
HAL Id: tel-00578043
https://theses.hal.science/tel-00578043

Submitted on 18 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prototypage Rapide et Génération de Code pour DSP
Multi-Coeurs Appliqués à la Couche Physique des

Stations de Base 3GPP LTE
Maxime Pelcat

To cite this version:
Maxime Pelcat. Prototypage Rapide et Génération de Code pour DSP Multi-Coeurs Appliqués à la
Couche Physique des Stations de Base 3GPP LTE. Réseaux et télécommunications [cs.NI]. INSA de
Rennes, 2010. Français. �NNT : 2010ISAR0011�. �tel-00578043�

https://theses.hal.science/tel-00578043
https://hal.archives-ouvertes.fr

Thèse

THESE INSA Rennes
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’INSA DE RENNES

Spécialité : Traitement du Signal et des Images

présentée par

Maxime Pelcat
ECOLE DOCTORALE : MATISSE
LABORATOIRE : IETR

Rapid Prototyping and
Dataflow-Based

Code Generation
for the 3GPP LTE

eNodeB Physical Layer
Mapped onto

Multi-Core DSPs

Thèse soutenue le 17.09.2010
devant le jury composé de :
Shuvra BHATTACHARYYA
Professeur à l’Université du Maryland (USA) / Président
Guy GOGNIAT
Professeur des Universités à l’Université de Bretagne Sud / Rapporteur
Christophe JEGO
Professeur des Universités à l’Institut Polytechnique de Bordeaux / Rapporteur
Sébastien LE NOURS
Maître de conférences à Polytech’ Nantes / Examinateur
Slaheddine ARIDHI
Docteur / Encadrant
Jean-François NEZAN
Professeur des universités à l’INSA de Rennes / Directeur de thèse

Contents

Acknowledgements 1

1 Introduction 3

1.1 Overview . 3

1.2 Contributions of this Thesis . 7

1.3 Outline of this Thesis . 7

I Background 9

2 3GPP Long Term Evolution 11

2.1 Introduction . 11

2.1.1 Evolution and Environment of 3GPP Telecommunication Systems . 11

2.1.2 Terminology and Requirements of LTE 12

2.1.3 Scope and Organization of the LTE Study 14

2.2 From IP Packets to Air Transmission . 15

2.2.1 Network Architecture . 15

2.2.2 LTE Radio Link Protocol Layers . 16

2.2.3 Data Blocks Segmentation and Concatenation 17

2.2.4 MAC Layer Scheduler . 18

2.3 Overview of LTE Physical Layer Technologies 18

2.3.1 Signal Air transmission and LTE . 18

2.3.2 Selective Channel Equalization . 20

2.3.3 eNodeB Physical Layer Data Processing 21

2.3.4 Multicarrier Broadband Technologies and Resources 22

2.3.5 LTE Modulation and Coding Scheme 26

2.3.6 Multiple Antennas . 29

2.4 LTE Uplink Features . 30

2.4.1 Single Carrier-Frequency Division Multiplexing 30

2.4.2 Uplink Physical Channels . 31

2.4.3 Uplink Reference Signals . 33

2.4.4 Uplink Multiple Antenna Techniques 34

2.4.5 Random Access Procedure . 35

2.5 LTE Downlink Features . 37

i

ii CONTENTS

2.5.1 Orthogonal Frequency Division Multiplexing Access 37

2.5.2 Downlink Physical Channels . 38

2.5.3 Downlink Reference Signals . 40

2.5.4 Downlink Multiple Antenna Techniques 40

2.5.5 UE Synchronization . 42

3 Dataflow Model of Computation 45

3.1 Introduction . 45

3.1.1 Model of Computation Overview . 45

3.1.2 Dataflow Model of Computation Overview 47

3.2 Synchronous Data Flow . 50

3.2.1 SDF Schedulability . 50

3.2.2 Single Rate SDF . 52

3.2.3 Conversion to a Directed Acyclic Graph 53

3.3 Cyclo Static Data Flow . 53

3.3.1 CSDF Schedulability . 54

3.4 Dataflow Hierarchical Extensions . 54

3.4.1 Parameterized Dataflow Modeling 55

3.4.2 Interface-Based Hierarchical Dataflow 57

4 Rapid Prototyping and Programming Multi-core Architectures 61

4.1 Introduction . 61

4.1.1 The Middle-Grain Parallelism Level 61

4.2 Modeling Multi-Core Heterogeneous Architectures 63

4.2.1 Understanding Multi-Core Heterogeneous Real-Time Embedded DSP
MPSoC . 63

4.2.2 Literature on Architecture Modeling 64

4.3 Multi-core Programming . 65

4.3.1 Middle-Grain Parallelization Techniques 65

4.3.2 PREESM Among Multi-core Programming Tools 67

4.4 Multi-core Scheduling . 68

4.4.1 Multi-core Scheduling Strategies . 68

4.4.2 Scheduling an Application under Constraints 69

4.4.3 Existing Work on Scheduling Heuristics 70

4.5 Generating Multi-core Executable Code . 73

4.5.1 Static Multi-core Code Execution . 73

4.5.2 Managing Application Variations . 74

4.6 Conclusion of the Background Part . 74

II Contributions 77

5 A System-Level Architecture Model 79

5.1 Introduction . 79

5.1.1 Target Architectures . 79

5.1.2 Building a New Architecture Model 82

5.2 The System-Level Architecture Model . 83

5.2.1 The S-LAM operators . 83

5.2.2 Connecting operators in S-LAM . 83

5.2.3 Examples of S-LAM Descriptions . 84

CONTENTS iii

5.2.4 The route model . 86

5.3 Transforming the S-LAM model into the route model 88

5.3.1 Overview of the transformation . 88

5.3.2 Generating a route step . 88

5.3.3 Generating direct routes from the graph model 88

5.3.4 Generating the complete routing table 89

5.4 Simulating a deployment using the route model 90

5.4.1 The message passing route step simulation with contention nodes . . 90

5.4.2 The message passing route step simulation without contention nodes 91

5.4.3 The DMA route step simulation . 91

5.4.4 The shared memory route step simulation 91

5.5 Role of S-LAM in the Rapid Prototyping Process 92

5.5.1 Storing an S-LAM Graph . 92

5.5.2 Hierarchical S-LAM Descriptions . 92

6 Enhanced Rapid Prototyping 95

6.1 Introduction . 95

6.1.1 The Multi-Core DSP Programming Constraints 95

6.1.2 Objectives of a Multi-Core Scheduler 96

6.2 A Flexible Rapid Prototyping Process . 97

6.2.1 Algorithm Transformations while Rapid Prototyping 97

6.2.2 Scenarios: Separating Algorithm and Architecture 99

6.2.3 Workflows: Flows of Model Transformations 101

6.3 The Structure of the Scalable Multi-Core Scheduler 103

6.3.1 The Problem of Scheduling a DAG on an S-LAM Architecture . . . 104

6.3.2 Separating Heuristics from Benchmarks 104

6.3.3 Proposed ABC Sub-Modules . 106

6.3.4 Proposed Actor Assignment Heuristics 107

6.4 Advanced Features in Architecture Benchmark Computers 108

6.4.1 The route model in the AAM process 108

6.4.2 The Infinite Homogeneous ABC . 108

6.4.3 Minimizing Latency and Balancing Loads 109

6.5 Scheduling Heuristics in the Framework . 111

6.5.1 Assignment Heuristics . 112

6.5.2 Ordering Heuristics . 113

6.6 Quality Assessment of a Multi-Core Schedule 114

6.6.1 Limits in Algorithm Middle-Grain Parallelism 114

6.6.2 Upper Bound of the Algorithm Speedup 116

6.6.3 Lowest Acceptable Speedup Evaluation 116

6.6.4 Applying Scheduling Quality Assessment to Heterogeneous Target
Architectures . 117

7 Dataflow LTE Models 119

7.1 Introduction . 119

7.1.1 Elements of the Rapid Prototyping Framework 119

7.1.2 SDF4J : A Java Library for Algorithm Graph Transformations . . . 119

7.1.3 Graphiti : A Generic Graph Editor for Editing Architectures, Algo-
rithms and Workflows . 120

iv CONTENTS

7.1.4 PREESM : A Complete Framework for Hardware and Software Code-
sign . 121

7.2 Proposed LTE Models . 121

7.2.1 Fixed and Variable eNodeB Parameters 121

7.2.2 A LTE eNodeB Use Case . 122

7.2.3 The Different Parts of the LTE Physical Layer Model 124

7.3 Prototyping RACH Preamble Detection . 124

7.4 Downlink Prototyping Model . 128

7.5 Uplink Prototyping Model . 129

7.5.1 PUCCH Decoding . 130

7.5.2 PUSCH Decoding . 131

8 Generating Code from LTE Models 135

8.1 Introduction . 135

8.1.1 Execution Schemes . 135

8.1.2 Managing LTE Specificities . 137

8.2 Static Code Generation for the RACH-PD algorithm 137

8.2.1 Static Code Generation in the PREESM tool 137

8.2.2 Method employed for the RACH-PD implementation 140

8.3 Adaptive Scheduling of the PUSCH . 142

8.3.1 Static and Dynamic Parts of LTE PUSCH Decoding 143

8.3.2 Parameterized Descriptions of the PUSCH 143

8.3.3 A Simplified Model of Target Architectures 145

8.3.4 Adaptive Multi-core Scheduling of the LTE PUSCH 146

8.3.5 Implementation and Experimental Results 149

8.4 PDSCH Model for Adaptive Scheduling . 153

8.5 Combination of Three Actor-Level LTE Dataflow Graphs 153

9 Conclusion, Current Status and Future Work 155

9.1 Conclusion . 155

9.2 Current Status . 156

9.3 Future Work . 156

A Available Workflow Nodes in PREESM 159

B French Summary 163

B.1 Introduction . 163

B.2 Etat de l’Art . 164

B.2.1 Le Standard 3GPP LTE . 164

B.2.2 Les Modèles Flot de Données . 166

B.2.3 Le Prototypage Rapide et la Programmation des Architectures Mul-
ticoeurs . 167

B.3 Contributions . 169

B.3.1 Un Modèle d’Architecture pour le Prototypage Rapide 169

B.3.2 Amélioration du Prototypage Rapide 171

B.3.3 Modèles Flot de Données du LTE . 173

B.3.4 Implémentation du LTE à Partir de Modèles Flot de Données 173

B.4 Conclusion . 176

CONTENTS v

Glossary 189

Personal Publications 191

Bibliography 201

vi CONTENTS

Acknowledgements

I would like to thank my advisors Dr Slaheddine Aridhi and Pr Jean-Francois Nezan for
their help and support during these three years. Slah, thank you for welcoming me at
Texas Instruments in Villeneuve Loubet and for spending so many hours on technical
discussions, advice and corrections. Jeff, thank you for being so open-minded, for your
support and for always seeing the big picture behind the technical details.

I want to thank Pr Guy Gogniat and Pr Christophe Jego for reviewing this thesis.
Thanks also to Pr Shuvra S. Bhattacharyya for presiding the jury and to Dr Sébastien Le
Nours for being member of the jury.

It has been a pleasure to work with Matthieu Wipliez and Jonathan Piat. Thank you
for your friendship, your constant motivation and for sharing valuable technical insights in
computing and electronics. Thanks also to the IETR image and rapid prototyping team
for being great co-workers. Thanks to Pr Christophe Moy for his LTE explanations and
to Dr Mickaël Raulet for his help on dataflow. Thanks to Pierrick Menuet for his excellent
internship and thanks to Jocelyne Tremier for her administrative support.

This thesis also benefited from many discussions with TIers: special thanks to Eric
Biscondi, Sébastien Tomas, Renaud Keller, Alexandre Romana and Filip Moerman for
these. Thanks to the High Performance and Multi-core Processing team for the way you
welcomed me to your group.

This thesis benefited from many free or open source tools including Java, Eclipse,
JFreeChart, JGraph, SDF4J, LaTeX... Thanks to the open source programmers that
participate to the general progress of knowledge.

I am also grateful to Pr Markus Rupp and his team for welcoming me at the Technical
University of Vienna and to Pr Olivier Déforges for supporting this stay. This summer
2009 was both instructive and fun and I thank you for that.

I am thankful to the many chocolate cheesecakes of the Nero café in Truro, Cornwall
that were eaten while writing this document: you were delicious.

Many thanks to Dr Cédric Herzet for his help on mathematics and his Belgian fries.
Thanks to Karina for reading and correcting this entire document.

Finally, Thanks to my friends, my parents and sister and to Stéphanie for their love
and support during these three years.

1

2 Acknowledgements

CHAPTER 1

Introduction

1.1 Overview

The recent evolution of digital communication systems (voice, data and video) has been
dramatic. Over the last two decades, low data-rate systems (such as dial-up modems,
first and second generation cellular systems, 802.11 Wireless local area networks) have
been replaced or augmented by systems capable of data rates of several Mbps, supporting
multimedia applications (such as DSL, cable modems, 802.11b/a/g/n wireless local area
networks, 3G, WiMax and ultra-wideband personal area networks). One of the latest
developments in wireless telecommunications is the 3GPP Long Term Evolution (LTE)
standard. LTE enables data rates beyond hundreds of Mbit/s.

As communication systems have evolved, the resulting increase in data rates has ne-
cessitated higher system algorithmic complexity. A more complex system requires greater
flexibility in order to function with different protocols in diverse environments. In 1965,
Moore observed that the density of transistors (number of transistors per square inch)
on an integrated circuit doubled every two years. This trend has remained unmodified
since then. Until 2003, the processor clock rates followed approximately the same rule.
Since 2003, manufacturers have stopped increasing the chip clock rates to limit the chip
power dissipation. Increasing clock speed combined with additional on-chip cache memory
and more complex instruction sets only provided increasingly faster single-core processors
when both clock rate and power dissipation increases were acceptable. The only solution
to continue increasing chip performance without increasing power consumption is now to
use multi-core chips.

A base station is a terrestrial signal processing center that interfaces a radio access
network with the cabled backbone. It is a computing system dedicated to the task of
managing user communication. It constitutes a communication entity integrating power
supply, interfaces, and so on. A base station is a real-time system because it treats
continuous streams of data, the computation of which has hard time constraints. An LTE
network uses advanced signal processing features including Orthogonal Frequency Division
Multiplexing Access (OFDMA), Single Carrier Frequency Division Multiplexing Access
(SC-FDMA), Multiple Input Multiple Output (MIMO). These features greatly increase
the available data rates, cell sizes and reliability at a cost of an unprecedented level of
processing power. An LTE base station must use powerful embedded hardware platforms.

4 Introduction

Multi-core Digital Signal Processors (DSP) are suitable hardware architectures to execute
the complex operations in real-time. They combine cores with processing flexibility and
hardware coprocessors that accelerate repetitive processes.

The consequence of evolution of the standards and parallel architectures is an increased
need for the system to support multiple standards and multicomponent devices. These two
requirements complicate much of the development of telecommunication systems, impos-
ing the optimization of device parameters over varying constraints, such as performance,
area and power. Achieving this device optimization requires a good understanding of the
application complexity and the choice of an appropriate architecture to support this ap-
plication. Rapid prototyping consists of studying the design tradeoffs at several stages
of the development, including the early stages, when the majority of the hardware and
software are not available. The inputs to a rapid prototyping process must then be models
of system parts, and are much simpler than in the final implementation. In a perfect
design process, programmers would refine the models progressively, heading towards the
final implementation.

Imperative languages, and C in particular, are presently the prefered languages to
program DSPs. Decades of compilation optimizations have made them a good tradeoff
between readability, optimality and modularity. However, imperative languages have been
developed to address sequential hardware architectures inspired on the Turing machine
and their ability to express algorithm parallelism is limited. Over the years, dataflow
languages and models have proven to be efficient representations of parallel algorithms,
allowing the simplification of their analysis. In 1978, Ackerman explains the effective-
ness of dataflow languages in parallel algorithm descriptions [Ack82]. He emphasizes two
important properties of dataflow languages:

� data locality: data buffering is kept as local and as reduced as possible,

� scheduling constraints reduced to data dependencies: the scheduler that
organizes execution has minimal constraints.

The absence of remote data dependency simplifies algorithm analysis and helps to
create a dataflow code that is correct-by-construction. The minimal scheduling constraints
express the algorithm parallelism maximally. However, good practises in the manipulation
of imperative languages to avoid recalculations often go against these two principles. For
example, iterations in dataflow redefine the iterated data constantly to avoid sharing a
state where imperative languages promote the shared use of registers. But these iterations
conceal most of the parallelism in the algorithms that must now be exploited in multi-
core DSPs. Parallelism is obtained when functions are clearly separated and Ackerman
gives a solution to that: “to manipulate data structures in the same way scalars are
manipulated”. Instead of manipulating buffers and pointers, dataflow models manipulate
tokens, abstract representations of a data quantum, regardless of its size.

It may be noted that digital signal processing consists of processing streams (or flows)
of data. The most natural way to describe a signal processing algorithm is a graph with
nodes representing data transformations and edges representing data flowing between the
nodes. The extensive use of Matlab Simulink is evidence that a graphically editable plot
is suitable input for a rapid prototyping tool.

The 3GPP LTE is the first application prototyped using the Parallel and Real-time
Embedded Executives Scheduling Method (PREESM). PREESM is a rapid prototyping
tool with code generation capabilities initiated in 2007 and developed during this thesis
with the first main objective of studying LTE physical layer. For the development of this

Overview 5

tool, an extensive literature survey yielded much useful research: the work on dataflow
process networks from University of California, Berkeley, University of Maryland and
Leuven Catholic University, the Algorithm-Architecture Matching (AAM) methodology
and SynDEx tool from INRIA Rocquencourt, the multi-core scheduling studies at Hong
Kong University of Science and Technology, the dynamic multithreaded algorithms from
Massachusetts Institute of Technology among others.

PREESM is a framework of plug-ins rather than a monolithic tool. PREESM is in-
tended to prototype an efficient multi-core DSP development chain. One goal of this study
is to use LTE as a complex and real use case for PREESM. In 2008, 68% of DSPs shipped
worldwide were intended for the wireless sector [KAG+09]. Thus, a multi-core develop-
ment chain must efficiently address new wireless application types such as LTE. The term
multi-core is used in the broad sense: a base station multi-core system can embed sev-
eral interconnected processors of different types, themselves multi-core and heterogeneous.
These multi-core systems are becoming more common: even mobile phones are now such
distributed systems.

While targeting a classic single-core Von Neumann hardware architecture, it must be
noted that all DSP development chains have similar features, as displayed in Figure 1.1(a).
These features systematically include:

� A textual language (C, C++) compiler that generates a sequential assembly code
for functions/methods at compile-time. In the DSP world, the generated assembly
code is native, i.e. it is specific and optimized for the Instruction Set Architecture
(ISA) of the target core.

� A linker that gathers assembly code at compile-time in an executable code.

� A simulator/debugger enabling code inspection.

� An Operating System (OS) that launches the processes, each of which comprise
several threads. The OS handles the resource shared by the concurrent threads.

Text Editor
C Source Code

Dedicated Compiler

Linker

LoaderSimulator

DSP Core

Object Code

Executable

OS

Compiler Options

Debugger

Software

Hardware

(a) A Single-core DSP Development Chain

Editor
Algorithm

Description
Architecture
Description

Generic Compiler
Compiler
Options

Linker

LoaderSimulator

DSP Core

Object Codes

Executables

OSDebugger

Multicore OS
Directives

DSP Core
OS ...

(b) A Multi-core DSP Development Chain

Figure 1.1: Comparing a Present Single-core Development Chain to a Possible Development
Chain for Multi-core DSPs

Incontrast with the DSP world, the generic computing world is currently experiencing
an increasing use of bytecode. A bytecode is more generic than native code and is Just-
In-Time (JIT) compiled or interpreted at run-time. It enables portability over several ISA

6 Introduction

and OS at the cost of lower execution speed. Examples of JIT compilers are the Java
Virtual Machine (JVM) and the Low Level Virtual Machine (LLVM). Embedded systems
are dedicated to a single functionality and in such systems, compiled code portability is
not advantageous enough to justify performance loss. It is thus unlikely that JIT compilers
will appear in DSP systems soon. However, as embedded system designers often have the
choice between many hardware configurations, a multi-core development chain must have
the capacity to target these hardware configurations at compile-time. As a consequence,
a multi-core development chain needs a complete input architecture model instead of a
few textual compiler options, such as used in single-core development chains. Extending
the structure of Figure 1.1(a), a development chain for multicore DSPs may be imagined
with an additional input architecture model (Figure 1.1(b)). This multi-core development
chain generates an executable for each core in addition to directives for a multi-core OS
managing the different cores at run-time according to the algorithm behavior.

The present multi-core programming methods generally use test-and-refine method-
ologies. When processed by hand, parallelism extraction is hard and error-prone, but
potentially extremely optimal (depending on the programmer). Programmers of Embed-
ded multi-core software will only use a multi-core development chain if:

� the development chain is configurable and is compatible with the previous program-
ming habits of the individual programmer,

� the new skills required to use the development chain are limited and compensated
by a proportionate productivity increase,

� the development chain eases both design space exploration and parallel software/hard-
ware development. Design space exploration is an early stage of system development
consisting of testing algorithms on several architectures and making appropriate
choices compromising between hardware and software optimisations, based on eval-
uated performances.

� the exploitation of the automatic parallelism of the development chain produces a
nearly optimal result. For example, despite the impressive capabilities of the Texas
Instruments TMS320C64x+ compiler, compute-hungry functions are still optimized
by writing intrinsics or assembly code. Embedded multi-core development chains
will only be adopted when programmers are no longer able to cope with efficient
hand-parallelization.

There will always be a tradeoff between system performance and programmabil-
ity; between system genericity and optimality. To be used, a development chain must
connect with legacy code as well as easing design process. These principles were consid-
ered during the development of PREESM. PREESM plug-in functionalities are numerous
and combined in graphical workflows that adapt the process to designer goals. PREESM
clearly separates algorithm and architecture models to enable design space exploration,
introducing an additional input entity named scenario that ensures this separation. The
deployment of an algorithm on an architecture is automatic, as is the static code gener-
ation and the quality of a deployment is illustrated in a graphical “schedule quality
assessment chart”. An important feature of PREESM is that a programmer can debug
code on a single-core and then deploy it automatically over several cores with an assured
absence of deadlocks.

However, there is a limitation to the compile-time deployment technique. If an al-
gorithm is highly variable during its execution, choosing its execution configuration at

Contributions of this Thesis 7

compile-time is likely to bring excessive suboptimality. For the highly variable parts of an
algorithm, the equivalent of an OS scheduler for multi-core architectures is thus needed.
The resulting adaptive scheduler must be of very low complexity, manage architecture
heterogeneity and substantially improve the resulting system quality.

Throughout this thesis, the idea of rapid prototyping and executable code generation
is applied to the LTE physical layer algorithms.

1.2 Contributions of this Thesis

The aim of this thesis is to find efficient solutions for LTE deployment over heterogeneous
multi-core architectures. For this goal, a fully tested method for rapid prototyping
and automatic code generation was developed from dataflow graphs. During the
development, it became clear that there was a need for a new input entity or scenario to
the rapid prototyping process . The scenario breaks the “Y” shape of the previous rapid
prototyping methods and totally separates algorithm from architecture.

Existing architecture models appeared to be unable to describe the target architectures,
so a novel architecture model is presented, the System-Level Architecture Model or S-
LAM. This architecture model is intended to simplify the high-level view of an architecture
as well as to accelerate the deployment.

Mimicing the ability of the SystemC Transaction Level Modeling (TLM) to offer scala-
bility in the precision of target architecture simulations, a scalable scheduler was created,
enabling tradeoffs between scheduling time and precision. A developper needs to evaluate
the quality of a generated schedule and, more precisely, needs to know if the schedule
parallelism is limited by the algorithm, by the architecture or by none of them. For this
purpose, a literature-based, graphical schedule quality assessment chart is presented.

During the deployment of LTE algorithms, it became clear that, for these algorithms,
using execution latency as the minimized criterion for scheduling did not produce good
load balancing over the cores for the architectures studied. A new scheduling criterion
embedding latency and load balancing was developped. This criterion leads to very
balanced loads and, in the majority of cases, to an equivalent latency than simply using
the latency criterion.

Finally, a study of the LTE physical layer in terms of rapid prototyping and
code generation is presented. Some algorithms are too variable for simple compile-time
scheduling, so an adaptive scheduler with the capacity to schedule the most dynamic
algorithms of LTE at run-time was developed.

1.3 Outline of this Thesis

The outline of this thesis is depicted in Figure 1.2. It is organized around the rapid
prototyping and code generation process. After an introduction in Chapter 1, Part I
presents elements from the literature used in Part II to create a rapid prototyping method
which allows the study of LTE signal processing algorithms. In Chapter 2, the 3GPP LTE
telecommunication standard is introduced. This chapter focuses on the signal processing
features of LTE. In Chapter 3, the dataflow models of computation are explained; these
are the models that are used to describe the algorithms in this study. Chapter 4 explains
the existing techniques for system programming and rapid prototyping.

The S-LAM architecture model developed to feed the rapid prototyping method is
presented in Chapter 5. In Chapter 6,a scheduler structure is detailed that separates the

8 Introduction

Matching

Chapter 3: What is a Dataflow
Model of Computation?

Chapter 4: What is the
state of the art of code parallelization?

Implementation

Simulation

Chapter 7: How do we model LTE
physical layer for execution simulation?

Chapter 8: How do we generate code
to execute LTE on multicore DSPs?

Chapter 2: How does
LTE work?

Rapid
prototyping

Physical Layer
LTE Dataflow

MoC

Multicore
DSP Architecture

Model

Rapid Prototyping
Scenario

Chapter 5: How do we model
an architecture?

Chapter 6: How do we match?

Part I: Background

Part II: Contributions

Figure 1.2: Rapid Prototyping and Thesis Outline

different problems of multi-core scheduling as well as some improvements to the state-
of-the-art methods. The two last chapters are dedicated to the study of LTE and the
application of all of the previously introduced techniques. Chapter 7 focuses on LTE rapid
prototyping and simulation and Chapter 8 on the code generation. Chapter 8 is divided
into two parts; the first dealing with static code generation, and the second with the
heart of a multi-core operating system which enables dynamic code behavior: an adaptive
scheduler. Chapter 9 concludes this study.

Part I

Background

9

CHAPTER 2

3GPP Long Term Evolution

2.1 Introduction

2.1.1 Evolution and Environment of 3GPP Telecommunication Systems

Terrestrial mobile telecommunications started in the early 1980s using various analog
systems developed in Japan and Europe. The Global System for Mobile communications
(GSM) digital standard was subsequently developed by the European Telecommunications
Standards Institute (ETSI) in the early 1990s. Available in 219 countries, GSM belongs
to the second generation mobile phone system. It can provide an international mobility
to its users by using inter-operator roaming. The success of GSM promoted the creation
of the Third Generation Partnership Project (3GPP), a standard-developing organization
dedicated to supporting GSM evolution and creating new telecommunication standards,
in particular a Third Generation Telecommunication System (3G). The current members
of 3GPP are ETSI (Europe), ATIS(USA), ARIB (Japan), TTC (Japan), CCSA (China)
and TTA (Korea). In 2010, there are 1.3 million 2G and 3G base stations around the
world [gsm10] and the number of GSM users surpasses 3.5 billion [Nor09].

1980 1990 202020102000

100Mbps1Mbps 10Mbps100kbps10kbps

GSM/GPRS/EDGE
Narrow band

UMTS/HSDPA/HSUPA
CDMA

OFDMA
SC-FDMA

Realistic data rate per user

Number of users

1G

2G 3G
4GNumber of users

...
GSM UMTS

HSPA
LTE

Figure 2.1: 3GPP Standard Generations

The existence of multiple vendors and operators, the necessity interoperability when
roaming and limited frequency resources justify the use of unified telecommunication stan-
dards such as GSM and 3G. Each decade, a new generation of standards multiplies the data
rate available to its user by ten (Figure 2.1). The driving force behind the creation of new
standards is the radio spectrum which is an expensive resource shared by many interfering
technologies. Spectrum use is coordinated by ITU-R (International Telecommunication

12 3GPP Long Term Evolution

Union, Radio Communication Sector), an international organization which defines tech-
nology families and assigns their spectral bands to frequencies that fit the International
Mobile Telecommunications (IMT) requirements. 3G systems including LTE are referred
to as ITU-R IMT-2000.

Radio access networks must constantly improve to accommodate the tremendous evo-
lution of mobile electronic devices and internet services. Thus, 3GPP unceasingly updates
its technologies and adds new standards. The goal of new standards is the improvement of
key parameters, such as complexity, implementation cost and compatibility, with respect
to earlier standards. Universal Mobile Telecommunications System (UMTS) is the first re-
lease of the 3G standard. Evolutions of UMTS such as High Speed Packet Access (HSPA),
High Speed Packet Access Plus (HSPA+) or 3.5G have been released as standards due to
providing increased data rates which enable new mobility internet services like television or
high speed web browsing. The 3GPP Long Term Evolution (LTE) is the 3GPP standard
released subsequent to HSPA+. It is designed to support the forecasted ten-fold growth
of traffic per mobile between 2008 and 2015 [Nor09] and the new dominance of internet
data over voice in mobile systems. The LTE standardization process started in 2004 and
a new enhancement of LTE named LTE-Advanced is currently being standardized.

2.1.2 Terminology and Requirements of LTE

Cell

Figure 2.2: A three-sectored cell

A LTE terrestrial base station computational center is known as an evolved NodeB or
eNodeB, where a NodeB is the name of a UMTS base station. An eNodeB can handle the
communication of a few base stations, with each base station covering a geographic zone
called a cell. A cell is usually three-sectored with three antennas (or antenna sets) each
covering 120° (Figure 2.2). The user mobile terminals (commonly mobile phones) are called
User Equipment (UE). At any given time, a UE is located in one or more overlapping cells
and communicates with a preferred cell; the one with the best air transmission properties.
LTE is a duplex system, as communication flows in both directions between UEs and
eNodeBs. The radio link between the eNodeB and the UE is called the downlink and the
opposite link between UE and its eNodeB is called uplink. These links are asymmetric in
data rates because most internet services necessitate a higher data rate for the downlink
than for the uplink. Fortunately, it is easier to generate a higher data rate signal in an
eNodeB powered by mains than in UE powered by batteries.

In GSM, UMTS and its evolutions, two different technologies are used for voice and
data. Voice uses a circuit-switched technology, i.e. a resource is reserved for an active
user throughout the entire communication, while data is packet-switched, i.e. data is
encapsulated in packets allocated independently. Contrary to these predecessors, LTE is a
totally packet-switched network using Internet Protocol (IP) and has no special physical
features for voice communication. LTE is required to coexist with existing systems such as
UMTS or HSPA in numerous frequency configurations and must be implemented without
perturbing the existing networks.

Introduction 13

LTE Radio Access Network advantages compared with previous standards(GSM, UMTS,
HSPA...) are [STB09]:

� Improved data rates. Downlink peak rate are over 100 Mbit/s assuming 2 UE
receive antennas and uplink peak rate over 50Mbit/s. Raw data rates are determined
by Bandwidth∗Spectral Efficiency where the bandwidth (in Hz) is limited by the
expensive frequency resource and ITU-R regulation and the spectral efficiency (in
bit/s/Hz) is limited by emission power and channel capacity (Section 2.3.1). Within
this raw data rate, a certain amount is used for control, and so is hidden from the
user. In addition to peak data rates, LTE is designed to ensure a high system-level
performance, delivering high data rates in real situations with average or poor radio
conditions.

� A reduced data transmission latency. The two-way delay is under 10 millisecond.

� A seamless mobility with handover latency below 100 millisecond; handover is the
transition when a given UE leaves one LTE cell to enter another one. 100 millisecond
has been shown to be the maximal acceptable round trip delay for voice telephony
of acceptable quality [STB09].

� Reduced cost per bit. This reduction occurs due to an improved spectral effi-
ciency; spectrum is an expensive resource. Peak and average spectral efficiencies are
defined to be greater than 5 bit/s/Hz and 1.6 bit/s/Hz respectively for the downlink
and over 2.5 bit/s/Hz and 0.66 bit/s/Hz respectively for the uplink.

� A high spectrum flexibility to allow adaptation to particular constraints of dif-
ferent countries and also progressive system evolutions. LTE operating bandwidths
range from 1.4 to 20 MHz and operating carrier bands range from 698 MHz to
2.7GHz.

� A tolerable mobile terminal power consumption and a very low power idle
mode.

� A simplified network architecture. LTE comes with the System Architecture
Evolution (SAE), an evolution of the complete system, including core network.

� A good performance for both Voice over IP (VoIP) with small but constant
data rates and packet-based traffic with high but variable data rates.

� A spatial flexibility enabling small cells to cover densely populated areas and cells
with radii of up to 115 km to cover unpopulated areas.

� The support of high velocity UEs with good performance up to 120 km/h and
connectivity up to 350 km/h.

� The management of up to 200 active-state users per cell of 5 MHz or less and
400 per cell of 10 MHz or more.

Depending on the type of UE (laptop, phone...), a tradeoff is found between data
rate and UE memory and power consumption. LTE defines 5 UE categories supporting
different LTE features and different data rates.

LTE also supports data broadcast (television for example) with a spectral efficiency
over 1 bit/s/Hz. The broadcasted data cannot be handled like the user data because it is
sent in real-time and must work in worst channel conditions without packet retransmission.

14 3GPP Long Term Evolution

Both eNodeBs and UEs have emission power limitations in order to limit power con-
sumption and protect public health. An outdoor eNodeB has a typical emission power of
40 to 46 dBm (10 to 40 W) depending on the configuration of the cell. An UE with power
class 3 is limited to a peak transmission power of 23 dBm (200 mW). The standard allows
for path-loss of roughly between 65 and 150 dB. This means that For 5 MHz bandwidth,
a UE is able to receive data of power from -100 dBm to -25 dBm (0.1 pW to 3.2 µW).

2.1.3 Scope and Organization of the LTE Study

Channel Coding

eNodeB Downlink Physical Layer

Symbol Processing

Channel Decoding Symbol ProcessingOSI Layer 2

eNodeB Uplink Physical Layer

code
blocks (bits)

symbols
(complex values)

symbols
(complex values)

code
blocks (bits)

symbols
(complex values)

symbols
(complex values)

OSI Layer 2

Physical Layer Baseband Processing

control link
data link

IP Packet

IP Packet

RF

RF

Figure 2.3: Scope of the LTE Study

The scope of this study is illustrated in Figure 2.3. It concentrates on the Release
9 LTE physical layer in the eNodeB, i.e. the signal processing part of the LTE stan-
dard. 3GPP finalized the LTE Release 9 in December 2009. The physical layer (Open
Systems Interconnection (OSI) layer 1) uplink and downlink baseband processing must
share the eNodeB digital signal processing resources. The downlink baseband process is
itself divided into channel coding that prepares the bit stream for transmission and symbol
processing that adapts the signal to the transmission technology. The uplink baseband
process performs the corresponding decoding. To explain the interaction with the physical
layer, a short description of LTE network and higher layers will be given (in Section 2.2).
The OSI layer 2 controls the physical layer parameters.

The goal of this study is to address the most computationally demanding use cases
of LTE. Consequently, there is a particular focus on the highest bandwidth of 20 MHz
for both the downlink and the uplink. An eNodeB can have up to 4 transmit and 4
receive antenna ports while a UE has 1 transmit and up to 2 receive antenna ports. An
understanding of the basic physical layer functions assembled and prototyped in the rapid
prototyping section is important. For this end, this study considers only the baseband
signal processing of the physical layer. For transmission, this means a sequence of complex
values z(t) = x(t)+ jy(t) used to modulate a carrier in phase and amplitude are generated
from binary data and for each antenna port. A single antenna port carries a single complex
value s(t) at a one instant in time and can be connected to several antennas.

s(t) = x(t)cos(2πft) + y(t)sin(2πft) (2.1)

where f is the carrier frequency which ranges from 698 MHz to 2.7GHz. The receiver
gets an impaired version of the transmitted signal. The baseband receiver acquires complex
values after lowpass filtering and sampling and reconstructing the transmitted data.

An overview of LTE OSI layers 1 and 2 with further details on physical layer technolo-
gies and their environment is presented in the following sections. A complete description

From IP Packets to Air Transmission 15

of LTE can be found in [DPSB07], [HT09] and [STB09]. Standard documents describing
LTE are available on the web. The UE radio requirements in [36.09a], eNodeBs radio re-
quirements in [36.09b], rules for uplink and downlink physical layer in [36.09c] and channel
coding in [36.09d] with rules for defining the LTE physical layer.

2.2 From IP Packets to Air Transmission

2.2.1 Network Architecture

UE

eNodeB
eNodeB

MME
S-GW

P-GW
Internet

eUTRAN
= radio terrestrial
network

EPC
= core network

X2
S1

S1

HSS
PCRF

Cell

control link
data link

Figure 2.4: LTE Systeme Architecture Evolution

LTE introduces a new network architecture named System Architecture Evolution
(SAE) and is displayed in Figure 2.4 where control nodes are grayed compared with data
nodes. SAE is divided into two parts:

� The Evolved Universal Terrestrial Radio Access Network (E-UTRAN) manages
the radio resources and ensures the security of the transmitted data. It is composed
entirely of eNodeBs. One eNodeB can manage several cells. Multiple eNodeBs are
connected by cabled links called X2 allowing handover management between two
close LTE cells. For the case where a handover occurs between two eNodeBs not
connected by a X2 link, the procedure uses S1 links and is more complex.

� The Evolved Packet Core (EPC) also known as core network, enables packet com-
munication with internet. The Serving Gateways (S-GW) and Packet Data Network
Gateways (P-GW) ensure data transfers and Quality of Service (QoS) to the mobile
UE. The Mobility Management Entities (MME) are scarce in the network. They
handle the signaling between UE and EPC, including paging information, UE iden-
tity and location, communication security, load balancing. The radio-specific control
information is called Access Stratum (AS). The radio-independent link between core
network and UE is called Non-Access Stratum (NAS). MMEs delegate the verifica-
tion of UE identities and operator subscriptions to Home Subscriber Servers (HSS).
Policy Control and charging Rules Function (PCRF) servers check that the QoS
delivered to a UE is compatible with its subscription profile. For example, it can
request limitations of the UE data rates because of specific subscription options.

The details of eNodeBs and their protocol stack are now described.

16 3GPP Long Term Evolution

2.2.2 LTE Radio Link Protocol Layers

The information sent over a LTE radio link is divided in two categories: the user-plane
which provides data and control information irrespective of LTE technology and the
control-plane which gives control and signaling information for the LTE radio link. The
protocol layers of LTE are displayed in Figure 2.5 differ between user plane and control
plane but the low layers are common to both planes. Figure 2.5 associates a unique OSI
Reference Model number to each layer. layers 1 and 2 have identical functions in control-
plane and user-plane even if parameters differ (for instance, the modulation constellation).
Layers 1 and 2 are subdivided in:

PDCP

RLC

MAC

PHY

PDCP

RLC

MAC

PHYOSI L1

OSI L2

OSI L3 IP tunnel to P-GW IP

UE eNodeB

IP Packets

SAE bearers

Radio bearers

Logical channels

Transport channels
Physical channels

(a) User plane

PDCP

RLC

MAC

PHY

PDCP

RLC

MAC

PHY

RRC RRC
NAS tunnel to MME NAS

UE eNodeB
OSI L1

OSI L2

OSI L3

control values

SAE bearers

Radio bearers

Logical channels

Transport channels
Physical channels

(b) Control plane

Figure 2.5: Protocol Layers of LTE Radio Link

� PDCP layer [36.09h] or layer 2 Packet Data Convergence Protocol is responsible
for data ciphering and IP header compression to reduce the IP header overhead. The
service provided by PDCP to transfer IP packets is called a radio bearer. A radio
bearer is defined as an IP stream corresponding to one service for one UE.

� RLC layer [36.09g] or layer 2 Radio Link Control performs the data concatenation
and then generates the segmentation of packets from IP-Packets of random sizes
which comprise a Transport Block (TB) of size adapted to the radio transfer. The
RLC layer also ensures ordered delivery of IP-Packets; Transport Block order can
be modified by the radio link. Finally, the RLC layer handles a retransmission
scheme of lost data through a first level of Automatic Repeat reQuests (ARQ). RLC
manipulates logical channels that provide transfer abstraction services to the upper
layer radio bearers. A radio bearer has a priority number and can have Guaranteed
Bit Rate (GBR).

� MAC layer [36.09f] or layer 2 Medium Access Control commands a low level retrans-
mission scheme of lost data named Hybrid Automatic Repeat reQuest (HARQ). The
MAC layer also multiplexes the RLC logical channels into HARQ protected trans-
port channels for transmission to lower layers. Finally, the MAC layer contains the
scheduler (Section 2.2.4), which is the primary decision maker for both downlink and
uplink radio parameters.

� Physical layer [36.09c] or layer 1 comprises all the radio technology required to
transmit bits over the LTE radio link. This layer creates physical channels to carry
information between eNodeBs and UEs and maps the MAC transport channels to
these physical channels. The following sections focus on the physical layer with no
distinction drawn between user and control planes.

From IP Packets to Air Transmission 17

Layer 3 differs in control and user planes. Its Control plane handles all information
specific to the radio technology, with the MME making the upper layer decisions. The
User plane carries IP data from system end to system end (i.e. from UE to P-GW). No
further detail will be given on LTE non-physical layers. More information can be found
in [DPSB07] p.300 and [STB09] p.51 and 79.

Using both HARQ, employed for frequent and localized transmission errors, and ARQ,
which is used for rare but lengthy transmission errors, results in high system reliability
while limiting the error correction overhead. The retransmission in LTE is determined
by the target service: LTE ensures different Qualities of Service (QoS) depending on the
target service. For instance, the maximal LTE-allowed packet error loss rate is 10−2 for
conversational voice and 10−6 for transfers based on TCP (Transmission Control Protocol)
OSI layer 4. The various QoS imply different service priorities. For the example of a
TCP/IP data transfer, the TCP packet retransmission system adds a third error correction
system to the two LTE ARQs.

2.2.3 Data Blocks Segmentation and Concatenation

The physical layer manipulates bit sequences called Transport Blocks. In the user plane,
many block segmentations and concatenations are processed layer after layer between the
original data in IP packets and the data sent over air transmission. Figure 2.6 summarizes
these block operations. Evidently, these operations do not reflect the entire bit transfor-
mation process including ciphering, retransmitting, ordering, and so on.

Transport Block (16-149776 bits) CRC(24 bits)

Code Block (40-6144 bits) CRC(24 bits)

Rate Matched Block

Turbo Coded Data(120-18432 bits) Treillis termination (12 bits)

Scrambling, Modulation and symbol processing

MAC Header MAC SDU

RLC Header RLC PDU

RLC SDU

PDCP SDUPDCP Header

Physical LayerCode Block (40-6144 bits) CRC(24 bits)

IP PayloadIP Header

PDCP SDUPDCP Header

IP PayloadIP Header

RLC SDU

RLC Header RLC PDU

MAC Layer

RLC Layer

PDCP Layer

Rate Matching (adaptation to real resources)

Turbo Coding with rate 1/3

IP Packet IP Packet

Figure 2.6: Data Blocks Segmentation and Concatenation

In the PDCP layer, the IP header is compressed and a new PDCP header is added to the
ciphered Protocol Data Unit (PDU). In the RLC layer, RLC Service Data Units (SDU) are
concatenated or segmented into RLC PDUs and a RLC header is added. The MAC layer
concatenates RLC PDUs into MAC SDUs and adds a MAC header, forming a Transport
Block, the data entity sent by the physical layer. For more details on layer 2 concatenation
and segmentation, see [STB09] p.79. The physical layer can carry downlink a Transport
Blocks of size up to 149776 bits in one millisecond. This corresponds to a data rate of

18 3GPP Long Term Evolution

149.776Mbit/s. The overhead required by layer 2 and upper layers reduces this data rate.
Moreover, such a Transport Block is only possible in very favorable transmission conditions
with a UE capable of supporting the data rate. Transport Block sizes are determined from
radio link adaptation parameters shown in the tables of [36.09e] p.26. An example of link
capacity computing is given in Section 7.2.2. In the physical layer, Transport Blocks are
segmented into Code Blocks (CB) of size up to 6144 bits. A Code Block is the data unit
for a part of the physical layer processing, as will be seen in Chapter 7.

2.2.4 MAC Layer Scheduler

The LTE MAC layer adaptive scheduler is a complex and important part of the eNodeB.
It controls the majority of the physical layer parameters; this is the layer that the study
will concentrate on in later sections. Control information plays a much greater role in LTE
than in the previous 3GPP standards because many allocation choices are concentrated
in the eNodeB MAC layer to help the eNodeB make global intelligent tradeoffs in radio
access management. The MAC scheduler manages:

� the radio resource allocation to each UE and to each radio bearer in the UEs for
both downlink and uplink. The downlink allocations are directly sent to the eNodeB
physical layer and those of the uplink are sent via downlink control channels to the
UE in uplink grant messages. The scheduling can be dynamic (every millisecond) or
persistent, for the case of long and predictable services as VoIP.

� the link adaptation parameters (Section 2.3.5) for both downlink and uplink.

� the HARQ (Section 2.3.5) commands where lost Transport Blocks are retransmitted
with new link adaptation parameters.

� the Random Access Procedure (Section 2.4.5) to connect UEs to a eNodeB.

� the uplink timing alignment (Section 2.3.4) to ensure UE messages do not overlap.

The MAC scheduler must take data priorities and properties into account before al-
locating resources. Scheduling also depends on the data buffering at both eNodeB and
UE and on the transmission conditions for the given UE. The scheduling optimizes link
performance depending on several metrics, including throughput, delay, spectral efficiency,
and fairness between UEs.

2.3 Overview of LTE Physical Layer Technologies

2.3.1 Signal Air transmission and LTE

In [Sha01], C. E. Shannon defines the capacity C of a communication channel impaired
by an Additive White Gaussian Noise (AWGN) of power N as:

C = B · log2(1 +
S

N
) (2.2)

where C is in bit/s and S is the signal received power. The channel capacity is thus
linearly dependent on bandwidth. For the largest possible LTE bandwidth, 20MHz, this
corresponds to 133 Mbit/s or 6.65 bit/s/Hz for a S/N = 20dB Signal-to-Noise Ratio or
SNR (100 times more signal power than noise) and 8 Mbit/s or 0.4 bit/s/Hz for a -5dB
SNR (3 times more noise than signal). Augmenting the transmission power will result in

Overview of LTE Physical Layer Technologies 19

an increased capacity, but this parameter is limited for security and energy consumption
reasons. In LTE, the capacity can be doubled by creating two different channels via several
antennas at transmitter and receiver sides. This technique is commonly called Multiple
Input Multiple Output (MIMO) or spatial multiplexing and is limited by control signaling
cost and non-null correlation between channels. It may be noted that the LTE target peak
rate of 100Mbit/s or 5 bit/s/Hz is close to the capacity of a single channel. Moreover, the
real air tranmission channel is far more complex than its AWGN model. Managing this
complexity while maintaining data rates close to the channel capacity is one of the great
challenges of LTE deployment.

LTE signals are transmitted from terrestrial base stations using electromagnetic waves
propagating at light speed. LTE cells can have a radii of up to 115km, leading to a
transmission latency of about 380 µs in both downlink and uplink directions. The actual
value of this latency depends on the cell radius and environment. Compensation of this
propagation time is performed by UEs and called timing advance ([STB09] p.459).

Path 1

Path
 2

Path 3

NLOS

Reciprocity

H(f)

f

H(f)

f

Frequency
selective
channel

Impulse response
spread in time
h(t)

t

1 2
3

delay spread

h(t)

t

1 2
3

delay spread

Figure 2.7: Radio Propagation, Channel Response and Reciprocity Property

Moreover, the signal can undergo several reflections before reaching its target. This
effect is known as multiple path propagation and is displayed in Figure 2.7. In the time
domain, multiple reflections create a Channel Impulse Response (CIR) h(t) with several
peaks, each corresponding to a reflection. This effect elongates a received symbol in time
and can cause Inter Symbol Interference (ISI) between two successive symbols. The ISI
introduces a variable attenuation over the frequency band generating a frequency selective
channel. For a given time and a given cell, there are frequency bands highly favorable
to data transmission between the eNodeB and a given UE due to its position in space
whereas these frequency bands may not be favorable to another UE.

Additional to channel selectivity, the environment parameters that compromise air
transmission are fading, noise and interference. In LTE, the frequency reuse factor is
1, i.e. adjacent base stations of a single operator employ the same frequency carrier band.
This choice complicates interference handling at cell edges. Ignoring interference, a single
air transmission channel is usually modeled with channel convolution and additive noise,
which gives in the discrete time domain:

y(n) = h(n) ∗ x(n) + w(n), (2.3)

where n is the discrete time and Ts is the sampling period, x(n) and y(n) are respec-
tively the transmitted and received signals in discrete time, h(n) is the channel impulse
response (Figure 2.7) and w(n) is the noise. The equivalent in Fourier discrete domain
gives:

20 3GPP Long Term Evolution

Y (k) = H(k)X(k) +W (k), (2.4)

where k is the discrete frequency. In order to estimate H(k), known reference signals
(also called pilot signals) are transmitted. A reference signal cannot be received at the same
time as the data it is aiding. Certain channel assumptions must be made, including slow
modification over time. The time over which a Channel Impulse Response h(t) remains
almost constant is called channel coherence time. For a flat Rayleigh fading channel
model at 2 GHz, modeling coherence time is about 5 millisecond for a UE speed of 20
km/h ([STB09] p. 576). The faster the UE moves, the faster the channel changes and the
smaller the coherence time becomes.

The UE velocity also has an effect on radio propagation, due to the Doppler effect.
For a carrier frequency of 2.5 GHz and a UE velocity of 130 km/h, the Doppler effect
frequency shifts the signal up to 300 Hz ([STB09] p.478). This frequency shift must be
evaluated and compensated for each UE. Moreover, guard frequency bands between UEs
are necessary to avoid frequency overlapping and Inter Carrier Interference (ICI).

Figure 2.7 shows a Non-line-of-sight (NLOS) channel, which occurs when the direct
path is shadowed. Figure 2.7 also displays the property of channel reciprocity; the
channels in downlink and in uplink can be considered to be equal in terms of frequency
selectivity within the same frequency band. When downlink and uplink share the same
band, channel reciprocity occurs, and so the uplink channel quality can be evaluated
from downlink reception study and vice-versa. LTE technologies use channel property
estimations H(k) for two purposes:

� Channel estimation is used to reconstruct the transmitted signal from the received
signal.

� Channel sounding is used by the eNodeBs to decide which resource to allocate
to each UE. Special resources must be assigned to uplink channel soundings be-
cause a large frequency band exceeding UE resources must be sounded initially by
each UE to make efficient allocation decisions. The downlink channel sounding is
quite straightforward, as the eNodeB sends reference signals over the entire downlink
bandwidth.

Radio models describing several possible LTE environments have been developed by
3GPP (SCM and SCME models), ITU-R (IMT models) and a project named IST-WINNER.
They offer tradeoffs between complexity and accuracy. Their targeted usage is hardware
conformance tests. The models are of two kinds: matrix-based models simulate the propa-
gation channel as a linear correlation (equation 2.3) while geometry-based models simulate
the addition of several propagation paths (Figure 2.7) and interferences between users and
cells.

LTE is designed to address a variety of environments from mountainous to flat, includ-
ing both rural and urban with Macro/Micro and Pico cells. On the other hand, Femtocells
with very small radii are planned for deployment in indoor environments such as homes
and small businesses. They are linked to the network via a Digital Subscriber Line (DSL)
or cable.

2.3.2 Selective Channel Equalization

The air transmission channel attenuates each frequency differently, as seen in Figure 2.7.
Equalization at the decoder site consists of compensating for this effect and reconstructing

Overview of LTE Physical Layer Technologies 21

the original signal as much as possible. For this purpose, the decoder must precisely
evaluate the channel impulse response. The resulting coherent detection consists of 4
steps:

1. Each transmitting antenna sends a known Reference Signal (RS) using predefined
time/frequency/space resources. Additional to their use for channel estimation, RS
carry some control signal information. Reference signals are sometimes called pilot
signals.

2. The RS is decoded and the H(f) (Equation 2.4) is computed for the RS time/fre-
quency/space resources.

3. H(f) is interpolated over time and frequency on the entire useful bandwidth.

4. Data is decoded exploiting H(f).

The LTE uplink and downlink both exploit coherent detection but employ different
reference signals. These signals are selected for their capacity to be orthogonal with each
other and to be detectable when impaired by Doppler or multipath effect. Orthogonality
implies that several different reference signals can be sent by the same resource and still
be detectable. This effect is called Code Division Multiplexing (CDM). Reference signals
are chosen to have constant amplitude, reducing the transmitted Peak to Average Power
Ratio (PAPR [RL06]) and augmenting the transmission power efficiency. Uplink reference
signals will be explained in 2.4.3 and downlink reference signals in 2.5.3.

As the transmitted reference signal Xp(k) is known at transmitter and receiver, it can
be localized and detected. The simplest least square estimation defines:

H(k) = (Y (k)−W (k))/Xp(k) ≈ Y (k)/Xp(k). (2.5)

H(k) can be interpolated for non-RS resources, by considering that channel coherence
is high between RS locations. The transmitted data is then reconstructed in the Fourier
domain with X(k) = Y (k)/H(k).

2.3.3 eNodeB Physical Layer Data Processing

Figure 2.8 provides more details of the eNodeB physical layer that was roughly described
in Figure 2.3. It is still a simplified view of the physical layer that will be explained in the
next sections and modeled in Chapter 7.

In the downlink data encoding, channel coding (also named link adaptation)
prepares the binary information for transmission. It consists in a Cyclic Redundancy
Check (CRC) /turbo coding phase that processes Forward Error Correction (FEC), a rate
matching phase to introduce the necessary amount of redundancy, a scrambling phase
to increase the signal robustness, and a modulation phase that transforms the bits into
symbols. The parameters of channel coding are named Modulation and Coding Scheme
(MCS). They are detailed in Section 2.3.5. After channel coding, symbol processing
prepares the data for transmission over several antennas and subcarriers. The downlink
transmission schemes with multiple antennas are explained in Sections 2.3.6 and 2.5.4 and
the Orthogonal Frequency Division Multiplexing Access (OFDMA), that allocates data to
subcarriers, in Section 2.3.4.

In the uplink data decoding, the symbol processing consists in decoding Sin-
gle Carrier-Frequency Division Multiplexing Access (SC-FDMA) and equalizing signals
from the different antennas using channel estimates. SC-FDMA is the uplink broadband

22 3GPP Long Term Evolution

OFDMA
Encoding

Downlink Data Encoding

data
(bits)

Multi-Antenna
PrecodingModulationInterleaving/

Scrambling
Rate

Matching
CRC/Turbo

Coding

Channel Coding Symbol Processing

Turbo
Decoding/CRC

Uplink Data Decoding

data
(bits)

Rate
Dematching

/HARQ

Descrambling/
Deinterleaving

Channel Decoding

DemodulationSC-FDMA Decoding/
Multi-Antenna Equalization

Symbol Processing
Channel Estimation

Figure 2.8: Uplink and Downlink Data Processing in the LTE eNodeB

transmission technology and is presented in Section 2.3.4. Uplink multiple antenna trans-
mission schemes are explained in Section 2.4.4. After symbol processing, uplink channel
decoding consists of the inverse phases of downlink channel coding because the chosen
techniques are equivalent to the ones of downlink. HARQ combining associates the re-
peated receptions of a single block to increase robustness in case of transmission errors.

Next sections explain in details these features of the eNodeB physical layer, starting
with the broadband technologies.

2.3.4 Multicarrier Broadband Technologies and Resources

LTE uplink and downlink data streams are illustrated in Figure 2.9. The LTE uplink and
downlink both employ technologies that enable a two-dimension allocation of resources
to UEs in time and frequency. A third dimension in space is added by Multiple Input
Multiple Output (MIMO) spatial multiplexing (Section 2.3.6). The eNodeB decides the
allocation for both downlink and uplink. The uplink allocation decisions must be sent
via the downlink control channels. Both downlink and uplink bands have six possible
bandwidths: 1.4, 3, 5, 10, 15, or 20 MHz.

frequency

between 1.4
and 20MHz

UE1 UE3UE2

1
2

3

frequency
allocation
choices

(a) Downlink: OFDMA

frequency

1
2
3

UE1 UE3UE2

between 1.4
and 20MHz

frequency
allocation
choices

(b) Uplink: SC-FDMA

Figure 2.9: LTE downlink and uplink multiplexing technologies

Overview of LTE Physical Layer Technologies 23

Broadband Technologies

The multiple subcarrier broadband technologies used in LTE are illustrated in Figure
2.10. Orthogonal Frequency Division Multiplexing Access (OFDMA) employed for the
downlink and Single Carrier-Frequency Division Multiplexing (SC-FDMA) is used for
the uplink. Both technologies divide the frequency band into subcarriers separated by
15 kHz (except in the special broadcast case). The subcarriers are orthogonal and data
allocation of each of these bands can be controlled separately. The separation of 15 kHz
was chosen as a tradeoff between data rate (which increases with the decreasing separation)
and protection against subcarrier orthogonality imperfection [R1-05]. This imperfection
occurs from the Doppler effect produced by moving UEs and because of non-linearities
and frequency drift in power amplifiers and oscillators.

Both technologies are effective in limiting the impact of multi-path propagation on data
rate. Moreover, the dividing the spectrum into subcarriers enables simultaneous access to
UEs in different frequency bands. However, SC-FDMA is more efficient than OFDMA in
terms of Peak to Average Power Ratio (PAPR [RL06]). The lower PAPR lowers the cost
of the UE RF transmitter but SC-FDMA cannot support data rates as high as OFDMA
in frequency-selective environments.

Serial to
parallel
size M
(1200)

IFFT
size N
(2048)

0

0

0

Insert
CP

size C
(144)

Downlink OFDMA Encoding

Freq.
Mapping

DFT
size M

(60)

IFFT
size N
(2048)

Insert
CP

size C
(144)

Uplink SC-FDMA Encoding

energy

time

frequency

M complex
values (1200)
to send to U

users

energy

time

frequency

...

M complex
values (60)
to send to

the eNodeB

...

... ...

CP

CP

... ...

CP

CP

1symbol

1symbol

M subcarr
iers

M subcarr
iers

0

0

0

Freq.
Mapping

0

Figure 2.10: Comparison of OFDMA and SC-FDMA

Figure 2.10 shows typical transmitter implementations of OFDMA and SC-FDMA
using Fourier transforms. SC-FDMA can be interpreted as a linearly precoded OFDMA
scheme, in the sense that it has an additional DFT processing preceding the conventional
OFDMA processing. The frequency mapping of Figure 2.10 defines the subcarrier accessed
by a given UE.

Downlink symbol processing consists of mapping input values to subcarriers by per-
forming an Inverse Fast Fourier Transform (IFFT). Each complex value is then transmitted
on a single subcarrier but spread over an entire symbol in time. This transmission scheme
protects the signal from Inter Symbol Interference (ISI) due to multipath transmission. It
is important to note that without channel coding (i.e. data redundancy and data spreading
over several subcarriers), the signal would be vulnerable to frequency selective channels
and Inter Carrier Interference (ICI). The numbers in gray (in Figure 2.10) reflect typical
parameter values for a signal of bandwidth of 20 MHz. The OFDMA encoding is processed
in the eNodeB and the 1200 input values of the case of 20MHz bandwidth carry the data
of all the addressed UEs. SC-FDMA consists of a small size Discrete Fourier Transform

24 3GPP Long Term Evolution

(DFT) followed by OFDMA processing. The small size of the DFT is required as this
processing is performed within a UE and only uses the data of this UE. For an example of
60 complex values the UE will use 60 subcarriers of the spectrum (subcarriers are shown
later to be grouped by 12). As noted before, without channel coding, data would be prone
to errors introduced by the wireless channel conditions, especially because of ISI in the
SC-FDMA case.

Cyclic Prefix

The Cyclic Prefix (CP) displayed in Figures 2.10 and 2.11 is used to separate two succes-
sive symbols and thus reduces ISI. The CP is copied from the end of the symbol data to
an empty time slot reserved before the symbol and protects the received data from timing
advance errors; the linear convolution of the data with the channel impulse response is
converted into a circular convolution, making it equivalent to a Fourier domain multiplica-
tion that can be equalized after a channel estimation (Section 2.3.2). CP length in LTE is
144 samples = 4.8µs (normal CP) or 512 samples = 16.7µs in large cells (extended CP).
A longer CP can be used for broadcast when all eNodeBs transfer the same data on the
same resources, so introducing a potentially rich multi-path channel. Generally, multipath
propagation can be seen to induce channel impulse responses longer than CP. The CP
length is a tradeoff between the CP overhead and sufficient ISI cancellation [R1-05].

CP 1 symbol (2048 complex values)

...
160 144 144 144 144 144 144 160

1 slot = 0.5 ms = 7 symbols (with normal CP) = 15360 complex values

Figure 2.11: Cyclic Prefix Insertion

Time Units

Frequency and timing of data and control transmission is not decided by the UE. The
eNodeB controls both uplink and downlink time and frequency allocations. The allocation
base unit is a block of 1 millisecond per 180kHz (12 subcarriers). Figure 2.12 shows 2 PRBs.
A PRB carries a variable amount of data depending on channel coding, reference signals,
resources reserved for control...

Certain time and frequency base values are defined in the LTE standard, which al-
lows devices from different companies to interconnect flawlessly. The LTE time units are
displayed in Figure 2.12:

� A basic time unit lasts Ts = 1/30720000s ≈ 33ns. This is the duration of 1
complex sample in the case of 20 MHz bandwidth. The sampling frequency is thus
30.72MHz = 8∗3.84MHz, eight times the sampling frequency of UMTS. The choice
was made to simplify the RF chain used commonly for UMTS and LTE. Moreover, as
classic OFDMA and SC-FDMA processing uses Fourier transforms, symbols of size
power of two enable the use of FFTs and 30.72MHz = 2048∗15kHz = 211 ∗15kHz,
with 15kHz the size of a subcarrier and 2048 a power of two. Time duration for all
other time parameters in LTE is a multiple of Ts.

Overview of LTE Physical Layer Technologies 25

� A slot is of length 0.5millisecond = 15360Ts. This is also the time length of a PRB.
A slot contains 7 symbols in normal cyclic prefix case and 6 symbols in extended CP
case. A Resource Element (RE) is a little element of 1 subcarrier per one symbol.

� A subframe lasts 1millisecond = 30720Ts = 2slots. This is the minimum duration
that can be allocated to a user in downlink or uplink. A subframe is also called
Transmission Time Interval (TTI) as it is the minimum duration of an independently
decodable transmission. A subframe contains 14 symbols with normal cyclic prefix
that are indexed from 0 to 13 and are described in the following sections.

� A frame lasts 10millisecond = 307200Ts. This corresponds to the time required to
repeat a resource allocation pattern separating uplink and downlink in time in case
of Time Division Duplex (TDD) mode. TDD is defined below.

subcarrier
spacing
15kHz

1 frame =10ms

frequency

time

1 PRB

1 slot=0.5ms = 7 symbols

1 subframe=1ms

12 subcarriers
180kHz 1 PRB

Bandwidth =
between 6 RBs (1.4MHz band)
and 100 RBs (20MHz band)

1 RE

Figure 2.12: LTE Time Units

In the LTE standard, the subframe size of 1 millisecond was chosen as a tradeoff
between a short subframe which introduces high control overhead and a long subframe
which significantly increases the retransmission latency when packets are lost [R1-06b].
Depending on the assigned bandwidth, an LTE cell can have between 6 and 100 resource
blocks per slot. In TDD, special subframes protect uplink and downlink signals from ISI
by introducing a guard period ([36.09c] p. 9).

Duplex Modes

Figure 2.13 shows the duplex modes available for LTE. Duplex modes define how the
downlink and uplink bands are allocated respective to each other. In Frequency Division
Duplex (FDD) mode, the uplink and downlink bands are disjoint. The connection is then
full duplex and the UE needs to have two distinct Radio Frequency (RF) processing chains
for transmission and reception. In Time Division Duplex (TDD) mode, the downlink and
the uplink alternatively occupy the same frequency band. The same RF chain can then
be used for transmitting and receiving but available resources are halved. In Half-Duplex
FDD (HD-FDD) mode, the eNodeB is full duplex but the UE is half-duplex (so can have
a single RF chain). In this mode, separate bands are used for the uplink and the downlink
but are never simultaneous for a given UE. HD-FDD is already present in GSM.

ITU-R defined 17 FDD and 8 TDD frequency bands shared by LTE and UMTS stan-
dards. These bands are located between 698 and 2690 MHz and lead to very different
channel behavior depending on carrier frequency. These differences must be accounted for

26 3GPP Long Term Evolution

frequency

time time time

FDD TDD HD-FDD
UE1 UE2 UE1 UE2

UE1 UE2 UE1UE2

frequency frequency

downlink
uplink

Figure 2.13: Different types of LTE duplex modes

during the calibration of base stations and UEs. The following Sections will focus on FDD
mode.

2.3.5 LTE Modulation and Coding Scheme

Within a single LTE cell, a given UE can experience different Signal-to-Interference plus
Noise Ratio (SINR) depending on the radio properties of its environment: the distance
of the base station antenna, the base station emission power, the interference of other
users, the number of diversity antennas, and so on Several LTE channel coding features
are created in order to obtain data rates near channel capacity in every situation. Channel
coding operations are usually very computationally complex operations, and parameters
for optimization must be chosen with care. For the case of one antenna port, two LTE
physical layer parameters can be modified to maximize the throughput. These parameters
are called Modulation and Coding Scheme (MCS):

� The channel coding rate is a parameter which determines the amount of redun-
dancy to add in the input signal to allow Forward Error Correction (FEC) processing.
A higher redundancy leads to more robust signal at the cost of throughput.

� The modulation scheme refers to the way data symbols are associated to a set of
transmit bits. A symbol is a complex value that is used to modulate a carrier for air
transmission. Three schemes are available in LTE: QPSK, 16-QAM and 64-QAM.
They associate 2, 4 and 6 bits respectively to a single symbol and this number of
bits is the modulation level. Of the three modulation schemes, QPSK is the most
robust for transmission errors but 64-QAM allows the highest throughput ([36.09c]
p.79).

The downlink channel quality estimation required for downlink MCS scheme choice
is more complex than for its uplink equivalent. However, the report of downlink channel
quality is vital for the eNodeB when making downlink scheduling decisions. In FDD
mode, no reciprocity of frequency selective fading between uplink and downlink channels
can be used (Section 2.3.1). The UE measures downlink channel quality from downlink
reference signals and then reports this information to its eNodeB. The UE report consists
of a number between 0 and 15, generated by the UE, representing the channel capacity
for a given bandwidth. This number is called CQI for Channel Quality Indicator
and is sent to the eNodeB in the uplink control channel. The CQI influences the choice
of resource allocation and MCS scheme. In Figure 2.14(a), the channel coding rate and
modulation rate are plotted against CQI, and the global resulting coding efficiency. It
may be seen that the coding efficiency can be gradually adapted from a transmission rate
of 0.15 bits/resource element to 5.55 bits/resource element.

CQI reports are periodic, unless the eNodeB explicitly requests aperiodic reports. Pe-
riodic reports pass through the main uplink control channel known as the Physical Uplink
Control CHannel (PUCCH, Section 2.4.2). When PUCCH resources are unavailable, the

Overview of LTE Physical Layer Technologies 27

reports are multiplexed in the uplink data channel known as the Physical Uplink Shared
CHannel (PUSCH, Section 2.4.2). Aperiodic reports are sent in the PUSCH when ex-
plicitly requested by the eNodeB. Periodic CQI reports have a period between 2 and 160
millisecond. Periodic CQI reports contain one CQI if no spatial multiplexing is used or
two CQI (one per rank) in the case of rank 2 downlink spatial multiplexing (Section 2.3.6).
Aperiodic CQI modes exist including one CQI for the whole band and possibly an addi-
tional CQI for a set of preferred subbands ([36.09e] p.37). The choice of following the
UE recommendation is given to the eNodeB. After receiving the UE report, the eNodeB
sends data using the downlink data channel known as the Physical Downlink Shared Chan-
nel (PDSCH, Section 2.5.2). Control values are simultaneously transmitting in the main
downlink control channel known as the Physical Downlink Control Channel (PDCCH,
Section 2.5.2). These PDCCH control values carry Downlink Control Information (DCI)
which include the chosen MCS scheme, HARQ parameters.

Figure 2.14(b) shows the effect of MCS on the throughput of a LTE transmission using
a single antenna, a bandwidth of 1.4MHz, no HARQ and one UE. With only one UE in
the cell, there can be no interference, so SINR is equal to SNR (Signal-to-Noise Ratio).
The results were generated by the LTE simulator of Vienna University of Technology with
a Additive White Gaussian Noise (AWGN) channel model and published in [MWI+09].
It may be seen that, for the studied channel model, a throughput close to the channel
capacity can be achieved if the link adaptation is well chosen. It may also be noted that
this choice is very sensitive to the SNR.

0

0.2

0.4

0.6

0.8

1

C
ha

nn
el

 c
od

in
g

ra
te

0 5 10 15
0

1

2

3

4

5

6

CQI value

bi
t p

er
 s

ym
bo

l

Efficiency

Modulation
level

64 -QAM

16 -QAM

QPSK

(a) Link Adaptation Parameters
for each CQI

-20 -10 0 10 200
1
2
3
4
5
6
7
8

SNR [dB]

th
ro

ug
hp

ut
 [M

bi
t/

s]

CQIs 10-15, 64-QAM

CQIs 7-9, 16-QAM

CQIs 1-6, QPSK

system capacity

(b) Link Adaptation Effect on the
Throughput of a 1.4 MHz Cell

Figure 2.14: LTE Link Adaptation

The techniques used to add redundancy and process Forward Error Correction (FEC)
are different for control and data channels. The majority of control information in the
PDCCH and the PUCCH use tail biting convolutional coding, sequence repetition and
pruning while data channels (PDSCH, PUSCH) use turbo coding, sequence repetition and
pruning ([Rum09] p.76).

The convolutional code used for control in LTE (Figure 2.15(a)) has a 1/3 rate i.e.
the code adds 2 redundant bits for each information bit. The encoder was chosen for its
simplicity to allow to easier PDCCH decoding by UEs. Indeed, a UE needs to permanently
decode many PDCCH PRBs, including many that are not intended for decoding and so
this permanent computation must be limited. Convolutional coding is well suited for a
FEC system with small blocks because it is not necessary to start in a predefined state.
Moreover, convolutional codes can be efficiently decoded using a Viterbi decoder [CS94].
The absence of predefined state is important because a predefined starting state has a cost

28 3GPP Long Term Evolution

in the encoded stream. Instead, the 6 last bits of the encoded sequence serve as starting
state of the encoder, transforming a linear convolution into a circular convolution, in the
same way as the Cyclic Prefix with the channel impulse response. This technique is named
tail biting.

dn dn-1 dn-2 dn-3 dn-4 dn-5

d0d1d2...
n bits

n bits
n bits
n bits

initialization values

(a) Convolutional encoder used for control

Π
Π-1

n bits

n systematic bits

Π

D2

D1

Π

Possible iterative
turbo decoderLTE turbo encoder

n
LLRs

n parity bits

E1

E2

n parity bits

(b) Turbo code used for data

Figure 2.15: LTE Forward Error Correction methods

A turbo code [BG07] in LTE (Figure 2.15(b)) introduces redundancy in all LTE
transmitted data. It has a rate of 1/3 and consists of an interleaver and two identical rate-
1 convolutional encoders E1 and E2. One convolutional encoder (E1) processes the input
data while the other convolutional encoder (E2) processes a pseudo-randomly interleaved
version of the same data. The turbo coder outputs a concatenation of its unmodified
input (systematic bits) and the two convoluted signals (parity bits). The resulting output
facilitates FEC because there is little probability of having a low Hamming weight (number
of 1s in the bit stream), thus improving detection. Each Code Block is independently turbo
coded. A Code Block size ranges from 40 to 6144 bits (Section 2.2.3). Turbo coding is
very efficient for long Code Blocks but it necessitates 12 tail bits containing no information
that reduce its efficiency for small blocks.

Turbo coding and decoding are two of the most demanding functions of the LTE
physical layer. Special coprocessors for turbo coding and decoding are included in multi-
core architectures intended to handle eNodeB physical layer computation. Turbo iterative
decoders ([Pyn97] and Figure 2.15(b)) contain two convolution decoders that calculate
the A Posteriori Probability (APP) of their input. At each iteration of the decoder, the
detection belief of the decoded bit increases. APPs are stored in Log Likelihood Ratio
(LLR) integer values where the sign indicates the detected binary value (0 or 1) and
the amplitude indicates the reliability of the detection. For each bit, the turbo decoder
outputs an LLR. Such a decoder, manipulating not only raw bits but also detection belief,
is called soft decision decoder. For the possibility of HARQ retransmissions, LLR values
of preceding receptions are stored to allow the combination of the preceding with the new
reception. This combining operation can increase the signal to noise ratio in a code block
and hence increase the odds for a successful decoding by the Turbo decoder.

After convolutional or turbo coding, the bits enter a circular Rate Matching (RM)
process where they are interlaced, repeated and pruned to obtain the desired coding rate
(Figure 2.14(a)) with an optimal amount of spread redundancy.

Hybrid Automatic Repeat reQuest

HARQ retransmission of lost blocks is a part of link adaptation. HARQ introduces redun-
dancy in the signal to counteract the channel impairments. Moreover, HARQ is hybrid
in the sense that each retransmission can be made more robust by a stronger modulation
and by stronger channel coding.

Overview of LTE Physical Layer Technologies 29

An eNodeB has 3 milliseconds after the end of a PUSCH subframe reception to process
the frame, detect a possible reception error via Cyclic Redundancy Check (CRC) decoding
and send back a NACK bit in the PDCCH. The uplink HARQ is synchronous in that a
retransmission, if any, always appears 8 millisecond after the end of the first transmission.
This fixed retransmission scheme reduces signaling in PUCCH. The repetitions can be
adaptive (each one with a different MCS scheme), or not.

Downlink HARQ is consistently asynchronous and adaptive. There is at least 8 mil-
lisecond between two retransmissions of a Transport Block. It introduces more flexibility
than the uplink scheme at the cost of signaling.

When a Transport Block is not correctly received, 8 different stop-and-wait processes
are enabled, for both downlink and uplink receivers. This number of processes reduces the
risk of the communication being blocked while waiting for HARQ acknowledgement, with
the cost of memory to store the LLRs for each process (Section 2.3.5). Data from several
repetitions are stored as LLRs and recombined, making HARQ hybrid.

2.3.6 Multiple Antennas

In LTE, eNodeBs and UEs can use several antennas to improve the quality of wireless
links:

� eNodeB baseband processing can generate up to 4 separate downlink signals. Each
signal is allocated to an antenna port. The eNodeB can also receive up to 4 different
uplink signals. Two antennas sending the same signal are processed at the baseband
processing as a single antenna port.

� A UE can have 2 receive antennas and receive 2 different signals simultaneously. It
can have 2 transmit antennas but the UE will switch between these antennas as it
has only one RF amplifier,.

Multiple transmit antennas (NT > 1), receive antennas (NR > 1) or both can improve
link quality and lead to higher data rates with higher spectral efficiency. For a precise
introduction to MIMO channel capacity, see [Hol01]. Different multiple antenna effects
can be combined:

� Spatial diversity (Figure 2.16(a)) consists of using different paths between antenna
sets to compensate for the selective frequency fading of channels due to multipath
transmission. There are two modes of spatial diversity: transmission or reception.
Transmission spatial diversity necessitates several transmit antennas. Combining
several transmit antennas consists in choosing the right way to distribute data over
several antennas. A common technique is named Space-Time Block Coding (STBC)
where successive data streams are multiplexed in the channels and made as orthogo-
nal as possible to enhance the reception diversity. The most common of these codes
is Alamouti; it offers optimal orthogonality for 2 transmit antennas [Ala07]. No such
optimal code exists for more than 2 antennas. Reception spatial diversity (Figure
2.16(a)) uses several receive antennas exploiting the diverse channels, by combining
their signal with Maximal-Ratio Combining (MRC).

� Spatial multiplexing gain, sometimes called MIMO effect is displayed in Figure
2.16(b) for the case NT = NR = 2. It consists of creating several independent
channels in space, exploiting a good knowledge of the channels and reconstructing
the original data of each channel. MIMO can increase the throughput by a factor

30 3GPP Long Term Evolution

of min(NT , NR) but this factor is never obtained in real life because multiple paths
are never totally uncorrelated and channel estimation requires additional reference
signals. MIMO actually takes advantage of the multipath scattering that spatial
diversity tries to counteract.

� Beamforming, also called array gain, consists of creating constructive and de-
structive interference of the wavefront to concentrate the signal in a given spatial
direction. This is displayed in Figure 2.16(c). These interferences are generated by
several transmitting antennas precoded by factors named beam patterns.

freq.

freq.

freq.

freq.

MRC

(a) Spatial Diversity

h00

h
10 h01

h11

y0

y1

y0 = h00 * x0 + h01 * x1
y1 = h10 * x0 + h11 * x1

If the channels are known and
independant, x0 and x1 can be computed

x0

x1

Y = H X

(b) Spatial Multiplexing

eNodeB

(c) Beam Forming

Figure 2.16: LTE link adaptation

Without spatial multiplexing, every PRB corresponding to a single UE has the same
MCS. In downlink spatial multiplexing mode, two separate MCS can be used for two
different Transport Blocks sent simultaneously to a UE. A more complex scheme was
shown to greatly increase the control with only slightly higher data rates [R1-06a].

2.4 LTE Uplink Features

2.4.1 Single Carrier-Frequency Division Multiplexing

Uplink Pilot Signals

The SC-FDMA presented earlier is also known as DFTS-OFDM (DFT-Spread Orthogonal
Frequency Division Multiplexing). A discussion on uplink technology choices can be found
in [CMS06]. A SC-FDMA decoder in the eNodeB necessitates a channel estimation to
equalize the received signal. This channel estimation is performed sending Zadoff-Chu
(ZC) sequences known to both the UE and the eNodeB. ZC sequences will be explained in
Section 2.4.3. These sequences are called Demodulation Reference Signals (DM RS) and
are transmitted on the center symbol of each slot (Figure 2.17). The eNodeB also needs
to allocate uplink resources to each UE based on channel frequency selectivity, choosing

LTE Uplink Features 31

frequency bands that are most favorable to the UE. DM RS are only sent by a UE in its
own frequency band; they do not predict if it is necessary to allocate new frequencies in
the next subframe. This is the role of Sounding Reference Signal (SRS). The positions of
DM RS and SRS in the uplink resource blocks is illustrated in Figure 2.17.

UE1 PUSCH
UE1 sounding signal
UE2 PUSCH
UE2 sounding signal
Reference signal
no emission

UE1

UE2

0
1

2
3

4
5

6
7

8
9
10

11
12

13
0

1
2

3
4

5
6

7
8

9
10

11
12

130
1

2
3

4
5

6
7

8
9
10

11
12

13

1 PRB allocated

2 PRBs allocated

symbol number

Figure 2.17: Reference Signals location in the uplink resources

DM RS are located in symbols 3 and 10 of each subframe. When explicitly requested by
the eNodeB, SRS signals of ZC sequences are sent in the in symbol 13 location. The SRS for
a given UE is located every 2 subcarriers using the Interleaved FDMA (IFDMA) method.
A 10-bit PDCCH message describes the time, period (between 2 and 320 millisecond) and
bandwidth for the UE to send the SRS message. For more details on SRS, see [STB09]
p.370. As both DM RS and SRS are Constant Amplitude Zero AutoCorrelation (CAZAC)
sequences, two UEs can send each their SRS using the same resources provided they use
different cyclic shifts, making sequences orthogonal (Section 2.4.3). The eNodeB is then
able to separate the two different pilot signals. Figure 2.17 displays an example of three
subframes with UE 1 transmitting data on one fixed PRB with a SRS cycle of more than
2 millisecond and UE 2 sending data on two fixed PRBs with a SRS cycle of 2 millisecond.

2.4.2 Uplink Physical Channels

Uplink data and control streams are sent using three physical channels allocated on the
system bandwidth:

� The Physical Uplink Shared Channel (PUSCH) carries all the data sent between
a eNodeB and its UEs. It can also carry some control. LTE PUSCH only supports
localized UE allocations, i.e. all PRBs allocated to a given UE are consecutive in
frequency.

� The Physical Uplink Control Channel (PUCCH) carries the major part of the
transmitted control values via uplink.

� Physical Random Access Channel (PRACH) carries the connection requests
from unconnected UEs.

Figure 2.18 illustrates the localization of the physical channels for the example of a 5
MHz cell. The PUCCH is localized on the edges of the bandwidth while PUSCH occupies
most of the remaining PRBs. PUCCH information with redundancy is sent on pairs of
PRBs called regions (indexed in Figure 2.18), where the two PRBs of a region are located

32 3GPP Long Term Evolution

on opposite edges. This technique is called frequency hopping and protects the PUCCH
against localized frequency selectivity. There are typically 4 PUCCH regions per 5 MHz
band. However, the eNodeB can allocate the PUSCH PRBs in PUCCH regions if they are
not needed for control. Multiple UE control values can be multiplexed in PUCCH regions
via Code Division Multiplexing (CDM).

UE1

UE2

5 MHz Cell
25 PRBs = 300 subcarriers
Typical Case with 4 PUCCH Regions
(PRB pairs 0 to 3)

0 1
2 3

3 2
1 0

0 1
2 3 0 1

2 3
0 1
2 3

3 2
1 0

3 2
1 0

3 2
1 0

PUCCH PRBs

PUCCH PRBs

PUSCH PBRs

PRB Frequency
Hopping of
12 subcarriers

subframe

UE1 PUSCH
UE2 PUSCH
Reference Signal
No Emission
PRACH type 0 Burst
Shared PUCCH

Figure 2.18: Uplink Channels

Uplink decisions are generally taken by the eNodeB MAC scheduler and transmitted
via downlink control channels. Consequently, the UEs are not required to send back these
eNodeB decisions to the eNodeB, thus reducing the overhead of the PUCCH. 7 PUCCH
region formats are defined according to the kind of information carried. The PUCCH
contains the requests for more uplink data resources via an uplink Scheduling Request bit
(SR), and the Buffer Status Reports (BSR) signals the amount of pending data from the
UE PUSCH to the eNodeB. The PUCCH also signals the UE preferences for downlink
Modulation and Coding Scheme (MCS, Section 2.3.5) including:

� Hybrid Automatic Repeat reQuest (HARQ), Acknowledgement (ACK), or Non
Acknowledgement (NACK) are stored in 1 or 2 bits and require HARQ retransmis-
sions if data was lost and the Cyclic Redundancy Check (CRC) was falsely decoded.

� A Channel Quality Indicator (CQI, Section 2.3.5) consists of 20 bits transporting
indicators of redundancy 1 or 2 which recommend a MCS to the eNodeB for each
transmitted Transport Block.

� MIMO Rank Indicator (RI) and Precoding Matrix Indicator (PMI) bits
which recommend a multiple antenna scheme to the eNodeB (Section 2.3.6).

The PUCCH carries this control information periodically. If PRB is unavailable in the
PUCCH, the PUSCH can carry some control information. Additionally, the eNodeB can
request additional aperiodic CQI and link adaptation reports. These reports are sent in
PUSCH and can be much more complete than periodic reports (up to 64 bits).

The PRACH is allocated periodically over 72 subcarriers (6 PRBs, Figure 2.18). Em-
ploying 72 subcarriers is favorable because it has the widest bandwidth available for all
LTE configurations between 1.4 MHz and 20 MHz. The PRACH burst can last between 1
and 3 subframes depending on the chosen mode; long modes are necessary for large cells.
The PRACH period depends on the adjacent cell configurations and is typically several
subframes. See Section 2.4.5 and [STB09] p.421 for more details on the PRACH.

LTE Uplink Features 33

The uplink is shared between several transmitting UEs with different velocities and
distances to the eNodeB. Certain precautions must be taken when multiple UEs are trans-
mitting simultaneously , one of which is the timing advance. Timing advance consists of
sending data with the corrected timing, so compensating for the propagation time and al-
lowing the synchronization of all data received at the eNodeB. The correct timing advance
is evaluated using the timing received from the PRACH bursts.

2.4.3 Uplink Reference Signals

In uplink communication, a Demodulation Reference Signal (DM RS) is constructed from a
set of complex-valued Constant Amplitude Zero AutoCorrelation (CAZAC) codes known
as Zadoff-Chu (ZC) sequences [Chu72] [Pop92]. ZC sequences are computed with the
formula:

zq(n) = exp(
−jπqn(n+ 1)

NZC
) (2.6)

where n is the sample number, q is the sequence index ranging from 1 to NZC − 1,
and NZC is the sequence size. Three ZC sequences of length 63 with indexes 25, 29 and
34 are illustrated in Figure 2.19. Their amplitude and the amplitude of their Fourier
transform are constant, keeping low the PAPR of their transmission (Figure 2.19(a)). All
three sequences have an autocorrelation close to the Dirac function, enabling the creation
of several orthogonal sequences from a single sequence using cyclic shifts. It may also be
noted that the cross correlation between two ZC sequences with different indices is small
compared to the autocorrelation peak (Figure 2.19(b)). Consequently, two sequences can
be decoded independently when sent simultaneously as long as their indices or cyclic shifts
are different.

-30 -20 -10 0 10 20 30
-1

-0.5
0

0.5
1

(a) ZC Sequences Real and Imaginary Parts

-60 -20 0 20 60
0
10
20
30
40
50
60

0
10
20
30
40
50
60

-60 -20 0 20 60

“Perfect”
autocorrelations

Reduced
intercorrelations

zc25
zc29
zc34

zc25 o zc29
zc29 o zc34
zc34 o zc25

(b) ZC Sequences Auto and Crosscorrelation
magnitudes

Figure 2.19: Length-63 Zadoff-Chu Sequences with index 25, 29 and 34

Each uplink DM RS of length NP consists of a ZC sequence with the highest prime
size smaller than NP . The ZC sequence is cyclically extended to NP elements and then
cyclically shifted by α elements. For the smallest DM RS sizes of 12 and 24 elements,
special codes replace ZC sequences because they outperform the ZC sequences in these
cases ([STB09] p.361). DM RS primarily serve to estimate the channel. They also carry
information in their sequence index q and cyclic shift α, namely an ID to determine which
destination eNodeB of the DM RS and to identify the transmitting UE for the case of
Multi-User MIMO (MU-MIMO, Section 2.4.4). Indices and shifts are vital in preventing
UEs and cells from interfering with each other.

34 3GPP Long Term Evolution

ZC sequences are used elsewhere in LTE systems, in particular as Sounding Reference
Signal (SRS, 2.5.5) and in random access procedure (Section 2.4.5).

2.4.4 Uplink Multiple Antenna Techniques

In the first release of LTE, UEs were limited to one transmission amplifier. Uplink single-
user spatial multiplexing is thus not possible but multiple UE antennas can still be ex-
ploited for better system throughput. Firstly, UEs can optionally have two transmit an-
tennas and switch between them depending on the channel quality. This method known as
antenna selection necessitates one SRS signal per antenna to report on channel quality.
This increase in diversity must be weighed against the cost of this additional SRS signal
in overhead

Secondly, reception spatial diversity (Section 2.3.6) is often exploitable because
the majority of eNodeBs have several receive antennas, each of which have known channel
responses hi. Naming the received values:

y = hx, (2.7)

where each antenna stream has already been equalized (Section 2.3.2) and thus h =
[h1h2...hN]T is the vector of channel responses, each being a scalar and x = [x1x2...xN]T

and y = [y1y2...yN]T are the transmitted and received signal vectors across N antennas.
The MRC detected signal is given by:

x̂ =
hHy

hHh
(2.8)

where x̂ is the complex detected symbol. MRC favors antennas which can receive high
power signals. .

Thirdly, Multi-User MIMO (MU-MIMO) also called Spatial Division Multiple Ac-
cess (SDMA) consists of allocating the same resources to 2 UEs in the eNodeB and using
the channel differences in frequency selectivity between UEs to separate the signals while
decoding. Using MIMO can greatly increase the data rate and only requires special pro-
cessing in the eNodeB. It necessitates orthogonal uplink DM RS reference sequences with
different cyclic shift to independently evaluate the channel of each UE. Eight different DM
RS cyclic shifts are defined in LTE for this purpose. This scheme is often called Virtual
MU-MIMO because no added complexity is required at the UE: it is not necessary for the
UE to know it shares the same resources with another UE. The complexity increases only
at eNodeB side.

A 2x2 MU-MIMO scheme is equivalent to that shown in Figure 2.16(b) but with the
transmit antennas connected to separate UEs. Spatial multiplexing decoding, also known
as MIMO detection, consists of reconstructing an estimate vector x̂ of the sent signal vector
x from y and H (Figure 2.16(b)) in the eNodeB. The four channels in H can be considered
to be flat fading (not frequency selective) because they have been individually equalized
upon reception (Section 2.3.2); the channel is thus constant over all SC-FDMA subcarriers.
The two most common low complexity linear MIMO detectors are that of Zero Forcing
(ZF) and of Minimum Mean-Square Error (MMSE). In the ZF method, where x̂ = Gy
is the vector of detected symbols and y is the vector of received symbols, G is computed
as the pseudo inverse of H:

G = (HHH)−1HH . (2.9)

LTE Uplink Features 35

The ZF method tends to amplify the transmission noise. The MMSE method is a
solution to this problem, with:

G = (HHH + σ2I)−1HH . (2.10)

where σ2 is the estimated noise power and I the identity matrix. Many advanced
MIMO decoding techniques [Lar09] [Tre04] exist, notably including Maximum Likelihood
Receiver (MLD) and Sphere Decoder (SD).

2.4.5 Random Access Procedure

The random access procedure is another feature of the uplink. While preceding features
enabled high performance data transfers from connected UEs to eNodeBs, the random
access procedure connects a UE to a eNodeB. It consists of message exchanges initiated
by an uplink message in the PRACH channel (Section 2.4.2). It has two main purposes:
synchronizing the UE to the base station and scheduling the UE for uplink transmission.
The random access procedure enables a UE in idle mode to synchronize to a eNodeB and
become connected. It also happens when a UE in connected mode needs to resynchronize
or to perform a handover to a new eNodeB. The scheduling procedures uses the MME
(Section 2.2.1) which is the network entity managing paging for phone calls. When a
phone call to a given UE is required, the MME asks the eNodeBs to send paging messages
with the UE identity in the PDCCH. The UE monitors the PDCCH regularly even in idle
mode. When paging is detected, it starts a random access procedure. The random access
procedure starts when the UE sends a PRACH signal.

Special time and frequency resources are reserved for the PRACH. Depending on the
cell configuration, a PRACH can have a period from 1 to 20 milliseconds. The signal has
several requirements. One is that an eNodeB must be able to separate signals from several
UEs transmitted in the same allocated time and frequency window. Another constraint is
that the eNodeB must decode the signal rapidly enough to send back a Random Access
Response (RAR) in PDSCH. A typical time between the end of PRACH reception and
RAR is 4 millisecond ([STB09] p.424). The PRACH message must also be well protected
against noise, multipath fading and other interference in order to be detectable at cell
edges. Finally, the resources dedicated to PRACH must induce a low overhead.

The chosen PRACH signals are ZC sequences of length 839, except in the special TDD
format 4, which is not treated here. Good properties for ZC sequences are explained in
Section 2.4.3 where their use in reference signals is described. A set of 64 sequences (called
signatures) is attributed to each cell (out of 838 sequences in total). A signature is a couple
(nS , nCS) where nS ≤ NS ≤ 64 is the root index and nCS ≤ NCS ≤ 64 is the cyclic shift so
that NCS = d64/NSe. A combination of a root and a cyclic shift gives a unique signature
out of 64. A tradeoff between a high number of roots and a high number of cyclic shifts
must be made. It will be seen that for more cyclic shifts, the easier the decoding becomes
(Section 7.3). Each eNodeB broadcasts the first of its signatures and the other signatures
are deduced by the UE from a static table in memory ([36.09c] p.39). A UE sends a
PRACH message, by sending one of the 64 signatures included in the eNodeB signature
set.

A PRACH message occupies 6 consecutive PRBs, regardless of the cell bandwidth,
during 1 to 3 subframes. This allocation is shown in Figure 2.18. A UE sends PRACH
messages without knowing the timing advance. A Cyclic Prefix (CP) large enough to cover
the whole round trip must be used to protect the message from ISI with previous symbol. A
slightly bigger Guard Time (GT) with no transmission must also be inserted after sending

36 3GPP Long Term Evolution

the PRACH message to avoid ISI with next symbol. GT must be greater than the sum of
round trip and maximum delay spread to avoid overlap between a PRACH message and
the subsequent signal. Depending on the cell size, the constraints on CP and GT sizes are
different. Five modes of PRACH messages exist allowing adaption to the cell configuration
([36.09e] p.31). The smallest message consists of the 839 samples of one signature sent in
one subframe over 800µs = 30720 ∗ 0.8TS = 24576TS with CP and GP of about 100 µ s.
This configuration works for cells with a radius under 14 km and thus a round trip time
under 14 ∗ 2/300000 = 93µs. The longest message consists of 1697 samples (twice the 839
samples of one signature) sent in 3 subframes over 1600µs = 30720 ∗ 1.6TS = 49152TS
with CP and GP of about 700 µ s. This configuration is adapted to cells with a radius up
to 100 km and thus a round trip time up to 100 ∗ 2/300000 = 667µs.

In 100 km cells, the round trip time can be almost as long as the transmitted signature.
Thus no cyclic shift can be applied due to the ambiguity when receiving the same root
with different cyclic shifts: the signal could result from separate signatures or from UEs
with different round trips. The smaller the cell is, the more cyclic shifts can be used for
one root resulting in a less complex decoding process and greater orthogonality between
signatures (see auto and intercorrelations in Figure 2.19(b)).

In the frequency domain, the six consecutive PRBs used for PRACH occupy 6∗0.180 =
1.08MHz. The center band of this resource is used to send the 839 signature samples
separated by 1.25kHz. When the guard band is removed from the signal, it may be seen
that the actual usable band is 839 ∗ 1.25 = 1048.75MHz.

Two modes of random access procedure exist: the most common is the contention-
based mode in which multiple UEs are permitted to send a PRACH signal in the same
allocated time and frequency window. Contention-free mode is the other possibility and
for this case, the eNodeB ensures that only a single UE can send a given ZC sequence for
a given time and frequency window. The contention-free mode will not be presented here;
see [STB09] for more details.

UE eNodeB

Random Access Preamble

Random Access Response

L2/L3 message

Message for early contention resolution

Figure 2.20: Contention-Based Random Access Procedure.

Figure 2.20 illustrates the contention-based random access procedure. Within the
UE, the physical layer first receives a PRACH message request from upper layers with
a PRACH starting frequency and mode, message power and parameters (root sequences,
cyclic shifts...). A temporary unique identity called Random Access Radio Network Tem-
porary Identifier (RA-RNTI) identifies the PRACH time and frequency window. Then,
then UE sends a PRACH message using the given parameters. The UE monitors the
PDCCH messages in subframes subsequent to the PRACH burst and if the RA-RNTI
corresponding to that UE is detected, the corresponding PDSCH PRBs are decoded and
RAR information is extracted. If no PDCCH message with the RA-RNTI of the UE is
detected, the random access procedure has failed, and so a new PRACH message will be
scheduled. More details on PRACH can be found in [36.09e] p.16.

LTE Downlink Features 37

An 11-bit timing advance is sent by the eNodeB to the UE within the RAR message
([36.09e] p.8). This timing advance is derived from the downlink reception of the previous
downlink message, and ranges from 0 millisecond to 0.67 millisecond (the round trip in a
100 km cell) with a unit of 16 Ts = 0.52 µs. When the position of the UE is changed, its
timing advance alters. Timing advance updates can be requested by the eNodeB in MAC
messages if a modification of the reference signal reception timing is measureable by the
eNodeB. These update messages are embedded in PDSCH data.

In the RAR, the eNodeB allocates uplink resources and a Cell Radio Network Tem-
porary Identifier (C-RTNI) to the UE. The first PUSCH resource granted to the UE is
used to send L2/L3 messages carrying the random access data: these include connection
and/or scheduling requests, and the UE identifier.

The final step in the contention-based random access procedure is the downlink con-
tention resolution message in which the eNodeB sends the UE identifier corresponding
to the successful PRACH connection. A UE which does not receive a message which in-
cludes its own identifier will conclude that the random access procedure has failed, and
will restart the procedure.

2.5 LTE Downlink Features

2.5.1 Orthogonal Frequency Division Multiplexing Access

-15.36MHz 15.36MHz

UE1 UE2 UE3 UE4 UE5

9MHz = 600 subcarriers 9MHz = 600 subcarriers
1 unused subcarrier

20 MHz

G
ua

rd
 b

an
d

G
ua

rd
 b

an
d

Figure 2.21: Baseband Spectrum of a Fully-Loaded 20 MHz LTE Downlink

In contrast to uplink communications, a single entity, the eNodeB, handles the trans-
mission over the whole bandwidth for the downlink. Transmission over a wide frequency
band (up to 20MHz) and use of several antennas (4 or more) is possible because eNodeBs
are powered by mains electricity and so the RF constraints are reduced compared to a
UE. Consequently, a higher PAPR is allowed in the downlink than in the uplink ([STB09]
p.122).

Figure 2.21 displays the frequency use of a fully-loaded 20 MHz LTE downlink with
localized UE allocation. A total bandwidth of 18 MHz is effectively used by the 1200
subcarriers, with the central subcarrier left unused because it may be “polluted” by RF
oscillator leakage. The transmitted signal must fit within the transmission mask defined
in [36.09c]. Depending on bandwidth, the number of subcarriers varies according to Table
2.1. The number of PRBs per slot ranges from 6 in a 1.4 MHz cell to 100 in a 20 MHz cell.
A configuration of 110 PRBs per slot in a 20 MHz cell with guard band reduction is also
possible to increase data rates at the cost of a more complex radio frequency management.
The number of subcarriers in the sampling band is a function of power of 2 (except for
the 15 MHz case). A consequence of a subcarrier number power of two is that OFDMA
and SC-FDMA baseband processing (Section 2.3.4) can be executed faster by employing
the Fast Fourier Transform (FFT) algorithm to convert data into the Fourier domain.

38 3GPP Long Term Evolution

Table 2.1: LTE downlink Bandwidth Configurations

Bandwidth(MHz) 1.4 3 5 10 15 20

Resource Blocks per Slot 6 15 25 50 75 100

Number of Data Subcarriers 72 180 300 600 900 1200

Used Bandwidth (MHz) 1.08 2.25 4.5 9 13.5 18

Minimal Sampling Rate (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

Number of Subcarriers in Sampling
Band

128 256 512 1024 1536 2048

Figure 2.22 shows that non-contiguous PRBs can be allocated to a UE using the
downlink communication stream, enhancing protection against frequency selectivity at
the cost of increasing control information. Frequency hopping between two PRBs in a
single frame (for the case where two UEs exchange their PRBs) can also reinforce this
protection [R1-07]. Note that all PRBs associated with a single UE have identical mod-
ulation and coding schemes because little gain increase is seen if PRBs of one UE have
different modulation and coding schemes [R1-06a]. Figure 2.22 also shows the downlink
cell specific reference signals that are inserted in symbols 0, 1 and 4 of each slot. An-
tenna ports 1 and 2 insert 4 reference values each per slot. Antenna ports 3 and 4 insert
only 2 reference values each per slot. For each additional antenna, a reference signal
overhead is added but multiple antennas can bring significant gain compensating for this
throughput reduction(Section 2.3.6). The maximum possible reference signal overhead is:
(2∗4+2∗2)/(7∗12) = 14.3%. Reference signals must be interpolated to be used in coher-
ent decoding; they must consequently reflect most of the channel properties by covering
the entire time/frequency resources. Using the channel coherence bandwidth and channel
coherence time worst case estimation, the diamond shape localization of reference signals
was chosen as a tradeoff between overhead and channel estimation accuracy. Downlink RS
are length-31 Gold sequences (Section 2.5.3) initialized with the transmitting cell identi-
fier. An eNodeB can send additional UE-specific RS (for beam forming) or broadcast RS
(for broadcasted data) ([STB09] p.163).

PDSCH UE1

PDSCH UE2

PDSCH UE1

PDSCH UE1

PDSCH UE1

UE2

PDSCH UE2

UE1

freq.

time

control symbols
reference signal
no emission

C
on

tro
l C

ha
nn

el
s

C
on

tro
l C

ha
nn

el
s

C
on

tro
l C

ha
nn

el
s

2 PRBs = 14 symbols = 1ms Up to 3 symbols

PDSCH UE2

Distributed UE1 allocation
Frequency hopping

in pairs of PRBs

UE1

UE2

Figure 2.22: Downlink multiple user scheduling and reference signals

2.5.2 Downlink Physical Channels

Like in uplink communications, the downlink bits are transmitted through several physical
channels allocated to specific physical resources:

LTE Downlink Features 39

� The Physical Broadcast Channel (PBCH) broadcasts basic information about
the cell. It is a low data rate channel containing the Master Information Block (MIB),
which includes cell bandwidth, system frame number. It is sent every 10 millisec-
ond and has significant redundancy on the 72 central subcarriers of the bandwidth
(Section 2.5.5).

� The Physical Downlink Control Channel (PDCCH) is the main control channel,
carrying Downlink Control Information (DCI [STB09] p.195). There are ten formats
of DCI each requiring 42 to 62 bits. Each format signals PRB allocations for uplink
and downlink, as well as UE power control information, the Modulation and Coding
Scheme (MCS, Section 2.3.5) and request for CQI (Section 2.3.5). Every downlink
control channels is located at the beginning of the subframe, in symbol 1, 2 or 3.
Downlink MCS is chosen using UE reports in PUCCH (Section 2.4.1) but the eNodeB
has the liberty to choose a MCS independent of the UE recommendation.

� The Physical Control Format Indicator Channel (PCFICH) is a physical chan-
nel protected with a high level of redundancy, indicating how many PDCCH symbols
(1, 2 or 3) are sent for each subframe. Certain exceptions in the number of control
symbols exist for broadcast and small band modes. This channel is transmitted in
symbol 0, “stealing” resources from PDCCH.

� The Physical Downlink Shared Channel (PDSCH) is the only data channel,
which carries all user data. There are seven PDSCH transmission modes, which are
used depending multiple antenna usage, as decided by the eNodeB (Section 2.5.4).
The transmission mode is part of the DCI sent in PDCCH. PDSCH also infrequently
carries System Information Blocks (SIB) to complete the MIB information of the cell
in PBCH channel.

� The Physical Hybrid ARQ Indicator Channel (PHICH) carries uplink HARQ
ACK/NACK information, which request retransmission of uplink data when the
Cyclic Redundancy Check (CRC) was incorrectly decoded (Section 2.3.5). CRC is
added to an information block to detect infrequent errors, producing a small amount
of redundancy. This process is called Forward Error Correction (FEC, Section 2.3.5).
PHICH is sent using the same symbols as PDCCH.

� The Physical Multicast Channel (PMCH) is used to broadcast data to all UEs
via Multimedia Broadcast and Multicast Services (MBMS). This special mode was
especially created to broadcast television, and is not considered in this document.

A UE must constantly monitor the control channels (PDCCH, PCFICH, PHICH). Due
to the compact localization of control channels in the first few symbols of each subframe, a
UE can execute some “micro sleeps” between two control zones, and thus save power when
no PRB with the identifier of the UE was detected in the subframe. Special modulation
and coding schemes are used for control channels. PDCCH is scrambled, and adds bitwise
length-31 Gold sequences, equivalent to those used in downlink reference signals, initialized
with UE identifier. Gold sequences are specific bit sequences that are explained in the
next section. Several MU-MIMO UEs can receive PDCCH on the same PRBs using
Code Division Multiplexing (CDM). PBCH and PDCCH are coded with convolutional
code instead of turbo code because convolutional codes are better suited for small blocks
(Section 2.3.5 and [STB09] p.237).

40 3GPP Long Term Evolution

2.5.3 Downlink Reference Signals

In downlink communication, three types of reference signals are sent: cell specific, UE
specific and broadcast specific RS (2.5.1). Only the cell specific RS, which are the most
common are considered in this study. Downlink RS are constructed from length-31 Gold
sequences. Gold sequences are generated using 31-bit shift registers and exclusive ORs
(Figure 2.23). x1 and x2 are called maximum length sequences or M-sequences, and are
spectrally flat pseudo-random codes but can carry up to 31 bits of data. While x1 initial
value is a constant, x2 initial value carries the data. In order for two Gold codes with
close initialization to be orthogonal, the 1600 first outputs are ignored. The resulting
signal shift improves the code PAPR and the two Gold codes from different eNodeBs are
orthogonal, enabling a UE to decode the signal reliably [R1-08]. The PAPR of reference
signals is very important because the reference signals are often power boosted compared
to data.

x1

x2

x1(n+31) = (x1(n+3)+x1(n))mod2
0 1

X X X XX

0 000 0 000 0 000 0 000 0 000 0 000 0 0000

X X X X X X X X X XX X X X X X X X X X X X X X X X
x2(n+31) = (x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2

0001101010001010100011...
Ignoring the first 1600 bits :
pseudo-random Gold sequence
carrying 31 bits of data

M-sequence with 31-bit data initialization value

M-sequence with 31-bit fixed initialization value

Figure 2.23: Gold Pseudo Random Sequence Generation

The initialization value of a Gold sequence is generated from the physical layer cell
identity number, the slot number within the radio frame, the symbol number within the
slot, and an indicator of normal or extended CP. The Gold sequence bits are QPSK
modulated and transmitted on RS allocated resources. The same length-31 Gold bit
sequences are used for scrambling data over the frequency band in Section 2.5.1.

2.5.4 Downlink Multiple Antenna Techniques

LTE PDSCH can combine spatial diversity, MIMO and beam forming (Section 2.3.6). Two
successive processes map the data to the eNodeB multiple antenna ports:

1. The code block to layer mapping associates each code block with one or two
layers ([36.09c] p.47). A layer is a set of bits that is multiplexed in frequency or
in space with other layers. In LTE Release 9, two code blocks can be multiplexed
simultaneously and the number of layers used is called Rank Indicator (RI) and is
between 1 and 4. If two code blocks are sent simultaneously in the same resource,
spatial multiplexing is exploited (Section 2.3.6).

2. The precoding jointly processes each element of the layers to generate the nT
antenna port signals. It consists of multiplying the vector containing one element
from each of the RI layers with a complex precoding matrix W . An antenna port
can be connected to several antennas but these antennas will send an identical signal
and so be equivalent to a single antenna with improved frequency selectivity due to
diversity. The number of antenna ports nT is 1, 2 or 4. In LTE, precoding matrices
are chosen in a set of predefined matrices called a “codebook” ([36.09c] p.48). Each
matrix has an index call Precoding Matrix Indicator (PMI) in the current codebook.

LTE Downlink Features 41

Figure 2.24 illustrates the layer mapping and precoding for spatial diversity for dif-
ferent numbers of RI and nT . Space-Frequency Block Coding (SFBC) is used to
introduce redundancy between several subcarriers. SFBC is simply introduced by tem-
porally separating the values such as Space-Time Block Coding (STBC, Section 2.3.6)
prior to the IFFT which is executed during OFDMA encoding. In Figure 2.24(a), one
Code Block is sent to two antennas via two layers. The precoding matrix used to intro-
duce SFBC follows the Alamouti scheme [Ala07]. In Figure 2.24(b), a derived version of
the Alamouti scheme is adapted for transmission diversity with SFBC over four antenna
ports. Of every four values, two are transmitted using a pair of antenna ports with certain
subcarriers and the two remaining values are transmitted on the other pair of antennas
over different subcarriers. Antenna ports are not treated identically: antenna ports 3 and
4 transmit less reference signal so due to the resulting poorer channel estimation, these
ports must not be paired together.

O
FD

M
Ad0d1d2d3

-d1*d0*-d3*d2*

Layer
mapping

Channel coded
codeblock 0

d0d1d2d3...

d0d2

d1d3

Pre-
coding

port
1

O
FD

M
A

subc. 2i
subc. 2i+1

port
2

subc. 2i+2
subc. 2i+3...

(a) SFBC with one Codeword, 2 Layers and 2 An-
tennas

O
FD

M
A

O
FD

M
A

subc. 2i+2
subc. 2i+3...

subc. 2i
subc. 2i+1...

d0d100

-d1*d0*00

00d2d3

00-d3*d2*

Layer
mapping

Channel
coded

codeword 0

d0d1d2d3...

d0

d1 Pre-
coding

port 1

port 3

port 2

port 4

d2

d3

(b) SFBC with one Codeword, 4 Layers and 4
Antennas

Figure 2.24: Layer Mapping and Precoding for Spatial Diversity with Different Multi-antenna
Parameters

There are 7 PDSCH modes defining how the eNodeB exploits multiple antennas in its
communication with a UE:

1. In transmission mode 1, no multiple antenna technique is used.

2. In transmission mode 2, there are several antennas but no spatial multiplexing.
One Transport Block is sent per TTI with antenna diversity (Figures 2.24(a) and
2.24(b)).

3. In transmission mode 3, open loop spatial multiplexing (MIMO) is used, i.e.
the UE does not feed back information that would enable UE-specific precoding (i.e.
beam forming). This precoding scheme is known as Cyclic Delay Diversity (CDD). It
is equivalent to sending each subcarrier in a different direction, increasing frequency
diversity of each transmitted Code Block.

4. In transmission mode 4, closed loop spatial multiplexing (MIMO) is used. The UE
feeds back a RI and a PMI to advise the eNodeB to form a beam in its direction,
i.e. by using the appropriate transmit antennas configuration. It also reports one
Channel Quality Indicator (CQI) per rank, allowing the eNodeB to choose the MCS
for each Transport Block.

5. In transmission mode 5, MU-MIMO is used (Section 2.4.4). Each of two UEs receives
one of two transmitted Transport Blocks in a given resource with different precoding
matrixes.

42 3GPP Long Term Evolution

6. In transmission mode 6, there is no spatial multiplexing (rank 1) but UE precoding
feedback is used for beamforming.

7. Transmission mode 7 corresponds to a more accurate beam forming using UE-specific
downlink reference signals.

Examples of closed loop and open loop spatial multiplexing encoding are illustrated
in Figure 2.25. In Figure 2.25(a), the closed loop is used: the UE reports a PMI to
assist in the eNodeB choice of a good precoding matrix W . In Figure 2.25(b), there is
no UE feedback, so the two multiplexed code blocks are transmitted with a maximum
transmission diversity configuration with CDD. While matrix U mixes the layers, matrix
D creates different spatial beams for each subcarrier which is equivalent to sending each
subcarrier in a different directions. Finally, W is the identity matrix for two antenna ports
and a table of predefined matrices used successively for four antenna ports. The objective
of W is to decorrelate more the spatial layers.

O
FD

M
A

Layer
mapping

Channel coded
codeblock 0

d0...
d0

port 1

Channel coded
codeblock 1

e0e1... Layer
mapping

e0

e1

O
FD

M
A port 1

O
FD

M
A port 1

O
FD

M
A port 1

y0

y1

y2

y3

y0
y1
y2
y3

=

d0
e0
e1

W

(a) Closed loop spatial multiplexing with two
Codewords, 3 Layers, 4 Antennas

O
FD

M
A

Layer
mapping

Channel coded
codeblock 0

d0...
d0

port 1

Channel coded
codeblock 1

e0e1... Layer
mapping

e0

e1

O
FD

M
A port 1

O
FD

M
A port 1

O
FD

M
A port 1

y0

y1

y2

y3

y0
y1
y2
y3

=

d0
e0
e1

U

1 1 1
1 e-j2π/3 e-j4π/3

1 e-j4π/3 e-j8π/3

U=

D W

1 0 0
0 e-j2π/3 0
0 0 e-j4π/3

D=

(b) Open loop spatial multiplexing with two
Codeword, 3 Layers and 4 Antennas

Figure 2.25: Layer Mapping and Precoding for Spatial Multiplexing with different multiantenna
parameters

A UE knows the current transmission mode from the associated PDCCH format.
MIMO detectors for the LTE downlink are located in the UEs; the ZF or MMSE tech-
niques presented in Section 2.4.4 are used for the decoding. This topic is not within the
scope of this study. More information on LTE downlink MIMO detectors can be found in
[WEL09].

2.5.5 UE Synchronization

Synchronizing the UE with the eNodeB is a prerequisite to data exchanges. A UE will
monitor the eNodeB downlink synchronization signals when it requires a new connection
(initial synchronization) or during a handover (new cell identification). The synchroniza-
tion signals communicate the time basis as well as the cell identifier, bandwidth, cyclic
prefix length and cell duplex mode. Four types of downlink signals must be decoded by
the UE for synchronization: the Primary Synchronization Signal (PSS), the Secondary
Synchronization Signal (SSS), the Physical Broadcast Channel (PBCH) and the downlink
Reference Signal (RS). These signals give a UE information about the cell identity and
parameters, as well as the quality of the channel.

1. The Primary Synchronization Signal (PSS) consists of a Zadoff-Chu (ZC) se-
quence with length NZC 63 and index q 25, 29 or 34. These sequences are illustrated

LTE Downlink Features 43

in Figure 2.19. The middle value is “punctured” to avoid using the DC subcarrier
and so is sent twice in each frame using the 62 central subcarriers (Figure 2.26). A
ZC length of 63 enables fast detection using a 64 point FFT and using 62 subcarriers
≤ 6 PRBs makes the PSS identical for all bandwidth configurations between 6 and
110 PRBs. q gives the cell identity group (0 to 2) which is usually used to distinguish
between the three sectors of a three-sectored cell (Section 2.1.2).

2. The Secondary Synchronization Signal (SSS) consists of a length-31 M-sequence,
equivalent to the one used to generate Gold sequences (Section 2.5.3), duplicated and
interleaved after different cyclic shifts. The 62 values obtained are used for Binary
Phase Shift Keying (BPSK, 1 bit per symbol) coded and sent like PSS. The signal is
initialized with a single cell identifier of a possible 168 which is used by a given UE
to distinguish between adjacent cells. The cyclic shift gives the exact start time of
the frames. The channel response knowledge contained in the PSS enables the UE
to evaluate the channel for coherent detection of SSS.

3. The Physical Broadcast Channel (PBCH) (Section 2.5.1) is read only during
initial synchronization to retrieve basic cell information.

4. Downlink RS (Section 2.5.3) is decoded to evaluate the current channel impulse
response and the potential of a handover with a new cell identification and better
channel properties.

The localization of PSS, SSS and PBCH in FDD mode with normal cyclic prefix is
shown in Figure 2.26. In this cell configuration, the 62 values of PSS and SSS are sent in
the center of subframe symbols 6 and 5 respectively and repeated twice in a radio frame,
i.e. every 5 millisecond. The PBCH is sent over 72 subcarriers and 4 symbols once in
each radio frame. The relative positions of PSS and SSS communicate to UEs the type of
duplex mode (TDD, FDD or HD-FDD) and CP length of the cell.

PDCCH, 1, 2 or 3 symbols/subframe
PBCH, period 10ms
SSS, period 5ms
PSS, period 5ms
Reference signal on one antenna port,
empty element on others
Symbols totally available for data

UE1

UE2

Information
broadcast
to all UEs

6 Center PRBs
=72 subcarriers

freq.

time

1 subframe
= 2 slots

= 14 symbols

Figure 2.26: Downlink PSS, SSS, RS and PBCH localization in subframes.

This section detailed the features of the LTE physical layer. Next section introduces
the concept of dataflow Model of Computation and details the models that are used in
this study to represent the LTE eNodeB physical layer processing.

44 3GPP Long Term Evolution

CHAPTER 3

Dataflow Model of Computation

3.1 Introduction

To study the LTE physical layer on multi-core architectures, a Model of Computation
(MoC) is needed to specify the LTE algorithms. This MoC must have the necessary
expressivity, must show the algorithm parallelism and must be capable of locating system
bottlenecks. Additionally, it must be simple to use and sufficiently intuitive for designers to
manage rapid prototyping. In the following sections, the concept of Model of Computation
is introduced and the models which will be used to describe LTE are detailed. After an
overview, Section 3.2 focuses on the Synchronous Dataflow model (SDF), which forms
the foundation of numerous MoCs as it can be precisely analyzed. Section 3.3 explains
an extension of SDF which compactly expresses the behavior of an algorithm. Finally,
Section 3.4 describes hierarchical dataflow models which enable compositions of sub-parts.

3.1.1 Model of Computation Overview

A Model of Computation (MoC) defines the semantics of a computational system model,
i.e. which components the model can contain, how they can be interconnected, and how
they interact. Every programming language has at least one (often several) underlying
MoCs. A MoC describes a method to specify, simulate and/or execute algorithms. MoCs
were much promoted by the Ptolemy and Ptolemy II projects from the University of
California Berkeley. In [CHL97], Chang, et al. explain how several MoCs can be combined
in the Ptolemy tool. MoCs can serve three different purposes:

1. Specification: A specification model focuses on clearly expressing the functionali-
ties of a system. It is especially useful in standards documents.

2. Simulation: A simulation model is used to extract knowledge of a system when the
current implementation is not available. It may be much simpler than the final code
and is focused precisely on the features of interest.

3. Execution: An execution model must contain all the information for the final code
execution.

46 Dataflow Model of Computation

These objectives are not mutually exclusive but it is sufficiently complex to obtain all
three simultaneously. The International Technology Roadmap for Semiconductors (ITRS)
predicts that unified models covering the three problems will be available around 2020
[fS09]. The unified model is called “executable specification”.

The definition of MoCs is broad and covers many models that have emerged in the
last few decades. The notion of a Model of Computation is close to the notion of a
programming paradigm in the computer programming and compilation world. Arguably,
the most successful MoC families, in terms of adoption in academic and industry worlds
are:

� Finite State Machine MoCs (FSM) in which states are defined in addition to
rules for transitioning between two states. FSMs can be synchronous or asynchronous
[SLS00]. The rules depend on control events and a FSM MoC is often used to
model control processes. The actual computation modeled by a FSM is performed at
transitions. The FSM MoC is often preferred for control-oriented applications. The
imperative programming paradigm is equivalent to a FSM in which a program has a
global state which is modified sequentially by modules. The imperative programming
paradigm is the basis of the most popular programming languages including C. Its
semantics are directly related to the Turing machine / Von Neumann hardware
it targets. It is often combined with a higher-level Object-Oriented Programming
(OOP) MoC, in particular in C++, Java and Fortran programming languages.

� Process Network MoCs (PN) in which concurrent and independent modules
known as processes communicate ordered tokens (data quanta) through First-In
First-Out (FIFO) channels. Process Network MoCs are often preferred to model
signal processing algorithms. The notion of time is usually not taken into account in
Process Network MoCs where only the notion of causality (who precedes whom) is
important. The dataflow Process Networks that will be used in the rest of the
thesis are a subset of Process Networks.

� Discrete Event MoCs (DE) in which modules react to events by producing events.
Modules themselves are usually specified with an imperative MoC. These events are
all tagged in time, i.e. the time at which events are consumed and produced is
essential and is used to model system behavior. Discrete Event MoCs are usually
preferred to model clocked hardware systems and simulate the behavior of VHDL
and Verilog coded FPGA or ASIC implementations.

� Functional MoCs in which a program does not have a preset initial state but uses
the evaluation result of composed mathematical functions. Examples of program-
ming languages using Functional MoCs include Haskell, Caml and XSLT. The origin
of functional MoCs lies in the lambda calculus introduces by Church in the 1930s.
This theory reduces every computation to a composition of functions with only one
input.

� Petri Nets which contain unordered channels named transitions, with multiple
writers and readers and local states called places, storing data tokens. Transitions
and states are linked by directed edges. A transition of a Petri Net fires, executing
computation and producing tokens on its output arcs, when a token is available at
the end of all its input arcs [SLS00] [SLWS99]. Comparing with a FSM MoC, the
advantage of Petri Nets is their ability to express parallelism in the system while a
FSM is sequential.

Introduction 47

� Synchronous MoCs in which, like in Discrete Events, modules react to events
by producing new events but contrary to Discrete Events, time is not explicit and
only the simultaneity of events and causality are important. Programming languages
based on Synchronous MoCs include Signal, Lustre and Esterel.

The MoCs that are considered in this thesis are all within the above Process Network
MoCs. The previous list is not exhaustive. A more complete description of most of these
MoCs can be found in [SLS00].

3.1.2 Dataflow Model of Computation Overview

In this thesis, the physical layer of LTE, which is a signal processing application, is mod-
eled. The targeted processing hardware is composed of Digital Signal Processors (DSP)
and the signal arrives at this hardware after a conversion into complex numbers (Section
2.1.3). The obvious choice of MoC to model the processing of such a flow of complex num-
bered data is Dataflow Process Network. In [LP95], Lee and Parks define Dataflow
Process Networks and locate them precisely in the broader set of Process Network MoCs.
The MoCs discussed in following Sections are illustrated in Figure 3.1. Each MoC is
a tradeoff between expressivity and predictability. MoCs are divided into main branch
models and branched off models:

KPN
IDF
BDF

PSDF

CSDF
SDF

DAG

srSDF srDAG

...

E
xp

re
ss

iv
ity

Predictability

Turing
complete
MoCs

non
Turing
complete
MoCs

DF
DDF
KPN
IDF
BDF
SDF
PSDF
IBSDF
CSDF
srSDF
DAG
srDAG

Data Flow
Dynamic DF
Kahn Process Network
Integer DF
Boolean DF
Synchronous DF
Parameterized SDF
Interface-Based Hierarchical SDF
Cyclo Static DF
single rate SDF
Directed Acyclic Graph
single rate DAG

DDF

Main branch models Branched off
models

Data Flow Process Networks

IBSDF

Figure 3.1: Main Types of Process Network Model of Computation

� Main branch models as shown in Figure 3.1 are all subsets of the Kahn Process
Network (KPN) MoC [Kah74], which adds constraints to the models that contain
them. KPN consists of continuous processes that communicate through infinite
lossless FIFO channels. The continuity property is explained in [LP95]. The outputs
of a network of continuous processes can be computed iteratively, i.e. it can be
factorized to one minimum “fixed point” [LP95], where the computation is repeated.
An important property of KPN is that FIFO channel writes are non-blocking and
FIFO channel reads are blocking. KPN is the only non-dataflow MoC in Figure 3.1.
Dataflow Process Networks additionally specify the behavior of their processes when
they receive and send data. These processes are then called actors and fire when
they receive data tokens, themselves producing data tokens. A set of firing rules
defines when an actor fires. Firing and actor consists in starting its preemption-
free execution. Other main branch models are restrictions of the KPN model with
different firing rule definitions.

48 Dataflow Model of Computation

� Branched off models are derived from main branch models with added features
adapting their targeted usage to a particular problem, meaning that these models
are no longer subsets of higher-level main branch MoCs.

When a given MoC is Turing complete, this MoC expresses all possible algorithms.
Figure 3.1 distinguishes Turing complete MoCs from those that are non-Turing complete.
The non-Turing complete MoCs have limited expressiveness but they enable more accurate
compile-time studies. Many Dataflow Process Network MoCs have been introduced in the
literature, each offering a tradeoff between compile-time predictability and capacity to
model dynamic run-time variability. They differ mostly by their firing rules:

� Dynamic Data Flow MoC (DDF) is a MoC with special firing rules and is thus
a dataflow process network MoC; but a DDF actor can “peek” at a token without
consuming it, thus defining non blocking reads not allowed in KPN. This property
can make DDF non deterministic and complicate its study [LP95].Compared with
KPN, DDF has advantages as a dataflow model. Contrary to the KPN processes,
DDF actors do not necessitate a multi-tasking OS to be executed in parallel. A
simple scheduler that decides which actor to execute depending on the available
tokens is sufficient. The CAL language software execution method is based on this
property [JMRW10].

� The Synchronous Dataflow MoC (SDF) has been the most widely used dataflow
MoC because of its simplicity and predictability. Each SDF actor consumes and
produces a fixed number of tokens at each firing. However, it is not Turing complete
and cannot express conditions in an algorithm. Figure 3.2(a) shows a SDF algorithm.
The small dots represent tokens already present on the edges when the computation
starts.

� The single rate SDF MoC is a subset of SDF. A single rate SDF graph is a SDF
graph where the production and consumption of tokens on an edge are always equal
(Figure 3.2(b)).

� The Directed Acyclic Graph MoC (DAG) is also a subset of SDF. A DAG is a
SDF graph where no path can contain an actor more than once, i.e. a graph that
contains no cycle (Figure 3.2(c)).

� The single rate Directed Acyclic Graph MoC is a DAG where productions and
consumptions are equal.

� The Boolean Dataflow MoC (BDF) is a SDF with additional special actors called
switch and select (Figure 3.2(d)). The switch actor is equivalent to a demultiplexer
and the select actor to a multiplexer. The data tokens on the unique input of a
switch are produced on its true (respectively false) output if a control token evaluated
to true (respectively false) is sent to its control input. The BDF model adds control
flow to the SDF dataflow and it is this control that makes the model Turing complete.

� The Integer Data Flow MoC (IDF) is the equivalent of BDF but where the control
tokens are integer tokens rather than Boolean tokens.

� The Cyclo Static Dataflow MoC (CSDF) extends SDF by defining fixed patterns
of production and consumption (Figure 3.2(e)). For instance, a production pattern
of (1,2) means that the actor produces alternatively one and two tokens when it fires.

Introduction 49

� The Parameterized SDF MoC (PSDF) is a hierarchical extension of SDF that
defines production and consumption relative to parameters that are reevaluated at
reconfiguration points. Parameterized dataflow is a meta-modeling technique adding
reconfigurability to a static model.

� The Interface-Based Hierarchical SDF MoC (IBSDF) is also a hierarchical
extension of SDF that insulates the behavior of its constituent graphs, making them
easy to combine and study. Interface-Based hierarchical dataflow is a meta-modeling
technique which adds a hierarchy to a static model.

A B D

C

3 2 2 4

3
2 2

4
43

×12

(a) SDF

A B D

C

3 1

2 2

4×12

(b) single rate SDF

A B D

C

3 2 2 4

3
2 2

4

(c) DAG

sw
itc

h

se
le

ct

T

F

T

F

B

C

A D
2

3
4

2

c

2
2

2
2

2
2

2
2

(d) BDF

A B D

C

3 (1,3) (3,1) 4

3
2 2

4
43

×12

(e) CSDF

Figure 3.2: A Few Dataflow MoC Graph Examples

The above list is not complete. Many more dataflow MoCs have been defined and new
models are studied in this thesis in the context of the PREESM tool development. Dataflow
process networks only specify how actors communicate but cannot give the complete ex-
ecution semantics (for example, an actor performing an addition still needs a description
of this behavior to execute). If a Dataflow MoC is used for execution, it appears as a
coordination language and must be combined with a host language defining actor
behavior [LP95]. C code can be used as a software host language or Hardware Description
Language (HDL) code as a hardware host language. CAL is a host language that can
target both software and hardware implementation generation. In this study of LTE, C
code is used as the host language but the code generation is flexible and may be adapted
to other programming languages.

Process networks are usually employed to model one execution of a repetitive process.
For a single application, descriptions with different scales are often possible. When mod-
eling an H.264 60 Hz full-HD video decoder for instance, a graph describing the decoding
of one 16x16 pixels macro-block can be created and executed 486000 times per second. It
is also possible to create a graph describing the decoding of one picture and repeat this
description 60 times/s; or a graph describing the decoding of one group of pictures and
which is then repeated several times per second. The right scale must be chosen, a scale
which is too large produces graphs that are too large in terms of number of actors and
complicates the study, whereas a scale that is too small will usually lead to sub-optimal
implementations [Nez02].

Aside from the scale, the granularity is another important parameter in describing
an application. In [Sin07], Sinnen defines the granularity G of a system as the minimum

50 Dataflow Model of Computation

execution time of an actor divided by the maximum transfer time of an edge. Using this
definition which depends on both algorithm and architecture, in a coarse grain system
where G >> 1, actors are seen to be“costly” compared to the data flowing between them.
High granularity is a desirable property for system descriptions because transfer time
between operators does not add to the time efficiency of the system.

Because of different granularities and scales, there are several ways to describe a single
application. Choosing the correct MoC and using this model correctly is vital to obtain
efficient prototyping results. In following sections, SDF, CSDF, and hierarchical extensions
of SDF are presented in more detail. The general theory of dataflow process networks can
be found in [LP95]. This thesis concentrates on the models used in the study of LTE
physical layer algorithms: SDF and its extensions.

3.2 Synchronous Data Flow

The Synchronous Dataflow (SDF) [LM87] is used to represent the behavior of an appli-
cation at a coarse grain. An example of SDF graph is shown in Figure 3.2(a). SDF can
model loops but not code behavioral modifications due to the nature of its input data.
For example, an “if” statement cannot be represented in SDF.

The SDF model can be represented as a finite directed, weighted graph characterized
by the graph G =< V,E, d, p, c > where :

� V is the set of nodes; each node represents an actor that performs computation on
one or more input data streams and produces one or more output data streams.

� E ⊆ V × V is the edge set, representing channels which carry data streams.

� d : E → N is the delay function with d(e) the number of initial tokens on an edge e
(represented by black dots on the graph).

� p : E → N∗ is the production function with p(e) representing the number of data
tokens produced by the e source actor at each firing and carried by e.

� c : E → N∗ is the consumption function with c(e) representing the number of data
tokens consumed from e by the e sink actor at each firing.

This graph is a coordination language, and so only specifies the topology of the
network but does not give any information about the internal behavior of actors. The
only behavioral information in the model is the amount of produced and consumed tokens.
If only a simulation of the graph execution is needed, the actor behavior can usually
be ignored and a few parameters like Deterministic Actor Execution Time (DAET) are
necessary. However, if the model will be used to generate executable code, a host code
must be associated with each actor.

3.2.1 SDF Schedulability

From a connected SDF representation, it should be possible to extract a valid single-core
schedule as a finite sequence of actor firings. The schedulability property of the SDF is
vital; this enables the creation of a valid multi-core schedule. A valid schedule can fire
with no deadlock and its initial state is equal to its final state.

A SDF graph can be characterized by a matrix close to the incidence matrix in graph
theory and called topology matrix. The topology matrix Γ is a matrix of size |E| × |V |,

Synchronous Data Flow 51

in which each row corresponds to an edge e and each column corresponds to a node v.
The coefficient Γ(i, j) is positive and equal to N if N tokens are produced by the jth node
on the ith edge. Conversely, the coefficient Γ(i, j) is negative and equal to −N if N tokens
are consumed by the jth node on the ith edge.

Theorem 3.2.1. A SDF graph is consistent if and only if rank(Γ) = |V | − 1

Theorem 3.2.1 implies that there is an integer Basis Repetition Vector (BRV) q of size
|V | in which each coefficient is the repetition factor for the jth vertex of the graph in a
schedule returning graph tokens in their original state. This basic repetition vector is the
positive vector q with the minimal modulus in the kernel of the topology matrix such as
Γ.q = {0}. Its computation is illustrated in Figure 3.3. The BRV gives the repetition
factor of each actor for a complete cycle of the network. Figure 3.3 shows an example of
an SDF graph, its topology matrix and a possible schedule:

A B D

C

3 2 2 4

3
2 2

4

3 -2 0 0
3 0 -2 0
0 2 0 -4
0 0 2 -4

. q = 0 <=>
3 -2 0 0
0 2 -2 0
0 0 2 -4
0 0 0 0

. q = 0 <=> q =
4.x
6.x
6.x
3.x

A1 B2 D1
C2

B1
C1

B3
C3

A2

A3 B5
C5

B4
C4

B6
C6

A4

D2

D3

1) Topology Matrix of rank nbactors - 1 => consistency

2) A valid schedule, respecting initial tokens exists.

(4A)(6B)(6C)(3D)=> The graph is back to original state

SDF Graph

Equivalent single rate SDF Graph

=> The SDF graph is schedulable

2

2
1

1 1 1

2
2

2

2
1

1 1 1

2
2

2
2
2

2

2
2
2

2

2
2
2

2

Figure 3.3: The Topology Matrix and Repetition Vector of an SDF Graph

Consistency means that tokens cannot accumulate indefinitely in part of the graph
[BL93] [LM87]. Consistency is a necessary (but not sufficient) condition for a SDF graph
to be schedulable.

Theorem 3.2.2. A SDF graph is schedulable if and only if it matches two conditions:

1. it is consistent,

2. a sequence of actor firing can be constructed, containing the numbers of firings from
the basic repetition vector and respecting the actor firing rules (an actor can fire only
if it has the necessary input tokens).

The second condition can be called deadlock freeness. This condition is not respected
when there are insufficient initial tokens and if an actor stays blocked (or deadlocked) in-
definitely. The procedure to construct a single-core schedule to demonstrate schedulability
is detailed in [BELP95]. In Figure 3.3, the chosen single-core scheduler respects Single Ap-
pearance Scheduling (SAS); a schedule where all instances of a given actor are grouped
together. The single-core SAS schedule is optimal for code size. Other single-core schedules
exist, where other parameters are optimized.

The ability to check graph schedulability before commencing algorithm and archi-
tecture matching is enormously advantageous. It means the algorithm graph is valid,
regardless of the architecture on which it is mapped. The checking graph schedulability is
one part of the total hardware and algorithm separation needed for a multi-core software
development chain.

52 Dataflow Model of Computation

It may be noted that the above method is valid only for connected graphs. It cannot
model several unconnected algorithms mapped on the same multi-core architecture. The
case of a graph without enough edges to connect all vertices (|E| < |V | − 1) implies
rank(Γ) < |V | − 1 and the graph is then considered non-schedulable. The “normal” case
of a connected graph study implies |E| ≥ |V |−1. To obtain the Basis Repetition Vector and
check schedulability, the equation Γ.q = {0} needs to be solved with q integer and q 6= ~0.
This equation can be solved using the Gauss algorithm as displayed in Algorithm 3.1.
Using the Bachman-Landau asymptotic upper bound notation [CLRS01], the algorithm
has a complexity of O(|V |2|E|) in non-trivial cases. It results in O(|V |2) divisions and
O(|V |2|E|) matrix loads and store accesses.

Algorithm 3.1: Basis Repetition Vector Computation of Γ

Input: A topology matrix Γ of size |E| × |V |
Output: A Basis Repetition Vector of size |V | if rank(Γ) = |V | − 1, false otherwise

1 i = j = 1;
2 while i ≤ |E| and j ≤ |V | do
3 Find pivot (greatest absolute value) Γkj with k ≥ i;
4 if Γkj 6= 0 then
5 Swap rows i and k;
6 Divide each entry in row i by Γij ;
7 for l = i+ 1 to |E| do
8 Substract Γlj∗row i from row l;
9 end

10 i=i+1;

11 end
12 j=j+1;

13 end
14 if Γ has exactly |V | − 1 non null rows then
15 Create VRB v = (1, 1, 1...);
16 for l = |V | − 1 to 1 do
17 Solve equation of raw l where only the rational vl is unknown;
18 end
19 Multiply v by the least common multiple of vi, 1 ≤ i ≤ |V |;
20 return v;

21 else
22 return false;
23 end

3.2.2 Single Rate SDF

The single rate Synchronous Dataflow model is a subset of the SDF where the productions
and consumptions on each edge are equal. An example of single rate SDF graph is shown
in Figure 3.2(b). It can thus be represented by the graph G =< V,E, d, t > where V ,
E and d are previously defined and t : E → N is a function with t(e) representing the
number of data tokens produced by the e source actor and consumed by the e sink actor
at each firing. A SDF graph can be converted in its equivalent single rate SDF graph by
duplicating each actor (Figure 3.3). The number of instances is given by the BRV; the
edges must be duplicated properly to connect all the single rate SDF actors.

Cyclo Static Data Flow 53

An algorithm to convert a SDF graph to a single rate SDF graph is given in [SB09]
p. 45. It consists of successively adding actors and edges in the single rate SDF graph
and has a complexity O(|V | + |E|) where V and E are the vertex set and the edge set
respectively of the single rate SDF graph.

3.2.3 Conversion to a Directed Acyclic Graph

One common way to schedule SDF graphs onto multiple processors is to first convert the
SDF graph into a precedence graph so that each vertex in the precedence graph corresponds
to a single actor firing from the SDF graph. Thus each SDF graph actor A is “expanded
into” qA separate precedence graph vertices, where qA is the component of the BRV that
corresponds to A. In general, the precedence graph reveals more functional parallelism as
well as data parallelism. A valid precedence graph contains no cycle and is called DAG
(Directed Acyclic Graph) or Acyclic Precedence Expansion Graph (APEG). In a DAG, an
actor without input edge is called entry actor and an actor without output edge is called
exit actor. Unfortunately, the graph expansion due to the repeatedly counting each SDF
node can lead to an exponential growth of nodes in the DAG. Thus, precedence-graph-
based multi-core scheduling techniques, such as the ones developed in [Kwo97], generally
have a complexity that is not bounded polynomially in the input SDF graph size, and can
result in prohibitively long scheduling times for certain kinds of graphs [PBL95].

A B D

C

3 2 2 4

3
2 2

4
BRV q =

4.x
6.x
6.x
3.x

Valid schedule: (3A)(4B)(2D)(4C)A(2B)D(2C)

SDF Graph
with a cycle

Equivalent APEG

=> The SDF graph is schedulable

A1

A2

A3

A4

B2

B1

B3

B5

B4

B6

D1

D2

D3

C2

C1

C2

C1

C2

C1

2
1

1

2

2

1
1

2

2

2

2

2

2

2

2

2

2

2

2

2

Figure 3.4: SDF Graph and its Acyclic Precedence Expansion Graph

Converting a single rate SDF graph into its corresponding DAG simply consists of
ignoring edges with initial tokens. If the graph is schedulable, each of its cyclic paths will
contain at least one initial token. Removing edges with initial tokens naturally breaks
these cycles and creates a DAG. Using this precedence graph as the algorithmic input for
scheduling results in inter-iteration dependencies not being taken into account. Converting
a non-single rate SDF graph into its corresponding DAG is also possible but is a more
complex operation as cycles must be unrolled before ignoring edges with initial tokens
[Pia10].

3.3 Cyclo Static Data Flow

The Cyclo Static Dataflow (CSDF) model is introduced in [BELP95] and an example
graph is shown in Figure 3.2(e). The CSDF model cannot express more algorithms than
SDF but it can express certain algorithms in a reduced way. CSDF can also enhance
parallelism and reduce memory necessary for execution. CSDF is used in the study of
LTE uplink and downlink streams. The token production and consumption of each actor
can vary over time, following a periodic form statically chosen. For example, an actor can
consume one token, then two tokens, then one token again, and so on. In this example,

54 Dataflow Model of Computation

the actor has two phases. In CSDF, token productions and consumptions are patterns
instead of scalars. A SDF model can be represented as a finite directed, weighted graph
characterized by the graph G =< V,E, d, φ, p, c > where :

� V is the set of nodes; each node representing an actor.

� E ⊆ V × V is the edge set, representing data channels.

� d : E → N is the delay function with d(e) the number of initial tokens on an edge e.

� φ : V → N) is the phase function with φ(v) the number of phases in the pattern
execution of v.

� p : E × N→ N∗ is the production function with p(e, i) representing the number of
data tokens produced by the e source actor at each firing of phase i and carried by
e.

� c : E × N → N∗ is the consumption function with c(e, i) representing the number
of data tokens consumed from e by the e sink actor at each firing of phase i.

The CSDF model introduces the notion of actor state; an actor does not behave the
same at each firing. However, the fixed pattern of execution permits to check the graph
schedulability at compile-time.

3.3.1 CSDF Schedulability

Like a SDF graph, a CSDF graph can be characterized by its topology matrix. The
topology matrix Γ is the matrix of size |E|× |V |, where each row corresponds to an edge e
and each column corresponds to a node v. The coefficient Γ(i, j) is positive and equal to∑φ(j)

k=1 p(i, k) if a pattern p(i, k) is produced by the jth node on the ith edge. Conversely, the

coefficient Γ(i, j) is negative and equal to −
∑φ(j)

k=1 c(i, k) if a pattern c(i, k) is consumed
by the jth node on the ith edge.

The topology matrix gathers the cumulative productions and consumptions of each
actor during its complete period of execution. A CSDF graph G is consistent if and only
if the rank of its topology matrix Γ is one less than the number of nodes in G (Theorem
3.2.1). However, the smallest vector q′ in Γ null space is not the BRV. q′ only reflects the
number of repetitions of each complete actor cycle and must be multiplied for each actor
v by its number of phases φ(v) to obtain the BRV q:

q = Φ× q′, with Φ = diag(φ(v1), φ(v2), . . . , φ(vm)) (3.1)

A valid sequence of firings with repetitions given by the BRV is still needed to conclude
the schedulability of the graph. The process is illustrated in Figure 3.5. It can be concluded
on CSDF schedulability as in the SDF case. Figure 3.6 illustrates a compact representation
of a CSDF graph and its SDF equivalent. In this simple example, the number of vertices
has been reduced by a factor 2.3 by using CSDF instead of SDF.

3.4 Dataflow Hierarchical Extensions

A hierarchical dataflow model contains hierarchical actors. Each hierarchical actor con-
tains a net of actors. There are several ways to define SDF actor hierarchy. The first SDF

Dataflow Hierarchical Extensions 55

A B D

C

3
(1,3) (3,1)

4

3
2 2

4

3 -4 0 0
3 0 -2 0
0 4 0 -4
0 0 2 -4

. q' = 0 <=>
3 -4 0 0
0 4 -2 0
0 0 2 -4
0 0 0 0

. q' = 0 <=> q' =
4.x
3.x
6.x
3.x

A1 B2 D1
C2

B1
C1

B3
C3

A2

A3 B5
C5

B4
C4

B6
C6

A4

D2

D3

1) Topology Matrix of rank nbactors - 1 => consistency

2) A valid schedule, respecting initial tokens exists.

(4A)(6B)(6C)(3D)=> The graph is back to original state

CSDF Graph

Equivalent single rate SDF Graph=> The CSDF graph is schedulable

1
2

2
1 1 1

2
1

2 2
1

1 1

2
3

3
2
1

2

3
2
1

2

3
2
1

2

q = q' .
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 =
4.x
6.x
6.x
3.x

1
Multiplying by the number
of phases of each actor

Figure 3.5: The Topology Matrix and Repetition Vector of a CSDF Graph

A B
6 (1,2,3) 2

C
(3,2,1)

A B
1

C

B

B

2
3

1

2

3

C

C

1

1

2 2

1

11
1

1

1

CSDF SDF

Figure 3.6: Illustrating Compactness of CSDF Model Compared to SDF

hierarchy was that of clustering described in [PBL95] by Pino, et al. The study takes a
bottom-up approach and defines rules that extract the actors from a complex graph which
can be clustered within a coarser-grain actor. The primary advantage of this technique
is that clustered actors are then easier than the individual actors in scheduling process
manipulations.

However, the type of hierarchy that is of interest in this thesis is a top-down one: a
SDF hierarchy that allows a designer to compose sub-graphs within an upper-level graph.
Two such hierarchy models have been defined and both will be studied in this thesis: the
Parameterized SDF (PSDF [BB01]) and the Interface-Based Hierarchical SDF (IBSDF
[PBPR09]).

3.4.1 Parameterized Dataflow Modeling

Parameterized dataflow modeling is a technique that can be applied to all dataflow models
with deterministic token rates, in particular to SDF and CSDF [BB02]. It consists of
creating a hierarchical view of the algorithm whose subsystems are then composed of 3
graphs:

� the body graph φb: this is the effective dataflow sub-graph. Its productions and
consumptions depend on certain parameters. These parameters are called topology
parameters because they affect the topology of the body graph. The behavior of the
actors (not expressed in the coordination language) depends on parameters that will
be called actor parameters.

� the init graph φi: this graph is launched one time only when a subsystem interface
is reached, i.e. once per invocation of the subsystem. It performs a reconfiguration
of the subsystem, setting parameters that will be common to all φb firings during
the invocation. φi does not consume any data token.

� the subInit graph φs: it is launched one time before each body graph firing and also
sets parameters. φs can consume data tokens.

56 Dataflow Model of Computation

Parameterized dataflow modeling is generally applied to SDF graphs. In this case, it is
called PSDF for Parameterized Synchronous Dataflow. A complete description of PSDF
can be found in [BB01]; only the properties of interest to LTE are studied here. Figure
3.7 shows a small PSDF top graph G with three actors A, B, and C. A and B are atomic
SDF actors, i.e. they contain no hierarchical subsystem. C contains a PSDF sub-graph
with one topology parameter r and two actor parameters p and q. A compressed view of
a single-core schedule for G is also displayed in the Figure. The internal schedule of φb is
not shown because this schedule depends on the topology parameter r alone.

φs(r)

φi r

q
1

C(p)
r 2

D(p)

E

F(q)
2 r

2 1 2
1

p

1

φb

A C

B

5 1

5
1

C

parameters

=> single-core schedule:

ABφi(5(φsφb)

Figure 3.7: PSDF Example

PSDF can also be seen as a dynamic extension of SDF because token productions
and consumptions depend on topology parameters that can vary at run-time. The PSDF
parameter values must be restricted to a domain (a set of possible values) to ensure that
the graph can be executed with a bounded memory. The set of the graph G parameter
domains is written DOMAIN(G). Similarly, the token rate at each actor port is limited to
a maximum token transfer function and the delays on each edge are limited to a maximum
delay value.

The most interesting property of PSDF is that its hierarchical form enables the compile-
time study of local synchrony

¯
in the subsystem [BB01]. Local synchrony ensures that each

local synchronous subsystem of a PSDF graph can be scheduled in SDF fashion: either
switching between pre-computed SDF schedules or scheduling at run-time. For a given set
of parameters values C, the graph instanceG(C) is locally synchronous if:

1. instanceG(C) is consistent (consistency is defined in Section 3.2) and deadlock-free,

2. the maximum token transfer function and maximum delay value are respected,

3. each subsystem in instanceG(C) is locally synchronous.

G is locally synchronous (independent of its parameter values) if:

1. φb, φi and φs are locally synchronous for a given parameter value set C ⊂ DOMAIN(G),

2. φi and φs produce one parameter token per firing,

3. the number of dataflow input tokens of φs is independent of the general dataflow
input of the subsystem,

4. the productions and consumptions at interfaces of φb do not depend on parameters
configured in φs.

Dataflow Hierarchical Extensions 57

If G is locally synchronous, a local SDF schedule can be computed at run-time to
execute the graph. Though φi and φs can set both topology and actor parameters, general
practice is for φs to only change actor parameters so identical firings of φb occur for each
subsystem invocation. When this condition is satisfied, a local SDF schedule only needs
to be computed once after φi is executed. Otherwise, the local SDF schedule needs to be
computed after each φs firing.

In this LTE study, Parameterized CSDF is also of interest; this is equivalent to PSDF
except the parameters are not only scalars but can be patterns of scalars similar to the
CSDF model. For this thesis, the PDSF init and the PSDF sub-init graphs employed are
degenerated graphs containing only a single actor and do not consume or produce any data
tokens. They are thus represented by a simple rectangle illustrating the actor execution
(Chapter 8).

3.4.2 Interface-Based Hierarchical Dataflow

Interface-Based Hierarchical Dataflow Modeling is introduced by Piat, et al. in [PBR09]
and [PBPR09]. Like Parameterized Dataflow Modeling, it may be seen as a meta-model
that can be applied to several deterministic models. The objective of Interface-Based
Hierarchical Dataflow Modeling is to allow a high-level dataflow graph description of an
application, composed of sub-graphs. If an interface is not created to insulate the upper
graph from its sub-graphs, the actor repetitions of sub-graphs can result in the actor
repetitions of the upper graph appearing illogical to the programmer. The Interface-
Based Hierarchical Dataflow Modeling has been described in combination with SDF in the
so-called Interface-Based Hierarchical SDF or IBSDF. The model obtained encapsulates
sub-graphs and protects upper graphs. Encapsulation is a very important model property;
it enables the combination of semiconductor intellectual property cores (commonly called
IPs) in electronic design and is the foundation of object oriented software programming.

The operation of hierarchy flattening consists of including a sub-graph within its par-
ent graph while maintaining the general system behavior. Figure 3.8(a) shows an example
of a SDF graph with a hierarchical actor of which the programmer will probably want
the sub-graph to be repeated three times. Yet, the sub-graph behavior results in a very
different flattened graph, repeating the actor A from the upper graph. Figure 3.8(b) illus-
trates the same example described in as a IBSDF graph. Source and sink interfaces have
been introduced. The resulting flattened graph shape is more intuitive. The additional
broadcast actors have a circular buffering behavior: as each input is smaller in size than
the sum of their outputs, they duplicate each input token in their output edges.

A B C
3 1 1 3

D E
1 2 11

CE
E

E

D
D

D

D
D

D

A
A

(a) Hierarchical SDF Example Flattening

A B C
3 1 1 3

D E
1 2 11

CE
E

E

D
D

D

D
D

D

src snk

b

b

b

A

1

1

1

1
1

1
1

1
1

(b) IBSDF Example Graph Flattening

Figure 3.8: Comparing Direct Hierarchical SDF with IBSDF

Compared with other SDF actors, the IBSDF interfaces have specific behavior. They
are designed to constitute code closures (i.e. semantic boundaries). The IBSDF type of

58 Dataflow Model of Computation

hierarchy is closer to host language semantics such as C, Java and Verilog. The additional
features have been shown to introduce no deadlock [PBPR09].

A Source node is a bounded source of tokens which represents the tokens available for
a sub-graph iteration. This node acts as an interface to the outside world. A source port
is defined by the four following rules:

1. Source production homogeneity: A source node Source produces the same
amount of tokens on all its outgoing connections p(e) = n ∀e ∈ {Source(e) =
Source}.

2. Interface Scope: The source node remains write-locked during an iteration of the
sub-graph. This means that the interface cannot be externally filled during the
sub-graph execution.

3. Interface boundedness: A source node cannot be repeated, thus any node con-
suming more tokens than available from the node will consume the same tokens
multiple times (i.e. circular buffer). c(e)%p(e) = 0 ∀e ∈ {source(e) = source}.

4. SDF consistency: All the tokens available from a source node must be consumed
during an iteration of the sub-graph.

A sink node is a bounded sink of tokens that represent the tokens to be produced by
one iteration of the sub-graph. This node behaves as an external interface. A sink node
is defined by the four following rules:

1. Sink producer uniqueness: A sink node Sink only has one incoming connection.

2. Interface Scope: The sink node remains read-locked during an iteration of the sub-
graph. This means that the interface cannot be externally read during the sub-graph
execution.

3. Interface boundedness: A sink node cannot be repeated, thus any node producing
more tokens than needed will write the same tokens multiple times (i.e. ring buffer).
p(e)%c(e) = 0 ∀e ∈ {target(e) = Sink}.

4. SDF consistency: All tokens consumed by a sink node must be produced during
an iteration of the sub-graph.

A B
3 1 1

snk
1

A

B11

1

snk

B2

B3

11
1

1
1 1

1

Figure 3.9: IBSDF Sub-Graph Example and Its Single Rate Equivalent

Source and sink nodes cannot be repeated, providing a fixed reference interface to
combine these nodes in an upper level graph. A source node, behaving as a circular
buffer, sends the same tokens to its graph possibly several times. A sink node, behaving
as a circular buffer, stores the last tokens received from its graph. Figure 3.9 shows an
example of an IBSDF graph and its single rate equivalent. IBSDF has an extremely
important property: an IBSDF graph is schedulable if and only if its constituent SDF

Dataflow Hierarchical Extensions 59

sub-graphs are schedulable [PBR09]. Moreover, the interfaces do not influence SDF sub-
graph schedulability. Independently applying the SDF BRV calculation to each algorithm
part with complexity O(|V |2|E|) presented in Section 3.2 makes the overall calculation
much faster.

In this thesis, IBSDF is the model chosen to describe LTE algorithms for rapid proto-
typing. Several features have been added for the use of IBSDF in PREESM to enhance
expressivity and ease code generation. The final model is presented in section 6.2.1.

While chapters 2 and 3 introduced the target application of this study and the MoCs
available to model it, chapter 4 will detail the process of rapid prototyping, which will be
applied to LTE in the following chapters.

60 Dataflow Model of Computation

CHAPTER 4

Rapid Prototyping and Programming Multi-core Architectures

4.1 Introduction

This chapter gives an over view of the existing work on rapid prototyping and multi-core
deployment in the signal processing world. The concept of rapid prototyping was intro-
duced in Figure 1.2 when outlining the structure of this thesis. It consists of automatically
generating a system simulation or a system prototype from quickly constructed models.
Rapid prototyping may be used for several purposes; this study uses it to manage the par-
allelism of DSP architectures. Parallelism must be handled differently for the macroscopic
or microscopic views of a system. The notions that are developed in this section will be
used to study LTE in Part II. Section 4.2 gives an insight into embedded heterogeneous
architectures. Section 4.3 is an overview of the multi-core programming techniques and
Section 4.4 focuses on the internal mechanism of multi-core scheduling. Finally, Section
4.5 presents some results from the literature on automatic code generation.

4.1.1 The Middle-Grain Parallelism Level

The rapid prototyping and programming method focuses on particular classes of algorithms
and architecture, and a certain degree of parallelism. This study targets signal processing
applications running on multi-core heterogeneous systems and the objective is to exploit
their middle-grain parallelism. These terms are defined in next sections.

The problem of parallel execution is complex and analysis is aided if it is broken
down into sub-problems. An application does not behave similarly at system-level or low-
level. Three levels of granularity are usually evoked in literature and concurrency can
be exploited at each of these three levels: Instruction-Level Parallelism (ILP), Thread-
Level Parallelism (ThLP) and Task-Level Parallelism (TLP). An instruction is a single
operation of a processor defined by its Instruction Set Architecture (ISA). The term task
is used here in the general sense of program parts that share no or little information with
each other. Tasks can contain several threads that can run concurrently but have data
or control dependencies. The three levels of granularity are used to specify parallelism in
a hierarchical way. Table 4.1 illustrates the current practices in parallelism extraction of
applications.

The Task Level Parallelism concerns loosely coupled processes with few depen-

62 Rapid Prototyping and Programming Multi-core Architectures

Table 4.1: The Levels of Parallelism and their Present Use

Parallelism
Level

Target Architectures Source Code Parallelism Extrac-
tion

Instruction-
Level

SIMD or VLIW Ar-
chitectures

Imperative or func-
tional programming
languages (C, C++,
Java...)

Parallel optimiza-
tions of a sequential
code by the language
compiler

Thread
Level

Multi-core architec-
ture with multi-core
RTOS

Multi-threaded pro-
grams, parallel lan-
guage extensions...

Compile-time or
run-time partition-
ing and scheduling
under data and
control dependency
constraints

Task Level Multi-core architec-
ture with or without
multi-core RTOS

Loosely-coupled pro-
cesses from any lan-
guage

Compile-time or
Run-time partition-
ing and scheduling

dencies. Processes are usually fairly easy to execute in parallel. Processes can either be
assigned to a core manually or by a Real-Time Operating System (RTOS). The few shared
resources can usually be efficiently protected manually.

The Instruction-Level Parallelism has been subject of many studies in the 1990s
and 2000s and effective results have been obtained, either executing the same operation
simultaneously (Single Instruction Multiple Data or SIMD) or even different independent
operations simultaneously (Very Long Instruction Word or VLIW [DSTW96]) on several
data sets. Instruction-Level Parallelism can now be extracted automatically by compilers
from sequential code, for instance written in C, C++ or Java. The most famous SIMD
instruction set extensions are certainly the MMX and Streaming SIMD Extensions (SSE)
x86. The Texas Instruments c64x and c64x+ Digital Signal Processor (DSP) cores have
VLIW capabilities with 8 parallel execution units (Section 5.1.1). There is a natural limit
to such parallelism due to dependencies between successive instructions. Core instruction
pipelines complete the SIMD and VLIW parallelism, executing simultaneously different
steps of several instructions. Instruction-level parallelizing and pipelining are now at
this limit and it is now the middle-grain parallel parallelism functions with some data
dependency that need further study: the Thread-Level Parallelism (ThLP).

Thread Level Parallelism is still imperfectly performed and multi-threading pro-
gramming may not be a sustainable solution, due to its non-predictability in many cases,
its limited scalability and its difficult debugging [Lee06].Yet, ThLP is the most important
level for parallelizing dataflow applications on the current multi-core architectures includ-
ing a small number of operators because ThLP usually contains much parallelism with
reduced control, i.e. “stable” parallelism. The term operator will be used to designate
both software cores and hardware Intellectual Properties (IP), the latter being dedicated
to one type of processing (image processing, Fourier transforms, channel coding...). In
past decades, the studies on operating systems have focused on the opposite of thread
parallelization: the execution of concurrent threads on sequential machines, respecting
certain time constraints. The concept of thread was invented for such studies and may
not be suited for parallel machines. The solution to the parallel thread execution problem
possibly lies in code generation from dataflow models. Using dataflow models, threads

Modeling Multi-Core Heterogeneous Architectures 63

are replaced by actors that have no side effects, are purely functional and communicate
through well defined data channels [LP95]. A side effect is a modification of a thread state
by another thread due to shared memory modifications. Using actors, thread-Level paral-
lelism then becomes Actor Level Parallelism (ALP); the general problem of managing
parallelism at ThLP and ALP will be called middle-grain parallelism.

While task and instruction parallelism levels are already managed efficiently in prod-
ucts, middle-grain parallelism level is still mostly at a research phase. The PREESM
framework aims to provide a method for an efficient and automatic middle-grain paral-
lelization.

4.2 Modeling Multi-Core Heterogeneous Architectures

4.2.1 Understanding Multi-Core Heterogeneous Real-Time Embedded
DSP MPSoC

The target hardware architectures of this thesis are associated with a great number of
names and adjectives. These terms need definitions:

� DSP can refer to both Digital Signal Processing and Digital Signal Processor. In this
thesis, DSP is used to refer to Digital Signal Processors, i.e. processors optimized to
efficiently compute digital signal processing tasks.

� An embedded system is a calculator contained in a larger system embedded into
the environment it controls. Real-time embedded systems include mobile phones,
multimedia set-top boxes, skyrocket and, of interest in this thesis, wireless commu-
nication base stations. Only systems with very strict constraints on power consump-
tion will be considered; this does not include hardware architectures consuming tens
or hundreds of Watts such as Graphical Processing Units (GPU) or general purpose
processors. The study concentrates on Digital Signal Processors (DSP), which are
well suited for real-time embedded signal processing systems.

� A real-time system must respect the time constraints defined by the running
application and produce output data at the exact time the environment requires it.
Real-time systems include video or audio decoding for display, machine-tool control,
and so on.

� Multi-Core is a generic term for any system with several processor cores able to
concurrently execute programs with Middle-grain or Task-Level Parallelism.

� Heterogeneous refers to the existence of different types of operators within the
system. It can also refer to the non-symmetrical access to resources, media with
differing performances or cores with different clock speeds.

� A Multi-Processor System-on-Chip or MPSoC is a term widely used to designate
a multi-core system embedded in a single chip.

In general, modern multi-core embedded applications are manually programmed, us-
ing C or C++ sequential code, and optimized using assembly code. Manual multi-core
programming is a complex, error-prone and slow activity. The International Technology
Roadmap for Semiconductors (ITRS) evaluates that embedded software productivity dou-
bles every five years; this is a much slower growth than that of processor capabilities.
ITRS predicts the cost of embedded software will increase until 2012 where it will reach

64 Rapid Prototyping and Programming Multi-core Architectures

three times the total cost of embedded hardware development. At that time, parallel de-
velopment tools are predicted to reduce software development costs drastically [fS09]. The
goal of this study is to contribute to this evolution.

Today, Multi-core digital signal operators, including up to several DSPs, face a choice.
They may choose to use a small number of complex cores or to use many simple ones.
The more cores are involved, the more complex the problem of exploiting them correctly
becomes. With a few exceptions, the present trend in powerful digital signal process-
ing architectures is to embed a small number of complex processor cores on one die
[KAG+09]. Software-defined radio, where signal processing algorithms are expressed in
software rather than in hardware, is now widely used for embedded systems including
base stations. However, certain repetitive compute-hungry functionalities can make a
totally software-defined system suboptimal. Hardware accelerators, also known as copro-
cessors, can process compute-hungry functionalities in a power-efficient way. They cost
programming flexibility but increase the system power efficiency. The current work studies
heterogeneous multi-core and multi-processor architectures with a few (or a few tens) com-
plex DSP cores associated with a small number of hardware coprocessors. Architectures
with more than a few tens of operators are (currently) called “many-core”.

In following sections, the term multi-core system is used for the very general case of
either one processor with several cores or several interconnected processors. The next
section explores architecture modeling for such systems.

4.2.2 Literature on Architecture Modeling

Today, processor cores are still based on the Von Neumann model created in 1946,
as illustrated in Figure 4.1. It consists of a memory containing data and programs, an
Arithmetic and Logic Unit (ALU) that processes data, input and output units that com-
municate externally, and a control unit that drives the ALU and manages the program.
Externally, this micro-architecture can be seen as a black box implementing an Instruc-
tion Set Architecture (ISA), writing/reading external memory and sending/receiving
messages. Such an entity is called an operator. An operator can have an ISA so restricted
that it is no longer considered to a processor core but a coprocessor dedicated to one or a
few tasks.

Control Unit

ALUInput Unit Output Unit

Memory Unit

Instruction Set Architecture
Von Neumann
Architecture

Operator

Figure 4.1: The Von Neumann Architecture of an Operator

The literature on architecture models is less extensive than that of algorithm models.
The majority of the literature focuses on classifying architectures, and associating specific
architectures to categories. Processors have been split between Complex Instruction Set
Computer (CISC) and Reduced Instruction Set Computer (RISC) depending on their in-
struction set complexity [Hea95]. The limit between CISC and RISC machines is generally
unclear. Many instruction sets exist, each with its own tradeoff between core clock speed
and advanced instruction capabilities. Tensilica [Ten] is a company known for tools capa-

Multi-core Programming 65

ble of generating DSP cores with customizable ISA. Thus, CISC or RISC may no longer
be a valid criterion to define a processor.

The Flynn taxonomy [Fly72] has introduced four categories of machines classified de-
pending on their instruction and/or data parallelism at a given time: Single Instruction
Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction Single
Data (MISD) and Multiple Instruction Multiple Data (MIMD). MIMD machines, requir-
ing many control information at each clock cycle, have been implemented using Very Long
Instruction Words (VLIW). MIMD systems have a sub-classification [BEPT00] based on
their memory architecture types, splitting MIMD machines into 3 categories:

� A Uniform Memory Access (UMA) machine has a memory common to all its
operators which is accessed at the same speed with the same reliability. This shared
memory is likely to become the bottleneck of the architecture; two solutions can
increase the access speed: it may be divided into banks attributed to a specific
operator in a given time slot or it may be accessed via a hierarchical cache.

� A Non Uniform Memory Access (NUMA) machine has a memory common to
all its operators but access speed to this memory is heterogeneous. Some operators
have slower access speeds than others.

� A NO Remote Memory Access (NORMA) machine does not have a shared mem-
ory. Operators must communicate via messages. NORMA architecture is usually
called distributed architecture because no centralized memory entity exists.

In Chapter 5, a new system-level architecture model is introduced. Architecture models
exist in the literature but they were not suited to model target architectures for rapid pro-
totyping. The SystemC language [sys] and its Transaction Level Modeling (TLM) is a set
of C++ templates that offers an efficient standardized way to model hardware behavior.
Its focus is primarily the study and debugging of the hardware and software function-
alities before the hardware is available. It defines abstract modules that a programmer
can customize to its needs. For this rapid prototyping study, more precise semantics of
architecture element behaviors are needed than those defined in SystemC TLM. Another
example of language targeting hardware simulation is a language created by the Society
of Automotive Engineers (SAE) and named Architecture Analysis and Design Language
(AADL [FGHI06]). The architecture part of this language is limited to the three nodes:
processor, memory and bus. Processes and threads can be mapped onto the processors.
This model is not adaptable to the study presented here because it focuses on impera-
tive software containing preemptive threads and the architecture nodes are insufficient to
model the target architectures with Direct Memory Accesses (DMA) and switches (Section
5.1.1).

In next section, existing work on multi-core programming is presented.

4.3 Multi-core Programming

4.3.1 Middle-Grain Parallelization Techniques

Middle-grain parallelization consists of four phases: extraction, assignment, ordering
and timing. Parallel actors must be extracted from the source code or model and all
their dependencies must be known. Parallel actors are then assigned (or mapped) to
operators available in the target architecture. Their execution on operators must also be

66 Rapid Prototyping and Programming Multi-core Architectures

Sources

Actor1 Actor2
Actor3 Actor4

Core1 Core2

Actor1 Actor2
Actor3 Actor4

Core1 Core2

Time

3 2

1
4

Core1 Core2

Actor1 Actor2
Actor3 Actor4

2
1

1
2

Parallel Regions

Tim
ing

E
xtraction

A
ssignm

ent

O
rdering

Figure 4.2: The Four Phases of Middle-Grain Parallelization: Extraction, Assignment, Ordering
and Timing

ordered (or scheduled) because usually, there are fewer operators than actors. Finally, a
start time for the execution of each actor must be chosen. The four tasks of extraction,
assignment, ordering and timing, are illustrated in Figure 4.2. Graham showed in the
1960s that relaxing certain constraints in a parallel system with dependencies can lead
to worsened performance when using a local mapping and scheduling approach [Gra66],
making middle-grain parallelism extraction a particularly complex task.

In [POH09], Park, et al. divide the current embedded system design methods into
4 categories based on their input algorithm description. All four methods focus on the
middle-grain parallelism level:

� Compiler-based design methods extract middle-grain parallel actors from sequen-
tial code such as C-code, and map actors on different operators to enable their parallel
execution. The method is analogous to that broadly adopted for the Instruction-
Level. The obvious advantage of this method is the automatic parallelization of
legacy code and, for an efficient compiler, no further effort is required from soft-
ware engineers to translate their code. The key issue in the complex operation of
parallelism extraction is to find middle-grain actors, coarse-grained enough to group
data transfers efficiently and fine-grained enough to enable high parallelism. Us-
ing imperative and sequential code as an input, these methods are very unlikely to
exploit all the algorithm potential parallelism. An example of a compiler implement-
ing compiler-based method is the MPSoC Application Programming Studio (MAPS)
from Aachen RWTH University [CCS+08] which generates multi-threaded C code
from sequential C code and parallelizes these threads.

� Language-extension design methods consist of adding information to a sequen-
tial language that eases parallel actors’ extraction. With Open Multiprocessing
(OpenMP [opeb]) for instance, a programmer can annotate C, C++ or Fortran
code and indicate where he wants parallelism to be extracted. The CILK language
[BJK+95] from the Massachusetts Institute of Technology is another example of such
a technology adapted to C++. The compiler automates the mapping and transfers
of parallel actors. OpenMP is already supported by the majority of the C, C++ and
Fortran compilers. It was developed for Symmetric Multi-Processor (SMP) archi-
tectures and is likely to offer sub-optimal solutions for heterogeneous architectures.
Other language extensions for parallelism that exist are less automated: Message
Passing Interface (MPI), OpenCL [opea] or the Multicore Association API [mca]
which offers APIs for manual multi-core message passing or buffer sharing.

� Platform-based methods actually refers to a single solution based on a Common
Intermediate Code (CIC) [KKJ+08], equivalent to a compiler Intermediate Repre-
sentation (IR) with parallelism expressivity. It is intended to create an abstraction
of the platform architecture to the compiler front-end that extracts parallelism.

Multi-core Programming 67

� Model of Computation (MoC)-based design methods describe high-level appli-
cation behavior with simple models. While compilation-based parallelization appeals
to programmers because they can almost seamlessly reuse their huge amount of ex-
isting sequential code (generally in C or C++), MoC-based design methods bring
several advantages compared with previous methods. They are aimed at expressing
high-level algorithm descriptions into simple textual files or graph-based Graphical
User Interfaces. MoC-based methods have three great advantages. Firstly, paral-
lelism is naturally expressed by a graph. An extraction with a compilation algorithm
will always under-performing on certain cases. The first step of Figure 4.2 becomes
straightforward. Secondly, certain rules of a model-based design (such as schedu-
lability) can be verified at compile-time and correct-by-construction high-level code
may be generated. Thirdly, the transaction-level form of dataflow graphs can en-
able co-simulation of entities of different forms. This is why the Transaction-Level
Modeling (TLM [Ghe06]) of SystemC is based on a dataflow MoC. Hardware-defined
modules can be interconnected with software-defined modules.

As explained in Chapter 3, dataflow MoCs have been chosen to represent algorithms
in the development of the rapid prototyping method and the prototyping framework
PREESM.

4.3.2 PREESM Among Multi-core Programming Tools

There exist numerous solutions to partition algorithms onto multi-core architectures. If
the target architecture is homogeneous, several solutions will generate multi-core code
from C with additional information (OpenMP [opeb], CILK [BJK+95]). In the case of
heterogeneous architectures, languages such as OpenCL [opea] and the Multicore Associ-
ation Application Programming Interface (MCAPI [mca]) define ways to express parallel
properties of a code. However, they are not currently linked to efficient compilers and
run-time environments. Moreover, compilers for such languages would have difficulty in
extracting and solving the bottlenecks inherent to graph descriptions of the architecture
and the algorithm. A bottleneck is a feature limiting the system performance.

The Poly-Mapper tool from PolyCore Software [pol] offers functionalities similar to
PREESM but, in contrast to PREESM, has manual mapping/scheduling. Ptolemy II
[Lee01] is a simulation tool that supports many computational models. However, it has no
automatic mapping and its current code generation for embedded systems is focused on
single-core targets. Another family of frameworks existing for dataflow based programming
is based on CAL [EJ03] language and it includes OpenDF [BBE+08]. OpenDF employs
a more dynamic model than PREESM but its related code generation does not currently
support multi-core embedded systems.

Closer in principle to PREESM are the Model Integrated Computing (MIC [KSLB03]),
the Open Tool Integration Environment (OTIE [Bel06]), the Synchronous Distributed
Executives (SynDEx [GLS99]), the Dataflow Interchange Format (DIF [HKK+04]), and
SDF for Free (SDF3 [Stu07]). Both MIC and OTIE cannot be found on internet. According
to the literature, MIC focuses on the transformation between algorithm domain-specific
models and meta-models while OTIE defines a single system description that can be used
during the whole signal processing design cycle.

DIF is designed as an extensible repository of representation, analysis, transformation
and scheduling of dataflow language. DIF is a Java library which allows the user to go from
graph specification using the DIF language to C code generation. However, the IBSDF
model (Section 3.4.2) as used in PREESM is not available in DIF.

68 Rapid Prototyping and Programming Multi-core Architectures

Table 4.2: Scheduling strategies

assignment ordering timing

fully dynamic run run run

static-assignment compile run run

self-timed compile compile run

fully static compile compile compile

SDF3 is an open source tool implementing certain dataflow models and providing
analysis, transformation, visualization, and manual scheduling as a C++ library. SDF3
implements the Scenario Aware Dataflow (SADF [The07]), and provides a Multi-Processor
System-on-Chip (MP-SoC) binding/scheduling algorithm to output as MP-SoC configu-
ration files.

SynDEx and PREESM are both based on the AAM methodology [GS03] but these
tools do not possess the same features. SynDEx is not open source, has a unique Model
of Computation that does not support schedulability analysis and the function of code
generation is possible but not provided with the tool. Moreover, the architecture model
of SynDEx is at too high a level to account for bus contentions and DMA used in modern
chips (multi-core processors of MP-SoC) in mapping/scheduling.

The features that differentiate PREESM from the related works and similar tools are :

� The tool is open source and accessible online,

� The algorithm description is based on a single well-known and predictable model of
computation,

� The scheduling is totally automatic,

� The functional code for heterogeneous multi-core embedded systems can be generated
automatically,

� The IBSDF algorithm model provides a helpful hierarchical encapsulation thus sim-
plifying the scheduling [PBPR09].

The rapid prototyping method used in this study and the PREESM tool have a multi-
core scheduler as the central feature. The multi-core scheduling techniques proposed in this
study are based on well-known algorithms from the literature presented in next section.

4.4 Multi-core Scheduling

4.4.1 Multi-core Scheduling Strategies

In [Lee89], Lee develops a taxonomy of scheduling algorithms that distinguishes run-time
and compile-time scheduling steps. The choice of the scheduling steps executed at compile-
time and the ones executed at run-time is called a scheduling strategy. The taxonomy of
scheduling strategies is summarized in Table 4.2. These strategies are displayed on the
left-hand side column and are ordered from the most dynamic to the most static.

The principle in [Lee89] is that a maximal number of operation should be executed at
compile time because it reduces the execution overhead due to run-time scheduling. For
a given algorithm, the lowest possible scheduling strategy in the table that enables suited
schedules should thus be used.

Multi-core Scheduling 69

The fully static strategy is based on the idea that the exact actor relations and execu-
tion times are known at compile-time. When this is the case, the operators do not need
to be synchronized at run-time, they only need to produce and consume their data at the
right moment in the cycle. However, the modern DSP architectures with caches and RTOS
that manipulate threads do not qualify for this type of strategy. The self-timed strategy
which still assigns and orders at compile-time but synchronizes the operators is well suited
to execute a SDF graph on DSP architecture. This strategy has been the subject of much
study in [SB09] and will be used in Chapter 8. The static assignment strategy consists
of only selecting the assignment at compile time and delegating the task to order and fire
actors to a RTOS on each core. This method is quite natural to understand because the
RTOS on each core can exploit decades of research on efficient run-time single-core thread
scheduling. Finally, the fully dynamic strategy makes all choices at run-time. Being very
costly, fully dynamic schedulers usually employ very simple and sub-optimal heuristics.
In Section 8.3, a technique implementing a fully dynamic strategy and named adaptive
scheduling is introduced. Adaptive scheduling schedules efficiently the highly variable
algorithms of LTE.

The scheduling techniques for multi-core code generation most applicable for LTE
physical layer algorithms are the self-timed and adaptive scheduling ones. [Lee89] claims
that self-timed techniques are the most attractive software scheduling techniques in terms
of tradeoff between scheduling overhead and run-time performance but the highly variable
behavior of the LTE uplink and downlink algorithms compels the system designer to
develop adaptive technique(Chapter 8).

4.4.2 Scheduling an Application under Constraints

Using directed acyclic dataflow graphs as inputs, many studies have focused on the opti-
mization of an application behavior on multi-core architectures. The main asset of these
studies is the focus they can give on the middle-grain behavior of an algorithm. They
naturally ignore the details of the instructions execution and deal with the correct parti-
tioning of data-driven applications. Concurrent system scheduling is a very old problem.
It has been extensively used, for example, to organize team projects or distributing tasks
in factories.

A model of the execution must be defined to simulate it while making assignment
and ordering choices. In this study, an actor or a transfer fires as soon as its input data
is available. This execution scheme corresponds to a self-timed schedule (Section 4.4.1)
[SB09]. Other execution schemes can be defined, for instance triggering actors only at
periodic clock ticks. A self-timed multi-core schedule execution can be represented by a
Gantt chart such as the one in Figure 4.3. This schedule results from the scheduling of
the given algorithm, architecture and scenario.

The scenario will be detailed in Chapter 6 and the architecture model in Chapter 5.
The next section explains scheduling techniques.

Multi-core scheduling under constraints is a complex operation. This problem has been
proven to be in the NP-complete (Non-deterministic Polynomial-time-complete) complex-
ity class [Bru07]. Many “useful” problems are NP-complete and [GJ90] references many
of them. The properties of NP-complete problems are that:

1. the verification that a possible solution of the problem is valid can be computed in
polynomial time. In the scheduling case, verifying that a schedule is valid can be
done in polynomial time [CLRS01].

70 Rapid Prototyping and Programming Multi-core Architectures

a
DSP1
DSP2
DSP3

b

c

d

e

3 byte

a b
c

d

e

0 10 20

Response time = 16

PE1

DMA2

PE2

PE3

speed=1type=defP

type=defP

type=defP
2 byte

3 byte

2 byte

CN1

CN1

(b,defP=8))
(a,defP=3))

(d,defP=5))
(c,defP=5))

(e,defP=5))

byte=1mem unit

Algorithm
Architecture

Scenario Schedule

Figure 4.3: Example of a schedule Gantt chart

2. an NP-complete problem can be “converted” into any other NP-complete problem in
polynomial time. This means that solving one NP-complete problem in polynomial
time would result in solving them all in polynomial time,

3. unfortunately, no polynomial time algorithm for NP-complete problems is known
and it is likely that none exists.

Proving that a problem is NP-complete consists in finding a polynomial transformation
from the considered problem to a known NP-complete problem. An example of such a
polynomial transformation is given in [SB09] p.49. The multi-core scheduling problem
is NP-complete, so heuristics must be found that offer a tradeoff between computational
time and optimality of results.

4.4.3 Existing Work on Scheduling Heuristics

The literature on multi-core scheduling is extensive. In [Bru07], Brucker gives a large
overview of scheduling algorithms in many domains.

Assignment, ordering and timing can be executed either at compile-time or at run-
time, defining a scheduling strategy. In his PhD thesis [Kwo97], Kwok gives an overview
of the existing work on multi-core compile-time scheduling and puts forward three low
complexity algorithms that he tested over random graphs with high complexity (in the
order of 1000 to 10000 actors). In this PhD, the objective function is always the latency
of one graph iteration.

Multi-core scheduling heuristics can be divided into three categories depending on their
target architecture:

1. Unbounded Number Of Clusters (UNC) heuristics consider architectures with
infinite parallelism, totally connected and without transfer contention.

2. Bounded Number of Processors (BNP) heuristics consider architectures with a
limited number of operators, totally connected and without transfer contention.

3. Arbitrary Processor Network (APN) heuristics consider architectures with a
limited number of operators, not totally connected and with transfer contention.

From the first UNC heuristic by Hu in 1961 [Hu61], many heuristics have been designed
to solve the BNP and then the APN generic problems. The architecture model of the
APN is the most precise one. This category needs to be addressed because modeled
heterogeneous architectures are not totally connected.

Most of the heuristics enter in the BNP static list scheduling category. A static list
scheduling takes as inputs:

Multi-core Scheduling 71

� A DAG G = (V,E),

� an execution time for each vertex v in V which is the same on every operator because
each is homogeneous,

� a transfer time for each edge e in E which is the same between any two operators
because they are totally connected with perfectly parallel media,

� a number of operators P .

a 5

1

5

5

4

1

2

1

b

c

d

e

f

g

h

j

(8)

(5)

(5)
(5)

3

2

3
2

(3)

(5)

(8)

(5)

(3)

i
(10)

1

Actor
a
b
c
d
e
f
g
h
i
j

t-level
0
6
5
6
5
18
15
12
11
28

b-level
31
25
23
24
16
9
16
13
10
3

CP Length = 31

Figure 4.4: T-Level and B-Level of a Timed Directed Acyclic Graph

For each actor in the DAG (Section 3.2), timings can be computed that feed the
scheduling process. DAG timings are displayed in Figure 4.4; they include:

1. The t-level or ASAP (As Soon As Possible) starting time of an actor v is the time
of the longest path from an entry actor to v. It represents the earliest execution time
of v if no assignment and ordering constraint delays v.

2. The b-level of v is the time of the longest path from v to an exit actor (including
the duration of v).

The Critical Path (CP) is the longest path between an entry actor and an exit actor in
the DAG (Section 3.2.3) considering actor and edge durations. In Figure 4.4, the critical
path is shown with larger lines. Timing a whole graph has a complexity O(|E| + |V |)
because each actor and edge must be scanned once (forward for t-level and backward for
b-level).

A static list scheduling heuristic consists of three steps:

1. Find a DAG topological order. A topological order is a linear ordering of the
vertices of the DAG G = (V,E) such that if there is a directed edge between two
actors u and v, u appears before v [Sin07]. In [Mu09], Mu gives an algorithm to find
an arbitrary topological order with a complexity O(|V |+ |E|), which is the minimal
possible complexity [RvG99]. A directed graph is acyclic if and only if a topological
order of its actors exists.

2. Construct an actor list from the topological order. This step is straightforward
but necessitates a list ordering of complexity at least O(|V |.log(|V |)) [RvG99].

3. Assign and order actors in order of the actor list without questioning the previous
choices. The usual method to assign actors is to choose the operator that offers the
earliest start time and add the actor at the end of its schedule. Kwok gives such an
algorithm in [Kwo97] with a complexity O(P.(|E|+ |V |)).

72 Rapid Prototyping and Programming Multi-core Architectures

Static list scheduling heuristics are “greedy” algorithms because they make locally
optimal choice but never consider these choices within the context of the whole system.
Kwok gives an algorithm in O(|E| + |V |) to find an optimized actor list named CPN-
dominant list based on the DAG critical path. Actors are divided into three sets:

1. Critical Path Nodes (CPN) are actors that belong to the critical path. To ensure
a small latency, they must be allocated as soon as possible.

2. In-Branch Nodes (IBN) are actors that are not CPN. For each IBN v, a path
exists between v and a CPN node or between a CPN node and v. This property
means that scheduling choices of IBN nodes are likely to affect the CPN choices.
They have a medium priority while mapping.

3. Out-Branch Nodes (OBN) are the actors that are neither CPN nor IBN. Their
ordered execution on operators can also affect the execution latency but with lower
probability than CPN and IBN. They have a low priority while mapping.

In the CPN-Dominant list, CPN nodes are inserted as soon as possible and OBN as
late as possible while respecting the topological order. Figure 4.5 shows a CPN-Dominant
list and the types (CPN, IBN or OBN) of the actors. The global complexity of the static
list scheduling using a CPN-dominant list is O(|V |.log(|V |) + P.(|E|+ |V |)).

a 5

1

5

5

4

1

2

1

b

c

d

e

f

g

h

j

(8)

(5)

(5)
(5)

3

2

3
2

(3)

(5)

(8)

(5)

(3)

i
(10)

1

CPN-Dominant list:
a b g c d h f j e i

OBN
IBN
CPN Data Dependency

Critical Path

Figure 4.5: Construction of an Actor List in Topological Order

Dynamic list scheduling is another family of scheduling heuristics in which the order of
the actors in the priority list is recomputed during the ordering process. [Jan03] advises
against dynamic list scheduling heuristics because their slightly improved results compared
to static list scheduling do not justify their higher complexity.

The FAST (Fast Assignment and Scheduling of Tasks) algorithm enters in the neigh-
borhood search category. This algorithm starts from an initial solution, which it then
refines, while testing local modifications. The FAST algorithm is presented in [Kwo97] and
[KA99]. The FAST algorithm can run for an arbitrary length of time defined by user to
refine the original solution. It consists of macro-steps in which CPN nodes are randomly
selected and moved to another operator. One macro-step contains many micro-steps in
which IBN and OBN nodes are randomly picked and moved to another operator. At each
micro-step, the schedule length is evaluated and the best schedule is kept as a reference
for the next macro-step. There is hidden complexity in the micro-step because the t-level
of all the actors affected by the new assignment of an actor v must be recomputed to
evaluate the schedule length. The affected actors include all the successors of v as well
as all its followers in the schedules of its origin and target operators and their successors.
Generally, these vertices represent a substantial part of the DAG graph. One micro step
is thus always at least O(|E|+ |V |).

Generating Multi-core Executable Code 73

A Parallel FAST algorithm (or PFAST) is described in [Kwo97] and is an algorithm
which can multi-thread the FAST execution. The CPN-dominant list is divided into sub-
lists in topological order. Each thread processes the FAST on one sub-list, the results are
grouped periodically and the best scheduling is kept as a starting point for the next FAST
iteration. The PFAST heuristic is implemented in PREESM.

DSP3
DSP2
DSP1

Chromosome 1
a b g c d h f j e i

Chromosome 2
a b g c d h f j e i

a b g c d h f j e i

a b g c d h f j e i

d h f j e ia b g c

d h f j e ia b g c

Cross-over

d h f j e ia b g c d h f j e ia b g c

Mutation

Figure 4.6: Genetic Algorithm Atomic Operations: Mutation and Cross-Over

A great advantage of the FAST algorithm is that it generates many schedules over time.
A “population” of schedules can be generated by storing the N found schedules that had
the lowest latency. In the population, each schedule ordered following the CPN-Dominant
list is called a chromosome and each actor assignment is called a gene. For this initial
population, a genetic algorithm can be launched on assignments and recursively the two
operations displayed in Figure 4.6:

� A mutation randomly changes the assignment of one randomly selected actor (gene)
in the schedule (chromosome).

� A one-point cross-over mixes two chromosomes, exchanging their assignments from
the beginning to the crossover point.

After each step, which includes one mutation and one cross-over, the schedule latency
is evaluated and the best schedule is kept.

All the above techniques are BNP scheduling heuristics and do not take into account
inter-processor transfer ordering or contention between transfers sharing the same resource.
[Sin07] and [Mu09] address this problem known as edge scheduling. The edge scheduling
problem under constraints is NP complete [MKB06]. In Chapter 6, heuristics for edge
scheduling are developed within a scheduling framework. PREESM uses modified versions
of the list, FAST and genetic algorithms described above. These modified algorithms are
discussed in Chapter 6.

4.5 Generating Multi-core Executable Code

The scheduling strategy (Section 4.4.1)greatly influences how code is generated from a
scheduled graph. Two main choices exist: generating a static execution when no OS is
necessary or to rely on an OS capable of adaptive scheduling. The term “adaptive” is used
instead of “dynamic” to avoid confusion with dynamic list scheduling (Section 4.4.3).

4.5.1 Static Multi-core Code Execution

For applications that do not vary greatly from computed behavior, i.e. close estimates
of its actor timings are computable, the code may be generated following the self-timed

74 Rapid Prototyping and Programming Multi-core Architectures

scheduling strategy (Section 4.4.1). The Algorithm Architecture Matching method (AAM,
previously AAA [GLS99]) is a method which generates self-timed coordination code from
a quasi-static schedule of a dataflow graph. The MoC used is specific to the method and
can contain conditions. Linear executions on each operator are interconnected with data
transfers and synchronized with semaphores.

In [BSL97], Bhattacharyya, et al., present a self-timed code execution technique with
reduced synchronization costs for the SDF MoC. The optimization removes the synchro-
nization point and still protects data coherency when successive iterations of the graph
overlap. Synchronizations are the overhead of a self-timed execution compared to a fully-
static one. Synchronizations between the linear executions on each operator must be
minimized for the code execution performances to match the simulation Gantt chart. Ad-
ditionally, the buffer sizes are bounded to enable execution with limited FIFO sizes. Ideas
in [BSL97] are extended in [SB09].

In [BKKB02] and [MKB06], the authors add to the minimization of the inter-core syn-
chronization the idea of communication ordering. This idea, equivalent to edge scheduling
(Section 4.4.3), can greatly reduce the latency of the graph execution.

In Section 8.2, a code generation technique is developed and applied to the Random
Access Procedure part of the LTE physical layer processing.

4.5.2 Managing Application Variations

The study of LTE will show that some algorithms are highly variable over time. In
[BLMSv98], Balarin, et al. present an overview of the scheduling data problem and
control-dominated signal processing algorithms. The lack of good models for schedul-
ing adaptively algorithms when their properties vary over time is noted. [HL97] develops
quasi-static scheduling techniques which schedule dynamic graphs at compile time. Quasi-
static scheduling seeks an algorithm that enables good system parallelism in all cases of
algorithm execution.

Studies exist that schedule variable algorithms at run-time. The Canals language
[DEY+09] constitutes an interesting hierarchical dataflow approach to such run-time schedul-
ing that appears similar to the hierarchical models in the Ptolemy II rapid prototyping
tool, with each block having a scheduler [BHLM94] and a high-level scheduler invoking
the schedulers of its constituent blocks. The Canals language focuses on image processing
algorithms that can be modeled by a flow-shop problem [Bru07], i.e. several independent
jobs each composed of sequential actors. Another dataflow run-time scheduling method
that focuses on flow-shop problems is developed in [BBS09].

Section 8.3 presents an adaptive scheduler that uses a simplified version of the list
scheduling algorithm in Section 4.4.3 and solves the LTE uplink scheduling problem in
real-time on embedded platforms. In this scheduler, dataflow graphs are used as an Inter-
mediate Representation for a Just-In-Time multi-core scheduling process.

4.6 Conclusion of the Background Part

In the Introduction Chapter, Figure 1.2 illustrated how the three background chapters are
coordinated with the four contribution chapters.

The background chapters introduced three different domains necessary to understand
multi-core and dataflow-based LTE rapid prototyping. The features of the LTE standard
were detailed in Chapter 2. Chapter 3 explained the concept of dataflow Model of Com-
putation that will be used to model LTE. Finally, existing work on rapid prototyping and

Conclusion of the Background Part 75

multi-core programming were developed in Chapter 4.
In the next chapters, contributions are explained that enhance the process of rapid pro-

totyping: a new architecture model in Chapter 5, advanced rapid prototyping techniques
in Chapter 6, LTE dataflow models in Chapter 7 and LTE multi-core code generation in
Chapter 8.

76 Rapid Prototyping and Programming Multi-core Architectures

Part II

Contributions

77

CHAPTER 5

A System-Level Architecture Model

5.1 Introduction

For the LTE physical layer to be properly prototyped, the target hardware architectures
need to be specified at system-level, using a simple model focusing on architectural limita-
tions. The System-Level Architecture Model (S-LAM), which enables such specifications,
is presented in Section 5.2. Sections 5.2.4 and 5.3 explain how to compute routes between
operators from an S-LAM specification and Section 5.4 shows how transfers on these routes
are simulated. Finally, the role of the S-LAM model in the rapid prototyping process is
discussed in Section 5.5.

5.1.1 Target Architectures

It is Multi-Processor System-on-Chip (MPSoC) and boards of interconnected MPSoCs
which are the architectures of interest and will be modeled. Modeling the system-level be-
havior is intended to be highly efficient, and employs a careful tradeoff between simulation
accuracy and result precision. As the desired functionalities are generally software gener-
ation and hardware system-level simulation, the majority of the architecture details (local
caches, core micro-architectures...) are hidden from system-level study by the compiler
and libraries.

The hardware boards available for this LTE study are:

� One board containing two Texas Instruments TMS320TCI6488 processors (Figure
5.1).

� One board containing one Texas Instruments TMS320TCI6486 processor (Figure
5.3).

Both boards are based on DSP cores of type c64x+ [ins05]. A c64x+ core is a VLIW
core that can execute up to 8 instructions per clock cycle. Instructions are 32-bit or 16-bit,
implying an instruction word of up to 256 bits. The instructions themselves are SIMD:
one c64x+ core embeds two multiply units, each one with the capacity of processing four
16-bit x 16-bit Multiply-Accumulates (MAC) per clock cycle. Each core can thus execute
eight MAC per cycle.

80 A System-Level Architecture Model

L1 Data

ROM

Serial
RapidIO

EDMA 3.0 with Switched Central Resource (SCR)

DDR2
Control

DDR2
SDRAM

1G
Ethernet AIF VCP2 TCP2

Timers PLL Others

 L2 (0.5 - 1.5 MB)

C64x+ (1 GHz)

L1 Program

Semaphores

GPIO I2C McBSP

L1 Data

 L2 (0.5 - 1.5 MB)

C64x+ (1 GHz)

L1 Program

L1 Data

 L2 (0.5 - 1.5 MB)

C64x+ (1 GHz)

L1 Program

Figure 5.1: TMS320TCI6488 Functional Block Diagram

Figure 5.1 shows a block diagram of the Texas Instruments TMS320TCI6488 processor
[tms07]. For simplicity, this processor will be called tci6488. Each of the three cores of a
tci6488 is a c64x+ core clocked at 1 GHz. The cores of a tci6488 can thus execute up to
24 GMAC per second (Giga Multiply-Accumulates per second) for a power consumption
of several Watts.

No internal memory is shared by the cores. Each core has a 32 kBytes Level 1 program
memory and a 32 kBytes Level 1 data memory. A pool of 3 MBytes of Level 2 memory
can be distributed among the three cores in one of two configurations: 1 MB/1 MB/1 MB
or 0.5 MB/1 MB/1.5 MB. The cores communicate with each other and with coprocessors
and peripherals using an Enhanced Direct Memory Access named EDMA3. The EDMA3
is the only entity in the chip with access to the entire memory map. The processor uses a
DDR2 interface to connect to a Double Data Rate external RAM.

The tci6488 has many embedded peripherals and coprocessors. The Ethernet Media
Access Controller (EMAC) offers a Gigabit Ethernet access while the Antenna Interface
(AIF) provides six serial links for retrieving digital data from the antenna ports. Each link
has a data rate of up to 3.072 Gbps and is compliant with OBSAI and CPRI standards.
A standardized serial RapidIO interface can be used to connect other devices with data
rates up to 3.125 Gbps. The tci6488 has two coprocessors: the TCP2 and the VCP2
accelerate the turbo decoding and Viterbi decoding of a bit stream respectively (Chapter
2). Cores and peripherals are interconnected by the Switched Central Resource (SCR),
which is an implementation of a switch. A switch is a hardware component that connects
several components with ideally no contention. Sinnen gives three examples of switch
implementations: the crossbar, the multistage network and the tree network ([Sin07] p.18).
Each offers a different tradeoff between hardware cost and contention management.

Figure 5.2 displays a photograph of a tci6488 die. It is fabricated using a 65-nm process
technology. The internal memory, the three DSP cores, the Switched Central Resource,
the coprocessors and peripherals are all clearly marked on the figure. It may also been
seen that each c64x+ core represents only 8.5% of the chip surface area despite the fact
that it is a state-of-the-art high performance DSP core. Meanwhile, the 3 MBytes of
internal memory represent one third of the chip surface area. It may be concluded that
embedding several cores in a single DSP has significantly less impact on the chip size than
providing extended on-chip memory. However, interconnecting cores and coprocessors is
not a negligible operation: 11.5% of the surface area is dedicated to the switch fabric

Introduction 81

L2 RAM

DSP

DSP

DSP

Switch
Fabric Coprocessors

and
Peripherals

Figure 5.2: Picture of a TMS320TCI6488 Die

interconnecting the elements.

L1 Data

 L1 Program

ROM

Serial
RapidIO

L2 Shared Memory (768KB)

EDMA 3.0 with Switched Central Resource (SCR)

DDR2
Control

DDR2
SDRAM

1G
Ethernet TSIP Utopia HPI

Timers PLL Others

 L2 (608 KB)

C64x+
500 MHz

L1 Data

 L1 Program

 L2 (608 KB)

C64x+
500 MHz

L1 Data

 L1 Program

 L2 (608 KB)

C64x+
500 MHz

L1 Data

 L1 Program

 L2 (608 KB)

C64x+
500 MHz

L1 Data

 L1 Program

 L2 (608 KB)

C64x+
500 MHz

L1 Data

 L1 Program

 L2 (608 KB)

C64x+
500 MHz

GPIO I2C

Figure 5.3: TMS320TCI6486 Functional Block Diagram

Figure 5.3 is a block diagram of the internal structure of a TMS320TCI6486 processor.
For simplicity, this processor will be referred to as tci6486. This processor has six embedded
c64x+ cores clocked at 500 MHz. Like the tci6488, it can execute up to 24 GMAC per
second. The six cores share a Level 2 Memory of 768 kBytes, with each locally containing
608 kBytes of Level 2 memory. Like the tci6488 cores, each core has a 32 kBytes Level 1
program memory and a 32 kBytes Level 1 data memory. The tci6486 has, among other
peripherals, a serial RapidIO link, Gigabit Ethernet port and a controller of external DDR2
memory.

Previous paragraphs have focused on recent high performance DSP architectures tar-
geted for base station applications. However, a recent LTE study details a new multi-core
DSP architecture, which is not yet commercially named, and was introduced in [Fri10].
This architecture is specifically optimized for the LTE application. It has a clock speed of
up to 1.2 GHz and a total capability of up to 256 GMAC per second. The new DSP cores
of this chip are backward compatible with C64x+ cores and offer additional floating-point
capabilities for easier high-range computation. There is a “multi-core navigator” which is
an evolved DMA system that does not necessitate any intervention from the DSP cores

82 A System-Level Architecture Model

to queue, route and transfer data. This navigator simplifies inter-core communication in
addition to communication with coprocessors and external interfaces. A FFT coprocessor
accelerates the FFT computations which are numerous in the LTE physical layer compu-
tation. The new architecture has an on-chip hierarchical network-on-chip named TeraNet
2, offering a data rate of more than 2 Terabits per second between cores, coprocessors,
peripherals and memory. This network supports several configurations of the operators
(cores or coprocessors). The new device contains a shared memory associated with an
optimized multi-core memory controller, which is also shared.

The tci6488 and tci6486 can be analyzed using the categories defined in Section 4.2.
The tci6488 has no internal shared memory; at coarse grain, it can be considered as an
MIMD architecture of type NORMA. However, when connected to an external DDR2
memory, it becomes an UMA architecture for this memory because all cores have equal
access rights. The tci6486 with its internal shared memory is an MIMD UMA architecture.
However, only a small portion of its internal memory is shared; data locality is thus
important, even in this UMA architecture. At fine grain, the c64x+ micro-architecture of
the cores in both processors is also an MIMD architecture of type UMA. The categories
of MIMD and UMA are not sufficient to describe the system-level behavior of a processor
for a rapid prototyping tool. They can only focus on some specificities of the architecture
without including its global system-level behavior. A model based on operators and their
interconnections is necessary to study the possible parallelism of the architecture.

These parallel architectures necessitate rapid prototyping to simulate their behavior
and may benefit from automatic multi-core code generation.

5.1.2 Building a New Architecture Model

Among the objectives of this thesis is to create a graph model for hardware architectures
that represent the hardware behavior at a system-level, ignoring the details of implemen-
tation while specifying the primary properties. Such a model must be sufficiently abstract
to model new architectures including additional features without the need for specific
nodes. As the target process is rapid prototyping, the model must be simple to use and
understand and must also facilitate multi-core scheduling. Grandpierre and Sorel define in
[GS03] an architecture model for rapid system prototyping using the AAM methodology.
Their model specifies four types of vertices: operator, communicator, memory and bus. An
operator represents a processing element that can be either an IP or a processor core. A
communicator represents a Direct Memory Access (DMA) unit that can drive data trans-
fers without blocking an operator. The model is comprehensively defined in Grandpierre’s
PhD thesis ([Gra00]). A bus is a communication node for which data transfers compete.
As the original model is unable to model switches, Mu extends it in [Mu09], adding IPs
and communication nodes that model switches. Switches are bus interconnections that
(theoretically) offer perfect contention-free connections between the busses they connect.
This is a necessary addition to the model for this study, as the SCR of target processors is
a switch. In Section 5.2.3, the architecture model of [Mu09] is shown not to be sufficiently
expressive to represent the targeted architectures. It also leads to an inefficient scheduling
process.

The following sections define a new architecture model named System-Level Architec-
ture Model or S-LAM. This model is an extension of the original architecture model of
Grandpierre [GS03].

The System-Level Architecture Model 83

5.2 The System-Level Architecture Model

The simplification of the architecture description is a key argument to justify the use of a
system-level exploration tool like PREESM over the manual approach. Maintaining high
expressiveness is also important because the majority of embedded architectures are now
heterogeneous. These observations led to the System-Level Architecture Model described
in the following sections.

5.2.1 The S-LAM operators

An S-LAM description is a topology graph which defines data exchanges between the
cores of a heterogeneous architecture. Instead of “core”, the term “operator”, defined by
Grandpierre in his PhD thesis [Gra00], is used. This is due to the fact there is no difference
between a core and a coprocessor or an Intellectual Property block (IP) at system-level.
They all take input data, process it and return output data after a given time. In S-
LAM, all the processing elements are named operators and only their name and type are
provided.

Even with several clock domains, execution times must be expressed using one time unit
for the entire system. Due to the high complexity of modern cores, it is no longer possible
for the clock rate to express the time needed to execute a given actor. Consequently,
times in S-LAM are defined for each pair (actor, operatortype) in the scenario instead
of using the clock rate of each core. IPs, coprocessors and dedicated cores all have the
ability to execute a given set of actors specified in the scenario as constraints. An operator
comprises a local memory to store its processed data. Transferring data from one operator
to another operator via an interconnection effectively means transferring the data from
local memory of one operator to the other. The following sections explain how operators
may be interconnected in S-LAM.

5.2.2 Connecting operators in S-LAM

Two operators may not be connected by merely using an edge. Nodes must be also inserted
in order to provide a data rate to the interconnections. The goal of system simulation is
to identify and locate bottlenecks, i.e. the particular features that limit the system speed,
significantly increase the power consumption, augment the financial costs, and so on. S-
LAM was developed to study the particular constraint of speed; reducing this constraint
is essential for the study of LTE. Additional features may be needed to explore power
or memory consumption. The vertex and edge types in the System-Level Architecture
Model, shown in Figure 5.4, are thus:

� the parallel node models a switch with a finite data rate but a perfect capacity to
transfer data in parallel. It can be employed to model a switch. As long as a bus
does not seem to be a potential bottleneck, it may also be modeled with a parallel
node. Parallel nodes reduce simulation complexity as it eliminates the costly transfer
ordering step on this communication node,

� the contention node models a bus with finite data rate and contention awareness.
This node should be used to test architecture bottlenecks,

� the RAM models a Random Access Memory, and must be connected to a commu-
nication node. Operators read and write data through this connection. An operator
has access to a RAM if a set-up link exists between them.

84 A System-Level Architecture Model

� the DMA models a Direct Memory Access. A core can delegate the control of
communications to a DMA via a set-up link. DMA must also be connected to a
communication node. Delegating a transfer to a DMA will allow the core to process
in parallel with the transfer, after a set-up time,

� the directed (resp. undirected) link shows data to be transferred between two
components in one (respectively both) direction(s),

� the set-up link only exists between an operator and a DMA or a RAM. It allows
an operator to access a DMA or RAM resource. The set-up link to a DMA provides
the time needed for setting-up a DMA transfer.

Control Link

Set-up Link

Data Links

Undirected Link Directed Link

Processing Element

Operator

Communication Nodes

Contention NodeParallel Node

Communication Enablers

RAM DMA

Figure 5.4: The elements of S-LAM

Both parallel and contention nodes are called Communication Nodes (CN). Directed
and undirected links are both called data links. A black dot in a component in Figure
5.4 shows where contention is taken into account. Contention is expressed as sequential
behavior. An operator has contention; it cannot execute more than one actor at a time.
A contention node has contention; it cannot transfer more than one data packet at a
time. Simulating elements with contention during deployment phase is significantly time-
consuming because an ordering of their actors or transfers must be computed. A Gantt
chart of the deployment simulation of elements with contention will contain one line per
operator and one line par contention node. Connecting an operator to a given DMA via a
set-up link requires that this operator allows the DMA the control of its transfers through
communication nodes connected to the same DMA via a data link.

5.2.3 Examples of S-LAM Descriptions

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR

2 GBytes/s

VCP2 TCP2

RIO

0.125 GBytes/s

VCP2TCP2

EDMA3

2700 cycles

2700 cycles

2700 cycles

2 GBytes/s

SCR

GEM1

GEM2

GEM3

Figure 5.5: S-LAM description of a board with two tci6488 using EDMA3 for communications
local to a processor

The System-Level Architecture Model 85

An S-LAM description models an architecture behavior rather than a structure. The
most logical way to model a tci6488 is to use the EDMA3 to copy data from local memory
of one core to the local memory of another. Figure 5.5 shows the S-LAM of two tci6488
with clock rate of 1GHz connected via their RapidIO links. Since the SCR is a switch
element, contention may be ignored on this component because a switch limits much
contention. The RapidIO link at 1Gbit/s = 0.125GByte/s = 0.125 Byte/cycle is likely
to be the bottleneck of the architecture. It is represented by a single contention node.
Each core operator contains both a C64x+ core and a local L2 memory. These operators
delegate both their intra-processor and inter-processor transfers to the EDMA3. The local
transfers were benchmarked in [PAN08]. The results were a data rate of 2GByte/s and a
set-up time of 2700 cycles; these are the values used in S-LAM for this study. The Turbo
and Viterbi coprocessors, TCP2 and VCP2, each have one local memory for their input
and output data.

The simulation of an application on this architecture can be represented by a Gantt
chart with 11 lines if all the operators and communication nodes are used. The actors and
transfers on the 11 nodes with contention must be ordered while mapping the algorithm
on the architecture. This may be contrasted with the architecture model developed by Mu
in [Mu09] which computes the contention on each bus and produces a Gantt chart with 24
lines for the same example. The fundamental difference is the ordering process, which is
a complex operation and is reserved in the current study for the architecture bottlenecks
only. Moreover, the absence of set-up link in Mu’s model would make the description of
Figure 5.5 ambiguous where the model identifies the core that delegates its transfers to a
given DMA.

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR
2 GBytes/s

RIO
0.125 GBytes/s

2700 cycles

2700 cycles

2700 cycles

2 GBytes/s
SCR

GEM1

GEM2

GEM3DDR2

M M

DDR2

Figure 5.6: S-LAM description of a board with 2 tci6488 using DDR2 shared memory for com-
munications local to a processor

The previous model is not the only possibility for a board with two tci6488. The
shared DDR2 external memory may also be used when exchanging data between c64x+
cores in a single tci6488 processor. For this case, the S-LAM description can be that
of Figure 5.6. VCP2 and TCP2 have been removed from the block diagram for clarity.
The local transfers are much slower when the external memory is used and these transfer
easily become an architecture bottleneck. Thus, accesses to the local memory are linked
to a specific contention node. Only one EDMA3 node is used to model the two DMAs
of the two processors. The following example illustrates the abstraction of the S-LAM
architecture.

Figure 5.7 shows the two possible models described above for a tci6486 processor. The
first uses EDMA3 to copy data from the local memory of one core to the local memory
of another. The second uses the shared L2 memory to transfer data. Note that the two
media: shared memory and local memory to local memory copy, could be combined; in this
case, the SCR node would need to be duplicated to distinguish between the two different

86 A System-Level Architecture Model

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR

2 GBytes/s

2700 cycles

2700 cycles

2700 cycles

GEM1

GEM2

GEM3

GEM1

GEM2

GEM3

SCR

2 GBytes/s
GEM1

GEM2

GEM3L2 Shared
RAM

Figure 5.7: S-LAM description of a tci6486 processor

route steps, as will be explained in following sections.
As an example of S-LAM expressiveness, Figure 5.8(a) shows a unidirectional ring

architecture where each operator communicates through a ring of connections. Figure
5.8(b) shows a daisy chain architecture where each operator can only communicate with
its two adjacent neighbors. Figure 5.8(c) shows an architecture with three operators where
each pair of operators share a memory. It may be noted that the S-LAM description is
unambiguous and simple for all three architectures. These examples show that S-LAM is
an expressive, yet simple model.

(a) A Ring Architecture (b) A Daisy Chain Architec-
ture

(c) 3 Operators Sharing
Memories Locally

Figure 5.8: S-LAM Descriptions of Architecture Examples

The S-LAM gives a simplified description of an architecture focusing on the real bot-
tlenecks of the design. In order to accelerate the rapid prototyping process, the S-LAM
model does not directly feed the scheduler. The S-LAM model is first transformed into
a so-called “route” model that computes the routes available for carrying information
between two operators. The transformation of S-LAM model into a route model is analo-
gous to transforming a SDF graph into a DAG graph; the original model is more natural,
expressive and flexible while the second one is better adapted to scheduling.

5.2.4 The route model

A route step represents an interconnection between two operators. A route is a list of route
steps and represents a way to transfer data between two operators, whether or not they are
directly connected. A direct route between two operators is a route containing only a single
route step, and allows the data to be transferred directly from one operator to another
without passing through an intermediate operator. In a fully connected architecture, a
direct route between two given operators will always exist. In a more general case, it is
necessary to construct routes to handle chained transfers of the a data stream along a
given route in the generated simulation and code.

The System-Level Architecture Model 87

4src tgt321

data rates

(a) Message passing route
step

4src tgt321

data rates
DMAset-up time

(b) DMA Route Step

4src tgt321

data rates

(c) Shared Memory Route
Step

Figure 5.9: The Types of Route Steps

There are three types of route steps interconnecting operators in the S-LAM model of
Section 5.2 . Each of the three is associated with a specific type of transfer. The choice of
code behavior model is linked to the generated code. The behavior of the modeled code is
the result of a self-timed static execution of the code [SB09] [Lee89]. This static execution
occurs when each operator runs an infinite static loop of execution at maximal speed,
executing code when input data is available, and otherwise waiting for data availability.
RTOS scheduling is not modeled and neither are thread preemptions, nor external event
waits. The statically generated code is self-timed and uses data transfer libraries that fit
the route step behaviors in Figure 5.9. Additional modifications may be introduced in the
LTE models that make the simulation of external events possible.

The types of route step, as shown in Figure 5.9 are:

1. The message passing route step: the source operator sends data to the target
operator via message passing. The data flows serially through one or several route
steps before reaching the target. The source and target operators are involved in the
process by defining path and controlling the transfer.

2. The DMA route step: the source operator delegates the transfer to a DMA that
sends data to the target operator via message passing. After a set-up time, the
source operator is free to execute another actor during this transfer.

3. The shared memory route step: the source operator writes data into a shared
memory and the target operator then reads the data. The position of the RAM
element (the communication node to which one of the route step communication
nodes is connected) is important because it selects the communication nodes used
for writing and for reading.

This list of route steps is not exhaustive: there are other data exchange possibilities.
For instance, transitioned memory buffers [BW09] is currently not modeled in this study.
In this route step, it is not the data in transitioned memory buffers which is transferred but
the “ownership” of this data which is transferred from one operator to another. Thus, it is
vital to protect the data against concurrent accesses. Studying such route step would be
of interest, as they increase synchronization but can reduce memory needs. Routes can be
created from routes steps to interconnect operators. The route model contains two parts:
an operator set containing all the operators in the architecture and a routing table, which
is a map assigning the best route to each pair of operators (source, target). The route
model accelerates the deployment simulations because it immediately provides the best
route between two operators without referring to the S-LAM graph. The transformation
of S-LAM into route model is explained in next section.

88 A System-Level Architecture Model

5.3 Transforming the S-LAM model into the route model

S-LAM was developed in order to simplify the multi-core scheduling problem of the
PREESM tool. The route pre-calculation that launches this complexity reduction will
now be studied.

5.3.1 Overview of the transformation

Set of operators

S-LAM to Route Model Conversion

Route Model

Direct routes
Generation

Route Steps
Generation

Composed Routes
Generation Routing Table

Figure 5.10: The route model generation

The generation of the route model is detailed in figure 5.10. Transforming an S-LAM
graph into routes is performed in three steps: route steps are generated first, followed by
the generation of direct routes and finally by the composed routes. Each step is detailed
below.

5.3.2 Generating a route step

From a source operator, a target operator and a list of communication nodes connecting
these two operators, a route step with one of the types defined in Section 5.2.4 can be
generated. While creating the route step, the communication nodes are scanned and
connections to DMA or RAM vertices are searched to determine the current route step
type. If a DMA or RAM is found, its incoming set-up links are searched and if these links
do not have same source as the current route step, the DMA or RAM is ignored. The
advantage of using set-up links is that transfers that are independent of a DMA or a RAM
can share a communication node with other DMA-driven and RAM transfers. Contentions
between all transfers on a given communication node can be simulated.

5.3.3 Generating direct routes from the graph model

Using the route step generation function, the direct route generation code parses the graph
starting with the source operators src. The algorithm displayed in Algorithms 5.1 and 5.2
scans the communication nodes and maintains lists of previously visited nodes. When a
target operator tgt is met, the exploreRoute function in Algorithm 5.2 generates a route
step using the method in Section 5.3.2. If the new route step has a lower cost than the one
(if any) in the table, a new route only containing the new step is stored in a table named
routing table. The cost of a route is defined as the sum of the costs of its route steps. The
cost of a route step depends on the route step type and is calculated using a typical data
size, set in the scenario.

The complexity of the algorithm is O(PC2) where P is the number of operators in
the graph and C the number of communication nodes. This high complexity is not a
problem provided architectures remain relatively small. After direct route generation, the
routing table contains all the direct routes between interconnected operators. In S-LAM,

Transforming the S-LAM model into the route model 89

Algorithm 5.1: Direct routes generation

Input: An S-LAM model
Output: The Corresponding Route Model

1 foreach operator src in operators do
2 foreach interconnection i in outgoing or undirected edges of src do
3 if the edge other end is a communication node n then
4 Add the node n to a list l of already visited nodes;
5 Call exploreRoute(src,n,l);

6 end

7 end

8 end

Algorithm 5.2: exploreRoute

Input: An operator src, a communication node n, a list of nodes l
Output: The best routes from src to its direct neighbors
/* This recursive function scans the communication nodes and adds a

route when reaching a target operator */

1 foreach interconnection i in outgoing and undirected edges of n do
2 if the other end of the edge is a communication node n2 then
3 Create a new list l2 containing all the elements of l;
4 Add n2 to l2;
5 Call exploreRoute(src,n2,l2);

6 else
7 if the other end of the edge is an operator tgt then
8 Generate a route step from src, tgt and the list of nodes l;
9 Get the routing table current best route between src and tgt;

10 if the new route step has a lower cost than the table route then
11 Set it as the table best route from src to tgt;
12 end

13 end

14 end

15 end

non totally-connected architectures are authorized. The routes between non-connected
operators are still missing at the end of the direct routes generation; they are added
during the composed routes generation.

5.3.4 Generating the complete routing table

The routes between non-connected operators are made of multiple route steps. Routes
with multiple route steps are built using a Floyd-Warshall algorithm [CLRS01] provided in
Algorithm 5.3. The route between a source src and a target tgt is computed by composing
previously existing routes in the routing table and retaining those with the lowest cost.

The Floyd-Warshall algorithm results in the best route between two given operators
with a complexity of O(P 3) and is proven to be optimal for such a routing table con-
struction. The complexity of the routing table computation is not problematic for this
study because the architectures are always a small number of cores; the routing table con-

90 A System-Level Architecture Model

Algorithm 5.3: Floyd-Warshall algorithm: computing the routing table

Input: An S-LAM model
Output: The Corresponding Route Model

1 foreach operator k in operators do
2 foreach foreach operator src in operators do
3 foreach foreach operator tgt in operators do
4 Get the table best route from src to k;
5 Get the table best route from k to tgt;
6 Compose the 2 routes in a new route from src to tgt;
7 Evaluate the composition;
8 Compare the table best route from src to tgt with the composition;
9 if the composition has a lower cost then

10 Set it as the table best route from src to tgt in the table;
11 end

12 end

13 end

14 end

struction of a reasonably interconnected architecture with 20 cores was benchmarked at
less than 1 second. This may be compared to mapping/scheduling activities for the same
architecture which require several minutes. The route model simply consists of this table
and the set of operators for the S-LAM model input. If the table is incomplete, i.e. if, in
the routing table, a best route does not exist for a pair of operators (src, tgt) , then the
architecture is considered to be not totally connected via routes. The PREESM scheduler
does not handle such non-connected architectures. In this case, , PREESM will stop and
return an error before starting the mapping and scheduling process. The overall complex-
ity of S-LAM routing is O(P.(P 2 + C2)). In the next section, transfers are simulated in
PREESM using routes.

5.4 Simulating a deployment using the route model

Depending on the route step type, certain transfer simulations are inserted into the exe-
cution Gantt chart in addition to actor simulations. The simulation of a data transfer is
now described for each type of route step.

5.4.1 The message passing route step simulation with contention nodes

Part 1 of Figure 5.11 shows the simulation of a single message passing transfer between
actor1 mapped on src and actor2 mapped on tgt. The transfer blocks the two contention
nodes in the route step during the transfer time. The data rate of the transfer (in Bytes
per cycle) is the lowest data rate of the communication nodes (which is the bottleneck of
this particular communication). Source and target operators are actively transferring the
data and are thus unavailable until its completion.

Simulating a deployment using the route model 91

1 2 3 4

2 B/c 3 B/c 5 B/c 4 B/c
2 B/c and contention

Actor 1

Actor 2

Transfer
Transfer

src tgt

src

tgt

2
3

Transfer

Transfer

(a) Message Passing with Contention

1 2 3 4

2 B/c 3 B/c 5 B/c 4 B/c
2 B/c and no contention

Actor 1
Actor 2

src tgt

src
tgt

(b) Message Passing without Contention

1 2 3 4

4 B/c 3 B/c 5 B/c 4 B/c

3 B/c and contention
Actor 1

Actor 2

Transfer
Transfer

DMASetup = 700 cycles

Setup

700 cycles Setup overhead

src tgt

src

tgt

2
3

(c) DMA-Driven Transfer

1 2 3 4

2 B/c 3 B/c 2 B/c 1 B/c

Reading at 1 Byte/s
Actor 1

Actor 2

Read
Read

Writing at 2 Bytes/s

src tgt

src

tgt

2
3

Write
Write

RAM

Read

(d) Shared Memory Transfer

Figure 5.11: Impact of route types on the simulation of a transfer

5.4.2 The message passing route step simulation without contention
nodes

If there is no contention node present, such as in Part 2 of Figure 5.11, there will not be
a line in the Gantt chart for the transfer but the actor2 will be delayed until the transfer
is complete. This transfer model is equivalent to those used by Kwok in his mapping and
scheduling algorithms [Kwo97], where parallel nodes take into account the transfer delays
but ignore contentions.

5.4.3 The DMA route step simulation

The simulation of a DMA transfer is shown in Part 3 of Figure 5.11. The set-up overhead
for the transfer is mapped onto the source operator; this transfer is then equivalent to that
of single message passing except that the operators are not involved in the transfer. In
practice, the overhead corresponds to the set-up time of the DMA, i.e. the time to write
the transfer description into the DMA registers.

5.4.4 The shared memory route step simulation

The simulation of a shared memory transfer is shown in Part 4 of Figure 5.11. First, the
source operator writes the data to the shared memory and then the target operator reads
it. The left-hand side communication nodes are occupied during writing and the right-
hand side nodes during reading. The writing and reading data rates can be different. They
are both limited by the maximum data rates of the memory and of the communication
nodes. This transfer model means that shared data buffers are not used “in place” by the
actors. Instead, they manipulate local copies of the data. This choice costs memory for
the local copies but can reduce the algorithm latency in certain cases.

92 A System-Level Architecture Model

5.5 Role of S-LAM in the Rapid Prototyping Process

The S-LAM model was developed to be the input of the rapid prototyping process. It
is the S-LAM that is represented by the architecture model block in the diagram shown
Figure 1.2. The typical size of architecture in a S-LAM graph in PREESM is between a
few cores and a few dozens of cores.

5.5.1 Storing an S-LAM Graph

S-LAM consists of components and interconnections, each with a type and specific prop-
erties. This model is naturally compatible with the IP-XACT model [SPI08], an IEEE
standard from the SPIRIT consortium [SPI08] intended to store XML descriptions for
any type of architecture. The IP-XACT language is a coordination language: it specifies
components and their interconnection but not their internal behavior. In the IP-XACT
organization, a top-level design will contain component instances. These instances refer-
ence component files that can contain several views, some referencing sub-designs. Figure
5.12 displays a simple S-LAM description and part of its corresponding IP-XACT design
file.

A very simplified subset of IP-XACT is used where a component can have either
one view referencing a single sub-design or no view at all; in that case they are atomic
components. It is the existence of sub-designs that makes hierarchical descriptions possible.

5.5.2 Hierarchical S-LAM Descriptions

In PREESM, each design and component is stored in a separate IP-XACT file with two
specific extensions: “*.design” and “*.component”. Hierarchical representations use a spe-
cial vertex called “hierConnection” that links several levels of hierarchy. The structure of
a hierarchical S-LAM description matches how an IP-XACT model is stored: a hierCon-
nection component in a sub-design corresponds to the component port that references it.
The architecture in Figure 5.12 contains a hierConnection enabling the connection of one
tci6488 to another component via RapidIO. It is possible to flatten an S-LAM description,
generating a single complete design.

Figure 5.13 shows a hierarchical description which, once flattened, gives the architec-
ture equivalent seen in Figure 5.5. It may be noted that the VCP2 and TCP2 coprocessors
have been ignored for simplicity. The intermediate component file is necessary because it
is the structure chosen for IP-XACT storage. It contains component parameters such as
the memory address and memory range of its internal addressing system.

S-LAM provides the architectural input for the rapid prototyping process. The next
section details the compile-time scheduling enhancements created during this thesis.

Role of S-LAM in the Rapid Prototyping Process 93

<?xml version="1.0" encoding="UTF-8"?>
<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4">
 <spirit:name>tci6488_inside</spirit:name>
 <spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>GEM1</spirit:instanceName>
 <spirit:componentRef spirit:library="ti" spirit:name="C64x+"
 spirit:vendor="ti" spirit:version="1"/>
 <spirit:configurableElementValues>
 <spirit:configurableElementValue spirit:referenceId=
 "componentType">operator</spirit:configurableElementValue>
 </spirit:configurableElementValues>
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>SCR</spirit:instanceName>
 ...
 </spirit:componentInstance>
 <spirit:componentInstance>
 <spirit:instanceName>EDMA3</spirit:instanceName>
 ...
 </spirit:componentInstance>
 ...
 </spirit:componentInstances>
 <spirit:interconnections>
 <spirit:interconnection>
 <spirit:name/>
 <spirit:activeInterface spirit:busRef="bus" spirit:componentRef="GEM1"/>
 <spirit:activeInterface spirit:busRef="bus" spirit:componentRef="SCR"/>
 </spirit:interconnection>
 <spirit:interconnection>
 ...
 </spirit:interconnection>
 ...
 </spirit:interconnections>
 <spirit:hierConnections>
 <spirit:hierConnection spirit:interfaceRef="rio_port">
 <spirit:activeInterface spirit:busRef="bus" spirit:componentRef="SCR"/>
 </spirit:hierConnection>
 </spirit:hierConnections>
</spirit:design>

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR

2 Bytes/s

rio_port

Figure 5.12: Storing an S-LAM Description in an IP-XACT Design File

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR

2 GBytes/s

rio_port

tci6488.design

TCI6488_1

RIO

0.125 GBytes/s

board.design

TCI6488_2

rio_port

tci6488.component

tci6488_design

instanciates

references instanciates

Figure 5.13: A tci6488 Hierarchical S-LAM and its Flattened S-LAM Equivalent

94 A System-Level Architecture Model

CHAPTER 6

Enhanced Rapid Prototyping

6.1 Introduction

In Chapter 4, an overview of the multi-core scheduling problem and solutions presented
in the literature were summarized. A flexible rapid prototyping process has an important
role to play in all the design steps of a multi-core DSP system. This chapter details several
methods developed during this thesis for enhancing, in speed, accuracy and flexibility the
rapid prototyping of distributed systems. These methods are used for different phases
of the rapid prototyping process, and include a complete separation between algorithm
and architecture in description phase (Section 6.2), a scheduler structure separating the
different necessary heuristics (Sections 6.3, 6.4 and 6.5) and a clear display of the resulting
schedule performances (Section 6.6).

6.1.1 The Multi-Core DSP Programming Constraints

Gatherer and Biscondi [GB09] state that the most important metrics for a high-performance
embedded multi-core DSP are, in order of importance, power, real-time performance,
and financial cost. From a hardware point of view, optimizing a system consists of
providing more MIPS (Million Instructions per Second) or MMACs (Million Multiply Ac-
cumulates per Second) per Watt to the programmer while maintaining the device cost.
From a software point of view, it consists of providing the highest number of possible
functionalities for a given hardware while maintaining or reducing software programming
costs. Hardware and software codesign consists of jointly optimizing the hardware and
the software. The rapid prototyping of an application, such as base station baseband
processing, on several architectures performs the important task of optimizing the system
parameters. This is sometimes called design space exploration, and is most effective when
approached as a codesign, as the optimization of the above three metrics is simultaneous.

The first constraint, power consumption, is highly dependent on the architecture
and frequency of the target processor. Estimating the limits and advantages of target
architectures in early stages of implementation is vital in making the most power effi-
cient choices. Another parameter that influences the power consumption of a multi-DSP
system is the locality of data and computation. A globally shared memory is a solution
that can not scale to more than a few cores and a distributed memory necessitates an

96 Enhanced Rapid Prototyping

early study of data and code location. Finally, load balancing the DSP cores assists in
reducing the chip “hot spots”, easing power dissipation and increasing processor reliability.
For battery-powered handheld devices, a limit of 1 Watt for the entire system is usual.
[KAG+09] gives an idea of power dissipation constraints in highly reliable (or carrier-grade)
communication systems such as LTE base stations: in an Advanced Telecommunications
Computing Architecture (ATCA) rack of carrier cards, each carrier card can dissipate up
to 200 Watts and, to obtain a long-term reliable system, each chip on the rack should
maintain power consumption under approximately 10 Watts. This constraint immediately
disqualifies general purpose processors which consume tens of Watts.

The second constraint, real-time performance, can be defined by two metrics:

� The execution time Te is the minimum period that must separate two consecutive
inputs for the system to correctly process all input data. The execution time is the
inverse of the throughput, which is the maximal input data frequency a system
can process.

� The latency Tr, also called response time, is the time separating the end of input
arrival and the end of its processing. On a multi-core architecture, we have Te ≤ Tr.

The reason that the latency is greater than the execution time is that several pro-
cessed input streams are pipelined, reducing Te but often increasing Tr. The parallelism
exploited by pipelining is called functional parallelism [HHBT09]. The parameter of
execution time is used to evaluate whether an architecture can support the data through-
put needed, and the latency must be minimized to ensure the system reacts “soon enough”
to a command. For instance, the two-way global delay of LTE is required to stay under
10 milliseconds for a user to have a feeling of good system reactivity. This requirement
limits the system latency and parallelism must be exploited to reduce Tr. The portion
of algorithm parallelism that can be used to reduce latency is called data parallelism
[HHBT09]. Data and functional parallelism are often combined and intricated in real ap-
plications. In general, both data and functional parallelisms must be exploited to obtain
an efficient system.

The system financial cost depends on many parameters but one important factor in
cost reduction is the ability to detect a wrong choice in the development process as rapidly
as possible.This detection can be achieved by a high level of programmability and early
system simulations. These are both available in the Rapid prototyping process, meaning
that this process may have a significant role in reducing the financial cost of a design.

6.1.2 Objectives of a Multi-Core Scheduler

The scheduler is the most important part of a multi-core rapid prototyping framework: it
is here that the algorithm and architecture are combined. The role of a scheduler is to
return an “efficient” multi-core schedule in an “acceptable” time. Schedule efficiency is
usually expressed as a speedup which is the factor of acceleration from using a multi-core
instead of a single core. This notion is introduced for homogeneous architectures and can
extend to heterogeneous ones if a main type of core, corresponding to a standard behavior,
is chosen. The speedup is then computed only for the cores in the architecture that are
of main type. An efficient schedule offers a high acceleration reflected by a high speedup
given for the algorithm and architecture constraints. Section 6.6 provides a visual method
of assessing a schedule quality in terms of speedup.

In a practical situation of multi-core scheduling, heuristic complexity expressed in
asymptotic notation (Section 4.4.3) is not sufficient to evaluate the real cost of a scheduling

A Flexible Rapid Prototyping Process 97

heuristic and so scheduling times which are considered as “acceptable”must be additionally
defined. For run-time scheduling, the scheduling deadline is usually less than one second
and depends on the real-time constraints of the application. Run-time scheduling for LTE
will be discussed in Section 8.3. For compile-time rapid prototyping, a scheduling time of
a few minutes is acceptable to obtain a rough idea of the system behavior. This means
that a programmer can run a schedule and vary its parameters several times in an hour.
However, a scheduling time of a few days is acceptable for a schedule of advanced quality
compared to the rapid prototyping schedule.

A high flexibility is essential for the rapid prototyping process. The following sections
define features developed during this thesis which serve to enhance this process.

6.2 A Flexible Rapid Prototyping Process

Each implementation has specific constraints and objectives. A rapid prototyping method
must adapt to these needs; this is the goal of the flexible rapid prototyping process pre-
sented in this thesis. In Figure 1.2 of the introduction, a single matching node was seen to
be the convergence point of the algorithm and the architecture. The internal functionali-
ties of this matching node in the presented framework are displayed in Figure 6.1. Prior to
multi-core scheduling, the algorithm and the architecture are transformed to extract their
parallelism adequately for the scheduling. The input algorithm is described in an IBSDF
graph and the architecture in an S-LAM graph. An additional input named scenario is
generated, and controls the prototyping parameters. Additional to simulation and code
generation, internal data, including algorithm, architecture or schedules, can be exported
in files that feed other tools. All the functionalities in the process are optional and may
be combined in graphical workflows to provide advanced flexibility to the programmer.
These elements are explained in the following sections.

Rapid Prototyping

IBSDF
Algorithm

S-LAM
Architecture

Scenario

Algorithm
Transfomations

Architecture
Transfomations

Scheduling

Simulation

Code Generation

Exporting
Results

Figure 6.1: Overview of the Rapid Prototyping Process

6.2.1 Algorithm Transformations while Rapid Prototyping

Due to its advantages of hierarchy, predictability and parallelism expressiveness, IBSDF
is the chosen algorithm input of the rapid prototyping process and was proposed by Piat
in [PBPR09]. The top level of its hierarchy contains the actors to schedule. The top level
is converted into a DAG before scheduling (Section 3.2.3). The degree of graph flattening
influences the resulting schedules as does the time necessary to obtain them. Some special
vertices which are introduced in the model are now described.

98 Enhanced Rapid Prototyping

The typical number of actors for scheduling in PREESM is between one hundred and
several thousand. The IBSDF model was developed to describe an application consistent
with this size for the rapid prototyping process. With IBSDF, sub-graphs can be combined
to build a hierarchical application. The strength of this system is that the behavior of a
sub-graph can not make the top graph behave unexpectedly, and the schedulability can be
checked at compile-time, independently for each hierachy level. The model is constructed
so that the interface of an actor, i.e. the number of its input and output edges and
their sizes, remains unmodified when the graph is transformed. For instance, converting
the SDF graph of Figure 6.2 to a single rate SDF graph (Section 3.2.2) adds fork and
join vertices that are only used to split or gather data between edges. The edges going
from and to A, B, C and D actors are unchanged between the SDF and single rate SDF
graphs. Protecting the interface of an actor is important because it is necessary to link
this interface to a host code and this host code needs to know where to retrieve or send
the data tokens and whether the data is being sent or received.

A B D

C

3 2 2 4

3
2 2

4

A1 B2
D1

C2

B1
C1

B3
C3

A2

B5
C5

B4
C4

B6
C6

SDF Graph

Equivalent
single rate SDF Graph

with Fork/Join

f j
f

f
f

j
j

j

3

3

3
3

2

21

11

1
2

2

2
2

2
2

4

4

A3

A4

f

f
f

f

j
j

3

3

3
3

2

21

11

1
2

2

D2

j

j

2
2

2
2

4

4

D3

j

j

2
2

2
2

4

4

=>

Figure 6.2: Creating a Single Rate SDF with Fork and Join Actors

PREESM is the rapid prototyping tool that serves as a laboratory for the methods
presented in this thesis. The actor interfaces are specified in PREESM using the generic
CORBA Interface Description Language (IDL). Each actor is associated with a loop func-
tion prototype defined in an IDL file that specifies the right parameters in the right order.
Ports are added to the IBSDF graph to identify the edges and port names are referenced
in the IDL files. In Figure 6.3, the prototype of a filter function is displayed. The data
productions and consumptions (in tokens) are specified in the graph and not in the IDL
file. The input “size” here is a constant value set in graph parameters; IDL can reference
constant values additionally to edges. As IDL is language-independent, the coordination
code as well as its stored parameters and actor interfaces are then independent of the host
code.

Additionally to the loop function prototype, the IDL file provides the generic prototype
of the initialization function call associated with an actor. Initialization functions are used
to create initial tokens in the graph whereas loop functions are called at each iteration of
the actor.

Sometimes it is necessary to broadcast the same data to several receiving actors in a
configurable way. The broadcast actor was introduced in Section 3.4.2 to solve hierarchical
flattening problems. When generating imperative code from dataflow models, broadcasts
can be implemented by memory copies or pointer references depending on data locality.
The problem of static code generation will be discussed in Section 8.2.

If the IBSDF graph is only partially flattened, it is possible for the graph transformation
module to generate clusters of actors [PL95]. The use of clusters aims to reduce the
number of actors to schedule in the mapping process and to provide a loop-compressed

A Flexible Rapid Prototyping Process 99

module filter {
 typedef long cplx;
 typedef short param ;
 interface init {
 void filter_init(in param size);
 };
 interface loop {
 void filter(in cplx taps, in cplx data_in,
 out cplx data_out, in param size);
 };
};

filter
data_in data_out
taps

size = 128

Figure 6.3: Example of an IBSDF Actor with Ports and its IDL Prototype

representation in the generated code of each operator. The advanced code generation from
clustered IBSDF descriptions is developed in [Pia10].

6.2.2 Scenarios: Separating Algorithm and Architecture

The role of a scenario is to separate the algorithm and architecture models, making them
independent of one another. It constitutes the third input of the rapid prototyping process
(Figure 6.1). This separation of the algorithm and architecture models is also used in the
AAM methodology and is programmed in the SynDEx tool [GS03].

Content of a Scenario

A scenario gathers several types of information. The scenario:

� references an algorithm and an architecture. Several scenarios can combine the same
algorithm and architecture.

� defines the constraints of the scheduling assignment process. It allows the program-
mer to fix the assignment of certain actors to given operators. This way, a hardware
coprocessor may be defined as dedicated to certain actors and can not execute other
actors. As IBSDF algorithms are hierarchical, these assignments are hierarchical,
and apply to all actors including those that contain a graph with other actors.

� associates reference times with each couple (actor, operatortype).

� parameterizes the implementation simulation.

� assigns values to algorithmic graph parameters. The programmer can thus switch
between several configurations and prototype several test cases simultaneously.

The advantage of switching scenarios is that a programmer can easily test one algorithm
on several architectures, several algorithms on one architecture or explore several sets of
parameters.

Application Timing on a Target Architectures

In Dataflow MoCs, the actors are not timed. The only relation considered between actors is
causality, i.e. who precedes whom. However, the primary constraint of the LTE application
is latency. Each couple (actor, operatortype) must be associated with a time representing
its behavior. This time is saved in the scenario to protect the algorithm abstraction.

100 Enhanced Rapid Prototyping

The execution time of a software actor is usually complex and variable. The targeted
algorithm granularity describes an entire application with approximately one thousand
actors. This implies that the actors usually contain conditioning (i.e. there are “if” or
“branch” constructs in the host code). As there are several execution possibilities, an actor
with conditioning can not be deterministically timed at compile-time. Moreover, dataflow
descriptions do not include the environment in the model of data or control exchanges.
Actors are usually included in dataflow descriptions that wait for an external event before
executing code or sending token. These actors naturally have unpredictable execution
times. However, some execution test cases can be timed using a profiler or instrumenting
the software to collect timestamps.

More unpredictability is generated from the hardware. Most general purpose processor
cores can execute Out-of-Order (OoO) instructions, changing the instruction execution
order at run-time depending on input data availability. A DSP core like the c64x+ (Section
5.1.1) has no such capacity, making it more predictable than general purpose processors.
However, it has features that complicate predictions:

� The 11-stage pipeline of the c64x+ core greatly complicates the cycle-accurate time
prediction of the different cases of a code with conditioning.

� The L1 cache with automatic coherence management is another source of prediction
complexity. Certain actor execution orders can cache the data at more appropriate
times than other actor execution orders. The actor time can be evaluated under fa-
vorable cache conditions (warm cache) and unfavorable cache conditions (cold cache).

� When using external DDR2 memory, a part of the internal L2 memory can serve as
a cache for external accesses, again adding unpredictibility.

Despite these variations, a programmer can evaluate system-level behavior of an imple-
mentation from a typical execution time, known as Deterministic Actor Execution Time
(DAET). DAET can either be Worst-Case Execution Times (WCET) for testing fixed
deadlines or warm and cold cache average times to test the typical system behavior in
favorable and unfavorable conditions. The type of DAET is influenced by the real-time
category of the system. The result of a hard real-time computation is considered useless
if it is returned too late while the result of a soft real-time system provides decreasing
service quality when its lateness increases. LTE is a hard real-time system. Its final im-
plementation must be tested under WCET conditions. However, average times are used
in this study which focuses on the early design process and where it is the system-level
behavior which is of interest.

The time unit is not specified in the scenario. Time is a natural integer and it is the
role of the programmer to choose a time quantum. Evidently, an easily manipulatable
time quantum is desirable; 1 nanosecond is usually employed as it has a relationship with
the clock period. For example, this quantum is natural for the tci6488 at 1 GHz because
it corresponds to the CPU clock period. To prototype the tci6486 at 500 MHz, a time
quantum of 2 nanoseconds, the CPU clock period or 1 nanosecond, which is half the clock
period, are obvious choices.

The Scenario Simulation Parameters

Several simulation parameters are set in the scenario. They include:

� Token types: in the application graph, edges carry tokens,which are an abstract
data quantum. Each edge has a token type, for example, “cplx” for complex value.

A Flexible Rapid Prototyping Process 101

This token type must remain abstract for the application to be combined with an
architecture. Thus, the scenario protects the algorithm MoC abstraction, defining
a token type size for each data token. Like the time quantum, the token size unit
is abstract. For example, the programmer can choose a unit size of 1 Byte or 1
kBytes. The usual unit for the target architectures of this study is one Byte. The
complex symbol values in LTE are usually stored as one 16-bit real part and one
16-bit imaginary part. In this case, the size of cplx is then 4.

� Main operator and Communication Node (CN). The scenario associates a main
operator and a main CN (Section 5.2) to the architecture. These are the elements
that are primarily studied during scheduling. The schedule quality assessment chart,
as explained in Section 6.6, evaluates the execution speedup of operators in the S-
LAM architecture of the same type as the main operator. It may be noted that the
main operator and communication node are the components which are subject to
the greatest number of optimizations by the scheduling algorithms.

In PREESM, time and constraint information can be imported in a scenario from Excel
sheets. A programmer can generate these times from formulas or benchmarks and import
them automatically. It is the existence of such implementation details that increases the
ease and rapidity of use of a development chain .

6.2.3 Workflows: Flows of Model Transformations

Workflows are graphically edited graphs which represent the successive transformations
necessary for the input models to simulate or generate executable code. Workflows are
used in the PREESM tool to tune the rapid prototyping process. The three kinds of
graphs, algorithm, architecture and workflow, are edited though use of the same generic
graph editor named Graphiti [Grab]. Appendix A references all nodes presently existing in
PREESM. Unlike when working with scenarios a programmer can use the same workflow to
prototype several applications and architectures. Two common workflows will be presented
below.

A Workflow to Prototype an Application

Rapid prototyping consists of simulating an implementation and then extracting infor-
mation from this simulation. The workflow in Figure 6.4 prototypes the three elements
(scenario, algorithm, architecture).

Scheduling
SDF ABC

architecture
scenario

DAG

__algorithm
scenario

__architecture
scenario

__scenario

Flattening
SDF

srSDF
SDF

DAG Plotter
ABC
scenario

depth=2

reduceForkJoin
SDF

Codegen
DAG
Architecture

Figure 6.4: A Workflow for Prototyping an Application

102 Enhanced Rapid Prototyping

A scenario outputs the algorithm and the architecture, and is the only node without an
input edge. The shape of the workflow graph is intuitive, as a scenario always references one
specific algorithm and one specific architecture. A workflow is applied to a scenario as this
scenario initially contains or references all information necessary for the rapid prototyping
process. The output of the algorithm node is an IBSDF graph and the architecture node
outputs an S-LAM graph.

In the Figure 6.4, three transformations are applied to the IBSDF graph. The two
highest levels of hierarchy are first flattened by the “Flattening” node with parameter
depth = 2. Its top level is then converted into a single rate SDF graph (Section 3.2.2) by
the single rate SDF transformation node. The single rate SDF transformation provides
the scheduler with a graph of high potential parallelism as all vertices of the SDF graph
are repeated according to the SDF graph’s Basic Repetition Vector. Consequently, the
number of vertices to schedule is greater than in the original graph. Additionally, the
single rate SDF conversion is likely to introduce multiple Fork and Join actors (Section
6.2.1). The third transformation is applied by node “reduceForkJoin” and minimizes the
number of these spurious actors.

The purpose of these transformations is to reveal the potential parallelism of the algo-
rithm and to simplify the work of the actor scheduler. The programmer can tune the depth
parameter of the hierarchy flattening node, choosing between a highly parallel implemen-
tation and a fast scheduling process. The most complex phase of the rapid prototyping
process is the multi-core scheduling step. The efficiency of this step may be increased by
reducing the complexity of its input algorithm top level.

The Scheduling workflow node converts the SDF graph into a Directed Acyclic Graph
(DAG), which has a lower expressivity than SDF graph but is a more suitable input
for the mapping/scheduling (Section 3.2.3). The PREESM mapping/scheduling process
[PMAN09] generates a deployment by statically choosing an operator to execute each
actor (mapping or assignment) and producing an overall order to the actors (scheduling or
ordering) (Section 4.4.3). The structure of the PREESM scheduler is detailed in Section
6.3.

As a result of the deployment, a Gantt chart of the execution is displayed by the “DAG
Plotter” and certain information on the resulting implementation is displayed (percentage
of load and memory necessary for each operator). The quality of the schedule determined
is displayed graphically in the schedule quality assessment chart (Section 6.6).

The code generated by the “Codegen” workflow node is known as the coordination
code, and consists of one block of local code per actor in the DAG (including one function
call for an actor with no hierarchy), a static schedule of the actors for each processor, and
data transfers and synchronizations between the processors. The coordination code is first
generated in a generic imperative XML format and then converted into a host code (C
code for this study) by an Extensible Stylesheet Language Transformation (XSLT [w3c]).
The host code is hand-written. Static code generation will be further explained in Section
8.2 when it is applied to the LTE random access algorithm.

A Workflow Combining Rapid Prototyping with SystemC Simulations

Accurate deployment simulations can be generated from the deployment through the use
of SystemC-based [sys] simulator. This simulator, developed by Texas Instruments, is not
publicly available. The workflow, shown in Figure 6.5, exports the DAG of its execution,
produced by the scheduling node, in a graphml format. From this DAG, a XSL transfor-
mation can generate a XML or a text file. The SystemC simulation process requires two
inputs and both are generated from the DAG using two different XSL files. In Figure 6.5,

The Structure of the Scalable Multi-Core Scheduler 103

it may be seen that two specific files are generated that feed the SystemC rapid proto-
typing process: one LUA file and one GraphML file. Graph transformations, identical to
those shown in Figure 6.4 could be used to prepare the algorithm graph before scheduling
(hierarchy flattening...) in this workflow.

Scheduling
SDF ABC

architecture
scenario

DAG

__algorithm
scenario

__architecture
scenario

__scenario

DAG Plotter
ABC
scenario

DAGExporter
DAG xml
SDF
architecture
scenario

Lua gen
xml

GraphML gen
xml

Figure 6.5: A workflow Combining Rapid Prototyping with SystemC Simulations

The rapid prototyping process and the SystemC simulator are highly complementary.
The rapid prototyping process necessitates a simplified model of the architecture behav-
ior. The S-LAM model contains a suitably simplified view to allow the acceleration of the
rapid prototyping process. The SystemC simulator has a complete model of the archi-
tecture but has no automatic assignment heuristic and, without a rapid prototyping tool,
actor assignments must be processed manually. Consequently, it can compute a cycle-
accurate simulation of the implementation and check the accuracy of the rough simulation
performed during rapid prototyping.

For example, the EDMA3 module in the tci6488 processor (Section 5.1.1) has six
Transfer Controllers (TC), and each TC is able to packetize and transfer data in parallel.
The EDMA3 is a master of the Switched Central Resource (SCR) which has specific
bus configurations for each connected element. The resulting system behavior is highly
complex. In Figure 5.5, the SCR is represented by a parallel node driven by the EDMA3.
In LTE applications, the rapid prototyping S-LAM model generates latency estimates with
an error of less than 10% compared to the calculations of the more complete EDMA3 model
of the SystemC simulator. The pairing of a fast simulation for prototyping and a precise
simulation to evaluate the resulting system favors efficient design choices at reduced costs.
The SystemC accurate simulation can be used to evaluate the scheduler performance.

Moreover, only connected IBSDF graphs may be checked for schedulability with the
method described in Section 3.2. Consequently, several unconnected applications that
share a multi-core architecture are not within the scope of current work. However, several
unconnected applications can be checked for schedulability and scheduled separately and
then combined to be concurrently simulated in a SystemC simulator.

6.3 The Structure of the Scalable Multi-Core Scheduler

As explained in Chapter 4, scheduling is a complex process for which heuristics must be
finely tuned to provide good schedules at reduced cost.

104 Enhanced Rapid Prototyping

6.3.1 The Problem of Scheduling a DAG on an S-LAM Architecture

Formalizing the scheduling problem for PREESM rapid prototyping, the inputs are rep-
resented as:

� a set of operators O = oi(i = 1, ..., |O|) and a set of Contention Nodes CN =
CN i(i = 1, ..., |CN |) contained in a S-LAM architecture description,

� a set of actors V = Vi(i = 1, ..., |V |) and a set of data edges E = Ei(i = 1, ..., |E|)
contained in an algorithm DAG G.

� A scheduling scenario S adding behavior to the abstract models.

The input to the algorithm is a graph where concurrency between actors is expressed.
Consequently, the parallelism extraction phase, illustrated in Figure 4.2, is omitted from
the multi-core scheduling process. Moreover, as the assignment is static, the generated
code may be self-timed, avoiding unnecessary scheduling costs; the timing phase is thus
transparent because it only depends on actor availability. Two operations remain in the
scheduling process:

� assignment: each actor is assigned an operator and each edge is assigned a set of
CN.

� ordering: The actors are processed by one operator and the edges processed by
each CN are ordered.

If no CN is defined or if transfer competitions are ignored, the scheduling problem
is reduced to actor scheduling. Otherwise, transfers must also be scheduled on routes
retrieved from the S-LAM route model (Section 5.2.4). In next section, the structure
of a scalable scheduler is described. This scheduler separates the different problems of
scheduling.

6.3.2 Separating Heuristics from Benchmarks

The scheduler architecture presented in this section is implemented in the PREESM tool;
thus it is called the PREESM scheduler. However, underlying method can be applied
generally:

� a scheduler intended for rapid prototyping should offer scalable schedule accuracy
and scalable scheduling time,

� such scalable behavior may be extended if the assignment heuristic is separated from
the architecture benchmark computer.

All scheduling heuristics are based on the same principle: the heuristic takes certain as-
signment and ordering decisions, the resulting implementation cost is computed, and then
this cost is used to determine subsequent assignments. In the literature, all algorithms
embed both assignment decisions and implementation cost evaluation. Moreover, if the
minimized cost is the total execution latency (which is the most common case), a cost
evaluation requires both the actors on operators and the edges on the CNs to be ordered.
The PREESM scheduler splits these functionalities into two sub-modules which share min-
imal interfaces: the task assignment sub-module and the Architecture Benchmark

The Structure of the Scalable Multi-Core Scheduler 105

Computer (ABC) sub-module. The task assignment sub-module assigns actors to opera-
tors and then queries the ABC sub-module, which then evaluates the cost of the proposed
solution.

At heuristic initialization, the ABC sub-module transmits the number of operators
available to the actor assignment sub-module. Next, the actor assignment sub-module
assign actors to operators, and communicates these actor assignments to the ABC sub-
module, which then returns the associated cost (infinite if the deployment is impossible).
This process is illustrated in Figure 6.6 One advantage of this approach is that any task as-
signment heuristic may be combined with any ABC sub-module , leading to many different
scheduling possibilities. For instance, an ABC sub-module minimizing deployment mem-
ory or energy consumption can be used without modifying the task assignment heuristics.
The new sub-module will only return a cost of a different type. The S-LAM architecture is
an input of the ABC sub-module (Figure 6.6). Another advantage is that the assignment
heuristic can be architecture-independent. Indeed, it bases its assignment choices only on
abstract costs and the number of operators available.

Actor
Assignment

Architecture
Benchmark

Computer (ABC)

Number of PEs

Actor assignments

Implementation costs

Scheduler

DAG S-LAM Scenario

Figure 6.6: The Scheduler Sub-modules: Actor Assignment and ABC

The interface between the ABC sub-module and the actor assignment sub-module
consists of:

� assign : V,O → ∅ where assign(v, o) assigns the actor v to the operator o,

� free : V → ∅ where free(v) breaks the assignment of the actor v,

� getLocalCost : V → N where getCost(v) returns the cost of the actor v assignment
alone (in an ABC returning latency cost, it returns the execution time of v given its
assignment),

� getLocalCost : E → N where getCost(e) returns the cost of the edge e assignment
alone (in an ABC returning latency cost, it returns the transfer time of e given its
assignment),

� getCost : I → N where getCost(i) returns the cost of the implementation i (in an
ABC returning latency cost, it returns the global latency of the implementation). If
certain assignments are not chosen, the implementation is incomplete and the ABC
will return ∞ if it can not evaluate the cost of a partially assigned implementation.

� getF inalCost : V → N where getF inalCost(v) returns the cost of the actor v
assignments in the implementation (in a ABC returning latency cost, it returns the
finishing time of v given its assignment),

� getF inalCost : O → N where getF inalCost(o) returns the cost of the operator o
assignments in the implementation (in a ABC returning latency cost, it returns the
finishing time of the last actor which is assigned on o),

106 Enhanced Rapid Prototyping

The ABC is free to to return abstract costs of any type, including memory costs, en-
ergy costs, execution time. The ABC interface with the assignment heuristic provides the
information necessary for both partial implementation and total implementation evalua-
tions. The next section details the actor assignment heuristics and ABC sub-modules that
have been of interest to this study.

6.3.3 Proposed ABC Sub-Modules

During a scheduling process, an ABC sub-modules initially receives the S-LAM architec-
ture description and the scenario. It is then responsible for assigning a cost to the schedules
it receives. The primary constraint of LTE algorithms is latency. Several ABCs have thus
been developed to minimize this parameter, evaluating the implementation latency in dif-
ferent cases of execution and with scalable precision, reusing the concept of time scalability
introduced in SystemC Transaction Level Modeling (TLM) [Ghe06]. These sub-modules
are called latency ABCs. SystemC TLM defines several levels of temporal system sim-
ulations, from untimed to cycle-accurate precision. This concept been extended to the
development of several ABC latency models with different time precisions. Currently, the
types of coded latency ABCs are:

� The loosely-timed ABC that accounts for task times of operators and transfer
costs on PN and CN. However, it does not consider transfer contention (ignoring the
difference between Parallel and Contention Nodes in the S-LAM architecture).

� The approximately-timed ABC that associates each inter-core contention node
with a constant rate and simulates contentions on CNs.

� The accurately-timed ABC that includes the set-up time necessary to initialize
a parallel transfer controller such as Texas Instruments Enhanced Direct Memory
Access (EDMA [tms07]). This set-up time is scheduled in the core which triggers the
transfer. Accurately-timed latency ABC executes the S-LAM simulation presented
in Section 5.4.

� The infinite homogeneous ABC which is a special ABC that performs an al-
gorithm execution simulation on a homogeneous architecture containing an infinite
number of cores with main type. It may be noted that for this study, the main core
type of an S-LAM architecture is defined in the input scenario. This ABC enables
the extraction of the critical path of the graph (Section 4.4.3). The use of infinite
homogeneous ABCs is detailed in Section 6.4.2.

All these latency ABCs have the capability to balance the loads of the system. Joint
latency minimization and load balancing is explained in Section 6.4.3.

One role of latency ABCs is to to order actors on operators and (possibly) edges on CNs.
Ordering elements while minimizing constraints is equivalent to single-core scheduling,
which is a NP-complete problem. Latency ABCs delegate actor and edge ordering to
ordering heuristics that can be chosen independently. Up to three separate heuristics may
used simultaneously : assignment, actor ordering and transfer ordering. Latency ABCs
involve complex mechanisms to insert and remove actors corresponding to transfers. When
needed, a time keeper calculates t-level and b-level of each actor. T-level and b-level are
needed for list scheduling (4.4.3) and for schedule latency evaluation. The structure of
latency ABCs is displayed in Figure 6.7.

The Structure of the Scalable Multi-Core Scheduler 107

Latency ABC

S-LAM Scenario

Time Keeper Edge Scheduler

Actor Scheduler

Timed schedules

Route model,
actor assignments

and actor order

Edge order

Actor order

Actor assignments

Number of PEs

Actor assignments

Implementation costs

Actor
Assignment

Figure 6.7: Structure of a Latency ABC

When a data token is transfered from one operator to another, transfer actors are
created and then mapped to the CNs of the chosen route. A route may pass through sev-
eral other operators (Section 5.2). If invoked, the edge scheduling sub-module orders the
route steps on CNs. Edge scheduling can be executed with algorithms of varying complex-
ity, which results in another level of scalability. The primary advantage of the scheduler
structure is the independence of scheduling algorithms from cost type and benchmark com-
plexity. Section 6.4 demonstrates how latency ABCs conform to the scheduler architecture
and provide advanced benchmarking.

6.3.4 Proposed Actor Assignment Heuristics

The behavioral commonality of the majority of scheduling algorithms resulted in the choice
of the scheduler module structure. Currently, three algorithms are coded in PREESM and
are modified versions of the algorithms introduced by Kwok and described in Section 4.4.3:
a list scheduling algorithm, the FAST algorithm with its parallel version PFAST and a
genetic algorithm. Figure 6.8 shows several different assignment heuristics and latency
ABCs. It may be noted that having a choice between three of each sub-module category,
the result is nine possible tradeoffs between precision and time.

Actor Assignment ABC
Scheduler

DAG Route Model Scenario

Accurately
Timed

Approximately
Timed

Loosely
Timed

Infinite
Homogeneous

Genetic
Algorithm

FAST
Algorithm

List
Scheduling

Accurate
Fast

Figure 6.8: Assignment and Existing Versions of ABC s

Combining heuristics and ABCs, experiments may be performed on the transformed
versions of the list, and the FAST and genetic algorithms from Section 4.4.3. The original
heuristics in the literature were algorithms limited to the Bounded Number of Processors
(BNP) while the extended models are used for the architecture heterogeneity of Arbitrary
Processor Networks (APN) described in S-LAM. The next section explains how ABCs and
heuristics are integrated into the global schedule process.

108 Enhanced Rapid Prototyping

6.4 Advanced Features in Architecture Benchmark Com-
puters

ABCs link the S-LAM model and the actor assignment process. The next section demon-
strates how S-LAM and route models connect to the ABC and then details certain ad-
vanced features of latency ABCs.

6.4.1 The route model in the AAM process

Simulating data transfers during mapping and scheduling makes the deployment simu-
lations more complex because vertices representing transfers are dynamically added to
and removed from the graph. The addition of new cores to the architecture should not
increase the mapping and scheduling complexity exponentially. To achieve this goal, the
S-LAM is transformed into the route model before the mapping and scheduling proce-
dures. The resulting scheduling time-complexity on a ring architecture was shown to be
linear in [PNP+09]. The process of transforming the S-LAM model into a route model
was presented in Section 5.3.

6.4.2 The Infinite Homogeneous ABC

The infinite homogeneous ABC is unique because its intended use is to extract general
information from the algorithm rather than assisting assignment heuristics, which is the
general purpose of latency ABCs. This ABC enables Unbounded Number of Clusters
(UNC) studies of an implementation; these studies are useful in computing the span and
the work of the algorithm under certain constraints, in addition to the critical path, where:

� The critical path is the longest path in the whole acyclic graph. To calculate,
a typical Communication Node needs to be defined with a given data rate and a
typical operator type with DAET for each actor. The main CN and main operator
are chosen in the scenario. The critical path can then be computed as presented in
Section 4.4.3.

� The span is the critical path when communication cost is ignored, i.e. in the UNC
case. Its length corresponds to an ideal minimal latency on an infinite homogeneous
architecture with infinitely fast media.

� The work is the execution time of the entire graph on one operator with typical
operator type. It is the sum of actor DAETs.

To study these properties, only data dependencies between actors need to be considered
and actors need not be ordered on their operators. The infinite homogeneous ABC enables
the creation of the CPN dominant list necessary for the list scheduling described in Section
4.4.3. The name of this ABC can be misleading :It does not require an infinite architecture,
but an architecture with sufficent operators in O to execute as many actors in parallel as
possible. There exists Omin so that if |O| ≥ Omin, the latency of the schedule is equal to
the critical path length and Omin ≤ |V | because with more than |V | operators, each actor
can be assigned to a different operator and adding operators can not reduce the critical
path.

Advanced Features in Architecture Benchmark Computers 109

6.4.3 Minimizing Latency and Balancing Loads

Load balancing is an important property for a schedule. This feature spreads the processing
load and the power dissipation over all operators and reduces the temperature of the
system. All preceding techniques have focussed on minimizing the latency. This section
presents a method that jointly optimizes latency and load balancing. Both parameters,
latency and load balancing, will be shown to be equivalent in the Unbounded Number of
Clusters (UNC) case and non-equivalent in Bounded Number of Processors (BNP) and
Arbitrary Processor Network (APN) cases (Section 4.4.3). A method is then proposed to
allow joint optimization in BNP and APN cases. This method maybe activated for any
latency ABC, transforming the returned cost.

Equivalence of Problems in UNC Case

Minimizing latency and balancing loads are quite ‘similar’ problems. Indeed, in the little
constrained UNC scheduling case (Section 4.4.3), the following theorem states:

Theorem 6.4.1. When scheduling a DAG on an Unbounded Number of Clusters (UNC),
the problem of balancing the loads is equivalent to the problem of minimizing latency.

Proof: We have:

� ~V a vector containing all the actors vi ∈ V , with V the actor set of the DAG,

� ~O a vector containing all the operators executing at least one actor in the operator
set O,

� P = | ~O| ≤ |~V | the number of operators executing at least one actor,

� fi ≥ 0, i ∈ 1, ..., |~V | the DAET of each actor vi on any operator in ~O (Section 3.2),

� lj ≥ 0, j ∈ 1, ..., P the load of each operator oj , i.e. the DAET sum of the actors it
executes,

� ml the average of the operator loads.

~l = [l1, ..., lP] is called the vector of loads and L the space of load repartitions with
∀~l,~l ∈ L. The homogeneity of the architecture ensures the conservation of the work W :

W =

|~V |∑
i=1

fi =

P∑
j=1

lj . (6.1)

Problem 1: Latency Minimization. Under the UNC conditions and with the
constraint of minimizing latency, all actors in the critical path, and only these actors,
should be assigned to a single operator that becomes the most loaded operator and contains
no “hole” in its schedule. Otherwise, the number of operators increases without reducing
the latency. The latency is then equal to the critical path and is thus minimal. In this
case, the latency L is also equal to the highest load: L = maxj≤P (lj). The procedure of

minimizing the latency consists of searching for a load configuration ~l∗latency so that:

~l∗latency = arg min
~l∈L

(maxj≤P (lj)). (6.2)

110 Enhanced Rapid Prototyping

maxj≤P (lj) ≥ 1/P
∑|V |

i=1 fi with equality if and only if a schedule exists with lj =
W/P,∀j.

Problem 2: Load Balancing. To balance the loads, it is necessary to minimize
the variance between the loads. If ml = W/P is the average of the loads and σ2 =

1/P
P∑
j=1

(lj−ml)
2, minimizing the variance of the loads will balance the loads, and consists

of searching for a load configuration ~l∗loads such that:

~l∗loads = arg min
~l∈L

1

P

P∑
j=1

(lj −ml)
2 = arg min

~l∈L

1

P

P∑
j=1

l2j . (6.3)

Note that σ2 ≥ 0 and σ2 = 0 if and only if the loads are perfectly balanced with
lj = W/P,∀j. It may be hypothesized that any distribution of loads is possible:

Hypothesis 6.4.1. L = (R+)P .

The solutions for problems 1 and 2 are then identical and given by lj = W/P,∀j. In
reality, the above hypothesis 6.4.1 is not true because loads are partial sums of arbitrary
DAETs fi. The question then becomes: is the result still valid if L 6= (R+)P ? The positive
proof with P = 2 can be performed graphically.

l1

l2

optimal latency
mono-core on op. 1

mono-core
on op. 2

(a) Relation Between l1 and
l2

L=max(l1,l2)

l1
optimal latency

W/P

(b) Relation Between l1 and
L

0

σ2
Loads

l1

optimal
load

balancing

W/P

(c) Relation Between l1 and
σ2

Figure 6.9: Study Of the Latency And Variance Behavior in the Case of 2 Operators

In Figure 6.9(a), it may be noted that the discrete values of the loads of operators 1
and 2 fall on a line of best fit between the states which represent either o1 or o2 processing
the whole work. The conservation of the work in Equation 6.1 implies that l2 depends
on l1 with l2 = W − l1. In Figure 6.9(b), the values of the latency L = maxj≤P (lj) are
displayed relative to l1.

In Figure 6.9(c), the variance between the loads σ2 is shown to alter when l1 changes.
The two cost functions in Figures 6.9(b) and 6.9(c) are convex with the same unique

minimum point at lj =
W

P
, ∀j. If l∗1 is the optimal load configuration for problem 1, it

is also the optimal load configuration for problem 2. In the more general case of P ≥ 2,
the two functions are still convex functions due to the conservation of work. These two
functions have the same unique minimum point corresponding to a latency L = W/P .

Therefore, it may be seen that the two problems are also equivalent in the case of
discrete loads.

Non-Equivalence of Problems in BNP and APN Cases

Figure 6.10 illustrates a very simple example where minimizing the latency in a Bounded
Number of Processor (BNP) scheduling (Section 4.4.3) makes the load balancing worse.

Scheduling Heuristics in the Framework 111

The example of Figure 6.10(a), demonstrates that balanced loads result in a different
assignment from that of Figure 6.10(b) where latency is minimized. The success of load
balancing is evaluated by the eventual variance of the loads σ2Loads that must be minimized.
This evaluation procedure is explained below.

DSP1
DSP2

0 10 20 30

a
b

Load = 15
Load = 5

σ2
Loads= 50

Latency = 25
+
-

(a) Balancing Loads

DSP1
DSP2

0 10 20 30

a b Load = 20
Load = 0

σ2
Loads= 200

Latency = 20
-
+

(b) Minimizing Latency

Figure 6.10: Example showing that Minimizing Latency is not Equivalent to Balancing Loads in
the BNP Scheduling Problem

The two problems of latency minimization and load balancing are not equivalent in
BNP conditions and even less so in APN conditions because transfer ordering is present
which often penalizes distributed systems when minimizing latency.

Minimizing the latency under a load balancing constraint

As the two problems of latency minimization and load balancing are not equivalent in the
BNP case and even more divergent in the Arbitrary Processor Network (APN) case, the
two constraints need to be considered separately during scheduling process and a good
compromise between the two must be established. A basis for this tradeoff may be to
employ a latency ABC that returns a composite cost which includes latency minimization
and load balancing:

C = L+ λ.σ, with σ =

√√√√ 1

N

P∑
j=1

(lj −ml)
2. (6.4)

where L is the latency, λ a Lagrange multiplier and σ is the standard deviation of the
loads. Experiments show that efficient results are obtained for a simple λ = 1. Figure
6.11 shows results of the rapid prototyping of a complete LTE description on the unnamed
architecture presented in Section 5.1.1 and in [Fri10]. The algorithm IBSDF after flattening
has 464 vertices and 572 edges. The FAST algorithm is run 30 times, each time during
60 seconds with 5 second macrosteps. The loosely timed latency ABC is used. Points
represent 15 solutions found with a composite cost and a Lagrange multiplier of 1, while
diamonds represent solutions found minimizing only latency. It can be observed that the
load balancing is significantly improved using the composite cost when, except for one
abnormal solution, the latency is not significantly worsen.

6.5 Scheduling Heuristics in the Framework

There are two types of scheduling heuristics: assignment heuristics that assign actors
to operators, and ordering heuristics that order actors on each operator and also order
transfers on each Communication Node. Heuristics of both types are presented below As

112 Enhanced Rapid Prototyping

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4 5 6 7 8 9

Load Balancing
No Load Balancing

Latency, normalized to the smallest one

Standard deviation of the
core's loads (in percentage)

Figure 6.11: Comparing Schedules with and without load balancing criterium.

both these complementary types of scheduling heuristics are necessary for the solution,
they are then combined in the scheduler structure as shown in Figures 6.7 and 6.6.

6.5.1 Assignment Heuristics

From the scheduling inputs defined in Section 6.3.1, APN versions of the list, and FAST and
genetic scheduling algorithms from Section 4.4.3 are developed using ABCs. Scheduling
the actors for self-timed execution on multi-core architecture consists of associating v a
core number c(v) ∈ N and a local scheduling order o(v) ∈ N with each task. The pair
S(v) = (c(v), o(v)) is called the schedule of v. A schedule is valid if ∀v ∈ V, S(v) respects
four conditions:

1. Each actor schedule is unique:

∀(v1, v2) ∈ V 2, v1 6= v2 ⇒ S(v1) 6= S(v2). (6.5)

2. The selected cores respect the total number of available operators: c(v) < C,∀v ∈ V .

3. The local schedules respect the topological order of the graph: ∀(v1, v2) ∈ V 2 if there
is a path from v1 to v2 and c(v1) = c(v2), then o(v1) ≤ o(v2).

4. The implementation cost returned by the ABC respects: cost(S(V)) <∞

Static List Scheduling

Static list scheduling using ABCs is described in Algorithm 6.1. An overview of this pro-
cedure was presented in Section 4.4.3. After the list ordering step, which is closely linked
to infinite homogeneous simulation, the assignment heuristic can be used with any latency
ABC. It is not straightforward to combine static list scheduling with the minimization
of parameters other than latency because of the list ordering part and the necessity to
evaluate partial schedules. However, it is possible to combine static list scheduling with
the load balancing method presented in Section 6.4.3.

FAST and Genetic Heuristics

The underlying principles of the FAST algorithm from Kwok are discussed in Section 4.4.3.
This algorithm uses an ABC and is described in Algorithm 6.2. The macro step and the

Scheduling Heuristics in the Framework 113

Algorithm 6.1: Static List Scheduling(G, M)

Input: A DAG G = (V,E,w, c) and a route model M
Output: A schedule S of G on the route model M

1 Create an Infinite Homogeneous ABC: IH −ABC(G,M) and a latency ABC:
L−ABC(G,M);

2 Retrieve the number of operators |O| from L−ABC(G,M);
3 NodeList← Sort the actors in V in CPN-Dominant order using costs from
IH −ABC(G,M);

4 for each v ∈ NodeList do
5 i← Select an operator index o < |O| to execute v using costs from

L−ABC(G,M);
6 If no operator exists that can execute v with a finite cost, return an error;
7 Assign the actor v to oi;

8 end

FAST algorithm are halted when after a given amount of time. In PREESM, these times
are specified in seconds and must be tuned to obtain good results. The programmer can
stop the FAST process at any time, and the best schedule found is then returned. The
time complexity is thus hard to evaluate and the randomness of the neighborood search
makes the FAST algorithm non-deterministic.

The fact that the FAST algorithm only assesses the cost of completely scheduled ap-
plications makes it compatible with any type of ABC. It could thus be used to minimize
memory, power consumption or a joint cost function. Keeping the best outputs of the
macro steps, a population of schedules can be generated and mutations and cross-overs
can be applied recursively (Section 4.4.3) in a genetic algorithm. A genetic heuristic is
a means of improving schedules without being blocked in a locally optimal point. It can
also be combined with any type of ABC.

6.5.2 Ordering Heuristics

In the scheduling algorithms presented above, the ABC recalculates the order of an actor
when the heuristic assigns an actor to a new operator. Moreover, when transfer compe-
tition is taken into account on a Contention Node (CN), the order of the transfer is also
computed. The algorithm used to recalculate this order can be changed to obtain a better
compromise between scheduling time and schedule quality.

Currently, two algorithms are implemented in PREESM:

� The simple ordering heuristic follows the CPN-Dominant scheduling order given
by the task list resulting from the list scheduling algorithm. Transfers are assigned an
order related to their sender or receiver. This order is likely to be quite sub-optimal
but there is a fixed complexity O(1).

� The switching ordering heuristic is more accurate. When a new actor or trans-
fer needs to be scheduled, the algorithm looks for the earliest hole in the operator
or CN schedule of sufficient size to contain the candidate. This hole must be after
the candidate’s predecessors in the schedule so as not to introduce new costly syn-
chronizations. It then inserts the actor or transfer in this hole. This algorithm is
in O(|V |(|E| + |V |)), which can greatly increase the general complexity because it
is applied each time an actor is assigned or a transfer is scheduled. However, the

114 Enhanced Rapid Prototyping

Algorithm 6.2: FAST Scheduling(G, S0, M , maxFastT ime,
maxMacrostepT ime)

Input: A DAG G = (V,E,w, c), an initial schedule S0, a route model M and two
parameters maxFastT ime and maxMacrostepT ime

Output: A schedule S of G on the route model M
1 Set S = S0;
2 Create an ABC of desired type ABC(G,M);
3 reset fastTime;
4 while fastT ime < maxFastT ime and the programmer did not stop the process do
5 reset macrostepTime;
6 Change the assignment of a randomly chosen Critical Path Node (CPN) vCPN ;
7 Sstore = S;
8 while macrostepT ime < maxMacrostepT ime do
9 Change the assignment of a randomly chosen non-CPN node vnon−CPN ;

10 if ABC returns a higher cost than before then
11 Change back the assignment;
12 end

13 end
14 if ABC returns a higher cost than before then
15 S = Sstore;
16 end

17 end
18 return S;

algorithm execution time is still realistic in practice and is counterbalanced by good
performance.

The scheduler framework enables the comparison of different edge scheduling algo-
rithms using the same task scheduling sub-module and architecture model description.
The switching ordering heuristic has good performance when combined with FAST on
a system with transfer contention because it adaptively reschedules actors and transfers
during the macro and micro steps (Algorithm 6.2).

The previous section discussed methods for obtaining good schedules. Next, the
method of assessing the quality of a schedule will be explained.

6.6 Quality Assessment of a Multi-Core Schedule

Quality assessment of an automatically generated schedule is an important feature of a
multi-core development chain because it identifies the weaknesses of the system. This
section details a graphical quality assessment chart which pinpoints a lack of algorithm or
architecture parallelism, in addition to diagnosing underperforming schedules.

6.6.1 Limits in Algorithm Middle-Grain Parallelism

The obvious metric for algorithm parallelism in terms of latency is the speedup S(n) =
T (1)/T (n) where T (1) is the latency on one core, also called the work (Section 6.4.2) and
T (n) the latency on n cores. Other metrics of parallelism based on execution time (Section
6.1.1) could be developed but in the case of LTE, latency is the primary time constraint.

Quality Assessment of a Multi-Core Schedule 115

Maximal algorithm speedups started to be discussed in 1967, when Amdahl describes an
evaluation method of an intrinsic algorithm parallelism. His theorem simply states that
if a portion rs of a program is sequential, the execution speedup that may be attained
using multiple homogeneous cores compared to one core is limited to 1/rs, independent
of the number of cores [Amd67]. For example, a program with 20% of sequential code
has a speedup limit of 5. This formula, known as the Amdahl’s law, subsequently led
to pessimism about the future of multi-core programming. Indeed, if as low as 20% of
sequential code limits the speedup to five, creating architectures with more than a few
cores may be useless. Figure 6.12(a) illustrates this limit for several cases of sequential
program portions. The maximal speedup according to Amdahl’s law on n homogeneous
cores is given by:

S ≤ SmaxAmdahl
(n) =

1

rs +
1− rs
n

. (6.6)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

1%
2,50%
5%

10%

25%

50%

sequential
ratios

speedup

number of cores

(a) Amdahl’s Law

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

1% 2,50% 5%
10%
25%

50%

speedup

number of cores

sequential
ratios

(b) Gustafson’s Law

Figure 6.12: Theoretical Speedup Limits

Thankfully, this formula is an over-simplified view of reality, as it defines a perfectly
parallel fixed program portion that can be distributed over any number of cores and a
fixed sequential program portion, where execution time does not depend on the number
of executing cores. These asumptions are based on the idea that a main execution thread
spawns parallel threads when data-parallel operations need to be executed and retrieves
the data after the end of the parallel program portion. Such model is far from exploiting
all the parallelism from an application (data parallelism as well as pipelining). In [Gus88],
Gustafson proposes a new model where the serial section of the code represents the same
portion of the execution, regardless of the number of cores. The inherent idea is that
more cores enable the execution of new portions of the code in parallel. For example, the
execution on a given number of cores will spend 20% of the time on sequential code. The
execution time on one core is then T (1) = rs(n)+n(1−rs(n)) for any n when the execution
time on n cores is T (n) = rs(n) + (1 − rs(n)) = 1. The resulting maximal speedup on
n homogeneous cores is shown in Figure 6.12(b) for several sequential part ratios. It is
called Gustafson-Barsis law and given by:

S ≤ SmaxGustafson
(n) = n− rs.(n− 1). (6.7)

While Amdahl’s law is pessimistic for the parallel calculation possibilities of an al-

116 Enhanced Rapid Prototyping

gorithm, the Gustafson-Barsis law is optimistic and shows that Amdahl’s law was not a
strict limit, as previously believed. With a sequential section of 20%, the Amdahl maxi-
mal speedup on 10 cores is 3.6 while the Gustafson maximal speedup is 8.2. Amdahl and
Gustafson laws, as well as Karp-Flatt metric [KF90], are based on the very unrealistic
idea that the middle-grain parallelism of algorithm is concentrated in perfectly parallel
zones. With graphs of program execution, more realistic parallelism metrics can be used
as advised by Leiserson in [Lei05]. Contrary to the previous laws, Leiserson’s intent is only
to evaluate the available parallelism present in the high-level model of the code; however,
the figures are more reliable because they are based on algorithm properties that are more
precise than parallel and sequential program sections.

6.6.2 Upper Bound of the Algorithm Speedup

It is important to evaluate the quality of the computed schedule. For that purpose, the
speedup increase that occurs as the number of cores is augmented is of interest. For
this study, communication times are not considered because they greatly depend on the
architecture. The only input for the evaluation of the possible speedup included in this
study is the algorithm. It is assumed that the architecture is homogeneous and has an
infinite speed media. The first limit that must be considered is the work length. The work
is the sum of all actor execution times and corresponds to the algorithm latency on one
core T(1) (Section 6.4.2). Except in the exotic case of superlinear speedups which appear
when the work decreases with the increasing number of cores, the work will be distributed
on all n cores and so:

T (n) ≤ T (1)/n⇒ S ≤ Ssupwork
= n. (6.8)

This speedup limit is a function of the number of available cores. Another general lim-
itation can be found in the length of the span, i.e. the critical path when communications
are ignored. Both work and span were shown to be calculable by the infinite homogeneous
ABC in Section 6.4.2. No matter how well the algorithm is parallelized, the latency can
not be reduced to less than the critical path. The critical path length T∞ adds a new
constraint on the speedup:

T (n) ≥ T∞ ⇒ S ≤ Ssupspan = T (1)/T∞. (6.9)

As these upper bounds have been defined, a minimum acceptable performance may be
researched.

6.6.3 Lowest Acceptable Speedup Evaluation

As compile-time scheduling computation is used with list scheduling and probabilistic re-
finements, its performance should always be equal to or better than the basic “greedy”
scheduler. The “greedy” scheduler executes actors as soon as they become available. At
each time step, there are either more than n available actors, where n of them are dis-
patched on the cores and the step is called complete or there are less than n available
actors, and they are all dispatched on the cores and the step is called incomplete. Gra-
ham [Gra69] and Brent [Bre74] give an limit inferior to the latency that such a “greedy”
scheduler can obtain using the Greedy Scheduling Theorem (GST):

T (n) ≤ T (1)

n
+ T∞ ⇒ S ≥ SinfGST

=
T (1)

T (1)

n
+ T∞

. (6.10)

Quality Assessment of a Multi-Core Schedule 117

The proof of GST can be found in [Lei05]. If a result worse than GST is obtained,
the compile-time scheduling process can not be considered successful. Again, this theorem
does not take into account the communication times due to hardware constraints that can
make real schedules sub-optimal. From the previously defined upper and lower bounds
on speedup, a chart can be derived, displaying the optimality of an algorithm schedule
latency.

a

DSP1
DSP2
DSP3

5

1

5

5

4

1

2

1

b

c

d

e

f

g

h

j

(8)

(5)

(5)
(5)

3

2

3
2

(3)

(5)

(8)

(5)

(3)

a b
c
d

e
f

g

h i

0 10 20 30

Latency = 30
3 identical cores
Work = 57
Critical path = 22
Speedup = 57/30 = 1.9

i
(10)

1

j
0

1

2

3

1 2 3 4 5 6 7 8

Current schedule

architecture-
limited
zone

algorithm-limited
zone

bad schedule zone

unreachable zone

S su
p

wo
rk

Ssup span

S inf GST

cores

speedup

Figure 6.13: Speedup Chart of an Example DAG Scheduling

Figure 6.13 displays the speedup optimality assessment of a small DAG scheduling
procedure. The DAG is annotated with its Deterministic Actors Execution Times (in
brackets) and the time cost of its transfers. To be efficient, the scheduling must be inside
the space delimited by the three curves. The best results are obtained when it is closest
to the upper left corner. Moreover, depending on the number of cores, its parallelism is
either limited by the number of cores in the architecture (architecture-limited zone) or by
the degree of parallelism in the graph (algorithm-limited zone). In [Sin07], Sinnen defines
the Communication to Computation Ratio (CCR) as the sum of communication time costs
divided by the sum of computation time costs in a scheduled graph. Figure 6.13 makes
sense as long as CCR� 1 is in the tested schedule. This constraint is not a real problem
because CCR� 1 is also a condition for the implementation to be efficient.

6.6.4 Applying Scheduling Quality Assessment to Heterogeneous Target
Architectures

The previous calculations were all based on homogeneous architectures but their use can
be extended to heterogeneous target architectures if certain precautions are taken. The
target architectures of this study (Section 5.1.1) have cores of homogeneous type c64x+
that perform the majority of the operations in the application. The c64x+ core type must
be set in the scenario as the main operator type. The parallelism of the cores with main
type can thus be studied in the quality assessment chart. The results are complicated by
the fact that coprocessors improve the speedup and increased communications degrade the
speedup. The number of cores in the speedup chart refer only to cores with main operator
type. The second precaution is that any actor executed by coprocessors must be forced
on that coprocessor to allow the specific study of the behavior of c64x+ cores.

In order to compute work and span, the infinite homogeneous ABC is run to simulate
a UNC execution of the code (Section 6.4.2). It calculates the algorithm work using

118 Enhanced Rapid Prototyping

DAETs with software actors on maintype cores and hardware actors on their respective
coprocessors. The span is different than the critical path length computed for the list
scheduling because it does not take into account the transfers in the infinite homogeneous
architecture. The span is computed by scheduling the graph on a UNC architecture with
an infinite number of main .type cores and coprocessors with non-null loads.

Under these conditions, the speedup chart provides a quick evaluation of the optimality
of the main system cores under the constraint of fixed mappings. It can be used to evaluate
whether a lower granularity in the algorithm is necessary to extract more parallelism or,
conversely, if certain actors should be clustered.

After this introduction of enhanced rapid prototyping features, the following chapters
will discuss the modeling of LTE for rapid prototyping and code generation.

CHAPTER 7

Dataflow LTE Models

7.1 Introduction

The objectives of rapid prototyping are introduced in Chapter 1. Figure 6.1 illustrates the
process of rapid prototyping. Technical background on the subject is explored in Chapter
4. In this chapter, models for the LTE rapid prototyping process are explained. From these
models, execution can be simulated and optimized using multi-core scheduling heuristics
and code can also be generated. The LTE models are novel and can complement the
standard documents for a better understanding of the LTE eNodeB physical layer. After
a general view of the LTE model is given in Section 7.2, the three parts of the LTE eNodeB
physical layer are detailed in sections 7.3, 7.4 and 7.5. LTE rapid prototyping is processed
by a Java-base framework which includes PREESM. The elements of this framework are
introduced in following sections.

7.1.1 Elements of the Rapid Prototyping Framework

The framework for rapid prototyping that was constructed during this thesis contains
three main elements: PREESM, Graphiti and SDF4J. The framework is illustrated in
Figure 7.1 and detailed in [PPW+09]. All the blocks in Figure 7.1 except SDF4J are
open-source plug-ins for the Eclipse environment [ecl]. They can use and extend the
advanced functionalities of Eclipse in terms of graphical user interface and framework
organization. In the PREESM project, special attention is given to program tools that
will be maintained in the long term, using encapsulation and design patterns [GHJV95]
(visitor, abstract factory, singleton, command...). Execution time of the different workflow
elements is optimized to offer prototyping solutions as expediously as possible.

7.1.2 SDF4J : A Java Library for Algorithm Graph Transformations

The java library named SDF4J (Synchronous Dataflow for Java) manipulates dataflow
graphs and is available in Sourceforge [sdf]. This library can process SDF graphs (Section
3.2) and its subsets (DAG...) as well as IBSDF (Section 3.4.2). It performs the algorithm
graph transformations called in the workflows, as explained in Section 6.2.3, including
hierarchy flattening, schedulability verification (Section 3.2), transformation into a DAG

120 Dataflow LTE Models

SDF4J

Algorithm
Transformation

Core

Multi-Core
Scheduler

Code
Generator

Architecture
Transformation

Graphiti

Graph
Transformation Library

Rapid Prototyping
Eclipse Plug-ins

Generic
Graph Editor

Eclipse Plug-in

Eclipse Framework

Figure 7.1: An Eclipse-based Rapid Prototyping Framework

(Section 3.2.3), and clustering methods based on [Sar87]. SDF4J also contains a parser
and a writer of GraphML files [BEH+01] to load and store its graphs.

7.1.3 Graphiti : A Generic Graph Editor for Editing Architectures,
Algorithms and Workflows

Graphiti provides a generic graph editor and is completely independent from PREESM.
It is written using the Graphical Editor Framework (GEF). The editor is generic in the
sense that any type of graph may be represented and edited. Graphiti is routinely used
with the following graph types and associated file formats : CAL networks [EJ03] [Jan07],
S-LAM architectural representations stored in IP-XACT format (Section 5.2), SDF and
IBSDF graphs stored in GraphML format and PREESM workflows (Section 6.2.3), stored
in specific XML files.

The type of graph is registered within the editor by a configuration. A configuration
is a structure that describes :

1. The abstract syntax of the graph (types of vertices and edges, and attributes
allowed for objects of each type),

2. The visual syntax of the graph (colors, shapes, and so on),

3. Transformations from the file format in which the graph is defined to Graphiti’s
XML file format G, and vice-versa (Figure 7.2).

Two kinds of input transformations are supported: from custom XML to Graphiti
XML format and from text to Graphiti XML format (Figure 7.2). XML is transformed
to XML using Extensible Stylesheet Language Transformation (XSLT [w3c]). The second
input transformation parses the input text to its Concrete Syntax Tree (CST) represented
in XML according to a LL(k) grammar by the Grammatica [graa] parser. Similarly, two
kinds of output transformations are supported, from XML to XML and from XML to text.

Graphiti handles attributed graphs [JE01]. An attributed graph is defined as a
directed multigraph G = (V,E, µ) where V the set of vertices, and E the multiset of
edges (there can be more than one edge between any two vertices). µ is a function µ :
({G}∪V ∪E)×A 7→ U that associates instances with attributes from the attribute name
set A and values from U , the set of possible attribute values. A built-in type attribute is
defined so that each instance i ∈ {G} ∪ V ∪E has a type t = µ(i, type), and only admits

Proposed LTE Models 121

XML

Text XML
CST

XSLT
transformations

G
parsing

(a) reading an input file to G

G XSLT
transformations

XML

Text

(b) writing G to an output file

Figure 7.2: Input/output with Graphiti’s XML format G

attributes from a set At ⊂ A given by At = τ(t). Additionally, a type t has a visual syntax
σ(t) that defines its color, shape and size.

To edit a graph, the user selects a file and the matching configuration based on the
file extension is computed. The transformations defined in the configuration file are then
applied to the input file and result in a graph defined in Graphiti’s XML format G as
shown in Figure 7.2. The editor uses the visual syntax defined by σ in the configuration
to draw the graph, vertices and edges. For each instance of type t the user can edit the
relevant attributes allowed by τ(t) as defined in the configuration. Saving a graph consists
of writing the graph in G, and transforming it back to the input file’s native format.

Graphiti generates workflow graphs, IP-XACT and GraphML files that are the primary
inputs of PREESM rapid prototyping. The GraphML files containing the algorithm model
are loaded and stored in PREESM by the SDF4J library.

7.1.4 PREESM : A Complete Framework for Hardware and Software
Codesign

PREESM itself is composed of several Eclipse plug-ins (Figure 7.1). The core parses
and executes workflows, calling methods from the other plug-ins of PREESM. It includes
the SDF4J library and contains the classes of all objects exchanged in workflows (Section
6.2.3). The core is the only compulsory element for PREESM. Other plug-ins can be added
to extend PREESM functionalities. The algorithm and architecture transformation plug-
ins provide graph transformations to the workflow. The algorithm transformation plug-in
generally calls SDF4J functionalities. The multi-core scheduler contains all the features
discussed in Chapter 6. The code generation plug-in generates self-timed executable code
(Section 4.4.1) from schedules provided by the multi-core scheduler. Code generation will
be extended in Chapter 8.

7.2 Proposed LTE Models

7.2.1 Fixed and Variable eNodeB Parameters

Certain parameters of an eNodeB do not change during its whole life span and other
parameters change every millisecond. For the rapid prototyping process, simulation use
cases must be chosen that represent real-life execution cases. The compile-time and run-
time actor scheduling must take into account the life spans of parameters and to manage
static parameters, no scheduling overhead should be introduced at run-time.

The duplex mode (Section 2.3.4) is a fixed parameter determined during the network
construction. The bandwidth of an eNodeB and the cyclic prefix mode (normal or
extended) are also fixed network parameters. Once a frequency band has been bought
by an operator, the eNodeB is configured to exploit fully this bandwidth. The number

122 Dataflow LTE Models

of available subcarriers is consequently also a fixed parameter, as are the size of the
Fourier transforms in SC-FDMA and OFDMA encoding and decoding (Section 2.3.4).

The format and localization of the RACH preamble, as well as the number of roots and
cyclic shifts (Section 2.4.5) are stable. These parameters depend only on the environment
of the eNodeB and are not permitted to vary over time because they must provide a stable
access point for UEs. Thus, the RACH decoding has no variable parameters.

The number of antennas for uplink, downlink and PRACH is stable. The multiple
antenna schemes for uplink and downlink are determined in the eNodeB (Sections 2.3.6,
2.4.4 and 2.5.4). Each eNodeB may have a preferred multiple antenna scheme correspond-
ing to its environment (rural and flat, mountainous, urban...) but a number of different
modes are likely to be used depending on the channel quality of each user.

It is the highly variable parameters of an eNodeB that depend on the UE connections.
In PUSCH, the number of UEs sending data changes every TTI of one millisecond
(Section 2.3.4). The number of Code Blocks sent (Section 2.3.5) and the sizes of
these Code Blocks also changes every TTI depending on the services accessed by each
UE (telephony, web...). The repartition of this data in the frequency band can differ for
each slot of 0.5 millisecond because of frequency hopping (Section 2.4.2). In PDSCH, the
number of variables is approximately the same as in PUSCH but with an additional degree
of freedom in the number of transport blocks sent to a UE during a TTI. In PUSCH,
with the exception of MU-MIMO, there is no spatial multiplexing so only one transport
block per TTI is transmitted (Section 2.4.4). In PDSCH, 2x2 spatial multiplexing can be
employed (Section 2.5.4) and a single UE can receive two transport blocks in one TTI.

The modulation and coding scheme (Section 2.3.5) is specific to each UE so will
also varies in every TTI. The transport block size and number of transport blocks for a
UE determines for each TTI the quantity of data exchanged with the core network (Figure
2.4).

As a consequence of these parameter variations, RACH preamble decoding is a static
operation that can be studied entirely at compile-time while uplink decoding and downlink
encoding are highly variable over time. Despite these variations, case studies may be chosen
so behavioral information can be extracted from the corresponding dataflow graphs at
compile-time. A typical use case is presented in next section.

7.2.2 A LTE eNodeB Use Case

In order to study LTE multi-core execution, typical use cases must be defined. We present
here a typical eNodeB and its performance. The objective of this section is to explain
the important features that must be taken into account when evaluating LTE physical
layer performance. Considering a FDD eNodeB with 20MHz downlink and uplink and 100
PRBs per slot, the system behavior can be evaluated using information given in Chapter
2. A configuration of four transmission and four reception antenna ports (Section 2.3.6)
is chosen for this eNodeB.

Uplink Performances

Firstly, considering the PUSCH with standard cyclic prefix, each PUSCH resource block
contains 6 symbols∗12 subcarriers = 72 resourceelements; one additional symbol is used
as a reference symbol (Figure 2.17). Table 7.1 gives the capacity of Resource Elements
(RE) and resource blocks in bits and deduces the raw bit rates for the current case. This
total data rate must be shared between all UEs. The base time unit for data allocation to

Proposed LTE Models 123

Table 7.1: Maximal Raw Bit Rates of Uplink Resources

Modulation
Scheme

bits/RE bits/PRB bits/pair of
PRBs

max raw bi-
trate

QPSK 2 144 288 28.8 Mbit/s

16-QAM 4 288 576 57.6 Mbit/s

64-QAM 6 432 864 86.4 Mbit/s

a UE is a single TTI of one millisecond; thus it can be seen that a pair of PRBs contain
the minimum amount of bits that can be allocated to a UE.

From these raw data rates, the multiple control overheads must be subtracted:

� The outer PRBs are reserved for PUCCH. This exact number is typically up to
16 PUCCH regions, i.e. 16 PRBs per slot are kept for PUCCH ([STB09]). It
may be noted that the modulation and coding scheme is different between PUSCH
and PUCCH; thus the PUCCH raw bit rate cannot be directly deduced from this
calculation.

� The rate matching process (Section 2.3.5) has a rate of “useful data” between 7.6%
and 93%. The channel coding rate is linked to the chosen modulation scheme (Figure
2.14(a)).

� The transmission of the PRACH channel requires part of the uplink bandwidth. In
a typical case of a cell with radius smaller than 14 km, a preamble of format 0 can
be allocated every 2 milliseconds. It results in 6 PRBs every 2 milliseconds, so uses
approximately 3% of the resources.

Thus, the maximal PUSCH data rate may be evaluated, including these overheads.
Under ideal conditions where 64-QAM can be employed over the entire bandwidth with
93% channel coding rate, a PUSCH data rate of 86.4 ∗ 0.93 ∗ 0.81 = 65Mbit/s can be
attained. The CRCs and the overhead of the upper layers are not taken into account;
these parameter also reduce the final bit rate available to the UEs IP layer. The uplink
transmission process is constructed to allow the LTE uplink data rate requirement of 50
Mbit/s to be attained.

Downlink Performances

The downlink performance evaluation uses the table of transport block sizes in [36.09e]
p.26. The transport block size (in bits) depends on the number of allocated PRBs, and
on an index named ITBS (Index of Transport Block Size). Downlink Control Informa-
tion (DCI, Sections 2.3.5 and 2.5.2) sent in PDCCH to a UE details the link adaptation
parameters and determines the ITBS . From the ITBS , the maximal downlink data rates
for a given modulation scheme, with 2x2 spatial multiplexing (2 transport blocks) can be
evaluated. The results are shown in Table 7.2.

The displayed data rates target only PDSCH and include the control channel costs. As
above, these maximal data rates are those of the physical layer. Upper layers will further
reduce the effective data rate available to the IP layer of the UEs.

The following sections focus on models of multi-core execution for the physical layer
of LTE eNodeBs. To study the system-level and the link-level data behavior of the LTE

124 Dataflow LTE Models

Table 7.2: Maximal Raw Bit Rates of PDSCH

Modulation
Scheme

ITBS bits/2TBs max raw bitrate

QPSK 9 31704 31.7 Mbit/s

16-QAM 15 61664 61.7 Mbit/s

64-QAM 26 149776 149.8 Mbit/s

downlink, an open source simulator under Matlab is provided by the Technical University
of Vienna [MWI+09].

7.2.3 The Different Parts of the LTE Physical Layer Model

LTE physical layer decoding can be divided into three major actors: random access
decoding, uplink decoding and downlink encoding. Uplink decoding and random
access decoding are frequency multiplexed in the same symbols but they are separated in
this study for two reasons: firstly, both actors are very costly, and are potentially parallel
and secondly, while PRACH decoding is a completely static operation, uplink decoding
execution varies every millisecond. Thus studying each actor separately allows better and
fast optimization.

The scale and granularity of the three actor descriptions must be defined (Section
3.1.2). The scale is determined by the application. For PRACH decoding, the obvious
scale results from a graph decoding a complete preamble sent over 1, 2 or 3 milliseconds.
This preamble transmission time depends on preamble type. The latency of one RACH
preamble detection then is minimized. For uplink and downlink actors, graphs could be
constructed where each processes one symbol (decoding a 71.4 µs period) but this would
introduce too much low-level conditioning, including parameters with static patterns.

Another possibility would be to design uplink and downlink graphs representing one
entire frame (decoding 10 milliseconds) but this solution leads to very large graphs and
HARQ puts latency constraint on subframe processing, not frame processing. Thus, the
correct scale for uplink and downlink graphs is the time to process one subframe (1 millisec-
ond). The granularity is chosen so that atomic actors (with no hierarchy) have relatively
close execution times. A typical actor execution time is a few thousand of cycles. In
the following sections, models of random access decoding, uplink decoding and downlink
encoding with user- selected scale will be presented.

7.3 Prototyping RACH Preamble Detection

Random Access Channel Preamble Detection (RACH-PD) consists of decoding the multi-
plexed and non-synchronized messages from the UEs attempting to connect to the eNodeB
(Section 2.4.5). The preamble is transmitted on the Physical RACH (PRACH) channel
over a specified time-frequency resource, denoted as a slot, available with a certain cycle
period and a fixed bandwidth of six PRBs. Within each slot, a guard period is reserved
at each end to maintain time orthogonality between adjacent slots.

The method used to execute RACH-PD is the hybrid time-frequency domain approach
described in [STB09] p.449 and [JMB]. With this method, the PRACH message decoder
can start before the whole message has been received. It uses small FFTs and is based
on downsampling and anti-aliasing. The Power Delay Profile (PDP) is then computed. It

Prototyping RACH Preamble Detection 125

consists of the norm of the periodic correlation of each Zadoff-Chu sequence (Section 2.4.3)
with the received sequence. A peak in the Power Delay Profile indicates the detection of
a signature and the location of the peak provides the timing advance of the transmitting
UE, i.e. the propagation time between UE and eNodeB. Peak detection must take into
account the noise in received samples; thus, the noise is estimated and the threshold for
peak detection depends on this estimation. To compute the correlation between received
signal and signatures, the convolution with complex conjugate is used.

The case studied in this section assumes a RACH-PD for a cell size of 115 km. This is
the largest cell size supported by LTE and is also the case requiring the most processing
power. According to [36.09c], preamble format#3 is used with 21,012 complex samples
as a cyclic prefix, followed by a preamble of 24,576 samples followed by the same 24,576
samples repeated. In this case, the slot duration is 3 milliseconds which gives a guard
period of 21,996 samples.

Noise floor
estimation

Peak
search

Noise floor
estimation

Peak
search

Noise floor
estimation

Peak
search

Noise floor
estimation

Peak
search

Sum of the energies
of the 8

preambles copies
(64 repetitions)

...

...
...
...

...

...
...
...

...

Noise floor
estimation
Noise floor
estimation
Noise floor
estimation
Noise floor
estimation

Noise floor
estimation
Noise floor
estimation
Noise floor
estimation
Noise floor
estimation

Noise floor
threshold

(64 repetitions)

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Subcarrier demapping

Pre-processing

Preamble processing: Antenna 4 first copy of the preamble

...

...

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Subcarrier demapping

Pre-processing

Preamble processing: Antenna 3 first copy of the preamble

...

...

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Subcarrier demapping

Pre-processing

Preamble processing: Antenna 2 first copy of the preamble

...

...

Circular correlation
(64 repetitions)

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

FIR DFT

Subcarrier demapping

Pre-processing

Preamble processing:
Antenna 1 first copy

of the preamble

...FS

...

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Subcarrier demapping

Pre-processing

Preamble processing: Antenna 4 second copy of the preamble

...

...

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Subcarrier demapping

Pre-processing

Preamble processing: Antenna 3 second copy of the preamble

...

...

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2

BPF DFT

Suber demapping

Pre-processing

Preamble processing: Antenna 2 second copy of the preamble

...

...

Circular correlation
(64 repetitions)

Route preamble 3
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 2
frequency response

Complex conjugation

Zero padding IFFT | |2

Route preamble 1
frequency response

Complex conjugation

Zero padding IFFT | |2Subcarrier demapping

Pre-processing

Preamble processing:
Antenna 1 second copy

of the preamble

...FIR DFTFS

...

Delay
(800μs)
Delay
(800μs)
Delay
(800μs)
Delay
(800μs)

RF

Figure 7.3: RACH-PD Algorithm Model

As per Figure 7.3, the algorithm for the RACH preamble detection can be summarized
in the following steps [JMB]. The dataflow graph in Figure 7.3 illustrates the actors
contained by the IBSDF description.

1. After cyclic prefix removal, the pre-processing actor isolates the RACH band-
width by shifting the data in frequency (Frequency Shifting, FS) and band-pass
filtering it with downsampling (Finite Impulse Response, FIR). The data is then
transformed into the frequency domain (DFT) and the subcarriers of interest are
selected (subcarrier demapping).

2. Next, the circular correlation actor correlates data with pre-stored preamble
root sequences in order to discriminate between simultaneous messages from several
users. The complex conjugates of the root sequences are directly retrieved from

126 Dataflow LTE Models

memory; consequently, the correlation step only costs a complex multiplication. The
circular correlation actor also applies an IFFT to return to the temporal domain and
calculates the energy of each root sequence correlation. The more roots there are,
the more circular correlations are processed. This is why cyclic shifts are used when
possible to reduce the number of root (Section 2.4.5).

3. Then, the noisefloor threshold actor collects these energies and estimates the
noise level for each root sequence.

4. Finally, the peak search actor detects all signatures sent by the users in the current
time window. It additionally evaluates the transmission timing advances, correlated
with the distance of the transmitting UEs. The timing advances are sent to the
MAC layer which then transmits each value to the appropriate UE to command a
compensation.

In general, there are three parameters of RACH which are highly dependent on the cell
size, and may be varied: the number of receive antennas, the number of root sequences and
the number of repetitions of the same preamble. The case with 115 km cell size implies 4
antennas, 64 root sequences, and 2 repetitions, as shown in Figure 7.3.

The goal of rapid prototyping of a RACH-PD can be to determine, through simulation,
the number of c64x+ cores needed by the architecture to manage the 115km cell RACH-PD
algorithm. The RACH-PD algorithm behavior is described as a IBSDF graph in PREESM.
The algorithm can be easily adapted to different eNodeB use cases by tuning the graph
parameters. The IBSDF description is derived from the representation in Figure 7.3. After
a total flattening (Section 3.4.2), the graph contains 2209 vertices. This high number may
be reduced by merging actors and/or reducing the flattening degree. Placing these actors
onto the different cores by hand would be greatly time-consuming. As seen in Section 7.1.4
the rapid prototyping PREESM tool provides automatic scheduling, avoiding the problem
of manual placement.

A significant point to note is that RACH decoding has an absence of feedback edge
and a total independence of preceding preamble detection iterations. In the IBSDF graph
description of RACH-PD, the graph is actually acyclic and the SDF to DAG transformation
has no effect on its topology. The graph also displays a high parallelism that can be
extracted at compile-time. Indeed, its topology depends only on parameters that are fixed
for the lifespan of an eNodeB . Thus, no assignment step is needed at run-time to optimally
execute RACH-PD on a distributed architecture. The parallelism can be evaluated in
terms of span, length and potential speedup using the quality assessment chart from
Section 6.6, computed in PREESM. However, this chart does not take communication
costs or heterogeneity into account. An architecture exploration is needed to perform a
precise and complete hardware and software codesign.

Architecture Exploration

The four architectures explored are shown in Figure 7.4. The cores are all homoge-
neous Texas Instrument c64x+ DSP running at 1 GHz [TMS08]. The connections are
made via DMA-driven routes. The first architecture is a single-core DSP such as the
TMS320TCI6482. The second architecture is dual-core, with each core similar to that of
the TMS320TCI6482. The third is a tri-core and is equivalent to the tci6488 (Section
5.1.1). Finally, the fourth architecture is a theoretical architecture for exploration only,
as it is a quad-core. The exploration goal is to determine the number of cores required

Prototyping RACH Preamble Detection 127

to run the random RACH-PD algorithm in a 115 km cell and how to best distribute the
operations on the given cores.

PE1

DMA

PE2
PE1 PE2

DMA

PE3

PE1

PE3

DMA

PE4

PE1 PE2

1 2 43

Figure 7.4: Four architectures explored

To solve the deployment problem, each operation is assigned an experimental timing
(in terms of CPU cycles) in the scenario. These timings are measured with deployments
of the actors on a single C64x+. Since the C64x+ is a 32-bit fixed-point DSP core, the
algorithms must be converted from floating-point to fixed-point prior to these deployments.
The EDMA is modeled as a parallel node controlled by a DMA (Chapter 5) transferring
data at a constant rate and with a given set-up time.

Loosely timed
Approximately timed
Accurately timed

Real-time limit of 4ms

1 core

3 cores + EDMA

4 cores + EDMA

2 cores + EDMA

Figure 7.5: Timings of the RACH-PD algorithm schedule on target architectures

The PREESM automatic scheduling process is applied for each architecture. The
workflow used is close to that of Figure 6.4. The simulation results obtained are shown in
Figure 7.5. The list scheduling heuristic is used with loosely-timed, approximately-timed
and accurately-timed ABCs. Due to the 115 km cell constraints, preamble detection must
be processed in less than 4 milliseconds (Section 2.4.5).

The experimental timings were measured on code executions using a tci6488. The
timings feeding the simulation are measured in loops, each calling a single function with
L1 cache activated. For more details about C64x+ cache, see [TMS08]. This warm cache
case represents the application behavior when local data access is ideal and so will lead to
an optimistic simulation. The RACH application is well suited for a parallel architecture,
as the addition of one core reduces the latency dramatically. Two cores can process the
algorithm within a time frame close to the real-time deadline with loosely and approxi-
mately timed models but high data transfer contention and high number of transfers make
the dual-core architecture not sufficient when accurately timed model is used.

The 3-core solution is best: its CPU loads (less than 86% with accurately-timed ABC)
are satisfactory and do not justify the use of a fourth core, as can be seen in Figure 7.5.
The high data contention in this case study justifies the use of several ABC models; simple
models are used for fast results and more complex models are then employed to correctly
dimension the system.

128 Dataflow LTE Models

7.4 Downlink Prototyping Model

Encoding the LTE downlink consists of preparing the different data and control channels
and multiplexing them in the radio resources. Depending on the amount of control neces-
sary in a subframe, the 1, 2 or 3 first symbols carry the control channels (Section 2.5.2).
The remaining resources are shared between data channel (PDSCH), broadcast channels
and reference signals . To encode the LTE downlink, the baseband processing retrieves the
data Transport Blocks (TB) from the MAC layer (Figure 2.6) and applies channel coding
to them. Control channels and reference signals are then generated and multiplexed with
the data channel prior to MIMO encoding.

Symbols #1 to 13
Symbol #0

PBCH

PMCH

UE #2 to N
UE #1

PDCCH
PCFICH
PHICH

PDSCH
PBCH
PMCH

...

1 PRB =
7 symbols ×

12 sub-carriers

frequency

time

PDSCH TB #2 (if Spatial Multiplexing)
PDSCH TB #1 CB #2 to M

CB #1

A
dd

C

RC
 C

B

Tu
rb

o
E

nc
od

in
g

Ra
te

M
at

ch
in

g

C
od

e
Bl

oc
k

C
on

ca
te

na
tio

n

Sc
ra

m
bl

in
g

C
od

e
Bl

oc
k

Se
gm

en
ta

tio
n

A
dd

 C
RC

 T
B

C
on

st
el

la
tio

n
M

ap
pi

ng

La
ye

r/
A

nt
en

na
M

ap
pi

ng
 &

Pr

ec
od

in
g

From
 Layer 2

PDCCH

PCFICH

PHICH

RS

PSS

SSS

Resource
Mapping

RF

Antenna Stream #2 to A

IF
FT

In
se

rt
C

P

Antenna Stream #1

Channel Encoding

Figure 7.6: Downlink Decoding

A dataflow graph for encoding rapid prototyping is shown in Figure 7.6. It is composed
of three parts:

� during channel encoding the PDSCH data bits are transformed into symbols (Sec-
tion 2.5.2). First, a Cyclic Redundancy Check (CRC) is added to each TB. The TB
is then segmented into Code Blocks (CB) and each CB also receives a CRC. These
CRCs enable the detection of errors when a UE decodes PDSCH. The resulting code
block with CRC is Turbo-Encoded and rate-matched (Section 2.3.5) to introduce

Uplink Prototyping Model 129

the exact amount of desired redundancy in the binary information for Forward Er-
ror Correction (FEC). Then, the encoded code-blocks are concatenated before being
scrambled and constellation mapped. Scrambling spreads the redundant data evenly
to protect it against the frequency-selective air channel and a constellation mapping
is chosen among QPSK, 16-QAM and 64-QAM. The data is now composed of sym-
bols. The decisions are not shown in Figure 7.6 but all decisions (Hybrid ARQ
parameters for retransmission, Modulation scheme, Antenna mapping mode,and so
on) are sent by the MAC layer. Finally, the symbols are mapped to layers and the
layers are precoded and mapped to antenna ports (Section 2.5.4). Layer mapping
and precoding depend on the multiple antenna PDSCH mode (spatial multiplexing
or not, open or closed loop) chosen by the MAC layer.

� during the control and broadcast channels generation, channel symbols are
generated to be multiplexed with PDSCH. The primary control channel, PDCCH,
as well as PCFICH and PHICH channels are mapped to the first 1, 2 or 3 symbols of
the encoded subframe (Section 2.5.2). Certain Reference Symbols (RS) also appear
in these first symbols. PBCH broadcast channel values are generated only if the
current subframe contains cell information broadcast, which is the case once every
frame of 10 milliseconds. PBCH values are multiplexed with PDSCH, multicast
channel PMCH, RS and Synchronization Symbols (PSS and SSS, Section 2.5.5) in
the remaining 13, 12 or 11 symbols of the subframe.

� in the front-end, each complex value of the previously mentioned physical channels
is associated with a Resource Element (RE) in the Resource Mapping procedure.
Resource mapping is a bottleneck in the application because all symbols from all
UEs must be collected prior to forwarding them to the rest of the front-end. An
IFFT is then applied to convert each symbol of each antenna port into the time
domain for transmission and a cyclic prefix is inserted between each symbol to reduce
inter-symbol interferences (Section 2.3.2).

The PDSCH processing dominates the computation cost of other downlink physical
channels. It is for this reason that it is divided into actors while PHICH generation is
seen as a single “black box”. When described in an IBSDF, the number of repetitions of
each actor (per TB, per CB, per UE, per antenna port...) is determined by the number of
data tokens flowing between the different actors in the graph. Like the RACH-PD IBSDF
description, the downlink encoding graph is fairly parallel and is already an acyclic graph.
Unlike the RACH-PD IBSDF description, its topology depends on certain parameters
(number of receiving UEs, number of TBs, size of these TBs and number of CBs) that
vary each subframe because the subframe is the basic time unit for UE allocation (Section
2.3.2). It must be noted that only typical or worst-case downlink test cases can be studied
in PREESM.

7.5 Uplink Prototyping Model

The uplink model is divided into PUCCH and PUSCH models. Decoding the PUCCH
uplink control channel is a complex and potentially parallel operation. Contrary to the
PDCCH encoding that may be represented as a single actor, as in Figure 7.6, the PUCCH
model is presented as a complex graph. It may be noted that the PUCCH and PUSCH
graphs process the same raw symbols received by the antennas.

130 Dataflow LTE Models

7.5.1 PUCCH Decoding

Decoding PUCCH consists of extracting resource blocks at the edge of the bandwidth from
the raw data received by the antenna and then processing them to retrieve the uplink
control bits. The localization of PUCCH in the bandwidth was explained in Section 2.4.2.

Symbol #1 to 13
Symbol #0

Antenna Stream #2 to A

Fr
eq

ue
nc

y
Sh

ift

Re
m

ov
e

C
P

FF
T

(2
04

8)

PU
SC

H
/C

C
H

D
em

ap
pi

ng

Antenna Stream #1

PUCCH

PUSCH
1 PRB =

7 symbols ×
12 sub-carriers

...

PUCCH PRB #2 to N
PUCCH PRB #1

Pre-Processing

Conjugated
ZC Sequence

...

ID
FT

-1
2

frequency

time

Demux
UE

Decode UE
PUCCH

ACK/NACK/SR/DTX
(+CQI/PMI/RI only format 2)

Decoder depending
on PUCCH format
1/1a/1b/2/2a/2b

RF

Front End

Per U
E

Figure 7.7: PUCCH Decoding

A dataflow graph for decoding PUCCH is displayed in Figure 7.7. The PUCCH de-
coding consists in three distinct steps:

� The front end is common to PUCCH and PUSCH. The uplink subcarriers are fre-
quency shifted by half the width of a subcarrier, i.e. by 7.5 kHz, to reduce distortions
on the central resource blocks from the local oscillator. A frequency shift of 7.5 kHz
is thus first applied to the received signal to compensate for this shift. The problem
does not appear in downlink because one subcarrier (named d.c. subcarrier) is punc-
tured (Figure 2.21). In uplink, the same solution would worsen the PAPR and thus
increase UE power consumption ([STB09] p.353). The CP is then removed and the
symbols are transformed to the frequency domain by a FFT. The FFT size depends
on the bandwidth (Table 2.1) with a maximum of 2048 points in the 20 MHz band-
width case with 1200 subcarriers. Finally, resource elements from the band edges
are used in the PUCCH decoding procedure while the center elements are used in
the PUSCH decoding.

� The pre-processing step demultiplexes the PUCCH information from multiple UEs
which was transmitted over the same resources using CDM (Section 2.4.1). For the
UE, CDM encoding consists of multiplying, in the frequency domain, the data with
a Zadoff-Chu Sequence of length 12 and with a given cyclic shift. Thus, it is possible
for two UEs using the same ZC sequence with different cyclic shift to use the same
PBR. For each PRB, there are twelve possible cyclic shifts. To decode the CDM,
a multiplication with the Zadoff-Chu sequence is applied followed by a DFT of the
size of a PRB.

� In the decoder step, the UE data is then demultiplexed and, depending on the
PUCCH block format, certain information is extracted, using Reed-Muller decoding

Uplink Prototyping Model 131

to decode CQI (Section 2.3.5). ACK is reported by the UE in the case of a correct
downlink reception; NACK for a failed downlink reception (when the CRC indicated
errors in transmission) and DTX means that the UE did not even detect in PDCCH
that it had data to receive in PDSCH.

The information extracted from PDCCH is reported to the MAC layer, which controls
the downlink communication. The PDCCH can also contain an uplink Scheduling Request
(SR) when a UE requires more PUSCH resources.

7.5.2 PUSCH Decoding

PUSCH decoding is the most complex graph in the LTE eNodeB physical layer model. It
contains seven parts and is illustrated in Figure 7.8:

A
ntenna Stream

 #
2 to A

DFT

Antenna Stream #2 to A

PUCCH

PUSCH
1 PRB =

7 symbols ×
12 sub-carriers

...

frequency

time

... Channel
Sounding

Frequency Offset
Estimation

SRS Symbol

DM RS
Symbols

Pilot
Demodulation

IDFT

Windowing &
Noise Floor

Removal

A
ntenna Stream

 #
1

Multi-Antenna
Equalization

IDFT

Frequency D
om

ain
Sym

bol Processing

C
hannel E

stim
ation

Channel
Estimates

per Sym
bol

UE #2 to N

Fr
eq

ue
nc

y
O

ff
se

t
C

om
pe

ns
at

io
n

UE #1

Channel Decoding

C
on

st
el

la
tio

n
D

em
ap

pi
ng

D
es

cr
am

bl
in

g
D

ei
nt

er
le

av
in

g

D
em

ul
tip

le
xi

ng

CB #2 to M
CB #1

Ra
te

D
em

at
ch

in
g

H
A

RQ
C

om
bi

ni
ng

Tu
rb

o
D

ec
od

in
g

C
B

C
RC

C
he

ck

C
od

e
Bl

oc
k

C
on

ca
te

na
tio

n

TB
 C

RC
 C

he
ck

TB
UE #1

...

Decoding of Control Information

Interpolation

Data
Symbols

To Layer 2

Symbol #1 to 13
Symbol #0

Antenna Stream #2 to A

Fr
eq

ue
nc

y
Sh

ift

Re
m

ov
e

C
P

FF
T

(2
04

8)

PU
SC

H
/C

C
H

D
em

ap
pi

ng

Antenna Stream #1

Front End

RF

Antenna Stream #1

Data/DM RS/SRS
Demux

Time domain symbols from every antenna ports

Figure 7.8: PUSCH Decoding

� The front end is common to PUCCH and PUSCH and was explained in Section
7.5.1. It outputs the physical resource blocks dedicated to PUSCH in frequency
domain.

132 Dataflow LTE Models

� The data/DM RS/SRS demultiplexer separates the reference signals from the
data resource elements.

� The channel sounding processes the SRS symbol 13 and sends sounding informa-
tion to the MAC layer (Section 2.4.1). This information is used to schedule UEs in
the subsequent subframe.

� the frequency offset estimation evaluates the Doppler effect experienced by each
UE data TB due to UE velocity. The estimation uses the two reference DM RS
symbols 3 and 10 (Section 2.3.1). The frequency offset is then transmitted to the
MAC layer and influences the channel decoding.

� the channel estimation processes the ZC sequences from the two DM RS sym-
bols to compute the Channel Impulse Response (CIR). The pilot subcarriers from
different UEs are first separated. They are then transformed into time domain by
an IDFT. The DM RS signal is synchronized and noise removed. Finally, the sig-
nal is transformed back into frequency domain, the CIR is evaluated and is linearly
interpolated to find the CIR of each of the eleven data symbols.

� The frequency domain symbol processing first combines the data from different
antenna ports, equalizing them (Section 2.3.2) and using either MRC or MIMO de-
coding, depending on the UE multiple antenna scheme employed (Section 2.3.6). As
with channel estimation, the data from each UE is processed independently because
it may have different MCS that other UEs. The data is then transformed into time
domain by an IDFT. It may be noted that the equalizer processes the data from all
antenna ports together. Moreover, after Frequency Domain Symbol Processing, the
data from all the symbols must be gathered for joint processing. These two bottle-
necks limit functional parallelism, introducing additional causality in the system but
they cannot be avoided.

� The channel decoding step is approximately the inverse operation of the downlink
channel encoding explained in Section 7.4. The transport block values of each UE
are processed, extracting bits from the time-domain symbols. The frequency offset
due to the Doppler effect is compensated and data is demapped, descrambled and
deinterleaved. A second demultiplexing of data and control is necessary at this point
because certain control values can be multiplexed with data if PDCCH capacity
is insufficient ([STB09] p.398). Each CB is then dematched and combined with
any previous HARQ repetition. A hidden feedback edge exists because code blocks
from previous iterations of the graph are maintained in the MAC layer for future
combination with the subsequent repetition. After Turbo decoding, the CRC is
checked to verify whether data was lost and a new HARQ repetition is necessary.
CBs are finally gathered and the TB CRC is checked.

Contrary to the downlink part, only one TB per UE can be received in a subframe
because no spatial multiplexing other than MU-MIMO is allowed. In order to obtain a
correct simulated decoding latency, the IBSDF graph must account for the fact that each
symbol is received with a delay of 1/14 millisecond more than the preceding one. As there
is no notion of time in IBSDF and it is the scenario alone that introduces timings for
actors, a “trick” must be used to include these delays. This “trick” consists of introducing
a fake processing element in the architecture, which this study will call Antenna Interface
(AIF). A “dummy” delay actor is added to the algorithms, assigned to AIF, associated

Uplink Prototyping Model 133

with a 1/14 millisecond timing on AIF in the scenario. This actor is preceded by another
“dummy” actor whose use is to repeat the delay. A feedback edge on the delay actor
ensures the order of execution of its instances. The original graph and its form after
transformation to a single rate graph are shown in Figure 7.9. The delay from the first
“dummy” actor must be subtracted from the latency. The same technique can be used in
the downlink model to receive transport blocks at disparate times.

AIF
Real Architecture

containing Core 1 and Core 2

Delay
141

11

(71428 ns)
(0 ns)

Delay_Repeat

Delay Delay Delay Delay Delay Delay Delay Delay Delay Delay Delay Delay Delay Delay

Frequency Shift
11 ...

DR D

D

D

D

D

FS

FS

FS

FS

FS

...

...

...

...

...

FS
FS

FS
FS

FS
FS

FS
FS

FS
FS

FS
FS

FS
FS

AIF
Core 1
Core 2

SDF single rate SDF

1
1

1

1

1

1
1

1

1

1
...

Figure 7.9: Introducing Delays in a IBSDF Description to Simulate Events

It may be noted that the data rate of both uplink and downlink communications
between baseband processing and antenna ports can be a challenge. For a 20MHz cell
with 30.72 MHz sampling rate and 4 antenna ports and with complex data of 16-bit
real and imaginary parts, the antenna data rate is almost 4Gbit/s in both directions.
Consequently, the hardware antenna interface needs to support very high data rates. The
complex AIF data exchanges can be studied at system-level using PREESM and S-LAM
Contention Nodes, without considering all the details of implementation.

Of course, when the RACH-PD, downlink and uplink graphs are all prototyped to-
gether, the result is an extensive graph. Synchronization can then be specified for the
reception time of the downlink transport blocks and also the reception time of the uplink
symbols, using the “trick” presented above. This chapter presented LTE modelization for
rapid prototyping. The next chapter explains code generation from LTE dataflow graph
descriptions.

134 Dataflow LTE Models

CHAPTER 8

Generating Code from LTE Models

8.1 Introduction

Literature on automatic multi-core code generation was reviewed in Section 4.5 and
scheduling strategies in Section 4.4.1. In this section, generated code execution schemes
are defined, detailing how code is generated from a given scheduling strategy. Code gen-
eration for RACH-PD (Section 8.2), PUSCH (Section 8.3) and PDSCH (Section 8.4) is
then explained. Combining the three dataflow paths is discussed finally in Section 8.5.

8.1.1 Execution Schemes

In [BW09], Bell and Wood advise programmers on multi-core programming. The architec-
tures they study are the same DSPs targeted by this study. Their recommended method
for parallelizing applications is based on a test-and-refine approach and is manual with
steps that are different from those of Figure 4.2. The report then presents the two execu-
tion schemes which form the basis of distributed code generation: the master/slave scheme
and the dataflow scheme. Instead of “dataflow” scheme, the terminology “decentralized
scheme” will be used to avoid confusion with dataflow MoC. An execution scheme differs
from a MoC in that it defines the architecture of a running code, with run-time system
considerations that MoCs do not model.

� The master/slave scheme, illustrated in figure 8.1(a), consists of a centralized
execution control code in a master task that posts actors to slaves tasks. In this
model, actors are often called jobs but this term is usually used for actors which are
loosely coupled with respect to each other. A master or a slave task can be entirely
software-defined or have certain parts that have been hardware accelerated. Each
task can be locally contained in threads controlled by an OS or be the only computa-
tion of an operator. The centralized control code simplifies the efficient distributed
execution of the various applications, i.e applications are dominated by the control
code rather than data because these applications require a centralized knowledge of
the control values to efficiently reconfigure the parallel execution. [BW09] advises
use of the master/slave scheme for RLC and MAC Layers of telecommunication sys-
tems (Section 2.2.2), as these layers are always dominated by the control code. For

136 Generating Code from LTE Models

instance, in LTE, the eNodeB MAC scheduler is a complex control-dominated op-
eration which varies greatly depending on the state of the communication (number
and distance of the connected users, quality of the channels, MIMO schemes, and so
on). A master can either be an “intelligent” unit, posting actors where they will be
most efficiently executed or a simple pool of actors that the slaves monitor for actor
availability.

� The decentralized scheme, illustrated in figure 8.1(b), consists of independent
tasks which wait for input data, process it and send it without use of a global
execution arbitrator. This scheme corresponds to a “real” dataflow implementation
where computation is triggered solely by data arrival. Naturally, this scheme is well
suited to dataflow application implementation and [BW09] advises the use of the
decentralized scheme when implementing the physical layer of telecommunication
systems. However, as the uplink and downlink streams of the LTE eNodeB physical
layer are quite balanced between data and control, the most appropriate execution
scheme for these algorithms is clearly a mix of the master/slave and decentralized
schemes.

control
code

master task

slave task

Actor A

slave task

Actor B
slave task

Actor D
Actor C

assig
ns

assigns

assigns

finished

(a) Master/Slave Execution Scheme

task

Actor A

task

Actor D

Actor Ctask

Actor B

triggers trig
ger

s

triggers

(b) Decentralized Execution Scheme

Figure 8.1: Execution Schemes

As centralized resources in distributed architectures usually form system bottlenecks,
the centralization of the master in the master/slave scheme is a real issue. Hierarchical
approaches can reduce the problem. In a hierarchical multi-core scheduler, a top-level
scheduler assigns a pool of operators to a part of the application. The assignment and
scheduling of that subsystem is then managed by a lower-level scheduler which is located
elsewhere. Pools of operators can overlap; in this case, a time-sharing scheme is necessary
for each shared operator. This is usually performed by the top-level scheduler reconsidering
its choices periodically. System introspection (monitoring operator activity) can also be
used to choose when to reconsider top-level assignment. [HjHL06] is an example of such a
hierarchical scheduler with two levels.

Both master/slave and decentralized schemes can be used to generate code from
dataflow MoCs. However, the most appropriate execution scheme depends on the chosen
scheduling strategy (Section 4.4.1). Static-assignment, self-timed and fully static schedul-
ing strategies can be implemented using both master/slave and decentralized schemes.
However, all three strategies execute the assignment step at compile time to simplify run-
time and avoid the need for a centralized control code. Consequently, the most efficient
execution scheme for static-assignment, self-timed and fully static scheduling strategies is
the decentralized scheme. Conversely, the fully dynamic scheduling strategy necessitates

Static Code Generation for the RACH-PD algorithm 137

a run-time actor assignment. This strategy demands the centralization of either the exe-
cution control code or the pool of actors.Therefore, the master/slave scheme is the only
possible execution scheme for this scheduling strategy. The relation between scheduling
strategies and execution schemes is illustrated in Figure 8.2 and the two pairs of strate-
gy/scheme that this study uses for LTE are highlighted.

natural associations
possible but sub-optimal associations

Scheduling Strategies

fully dynamic
static-assignment

self-timed
fully static

Execution Schemes

master/slave

decentralized scheme

Figure 8.2: Possible Associations of Scheduling Strategies to Execution Schemes

A master element containing a multi-core scheduler is the central piece of a multi-core
RTOS. Such a system, if highly optimized, could improve embedded multi-core program-
ming by offering an abstraction of heterogeneous computing not available today.

8.1.2 Managing LTE Specificities

For each dataflow graph, the right scheduling strategy needs to be selected depending
on the variable behavior of target application and architecture. Once the scheduling
strategy is chosen, the execution scheme is chosen, as seen in Figure 8.2. For the RACH-
PD algorithm, the couple self-time scheduling/decentralized scheme is the most suitable
solution due to static system behavior (Section 7.2) as well as the fact that the execution
time of the target operators cannot be precisely known. For the processing of control
channels (PUCCH, PDCCH...), the limited costs of the actors mean that a static self-time
scheduling/decentralized scheme is a good solution because adaptive scheduling would
incur an unacceptably high overhead.

Conversely, the very high variability of the PUSCH and PDSCH algorithms in addition
to their high computing cost make a more complex strategy, such as master/slave execution
scheme, desirable.

Using quasi-static multi-mode schedule selection [HL97], all possible combinations of
parameters must be scheduled and a tradeoff found at compile-time, which would be im-
possible with the PUSCH and PDSCH because of the high number of cases (Section 8.3.4).
PUSCH and PDSCH necessitate the use of run-time adaptive scheduling instead of multi-
mode compile-time scheduling. These two code generation ideas are developed in the
following sections.

8.2 Static Code Generation for the RACH-PD algorithm

The RACH-PD is a static algorithm, so it can be efficiently parallelized using the PREESM
framework code generation.

8.2.1 Static Code Generation in the PREESM tool

The PREESM tool code generation uses the self-timed scheduling strategy (Section
4.4.1) and the decentralized execution scheme. Many principles are adapted from
the AAM methodology and incorporated into the tool [GS03]. The code generated by

138 Generating Code from LTE Models

the PREESM tool is analogous to a coordination code (Section 3.2). The host code and
communication libraries (Section 3.2) must be manually coded.

op2

DMA

op3

op1

tci8488 S-LAM model
with c64x+ operators

Scheduler

C
ode G

eneration

X
SL Transform

ation

TI C
ode C

om
poser C

om
piler

communication libraries
and actor code

op1.xml op1.c op1.exe

op3.xml op3.c op3.exe

op2.xml op2.c op2.exe

IDL prototypes

Schedule

Algorithm
and scenario c64x+.xsl

Figure 8.3: Code generation Procedure on a tci6488

To generate code statically, the static scheduling of the input algorithm on the input
architecture must have been defined. A typical PREESM workflow performing code gen-
eration is displayed in Figure 6.4. For each operator, the generated code consists of an
initialization phase and a loop endlessly repeating the part of the algorithm graph assigned
to this operator. Special code loops are generated from IBSDF descriptions for the non-
flattened and repeated hierarchical actors in order to obtain a compact code [PBPR09].
Each atomic actor generates a function call on its assigned core as explained in Section
6.2.1. The function call prototype is defined in an IDL file. The path of the IDL files is
a parameter of the code generation workflow node. From the deployment informationpro-
vided by the scheduler, the code generation module creates a generic representation of the
code in XML. This code is then XSLT-transformed to produce the specific code for the
target. The code generation flow for a tri-core tci6488 target processor (Section 5.1.1) is
illustrated in Figure 8.3.

The XML generic code representation is illustrated by an example in Figure 8.4, which
shows the XML code file generated for the operator op1 of Figure 8.3. The file contains
a static buffer allocator, a computation thread and a communication thread. It also
contains an operator type which indicates which XSLT transformation file to use when
generating the coordination code, in this case “c64x+.xsl”. The two threads communicate
via statically allocated shared buffers and semaphores. The communication thread controls
the DMA and waits for completion of transfers, while the computation thread executes
code in parallel, calling functions with parameters of type constant or buffer.

PREESM currently supports the C64x and C64x+ based processors from Texas In-
struments with a DSP-BIOS Operating System [dsp] and the x86 processors with a Win-
dows Operating System. Device-specific code libraries have been developed to manage
the communications and synchronizations between the target cores [PAN08]. The XSLT
transformation generates calls to the appropriate predefined communication library, which
are dependent on the route type and on the names of the communication nodes between
operators in the S-LAM architecture model (Chapter 5),. The inter-core communication
schemes supported include TCP/IP with sockets, Texas Instruments EDMA3 [PAN08]
and RapidIO link [rap].

Static Code Generation for the RACH-PD algorithm 139

<?xml version="1.0" encoding="UTF-8"?>
<sourceCode xmlns="http://org.ietr.preesm.sourceCode">
 <coreType>C64x+</coreType>
 <coreName>op1</coreName>
 <SourceFile>
 <bufferContainer>
 <bufferAllocation name="ifftTwiddle_ifftT_44" size="0" type="RACH_cpx"/>
 ...
 </bufferContainer>
 <threadDeclaration name="computationThread">
 <bufferContainer/>
 <linearCodeContainer>
 ...
 <launchThread priority="1" stackSize="8000" threadName="communicationThread"/>
 </linearCodeContainer>
 <forLoop>
 <userFunctionCall name="antenna_values">
 <buffer name="antennaData_antenn_0" size="4" type="RACH_cpx"/>
 <constant name="AntennaNr" type="int" value="4"/>
 ...
 </userFunctionCall>
 <semaphorePend number="9" type="full">
 <buffer name="sem" size="136" type="semaphore"/>
 </semaphorePend>
 ...
 </forLoop>
 <linearCodeContainer/>
 </threadDeclaration>
 <threadDeclaration name="communicationThread">
 <bufferContainer/>
 <linearCodeContainer>
 <linearCodeContainer>
 ...
 </linearCodeContainer>
 <semaphorePost number="9" type="empty">
 <buffer name="sem" size="136" type="semaphore"/>
 </semaphorePost>
 ...
 </linearCodeContainer>
 <forLoop>
 <semaphorePend number="9" type="empty">
 <buffer name="sem" size="136" type="semaphore"/>
 </semaphorePend>
 <receiveDma index="0" source="op2">
 <routeStep dmaDef="DMA" type="dma">
 <sender def="C64x+" name="op2"/>
 <receiver def="C64x+" name="op1"/>
 <node def="BUS" name="bus"/>
 </routeStep>
 <buffer name="rootIndex_rootIndex" size="1" type="ushort"/>
 </receiveDma>
 <semaphorePost number="8" type="full">
 <buffer name="sem" size="136" type="semaphore"/>
 </semaphorePost>
 ...
 </forLoop>
 <linearCodeContainer/>
 </threadDeclaration>
 </SourceFile>
</sourceCode>

C
om

m
un

ic
at

io
n

T
hr

ea
d

C
om

pu
ta

tio
n

T
hr

ea
d

St
at

ic
 B

uf
fe

rs
 a

llo
ca

tio
n

In
iti

al
iz

at
io

n
Ph

as
e

In
iti

al
iz

at
io

n
Ph

as
e

Lo
op

 P
ha

se
Lo

op
 P

ha
se

launching the communication thread

allocating a static buffer

calling a function and passing a buffer and a constant

waiting for a semaphore post

posting a semaphore

receiving a buffer over a route step of type DMA with one communication node

local buffers allocation

local buffers allocation

Figure 8.4: XML Generic Code Representation

140 Generating Code from LTE Models

Figures 8.5 and 8.6 show the behavior of a very simple application with three actors A,
B and C when mapped on two cores of a tci6488. In Figure 8.5(a), the actors are assigned
to operators. In Figure 8.5(b), a graph of the code execution is shown where the data
and the semaphores are displayed. The data is sent via a shared buffer that, combined
with semaphores, implements a FIFO queue of size 1. Semaphores need to synchronize
the transfer, successively informing the receive operator that the buffer is full and the
sender that the buffer is empty and ready for the next iteration. The initial token on the
feedback semaphore edge in Figure 8.5(b) shows that the semaphore signaling an empty
buffer targets the next iteration of the graph. Also in Figure 8.5(b), the send and receive
operations are gathered in one actor because they are synchronized by the communication
library. The general problem of bounding FIFOs for executing SDF graphs is discussed in
Chapter 10 of [SB09]. The solution employed is to add feedback edges with tokens to limit
the number of firings of the actors that are otherwise always free to fire. For example, an
actor with no input edge could fire many times before any other actor fires, piling many
tokens in its output FIFO queues.

Figure 8.5(c) shows a Gantt chart of the graph execution where C can be executed
in parallel with a transfer from operator 1 to operator 2 because of the synchronization
between the DMA and the communication thread. The semaphores synchronizing commu-
nication and computation threads need to be initialized during code initialization phase.
Figure 8.6 shows, as a Petri net (Section 3.1.1), the executions of the two threads running
on each core of the architecture. The petri net details clearly the accesses to semaphores;
this representation is often used to represent code generation synchronization in the Al-
gorithm Architecture Matching (AAM) method [MARN07]. Figures 8.6 and 8.5(b) show
equivalent representations, one typical from the AAM method and the other using dataflow
graph graphic conventions.

A
B

1000
1000

algorithm

op1

DMA

op2

C
1000 1000

assignment

architecture

(a) IBSDF Application and S-
LAM Architecture

A BSend/Receive
full full

empty empty

data
synchronization

C

(b) SDF model of execu-
tion

waiting empty output
waiting full input

A

Send

B

A

Send

Rcv Rcv

C C
computation thread

communication thread

communication thread

computation thread

op
1

op
2

(c) Gantt Chart

Figure 8.5: Code Behavior of a an Example of Message Passing with DMA

8.2.2 Method employed for the RACH-PD implementation

The development of the communication library to transfer data using EDMA3 (Section
5.1.1) on a tci6488 is explained in [PAN08]. The complete code generation of RACH-PD
is also detailed. From a Matlab model of the RACH encoding and decoding, a C host
code of the RACH-PD and the generated coordination code, a highly efficient multi-core
development and debugging method can be constructed. The debugging phase can be fully
executed on a single-core PC, using Matlab to generate test vectors and display the results,
and using PREESM to generate coordination code. The efficient implementation of the

Static Code Generation for the RACH-PD algorithm 141

End
Loop

End
Loop

init

Post
Full

Pend
Empty

Post
Empty

Pend
Full

Communication
thread

Computation
thread

Begin
Loop

End
Loop

End
Loop

init

Post Full

Pend
Empty

Post
Empty

Pend
Full

Communication
thread

Computing
thread

Begin
Loop

Begin
Loop

Begin
Loop

A BSend Receive

C

O
p1.xm

l

O
p2.xm

l

Figure 8.6: Petri Net of Execution of the Application in Figure 8.5(a)

embedded multi-core deployment is then generated seamlessly. This method, illustrated
in Figure 8.7, was successfully applied to RACH-PD during this thesis. It can be divided
into six steps:

PREESM descriptions

Matlab golden reference

PREESM-generated
coordination C code

Host C code optimized
with c64x+ intrinsics

Intrinsics equivalent
code in C

Matlab engine calls

Matlab plotting
functionalities

Signal
Reference

Difference

Matlab-generated headers

Performances

Debug

x86 project

c64x+ project

Figure 8.7: Method for the RACH-PD Algorithm Implementation.

1. RACH-PD functions are written in C, inspired by a Matlab “golden” code which
encodes and decodes the PRACH channel. Each C function of the RACH-PD em-
bedded code is hand-written, adding c64x+ intrinsics to optimize for speed. Intrin-
sics specify assembly calls in a C code. Each function is then instrumented and run
independent of target to collect execution timestamps and allow evaluation of their
cost.

2. PREESM generates two coordination codes from the IBSDF description of RACH-
PD illustrated in Figure 7.3 and two S-LAM architecture models: a single-core x86
and the targeted multi-core embedded platform. The x86 architecture will serve for
debugging phase and the target for the implementation. The actor timings previously
measured are used to simulate the execution while scheduling the graph.

3. Matlab encodes an input signal containing RACH preambles and then decodes it.
It generates large header files in C code containing buffers with the data at several

142 Generating Code from LTE Models

steps in the decoding process, which are displayed in Figure 7.3, such as before and
after FIR, before and after correlation, before and after IFFT, and so on.

4. The code is run on a x86, adding C reference code for each c64x+ intrinsic and
linking to the Matlab engine for displaying the results in Matlab. The decoded
signal is contained in a Matlab-generated header. At each decoding step, a separate
header is generated by Matlab, and then the golden reference and the embedded
solution are plotted using Matlab engine. Code errors and insufficient data accuracy
are clearly visible in the plots, which can thus be used to debug the code.

5. communication libraries are hand-written and then debugged for the target (alter-
natively, appropriate communication libraries may be retrieved if a previous project
has used the same architecture).

6. Maintaining the identical host code but switching the coordination code, the RACH-
PD is run on the target architecture to test its speed and accuracy of its results. Both
the intrinsic equivalent C code and the Matlab engine calls are then removed from
the embedded project. No deadlock will appear at this point, as data dependencies
are handled during only automatic scheduling.

The above method has several benefits. Firstly, the code can be debugged without
consideration of parallel programming problems. Secondly, the debugging phase is faster
than debugging with the target board because it involves no cross-compilation. Lastly,
the parallelism has been entered into the PREESM framework which facilitates the re-
deployment of the algorithm on new architectures. These advantages make static code
generation a powerful tool for creating embedded multi-core code.

Code has been generated and tested for the RACH-PD algorithm. The resulting imple-
mentation is deadlock-free but needs many manual tweaks to reduce its synchronization
and memory consumption and the final result is compatible with the simulated results
from Figure 7.5 in terms of cadence (a cadence under 4 millisecond is obtained) but not
in terms of latency. Some memory and synchronization optimizations are still needed in
PREESM to obtain automatically an optimized code.

The static code generation process is efficient only if the actor times are relatively
stable and the coordination topology is absolutely stable. This is the case for RACH-PD
but not for PUSCH decoding and PDSCH encoding. In the next section, a technique to
automatically schedule PUSCH on multi-core embedded systems is developed.

8.3 Adaptive Scheduling of the PUSCH

The underlying goal of adaptive scheduling is to create the central part of an efficient
multi-core RTOS for signal processing applications on heterogeneous architectures. An
adaptive scheduler needs to schedule its application efficiently with very little overhead.
The implemented system is dedicated to a specific task. Consequently, the scheduler
can adapt at compile time or during system launch to the system specificities and run
efficiently afterwards. The adaptive scheduler implements a fully dynamic scheduling
method and is an element of the master entity in a master/slave execution scheme. A
difference of the adaptive scheduler when compared to usual operating systems is that the
adaptive scheduler manipulates actors instead of threads and should not need preemption,
if actors are small enough, to respect application real-time constraints. Context switching
is thus useless for adaptive scheduling and deadlocks or race conditions do not exist.

Adaptive Scheduling of the PUSCH 143

In Section 4.4, adaptive scheduling approach was introduced. Adaptive scheduling
is a fully dynamic scheduling method which assigns actors to operators at run-time and
orders them using simple heuristics. Processing the LTE PUSCH in the eNodeB consists
of receiving the multiplexed data from connected UEs, decoding it and transmitting it to
the upper layers of the standard stack (Section 7.5). Depending on the number of active
UEs and on their instantaneous data rates, the decoding load may vary dramatically.
A multi-core adaptive scheduler has capacity to recompute a schedule for the algorithm
every millisecond. One important function of adaptive scheduler is to maintain low uplink
latency. The LTE standard has strict constraints in terms of latency, limiting the available
time for both uplink and downlink processing. The scheduler uses a graph modeling
technique, as during the rapid prototyping phase, to determine the execution timing from
the DAET of each actor on each operator. The schedule is determined after an “on-the-fly”
simulation of the application execution. The next section introduces the PUSCH model
for run-time scheduling.

8.3.1 Static and Dynamic Parts of LTE PUSCH Decoding

The PUSCH decoding operation (Figure 7.8) can be divided in two parts :

1. The static part: FFT front end processing and multiple antenna Minimum
Mean Square Error (MMSE) equalization. The parameters of these two op-
erations (number of receive antennas, Frequency Division Duplex (FDD) or Time
Division Duplex (TDD), bandwidth, and so on) are fixed during run-time. The
Cyclic Prefix (CP) is removed, the frequency is shifted by 7.5 kHz as stipulated by
the 3GPP LTE standard, the symbols are converted into frequency domain by a
Fast Fourier Transform (FFT) and equalized using received reference signals. The
data from up to four antennas is then combined and the subcarriers are reordered.
Finally, an Inverse Discrete Fourier Transform (IDFT) reconverts the data back into
the time domain per user basis.

2. The dynamic part: channel decoding. For this operation, the parameters (number
of connected UEs, number of allocated Resource Blocks, modulation order, and so
on) are highly variable during run-time. The multi-core scheduling of this dynamic
part must be adaptive.

The first and static part of processing can be represented as an IBSDF graph and
demonstrates a high level of parallelism. Consequently, the corresponding self-timed par-
allel schedule can be processed at compile time using PREESM [PPW+09], which will
also generate a self-timed code similar to that generated for RACH-PD (Section 8.2). The
multi-core scheduling of the second and dynamic part needs to be adapted at run-time
to the varying parameters. A discussion of the constraints on these varying parameters
follows in the next Section.

8.3.2 Parameterized Descriptions of the PUSCH

The parameters of PUSCH decoding are specified in the eNodeB MAC layer. They are
available at least 1 millisecond before the start of the decoding. This property makes pa-
rameterized dataflow (Section 3.4.1) particularly suitable for describing PUSCH decoding
because this millisecond allows the construction of an execution graph and the subsequent
search for an efficient multi-core schedule using this graph.

144 Generating Code from LTE Models

The most common use of parameterized dataflow is to describe an algorithm in a hi-
erarchical PSDF graph where init and sub-init phases φi and φs modify topology and
actor parameters at different levels. Such a PSDF description of the PUSCH decoding is
displayed in Figure 8.8. In this usage, the static part is not developed because it is par-
allelized at compile-time (Section 8.3.1). The dynamic part is simplified compared with
the graph displayed in Figure 7.8: actors have been merged to reduce the final size of the
graph. Figure 8.8 is divided into two actors at top level: the convergence actor that
gathers data from all subframe symbols and the ChannelDecoding actor. The top-level
initialization phase φi, is executed once per graph invocation (i.e. once per millisecond),
and initializes parameters carrying the maximum number of Code Blocks (CB) per UE,
and the maximum size of the CBs. In the sub-init phase φs, the number of UEs is retrieved
from the MAC layer before each graph execution. The channel decoding actor is repeated
nb UE times, as many times as there are UEs sending data in the subframe, as a conse-
quence of token productions and consumptions. The channel decoding actor contains a
hierarchy with five actors. The keepCurrentTones actor filters the subcarriers used for
data transmission and transmits the resultant subcarriers to the perUEProcessing which
processes the frequency offset compensation, channel decoding, constellation demapping,
descrambling, deinterleaving and demultiplexing. The BitProcessing actor gathers rate
dematching and HARQ combining information while the Turbo Decoding actor asso-
ciates turbo decoding with CB CRC checking. Finally, the CRCCheck actor checks the
CRC of the TB. At each invocation of ChannelDecoding, which occurs for each UE, the
number of CBs is modified as well as the size of these CBs. For a topology parameter to
be modified before each iteration of the graph, it must be modified in the sub-init graph
φs of ChannelDecoding to be executed before each execution of the body φb. Some actors
parameters are also modified in φs, such as code rate, modulation, MU-MIMO mode.

static part

SDF

convergence ChannelDecoding

init subInit PSDF Top

max_CBs_per_UE*nb_UE max_CBs_per_UE

Not repeated
max_CBs_per_UE; max_CB_size

init subInit ChannelDecoding

KeepCurrentTones PerUEProcessing

nb_CB

BitProcessing Turbo Dec CRCCheck

code_rate; modulation; MU-MIMO_mode; CB_size
Repeated nb_UE times

nb_CB nb_CB 1 1 1 1 nb_CB

nb_UE

Figure 8.8: PSDF Description of the Uplink.

In all the LTE graphs of the current study, there is no feedback path in the physical
layer. The SDF graph in Figure 8.8 is a Directed Acyclic Graph (DAG, Section 3.2.3).
Knowing all UE and CB parameters in advance of a subframe allows the global reconfig-
uration of the PUSCH graph instead of reacting locally to the variations of parameters in
sub-init graphs such as in Figure 8.8. The benefit of such a global reconfiguration is to
provide a system view of subframe decoding and to enable a simulation of the code execu-
tion on a heterogeneous multi-core architecture using the compile-time methods presented
in Section 4.4. To achieve a global graph, patterns of token production and consumption
are used as in Parameterized Cyclo Static Dataflow Graphs (PCSDF) 3.3. A run-time
system cannot handle the Basis Repetition Vector (BRV) computation of a PCSDF graph
to instantiate the actors. The input model of the adaptive scheduler is thus reduced to

Adaptive Scheduling of the PUSCH 145

acyclic graphs and called Parameterized Cyclo Static Directed Acyclic Graph (PCSDAG).
This is not a new model; it is a subset of the Parameterized CSDF model. Compared with
the Parameterized CSDF, the PCSDAG has been simplified and has no cycle. It contains
only a single vertex without input edge and the number of firings of this vertex is fixed to
1.

st
at

ic
 p

ar
t

SDF

convergence

PCSDAG

max_CBs_per_UE*nb_UE
max_CBs_per_UE

Not repeated
 max_CBs_per_UE;max_CB_size

init subInit

KeepCurrentCBs PerUEProcessing

nb_UE;(nb_CB)

BitProcessing Turbo Dec CRCCheck

(code_rate); (modulation); (MU-MIMO_mode);(CB_size)

(nb_CB) 1 1 1 1 (nb_CB)(nb_CB)

Figure 8.9: PCSDAG Description of the Uplink.

A PCSDAG description of the LTE PUSCH decoding is shown in Figure 8.9. Both data
token production and consumption of each PCSDAG edge is set by the MAC scheduler.
The token production and consumption can either be a single integer value or a pattern of
integer values. The PCSDAG has no hierarchy but the parameter (nb CB) is a template
which provides the number of CB for each UE, and all actor parameters are now templates
which assign its own parameters: nb CB = {nb CB(UE1), nb CB(UE2), nb CB(UE3)...}
to each CB. For example, a consumption of the number of CBs per UE can contain the
pattern {10, 5, 3, 1, 1}, meaning that the actor will consume 10 data tokens on the first
firing, 5 on the second and so on. 1 millisecond before each subframe, all production and
consumption patterns are set by the MAC scheduler. The PCSDAG can then be extended
into a single rate DAG (Section 3.2.3) and the resulting single rate DAG is scheduled.
The DAETs of the LTE PUSCH graph actors also depend on pattern parameters set by
the MAC scheduler. The domain of nb UE is between 0 and 100 UEs (ignoring PUCCH)
because each pair of PRBs can be associated with a different UE and the domain of each
pattern element in nb CB is between 1 and 13 CBs. PCSDAG can model LTE PUSCH
decoding in a very compact way.

In the next section, the architecture model of the adaptive scheduler is explained.

8.3.3 A Simplified Model of Target Architectures

The processors targeted by this study are the heterogeneous multi-core DSPs introduced in
Section 5.1.1 and boards interconnecting several of them. They include the 6-core tci6486
and the 3-core tci6488. Combinations of these DSPs (interconnected between test boards
with RapidIO serial links for instance) are also targeted architectures. The dataflow graph
scheduling techniques naturally handle heterogeneity in data links and operators, treating
targets with coprocessors, different DSP frequencies and different communication media.
For example, the tci6488 includes a turbo decoding coprocessor that can perform the
Forward Error Correction (FEC) [STB09] decoding part of the PUSCH processing.

Using S-LAM (Chapter 5) in the adaptive scheduler would not be realistic in terms of
memory and computing cost. Therefore, a very simple architecture model is used, In this
model, the DAET of actors in the single rate DAG are linked to operator types, enabling
operator heterogeneity. A matrix is created where each oriented pair of source and sink
operators is associated with a transfer speed in Gbytes/s. This matrix is displayed in
Figure 8.10 and its results are compared to that of S-LAM for an example consisting of
one tci6486 and one tci6488.

146 Generating Code from LTE Models

tci6488_1
tci6488_2
tci6488_3
tci6486_1
tci6486_2
tci6486_3
tci6486_4
tci6486_5
tci6486_6

tci
64

88
_1

tci
64

88
_2

tci
64

88
_3

tci
64

86
_1

tci
64

86
_2

tci
64

86
_3

tci
64

86
_4

tci
64

86
_5

tci
64

86
_6

0
2
2

0.125
0.125
0.125
0.125
0.125
0.125

2
0
2

0.125
0.125
0.125
0.125
0.125
0.125

2
2
0

0.125
0.125
0.125
0.125
0.125
0.125

0.125
0.125
0.125

0
2
2
2
2
2

0.125
0.125
0.125

2
0
2
2
2
2

0.125
0.125
0.125

2
2
0
2
2
2

0.125
0.125
0.125

2
2
2
0
2
2

0.125
0.125
0.125

2
2
2
2
0
2

0.125
0.125
0.125

2
2
2
2
2
0

data rates
in GBytes/sGEM1

GEM2

GEM3

EDMA3

SCR
2 GBytes/s

RIO

0.
12

5
G

By
te

s/
s

GEM1

GEM2

GEM3

GEM4

GEM5

GEM6

EDMA3

SCR

2 GBytes/s

tci6488

tci6486

Figure 8.10: Target Architecture Example in S-LAM and Adaptive Scheduler Matrix Model: a
tci6488 and a tci6486 Connected with a RapidIO Serial Link.

3 CBs
2 CBs

5 CBs
4 CBs

7 CBs
6 CBs

8 CBs

1 CB 1 allocation pattern; 1 UE max

3 allocation patterns; 3 UEs max

7 allocation patterns; 5 UEs max
11 allocation patterns; 6 UEs max

15 allocation patterns; 7 UEs max

22 allocation patterns; 8 UEs max

100 CBs
50 CBs
25 CBs 1958 allocation patterns; 25 UEs max

204226 allocation patterns; 50 UEs max
190569292 allocation patterns; 100 UEs max

CB per UE

UEs
2 allocation patterns; 2 UEs max

5 allocation patterns; 4 UEs max

...

Figure 8.11: The problem of allocating CBs to UEs is equivalent to integer partitions represented
here in Ferrer diagrams.

8.3.4 Adaptive Multi-core Scheduling of the LTE PUSCH

An obvious solution to efficiently schedule a dynamic algorithm onto a heterogeneous
architecture is to schedule all possible configurations at compile-time and then switch
between the pre-computed schedules at run-time. The limits of such an approach are now
analyzed.

The Limits of Pre-computed Scheduling

Assigning a given number of CBs to UEs is a similar problem to partitioning the number
of CBs into a sum of integers. The problem of integer partitioning is illustrated by Ferrer
diagrams in Figure 8.11. Given a number NCB of CBs to assign, a Ferrer diagram gives
the possible number of different allocation configurations p(NCB), i.e. the possible number
of different graphs to schedule and map for a given quantity of CBs. The number of CBs
NCB allocated every millisecond also varies between 0 and NCBMAX

. In Section 2.3.4,
the maximum number of pairs of PRBs per subframe was shown to be a constant for
each eNodeB and is fixed between 6 and 100 depending on the LTE system bandwidth.
NCBMAX

is equal to the maximum number of pairs of PRBs per subframe because PRB
pair is the minimum resource released to a code block. The total number of different

Adaptive Scheduling of the PUSCH 147

possible graphs for a given eNodeB PUSCH is:

P (NCBMAX
) =

NCBMAX∑
i=1

p(i). (8.1)

For the simplest case of a 1.4MHz LTE system bandwidth with only a maximum of
6 CBs to allocate, the number of possible graphs is 29. It is feasible to pre-compute
and store the scheduling of these 29 graphs. However, the number of graphs increases
exponentially with NCB; the still relatively simple case of 3MHz with a maximum of 12
CBs generates 271 graphs. Considering that for P (50) = 1295970, it can be concluded
that the scheduling of all LTE PUSCH cases with bandwidth higher than 3MHz cannot
realistically be statically scheduled.

It must be noted that the above calculation of cases for each bandwidth only takes into
account topology modifications and not execution time modifications due to the variable
size of the CBs. The next section explains an adaptive scheduler that can efficiently
schedule PUSCH despite topology and CB size variations.

Structure of the Adaptive Multi-core Scheduler

The adaptive multi-core scheduler algorithm is illustrated in Figure 8.12. There is an
initialization phase that generates the PCSDAG object from a manual description and
pre-computes the graph parameter expressions. The following processing steps are called
each millisecond when the MAC scheduler changes the CB allocation. These scheduler
steps consist of 2 operations:

� The graph expansion which transforms the PCSDAG into a single rate DAG with
shape dependent on the PCSDAG parameters.

� The list scheduling algorithm which maps each actor in the single rate DAG to
an operator (core or coprocessor) in the architecture.

The goal of the initialization step of the adaptive scheduler is to maximally reduce the
loop step complexity. The expressions of the PCSDAG edge productions and consump-
tions are then parsed and converted into a Reverse Polish Notation (RPN) stack using the
Shunting-yard algorithm [Dij60]. RPN specifies the order of expression evaluation in an ef-
ficient bracket-less expression. This technique allows the adaptive scheduler to manipulate
efficiently the PCSDAG patterns, which is essential in a run-time scheduler.

Graph
Expansion

List
Scheduling

Initialization

from LTE Layer 2

PCSDAG
srDAG Schedule

to Runtime

PCSDAG parameters
Adaptive Scheduler

< 1ms

archi

Figure 8.12: Adaptive multi-core scheduling steps: graph expansion and list scheduling steps are
called in a loop every millisecond.

The output of the adaptive scheduler feeds a run-time procedure. This procedure may
implement a multi-core API (OpenCL [opea], Multi-core Association [mca]). The sum of
graph expansion and list scheduling execution times must stay under 1 millisecond for the
scheduler to be an approach of interest in LTE PUSCH processing. These two operations
are detailed in the following Sections.

148 Generating Code from LTE Models

Adaptive Expansion of PCSDAG into Single Rate DAG

A single rate DAG (Section 3.1.2) is a graph with no cycle, in which each edge has equal
data production and consumption. All single rate DAG actors are instances of PCSDAG
actors. Each single rate DAG actor is fired only once.

Figure 8.13 gives four examples of single rate DAG graphs generated from the expansion
of the PCSDAG in Figure 8.9 with different allocation schemes. The number of (possible)
vertices in a single rate DAG may be calculated by:

V = 2 + 3 ∗ nb UE + 2 ∗NCB. (8.2)

Thus, for the PUSCH example, the maximal size of the corresponding single rate DAG
is 502 vertices with 100 UEs and 100 CBs allocated in the subframe. To generate the
second case shown in the figure (2 UEs - 5 CBs), we have nb UE = 2, CBs UE = {2, 3}
,and max CBs UE = 3 from the PCSDAG graph (of Figure 8.9).

1
10

10

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 10 1 1 1 1

1

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1
10

10

9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

1 UE - 1 CB

2 UEs - 5 CBs

3 UEs - 3 CBs

2 UEs - 10 CBs

Figure 8.13: Examples of single rate DAG graphs generated from the PCSDAG description in
Figure 8.9.

The adaptive scheduler algorithm calculates the number of firings of each actor, using
the productions and consumptions of the incoming edges (as computed from RPN expres-
sion stacks) and the firings of the preceding actors only. This calculation is then stored
in the Basis Repetition Vector (BRV) presented in Section 3.2. The absence of a loop
in the graph and the existence of only one source vector with a single firing enables this
“time-greedy” method in O(|E|+ |V |), where |E| and |V | are the number of edges and the
number of vertices in the single rate DAG respectively. There is no schedulability checking
in the expansion step. Once the BRV has been calculated and the single rate DAG vertices
have been created, the appropriate edges are added to interconnect them.

This technique may be contrasted with SDF. SDF schedulability checking and ex-
pansion into single rate SDF requires a study of the null space of the topology matrix
presented in Section 3.2. The method, described in Algorithm 3.1, has a time complexity
of O(|V |2|E|). Although yielding good results, the time cost of this operation excludes its
execution in a realistic run-time scheduler.

After the expansion of the PCSDAG graph, the resulting single rate DAG is then ready
for the list scheduling step. This operation is explained in the next Section.

List Scheduling of the Single Rate Directed Acyclic Graph

The static list scheduling operation used is a simplified version of the “time-greedy” algo-
rithm described in Section 4.4.3. The list scheduling process is illustrated in Figure 8.14

Adaptive Scheduling of the PUSCH 149

and an example of a Gantt chart generated by the adaptive scheduler (Figure 8.15) gives
an idea of the resulting scheduling complexity.

2 UEs - 5 CBs

1
10

10

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

PE1

PE2

1 2 3 5 7 9 11 13 15 17

4 6 8 10 12 14 16 18

Latency

Mapping each actor on each
processing element and

choosing the mapping with
earliest termination date

Figure 8.14: Example of list scheduling of Single Rate DAG actors.

2000 400 600 1000800 1200 1400

Figure 8.15: Example of a schedule Gantt chart: case with 100 CBs and 100 UEs on the archi-
tecture from Figure 8.10 with one core reserved for the scheduling.

As may be seen in Figure 8.14, there is no actor reordering process before the list
scheduling algorithm is executed. In the LTE PUSCH case, the consequences for the
scheduling quality are limited because all the paths from the first actor to actors without
successors are equivalent, except for the DAETs of the actors. A suboptimal input list
results in a multiplication of the latency by a factor λ ≤ 2 − 1/n where n is the num-
ber of target cores [Gra66]. This result is an approximation as the calculation ignores
the data transmission latencies. The single rate DAG is not reordered in the adaptive
scheduler is because the topological order of the single rate DAG with its absence of cycle,
is naturally deduced from the PCSDAG. Searching for another topological order for the
single rate DAG would require the prohibitively time consuming actor list construction
with O(|V |.log(|V |)) time complexity presented in Section 4.4.3. Without this reordering
operation, the adaptive scheduler cost is perfectly linear with the input graph size and
architecture size. The next Section illustrates this behavior for an implementation of the
adaptive scheduler.

8.3.5 Implementation and Experimental Results

The adaptive scheduler implementation genericity, compactness and speed were developed
with special care, due to their vital role. The entire code, including private members and
inlined accessors, is written in C++.

150 Generating Code from LTE Models

Memory Footprint of the Adaptive Scheduler

In order to reduce execution time, the adaptive scheduler contains no dynamic allocation.
Its memory footprint (Figure 8.16) is only 126 kBytes. Each c64x+ core of the tci6486
and the tci6488 processors of Section 5.1.1 has an internal local L2 memory of 608 kBytes
and 500 to 1500 kBytes respectively. Thus, the memory footprint is sufficiently small to
fit within the internal local L2 memory of a single core of either processor.

Half of the memory footprint is used by the graphs. The relatively large size of the
PCSDAG in memory is due to the patterns stored in RPN. The single rate DAG graph
has a size sufficient to contain any possible LTE PUSCH configuration. One third of the
footprint is used by the code.

srDAG G raph 28680

Expansion and S c heduler 2488P ars er 11328
S tac k 1024

P attern Initializ ation 4000

Code 40800

O ther 2836 A rc hitec ture 88

PCSDAG G raph 37292

Total 128536 Bytes

Figure 8.16: Memory Footprint, in Bytes, of the Statically Allocated Adaptive Scheduler.

Impact of Graph and Architecture Sizes on the Adaptive Scheduler Speed

Figure 8.17 shows that the execution time of the Adaptive Scheduler increases linearly
with the graph size. The graph expansion time for very small single rate DAGs is due
to the constant RPN parameter evaluation. The worst case execution time is less than
950,000 cycles, enabling real-time execution on a c64x+ at 1GHz. However, a load of 95%
for the scheduling core is unwise for a real application. For this case, further optimizations
would be necessary to lower the load.

Total
Graph Expansion
List Scheduling

Time in cycles

Number of
vertices in the
srDAG

0
100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000

1.000.000

0 50 100 150 200 250 300 350 400 450 500 550

Figure 8.17: Impact of single rate DAG graph size on the LTE PUSCH scheduling execution time
on the architecture of Figure 8.10 with one core reserved for the scheduling.

In Figure 8.18, adaptive scheduler execution time is shown to increase linearly with

Adaptive Scheduling of the PUSCH 151

the number of cores in the architecture. The graph shows the case where the single rate
DAG size is fixed to 502 and the number of cores varies. Moreover, it may be seen from
this figure that the graph expansion time only varies with PCSDAG parameters , and does
not depend on architecture size . The maximum number of cores targeted by the present
implementation with a DSP at 1GHz is 9 (this includes a dedicated core for scheduling).
Specific optimizations for Texas Instruments chips with intrinsic and pragma can improve
this result.

Total
Graph Expansion
List Scheduling

Time in cycles

Number of
processing elements
in the architecture

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

0 1 2 3 4 5 6 7 8

Figure 8.18: Impact of the number of operators on the LTE uplink scheduling execution time in
an LTE PUSCH worst case.

Evaluating the Limits of the Target Architecture

00

0
10

20
30

40
50

60
70

80
90

100

0102030405060708090100
1

2

3

4

5

6

7

8

UEs

code blocks

speedup using
8 cores instead
of one

Figure 8.19: Schedule speedup vs. number of CBs and UEs using the architecture from Fig-
ure 8.10.

The latency of the dynamic part of LTE PUSCH depends greatly on the instantaneous

152 Generating Code from LTE Models

number of decoded CBs, the size of those CBs that influences their decoding time, and
the instantaneous number of communicating UEs. Figure 8.19 shows the increase in speed
obtained with the use of multiple cores, instead of a single 700MHz c64x+. For this test,
each CB has a size of one pair of PRBs and can transport 760 bits. The speed increase
approaches the theoretical maximum of (6∗0.7+2∗1)/0.7 = 8.8 times when the single rate
DAG becomes larger and exercises more data parallelism. The architecture of Figure 8.10
has one core of the tci6488 dedicated to scheduling and no coprocessor, and is likely to be
sufficient to decode the LTE PUSCH dynamic part in 1 millisecond for 50 CBs and 50 UEs,
i.e. for the 10MHz bandwidth case. The execution time of the static part of the algorithm
is not taken into account in this simulation. The problem of the multi-core partitioning
of the static part then becomes easier as it can be solved at compile-time. However,
this operation will need to be pipelined with the dynamic part in order to respect the 1
millisecond execution time limit. The load of the core executing the scheduler will need
to be limited as discussed above and the dynamic part combined with the static part.

Comparing the Run-Time Simplified Scheduling Results with the Compile-
Time FAST Scheduling Results

In order to be able to schedule efficiently at run-time, simplifications have been made in
the scheduling heuristic: no initial list ordering and no neighborhood search are used. A
scheduler workflow node named “dynamic queuing” is available in PREESM to evaluate
the efficiency of the simplified adaptive scheduler (Appendix A). Figure 8.20 shows the
difference in latency and load balancing of schedules obtained with the FAST heuristic
and with the simplified adaptive scheduler heuristic. The application and architecture are
the same as for Figure 6.11. The FAST is executed during 60 seconds without balancing
the loads (Section 6.4.3). It may be seen in Figure 8.20 that using simplified adaptive
scheduler heuristic instead of FAST, the latency is increased by about 15% while the
load balancing remains approximately stable (it is even improved in some cases). Given
the large difference in processing time, the simplified adaptive scheduler heuristic is thus
performing well.

Latency, normalized to the smallest one

Standard deviation of the
core's loads (in percentage)

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4 5 6 7 8 9

Simplified adaptive scheduling
FAST with no load balancing

Figure 8.20: Comparing Run-Time Heuristic Schedules with FAST Schedules

In the next section, the PDSCH model is studied and shown to be close to the PUSCH
model.

PDSCH Model for Adaptive Scheduling 153

8.4 PDSCH Model for Adaptive Scheduling

In the rapid prototyping model of downlink decoding displayed in Figure 7.6, the channel
encoding shows many similarities with the uplink channel decoding shown in Figure 7.8.
However, the significant difference is that the number of TBs per UE varies between one
and two and must be chosen, and this parameter must be resolved adaptively for each UE.

st
at

ic
 p

ar
t

SDF

Retrieve TBs

PCSDAG

max_CBs_per_TB*nb_TB
max_CBs_per_TB

Not repeated

init subInit

TB Bit Processing Turbo Enc.

(nb_CB);nb_TB;total_TB

Rate Matching Channel Coding Precoding

(code_rate); (modulation); (MU-MIMO_mode)

1
(nb_CB)

(nb_CB)

 1 1

nb_TB1

 1 1

 1

max_CBs_per_TB

Figure 8.21: PCSDAG Model of the PDSCH LTE Channel.

PDSCH decoding dominates the LTE downlink decoding. A PDSCH PCSDAG model
for adaptive scheduling is proposed in Figure 8.21. This model is topologically close to
that of PUSCH, shown in Figure 8.9. Actors from Figure 7.6 have been clustered to reduce
their number. TB bit processing gathers CRC additions and code block segmentations;
turbo encoding embeds CB CRC additions; and channel coding contains concatenation,
scrambling and constellation mapping. nb TB gives the total number of TBs to encode in
the subframe and (nb CB) the pattern of the number of CBs in each TB.

The maximum graph size is 803 actors. Scheduling this graph adaptively is thus
more costly than scheduling PUSCH and further optimizations of the scheduler will be
necessary to minimize this cost. The next section briefly addresses the combination of
uplink decoding, downlink encoding and RACH-PD for entire LTE physical layer execution
of an eNodeB.

8.5 Combination of Three Actor-Level LTE Dataflow Graphs

Currently, the majority of signal processing applications have similar structures with three
distinct levels of behavior. Reusing the terminology from Section 4.1.1, these levels are:

� Instruction-level with both control and data streams, efficiently described by imper-
ative MoCs and efficiently executed on Von Neumann machines from these descrip-
tions.

� Data-dominated actor-level, which is well suited for distributed architectures, pro-
vided sufficient data rate is available between operators. Models at this level are
called concurrency models in the literature.

� Loosely-coupled task-level which is dominated by control streams and is well suited
for modeling with state machines.

The LTE eNodeB physical layer follows this model structure with three actor-level
tasks: RACH-PD, uplink and downlink which are connected by the control-dominated

154 Generating Code from LTE Models

MAC layer, and contain actors which locally mix control and data dependencies. The
appropriate global execution scheme for the LTE physical layer is certainly a two-level
hierarchical scheduler (Section 8.1.1) with a master/slave task-level scheduler and three
actor-level adaptive schedulers. The technique for task-level scheduling could be based on
[HjHL06] where a given task is associated with a particular operator pool depending on its
“desire” (the number of operators it reclaims) and the number of available operators. The
job scheduling algorithm utilized is named Dynamic Equipartitioning (DEQ), and assigns
the same number of operators to each job unless these jobs desire less (the metric is called
desire). The three actor-level adaptive schedulers then have the goal to use the pool they
control for maximum benefit. The next chapter develops the conclusion of the thesis and
introduces possible future work.

CHAPTER 9

Conclusion, Current Status and Future Work

9.1 Conclusion

The most recent algorithms and architectures for embedded systems have become so com-
plex that a system-level view of projects from the early design stages to the implemen-
tation is now necessary in order to avoid bad design choices and to meet deadlines. A
multi-core DSP implementation of a 3GPP LTE base station is representative of these
new complex systems which require high optimization. The software of such a hetero-
geneous embedded distributed system cannot be efficiently developed without a special
development chain based on rapid prototyping and system-level simulation. In this the-
sis, software rapid prototyping methods were developed to replace certain tedious
and sub-optimal steps of the present test-and-refine methodologies for embedded software
development. These techniques were applied to the study of a 3GPP LTE base station
physical layer.

Building a high-level view of a distributed and heterogeneous embedded system brings
new challenges compared with sequential software development chains. An intimidat-
ing number of complex problems arise when algorithm actors are assigned to architecture
operators and algorithm data transfers are assigned to architecture communication nodes.
A compromise must be made between model expressivity and power of analysis. Thank-
fully, a large amount of relevant literature exists, due to the search for heuristics to solve
similar parallelization problems such as organizing factories, and projects. In this thesis,
heuristics from the literature are presented and enhanced for integration in automatical
prototyping processes for heterogeneous embedded systems.

A system-level view requires new algorithm and architecture models. When
extracting algorithm parallelism from sequential imperative code, it is tempting to make
the transition between sequential and distributed machines seamless. However, imperative
code introduces useless dependencies to an algorithm and adds a new and unnecessary
parallelism extraction problem to the existing challenges. In this thesis, several dataflow
algorithm models are presented and their use to model LTE is justified and explained.
They naturally express algorithm parallelism and have already been intensely studied. A
new simple and expressive System-Level Architecture Model is also introduced, enabling
high speed simulations.

Programming a distributed embedded system at high-level, designers have several con-

156 Conclusion, Current Status and Future Work

straints to respects and costs to optimize. Moreover, these costs are highly dependent
on the system. An embedded software development chain must adapt to these different
costs and assess the quality of the resulting solutions: it must consist of a framework em-
bedding functionalities rather than a monolithic tool. In this thesis, the PREESM rapid
prototyping framework was presented. It embeds many functionalities, each with multiple
parameters. Importantly, a graphical schedule quality assessment chart was also intro-
duced. It displays the parallelism available in an algorithm in terms of latency and shows
the present use of this parallelism in the system.

Finally, code generation from model-based descriptions was explained. LTE physical
layer algorithms were detailed and previously evoked methods were applied to the im-
plementation of LTE on multi-core DSPs. These approaches revealed limitations in the
compile-time methods for multi-core scheduling. Depending on the particular algorithm
used, the compile-time or the run-time multicore scheduling method should be
chosen. The resulting run-time system can be based on different multi-core scheduling
strategies and different execution schemes and must balance the correct use of the parallel
architecture with the scheduling overhead.

9.2 Current Status

As part of developing new techniques for rapid prototyping and code generation, their be-
havior is tested in the PREESM scheduling framework or the multi-core adaptive scheduler.
Rapid prototyping with PREESM already offers a user-friendly interface under Eclipse and
has many features explained in this thesis, including control of actor granularity, an op-
timization of system latency and load balancing, the support of multiple algorithms and
architecture topologies, interoperator transfer ordering, static code generation, and so on.
The PREESM framework can be found on the Web under Sourceforge. Many configu-
rations of LTE have been tested with PREESM and code was implemented and tested
for the RACH-PD with communication libraries developed for TCP on a PC and for the
tci6488 processor.

9.3 Future Work

The PREESM scalable scheduler has been designed to enable the comparison and opti-
mization of assignment and ordering heuristics separately. Combining existing heuristics
detailed in the literature and newly developed heuristics, and improving PREESM schedul-
ing will allow increasingly complex graphs to be efficiently scheduled.

New applications are currently tested under PREESM including a MPEG4 part 2 intra
encoder and decoder. They show limits in the optimality of generated code that already
appeared in RACH-PD code generation. These limits will be solved by reducing the inter-
core synchronization. Extensions of the algorithm IBSDF model are also tested. They
enable the modeling of conditions in PREESM and could bring to a coupling of PREESM
and the adaptive scheduler.

Certainly the most important future work will be to manage memory during rapid pro-
totyping. Memory management should appear in several places in the process. Memory-
conscious scheduling can avoid scheduling choices that are impossible to execute because
of memory size limitations. Memory minimization heuristics have been developed in the
literature to use the same buffers for the storage of several non-overlapping data tokens;
these heuristics will be incorporated in the PREESM buffer allocation to reduce the mem-
ory needs of the generated code. Memories that are local to operators are often complex

Future Work 157

and cached; the S-LAM model will be extended to include a simple description of these
internal memories including the cached data accesses.

For adaptive scheduling, scheduler latency and memory footprint can be further re-
duced by optimizing the intermediate graph storage, to increase competitiveness for LTE
and other applications. Such a scheduler could be adapted to several other problems,
including audio and video processing applications with high variability.

158 Conclusion, Current Status and Future Work

APPENDIX A

Available Workflow Nodes in PREESM

The following workflow nodes are shown as they appear in their Graphiti edition. A node
class ID identifies its behavior. Each node is provided by the Preesm plug-in precised here.
New plug-ins defining new nodes can be programmed. Some port types are known (SDF,
architecture, DAG, scenario...) and transfer specific data structures. The port name “xml”
is used when xml data files are loaded or stored. This edge does not carry data but only
states a precedence. Any other type of port can be used for precedence edges.

160 Available Workflow Nodes in PREESM

__algorithm
scenario

__architecture
scenario

__scenario

HierarchyFlattening
SDF

srSDF
SDF

reduceExplImpl
SDF

Exporter
SDF

org.ietr.preesm
.plugin.transforms
.flathierarchy

org.ietr.preesm
.plugin.transforms
.sdf2hsdf

org.ietr.preesm
.plugin.transforms
.ReduceExplode
Implode

org.ietr.preesm
.plugin.exportXml
.sdf4jgml

Graphic Elements Params

None

Remarks

These three nodes must appear exactly once in the wokflow.
The scenario is the only node without an input edge.
The names are specific and must have the double underscore.
The scenario references its relative IBSDF algorithm and
S-LAM architecture: that is why there are edges between them.

Graphic Elements Plug-in - Class ID

DAG Plotter
ABC
scenario

org.ietr.preesm
.plugin.mapper.plot

GraphTransfo

GraphTransfo

GraphTransfo

GraphTransfo

Mapper

Parameters
depth (2): number of hierarchy levels to
flatten

Parameters
Flattens levels of
hierarchy from
an algorithm

NoneTransforms a SDF
graph into a
single rate SDF
one

NoneReduces as much
as possible the
number of
fork/join vertices
in the graph

path (/MyProject/MyFile.graphml): Eclipse
path of the written file
openFile (true;false): opens automatically
the exported file

Saves a graph in a
graphml file

NonePlots the Gantt
of a schedule and
shows the quality
assessment plan
of the schedule

List Scheduling
SDF ABC
architecture
scenario

FAST Scheduling
SDF ABC
architecture
scenario

org.ietr.preesm
.plugin.mapper.fast

org.ietr.preesm
.plugin.mapper
.listscheduling

DAG

DAG

Mapper

Mapper

simulatorType (LooselyTimed;
approximatelyTimed;AccuratelyTimed): ABC
edgeSchedType (Simple;Switcher): Chosen
edge scheduling heuristic
balanceLoads (true;false): Additional load
minimization constraint for the schedulings

Schedules the
algorithm on the
architecture using
the Kwok static
list scheduling
heuristic

simulatorType: see above
edgeSchedType: see above
balanceLoads: see above
fastTime (1000): Timeout in seconds of the
whole FAST mapping if uninterrupted
fastLocalSearchTime (20): Local search time
displaySolutions (true;false): plots
intermediate Gantts

Schedules the
algorithm on the
architecture using
the Kwok FAST
scheduling
heuristic

Inputs

Transformations

Figure A.1: Workflow Nodes

161

Dynamic queuing
SDF ABC
architecture
scenario

Genetic Scheduling
SDF ABC
architecture
scenario

PGenetic
SDF ABC
architecture
scenario

org.ietr.preesm
.plugin.mapper
.standardgenetic

org.ietr.preesm
.plugin.mapper
.pgenetic

org.ietr.preesm
.plugin.mapper
.DynamicQueuing
Transformation

DAGExporter
DAG xml
SDF
architecture
scenario

DAG

DAG

DAG

org.ietr.preesm.
plugin.mapper.
exporter.Impl
ExportTransform

Mapper

Mapper

Mapper

Mapper

simulatorType: see above
edgeSchedType: see above
balanceLoads: see above
fastTime: see above
fastLocalSearchTime: see above
fastNumber: see above
generationNumber (100): number of
generations before timeout
populationSize (100): actors in a population

Schedules the
algorithm on the
architecture using
a genetic
scheduling
heuristic

simulatorType: see above
edgeSchedType: see above
balanceLoads: see above
fastTime: see above
fastLocalSearchTime: see above
fastNumber: see above
generationNumber: see above
populationSize: see above
procNumber: see above

Schedules the
algorithm on the
architecture using
a parallel genetic
scheduling
heuristic

simulatorType: see above
listType (topological;optimised): Type of list
used for scheduling. It can be any topological
list or one optimized by studying the graph
critical path

Schedules the
algorithm on the
architecture using
an oblivious list
scheduling
heuristic

path (/MyProject/MyFile.graphml): Eclipse
path of the written file
openFile (true;false): opens automatically
the exported file

Exports a graph
with schedule
information into
a graphml file

org.ietr.preesm
.plugin.mapper
.scenariogen
.ScenarioGenerator

Lua gen
xml org.ietr.preesm

.XsltTransform

Mapper

Scenario Gen
xml SDF

architecture
scenario

Mapper

inputFile (/MyProject/MyFile.xml):
Eclipse path of the xml input file
outputFile (/MyProject/MyFile.lua):
Eclipse path of the output text file
xslFile (/MyProject/MyFile.xslt):
Eclipse path of the xslt sheet

Transforms a xml
file into a xml or
text file using a
xslt sheet.

dagFile (/MyProject/outDAG.xml):
DAG which constraints are imported
scenarioFile (/MyProject/in.scenario):
scenario initializing all the other parameters

Generates a new
scenario from an
input scenario
and the
constraints of an
exported DAG

PFAST
SDF ABC
architecture
scenario

org.ietr.preesm
.plugin.mapper.pfastDAG

Mapper simulatorType: see above
edgeSchedType: see above
balanceLoads: see above
fastTime: timeout (in s) of one FAST process
fastLocalSearchTime: see above
displaySolutions: see above
nodesMin (10): Minimum number of actors
associated to one scheduling core
procNumber (2): Number of scheduling cores
fastNumber (100): Max number of FAST
iterations before stopping PFAST

Schedules the
algorithm on the
architecture using
the Kwok parallel
FAST scheduling
heuristic

Transfo Graphic Elements Plug-in - Class ID ParametersParameters

Figure A.2: Workflow Nodes

162 Available Workflow Nodes in PREESM

Codegen
DAG
Architecure

org.ietr.preesm
.plugin.codegen

ArchiExporter
architecture

ArchiFlattener
architecture

Codegen

ArchiTransfo

ArchiTransfo
org.ietr.preesm
.plugin.architransfo
.transforms
.HierarchyFlattening

org.ietr.preesm
.plugin.architransfo
.transforms
.Architecture
Exporter

sourcePath (/MyProject/MySources):
output path to store the sources
xslLibraryPath (/MyProject/MyArchiXSL):
path where all the xslt sheets corresponding
to the cores are stored

Generates code
from the output
DAG of a
scheduling

path (/MyProject/MyFile.design): Eclipse
path of the written file
openFile (true;false): opens automatically
the exported file

Exports an
S-LAM
architecture into
an IP-XACT file

depth (2): number of hierarchy levels to
flatten

Flattens degrees
of hierarchy in
an S-LAM
architecture

Transfo Graphic Elements Plug-in - Class ID ParametersParameters

Figure A.3: Workflow Nodes

APPENDIX B

French Summary

B.1 Introduction

Le standard 3GPP Long Term Evolution (LTE) constitue l’un des derniers dévelop-
pements dans le domaine des télécommunications sans fil terrestres. Il permet des
taux de données de plusieurs centaines de Mbit/s. Une station de base LTE, générale-
ment appelée eNodeB, est un calculateur qui traite et retransmet les données trans-
mises entre tous les utilisateurs présents dans la zone de couverture d’une antenne
terrestre (cellule) et le coeur du réseau. Ce calculateur est un système temps-réel
dont la consommation doit être limitée alors même que les calculs qu’il effectue sont
complexes. La couche physique est la couche basse du modèle OSI (Open System In-
terconnection) qui désigne les calculs de traitement du signal spécifiques aux techno-
logies de transmission des signaux. La couche physique du LTE est particulièrement
complexe et coûteuse en terme de puissance de calcul.

Les processeurs de traitement du signal (DSP) modernes ont des architectures
matérielles adaptées aux contraintes de consommation et de performance des sta-
tions de base LTE. Cependant, pour limiter leur consommation et leur échauffement,
les DSPs sont maintenant multi-coeurs, ce qui complique le développement de leurs
programmes. De plus, ils contiennent des optimisations matérielles (co-processeurs
spécialisés, Direct Memory Accesses, plusieurs niveaux de cache...) qui les rendent
hétérogènes et compliquent encore leur programmation et l’évaluation de leurs per-
formances.

Cette thèse a pour objectif d’automatiser le partitionnement des différentes par-
ties de la couche physique du LTE sur les coeurs d’architectures hétérogènes consti-
tuées de un ou plusieurs DSPs. Pour cela, un outil appelé PREESM (Parallel and
Real-time Embedded Executives Scheduling Method) est développé avec le premier
objectif d’automatiser des déploiements du LTE. PREESM réalise deux opérations :
le prototypage rapide consistant à évaluer rapidement par simulation l’efficacité
du déploiement et la génération de code consistant à produire automatiquement
le code parallèle du déploiement. PREESM préfigure ce que pourrait être une chaine
de développement multi-coeurs.

La Figure B.1 illustre le processus de prototypage rapide avec simulation et

164 French Summary

génération de code. Les entrées du processus sont une description des algorithmes
du LTE, une description de l’architecture matérielle des DSPs et un scénario four-
nissant des informations et des contraintes au prototypage rapide. Les algorithmes
sont décris en utilisant des graphes flot de données qui permettent une extraction
efficace du parallélisme qu’ils contiennent. Les éléments d’un graphe flot de données
sont appelés acteurs. Les architectures sont décrites en utilisant un nouveau modèle
graphique nommé S-LAM pour System-Level Architecture Model. Le coeur du tra-
vail de parallélisation consiste à faire des choix de placement et d’ordonnancement
des acteurs de l’algorithme sur les coeurs de l’architecture.

Ce résumé est organisé à l’image du corps de la thèse pour pouvoir aisément se
référer au texte intégral. La structure de la thèse est résumée dans la Figure B.1. Une
première partie (B.2) traite de l’état de l’art. Elle se décompose en une explication
du standard 3GPP LTE, une section traitant des modèles de calculs et en particu-
lier des modèles flot de données et une section détaillant les techniques existantes de
parallélisation de code. La seconde partie (B.3) présente les contributions de cette
thèse. La Section B.3.1 introduit un modèle d’architecture pour le prototypage ra-
pide. La Section B.3.2 détaille des méthodes permettant d’améliorer le prototypage
rapide et d’évaluer la qualité d’un déploiement. La Section B.3.3 décrit les modèles
du LTE développés durant cette thèse ainsi que leur simulation. Enfin, la Section
B.3.4 explique comment générer du code pour exécuter les différents algorithmes du
LTE et la Section B.4 conclut l’étude.

Partitionnement
Ordonnancement

Section 2.2: Qu'est-ce qu'un modèle de calcul
flot de données?

Section 2.3: Quel est l'état de l'art
de la parallélisation de code?

Implémentation

Simulation

Section 3.3: Comment modéliser la
couche physique du LTE pour simuler son exécution?

Chapter 3.4: Comment générer du code
pour exécuter le LTE sur des DSPs multi-coeurs?

Section 2.1: Comment
fonctionne le LTE?

Prototypage
Rapide

Modèle de la
Couche Physique

du LTE

Modèle de DSP
Multi-coeurs

Scénario

Section 3.1: Comment
modéliser une architecture?

Section 3.2: Comment
partitionner/ordonnancer?

Partie 2: Etat de l'Art

Partie 3: Contributions

Figure B.1 – Prototypage Rapide et Plan de la Thèse

B.2 Etat de l’Art

B.2.1 Le Standard 3GPP LTE

Contexte de l’Etude

Le 3GPP est l’organisation développant les standards de télécommunication les plus
répandus sur la planète. La troisième génération de standards (3G) désigne un en-

Etat de l’Art 165

semble de standards successifs apportant chacun une amélioration des performances
du système. L’UMTS (Universal Mobile Telecommunication System) fut le premier
standard de troisième génération. Deux evolutions de l’UMTS, HSPA (High Speed
Packet Access) et HSPA+, ont augmenté la vitesse de transfert de données. Le stan-
dard LTE est le successeur du HSPA+ et représente une modification profonde du
réseau comparé à ses prédécesseurs. De plus, contrairement à ses précécesseurs, le
standard LTE manipule la voix comme les données sous forme de paquets IP (In-
ternet Protocol).

Les spécifications du système LTE étant en pleine évolution, nous considérons le
standard dans sa version 9 finalisée en décembre 2009. Tel qu’illustré par la Figure
B.2, cette étude se concentre sur l’implémentation de la couche physique du LTE
dans les stations de base. La couche physique se compose d’un lien descendant enco-
dant le signal à envoyer aux utilisateurs et d’un lien montant décodant le signal reçu
des utilisateurs. Chaque lien contient une étape de codage canal adaptant le signal
binaire à transmettre aux conditions de transmissions et d’une étape de traitement
des symboles complexes générés par la modulation du signal. Nous ne considérons
pas dans cette étude les parties modulation de porteuse et amplification (bloc RF
de la figure).

Codage Canal

Lien Descendant du eNodeB

Traitement des symboles

Décodage Canal

Lien Montant du eNodeB

bits symboles
(valeurs complexes)

symboles
(valeurs complexes)

bits symboles
(valeurs complexes)

symboles
(valeurs complexes)

Couche 2 OSI

Traitement de la Couche Physique en Bande de Base

contrôle
données

Paquet IP

Paquet IP

RF

RFCouche 2 OSI Traitement des symboles

Figure B.2 – Objets de l’Etude du LTE

Objectifs du LTE

Comparé aux précédents standards, le LTE a de très fortes contraintes de perfor-
mance :

� Des taux de transfert sans précédent. Le lien descendant supporte 100
Mbit/s en supposant des récepteurs à deux antennes et le lien montant 50
Mbit/s.

� Une latence réduite à 10 millisecondes pour la réponse à un message.

� Un coût par bit réduit par une meilleure utilisation de la bande de fréquence
allouée.

� Une flexibilité du spectre avec la possibilité de déployer un lien montant
et un lien descendant chacun sur des bandes de fréquences de largeurs pa-
ramétrables entre 1.4 MHz et 20 MHz.

166 French Summary

� Une consommation réduite des terminaux en déportant autant que pos-
sible la complexité des calculs dans la station de base.

� Une architecture du réseau simplifiée. Cette architecture, nommée System
Architecture Evolution (SAE) redéfinit à la fois la partie accès radio et la partie
coeur du réseau.

� Le transport efficace à la fois de la voix et des données, le tout en
utilisant la technologie IP (Internet Protocol).

� Des cellules de taille très variables, couvrant de quelques mètres (femto-
cells) à 115 km (macrocells) pour s’adapter aux densités de population locales.

� La connectivité d’utilisateurs à grande vitesse. Un utilisateur devant
pouvoir rester connecté même s’il voyage à 350 km/h.

� La gestion de communications simultanées avec de nombreux utili-
sateurs (200 à 400 selon la largeur de bande).

Ces contraintes ont necessité l’utilisation de techniques complexes à la fois pour
les deux liens montant et descendant. Ces techniques rendent la couche physique du
LTE complexe et coûteuse.

Technologies de la Couche Physique du LTE

Les liens montant et descendant sont tous deux à large bande. Le spectre de chaque
lien est divisé en sous-porteuses transportant des composantes différentes du flux
de données. Le lien descendant utilise une technologie nommée OFDMA (Ortho-
gonal Frequency Division Multiplexing Access) qui optimise les débits de données
alors que le lien montant utilise la technologie SC-FDMA (Single Carrier-Frequency
Division Multiplexing Access) qui offre un bon compromis entre débit et consomma-
tion électrique de l’amplificateur de puissance de l’utilisateur. La réduction de cette
consommation est primordiale car les utilisateurs ont le plus souvent un terminal
alimenté par batterie. Les techniques OFDMA et SC-FDMA utilisent une estimation
précise de la qualité instantanée du canal de transmission. Elles sont combinées avec
de multiples antennes d’émission et de réception permettant des débits plus élevés
grâce au multiplexage spatial, souvent appelé effet MIMO (Multiple Input Multiple
Output).

Une procédure nommée “Random Access Procedure” permet à de nouveaux uti-
lisateurs de se connecter à une station de base. Ils envoient pour cela une signature
dans une zone temps/fréquence préallouée. Le processus de détection des signatures
envoyées s’appelle la détection de préambules. Cette détection est coûteuse en terme
de calculs et son comportement est différent de ceux des liens montant et descendant.
La détection de préambules sera modélisée à part dans la Section B.3.3.

B.2.2 Les Modèles Flot de Données

Les modèles flot de données ont prouvé leur efficacité pour la modélisation d’ap-
plications parallèles avec dépendances de données. Ils représentent les applications
par des graphes dont les noeuds (ou acteurs) sont des entités de code séquentiel et

Etat de l’Art 167

les arcs représentent des données circulant entre les acteurs. La Figure B.3 illustre
quelques modèles flot de données. Chaque modèle est un compromis entre expressi-
vité et analysabilité. L’expressivité détermine quels algorithmes seront modélisables
alors que l’analysabilité détermine quelles informations sur le comportement du code
pourront être extraites durant la phase de compilation. Une grande analysabilité est
nécessaire pour pouvoir partitionner au moment de la compilation les différentes par-
ties de l’algorithme. Un modèle Turing complet permet de représenter un algorithme
quelconque. La compacité du modèle varie également, i.e. sa capacité à représenter
un algorithme avec peu d’éléments.

KPN
IDF
BDF

PSDF

CSDF
SDF

DAG

srSDF srDAG

...

E
xp

re
ss

iv
ité

A
nalysabilité

Modèles
Turing
complets

Modèles
non
Turing
complets

DF
DDF
KPN
IDF
BDF
SDF
PSDF
IBSDF
CSDF
srSDF
DAG
srDAG

Data Flow
Dynamic DF
Kahn Process Network
Integer DF
Boolean DF
Synchronous DF
Parameterized SDF
Interface-Based Hierarchical SDF
Cyclo Static DF
single rate SDF
Directed Acyclic Graph
single rate DAG

DDF

Modèles principaux Modèles dérivés Réseaux de Processus Flot de Données

IBSDF

Figure B.3 – Modèles de Calcul Flot de Données

Les modèles que nous utilisons pour représenter le LTE sont une version modifiée
du SDF (Synchronous Dataflow) nommée IBSDF (Interface-Based Hierarchical Syn-
chronous Dataflow) et une version modifiée du PSDF (Parameterized Synchronous
Dataflow) nommée PCSDAG (Parameterized Cyclo Static Directed Acyclic). Le SDF
et le PSDF sont des modèles de la littérature fréquemment utilisés. Le IBSDF est un
modèle ajoutant au SDF une hiérarchie contrôlée par l’utilisateur pour simplifier la
description des algorithmes. Le PCSDAG est un modèle à la fois rapide à analyser
et suffisamment expressif pour modéliser les algorithmes très variables du LTE.

B.2.3 Le Prototypage Rapide et la Programmation des Architectures
Multicoeurs

La programmation d’architectures multi-coeurs a donné lieu à de nombreux tra-
vaux de recherche conduisant à des résultats très différents dépendant des objectifs
et contraintes de l’étude (programmation générique à tous type d’applications ou
spécifique au traitement du signal, architectures homogènes ou hétérogènes, mémoire
partagée ou distribuée, minimisation de la latence ou du débit de données traitées...).
Nous nous intéressons particulièrement ici aux applications de traitement du signal
dont la couche physique du LTE fait partie. Les architectures cible sont hétérogènes
à mémoire distribuée ou partagée et nous minimisons principalement la latence
d’exécution car elle est la principale contrainte de la couche physique du standard
LTE.

Nous pouvons distinguer trois niveaux de parallélisme : le niveau instruction, le
niveau thread et le niveau tâche. Le parallélisme de grain moyen (niveau thread ou
acteur dans le cadre du flot de données) est le parallélisme le moins traité dans la

168 French Summary

littérature et le plus utile pour minimiser la latence de la couche physique du LTE
sur architecture distribuée. Cette thèse a donc pour objectif le parallélisme à grain
moyen.

Acteur1 Acteur2
Acteur3 Acteur4

Coeur1 Coeur2 Coeur1 Coeur2Coeur1 Coeur2

Acteur1 Acteur2
Acteur3 Acteur4

Acteur1 Acteur2
Acteur3 Acteur4

Sources Temps

3 2

1
4

2
1

1
2

Régions Parallèles

C
hronom

étrage

E
xtraction

Partitionnem
ent

O
rdonnancem

ent

Figure B.4 – Les quatre phases de la parallélisation à grain moyen : extraction, partitionnement,
ordonnancement et chronométrage

La parallélisation d’un code à grain moyen consiste en quatre étapes (Figure
B.4) :

� L’ extraction consiste à extraire le zones potentiellement parallèles (acteur
dans le cadre du flot de données) du code source.

� Le partitionnement consiste à choisir un coeur/coprocesseur pour exécuter
chaque acteur.

� L’ ordonnancement consiste à ordonner l’exécution des acteurs assignés à un
même coeur/coprocesseur.

� Le chronométrage consiste à choisir le moment où chaque acteur est exécuté.

Dans le domaine que nous étudions ici, les systèmes embarqués, [POH09] dis-
tingue quatre classes de méthodes pour effectuer une parallélisation à grain moyen :

� Les méthodes basées sur la compilation consistent à extraire le zones
parallèles d’un code séquentiel par des méthodes de compilation.

� Les extensions de langage consistent à laisser le développeur ajouter des ins-
tructions spécifiques à un code séquentiel pour préciser comment le paralléliser.

� La méthode basée sur la plateforme se réfère à une technique particulière
de l’auteur.

� Les méthodes basées sur les modèles flot de données consistent à décrire
le comportement général des algorithmes avec un modèle simple à étudier pour
la parallélisation.

Les méthodes flot de données ont l’avantage de supprimer l’étape d’extraction
puisque les modèles sont conçus pour exprimer naturellement le parallélisme. Nous
choisissons de résoudre le problème de l’exécution parallèle du LTE en développant
l’outil PREESM basé sur les modèles flot de données. Cet outil est développé dans
de cadre de la thèse en collaboration avec Texas Instruments. Le développement de
l’outil est partagé avec deux autres doctorants : Jonathan Piat et Matthieu Wipliez.
L’outil est open source et disponible sur internet. Il automatise la phase de parti-
tionnement et génère un code dit “self-timed”, c’est à dire partitionné et ordonnancé

Contributions 169

à la compilation (partitionnement statique) tout en laissant le système d’exécution
faire la phase de chronométrage.

Le partitionnement statique est illustré par la Figure B.5. Le graphe d’algorithme
contient cinq acteurs a ,b ,c ,d et e et des arcs symbolisant le transfert de données
entre acteurs. Le graphe d’architecture contient trois coeurs et un DMA (Direct
Memory Access) qui se charge de piloter leurs transferts. Le scénario contient des
temps typiques d’exécution pour chaque acteur sur chaque type de coeur. A par-
tir de ces informations, le partitionneur choisis partitionnement, ordonnancement
et chronométrage et simule l’exécution en l’affichant dans un graphique de Gantt.
L’étape de chronométrage n’est pas transmise à la phase d’exécution. Les problèmes
de partitionnement et ordonnancement pour minimiser la latence sont NP-complets :
il est donc nécessaire de trouver des heuristiques pour les résoudre.

a
DSP1
DSP2
DSP3

b

c

d

e

3 octets

a b
c

d

e

0 10 20

Temps de réponse = 16

PE1

DMA2

PE2

PE3

vitesse=1type=defP

type=defP

type=defP
2 octets

3 octets

2 octets

CN1

CN1

(b,defP=8))
(a,defP=3))

(d,defP=5))
(c,defP=5))

(e,defP=5))

byte=1unité mem.

Algorithme
Architecture

Scénario Déploiement

Figure B.5 – Partitionnement multi-coeurs à partir d’un modèle flot de données de l’algorithme
et d’un graphe d’architecture

De très nombreuses heuristiques ont été inventées pour résoudre le problème
de partitionnement et ordonnancement. [Kwo97] référence et évalue de nombreuses
méthodes avant d’en proposer trois nouvelles : une méthode gloutonne, une méthode
nommée FAST utilisant des sauts probabilistes et un algorithme génétique. Ces trois
algorithmes ont été implémentés dans l’outil PREESM et la méthode gloutonne est
utilisée dans un partitionneur adaptatif présenté Section B.3.4.

Les quatre prochaines sections détaillent les contributions de cette thèse.

B.3 Contributions

B.3.1 Un Modèle d’Architecture pour le Prototypage Rapide

Le modèle d’architecture S-LAM (System-Level Architecture Model) est un
nouveau modèle permettant de décrire simplement des comportements complexes.
La Figure B.6 montre les différents éléments constituant le modèle. L’élément prin-
cipal est l’opérateur qui représente un calculateur séquentiel capable d’exécuter des
acteurs. Les liens de données, orientés ou non, relient les opérateurs à des noeuds
de communication. Les noeuds de communication permettent des interconnexions
multi-points de liens de données. Il en existe deux types :

� Les noeuds de compétition prennent en compte la compétition des différents
transferts qui transitent par eux.

� Les noeuds parallèles, à l’inverse, peuvent faire transiter simultanément plu-
sieurs transferts entre plusieurs paires d’opérateurs.

170 French Summary

Utiliser un lien de compétition ajoute un coût à la simulation d’un déploiement
sur cette architecture car il faut ordonnancer les transferts sur ce noeud. Le développeur
peut donc régler la complexité de simulation de son modèle en plaçant des noeuds
de compétition sur les liens susceptibles de limiter la performance du système.

Lien de Contrôle

Lien de setup

Liens de Données

Lien non Orienté Lien Orienté

Element de Calcul

Opérateur

Noeuds de Communication

Noeud de CompétitionNoeud Parallèle

Médiateurs de Communication

RAM DMA

Figure B.6 – Elements du modèle d’architecture S-LAM

La RAM (Random Access Memory) est une mémoire que peuvent se partager
plusieurs opérateurs. Si le chemin entre deux opérateurs contient une RAM, ils com-
muniquent en se partageant une mémoire ; sinon, il s’envoient des messages. Le DMA
(Direct Memory Access) est un gestionnaire de transferts qui permet à un opérateur
d’effectuer des calculs en parallèle avec ses propres transferts. Le lien de “setup”
permet de préciser quel opérateur peut programmer quel DMA et combien de temps
est nécessaire pour cette programmation.

GEM1

GEM2

GEM3

EDMA3

2700 cycles

2700 cycles

2700 cycles

SCR

2 Goctets/s

VCP2 TCP2

RIO

0.125 Goctets/s

VCP2TCP2

EDMA3

2700 cycles

2700 cycles

2700 cycles

2 Goctets/s

SCR

GEM1

GEM2

GEM3

Figure B.7 – Exemple d’un modèle S-LAM : deux DSPs TMS320TCI6488

La Figure B.7 montre un exemple de description S-LAM. Deux processeurs de
type TMS320TCI6488 sont connectés par un lien de type RapidIO de vitesse 1 G
bits/s. Chaque processeur contient trois coeurs (GEM) de type c64x+. Les commu-
nications locales des processeurs se font via un lien parallèle nommé SCR (Switched
Central Resource) de vitesse 2 G octets/s. Des coprocesseurs permettent d’accélérer
les encodage/décodage Viterbi (VCP2) et turbo (TCP2). Tous les transferts, y com-
pris entre processeurs, sont pilotés par les DMAs dont le démarrage nécessite 2700
cycles. Ce modèle simple décrit précisément le comportement réel de l’architecture.

A partir du modèle S-LAM, un routage est calculé et permet d’accélérer la si-
mulation de l’architecture. Chaque paire d’opérateurs est alors associée au meilleur
lien qui les relie et ce lien est utilisé pour le prototypage rapide. Le résultat est un
modèle expressif, simple et rapide à simuler.

Contributions 171

B.3.2 Amélioration du Prototypage Rapide

De nouvelles méthodes de prototypage rapide sont introduites dans l’outil PREESM.
Elles améliorent la flexibilité, les performances et l’ergonomie de l’outil de partition-
nement automatique. Une première méthode est l’utilisation du scénario et du
“workflow”. Le scénario contient les informations liées à la fois à l’algorithme et à
l’architecture. Il est stocké au format XML dans PREESM et permet de réutiliser
tout algorithme avec toute architecture. Un “workflow” est un graphe décrivant
l’enchâınement des transformations appliquées aux entrées du prototypage rapide.
Le workflow de la Figure B.8 applique trois transformations à l’algorithme d’entrée
(flattening, srSDF et reduceForkJoin), puis partitionne l’algorithme pour l’architec-
ture (scheduling), génère un code “self-timed” et affiche le diagramme de Gantt du
déploiement. Ce workflow peut être exécuté dans l’outil PREESM, qui applique alors
les transformations spécifiées sur les modèles d’entrée.

Scheduling
SDF ABC

architecture
scenario

DAG

__algorithm
scenario

__architecture
scenario

__scenario

Flattening
SDF

srSDF
SDF

DAG Plotter
ABC
scenario

depth=2

reduceForkJoin
SDF

Codegen
DAG
Architecture

Figure B.8 – Exemple d’un “workflow” rendant flexible le prototypage rapide

Le partitionnement est calculé par un partitionneur composite dont la struc-
ture est illustrée Figure B.9. Une partie calcule les choix de partitionnement pen-
dant que l’autre, nommée ABC (Architecture Benchmark Computer), calcule le coût
des déploiements obtenus. Plusieurs implémentations sont disponibles pour les deux
parties, permettant un choix dans la complexité et la précision du partitionneur. De
plus, le coût retourné par l’ABC étant abstrait, il peut représenter indifféremment
une latence, un coût mémoire, une consommation d’énergie ou un coût composite.
Cette structure permet de minimiser simplement différents critères.

Partitionnement
d'acteurs

Architecture
Benchmark

Computer (ABC)

Nombre d'opérateurs

Partitionnement

Coût du déploiement

Partitionneur

Algorithme S-LAM Scénario

Figure B.9 – Structure interne d’un partitionneur flexible

Un exemple de coût composite est l’équilibrage des charges de calcul entre
les opérateurs. Cet équilibrage est positif pour la consommation électrique du cir-
cuit. Il est naturel lorsque l’on minimise la latence, dans l’hypothèse (imaginaire)
d’une architecture à une infinité d’opérateurs avec des liens infiniment rapides. Le

172 French Summary

nombre limité d’opérateurs, leur caractère hétérogène, ainsi que les liens de données
limités rendent différents les deux critères latence et équilibrage des charges. Une
solution efficace est d’utiliser un ABC retournant un coût composite : la somme
de la latence et de l’écart type des charges. La Figure B.10 montre le résultat de
cette modification de coût sur un exemple d’application du LTE. Les charges sont
sensiblement équilibrées et la latence n’est pas sensiblement déteriorée.

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

0 1 2 3 4 5 6 7 8 9

Egalisation des charges
Pas d'égalisation des charges

Latence, normalisée à la plus courte

Ecart type des charges
des coeurs (en pourcentage)

Figure B.10 – Equilibrage des charges de calculs entre les différents opérateurs

Dans le cas le plus courant où la minimisation de la latence d’exécution est
l’objectif principal du partitionnement, la qualité d’un déploiement peut être évaluée
par le “speedup”. Le speedup correspond à l’accélération du calcul due à l’utilisation
d’une architecture distribuée. Il est égal au temps d’exécution sur un opérateur divisé
par le temps d’exécution sur l’architecture distribuée. Ce speedup peut être affiché,
pour une architecture homogène, sur un graphique illustré Figure B.11. Le graphique
de la partie droite permet d’évaluer le déploiement situé en bas à gauche de la figure.
L’algorithme étudié est placé en haut à gauche de la figure. Le travail correspond
à la somme des temps d’exécution des acteurs et le chemin critique est le plus long
chemin entre un acteur entrant et un acteur sortant. Sur ce graphique, généré à
partir du modèle d’algorithme, le point correspond au déploiement que l’on veut
évaluer. Le speedup est donné en ordonnée et le nombre d’opérateurs homogènes en
abscisse. Trois courbes circonscrivent une zone correspondant aux déploiements de
bonne qualité :

� La courbe Ssupwork
signifie que le speedup ne peut pas être supérieur au nombre

d’opérateurs

� La courbe Ssupspan signifie que l’algorithme a une limite en terme de parallélisme

� La courbe SinfGST
est donnée par le “Greedy Scheduling Theorem” (GST). Ce

théorème fixe un minimum de parallélisme que tout algorithme glouton peut
atteindre à partir d’un algorithme donné. Un déploiement sous cette limite
signifie que les efforts de partitionnement intelligent à la compilation n’ont
pas conduit à un résultat satisfaisant. Plusieurs raisons peuvent expliquer des
performances inférieures à la limite GST : un lien de données trop lent entre
les opérateurs ou de mauvais choix de partitionnement/ordonnancement.

Moyennant quelques précautions, l’affichage du speedup peut également être uti-
lisé pour des architectures hétérogènes. Cet affichage permet d’évaluer rapidement

Contributions 173

a

DSP1
DSP2
DSP3

5

1

5

5

4

1

2

1

b

c

d

e

f

g

h

j

(8)

(5)

(5)
(5)

3

2

3
2

(3)

(5)

(8)

(5)

(3)

a b
c
d

e
f

g

h i

0 10 20 30

Latency = 30
3 coeurs identiques
Travail = 57
Chemin critique = 22
"Speedup" = 57/30 = 1.9

i
(10)

1

j
0

1

2

3

1 2 3 4 5 6 7 8

Déploiement testé

zone limitée
par l’architecture

zone limitée
par l’algorithme

zone de mauvais
déploiement

zone inaccessible

S su
p

wo
rk

Ssup span

S inf GST

coeurs

speedup

Figure B.11 – Affichage graphique de la qualité d’un déploiement

le déploiement obtenu lors d’un partitionnement automatique. Il améliore donc la
phase de prototypage rapide.

B.3.3 Modèles Flot de Données du LTE

Les méthodes de prototypage rapide précédemment expliquées sont appliquées aux
algorithmes du LTE. Trois graphes flot de données hiérarchiques sont décrits en
utilisant le modèle IBSDF :

� La détection de préambule correspondant à l’écoute permanente d’une re-
source temps/fréquence dans laquelle les utilisateur non connectés peuvent
envoyer un message pour se connecter à la station de base.

� Le décodage du lien montant correspondant à la récupération des données
envoyées par chaque utilisateur dans la cellule

� L’encodage du lien descendant correspondant à la préparation des données
descendantes avant l’envoi aux utilisateurs.

Ces trois graphes d’algorithme décrivent chacun le calcul d’une milliseconde
de données. Ce choix vient du fait que l’allocation d’utilisateurs à des resources
fréquentielles est effectuée chaque milliseconde. A partir de ces graphes, nous pou-
vons effectuer des prototypages rapides pour évaluer par exemple quelle architecture
est la plus à même d’exécuter efficacement un algorithme. L’outil PREESM est
régulièrement utilisé par des ingénieurs de Texas Instruments pour prototyper leurs
déploiements. PREESM peut en outre générer les entrées d’un simulateur SystemC
développé par Texas Instruments, simulant précisément le comportement de l’archi-
tecture pour un déploiement donné.

B.3.4 Implémentation du LTE à Partir de Modèles Flot de Données

Un code statique sous forme de fichiers C est généré à partir du déploiement. Il
appelle les fonctions C correspondant aux acteurs. Le partitionneur fixe le parti-
tionnement et l’ordonnancement au moment de la compilation. Ce code n’est donc

174 French Summary

adapté qu’à des algorithmes dont le comportement est relativement stable dans le
temps. C’est le cas de la détection de préambule qui correspond à une écoute per-
manente et stable d’éventuels messages. La procédure de génération de code dans
PREESM est illustrée dans la Figure B.12. Le partitionneur calcule le déploiement
en utilisant le graphe S-LAM de l’architecture, le graphe IBSDF de l’algorithme et
un scénario. Un code générique au format XML est ensuite généré. Des fichiers IDL
(Interface Description Language) donnent le prototype de chaque fonction appelée
par la génération de code. Une transformation XSL transforme le code générique
XML en un code C ayant la bonne syntaxe pour l’opérateur cible. Finalement, le
compilateur génère un exécutable par opérateur en utilisant des bibliothèques de
transfert ainsi que le code des acteurs. Cette méthode de génération de code est
appliquée à la détection de préambule. Le décodage du lien montant et l’encodage
du lien descendant nécessitent de prendre en compte leur grande variabilité.

op2

DMA

op3

op1

modèle S-LAM du tci8488
avec des operateurs

de type c64x+ Partitionneur

G
énération de C

ode

Transform
ation X

SL

C
om

pilateur TI

bibliothèques de communication
et code des acteurs

op1.xml op1.c op1.exe

op3.xml op3.c op3.exe

op2.xml op2.c op2.exe

prototypes IDL

D
éploiem

ent

Algorithme
et scenario c64x+.xsl

Figure B.12 – Génération de code “self-timed” à partir du déploiement statique

Chaque milliseconde, la station de base échange des données avec ses utilisateurs
connectés. Les données sont rassemblées en “Code Blocks” (CB) de taille variable. Le
type de cellule le plus évolué peut allouer simultanément 100 CBs à jusqu’à une cen-
taine d’utilisateurs. La Figure B.13 illustre le nombre d’allocations possibles lorsque
l’on alloue N CBs à des utilisateurs. Le nombre d’allocations possibles augmente
exponentiellement avec le nombre de CBs alloués : il atteint presque 200 millions
pour 100 CBs. La taille variable des CBs ainsi que leur nombre également variable
augmente encore considérablement le nombre de possibilités de configurations. La
configuration des graphes du décodage du lien montant et de l’encodage du lien
descendant dépend de ces allocations et ces algorithmes extrêmement variables se
prêtent mal au partitionnement statique.

Une solution au partitionnement du décodage du lien montant et de l’encodage du
lien descendant est de partitionner durant l’exécution, alors que tous les paramètres
instantanés du graphe sont connus. Il faut alors quitter le schéma d’exécution décentra-
lisé utilisé dans la génération de code statique et utiliser à la place un schéma
d’exécution mâıtre/esclave (Figure B.14). Dans le schéma d’exécution décentralisé,
tous les opérateurs sont équivalents et exécutent les acteurs qui leur sont assignés
statiquement. Les acteurs s’exécutent dès que leurs données d’entrée sont dispo-
nibles. Dans le schéma d’exécution mâıtre/esclave, un opérateur mâıtre dirige les
opérations et assigne dynamiquement les acteurs à des opérateurs esclaves. Pour ce
nouveau schéma d’exécution, il faut concevoir le code de contrôle dont l’élément
principal est un partitionneur adaptatif.

Contributions 175

3 CBs
2 CBs

5 CBs
4 CBs

7 CBs

6 CBs

8 CBs

1 CB 1 motif d'allocation; 1 utilisateur max

3 motifs d'allocation; 3 utilisateurs max

7 motifs d'allocation; 5 utilisateurs max
11 motifs d'allocation; 6 utilisateurs max

15 motifs d'allocation; 7 utilisateurs max

22 motifs d'allocation; 8 utilisateurs max

100 CBs
50 CBs
25 CBs 1958 motifs d'allocation; 25 utilisateurs max

204226 motifs d'allocation; 50 utilisateurs max
190569292 motifs d'allocation; 100 utilisateurs max

CB par utilisateur

utilisateurs

2 motifs d'allocation; 2 utilisateurs max

5 motifs d'allocation; 4 utilisateurs max

...

Figure B.13 – Diagrammes de Ferrer : les différentes allocations possible de N CBs à des utili-
sateurs

control
code

master task

slave task

Actor A

slave task

Actor B
slave task

Actor D
Actor C

assig
ns

assigns

assigns

finished

(a) Schéma d’Execution Mâıtre/Esclave

opérateur

Acteur A

opérateur

Acteur D

Acteur Copérateur

Acteur B

lance lan
ce

lance

(b) Schéma d’Execution Décentralisé

Figure B.14 – Schémas d’Execution

La Figure B.15 illustre la structure d’un partitionneur adaptatif basé sur un
modèle flot de données. Une phase d’initialisation executée au démarrage génère
un graphe paramétré de type PCSDAG qui représente le comportement global de
l’algorithme. A partir de ce graphe de référence et des paramètres instantanés, un
graphe de type single rate DAG est généré chaque milliseconde durant une phase
d’expansion du graphe. Ce graphe généré représente l’exécution d’une instance du
graphe incluant les instances des acteurs et les transferts de données. Une phase
de partitionnement choisit ensuite le partitionnement de chaque acteur. Les deux
opérations expansion et partitionnement doivent être extrêmement efficace pour être
exécutées dans tous les cas en moins d’une milliseconde, c’est à dire le temps séparant
deux choix d’allocation différents.

Les performances du partitionneur adaptatif développé durant cette thèse sont
illustrées Figure B.16. Ce partitionneur permet de déployer en temps réel le décodage
des données du lien montant à condition que le nombre d’opérateurs esclaves soit
inférieur à 8. Un tel partitionneur ouvre de nouvelles perspectives pour la pa-
rallélisation d’algorithmes extrêmement variables tels que le décodage du lien mon-
tant et l’encodage du lien descendant dans les stations de base LTE.

176 French Summary

Expansion
du Graphe

Partitionnement
Glouton

Initialisation

LTE Couche OSI 2

PCSDAG
srDAG Déploiement

vers le système d'exécution

paramètres du PCSDAG
Partitionneur Adaptatif

< 1ms

architecture

Figure B.15 – Structure interne du partitionneur adaptatif

Total
Expansion du graphe
Partitionnement glouton

Temps en cycles

Nombre de coeurs/
coprocesseurs dans
l’architecture

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

0 1 2 3 4 5 6 7 8

Figure B.16 – Temps d’exécution pire cas du partitionneur adaptatif appliqué au décodage des
données du lien montant en fonction du nombre d’opérateurs esclaves

B.4 Conclusion

Les solutions logicielles et matérielles des systèmes embarqués modernes sont deve-
nues tellement complexes qu’une étude au niveau système est maintenant nécessaire
pour éviter les mauvais choix de conception et respecter les contraintes. L’implémen-
tation sur DSP multi-coeurs du traitement du signal des stations de base 3GPP LTE
est un exemple de ces systèmes complexes. Durant cette thèse, des méthodes de pro-
totypage rapide utilisant les modèles flot de données ont été mises en place. Elles
permettent de simuler le déploiement d’un algorithme sur une architecture distribuée
et de générer un code efficace.

Les contributions de cette thèse sont de plusieurs types. Un nouveau modèle
d’architecture est introduit. Il est simple, expressif, et permet une simulation rapide
de l’architecture décrite. Un nouvel outil nommé PREESM pour le prototypage
rapide est présenté. Une nouvelle structure interne pour le partitionneur, c’est à
dire le coeur du prototypage rapide sur architecture distribuée, est introduite et
expliquée. Elle rend le processus adaptable et permet de minimiser plusieurs types
de fonction de coût pendant le partitionnement. Un exemple de fonction de coût
est donné ; il permet d’égaliser efficacement les charges de calcul sur les différents
opérateurs, ce qui a généralement un effet positif sur la consommation electrique
du système. De nombreux modèles de calcul sont expliqués et le choix de modèles
pour décrire la couche physique du 3GPP LTE est justifié. Le fonctionnement et
l’agencement des algorithmes du LTE sont détaillés ainsi que des méthodes pour
simuler l’exécution et générer le code. Lorsque cela est possible, par exemple pour

Conclusion 177

la détection de préambule, le partitionnement statique conduit à une génération de
code qui ne remet pas en cause le partitionnement des acteurs. Dans les cas plus
complexes, par exemple les liens montant et descendant, un partitionnement en-ligne
est calculé. Le partitionneur adaptatif en-ligne est temps réel sur les liens montant et
descendant et constitue donc une solution possible à leur implémentation parallèle.

178 French Summary

List of Figures

1.1 Comparing a Present Single-core Development Chain to a Possible Devel-
opment Chain for Multi-core DSPs . 5

1.2 Rapid Prototyping and Thesis Outline . 8

2.1 3GPP Standard Generations . 11

2.2 A three-sectored cell . 12

2.3 Scope of the LTE Study . 14

2.4 LTE Systeme Architecture Evolution . 15

2.5 Protocol Layers of LTE Radio Link . 16

2.6 Data Blocks Segmentation and Concatenation 17

2.7 Radio Propagation, Channel Response and Reciprocity Property 19

2.8 Uplink and Downlink Data Processing in the LTE eNodeB 22

2.9 LTE downlink and uplink multiplexing technologies 22

2.10 Comparison of OFDMA and SC-FDMA . 23

2.11 Cyclic Prefix Insertion . 24

2.12 LTE Time Units . 25

2.13 Different types of LTE duplex modes . 26

2.14 LTE Link Adaptation . 27

2.15 LTE Forward Error Correction methods . 28

2.16 LTE link adaptation . 30

2.17 Reference Signals location in the uplink resources 31

2.18 Uplink Channels . 32

2.19 Length-63 Zadoff-Chu Sequences with index 25, 29 and 34 33

2.20 Contention-Based Random Access Procedure. 36

2.21 Baseband Spectrum of a Fully-Loaded 20 MHz LTE Downlink 37

2.22 Downlink multiple user scheduling and reference signals 38

2.23 Gold Pseudo Random Sequence Generation 40

2.24 Layer Mapping and Precoding for Spatial Diversity with Different Multi-
antenna Parameters . 41

2.25 Layer Mapping and Precoding for Spatial Multiplexing with different mul-
tiantenna parameters . 42

2.26 Downlink PSS, SSS, RS and PBCH localization in subframes. 43

3.1 Main Types of Process Network Model of Computation 47

179

180 List of Figures

3.2 A Few Dataflow MoC Graph Examples . 49

3.3 The Topology Matrix and Repetition Vector of an SDF Graph 51

3.4 SDF Graph and its Acyclic Precedence Expansion Graph 53

3.5 The Topology Matrix and Repetition Vector of a CSDF Graph 55

3.6 Illustrating Compactness of CSDF Model Compared to SDF 55

3.7 PSDF Example . 56

3.8 Comparing Direct Hierarchical SDF with IBSDF 57

3.9 IBSDF Sub-Graph Example and Its Single Rate Equivalent 58

4.1 The Von Neumann Architecture of an Operator 64

4.2 The Four Phases of Middle-Grain Parallelization: Extraction, Assignment,
Ordering and Timing . 66

4.3 Example of a schedule Gantt chart . 70

4.4 T-Level and B-Level of a Timed Directed Acyclic Graph 71

4.5 Construction of an Actor List in Topological Order 72

4.6 Genetic Algorithm Atomic Operations: Mutation and Cross-Over 73

5.1 TMS320TCI6488 Functional Block Diagram 80

5.2 Picture of a TMS320TCI6488 Die . 81

5.3 TMS320TCI6486 Functional Block Diagram 81

5.4 The elements of S-LAM . 84

5.5 S-LAM description of a board with two tci6488 using EDMA3 for commu-
nications local to a processor . 84

5.6 S-LAM description of a board with 2 tci6488 using DDR2 shared memory
for communications local to a processor . 85

5.7 S-LAM description of a tci6486 processor 86

5.8 S-LAM Descriptions of Architecture Examples 86

5.9 The Types of Route Steps . 87

5.10 The route model generation . 88

5.11 Impact of route types on the simulation of a transfer 91

5.12 Storing an S-LAM Description in an IP-XACT Design File 93

5.13 A tci6488 Hierarchical S-LAM and its Flattened S-LAM Equivalent 93

6.1 Overview of the Rapid Prototyping Process 97

6.2 Creating a Single Rate SDF with Fork and Join Actors 98

6.3 Example of an IBSDF Actor with Ports and its IDL Prototype 99

6.4 A Workflow for Prototyping an Application 101

6.5 A workflow Combining Rapid Prototyping with SystemC Simulations . . . 103

6.6 The Scheduler Sub-modules: Actor Assignment and ABC 105

6.7 Structure of a Latency ABC . 107

6.8 Assignment and Existing Versions of ABC s 107

6.9 Study Of the Latency And Variance Behavior in the Case of 2 Operators . 110

6.10 Example showing that Minimizing Latency is not Equivalent to Balancing
Loads in the BNP Scheduling Problem . 111

6.11 Comparing Schedules with and without load balancing criterium. 112

6.12 Theoretical Speedup Limits . 115

6.13 Speedup Chart of an Example DAG Scheduling 117

7.1 An Eclipse-based Rapid Prototyping Framework 120

7.2 Input/output with Graphiti’s XML format G 121

List of Figures 181

7.3 RACH-PD Algorithm Model . 125

7.4 Four architectures explored . 127

7.5 Timings of the RACH-PD algorithm schedule on target architectures 127

7.6 Downlink Decoding . 128

7.7 PUCCH Decoding . 130

7.8 PUSCH Decoding . 131

7.9 Introducing Delays in a IBSDF Description to Simulate Events 133

8.1 Execution Schemes . 136

8.2 Possible Associations of Scheduling Strategies to Execution Schemes 137

8.3 Code generation Procedure on a tci6488 . 138

8.4 XML Generic Code Representation . 139

8.5 Code Behavior of a an Example of Message Passing with DMA 140

8.6 Petri Net of Execution of the Application in Figure 8.5(a) 141

8.7 Method for the RACH-PD Algorithm Implementation. 141

8.8 PSDF Description of the Uplink. 144

8.9 PCSDAG Description of the Uplink. 145

8.10 Target Architecture Example in S-LAM and Adaptive Scheduler Matrix
Model: a tci6488 and a tci6486 Connected with a RapidIO Serial Link. . . . 146

8.11 The problem of allocating CBs to UEs is equivalent to integer partitions
represented here in Ferrer diagrams. 146

8.12 Adaptive multi-core scheduling steps: graph expansion and list scheduling
steps are called in a loop every millisecond. 147

8.13 Examples of single rate DAG graphs generated from the PCSDAG descrip-
tion in Figure 8.9. 148

8.14 Example of list scheduling of Single Rate DAG actors. 149

8.15 Example of a schedule Gantt chart: case with 100 CBs and 100 UEs on the
architecture from Figure 8.10 with one core reserved for the scheduling. . . 149

8.16 Memory Footprint, in Bytes, of the Statically Allocated Adaptive Scheduler. 150

8.17 Impact of single rate DAG graph size on the LTE PUSCH scheduling ex-
ecution time on the architecture of Figure 8.10 with one core reserved for
the scheduling. 150

8.18 Impact of the number of operators on the LTE uplink scheduling execution
time in an LTE PUSCH worst case. 151

8.19 Schedule speedup vs. number of CBs and UEs using the architecture from
Figure 8.10. 151

8.20 Comparing Run-Time Heuristic Schedules with FAST Schedules 152

8.21 PCSDAG Model of the PDSCH LTE Channel. 153

A.1 Workflow Nodes . 160

A.2 Workflow Nodes . 161

A.3 Workflow Nodes . 162

B.1 Prototypage Rapide et Plan de la Thèse . 164

B.2 Objets de l’Etude du LTE . 165

B.3 Modèles de Calcul Flot de Données . 167

B.4 Les quatre phases de la parallélisation à grain moyen : extraction, partition-
nement, ordonnancement et chronométrage 168

B.5 Partitionnement multi-coeurs à partir d’un modèle flot de données de l’al-
gorithme et d’un graphe d’architecture . 169

182 List of Figures

B.6 Elements du modèle d’architecture S-LAM 170
B.7 Exemple d’un modèle S-LAM : deux DSPs TMS320TCI6488 170
B.8 Exemple d’un “workflow” rendant flexible le prototypage rapide 171
B.9 Structure interne d’un partitionneur flexible 171
B.10 Equilibrage des charges de calculs entre les différents opérateurs 172
B.11 Affichage graphique de la qualité d’un déploiement 173
B.12 Génération de code “self-timed” à partir du déploiement statique 174
B.13 Diagrammes de Ferrer : les différentes allocations possible de N CBs à des

utilisateurs . 175
B.14 Schémas d’Execution . 175
B.15 Structure interne du partitionneur adaptatif 176
B.16 Temps d’exécution pire cas du partitionneur adaptatif appliqué au décodage

des données du lien montant en fonction du nombre d’opérateurs esclaves . 176

List of Tables

2.1 LTE downlink Bandwidth Configurations 38

4.1 The Levels of Parallelism and their Present Use 62
4.2 Scheduling strategies . 68

7.1 Maximal Raw Bit Rates of Uplink Resources 123
7.2 Maximal Raw Bit Rates of PDSCH . 124

183

184 List of Tables

Glossary

3G Third Generation Telecommunication Sys-
tem, 11

3GPP Third Generation Partnership Project, 11, 20

AADL Architecture Analysis and Design Language,
65

AAM Algorithm Architecture Matching, 73, 137
ACK HARQ Acknowledgement, 32
AIF Antenna Interface, 80, 132
ALP Actor Level Parallelism, 62
ALU Arithmetic and Logic Unit, 64
APEG Acyclic Precedence Expansion Graph, 53
APN Arbitrary Processor Network, 70, 107, 108
ARQ Automatic Repeat reQuest, 16
ASAP As Soon As Possible, 71
AWGN Additive White Gaussian Noise, 18, 26

BDF Boolean Dataflow Graph, 48
BNP Bounded Number of Processors, 70, 107, 108
BPSK Binary Phase Shift Keying, 42
BRV Basis Repetition Vector, 51, 144
BSR Buffer Status Report, 18, 32

C-RNTI Random Access Radio Network Temporary
Identifier, 37

CAZAC Constant Amplitude Zero AutoCorrelation,
33

CB Code Block, 128
CDD Cyclic Delay Diversity, 41
CDM Code Division Multiplexing, 21, 31, 39
CIR Channel Impulse Response, 19, 131
CISC Complex Instruction Set Computer, 64
CN Communication Node, 84, 100
CP Critical Path, 71

185

186 Glossary

CP Cyclic Prefix, 24, 35
CPN Critical Path Node, 72
CQI Channel Quality Indicator, 26, 32, 38, 41
CRC Cyclic Redundancy Check, 21, 28, 32, 38, 128
CSDF Cyclo Static Dataflow Graph, 48, 53

DAET Deterministic Actor Execution Time, 50, 100,
109

DAG Directed Acyclic Graph, 48, 103, 147
DCI Downlink Control Information, 38
DDF Dynamic Dataflow Graph, 48
DDR Double Data Rate, 80
DE Discrete Event, 46
DFT Discrete Fourier Transform, 23
DM RS Demodulation Reference Signal, 30, 33
DMA Direct Memory Access, 65, 82, 83
DSL Digital Subscriber Line, 20
DSP Digital Signal Processor, 47, 63

E-UTRAN Evolved Universal Terrestrial Radio Access
Network, 15

EMAC Ethernet Media Access Controller, 80
eNodeB evolved NodeB, 12, 15
EPC Evolved Packet Core, 15
ETSI European Telecommunications Standards In-

stitute, 11

FAST Fast Assignment and Scheduling of Tasks, 72,
107

FDD Frequency Division Duplex, 25
FEC Forward Error Correction, 21, 26, 27, 38, 128
FFT Fast Fourier Transform, 37
FIFO First-In First-Out, 46
FSM Finite State Machine, 46

GPU Graphical Processing Unit, 63
GSM Global System for Mobile Communications,

11
GT Guard Time, 35

HARQ Hybrid Automatic Repeat reQuest, 16, 18, 32
HD-FDD Half-Duplex FDD, 25
HDL Hardware Description Language, 49
HSPA High Speed Packet Access, 12
HSS Home Subscriber Server, 15

IBN In-Branch Node, 72

Glossary 187

IBSDF Interface-Based Hierarchical Synchronous
Dataflow Graph, 48, 57, 167

ICI Inter Carrier Interference, 19
IDF Integer Dataflow Graph, 48
IDL Interface Description Languages, 138
IFFT Inverse Fast Fourier Transform, 23
ILP Instruction-Level Parallelism, 61
IMT International Mobile Telecommunications, 11
IP Intellectual Property, 62, 83
IP Internet Protocol, 12, 16
ISA Instruction Set Architecture, 61, 64
ISI Inter Symbol Interference, 19, 23
ITRS International Technology Roadmap for Semi-

conductors, 45
ITU-R International Telecommunication Union, Ra-

dio Communication Sector, 11, 20

KPN Kahn Process Network, 47

LTE Long Term Evolution, 12

M-sequence Maximum length sequence, 39
MAC Medium Access Control, 16
MCS Modulation and Coding Scheme, 21, 26, 38,

131
MIB Master Information Block, 38
MIMD Multiple Instruction Multiple Data, 64
MIMO Multiple Input Multiple Output, 22, 29, 41
MISD Multiple Instruction Single Data, 64
MLD Maximum Likelihood, 35
MME Mobility Management Entity, 15, 35
MMSE Minimum Mean-Square Error, 34
MoC Model of Computation, 45
MPSoC Multi-Processor System-on-Chip, 63, 79
MRC Maximal-Ratio Combining, 29
MU-MIMO Multi-User MIMO, 33, 34, 41

NACK HARQ Non Acknowledgement, 32
NAS Non Access Stratum, 15
NLOS Non-line-of-sight, 19
NORMA NO Remote Memory Access, 65
NUMA Non Uniform Memory Access, 65

OBN Out-Branch Node, 72
OFDMA Orthogonal Frequency Division Multiplexing

Access, 21, 22, 37, 166
OOP Object-Oriented Programming, 46
OSI Open Systems Interconnection, 14

188 Glossary

P-GW Packet Data Network Gateway, 15
PAPR Peak to Average Power Ratio, 21, 23, 37
PBCH Physical Broadcast Channel, 38, 42
PCFICH Physical Control Format Indicator Channel,

38
PCRF Policy Control and charging Rules Function,

15
PCSDAG Parameterized Cyclo Static Directed Acyclic

Graph, 144, 167, 174
PDCCH Physical Downlink Control Channel, 26, 38
PDCP Packet Data Convergence Protocol, 16
PDSCH Physical Downlink Shared Channel, 26, 38,

41, 135
PDU Protocol Data Unit, 17
PFAST Parallel Fast Assignment and Scheduling of

Tasks, 72, 107
PHICH Physical Hybrid ARQ Indicator Channel, 38
PMCH Physical Multicast Channel, 38
PMI Precoding Matrix Indicator, 32, 40, 41
PN Process Network, 46
PRACH Physical Random Access Channel, 31, 35, 124
PRB Physical Resource Block, 24
PREESM Parallel and Real-time Embedded Executives

Scheduling Method, 137
PSDF Parameterized Synchronous Dataflow Graph,

48, 55, 167
PSS Primary Synchronization Signal, 42
PUCCH Physical Uplink Control Channel, 26, 31
PUSCH Physical Uplink Shared Channel, 26, 31, 135

QoS Quality of Service, 15

RA-RNTI Random Access Radio Network Temporary
Identifier, 36

RACH-PD Random Access Channel Preamble Detection,
124, 135

RAM Random Access Memory, 83
RAR Random Access Response, 35, 36
RE Resource Element, 24, 122
RF Radio Frequency, 22, 25, 37
RI Rank Indicator, 32, 40, 41
RISC Reduced Instruction Set Computer, 64
RLC Radio Link Control, 16
RS Reference Signal, 21, 39, 42
RTOS Real-Time Operating System, 61

S-GW Serving Gateway, 15

Glossary 189

S-LAM System-Level Architecture Model, 82, 103
SAE Society of Automotive Engineers, 65
SAE System Architecture Evolution, 13, 15, 18
SC-FDMA Single Carrier-Frequency Division Multiplex-

ing Access, 21, 22, 37, 166
SCR Switched Central Resource, 80, 82
SD Sphere Decoder, 35
SDF Synchronous Dataflow Graph, 48, 50
SDF4J Synchronous Dataflow for Java, 119
SDMA Spatial Division Multiple Access, 34
SDU Service Data Unit, 17
SFBC Space-Frequency Block Coding, 40
SIB System Information Block, 38
SIMD Single Instruction Multiple Data, 62, 64
SINR Signal-to-Interference plus Noise Ratio, 26
SISD Single Instruction Single Data, 64
SNR Signal-to-Noise Ratio, 18, 26
SR Scheduling Request, 131
SRS Sounding Reference Signal, 30, 33
SRs Scheduling Request, 32
SSE Streaming SIMD Extensions, 62
SSS Secondary Synchronization Signal, 42
STBC Space-Time Block Coding, 29, 40

TB Transport Block, 128
TDD Time Division Duplex, 25
ThLP Thread-Level Parallelism, 61
TLM Transaction Level Modeling, 65
TLP Task-Level Parallelism, 61
TTI Transmission Time Interval, 24

UE User Equipment, 12, 15
UMA Uniform Memory Access, 65
UMTS Universal Mobile Telecommunications Sys-

tem, 12
UNC Unbounded Number Of Clusters, 70, 108

VLIW Very Long Instruction Word, 62, 64
VoIP Voice over IP, 13, 18

WCET Worst-Case Execution Time, 100

XSLT Extensible Stylesheet Language Transforma-
tion, 138

ZC Zadoff-Chu Sequence, 30, 33, 42
ZF Zero Forcing, 34

190 Glossary

Personal Publications

[1] M. Pelcat, J.-F. Nezan, and S. Aridhi, Adaptive multicore scheduling for the LTE
uplink, NASA/ESA AHS 2010, Anaheim.

[2] M. Pelcat, J. Piat, M. Wipliez, J.-F. Nezan, and S. Aridhi. An open framework for
rapid prototyping of signal processing applications, EURASIP Journal on Embedded
Systems, 2009.

[3] M. Pelcat, J.-F. Nezan, J. Piat, J. Croizer, and S. Aridhi, A System-Level architecture
model for rapid prototyping of heterogeneous multicore embedded systems, DASIP
2009, Sophia Antipolis.

[4] J. Piat, S. S. Bhattacharyya, M. Pelcat, and M. Raulet, Multi-core code generation
from interface based hierarchy, DASIP 2009, Sophia Antipolis.

[5] M. Pelcat, P. Menuet, S. Aridhi and J-F. Nezan, Scalable compile-time scheduler for
multi-core architectures, DATE 2009, Nice.

[6] M. Pelcat, P. Menuet, S. Aridhi and J-F. Nezan, A Static Scheduling Framework for
Deploying Applications on Multicore Architectures, PDCN 2009, Innsbruck.

[7] M. Pelcat, S. Aridhi and J-F. Nezan, Optimization of automatically generated multi-
core code for the LTE RACH-PD algorithm, DASIP 2008, Brussels.

[8] J. Piat, M. Raulet, M. Pelcat, P. Mu and O. Déforges, An extensible framework for
fast prototyping of multiprocessor dataflow applications, IDT 2008, Monastir.

[9] F. Décologne, M. Blestel, M. Raulet and M. Pelcat, Specific Functional Units for
SVC: Textual description and CAL implementation, M15432, 84th MPEG Meeting
Document Register, Archamps, France, 2008.

[10] M. Pelcat, M. Blestel and M. Raulet, From AVC Decoder to SVC: Minor Impact on
a Dataflow Graph Description, 26th Picture Coding Symposium. PCS 2007, Lisbon.

[11] M. Pelcat, M. Raulet, O. Déforges, M. Blestel and J-F. Nezan, Implementing SVC
from RVC AVC: description of the specific SVC FUs, M14965, 82th MPEG Meeting
Document Register, Shenzhen, 2007.

191

192 Personal Publications

[12] M. Raulet, M. Pelcat and M. Blestel, From AVC to SVC: minor and major modifi-
cations in a RVC decoder implementation, M14655, 81st MPEG Meeting Document
Register, Lausanne, Switzerland, 2007.

[13] M. Pelcat, M. Blestel, M. Raulet and J-F. Nezan, Evolutions of RVC so as to handle
SVC decoding, M14463, 80th MPEG Meeting Document Register, San José, 2007.

[14] G. Roquier, M. Pelcat, M. Raulet, M. Wipliez, J-F. Nezan and O. Déforges, A scheme
for implementing MPEG-4 SP codec in the RVC framework, M14457, 80th MPEG
Meeting Document Register, San José, 2007.

Bibliography

[36.09a] 3GPP: TS 36.101. Evolved Universal Terrestrial Radio Access (E-UTRA);
user equipment (ue) radio transmission and reception (Release 9), December
2009. 15

[36.09b] 3GPP: TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA);
base station (bs) radio transmission and reception (Release 9), December 2009.
15

[36.09c] 3GPP: TS 36.211. Evolved Universal Terrestrial Radio Access (E-UTRA);
physical channels and modulation (Release 9), December 2009. 15, 16, 25, 26,
35, 37, 40, 125

[36.09d] 3GPP: TS 36.212. Evolved Universal Terrestrial Radio Access (E-UTRA);
multiplexing and channel coding (Release 9), December 2009. 15

[36.09e] 3GPP: TS 36.213. Evolved Universal Terrestrial Radio Access (E-UTRA);
physical layer procedures (Release 9), December 2009. 18, 27, 36, 37, 123

[36.09f] 3GPP: TS 36.321. Evolved Universal Terrestrial Radio Access (E-UTRA);
medium access control (mac) protocol specification (Release 9), December
2009. 16

[36.09g] 3GPP: TS 36.322. Evolved Universal Terrestrial Radio Access (E-UTRA);
radio link control (rlc) protocol specification (Release 9), December 2009. 16

[36.09h] 3GPP: TS 36.323. Evolved Universal Terrestrial Radio Access (E-UTRA);
packet data convergence protocol (pdcp) specification (Release 9), December
2009. 16

[Ack82] W. B. Ackerman. Data flow languages. Computer, 15(2):15–25, 1982. 4

[Ala07] S. M Alamouti. A simple transmit diversity technique for wireless communi-
cations. The best of the best: fifty years of communications and networking
research, page 17, 2007. 29, 41

[Amd67] G. M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, pages 483–485, 1967. 115

193

194 Bibliography

[BB01] B. Bhattacharya and S.S. Bhattacharyya. Parameterized dataflow modeling
for DSP systems. Signal Processing, IEEE Transactions on, 49(10):2408–2421,
2001. 55, 56

[BB02] B. Bhattacharya and S. Bhattacharyya. Consistency analysis of reconfigurable
dataflow specifications. In Lecture notes in computer science, pages 308–311,
2002. 55

[BBE+08] S. Bhattacharyya, G. Brebner, J. Eker, J. Janneck, M. Mattavelli, C. von
Platen, and M. Raulet. OpenDF - a dataflow toolset for reconfigurable hard-
ware and multicore systems. SIGARCH Comput. Archit. News, 2008. 67

[BBS09] J. Boutellier, S. S Bhattacharyya, and O. Silven. A low-overhead scheduling
methodology for fine-grained acceleration of signal processing systems. Jour-
nal of Signal Processing Systems, 2009. 74

[BEH+01] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.
Graphml progress report, structural layer proposal. In P Mutzel, M Junger,
and S Leipert, editors, Graph Drawing - 9th International Symposium, GD
2001 Vienna Austria,, pages 501–512, Heidelberg, 2001. Springer Verlag. 120

[Bel06] P. Belanovic. An Open Tool Integration Environment for Efficient Design
of Embedded Systems in Wireless Communications. PhD thesis, Technischen
Universitat Wien, 2006. 67

[BELP95] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static
data flow. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, volume 5, 1995. 51, 53

[BEPT00] J. Blazewicz, K. Ecker, B. Plateau, and D. Trystram. Handbook on parallel
and distributed processing. Springer, 2000. 65

[BG07] C. Berrou and A. Glavieux. Near optimum error correcting coding and de-
coding: Turbo-codes. The best of the best: fifty years of communications and
networking research, page 45, 2007. 28

[BHLM94] J. Buck, S. Ha, E. A Lee, and D. G Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. International Journal
of Computer Simulation, 4(2):155–182, 1994. 74

[BJK+95] R. D Blumofe, C. F Joerg, B. C Kuszmaul, C. E Leiserson, K. H Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings
of the fifth ACM SIGPLAN symposium on Principles and practice of parallel
programming, 1995. 66, 67

[BKKB02] N. Bambha, V. Kianzad, M. Khandelia, and S. S Bhattacharyya. Intermediate
representations for design automation of multiprocessor DSP systems. Design
Automation for Embedded Systems, 7(4), 2002. 74

[BL93] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs with bounded
memory using thetoken flow model. In 1993 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., volume 1,
1993. 51

Bibliography 195

[BLMSv98] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-vincentelli. Scheduling
for embedded Real-Time systems. IEEE DESIGN and TEST OF COMPUT-
ERS, pages 71–82, 1998. 74

[Bre74] R. P Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM (JACM), 21(2):201–206, 1974. 116

[Bru07] P. Brucker. Scheduling Algorithms. Springer Verlag, 2007. 69, 70, 74

[BSL97] S. S Bhattacharyya, S. Sriram, and E. A Lee. Optimizing synchronization in
multiprocessor DSP systems. IEEE Transactions on Signal Processing, 45(6),
1997. 74

[BW09] David Bell and Greg Wood. Multicore programming guide. Technical report,
Texas Instruments, August 2009. 87, 135, 136

[CCS+08] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda. MAPS: an integrated framework for MP-
SoC application parallelization. In Proceedings of the 45th annual conference
on Design automation, pages 754–759, 2008. 66

[CHL97] W. T Chang, S. Ha, and E. A Lee. Heterogeneous simulation - mixing
discrete-event models with dataflow. The Journal of VLSI Signal Process-
ing, 15(1):127–144, 1997. 45

[Chu72] D. Chu. Polyphase codes with good periodic correlation properties. IEEE
Transactions on Information Theory, 18(4):531 to 532, 1972. 33

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, September
2001. 52, 69, 89

[CMS06] C. Ciochina, D. Mottier, and H. Sari. Multiple access techniques for the uplink
in future wireless communications systems. Third COST 289 Workshop, July
2006. 30

[CS94] R.V. Cox and C.E.W. Sundberg. An efficient adaptive circular viterbi algo-
rithm for decoding generalized tailbiting convolutional codes. IEEE Transac-
tions on Vehicular Technology, 43(1):57–68, feb 1994. 27

[DEY+09] A. Dahlin, J. Ersfolk, G. Yang, H. Habli, and J. Lilius. The canals language
and its compiler. In Proceedings of th 12th International Workshop on Soft-
ware and Compilers for Embedded Systems, pages 43–52, 2009. 74

[Dij60] EW Dijkstra. Algol 60 translation. Supplement, Algol 60 Bulletin, 10, 1960.
147

[DPSB07] Erik Dahlman, Stefan Parkvall, Johan Skold, and Per Beming. 3G Evolution:
HSPA and LTE for Mobile Broadband. Academic Press Inc, June 2007. 15,
17

[dsp] TMS320 DSP/BIOS Users Guide (SPRU423F). 138

196 Bibliography

[DSTW96] A. L Davis, E. J Stotzer, R. E Tatge, and A. S Ward. Approaching peak
performance with compiled code on a VLIW DSP. Proceedings of lCSPAT
Fall, 1996. 62

[ecl] Eclipse Open Source IDE : Available Online.
http://www.eclipse.org/downloads/. 119

[EJ03] J. Eker and J. W. Janneck. CAL Language Report. Technical report, ERL
Technical Memo UCB/ERL M03/48, University of California at Berkeley,
December 2003. 67, 120

[FGHI06] P. H Feiler, D. P Gluch, J. J Hudak, and CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST. The architecture
analysis & design language (AADL): an introduction. Technical report, 2006.
65

[Fly72] M. J Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 100:21, 1972. 65

[Fri10] Arnon Friedmann. Enabling LTE development with TI new multicore SoC
architecture SPRY134. Technical report, Texas Instruments, 2010. 81, 111

[fS09] International Technology Roadmap for Semiconductors. Design. www.itrs.net,
2009. 46, 64

[GB09] Alan Gatherer and Eric Biscondi. Multicore DSP programming models [In
the spotlight. IEEE Signal Processing Magazine, 26(6):224, 220–222, 2009. 95

[Ghe06] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer-Verlag New York, Inc.,
2006. 67, 106

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-wesley Reading, MA, 1995. 119

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1990. 69

[GLS99] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping
for real-time embedded heterogeneous multiprocessors. In Hardware/Soft-
ware Codesign, 1999. (CODES ’99) Proceedings of the Seventh International
Workshop on, pages 74–78, 1999. 67, 74

[graa] Grammatica parser generator : Available Online.
http://grammatica.percederberg.net/. 120

[Grab] Graphiti Editor : Available Online. http://sourceforge.net/projects/graphiti-
editor/. 101

[Gra66] R. L Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45(9), 1966. 66, 149

[Gra69] R. L Graham. Bounds on multiprocessing timing anomalies. SIAM JOURNAL
ON APPLIED MATHEMATICS, 17:416—429, 1969. 116

Bibliography 197

[Gra00] Thierry Grandpierre. Modélisation d’architectures parallèles hétérogènes
pour la génération automatique d’exécutifs distribués temps réel opti-
misés. http://www.inria.fr/rrrt/tu-0666.html, November 2000. Grandpierre,
Thierry. 82, 83

[GS03] T. Grandpierre and Y. Sorel. From algorithm and architecture specifications
to automatic generation of distributed real-time executives: a seamless flow
of graphs transformations. In MEMOCODE ’03, pages 123–132, 2003. 68, 82,
99, 137

[gsm10] GSM-UMTS network migration to LTE. Technical report, 3G Americas,
February 2010. 11

[Gus88] J. L Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
31(5):532–533, 1988. 115

[Hea95] S. Heath. Microprocessor architectures RISC, CISC and DSP. Butterworth-
Heinemann Ltd. Oxford, UK, UK, 1995. 64

[HHBT09] Wolfgang Haid, Kai Huang, Iuliana Bacivarov, and Lothar Thiele. Multipro-
cessor SoC software design flows. IEEE Signal Processing Magazine, 26(6):64–
71, 2009. 96

[HjHL06] Yuxiong He, Wen jing Hsu, and Charles E. Leiserson. Provably efficient two-
level adaptive scheduling, 2006. 136, 154

[HKK+04] C.-J. Hsu, F. Keceli, M.-Y. Ko, S. Shahparnia, and S. S. Bhattacharyya. Dif:
An interchange format for dataflow-based design tools. 2004. 67

[HL97] S. Ha and E. A Lee. Compile-time scheduling of dynamic constructs in
dataflow program graphs. IEEE Transactions on Computers, 46, 1997. 74,
137

[Hol01] Bengt Holter. On the capacity of the mimo channel-a tutorial introduction.
In IEEE Norwegian Symposium on Signal Processing, pages 167–172, 2001.
29

[HT09] Harri Holma and Antti Toskala. LTE for UMTS - OFDMA and SC-FDMA
Based Radio Access. John Wiley and Sons, may 2009. 15

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems. Operations Re-
search, 9(6):841–848, 1961. 70

[ins05] TMS320C64x/C64x+ DSP CPU and instruction set reference guide. Texas
Instruments, User manual SPRU732C, 2005. 79

[Jan03] T. H.J Janecek. Static vs. dynamic List-Scheduling performance comparison.
Acta Polytechnica, 43(6), 2003. 72

[Jan07] J. W. Janneck. NL - a Network Language. Technical report, ASTG Technical
Memo, Programmable Solutions Group, Xilinx Inc., July 2007. 120

[JE01] J. W. Janneck and R. Esser. A predicate-based approach to defining visual
language syntax. In In Symposium on Visual Languages and Formal Methods,
HCC01, Stresa, pages 40–47, 2001. 120

198 Bibliography

[JMB] J. Jiang, T. Muharemovic, and P. Bertrand. Random access preamble detec-
tion for long term evolution wireless networks. Patent Nr 20090040918. 124,
125

[JMRW10] J. W Janneck, M. Mattavelli, M. Raulet, and M. Wipliez. Reconfigurable
video coding: a stream programming approach to the specification of new
video coding standards. In Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, pages 223–234, 2010. 48

[KA99] Y. K Kwok and I. Ahmad. FASTEST: a practical low-complexity algorithm
for compile-timeassignment of parallel programs to multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 10(2):147–159, 1999. 72

[KAG+09] L. J Karam, I. AlKamal, A. Gatherer, G. A Frantz, D. V Anderson, and
B. L Evans. Trends in multicore DSP platforms. IEEE Signal Process. Mag,
26(6):38–49, 2009. 5, 64, 96

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In-
formation processing, 74:471–475, 1974. 47

[KF90] A. H Karp and H. P Flatt. Measuring parallel processor performance. Com-
munications of the ACM, 33(5):539–543, 1990. 116

[KKJ+08] S. Kwon, Y. Kim, W. C Jeun, S. Ha, and Y. Paek. A retargetable parallel-
programming framework for MPSoC. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 13(3):39, 2008. 66

[KSLB03] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated devel-
opment of embedded software. Proceedings of the IEEE, 91(1):145–164, 2003.
67

[Kwo97] Yu-Kwong Kwok. High-performance algorithms of compile-time scheduling of
parallel processors. PhD thesis, Hong Kong University of Science and Tech-
nology, 1997. 53, 70, 71, 72, 73, 91, 169

[Lar09] E. G Larsson. MIMO detection methods: How they work. IEEE Signal
Processing Magazine, 26(3):91–95, 2009. 35

[Lee89] E. A Lee. Scheduling strategies for multiprocessor real-time DSP. In
IEEE Global Telecommunications Conference and Exhibition. Communica-
tions Technology for the 1990s and Beyond, 1989. 68, 69, 87

[Lee01] E.A. Lee. Overview of the ptolemy project. Technical memorandum
UCB/ERL M01/11, University of California at Berkeley, 2001. 67

[Lee06] E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006. 62

[Lei05] C. E Leiserson. A minicourse on dynamic multithreaded algorithms. 2005.
116, 117

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, 1987. 50, 51

[LP95] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–801, 1995. 47, 48, 49, 50, 63

Bibliography 199

[MARN07] S. Moreau, S. Aridhi, M. Raulet, and J.-F. Nezan. On modeling the RapidIO
communication link using the AAA methodology. In DASIP, 2007. 140

[mca] The Multicore Association. http://www.multicore-association.org/home.php.
66, 67, 147

[MKB06] N. K. Bambha M. Khandelia and S. S Bhattacharyya. Contention-conscious
transaction ordering in multiprocessors DSP systems. In IEEE Transactions
on Signal Processing, 2006. 73, 74

[Mu09] Pengcheng Mu. Rapid Prototyping Methodology for Parallel Embedded Sys-
tems. PhD thesis, INSA Rennes, 2009. 71, 73, 82, 85

[MWI+09] Christian Mehlführer, Martin Wrulich, Josep Colom Ikuno, Dagmar Bosanska,
and Markus Rupp. Simulating the long term evolution physical layer. In
Proc. of the 17th European Signal Processing Conference (EUSIPCO 2009),
Glasgow, Scotland, August 2009. 27, 124

[Nez02] J F Nezan. Integration de services video Mpeg sur architectures paralleles.
PhD thesis, IETR INSA Rennes, 2002. 49

[Nor09] Terry Norman. The road to LTE for GSM and UMTS operators. Technical
report, Analysys Mason, 2009. 11, 12

[opea] OpenCL. http://www.khronos.org/opencl/. 66, 67, 147

[opeb] OpenMP. http://openmp.org/wp/. 66, 67

[PAN08] Maxime Pelcat, Slaheddine Aridhi, and Jean Francois Nezan. Optimization
of automatically generated multi-core code for the LTE RACH-PD algorithm.
0811.0582, November 2008. DASIP 2008, Bruxelles : Belgique (2008). 85,
138, 140

[PBL95] Jos Luis Pino, Shuvra S Bhattacharyya, and Edward A Lee. A hierarchical
multiprocessor scheduling framework for synchronous dataflow graphs. Labo-
ratory, University of California at Berkeley, pages 95–36, 1995. 53, 55

[PBPR09] J. Piat, S. S Bhattacharyya, M. Pelcat, and M. Raulet. Multi-core code
generation from interface based hierarchy. DASIP 2009, 2009. 55, 57, 58, 68,
97, 138

[PBR09] J. Piat, S. S. Bhattacharyya, and M. Raulet. Interface-based hierarchy for
synchronous data-flow graphs. submitted SAMOS conference IX, july 2009.
57, 59

[Pia10] Jonathan Piat. Data Flow modeling and multi-core optimization of loop pat-
terns. PhD thesis, INSA Rennes, 2010. 53, 99

[PL95] Jose Luis Pino and Edward A Lee. Hierarchical static scheduling of dataflow
graphs onto multiple processors. IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 2643–2646, 1995. 98

[PMAN09] Maxime Pelcat, Pierrick Menuet, Slaheddine Aridhi, and Jean-Francois
Nezan. Scalable Compile-Time scheduler for multi-core architectures. In
DATE, 2009. 102

200 Bibliography

[PNP+09] Maxime Pelcat, Jean Francois Nezan, Jonathan Piat, Jerome Croizer, and
Slaheddine Aridhi. A System-Level architecture model for rapid prototyping
of heterogeneous multicore embedded systems. DASIP, 2009. 108

[POH09] Hae-Woo Park, Hyunok Oh, and Soonhoi Ha. Multiprocessor SoC design
methods and tools. IEEE Signal Processing Magazine, 26(6):72–79, 2009. 66,
168

[pol] PolyCore Software Poly-Mapper tool. http://www.polycoresoftware.com/products3.php.
67

[Pop92] B.M. Popovic. Generalized chirp-like polyphase sequences with optimum cor-
relation properties. IEEE Transactions on Information Theory, 38(4):1406–
1409, 1992. 33

[PPW+09] Maxime Pelcat, Jonathan Piat, Matthieu Wipliez, Jean Francois Nezan, and
Slaheddine Aridhi. An open framework for rapid prototyping of signal pro-
cessing applications. EURASIP Journal on Embedded Systems, 2009. 119,
143

[Pyn97] R. Pyndiah. Iterative decoding of product codes: block turbo codes. In
Proceedings of the 1st International Symposium on Turbo Codes and Related
Topics, pages 71–79, 1997. 28

[R1-05] R1-050587 - OFDM radio parameter set in Evolved UTRA downlink, June
2005. 23, 24

[R1-06a] R1-060039 - adaptive modulation and channel coding rate control for single-
antenna transmission in frequency domain scheduling, January 2006. 30, 38

[R1-06b] R1-062058 - E-UTRA TTI size and number of TTIs, September 2006. 25

[R1-07] R1-073687 - RB-level distributed transmission method for shared data channel
in E-UTRA downlink, August 2007. 38

[R1-08] R1-081248 - PRS sequence generation for downlink reference signal, April
2008. 40

[rap] RapidIO. http://www.rapidio.org/home/. 138

[RL06] B. Rihawi and Y. Louet. Peak-to-Average power ratio analysis in MIMO
systems. Information and Communication Technologies, 2006. ICTTA’06.
2nd, 2, 2006. 21, 23

[Rum09] M. Rumney. LTE and the evolution to 4G wireless: design and measurement
challenges. Wiley, 2009. 27

[RvG99] A. Radulescu and A. J.C van Gemund. On the complexity of list schedul-
ing algorithms for distributed-memory systems. In Proceedings of the 13th
international conference on Supercomputing, pages 68–75, 1999. 71

[Sar87] V. Sarkar. Partitioning and scheduling parallel programs for execution on
multiprocessors. PhD thesis, Stanford, CA, USA, 1987. 120

Bibliography 201

[SB09] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization, Second Edition. CRC press edition,
2009. 53, 69, 70, 74, 87, 140

[sdf] SDF4J : Available Online. http://sourceforge.net/projects/sdf4j/. 119

[Sha01] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):55, 2001. 18

[Sin07] Oliver Sinnen. Task Scheduling for Parallel Systems (Wiley Series on Parallel
and Distributed Computing). Wiley-Interscience, 2007. 49, 71, 73, 80, 117

[SLS00] M. Sgroi, L. Lavagno, and A. Sangiovanni-Vincentelli. Formal models for
embedded system design. IEEE Design & Test of Computers, 17(2):14–27,
2000. 46, 47

[SLWS99] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis
of embedded software using free-choice petri nets. In Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pages 805–810, 1999. 46

[SPI08] SPIRIT Schema Working Group. IP-XACT v1.4: A specification for XML
meta-data and tool interfaces. Technical report, The SPIRIT Consortium,
March 2008. 92

[STB09] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE, The UMTS Long
Term Evolution: From Theory to Practice. Wiley, 2009. 13, 15, 17, 19, 20,
31, 32, 33, 35, 36, 37, 38, 39, 123, 124, 130, 132, 145

[Stu07] S. Stuijk. Predictable Mapping of Streaming Applications on Multiprocessors.
PhD thesis, Technische Universiteit Eindhoven, 2007. 67

[sys] Open SystemC initiative web site. http://www.systemc.org/home/. 65, 102

[Ten] Tensilica. http://www.tensilica.com/. 64

[The07] B.D. Theelen. A performance analysis tool for Scenario-Aware streaming ap-
plications. In Quantitative Evaluation of Systems, 2007. QEST 2007. Fourth
International Conference on the, pages 269–270, 2007. 68

[tms07] TMS320TCI6488 DSP platform, texas instrument product bulletin (sprt415),
2007. 80, 106

[TMS08] TMS320C64x/C64x+ DSP CPU and instruction set reference guide, texas
instrument technical document (SPRU732G), February 2008. 126, 127

[Tre04] R. Trepkowski. Channel Estimation Strategies for Coded MIMO Systems, MS
Thesis. PhD thesis, Virginia Polytechnic University, Blacksburg, Va., June
2004, 2004. 35

[w3c] w3c XSLT standard. http://www.w3.org/Style/XSL/. 102, 120

[WEL09] Di Wu, Johan Eilert, and Dake Liu. Evaluation of MIMO symbol detectors for
3GPP LTE terminals. In Proc. 17th European Signal Processing Conference
(EUSIPCO), Glasgow, Scotland, 2009. 42

Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coëmes CS 70839 F-35708 Rennes Cedex 7
Tel : 02 23 23 82 00 - Fax : 02 23 23 83 96

N° d’ordre : D10-11

Résumé

Le standard 3GPP LTE (Long Term Evolution) est un
nouveau standard de télécommunication terrestre
fournissant des débits sans précédent à des utilisateurs
en mobilité. LTE permet des débits de plusieurs
centaines de Mbit/s grâce à l’utilisation de technologies
avancées. Ces technologies rendent la couche physique
du LTE complexe et particulièrement coûteuse en
termes de puissance de calcul. Les données émises
et reçues par les antennes terrestres de type LTE sont
traitées dans des stations de base appelées eNodeB.

Les processeurs de traitement du signal (DSP) sont
largement employés dans les stations de base pour
calculer les algorithmes de la couche physique. Les
DSPs de dernière génération sont des systèmes
complexes et hétérogènes incluant plusieurs cœurs et
coprocesseurs pour trouver le meilleur compromis entre
énergie consommée, souplesse de programmation
et puissance de calcul. Il n’existe pas actuellement de
solution idéale pour distribuer les parties d’une application
comme le LTE sur les différents cœurs contenus dans
un eNodeB. La programmation multi-cœurs est encore
principalement une tâche manuelle et coûteuse basée
sur des méthodes itératives de test et d’optimisation.

Dans cette thèse, nous présentons une méthode de
travail pour le prototypage rapide et la génération de code
automatique. Cette méthode aide les programmeurs
de DSP multi-cœurs en automatisant les phases de
conception les plus complexes. Nous utilisons des
méthodes basées sur les descriptions d’algorithmes
par graphes flux de données et nous proposons un
nouveau modèle d’architecture. Nous combinons ensuite
des méthodes de la littérature dans un distributeur/
ordonnanceur multi-cœurs hors-ligne flexible et évolutif.
Certains algorithmes de la couche physique du LTE
étant trop variables pour une distribution hors-ligne, nous
présentons un distributeur adaptatif capable de faire des
choix en temps réel sur la base de temps d’exécution
prédits. Enfin, nous appliquons les méthodes précédentes
pour étudier le comportement des algorithmes de la
couche physique du LTE sur des DSPs multi-cœurs.

Abstract

The 3GPP Long Term Evolution (LTE) is a new terrestrial
telecommunication standard providing unprecedented
data rates to mobile users. LTE enables data rates beyond
hundreds of Mbit/s by using advanced technologies. The
use of these technologies requires highly complex LTE
physical layer at the two communication nodes (mobile
and base station). An LTE base station, known as an
eNodeB, necessitates much power to process the data
transmitted and received by the LTE terrestrial antennas.

Digital Signal Processors (DSP) are commonly
employed to compute physical layer algorithms in
base stations. Modern DSPs are highly complex and
heterogeneous systems with several embedded cores
and co-processors allowing the best trade-off between
power consumption, programmability and computational
performance. No ideal solution has been found to
automatically assign application parts over the multiple
cores contained in an eNodeB. For the majority of
cases, multi-core programming is still a manual and
time-expensive task based on test-and-refine methods.

In this thesis, we design a rapid prototyping and code
generation framework that assists programmers of
multi-core DSPs by automating the most complex
design phases. We employ methods based on dataflow
graph descriptions of algorithms and we develop a
new architecture model. We then combine techniques
from the literature in a flexible and scalable compile-
time multi-core scheduler. As some algorithms of
the LTE physical layer are too variable for static
assignment, we present a simple adaptive scheduler
that computes real-time assignment choices based
on predicted execution times. Finally, we employ the
resulting framework and adaptive scheduler to study
the deployment of LTE algorithms on multi-core DSPs.

	Rapid Prototyping and Dataflow-Based Code Generation for the 3GPP LTE eNodeB Physical Layer Mapped onto Multi-Core DSPs
	Contents
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Contributions of this Thesis
	1.3 Outline of this Thesis

	I Background
	2 3GPP Long Term Evolution
	2.1 Introduction
	2.1.1 Evolution and Environment of 3GPP Telecommunication Systems
	2.1.2 Terminology and Requirements of LTE
	2.1.3 Scope and Organization of the LTE Study

	2.2 From IP Packets to Air Transmission
	2.2.1 Network Architecture
	2.2.2 LTE Radio Link Protocol Layers
	2.2.3 Data Blocks Segmentation and Concatenation
	2.2.4 MAC Layer Scheduler

	2.3 Overview of LTE Physical Layer Technologies
	2.3.1 Signal Air transmission and LTE
	2.3.2 Selective Channel Equalization
	2.3.3 eNodeB Physical Layer Data Processing
	2.3.4 Multicarrier Broadband Technologies and Resources
	2.3.5 LTE Modulation and Coding Scheme
	2.3.6 Multiple Antennas

	2.4 LTE Uplink Features
	2.4.1 Single Carrier-Frequency Division Multiplexing
	2.4.2 Uplink Physical Channels
	2.4.3 Uplink Reference Signals
	2.4.4 Uplink Multiple Antenna Techniques
	2.4.5 Random Access Procedure

	2.5 LTE Downlink Features
	2.5.1 Orthogonal Frequency Division Multiplexing Access
	2.5.2 Downlink Physical Channels
	2.5.3 Downlink Reference Signals
	2.5.4 Downlink Multiple Antenna Techniques
	2.5.5 UE Synchronization

	3 Dataflow Model of Computation
	3.1 Introduction
	3.1.1 Model of Computation Overview
	3.1.2 Dataflow Model of Computation Overview

	3.2 Synchronous Data Flow
	3.2.1 SDF Schedulability
	3.2.2 Single Rate SDF
	3.2.3 Conversion to a Directed Acyclic Graph

	3.3 Cyclo Static Data Flow
	3.3.1 CSDF Schedulability

	3.4 Dataflow Hierarchical Extensions
	3.4.1 Parameterized Dataflow Modeling
	3.4.2 Interface-Based Hierarchical Dataflow

	4 Rapid Prototyping and Programming Multi-core Architectures
	4.1 Introduction
	4.1.1 The Middle-Grain Parallelism Level

	4.2 Modeling Multi-Core Heterogeneous Architectures
	4.2.1 Understanding Multi-Core Heterogeneous Real-Time Embedded DSP MPSoC
	4.2.2 Literature on Architecture Modeling

	4.3 Multi-core Programming
	4.3.1 Middle-Grain Parallelization Techniques
	4.3.2 PREESM Among Multi-core Programming Tools

	4.4 Multi-core Scheduling
	4.4.1 Multi-core Scheduling Strategies
	4.4.2 Scheduling an Application under Constraints
	4.4.3 Existing Work on Scheduling Heuristics

	4.5 Generating Multi-core Executable Code
	4.5.1 Static Multi-core Code Execution
	4.5.2 Managing Application Variations

	4.6 Conclusion of the Background Part

	II Contributions
	5 A System-Level Architecture Model
	5.1 Introduction
	5.1.1 Target Architectures
	5.1.2 Building a New Architecture Model

	5.2 The System-Level Architecture Model
	5.2.1 The S-LAM operators
	5.2.2 Connecting operators in S-LAM
	5.2.3 Examples of S-LAM Descriptions
	5.2.4 The route model

	5.3 Transforming the S-LAM model into the route model
	5.3.1 Overview of the transformation
	5.3.2 Generating a route step
	5.3.3 Generating direct routes from the graph model
	5.3.4 Generating the complete routing table

	5.4 Simulating a deployment using the route model
	5.4.1 The message passing route step simulation with contention nodes
	5.4.2 The message passing route step simulation without contention nodes
	5.4.3 The DMA route step simulation
	5.4.4 The shared memory route step simulation

	5.5 Role of S-LAM in the Rapid Prototyping Process
	5.5.1 Storing an S-LAM Graph
	5.5.2 Hierarchical S-LAM Descriptions

	6 Enhanced Rapid Prototyping
	6.1 Introduction
	6.1.1 The Multi-Core DSP Programming Constraints
	6.1.2 Objectives of a Multi-Core Scheduler

	6.2 A Flexible Rapid Prototyping Process
	6.2.1 Algorithm Transformations while Rapid Prototyping
	6.2.2 Scenarios: Separating Algorithm and Architecture
	6.2.3 Workflows: Flows of Model Transformations

	6.3 The Structure of the Scalable Multi-Core Scheduler
	6.3.1 The Problem of Scheduling a DAG on an S-LAM Architecture
	6.3.2 Separating Heuristics from Benchmarks
	6.3.3 Proposed ABC Sub-Modules
	6.3.4 Proposed Actor Assignment Heuristics

	6.4 Advanced Features in Architecture Benchmark Computers
	6.4.1 The route model in the AAM process
	6.4.2 The Infinite Homogeneous ABC
	6.4.3 Minimizing Latency and Balancing Loads

	6.5 Scheduling Heuristics in the Framework
	6.5.1 Assignment Heuristics
	6.5.2 Ordering Heuristics

	6.6 Quality Assessment of a Multi-Core Schedule
	6.6.1 Limits in Algorithm Middle-Grain Parallelism
	6.6.2 Upper Bound of the Algorithm Speedup
	6.6.3 Lowest Acceptable Speedup Evaluation
	6.6.4 Applying Scheduling Quality Assessment to Heterogeneous Target Architectures

	7 Dataflow LTE Models
	7.1 Introduction
	7.1.1 Elements of the Rapid Prototyping Framework
	7.1.2 SDF4J : A Java Library for Algorithm Graph Transformations
	7.1.3 Graphiti : A Generic Graph Editor for Editing Architectures, Algorithms and Workflows
	7.1.4 PREESM : A Complete Framework for Hardware and Software Codesign

	7.2 Proposed LTE Models
	7.2.1 Fixed and Variable eNodeB Parameters
	7.2.2 A LTE eNodeB Use Case
	7.2.3 The Different Parts of the LTE Physical Layer Model

	7.3 Prototyping RACH Preamble Detection
	7.4 Downlink Prototyping Model
	7.5 Uplink Prototyping Model
	7.5.1 PUCCH Decoding
	7.5.2 PUSCH Decoding

	8 Generating Code from LTE Models
	8.1 Introduction
	8.1.1 Execution Schemes
	8.1.2 Managing LTE Specificities

	8.2 Static Code Generation for the RACH-PD algorithm
	8.2.1 Static Code Generation in the PREESM tool
	8.2.2 Method employed for the RACH-PD implementation

	8.3 Adaptive Scheduling of the PUSCH
	8.3.1 Static and Dynamic Parts of LTE PUSCH Decoding
	8.3.2 Parameterized Descriptions of the PUSCH
	8.3.3 A Simplified Model of Target Architectures
	8.3.4 Adaptive Multi-core Scheduling of the LTE PUSCH
	8.3.5 Implementation and Experimental Results

	8.4 PDSCH Model for Adaptive Scheduling
	8.5 Combination of Three Actor-Level LTE Dataflow Graphs

	9 Conclusion, Current Status and Future Work
	9.1 Conclusion
	9.2 Current Status
	9.3 Future Work

	Appendix A Available Workflow Nodes in PREESM
	Appendix B French Summary
	B.1 Introduction
	B.2 Etat de l'Art
	B.2.1 Le Standard 3GPP LTE
	B.2.2 Les Modèles Flot de Données
	B.2.3 Le Prototypage Rapide et la Programmation des Architectures Multicoeurs

	B.3 Contributions
	B.3.1 Un Modèle d'Architecture pour le Prototypage Rapide
	B.3.2 Amélioration du Prototypage Rapide
	B.3.3 Modèles Flot de Données du LTE
	B.3.4 Implémentation du LTE à Partir de Modèles Flot de Données

	B.4 Conclusion

	Glossary
	Personal Publications
	Bibliography
	Abstract

