la précédente. La parallélisation tient
compte de cela. Dans un premier temps, et pour contrôler le débit, le traitement
des trames est distribué sur les unités de calcul disponibles selon le principe
du pipeline. Cela permet de démarrer le traitement d’une trame -pipeline stage-
avant d’avoir terminé celui de la précédente, et donc de contrôler le débit lorsque
suffisamment de ressources sont disponibles. La figure 4.9 illustre ce principe
pour un algorithme à 2 étapes consécutives A et B.
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Fig. 4.9 – At et Bt sont 2 étapes du traitement de la trame t. Chaque ligne
représente un processeur : (a) une exécution séquentielle, (b)-(c) une exécution
à 2-3 processeurs.

Le principe décrit précédemment permet d’augmenter le débit en ajoutant
des ressources de calcul. En revanche, il ne modifie pas la latence qui reste égale
à la somme des temps d’exécution des différentes étapes. Dans un deuxième
temps, chaque étape de l’algorithme a donc elle-même été divisée en sous-étapes
non consécutives qui sont alors exécutées en parallèle afin de diminuer le temps
d’exécution de l’ensemble de l’étape. Cela a nécessité un travail plus fin de
découpage des algorithmes. Par exemple, la détermination des segments de vue
se fait de manière indépendante par segment de vue ou groupe de segments de
vue. Il est à noter ici que si les algorithmes peuvent être découpés en sous-étapes,
l’ensemble des données doit en général rester accessible à toutes les sous-étapes.
Une autre remarque concerne la triangulation de Delaunay dont il est fait usage
dans certaines approches de modélisation. La triangulation de Delaunay semble
en effet réfractaire à la parallélisation et nous n’avons pas trouvé de méthodes
ou d’algorithmes fiables pour cela. Cette étape reste donc exécutée de manière
séquentielle dans nos implémentations temps réel.

Pour gérer le découpage en étapes, et sous-étapes, de façon modulaires, ainsi
que les communications nécessaires entre les différents modules, nous avons uti-
lisé l’intergiciel flowVR développé à l’INRIA Rhône-Alpes par l’équipe MOAIS.
En termes de résultats, les algorithmes de calcul de l’enveloppe visuelle ont été
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portés avec succès sur la plateforme Grimage ou ils s’exécutent à 30 trames
par seconde avec des latences variables pour les différents algorithmes mais de
l’ordre de 50ms pour la méthode exacte, ce qui est raisonnable pour les in-
teractions car pratiquement imperceptible. Concernant la flexibilité, le système
temps-réel fonctionne sur la plateforme Grimage avec 8 caméras et 11 PCs ainsi
que sur une mini-plateforme comprenant 5 caméras et 6 mini-PC.
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Chapitre 5

Estimation du mouvement

Les chapitres précédents traitent de l’acquisition de données géométriques
tridimensionnelles à l’aide de systèmes multi-caméras. Ces données donnent ac-
cès à de nombreuses applications, dont la génération du nouveau point de vue,
mais elles ne permettent pas, dans leur forme brute, la réalisation de tâches plus
complexes telles que la manipulation d’objets virtuels par exemple. Ces tâches
nécessitent une information complémentaire qui permette l’association entre un
objet virtuel et les données acquises. C’est l’objet de la capture de mouvement
qui estime le mouvement d’un objet dans le temps, typiquement le mouvement
articulaire d’un être humain. Le mouvement estimé peut ensuite être transféré
sur un objet virtuel, ou encore interprété pour de la reconnaissance par exemple.

L’estimation du mouvement à l’aide de caméras est un sujet abondamment
traité dans les communautés vision et graphique depuis de nombreuses années.
Lorsque l’environnement est contrôlable, des solutions robustes existent. En par-
ticulier, des systèmes commerciaux fonctionnent avec succès, le système Vicon1

par exemple. Ces systèmes utilisent un modèle de l’objet en mouvement, ty-
piquement un modèle biomécanique du mouvement humain, et des marqueurs
positionnés sur l’objet pour associer le modèle avec les données. En revanche,
pour les environnements moins facilement contrôlables, ceux sans marqueurs en
particulier, la capture du mouvement reste un problème difficile et un thème
de recherche actuel. Les travaux de recherche correspondants suivent principa-
lement 3 directions différentes. Un premier groupe se base sur l’apprentissage
et considère l’estimation du mouvement comme un problème de reconnaissance,
[Aga 04, Gra 03b] par exemple, avec succès lorsque les mouvements sont assez
proches de la ceux de la base d’apprentissage. Un deuxième groupe suppose
connu un modèle de l’objet en mouvement et transforme l’estimation du mou-
vement en celui de mise en correspondance entre modèle et donné. Enfin un
troisième groupe ne suppose aucune connaissance a priori et estime directement
un modèle articulé et son mouvement, [Chu 03] par exemple, avec les limitations
que cela implique en pratique puisque la structure du modèle estimé peut varier
de façon significative d’un instant à un autre.

Dans les travaux menés autour de la plateforme Grimage sur le mouvement
du corps humain, nous avons considéré les approches de la deuxième catégorie
où un modèle articulé de l’objet est connu, cela pour 2 raisons principales : nous

1www.vicon.com/
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souhaitons suivre tous les types de mouvements sans restriction, ce qui désavan-
tage les bases d’apprentissage ; nous souhaitons par ailleurs suivre de manière
cohérente les mouvements dans le temps, ce qui est le cas lorsqu’un modèle a
priori est utilisé. Dans ce cadre nous avons exploré 2 directions différentes :
une première approche considère un modèle a priori qui inclut la forme et le
mouvement. Il s’agit d’un modèle articulé constitué d’ellipsöıdes de dimensions
supposées connues. Un deuxième approche se focalise sur le mouvement uni-
quement et considère un modèle articulé sous la forme d’un squelette dont les
dimensions sont ici aussi supposées connues. Ces 2 approches ont été publiées
respectivement dans [Nis 05] et [M0́6] , pages [112,123], et sont introduites dans
les parties suivantes.

5.1 Un modèle épais

La majorité des approches qui supposent connu un modèle pour estimer
le mouvement utilisent pour cela des modèles surfaciques ou volumiques de
l’objet en mouvement. Ces modèles combinent l’information sur la forme avec
celle sur le mouvement. Le modèle peut être constitué de primitives rigides
ou déformables : maillages [Car 03a], cylindres généralisés [Sen 03] ou ellip-
söıdes [Che 00, Pla 03] par exemple. La mise en correspondance peut se faire
avec des données images monoculaires[Smi 01], images multi-vues [Gav 96] ou
tridimensionnelles[Che 00].

Dans notre contexte, nous disposons de données tridimensionnelles fournies
par le système d’acquisition. Ces données sont les formes visuelles (cf. 2.3.2 et
4.1.1) pour lesquelles les positions des sommets et les normales à la surface en
ces sommets sont connues. L’idée développée dans [Nis 05], page 112, est donc
d’utiliser ces données surfaciques pour estimer la posture d’un modèle articulé
constitué d’ellipsöıdes. L’originalité de l’approche réside dans les données utili-
sées qui sont tridimensionnelles, sans être issues d’un processus stéréo. L’intérêt
d’utiliser des données tridimensionnelles, plutôt que directement des données
images, est que la mise en correspondance entre modèle et données s’effectue
dans un seul espace avec une seule métrique au lieu de plusieurs espaces images
avec des métriques potentiellement incohérentes. Par ailleurs, l’intérêt des formes
visuelles par rapport à d’autres données tridimensionnelles telles que les données
stéréo est que les formes visuelles ne nécessitent pas de configuration particu-
lière des caméras et peuvent être estimées dès lors qu’au moins 2 caméras sont
disponibles.

5.1.1 Le modèle

Le modèle biomécanique que nous utilisons pour décrire le corps humain est
constitué de 21 ellipsöıdes (figure 5.1-gauche), dont les dimensions sont suppo-
sées connues. Ces ellipsöıdes sont reliés par des joints en rotation qui modélisent
les articulations ; le modèle possédant au total 22 degrés de liberté en rotation et
3 en translation/position. Les ellipsöıdes définissent, par mélange selon la tech-
nique des metaballs ou des objets mous [Bli 82, Pla 03], une surface implicite qui
modélise la forme du corps humain (figure 5.1-droite). C’est cette surface qui
sera mise en correspondance avec les données mesurées.
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Fig. 5.1 – Le modèle utilisé : à gauche les ellipsöıdes du modèle, à droite la
surface implicite associée.

5.1.2 Les données

Les observations auxquelles le modèle ci-dessus est mis en correspondance
sont celles issues du processus d’estimation des formes visuelles à partir des
silhouettes. Elles se composent des positions dans l’espace des sommets consti-
tuant les formes visuelles, ainsi que des normales à la surface en ces sommets.
Ces informations sont déterminées pour chaque sommet de chaque silhouette
considérée. Les positions dans l’espace sont calculées le long des lignes de vue
en supposant la surface observée localement d’ordre 2 (cf. 4.1.1), les normales
à la surface sont données par le produit vectoriel de la direction de la ligne de
vue et de la tangente à la silhouette. La figure 5.2 montre plusieurs exemples
lorsque de 2 à 6 caméras sont utilisées. La figure 5.3 montre 7 trames suivant
les 6 points de vue des caméras utilisées.

5.1.3 La mise en correspondance

La mise en correspondance entre les observations et le modèle s’effectue
à l’aide d’un estimateur du maximum a posteriori. Cet estimateur maximise
la probabilité du modèle sachant les observations en considérant pour cela les
distances entres les mesures et le modèle. Un point crucial ici est comment dé-
terminer la distance entre une mesure et le modèle. Cette distance peut être une
distance algébrique basée sur la position comme dans [Pla 03]. La fonction que
nous utilisons tient compte de la distance à la surface ainsi que de la différence
d’orientation entre la normale observée et celle du modèle. La figure 5.4 illustre
les résultats obtenus avec cette méthode sur 7 trames et suivant les 6 points de
vue des caméras utilisées.
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Fig. 5.2 – Les données auxquelles le modèle à base d’ellipsöıdes est mis en cor-
respondance. De gauche à droite, respectivement de 2 à 6 caméras sont utilisées
pour l’acquisition de ces données.

5.2 Un modèle mince

En parallèle de l’approche présentée dans la partie précédente, nous avons
aussi développé une méthode qui estime le mouvement sous la forme de la pose
d’un squelette [M0́6], page 123. L’idée principale dans ce travail est de se foca-
liser sur le mouvement lors de l’estimation sachant que la forme - visuelle - de
l’objet observé est disponible (cf. 4.1.1). L’intérêt de découpler le mouvement
de la forme est de réduire les hypothèses faites sur le modèle et donc de limiter
les erreurs qui en découlent, ce qui a pour conséquences de simplifier la mise
en correspondance entre modèle et données et de la rendre plus robuste aux
erreurs dans le modèle. Dans le cas du squelette, seules les dimensions des seg-
ments ont besoin d’être données. Pour les humains ces dimensions ne sont pas
indépendantes mais respectent, en moyenne, des proportions connues, à l’instar
du célèbre homme de Vitruve de Leonard de Vinci. Peu d’informations a priori
sont donc ici nécessaires.

Comme cela a été mentionné précédemment, la majorité des approches exis-
tantes pour l’estimation du mouvement utilisent des modèles qui incluent la
forme et assez peu de travaux en vision par ordinateur se focalisent sur le mou-
vement. Proche de la méthode présentée ici, [Luc 01, The 02] proposent d’es-
timer un squelette, mais les modèles considérés possèdent des caractéristiques
volumétriques ; Brostow et al. [Bro 04] proposent une approche basée sur les
squelettes mais dont l’objectif est d’estimer le modèle lui-même et non le mou-
vement d’un modèle a priori. La contribution du travail présenté dans [M0́6] est
donc une approche qui s’affranchit en grande partie des paramètres de formes,
en combinant un modèle du squelette humain avec l’axe médian de la forme
visuelle obtenue à partir des silhouettes. Les paragraphes suivant introduisent
cette approche, des détails se trouvent dans [M0́6], page 123.

5.2.1 Le modèle

Le modèle biomécanique qui est utilisé ici est constitué de 12 segments (fi-
gure 5.5), dont les longueurs sont supposées connues. En pratique, la mise en
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Fig. 5.3 – Les observations pour 7 trames : les points 3D et les normales à la
surface, montrées suivant les 6 points de vue des caméras utilisées.
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Fig. 5.4 – La pose du modèle déterminée pour 7 trames et suivant les 6 points
de vue des caméras utilisées.
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correspondance avec les observations, des points sur l’axe médian, supporte une
certaine imprécision dans les longueurs des segments. Les segments sont reliés
par des joints en rotation qui modélisent les articulations ; le modèle possédant
au total 21 degrés de liberté en rotation et 3 en translation/position.

Root 6 DOF

Joints

Dimension

Segment

2

2 2

2

2 2

2 2

2

Fig. 5.5 – Le modèle avec 24 degrés de liberté pour la posture.

5.2.2 Les données

Les données utilisées sont issues ici aussi du processus de modélisation à
partir de plusieurs silhouettes. Les silhouettes permettent de calculer une forme
visuelle de l’objet observé, l’enveloppe visuelle ou une autre forme visuelle. Nous
utilisons l’axe médian de cette forme comme donnée d’observation du squelette.
L’axe médian d’une surface fermée est défini comme le lieu des centres des
boules qui sont maximales à l’intérieur de la surface[Ser 82]. Dans le cas discret,
nous calculons une approximation de l’axe médian constituée de sommets du
diagramme de Voronoi de la forme calculée. Les points tridimensionnels cor-
respondants constituent des points de mesure auxquels le squelette est mis en
correspondance. La figure 5.6 montre 7 trames suivant les 6 points de vue des
caméras utilisées. Il est à noter ici que l’axe médian d’une surface fermée peut
lui-même être une surface dans l’espace, alors que le squelette est une courbe.
Néanmoins, cela ne constitue pas un obstacle majeur car seul le torse est réel-
lement concerné par ce problème lors de la mise en correspondance, les autres
parties du corps, les bras et les jambes par exemple, produisent en effet des
observations qui décrivent des courbes. Et l’expérience montre que la mise en
correspondance par les moindres carrés positionne assez naturellement le sque-
lette au milieu du torse.

5.2.3 La mise en correspondance

La mise en correspondance entre les observations et le modèle s’effectue ici
aussi en minimisant les distances entre les points de l’axe médian et le squelette.
Ces distances ne sont pas calculées entre un point et toutes les parties du sque-
lette mais entre un point et une partie du squelette identifiée par une procédure
EM2. La figure 5.7 illustre les résultats obtenus avec cette méthode sur 7 trames

2Expectation Maximisation [Dem 77] est une méthode standard pour estimer des para-
mètres cachés, ici l’association entre chaque points de l’axe médian et les différentes parties
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Fig. 5.6 – Les observations pour 7 trames : les points de l’axe médian de l’en-
veloppe visuelle suivant les 6 points de vue des caméras utilisées.

et suivant les 6 points de vue des caméras utilisées.

du squelette
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Fig. 5.7 – La pose du modèle déterminée pour 7 trames et suivant les 6 points
de vue des caméras utilisées.
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Abstract

This paper presents a method for computing the visual hull
that is based on two novel representations: the rim mesh,
which describes the connectivity of contour generators on
the object surface; and the visual hull mesh, which de-
scribes the exact structure of the surface of the solid formed
by intersecting a finite number of visual cones. We describe
the topological features of these meshes and show how they
can be identified in the image using epipolar constraints.
These constraints are used to derive an image-based prac-
tical reconstruction algorithm that works with weakly cal-
ibrated cameras. Experiments on synthetic and real data
validate the proposed approach.

1. Introduction

Most algorithms for surface reconstruction from outlines
compute some form of thevisual hull [10], or the intersec-
tion of solid visual cones formed by back-projecting silhou-
ettes found in the input images. The basic approach dates
back to Baumgart’s 1974 PhD thesis [1], where a polyhedral
visual hull is constructed by intersecting the viewing cones
associated with polygonal silhouettes. Volume intersec-
tion has remained the dominant paradigm for decades, im-
plemented using representations as diverse as octrees [15]
and triangular splines [14]. More recently, graphics re-
searchers have presented efficient algorithms that avoid
general 3D intersections by taking advantage of epipolar ge-
ometry [11, 13]. Given an image sequence from a camera
undergoing a continuous motion, it is also possible to avoid
explicit intersections by reconstructing the visual hull as the
envelope of the surface tangent planes along the smoothly
deforming occluding contours [2, 3, 16].

Defined in full generality, the visual hull is the maxi-
mal shape consistent with an object’s silhouettes as seen
from any viewpoint in a given region, and theexactvisual
hull is the visual hull with respect to a continuous region
of space surrounding the object [10]. In this paper we do
not treat such limiting cases, but consider the visual hull
associated with a finite number of isolated viewpoints (in

this discrete formulation, the volume intersection and the
silhouette-consistency definitions are equivalent). We rep-
resent the visual hull as a generalized polyhedron: the faces
on its surface are visual cone patches, edges are intersection
curves between two viewing cones, and vertices are isolated
points where more than two faces meet. In this context, a
visual hull is exact when it correctly captures the connec-
tivity of these features. Based on this notion of exact visual
hulls, we specify a novel reconstruction algorithm that does
not rely on polyhedral intersections or voxel-based carving,
and produces precise topological and geometric meshes.

2. Preliminaries

We assume that we are observing a solid object with weakly
calibrated pinhole cameras. The surface of the object is
smooth and without planar patches, and the cameras are
in general position. It is also assumed that apparent con-
tours of the object have been identified in each input view
and oriented counterclockwise, so that the image of the ob-
ject always lies to the left of the contour. To simplify the
presentation, we also assume that contours do not contain
singularities such as T-junctions and cusps, and restrict our
attention to objects of genus0.

In the rest of the paper, we use the following terminol-
ogy. Therim or contour generatorassociated with a camera
is the set of all surface points where the optical ray through
the pinhole grazes the object. For general viewpoints, the
rim is a smooth space curve without singularities [4]. Two
rims can intersect at isolated points on the surface, called
frontier points[3, 8, 12], where the viewing rays from both
pinholes lie in the surface tangent plane. The projection
of a rim onto the image plane of a camera is theapparent
contour. The set of rays from one camera center passing
through points on the surface forms thevisual coneassoci-
ated with that camera. As described in the introduction, the
solid formed by the intersection of all given viewing cones
is thevisual hull. Note that the shape of the viewing cones
depends only on the camera center and on the shape of the
object, not on the position of the image plane. Thus, pro-
jective geometry is sufficient to describe the structure of the

1

42 CHAPITRE 6. ARTICLES



visual hull. In particular, it is possible to develop a visual
hull algorithm that relies only on weak calibration.

Imagine sweeping out a cone of optical rays along one
apparent contour. Since each ray must graze the object
along the rim, each ray must lie on the visual hull for some
non-empty interval around its point of tangency with the
object surface. In this way, each ray contributes an interval
to the surface of the visual hull, and the collection of these
intervals along all rays forms acone stripthat continuously
bounds the rim on each side. Strips are delimited by seg-
ments ofintersection curvesbetween pairs of visual cones.
An intersection curve generally does not lie on the surface,
except at frontier points, where the tangent planes to the
two cones and to the object coincide [5]. At these points,
the intersection curve is singular: it has four branches that
converge to create a characteristic X-shape (see Figure 1).

Figure 2 shows an example of an ovoid observed by three
cameras. Three viewing cones are drawn, along with inter-
section curves and rims. The figure shows frontier points
and triple pointswhere three viewing cones intersect. In
the figure, each frontier point is incident to four rim arcs
and four intersection curve branches, and each triple point
is incident to six intersection curve branches, only three of
which belong to the visual hull. It can be shown that these
incidence relations hold in general.

N

Ci
Cj

apparent contours

rims

intersection curve

strip 1
strip 2

frontier point

Figure 1: A surface observed by two cameras. The two rims
intersect at the frontier point where two cone strips cross.

Now we introduce the two meshes computed by our al-
gorithm. Therim meshis defined on the surface of the ac-
tual object. Its vertices are frontier points, edges are rim
segments between two successive frontier points, and faces
are regions of the surface bounded by two or more edges.
A conceptual precursor of the rim mesh is theepipolar net
of Cross and Zisserman [5], who informally discuss, but
do not construct, the arrangement of rims on the surface of
an object as the camera moves. Thevisual hull meshis a
topological description of the configuration of visual cone
patches on the surface of the solid formed by the intersec-
tion of all given visual cones. Its vertices are frontier points
(where two strips cross) and triple points (where three cones
intersect), edges are intersection curve segments between

two consecutive vertices, and faces are the cone patches that
make up the strips. Examples from Figures 1 and 2 illustrate
the fact that successive frontier points on one rim break up
the cone strip along that rim into separate faces. Thus, there
exists a one-to-one relationship between edges of the rim
mesh and faces of the visual hull mesh. Continuing with
the example of Figure 2, Figure 3 shows the rim and visual
hull meshes of the ovoid.

2

3

1

1

R

R

R
C

C

C

2

3

A

B

C

Figure 2: Configuration of rims and intersection curves for an
ovoid observed by three cameras. Rims are dashed arcs, frontier
points are labeled dots, and triple points are squares. Dotted arcs
are intersection curve branches outside the visual hull.

B

C

A’

C’

B’

A

Figure 3: The rim and visual hull meshes of the ovoid from Figure
2. Frontier points are circles, and triple points are squares. Rim
segments (edges of the rim mesh) are dashed. Intersection curve
segments (edges of the visual hull mesh), are bold lines. Note that
frontier points A0, B0, and C0 belong to the region of the surface not
visible in the previous figure.

3. Computing the Rim Mesh

We begin by computing the frontier points, which are the
vertices of the rim mesh. At a frontier pointPij due to
views i andj, the tangent plane to the surface is also the
epipolar plane determined byPij and the camera centersCi andCj . In the images, this means that corresponding
epipolar lineslij andlji are both tangent to the respective
contours at the projectionspi andpj of Pij . Figure 4 il-
lustrates this basic setup, along with other notation that we
will need later. Finding a pair of matching frontier points in
imagesi andj is a one-dimensional search problem, where

2
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Pij

pi

pj

Ci

Cj

lij

eji

N
Ti

Tj

RiRj

v

t

lji

eij

Figure 4: Pij is a frontier point where two rims Ri and Rj in-
tersect. Pij projects onto points pi and pj at which the respective
contours are tangent to the two matching epipolar lines lij and lji.
we parametrize the pencil of epipolar lines by their slope
and look for linelij that is tangent to theith contour, such
that the corresponding linelji in thejth image is tangent to
the jth contour. In the presence of contour extraction and
calibration errors, there may not exist a pair of matching
epipolar lines that exactly satisfy the tangency constraint.
In this situation, we find approximately matching frontier
points such that the angle difference between the tangent
line in one image and the reprojected epipolar tangent from
the other image is minimized. Difficulties caused by data
error will be further discussed in Section 4.

We obtain all frontier points by matching their projec-
tions in two images. The four rim edges incident to a par-
ticular frontier point are given by intervals on the two ap-
parent contours that are incident to this point. Thus, there
exists a one-to-one correspondence between contour seg-
ments in the images and edges of the rim mesh. The ori-
entation of rim edges is then given by the orientation of the
corresponding contour segments. In this way, we obtain the
complete adjacency information for edges and vertices of
the rim mesh. To compute the faces, we need to know the
relative ordering in space of the four rim segments incident
on each vertex. More formally, we associate with each fron-
tier pointPij a circular listI where the four edges appear
in CCW order around the surface normal. LetTi,Tj be the
tangents to the rimsRi andRj atPij (see Figure 4). Then
the indexi appears before the indexj in the ordered listI
iff (Ti ^Tj) �N > 0; (1)

whereN is the outward-pointing surface normal (computed
as the cross product of the oriented tangent to the contour
and the viewing direction).

Equation (1) gives rim ordering in terms of of tangents
to the apparent rims, which cannot be computed given
only image information. Therefore, we need an equivalent
image-based expression for rim ordering. Consider imagei and letv be the direction from the epipoleeij to pi, the
projection ofPij . Let alsot be the tangent to the contour
atpi (see Figure 4), and letks be the apparent curvature at

pi. Then rimsRi andRj are CCW oriented atPij iff(v � t) ks > 0: (2)

The above expression is equivalent to (1), and the fol-
lowing is a brief sketch of the proof. When the viewing
direction rotates in the surface tangent plane around the
normal atPij , the tangent to the rim also rotates. The di-
rections of camera and tangent rotation are the same if the
surface is elliptic atPij and opposite if the surface is hy-
perbolic. This is a direct consequence of the fact that the
Gauss map of the surface is orientation-preserving at ellip-
tic points and orientation-reversing at hyperbolic points[6].
Thus two rimsRi andRj are CCW oriented if (a) the cam-
era rotates CCW around the normal from positioni to j and
the surface is elliptic atPij ; or (b) the camera rotates CW
and the surface is hyperbolic. The sign ofv � t is positive if
the camera rotates CCW in the tangent plane and negative
otherwise. Moreover, the sign of the apparent curvatureks
is positive if the surface is elliptic or negative if the surface
is hyperbolic [9]. Thus, expression (2) is positive in the two
above mentioned cases and negative otherwise. It is there-
fore the desired image-based expression equivalent to (1).

Given the above rim ordering criterion, it is straightfor-
ward to trace the loops of edges bounding rim faces. Sup-
pose we start with one rim segments of the rimRi and want
to find the face that lies to its left. Informally, we traverses along its direction and at its endpointPij , simply take a
left turn to get to the next edge, that is, we select the edge
precedings in the ordered circular list ofPij . We move
from endpoint to endpoint in this manner, traversing edges
either forward or backward along their orientation, takinga
left turn each time until we complete a cycle.

4. Computing the Visual Hull Mesh

As demonstrated in the previous section, we can com-
pute the topology of the rim mesh without knowing any-
thing about its geometry, except for the positions of fron-
tier points (note that under weak calibration we can only
recover these positions up to a projective transformation).
This topology constrains the adjacency relationships be-
tween triple points and intersection curves, which are the
vertices and edges of the visual hull mesh.

A triple pointPijk the intersection of three optical rays
back-projected from contour pointspi, pj , andpk in three
different images (see Figure 5). In particular,pk satisfies
thetransfer equation[7]pk = lki ^ lkj = (Fik pi) ^ (Fjk pj); (3)

whereFmn is the fundamental matrixmapping points in
imagem to epipolar lines in imagen, and homogeneous
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pi

pk

lki

lkj

pj

lji

Pijk

Cj

Ci

Ck

Pi

Pj
Pk

Gij

gij

Figure 5: The triple pointPijk is a “phantom point” where the rays
formed by back-projecting epipolar correspondents pi, pj , and pk
meet in space. Pijk can be located by tracing the intersection curve�ij between views i and j and noticing when its projection 
ij in thekth image crosses the contour.

coordinates are used for image points. Pointspi andpj sat-
isfy symmetric equations. Any pair ofpi, pj andpk are
epipolar correspondents— that is, any two of the points lie
in the epipolar plane defined by the two camera centers and
one of the points [2]. A triple point is a standard trinocular
stereo correspondence, but it does not usually lie on the sur-
face becausepi, pj andpk are projections of three different
pointsPi, Pj , andPk on three different rims.

Just as with finding frontier points, finding triple points
is a one-parameter search. We walk along theith contour in
discrete steps and for each contour pointpi find the epipolar
line lji = Fij pi in imagej, and locate an epipolar corre-
spondentpj by intersectinglji with the jth contour. We
then obtain a third pointpk by transferringpi andpj using
(3) and check whetherpk lies on thekth contour. As shown
in Figure 5, transfer of successive epipolar correspondents
allows us to trace the intersection curve�ij betweenith andjth cones in thekth image. The triple point is revealed when
the traced curve crosses thekth contour.

In general, epipolar correspondents are not unique. In
the case shown in Figure 5, each epipolar line intersects
each contour twice (this reflects the fact that intersection
curves have multiple branches). Moreover, the epipolar cor-
respondence criterion does not say when a triple point be-
longs to the visual hull — the additional constraint is that
the point must not project outside the silhouette in any other
input view. However, if we are able to exactly compute the
positions of frontier points along the contours, we can use
this information to simplify the search for triple points.

Each face of the rim mesh is bounded by rim segments
that also belong to the surface of the visual hull, so we can

identify faces with regions on the surface of the visual hull
that have the same boundary. Consider a single facef of the
rim mesh. The edges off tell us which viewing cones con-
tribute to the visual hull inside the region identified withf ,
and give us a corresponding subset of contours that need to
be searched for triple points belonging to this region. Since
each edge off corresponds to a single contour interval in
some image, any triple point that belongs tof must project
to a point along these intervals. Thus, it is sufficient to trace
intersection curve segments between each pair of these in-
tervals and find triple points when the curve being traced
goes outside the contour in one of the other views that con-
tribute tof . Taking each face separately, we compute triple
points, intersection curves, and their connectivity. Since we
know which pair of cones gave rise to each segment of an
intersection curve, we can identify all the segments bound-
ing a cone strip. Individual faces of the strips are identified
by grouping all the intersection curve segments that project
within the contour interval that corresponds to a particular
rim segment.

The algorithm described above yields the correct visual
hull mesh given exact input data (perfectly extracted con-
tours, error-free fundamental matrices). However, noise and
calibration error tend to destroy exact topological features,
most importantly, intersection curve crossings at frontier
points. Figure 6 illustrates the situation. The epipolar linelij is tangent to the contour at pointpi in theith image. This
line corresponds to the linelji in thejth image, which is not
tangent to thejth contour, but intersects it in two epipolar
correspondentspj1 andpj2. Intersecting the visual rays
due to these three points in the epipolar plane yields two
distinct intersection curve pointsPij1 andPij2, instead of
a single frontier point. Thus, instead of being singular, the
intersection curve separates into two distinct branches that
do not meet. In order to approximate the position of a fron-
tier point, we have to matchpi with the epipolar tangency
pointpj in thejth image. However, the two points do not
lie in the same epipolar plane, and visual rays through them
do not intersect. We could estimate the location ofPij as
the midpoint of the segment connecting the points of closest
approach of the two rays, but this approximated point does
not lie on the traced intersection curves. This leads to se-
rious consistency problems for a naive implementation that
attempts to strictly enforce combinatorial constraints onex-
act visual hull structure.

Intuitively, small perturbations to exact contour and cal-
ibration data result in contours that back-project to general
cones in space, the intersection of which does not have to
share the properties of exact visual hulls. For instance,
while we know that cone strips never break up in theory
(each ray interval along the strip must contain at least one
point), in noisy data, they may break up near the frontier
points as shown in Figure 6. Nevertheless, even with large
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Figure 6: Tracing intersection curves given inexact data (see text).
Intersection curve branches are shown as dashed lines.

errors in the data, the intersection of cones in space is still
well defined, and we can compute it using a variant of our
exact algorithm. We trace entire intersection curves, as op-
posed to breaking them up into pieces belonging to sepa-
rate faces of the rim mesh, and then clip out all compo-
nents of the curves that project outside any of the silhou-
ettes. In the process, combinatorial information about the
curves is maintained, so that it becomes possible to recover
the geometry of cone strips. Namely, boundary points of
the strips are connected in the order induced by the contour
parametrization, and are separated into two groups that cor-
respond to segments bounding the rim on the near and the
far side with respect to their distance from the camera. This
data structure is a monotone polygon, and it can be triangu-
lated in linear time for purposes of display.

5. Experimental Results

The first input sequence consists of six synthetically gener-
ated images of an egg model. Contours were extracted using
snakes and modeled as cubic B-splines. As seen in Figure
7, the algorithm correctly generates the rim mesh and the
visual hull, both in their topological and geometric form.
The contrast between these two forms is clearly visible by
comparing two renderings of the same strip in Figure 7 (f)
and (g). The exact strip explicitly shows frontier points and
triple points, and intersection curves are forced to converge
in four branches at frontier points. The triangulated strip
does not degenerate at frontier points, because the robust
strip tracing algorithm ignores them.

We also demonstrate results for two calibrated nine-
image turntable sequences of a gourd and a vase (Figure 8).
For both of these data sets, the algorithm constructs a com-
plete rim mesh, even though many of the frontier points are
densely clustered near the top and the bottom. To better vi-
sualize the structure of these meshes, we rendered their ver-
tices and edges as graphs using a publicly available graph
drawing program. The graphs, shown in Figure 8 (b) and
(h), reveal the regular structure of rim crossings which is
impossible to observe in the images themselves. Each rim
mesh in our examples obeys Euler’s formula for topologi-
cal polyhedra of genus0, V + F = E + 2 (note that the

meshes are actually planar, even though the graph layouts
shown are not). Because of stability problems inherent in
real-world data, the algorithm does not recover topological
visual hull meshes for these two data sets. Instead, we ob-
tain precise geometric models of the visual hulls that do not
capture every triple point, but are suitable as input for com-
mon modeling and rendering applications. Figure 8 shows
these models, along with selected strips. Note that the strips
degenerate completely for relatively large intervals nearthe
top and the bottom, in the areas of dense frontier points.
This behavior is not possible in theory, but it occurs in prac-
tice, as discussed in Section 4.

6. Discussion and Future Work

Our preliminary results are intriguing. Significantly, there-
covery of exact rim meshes has proven to be robust even
with densely clustered frontier points that do not lie on
matching epipolar lines. Note that the rim mesh struc-
ture depends only on the relative ordering of frontier points
along the rims, not on absolute positions — hence the rela-
tive stability of the topology. With visual hull meshes, the
situation is different: the connectivity of intersection curves
and triple points is elusive, while the geometry may still
be recovered reliably. It will be important to investigate
the question of whether these instabilities are inherent in
the conditioning of exact visual hull computation, or are
introduced by our algorithm. We are considering a differ-
ent approach to recovering the topology of the visual hull
mesh that would take full advantage of the combinatorial
constraints given by the structure of the rim mesh. We are
also working on extending our implementation to deal with
T-junctions and surfaces of arbitrary genus, to handle more
complex and visually interesting objects.

Overall, our approach has several attractive features.
Most importantly, it is based on an analysis of the exact
structure of visual hulls from finitely many viewpoints,
which has received little attention in previous research. Our
approach takes advantage of epipolar geometry and weak
calibration — in a sense, we don’t need to know where
the cameras are. Moreover, our algorithm uses only two-
dimensional computations, and constructs a range of shape
representations, from graph-theoretic and topological, to
completely image-based, to purely geometric. For these
reasons, it brings fresh insights to the theory and practice
of the venerable problem of visual hull computation.
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Abstract

This paper addresses the problem of computing visual hulls

from image contours. We propose a new hybrid approach

which overcomes the precision-complexity trade-off inher-

ent to voxel based approaches by taking advantage of sur-

face based approaches. To this aim, we introduce a space

discretization which does not rely on a regular grid, where

most cells are ineffective, but rather on an irregular grid

where sample points lie on the surface of the visual hull.

Such a grid is composed of tetrahedral cells obtained by

applying a Delaunay triangulation on the sample points.

These cells are carved afterward according to image silhou-

ette information. The proposed approach keeps the robust-

ness of volumetric approaches while drastically improving

their precision and reducing their time and space complexi-

ties. It thus allows modeling of objects with complex geom-

etry, and it also makes real time feasible for precise mod-

els. Preliminary results with synthetic and real data are

presented.

1. Introduction

Assume we are given several silhouettes of an object cor-

responding to different camera viewpoints. The visual hull

is the maximal solid shape consistent with the object sil-

houettes. Such an approximation of the object captures all

the geometric information available from the object silhou-

ettes. The interest arises, therefore, in all modeling applica-

tions making use of silhouettes. In this paper we describe

how to efficiently use the silhouette information to compute

visual hulls. The motivation is to propose a new practical

solution for computing precise models of complex objects,

along with a reasonable complexity in time and space.

Visual hulls were first introduced by Laurentini [13] in

the theoretical context where an infinite number of view-

points, surrounding the object’s convex hull, are considered.

Before and after this work, visual hulls have also been, im-

plicitly and explicitly, widely studied in the computer vision

and computer graphics communities. In particular, it has

been shown recently [14] that the visual hull of a smooth

object is a topological polyhedron that can be determined

using weak calibration only (oriented epipolar geometry).

However, the solution given in this work does not apply to

most real situations. There are many other algorithms for

computing approximations of the visual hull in both com-

munities: some consider the volume enclosed by the visual

hull and are based on space discretizations; some others fo-

cus on the surface of the visual hull and consider individual

points or polyhedral representations.

Volumetric approaches are based on space discretiza-

tions into elementary cells, the voxels, which are carved

according to their image positions with respect to the sil-

houettes. An early approach was proposed by Martin and

Aggarwal [15] who used parallelepipedic cells aligned with

the coordinate axis. Later on, octrees were proposed [5]

as adaptive data structures for representing visual hulls and

efficient approaches [21, 18, 4] were presented to com-

pute voxel-based representations. These approaches are

purely geometric and do not consider photometric informa-

tion. Recent methods [12] make use of such information

and carve voxels according to the color consistency of their

projections onto the different images. See [19] and [9] for

reviews on volumetric approaches for modeling. All the

aforementioned approaches are based on regular voxel grids

and can handle objects with complex geometries. However,

the 3D space discretizations used are computationally ex-

pensive and lack precision since most of the grid points do

not belong to the visual hull surface under consideration.

Surface-based approaches use a different strategy. Visual

hull boundary elements, points and faces, are estimated by

intersecting the viewing cone surfaces associated with the

occluding contours. Baumgart [2] made an early contribu-

tion using polygonal approximations of the occluding con-

tours. [11, 6, 3] focused on individual points reconstructed

using local second order surface approximations. More re-

cently, approaches have been proposed to compute surface

patches[20], or strips [16] of the visual hull. Surface-based

approaches can be precise, especially compared to volumet-

ric approaches, however the surface models produced are

often incomplete or corrupted, in particular when consider-

ing complex objects. A reason for this is the fact that inter-

sections of viewing cone boundaries are generally not well

defined, and thus very sensitive to numerical instabilities.
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Related to surface-based approaches, Matusik et al. [17]

have shown that 2D calculations are sufficient when com-

puting new images of an object using its visual hull. This

interesting result follows the fact mentioned earlier that the

visual hull is a projective structure [14], the approach, how-

ever, does not lead to geometric models as required in many

applications.

Our approach takes advantages of both categories de-

scribed above. It uses the robustness of volumetric ap-

proaches while keeping the precision of surface-based ap-

proaches. A space discretization into cells is still used,

but unlike most volumetric algorithms, sample points are

not regularly spaced but computed on the surface of the

visual hull. Elementary cells are then tetrahedrons com-

ing from the Delaunay triangulation applied on the sample

points. The final polyhedral model is obtained by carving

these cells according to their image projections. This ap-

proach presents two important contributions with respect to

the methods mentioned previously: first, the points used to

construct the model lie on the surface of the visual hull,

thus enabling a high level of precision; second the surface

representation is obtained by means of the Delaunay trian-

gulation, hence ensuring robustness, and for which fast im-

plementations exist.

The paper is organized as follows. Section 2 introduces

definitions which are used in the paper. Section 3 describes

how points on the visual hull are computed. Section 4 de-

tails the polyhedral representation algorithm. Experimental

results are presented in section 5, before concluding with

potential extensions of this work.

2. Definitions

Contours We assume that a scene, composed of several

objects, is observed by a set of pinhole cameras. The ob-

jects’ surfaces are supposed to be orientable closed sur-

faces, smooth or polyhedral. No assumption is made on

their genus which may be non-zero. Rims are the locus of

points, on the object surface, where viewing rays are tan-

gent to the surface. Rims project onto image curves, called

the occluding contours [15], which border the object silhou-

ettes in the image plane. In what follows, subscripts will de-

note contour numbers and superscripts image numbers, thus�✂✁✄ denotes the ☎ th occluding contour in image ✆ . Occlud-
ing contours are oriented in the images. Their orientation

is such that the object is on the left of the oriented contour.

Hence, exterior contours are oriented counterclockwise and

interior contours are oriented clockwise. We will call the in-

side region of an occluding contour the closed region of the

image plane delimited by the contour and containing the sil-

houette, and we will call the outside region its complement

in the image plane (see figure 1).

silhouette
interior

exterior
contour

occluding
contours

contour

Figure 1: The occluding contours delimit the object silhou-

ette in the image plane. The shaded region on the left image

represents image points which are outside at least one con-

tour. Its complement, shaded in the right image, represents

image points which are inside all the contours, and thus be-

long to the silhouette.

Viewing cones Intuitively, a viewing cone is a generalized

cone whose apex is the image center and whose base is the

inside region of an occluding contour. More formally, the

viewing cone ✝ ✁✄ associated with the occluding contour �✞✁✄ is
the closure of the set of rays passing through points inside�✂✁✄ and through the camera center of image ✆ . ✝ ✁✄ is thus
tangent to the corresponding object surface along the rim

that projects onto
�✂✁✄ . According to the orientation of �✞✁✄ ,

exterior or interior, the viewing cone ✝ is an acute or obtuse
cone of ✟✡✠ respectively. Viewing cone boundaries intersect
along space curves which do not lie on the surface, except

at frontier points where rims intersect. Note that in the case

of polyhedral surfaces, frontier points are not necessarily

isolated and can form frontier edges.

Visual hulls The visual hull is usually defined as the inter-

section of all the viewing cones available from the different

viewpoints, it is thus the closed space region where points

project inside all the occluding contours. Let ☛ , ☞ be respec-
tively the image set and the contour set under consideration,

then: ✌✎✍✑✏✓✒✕✔✗✖✙✘✛✚ ✜✢✤✣✦✥★✧ ✩✪✣✬✫ ✌ ✢✩ ✔
where ✝ ✁✄ is the viewing cone of rim ☎ in image ✆ . When a
finite set ☛ of images is considered, the visual hull is a topo-
logical polyhedron composed of cone patches delimited by
cone intersection curves [14]. In practical situations, oc-
cluding contours are approximated by 2D polygonal curves,
thus viewing cones are polyhedral cones and visual hulls
polyhedrons. The definition above holds if a single object is
observed in every image of ☛ . But it can not correctly han-
dle scenes composed of several unconnected objects, some
of which may not appear in all images. To this aim, we
could straightforwardly extend the definition to the union

2
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of individual visual hulls, each associated to a unique real
object. Let ✭ be the real object set and ☞✯✮ be the contour
set for the object ✰ , then:✌✱✍✲✏✓✒✕✔✴✳✵✘✶✚✸✷✹ ✣✻✺ ✌✎✍✲✏✓✒✼✔✗✖ ✹ ✘✽✔✔✾✚✸✷✹ ✣✻✺ ✏ ✜✢✿✣✬✥❁❀✬✧ ✩✽✣❁✫✦❀ ✌ ✢✩ ✘✽✔ (1)

where ☛✶✮ is the image subset of ☛ where object ✰ appears
or: ☛✛✮❃❂❅❄❁✆❇❆❈☛❊❉●❋ ✁✄❈❍❂❏■ for some ☎❑❆▲☞▼✮❖◆ . A direct
application of this definition requires the sets ☞✙✮ and ☛✛✮ to
be known. In other words, the occluding contours of objects

need to be identified over the whole image set. This oper-

ation is not necessarily easy, in particular from one image

to another. Furthermore, silhouettes might overlap in one

image, making the object identification difficult.
Another solution is to define the visual hull as the set of

points in ✟ ✠ that project inside one silhouette in every image
where the points are visible. A first step in that direction is
to consider the following expression:✌✱✍✲✏✓✒✕✔P✳✵✘✛✚◗✜✢✤✣✦✥ ✏✕✷✹ ✣❁❘★❙ ✏✱✜✩✪✣✬✫ ❙❀ ✌ ✢✩ ✘❚✘✽✔ (2)

where ❯ ✁ is the set of silhouettes in image ✆ and ☞ ✁✮ is the
set of contours associated to the silhouette ✰ in ✆ . This ex-
pression is equivalent to (1) applied to a set ✭ of virtual
objects having their silhouettes either disjoint or entirely in-

cluded in one another in every images. The interest is that

objects’x contributions are, in that case, distinguished by

their silhouettes. Since any silhouette includes exactly one

exterior contour and possibly several interior contours, ex-

pression (2) can easily be applied using the exterior con-

tours in the image set.

Nonetheless, expression (2) is not completely satisfying

in its current form since it does not take into account the

fact that virtual objects may not be seen in one or several

images (i.e. ❱ ✄❳❲❩❨ ❙❀✱✝ ✁✄ ❂❬■ for some ✰ and some ✆ ) . As a
consequence, they will not be part of the visual hull because

they do not appear in one image contribution (see figure

2-(b)). This is due to the fact that the intersection of the

image contributions in (2) should be carried out over their

common domains. A simpler approach is to consider the

complement of the visual hull. It is the the open region✝❪❭✑❫ of ✟ ✠ defined by:✌✎✍❵❴❳✏✓✒✕✔✴✳✵✘✶✚◗✷✢✿✣✦✥ ✏✼✜✹ ✣❁❘ ❙ ✏●✷✩✪✣✬✫ ❙❀▼❛ ✢❝❜ ✌ ✢✩ ✘❚✘✽✔ (3)

where ❞ ✁ is the image ✆ visibility domain in ✟ ✠ and❞ ✁◗❡ ✝ is the complement of ✝ relative to this domain.
Using (3), objects which do not appear in one image can

still contribute to the visual hull since empty contributions

do not affect image contributions in the above expression.

Considering the visual hull or its complement is equivalent

since the surface of interest borders both regions, and iden-

tifying the cells which belong to the visual hull or to its

complement are dual operations. The above expression is

in fact the definition that is implicitly used by volumetric

approaches when carving voxels. It should be noted that

expression (2) could also be modified to account for objects

which are not always visible, however using the comple-

ment of the visual hull instead of the visual hull itself sim-

plifies both expressions and algorithms.
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4

(a) (b) (c)

Figure 2: Cross sections of a 4-viewpoints situation: (a) the

original scene where camera ❢ sees only the green object;
(b) expression (2) is used, the visual hull (shaded) does not

contain any contribution relative to the blue and red objects;

(c) expression (3) is used, the complement of the visual hull

(shaded) is computed and includes contributions from the

blue and red objects.

Both definitions (2) and (3) may add independent virtual

objects that do not appear in the original scene (as shown

in figure 2). Notice however that the second definition may

add more virtual objects, in particular near or far from pro-

jection centers. This is a consequence of the visibility do-

main constraint which limits the domain of the visual hull

complement. The number and sizes of these undesired ob-

jects are usually reduced by increasing the number of view-

points. Another solution, as implicitely used by volumetric

approaches, is to use a region of interest instead of ✟ ✠ .
3. Visual hull surface points

3.1 Algorithm outline

Assume that occluding contours are extracted in the image

set and let us consider a polygonal contour
�✞✁✄ in image✆ . Points on the associated viewing cone ✝ ✁✄ contribute to

the surface of the visual hull if: (i) they project onto
�✞✁✄ in

image ✆ , (ii) they do not project inside the intersection of
silhouette complements in any other images. An obvious

way to compute these points is therefore to take points on�✂✁✄ and to look at the intersection of their viewing lines with
the viewing cones originating from other viewpoints. These

intersections define one or several intervals on the viewing

line corresponding to the contribution of this viewing line

to the surface of the visual hull.

3
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Let ❣ ✁✄ be a point of �✂✁✄ . The contribution intervals on
the viewing line of ❣ ✁✄ are delimited by the intersections of
the viewing line with the surfaces of the concerned viewing
cones. These intervals can be determined directly in 3D by
intersecting lines and cones, however, and as mentioned in
[17], most of the calculations can be achieved in 2D. Indeed,
points delimiting the intervals on the viewing line of ❣ ✁✄ are
such that their projections belong to both the epipolar line
and the concerned occluding contours (see figure 3). We
use these principles in algorithm 1 to reconstruct points on
the visual hull surface.

Algorithm 1 Visual hull surface points

1: for all contours
�❤✁✄ in all images: do

2: for all images ✰ such that ✰ ❍❂✐✆ : do
3: for all points ❣ ✁✄ in �✂✁✄ : do
4: compute the epipolar line ❥ of ❣ ✁✄ in image ✰ ,
5: for all contours

� ✮❦ in image ✰ : do
6: compute the intersections of ❥ with � ✮❦ ,
7: update depth intervals along the viewing line

of ❣ ✁✄ ,
8: end for

9: end for

10: compute the 3D points delimiting intervals along

the viewing line of ❣ ✁✄ .
11: end for

12: end for

3.2 Updating depth intervals along the view-

ing line

As explained before, intersections of the epipolar line with

occluding contours are first computed. From these intersec-

tions, we can easily compute the depths of points delimiting

intervals along the viewing line, which points belong to the

surface of the visual hull. The question is how to combine

two lists of depths from different contours or images ?

We proceed in the following way: expression (3) is used
to sum up intervals contributing to the visual hull comple-

Figure 3: Contribution intervals (in red) to the visual hull

surface along the viewing line. Epipolar line angles can be

used to accelerate the search for the segments intersecting

the epipolar line.

ment, over the contour and image sets. To this aim, the ob-
ject contributions, or equivalently the silhouettes, must be
distinguished in each image. As explained before, this can
be done by means of the exterior contours since every one
of them identifies a single object. We could therefore group
contours, in each image, according to the exterior contour
they belong to. A simpler solution takes advantage of the
fact that interior contour contributions entirely belong to the
visual hull complement. Thus, only the contributions from
exterior contours need to be intersected when computing the
whole contribution of an image. The corresponding expres-
sion for definition (3) becomes:

✌✎✍❧❴✦✏✓✒✕✔✴✳✵✘✶✚◗✷✢✤✣✦✥
♠♥ ✏❧✜✩✽✣

Ext
❙ ❛ ✢❝❜ ✌ ✢✩ ✘♦✷♣✏✵✷✩✪✣

Int
❙ ❛ ✢q❜ ✌ ✢✩ ✘srt (4)

where Ext
✁
and Int

✁
are the sets of exterior contours and

interior contours respectively in image ✆ . The above expres-
sion is equivalent to (3) but it simplifies the function that

updates depth intervals. Note here that when applying the

above expression, the contribution of a viewing cone com-

plement along the viewing line should be limited to the line

interval visible from its image. Figure (4) displays the algo-

rithm result for a synthetic object.

(a) (b)

Figure 4: (a) the knots taken from Hoppe’s web site [10];

(b) its visual hull surface points for 40 viewpoints located

on a circle around the object.

3.3 Complexity

Assume that ✉ , ✈ and ✇ are the number of images,
contours per image and points per contour respectively,

then the above algorithm computes ①▼②✤✉③✈④✇⑥⑤ 3D points in� ②✤✉✶⑦✦✈④⑦✦✇✻⑧⑥⑤ time, where ⑧ is the upper bound complexity
of the line-contour intersection function (step 6 in the algo-

rithm) 1. A naive implementation leads to ⑧✑❂ � ②s✇⑥⑤ if we
consider that occluding contours are polygons with ✇ ver-
tices on average. The overall asymptotic complexity would

then be
� ②✤✉✶⑦✦✈❃⑦❳✇❩⑦✻⑤ , or � ②s⑨⑩⑦❁⑤ where ⑨ is the number of

3D points computed.

1We suppose that the number of intersections between the epipolar line

and an occluding contour is negligible compared to ❶ , ❷ and ❸ , we thus
expect the function that updates depth intervals to use ❹❻❺❽❼✽❾ time.
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Interestingly, the complexity ⑧ can be reduced to � ②✴❢✻⑤
by optimizing the intersection function. To this purpose,

and between steps ❿ and ➀ of the algorithm, the image ✰
can be rectified so that epipolar lines become horizontal

lines (i.e., the epipolar rectification). In that case, search

for intersections between the epipolar line ❥ and the occlud-
ing contour

� ✮❦ is simplified by using image ordinates as
lookup values. Only the contour segments for which the

epipolar line ordinate falls within the vertices’ ordinates are

to be considered. Equivalently, angles of lines joining the

epipole and the contour vertices can also be used as lookup

values, with the advantage that image rectifications are not

required (see figure 3). Both solutions lead to ⑧✞❂ � ②✴❢✾⑤ but
add ①▼②✤✉✶⑦❳✈➁✇⑥⑤ operations to either rectify image coordinates
or compute angle values of contour vertices. Note that in

[17, 16] line slopes are used for similar reasons, however

slopes do not always partition the image plane in a consis-

tent way. In particular, the slope function is not monotonic

when two successive contour vertices lie on both sides of

the vertical line incident to the epipole, and hence such a

function can not be used for lookup. Using the optimized

intersection function, the asymptotic complexity reduces to� ②✤✉✶⑦➂✈❃⑦✬✇⑥⑤ .
4. Visual hull surface

We have shown in the previous section how to compute

points on the surface of the visual hull. The next step is con-

cerned with the estimation of the visual hull shape. Classi-

cal volumetric approaches consist in carving a partition of

the 3D space into regular cells: the voxels. In contrast to

this, our space partition lies on the computed visual hull

points, and is thus composed of non-regular cells: the De-

launay tetrahedrons. The major advantage is to allow preci-

sion at a reasonable cost in time and space complexities.

4.1 Point triangulation

The approach we propose is based on the Delaunay tetra-

hedrization of the visual hull surface points. Delaunay tri-

angulations have been widely used to reconstruct surfaces

from unorganized 3D points. Indeed, this problem has re-

ceived a lot of attention over the last decade and most of

the proposed methods consider that the surface solution is

included into the Delaunay triangulation of the input points.

There are two advantages to the Delaunay triangulation:

first, it ensures a regular partition of space in which cells

satisfy properties such as having empty circumscribed balls;

second fast and robust implementations exist.

The problem we address is similar except that the input

data includes, in addition to the 3D points, the 2D image

information. Thus, our approach also searches for a sub-

set of the Delaunay triangulation, but the criterion applied

to carve, or sculpt, the tetrahedral cells takes this additional

information into consideration. In terms of complexity, the

Delaunay tetrahedrization is known to have a worst case

running time in
� ②✤✉✎⑦❁⑤ where ✉ is the number of points.

In our case, and as explained in the previous section, the

number of 3D points is ①➃②✤✉③✈④✇⑥⑤ where ✉ , ✈ and ✇ are the
number of images, contours per image and points per con-

tour respectively. Thus the worst case complexity would be� ②✤✉✶⑦✦✈④⑦✦✇❩⑦✬⑤ , which is more than the time required to com-
pute the visual hull surface points. However, recent works

(see [1] for instance) tend to show that the complexity of the

Delaunay triangulation for points on a polyhedron is linear

in the number of points. This is also confirmed by our ex-

periments which show that most of the running time is spent

in the previous step of the algorithmwhen computing visual

surface points. Observe that the overall complexity is there-

fore not dominated by the Delaunay triangulation.

4.2 Surface extraction

The Delaunay triangulation leads to a set of tetrahedrons

which form the convex hull of the set of input points. From

this set of tetrahedrons, those contributing to the comple-

ment of the visual hull need to be identified and eliminated.

A straightforward approach consists in computing the pro-

jections of their centroids onto the images and to check

whether they lie inside any silhouette. Such an approach

is fast if binary images representing background and fore-

ground information are available, which is often the case

with silhouette-based applications. It also gives satisfactory

results as shown in the next section. Notice that more com-

plex operations involving surface or volume criteria could

also be applied. We are currently conducting experiments

in that direction. The set of tetrahedrons whose centroids

project inside the silhouettes are therefore considered as the

visual hull cells. This set is not necessarily bordered by a

manifold surface since the elimination may leave isolated

tetrahedrons. Such tetrahedrons are detected in a final step

where the triangular facets delimiting the visual hull tetra-

hedrons are identified. The final surface is thus a mani-

fold composed of triangular facets such that all the vertices

project onto occluding contours.

Remark also that most of the 3D points computed are

naturally grouped pairwise since they delimit intervals.

Thus, in addition to the 3D points, the segments defined by

these pairs of points also form elements of the visual hull

surface and should, therefore, be included into the space

partition. To take these new elements into consideration,

we have experimented a conformingDelaunay triangulation

algorithm [7] which ensures that the triangulation includes

any predefined linear complex (edges and faces). However,

this algorithm adds a possibly important number of points

to the input set, in order to satisfy the edges or faces con-

straints. Moreover it appears to be very slow and cancels

5
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the interest of a fast triangulation, which is a strong limita-

tion especially in the case of real time applications. We also

investigate alternative solutions to enforce these constraints.

5. Experimental results

We have experimented the described method on several in-

put sets. A first experiment on the knot object compares

our approach with a voxel-like approach. Figure 5 shows

results obtained with the same silhouettes ( ➄★➅ images). The
boundaries of the voxel grid were chosen close to the object,

which is rarely the case in practical situations. Note that re-

sults are geometrically better with our approach for a fairly

lower complexity. Indeed ➀★➆❖➆❩❿ points are present in our
model while ➇❖➅ ✠ voxels must be verified in each image, not
mentioning any surface extraction step, with the voxel ap-

proach. The number of images, however, has a linear influ-

ence on the upper bound complexity of the volumetric ap-

proachwhile it has a quadratic influence on the upper bound

complexity of our approach. This is because the number

of images does not affect the space partition with volumet-

ric approaches while it does with our approach. However

adding images does not always improve the estimated shape

as shown by the next experiments.

(a) (b)

Figure 5: The visual hull surface of the knots: (a) our al-

gorithm result (3772 points reconstructed) (b) a voxel like

reconstruction with a ➇⑥➅ ✠ ❂➈❿q❢❁➇⑥➅❖➅⑥➅ voxel grid.
The second set of experiments show results on a syn-

thetic torus with cameras randomly distributed on a spheri-

cal region surrounding it. Figure 6 displays different visual

hulls of the torus obtained with different numbers of points

on each contours and different numbers of cameras. Ob-

serve that the running time of the algorithm is
� ②✤✉✱⑦✦✈④⑦✦✇⑥⑤

where ✉ is the number of images and ✇ the number of points
on each contour. Thus adding points on contours has less

effect on the running time. Note also that the accuracy of

the visual hull decreases surprisingly when the number of

images reaches a certain value. This is especially clear in

the left column, from ❢✬➇ to ➀❖❿ images. Such a behavior is
explained by the fact that when adding images, visual hull

points closer to the surface are also added. Thus, some of

the Delaunay tetrahedrons get closer to the surface and their

centroids may project outside some silhouettes. To avoid

this behavior, the number of contour points should also be

increased when increasing the number of images. Interest-

ingly, this suggests that there is an optimal ratio between the

number of images and the number of points on the contours.

5 10 30 60

4

16

8

32

points

images

Figure 6: Visual hulls of a torus: the number of points per

contour versus the number of images. Points are regularly

sampled on the contours and images are randomly chosen

on a sphere surrounding the torus.

Figure 7 shows results obtained with real objects. Con-

tours are extracted in the images using the optimal algo-

rithm described in [8]. The human example is interesting

since it shows virtual objects as explained in section 2. We

are also experimenting the same scenario with a cluster of

PCs in real time situations, our preliminary results show that

real time computations of fairly precise models can be ex-

pected.

6. Conclusion

In this paper, we have presented an approach for computing

the visual hull of complex scenes when silhouettes are avail-

able. Our main contribution is to propose a hybrid algo-

rithm which takes advantage of both volumetric approaches

and surface-based approaches. The algorithm first com-

putes points on the surface of the visual hull, and second ex-

tracts the visual hull surface from a Delaunay triangulation.

The first step is achieved by computing points delimiting

the visual hull complement. The second step is achieved by

6
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Figure 7: The visual hull of a person from ➄ viewpoints.
It contains all the geometric information available from the

silhouettes. Nevertheless, note, in the right view, the virtual

legs that are added to the person. This is due to the camera

positions in this particular case and illustrates the point we

made in section 2

taking the surface delimiting the polyhedrons that project

inside the silhouettes. We have shown that our approach

is equivalent to volumetric approaches for efficiency. They

are both based on the same definition for visual hulls and

they both use all the geometric information available from

the silhouettes. However, we have also shown that our ap-

proach gives significantly better results in terms of preci-

sion, together with lower time and space complexities. The

resulting reconstruction method is naturally aimed at real

time modeling applications.

We are currently working on further improvements and

applications of our method. First, tetrahedrons are classi-

fied according to the positions of their centroid projections

in the images. This can be improved by applying other elim-

ination schemes. Second, the Delaunay triangulation is ap-

plied on points only, however there are more information

about the visual hull yet to be used, namely the contribu-

tion intervals along viewing lines. The final model could

therefore be improved by including these intervals. Third,

real time implementations of modeling methods are still a

challenging issue, in particular when considering a cluster

of PCs.
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Abstract

Shape from silhouette methods are extensively used

to model dynamic and non-rigid objects using binary

foreground-background images. Since the problem of re-

constructing shapes from silhouettes is ambiguous, a num-

ber of solutions exist and several approaches only consider

the one with amaximal volume, called the visual hull. How-

ever, the visual hull is not always a good approximation of

shapes, in particular when observing smooth surfaces with

few cameras. In this paper, we consider instead a class of

solutions to the silhouette reconstruction problem that we

call visual shapes. Such a class includes the visual hull, but

also better approximations of the observed shapes which

can take into account local assumptions such as smooth-

ness, among others. Our contributions with respect to ex-

isting works is first to identify silhouette consistent shapes

different from the visual hull, and second to give a practical

way to estimate such shapes in real time. Experiments on

various sets of data including human body silhouettes are

shown to illustrate the principle and the interests of visual

shapes.

1. Introduction

Recovering shapes from their projected contours in a set

of digital images has been a subject of interest for the last

three decades in the vision and graphics communities. The

main interest of these contours is that they lead to region

based modeling approaches which are rapid and do not rely

on only local, and sensitive, photometric consistencies be-

tween images. They are therefore used to produce mod-

els, and especially initial models, in a number of model-

ing systems in particular dynamic systems which consider

moving objects over time. Several methods have been pro-

posed to solve the associated reconstruction problem among

which one of the most successful is the visual hull [1, 14].

Such an approach consists in computing the maximal vol-

ume that projects inside image contours or, in other words,

onto silhouettes. Straightforward approaches exist to this

purpose [21, 18, 11], some of which are real time [6, 10].

While robust and easy to estimate, the visual hull is not, in

general, a good geometric approximation of the observed

shape. It can even be rather poor if a reduced number of

views are considered. This is due to the fact that the visual

hull is merely an extended bounding box, obtained by iden-

tifying the region in space where the observed shape can not

be with respect to a set of silhouettes. Such a conservative

approach does not report on shapes that are consistent with

a given set of silhouettes, but on the union of the regions

occupied by all such shapes. As a consequence, a number

of viewpoints are required to refine this region and ensure

that it is reasonably close to the observed object shape.

However, even a few silhouettes provide strong geomet-

ric information on shapes under little assumptions. Our in-

tention in this paper is therefore to find better approxima-

tions of an object shape given its silhouettes while keep-

ing the ability to model in real time. To this purpose, we

introduce the Visual Shapes of a set of silhouettes, which

are silhouette consistent shapes in the sense that their pro-

jected silhouette boundaries, with respect to given view-

points, match the given silhouette contours. Beside the def-

inition which helps in characterizing silhouette based mod-

els, often incorrectly considered as visual hulls in the liter-

ature, the main interest of visual shapes is to yield estima-

tions more precise than visual hulls.

While the literature on visual hulls and their compu-

tation is vast, less efforts have been devoted to silhou-

ette consistent shapes inside the visual hull. In [7, 22],

first solutions were proposed to determine, along viewing

lines, single points of contacts with the surface, under local

second order assumptions. The associated approaches as-

sume some knowledge on extremal contour connectivities,

as well as simple shape topologies, but they allow smooth

surfaces to be reconstructed. Our work is founded on the

same observation that viewing lines along silhouette con-

tours, and thus the visual hull surface, are tangent to the

observed object surface. Following also this observation,

approaches [9, 13, 5, 17] exploit the duality that exists be-

tween points and planes in 3D space, and estimate the dual

1
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of the surface tangent planes as defined by silhouette con-

tour points. However, these approaches do not account for

the fact that surface points lie on known viewing lines, in

known intervals, and suffer therefore from various singular-

ities. Also the visual shapes represent a more general con-

cept since a family of plausible shapes, including the visual

hull, is defined.

In [15], the topological structure of the visual hull is

made explicit in the case of smooth objects. In this work,

the mesh describing the extremal contour connectivity on

the object surface is called the rim mesh and its connection

with the visual hull mesh is identified. Unfortunately, this

theoretical contribution does not yield a practical method

to estimate the rim mesh in general situations, in particu-

lar with shapes having complex topologies. Recently, [12]

and [20] proposed approaches to estimate the rim mesh on

the visual hull surface by adding a photometric consistency

constraint. However the rim mesh is not always well de-

fined due to self-occlusions and strong assumptions need to

be made on the topology of the observed objects, as stated

in [16].

Our strategy is different from the afore-mentioned

works. We first define a family of shapes which are con-

sistent with a given set of silhouettes, namely the visual

shapes. For one set of silhouettes, the associated shapes

differ then by their contact with viewing lines of silhouette

contour points: from isolated points, as for extremal con-

tours on the observed shape, to the maximal intervals of the

visual hull. Visual shapes are reduced to a single element

when an infinite number of viewpoints, outside the shape’s

convex hull, is considered. In that case visual shapes and

the visual hull are equivalent to the original shape, minus its

concavities. However, in the general case, additional infor-

mation is required to identify a single visual shape. Several

criteria can be used to that purpose. In this paper, we exper-

iment a very general assumption of local shape smoothness

which is true in most real situations. The interest is to pro-

vide an approximation of the observed shape which is better

than the visual hull, while keeping its robustness advantage

over most modeling approaches. Such an approximation is

useful not only as a final model but also as the initial in-

put data to several modeling applications including motion

capture or model refinement.

The paper is organized as follows. In Section 2, geo-

metric entities related to visual shapes are introduced. In

Section 3, visual shapes are defined and illustrated. In Sec-

tion 4, it is explained how to compute visual shapes, and

results with real data are presented, before concluding in 5.

2. Preliminaries

Suppose that a scene, containing an arbitrary number ob-

jects, is observed by a set of calibrated pinhole cameras.

Rim

Viewing edge

Viewing cone strip

Silhouette

Figure 1. Viewing cone strip of a silhouette.

Suppose also that projections of objects in the images are

segmented and identified as foreground. The foreground re-

gion of an image i consists then of the union of object pro-
jections in that image and, hence, may be composed of sev-

eral unconnected components with non-zero genus. Each

connected component is called a silhouette.

Consider the set of viewing rays associated with image

points belonging to a single silhouette in one image. The

closure of this set defines a cone in space, called viewing

cone. The viewing cone delimiting surface is tangent to

the surface of the corresponding foreground object along a

curve called the rim (see figure 1). In what follows, we as-

sume that a rim is formally defined as the locus of points on

the object surface where viewing lines from one viewpoint

are tangent to the surface.

The visual hull [1] is then obtained by intersecting view-

ing cones, possibly with respect to various image visibility

domains [11]. It is a generalized polyhedron whose faces

are made of cone patches, organized into strips with respect

to silhouette contours.

A viewing cone strip corresponds then to contributions

of a silhouette contour to the boundary surface of the vi-

sual hull (see figure 1). By construction, the rim associated

with a silhouette contour lies inside the viewing cone strips

associated to the silhouette. Observe that for non-smooth

objects, the rim can become a strip itself within the viewing

cone strip.

Of particular interest for this paper are viewing edges,

corresponding to contributions of viewing rays to the visual

hull surface. For one image point, such a contribution con-

sists of one or several edges along the ray. A viewing cone

strip can then be defined as the union of the viewing edges

of the points on a silhouette contour. The viewing edges of

an image point are easily obtained by finding silhouette con-

tribution intervals along the point’s viewing line, and com-

puting then the common intersections of these intervals.

2
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3. Definition

The visual hull is defined as the intersection of the

viewing cones. As mentioned in the introduction, our

objective is to identify a larger family of shapes associated

to a given set of image silhouettes. To this purpose, we will

focus on the part of the surface which is observed from

silhouette contours, namely rims, and consider that shapes

consistent with a set of silhouettes have rims with similar

topologies. Hence, the proposed following definition:

Definition. Let S be a set of scene silhouettes associated
to a set of viewpoints C. Then visual shapes V(S, C) of S
and C are space regions V such that:

1. All rim points on the surface of V, belong to viewing

cone strips of S.

2. All viewing cone strips of S are tangent to V.

The two above constraints ensure that, first, visual

shapes are consistent with the given silhouettes, and

second, that inside any viewing strip there is a rim. Such

a definition yields a family of shapes which are consistent

with silhouettes and viewpoints, i.e. all the volumes in

space for which rims project onto given silhouettes and

cover all of them. Intuitively, the visual shapes V(S, C)
differ by the width, along viewing lines, of their rims, and

identifying a single visual shape inside the solution family

consists in deciding for the rim width based on a priori

knowledge. Note that visual shapes include the visual hull

as an extremal shape in the family that encloses all the

others. We have then the following property:

Property . Let S be a set of scene silhouettes associated
to a set of viewpoints C, then any viewing edge associated
to contours points of S contains at least one point of any
visual shapes V(S, C).

This property means that all visual shapes are tangent to

the visual hull surface along viewing cone strips. In partic-

ular, we expect better approximations of smooth shapes to

be shapes with a single contact point with the visual hull

surface along viewing lines. Visual shapes include shapes

which satisfy that constraint. This will be used when com-

puting visual shapes as explained in the next Section.

Visual shapes could also be seen as dual shapes of the

visual hull, by the fact that they are shapes inside the visual

hull with tangent contacts. However, the above definition is

not restricted to a single shape but identifies a family of sil-

houette consistent shapes. Also in contrast to duality based

approaches [5, 17], visual shapes are well defined shapes

which do not suffer from singularities in generic situations.

This is due to the fact that visual shape rim points are, by

1C

C 2

Figure 2. Cross Section of a situation where 2

cameras observe 2 spheres. In brown the re-

sulting visual hull. In red, the surface of one
of the associated visual shapes with single

contact points locally with the visual hull sur-
face. Observe that, by definition, the visual

shape is tangent to the visual hull surface,

but that the observed objects do not neces-
sarily satisfy that property.

definition, on the visual hull surface which is itself well de-

fined. In duality based approaches, estimated shapes do not

necessarily satisfy this containment property since shape

point locations are not restricted to viewing edges, or even

viewing lines, but to planes. In that sense, visual shapes

use all the information provided by silhouettes. The only

assumption which is made so far is that observed shapes

are tangent to all visual hull faces. Even if this is not al-

ways true, as shown in figure 2, it limits the reconstruction

solution space in a reasonable way when no additional in-

formation are available to decide where the matter is.

By definition, all visual shapes associated with a set of

silhouettes share the same topology, that of the visual hull.

Note however that the observed objects are not necessarily

visual shapes of their silhouettes because of self-occlusions

which can hide rim points and unoccupied visible space (see

figure 2).

Figure 3 shows examples of visual shapes corresponding

to silhouettes of a sphere. Sets with different numbers of

silhouettes were used. The figure shows the visual hulls

obtained with these sets as well as various visual shapes

obtained by: (b) thinning viewing cone strips, (c) choosing a

single contact point along viewing edges, and (d) estimating

single contact point with local assumptions. Observe that

in column (d), well delimited contours always appear on

3
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2

3

5

7

10

(a) (b) (c) (d)

Viewpoints

Figure 3. Visual shape examples with silhou-
ette sets of a sphere. The top row correspond

to silhouettes from 2 viewpoints, and the
rows below show models obtained by pro-
gressively adding viewpoints. Columns are:

(a) visual hulls; (b) visual shapes obtained by

slightly thinning viewing cone strips; (c) vi-
sual shapes with one contact point, with the

visual hull surface, randomly chosen inside

viewing edges; (d) visual shapes with one
contact point assuming the surface to be lo-

cally of order 2.

visual shapes. They correspond to the observed rims on the

sphere. In that case, local assumptions about the observed

surface are true, and all the estimated points inside viewing

edges belong to the observed sphere. Note also that when

increasing the number of views, visual shapes all converge

to a single shape. With infinite viewpoints outside the scene

convex hull, this limit shape becomes the observed shape

from which concavities have been removed1.

1This is the original definition of the visual hull by Laurentini[14]

4. Computation

In the previous Section, we introduced visual shapes of

a set of silhouettes. These are shapes with the same topo-

logical rims with respect to the considered viewpoints. As a

consequence, visual shapes of a set of silhouettes all have

contributions inside viewing edges of silhouette contour

points. Thus, the computation of visual shapes consists

first in identifying these contributions inside the viewing

edges, and second to estimate the surface connecting these

contributions. This is described in the following Sections

where we assume polygonal silhouette contours, as gener-

ally available in real situations.

4.1. Contributions along viewing edges

As mentioned earlier, viewing edges, or visual hull con-

tribution intervals along viewing rays, are easily computed

by intersecting ray projections with image silhouettes (see

[4] for how to compute them efficiently). In figure 3, col-

umn (b) shows visual shapes obtained by thinning these

viewing edges. This is a first solution, however this does

not improve the estimation in a significant way with respect

to the visual hull. As shown in column (c)-(d) of figure 3,

a better estimation is related to the fact that viewing rays

along silhouette contours only graze the surface at isolated

points. This is true for smooth surfaces, but not only: even

if the surface is locally planar, viewing rays will still be tan-

gent at isolated points, except in the specific case where the

viewing point belongs to the surface plane.

In the following, we thus assume a single contact point

inside viewing edges. To identify the location of the con-

tact point, different assumptions can be made. In [12] and

[20], image photo-consistency assumptions are made to de-

termine rim points inside visual hull faces. However photo-

consistency applies to true surface points, and in numerous

situations where self-occlusions occur there is no such point

inside viewing edges, as explained before and shown for in-

stance in figure 2. A shape estimated this way would still

be a visual shape by definition, but with an unpredictable

local behavior. Another possibility is to assume that the

surface is locally of order 2, thus with a predictable local
behavior. It is more or less the assumption made in duality

based approaches [13, 5, 17] where the surface is assumed

to be locally a quadric, or where finite differences are used

to estimate derivatives. Our approach differs by the fact that

we constrain the points we estimate to be inside well de-

fined intervals along viewing rays, namely viewing edges.

In contrast, duality based approaches estimate points dual to

planes, and, importantly, can not guarantee that these points

belong to the visual hull.

Another advantage of viewing edges is that they natu-

rally define a local neighborhood through epipolar corre-

4
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N
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k

p

Figure 4. Viewing edges of point p in image
i are delimited by viewing rays of epipolar
correspondents of p. The neighborhood de-
fined around P by these two correspondents
is used to estimate local surface properties
in the viewing direction. Note that when p
moves along the silhouette contour, the view-

ing points Cj and Ck change when p reaches
rim intersections on the surface.

spondences (see figure 4). Their boundary, i.e. the interval

boundary points along viewing rays, identifies the epipo-

lar correspondents, over all input silhouettes, such that the

interval, where a surface point can lie, is minimal and not

infinite in general2. Local neighborhoods defined in this

manner are optimal for local estimation of surface proper-

ties. Using instead the epipolar parametrization between

silhouettes, as in [7, 22, 3] and more recently in [17], does

not ensure such a property since correspondences between

silhouettes are imposed: points on silhouette at time t are
matched with points on silhouettes at time t ± ǫ, and other
silhouettes are not considered. Intervals along viewing rays

defined by such correspondences can be infinite even when

the visual hull is finite, hence making local surface estima-

tions very difficult.

Each viewing edge defines a neighborhood composed of

two epipolar correspondents. Thus for each viewing edge,

we have three viewing rays which are locally tangent to the

visual shape: 2 viewing lines from the epipolar correspon-
dents and the viewing line supporting the viewing edge.

From these three tangents, it is easy to estimate the position

of the visual shape point inside the viewing edge, under the

assumption that the surface is locally of order 2. To this pur-
pose, we use the algorithm presented in [3]. This algorithm

exploits the fact that the three viewing rays define locally

two curves on the visual shape surface which present the

2Viewing edge intervals are finite as long as the visual hull is finite.

Figure 5. Visual shape points and normals
under the assumption that the surface is lo-

cally of order 2. On top: one of the im-
age used and 3 of the 6 silhouettes available.
Bottom: estimated points (red) and normals

(blue) with 2 (left) up to 6 (right) viewpoints.

same normal curvature at the contact point, and a linear so-

lution for the surface point position inside a viewing edge

exists.

Examples

Figure 5 illustrates the above estimation with silhouettes ob-

tained in real conditions. Visual shape points, and their nor-

mals to the surface, are shown. Surface normals were clas-

sically computed as the cross products of viewing directions

and tangents to the silhouette contours in the images. Note

in this figure that even with two viewpoints, useful visual

information can still be computed from silhouettes. The in-

formation computed this way, even if partial, can be useful

for various applications. We have in particular successfully

used such information, i.e. point locations and surface nor-

mals, as input data to a model based motion capture sys-

tem [19].

4.2. From viewing edge contributions to
shapes

In the previous section, we explained how to estimate

viewing ray contributions to visual shapes. Several ap-

proaches were mentioned, from viewing edge thinning, to

single contact point estimations. All these approaches allow

visual shape points to be estimated, as well as their normals

to the visual shape surface. However, a crucial issue is how

to find the visual shape surface interpolating these points.

5
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In the case of the visual hull, the associated mesh is com-

pletely defined from silhouette contours. It corresponds to a

polyhedral mesh with a constant valence equal to 3[11] and
its computation can be achieved from image primitives. For

other visual shapes, no a priori information is available apart

from their organization into strips onto the surface. How-

ever, this information only yields surface patches which are

difficult to connect so as to form a valid shape. In [17], a

solution is proposed which consists first in re-sampling rims

according to parallel slicing planes, and second to solve the

simpler problem of surface reconstruction from polygonal

contours, for which standard tools exist. While robust, this

solution can not guarantee precision since re-sampling in-

troduces errors, nor can it guarantee that the estimated shape

has a topology consistent with the observations, since the

surface estimation is achieved without any consideration to

the image information.

To compute a shape which interpolates visual shape

points while being consistent with silhouettes, we use a

fairly efficient solution based on the Delaunay tetrahedriza-

tion. This has been explored in the case of visual hulls[4]

and we extend the idea to general visual shapes. The pro-

posed method computes the Delaunay tetrahedrization of

the visual shape points, then carves tetrahedrons of the re-

sulting set, which project outside any image silhouette. Vi-

sual shapes are then the union of the tetrahedrons consistent

with all the input silhouettes. While simple, the approach

still raises a few issues to be discussed:

1. Often tetrahedrons do not project entirely inside or out-

side a silhouette. To decide whether a tetrahedron is

inside or outside a silhouette, we sample several points

inside the tetrahedron and verify their projection status

with respect to the silhouette. The ratio of points inside

and outside the silhouette is then considered for the de-

cision. Another possibility would also be to subdivide

the tetrahedron into sub-tetrahedrons and to carve the

subdivision.

2. Carving must be achieved with some care if a mani-

fold surface is expected. In some local configurations,

tetrahedrons should not be carved to preserve local

surface connectivity. These configurations have been

identified in [2].

3. The Delaunay tetrahedrization does not necessarily re-

flect known connections inside viewing cone strips.

This is not a critical issue in most cases but yields

sometimes annoying visual artifacts in the computed

model. To overcome this, a first solution consists in

adding vertices to the silhouette polygonal contours,

increasing therefore the probability that contour con-

nections appear in the triangulation. While satisfying

in most situations, this solution does not give any guar-

(a) (b) (c) (d)

2

4

6

Figure 6. Visual shapes of a body shape with,
from top to bottom 2, 4 and 6 viewpoints, and
from left to right: (a) visual hulls; (b) thinned

viewing cone strips; (c) random single con-
tact point inside viewing edges; (d)single

contact point with local smooth assumptions

as described in Section 4.1.

anty. One could therefore prefer using a conformal De-

launay tetrahedrization [8], which can ensure that the

computed complex includes any predefined rim edges,

with however a much higher computational complex-

ity.

Examples

Figure 6 illustrates the methodwith the same input data than

in figure 5. Visual shapes were computed in a way similar to

figure 3. In the top row, the visual shapes present a different

topology than the human body, because too few viewpoints

are used. It shows that visual shapes cover all the visible

space, which is a reasonable behavior when no additional

information about shape location is available. Note also that

since the observed bodymodel has a mostly smooth surface,

the visual shapes with a local second order surface model,

6
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in column (d), are the most realistic estimations.

4.3. Texturing Visual Shapes

One of the strong advantage of visual shape models is

that they project exactly onto silhouettes in the image, al-

lowing therefore the photometric information inside silhou-

ettes to be entirely mapped onto the model. However some

difficulties remain in particular how to map textures on the

model ? To this purpose, we developed an original ap-

proach. The idea is to consider each camera as a light source

and to render the model using a shading model. The contri-

bution of a view to the model textures is then encoded in the

illumination values of the light source with the same loca-

tion than the original view (see figure 7). These contribution

values are then combined with texture values to obtain a fi-

nal image. Depending on the shading model, purely diffuse

or with specular like effects, texture mapping will be view-

dependent or not. Though simple, this approach appears to

be very efficient to texture models in real time (see the video

submitted).

(a) (b) (c) (d) (e) (f)

Figure 7. Texturing visual shapes: (a) the

mesh, (b)-(c) the mesh rendered from 2
camera viewpoints, (d)-(e) the corresponding

view contributions to the textured model, (f)
the combined contribution of the the 2 cam-
era images.

Figure 8 shows textured models of visual shapes similar

to those used in the previous examples. When textured, all

visual shapes share, by construction, the same appearance

from viewpoints close to those of the acquisition process.

Differences appear, and increase, when moving away from

these viewpoints. Then, the visual hull reveals its bounding

box like aspect, as viewing cone intersection curves become

visible. This effect is made more obvious when considering

dynamic visual shapes over time sequences. In that case,

differences between chosen visual shapes are more visible,

and our visual system naturally considers shapes with more

likely local properties, e.g. the right model in figure 8, as

more realistic.

5. Conclusion

We have introduce the visual shapes, which are a class of

silhouette consistent shapes. The concept is useful to char-

acterize shapes that project onto a set of silhouettes, and

which are not necessarily the well known visual hull. This is

especially useful when observing shapes with known prop-

erties, e.g. smoothness, since local assumptions can easily

be used to identify and construct the most appropriate vi-

sual shape among a set of solutions. We have proposed

an approach to compute points of the visual shape’s sur-

face, which are then used to compute this surface. The ap-

proach is robust and has been validated over various data

sets, showing the interest of the method, in particular when

modeling smooth surfaces such as human bodies. Issues

we are currently considering include consistency of visual

shapes over time sequences, and how to adequately account

for photometric information.
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Abstract. This paper addresses the problem of camera calibration using object

silhouettes in image sequences. It is known that silhouettes encode information on

camera parameters by the fact that their associated viewing cones should present

a common intersection in space. In this paper, we investigate how to evaluate cali-

bration parameters given a set of silhouettes, and how to optimize such parameters

with silhouette cues only. The objective is to provide on-line tools for silhouette

based modeling applications in multiple camera environments. Our contributions

with respect to existing works in this field is first to establish the exact constraint

that camera parameters should satisfy with respect to silhouettes, and second to

derive from this constraint new practical criteria to evaluate and to optimize cam-

era parameters. Results on both synthetic and real data illustrate the interest of

the proposed framework.

1 Introduction

Camera calibration is a necessary preliminary step for most computer vision applica-

tions involving geometric measures. This includes 3D modeling, localization and navi-

gation, am-ong other applications. Traditional solutions in computer vision are based on

particular features that are extracted and matched, or identified, in images. This article

studies solutions based on silhouettes which do not require any particular patterns nor

matching or identification procedures. They represent therefore a convenient solution

to evaluate and improve on-line a camera calibration, without the help of any specific

patterns. The practical interest arises more specifically in multiple camera environments

which are becoming common due, in part, to recent evolutions of camera acquisition

materials. These environments require flexible solutions to estimate, and to frequently

update, camera parameters, especially because often calibrations do not remain valid

over time.

In a seminal work on motion from silhouettes, Rieger [1] used fixed points on sil-

houette boundaries to estimate the axis of rotation from 2 orthographic images. These

fixed points correspond to epipolar tangencies, where epipolar planes are tangent to the

observed objects’ surface. Later on, these points were identified as frontier points in [2]

since they go across the frontier of the visible region on a surface when the viewpoint is

continuously changing. In the associated work, the constraint they give on camera mo-

tion was used to optimize essential matrices. In [3], this constraint was established as

an extension of the traditional epipolar constraint, and thus was called the generalized

epipolar constraint. Frontier points give constraints on camera motions, however they

must first be localized on silhouette boundaries. This operation appears to be difficult:

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in [4] inflexions of the silhouette boundary are used to detect frontier points from which

motion is derived, in [5] infinite 4D spaces are explored using random samples and in

[6] contour signatures are used to find potential frontier points. All these approaches

require frontier points to be identified on the silhouette contours prior to camera pa-

rameter estimation. However such frontier points can not be localized exactly without

knowing epipoles. As a consequence, only approximated solutions are usually obtained

by discrete sampling over a space of potential locations for frontier points or epipoles.

We take a different strategy and bypass the frontier point localization by considering the

problem globally over sets of silhouettes. The interest is to transform a computationally

expensive discrete search into an exact, and much faster, optimization over a continuous

space.

It is worth to mention also a particular class of shape-from-silhouette applications

which use turntables and a single camera to compute 3D models. Such model acqui-

sition systems have received noticeable attention from the vision community [7, 8, 9].

They are geometrically equivalent to a camera rotating in a plane around the scene. The

specific constraints which result from this situation can be used to estimate all motion

parameters. However, the associated solutions do not extend to general camera config-

urations as assumed in this paper.

Our approach is based first on the study of the constraint that both silhouettes and

camera parameters must satisfy. We then derive two criteria: a quantitative smooth cri-

terion in the form of a distance, and a qualitative discrete criterion, both being defined

at any point inside a silhouette. This provides practical tools to qualitatively evaluate

calibrations, and to quantitatively optimize their parameters. It appears to be particu-

larly useful in multiple camera environments where calibrations often change, and for

which fast on-line solutions are required.

This paper is organized as follows. Section 2 recalls background material. Section 3
precises constraints and respective properties of silhouettes, viewing cones and frontier

points. Section 4 introduces the distance between viewing cones that is used as a geo-

metric criterion. Section 5 introduces the qualitative criterion. Section 6 shows results

on various data before concluding in section 7.

2 Definitions

Silhouette: Suppose that a scene, containing an arbitrary number objects, is observed

by a set of pinhole cameras. Suppose also that projections of objects in the images are

segmented and identified as foreground.O denotes then the set of observed objects and

IO the corresponding binary foreground-background images. The foreground region

of an image i consists of the union of objects’ projections in that image and, hence, may

be composed of several unconnected components with non-zero genus. Each connected

component is called a silhouette and their union in image i is denoted Si.

Viewing Cone: Consider the set of viewing rays associated with image points belong-

ing to a single silhouette in Si. The closure of this set defines a generalized cone in

space, called viewing cone. The viewing cone’s delimiting surface is tangent to the

surface of the corresponding foreground object. In the same way that Si is possibly
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epipolar plane
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viewpoint
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Fig. 1. A visual hull and 2 of its viewing cones

composed of unconnected components, the viewing cones of image i are possibly sev-

eral distinct cones, one associated with each silhouette in Si. Their union is denoted Ci.

Note that individual objects are not distinguished here.

Visual Hull: The visual hull [10] is formally defined as the maximum surface consistent

with all silhouettes in all images. Intuitively, it is the intersection of the viewing cones of

all images (see figure 1). In practice, silhouettes are delimited by 2D polygonal curves,

thus viewing cones are polyhedral cones and since a finite set of images are considered,

visual hulls are polyhedrons. Assume that all objects are seen from all image viewpoints

then:

VH(IO) =
⋂

i∈IO

Ci, (1)

is the visual hull associated with the set IOof foreground images and their viewing

cones Ci∈IO . If all objects O do not project onto all images, then the reasoning that fol-

lows still applies to subset of objects and subsets of cameras which satisfy the common

visibility constraint.

3 Geometric Consistency Constraint

In this section, the exact and optimal geometric consistency which applies with silhou-

ettes is first established and its equivalence with more practical constraints is discussed.

3.1 Visual Hull Constraint

Calibration constraints are usually derived from geometric constraints reflecting geo-

metric coherence. For instance, different image projections of the same feature should

give rise to the same spatial location with true camera parameters. In the case of silhou-

ettes, and under the assumption that no other image primitives are available, the only

geometric coherence that applies comes from the fact that all viewing cones should

correspond to the same objects with true camera parameters. Thus:

O ⊂ VH(IO),

and consequently by projecting in any image i:

Si ⊂ Pi(VH(IO)), ∀i ∈ IO,
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where Pi() is the oriented projection1 in image i. Thus, viewing cones should all inter-

sect, and viewing rays belonging to viewing cones should all contribute to this intersec-

tion. The above expression is equivalent to:

⋃

i∈IO

[Si − Pi(VH(IO))] = ∅, (2)

which says that the visual hull projection onto any image i should entirely cover the

corresponding silhouette Si in that image. This is the constraint that viewing cones

should satisfy with true camera parameters. It encodes all the geometric consistency

constraints that apply with silhouettes and, as such, is optimal. However this expression

in its current form does not yield a practical cost function for camera parameters since

all configurations leading to an empty visual hull are equally considered, thus mak-

ing convergence over cost functions very uncertain in many situations. To overcome

this difficulty, viewing cones can be considered pairwise as explained in the following

section.

3.2 Pairwise Cone Tangency

We can easily derive from the general expression (2) the pairwise tangency constraint.

Substituting the visual hull definition (1) in (2):

(2) ⇔
⋃

i∈IO

[Si − Pi(
⋂

j∈IO

Cj)] = ∅.

Since projection is a linear operation preserving incidence relations:

(2) ⇒
⋃

i∈IO

[Si −
⋂

j∈IO

Pi(Cj)] = ∅.

Note that, in the above expression, the exact equivalence with (2) is lost since projecting

viewing cone individually introduces depth ambiguities and, hence, does not ensure a

common intersection of all cones as in (2). By distributive laws:

(2) ⇒
⋃

(i,j)∈IO×IO

[Si − Pi(Cj)] = ∅. (3)

Expression (3) states that all viewing cones of a single scene should be pairwise

tangent. By pairwise tangent, it is meant that all viewing rays from one cone intersect the

other cone, and reciprocally. This can be seen as the extension of the epipolar constraint

to silhouettes (see figure 2). Note that this constraint is always satisfied by concentric

viewing cones, for which no frontier points exist. Note also that if (3) and (2) are not

strictly equivalent, they are equivalent in most general situations.

1 i.e. a projection such that there is a one-to-one mapping between rays from the projection

center and image points.
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Fig. 2. Pairwise tangency constraint: silhouette Si is a subset of the viewing cone projection

Pi(Cj) in image i

3.3 Connection with Frontier Points

A number of approaches consider frontier points and the constraints they yield on cam-

era configurations. Frontier points are particular points which are both on the objects’

surface and the visual hull, which project onto silhouettes in 2 or more images, and

where the epipolar plane is tangent to the surface (see figure 1). They satisfy therefore

what is called the generalized epipolar constraint [3]. They allow hereby projective re-

construction when localized in images [5, 6]. The connection between the generalized

epipolar constraint and the pairwise tangency constraint (3) is that the latter implies the

former at particular frontier points. Intuitively, if two viewing cones are tangent then

the generalized epipolar constraint is satisfied at extremal frontier points where viewing

lines graze both viewing cones.

4 Quantitative Criterion

The pairwise tangency is a condition that viewing cones must satisfy to ensure that the

same objects are inside all cones. In this section, we introduce a distance function that

evaluates this condition.

4.1 Distances Between a Viewing Ray and a Viewing Cone

The distance function between a ray and a cone that we seek should preferably respect

several conditions:

1. It should be expressed in a fixed metric with respect to the data, thus in the images

since a 3D metric will change with camera parameters.

2. It should be a monotonic function of the respective locations of ray and cone.

3. It should be zero if the ray intersect the viewing cone. This intersection, while

apparently easy to verify in the images, requires some care when epipolar geometry

is used. Figure 3 depicts for instance a few situations where the epipolar line of a

ray intersects the silhouette, though the ray does not intersect the viewing cone.

These situations occur because no distinction is made between front and back of

rays.

4. It should be finite in general so that situations in figure 3 can be differentiated.
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Fig. 3. A ray and the cross-section of the viewing cone in the corresponding epipolar plane. 3 of

the situations where unoriented epipolar geometry will fail and detect intersections.
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viewing
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Fig. 4. The spherical image model: viewing rays project onto epipolars arcs on the sphere

In light of this, a fairly simple but efficient approach is to consider a spherical image

model instead of a planar model (see figure 4), associated to an angular metric. The

distance from a ray to a viewing cone is then the shortest path on the sphere from the

viewing cone to the ray projection. This projection forms an epipolar circle-arc on the

sphere delimited by the epipole and the intersection of the ray direction with the sphere.

The ray projection is then always the shortest arc between these 2 points, which can

coincide if the ray goes trough the viewing cone apex. Two different situations occur

depending on the respective positions of the ray epipolar plane and the viewing cone:

1. The plane intersects the viewing cone apex only, as in figure 4. The point on the

circle containing the epipolar arc and closest to the viewing cone must be deter-

mined. If such point is on the epipolar arc then the distance we seek is its distance

to the viewing cone. Otherwise, it is the minimum of the distances between the arc

boundary points and the viewing cone.

2. The plane goes through the viewing cone. The distance is zero in the case where

the ray intersects the viewing cone section in the epipolar plane, and the shortest

distance between the epipolar arc boundary points and the viewing cone section in

the other case. This distance is easily computed using angles in the epipolar plane.

4.2 Distance Between 2 Viewing Cones

A distance function between a ray and a viewing cone has been defined in the previous

section, this section discusses how to integrate it over a cone. The distance between
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angle 

focal length

translation

Fig. 5. The distance between 2 viewing cones as a function of: (green) one focal length which

varies in the range [f −0.4f, f +0.4f ], with f the true value; (blue) one translation parameter to

which is added from −0.4 to 0.4 of the camera-scene distance; (red) one Euler orientation angle

which varies in the range [α− 0.4π, α +0.4π] with α the true value. The filled points denote the

limit distances on curves above which the 2 cones do not intersect at all.

2 viewing cones is then simply defined by a double integration over the 2 concerned

cones.

Recall that silhouettes and viewing cones are discrete in practice and thus defined by

sets of contour points in the images and boundary rays in space. The simplest solution

consists then in summing individual distances over boundary rays. Assume that rk
i is

the kth ray on the boundary of viewing cone Ci, and d(rk
i , Cj) = dk

ij is the distance

between rk
i and Cj as defined in the previous section. Then the distance Dij between Ci

and Cj is:

Dij =
∑

k

dk
ij +

∑

l

dl
ji = dij + dji. (4)

Remark that Dij = Dji but dij �= dji. The above expression is easy to compute

once the distance function is established. It can be applied to all boundary viewing rays,

however mainly rays on the convex hulls of silhouettes are concerned by the pairwise

tangency constraint, we thus consider only them to improve computational efficiency.

Figure 5 illustrates the distance Dij between 2 viewing cones of a synthetic body model

as a function of various parameters of one cone’s camera. This graph demonstrates the

smooth behavior of the distance around the true parameter values, even when the cones

do not intersect at all.

5 Silhouette Calibration Ratio

Following the quantitative criterion, we introduce a simple qualitative criterion which

evaluates how silhouettes contribute to the visual hull for a given calibration.

Recall that any viewing ray, from any viewing cone, should be intersected by all

other image viewing cones, along an interval common to all cones. Let ωr be an interval

along ray r intersected by viewing cones, and let us call N (ωr) the number of image

contributing (image for which a viewing cone intersects ωr) inside that interval. Then
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the sum over the rays r:
∑

r maxωr
(N (ωr)), should theoretically be equal to m(n−1)

if m rays and n images are considered. Now this criterion can be refined by considering

each image contribution individually along a viewing ray. Let ωi
r be an interval, along

ray r, where image i contributes. Then the silhouette calibration ration Cr defined as:

Cr =
1

m(n − 1)2

∑

r

∑

i

max
ωi

r

(N (ωi)), (5)

should theoretically be equal to 1 since each image should have at least one contribution

interval with (n − 1) image contributions. This qualitative criterion is very useful in

practice because it reflects the combined quality of a set of silhouettes and of a set of

camera parameters. Notice however that it can hardly be used for optimizations because

of its discrete, and thus non-smooth, nature.

6 Experimental Results

The pairwise tangency presented in the previous section constraint camera parameters

when a set of static silhouettes IO is known. For calibration, different sets IO should

be considered. They can easily be obtained, from moving objects for instance, as in [5].

The distances between viewing cones are then minimized over the camera parameter

space through a least square approach:

θ̂IO = min
θ

∑

(i,j) ∈ IO×IO

D2
ij , (6)

where θ is the set of camera parameters to be optimized. θ̂IO is equivalent to a maximum

likelihood estimate of the camera parameters under the assumption that viewing rays

are statistically independent. The above quantitative sum can be minimized by standard

non-linear methods such as Levenberg-Marquardt.

6.1 Synthetic Data

Synthetic sequences, composed of images with dimensions 300×300, were used to test

the approach robustness. 7 cameras, with standard focal lengths, are viewing a running

human body. All camera extrinsic parameters and one focal length per camera, assum-

ing known or unit aspect ratios, are optimized. Different initial solutions are tested by

adding various percentages of uniform noise to the exact camera parameters. For the

focal lengths and the translation parameters, the noise amplitudes vary from 0% up to

40% of the exact parameter value; for the pose angle parameters, the noise amplitudes

vary from 0% up to 40% of 2π. Figure 6 shows, on the left, the silhouette calibration

ratios after optimization; and on the right, relative errors in the estimated camera pa-

rameters after optimization using 5 frames per cameras. These results first validate the

silhouette calibration ratio as a global estimator for the quality of any calibration with

respect to silhouette data. Second, they show that using only one frame per camera is

intractable in most situations. However, they prove also that using several frames, cali-

bration can be recovered with a good precision even far from the exact solution. Other
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Fig. 6. Robustness to the initial calibration: right, the silhouette calibration ratio; left, the relative

errors in the estimated camera parameters for the 5 frame case: errors relative to the true value

for the focal length, errors relative to the distance camera-scene for the translation parameter and

errors relative to π for the angle parameter

experiments, not presented due to lack of space, show that adding a reasonable amount

of noise to silhouette vertices, typically a 1 pixel Gaussian Noise, only slightly changes

these results.

6.2 Real Data

Our approach was also tested in a real environment with 6 firewire cameras viewing a

moving person. A calibration obtained by optimizing an initial solution using known

points is available and will be considered as the ground truth. In the following experi-

Fig. 7. Top, one of the original image, the corresponding silhouette and the visual hull model ob-

tained with ground truth calibration. Bottom, 3 models which correspond to calibrations obtained

with our method and using respectively 1, 3 and 5 frames per camera.
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ments, we use the same initial solution for the calibration with viewing cones. As for

the synthetic case, all camera extrinsic parameters and one focal length per camera are

optimized. Figure 7 shows, on top, the input images and a visual hull model obtained

using ground truth values for calibration. In the bottom, models obtained from the same

silhouettes, but using our approach with respectively 1, 3 and 5 frames per camera.

Apart from a scale difference, not shown and due to the fact that fixed dimensions were

imposed for the ground truth solution, the 2 most-right models are very close to the

ground truth one.

7 Conclusion

We have studied the problem of estimating camera parameters using silhouettes. It has

been shown that, under little assumptions, all geometric constraints given by silhouettes

are ensured by the pairwise tangency constraint. A second contribution of this paper is

to provide a practical criterion based on the distance between 2 viewing cones. This

criterion appears to be efficient in practice since it can handle a large variety of camera

configurations, in particular when viewing cones are distant. It allows therefore multi-

camera environments to be easily calibrated when an initial solution exists. The criterion

can also be minimized using efficient and fast non-linear approach. The approach is

therefore also aimed at real time estimation of camera motions with moving objects.
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Abstract

We propose an exact method for efficiently and robustly computing the vi-
sual hull of an object from image contours. Unlike most existing approaches,
ours computes an exact description of the visual hull polyhedron associated
to polygonal image contours. Furthermore, the proposed approach is fast and
allows real-time recovery of both manifold and watertight visual hull poly-
hedra. The process involves three main steps. First, a coarse geometrical
approximation of the visual hull is computed by retrieving its viewing edges,
an unconnected subset of the wanted mesh. Then, local orientation and con-
nectivity rules are used to walk along the relevant viewing cone intersection
boundaries, so as to iteratively generate the missing surface points and con-
nections. A final connection walkthrough allows us to identify the planar
contours for each face of the polyhedron. Implementation details and results
with synthetic and real data are presented.

1 Introduction

Visual hulls are object shape approximations which can be determined from object sil-
houettes in images. Such approximations capture all the geometric information given by
the image silhouettes. Visual hulls are extensively used ina number of modeling appli-
cations including human modeling systems. Their popularity is largely due to the fact
that straightforward approaches exist and are easy to implement. However, existing ap-
proaches are only partial solutions to the visual hull estimation problem and do not address
all the essential criteria in modeling: exactness, robustness and fastness. Our motivation
is therefore to propose an exact approach which computes the visual hull polyhedron
associated to a finite number of discrete silhouettes in a fast and robust way.

Silhouettes were first considered by Baumgart [1] who proposedto compute polyhe-
dral shape approximations by intersecting silhouette cones. The term visual hull was later
coined by Laurentini [9] to describe the maximal volume compatible with a set of silhou-
ettes. Following Baumgart’s work, a number of modeling approaches based on silhouettes
have been proposed. They can be roughly separated into two categories : volume based
approaches and surface based approaches.

The first category includes methods that approximate visualhulls by collections of el-
ementary cells called voxels. An early approach in this category was proposed by Martin
and Aggarwal [11] who used parallelepipedic cells aligned withthe coordinate axis. Later
on, octrees were proposed [4] as adaptive data structures forrepresenting visual hulls and
efficient approaches [16, 13, 3] were presented to compute voxel-based representations.
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See [14] and [7] for reviews on volume based modeling approaches. All these approaches
are based on regular voxel grids and can handle objects with complex topologies. How-
ever, the space discretizations used lead to approximations only, with a poor precision to
complexity trade-off.

As shown in [10], the visual hull surface is a projective topological polyhedron made
of curve edges and faces connecting them. In the case of piecewise-linear image contours,
it becomes a regular polyhedron. The second category of approaches estimates elements
of this polyhedron by intersecting silhouette cones. This includes several works which
focus on individual points reconstructed using local second order surface approximations,
see [5] for a review. Approaches have also been proposed to compute surface patches[15],
or individual strips [12] of the visual hull. In the latter work, the computed strips are exact
parts of the visual hull, however the approach duplicates cone intersection operations and
requires an additional step to connect these different parts, with no topological guarantee.
We will show in this paper that the complete visual hull polyhedron can be recovered
as a whole with a reduced number of operations. Most of the mentioned surface based
approaches suffer from numerical instabilities around frontier points as identified in [10].
Consequently, they often lead to surface models which are incomplete or corrupted, in
particular when considering objects with complex topologies.

The method that we propose follows recent work [2] which separates the visual hull
computation into two steps. A first step computes viewing edges of the visual hull and a
second approximates its faces through a Delaunay triangulation. Our approach improves
this scheme to produce, with less time complexity, the exact polyhedron that is silhouette
consistent. To this aim, we replace the second step mentionedabove with an algorithm
which straightforwardly recovers mesh connectivity. Our main contribution with respect
to all the mentioned approaches is to provide an algorithm which is exact given polygonal
silhouettes and low in time complexity.

The paper is organized as follows. Section 2 introduces definitions and describes
how viewing edges are computed. Section 3 discusses the localpolyhedron orientation
properties relevant to our task. Section 4 describes how these properties are used to follow
the cone intersections and generate the visual hull mesh. Section 5 presents our results
and future work.

2 Preliminaries

2.1 Definitions

Assume that a scene, composed of several objects, is observedby a set of pinhole cameras.
The objects’ surfaces are supposed to be orientable closed surfaces, smooth or polyhedral
with possibly non-zero genus.Rimsare locus of points, on the object surface, where view-
ing rays are tangent to the surface. Rims project onto image curves, called theoccluding
contours[11], which border the object silhouettes in the image plane.Occluding contours
are oriented in the images. Their orientation is such that the object silhouette lies on the
left of the oriented contour. Hence, exterior contours are oriented counterclockwise and
interior contours are oriented clockwise. We will call theinside regionof an occluding
contour the closed region of the image plane delimited by thecontour and containing the
silhouette, and we will call theoutside regionits complement in the image plane. Note
that in the following, we will consider that occluding contoursare polygonal contours.
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A viewing coneis a generalized cone in
� 3 whose apex is the image center and whose

base is the inside region of an occluding contour. More formally, the viewing cone V
associated with the occluding contourO is the closure of the set of rays passing through
points insideO and through the camera center.V is thus tangent to the corresponding ob-
ject surface along the rim that projects ontoO. According to the orientation ofO, exterior
or interior, the viewing coneV is an acute or obtuse cone of

� 3 respectively. Viewing
cone boundaries intersect along space curves which do not lieon the surface, except at
frontier pointswhere rims intersect. Note that in the case of polyhedral surfaces, frontier
points are not necessarily isolated points and can form frontier edges.

We assume that using some standard background subtraction pre-process, images are
transformed into sets of silhouettes which are themselves sets of polygonal contours. Re-
call the topological nature of thevisual hull [10], a projective structure, withfrontier
pointswhere rims intersect;triple pointswhere three cones intersect;cone intersection
curves; andstripscorresponding to possibly unconnected contour contributions to the vi-
sual hull surface. Visual hulls are usually defined as the intersection of the viewing cones
associated to all image contours, however such an intersection must be performed in full
consistency with the silhouette information. To this purpose, two definitions of the visual
hull VH can actually be considered [2]:

VH ✁✄✂
Images

☎✝✆
Silhouettes

☎ ✂
Contours

V ✞✟✞✡✠ (1)

or: VHc ☛ ☞
Images

✌ ✍
Silhouettes

✌ ☞
Contours

D ✎ V ✏✑✏✓✒ (2)

whereVHc is the visual hull complement in
� 3, D is the image visibility domain in

� 3

andD ✎ V is the complement ofV relative to this domain. Considering the visual hull
or its complement is equivalent since the surface of interest borders both regions. The
visual hull complement is in fact what is implicitly considered when carving voxels with
volumetric methods. The first definition above is equivalentto the set of points in

� 3

that project inside one silhouette in every image while the second limits the projection
constraint to the images where the points are visible. They differ by the fact that objects
under consideration should be seen in every image with the first definition but not nec-
essarily with the second. Both definitions may add independent virtual objects that do
not appear in the original scene, but another difference is that the second definition may
add more virtual objects as a consequence of the projection constraint relaxation. Note
that polygonal contours such as those we take as input induce apolyhedral visual hull.
Our algorithm computes exactly this polyhedron, which we will later refer to as being the
exact visual hullin the context of piecewise linear silhouettes.

2.2 Computing viewing edges

Viewing edgesare intervals along viewing lines. They correspond to viewinglines con-
tributions to the visual hull surface and are thus associated to image points on occluding
contours. We use this as the input of the second step in our algorithm. There are several
advantages in doing so: computing such a set of edges has proven to be fast, simple and
well-defined, and has already been used in different reconstruction applications [12, 2, 3].
Also, since edges computed by this method are already part of the visual hull polyhedron,
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it is a greedy initialization step. We recall in this sectionhow to compute them efficiently
given polygonal occluding contours.

For each occluding contours vertices in each image, we can compute its viewing line.
The viewing edges associated to this viewing line are then defined by the intervals of
points which satisfy any of the definitions introduced in 2.1.These intervals can be deter-
mined iteratively, using intersections with the silhouettes in every other image. At each
iteration, intervals are updated according to their intersections with contributions from
new contours or images. Such operation can be easily achieved in 2D by means of the
epipolar geometry as shown in fig. 1. Importantly, for each generated intersections, we
choose to record what edges in the images generated each intersection.

Figure 1: Viewing edges (in bold) along the viewing line. Epipolar line angles can be used to
accelerate the search for the image segments intersecting the epipolar line.

Intervals along the viewing line are updated according to definition 1 or 2. A direct
application of these definitions may not be straightforwardsince it requires contours to
be grouped according to the silhouettes they belong to. A simpler solution takes advan-
tage of the fact that interior contour contributions are unbounded along the viewing line.
Thus, the union of an interior contour contribution with those of any disjoint exterior
contour is equivalent to the identity for the former contribution. Following this principle,
expressions 1 and 2 become:

VH ✁ ✂
Images

� ☎ ✆
Exteriors

V ✞ ✂ ☎ ✂
Interiors

V ✞✂✁ ✠ (3)

and:
VHc ✁ ✆

Images

� ☎ ✂
Exteriors

D ✄ V ✞ ✆ ☎ ✆
Interiors

D ✄ V ✞✂✁ ✠ (4)

which require the contour orientations only. Note that in realsituations, viewing cones
are not necessarily tangent and hence, not all contour vertices give birth to viewing edges.
The viewing edges computed during this initialization step form the initial seed for the
subsequent steps in the algorithm.

2.3 Algorithm outline

The algorithm we propose consists in three main steps. The first step is to compute the
viewing edges as explained above. However, this initial representation is incomplete.
Typically, triple points, where three viewing cones intersect, project on each image con-
tour at a point which is not necessarily one of the initial image contour vertices considered
for viewing edge computation. As such, they are not part of the initial viewing edge ver-
tices and need to be computed. Thus the goal of the second stepis to recover all missing
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vertices and connections, so as to construct the complete oriented mesh describing the
polyhedron. We have devised a scheme for following the cone intersection boundaries on
the surface, using the geometry and orientation propertiesof the image contours discussed
in section 3. With such properties, we can identify where connections are missing, and
in what local direction to look for the next intersection boundary vertices. We can there-
fore iteratively generate the missing triple points, by detecting intersections with viewing
cones, as described in section 4. As a third and final step, explained in section 4.3, the
algorithm walks through the previously generated edge graph to identify each face.

3 Recovering the Local Orientation

3.1 Strip Orientation

The viewing edges we computed as a first step are a discrete representation of the visual
hull strips (fig. 2a). We will not attempt to explicitly reconstruct frontier points or recover
any topological features specific to theoretical visual hulls, as they do not extend to real
visual hull surfaces as defined in section 2.1: because of inherently noisy calibrations and
discretization steps, the perfect cone tangency that occurs at frontier points for theoretical
visual hulls is lost. Note however that there still are regionsof very close tangency, where
both topology and orientation between strips may be complex and unstable.

(a) (b)

E
left right

E3

left

right

V

2

E
left

right2

1

T

T1

T

3

(c)

Figure 2: (a) Visual Hull of a sphere from 4 views as generated by our algorithm. Notice the
strip structure and viewing edges, in light color. Symptoms of lost cone tangency: indicated strip
covers all others, in a region where there should have been frontier points. (b) Visual hull of a torus
from 4 images. Notice the branching of the indicated strip. (c) The relationship between vertexV ’s
orientation (the ordering of pairs

☎
Ei ✠ Ti ✞ around it) and orientation (left and right) of edges leaving

from V on the visual hull polyhedron. Note that vertices are trivalent in the degenerate case, being
the intersection of three planes.

Strips can have bifurcations (fig. 2b), and more generally can have several compo-
nents, as soon as there are images with distinct silhouettes or hyperbolic contour portions.
Nevertheless, each viewing edge we computed can be oriented withrespect to the image
it was backprojected from. We know that outer contours are oriented counter-clockwise
and inner contours clockwise (see 2). For any contour vertexq in a given image, there
are two edgese1 ande2 incident toq, respectively preceding and succeedingq according
to the contour orientation. Note that any vertexq backprojects in space to a viewing line
Vq. Similarly, any edgee of the contour backprojects into space to an infinite triangular
planar patchTe. The image contour orientation extends to these planar patches, and we
can callup the direction on the strip induced by the positive directionof the corresponding
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image contour. Notice that with this definition of up and down on astrip, every viewing
edge also inherits definitions forfront andback, front always being the direction pointing
toward the camera center. Moreover, since each viewing edge is defined by two points
in space, these points can be labeledPf ront andPback. These image and strip orientability
features are the foundations upon which we can build local surface orientation.

3.2 Polyhedron Point and Edge Orientation

In order to generate a consistent mesh, we must ensure that consistent orientation proper-
ties are propagated during processing. The initial stable and robust orientation property is
the strip orientability described above. It is used as a basis to construct and propagate the
local orientation for each primitive we will generate on the mesh. For oriented edges, this
orientation information reduces to knowing what is left and what is right; for vertices, it
reduces to knowing how incident edges are ordered around it.

Let us first consider an oriented edge of the visual hull polyhedron. Such an edge
borders two visual hull surface regions, one locally on its left and the other locally on
its right. These surface regions are a planar subset of the two corresponding triangular
planar patches backprojecting from image edges, which we can label Tle f t and Tright .
Furthermore, the edge itself represents the contribution segment to the visual hull of the
line intersection between these two patches. Note that for theinitial viewing edges, the✌
Tle f t ✒ Tright ✏ pair can be identified using the strip orientation properties (see 3.1): for

example, if you consider the oriented edge� Pf ront ✒ Pback✁

, what lies locally left of the edge
is locally up on the strip. Reciprocally for oriented edge� Pback✒ Pf ront ✁

, what lies locally
left is locally downon the strip. Keeping track of this information for each oriented edge
is also the key to maintain a consistent topological ordering between edges leaving from
the same vertex, as illustrated in fig. 2c. If a vertex is visited coming from a given edge
during a mesh walkthrough, it is then possible to query for existence of neighboring edges,
and to make left or right turns at this vertex. We have therefore provided the necessary
tools to generate and iterate over surface primitives.

4 Recovering the Missing Edges

We will now present the algorithm to follow cone intersectioncurves on the surface of
the visual hull polyhedron, and generate the complete mesh of the visual hull as output.
Existing surfacic approaches [12] have focused on the full edge plane intersections with
the visual hull, which computes these curves as a side effect.However this requires nu-
merous polygon intersection and transformation operations. Most edges and points of the
intermediate polygons do not contribute to the final visual hull face. Following the inter-
section curves ensures that we will always focus on the relevant surface primitives, with
an immediate complexity gain. Furthermore, all intersection operations in our algorithm
resolve in the 2D image planes with one-parameter unknown computations.

Cone intersection curves materialize as a full graph ofk triple points joining several
viewing edge vertices, as illustrated in fig. 3a. We have developed a simple scheme
to recover this graph, with two substeps. First, whenever a missing edge connection is
identified on a polyhedron point, we must determine a direction in which the edge is
leaving (see 4.1). Then, we use the direction’s projection inimages to detect triple points,
and to identify which vertex this edge leads to (section 4.2).
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4.1 Recovering the Direction of Missing Edges

Given any vertexV on the polyhedron, the vertex has three edge connections leaving from
it, in the non-degenerate case. Let us focus (fig. 3b) on a particular type of vertexV found
on the incomplete polyhedron surface, used as asearch seed. Such a vertex already has
one connected edgeE, but two of its edgesEle f t andEright arepotentiallystill missing.
Notice thatE is considered orientedtoward V; it is the direction of the walkthrough.E
is fully known: we know what infinite backprojected planar patchesTle f t andTright lie
locally left and right ofE. We also know what third planar patchTgengenerated the vertex
V, through intersection with the two patches above. Notice thatthe initial viewing edges
fit exactly this description, each of their two vertices being an initial search seed.

Now, we must recover the missing edge connectionsEle f t andEright . Since the search
might have been launched from other connected branches of the graph, these edges might
already exist. However, when missing, we must determine what vertex the connection
leads to, in order to provide a complete edge description. Its nature (triple point or viewing
edge vertex) and position must be determined. Solving both of these problems requires
knowing in what 3D direction leaving fromV this vertex lies, e.g. thesearch half-line.
For example, ifEle f t is missing, we compute the half line as the intersection of planar
patchesTle f t andTgen, oriented left ofE. Reciprocally we useTgen andTright if Eright is
missing. We then apply the scheme described in the next section to each missing edge.

4.2 Identifying Missing Incident Vertices

We use an intersection search scheme to identify the vertex each missing edge leads to.
The context of this search is illustrated in fig. 3c. Note that for both possible missing
edges the local

✌
Tle f t ✒ Tright ✏ pair is known: in fig. 3b, this pair corresponds to

✌
Tle f t ✒ Tgen✏

for missing edgeEle f t, and
✌
Tgen✒ Tright ✏ for Eright . For a given missing edge, consider the

segment intersection between its two localTle f t andTright patches. The wanted edge is
a subset of this segment, because this segment represents the contribution to the visual
hull of two images only: the onesTle f t andTright backproject from. Use of more images
reduces this contribution because of successive intersections. Nevertheless our two initial
patches define natural search bounds, the brackets in fig. 3c.The lower bound is trivially
given by the position ofV, current search seed, and the upper bound byL, the most
restrictive of the four viewing lines bordering patchesTle f t andTright .

E Eleft right

rightT

Tgen

E
Tleft

V Tleft

rightT

L

V

l

(a) (b) (c)
Figure 3:(a) Close-up view of a sphere’s visual hull. Black edges are the discrete cone intersection
curves, squares are triple points. (b) Spawning search directions from a given initial situation on the
visual hull surface. (c) Once the search directionl is known for an identifi ed missing connection,
the knowledge of the localTle f t andTright infi nite triangular patches results in natural search bounds
for the incident vertex along this direction.
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It is possible that no other image viewing cone intersects this segment, when its pro-
jection lies inside all other silhouettes. In this case these initial bounds exactly describe
the wanted edge. Note that the incident vertex then lies on viewing line L, which defined
the upper bound. Therefore, it has already been computed in the viewing edges stage, and
its instance can be retrieved once identified among all viewing edge points ofL. Possibly
however, the viewing cone of a third image does intersect this segment, hence creating
a triple point. Which is why every third possible image must beconsidered, in order to
iteratively compute the most restrictive upper bound. We therefore reproject the search
half-line in each possible third image, and compute the intersection with the silhouette,
so as to update the bound. The nature of the incident vertex, viewing edge vertex or
triple point, is known only after this process. Indexing triple points from the three pla-
nar patches which define it ensures that they are computed onlyonce. Once identified,
a newly generated triple point serves as a new search seed for the mesh generation; the
process described in 4.1 is recursively applied to it. A search branch is completed once it
meets an already computed vertex. We have therefore defined how to follow and generate
the cone intersection segments starting with the initial viewing edge structure. The output
is the complete polyhedron mesh, such that no polyhedron vertex is computed twice.

4.3 Identifying Faces of the Polyhedron

With the oriented edge computed in step two, we can now apply the third and final step:
retrieving face information of the polyhedron. Note that each 2D edge in the initial images
potentially contributes to the visual hull polyhedron surface, its contribution lying in its
backprojected edge plane. In fact, this contribution is a single general planar polygon,
with possibly several inside and outside contours, as noticed in [12]. With the vertex
properties described in 3.2, graph walkthroughs can be constrained to follow a given
backprojected edge plane and keep it locally left, by takinga left turn at each vertex. We
also constrain the traversal of each polyhedron edge, in order to ensure that it will be
walked through exactly twice, once in each direction. Hence anO

✌
v✏ walkthrough (with

v the number of vertices in the final polyhedron) enables us to recover the entire contour
set associated to every planar polygon previously mentioned. This is also an advantage of
our method, the output polygons being described in their most general and concise form.
Retrieving triangles for a specific application can be done efficiently by applying existing
O

✌
vlogv✏ planar tessellation algorithms. Given the completeness of the mesh generated

in step two, this constrained walkthrough ensures that our final polyhedron satisfies the
manifold and watertight properties.

5 Results and Future Work

We have experimented with a preliminary implementation of our algorithm, on a variety
of synthetic and real input sets for validation. Contours ineach view are discretized to be
used as input for our algorithm, using an optimal segment recognition algorithm [6]. This
guarantees that the generated piecewise linear contours describe exactly the boundary pix-
els separating the background and foreground regions. Giventhat our algorithm computes
the exact polyhedron associated to a given input contour set, the generated polyhedron is
the best geometric information we can obtain after the background subtraction step.

84 CHAPITRE 6. ARTICLES



(a) (b)

Figure 4: (a) Visual hull as obtained by our method, of the knots objecttaken from Hoppe’s
web site [8], from 42 viewpoints surrounding the object. Reconstruction of its 11146 points and
16719 edges took 12.8sec on a 1.8GHz PC. Discretization of silhouettes resulted in 200 contour
points per image on average. Its voxel-based counterpart shows much less precision under the same
conditions, using a well fi tted 643 ✁ 262144 voxel grid. Original model is shown top right. (b) Two
renderings of the visual hull of a human shape using 4 acquired 640x480 silhouettes (shown right).
2316 points, 2356 edges, computed in 142msec, with 250 contour points per image silhouettes.

A first experiment places our algorithm in a complex topological situation (fig. 4a),
while still yielding artifact-free results. A second experiment involves real image data
from four cameras in a virtual reality studio. It results in acorrect model, usable for such
applications as scene relighting. We have also provided several visual hulls of a torus (fig.
5), which illustrate the impact of the number of views on model complexity. Computation
times for this non-optimized version are of the order of 100ms for a dozen viewpoints,
making it suitable for real-time applications. Implementation speedups are still possible.
We will explore complexity reduction through simplificationof the input contours. We
will use this algorithm for real-time human modeling from video flows in virtual studios.
Also, we will provide complexity estimations in the near future. Arguably this algorithm
could be optimal for the visual hull polyhedron computationproblem. Clearly it surpasses
existing visual hull surface reconstruction algorithms: each operation in the algorithm is
a greedy one, each computed primitive is known beforehand to be part of the visual hull,
and uses the minimal necessary information to be determined, namely reprojection and in-
tersection in images. Experimentally, the execution time and number of operations of this
approach rivals with the voxel-based approaches, while attaining geometrical exactness
hardly accessible to those methods.
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Jean-Sébastien Franco and Edmond Boyer

Proceedings of the 10th International Conference on Computer Vision

Beijing (China), October 2005



Fusion of Multi-View Silhouette Cues Using a Space Occupancy Grid
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Abstract

In this paper, we investigate what can be inferred from

several silhouette probability maps, in multi-camera envi-

ronments. To this aim, we propose a new framework for

multi-view silhouette cue fusion. This framework uses a

space occupancy grid as a probabilistic 3D representation

of scene contents. Such a representation is of great interest

for various computer vision applications in perception, or

localization for instance. Our main contribution is to intro-

duce the occupancy grid concept, popular in the robotics

community, for multi-camera environments. The idea is to

consider each camera pixel as a statistical occupancy sen-

sor. All pixel observations are then used jointly to infer

where, and how likely, matter is present in the scene. As

our results illustrate, this simple model has various advan-

tages. Most sources of uncertainty are explicitly modeled,

and no premature decisions about pixel labeling occur, thus

preserving pixel knowledge. Consequently, optimal scene

object localization, and robust volume reconstruction, can

be achieved, with no constraint on camera placement and

object visibility. In addition, this representation allows to

improve silhouette extraction in images.

1. Introduction

Silhouette-based methods are popular for use in multi-

camera environments mainly due to their simplicity and

computational efficiency. These methods concern 3D mod-

eling, multi-object localization and motion capture appli-

cations, among others. Often however in such methods,

silhouettes of objects of interest are extracted using a bi-

nary labeling of pixels into foreground or background, for

each view separately, and prior to any 3D operation. Unfor-

tunately, such monocular labeling, called background sub-

traction, is difficult to achieve in a general and uncontrolled

environment. Several reasons account for this, in particular

perturbations due to: camera sensor noise, ambiguities be-

tween objects and background colors, changes in the light-

ing of the scene (including shadows of objects of interest),

etc. In addition, monocular background labeling can dra-

matically alter 3D perception from multiple views in the

presence of camera calibration errors, or if disparities be-

tween image acquisition times exist.

Our goal is therefore to find a representation of multi-

view silhouette cues, where inference about silhouettes is of

greater robustness to the aforementioned uncertainties than

single view silhouette inference. Intuitively, the simultane-

ous knowledge of all images brings more information about

silhouettes than knowledge from only one image. This idea

has lead us to compute silhouette fusion in 3D space, in or-

der to integrate the contribution of all images. The result of

such fusion naturally encodes shape information. As such

it can be used to improve many silhouette-based applica-

tions, from shape modeling to silhouette extraction, as we

will show.

Very often silhouettes are used to infer shapes in a two-

step process: an individual decision about silhouette oc-

cupancy is made on a per-view basis, then shape and po-

sition are inferred geometrically from all available silhou-

ettes using visual hull methods [11]. These methods can

lead to a surface representation of the objects of interest [5],

a voxel representation [16], or image-based representation

[13]. While visual hull estimation can be exact from a set

of silhouettes [5], silhouette extraction methods come gen-

erally with several caveats resulting from the perturbations

mentioned earlier. Our approach allows to delay the occu-

pancy decision to a later stage and, as such, makes a better

use of the available silhouette information.

Several methods have also been proposed to bypass sil-

houette estimation altogether, as many algorithms recon-

struct the scene structure based only on photometric infor-

mation [10]. Others possibly state it as the solution of a

global state optimization problem: using level sets [4], or

graph cuts [7]. Probability grid representations have already

been used by the community, mainly to solve photometric

problems[1]. These methods generally have high complex-

ities and computational costs compared to silhouette meth-

ods, as they must deal with the visibility of points on the

object’s surface. This is why there are still many situations
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where silhouette methods are preferred (e.g. VR platforms,

real-time setups), or used to initialize a more elaborate pho-

tometric method [9].

More closely related, Magnor et al. [7] solve a similar

problem with two views using graph-cuts, where stereo dis-

parity and silhouettes are simultaneously estimated. Zeng

et al. propose a multi-view background silhouette extrac-

tion, based on a costly geometric scheme, with the addi-

tional constraint of common object visibility [18]. A simi-

lar idea for silhouette information integration has been pro-

posed, using however a discrete formulation and a coarser

image model [14]. Grauman et al. [8] propose a method

to estimate the most probable multi-view silhouette set us-

ing a learned human silhouette prior, and therefore inte-

grate a higher level of semantics, but with limited gener-

icity. Robotics works from S. Thraun et al. [12] propose

a solution for the closely related problem of object local-

ization from a robot-acquired image sequence. These ap-

proaches solve silhouette-based problems in multi-view se-

quences with, however, limited application domains. Our

approach is at a lower level, and is intended to enrich 2D

silhouettes cues by embedding them into a 3D representa-

tion independently of the application.

We propose a new framework based on the occupancy

grid: a voxel grid of object occupancy probabilities in

space, associated to a sensor model. The occupancy grid

has been extensively used in the robotics community [3],

to represent a robot’s environment for navigation, based on

range sensor observations, with depth and orientation mea-

surements. Our contribution is to extend the occupancy

grid concept to image sensors, and to restate shape-from-

silhouette estimation as a sensor fusion problem. To this

extent, we provide each pixel with a forward sensor formu-

lation which models the pixel observation responses to the

voxel occupancies in the scene. Our formulation accounts

for each pixel’s visibility region, voxel sampling issues,

small camera calibration errors, and sensor reliability. This

model is in turn used to infer the answer to the more diffi-

cult inverse question: given the color observations, where

is the matter located in the scene. We also show that the

resulting occupancy grid can be used to perform multi-view

background subtraction, where silhouette estimation in each

view benefits from the knowledge of other views.

2. Problem Statement

We consider the problem of silhouette cue fusion from

multiple views. We assume we are given a current set of

images, obtained from fully calibrated cameras. We also

assume that a set of background images of the scene, free

from any object of interest, have previously been observed

for each camera. Importantly, no assumption is made about

the existence of a visibility domain common to all cameras.

The problem is formulated as the separate Bayesian es-

timation, for each voxel, of how likely it is occupied by an

object of interest. We formulate the problem using a for-

ward sensor model: we model the relationship from causes

to observations. Namely, in our problem, we will model

how a voxel influences image formation. This enables us,

using Bayesian inference, to solve the more difficult inverse

problem: express the voxel occupancy likelihood using im-

ages as a noisy measurement of scene state.

Solving a Bayesian problem requires computing the joint

probability of all variables of interest (which we define in

§2.1), prior to any inference. This joint probability dis-

tribution must then be decomposed and simplified, based

on the main statistical dependencies we choose to consider

between variables (§3 and §3.1). In particular, parametric

forms must be assigned to the various terms of the decom-

position to explicitly model the uncertain relationship be-

tween variables (§3.2 and §3.3). This simplifies the infer-

ence of voxel occupancy distributions, which are inferred

from the joint probability expression using Bayes’ rule (§4).

2.1. Main problem variables

We label the set of n current images as I. I i, i = 1 · · ·n
is then the image data of camera i, and I i

p is the image

data at pixel p in image i, expressed in some color space

(RGB, YUV, etc). Although not studied explicitly in this

paper, additional image cues can be enclosed in the I i
p

term, such as the image gradient or some other local fea-

ture, without loss of generality. We assume that the image

data of the corresponding m observed background images

can be summarized into a single statistical model image Bi,

i = 1 · · ·n. Both image data sets are produced by n cam-

eras with known projection matrices Pi. τ symbolizes the

prior knowledge we introduce into the model. This includes

what we now about the scene, what we know about sensor

characteristics, our general knowledge about the system.

We define G as our space occupancy grid. For each space

point X in the grid discretization we associate the corre-

sponding binary occupancy variable GX ∈ {0, 1}, respec-

tively free or occupied. As a common occupancy grid as-

sumption [3], we assume statistical independence between

voxel occupancies, and compute each voxel occupancy like-

lihood independently for tractability. Results show that in-

dependent estimation, while not as exhaustive as a global

search over all voxel configurations, still provides very ro-

bust and usable information, at a much lower cost.

We have defined our input and output variables. We now

introduce an important hidden variable set per image, the

silhouette detection maps F i, i = 1 · · ·n. These maps de-

fine, for each pixel p in image i, a binary silhouette detec-

tion variable F i
p. F i

p = 1 if the pixel sensor p in image i
reports the presence of an object of interest anywhere along

its viewing line. We insist on this definition, since there is a
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possibility that an object is indeed present along the viewing

line of pixel p, but that the pixel sensor itself fails to detect

and report this information for internal or external causes

(modeling sensor failures will be discussed in §3.2). These

detection maps represent the silhouette information in our

model, over which we wish to marginalize.

3. Joint Probability Decomposition

Our goal is to infer the occupancy GX of a voxel at po-

sition X , given I, B, and τ . Thus, we must first model the

impact of GX on the observations. Modeling the relation-

ships between the variables involved requires computing the

joint probability of these variables, p(GX , I,B,F , τ). We

propose the following decomposition, based on the statisti-

cal dependencies expressed in Fig. 1:

p(GX , I,B,F , τ) = p(τ) p(B |τ) p(GX |τ)

p(F |GX , τ) p(I |F ,B, τ)

• p(τ), p(B | τ) are the prior probabilities of our param-

eter set, and of background image parameters. Since

we have no a priori reason to favor any parameter val-

ues, or background image configurations, we set these

terms to a uniform distribution. They thus disappear

from any subsequent inference.

• p(GX | τ) is the prior likelihood for occupancy, which

could vary with X for example. We consider the oc-

cupancy to be at the top of the causality chain, thus

the independence with all other variables except τ . We

choose not to favor any voxel location and set this term

to uniform, being mainly interested in the regulariza-

tion of voxels induced by observations in this paper.

• p(F | GX , τ) is the silhouette likelihood term. The

dependencies considered reflect that voxel occupancy

in the scene explains object detection in images.

• p(I |F ,B, τ) is the image likelihood term. Image col-

ors are conditioned by object detections in images, and

the knowledge of the background color model.

τ GX

B F

I

Figure 1. Variables of our system and their dependency

graph. τ : prior knowledge we introduce in the model. GX :

occupancy at voxel X. B: background model maps. F :

silhouette detection maps. I: observed images.

3.1. Sensor fusion simplifications

Pixel colors in input images are treated as noisy observa-

tions of the model. We consider that the noise is indepen-

dently and identically distributed. Each pixel’s color obser-

vation can be considered independent of all others, given

the observation’s main cause, the background data and sil-

houette detection state of the pixel: the image likelihood

term can thus be simplified to a product of per pixel terms,

p(I |F ,B, τ) =
∏

i,p p(Ii
p |F

i
p,B

i
p, τ).

All pixel detections can also be considered independent,

given the knowledge of their main cause, namely the voxel

occupancy. The silhouette likelihood is therefore similarly

simplified: p(F | GX , τ) =
∏

i,p p(F i
p | GX , τ). Thus, the

joint probability distribution of variables of interest reduces

to the following product of per pixel terms:

p(GX, I,B,F, τ)=
∏

i,p

p(F i
p |GX , τ)p(Ii

p |F
i
p,B

i
p, τ) (1)

We have therefore reduced the evaluation of the joint

probability of all variables to two much friendlier subprob-

lems. First, expressing the likelihood of silhouette detection

at a single pixel, given the knowledge of our voxel’s occu-

pancy (§3.2). Second, expressing the likelihood of the color

observation at a single pixel, given the silhouette detection

state, and background color information at this pixel (§3.3).

We now focus on these two terms.

3.2. Silhouette Formation Term

The silhouette detection likelihood p(F i
p | GX , τ) mod-

els the silhouette detection response of a single pixel sensor

(i, p) to the occupancy state of our voxel of interest GX .

We need to introduce two local hidden process variables S
and R to balance the influence of this voxel. Fig. 2 intro-

duces the variables and statistical dependencies of this sub-

problem. In an ideal and noiseless setup, the two variables

F i
p and GX would be self-sufficient and the relationship be-

tween them expressed as simple logic: if our voxel X is oc-

cupied, and if it projects to pixel p, then silhouette detection

occurs at pixel p, F i
p = 1. This is the implicit formulation

used by all classical visual hull methods.

However, there are sources of uncertainty which perturb

this intuitive reasoning. First, the assumption that a voxel

lies on the viewing line of a pixel is itself uncertain. This

can be due to many external causes: potential camera cali-

bration errors, camera mis-synchronization, which both in-

troduce misalignment in the scene. Voxel sampling is also

an issue, since no voxel perfectly projects to a pixel, and

its projected surface can cover several. Second, there can

be causes for sensor detection other than the voxel itself:

an object occupancy other than the one related by GX , or a

change in background scene appearance (an internal sensor

failure due to the nature of the sensor model).
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τ

GX R

F i
p

S

Figure 2. Variables and dependency graph of the per-

pixel silhouette detection subproblem. τ : prior knowledge.

GX : voxel occupancy. S : sampling variable. R: external

detection cause. F i
p: silhouette detection at pixel (i, p).

Modeling these hidden causes is possible using two

boolean random variables, the sampling variable S and ex-

ternal detection cause variable R. This leads to two expres-

sions for the silhouette detection prior p(F i
p | GX , τ). First,

let us consider the case where our voxel X is known to be

occupied (GX = 1):

p(F i
p | [GX =1], τ) = p(S=0 |τ) U(F i

p) (2)

+ p(S=1 |τ) Pd(F
i
p)

By definition, S=1 if voxel X is on the viewing line of pixel

(i, p). When this is not the case (S=0), the knowledge of

our voxel’s occupancy is irrelevant to sensor detections at

this pixel, thus the uniform distribution U(F i
p) for silhou-

ette detection in (2). If the voxel is on the viewing line of p
(S=1), then detection at the pixel is ruled by the probabil-

ity distribution Pd(F i
p). In practice we set this distribution

using a constant PD ∈ [0, 1], which is a parameter of our

system: Pd([F
i
p = 1]) = PD is the detection rate of a pixel

sensor, and Pd([F i
p = 0]) = 1 − PD is its detection failure

rate. Detection failure occurs when the pixel sensor relates

that there is no matter on the viewing line, when in fact

there is. This is useful to our problem: sometimes silhou-

ette extraction fails locally. Accounting for this uncertainty

gives our model a chance to still recover the correct voxel

information thanks to contributions of other images.

Let us now consider the case where our voxel is known

to be empty (GX = 0):

p(F i
p | [GX=0], τ) = p(S=0 |τ) U(F i

p) (3)

+ p(S=1 |τ)
[

p(R=1 |τ) Pd(F
i
p)

+ p(R=0 |τ) Pf (F i
p)

]

Still, no knowledge can be inferred about detection when

the voxel is not on the viewing line of p (S =0). Yet in

the case where voxel X is on p’s viewing line (S=1), we

cannot yet draw conclusions about its detection state. By

definition, R=1 accounts for the possibility that some other

object lies on the same viewing line as the voxel: in this case

detection is again ruled by the distribution Pd(F i
p). How-

ever, in the case no other object obstructs the viewing line

(R=0), detection is ruled by distribution Pf (F i
p). We set

this distribution using a constant PFA ∈ [0, 1], a parameter

of our system: Pf ([F i
p = 1]) = PFA is the false alarm rate

of a pixel sensor. False alarms occur when the sensor falsely

relates the presence of matter on its viewing line, when in

fact there is none. Pf([F i
p = 0]) = 1−PFA is the rate with

which we expect this pixel to correctly report non-detection.

We must assign a parametric form to p(R|τ). There can

be detection causes anywhere along the viewing line of p.

We make no assumption about these causes and consider

that detection is equally likely to be triggered by the voxel

occupancy or by these causes. We therefore set this term to

uniform. By doing this, we consider that accounting for the

possibility itself is what is important, without necessarily

giving an elaborate form to this term.

Parametric form for Sampling Term p(S | τ). This

term is dependent on i, p and X . We use uniform sampling,

with p(S | τ) = Uk×k(x − p). This gives equal weight

to all voxels that fall within a k × k window around pixel

p. A smoother, normal-based sampling could also be used

but requires a higher computational cost to integrate infor-

mation. Generally, the shape of this sampling function can

easily be modified for specific needs. Both uniform and nor-

mal sampling forms enable some control over calibration,

mis-synchronization, and some classification errors: several

pixels will be able to contribute to a single voxel’s decision

upon inference. Thanks to the introduction of these two hid-

den processes and the given parametric forms, our method

unifies broad silhouette uncertainty management and sim-

ple image sampling methods used in some visual hull al-

gorithms such as [2]. It also enables to embed sub-voxel

information about the underlying shape in the probability

grid, as opposed to purely discrete approaches such as [14].

3.3. Image Formation Term

The image pixel likelihood term p(I i
p | F i

p,B
i
p, τ)

explains the color information of a pixel (i, p), given the

knowledge of the background color and silhouette detection

state at this pixel. We give two parametric forms to this

term. If an object detection occurred at pixel (i, p), the

knowledge about background images is irrelevant to the

pixel’s expected color: the background is known to be

occluded by an object of interest, whose color the pixel

observes. With no further assumption about colors of

objects of interest, we consider them uniformly distributed:

p(Ii
p | [F

i
p = 1],Bi

p, τ) = U(Ii
p). Reciprocally, if no object

detection occurred at this pixel, then the pixel’s observed

color should look similar to the pixel’s background color.

Such an expectancy can easily be formulated using a

classical background model [17]:

p(Ii
p | [F i

p=0], [Bi
p=(µi

p, σ
i
p)], τ) = N (Ii

p | µi
p, σ

i
p), where

(µi
p, σ

i
p) are the parameters of a Gaussian. The method

could easily use any other background model, such as a
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mixture of Gaussians [15], for sub-pixel noise robustness.

Nevertheless, some problems persist whatever the back-

ground model: color ambiguities between foreground and

background objects, lighting, or scene geometry change. It

is the goal of our integrated multi-view approach to com-

pensate for these weaknesses of single-view estimation.

4. Voxel Occupancy Inference

Once the joint probability distribution has been fully de-

termined, it is possible to use Bayes’ rule to infer the proba-

bility distributions of our searched variable GX , given the

value of our known variables I,B, τ , and marginalizing

over unknown variables F :

p(GX |I,B, τ) =

∑

F p(GX , I,B,F , τ)
∑

GX ,F p(GX , I,B,F , τ)

=

∏

i,p

∑

Fi
p
p(F i

p |GX , τ)p(Ii
p |F

i
p,B

i
p, τ)

∑

GX

∏

i,p

∑

Fi
p
p(F i

p |GX , τ)p(Ii
p |F

i
p,B

i
p, τ)

(4)

after substitution of (1), and factorization. More details

can be found in [6].

Note that the final inference expression (4) deceptively

relates our voxel occupancy to all pixel observations. As

we compute this inference per voxel, this is of course in-

tractable. In practice, detection probabilities of pixels too

far from the voxel’s projection degenerate to uniform, as

expressed in equations (2) and (3). Their contribution there-

fore factors out of the inference expression (4). The infer-

ence product can then be computed over a k× k window of

pixels centered at the image projection of X , in each image.

With a voxel grid size of N 3, the complexity of inferring all

voxels of the grid is then O(n k2N3).

5. Results and Applications

We have implemented the proposed fusion approach, us-

ing uniform voxel sampling for experiments. Compared to

normal sampling it is a good trade-off between computa-

tional cost and power of information integration. Notably

the method has only three parameters {PD,PFA,k}, respec-

tively the detection and false alarm rates, and the sampling

window size, all of which can often be fixed for a given

application. PD and PFA ponderate the confidence given

to the observations. If PFA =0 and PD =1, then we trust

observations blindly. If PFA and PD are close to 0.5 then

observations are not trustworthy: it takes many more ob-

servations to conclude about the occupancy. k decides how

broadly each image is sampled. We have tested the algo-

rithm under various conditions, as it can be applied to many

application fields. An associated video of results is avail-

able1.

1http://movi.inrialpes.fr/Publications/2005/FB05/SilhouetteCueFusion.avi

Figure 3. Inputs. (a) Four of the eight input images of the

walking sequence (8 cameras, 15Hz acquisition) (b). Result

given by monocular subtraction (semi-transparent render-

ing pondered by silhouette probability). Difficulties: cam-

era 2 misses the subject’s left forearm. Holes and noise

appear in various silhouettes.

Modeling from Images. The grid itself is an estimate of

shape. We illustrate this using the walking sequence. This

sequence was acquired using 8 cameras of different charac-

teristics (640 × 480, 780 × 580) at 15Hz. As Fig. 3 illus-

trates, the silhouette information that can be retrieved using

monocular background subtraction is noisy. Also note that

some cameras may not see the entire object during the se-

quence. These single-view subtractions also use a Gaussian

background model, and reflect what input is available to our

algorithm. Fig. 4 shows our method’s results on a frame of

the walking sequence, using a 1203 grid. Cross-sections

show how the shape information is embedded in the grid.

See the associated video1 for a dynamic view. As shown

in Fig. 4(c), good surface modeling results can be achieved

by extracting an isosurface from the probability grid. Fine,

sub-voxel detail of the surface is recovered, and holes occur-

ring in monocular subtractions are often filled. Additional

modeling results are shown in Fig. 5.

Figure 5. Isosurface of probability 0.80 at different time

instants of the walking sequence. See video1.
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Figure 4. Walking sequence, acquired at 15Hz, using 8 cameras, with a 1203 voxel grid. Computation time: approximately 13s on

a 2.4 GHz PC. Parameters used: PD = 0.9, PF A = 0.1, k = 5 (a) Horizontal (chest) cross-section of the grid. Upper-left greenish

regions are not seen by any camera (probability 0.5). (b) vertical grid cross-section. (c) Isosurface of probability 0.80 obtained

from the grid. (d) Two classical visual hull reconstruction schemes: in light color, assuming common visibility of the object by all

cameras. The forearm is lost. In dark, assuming that what is outside the visibility domain of a camera can be part of the visual

hull. The latter recovers the left forearm, but ghost objects appear, in regions located in the visibility domain of a small number of

cameras. Ghost objects appear when such regions project inside all silhouettes of views where they are seen.

The classical voxel-based visual hull approach has been

implemented for comparison, with results in Fig. 4(d),

where each voxel is carved if it projects outside silhouettes.

We use the background subtractions of Fig. 3 for this ex-

periment, and manually choose the best threshold in each

image to provide binary silhouettes to the algorithm. Some

holes are left unfilled by this method. Note that our method

recovers valid occupancies from views that don’t see the ob-

ject entirely. This is transparent to the algorithm, because it

only integrates information from sensors which see the vox-

els. This is unlike all classical, surface or volumetric visual

hull approaches, where explicit assumptions are made about

regions that project outside the visibility domain of an im-

age, with various implications (see Fig. 4(d)).

Multi-View Background Subtraction. Our method

computes a fusion of silhouette cues. This information can

be used to compute consistent silhouettes in our input im-

ages, by re-projecting and rendering the occupancy grid

from our input views, using a maximum intensity projec-

tion approach (MIP): for each pixel in an image, we collect

the maximum probability in the grid along its viewing line.

The goal is to express where silhouette detection is more

likely in images. It would be possible to use the proposed

statistical model to infer silhouette probability maps, given

all image observations. This is however very expensive as

it requires marginalization over voxel states, thus the pro-

posed heuristic for multi-view background subtraction. All

silhouettes can be extracted using a single threshold for all

images. The advantage over monocular silhouette extrac-

tion is that each view benefits from the knowledge of sil-

houette information in the other views: resulting silhouettes

show improvement, with fine details preserved (see Fig. 6).

Small aliasing artifacts may appear depending on grid reso-

lution and scene configuration.

Figure 6. Multi-view silhouette extraction. (a) Monocu-

lar subtraction. Note the various artifacts and holes in such

silhouettes (waist, head, feet). (b) MIP rendering of occu-

pancy grid (1203) probabilities from original viewpoints.

Darker regions are more likely to be silhouette regions. (c)

Thresholded version of (b), using a common threshold. Sil-

houettes show improvement. Unwanted dilatation only ap-

pears in concave regions, seen empty by a small number of

cameras (crotch): the method outperforms most low-level

monocular silhouette repairing schemes, such as morpho-

logical operations, for such large artifacts.

Object detection. The method can be used in much

harder conditions to infer scene information. In the pres-

ence of high levels of noise, the size of the sampling win-

dow can be increased for additional robustness, with how-

ever a negative impact on precision (this tends to dilate the

probability volume). Such noisy conditions limit the use

of the method for 3D modeling and precise surface extrac-

tion; however the method can still be used reliably to locate

objects in the scene. We illustrate this potential for object
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Figure 7. Multi-object sequence, with 8 cameras. (a) Dif-

ficult conditions yield very noisy single-view silhouette ex-

tractions. (b) Coarse grid (50×50×18) of the scene recon-

structed with our method (computation time 7s), sufficient

to localize objects (using k = 25). A horizontal cross-

section of the grid, as well as the 0.67-probability isosur-

face, are shown (see the associated video). This is sufficient

to localize the people.

localization, in an experiment with loose camera configura-

tions and poor contrast images (see Fig. 7). 8 cameras are

placed such that a relatively large area (25m2) can be moni-

tored in the room. Most cameras see the center of the room,

but peripheral regions of this area are seen by 3 or 4 cam-

eras at most. Two people walk randomly in the scene and

are successfully localized, when seen by at least 3 cameras.

6. Discussion

We have presented a novel approach for silhouette cue

fusion from multiple views. We use a rigorous sensor fu-

sion framework, to relate scene information directly to ob-

servations. This has various advantages: the entire causality

chain is modeled and all assumptions made explicit. It also

avoids making hard decisions about silhouette labeling in

images, which would have required tedious per-image pa-

rameter settings. Thus the underlying silhouette informa-

tion in images can be smoothly integrated, using only three

global parameters of a pixel sensor model. These parame-

ters intuitively express the reliability of observations. This

approach has been validated with several applications, and

many new ideas can be experimented and plugged-in with-

out changing the core of the method.

Arguably, more dependencies could be considered in the

model. Namely, we notice that the reliability of pixel de-

cision can be related to the colors observed at this pixel:

many times we observe the case where black foreground ob-

jects are observed in front of a black background and mis-

classified, a case which could be explicitly modeled. The

local nature of grid evaluations opens the possibility for a

real-time, hardware-accelerated solution. More generally,

our model estimates static grids at one time instant. It would

greatly benefit from temporal consistency, where passed ob-

servations are used to infer current occupancy states. Hap-

pily, occupancy grids provide a good framework for tempo-

ral accumulation of information, being one of its main uses

in the robotics community [3]. We will investigate these

possibilities to extend the capabilities of our system.
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Abstract

This paper addresses the problem of real time 3D modeling

from images with multiple cameras. Environments where

multiple cameras and PCs are present are becoming usual,

mainly due to new camera technologies and high comput-

ing power of modern PCs. However most applications in

computer vision are based on a single, or few PCs for com-

putations and do not scale. Our motivation in this paper is

therefore to propose a distributed framework which allows

to compute precise 3D models in real time with a variable

number of cameras, this through an optimal use of the sev-

eral PCs which are generally present. We focus in this paper

on silhouette based modeling approaches and investigate

how to efficiently partition the associated tasks over a set of

PCs. Our contribution is a distribution scheme that applies

to the different types of approaches in this field and allows

for real time applications. Such a scheme relies on differ-

ent accessible levels of parallelization, from individual task

partitions to concurrent executions, yielding in turn con-

trols on both latency and frame rate of the modeling system.

We report on the application of the presented framework to

visual hull modeling applications. In particular, we show

that precise surface models can be computed in real time

with standard components. Results with synthetic data and

preliminary results in real contexts are presented.

1. Introduction

Recent advances in camera technologies have generalized

real time acquisition of digital images, and today, any mod-

ern PC can acquire such images at standard video rates.

This allows complete acquisition systems to be built by sim-

ply connecting sets of digital cameras and PCs, without help

from specific components. The interest arises in various ap-

plication domains where digital cameras are involved and

where image information extracted in real time is required

for interaction or control purposes. These domains include,

for instance, scene virtualizations, video surveillances or

human-machine interfaces. However, while much research

has been devoted to algorithms that address the situation

where a few cameras are connected to a single or few PCs,

less efforts have been made toward larger sets of cameras

and PCs which are, on the other hand, becoming standard.

Moreover, most computer vision applications that make use

of several cameras connected to several PCs do not take ad-

vantage of the available computing power and generally rely

on a single PC for computations. In this paper, we address

these scalability and optimality issues by considering par-

allel strategies for 3D modeling computations. The objec-

tive is to propose practical and scalable solutions to produce

highly precise 3D models in real time using multiple cam-

eras.

Only a few distributed 3D modeling systems have been

proposed and demonstrated in the past. The CMU robotics

institute introduced a 3D dome with around 50 cameras

for virtualization [Narayanan98]; the 3D scene model be-

ing built using a stereo-vision approach. Other systems

have also been proposed at CMU with fewer cameras and a

voxel based approach [Cheung00], or its combination with

a stereo based approach [Cheung03]. However, these sys-

tems do either work off-line, or in real time but with a few

cameras, since no parallelisation is considered for modeling

computations. Another class of real time but non-parallel

approaches make use of graphic cards to directly render

new viewpoint images [Li03]. Using graphic card hard-

ware highly accelerates the rendering process but such sys-

tems still rely on a single PC for computations and do not

provide explicit 3D models as required by many applica-

tions. In [Borovikov03], a parallel framework that stores,

retrieves and processes video streams on PC clusters is pre-

sented, but the emphasis is put on data management and

real time applications are not considered. Real time and

parallel modeling systems have also been proposed to han-

dle voxel based modeling methods [Kameda00, Arita01].

Voxel based methods produce discrete 3D models by using

regular space discretizations where parallelepipedic cells

-the voxels- are carved according to image information

[Slabaugh01, Dyer01]. Such methods can easily be par-

allelized since a significant part of the computations is

achieved independently per voxel. The mentioned ap-

proaches make use of this fact and report good performance.

However, voxel based methods are imprecise and time con-
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suming. Furthermore the principles developed in the pro-

posed approaches do not easily extend to possibly better

modeling methods. In this paper, we attempt to develop

concepts at a higher abstraction level in order to make their

application possible to various modeling methods. Another

interesting work [François01] deals with video streams and

proposes a multi-threading strategy to improve latency and

frame rate when processing video streams for segmentation

or tracking tasks. We mention also here the Skipper project

[Sérot02] which develops a parallel programming environ-

ment for image processing. The two latter works also tackle

distribution issues related to computer vision, but they pro-

vide middleware solutions mainly and do not consider al-

gorithmic aspects as necessary with the targeted modeling

applications.

In this paper, we present a real time and parallel architec-

ture for multi-view algorithms and report on its application

to 3D modeling applications and, in particular, to silhouette

based approaches. Our goal is to provide scalable solutions

by using a parallelization methodology. Such a methodol-

ogy is intended to be general enough to apply to different

contexts while maintaining the required parallelization ef-

fort reasonable. Our contribution with respect to the men-

tioned works is twofold: first, we extend parallelization

concepts already proposed to multi-view algorithms; sec-

ond, we apply this concept to silhouette based approaches

and propose new practical implementations that are scalable

while surpassing standard voxel based approaches.

The paper is organized as follows. Section 2 introduces

our distribution scheme for parallelizing multi-view tasks.

In section 3, their application to visual hull computations

using image silhouettes is presented. Section 4 demon-

strates the proposed principles in a real context and gives

numerical evidence on synthetic data.

2. Distribution Scheme

In this section we present our methodology to parallelize

multi-view algorithms. It relies on classical parallelization

techniques. The simplicity of these techniques limit the ef-

fort required to parallelize existing algorithms. Experimen-

tal results show that this methodology leads to good perfor-

mance.

Let n be the number of cameras available and m the

number of hosts (PCs). We assume each camera is con-

nected to one host dedicated to acquisition and local image

processing. We consider that all cameras issue images at the

same frame rate. We will consider that a frame corresponds

to the set of n images taken at a time t. We also assume that

m is greater than n. The extra p = m−n hosts are dedicated

to computation. Hosts are interconnected through a stan-

dard network. Accessing data on a distant host takes much

more time than accessing local data. We do not use any tool

masking this disparity, like a virtually shared memory. They

generally lead to lower performance than tools that enable

the user to take into account this disparity to optimize data

transfers, like message passing libraries [Gropp94]. As we

will see, the effort of explicitly handling data transfers is

relatively low and worthwhile.

As a performance criterion, we measure the speed-up,

obtained by dividing the sequential execution time by the

parallel execution time. The efficiency of the parallelization

increases as the speed-up factor nears the number of proces-

sors. For real-time constraints, we measure the frame pro-

cessing rate and the latency, i.e. the time to process a single

frame.

The methodology we propose is based on two different

levels of parallelization, a stream level parallelization and a

frame level parallelization.

2.1. Stream Level Parallelization

Multi-view applications process a sequence of frames,

called a stream. A very classical method to speed up stream

based applications is to use a pipeline. The application is

split in a sequence of stages (see fig. 1(b)), each stage be-

ing executed on different hosts. It enables a host to work

on frame t while the next host in the pipe-line stage works

on frame t − 1. The different stages are naturally extracted

from the structure of the program. Trying to redesign the

application into a longer pipe-line is time consuming and

increases the latency due to extra communications.

A stage is time-independent if it does not use tempo-

ral consistency, i.e. the process of frame t does not de-

pend on the results from preceding frames. It enables to

duplicate identical frame computation schemes on differ-

ent hosts, called processing units (see fig. 1(c)). A new

frame t can be processed as soon as one of the processing

units is available. The number of processing units should be

large enough to avoid any frame to wait for its processing.

Adapting this technique to a time-dependent stage may still

be possible but requires advanced scheduling strategies and

extra communications.

This scheme can be applied to the classical voxel-based

approach. Frames go through 2 processing steps, back-

ground extraction and voxel carving that can be assigned

to 2 pipe-line stages. The first stage being usually much

faster than the second one, several processing units can be

dedicated to this time-independent second stage.

2.2. Frame Level Parallelization

The preceding distribution techniques can significantly im-

prove the processing frame rate. However, the latency is

negatively affected. The pipe-line introduces extra commu-

nication time that increases the latency, thus reducing the

reactivity of the system. To improve latency, one can re-
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Figure 1: Different levels of parallelization proposed by our

framework. A and B are the two computation stages of the pro-

gram. At and Bt relate to the processing of frame t. Each row

corresponds to a processor. Colored blocks correspond to a task

execution and white blocks to inactivity periods. The graph (a)

represents a sequential execution, the graph (b) a 2 stage pipeline

execution. Graph (c) adds a second processing unit for the second

pipeline stage B.

duce the time taken by a stage to process a single frame.

This can be done by parallelizing the work done on a sin-

gle frame among several hosts of a single processing unit

(see fig. 2). We base our scheme on the classical Bulk Syn-

chronous Programming (BSP) model [Valiant90] that pro-

poses a trade-off between performance and programming

complexity. The execution is done in a sequence of phases,

each one decomposed in a data exchange involving all hosts

followed by local computations performed on each host.

This model eases parallel algorithm description as it splits

communication from computation. Based on this BSP ap-

proach, we propose a 3 phase scheme for parallelizing pro-

cessing unit computations:

• Data preparation: the first phase (input data distri-

bution) consists in sending the input data to the hosts

requiring them. Next, each host locally performs the

initialization computations needed for the next parallel

phase.

• Parallel computation: in parallel, each host executes

locally (no communication) a different task assigned

to it.

• Sequential computation: all partial results from the

parallel computation phase are gathered on one host.

This host sequentially performs the remaining com-

putation that could not have been parallelized in the

previous phase. Depending on the requirements of the

next pipe-line stage, sequential computation can be du-

plicated on several hosts. It can enable to reduce com-

munication load to transfer data to this next stage.

Though very simple this model is very generic. In worst

cases, all the computation is done in the last sequential
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Figure 2: Frame level parallelization (2 processors for stage

A and 4 processors for stage B). It shows latency improve-

ment in comparison with stream level parallelization (see

fig. 1.)

phase. However this is trivially inefficient. We later show

that it is possible to obtain a parallel computation phase sig-

nificantly larger than the two other phases. In such a situ-

ation we will show that this scheme leads to real-time per-

formance.

We can illustrate application of our scheme to the

parallelization of voxel carving as described by Arita et

al. [Arita01]:

• Data preparation: initialize locally the voxel space.

• Parallel computation: for each image, compute the vi-

sual cone in the local voxel space.

• Sequential computation: gather all visual cones on one

host and compute their intersection.

Results given by Arita show that this scheme yields high

performance. Generally, our 3 phase scheme does not lead

to an optimal parallelization. Many optimizations can still

be done. On this voxel example, Borovikov et al. has given

an algorithmic optimization [Borovikov03] for computing

the voxel cone intersection in a more complex way that

cannot be represented with this 3 phase scheme. However

we show in this paper that the proposed methodology offers

a simple yet efficient scheme to address stream and frame

level parallelization for real-time constraints.

3. Silhouette-Based Modeling Ap-

proaches

We now deal with silhouette-based modeling approaches

and how to make them suitable for a real-time context us-

ing our methodology. We focus on visual hull reconstruc-

tion approaches, as they are quite popularly used for 3D

modeling from multiple views given their speed and sim-

plicity. Recall that the visual hull is a simple approxi-

mation of the scene objects defined as the maximal shape

consistent with the silhouettes of the objects in the input

views [Laurentini94]. A number of algorithms have been

proposed for computing the visual hull. Some use a dis-

crete partitioning of space in voxels. Such volume-based

3
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Step 3: Surface extractionStep 1: Viewing Edges Step 2

Hybrid Method
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Exact Connectivity

Figure 3: Outline of the visual hull modeling techniques chosen for parallelization. (a) Images of an object are taken, silhouettes are

identified, their contours vectorized, and viewing edges are computed for each point of the discretization. (b) The hybrid method computes

the Delaunay tetrahedron decomposition of space based on viewing edge vertices. (c) Each tetrahedron is carved according to silhouette

consistency, and the final visual hull model is obtained. (d) The exact connectivity method computes the cone intersection components

belonging to the visual hull, to complete the entire visual hull polyhedron mesh. (e) Faces are extracted from the mesh representation and

the final polyhedron model of the visual hull is obtained.

schemes prove to be simple to implement and can be very

fast. We have given a case study for the parallelization of

these approaches in the previous section. In this section, we

will therefore focus on the parallelization of methods that

have never been studied before in this context.

Namely, a recently popular category of surface-based

modeling approaches have focused on recovering the sur-

face of the visual hull, and provide a polyhedral represen-

tation of the visual hull surface as output [Baumgart75,

Matusik01], some giving additional topological guarantees

with a simpler framework [Franco03]. An interesting hy-

brid approach also exists that combines advantages of both

volume and surface-based families [Boyer03]. While these

methods provide a precise model of the visual hull and are

generally fast, they are still too slow for a hard real-time

setup with as many as 10 cameras. On the other hand

this makes them outstanding potential beneficiaries of par-

allelization. In this context we can show that parallelism

is a tool to bridge the gap between generally fast vision al-

gorithms, and vision algorithms that guarantee very high

frame processing rates of 30fps or above.

3.1. Outline of the Modeling Methods

In order to offer a broad view of the parallelization of

silhouette-based approaches, we will focus on two of the

most recent methods, the hybrid method [Boyer03], which

offers a robust trade-off between volume and surface-based

approaches, and one of the available surface-based meth-

ods, the exact connectivity method [Franco03]. See figure 3

for an overview. Recall the context of such methods: n cal-

ibrated cameras are used to generate n views of an object; a

standard background subtraction process is used to extract

the silhouette bitmaps from the images. The contours of the

obtained silhouette masks are vectorized so as to obtain ori-

ented 2D polygons bounding the silhouette regions. This

discrete representation of silhouettes induces a discrete vi-

sual hull polyhedron. The hybrid method provides a close

approximation of this polyhedron, while the exact connec-

tivity method computes it exactly.

Three steps are used to achieve the reconstruction goal in

both cases, as depicted in figure 3. The first step, common

to both methods, computes an initial subset of the visual

hull geometry, the viewing edges, in the form of points and

edges located on the viewing lines of each discrete silhou-

ette contour point (details follow in 3.2). The second step’s

common goal is to compute an intermediate representation

which implicitely contains the visual hull surface. To this

goal, the hybrid method partitions space into convex cells,

which can easily be carved according to silhouette consis-

tency of their projection in images. In contrast, the exact

connectivity method computes the exact visual hull polyhe-

dron as a generalized cone intersection. Finally, the third

step’s common goal is to identify the underlying surface in-

formation, by extracting the visual hull interface polygons

from the previous representation. The following sections

give more details about these steps.

Note that, as a first possibility for applying our method-

ology, we can easily identify each conceptual step of the

methods with a stage in a multi processing unit pipe-line,

to increase the output frame rate. This is valid since the

algorithms are intrisincally time-independent: each set of
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silhouettes in frame t is used for reconstructing a shape,

and the information will never be used again in subsequent

frames. We will now deal with more specific issues in the

following sections.

3.2. Computing the Viewing Edges

We now describe the computation of viewing edges at dis-

crete image contour vertices, as it is a common processing

step in the presented methods (see fig. 3).

Viewing edges are intervals along viewing lines. They

correspond to viewing lines contributions to the visual hull

surface and are thus associated to image points on silhou-

ette contours. As such, viewing edges are simply obtained

by computing the set of intervals along a viewing line that

project inside all silhouettes (see fig. 4).

Figure 4: Viewing edges (in bold) along the viewing line. Epipo-

lar line angles can be used to accelerate the search for the image

segments intersecting the epipolar line.

Interestingly, this algorithm provides great freedom for

frame-level parallelism, as it consists in the computation of

a set of numerous partial but independent results. That is,

each viewing line’s contributions can be computed regard-

less of all others, assuming the silhouette information from

all images is available. An efficient frame-level paralleliza-

tion of viewing edge computation can hence be obtained by

partitioning all viewing lines of all images in p sets during

the data preparation phase, and distributing each batch to

one of p hosts for processing (parallel computation phase).

One must be careful in balancing the workload between

hosts, in order to reduce the time spent waiting for the slow-

est host. Building sets of identical cardinality during data

preparation proved to be efficient as we will show. Observe

that this parallel scheme heavily constrains how we will per-

form data preparation: as each host requires all silhouette

information, silhouette contours must also be broadcasted

during that phase. Finalization of the task simply consists

in gathering the union of all partial results on the hosts that

require it, during the sequential computation phase.

We are able to achieve speed-ups of the order of 8 with

10 hosts, which is very good, especially given the low ef-

fort required to parallelize the algorithm. Higher speed-ups

can be achieved, but with a substantially higher complexity,

much at the expense of the gain/effort tradeoff.

3.3. A Distributed Hybrid Method

We will now describe the parallelization of the hybrid

method [Boyer03]. After computing the viewing edges, the

hybrid method uses a Delaunay triangulation of the view-

ing edge vertices to obtain a decomposition of space into

tetrahedrons, as a second step (see fig. 3). The union of

these tetrahedrons form the convex hull of the input points:

some of them must be carved in order to isolate the visual

hull. The discretization consists of convex cells of a more

generalized and flexible shape than regular voxels, but can

still be carved with voxel-like silhouette consistency checks

such as those in [Cheung00]. This is used in the third step

to determine which tetrahedrons lie inside or outside the vi-

sual hull, and the surface polygons are extracted from this

model by simply isolating the triangles which lie at the in-

terface between the two regions.

Although the algorithm is conceptually simple, building

its parallel counterpart brings challenges we have to account

for as we seek to apply our proposed methodology. The

main issue here is the Delaunay triangulation, which gen-

erates many partial, but globally constrained results: the

Delaunay tetrahedrons. Some possibilities for distributing

the Delaunay triangulation have been explored [Cignoni93],

with the main idea of subdividing the problem among space

regions where concurrent tasks take place. This idea can

be applied to many vision algorithms. One obstacle, also

widely generic, is the complexity of detecting and dealing

with region interrelationships in the algorithm. In the case

of the Delaunay triangulation, a programmer would spend

most of his time re-implementing the tedious algorithmics

intrinsic to such a method. Under such conditions, it is wise

to sacrifice system reactivity to implementation simplicity.

Stream level parallelization can still be used to improve the

frame rate of an already available sequential code. Yet we

will see in the next section a case where tackling the multi-

ple region interdependency problem is worthwhile.

However we do have another opportunity for paralleliza-

tion, as the cell carving task is much friendlier. Much like in

a usual volume-based technique, the per-cell carving results

are independent, which ensures a well-behaved parallel ex-

ecution phase. The only requirement is that all silhouette

information is available at all hosts, which can be provided

for during data preparation. The sequential execution phase

will then simply gather the carve state of all tetrahedrons,

and finally extract the surface triangles from this informa-

tion, as this takes very little time and does not require distri-

bution. Under such favorable conditions we are able in this

carving task context to reach speed-ups of 9.5 for 10 hosts.

3.4. A Distributed Surface-Based Method

We now briefly describe the application of our pro-

posed parallelization methodology on the exact connectiv-
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Figure 5: Visual hull of a sphere with 3 views.

ity method [Franco03] (overview available in figure 3). Fig-

ure 5 provides a representation of all geometric entities in-

volved.

As seen previously, the viewing edges give us an initial

subset of the visual hull geometry. However, this does not

account for all edges of the visual hull polyhedron. The

visual hull is the intersection of the viewing cones, which

back-project from silhouettes in images. For a complete

visual hull, one must also compute the missing cone inter-

section curves that participate to the visual hull polyhedron.

It can be observed that such curves, which are piecewise-

linear, snake around the visual hull surface, connecting to-

gether viewing edge vertices and extra vertices called triple

points. Triple points are the locus of three cone intersec-

tions; as such they are always the meeting point of three

cone intersection curves on the visual hull (see fig. 5).

With this in mind, the exact method simply seeks to

follow these curves while creating them, starting from

viewing edge vertices and recursing at cone intersection

junctions, i.e. the triple points. The algorithm does so

by iteratively computing new edges of the curve, using

incidence information previously inferred. Checking for

the silhouette consistency of each newly created edge

ensures that it is part of the visual hull mesh; it also

enables the algorithm to detect and create the missing triple

points, when such consistency is violated. When all cone

intersection edges are recovered, faces of the polyhedron

surface are extracted by walking through the complete

oriented mesh while always taking left turns at each vertex,

so as to identify each face’s 2D contours and complete the

third step in the algorithm. Refer to [Franco03] for details.

Any parallelization effort for this algorithm will likely

be confronted to the strong spatial dependencies inherent to

a mesh representation. In order to allow for concurrent task

execution, we classically choose to partition space into p
different regions using p − 1 parallel planes, thus subdivid-

ing space in p “slices”. Slice width is adjusted by attribut-

ing a constant number of viewing edge vertices per slice for

workload balancing. Since we mainly manipulate edges and

vertices, partitioning of primitives among regions during the

data preparation phase is a very low cost operation. Thus,

a host of the distributed exact connectivity method can be

instructed to follow intersection curves within its dedicated

region Ri, until this curve crosses the border toward an-

other region Rj . The host then stops processing this curve,

thereby delegating the computation of the rest of the curve

to the host in charge of Rj during the parallel computation

phase.

Observe that region dependencies are very easy to iden-

tify as they only materialize at edges that cross a partition

plane. It is yet again straightforward to identify the three

simple phases of our frame-level parallel model in this case.

Data preparation partitions the job among regions; paral-

lel computation tasks compute mesh fragments associated

to their dedicated region; the sequential computation phase

gathers and carefully merges the partial meshes across re-

gion borders. This proves to be very efficient as we reach

speed-ups of 6 with 10 hosts with our implementation, an

excellent result given the reasonable implementation time

and the dependency issues. This will be confirmed by the

global measurements provided in the next section.

We are also able to distribute the surface extraction step:

the complete mesh is broadcasted to p hosts during data

preparation, then the p hosts independently compute a sub-

set of the face information, and the sequential finalization

simply gathers all sets of faces. This leads to very good

speed-ups of the order of 7 for 10 hosts.

4. Implementation and Experimental

Results

In this section, we detail experimental results obtained from

the implementation of the two preceding algorithms paralel-

lized with our methodology. We obtain real time perfor-

mance for high quality 3D modeling; recall that for the sec-

ond method the computed polyhedron is exact with respect

to the input silhouettes. Tests with synthetic data show that

sustained performance is obtained with a large number of

view points.

Our 16 processor cluster is composed of 8 dual Xeon PCs

(2.66 GHz) connected through a Gigabit Ethernet network.

Latency is measured from the beginning of the viewing-

edge step. Our implementation uses the standard MPI mes-

sage passing library [Gropp94] for comunications. The De-

launay triangulation is computed with the high performance

sequential library Qhull [Qhu]. All presented results are

based on sets of 10 experiments.

4.1. Real Time Conditions

Our real experimental setup is composed of 4 IEEE 1394

cameras each connected to a PC handling acquisition, back-

6
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ground substraction and silhouette vectorization. Images

(640x480) are acquired at 30 frames per second. The scene

is composed of a person (see fig. 6), an object of average

complexity (150 contour vertices per image).

Figure 6: Real time reconstruction of a real person with 4

cameras and the exact connectivity approach.

Using such a system to run the hybrid method, we

achieve real time 3D modeling at 30 frames per second us-

ing 16 processors. One processing unit parallelized on 4

hosts is dedicated to the first step. Ten processing units are

dedicated to the sequential Delaunay triangulation. Carving

is achieved in a single processing unit parallelized on 2 pro-

cessors. The measured latency comes in the average of 400

ms, but is highly limited by the sequential execution time of

the triangulation time, which can reach 300 ms.

The exact connectivity method proved to be more ef-

ficient as real time execution (30 frames per second) is

achieved with only 12 processors. Each stage has 2 process-

ing units, each one being parallelized on 2 processors. The

measured latency is about 100 ms. This low latency and real

time frame processing rate enable to use this algorithm for

interactive applications. Videos are available at http://

www.inrialpes.fr/movi/people/Franco/CVPR04.

4.2. Validation with Large Numbers of View

Points

Figure 7: (left) Original model. (right) Reconstruction of

the Model with 12 view points.

Not having more than 4 cameras available, the scalabil-

ity of our distribued algorithms was tested with images from

multiple view points generated from a synthetic model. We

focus on the latency issue. We only consider the exact con-

nectivity 3D modeling algorithm as the hybrid one is la-

tency limited by the Delaunay triangulation. The real time

frame rate issue is not discussed as it can be solved by mul-

tiplying the number of PCs assigned to the stream level par-

allelization.

The model we consider is a synthetic person with a com-

plexity close to a real person (about 130 contour vertices

per image). Figure 8 presents the obtained latency with re-

gard to the number of processors involved for 16, 25 and 64

view points. The parallelization of the algorithm enables to

significantly reduce the latency (almost by an order of mag-

nitude). With 25 view points and 16 processors, latency is

below 200 ms, a latency level suitable for interactivity.
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Figure 8: Log plot latencies for the synthetic person.
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Figure 9: Speed-ups for the synthetic person.

Figure 9 presents the associated speed-ups. Up to 9 pro-

cessors for 12 view points, 14 processors for 25 view points,

and more than 16 processors for 64 view points, the speed-

up is above half of the processors used. Next, the speed-ups

tend to stabilize as the workload in the parallel computa-

tion phases decreases compared to the data preparation and

sequential computation phases.

5. Summary and Conclusions

We have presented a 3D modeling system which uses paral-

lelism to reach real time executions with a flexible number

7
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of cameras and PCs. Such system is based on a distribution

framework we propose, which is intended to multi-view ap-

plications in computer vision. We have demonstrated its ef-

fectiveness in 3D modeling applications using silhouettes.

The high quality visual hulls generated by these parallel

algorithms can be used for various applications, including

virtual reality (see fig. 10). Our main contribution with re-

spect to existing works in the field is to provide new parallel

3D modeling implementations as well as a methodology for

the parallelization of multi-view applications. Results on

real and synthetic data show that our approach allows for

scalability in modeling systems and extends therefore the

potential of such systems. We are currently studying gen-

eralization of the given principles to other computer vision

applications. We are also extending our experimental setup

so that it includes more than 20 cameras and provides a

complete pipe-line from the image acquisition to the model

visualization in multi-projector environments, with all the

associated tasks distributed on a PC cluster.

Figure 10: Two new views of the visual hull model of fig-

ure 6 with view-dependent texturing.
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Abstract

In this paper, we present a scalable architecture to com-

pute, visualize and interact with 3D dynamic models of real

scenes. This architecture is designed for mixed reality ap-

plications requiring such dynamic models, tele-immersion

for instance. Our system consists in 3 main parts: the ac-

quisition, based on standard firewire cameras; the compu-

tation, based on a distribution scheme over a cluster of PC

and using a recent shape-from-silhouette algorithm which

leads to optimally precise 3D models; the visualization,

which is achieved on a multiple display wall. The pro-

posed distribution scheme ensures scalability of the system

and hereby allows control over the number of cameras used

for acquisition, the frame-rate, or the number of projectors

used for high resolution visualization. To our knowledge

this is the first completely scalable vision architecture for

real time 3D modeling, from acquisition to visualization

through computation. Experimental results show that this

framework is very promising for real time 3D interactions.

1 Introduction

Interactive and mixed reality environments generally

rely on the ability to retrieve 3D information about users,

in real time, in an interaction space. Such information is

used to make real and virtual worlds consistent with one an-

other. Traditional solutions to this problem usually consist

in tracking positions of sensors by means of various tech-

nologies including electromagnetic waves, infrared sensors

or accelerometers. However, this requires users to wear in-

vasive equipment and usually specific body suits. Further-

more it does not lead to a shape description, as required

for many applications such as tele-immersion for example.

In this paper, we consider a more flexible class of methods

based on digital cameras. These methods can compute 3D

shape models in real-time, and without any markers or any

specific equipment. We propose a framework in this con-

text, from acquisition to visualization and interactions. Our

objective is to provide a flexible solution which especially

focuses on issues that are critical in such systems: precision

of the 3D model, precision of the visualization and process

speed.

Several multi-camera systems for dynamic modeling

have been proposed. Stereo based systems were first pro-

posed [16] for virtualization, but most recent systems use

image silhouettes as input data to compute 3D shapes. They

can be classified according to the fact that they work offline

or in real-time, and also by the type of 3D models which

they build. Offline systems allow complex and precise mod-

els to be built [6, 5], in particular articulated models, how-

ever they do not allow real-time interaction as intended in

this work. Most real-time systems, such as [7, 10], that have

been proposed in the past, compute voxel models, i.e. dis-

crete 3D models made of elementary parallelepipedic cells.

Interestingly, several systems in this category [4, 12, 3, 18]

use a distribution scheme over a PC cluster to speed up

computations and hence, provide some kind of control over

the model precision and the process speed. However, voxel

based methods are still imprecise unless a huge number of

voxels is used. Furthermore they require post-processing,

typically a marching cubes approach, to produce surface

shapes. This is computationally expensive, and generates

very small-scale geometry whenever precision is required.

Another class of real time, but non-parallel, approaches

directly render new viewpoint images [17] using possibly
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graphic cards for computations[14]. Based on the Image

Based Visual Hull method [15], these approaches efficiently

focus on the desired 2D image, but they still rely on a sin-

gle PC for computations, limiting the number of video-

streams or the frame-rate, and they do not provide explicit

3D shapes as required by many applications.

In contrast to the aforementioned systems, ours directly

computes watertight and manifold surface models. These

surface models are exact with respect to the input silhouette

information available and, as such, are optimal and equiv-

alent to voxel grids with infinite resolutions. A particular

emphasis has been put on the system scalability to ensure

flexibility and to address performance and hardware cost ef-

ficiency issues. To this aim, the system is composed of mul-

tiple commodity components: FireWire cameras distributed

on multiple PCs interconnected through a standard Ethernet

network, as well as multiple projectors for a wall display.

To reach real time performance, a careful distribution of the

work load on the different resources is achieved. For that

purpose we rely on a middleware library called FlowVR [1],

dedicated to the distribution of interactive applications.

Section 2 outlines the global approach. Section 3 dis-

cusses issues related to image acquisition. The 3D modeling

algorithm and its parallel implementation is then explained

in section 4. In section 5, interactions and visualization are

described. Section 6 details the distributed framework for

our system. Section 7 presents some experimental results

before concluding in section 8.

2 Outline

Our goal is to compute 3D shapes of users in an

acquisition space surrounded by several cameras in real

time (see figure 1). Such models are subsequently used for

interaction purposes, including display. In order to achieve

this, several processes must be coupled.

Acquisition Fixed cameras are set to surround the scene.

Their calibration is obtained offline through off-the-shelf li-

braries such as OpenCV. Each camera is handled by a dedi-

cated PC. Each acquired image is locally analyzed to extract

regions of interest (the foreground) which are then vector-

ized, i.e. their delimiting polygonal contours are computed.

3D modeling A geometric model is then computed from

the silhouettes using an efficient method to compute the vi-

sual hull [13]. Obtained visual hull polyhedrons are suf-

ficient for numerous VR applications including collision

detection or virtual shadow computation for instance. To

reach a real time execution, their computation is distributed

among different processors.

Interactions and Visualization The 3D mesh is asyn-

chronously sent to the interaction engines and to the visu-

alization PCs. Multi-projector rendering is handled by a

Figure 1. From multi-camera videos to dy-

namic textured 3D models

mixed replicated/sort-first approach.

3 Acquisition

Acquisition takes place on a dedicated set of PCs, each

connected to a single camera. These PCs perform all nec-

essary preliminary image processing steps: color image ac-

quisition, background subtraction and silhouette polygonal-

ization (see figure 2). All cameras are standard firewire

cameras, capturing images at 30 fps with a resolution of

780x580 in YUV color space.

2

106 CHAPITRE 6. ARTICLES



Figure 2. The different steps in the acquisi-

tion process: (a) the original image; (b) the

binary image of the silhouette; (c) the exact

silhouette polygon (250 vertices); (d) a sim-

plified silhouette polygon (55 vertices).

3.1 Synchronization

Dealing with multiple input devices raises the problem of

data synchronization. Indeed, our applications rely on the

assumption that the input data chunks received from differ-

ent sources are coherent, i.e. that they relate to the same

scene event. We use an hardware synchronization where

image acquisition is triggered by externally gen-locking the

cameras, ensuring a delay between images below 100µs.

3.2 Background Subtraction

Regions of interest in the images, i.e. the foreground

or silhouette, are extracted using a background subtraction

process. As most of the existing techniques [11, 7], we rely

on a per pixel color model of the background. For our pur-

pose, we use a combination of a Gaussian model for the

chromatic information (UV) and an interval model for the

intensity information (Y) with a variant of the method by

Horprasert et al. [11] for shadow detection. A crucial re-

mark here is that the quality of the produced 3D model

highly depends on this process since the modeling approach

is exact with respect to the silhouettes. Notice that a high

quality background subtraction can easily be achieved by

using a dedicated environment (blue screen). However, for

prospective purposes, we do not limit ourself to such spe-

cific environments in our setup.

3.3 Silhouette Polygonalization

Since our modeling algorithm computes a surface and

not a volume, it does not use image regions as defined by

silhouettes, but their delimiting polygonal contours. We ex-

tract such silhouette contours and vectorize them using the

method of Debled et al. [8]. Each contour is decomposed

into an oriented polygon, which approximates the contour

to a given approximation bound. With a single-pixel bound,

obtained polygons are strictly equivalent to the silhouettes

in the discrete sense (see figure 2-c). However in case of

noisy silhouettes this leads to numerous small segments. A

higher approximation bound results in significantly fewer

segments (see figure 2-d). This enables to control the model

complexity, and therefore the computation time, in an effi-

cient way.

4 3D Modeling

The visual hull is a well studied geometric shape [13]

which is obtained from a scene object’s silhouettes observed

in n views. It is the maximum shape consistent with all

silhouettes. As such, it can be seen as the intersection of the

images’ viewing cones, the volumes that backproject from

each view’s silhouette (see figure 3).

Figure 3. Visual hull of a sphere with 3 views.

We use a distributed surface-based method we have de-

veloped [9]. It recovers the exact polyhedral visual hull

from the input silhouette polygons in three steps. First, a

subset of the polyhedron edges – the viewing edges – is

computed. Second, starting from this partial description

of the polyhedron’s mesh, all other edges and vertices are

recovered by a recursive series of geometric deductions.

Third, the shape’s faces are recovered by traversing the ob-

tained mesh. The following paragraphs briefly detail these

steps, and their distribution over p CPUs.

4.1 Computing the Viewing Edges

Viewing edges are intervals along viewing lines associ-

ated from silhouette contours’ vertices. They are obtained

by computing the set of intervals along such a viewing line

that project inside all silhouettes. The distribution of this

computation uses the fact that each viewing line’s contri-

butions can be computed independently. Viewing lines are

partitioned into p identical cardinality sets and each batch is

3
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distributed to a different CPU. The final set is obtained by

gathering partial results.

4.2 Computing the Visual Hull Mesh

The viewing edges give us an initial subset of the visual

hull geometry. The missing chains of edges, are then recov-

ered recursively starting from the viewing edges set. To al-

low concurrent task execution, the 3D space is partitionned

into p slices. Slice width is adjusted by attributing a con-

stant number of viewing edge vertices per slice for workload

balancing. Each CPU computes the missing edges in its as-

signed slice. Partial meshes are then gathered and carefully

merged across slice borders.

4.3 Computing the Faces

Faces of the polyhedron surface are extracted by walk-

ing through the complete oriented mesh while always tak-

ing left turns at each vertex, so as to identify each face’s

contours. Each CPU independently computes a subset of

the face information, the complete mesh being previously

broadcasted to each CPU.

5 Interactions and Visualization

5.1 Real-Time interactions

We experimented two different interactions. The first

one consists in a simple object carving (see figure 4(a)). The

user can sculpt an object using any part of his body. This

is done with octree-based boolean operations to update the

object where it intersects with the user’s model. Update op-

erations include removal, addition of matter and change in

sculpture color. The object can be rotated to simulate a pot-

ter’s wheel.

The second interaction results from the integration of the

user’s model inside a rigid body simulation (see figure 4(b)).

Several dynamic objects where added in the scene, and the

system handles collisions with the user’s body. This inter-

action requires all available information about the user’s

3D surface, which is not available using classical track-

ing methods. Using our surface modeling approach, such

fine level collision detection is something our system can

achieve.

5.2 Multi-projector Visualization

To provide the user with a wide field of view while pre-

serving image details, as necessary in semi-immersive and

immersive applications, we have chosen to use a multi-

projector display. The most scalable approach to implement

(a) Carving

(b) Collision

Figure 4. Interaction experiments.

this setup is to use one PC to drive each projector. To ob-

tain a coherent image, each PC will have to synchronously

render the same scene with a different view point, corre-

sponding to the position of the related projector.

Several methods are available to implement parallel vi-

sualization, depending on the level of the primitives ex-

changed. We use a new framework [2], allowing to use a

different scheme for each part of the scene. Large static ob-

jects, such as the landscape, use a replicated scheme so that

they are sent locally on each PC. Other objects, such as the

reconstructed mesh, are created on specific PCs and then

sent to all visualization PCs, possibly culling invisible data

(sort-first scheme).

The rendering of the 3D mesh itself is quite simple as

it is already a polygonal surface. We can optionally com-

pute averaged normal vectors at each vertex to produce a

smoothly shaded rendering. It is relatively small (approxi-

mately 10000 triangles) so it can be broadcasted to all visu-

alization PCs.

6 Implementation

6.1 The middleware library

To provide the I/O and computing power necessary to

run our applications in real time, we use a PC cluster. How-

ever, coupling all pieces of code involved, distributing them

4
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on the PCs and insuring data transfers can be cumbersome.

To get a high performance and modular application, we use

a tool we developed [1], FlowVR, to manage distributed in-

teractive applications. It relies on an data-flow model. Com-

putation and I/O tasks are encapsulated into modules. Each

module endlessly iterates, consuming and producing data.

Modules are not aware of the existence of other modules. A

module only exchanges data with the FlowVR daemon that

runs on the same host. The set of daemons running on a

PC cluster are in charge of implementing the data exchange

network that connects modules. Daemons use TCP connec-

tions for network communications or shared-memory for

local communications. The FlowVR network defined be-

tween modules can implement simple module-to-module

connections as well as complex message handling opera-

tions like synchronizations, data filtering operations, data

sampling, broadcasts, etc. This fine control over data han-

dling enables to take advantage of both the specificity of the

application and the underlying cluster architecture to opti-

mize the latency and refresh rates.

6.2 Data-flow Graph

We propose for our application the following distributed

data-flow graph from acquisition to rendering (see fig-

ure 5).

Figure 5. Data-flow graph from 4 cameras ac-

quisitions to 4 video projectors rendering.

Each dedicated acquisition PC locally performs the data

acquisition to obtain the silhouettes which are then broad-

casted to the PCs in charge of the first modeling step, the

viewing edge computation step. Follows the two other mod-

eling steps, the global mesh recovery and the surface ex-

traction. The resulting reconstructed surface is broadcasted

to the PCs in charge of interaction computation and to the

visualization hosts. These PCs also receive data from the

interaction modules of the VR environment.

To obtain good performance and scalability it is nec-

essary to setup specific coupling policies between the dif-

ferent parts of the application so they can run at different

frequencies. The acquisition part typically runs at the fre-

quency of the cameras while interactions run at more than

100Hz. The visualization stage runs independently, allow-

ing to change the viewpoint without waiting for the compu-

tation of the next 3D model. To implement these coupling

policies we use two dataflow control policies: FIFO con-

nections between modules running at the same frequency

and greedy sampling connections (receivers always use last

available data) between modules running asynchronously.

7 Results

We present the results obtained with our platform. It

gathers 11 dual-Xeon 2.6 GHz PCs and 16 dual-Opteron

PCs connected together by a gigabit Ethernet network. 6

FireWire Cameras are connected to the dual-Xeon ma-

chines. 16 projectors are connected to the dual-Opteron

machines through NVIDIA 6800 Ultra graphics cards. The

projectors display images on a flat screen of 2.7 × 2 me-

ters. The acquisition space where the cameras are focused

is located 1 meter away from the screen.

To evaluate the potential of 3D modeling for interaction

purposes, we identified the following classical criteria as

being relevant:

• Latency: it is the delay between a user’s action and the

perception of this action on the displayed 3D model. It

is the most important criterion. A large latency can sig-

nificantly impair the interaction experience. For most

experiments on our system the overall latency, includ-

ing all stages from video acquisition to visualization,

was around 100ms. This can be noticed by the user

but is small enough to maintain a high level of interac-

tivity. The quality of the background subtraction step

as well as the simplification threshold applied to the

resulting contours have a high impact on the latency as

they determine the computational cost of the 3D mod-

eling.

• Update frequency (modeling framerate): in our experi-

ments, using 4 CPUs was enough to provide an update

frequency of 30 Hz with 6 cameras when one user was

in the interaction space.

• Quality (model’s level of detail): in our experiments,

the user was able to use its hands to carve virtual ob-

5

6.8 Allard, Franco, Ménier, Boyer & Raffin - ICVS’06 109



jects, and, depending on the angle relative to the cam-

eras, it was possible to distinguish his fingers.

• Robustness to acquisition noise: our modeling algo-

rithm is exact with respect to provided input silhou-

ettes however noisy. The resulting 3D model is always

watertight (no holes) and manifold (no self intersec-

tions). These properties are very important as many

interaction applications or visualization (shadows, ...)

rely on them. Moreover the approximation of silhou-

ette contours removes most of the background subtrac-

tion noise.

• Model Content (the type of information available, sur-

faces, and textures in our case). When texturing the

3D models with the images obtained from the cameras,

this property enables to avoid artefacs (see figure 6).

Notice that in the applications presented the model is

not textured. Real-time texturing is a challenging issue

as the amount of data to handle in a distributed con-

text is important. This is an ongoing work with very

promising preliminary results.

Figure 6. Details of a 3D model and its tex-

tured version (off-line).

8 Conclusion

We presented a marker-less 3D shape modeling approach

which optimally exploits all the information provided by

standard background subtraction techniques and produces

watertight 3D models. The shape can easily be used for vi-

sual interactions, like rendering, shading, object occlusion,

as well as mechanical interactions, like collision detection

with other virtual objects. I/O devices and computing units

are commodity components (FireWire cameras, PCs, giga-

bit Ethernet network, classroom projectors). They provide a

scalable and efficient environment. The aggregation of mul-

tiple units and an adequate work-load distribution enable us

to achieve real time performance.

Future works investigate two directions. One is to focus

on data quality, in particular background subtraction and

temporal consistency. The other is to focus on recovering

semantic information about scene objects. The goal is to

identify parts of the user’s body for motion tracking, ges-

ture recognition and more advanced interactions with the

virtual world.
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Abstract

In this paper we address the problem of tracking the motion of articulated objects
from their 2-D silhouettes gathered with several cameras. The vast majority of ex-
isting approaches relies on a single camera or on stereo. We describe a new method
which requires at least two cameras. The method relies on (i) building 3-D obser-
vations (points and normals) from image silhouettes and on (ii)fitting an articulated
object model to these observations by minimizing their discrepancies. The objective
function sums up these discrepancies while it takes into account both thescaled al-
gebraic distancefrom data points to the model surface and theoffset in orientation
between observed normals and model normals. The combination of a feed-forward
reconstruction technique with a robust model-tracking method results in a reliable
and efficient method for articulated motion capture.

1 Introduction
In this paper we address the problem of estimating the motion parameters of articulated objects,
such as humans, from 3-D points and normals. These entities are inferred from 2-D silhou-
ettes gathered with several synchronized cameras, Figure 1. The problem of tracking articulated
shapes has been thoroughly studied in the recent past and a number of interesting methods and
software packages are available. The vast majority of existing approaches and solutions relies
on a single camera (a video sequence), on stereo (both binocular and trinocular), or on a large
number of cameras. The first class of methods (a single video) attempts to recover the motion
parameters directly from images and requires sophisticated probabilistic modelling. The second
class of methods relies on depth data which, in turn, require search methods in order to solve
for the stereo correspondence problem. The third class of methods relies on space-carving and
level-set methods which are still under development. The latter has proved their usefulness for
3-D shape modelling but not for recovering motion parameters.

Here we describe a method which needs 2 to 6 cameras evenly distributed around the scene,
i.e., they do not need to be arranged such that stereo correspondence is optimized. The method
consists in fitting the pose of an articulated object model to 3-D observations gathered at some
time instant, provided that the pose at the previous time instant has already been estimated. The
object model is described by anarticulated implicit surfacethat embeds a kinematic structure
(such as a human body, a hand, an animal, etc.) and a set of volumetric primitives (ellipsoids).

∗M. Niskanen is funded by Infotech Oulu. Financial support from Seppo Säynäjäkangas foundation is kindly aknowl-
edged.
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Figure 1:The cameras overlook a scene and a reconstruction method estimates 3-D points (connected to
form a mesh for the purpose of the display) as well as 3-D vectors (shown as a needle field) normal to a
smooth surface.

The implicit surface is defined as a distance function over these primitives and therefore this
surface is simply a level set over a blending of these ellipsoids.

The 3-D observations are computed from image silhouettes gathered with the cameras. These
3-D data consist in surface patches, i.e., a 3-D point and a 3-vector. In order to fit these observa-
tions to the model we define a surface-patch-to-implicit-surface distance. The objective function
to be minimized over the motion parameters is a sum of squares of the distances just mentioned.

Previous work. Since we adopt an “image understanding” point of view, we immediately rule
out systems based on magnetic or optical markers, special-purpose clothes, and so forth. For a
general review of human motion capture methods see [14]. Methods based on a single image
sequence require a probabilistic framework [1], [8], and many others. An intrinsic difficulty,
however, with methods based on 2-D data is the ambiguity of associating a multiple degree-of-
freedom 3-D model with image contours, texture, and optical flow [4], [7]. Other researchers
combine several cameras and make use of 2-D silhouettes whose image deformation is related,
among others, to 3-D motion parameters. In [9], 2-D image data apply forces to a projected
model and the parameters of the latter are adjusted such that the force field is minimized.

Methods using 3-D data are the most relevant with respect to our own approach. In general
3-D data are produced using stereo [5], [15], [6]. An articulated model based on cylindrical
parts and an ICP algorithm is used in [5]. Both [15] and [6] use implicit surfaces defined over
a set of spheroids, and these two methods are the most closely related to our own approach. In
[15] an algebraic distance is minimized in order to fit the implicit surface to the depth data, and
silhouette observations are used to constrain this surface to be tangent to rays originating at the
optical center of the camera and passing through silhouette points. In [6] the stereo data are fitted
to the model using an EM algorithm. Moreover, 3-D data that are consistent with the model
are incrementally added to the latter such that both point-to-point and point-to-surface distance
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errors contribute to the fitting.

Original contributions. This paper has the following original contributions: First, 3-D obser-
vations (both points and normals) are computed from 2-D silhouettes based on multiple-camera
geometric constraints and on the hypothesis that the observed 3-D surfaces are locally smooth;
The method may well be viewed as an improvement over convex hull computation. There is
no need to arrange the cameras such that stereo matching performs in an optimal manner. Sec-
ond, the objective function, measuring the discrepancy between model and data, takes into ac-
count both point-to-surface and data-normal-to-model-normal discrepancies. We derive an an-
alytic expression for these discrepancies which allows the straightforward implementation of
non-linear minimization techniques. Third, the method avoids image projections of complex
models. Fourth, data-to-model fitting is achieved in a single 3-D metric space instead of multi-
ple, possibly inconsistent, 2-D projective spaces.

Organization. The remainder of this paper is organized as follows. Section 2 describes how
3-D data are obtained from image silhouettes. Section 3 describes the articulated model which
is based on zero-reference kinematic chains, on ellipsoids, and on an articulated implicit surface
defined over these chain and volumetric primitives. Section 4 describes the fitting between the
data and the model based on both points and surface normals. Section 5 describes results ob-
tained with both simulated and real data. Finally Section 6 draws some conclusions and suggests
directions for future work.

2 Surface patches from image silhouettes
In this section we describe how 3-D points and surface normals are inferred from multiple image
silhouettes. The 3-D shape data that we estimate consist in the positions of points and normals
associated with the 3-D surface that produced the silhouettes. Such shape information is closely
related to the visual hull of an object and it shares with the latter its robustness. Nevertheless, it
is richer than the visual hull alone since it includes not only the surface tangent planes but also
the surface positions which are not given by the visual hull. To estimate these positions, we use
the fact that our surface models, ellipsoids, areC2 surfaces. The method is valid, more generally,
for locally smooth surfaces of order 2.

Viewing edges. We assume that a set of silhouettes – that segment the input images into fore-
ground and background – are provided. These silhouettes may be combined to give rise to a
visual hullwhich is the maximal 3-D shape consistent with them. The visual hull does contain
the body surface and may intuitively be seen as the intersection of theviewing conesassociated
with the silhouettes.Viewing edges, or bounding edges [10], are the intervals along the viewing
lines, as shown on Figure 2. They correspond to viewing-line contributions to the visual-hull sur-
face and therefore they are associated to image points lying onto the silhouette boundary curves.
Computing such a set of viewing edges is fast, simple, well-defined, and has already been used
in various reconstruction applications, [12] and [3].

A silhouette is described by a discrete set of 2-D points. Viewing edges along a viewing line
may be defined by combining silhouettes from two images and the associated epipolar constraint,
as depicted in Figure 2. This can be easily extended to an arbitrary number of images and
silhouettes. Whenever an additional silhouette from a new image is available, the viewing edges
are updated to be consistent with contributions from the additional silhouette points. As the
number of silhouettes increases, the length of the viewing edges narrows down.
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Figure 2:Left: two viewing edges along a viewing line computed solely from multiple-camera geometry.
Right: two spheres (dark) that may be two distinct body parts, and the reconstructed surfaces (thin lines)
with only two cameras. Thevisual hullis depicted by the shaded regions within the viewing lines originating
in C1 andC2.

3-D points and surface normals. We explain now how to estimate the position and orientation
of a surface patchthat is supposed to lie onto the object’s surface such that the latter is tangent
to a viewing edge.

A viewing line associated with a silhouette from imagej is tangent to the object’s surface. If
we assume that there is a unique viewing edge along a viewing line, then it means that this edge
contains a surface pointY. Its orientation, a vectorN, is defined by the cross-product between
the viewing line and the tangent to the image silhouette. Notice that these computations can be
carried out from image information only, provided that the calibration parameters of the camera
are known.

The estimation of the position of pointY within a viewing edge requires some additional
insights. LetY belong to the viewing edge passing through the center of projectionC j of image
j. This viewing edge is bounded by viewing lines associated with imagesi andk as well as
their centers of projectionCi andCk, as explained in the previous section. Since these viewing
lines are tangent to the surface, we are also given these additional tangent directions – viewing
lines originating inCi andCk – in the neighborhood ofY: The viewing lines from the silhouettes
associated with imagesi andk which intersect the viewing line ofY . Under the assumption that
the surface is locally of order 2, one can estimate the position ofY along a curve that lies onto
the surface and which is constrained by three tangents. For farther details see [2].

The above reasoning applies to the case of a unique viewing edge along a viewing line. This
is the case with most silhouette vertices if the cameras are evenly and sparsely distributed around
the scene. However, this will not always be true, as shown on Figure 2. Whenever several
viewing edges appear along the viewing line, the same approach is applied to each interval,
one after one, thus producing as many 3D points and normals as the number of viewing edges.
Note that not all the 3-D points thus determined actually belong to viewing edges tangent to the
object’s surface. Nevertheless, they all need to be computed in order to ensure that the local
second order approximation of the surface is consistent with the visual hull. Moreover, as shown
on Figure 2, the points thus obtained correspond to a better approximation of the object’s surface
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than the visual hull itself. This is particularly important when the task is to fit a curved model to
the observations. Results obtained with this method are shown on Figure 3.

Figure 3:3-D points (displayed as the vertices of a mesh) reconstructed with 2, 4, 5, and 6 cameras. The
reconstructed normals are shown with the rightmost figure.

3 Modelling articulated objects
In order to model articulated objects such as human bodies, we use ellipsoids as basic volumetric
shapes. These ellipsoids are joined and blended together to form an articulated implicit surface.
In detail, an ellipsoid is a quadric described by a 4×4 homogeneous symmetric matrixQ. This
matrix is diagonal when the axes of the coordinate frame are aligned with the axes of inertia of
the shape:Q = Diag(1/a21/b21/c2 −1). The implicit equation of its surface writesX⊤QX = 0
whereX describes the homogeneous coordinates of a 3-D point lying on this surface. Thesigned
algebraic distancefrom a data pointY to this surface isq(Y) = Y⊤QY. The value ofq varies
from −1 at the origin, to 0 on its surface, and then to+∞ outside the ellipsoid as the point is
farther away from the surface. It is convenient to use the exponential of the algebraic distance
as a measurement error. The scalar parameterσ bounds thedistance of influenceof an ellipsoid,
i.e.:

r(Y) = exp

(

−
q2(Y)

σ2

)

(1)

When an ellipsoid undergoes a rigid motion, its matrix becomesQ T = T−⊤QT−1 whereT de-
notes a 4×4 homogeneous matrix associated with an Euclidean transformation.T describes a
free motion, a kinematic chain, or a combination of both. In our case the articulated object has
rotational joints with either one or three degrees of freedom. Such a mechanism may be de-
scribed by a kinematic chain of the form:T 1 . . .Tk . . .Tn where each individual transformation
is a one-parameter Lie group that can be decomposed into a fixed transformation followed by a
rotation around an axis aligned with the mechanical axis (or with a virtual axis), and followed by
the inverse of the fixed transformation,T k = LkJ(θk)L

−1
k . Matrix Tk describes the position and

orientation of joint axisk with respect to a reference frame, and:

J(θk) =

⎡

⎢

⎢

⎣

cosθk −sinθk 0 0
sinθk cosθk 0 0

0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

(2)
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The fixed part of this transformation,L k, depends on the particular length of the kth joint and
on the position and orientation of this joint with respect to a fixed reference frame. Within this
paper we do not address the problem of estimating the exact size and shape of the object’s joints
and therefore this transformation will be provided.

We also consider the free motion of the object, a matrixD. In the case of a human body in
motion we attach the body frame to the torso and we make the simplification that the free motion
of the torso is a 3-D translation. Therefore, matrixD can be parameterized by three translations
along three orthogonal directions,D1D2D3. Hence, the motion hasn rotational joints and 3 free
translations and is represented byΘ = (θ1 . . .θn d1 d2 d3); The motion transformation writes:

T(Θ−Θ0) = T1(θ1−θ 0
1 ) . . .Tn(θn−θ 0

n )D1(d1−d0
1)D2(d2−d0

2)D3(d3−d0
3) (3)

This is known as the zero-reference representation of a kinematic chain because it describes
the motion of each element of the object with respect to a fixed reference poseΘ 0 that can
arbitrarily be chosen [13]. In the case of tracking, we seek the pose of the object at a time instant
t provided that the pose at the previous time instant t− 1 has been already determined, and
therefore we can choose the pose of the object (and hence the pose of each one of its elements)
associated with the previous time instant as the zero-reference pose:T = T(Θ t −Θt−1). The
matrix of an ellipsoid at timet can now be expressed as a function of the motion parameters, i.e.,
Q(Θt) = T−⊤Q(Θt−1)T−1.

We consider a complete object model. In particular a human body model with 22 rotational
degrees of freedom is a relatively complete model that allows to capture the most general human
actions. Therefore, there is a total of 22+ 3 degrees of freedom, i.e.,Θ is of dimension 25.
Moreover, body parts are described by ellipsoids denoted byQ 1, Q2, and so forth. Obviously,
there is a kinematic chain for each body part and the number of degrees of freedom are different
for each one of these chains. There is a quadratic form or a signed algebraic distanceq i(X)
associated with an ellipsoidQi as well as an exponential algebraic distancer i , i.e., eq. (1); For
an object in motion we haveqi(X,Θ) andr i(X,Θ).

An articulated implicit surface can now be defined at each time instant as a level-set of a
blending of these ellipsoids [15]:

f (X,Θ) =
22

∑
i=1

r i(X,Θ) = 1 (4)

4 Fitting and tracking
It is now possible to formulate the problem of tracking an articulated shape as the problem of
fitting the model to the data [6]. At each time instant the following minimization problem has to
be solved:

min
Θ

F(Θ) =

(

m

∑
j=1

β j( f (Y j ,Θ)−1)2

)

(5)

where the weightβ j describes the probability of a data pointY j to be consistent with the model,
β j = exp(−( f (Y j ,Θ)− 1)2/σ2). A large value forσ allows virtually all the data points to
contribute to the fit, including data points that are far away from the model. A smaller value forσ
allows to limit the influence of a datum to nearby quadrics. Within an Expectation-Maximization
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formulation such as in [6] an iterative procedure decreases the value ofσ as the fitting proceeds.
This allows, in principle, to escape from local minima when there is a large discrepancy between
the data and the model pose. It also allows to disregard outliers at the final iterative steps of the
algorithm. Surface orientation information is not taken explicitly into account. Ellipsoids whose
local surface normals are very different will equally contribute when associated with a datum. We
will modify the error function of eq. (5) in order to explicitly take into accountsurface normals.

The scaled algebraic distance. One important merit of any visual tracking method is its speed.
Eventually tracking should be implemented in real time, i.e., compatible with the frame rates
delivered by the cameras. Therefore, there is a compromise to be made between complexity and
efficiency. The computation of the distance between an observation and the model resides in the
inner loop of the tracker, and therefore it must be efficiently computed. The algebraic distance
is fast to compute but has drawbacks. The Euclidean and pseudo-Euclidean distances are more
expensive [6].

Let Q be an ellipsoid with parametersa, b, andc. Notice that matricesQ andλQ, with λ �= 0
describe the same quadric. However the algebraic distances to these ellipsoids are different. Let
r2 = a2 + b2 + c2. The scaled algebraic distance from a pointY to the ellipsoid is defined by
qr(Y) = r2Y⊤QY. When the ellipsoid is close to a sphere and when the observation is close
to its surface, the scaled algebraic distance is a good approximation of the Euclidean distance.
However, with substantially elongated ellipsoids, the scaled algebraic distance does not introduce
any improvements. Such an effect is known as high curvature bias. The practical solution that
may be easily adopted consists in replacing elongated ellipsoids by an equivalent number of
spheres.

Using surface orientation constraints. So far we used data points and we did not take into
consideration the normals available with the 3-D observations. LetN = (n1 n2 n3 0)⊤ be the
vector normal to the surface patch and let[N]3 denote the 3-vector formed withn1, n2, n3. We
also haveN⊤N = 1.

It is well known that the 4-vectorP = QX defines the equation of a planeP tangent to the
quadric at pointX lying on its surface [11]. Therefore the 3-vector[P] 3 designates the normal
vector to that plane. When a surface patch is consistent with the model, vectors[P] 3 and[N]3 are
aligned, therefore their cross-product is null and their dot-product is equal to either+1 or−1.
A measurement of the discrepancy between a surface patch orientation and the nearby model
orientation must use the followings:

d(Y,N,Q) = [N]3× [QY]3 , α(Y,N) = 1
2

(

1− N⊤QY
‖QY‖2

)

The first one of these measurements,d, is equal to zero for a perfect match but is defined up
to a 1800 ambiguity. The second measurement,α varies between 0 (for vectors with opposite
orientation) and 1; Therefore it may act as a normalized measure of a plausibility.

As in the case of point data, we define the exponential distance from an observation (a 3-D
pointY and a normalN) to the 22 ellipsoids forming the model:

g(N,Y,Θ) =
22

∑
i=1

(

αi exp

(

−d(Y,N,Qi(Θ))

µ

))

(6)
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Hence, one obtains an optimal solution by fitting all the 3-D observations to the model:

min
Θ

G(Θ) =

(

m

∑
j=1

(g(N j ,Y j ,Θ)−1)2

)

(7)

Tracking articulated objects. In order to track articulated objects we minimize a linear com-
bination of the error functionsF(Θ) andG(Θ); The first one of these functions, eq. (5), fits the
locations of the observations with the model while the second one, eq. (7) fits the normals of the
observations with the same model:

min
Θ

(ω1F(Θ)+ ω2G(Θ)) (8)

The tracking does not need segmentation of the data. Observations at timet are handled
totally independently of observations at timet −1. The solution previously found,Θ t−1 is used
in conjunction with a Kalman filter, and with a constant angular velocity hypothesis, in order to
initialize the tracker at timet. Joint limits were set and added as penalty terms to the objective
function in order to prevent unnatural human postures.

Another issue is the choice ofω1 andω2 in eq. (8). These weights balance the contribution
of position and orientation. There are methods allowing to initialize these weights and to modify
them during the minimization process. However, as explained in the next section, we found that
there are many advantages in using both position and orientation constraints. Therefore we chose
ω1 = ω2 = 1.

5 Experiments
We validated the method with both simulated and real data. The former was obtained using a hu-
man animation software package. The latter was obtained with 6 calibrated cameras. Sequences
of image silhouettes were generated with the animation software. Then the method described
above was applied to these data. The simulated data allowed us to (i) assess the quality of the
tracker with respect to a ground truth, (ii) analyse the behavior in the presence of Gaussian noise
added to the data, (iii) quantify the merit of using surface normals, and (iv) determine the optimal
number of observations needed to reliably estimate an object pose. Figure 4 illustrates some of
the results out of a large number of experiments. From performing all these experiments one
may conclude that tracking is notoriously improved when surface patches are used rather than
just points. The surface-patch based objective function, i.e., eq. (8) converges faster, allows for
less 3-D observations, and is more tolerant to errors in position. Figure 5 shows the results of
applying the method to a 4 second sequence (120 frames) and with six cameras.

6 Discussion and conclusions
In this paper we described a method for tracking the motion of articulated objects. At each
time instant, the images are segmented into foreground and background thus providing a set
of 2-D silhouettes. These silhouettes are combined together with multiple-camera geometric
constraints and with a simple assumption about the surface of the object in order to estimate
3-D surface patches: points and normals. The model itself is anarticulated implicit surface
combining a zero-reference kinematic chain with a set of ellipsoids. The model is fitted to the 3-
D observation by minimization of an objective function that takes into account both the location
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Figure 4: Left: comparison between the true angles and the estimated joint angles: left knee (top) and
right elbow (bottom). Right: sensitivity to noise for points only (top) and for points and normals (bottom).
The method always performs better when normals are taken into account. The two curves show the average
angular error as a function of noise.

of these observations and their 3-D orientations. The resulting tracker is very efficient, it can deal
with noisy data and with outliers, and it does not require data-to-object-part assignments.

Interesting enough, augmenting the number of cameras increases the robustness of the method
without affecting its efficiency, since an increased number of cameras provides more precisely
located surface patches. In practice we think that the optimal number of cameras is between 4
and 6.

Certainly, there are methods able to recover articulated motion with a single camera. These
methods need sophisticated probabilistic methods to work well. They require a learning phase.
We believe that our method is a potential candidate for providing data needed by learning meth-
ods.

In the future we plan to build a complete bio-mechanical model of humans with 80 degrees
of freedom. We also plan to relax some of the constraints currently limiting our method, such
as the requirement to have relatively accurate closed 2-D silhouettes. Finally, based on our
fitting method, we plan to implement the bootstrapping of the tracker using a coarse-to-fine
representation of the joint space and a hierarchical description of an articulated object.
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Abstract

This paper presents an approach to recover body mo-
tions from multiple views using a 3D skeletal model. It
takes, as input, foreground silhouette sequences from multi-
ple viewpoints, and computes, for each frame, the skeleton
pose which best fit the body pose. Skeletal models encode
mostly motion information and allows therefore to separate
motion estimation from shape estimation for which solu-
tions exist; And focusing on motion parameters significantly
reduces the dependancy on specific body shapes, yielding
thus more flexible solutions for body motion capture. How-
ever, a problem generally faced with skeletal models is to
find adequate measurements with which to fit the model. In
this paper, we propose to use the medial axis of the body
shape to this purpose. Such medial axis can be estimated
from the visual hull, a shape approximation which is eas-
ily obtained from the silhouette information. Experiments
show that this approach is robust to several perturbations
in the model or in the input data, and also allows fast body
motions or, equivalently, important motions between con-
secutive frames.

1. Introduction

An increasing number of virtual reality applications rely
on marker-less interactions, for instance telepresence ap-
plications [16], or virtual object manipulation applications.
This is, in most part, due to the fact that multi-view 3D
modeling in real time becomes feasible, as demonstrated
in recent works [8, 3]. However, models produced by
such real-time methods are not necessarily rich enough to
allow for complex interactions. In fact, information such
as body part positions and velocities is often required by
interaction applications. Thismotion informationis related
to, but different from, shape information for which efficient
recovery solutions already exist. Our objective in this paper
is therefore to focus on motion recovery, and in this way
to provide a flexible and robust solution for body tracking

(a) (b) (c) (d) (e)

Figure 1. The tracking pipeline: (a) Color im-
ages ; (b) Silhouettes ; (c) Visual hulls ; (d)
Medial axis points (d) ; (e) Skeleton pose.

from multiple views.

Most marker-less motion tracking methods in computer
vision fall into three categories. First, learning-based
methods [1, 15] which rely on prior probabilities for hu-
man poses, and assume therefore limited motions. Sec-
ond, model-free methods [9] which do not use anya pri-
ori knowledge, and recover articulated structures automati-
cally. However, the articulated structure is likely to change
in time, when encountering a new articulation for instance,
hence making identification or tracking difficult. Third,
model-based approaches which fit and track a known model
using image information. In this paper, we aim at limiting
as much as possible the requireda priori knowledge, while
keeping the robustness of the method reasonable for most
interaction applications. Hence, our approach belongs to
the third category.

Among model-based methods, a large class of ap-
proaches use ana priori surfacic or volumetric represen-
tation of the human body, which combines both shape and
motion information. The corresponding models range from
fine mesh models [6, 17, 4] to coarser models based on
generalized cylinders [21, 12, 10], ellipsoids [8, 20] or
other geometric primitives [11, 13, 14]. In order to avoid
complex estimations of both shapes and motions as in [7],
most approaches in this class assume known body dimen-

1
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sions. However, this strongly limits flexibility and becomes
intractable with numerous interaction systems where un-
known persons are supposed to interact. A more efficient
solution is to find a model which reduces shape informa-
tion. To this purpose, a skeletal model can be used. This
model does not include any volumetric information. Hence,
it has fewer dependencies on body dimensions. In addi-
tion, limbs lengths tend to follow biological natural laws,
whereas human shapes vary a lot among population.

Recovering motion using skeletal models has not been
widely investigated. Theobaltet al. [23] propose an
approach where a skeletal structure is fitted with the help
of hand/feet/head tracking and voxel-based visual hull
computation. However, volumetric dimensions are still
required for the arms’ and legs’ limbs. Lucket al. [19]
also propose a method where skeletal arms are fitted to a
voxel-based visual hull of the upper body. The method still
requires knowledge of the body radius, and suffers from
inadequate captured volumetric data. Brostowet al. [5]
have proposed a model-free method based on the extraction
of a skeletal structure from the user’s shape. Our approach
relies on this idea of using a skeletal structure but differs
in the method to extract it and in the use of an articulated
model.

In this paper, we propose to use a skeletal model and
hence, to focus on body motion parameters in the model
parameters. In this way, we allow for adaptability to body
sizes without sacrifying robustness or time complexity with
respect to the aforementioned approaches. A difficulty in
this context is to find a relevant data space in which to
fit the skeletal model. Our main contribution lies in the
combination of the skeletal model with specific input data
in the form of 3D medial axis points. These points are
obtained by computing the medial axis of the visual hull
shape associated with the body silhouettes in the images.
Figure 1 depicts the different steps of the method. All
these steps can be, in the short term, achieved in real time,
which makes the approach a good candidate for real time
interaction applications.

§ 2 describes our skeletal articulated model and § 3 the
associated measured data. § 4 presents the fitting and track-
ing process. § 5 reports on results obtained for real se-
quences and discusses on real time performance issues be-
fore concluding in § 6.

2. Skeletal Articulated Model

In this section, we describe thea priori articulated model
representing a body pose. A great variety of models have
been proposed in the literature. They rely on a kinematic
chain adjoined with a shape model of the person (ellipsoids,

quadrics, generalysed cylinders,etc.). Those models are
thus specific to a particular user. We propose instead to
use a1D articulated model, therefore not including any
volumetric information on the user.

Root 6 DOF

Joints
Dimension
Segment

2 2

2

2

2

2 2

2 2

Figure 2. The skeletal articulated model.

This skeletal articulated model consists in a kinematic
chain of segments. As interactive applications are usually
only interested in the principle joints (elbows, shoulders,
knees, legs and head), we limit our model to a set of12 seg-
ments with those9 joints (see figure 2). This leads to24 de-
grees of freedom:2 per joints and6 for the root position and
orientation. Note that other models, with higher fidelity to
the human anatomy, could also be used if required by more
demanding applications (e.g. graphics animations). For
joints having2 degrees of freedom, we chose a representa-
tion based on Euler angles. To avoid the classical disconti-
nuity problems encountered with Eulerian parametrizations,
we set the axis of rotation (where singularities occur) in the
most unlikely direction (due to natural joint constraints for
example). This proved to be sufficient in most of our exper-
imentations. Other parametrizations, such as quaternions,
would not necessarly give better results since they represent
full 3D rotations (3 degrees of freedom).

3. Observed Skeleton Data

Another important element of the tracking process is the
data which is considered as the measurement for the body
pose, and to which the model is fitted. A great variety of
data has been proposed in the literature for that purpose.

[14, 17, 6] use 2D cues such as silhouettes or contours.
The body model is projected onto available image planes,
and the fitting is achieved in the 2D image spaces. This has
2 major drawbacks: first, image features only affect the cor-
responding visible parts of the body model which must first
be identified; second, skeletons are not invariant by projec-
tion, i.e. the 3D skeleton of a shape does not project onto
the 2D skeletons of the projected shape, and thus fitting the
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projection of a 3D skeleton to 2D skeletal data, such as 2D
medial axis, would not make sense.

Other aproaches have proposed to directly use 3D cues.
Most of them consider 3D data resulting from multi-view
modeling methods such as Shape-From-Silhouette [4, 19]
or stereo [11]. Such shape information is particularly well
adapted when fitting shape models such as ellipsoids [8].
However it is not adapted to our approach since skeletal
and shape information are of different nature and fitting our
model to shape data would necessarly lead to inconsisten-
cies.

More recently, Brostowet al. [5] have proposed to use
3D skeletal information for motion analysis. They retrieve
motion information directly from an extracted 1D skeletal
structure. Their approach being model free, a great care
is taken to obtain a very precise skeleton, leading to a
very slow extraction (several minutes per frame). It is
therefore not adapted for interactive systems, which is
our main objective. We propose to use a less robust but
faster skeleton extraction technic. The lack of precision
in the skeleton extraction is compensated by thea priori
knowledge (human articulated model).

In our approach, we assume that silhouettes, extracted
from calibrated cameras with different viewpoints, are
available. These silhouettes are obtained through stan-
dard background subtraction methods. From these silhou-
ettes, we first compute their 3D equivalent, i.e., the visual
hull [18]. To this purpose, we use an exact method [3]
which computes a polyhedron in space. This shape exactly
projects onto the silhouettes in the images and thus pre-
serves all the silhouette information. It is then processed
in order to extract its internal structure, namely a skele-
ton. This step, called skeletonization, has received consid-
erable attention from the computational geometry commu-
nity. Several definitions can be considered for skeletons but
the most successful is certainly the medial axis [22]. The
medial axis is defined as the locus of centers of closed balls
that are maximal with respect to inclusion. In the case of
a discrete surface, the process leading to a discrete approx-
imation of the medial axis is sometimes called the Medial
Axis Transform. An important drawback of the discrete me-
dial axis comes from its sensitivity to noise (see figure 3(b)).
However some works have tackled this issue and proposed
algorithms that take into account input shape noise. Attaliet
al. [2] have proposed such an algorithm. The idea is first to
compute a discrete medial axis and second to prune it in or-
der to eliminate outliers. The algorithm proceeds then as
follows:

1. Voronoi centers are computed from the mesh vertices.
Note that we only consider centers lying inside the
mesh (see figure 3(b)).

2. For each centerC we retrieve its corresponding Delau-
nay tetrahedron(P1, P2, P3, P4) and compute:

• its radiusρ(C) = d(C, P1)

• its bisector angleθ(C) = max
i6=j

(P̂iCPj).

3. Outliers are eliminated based on a minimal radius and
bisector angle threshold.

This results in a set of 3D points{X0 · · ·Xn} that we
call theSkeleton Data(see figures 3(c) and 3(d)). Chosing
a radius and bisector angle threshold consists in finding
a tradeoff between the skeleton quality and the number
of resulting points. Indeed the higher the thresholds are,
the better the skeleton is but the fewer points are selected
(see figure 3(d)). In practice we set the radius threshold
at 4 cm and the bisector angle threshold around160◦ (see
figure 3(c)). It should be noticed here that the 3D medial
axis is not a curve, as in 2D, but a surface. In practice,
this has little impact on our approach for2 reasons. First,
the width of this surface, in the human case, is usually
less or at most comparable (in the case of the torso) to
the measurement noise. Second, the skeletal structure
lies at the middle of the medial axis surface, therefore
minimizing distances to the extracted medial axis points.
Note that other skeletonization methods may be used, such
as Brostow’s method, as our fitting method is not specific
to the medial axis but to the expense of the interactivity of
the system.

4. Model Tracking

We have defined, in the previous sections, our skeletal ar-
ticulated model and the observed skeleton data. In this sec-
tion, we first define the generative model which explains the
observations in function of the articulated model. We then
present how this generative model is used in a fitting process
which computes the maximum a posteriori estimate (MAP).
Finally we discuss the important issue of pose tracking over
sequences.

4.1. The generative model

In order to retrieve the pose of the user at a given timet,
we must define the relationship between thea priori articu-
lated model and the observed data. A first solution would be
to characterize the similarity between the skeleton dataset
of points{X0, · · · , Xn} and a skeletal modelS based on
the distance of each point to its closest articulated segment
s ∈ S as in the following joint probability:
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(a) (b)

(c) (d)

Figure 3. (a) Exact visual hull obtained. (b) In-
ternal voronoi centers yielding a noisy skele-
ton. (c) Skeletonization after pruning with
r > 4 cm and θ > 160◦ : most outliers are re-
moved. (d) Skeletonization after pruning with
r > 5 cm and θ > 170◦.

P ({Xi}S) = P (S) ×
n

∏

i=0

P (Xi|S) , (1)

where: P (Xi|S) = N (d(Xi, S), σ2) and
d(Xi, S) = min

s∈S
d(Xi, s), with d() representing the

Euclidean distance.

However, maximizing the corresponding posterior distri-
butionP (S|{Xi}) leads to difficulties. Indeed, the attach-
ment of a point to a segment is subject to change during
the fitting process, generating inconsistencies and gradient
discontinuities. To solve this issue, we introduce hidden
variablesai, one for each point, representing the segment
attached to pointXi. The joint probability of the observed
data and the pose becomes then:

P ({Xi} {ai}S) = P (S)×
n

∏

i=0

P (ai|S)×
n

∏

i=0

P (Xi|ai S),

where:

• P (S) is the prior distribution of the pose. In our case
we make the assumption of an uniform distribution.

However it could account for joint constraints and/or
knowledge on given poses (splits are less probable than
standing positions for example).

• P (ai = j|S) represents thea priori on the attachment
with the sole knowledge of the pose. We set it pro-
portional to the length of the corresponding segment
sj . Note that with our model, the segment lengths are
fixed. Hence, this prior distribution does not depend
on the pose.

• P (Xi|ai = j S) represents the probability that
point Xi belongs to the limb corresponding to the
segmentsj . We model it as a standard gaussian
N (d(Xi, sj), σ

2
j ). Note that with an ideal skeletoniza-

tion algorihm, all σj should be identical (uniform
noise). However in practice, skeletonization methods
lead to higher noise on the torso than on the arms or
the legs. The variancesσj are therefore set to approx-
imately 1 cm, except for the torso where it is set to
approximately3 cm.

Finding the best pose consists then in maximizing the
following posterior:

P (S|{Xi}) ∝
∑

{ai}
P ({Xi} {ai}S),

∝
∏n

i=0

∑

ai
P (XiaiS),

∝ P (S)
∏n

i=0

∑

ai
P (ai|S)P (Xi|aiS).

Unlike the first solution(1), this posterior is well adapted
for maximization as all its derivatives are continuous (C∞

function). This posterior is also more robust as it marginal-
izes over all possible point to segment attachments instead
of considering the single possible attachment from a point
to its closest segment.

4.2. Fitting

In order to find the above MAP and as classical when
dealing with hidden variables, we use an expectation maxi-
mization approach where:

• The E stepconsists in the computation of the expec-
tation termsE(ai = j) for the current estimated pose
S:

E(ai = j) = P (ai = j|X0 · · ·Xn S),
= P (ai = j|Xi S) ,

= P (ai=j Xi S)
P

ai
P (ai Xi S)

;

• The M stepconsists in finding the poseS maximizing:

F (S) =
∑n

i=0

∑

ai
E(ai) × logP (ai Xi S).
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DeveloppingP (aiXiS) = P (S)P (ai|S)P (Xi|ai S),
we notice that the two first terms are constants.P (S) is
supposed uniform and the prior distribution onai does
not depend on the pose. This leads to maximizing:

F (S) ∝

n
∑

i=0

∑

ai

E(ai) × logP (Xi|ai S)

This is equivalent to minimizing its negated form:

n
∑

i=0

∑

ai=j

E(ai = j) ×
d(Xi, sj)

2

2σ2
j

This formula defines a least squares problem. We
use the well known Levenberg-Marquardt minimiza-
tion algorithm as it is well adapted to this type of prob-
lem.

4.3. Tracking

The fitting process recovers a single pose at a given
frame. To recover the motion of the user, we need to de-
scribe how we obtain the poseSt+1 at framet + 1 knowing
the previous poses. This “propagation” problem consists in
predicting a likely positionS ′

t+1. This prediction is used as
an initial guess in the minimization process resulting in the
final poseSt+1. This prediction is commonly based on a
dynamic model such as constant velocity or constant accel-
eration. Those models are efficient in modeling displace-
ments of objects with relatively stable velocity. This con-
dition generally implies a small ratio between the applied
forces and the mass of the object. If this condition is valid
for the root position and orientation of the body, it is clearly
not valid for arms or legs. Their motions can be very erratic.
In such cases tracking without dynamic model (S ′

t+1 = St)
is a good solution as our experiments will demonstrate. A
better solution would be to consider that the recovered ve-
locity is noisy and incorporate a noise model in the propa-
gation process with a particle filtering or belief propagation
algorithm for example. In our experiments however particle
filtering with up to1000 particles did not improve results
while significantly increasing the computational cost. We
therefore seldom use it. Using non parametric belief propa-
gation could lead to better results but again this would make
the tracking process too slow for interactive systems.

5. Results

The body tracking method presented in the previous sec-
tions has been implemented and tested on various sequences
of natural motions like walking in any direction. In this
section, we present the corresponding results and discuss

the robustness of our tracking method. We also discuss an
important issue which is time performance through compu-
tations cost.

5.1. Data Acquisition

Image sequences were acquired using6 firewire cameras
shooting780 × 580 images at27 fps. These cameras are
electronically triggered to ensure synchronization between
images. Silhouettes are obtained through a standard back-
ground subtraction method. Results shown here are based
on 2 sequences. The first one consists in a person walking
in circle and lasts15 seconds (around400 frames), corre-
sponding to2 walking circles. The second one consists in
a person performing a rapid kick in the air. It lasts4 sec-
onds with only30 frames corresponding to the kick itself.
Dimensions of the model were manually set, with an error
of approximately10%.

5.2. Tracking Results

Tracking results on the walking sequence are presented
in figure 4. Validation is done by visually checking each
frame. Only6 frames out of400 were found partially mis-
tracked. Those6 frames are organized in2 groups of3
consecutive frames, the2 groups corresponding to the same
situation in the sequence but at different times. In this situ-
ation, an elbow joint was found away from its real position
(see figure 4-frame290 for instance). This situation is due
to visibility problems which result in skeleton data outliers
between the torso and the arm that are wrongly attached to
the arm, making the elbow moving toward the torso. Note
that such a situation could probably be avoided by using
temporal consistency through a dynamic model, again to
the price of computational cost.

Tracking results on the kicking sequence are presented
in figure 5. This sequence was used to evaluate the robust-
ness of the approach to large motion between consecutive
frames, or in other words to fast motions with respect to
the acquisition frame rate. As shown by the results, the ap-
proach behaves well in such situation, even without predic-
tion between consecutive frames, validating in that case the
fact that no dynamic model is used.

5.3. Robustness

An important aspect for body tracking algorithms
concerns their robustness to all types of noise. In our case,
the main sources of errors are coming from noises in the
input data as well as in the model parameters. Both are
discussed in this section.

Noisy input data
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Frame10 Frame50 Frame90

Frame130 Frame170 Frame210

Frame250 Frame290 Frame330

Figure 4. Skeleton poses at different times for
the walking sequence.

Sequences are not taken in specific environments, such
as blue rooms, resulting in noisy silhouettes as obtained
by background subtraction (see figure 6). Our approach is

Frame70 Frame80 Frame90

Figure 5. Recovered body poses for the kick-
ing sequence.

robust to those errors in different ways. First, notice that
since the visual hull algorithm used is exact with respect to
silhouettes, it does not add any additional noise but filters
instead silhouette errors which are inconsistent in different
views (or false positives). Second, the medial axis is pruned
which allows for some errors in the shape estimation.

Figure 6. Left, examples of noisy silhouettes
in the sequence. Right, result of the skele-
ton pose estimation with these silhouettes (2
different viewpoints).

Robustness to model errors
To test errors in thea priori model, noise was introduced

in the dimensions of the model used for the walking se-
quence. The tracking performs correctly (only few partial
mistracked frames) up to 20% of error. For higher noise,
the number of mistracked frames increases:30 frames out
of 400 are mistracked in the walking sequence with 30% of
error in the model. This robustness to model dimensions er-
rors and the fact that the ratio between a limb size and the
height of a person does almost not vary among the global
population enables the model to be determined by only the
height of the human body. This idea is currently being val-
idated on a set of sequences acquired with users presenting
different morphologies.
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5.4. Real Time Issues

One of the main constraints imposed by interactive
applications is real-time performances associated with low
latencies. In this section, we discuss this issue for the two
main steps of our method.

Skeleton Data Computation: As demonstrated in [3], the
visual hull computation can be achieved in real time with a
latency of70 ms. The skeletonization cost lies essentially
in the voronoi cells computation. This takes about60 ms
for 2000 surface points on an Opteron 2GHz. Distributing
its computation allows this process to run at30 frames
per second but does not reduce its latency. Real time
performance – less than30 ms – is likely to be achieved in
a year with the growth of computational power.

Tracking: Our tracking takes about one second per frame.
Most of the time is spent computing distances from points
to the model segments. This could be reduced by consider-
ing that only the2 or 3 closest segments are relevant. This
would reduce the computational cost by a factor of5. Note
also that this implementation is only an experimental proto-
type. Code optimization could significantly reduce compu-
tational cost. Moreover thea posteriorifunction can largely
benefit from parallelization on multiple CPUs, as skeleton
data input points can be treated independantly.

6. Conclusion

We have presented a 3D tracking algorithm that focus
on motion parameters and relaxes dependencies on body
shapes. It is based on a skeletal articulated model which is
fitted to 3D skeleton data points. Those points lie on the
medial axis of the visual hull, as obtained from silhouettes
in multiple views. Experimental results on real sequences
have been presented. They demonstrate the robustness of
our approach to different aspects such as silhouette noise
or dimension errors. This approach is relatively fast and
should reach real time performances in the near future.

Several issues still remain to be addressed. First tempo-
ral consistency could be taken into account. One solution
could be to integrate it directly in the generative model by
changingP (S) by P (St|St−1) corresponding to the prob-
ablistic dynamic model. Additionnaly, the uniform hypoth-
esis onP (S) could be changed to allow various joint con-
straints and to ensure that the skeletal model lies inside the
visual hull. Second, the robustness of the tracking can be
improved. In particular, the points to segments association
could be more efficient if the visual hull containment con-
straint was taken into account. This would prevent attach-
ment between torso points and arms for example. Also mul-

tiple cues such as color information (appearance model) or
head/hand 3D tracking could be integrated in the process.
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Chapitre 7

Bilan et perspectives

Les travaux présentés dans ce document traitent de la modélisation de scènes
dynamiques à partir de plusieurs flux vidéos. Sur ce thème nous avons parcouru
ces dernières années un chemin certain. Nous sommes en effet passé de la modé-
lisation statique tel que cela était possible il y a quelques années à une architec-
ture capable de gérer de façon automatique plusieurs flux vidéos, cela de manière
flexible en s’appuyant sur la puissance de calcul modulable d’une grappe de PCs.
Pour atteindre ce but, nous avons résolu de nombreux problèmes et proposé des
solutions originales que ce soit sur la compréhension du problème de modélisa-
tion à partir de silhouettes, sur le calibrage ou sur la capture de mouvement.
Ces contributions ont fait l’objet de publications dans les grandes conférences
internationales du domaine de la vision par ordinateur. La réalisation technolo-
gique associée, concrétisée par la plate-forme GrImage, fait actuellement l’objet
d’un transfert vers une société et nous avons bon espoir qu’elle trouve une voie
commerciale, dans le domaine de la cinématographie 3D notamment, au cours
des prochaines années.

Le chemin n’est pour autant pas à son terme et de nombreuses directions
scientifiques restent à explorer que ce soit pour améliorer les modèles obtenus
ou mettre à jour de nouveaux axes. Une première direction que nous n’avons
pas explorée dans ce document concerne l’information photométrique ou encore
l’apparence. Cette information permet en effet d’améliorer de manière significa-
tive les modèles obtenus à partir de silhouettes. Plusieurs approches ont déjà été
proposées, notamment [Her 04, Sin 05, Fur 06], dans le cas de scènes statiques
et lorsque de nombreux point de vue sont disponibles. Le cas de vidéos, issues
d’un nombre éventuellement réduit de caméras, reste à considérer. Cela mène
naturellement à une deuxième direction qui concerne la dimension temporelle
des informations que nous traitons. Cette dimension n’est que peu considérée
pour le moment, les modèles sont effet construit indépendemment à chaque ins-
tant. Or, les informations sur une scène, dynamique ou non, sont redondantes
dans le temps et cette cohérence temporelle devrait être exploitée. Cela concerne
l’information géométrique et photométrique. L’idée serait donc d’améliorer un
modèle, en terme de forme et d’apparence, au fur et à mesure dans une séquence
temporelle d’images. Un des défis à relever pour cela est de pouvoir mettre en
correspondance les informations dans le temps afin de leur appliquer des règles
de cohérence. Il s’agit, par exemple, de trouver pour un point sur une forme à
l’instant t le correspondant sur la même forme à l’instant t + 1. Un autre défi
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en lien direct est celui de la représentation et de l’estimation du mouvement
que ce soit le mouvement d’un objet rigide, d’un objet articulé ou d’un objet
déformable. Ce problème reste fondamental en vision par ordinateur et encore
mal résolu, même lorsque des connaissances a priori sur les objets observés sont
disponibles.

Une autre direction novatrice concerne l’interprétation de scènes dynamiques
au travers de vidéos. La capacité pour un système de reconnâıtre une situation
et d’y réagir ouvre des perspectives nombreuses, notamment pour les applica-
tions de vidéo surveillance ou les applications interactives. Des vidéos multiples
constituent une riche source d’informations qui peut fournir différents types de
données sur les activités dans une scène observée, des primitives images de bas
niveau jusqu’à des primitives tridimensionnelles de mouvement par exemple.
Un des challenges qui se présentent alors est d’organiser l’ensemble des informa-
tions disponibles, issues de plusieurs vidéos et éventuellement d’autres capteurs,
en des primitives cohérentes qui peuvent être classées en catégories de gestes,
d’actions ou d’activités. Nous travaillons actuellement sur ce problème de re-
présentation, en particulier dans le cas d’activités humaines, avec l’objectif de
proposer des modèles tridimensionnels et donc indépendants du point de vue,
qui permettent la constitution de librairies utiles à la reconnaissance. Un autre
challenge réside dans les méthodes statistiques à mettre en oeuvre pour la re-
connaissance, notamment en regard des dimensions des espaces à explorer. À ce
titre, une direction intéressante consiste à réduire ces dimensions en identifiant
le contexte dans lequel se déroulent les activités observées. Le contexte, des ob-
jets par exemple, permet en effet de limiter les activités ou actions observées à
un sous-groupe. Nous travaillons actuellement sur ces aspects.

Enfin mentionnons une autre direction qui concerne l’aspect technologique
des travaux présentés dans ce document. La mise en oeuvre de la plate-forme
expérimentale GrImage a en effet était un vecteur de collaborations scientifiques
riches et une source foisonnante de problèmes de recherche. Elle est à ce jour à un
degré de maturité suffisant pour considérer une exploitation commerciale mais
son évolution reste, à mon sens, un enjeu important pour les thèmes de recherche
évoqués dans ce document. Cette évolution est orientée vers les environnements
intelligents où la perception reposera sur des sources multiples d’informations,
et non seulement des caméras, et où l’action pourra être non seulement visuelle,
comme c’est le cas avec la plate-forme actuelle, mais plus effective. Les problèmes
qui se posent alors sont bien sur multiples et doivent être considérés dans une
perspective à plus long terme que les directions mentionnées précédemment.
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