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I. MARUSIC Professeur, Université de Melbourne, Australie Rapporteur
B. AUPOIX Directeur de recherche à l’ONERA, HDR, France Rapporteur
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Thèse préparée au sein du LML (France) et du LTRAC (Australie)
Ecole Doctorale SPI 072





Ph.D. THESIS
(final version)

submitted to obtain the joint degree of

Docteur de l’Ecole Centrale de Lille
Doctor of philosophy of Monash University

Department : Mechanical engineering

Presented by :

Sophie HERPIN

Study of the influence of the Reynolds
number on the organization of

wall-bounded turbulence

supervisors: Michel Stanislas / Julio Soria

Oral defence on the 20th of April 2009

- EXAMINATION BOARD -

I. MARUSIC Professor, Melbourne University, Australia Reviewer
B. AUPOIX Director of research at ONERA, HDR, France Reviewer
W. K. GEORGE Professor, Chalmers University of Technology, Sweden Examiner
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(and Gaëlle), Laurent Perret, Julianna Abrantes, Callum Atkinson (again !!), Javier
Lechuga, Vincent Magnier, Ludovic Cauvin, Rostislav Dolganov...

• And last and not least, I wish to express my sincere gratitude to my partner, my
family and my friends for their unconditionnal support during this hard-working
period.



ii 0. Acknowledgments



iii

Abstract

This work is an experimental study of the influence of the Reynolds number on the char-
acteristics of the streamwise and spanwise vortical structures in near-wall turbulence.
Stereo-PIV measurements in streamwise/wall-normal (XY) and spanwise/wall-normal
(ZY) planes of turbulent boundary layer flow are conducted in the LTRAC water-tunnel
and LML wind-tunnel at six Reynolds numbers comprised between Reθ = 1300 and
Reθ = 18950. The measurements feature good spatial resolution and low measurement
uncertainty. The database is validated through an analysis of some single-points statistics
(mean and RMS velocity, PDF of the fluctuations) and of the power spectra, compared
with reference profiles from theory, hot-wire measurements and DNS data.
A coherent structure detection is then undertaken on the SPIV database, as well as on a
DNS dataset at Reτ = 950. The detection is based on a fit of an Oseen vortex to the veloc-
ity field surrounding extrema of 2D swirling strength. The wall-normal evolution of some
statistical quantities (mean, RMS, PDF) of the vortex characteristics (radius, vorticity,
circulation, convection velocity...) is analyzed, using two different scalings: the wall-unit
scaling and the Kolmogorov scaling. In wall-unit scaling, a good universality in Reynolds
numbers is observed in the near-wall and logarithmic region, but some Reynolds number
effects are visible in the outer region of the flow. In contrast, the Kolmogorov scaling was
found to be universal both in Reynolds number and wall-normal distance across the three
regions investigated. Finally, the results obtained are interpreted in terms of vortices
generation mechanisms.
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Extended abstract in French
(Résumé en Francais)

Ce travail est une étude experimentale de l’influence du nombre de Reynolds sur les
structures tourbillonnaires longitudinales et transverses de la turbulence de paroi.
Le mémoire de thèse est organisé en 7 chapitres.

Chapitre 1 : Les structures cohérentes de la turbulence de paroi
L’étude des écoulements turbulents proches paroi revêt une importance de premier plan
pour de nombreuses applications indutrielles. La production et la dissipation de la tur-
bulence sont liées à l’organisation de l’écoulement en structures cohérentes (Robinson
(1991)); parmi ces structures, les tourbillons longitudinaux et tranverses jouent un rôle
essentiel car ils assurent le transport de masse et de quantité de mouvement à travers le
gradient moyen de vitesse normal à la paroi. Les caratéristiques physiques de ces struc-
tures, leur origine ainsi que l’influence du nombre de Reynolds demeurent des problèmes
non resolus de la turbulence. L’objectif de cette étude est d’apporter des éléments nou-
veaux de compréhension à ces questions fondamentales.

Chapitre 2 : la Vélocimétrie par Images de Particules
La Vélocimétrie par Images de Particules (PIV) est une technique de mesure de champs qui
donne accès à la distribution de vitesse instantanée, projetée dans un plan de l’écoulement.
L’usage de deux caméras pour enregistrer les images de particules sous deux angles de
vues différents permet d’éliminer les erreurs de perspectives, mais aussi d’accéder à la
composante de vitesse orthogonale au plan de mesure. Cette technique s’appelle la PIV
stéréoscopique (SPIV). Elle est particulièrement adaptée à l’étude des structures tourbil-
lonaires de la turbulence, qui, par essence, est tridimensionnelle. Comme toute technique
de mesure, la PIV stéréoscopique présente des incertitudes de mesure et dispose d’une
résolution spatiale limitée. Leur niveau est critique pour l’étude des structures tourbil-
lonaires turbulentes (Herpin et al (2008)), et les paramètres de la stéréo-PIV doivent être
soigneusement ajustés en conséquence.

Chapitre 3 : Mesures SPIV dans le tunnel à eau du LTRAC
La stéréo-PIV est employée pour mesurer l’écoulement dans un plan longitudinal/normal
(XY) à la paroi de la couche limite turbulente dans le tunnel à eau du LTRAC, à deux
nombres de Reynolds modérés : Reθ = 1300 et Reθ = 2200. L’écoulement extérieur
présente un taux de turbulence élevé de l’ordre de 2.6%U∞ et 5.4%U∞ respectivement.
Les différents paramètres PIV sont résumés dans la table 3.2. Le setup employé est
constitué de 4 caméras PCO 4000 disposant d’un large capteur CCD (4008 ∗ 2672 px2),
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arrangées en deux systèmes stéréoscopiques alignés dans la direction longitudinale. Les
champs de vue de ces deux systèmes présentent une région de recouvrement pour assurer la
continuité des données. Ce dispositif permet d’augmenter la taille du champ total mesuré
tout en conservant une bonne résolution des petites échelles. L’angle de vue stéréoscopique
nominal est fixé à 30◦. L’évaluation des images SPIV est réalisé avec le code du LML, et
utilise une reconstruction de Soloff (Soloff et al (1997)) avec correction de désalignement
entre la mire de calibration et le plan laser. La taille finale des fenêtres d’interrogation
est de 15+. L’incertitude de mesure est évaluée dans la zone de recouvrement des deux
systèmes stéréoscopiques : elle est de l’ordre de 0.75%U∞ sur les composantes de vitesse
dans le plan, et de 1.5%U∞ sur la composante normale au plan. Finalement, les champs
de vitesse sont obtenus sur un maillage avec un pas de 4.5+, et leur taille est de [Sx; Sy] =
[4δ; 1.4δ] à Reθ = 1300 et de [Sx; Sy] = [2.6δ; 0.75δ] à Reθ = 2200 (cf table 3.5).

Chapitre 4 : Mesures SPIV dans la soufflerie du LML
Les mesures stéréo-PIV dans la soufflerie du LML sont réalisées dans des plans longitu-
dinaux/normaux (XY) et dans des plans normaux/transversaux (YZ) de la couche limite
turbulente, à 4 nombre de Reynolds plus élevés: Reθ = 7630, 10140, 13420, 18950. Le
principe de mesure est similaire à celui employé dans le LTRAC, avec 4 caméras dis-
posées en 2 systèmes stéréo, mais cette fois avec les champs de vue alignés dans la di-
rection normale à la paroi. L’angle de vue stéréoscopique nominal est fixé à 45◦. Pour
les mesures dans le plan orthogonal à l’écoulement moyen (YZ) les 2 nappes laser sont
décalées dans la direction ’x’ afin de garder un haut niveau de corrélation et une bonne
dynamique de mesure malgré les mouvements hors-plan importants. Les paramètres PIV
sont rassemblés dans la table 4.3, et les images sont évaluées avec le même code (celui
du LML) sur des fenêtres d’interrogation dont la taille est comprise entre 11+ et 21+,
selon le nombre de Reynolds. L’incertitude de mesure est évaluée dans la zone de recou-
vrement des deux systèmes stéréoscopiques : elle est de l’ordre de 0.7%U∞ sur toutes les
composantes de vitesse. Finalement, les champs de vitesse sont obtenus sur un maillage
avec un pas compris entre 3+ et 6+, et ont une taille entre [Sx/z; Sy] = [0.08δ; 0.3δ] et
[Sx/z; Sy] = [0.15δ; 0.6δ] environ (cf table 4.7).

Chapitre 5 : Validation de la base de données
La base de données constituée des champs de vitesse dans les plans XY et YZ aux 6
nombres de Reynolds compris entre Reθ = 1300 et Reθ = 18950 est validée aux travers
de l’analyse du profil moyen de vitesse, des composantes du tenseur de Reynolds, des
densités de probabilité (PDF) des fluctuations normalisées, et des spectres de puissance.
Ces grandeurs sont comparées à des profils de référence issus de la théorie, de mesures
fils chauds, ou de données de Simulation Numérique Directe (DNS). Les profils moyens
et les composantes du tenseur de Reynolds obtenus par la PIV montrent un très bon
accord avec les profils de référence, à l’exception d’un effet du fort taux de turbulence
dans le tunnel à eau du LTRAC. L’analyse des PDFs des fluctuations mettent en évidence
un effet de peak-locking sur l’ensemble de la base de données, mais sur la composante
dans le plan non-reconstruite uniquement. Le peak-locking est quantifié, et il est montré
que son impact sur les moments de la vitesse est négligeable. Les spectres de puissance
présentent un très bon accord avec la référence à nombre d’ondes faibles et moyens; en
revanche, l’effet du bruit de mesure est notable dans la gamme des hauts nombres d’onde.
Une méthodologie developpée dans Herpin et al (2008), et s’appuyant sur un modèle du
spectre de PIV proposé par Foucaut et al (2004), permet de retrouver le nombre d’onde
à un rapport signal sur bruit (SNR) de 1, et d’en déduire le rayon des tourbillons résolus
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avec SNR=1.

Chapitre 6 : Détection des structures cohérentes
La méthodologie employée pour détecter et caractériser les structures tourbillonnaires
dans les champs de vitesse se décompose en trois étapes principales : le calcul d’une
fonction locale de detection de tourbillon, la localisation des extréma de cette fonction, et
l’ajustement d’un modèle de tourbillon sur le champs de vitesse PIV dans le voisinnage
de ces extréma. La fonction de détection utilisée est basée sur l’intensité tourbillonnaire,
définie comme la partie imaginaire des valeurs propres complexes du tenseur de gradient
de vitesse. Cette fonction est normalisée par son profil d’écart-type, et seuls les extréma
excédant une valeur seuil de cette fonction normalisée sont retenus. Le modèle choisi pour
l’ajustement est un tourbillon d’Oseen. Cette étape permet d’une part de valider que
les extréma correspondent effectivement à une structure tourbillonnaire, et le cas échéant
d’obtenir les caractéristiques des tourbillons (rayon, circulation, position du centre, vitesse
de convection...) au travers des paramètres du modèle ajusté.
Cette technique est appliquée à la base de données expérimentale, ainsi qu’à une base
de données issue de la DNS d’un canal plan à Reτ = 950 (DelAlamo et al (2006)).
Les tourbillons détectés dans les plans XY correspondent aux tourbillons transverses, et
les tourbillons détectés dans les plans YZ correspondent aux tourbillons longitudinaux.
L’effet de la résolution spatiale de la PIV sur l’estimation du rayon des tourbillons détectés
est caractérisé : il est montré qu’une détoriation de la résolution résulte en une sur-
estimation du rayon.
Une analyse statistique est ensuite menée sur la densité, le rayon, la vorticité, et la vitesse
de convection des tourbillons détectés. L’évolution avec la distance à la paroi des valeurs
moyennes de ces grandeurs est notamment étudiée. Les PDF de rayon et de vorticité,
ainsi que les écarts-type des vitesses de convection sont également analysés. L’influence
du nombre de Reynolds est étudiée au travers de deux représentations adimensionnées :
l’une en unités de paroi, l’autre en unités de Kolmogorov.

Chapitre 7 : Discussion
Les résultats statistiques de la détection des tourbillons sont interprétés pour obtenir
une description précise de la population de tourbillons, étudier l’influence du nombre de
Reynolds sur leur rayon et vorticité, et discuter des mécanismes responsables de leur for-
mation.
Dans l’ensemble, il apparait que les tourbillons sont convectés en moyenne avec la vitesse
de l’écoulement, l’écart-type de cette vitesse de convection étant légèrement inférieure à
celle de l’écoulement, indiquant que les tourbillons sont en moyenne plus stables que leur
environnement. A tout les nombres de Reynolds, la région très proche de la paroi est la
plus densément peuplée, majoritairement avec des tourbillons longitudinaux qui sont en
moyenne plus petits et plus intenses que les tourbillons transversaux. Ces derniers sont
majoritairement de la forme prograde (qui tournent dans le sens du gradient de vitesse
moyen). Les zones logarithmique et externe, quand à elles, sont constituées à part égales
de tourbillons longitudinaux et transversaux, de rayon et vorticité semblables, et dont la
densité diminue lorque la distance à la paroi augmente.
Deux adimensionnements sont testés pour le rayon et la vorticité : celui en unités de
paroi, et celui de Kolmogorov. En unités de paroi, une bonne universalité en Reynolds
est observée dans la zone tampon et la zone log : la vorticité est maximale à la paroi,
et décroit de facon exponentielle avec la distance à la paroi. Le rayon moyen, pour sa
part, augmente lentement avec la distance à la paroi dans ces deux zones, à l’exception
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des tourbillons longitudinaux dont le rayon augmente fortement avec ’y’ dans la zone très
proche paroi. L’adimensionnement en unité de paroi présente des déficiences dans la zone
externe où des effets de Reynolds sont notables. En revanche, l’adimensionnement en
unités de Kolmogorov permet d’atteindre l’universalité à la fois en Reynolds et en ’y’ à
travers les trois régions de l’écoulement étudiées, avec dans la zone log un rayon de 8η et
une vorticité de 1.5τ−1 en valeurs moyennes, et un rayon de 7η et une vorticité de 0.9τ−1

en valeurs les plus probables.
Enfin, les profils de densités moyennes de tourbillons semblent indiquer que les tourbillons
longitudinaux et transverses progrades sont crées dans la zone proche paroi. Les tourbil-
lons transverses retrogrades quand à eux semblent être crées à partir d’un retournement
des progrades survenant dans la zone externe de l’écoulement (où le gradient de vitesse
moyenne est le plus faible).
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Introduction

Flat plate turbulent boundary layer is a canonical flow configuration of prime importance
for many engineering applications. Despite its apparent random character, this type of
flow is organized into coherent structures which are believed to play a key role in the
maintenance of turbulence. In particular, the streamwise and spanwise oriented vortices,
through their ability to transport mass and momentum across the mean velocity gradient,
are a fundamental feature of near-wall turbulence. The scaling laws and generation mech-
anism of these structures have been the focus of many studies, but still remain unclear.

The present study aims at providing some new insight into these outstanding issues
through an original approach combining:

• two unique and complementary flow facilities: the different flow regimes of the
LTRAC water-tunnel in Melbourne (Australia) and LML wind-tunnel in Lille (France)
allow to cover a range of Reynolds number spanning more than one order of mag-
nitude (Reθ ∈ [1300; 18950]).

• a modern, full-field and quantitative measurement technique: stereoscopic particle
image velocimetry (SPIV) can give access to instantaneous two-dimensional and
three components velocity field, with high spatial resolution and low uncertainty.

• advanced post-processing tool: a detection based on the discriminant of the 2D
velocity gradient tensor, used in conjunction with a pattern recognition method al-
low a reliable detection and full characterization of vortical structures in turbulent
boundary layers.

The work undertaken consist of four main tasks:

• the acquisition of SPIV data in streamwise/wall-normal and spanwise/wall-normal
planes of the LML and LTRAC boundary layers at 6 Reynolds numbers distributed
in the range Reθ ∈ [1300; 18950].

• the validation of the SPIV data through the computation and analysis of average
flow properties such as the mean velocity, the Reynolds stresses, the PDF of the
fluctuations and the power spectra.

• the development of a vortex detection program based on the extrema of the 2D
swirling strength and a non-linear fit to an Oseen vortex



xxiv 0. Introduction

• the analysis of the vortex characteristics in the entire SPIV database as well as in an
existing DNS dataset at a Reynolds number similar to that of the LTRAC boundary
layer.

This document is organized in the following chapters:

• chapter 1 provides a literature review on the coherent structures in near-wall tur-
bulence, including definition and classification, models of organization, and results
of recent PIV, hot-wire and DNS studies. A concluding paragraph specifies the aims
of this thesis with respect to the unresolved issues.

• chapter 2 gives an extensive presentation of the stereoscopic PIV technique, from
the basic principles to the most recent developments. Emphasis is put on the assess-
ment of measurement uncertainty and spatial dynamic range, which are essential
for coherent structure investigation in near-wall turbulence.

• chapters 3 and 4 are devoted to the experiments in the LTRAC water-tunnel
and LML wind-tunnel respectively. After a brief presentation of the facilities, the
experimental procedure is described extensively. The uncertainty of the experiments
is thoroughfully assessed, and a summary of the database is given.

• chapter 5 consist of a validation of the SPIV database through an analysis of some
single points statistics (mean velocity, Reynolds stresses, PDF of the fluctuations)
and of the power spectra. These quantities are validated against profiles derived
from theory, hot-wire measurements, or DNS data.

• chapter 6 focusses on coherent structure detection. The detection program is
extensively described, and the effects of PIV averaging on the estimation of the
vortex characteristics are assessed. Then, the vortices detected in the SPIV database
as well as in a DNS dataset are analyzed in detail, and in particular the wall-normal
evolution of their mean radius, vorticity, density and convection velocity.

• chapter 7 discusses the results of this thesis in the context on the current knowledge
on coherent structures in the scientific community.



1

Chapter 1

Coherent structures in wall-bounded
turbulence

1.1 A (brief) description of the underlying concepts

The study of flows developping along a solid boundary is of primary importance for many
engineering problems, such as drag reduction of airplane wings in the aeronautics field.
In the boundary layer concept, introduced by Prandtl (1904), the field of wall-bounded
flows can be divided into two regions:

• a thin region near the wall called the boundary layer, where strong velocity gradients
occur, inducing large viscous shearing forces that must be taken into account and

• the region outside the boundary layer, where the frictions forces can be neglected,
and where, therefore, inviscid fluid theory offers a good approximation

The major contribution of the boundary layer concept was to overcome D’Alembert para-
dox and to reunify theoretical hydrodynamics (derived in the framework of the perfect
fluid hypothesis) with empirical laws from hydraulics. It is presented and discussed ex-
tensively in Schlichting and Gersten (2001).

Fundamental research on boundary layers is focused on the study of canonical con-
figurations such as pipe flow, channel flow or flow over a flat plate. The development of
a boundary layer on a flat plate and its transition to turbulence have been described in
White (1974) and are sketched in figure 1.1. Near the leading edge of the plate, the regime
of the boundary layer is laminar : the flow is two-dimensional and steady. As the bound-
ary layer develops, the flow becomes critical and undergoes transition from the laminar
to the turbulent regime: Tollmien-Schlichting instabilities appear and propagate, giving
birth to turbulent spots, irregularly distributed in space and time. As the distance x from
the leading edge increases, these turbulent spots grow in size and become more frequent,
until they ultimately merge and occupy the full field. The transition is then complete, and
the flow is fully turbulent. It can be observed that, in the turbulent regime, the boundary
layer thickness increases more rapidly with x, and that the wall friction coefficient is in
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general higher than it would be in the laminar regime. Sometimes, a tripping device can
be placed close to the leading edge of the plate to promote a repeatable transition to
turbulence. Erm and Joubert (1991) investigated the effects of different tripping devices
on the development of turbulent boundary layers.

Figure 1.1: Flat plate boundary layer, transition from laminar to turbulent flow taken
from White (1974)

Turbulence always occurs at large Reynolds numbers. The Reynolds number Re is an
important similarity parameter of turbulent flows: it is defined as a characteristic length
multiplied by a characteristic velocity and divided by the kinematic viscosity, and repre-
sents the relative magnitude of the inertial and viscous forces. The Reynolds number Rex

built from the distance x and the free stream velocity U∞ is said to be ‘critical’ at the
abscissa where the transition begins, and ‘transitional’ where the transition is complete.
It is difficult to give a precise definition of turbulence. Turbulent flows are governed by
the Navier-Stokes equations, and possess a certain number of specificities (Tennekes and
Lumley (1972)). Turbulence is:

• non-linear: turbulence arise from the coupling between the viscous terms and the
non-linear inertial terms in the Navier-Stokes equation.

• chaotic: a small perturbation introduced at any point of the field can affect the
entire flow, and turbulent flow are therefore impossible to predict.

• three-dimensional and rotational: turbulence is characterized by high levels of fluc-
tuating vorticity, which are maintained mainly through three-dimensional vortex
stretching.

• diffusive: turbulence causes rapid mixing and increased rate of momentum, heat
and mass transfer along but also across the mean flow streamlines.

• dissipative: the kinetic energy is dissipated into internal energy via the action of
the viscous shear stresses; this process is enhanced for turbulent flows because of
higher deformation rate.

• multiscale: a wide range of length scale exists in turbulent flow, bounded from above
by the dimensions of the flowfield, and from below by the action of molecular vis-
cosity (Kolmogorov scales).
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1.2 Mean properties of turbulent boundary layer

The first important physical features of wall bounded turbulence were actually retrieved
using a statistical approach. It is based on an idea of Reynolds (1895) who suggested to
decompose the instantaneous flow variables into their mean and fluctuating part. This
decomposition leads to averaged forms of the Navier-Stokes equations, which can be fur-
ther simplified using some boundary layer approximations. The resulting equations for
mass, momentum, and turbulent kinetic energy are called the turbulent boundary layer
equations, and can be found in many classical textbooks (Schlichting and Gersten (2001),
Cousteix (1989)). The mean properties of the turbulent boundary layer can be analyzed
through the study of the different terms appearing in these equations: the mean stream-
wise velocity, the Reynolds stresses, the production and dissipation of turbulent kinetic
energy...

In the early days of turbulent boundary layer research, the mean streamwise velocity
profile was studied theoretically, using a mixture of physical understanding and dimen-
sional analysis to derive similarity laws. Prandtl (1932) suggested that the boundary layer
can be divided into two regions:

• an inner region, where the mean streamwise velocity profile depends only on the
characteristics of the fluid (the density ρ and the dynamic viscosity µ) and on the
wall shear stress τw:

U

Uτ

= f1

(

ρyUτ

µ

)

with Uτ =

√

τw

ρ
(1.1)

This law is called the law of the wall, and is valid for y < 0.2δ. This region can
be decomposed again into a region where the turbulent shear stress −ρ < u′v′ > is
negligible with respect to the viscous shear stress µdU/dy (the ‘viscous’ or ‘linear’
sublayer for 0 ≤ y+ ≤ 5, where y+ = yuτ

ν
), a region where the two stresses are of

comparable magnitude (the ‘buffer layer’, for 5 ≤ y+ ≤ 40), and a region where the
viscous shear stress is negligible with respect to the turbulent shear stress (40 ≤ y+

and y ≤ 0.2δ).

• an outer region where the mean streamwise velocity profile depends no more on the
viscosity but only on the wall shear stress τw, the density ρ, the free stream velocity
U∞ and the boundary layer thickness δ:

U − U∞

Uτ
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δ
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with Uτ =

√

τw

ρ
(1.2)

This formulation is called the velocity defect law, and is valid for 40 ≤ y+ (approxi-
mately). The ‘wake law’ proposed by Coles (1956) is the most accepted description
of this region.

Using dimensional analysis, some fundamental laws were theoretically derived at the over-
lap of these ‘inner’ and ‘outer’ regions. The ‘overlap region’ present a logarithmic mean
streamwise velocity profile (Millikan (1939)) and a constant shear stress. It is often called
the ‘logarithmic region’, and is reputed to be valid not only for boundary layers, but also
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for pipe and channel flows. To summarize, a typical mean streamwise velocity profile,
showing the different regions of the turbulent boundary layer, is represented in figure 1.2.
Recently, George (2006) and George (2007) questioned the validity of the outer region
velocity defect law as written in equation 1.2 for boundary layer flow, an proposed an al-
ternative form where the velocity deficit scale on U∞ rather than on Uτ . It is argued that
this alternative form is a similarity solution of the Reynolds-averaged equations, yielding
to a power law equation of the overlap region. However, George (2006) and George (2007)
admit that the logarithmic law provide a good empirical description of the overlap region,
indistinguishable from the power-law solution.

Figure 1.2: A typical mean streamwise velocity profile, in wall units, showing the different
regions of the turbulent boundary layer, adapted from Erm (1988)

In the spectral domain, Perry et al (1986) derived similarity laws for the longitudinal
power spectra. They identified three regions of the spectra: a low wavenumber range with
an outer scaling, the intermediate range with an inner scaling, and the high wavenumber
range with a Kolmogorov scaling. Assuming the existence of overlap between these three
regions, ‘-1’ and ‘-5/3’ power laws were derived.

With the advent of the hot-wire anemometry, quantitative results could be obtained
experimentally, with the possibility to verify these theoretical laws. The universality of
other representations could also be tested, by looking at how experimental data collapse
when plotted with different sets of scaling coordinates.
Klebanoff (1955) was the first to employ hot-wire anemometry to measure the mean
streamwise velocity but also the Reynolds stresses, the probability density functions of
the streamwise fluctuations, and power spectra of a turbulent boundary layer at Reθ =
7500. The turbulent kinetic energy budget was estimated, showing that production and
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dissipation concentrate in a thin layer close to the wall: the buffer layer. Coles (1962)
undertook a comparative survey of the mean streamwise velocity profiles of incompressible
turbulent boundary layers. He identified a normal state for the layer and expressed this
state in terms of a relationship between the strength of the wake ∆U/Uτ (maximum
deviation of a profile from the logarithmic law) and the Reynolds number Reθ based on
the momentum thickness. It was shown that high levels of free-stream turbulence intensity
can decrease the strength of the wake.

Later on, Fernholz and Finley (1996) compiled existing data in a wide range of
Reynolds number (Reθ ∈ [400; 211000]). They confirmed that the mean streamwise ve-
locity profile is universal when scaled using Uτ and ν (wall unit scaling) in the inner layer
and using the boundary layer thickness δ and the free-stream velocity U∞ (outer scaling)
in the outer layer. No universal scaling could be found for the Reynolds stresses, although
a limited collapse was observed in the outer region using mixed scaling, where the stresses
are scaled using Uτ and the wall normal distance using an integral thickness. In the inner
region, only < u′u′ > and < u′v′ > were found to scale satisfactorily using a wall-units
scaling. Finally, good collapse of the spectra could be observed using the similarity laws
from Perry et al (1986).

The laser Doppler velocimetry experiments performed by Degraaff and Eaton (2000)
in a range of Reynolds numbers Reθ varying from 1430 to 31000 also confirmed that the
logarithmic law provide a universal law for the mean velocity in the inner region. The
scaling of the Reynolds stresses was also investigated: < v′v′ > and < u′v′ > were found
to show a good collapse in inner scaling, contrary to < u′u′ > for which a mixed scaling
involving both the friction velocity Uτ and the free-stream velocity U∞ was proposed.

1.3 Discovery and classification of coherent structures

The presence of coherent structures in turbulent flow is apparent statistically in the non-
zero Reynolds shear stress −ρu′v′ and two points space-time correlations. Coherent mo-
tions are defined by Robinson (1991) as ‘three-dimensional region[s] of the flow over which
at least one fundamental flow variable exhibits significant correlation with itself or with
another flow variable over a range of space and/or time that is significantly larger than
the smallest local scales of the flow’. They are believed to play a key role in the mainte-
nance (production and dissipation) of turbulence in boundary layers. Coherent structures
were first discovered, characterized, and classified using flow visualization techniques and
hot-wire anemometry. An extensive review of this first era of coherent structures investi-
gation can be found in Cantwell (1981) and in Robinson (1991). The various forms of the
experimentally observed coherent structures can be classified into the following groups:

• hairpin vortices: from the analysis of the vorticity transport equations, Theodorsen
(1952) postulated that boundary layers were populated by horseshoe structures,
originating from the stretching of perturbed spanwise vorticity. This structure is
often described as being made of two counter-rotating streamwise oriented ‘legs’
connected to a spanwise oriented ‘head’ via a neck. The smoke visualization ex-
periments using inclined cross-stream light sheets in turbulent boundary layers
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(Reθ ∈ [500; 17500]) performed by Head and Bandyopadhyay (1981) demonstrated
that the hairpin was a major constituent of the outer region of the layer. The mor-
phology of this structure could be assessed: it possesses a characteristic angle of 45◦

to the wall close (possibly resulting from the conflicting effects of shear and self-
induction), and its aspect ratio evolves from that of a horseshoe to that of a hairpin
as the Reynolds number of the flow increases. Using an asymmetry-preserving con-
ditional averaging technique, Guezennec (1989) showed that the hairpin structure
present some degree of asymmetry, and that its more probable form was in fact that
of a single-legged cane. This was confirmed by Robinson (1991) on his analysis of
Spalart (1988) DNS.

• ejections and sweeps: the ejections of low-speed fluid away from the wall and
the sweeps of high speed fluid toward the wall were first visualized using a high
speed camera by Corino and Brodkey (1969). Ejection and sweeps explain why the
joint PDF on u′ and v′ is higher in the second quadrant ‘Q2’ (u′ < 0 and v′ > 0)
and fourth quadrant ‘Q4’ (u′ > 0 and v′ < 0) respectively, and hence account
for the non-zero Reynolds shear stress −ρ < u′v′ >. Using hot-wire anemometry
and conditional averaging, Wallace et al (1972) showed that the sweeps contribute
more than the ejections to the production of turbulent kinetic energy in the region
y+ < 15, and less in the region y+ > 15.

• streamwise vortices: Blackwelder and Eckelmann (1979), using hot-film anemom-
etry, showed that strong streamwise vortices with an upward tilt evolving as counter-
rotating pairs populate the near wall region. Their streamwise extent is subject to
controversy: the findings of Blackwelder and Eckelmann (1979) indicate an extent of
1000+, while a much smaller length of 100+ was observed by Praturi and Brodkey
(1978) using a stereoscopic flow visualization technique. The results of Kim and
Moin (1986), using a direct numerical simulation (DNS) at Reτ = 180 (to comple-
ment results of a large eddy simulation (LES)) corroborates the findings of Praturi
and Brodkey (1978).

• spanwise vortices: prograde (that with rotation in the same sense as the mean
shear, ω0 < 0) and retrograde (ω0 > 0) spanwise vortices were identified in the log
and wake region of turbulent boundary layers by Nychas et al (1973) by photog-
raphying the motion of solid particle in water with a high speed camera moving
with the flow. They were interpreted as the result of the rolling up of a shear layer
created by the interaction of low-speed fluid ejection with high-speed fluid sweeps.

• low-speed and high speed streaks: narrow regions of low speed flow, elongated
in the streamwise direction, are commonly observed in the near-wall region (0 <
y+ < 40). They are known as the ‘low-speed streaks’ and are separated in the
spanwise direction by ‘high-speed streaks’. They were first studied in details using
hydrogen bubble visualization by Kline et al (1967) , and their characteristics were
summarized in Blackwelder (1997): the low-speed streaks appear below y+ < 10,
their mean dimensions are about 1000+ in length, from 20+ to 40+ in span, and
from 5+ to 10+ in height, with a mean spanwise spacing of about 100+.

• large-scale three dimensional bulges: large scale bulge in the outer region (scal-
ing with δ in both x and z) were observed by Falco (1977) using flow visualization
and hot-wire anemometry, and evidenced through two-point correlation of a hot
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wire signal by Brown and Thomas (1977). They are characterized by a slow rota-
tional motion in the direction of the mean strain and by deep crevasses of high-speed
potential fluid around the edges.

1.4 Models of organization

Far from being independent, these different groups of coherent structures are intimately
related. One major objective of near wall turbulence research actually consists in unifying
these structures into a model of organization that would ultimately explain the cycle of
turbulence as well as the scaling laws applying to the mean flow properties. There is
currently no consensus among the scientific community on a unique model of organization
and self-sustaining mechanism of near-wall turbulence. In the following, a brief overview
of the existing models is first given. Then, a family of models based on the hairpin
structure is described into more details.

1.4.1 Overview of the existing models

In 1997, Panton edited a book of contributions from different research groups, providing
an extensive overview of the existing models for the self-sustaining mechanisms of wall tur-
bulence (Panton (1997)). From flow visualization evidence, three categories of structures
are accepted by all research groups as being the main constituent of near-wall turbu-
lent flows (or at least of one of their regions): the streamwise vortices (Blackwelder and
Eckelmann (1979)), the hairpin structures (Head and Bandyopadhyay (1981)), and the
low-speed streaks (Kline et al (1967), Blackwelder (1997)). The different models differ as
to which one of these structures plays the central role in the self-sustaining mechanisms
of near-wall turbulence (the other structures being ‘passive’ secondary features). The
other point of disagreement is related to the mechanisms responsible for the generation
of this central structure. Schoppa and Hussain (1997) identified two types of generation
mechanisms: parent-offspring scenario, where new vortices are created by direct action of
existing vortices; and instability-based mechanism, where new vortices are created from a
local instability. Regarding these two issues, most of the existing models can be classified
in two families.

In the first family of models, streamwise vortices occupy the central role in near-wall
turbulence, and are selfsustained via low-speed streaks instabilities. The models of Black-
welder (1997), Waleffe and Kim (1997), Schoppa and Hussain (1997) and Schoppa and
Hussain (2002) pertain to this family. After their initial discovery in flow visualizations
studies, the streamwise vortices were abundantly observed in the near-wall region of DNS
data by Jeong et al (1997) and Robinson (1991), confirming their proeminent role. The
generation of streamwise vortices is assumed to be linked to turbulence production occur-
ring during an instability sequence of the low-speed streaks, referred to as the ‘bursting’
process (Kline et al (1967)): in this concept, the low-speed streaks lifted away from the
wall undergo spanwise and wall-normal oscillations before breaking up in a turbulent
burst outward from the wall. A similar behavior of the streaks induced by Gortler vor-
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tices was investigated by Swearingen and Blackwelder (1987) and Blackwelder (1997),
while the different instability modes of the streaks were analyzed theoretically by Waleffe
and Kim (1997) and Schoppa and Hussain (1997). Furthermore, these authors proposed
feed-back mechanisms describing the creation of streamwise vortices. Interestingly, the
feed-back mechanism of Schoppa and Hussain (1997) and Schoppa and Hussain (2002) not
only gives birth to streamwise vortices, but also to internal shear layer that can roll-up
to create spanwise vortices which connect to the downstream end of streamwise vortices
to form canes. Hence this model is consistent with the observation of cane vortices in
wall-bounded turbulence.

The second family of models is based on the hairpin structure and a parent-offspring
auto-generation mechanism. The models of Smith and Walker (1997), Zhou et al (1997),
Zhou et al (1999) and Adrian et al (2000b) pertain to this family. After their first
identification in flow visualization studies, hairpin structures were evidenced in LES data
by Moin and Kim (1985). The auto-generation mechanisms of hairpin structures have
been observed in experimental studies using an external disturbance in a laminar boundary
layer (Acarlar and Smith (1987a) and Acarlar and Smith (1987b)) and using a hairpin-like
structure convected with a unidirectional mean flow as an initial condition in a DNS study
(Zhou et al (1999)). However, the generation mechanisms of the parent hairpin remain
unclear. In this family of models, uniform zones of low-momentum flow are interpreted
as being the result of low-speed fluid ejections in between the hairpin legs. This type
of model tends to dominate on-going research on coherent structures, and is therefore
described into more details in the next paragraph.

1.4.2 A deeper insight into the hairpin-based models

Two models using the hairpin structure as a building block of near-wall turbulence or-
ganization may be distinguished: the model based on a random distribution of hairpins,
and the model assuming a coherent arrangement of individual hairpin in a packet.

Model based on random distribution of hairpins

A first model of near turbulence was proposed using the concept of randomly distributed
hairpins in the flow. It is based on the fact that a single hairpin can explain many
observed flow events, as depicted in figure(1.3) taken from Adrian et al (2000b). In this
model, the legs of a hairpin correspond to the quasi-streamwise vortices observed in the
buffer layer, and its head to the prograde transverse vortex observed in the outer region;
the low-momentum fluid lifted away in between the legs of the hairpin agglomerate to
form a low-speed streak-like region; the strong pumping of fluid between the hairpin
legs create ejection events, associated with second quadrant (Q2) fluctuations; a sweep
event associated to fourth quadrant (Q4) fluctuations opposes the (Q2) event, forming a
stagnation point and an inclined shear layer upstream.

Using this concept of randomly distributed hairpins as well as the attached eddy
hypothesis from Townsend (1976), Perry and Chong (1982) constructed theoretically the
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Figure 1.3: Schematic of a hairpin structure attached to the wall and the induced motion,
from Adrian et al (2000b)

first physical model able to reproduce many statistical aspects of the overlap region such
as the logarithmic evolution of the mean streamwise velocity, the constant shear stress
and the -1 power law of the u power spectra. A subsequent article by Perry et al (1986)
dedicated to the scaling of the spectra provides in its introduction a very clear summary
of this model. The model relies on the existence of geometrically similar hierarchies of
lambda shape vortices in a range of scales varying from the wall unit lengthscale up to the
boundary layer thickness (a hierarchy is defined as a random array of λ shape vortices,
all at different stages of stretching but with the same circulation).

Distribution of the hairpins: from randomness to coherence

The random distribution of hairpins may provide an interesting explanation for some of
the near-wall turbulent flow features, however, a major discrepancy exists between the
predicted size of the low momentum region between the legs of a single hairpin (typically
on the order of 100+, calculated from the extent of the streamwise vortices as obtained by
Praturi and Brodkey (1978) and Kim and Moin (1986)), and the extent of the low-speed
streaks experimentally observed by many researchers (on the order of 1000+, see Black-
welder and Eckelmann (1979)). To overcome that contradiction, Smith (1984) suggested
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that the long low-speed streak could be created by the coherent arrangement of two or
three hairpins in the streamwise direction. This suggestion was based on flow-visualization
experiments performed in a low Reynolds number water flow using H2 bubble patterns,
showing the in-line formation of successive hairpins. Two experimental investigations
were subsequently undertaken by Acarlar and Smith to study this hypothesis. It involved
the artificial generation of hairpins in a laminar boundary layer using hemisphere protu-
berance at the wall (Acarlar and Smith (1987a)) or continuous injection of low-speed flow
at the wall (Acarlar and Smith (1987b)). The induced flow features were investigated
using flow visualization and hot-film anemometry. In both experimental configurations,
it was observed that a primary hairpin generates on the upstream side of its plane of
symmetry secondary vortices. This autogeneration process can be interpreted as a possi-
ble source of streamwise coherence between distinct hairpins. Furthermore, Acarlar and
Smith (1987b) noticed that a hairpin street can induce extremely long and persistent
low-speed concentrations between its counter-rotating legs, demonstrating its potential
role in the formation of the low-speed streaks.

Model based on coherent packets of hairpin

The advent of quantitative and full field techniques such as Particle image velocimetry
(PIV) or Direct numerical simulations (DNS) provided new insight into the organization
of wall-bounded turbulence. It allowed to correct and refine the previously developed
concepts, and to finally re-unify them in the so-called ‘hairpin packet model’. A packet is
defined by Adrian (2007) as a group of hairpins having small dispersion in their velocity
of propagation, and therefore keeping its coherence over a significant time.

The mechanisms that yields to the formation of these packets at low Reynolds number
were investigated numerically in great details by Zhou et al (1999). In this study, an
initial structure is built from the linear stochastic estimation of the flow field, conditioned
by a symmetric Q2 event in a DNS of turbulent channel flow at Reτ = 180 from Kim
et al (1987); this structure is then placed into a unidirectional mean flow from the DNS
(with no fluctuations), and the dynamics of the flow starting from this initial condition
is then simulated with the Navier Stokes equations. The vortical structures of the flow
are then visualized and tracked using isosurfaces of swirling strength (imaginary part of
the velocity gradient eigenvalues). The principle of generating an artificial hairpin in a
quiet environment present striking similarities with the experimental study from Acarlar
and Smith (1987a) and Acarlar and Smith (1987b). However, a significant difference
arises from the fact that the initial structure used by Zhou and co-workers provides the
advantage of having lengthscales, shape and vorticity consistent with the eddies occurring
in this turbulent channel flow, since it was constructed using the correlation tensor of the
DNS database itself. The initial structure has a lambda shape and quickly evolves into
a omega-head hairpin with an average tilt angle of 45◦. Unexpectedly, it also possessed
a pair of quasi-streamwise vortical tongues sticking out from the head of the hairpin on
its downstream side. The ability of this primary hairpin to generate or not secondary
structures was found to depend on its initial strength with respect to the background
flow. A primary hairpin with enough initial strength generates similar secondary hairpins
on its plane of symmetry, both on its upstream and downstream side. The mechanism
responsible for the generation of the upstream hairpin resembles the formation of the
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primary hairpin out of the initial lambda structure. A kink forms in the long legs owing to
the mutual induction process, and the shear layer between the legs of the primary hairpin
rolls up into a compact spanwise vortex, which viscously connects with the section of the
legs upstream of the kink to form the secondary hairpin. The secondary hairpin can in
turn generate a tertiary, upstream of it. The hairpin forming at the downstream side
of the primary hairpin grows out of the pair of vortical tongues, and it is not concluded
whether it is or not an artifact of the stochastically estimated initial condition. Finally the
hairpin packet formed from the primary, secondary, and tertiary hairpins has a tent-like
envelop, with an upstream angle to the wall of 15◦ and a downstream angle to the wall
from −7◦ to −15◦. The constitutive hairpins have a streamwise spacing similar to their
individual extent (about 400+), and their cooperative action results in a low speed streak
that is significantly longer. Although the heads of these hairpins are at different height,
the dispersion in their convection velocity remains small, maintaining the coherence of
the packet. Finally, the effect of asymmetry on the evolution of the initial structure
was assessed. For a sufficiently strong degree of asymmetry of the initial structure, the
secondary and tertiary hairpin resemble one-sided canes. Additionally, the autogeneration
mechanism seems enhanced, with hairpins forming more rapidly with a smaller streamwise
separation, in better agreement with the experiments.

The hairpins and their organization within packets was studied experimentally by
Adrian et al (2000b) at moderate to high Reynolds numbers. Instantaneous velocity
fields in a XY plane of a boundary layer at three Reynolds numbers in the range 930 <
Reθ < 6845 were measured using PIV. Hairpins were detected in the instantaneous flow
field through their planar signature consisting of a spanwise vortex core (visualized either
using the X-Y flow pattern in a convected frame or using swirling strength) located just
above a region of strong Q2 fluctuations that occur on a locus inclined at 30◦ − 60◦ to
the wall. It was found that hairpin structures populate the boundary layer abundantly.
Groups made of up to ten hairpins aligned in the streamwise direction and spaced several
hundreds of viscous lengthscale apart are commonly observed from the outer edge of the
buffer layer to the outer wake region at each Reynolds number. The dispersion in the
propagation velocity within a group is small (approximately 7%). The most probable
length of a packet is found to be of 1.3δ for the highest Reynolds number, and the angle
of the envelop connecting the head of the hairpins is found to be fairly constant, around
a mean value of 12◦. Within the envelop, the spatial coherence between the velocity
fields induced by each hairpin result in the formation of a region of strongly retarded
streamwise momentum. These low-momentum zones extend far above the low speed
streaks commonly observed in the buffer layer, and should not be confused with them.
It is suggested that the buffer layer streaks are actually part of the low-momentum-zone
phenomenon. The fact that one area of uniform momentum is often observed to nest
within another area of distinct uniform momentum is interpreted as an indication that
young packets lying close to the wall exist within larger and older packets.

Finally, Adrian et al (2000b) combined their own experimental results at moderate
Reynolds number regarding hairpins and hairpin packets with the numerical results at
low Reynolds number from Zhou et al (1999) regarding the autogeneration and growth
mechanism of a hairpin packet. It resulted in an idealized conceptual model of the struc-
ture of wall-bounded turbulent flows in the context of hairpin packet. This model is
represented graphically in figure 1.4.
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Figure 1.4: The hairpin packet model, from Adrian et al (2000b)

1.5 Recent results and on-going research

A first picture of the structure and organization of near-wall turbulence was given by
the hairpin packet model from Adrian’s group. With the continuous progress of numer-
ical simulations, measurement techniques, and post-processing tools, recent studies have
provided and continue to provide a more extensive characterization of the structure of
near-wall turbulence.

1.5.1 PIV studies

The original flow-visualization study by Head and Bandyopadhyay (1981) inspired two
experimental studies with the same inclined cross-stream light sheet configuration but
using stereo-PIV to obtain quantitative results on coherent structures. Hutchins et al
(2005) investigated a range of Reynolds numbers of Reθ ∈ [1430; 7440], while Carlier and
Stanislas (2005) investigated the range Reθ ∈ [8000; 19000]. Therefore these two studies
can be viewed as complementary.
Using in-plane instantaneous swirl, Hutchins et al (2005) showed that the majority of
the vortices were detected in the 135◦ plane, consistently with the reported inclination
of the hairpin vortices. Linear stochastic estimation and conditional averaging revealed
that these eddies had a predisposition to appear with a pair of counter rotating legs,
and were bordering low-momentum fluid regions. An investigation of the two-points
velocity correlation contour revealed the existence of a distinct two-regime behavior, either
attached or detached from the wall, with the demarcation in the wall-normal direction
scaling with outer variables.
Carlier and Stanislas (2005) also evidenced that more vortices were present in the 135◦

plane than in the 45◦ plane. Additional measurement were also taken in a XY plane and a
YZ plane. The wall-normal evolution of the mean characteristics of the detected vortices
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(radius, vorticity) were found to be universal in wall-units, with a constant circulation:
the radius was found to increase slowly and the vorticity to decrease slowly with increasing
wall-normal distance.

After Adrian et al (2000b) pioneering PIV investigation in a streamwise/wall-normal
plane, Tomkins and Adrian (2003) undertook a complementary study of the same tur-
bulent boundary layer (930 < Reθ < 6845), but in streamwise/spanwise (XZ) planes
throughout the outer region. The dominant motions of the flow are shown to be large
scale regions of low-momentum elongated in the streamwise direction. Using a XZ hairpin
signature, it was shown that these momentum deficit regions are bordered with vortices,
offering strong support for the hairpin packet model. Two types of growth mechanism for
the spanwise structure are evidenced: a self similar growth revealed by the linear variation
of the mean spanwise lengthscale (computed statistically), and a growth via the merging
of vortex packets on an eddy-to-eddy basis (observed in the instantaneous velocity fields).
Stereo-PIV measurements in the same orientation plane (XZ) were undertaken by Gana-
pathisubramani et al (2003) in a turbulent boundary layer at Reθ = 2500 at y+ = 92
and 150. The same large-scale organization was found in the logarithmic layer, but seems
to break down at larger wall-normal distances. In this configuration, the stereoscopic
technique allowed to retrieve the wall-normal velocity component, and it was shown that
a large portion of the Reynolds shear stress is generated by groups of hairpins.
Ganapathisubramani et al (2006) extended this work by applying a more sophisticated
dual-plane technique at the same Reynolds number (Reθ = 2500) in XZ planes at y+ = 110
and y/δ = 0.53. Thanks to the dual-plane technique, all three components of the veloc-
ity gradient tensor could be computed, and vortices with all inclination angles could be
detected. The results reveal that a broad distribution of inclination angles exists in the
logarithmic and wake regions. A vast majority of the vortices are leaning forward at
a characteristic angle close to 45◦, but a non-negligible amount of the vortices is also
leaning backwards. The authors suggest that these backward-leaning cores are part of
smaller, weaker structures that have been distorted and convected by larger, predomi-
nantly forward-leaning eddies associated with the local shear.
Hambleton et al (2006) performed simultaneous SPIV measurement in a XZ plane at
y+ = 98 and in a XY plane of the same turbulent boundary layer (Reθ = 2500). Using
linear stochastic estimation, they investigated the velocity fields in the two planes condi-
tioned by a prograde and a retrograde swirling event in the XY plane at the top of the
log region (y/δ = 0.19). It was shown that the prograde swirling event at y/δ = 0.19
has a large footprint in the flow in the XZ plane at y+ = 98, inducing an elongated
low-momentum region flanked in z by regions of high momentum and swirling activity at
the shear layer between the low and high speed regions. On the contrary, a retrograde
swirling event at y/δ = 0.19 (for which less candidate were found) does not seem to influ-
ence the flow in the XZ plane at y+ = 98, but induces a prograde vortex in the XY plane
downstream and above of the condition point. The authors suggest that it is consistent
with an omega-shaped hairpin or with a vortex ring structure.
The population trends of prograde and retrograde spanwise vortices as a function of
wall-normal position, Reynolds number (in a range Reτ ∈ [570; 3450]) and flow (either
boundary layer flow or channel flow) was documented in detail by Wu and Christensen
(2006) using PIV in a XY plane. Vortices were identified using two-dimensional swirling
strength, and a simple threshold was used to retrieve the area occupied by these vortices.
Prograde and retrograde vortices are found to populate densely the logarithmic region of
both flows. The vortices were found to be advected with the local mean velocity, with
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a significant distribution around this mean related to local turbulence levels. The pro-
grade spanwise vortices have characteristics consistent with that of hairpin heads, while
retrograde vortices are often observed to nest near clusters of prograde vortices that form
hairpin vortex packets. It was found that the region of the channel flow at ±0.55δ about
the centerline can be considered as a region of interaction where structures from both
walls commonly exist. Reynolds number dependence of the outer-scaled and inner-scaled
population densities are also quantified.

The streamwise oriented vortical structures in the logarithmic region of turbulent
boundary layers at Reθ = 7800 and Reθ = 15000 were investigated by Stanislas et al
(2008) using stereo-PIV measurements in a plane orthogonal to the mean flow (YZ).
Vortices are detected using the two-dimensional swirling strength, and subsequently char-
acterized using a fit to an Oseen vortex. The PDF of their radius and intensity are found
to be universal both in Reynolds number and in wall-normal distance when scaled with
the local Kolmogorov scales η and v. The most probable diameter of the vortices is found
to be about 10η, and the most probable vorticity about 1.6τ−1. The equation for the
mean square vorticity fluctuations was revisited, and a new balance was proposed in the
near-wall region. The large organization of the vortices was retrieved through an analysis
of the two-points correlation on the swirling strength. Two regions of different dynamics
are distinguished: the near-wall region below y+ = 150 with strongly interacting vortices,
and the region above y+ = 150 where the vortices appear more isolated.
The buffer layer was quantitatively investigated by Lin et al (2008b) through the analysis
of a database consisting of ten XZ planes from y+ = 14.5 up to y+ = 48 of a turbulent
boundary layer at Reθ = 7800, measured with Stereo-PIV. Low-speed and high-speed
streaks were detected using a detection function based on the streamwise velocity fluctua-
tions; this function was subsequently thresholded, binarized, and then treated with image
processing tools based on mathematical morphology. In the lower part of the buffer layer
14.5 < y+ < 30, it was found that the frequency of appearance of the high speed streaks
decreases rapidly with increasing wall-normal distance, while the frequency of the low-
speed streaks stays constant. In the upper part of the buffer layer (30 < y+ < 48), the
frequency of both types of streaks decreases linearly with increasing wall-normal distance,
at a comparable rate. It is confirmed that the spanwise spacing of the streaks is about
120+, and that the high-speed streaks are slightly larger than the low-speed ones. The
mean width of the low-speed streaks is 31+ in the lower part of the buffer layer, and then
increases to 39+ in the upper part, while the width of the high speed streaks stays nearly
constant, comprised between 42+ and 47+.
The instantaneous 3D flow structure in the inner part (viscous sublayer, buffer layer and
inner part of the logarithmic layer) of a turbulent boundary at Reτ = 1400 was measured
by Sheng et al (2008) using a digital holographic microscope and a particle tracking algo-
rithm. The measurements have a high spatial resolution and low uncertainty. The 2D wall
shear stress distribution and 3D flow structures in the buffer layer could be retrieved, show-
ing that the buffer layer structures leave strong footprints on the spatial distribution of
wall shear stresses. In particular, counter-rotating streamwise vortex pairs are correlated
with streak-like regions of low and high stress on the wall. The frequency of occurrence of
coherent structures in the buffer layer was estimated: out of 100 realizations, 31 contain
pairs of counter-rotating streamwise vortices, 30 multiple quasi streamwise vortices, and
2 a baby hairpin (the remaining 37 realizations did not contain any structures).
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1.5.2 Hot-wire studies

The extent of PIV velocity field is usually too limited to assess the maximum dimensions
of the large scale motions in the streamwise direction. In contrast, hot-wire measurements
can be acquired over a very long time, and then converted to the spatial domain using a
Taylor hypothesis. Therefore, although this measurement technique is only single-point,
it can provide useful information regarding the streamwise extent of the large scale mo-
tions.
Using a hot-wire anemometer, Kim and Adrian (1999) were among the first to evidence
very large scale motions (VLSM) in the form of long regions of streamwise velocity fluc-
tuation in the outer region of a pipe flow. Using spectral analysis, they documented
streamwise wavelength increasing through the logarithmic layer, and reaching a maxi-
mum between 12 and 14 pipe radii R, and then decreasing to 2R on the pipe centerline.
These VLSM are about 4 times longer than a typical hairpin packet. A scenario was
proposed to integrate this new feature into the hairpin packet model, where the VLSM
are the result of the coherent alignment of packets of hairpin vortices.
Later on, Guala et al (2006) undertook a similar study in the outer region of a pipe flow
in a range of Reynolds number 4000 < Reτ < 8000. Pre-multiplied spectra of stream-
wise velocity fluctuations revealed very-large-scale energy-containing motions with mean
wavelengths of up to 16 radii in the logarithmic region of pipe flow, and large-scale mo-
tions with mean wavelengths between 2 and 3 pipe radii throughout the layer. It was
established that the VLSM contain half of the turbulent kinetic energy, of the Reynolds
shear stress and of the net Reynolds shear force. In contrast, the main turbulent motions
(defined as being the small scale and large scale motions) are found to contribute little to
the Reynolds shear stress, but are responsible for half of the net Reynolds shear force.
Hutchins and Marusic (2007) used a spanwise rake of ten anemometers to measure the
instantaneous streamwise velocity in a turbulent boundary layer in a range of Reynolds
number of 1120 < Reτ < 19960. They showed that very long meandering features pop-
ulate the log region of turbulent boundary layers, extending to over 20δ in length, and
possibly corresponding to the VLSM first evidenced by Kim and Adrian (1999).
Recently, a boundary layer at Reθ = 9800 and at Reθ = 19100 was measured by Tutkun
et al (2009) using 143 hot-wire probes distributed in a plane perpendicular to the mean
flow. The two-points correlation statistics were analyzed in a streamwise/spanwise plane
and in a streamwise/wall-normal plane. At both Reynolds numbers and in both planes,
the maximum streamwise extent of the correlation occurring in the logarithmic layer is
about 7δ. The analysis in the XY plane revealed the existence of some degree of correlation
between the near wall region and the intermittent region.

Finally, the large scale structure of the logarithmic layer was investigated in a range
of Reynolds number spanning three decades by Marusic and Hutchins (2008). Two point
correlation analysis was performed on data acquired in three facilities: simultaneous
combined-plane stereo PIV data at Reτ ≈ 1000 (see Hambleton et al (2006)), span-
wise hot-wire rake measurements at Reτ ≈ 14000 (see Hutchins and Marusic (2007)),
and using a spanwise array of ten sonic anemometers in the atmospheric surface layer in
Utah at Reτ ≈ 106. Over the whole range of Reynolds number, the two point correlation
statistics confirmed the existence of very large scale motions scaling with the boundary
layer thickness δ.
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1.5.3 DNS studies

Direct numerical simulation (DNS) are of special interest because they provide time-
resolved and three-dimensional data with a large spatial dynamic range. The develop-
ment of the computational ressources have recently allowed DNS of channel flow to reach
Reynolds number which can be considered as relevant and free from low Reynolds number
effects.
Direct numerical simulations of turbulent channel flows were performed by Tanahashi et al
(2004), Das et al (2006) and Kang et al (2007) in a range of Reynolds number varying from
Reτ = 100 to Reτ = 1270. A specific three-dimensional vortex detection algorithm based
on the second invariant Q of the velocity gradient tensor was developed by Tanahashi
et al (2004). For 100 < Reτ < 800, they showed that the probability density functions
of the vortices diameter and maximum azimuthal velocity were universal in Re and have
a weak dependence in y when non-dimensionalized with the local Kolmogorov scales η
and v. In the near wall region (y+ < 40), the most expected diameter is about 10η, and
the most expected maximum azimuthal velocity is 2.0v. Away from the wall, the most
expected diameter and maximum azimuthal velocity are 8η and 1.2v respectively. Kang
et al (2007) extended this scaling of the fine scale eddies up to Reτ = 1270. In addition,
clusters of fine-scale eddies and their dynamics were also investigated. The clusters are
observed within low-momentum regions of the outer region, and their size increases with
increasing wall-normal distance. Using conditional averaging, they showed that the low
momentum regions play an important role in the production of the Reynolds shear stress
and in the dissipation of turbulent kinetic energy. Finally, Das et al (2006) showed that
the velocity field of a vortex projected on a plane normal to the vorticity vector is well
approximated by a Burgers vortex. A theoretical description of coherent eddies was then
realized based on the Burgers vortex approximation.
The largest range of Reynolds number in DNS of turbulent channel flow have been
achieved thanks to a joint effort of Stanford, Madrid and Urbana Champaign universities.
The vortex large-scale organization in the logarithmic region of turbulent channel flow was
studied by DelAlamo et al (2006) in a range of Reynolds number varying from Reτ = 180
up to Reτ = 1900. A vortex detection criterion based on the discriminant of the velocity
gradient tensor was used, and neighboring points satisfying the criterion were connected
to define individual vortices. The individual spanwise vortices were characterized using
a fit to an elliptical Gaussian vortex: the mean radius and maximum azimuthal velocity
were found to depend little of Reτ and y when scaled with the Kolmogorov lengthscale η
and the RMS turbulence intensity. These spanwise vortices are about 20% thinner and
twice as strong as the vortices detected in all directions in Tanahashi group. A study of
the large-scale clusters of vortices was then undertaken. Both tall cluster attached to the
wall and small clusters detached from the wall were identified. The scaling of the attached
clusters is self-similar such that their dimensions ∆x, ∆y and ∆z are given by ∆x = 3∆y

and ∆z = 1.5∆y. The detached clusters are found to scale with the Kolmogorov scales.
The attached clusters are parts of larger regions of low-momentum flow whose average
geometry is consistent with a cone tangent to the wall along the streamwise axis. It is
assumed that the low-momentum region and the clusters are part of a self-sustaining and
self-similar process, where the low-momentum region are wakes left behind clusters, while
the clusters themselves are triggered by the wakes left by yet larger clusters in front of
them.
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1.6 Unresolved issues and aims

1.6.1 Unresolved issues

Although the hairpin-packet model is attractive in many aspects, a number of details
on this model remains unclear and sometimes even controversial in the light of recent
results. More specifically, the following issues on the structure of near-wall turbulence
remain outstanding:

• the picture of near-wall turbulence in the inner region remains incom-
plete.
Adrian et al (2000b) description is mostly limited to the outer region, and does not
account for the predominant structures on the inner layer, that is the streamwise
vortices (Robinson (1991), Jeong et al (1997) and Sheng et al (2008)) and the low-
speed streaks (Kline et al (1967), Blackwelder (1997))). Regarding the streamwise
vortices, Zhou et al (1999) argued that a primary hairpin was found to generate
quasi-streamwise vortices along its legs, but no information was given on the evo-
lution of these streamwise vortices, and more specifically on their ability or not to
generate in turn new hairpin vortices. Regarding the low-speed streaks, they are of-
ten identified to the low-momentum regions observed inside hairpin packet (Adrian
et al (2000b)) or vortex clusters (DelAlamo et al (2006)), but it should be empha-
sized that these two structures do not seem to coincide in wall-normal position and
size (an extensive characterization of the low-speed streaks can be found in Lin et al
(2008b)). In fact, subsequent studies by Tomkins and Adrian (2003) in XZ planes
in the upper buffer layer and log regions have evidenced low-momentum fluid along-
side vortical structure, but the streamwise extent of the PIV velocity fields was too
limited to conclude on the consistency with the elongated low-speed streaks.

• the origin of the very large scale motion is not accounted for.
Inactive Very large-scale motions have been evidenced with hot-wire anemometry
(Kim and Adrian (1999), Guala et al (2006), Hutchins and Marusic (2007) and
Marusic and Hutchins (2008)) in the outer region of wall-bounded turbulent flows
in a wide range of Reynolds numbers. Although some efforts have been made by Kim
and Adrian (1999) to integrate them in the hairpin packet model, these suggestions
remain purely hypothetical and lack some experimental or numerical evidence.

• the role of retrograde spanwise vortices is poorly understood.
Although a non negligible portion of the spanwise vortices were found to rotate
in the opposite sense to the mean shear (Carlier and Stanislas (2005), Wu and
Christensen (2006)), these structures have been ignored in Adrian’s model. They
deserve further assessment of their characteristics and role in the organization of
near-wall turbulence.

• the self-sustaining mechanism can be further discussed
The parent-offspring generation mechanisms proposed by Smith (1984) and Zhou
et al (1999) are based on investigations that provide valuable information. However,
in these studies, the initial parent hairpin was introduced artificially. Moreover,
these studies were carried out in a quiet environment (laminar boundary layer, or
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an initial velocity field without fluctuations). Finally, the study of the initial hairpin
used by Zhou et al (1999) was constructed from DNS data at very low Reynolds
number (Reτ = 180). For these reasons, the question arises as to whether these
initial conditions are representative of near-wall turbulence phenomenon. Also, it
is worth noting that the secondary and tertiary hairpins were generated in the
outer region of the channel flow, and therefore do not account for the generation
mechanisms in the inner region.

• statistical results are required for a reliable discussion
The qualitative analysis of a few instantaneous velocity fields certainly provide use-
ful scenarios for the organization of near-wall turbulence (Adrian et al (2000b)).
However, numerical or experimental statistical results on coherent structures are
required to assess the representativeness of these models. In addition, the scaling
laws of coherent structures can only be investigated on the basis of statistical data.

• scaling laws of vortical structures must be extended
Recently, Carlier and Stanislas (2005) studied the wall-normal evolution of vor-
tices characteristics in the logarithmic region and found that they were universal in
Reynolds number (in the range Reθ ∈ [7500; 19000]) when scaled in wall-units. A dif-
ferent scaling, based on the Kolmogorov local scales, was investigated by Tanahashi
et al (2004) and by Stanislas et al (2008). A good universality both in Reynolds
number and in wall-normal distance was observed. However, the PIV results of
Stanislas et al (2008) were restricted to two Reynolds number (Reθ = 7800 and
Reθ = 15000) and to streamwise-oriented vortices, while the DNS investigation of
Tanahashi et al (2004), took into account all orientations of the vortices but were
restricted to low Reynolds number (Reτ ∈ [100; 1270). Therefore, the validity of
this new scaling needs to be extended to a larger range of Reynolds number, and to
spanwise oriented structures.

1.6.2 Aims of the thesis

Among these outstanding issues, the present thesis aims at providing statistical results
over a large range of Reynolds numbers on:

• the characteristics of streamwise and spanwise oriented vortices in the upper buffer
layer and logarithmic regions of turbulent boundary layer, with emphasis on the
specificities of prograde and retrograde vortices and

• the scaling laws of these structures.

In addition, these results are interpreted in order to contribute to the understanding of
the self-sustaining mechanisms of near-wall turbulence.

For that purpose stereo-PIV measurements with high spatial resolution are under-
taken in two facilities: the LTRAC water-tunnel in Melbourne (Australia) and the LML
wind-tunnel in Lille (France). The measurements are carried out in streamwise/wall-
normal and spanwise/wall-normal sections of turbulent boundary layers in the range
Reθ ∈ [1300; 18950]. After a careful validation of the database through the analysis
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of the mean properties of the flow, advanced post-processing tools are utilized to educt
and characterize vortical structures. Finally, statistical results on the detected vortices
are discussed in the context of the current knowledge on coherent structures.
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Chapter 2

Particle Image Velocimetry

Particle image velocimetry (PIV) is a measurement technique that gives access to a quan-
titative and instantaneous estimation of the velocity distribution in the flowfield. It takes
its roots into flow visualization and ‘laser speckle photography’ employed in solid mechan-
ics to measure surface deformations. Meynart (Meynart (1983), Meynart (1984)) realized
some pioneering work on PIV, and was among the first to apply this technique to the
measurement of complex flows. Excellent review papers on this technique can be found in
Adrian (1991), Grant (1997), Raffel et al (1998) and more recently in Raffel et al (2007).
With the addition of multiple cameras, high speed cameras and high speed lasers, the
original 2D-2C PIV technique has given birth to a series of more elaborate techniques.
Stereoscopic PIV (Prasad (2000)) gives access the out-of-plane velocity component, time-
resolved PIV (Baur and Koengeter (2000)) to the Eulerian evolution of the flow, and
dual plane PIV (Kahler and Kompenhans (2000)) to the out-of-plane velocity gradient.
Volumetric techniques, such as Holographic PIV (Pu and Meng (2000)), Tomographic
PIV (Elsinga et al (2006)) or Tomo-Holo PIV (Soria and Atkinson (2008)) are still in
development. In the following, the working principle of 2D-2C PIV is first presented;
then, the fundamentals of stereoscopic PIV are given; finally, the spatial dynamic range
of this technique is discussed.

2.1 Conventional 2D-2C PIV

2.1.1 Working principle

The working principle of planar PIV is depicted in figure 2.1. The flow is seeded with
small tracer particles, assumed to follow faithfully the motion of the fluid elements. A
laser beam is shaped into a light sheet and directed into a plane of the flow. It is pulsed
twice within a short time delay, and the Mie scattering of the illuminated particles is
imaged via a lens, and recorded on a single frame or on two frames of either a photo-
graphic film or the sensor of a digital camera. Three different types of evaluation schemes
can then be used on these recordings to extract displacement information: the statistical
scheme, the tracking technique (Agui and Jiménez (1987), Guezennec et al (1994)) or
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the super resolution algorithm (Keane et al (1995)). As discussed in Raffel et al (1998),
the tracking technique is restricted to low image density and is then not suitable for ob-
taining high density data; the super resolution algorithm is an hybrid technique between
the statistical and the tracking approach and is more of interest for photographic PIV.
Therefore, only the statistical evaluation will be presented and discussed in this chapter.
The statistical evaluation consist in performing an autocorrelation or a crosscorrelation
(for single frame or double frame images respectively) on small subregions of the record-
ing called ‘interrogation window’ (IW); the location of the correlation peak represents
the average displacement vector over the IW between the two illumination pulses. The
underlying assumption of the statistical evaluation is that the motion of the particle im-
ages within the interrogation window is approximately uniform. For each interrogation
window, the projection of the local velocity vector into the plane of the light sheet (a
two-components velocity vector) is then retrieved by taking into account the time delay
and the magnification at imaging.

Figure 2.1: Experimental arrangement for Particle Image Velocimetry, taken from Raffel
et al (1998)

Nowadays, the PIV images are recorded on a CCD array of a video camera and
cross-correlated computationally: this technique is called digital PIV (Willert and Gharib
(1991), Westerweel (1993), Westerweel (1997)). Contrary to photographic films, video
camera enables a real time viewing of the measurement region, and hence a real-time
optimization of the PIV parameters (seeding concentration, illumination, focus). When
the particle images are discretized on more than one pixel, a fit of a function to the cross-
correlation peak (typically a 3 points Gaussian fit) can be performed in order to retrieve
the displacement with sub-pixel accuracy (on the order of 1/10th of a pixel).
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2.1.2 Advanced evaluation algorithm for digital PIV

The advent of digital PIV, along with improved computing ressources, has promoted the
improvement of interrogation algorithms. Three advanced algorithm for the PIV statis-
tical evaluation are briefly presented: the multipass algorithm, the multigrid algorithm,
and the image deformation schemes.

The multipass algorithm with integer offset, as proposed by Westerweel et al (1997)
allows to significantly decrease the number of unpaired particles that enter or exit the
interrogation window during the two exposures, and hence to get a better signal-to-noise
ratio. The working principle is the following: a first interrogation is performed using a
window offset close to the global mean displacement; the displacement estimate from the
first interrogation is used as a new window offset for a second interrogation; the process
is repeated until the integer offset vector converge to ±1 pixel.

The multigrid algorithm is an improved version of the multipass algorithm. It con-
sist in reducing the interrogation window size and refining the evaluation grid during the
successive evaluation of the multipass algorithm. It was first used by Soria (1996) for the
investigation of the near wake of a circular cylinder and then characterized in Soria et al
(1999). The spatial dynamic range of the experiment, which depends directly on the size
of the averaging area, is drastically improved.

Finally image deformation schemes (Scarano (2002) and Lecordier and Trinite (2003))
can be of interest in flows where a significant velocity gradient over the interrogation
window exists. The PIV recordings are iteratively deformed according to the computed
velocity field.

2.1.3 Assessment of measurement error

There exists multiple sources of noise that can affect the accuracy of a PIV measurement:

• unpaired particles due to out-of-plane motions,

• unpaired particles due to in-plane displacements that are too large with respect to
the IW,

• non-uniform displacement over the IW due to mean velocity gradients or turbulent
fluctuations,

• non-optimal seeding concentration and non-uniform distribution of the bright par-
ticles over the IW,

• non-optimal imaging parameters (discretization of the particles...),

• etc...

The resulting interrogation error can be decomposed into the measurement random error
σ(ǫint) (the RMS error, corresponding to the absolute value of the measurement uncer-
tainty with a confidence interval of 68%) and the measurement bias error < ǫint >. This
measurement error can be assessed in a variety of ways.
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The first way consists in generating synthetic PIV images of known content, using
Monte Carlo simulation. The artificial recordings can then be evaluated and compared
with the known result. The behavior of the PIV error with the variation of each PIV and
flow parameter (particle diameter, concentration, velocity gradient, third component,...)
can be assessed. By varying one parameter at a time, Keane and Adrian (1990), Soria
(1996), Raffel et al (1998) and Foucaut et al (2003) realized parametric studies of the
PIV error and determined optimal design rules for the PIV parameters: particle images
should be discretized on 2-3 pixels, the particle concentration should be of 10 per IW, and
there should be no gradient and no out-of plane motion. Foucaut et al (2003) and Soria
(1996) found a PIV random error on the order of 0.06px for optimal PIV parameters and
a uniform in-plane displacement of ±0.5px (any uniform displacement can be reduced to
±0.5px using a multipass algorithm with integer offset). Over the range of parameters
explored, Foucaut et al (2003) showed that the RMS error σ(ǫint) was one order of mag-
nitude larger than the bias error < ǫint >.
For a given PIV experiment, it is possible to use an existing parametric study to retrieve
the PIV error: with an appropriate scaling, each PIV parameter can be related to a pa-
rameter of the synthetic study, and hence associated to an RMS error. The greatest of
these RMS error is then be taken as the global PIV uncertainty. The only constraint is
that the evaluation algorithm used in the synthetic study must have the same features
than the evaluation algorithm used for PIV experiment. This methodology has been used
recently in Herpin et al (2008) to assess the uncertainty of their PIV experiment.
However, synthetic studies present some disadvantages: in most studies, the influence of
fluctuations or non constant gradients that can occur in wall-bounded turbulent flows is
not assessed; also, the transfer functions of the imaging optics and of the CCD array are
not taken into account. Two exceptions are worth mentioning: Lecordier and Wester-
weel (2003) have developed a CCD model in the EUROPIV SIG; also synthetic images
based on DNS data of turbulent channel flow have been used in the second international
PIV challenge (Stanislas (2005)). However, as mentioned in conclusion of this challenge,
synthetic images are not yet fully representative of real experimental conditions.

The second option to assess the PIV error is to use real images of a printed random
particle pattern displaced with a translation stage. This test presents the advantage of
being feasible in situ, using the configuration of interest for the camera and the imaging
optics. It has been used by Willert and Gharib (1991) to study the influence of seeding
density and translation displacement. Of course, this method is incomplete as the real
particle are not used.

The third option to assess the PIV error is to use real images of real particles for which
the displacement is known. For instance, PIV recordings of naturally buoyant particle
in a quiescent flow have been used in Foucaut et al (2004). Here again, this technique
presents the interest of using the camera and imaging configuration of interest. However,
all the flow-related sources of error (unpaired particle, gradients, fluctuations...) are not
taken into account. Also real images of self similar turbulent jet, for which the turbulence
statistics are known, have been tested in the second international PIV challenge (Stanislas
(2005)).

Because they do not take into account all the possible sources of PIV noise, these first
three methods are expected to provide a lower bound of PIV uncertainty. A novel way of
accessing to the actual PIV uncertainty have been shown in Kostas et al (2005) and in
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Herpin et al (2008): it consists in realizing a series of two instantaneous but independent
measurements of the same phenomenon. More specifically, Herpin et al (2008) used two
stereoscopic PIV systems just overlapping in the streamwise direction to measure a XY
plane of a turbulent boundary layer. The measurement random error was retrieved as the
RMS of the difference between the two 2D-3C velocity fields in the overlap region. This
technique presents the advantage of including all the sources of noise (optical, recording,
flow and evaluation related) present in the experiment.

2.2 Stereoscopic technique

One important shortcoming of the ‘Classical’ PIV is that it is only capable of recording
the in-plane projection of the velocity vector into the plane of the light sheet. In contrast,
the stereoscopic technique is capable of retrieving the out-of plane motion of the flow,
and it also eliminates perspective error which can contaminate the measurement of the
in-plane components.

2.2.1 Experimental configuration

The basic principle of SPIV is to use two cameras to record simultaneous but distinct off-
axis views of the same region of interest. The different stereoscopic configurations have
been reviewed in great details in Prasad (2000). The two cameras can either be arranged
in a translation configuration (where the axes of both cameras are placed parallel to each
other, and orthogonal to the light sheet), or in an angular configuration (where the axes
of the cameras are rotated such that they intersect with the object plane along the same
axis). The translation configuration presents two severe limitations: the small common
area viewed by the two camera, and the upper bound on the off-axis angle (θ ≈ 15◦) which
limits the accuracy of the out-of-plane component. Therefore, the angular configuration
is generally preferred. Two implementations of the angular configuration exist: either the
cameras are set up on the same side of the laser sheet, as shown in figure 2.2, or the camera
are placed on either side of the laser sheet, as proposed by Willert (1997). The second
option present two benefits: first of all, with a suitable orientation of the direction of
propagation of a laser, it is possible to operate both camera in forward scattering; besides,
the image field of both camera enjoy identical stretching, which allows a more accurate
reconstruction of the 3C displacement. In the angular configuration, it is necessary to
enforce the Scheimpflug condition (Prasad and Jensen (1995)) in order to achieve a sharp
focus over the entire field of view: the image plane of each camera must be tilted with
respect to the lens plane, so that they intersect on a same line with the object plane.
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Figure 2.2: Basic angular configuration for Stereoscopic PIV, with enforcement of the
Scheimpflug condition. ‘u1’ is the in-plane projection of the velocity measured by camera
1; ‘u2’ is the in-plane projection of the velocity measured by camera 2; the true veloc-
ity vector (of in-plane component ‘u’ and out-of plane component ‘w’) is reconstructed
through a triangulation of ‘u1’ and ‘u2’

2.2.2 Mapping between the object space and the image space

In the angular configuration, the magnification is no longer uniform over the field of
view. For each camera, a mapping function between the object space (coordinate system
Xo,Yo,Zo) and the image plane (coordinate denoted Xi,Yi) is required. This mapping
function can either consist in a pinhole model, polynoms, or rational polynoms. Two
types of transformation may be considered: a 2D ↔ 2D transform where a plane in the
object space is related to a plane in the image space, and 3D ↔ 2D transform where a
volume in the object space is related to a plane in the image space. The forward projection
(‘→’) is defined as the projection from the object space to the image space, the backward
projection (‘←’) being the inverse transformation.

Pinhole model In the pinhole model, the camera lens is approximated by a pin-hole;
all rays originating from the object and reaching the sensor are assumed to pass through
this point. The pinhole model is a 3D → 2D transform. It basically consists in a trans-
lation/rotation to pass from the object volume coordinate to the image plane coordinate,
a central projection about the center of each camera lens, and finally a metric to pixel
transformation. The central projection involved in the pinhole model is illustrated in
figure 2.2. A point in the image plane of each camera can be back-projected into the
object volume as the intersection of the two rays passing for each camera through the
image point on the sensor and through the center of the lens. This back-projection is
referred to as ‘triangulation’. Following Calluaud and David (2004), the pinhole model
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can be formalized for each camera as:
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(2.1)

where the focal distance f , the vertical and horizontal scale factor ku and kv, the intersec-
tion between the optical axis and the image plane (u0, v0) are the intrinsect parameters of
the system, and the rotations coefficient rij and translation coefficients tj are the extrinsic
parameters. As such, the pinhole model does not account for distorsions that may occur
due to imperfect lens or imaging non-linearities. Radial distorsions can be taken into
account by adding additional parameters to the model (Wieneke (2005)).

Polynoms models Polynomial functions are another possibility. It is not based on
geometry optics, but high order terms can account for lens distorsion and image non-
linearities. Westerweel and van Oord (2000) employed second order polynomials in X
and Y to realize a 2D ← 2D transform:

Xo = a1X
2
i + a2Y

2
i + a3XiYi + a4Xi + a5Yi + a6

Yo = b1X
2
i + b2Y

2
i + b3XiYi + b4Xi + b5Yi + b6

(2.2)

Soloff et al (1997) suggested the use of 3D → 2D polynom with cubic dependence in Xo

and Yo and quadratic dependence in Zo:

a0 + a1Xo + a2Yo + a3Zo + a4X
2
o + a5XoYo + a6Y

2
o

+a7XoZo + a8YoZo + a9Z
2
o + a10x

3
o + a11x

2
oYo + a12xoY

2
o + a13Y

3
o

+a14x
2
oZo + a15xoYoZo + a16Y

2
o Zo + a17XoZ

3
o + a18YoZ

2
o

(2.3)

Rational polynoms models Willert (1997) noted that the projection equation based
on the pinhole model can be expressed as a ratio of first-order polynoms. He proposed to
extend it to a higher order to take into account imperfect imaging optics :

Xo =
a11X

2
i + a12Y

2
i + a13XiYi + a14Xi + a15Yi + a16

b11X2
i + a12Y 2

i + a13XiYi + a14Xi + a15Yi + a16

Yo =
a21X

2
i + a22Y

2
i + a23XiYi + a24Xi + a25Yi + a26

b21X2
i + b22Y 2

i + b23XiYi + b24Xi + a45Yi + b26

(2.4)

Willert (1997) used a simplified form of these equations where b1j = b2j. This method
can easily be extended to the 3D ← 2D case by adding a third equation:

Zo =
a31X

2
i + a32Y

2
i + a33XiYi + a34Xi + a35Yi + a36

b31X2
i + b32Y 2

i + b33XiYi + b34Xi + a35Yi + b36

(2.5)

Calibration of the models parameters All these three models depend on a certain
number of parameters: the intrinsect and extrinsic parameters for the pinhole, and the
coefficients for the polynomials functions. These parameters need to be calibrated in order
to calculate the mapping functions. The parameters of the pinhole model can be simply
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deduced from the measurement of the imaging geometry of the setup (focal distance,
viewing angles, Scheimpflug angle...). However, in most situations, these parameters
cannot be retrieved with enough accuracy, and therefore this method is not recommended.
The alternative method (applicable for all models) consists in placing a calibration target
aligned with the laser sheet and coincident with the field of view. The calibration target
is made of a precise grid of reference marks (cross, circles, or lines intersection), regularly
spaced. The image of the calibration target is recorded on each camera sensor. For the
2D ↔ 2D mappings, only a planar target is needed, but for the 3D → 2D transforms,
depth information must be provided. It is obtained either by translating the target in
the out-of-plane (Z) direction (Soloff et al (1997)), or by using a multilevel target with
reference markers at different heights. These two types of calibration will be referred
to as ‘2D calibration’ and ‘3D calibration’ respectively. In both case, the position of
each mark on the images of the calibration target is easily detected with simple image
processing techniques, providing a set of correspondent points between the object space
and the image space. The parameters of the model can then be retrieved through a fit
to these correspondent points. For the polynomials models, care should be taken to have
markers covering the whole field of view as these functions perform poorly outside of the
fitting domain. As far as the 3D calibration is concerned, the different views in the out-of-
plane direction must at least embed the laser sheet thickness. These ‘calibration-based’
techniques present the advantage that no-apriori information on the setup is required.
Used in conjunction with the pinhole model, this technique actually allows the retrieval
of the setup geometry.

2.2.3 Evaluation of the SPIV images

A stereoscopic evaluation consists in three elementary operations:

• a backprojection from the image space to the object space for each camera,

• a two dimensional cross-correlation between the particles for each camera, using the
same algorithm as for standard PIV and

• a three component reconstruction using the two 2D-2C velocity fields of each camera

A variety of stereoscopic evaluation techniques can be found in the literature, depending
on the sequence into which these operations are executed, on the mapping model (pinhole
or polynomial function) used for the backprojection and 3C reconstruction, and finally
on the method employed to calibrate coefficients of these model (measurement based, or
target based calibration). The techniques can be classified in three main groups: the ‘2D
vector warping’ techniques, the ‘3D vector warping’ techniques and the ‘particle mapping’
techniques.

2D vector warping With the 2D vector warping technique, the cross-correlation is
performed in the image space of each camera. The 2D-2C vectors are then backprojected
into the reference plane in the object space (‘dewarping’) using a 2D ← 2D transfor-
mation. Finally a 3C reconstruction is realized using a triangulation method on the two
2D-2C vectors. While a calibration target is usually used to calibrate the mapping func-
tion the parameters required for the triangulation are usually measured on the setup. If
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the cross-correlation is realized on a Cartesian grid on each camera image space, then the
2D-2C vectors from each camera will be mapped on a different and non-Cartesian grid
in the object space. An interpolation on a common Cartesian grid in the object space is
then necessary before the 2D-2C vectors are recombined into a 3C vector. As proposed by
Coudert and Schon (2001), this interpolation step can be avoided if the cross-correlation
in the image space of each camera is performed on a ‘warped’ grid defined as the forward
projection of a common Cartesian grid in the object space.

3D vector warping This technique is similar the ‘2D vector warping’, except that the
vectors are backprojected into a volume rather than a plane of the object space using
a 3D ← 2D transformation. In this manner, the dewarping and 3C reconstruction are
realized in a single step. In this technique, all the parameters are retrieved using a 3D
calibration. Two possible implementations of this model exist. The first possibility is to
use a pinhole model to retrieve the origin and the end of the 3C displacement vector in
the object space. In this case, the parameters of the pinhole model are retrieved using
a target-based 3D calibration. This method was recently used in Calluaud and David
(2004), in Wieneke (2005) and in Scarano et al (2005). The second possibility is known
as the ‘Soloff method’ (Soloff et al (1997)): it consist in a Taylor series expansion to the

first order of a 3D → 2D forward projection function of polynomial type F
(c)
i (Xo, Yo, Zo),

to relate the 3D object displacement to the 2D image displacements:

−−−→
∆X

(c)
i = F (c)(

−→
Xo +

−−→
∆Xo)− F (c)(

−→
Xo) ⇔ −−→

∆Xo = ∇F (c)−−→∆Xi

where superscript (c) stands for the camera index, subscript i stands for the image space
coordinates, and subscript o stands for the object space coordinate. The relation be-
tween the 3D object displacement and the 2D image displacements can be expressed in a
matricial form:
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The matrix ∇F can then be inverted to retrieve the 3D object plane displacement
−−→
∆Xo

directly from the 2D images planes displacement
−−−→
∆X

(c)
i .

Particle image mapping The other option, implemented by Willert (1997), consists
in mapping for each camera the image fields containing the particles to the reference
plane of the object space using a 2D ← 2D transformation. The backward projection
of squared pixels (in the image space) being distorted pixels (in the object space), each
image mapped into the object space needs to be resampled. The cross-correlation is then
performed for each camera PIV image on a common Cartesian grid in the object space.
Finally, the two 2D-2C vectors in the object space are triangulated to obtain the 2D-3C
displacement vector. While a calibration target is usually used to calibrate the mapping
function, the parameters required for the triangulation are usually measured on the setup.
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2.2.4 Misalignment correction

All the stereoscopic evaluation techniques assume that the reference object plane into
which the particle images or the displacement vectors origins are backprojected coincides
exactly with the measurement area. For that purpose the reference position of the calibra-
tion target (or its reference level for 3D multilevel targets) needs to be placed in perfect
alignment with the plane of maximum light intensity of the laser sheet. As pointed out
by Prasad (2000), this condition is almost impossible to meet.
Misalignment results in a mismatch between the information used from each camera to
reconstruct the 2D-3C velocity field. This type of error is called the ‘registration error’
(Prasad (2000)), or ‘misalignment error’ (Willert (1997)). Willert (1997) proposed a way
to quantify the existing misalignment : two PIV images, taken at the same instant from
different viewing angles (typically from the 2 camera of the stereo system) are back-
projected in the reference plane of the calibration target and then cross-correlated. The
resulting map is called the disparity map between the two stereo camera. Each point of
this disparity map can then be related to the local misalignment via triangulation, giving
access to an estimate of the actual position of laser sheet. From the knowledge of the
disparity map, several techniques can be employed to correct the misalignment error.
In the framework of the 2D and 3D warping techniques, Coudert and Schon (2001) pro-
posed to shift each node of the common Cartesian grid in the object plane by half the
local disparity, in opposite directions for each camera of the stereo pair. The two shifted
object grids are then projected on the image plane of each camera, to form the 2 mesh
onto which the 2D-2C PIV interrogation will be performed. This shift between the 2
image-grid compensates for the recombination error occurring during the stereoscopic re-
construction.
In the framework of the 3D warping technique using a pinhole model, Wieneke (2005) cor-
rect the misalignment by modifying the projection function themselves. For that purpose,
a plane is fitted through the laser sheet points. This plane is chosen as a new origin for the
mapping functions; the translation/rotation functions involved in the mapping from the
object volume coordinate to the image plane coordinate are modified accordingly. This
misalignment correction scheme is called ‘self-calibration’ by Wieneke (2005), although
this may not be the most appropriate terminology.

Comparison of the techniques A comparison between the image mapping, 2D warp-
ing and Soloff technique was realized by Lin et al (2008a), based on the estimation of
accuracy, the spatial spectra and velocity PDFs. It was found that the Soloff method
was giving the best results (in term of accuracy, and estimation of the spatial spectra
and velocity PDFs) although the differences from the other two methods (mapping and
warping) were fairly limited. The main advantage of the Soloff method is that it requires
no-apriori knowledge of the setup geometry for the reconstruction step. Lin et al (2008a)
also found that the misalignment correction improved significantly the quality of the re-
sults. Scarano et al (2005) compared the image mapping technique with misalignment
correction to the pinhole model. They found that these two techniques were almost equiv-
alent for a correctly aligned system. Finally, as far as the CPU time is concerned, the
image mapping techniques are more demanding than the warping techniques, because the
number of pixels to backproject in the mapping technique is much larger than the number
of vectors to backproject in the warping techniques.
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2.2.5 Error analysis

All stereoscopic techniques make use of a two dimensional PIV evaluation, performed
for each camera of the stereo arrangement. This evaluation is realized using the same
algorithm as for standard PIV; the random error of this evaluation σ(ǫint) was assessed in
a number of studies, as summarized in section 2.1.3. Assuming that this error is identical
for both camera, it is possible, in the framework of the pinhole model, to relate analytically
the evaluation error σ(ǫint) in the image space to the error on the in-plane σ(ǫin−plane)
and out of plane σ(ǫout−of−plane) displacements in the object space (Prasad (2000)):

σ(ǫin−plane) =
1√
2

1

M
σ(ǫint)

σ(ǫout−of−plane) =
√

2
do

MS
σ(ǫint)

(2.7)

where M is the camera nominal magnification, S is the distance between the center of the
lenses, do is the object distance, and θ is the off-axis angle. Hence the relative error in
the out-of-plane component is:

σ(ǫout−of−plane)

σ(ǫin−plane)
= 2

do

S
=

1

tan θ
(2.8)

As can be seen in equation 2.7, the stereoscopic in-plane error is smaller (by 1/
√

2) than
the corresponding error for a single camera, because two camera contribute equally to the
final result. Also, as given by equation 2.8, the relative error between the out-of-plane and
in-plane error is equal to the inverse of the off-axis angle tangent. Therefore, a viewing
angle of 45◦ is recommended to get as much accuracy on the out-of-plane component
as on the in-plane component. Although this error analysis is exact for the translation
configuration only, Zang and Prasad (1997) showed that it is indeed a good approximation
for an angular Scheimpflug configuration.

2.3 Spatial dynamic range of PIV

The spatial dynamic range (SDR) represents the ability of a PIV experiment to resolve
spatial variations in a flow. It is a quantity of special interest in the context of turbulent
flow and coherent structures investigations (Herpin et al (2008)).

2.3.1 Definition of the spatial dynamic range

The aptitude of a PIV system to resolve spatial variations in the flow is difficult to
assess: a PIV system is a complex measurement chain, and it is not always easy to
discriminate which independent parameters of the experiment are the most limiting ones
in terms of SDR. By definition, the SDR is bounded at the upper end by the largest
resolvable spatial variation SVmax, and at the lower end by the smallest resolvable one
SVmin. The former is straightforward to characterize: SVmax is equal to the extent of
the field of view S, and hence is limited only by the resolution of the recording medium,
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typically the number of pixels of a video-camera CCD arrays. SVmin (or its spectral
counterpart the cut-off wavenumber kc = 2Π

SVmin
) is less straightforward to quantify. The

PIV measurement technique (used in conjunction with the statistical evaluation) can be
considered as a spatial averaging filter over a volume V olPIV delimited by the interrogation
window IW and extending across the laser sheet thickness lz (Willert and Gharib (1991)).
As the laser sheet presents a non-uniform light intensity distribution across its thickness
(this distribution is usually approximated as being Gaussian), only the particles located
within an illuminated region of effective thickness lzeff < lz will contribute to the PIV
correlation (Westerweel (1996)). The PIV averaging volume reads V olPIV = L2

IW ∗ lzeff

for a square IW of size LIW , and, following a Nyquist criterion, the smallest spatial
variation theoretically resolvable SVmin,th is given by:

SVmin,th = 2 ∗max(LIW , lzeff ) (2.9)

Note that in most PIV applications, lz and hence lzeff are smaller than LIW and one
immediately gets SVmin,th = 2 ∗ LIW . The theoretical spatial dynamic range (SDRth) of
PIV is finally given by:

SDRth =
S

2 ∗ LIW,obj

in the object space, and SDRth =
CCDsize

2 ∗ LIW,im

in the image space

(2.10)
In the spectral domain, the response of PIV was characterized by Foucaut et al (2004) by
taking measurements in quiet water. They established that the PIV transfer function is
a squared cardinal sine function, due to the windowing effect. The cut-off wavenumber
kcth for an attenuation of −3dB is kcth = 2.8

LIW
, leading to SVmin,th = 2.2 ∗ LIW (in good

agreement with the value predicted with the Nyquist criterion). Wavenumbers exceeding
kcth are increasingly filtered out up to the highest wavenumber kmax = 2Π

2∆IW
(∆IW rep-

resenting the distance between adjacent interrogation windows). ∆IW was found to have
no influence on the amount of information retrieved, provided the overlap was at least
50% of the IW size (larger overlaps result in an oversampling of the PIV signal).
It has been shown by a number of studies that the SDR effectively achieved in PIV mea-
surements of near-wall turbulence differs from the theoretically predicted one. Westerweel
et al (1993) compared photographic PIV measurements of a turbulent pipe flow to a DNS
simulation at similar conditions, and later on Westerweel (1996) undertook the same type
of comparison using digital PIV recordings. On the other hand, Guichard et al (1998) used
synthetic particle images from a DNS of isotropic turbulence to study the performance of
different PIV interrogation algorithms. Using the DNS spectra as the reference, they all
found that, at high wavenumbers, the velocity spectra retrieved from PIV are obscured
by noise before kcth is reached. The actual cut-off wavenumber kcexp depends on the
signal-to-Noise ratio (SNR) of the measurement: closer to the wall, flow-related sources
of measurement error (velocity gradients, out-of-plane motions...) result in a lower value
of kcexp. More specifically, Guichard et al (1998) investigated the influence of the inter-
rogation window size by comparing the rms and the spectra obtained from the PIV data
and the DNS data. It was confirmed that using smaller interrogation windows (typically
16px*16px) lowers the actual cut-off wavenumber of the spectrum: the benefit of having
a smaller averaging area is cancelled out by an increased level of noise. At the other
extreme, if one goes to too large IWs (typically 128px*128px), the velocity fluctuations of
the small structures are averaged out in the interrogation process. The correct choice of
interrogation window size thus appears to be a trade-off between the size of the averaging
area and the signal-to-noise-ratio. The nature of the spectral noise and its influence on
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the cut-off wavenumber kcexp of PIV was further investigated by Foucaut et al (2004).
The actual cut-off wavenumber kcexp was formally defined as the wavenumber at which
a SNR of 1 is reached. At the optimal interrogation window size, Foucaut et al (2004)
suggested that one should get kcth = kcexp.
In summary, the different regions of a typical PIV spectrum measured in turbulent flow

kmin kcEXP kcTH

2Π
CCD size

2Π

2∆IW
kSNR=1

filtered-outSDR
effectively achieved domain

kmax

noise-dominated
domain

2Π

2lIW

2Π

lIW

over-
sampled
domain

Figure 2.3: Different wavenumber regions of a typical PIV spectrum of turbulent flow

is shown in Figure 2.3. The two mains limitations applying on the effective SDR of PIV
find their origin in the number of pixels of the camera CCD array, and in the level of
noise in the measurements.

In the context of coherent structures investigations, the spatial dynamic range of a PIV
experiment should be compared with the range of structures Wstr to be measured in the
flow. As recalled in the previous chapter, in the framework of the hairpin packet paradigm
(Adrian et al (2000b)), the small scale structures formed by the hairpins and their cores,
and the large scale structure are formed by the streamwise organization of these hairpins
into the so-called hairpin packets. The fine eddies of near-wall turbulence were recently
revisited using PIV by Stanislas et al (2008) and using DNS by Tanahashi et al (2004).
They both find that their diameter are universal (both in wall-normal position and in
Reynolds number) when scaled with the local Kolmogorov length scale (η). The detected
vortex cores have a most expected diameter of 10η, which corresponds, in wall units, to
vortices as small as d+ = 20 close to the wall. As far as the hairpin packets are concerned,
these motions have a commonly accepted maximum streamwise extent of 3δ (Guala et al
(2006), Adrian (2007)). As a consequence, Wstr reads:

Wstr =
3δ+

20+
(2.11)

In order to be consitent, the field of view size that appear in the equation for SDRth

should be taken along the streamwise direction. In order to get a full resolution of the
structures in the flow, one should have SDR = Wstr.

2.3.2 Theoretical SDR of recent PIV studies

The expression for SDRth and Wstr given in equation 2.10 and 2.11 respectively can
be utilized to estimate the theoretical resolution of coherent structures achieved in re-
cent digital PIV studies (Carlier and Stanislas (2005), Ganapathisubramani et al (2006),
Hambleton et al (2006), Hutchins et al (2005)), in the context of coherent structures in-
vestigations. In Table 2.1, their interrogation window size, as well as the extent of their
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field of view, SDRth and Wstr are reported. On the whole, Table 2.1 shows that the
theoretically achieved SDR in digital PIV experiments is never large enough to capture
the whole range of structures: the ratio SDRth

Wstr
varies from 0.04 for Hutchins et al (2005) at

δ+ = 2800 up to 0.15 for Ganapathisubramani et al (2006) at δ+ = 1160. By choosing an
appropriate optical magnification, this limited SDR is then used to resolve very specific
parts of the range of coherent structures present in the flow. In Ganapathisubramani et al
(2006), moderate values of both the field of view extent (S1, S2) = (δ, δ) and the IW size
(L+

IW = 20) allow the study of coherent structures of intermediate size. On a different
note, Hambleton et al (2006) favor the larger structures ([S1, S2] = [2δ, 2δ], L+

IW = 30+)
and Carlier and Stanislas (2005) the smaller ones ([S1, S2] = [δ, δ], L+

IW = 10). The influ-
ence of the Reynolds number on the SDR of PIV experiments is clearly visible in Hutchins
et al (2005): when the Reynolds number increases, the same PIV setup obviously leads
to the same SDRth, while Wstr increases. The small structures are increasingly filtered
out with L+

IW : 15+ → 24+ → 69+ for δ+ : 690→ 1010→ 2800.
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It is of interest to compare these recent digital PIV studies to the photographic PIV
(Ph-PIV) study by Adrian et al (2000b) which is widely considered as a milestone in
the field of coherent structures investigations. As can be seen in Table 2.1, the SDRth

of their experiments compares well with the SDRth of recent digital PIV experiments.
At the two Reynolds numbers for which the boundary layer under investigation can be
considered as fully turbulent (Reθ = 2370 and 6845), the ratio SDRth/Wstr are 0.23
and 0.13 respectively. This is once again on the same order as the most highly resolved
digital PIV studies presented in table 2.1. Another interesting comparison to be made
is with a recent DNS study (DelAlamo et al (2006)), where, in order to comply with
the implementation constraints of the technique, all the structures of the flow must be
resolved. In Table 2.1, it can be seen that, for the lower range of Reynolds numbers
(Reτ ∈ [185; 934]), the ratio SDRth

Wstr
is indeed very large (on the order of 10). In contrast,

for the higher range of Reynolds numbers (Reτ ∈ [964; 1900]), this ratio is on the order
of 1, and the influence of the size of the computational domain on the simulation of the
flow may be questioned. As a result of the incapacity of PIV to resolve simultaneously
the whole spectrum of coherent scales in the flow, a number of controversies persists
about the role of coherent structures in the cycle of turbulence. Improving the SDR of
PIV is paramount to a better assessment of this role, and to a larger extent to a better
comprehension of the physics of near wall turbulence.

2.3.3 Methodology to retrieve the cut-off wavenumber at SNR=1

In this section, the methodology used to retrieve the effective cut-off wavenumber kcexp

of a PIV experiment is detailed. This cut-off wavenumber is defined as the wavenumber
at which the signal-to-noise ratio of the experiment is equal to one.
Following Foucaut et al (2004), the PIV power spectrum EPIV (k) can be expressed as:

EPIV (k) = (Eflow(k) + Enoise(k))

(

sinc(k ∗
LIW

2
)

)2

(2.12)

where:

• Eflow(k) is the exact spectrum of the flow.

• Enoise(k) is the PIV noise (including both recording and processing (at given IW
size) sources of noise)

• the squared cardinal sine function
(

sinc(k ∗ LIW

2
)
)2

is the PIV transfer function and
represents the filtering over a square interrogation window.

At SNR=1, by definition Eflow(kcexp) = Enoise(kcexp), and one gets:

EPIV (kcexp) = (2 ∗ Eflow(kcexp))

(

sinc(kcexp ∗
LIW

2
)

)2
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The spectrum of the flow is a priori unknown, however, one can make use of a reference
spectrum obtained from hot-wire measurement or DNS data in the same kind of turbu-
lent flow. An inner scaling (from Perry et al (1986)) can be applied to the spectra to
compensate for Reynolds number differences between the PIV and the reference :

k̃ = k ∗ y Ẽ(k̃) = E(k̃)/(u2
τ ) = E(k)/(u2

τ ∗ y)

where uτ is the friction velocity and y is the wall normal position at which the spectrum
is computed. The non-dimensional PIV and reference spectra read:

k̃ = kPIV ∗ yPIV ẼPIV (k̃) = EPIV (k̃)/(u2
τ,PIV ) = EPIV (kPIV )/(u2

τ,PIV ∗ yPIV )

k̃ = kref ∗ yref Ẽref (k̃) = Eref (k̃)/(u2
τ,ref ) = Eref (kref )/(u

2
τ,ref ∗ yref )

Now, assuming that the non-dimensional spectrum of the flow is equal to the non-
dimensional reference spectrum, the non-dimensional PIV spectrum at k̃cexp can be ex-
pressed as:

ẼPIV (k̃cexp) = 2 ∗ Ẽref (k̃cexp)

(

sinc(k̃cexp ∗
LIW

2

1

yPIV

)

)2

(2.13)

The multiplication factor
(

sinc(k̃cexp ∗ LIW

2
1

yPIV
)
)2

represents the low-pass filtering effect

of PIV due to the averaging over the interrogation window. Equations 2.13 indicates
that k̃cexp can be retrieved as the wavenumber at which ẼPIV (k̃) intersects with 2 ∗
Ẽref (k̃)

(

sinc(k̃cexp ∗ LIW

2
1

yPIV
)
)2

.

Finally, the cut-off wavenumber k̃cexp can be related to the radius r+ of a vortex that will
be resolved with a signal to noise ratio of 1 by the PIV experiment at the wall distance
y+:

r+
SNR=1 =

1

2

2Π ∗ y+
PIV

k̃cexp

(2.14)

This process is illustrated using SPIV data acquired in a XY plane of a turbulent boundary
layer at δ+ = 820, and using as a reference the spectrum from a DNS of channel flow
at δ+ = 950 (DelAlamo et al (2004)). The Reynolds number of these two datasets are
quite close. More details on the SPIV data are given in the next chapter of this thesis.
In both datasets, the longitudinal spectra of the streamwise velocity are computed at
y+ = 100. As can be seen in 2.4, they are in excellent agreement in an inner scaling.
The methodology employed to retrieve k̃cexp is shown in figure 2.5. The non-dimensional
cut-off wavenumber of the PIV spectrum at SNR=1 is found to be k̃cexp = 12.8 ± 0.5:
a vortex of radius r+ = 20 will be resolved with a signal-to-noise ratio of 1 by the PIV
measurements. It has been shown in Herpin et al (2008) that this methodology can also
be applied when there exists a substantial difference between the Reynolds number of the
PIV dataset and of the reference dataset, thanks to the inner scaling of Perry et al (1986).
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Figure 2.4: Spectra of the SPIV dataset and DNS dataset at y+ = 100 in inner scaling
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Figure 2.5: Methodology employed to retrieve kcSNR=1
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Chapter 3

Experiments in the LTRAC
water-tunnel

The stereoscopic PIV technique, described in chapter 2, is employed to measure the flow
in a streamwise/wall-normal section of turbulent boundary layers at Reθ = 1300 and
Reθ = 2200 developing in the LTRAC water-tunnel. After a brief presentation of this
facility, the PIV setup is extensively described, and the evaluation parameters for the
particle images are given. Then, the measurement uncertainty is thoroughfully assessed,
and a summary of the database is finally given.

In the following, the ‘x’ coordinate is along the streamwise direction, the ‘y’ coordinate
is along the wall-normal direction, and the ‘z’ coordinate is along the spanwise direction.
The origin of the reference frame is on the lower-wall of the tunnel.

3.1 Flow under investigation

The turbulent boundary layer measurements are carried out in the LTRAC horizontal
water-tunnel. An extensive characterization of the facility can be found in Kostas (2002).
The water-tunnel is sketched in figure 3.1. The flow is produced by a three-phase 55KW
Western Electric motor coupled to a Goulds pump system(8), and conditioned in the set-
tling chamber(1) by a perforated settling plate, a honeycomb, screens and a 10:1 smooth
contraction(2). The horizontal test section(3) of the tunnel is made up of 5 elementary
working sections, each 1.1m long with a 500mm*500mm cross section. The working sec-
tions are fabricated from 25mm thick transparent acrylic (Perspex) sheets allowing full
optical access to the flow. The flow rate in the working sections can be set in increments
of 1mm/s up to a maximum free-stream velocity of 0.775m/s. The flat-plate turbulent
boundary layer under interest develops on the floor of the test section. A tripping device
was designed to promote transition to turbulence. It is made up of a 3mm diameter stain-
less steel wire followed by a 40mm streamwise-length of water-resistant sandpaper, both
of which span the tunnel width and are attached to a thin stainless steel magnetic plate.
During the measurements, the tripping device is positioned on the floor of the tunnel at
the inlet of the test section. A collection of rare earth magnets on the outer walls of the
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Figure 3.1: The LTRAC water-tunnel. The measurements were taken in section 3d.
1 settling chamber, 2 10:1 contraction, 3 working sections, 4 plenum chamber, 5 rear
observation window, 6 return pipework-suction side, 7 filtration isolating valve, 8 AC
motor-centrifugal pump system, 9 orifice plate, 10 return pipework-pressure side, 11
water filtration circuit

tunnel is used to hold the tripping device firmly against the tunnel floor.

The characteristics of the two boundary layers under interest are reported in table 3.1.
Both of them were measured 3.7m downstream of the tripping device (section 3d) with a
frequency of the motor-pump set at f = 28Hz (U∞ ≈ 0.425m/s), but with different levels
of free-stream turbulence intensity: Tu = 5.4%U∞ and Tu = 2.6%U∞. These different
levels of Tu are linked to different states of cleanliness of the screens and honeycombs in
the settling chamber: over time, seeding particles accumulate on their surface, resulting
in an increased turbulence intensity. The lower turbulence intensity (Tu = 2.6%U∞) was
obtained after a cleaning of the screens and honeycombs was undertaken. The sensitivity
of the laminar/turbulent transition behind the tripping device to Tu is responsible for the
differences in boundary layer thickness (δ = 0.064m and δ = 0.035m) and in Reynolds
numbers (Reθ = 2200 and Reθ = 1300). In both cases, the Reynolds numbers are high
enough to guarantee that the boundary layer is free from low-Reynolds number effects,
while remaining in the range typically achieved by recent DNS simulations (DelAlamo
et al (2006)).

Reθ U∞ (m/s) Tu (%U∞) θ (m) δ+ uτ (m/s) δ (m) 1+ (ν/Uτ ) (um)

2200 0.422 5.4% 4.66e− 3 1390 0.0186 0.064 46
1300 0.429 2.6% 2.57e− 3 820 0.0198 0.035 43

Table 3.1: Properties of the boundary layer under investigation in the LTRAC water-
tunnel
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3.2 Setup

The two boundary layers were measured using the same stereo-PIV setup. The experimen-
tal procedure has been extensively described in Herpin et al (2008). The setup consists
of two separate stereo systems placed next to each other in the streamwise direction: two
adjacent XY planes of the flow are measured simultaneously. The field-of-views of the
two stereo-systems overlap to ensure continuity of the data. The arrangement is shown
in Figure 3.2. The use of multiple stereo-systems was already employed by Kostas et al
(2005) to investigate a turbulent boundary layer flow subject to adverse pressure gradient.
In our case, the main interest is to increase the spatial dynamic range in the streamwise
direction in order to capture the large scale structures elongated in that direction while
maintaining good resolution of the small scales. The different parameters of the PIV

1 2

3 4

Flow

x

z y

object plane (laser sheet)

water-prismθ

water-air interface

Figure 3.2: Top-view of the Stereo-PIV setup. Note that the coordinate system is indica-
tive only and does not represent the axes-origin.

setup are compiled in Table 3.2, and an extensive description follows. The 4 cameras
used are PCO 4000, which feature a large CCD array (4008px ∗ 2672px) with a pixel
size of 9µm ∗ 9µm. They are oriented such that the larger side of the CCD (4008px) is
imaging the streamwise extent of the field of view. Within each stereo system, the two
cameras are arranged in an angular configuration (Prasad (2000)). Although an off-axis
angle of θ = 45◦ is recommended to get as much accuracy on the out-of-plane component
as on the in-plane components, the stereo angle was set to a nominal angle of θ = 30◦ in
the present experiment. This is intended to limit the optical distortions likely to occur
on the optical path of the cameras because of the non-orthogonal viewing through the
air-water interface. To further reduce this type of optical distortions, water-filled prisms
of the same nominal angle were placed on either side on the water-tunnel flush with the
walls, in the same fashion as in Parker et al (2005).
A calibration target with reference marks was placed inside the region of interest to ad-
just the field of view of each camera. The dimensions of the target were large enough to
calibrate simultaneously the field of view of the two stereo-systems. The cameras were
fitted with 200mm focal length lenses and an average magnification of M = 0.45 was
used, resulting in each camera having a field of view with a nominal size of [Sx; Sy] =
[86.5mm, 46.5mm]. This magnification was chosen to center the available spatial dynamic
range of the experiment on the range of structures to be resolved in the flow. It corre-
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sponds to a spatial resolution of 20.5µm/px. Note that these values of magnification
and spatial resolution represent an average between the four cameras and between the
two directions of the field of view. Because of the stereoscopic viewing angle, there is a
ratio of 1

cos(θ)
= 1.15 between the magnification along the streamwise direction and along

the wall-normal direction. Specially designed camera adapters allow for fine tuning of
camera positioning: the common viewing area between the two cameras of one stereo
system was maximized, and the overlap between the two stereo systems was carefully ad-
justed. As a result, the total field of view of the full stereoscopic arrangement has a size
of [Sx; Sy] = [165mm, 46.5mm]. A high degree of sharpness was achieved on each CCD’s
through the use of a limited aperture of the lens (f# = 16) and through an accurate
enforcement of the Scheimpflug condition on the camera adapters (Soloff et al (1997),
Prasad and Jensen (1995)).
A two-cavity 200mJ Nd:YAG laser system was used at a wavelength of λ = 532nm to
illuminate the field of view. The laser beam was shaped below the test section into a
0.8mm-thick (lz) laser sheet by a combination of spherical and cylindrical external optics,
before being redirected with a front-coated high-energy mirror into a XY plane aligned
with the calibration target. The verticality of the laser sheet inside the tunnel was real-
ized by adjusting the angle of the redirection mirror until good coincidence between the
incoming laser sheet and its weak reflection on the floor of the test-section was observed.
With the laser sheet originating from below the test-section, the 2 stereo systems had
their 2 cameras symmetrically placed on either side of the laser sheet. This stereoscopic
arrangement was first proposed by Willert (1997). It is attractive because the field of
views of both stereo cameras are then identically stretched, allowing for a more accurate
reconstruction of the out-of-plane component. The depth of field of the cameras is on the
order of 6.8mm, which is much larger than the laser sheet thickness.
The stereoscopic measurement volume was calibrated using the Soloff method (Soloff et al
(1997)). The calibration target, initially aligned with the laser sheet, was translated in
the out-of-plane direction from z=-2.5mm up to z=2.5mm with steps of 500µm using a
micrometer with 5µm precision. At each position, the image of the calibration target on
the camera CCDs was then recorded.
The flow was seeded with hollow glass spheres with a mean diameter of dp = 11µm and a
density of ρp = 1100kg/m3. At the selected aperture of the lenses, the diffraction limited
particle image diameter is on the order of dp = 3.4px. This value is close to the optimum
particle image diameter of 2px proposed by Raffel et al (1998) to reduce peak-locking bias
error. The number of particle images Np per IW of 32px ∗ 32px was evaluated by a visual
inspection of the PIV images and is on the order of 10.
The two cavities of the laser were pulsed with a separation time ∆t = 550µs at a fre-
quency facq = 1Hz. For these conditions, the maximum displacement of the particles
between the two exposures of the cameras is of the order of U∞ ∗ ∆t = 12px. Between
two successive velocity field acquisitions, the flow in the free stream has moved a distance
equal to 1

facq

U∞

Sx
= 2.57 times the extent of the total field of view, corresponding to 6.5δ.

This is about 2 times the streamwise extent of the hairpin packet. The number of SPIV
records acquired is Ns = 1815 for the boundary layer at Reθ = 2200 and Ns = 605 for
the boundary layer at Reθ = 1300.
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stereo angle (θ) 30◦

laser sheet thickness (lz) ≈ 0.8mm
magnification (M) 0.45
resolution (pxobj) 20.5µm/px
lens aperture (f#) 16
ddiff 3.4px
depth of field (δz) 6.8mm
field of view [Sx; Sy] = [165mm; 46.5mm]
overlap region Sx,overlap = 7.75mm
separation time (∆t) 550µs

Table 3.2: PIV recording parameters in the LTRAC water-tunnel

3.3 Evaluation of the SPIV images

3.3.1 Description of the evaluation software

The different stereoscopic evaluation methods have been reviewed in section 2.2.3 of the
present thesis. The in-house code ‘pivlml’ developped by the LML makes use of a ‘3D
warping’ technique with a Soloff back-projection/reconstruction (Soloff et al (1997)). The
PIV evaluation is first performed in the image space of each camera, using an FFT based
cross-correlation algorithm that is multipass and multigrid (Westerweel et al (1997), Soria
(1996), Soria et al (1999)). This cross-correlation is performed on a mesh defined as
the forward projection of a common cartesian grid in the object space (Coudert and
Schon (2001)). The position of the correlation peak is detected using two one-dimensional
Gaussian peak-fitting. The backprojection of the two 2D-2C velocity fields in the object
space and the three component reconstruction are realized in a single step using the Soloff
method (Soloff et al (1997)). The model used to map the object volume to the image
plane is a polynom with cubic dependence in the two in-planes direction and quadratic
dependence in the out-of-plane direction (cf eq. 2.3). The coefficients of the polynoms
are calibrated using images of a planar calibration target translated in the out-of-plane
direction. Finally a misalignement correction is performed, as implemented in Coudert
and Schon (2001).

3.3.2 Parameters of the evaluation

The two sets of SPIV images (at Reθ = 2200 and Reθ = 1300) were evaluated using
the same parameters. These parameters are compiled in Table 3.3. The SPIV images
were cross-correlated in three steps in the image plane of each camera, starting with
an interrogation window of 64px*64px, and then doing two successive analysis with an
interrogation window size of 32px*32px (an overlap of 70% was used between adjacent
IWs). The Soloff coefficients were computed from images of the calibration target at
three out-of-plane positions (z=-1mm, z=0, z=+1mm), with correction for the laser-
sheet/calibration target misalignment. This misalignment is on the order 175µm at most,
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which is smaller than the laser sheet thickness lz = 800µm, and represents 1/3 of the
IW. The Soloff back-projection/reconstruction method is then used to retrieve the 2D-3C
velocity field of each stereo system in the object space. The grid in the object space is
Cartesian with a mesh step of 200µm and with the first mesh point at 550µm away from
the wall. The number of points of 2D-3C velocity fields of each stereo-system is reported
in Table 3.3. Note that for the measurements at Reθ = 1300, the quality of the velocity
field at the downstream end of the field of view was not satisfactory due to a lack of light
intensity, and hence the last 125 points in the streamwise direction were suppressed from
the final velocity field.

calibration planes −1mm, 0mm, +1mm
misalignment ≤ 175µm
number of analysis 3
initial IW (px) (64 ∗ 64)
final IW (32 ∗ 32)
Mesh step (200µm ∗ 200µm)
Number of points

upstream syst. [Nx, Ny] = [426; 234]
downstream syst. [Nx, Ny] = [439; 234]∗

total syst. [Nx, Ny] = [826; 234]∗

overlap region (pt) 39
bias of merge (pivlml)

u 0.03%U∞

v 0.04%U∞

w −0.2%U∞

rms of merge (pivlml)
u 0.9%U∞

v 0.6%U∞

w 1.65%U∞

Table 3.3: Parameters of the evaluation of the SPIV images acquired in the LTRAC water-
tunnel. * For the measurements at Reθ = 1300 the number of points of the downstream
stereo-system is [314; 234] and the total number of points is [701; 234]

The overlap region between the 2D-3C velocity fields obtained from the two stereo
systems is 39 mesh points long in x. In this common area, the merging between the
two systems is simply realized by taking the average of the two 2D-3C velocity fields.
This merging procedure is illustrated in Figure 3.3. A portion of the overlap region
of an instantaneous velocity field from the dataset Reθ = 2200 is represented before
the merging in Figure 3.3a (from the two separate 2D-3C velocity fields) and after the
merging in Figure 3.3b. Only one in every two vectors is shown. In order to better assess
the quality of the merging procedure, only the fluctuating part of the flowfield is shown -
a constant convection velocity has been subtracted from the instantaneous velocity field.
The selected example is a challenging one, as a vortex is centered at y+ = 80 and extends
down to the wall (y+ = 15), crossing the overlap region. Some slight differences between
the two 2D-3C velocity fields are visible before the merging. The merged velocity field,
visible in figure 3.3b is of good quality, and presents an excellent resolution of a vortex
present in the flow field. The merged velocity fields have a final size of [Nx; Ny] = [826; 234]
for the measurements at Reθ = 2200 and [Nx; Ny] = [701; 234] for the measurements at
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Reθ = 1300.
The quality of the merging procedure can be assessed by analyzing some statistical
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Figure 3.3: Fluctuating in-plane velocity field in a portion of the overlap region in the
LTRAC dataset at Reθ = 2200, in wall units. 1 vector shown out of 2

results on the difference between the two 2D-3C velocity fields in the overlap region for
each velocity component:

• the bias between the 2D-3C velocity fields for each velocity component :

< ui,sys1 − ui,sys2 >= Ui,sys1 − Ui,sys2 (3.1)

• the rms of the random part of the difference between the 2D-3C velocity fields for
each velocity component :

((ui,sys1 − ui,sys2)− (Ui,sys1 − Ui,sys2))RMS (3.2)

These statistics were found to be comparable for the datasets at Reθ = 2200 and Reθ =
1300, as expected since the same PIV setup was used. The values valid for both datasets
are presented in table 3.3. The bias between the two stereoscopic systems is always neg-
ligible with respect to the RMS between the velocity fields. Among the three velocity
components, the RMS is the highest for w with an amplitude of 1.65%U∞, and the lowest
for v with an amplitude of 0.6%U∞. This ordering is coherent with the measurement
configuration, as the out-of-plane velocity component is more sensitive to the SPIV re-
construction than the in-plane non-stretched velocity component.
The cross-correlation of PIV images taken at the same instant, used to compute the mis-
alignment, can be further utilized to retrieve the effective laser sheet thickness (defined
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as the portion of the laser sheet thickness contributing to the PIV correlation). Following
Herpin et al (2008), the width of the correlation peak Kcorr is related to lzeff via:

lzeff =
Kcorr

2 ∗ tan(θ)
(3.3)

The effective laser sheet thickness is found to be 33px on average (or 650µm in physical
units) which is similar to the size of the final interrogation window. Hence we can safely
conclude that the interrogation volume approximates a cube, and that SVmin,th = 2 ∗
max(LIW , lz) ≈ 2 ∗ LIW .

3.4 Estimation of the measurement uncertainty

There exist multiple ways of assessing the PIV random error, as reviewed in section 2.1.3.
In the following, two techniques are employed to retrieve the error of the LTRAC SPIV
experiments: a method using an existing study of numerically simulated PIV recordings,
and a method based on the real images acquired in the overlap region of the two stereo-
systems.

3.4.1 Using synthetic images

In this section, the parameteric study by Foucaut et al (2003) is used as described in sec-
tion 2.1.3 to evaluate the uncertainty of the SPIV experiments conducted in the LTRAC
water-tunnel. This study made use of the Europiv Synthetic Image Generator described
in Lecordier and Trinite (2003) to generate PIV recording of known content, which were
then evaluated with an FFT based cross-correlation algorithm, similar to that employed
in the LML evaluation software. The evolution of the PIV error with a range of differ-
ent PIV recording parameters (diameter, concentration, out-of-plane motions, velocity
gradient) was established. Using this parametric study, the random error associated to
each parameter of the LTRAC experiment can then be retrieved (this is the error on the
in-plane projection of the displacement), the greatest of these RMS error being the global
uncertainty of the experiment. Foucaut et al (2003) and Soria (1996) showed that for
optimal recording parameters (Raffel et al (1998) : dp,opt = 2− 3px, Np,opt = 10, and ide-
ally no velocity gradient and no out-of-plane motion), the PIV interrogation uncertainty
is 0.06px. According to table 3.2, the only recording parameters that can be considered
as non-optimum in the SPIV experiment are the presence of velocity gradient (the wall-
normal gradient of streamwise velocity dU

dy
), and of out-of-plane motions. The global PIV

uncertainty can then be taken as:

σ(ǫint) = max
(

σdU/dy, σout−of−plane, σdp, 0.06px
)

(3.4)

Following classical turbulent boundary layer results, the out-of-plane motion (dw)∆t is
considered to have a zero mean value, a maximum standard deviation of wRMS = uτ and
a Gaussian distribution of total width K = 3wRMS = 3uτ . The corresponding out-of-plane
displacement thus reads:

(dw)IW,∆t = 3 ∗ uτ ∗∆t
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Scaled with the laser sheet thickness lz, it reads (dw)∆t = 0.04lz. According to the
parametric study by Foucaut et al (2003), this level of out-of-plane motions does not
generate any additional uncertainty, and is therefore negligible.
The maximum difference in particle displacement over the IW during ∆t induced by the
mean velocity gradient is noted (dU)IW,∆t. It varies with the wall distance, and was
evaluated close to the first measured wall-normal position (y+ = 16), at the interface
of the buffer region and of the logarithmic region (y+ = 40), and at the heart of the
logarithmic region (y+ = 100), using the following set of formulae :

(dU)IW,∆t = ∆t ∗ uτ

pxobj

∫ y++
l+
IW
2

y+
−

l+
IW
2

dU+

dy+
dy+

dU+

dy+
=

2

1 +
√

1 + 4(Ky+(1− exp(−y+/A+))2
(Van Driest) for y+ = 16, y+ = 40

dU+

dy+
=

1

Ky+
(Log law) for y+ = 100

This displacement difference is scaled with the particle image diameter, following Keane
and Adrian (1990). The results are compiled in table 3.4. At y+ = 16, the mean velocity
gradient generates a random error on the order of σ(ǫint) = 0.3px, according to the results
of Foucaut et al (2003). At the end of the buffer region (y+ = 40), the velocity gradient
has significantly decreased, and the impact on the measurement uncertainty is negligible.
As shown in Westerweel (1997), the velocity gradient is also one of the main sources of
measurement bias. It is thus of interest to check its influence in the present measurements.
According to the results of Soria (2006) rescaled in terms of particle image diameter, the
velocity bias becomes negligible for a velocity gradient of (dU)IW,∆t < 0.8dp, which is
reached within the buffer region.

Finally, one can say that the random error on the image displacement σ(ǫint) in the
boundary layer above y+ = 40 is on the order of 0.06px. Below y+ = 40, the velocity
gradient across the interrogation window becomes the dominant source of error, and the
related uncertainty at y+ = 16 is on the order of σ(ǫint) = 0.3px.

Using the stereoscopic error analysis proposed by Willert (1997) and Prasad (2000),
this noise on the PIV evaluation σ(ǫint) can now be related to the random error on the
three velocity components reconstructed in the object plane, using equation 2.7 in section
2.2.5. As the uncertainty σ(ǫint) is presently expressed in terms of displacement in pixels,
it needs to be multiplied by the physical size of the pixel on CCD camera array and
divided by the time separation ∆t to get the uncertainty on the velocity in physical units
in the object space (assuming that there is no uncertainty on ∆t). Finally the random
error on the three velocity components can be simplified using the physical size of the
camera pixels in the object space pxobj:

σ(ǫu) = σ(ǫv) =
pxobj

∆t

1√
2
σ(ǫint) σ(ǫw) =

1

tan(θ)
σ(ǫu) (3.5)

The measurement uncertainties above y+ = 40 for a confidence interval of 68% are there-
fore equal to:

±σ(ǫu) = ±σ(ǫv) = 0.0015m.s−1 = 0.35%U∞

±σ(ǫw) = 0.0027m.s−1 = 0.64%U∞
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y+ = 16

(dU)IW,∆t 4.2px

(dU)IW,∆t 1.2ddiff

σdU/dy 0.3px

y+ = 40

(dU)IW,∆t 1.0px

(dU)IW,∆t 0.3ddiff

σdU/dy 0.08px

y+ = 100

(dU)IW,∆t 0.15px

(dU)IW,∆t 0.044ddiff

σdU/dy 0.06px

Table 3.4: Error induced by the velocity gradient in the LTRAC database

The maximum uncertainties, obtained at y+ = 16, are ±σ(ǫu,max) = ±σ(ǫv,max) = 1.8%
and ±σ(ǫw,max) = 3.1% when normalized with the free-stream velocity, or ±σ(ǫu,max) =
±σ(ǫv,max) = 3.7% and ±σ(ǫw,max) = 6.5% when normalized with the local mean velocity.

This analysis does not take into account the errors linked to the 3D Soloff calibration,
which are difficult to estimate and are expected to be negligible with respect to σ(ǫint)
(van Doorne et al (2003)). It should now be emphasized that, as any error analysis based
on synthetic particle images, it does not take into account all the sources of measurement
noise of the experiment: for instance the influence of the turbulent fluctuations, of the
CCD transfer function, and of the optics transfer functions are not taken into account.
As a consequence, the uncertainties σ(ǫu), σ(ǫv), σ(ǫw) computed in this section should
be understood as a lower bound of the uncertainty.

3.4.2 Using real images

Another way to compute the measurement uncertainty is to consider the simultaneous
measurement of the flow in the overlap region by the two stereo systems as two inde-
pendent realizations. The rms of the difference between the two 2D-3C velocity fields
in the overlap region can the be interpreted as the measurement random error σ(ǫui

)
(Kostas et al (2005)). The SPIV uncertainties with a confidence interval of 68% for the
two datasets thus read:

σ(ǫu) = (usys1 − usys2)rms = 0.9%U∞

σ(ǫv) = (vsys1 − vsys2)rms = 0.6%U∞
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σ(ǫw) = (wsys1 − wsys2)rms = 1.65%U∞

Note that this estimation of the measurement uncertainty is global over the overlap region;
in particular it is averaged over the wall-normal direction, and no distinction is made
between the region below y+ = 40 (where the noise increase when going down to the
wall, cf section 3.4.1) and the region above y+ = 40 (where the noise is independent of
y+, cf section 3.4.1). However, given the ratio between the number of mesh points in

these two regions (
Ny+<40

Ny+>40

= 7
227

), the contribution of the region y+ < 40 is negligible

with respect to the contribution of the region y+ > 40. Among the two in-plane velocity
components, u shows a slightly higher uncertainty than v, probably linked to the image
stretching occurring along the x direction, as explained in Willert (1997). The ratio of
the out-of-plane uncertainty over the in-plane uncertainty is in good agreement with the
prediction by Willert (1997) and Prasad (2000) given our stereoscopic angle:

σ(ǫw)

σ(ǫu)
= 1.9 ≈ 1

tan(30◦)

These uncertainties computed from the real PIV images are about two times higher than
the a-priori uncertainties computed in section 3.4.1 from synthetic PIV images for y+ > 40.
This difference are attributed to the fact that, unlike the study based on synthetic particle
images, the uncertainties computed on the real PIV images take into account all the
sources of noise of the experiment (and in particular the turbulent fluctuations occurring
inside the IW). They can be regarded as the actual uncertainty of the SPIV experiment.

3.5 Summary of the database

The characteristics of the entire database acquired in the LTRAC water-tunnel are finally
summarized in table 3.5. Using these informations, the spatial dynamic range of the
LTRAC experiment and the range of scales to be resolved in the flow were computed and
compiled in table 3.6 (cf section 2.3 and equations 2.10 and 2.11). It can be compared
to the spatial dynamic range achieved in previous PIV studies (cf table 2.1 in section
2.3). The value of SDRth and of SDRth

Wstr
achieved at Reθ = 2200 is four times higher than

the largest one previously achieved with digital PIV so far (Ganapathisubramani et al
(2006)). As for the experiment at Reθ = 1300, it is remarkable that the spatial dynamic
range is equal to the range of structures present in the flow. In conclusion, the LTRAC
datasets are suitable for the study of both the small scales and the large scales of the flow.

Plane Reθ δ+ Field of View LIW Mesh step 1st mesh point n◦ records

(1-2) Reτ S1, S2 ∆i
L+

IW,ini

2
≤ y+

XY 2200 1390 2.6δ, 0.75δ 14.2+ 4.3+ 12 ≤ y+ 1815
XY 1300 820 4δ, 1.4δ 15.2+ 4.7+ 13 ≤ y+ 605

Table 3.5: Characteristics of the LTRAC database
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Plane Reθ SDRth Wstr

XY 2200 115 205
XY 1300 120 123

Table 3.6: Spatial dynamic range (SDRth) and range of scales to resolved (Wstr) of the
LTRAC database
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Chapter 4

Experiments in the LML
wind-tunnel

The stereoscopic PIV technique is now employed to measure the flow in a streamwise/wall-
normal and in a spanwise/wall-normal section of turbulent boundary layers developing
in the LML wind-tunnel. The Reynolds number of the boundary layers is comprised
between Reθ = 7630 and Reθ = 18950. After a brief presentation of this facility, the PIV
setup is extensively described, and the evaluation parameters for the particle images are
given. Then, the measurement uncertainty is thoroughfully assessed, and a summary of
the database is finally given.

4.1 Flow under investigation

The LML wind-tunnel has been extensively described and characterized in Carlier and
Stanislas (2005) as well as in Carlier (2001). A sketch of the facility is shown in figure
4.1. The working section of the wind tunnel is 1m high, 2m wide and 21.6m long. The
flow is produced by a fan and motor that allow the variation of the mean velocity of the
external flow continuously from 3m/s up to 10m/s with a stability better than 0.5%.
The turbulence level in the free-stream is about 0.3% of the external velocity U∞, and the
temperature is kept within ±0.2K by using an air-water heat exchanger in the plenum
chamber. The last five meters of the working sections are made up of glass to give full
optical access to the flow.

The turbulent boundary layer under study develops on the lower wall of the working
section after being tripped at the entrance by a grid fixed on the floor. Due to the long
length of the working section (21.6m at most), this facility is suitable for high spatial
resolution measurements at high Reynolds numbers: the Reynolds number based on the
momentum thickness Reθ can reach values up to 20600, with a boundary layer thickness
of about 0.3m.
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Figure 4.1: The LML wind-tunnel

The boundary layer has been previously characterized with hot-wire anemometry at
two measurement stations: x = 18m and x = 19.6m downstream of the tripping device.
The measurements at x = 18m were realized using single-wire probes only, and those at
x = 19.6m using both single-wire and X-wires probes. The characteristics of the bound-
ary layer at these two measurement stations are reported in tables 4.1 and 4.2.

In this study, particle image velocimetry measurements are carried out 18m down-
stream of the tripping device, at four different flow regimes (U∞ = 3m/s, 5m/s, 7m/s,
and 10m/s) and in two measurement planes (a streamwise/wall-normal plane and a wall-
normal/spanwise plane). In this chapter, an extensive description of the PIV setup is
first given. The evaluation of the SPIV images is then described, and the measurement
uncertainty is finally assessed.

Reθ U∞ (m/s) θ (m) δ+ uτ (m/s) δ (m) 1+ (ν/Uτ ) (um) P,x (Pa/m)

7630 3 0.0362 2590 0.112 0.332 128 -0.090
10140 5 0.0291 3620 0.185 0.279 77 -0.200
13420 7 0.0276 5020 0.255 0.281 56 -0.350
18950 10 0.0280 6860 0.350 0.288 42 -0.540

Table 4.1: Properties of the boundary layer in the LML wind-tunnel at x=18m obtained
from single wire HWA
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Reθ U∞ (m/s) θ (m) δ+ uτ (m/s) δ (m) 1+ (ν/Uτ ) (um) P,x (Pa/m)

8170 3 0.041 2570 0.110 0.350 136 -0.090
11450 5 0.034 3890 0.183 0.319 82 -0.200
14500 7 0.031 4970 0.252 0.298 60 -0.350
20920 10 0.031 7070 0.347 0.304 43 -0.540

Table 4.2: Properties of the boundary layer in the LML wind-tunnel at x=19.6m obtained
from single wire HWA

4.2 Setup

The turbulent boundary layers described in table 4.1 are investigated using stereoscopic
particle image velocimetry. The flow in a streamwise/wall-normal (XY) plane and a plane
orthogonal to the mean flow (YZ) is successively characterized. In total, four PIV setups
are used to measure eight different sets of data:

• setup A (with a 200mm focal length): Reθ = 10140, Reθ = 13420 and Reθ = 18950
in the XY plane,

• setup B (with a 105mm focal length): Reθ = 7630 and Reθ = 10140 in the XY
plane,

• setup C (with a 105mm focal length): Reθ = 7630 and Reθ = 10140 in the YZ plane
and

• setup D (with a 200mm focal length): Reθ = 10140, Reθ = 13420 and Reθ = 18950
in the YZ plane.

In order to maintain an equivalent resolution of the small scales, some adjustments on
the camera magnification were realized throughout the range of Reynolds numbers inves-
tigated (7630 ≤ Reθ ≤ 18950): while the overall distance between the cameras and the
measurement plane was kept constant for the four PIV setups (to minimize the realign-
ments), the focal length of the camera lenses was changed over the range of Reynolds
number measured. Note that the Reynolds number at which the change of focal length
occurs (Reθ = 10141) was measured using both focal lengths. The PIV parameters em-
ployed for each setup are compiled in table 4.3, and an extensive description follows. The
transition from the XY viewing configuration (setup A and B) to the YZ viewing config-
uration (setup C and D) was achieved by rotating the SPIV bench by 90 degrees around
the y axis.
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The setup actually consists of two distinct stereo systems placed below the test sec-
tion, next to each other in the wall normal direction: two adjacent planes are recorded
simultaneously, and the fields of view are overlapped to ensure continuity of the data.
The main interest of this configuration is to increase the extent of the field of view in the
wall-normal direction, while keeping a good resolution of the small scales. Different views
of this arrangement are shown in figures 4.2, 4.3, 4.4 and 4.5.

Figure 4.2: Side view of the stereo-PIV
setup in the XY configuration (LML)

Figure 4.3: Side view of the stereo-PIV
setup in the YZ configuration (LML)

Figure 4.4: Stereo-PIV setup in the YZ
configuration: view from the top of the
wind-tunnel test section (LML)

Figure 4.5: Stereo-PIV setup in the YZ
configuration: view from the top of the
wind-tunnel test section, with the incom-
ing laser sheet (LML)
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For the ‘lower’ stereo system, cameras with a CCD array of 1376px ∗ 1040px and a
12bit dynamic range are used. For the ‘upper’ system, cameras with a CCD array of
1280px ∗ 1024px and a 10bit dynamic range were available. They are oriented in such
a way that the wall normal direction of the measurement plane is imaged on the larger
side of the cameras (1376px and 1280px). Within each stereo system, an angular config-
uration is used with a nominal off-axis angle around 45◦, in order to get a comparable
accuracy on the in-plane velocity components and on the out-of-plane velocity component
(Prasad (2000)). Note that due to the angular configuration, the wall-normal direction
is stretched and the ratio between the average magnification along the y and the x/z
direction is My

Mx/z
= 1

cos(θ)
= 0.7. The magnifications and resolutions given in table 4.3 are

averaged over the four cameras and over the two directions of the measurement plane.
The cameras are mounted on specially designed camera adapters for a fine tuning

of the camera positioning: the common viewing area between the two cameras of one
stereo system was maximized, and the overlap between the two stereo systems was care-
fully adjusted. For each PIV setup, a calibration target with reference marks was placed
inside the region of interest to adjust the field of view of each camera. For the measure-
ments at Reθ = 10140, Reθ = 13420 and Reθ = 18950 (setup A and D), the cameras
are fitted with 200mm focal length lenses at aperture of f# = 8, and an average mag-
nification of 0.24 is achieved. The total extent of the field of views (for the two stereo
system) are [Sx; Sy] = [21mm; 77.5mm] (setup A) and [Sz; Sy] = [20mm; 74mm] (setup
D) with an overlap region of Sy,overlap = 1.5mm (setup A) and Sy,overlap = 1mm (setup
D). For the measurements at Reθ = 7630 and Reθ = 10140 (setup B and C), the cam-
eras are fitted with 105mm focal length lenses at an aperture of f# = 5.6 (setup B) and
f# = 8 (setup C), and an average magnification of 0.1 is achieved. The total extent of
the fields of view (for the two stereo system) are [Sx; Sy] = [50mm; 194.5mm] (setup B)
and [Sz; Sy] = [50mm; 192mm] (setup C) with overlap regions of Sy,overlap = 4mm (setup
B) and of Sy,overlap = 3.5mm (setup C) between the two stereo systems.

A two-cavity 200mJ Nd:YAG laser system was used at a wavelength of λ = 532nm
to illuminate the field of view. The laser beam was shaped above the test section into a
1mm thick (lz/x) laser sheet by a combination of spherical and cylindrical external optics,
before being redirected with a front-coated high-energy mirror into a plane aligned with
the calibration target. The switch from the XY laser sheet (setup A and B) to the YZ
laser sheet (setup C and D) was simply realized by rotating by 90 degrees the cylindrical
lens expanding the laser beam into the laser sheet. With this configuration, the 2 stereo
systems are in forward scattering and have their 2 cameras symmetrically placed on ei-
ther side of the laser sheet. This stereoscopic arrangement was first proposed by Willert
(1997). It is attractive because the field of views of both stereo cameras are illuminated
by maximum light intensity and are identically stretched, allowing for a more accurate
reconstruction of the out-of-plane component. At this laser wavelength, the lens aperture
of f# = 8 result in a diffraction limited particle image diameter of ddiff = 1.8px (setup
A, C and D) and the lens aperture of f# = 5.6 in a diameter of ddiff = 1.2px (setup B).
Raffel et al (1998) recommended a particle image diameter of the order of 2 pixels; the
diffraction limited particle image diameter of setup A, C and D is therefore close to the
optimum, but some peak-locking effect is expected for setup B. The depth of field of the
cameras, depending on the magnification and on the diffraction limited particle image
diameter, vary from δz = 4.1mm (setup A and D) up to δz = 21.1mm (setup C). In any
case, it is much larger than the laser sheet thickness.

For each one of the four PIV setups, the stereoscopic measurement volume was cal-
ibrated using the Soloff method (Soloff et al (1997)). The calibration target, initially
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aligned with the laser sheet, was translated in the out-of-plane direction from z=-2.5mm
up to z=2.5mm with steps of 500µm using a micrometer with a ±5µm accuracy. At each
position, the image of the calibration target on the CCD was then recorded.

The flow was seeded with tracer particles delivered by a Poly-Ethylene-Glycol smoke
generator. The mean diameter of the particle is about 1µm. The two cavities of the
laser were pulsed at a frequency facq = 1Hz for the acquisition of the SPIV images. The
separation time between the two cavities was adjusted at each Reynolds number to get
a maximum in-plane displacement of the particles around 10.5px (and therefore to get
the same accuracy for all measurements). For the YZ configuration, the mean flow is
normal to the measurement plane, creating large out-of-plane motions. In order to keep
a high level of cross-correlation, the light sheets from the two illumination pulses were
therefore shifted in the out-of-plane direction by a distance corresponding to the mean
out-of-plane displacement (Raffel et al (1998)). This method reduces the out-of-plane loss
of particle pairs while maintaining both a high velocity dynamic range (in contrast to the
technique that consist in reducing the separation time) and a high spatial dynamic range
(in contrast to the thickening of the laser sheet that induce more spatial averaging).

4.3 Evaluation of the SPIV images

The SPIV images were evaluated using the LML in-house code ‘pivlml’, described in
section 3.3.1. The parameters are compiled in table 4.4, for each PIV setup. For all
setups, the SPIV images were cross-correlated in the image plane of each cameras in
three successive analysis, on a mesh obtained by projecting a common Cartesian grid into
the image plane of each camera. The mesh step of the Cartesian grid was 250µm for
the higher Reynolds number range (setup A and D) and 500µm for the lower Reynolds
number range (setup B and C). This corresponds for all cases to a mesh step of about
8px in the image of the cameras. An initial IW size of 64px ∗ 64px was used, with no
initial window shift. For all setups, the final PIV analysis was realized using interrogation
windows of 32px ∗ 32px, overlapped by approximately 75%. On each stereo system, the
Soloff coefficients used to back-project the 2D-2C velocity fields in the object plane and
to reconstruct the out-of-plane velocity component were computed using three calibration
planes, separated each by 1mm.

The 2D-3C velocity fields obtained in this manner from the two stereo systems present
an overlap region whose extent in the wall-normal direction vary from 5 mesh points (setup
D) up to 9 mesh points (setup B). At each realization, the merging between the two sys-
tems was realized by taking, in this overlap region, the average of the two instantaneous
2D-3C velocity fields. This process is illustrated in figure 4.6 with an instantaneous YZ
velocity field at Reθ = 10140, measured using setup D. A portion of the overlap region, as
measured simultaneously by the lower and upper stereo systems, is shown in subfigure (a).
The result of the merging procedure applied to this velocity field is shown in subfigure (b).
The selected example is a challenging one, as a vortex is present in the overlap region.
Some slight differences are visible in subfigure (a) between the two stereo systems, but,
on the whole a good agreement is noted. The merged velocity field, visible in subfigure b
is of good quality, and presents an excellent resolution of the vortex.
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Figure 4.6: Fluctuating in-plane velocity field in a portion of the overlap region, in the
LML dataset at Reθ = 10140 in the YZ plane, in wall-units
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The quality of the merging procedure can be assessed by analyzing some statistical
results on the difference between the two 2D-3C velocity fields in the overlap region for
each velocity component:

• the bias between the 2D-3C velocity fields for each velocity component :

< ui,sys1 − ui,sys2 >= Ui,sys1 − Ui,sys2 (4.1)

• the rms of the random part of the difference between the 2D-3C velocity fields for
each velocity component :

((ui,sys1 − ui,sys2)− (Ui,sys1 − Ui,sys2))RMS (4.2)

For all setups, the statistics on the two stereoscopic systems in the overlap region show
that the bias is always smaller in magnitude than the random difference (more than 10
times smaller for the XY plane, and from 5 to 10 times for the YZ plane). On the
overall, the random error is isotropic with an average value around 0.7%U∞. Some degree
of anisotropy is visible for setup C, where σ(ǫu) ≥ σ(ǫv) ≥ σ(ǫw). The higher level of
uncertainty is obtained for the out-of-plane velocity component, and can be attributed to
the fact that this component is reconstructed by the SPIV and is thus more sensitive to
the SPIV geometry (although a stereo angle θ = 45◦ should lead to analogous in-plane
and out-of-plane uncertainty).

The misalignment between the calibration target and the laser sheet was computed
for each setup, and corrected following the methodology described in section 3.3.1. In
any case, the laser sheet was found to be at a distance less than 500µm from the central
calibration plane, with rotation by less than 0.5◦.
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4.4 Estimation of the measurement uncertainty

The various ways of assessing the PIV random error have been reviewed in section 2.1.3.
The estimation of the error in the LML SPIV measurements was carried out using the
same techniques as for the LTRAC SPIV experiments (see section 3.4): first, a method
using an existing study of numerically generated PIV records; then, a method based on
the real images acquired in the overlap region of the two stereo-systems.

4.4.1 Using synthetic images

In this section, the parameteric study by Foucaut et al (2003) is used as described in
section 2.1.3 to evaluate the uncertainty of the SPIV experiments. This study made use
of the Europiv Synthetic Image Generator described in Lecordier and Trinite (2003) to
generate PIV recording of known content, which were then evaluated with an FFT based
cross-correlation algorithm, similar to that employed in the LML evaluation software.
The evolution of the PIV error with a range of different PIV recording parameters (diam-
eter, concentration, out-of-plane motions, velocity gradient) was established. Using this
parametric study, the random error associated to each parameter of the LML experiment
can be retrieved (this is the error on the in-plane projection of the displacement), the
greatest of these RMS errors being the global uncertainty of the experiment. Foucaut
et al (2003) and Soria (1996) showed that for optimal recording parameters (Raffel et al
(1998) : dp,opt = 2− 3px, Np,opt = 10, and ideally no velocity gradient and no out-of-plane
motion), the PIV interrogation uncertainty is 0.06px. According to the PIV parameters
summarized in table 4.3, the only recording parameters that can be considered as non-
optimum are the presence of velocity gradient (the wall-normal gradient of streamwise
velocity dU

dy
), of out-of-plane motions, and the particle image diameter (for setup B only,

where dp = 1.2px instead of dp = 1.8px for the other setups). The global PIV uncertainty
can then be taken as:

σ(ǫint) = max
(

σdU/dy, σout−of−plane, σdp, 0.06px
)

(4.3)

The PIV uncertainty associated with a mean velocity gradient dU
dy

is due to non-uniform
particle displacement across the interrogation window IW during the separation time ∆t.
This difference in particle displacement is noted (dU)IW,∆t. It is computed, in pixels, at
three wall-normal positions: inside the buffer region (y+ = 16), at the interface of the
buffer region and of the logarithmic region (y+ = 40), and inside the logarithmic region
(y+ = 60). The following set of formulae is used:

(dU)IW,∆t = ∆t ∗ uτ

pxobj

∫ y++
l+
IW
2

y+
−

l+
IW
2

dU+

dy+
dy+

dU+

dy+
=

2

1 +
√

1 + 4(Ky+(1− exp(−y+/A+))2
(van Driest) for y+ = 16, y+ = 40

dU+

dy+
=

1

Ky+
(Log law) for y+ = 60
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It can be seen in the above formulae that (dU)IW,∆t depends on the Reynolds number
of the measurements (through uτ , ∆t, IW+, and pxobj) but not on the orientation of
the measurement plane (the ratio ∆t/pxobj is the same for the XY plane and for the YZ
plane. Accordingly, (dU)IW,∆t and the PIV noise induced is presented in table 4.5 for each
Reynolds number, and apply for both measurement planes. A scaling of (dU)IW,∆t with
the particle image diameter is presented, as it is on this non-dimensional parameter that
depends the noise level (Keane and Adrian (1990), Foucaut et al (2003)): for a velocity
gradient displacement above 0.5dp, the velocity gradient strongly increases the RMS error.

Reθ 7630 10140 (67µm/px) 10140 (27µm/px) 13420 18950

y+ = 16

(dU)IW,∆t 4.4px 9.1px 3.3px 5.5px 6.7px

(dU)IW,∆t 2.4dp 5.1dp 1.8dp 3.1dp 3.7dp

(setup B) (3.7dp) (7.6dp)
σdU/dy > 0.5px > 0.5px > 0.5px > 0.5px > 0.5px

y+ = 40

(dU)IW,∆t 1.0px 1.93px 0.8px 1.2px 1.5px

(dU)IW,∆t 0.5dp 1.1dp 0.4dp 0.7dp 0.8dp

(setup B) (0.83dp) (1.6dp)
σdU/dy 0.09px 0.3px 0.09px ≈ 0.22px ≈ 0.26px

y+ = 60

(dU)IW,∆t 0.25px 0.49px 0.21px 0.31px 0.38px

(dU)IW,∆t 0.14dp 0.27dp 0.12dp 0.17dp 0.21dp

(setup B) (0.21dp) (0.41dp)
σdU/dy 0.06px 0.08px 0.06px 0.06px 0.06px

(setup B) (0.06px) (0.13px)

Table 4.5: Error induced by the velocity gradient in the LML database

According to table 4.5, the velocity gradient is a significant source of measurement
noise below y+ = 60, such that:

σ(Reθ = 1014027µm/px) < σ(Reθ = 7630) < σ(Reθ = 13420)

< σ(Reθ = 18950) < σ(Reθ = 1014067µm/px)

This ordering of the uncertainties mainly finds its origin in the ordering of the present
interrogation window size in wall units (see table 4.7): in general, the larger the inter-
rogation window size, the more impact the velocity gradient has, and the highest the
uncertainty is. At y+ = 16, the sharp velocity gradient induces a displacement difference
across the interrogation window larger than 1.5dp for all datasets. This displacement is
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outside the range explored by Foucaut et al (2003). For the datasets at Reθ = 10140
(with a resolution of 67µm/px) and at Reθ = 18950 in particular, it is equal to 5.1dp and
3.7dp respectively: the measurements in this region are clearly not reliable. At the end
of the buffer layer (y+ = 40), the velocity gradient has drastically decreased. The most
highly resolved dataset (Reθ = 10140 with a resolution of 27µm/px) and the dataset at
Reθ = 7630 in the YZ plane now present a displacement difference equal to or lower than
0.5dp, and the related uncertainty is on the order of 0.09px. Finally, at y+ = 60, the
velocity gradient is now negligible, and the uncertainties are therefore close to PIV un-
certainty for optimal conditions (that is 0.06px), with the exception of the measurement
at Reθ = 10140 (with a resolution of 67µm/px) in the XY plane where the uncertainty is
still on the order of 0.13px 1.

The out-of-plane motions are the other source of uncertainty to evaluate. For the
measurements in the XY plane, they corresponds to the spanwise velocity fluctuations.
Following classical turbulent boundary layer results, these fluctuations have a maximum
standard deviation of wRMS ≈ uτ in the buffer region and a Gaussian distribution of total
width K = 3wRMS ≈ 3uτ . The larger out-of-plane motion occurring during the separation
time ∆t is obtained for the measurements in the lower Reynolds number range (Reθ =
7630 and 10140, setup B) because the smaller spatial resolution (67µm/px) induces a
larger separation time (to maintain a constant maximum displacement in pixels). It
is on the order of 0.06mm, representing 0.06 laser sheet thicknesses. According to the
parametric study by Foucaut et al (2003), this level of out-of-plane motions does not
generate any additional uncertainty. Hence, the measurements in the XY plane are free
from out-of-plane related uncertainties. As far as the YZ measurements are concerned,
the strategy that consisted in shifting the two laser sheets in the out-of-plane direction
allowed to reduce drastically the out-of-plane motions: they correspond to the streamwise
fluctuations, rather than to the mean streamwise velocity. Their maximum amplitude is
then on the order of uRMS ≈ 3uτ with a total width (for a Gaussian distribution) of
K = 3uRMS ≈ 9uτ . In the same fashion as in the XY plane, the larger out-of-plane
motions are obtained in the lower Reynolds number range (Reθ = 7630 and 10140, setup
C), and are on the order of 0.3mm, that is 0.27lx. The results of Foucaut et al (2003)
indicate that this generates an uncertainty of 0.08px. For the measurements in the higher
Reynolds number range (at Reθ = 10140, 13420 and 18950 with a resolution of 27µm/px)
the out-of-plane motions are lower than 0.13mm = 0.13lx, and do not generate any
uncertainty. Note that these uncertainties are valid for the buffer region (where the peak
of fluctuation occurs). Further up in the boundary layer (typically from the log layer) the
out-of-plane motions are weaker and do not cause measurement uncertainty.

Finally, as far as the particle image diameter is concerned, Foucaut et al (2003) and
Raffel et al (1998) report on an optimum particle images diameter close to 2px. This
optimum particle image diameter is achieved for all measurements (with dp = 1.8px), at
the exception of the measurements at Reθ = 7630 and Reθ = 10140 in the XY plane with
a spatial resolution of 67µm/px (with dp = 1.2px). For a particle image concentration
close to 10px/IW , both studies showed that the curve of the RMS error as a function of dp

is relatively flat around dp = 2px, so that diameters between 1 and 3 pixels are acceptable.
The difference in the RMS error between diameters of 1.2px and 1.8px appears negligible.

1for this dataset, it becomes negligible above y+ = 100
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The global PIV uncertainty can finally be derived as the maximum of the uncertainties
associated with the velocity gradient, the out-of-plane motions, and with the particle
image diameter (see equation 4.3). Two regions must be distinguished: the region below
y+ = 60 and the region above y+ = 60. In the region below y+ = 60, the global PIV
uncertainty is dominated by the uncertainty associated with velocity gradients. In this
region, the PIV uncertainty increases with decreasing wall normal distance. At y+ = 40
the values of this uncertainties read:

σ(ǫint, Reθ = 1014027µm/px) ≈ σ(ǫint, Reθ = 7630) = 0.09px

σ(ǫint, Reθ = 13420) = 0.22px

σ(ǫint, Reθ = 18950) = 0.26px

σ(ǫint, Reθ = 1014067µm/px) = 0.3px

Above y+ = 60, the effect of velocity gradients and out-of-plane motions have vanished.
The PIV uncertainty is equal to the uncertainty obtained for optimal PIV recordings,
that is σPIV = 0.06px for all datasets.

Using the stereoscopic error analysis proposed by Willert (1997) and Prasad (2000),
this noise on the PIV evaluation σ(ǫint) can now be related to the random error on
the three velocity components reconstructed in the object plane, using equation 2.7 and
equation 3.5. Because the stereoscopic angle is θ = 45◦ for all setups, the measurements
uncertainties are the same for the three velocity components. Recall that the separation
time between the two exposures has been adjusted to keep a maximum displacement of
10px for all datasets. Accordingly, above y+ = 60, the uncertainties in percentage of the
free-stream velocity are the same, on the order of 0.4%U∞. At y+ = 40, the uncertainties
read:

σ(ǫint, Reθ = 1014027µm/px) ≈ σ(Reθ = 7630) = 0.6%U∞

σ(ǫint, Reθ = 13420) = 1.5%U∞

σ(ǫint, Reθ = 18950) = 1.8%U∞

σ(ǫint, Reθ = 1014067µm/px) = 2.0%U∞

Note that, as any error analysis based on synthetic particle images, it does not take into
account all the sources of measurement noise of the experiment: for instance the influence
of the turbulent fluctuations, of the CCD transfer function, and of the optics transfer
functions are not taken into account. As a consequence, the uncertainties σ(ǫu), σ(ǫv),
σ(ǫw) computed in this section should be understood as a lower bound of the uncertainty.

4.4.2 Using real images

Another way to compute the measurement uncertainty is to consider the simultaneous
measurement of the flow in the overlap region by the two stereo systems as two inde-
pendents realizations. The rms of the difference between the two 2D-3C velocity fields
can thus be interpreted as the measurement random error σ(ǫui

) (Kostas et al (2005)) at
the position of the merging region. For setup A and D, the uncertainty is thus evaluated
at y/δ = 0.13, and for setup B and C at y/δ = 0.3. At these wall-normal positions,
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config setup A setup B setup C setup D

σ(ǫu) 0.6%U∞ 0.8%U∞ 0.9%U∞ 0.8%U∞

σ(ǫv) 0.6%U∞ 0.6%U∞ 0.7%U∞ 0.7%U∞

σ(ǫw) 0.6%U∞ 0.6%U∞ 0.5%U∞ 0.7%U∞

Table 4.6: Measurement uncertainty for the LML experiments

the influence of the velocity gradient and of the out-of-plane motion is expected to be
negligible, as shown in the previous paragraph. The values are recalled in table 4.6.

For all setup the uncertainties are quite isotropic and at a comparable level, around
an average value of σ(ǫu,i) = 0.7%U∞, which represents about 0.08px in terms of dis-
placement. This isotropy, observed for a stereoscopic viewing angle of θ = 45◦, is in
good agreement with the stereoscopic error analysis derived by Willert (1997) and Prasad
(2000):

σ(out-of-plane)

σ(in-plane)
= tan(θ)

However, some degree of anisotropy is present for setup C (measurement in the YZ plane
in the lower Reynolds number range): σ(ǫu) = 0.9%, σ(ǫv) = 0.7%. and σ(ǫw) = 0.5%.
Recall that in this flow configuration, the streamwise component corresponds to the out-
of-plane motion. This difference in behavior between setup C and the other setup was
not accounted for.
These uncertainties computed on the real PIV images are approximately two times larger
than the level of uncertainty obtained from the synthetic particle image study (σ(ǫu,i) =
0.4%U∞).

This difference in the level of uncertainty obtained from the real PIV images and
the synthetic PIV images can be attributed to the fact that, unlike the study based
on synthetic particle images, the uncertainties computed on the real PIV images take
into account all the sources of noise of the experiment (and in particular the turbulent
fluctuations occurring inside the IW). They can be regarded as the actual uncertainty of
the SPIV experiment.

4.5 Summary of the database

The characteristics of the entire database acquired in the LML wind-tunnel are finally
summarized in table 4.7. Using these informations, the spatial dynamic range of the
LML experiments and the range of scales to be resolved in the flow were computed and
compiled in table 4.8 (cf section 2.3 and equations 2.10 and 2.11). It can be compared
to the spatial dynamic range achieved in previous PIV studies (cf table 2.1 in section
2.3). This comparison is carried out for the XY plane only, as the large scale structures
are mainly organized in the streamwise direction. For all Reynolds numbers, the spatial
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dynamic range is similar, as expected because the same equipement was used. It is on
the order of SDRth = 12.5, which is close to the value achieved in the experiments of
Hutchins et al (2005). Due to the large Reynolds number of the experiment, the range of
scales in the flow is quite large, and the SDR is clearly not sufficient for a full resolution.
More specifically, the database is suitable for the study of individual vortices thanks to
the small interrogation window size, but it is not appropriate for the study of the large
scale organization due to the limited streamwise extent of the field of view.

Plane Reθ δ+ Field of View LIW Mesh step 1st mesh point n◦ records

(1-2) Reτ S1, S2 ∆i
L+

IW,ini

2
≤ y+

XY 7630 2590 0.15δ, 0.6δ 16.8+ 3.9+ 8.4 ≤ y+ 3840
XY 10140 3620 0.18δ, 0.7δ 27.8+ 6.5+ 13.9 ≤ y+ 2816
XY 10140 3620 0.08δ, 0.28δ 11.2+ 3.2+ 5.6 ≤ y+ 4096
XY 13420 5020 0.08δ, 0.28δ 15.4+ 4.5+ 7.7 ≤ y+ 4096
XY 18950 6860 0.08δ, 0.28δ 20.6+ 6.0+ 10.3 ≤ y+ 3840

ZY 7630 2590 0.15δ, 0.6δ 16.8+ 3.9+ 16.8 ≤ y+ 2048
ZY 10140 3620 0.18δ, 0.7δ 27.8+ 6.5+ 27.8 ≤ y+ 3840
ZY 10140 3620 0.08δ, 0.28δ 11.2+ 3.2+ 11.2 ≤ y+ 4096
ZY 13420 5020 0.08δ, 0.28δ 15.4+ 4.5+ 15.4 ≤ y+ 4352
ZY 18950 6860 0.08δ, 0.28δ 20.6+ 6.0+ 20.6 ≤ y+ 4608

Table 4.7: Characteristics of the LML database

Plane Reθ SDRth Wstr

XY 7630 11.5 388
XY 10140 11.7 543
XY 10140 12.9 753
XY 13420 13 753
XY 18950 13 1029

Table 4.8: Spatial dynamic range (SDRth) and range of scales to resolved (Wstr) for the
LML database
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Chapter 5

Validation of the database

The LTRAC and the LML database are validated through an analysis of some of the
single point statistics such as the mean flow, the Reynolds stresses, the probability density
functions of the fluctuations, and the longitudinal and spanwise power spectra. For each
flow configuration, these quantities were obtained through an ensemble average over the
number of records acquired, and also through an average along the homogeneous directions
of the measurement planes (the streamwise direction for the XY planes, and the spanwise
direction for the YZ planes). Note that the homogeneity assumption along the streamwise
direction can be used because the streamwise extent of the field of view (at most 165mm
for the LTRAC and 50mm for the LML) is small with respect to the total development
length of the boundary layer (3.7m for the LTRAC and 18m for the LML). In order to
facilitate the analysis of these statistical results, the fundamental equations governing
turbulent boundary layer flows are first presented.

5.1 Mean flow

5.1.1 Theoretical mean streamwise velocity profile

The turbulent boundary layer equations are derived from the Reynolds-Averaged Navier-
Stokes equations, simplified with the thin shear layer assumptions. They read:











∂U

∂x
+

∂V

∂y
= 0

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

dP

dx
+ ν

∂2U

∂y2
+

∂

∂y
(− < u′v′ >)

(5.1)

The continuity equation shows that the mean wall-normal velocity is small with re-
spect to the mean streamwise velocity. A theoretical profile can be derived for the mean
streamwise velocity.
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At the wall, for a zero pressure gradient, and using the no-slip boundary condition,
the turbulent boundary layer equations (5.1) simplify to:

∂τ

∂y

∣

∣

∣

∣

0

= 0

where τ = −ρu′v′ + µ∂U/∂y is the total shear stress. Moreover, taking the derivative of
the boundary layer equations with respect to y leads to:

∂2τ

∂y2

∣

∣

∣

∣

0

= 0

Thus, in the neighbourhood of the wall, the total shear stress can be approximated by
the wall shear stress τp with an error of the third order:

τ = τp + O(y3) (5.2)

As a consequence, the mean streamwise velocity profile can be expressed as a function of
the characteristics of the fluid ρ and µ and of the wall shear stress τp only:

U = f(y, τp, ρ, µ)

Taking as primary quantities τp, ρ and µ, dimensional analysis leads to the universal ‘Law
of the wall’:

U+ = f(y+) (5.3)

The + superscript denotes the wall units scaling : U+ = U/Uτ and y+ = yUτ/ν with
Uτ =

√

τp/ρ the friction velocity.

Very close to the wall (y+ ≤ 5) the turbulent shear stress −ρ < u′v′ > is negligible
with respect to the viscous shear stress µ∂U/∂y. Equation (5.2) simplifies to:

µ
∂U

∂y
= τp

Integrating this equation with the no-slip condition at the wall gives:

U+ = y+ for 0 ≤ y+ ≤ 5 (5.4)

Away from the wall, the viscous shear stress µ∂U/∂y is negligible with respect to the
turbulent shear stress τ = −ρ < u′v′ >. The structure of the flow is thus completely dom-
inated by turbulence. The relevant length scale is given by the boundary layer thickness
δ, the time scale by the gradient ∂U/∂y, and the velocity scale by the friction velocity Uτ

(as the covariance < u′v′ > is of the order of U2
τ ). In this region, the velocity gradient

∂U/∂y is thus completely determined by y, Uτ and δ:

∂U

∂y
=

∂U

∂y
(y, Uτ , δ)

Taking as primary quantities y, Uτ and δ, dimensional analysis yields:

∂U

∂y
=

Uτ

δ
Φ′

(y

δ

)
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Integrating this relationship between y and infinity gives:

U∞ − U(y)

Uτ

= Φ
(y

δ

)

with Φ =

∫

∞

y

Φ′

(y

δ

)

d
(y

δ

)

(5.5)

This law is called the velocity defect law. It is not universal, as it depends on several
parameters such as the pressure gradient and the Reynolds number.

Now, if there exists an overlap region between the wall region and the outer region,
then both the law of the wall (equation (5.3)) and the velocity defect law (equation (5.5))
must apply in this overlap region. In particular, the limit of the derivatives of these two
laws must be equal:

limy/δ→0 −
1

δ
Φ′

(y

δ

)

= limy+
→∞

Uτ

ν
f ′(y+)

Multiplying by y, one gets in the overlap region:

−y

δ
Φ′

(y

δ

)

= y+f ′(y+)

As the variables y+ and y/δ are independent, the two sides of this equation must be
constant. Integrating these two relationships leads to:

• The law of the wall in the overlap region:

U+ =
1

K
ln(y+) + C (5.6)

• The velocity defect law in the overlap region:

U∞ − U

Uτ

=
1

K
ln
(y

δ

)

+ B (5.7)

To ensure continuity, the compatibility equation must be satisfied:

U∞

Uτ

= − 1

K
ln

(

δUτ

ν

)

+ B + C

The overlap region is therefore an area where the mean streamwise velocity profile is
logarithmic. The von Karman constant K and constant C are universal, but constant
B depends on the Reynolds number and on the pressure gradient. In the following the
universal law of the wall in the overlap region (equation (5.6)) will be referred to as the
logarithmic law. It is valid for 40 ≤ y+ and 0.2 ≤ y/δ.
The wall region 5 ≤ y+ ≤ 40 is called the buffer region. In this region, the viscous shear
stress is on the same order of magnitude as the turbulent shear stress. No analytical
expression for the mean streamwise velocity profile exist in this region. Assuming a
mixing length model in the form:

< u′v′ >= l2m
∂U

∂y

lm = Ky(1− exp(−y/A)) with A =
26ν

uτ
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van Driest proposed the following expression for the mean streamwise velocity profile in
the buffer region:

U+ =

∫ y+

0

2dy′

1 +
√

1 + 4(Ky′(1− exp(−y′/A+))2
(5.8)

In the next paragraph, the mean streamwise velocity profiles computed from the LML
and LTRAC databases are compared to the theoretical mean streamwise velocity profile
defined by:















U+ =

∫ y+

0

2dy′

1 +
√

1 + 4(Ky′(1− exp(−y′/A+))2
for 0 ≤ y+ ≤ 55

U+ =
1

K
ln(y+) + C for 55 ≤ y+ and 0.2 ≤ y/δ

(5.9)

The values of the universal constants K and C are taken as K = 0.41 and C = 5.

5.1.2 Mean streamwise velocity of the LTRAC database

The mean streamwise velocity profiles scaled in wall units are shown in figure 5.1 with a
zoom in the near wall region in figure 5.2. For comparison, the profiles are plotted against
the law of the wall defined by equation (5.9). The wall friction velocity Uτ is obtained from
a fit of the SPIV data in the logarithmic region to the log law (equation (5.6)). As can be
seen in figure 5.1, the datasets at Reθ = 1300 and 2200 show an excellent collapse with
the law of the wall in the logarithmic region (55 < y+ < 150). In the outer region, the
wall-unit representation reveals the effect of the Reynolds number on the mean streamwise
velocity profile: the extent of the logarithmic region is slightly larger at Reθ = 2200 than
at Reθ = 1300. There is also an influence of the free-stream turbulence intensity on the
strength of wake (maximum deviation of the mean profile from the log law in the outer
region, see Coles (1962)). In the buffer layer (y+ ≤ 55), the mean velocity profile show a
very good agreement with the Van Driest law down to the first measured points for both
datasets (y+ ≈ 13). This was expected as both dataset have similar interrogation window
size in wall-units (LIW = 14+ at Reθ = 2200 and LIW = 15.2+ at Reθ = 1300). In the
very near-wall region, no influence of the free-stream turbulence intensity (Tu = 5.4% at
Reθ = 2200 and Tu = 2.6% at Reθ = 1300) is visible on the profiles.

5.1.3 Mean streamwise velocity of the LML database

The mean streamwise velocity profiles scaled in wall units are shown in figure 5.3 for the
XY planes (with a zoom in the near wall region in figure 5.4) and in figure 5.5 for the YZ
planes (with a zoom in the near wall region in figure 5.6). For comparison, the profiles
are plotted against the law of the wall defined in equation (5.9). The values of the wall
friction velocity Uτ are obtained from a fit of the PIV data to the log law. These values of
Uτ are not reported here, but they are in very good agreement with those deduced from
the hot-wire measurements (shown in table 4.1): the maximum difference is on the order
of 1.6%.
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Figure 5.1: Mean streamwise velocity profiles for the LTRAC database
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Figure 5.2: Mean streamwise velocity profiles for the LTRAC database: zoom in the
near-wall region

As can be seen in figures 5.3 and 5.5, the data display an excellent collapse with the
law of the wall in the logarithmic region (55 < y+ < 400) for all Reynolds numbers and
for both measurement planes.
Beyond that region, the wall unit representation reveals the effect of the Reynolds num-
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Figure 5.3: Mean streamwise velocity profiles of the LML database in the XY plane
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Figure 5.4: Mean streamwise velocity profiles of the LML database in the XY plane: zoom
in the near-wall region

ber on the mean streamwise velocity profile: the higher the Reynolds number of the flow,
the larger the extent of the logarithmic region. In the lower Reynolds number range
(Reθ = 7630 and Reθ = 10140) with a resolution of 67µm/px, the boundary layer is
measured up to y/δ = 0.6 and y/δ = 0.7 respectively, and some part of the wake region
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Figure 5.5: Mean streamwise velocity profiles of the LML database in the YZ plane
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Figure 5.6: Mean streamwise velocity profiles of the LML database in the YZ plane: zoom
in the near-wall region

is visible on the velocity profiles.
For the measurements in the YZ planes (figure 5.5), a small discontinuity is visible on
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the profiles at y+ ≈ 800 and y+ ≈ 1300 for the datasets Reθ = 7630 and Reθ = 10140
(with 67µm/px) respectively. This corresponds to a slight mismatch during the merg-
ing between the velocity fields from the two stereoscopic systems for setup C. All the
other profiles are free from this effect. In section 4.3, the RMS of the difference between
the two stereoscopic velocity fields in the overlap region was computed for each velocity
component and for each setup (the values are compiled in table 4.4). The highest level
of mismatch (of the order of 1.5%U∞) was indeed obtained on the streamwise velocity
component for Reθ = 7630 and Reθ = 10140 (with 67µm/px).
In the buffer region (y+ ≤ 55) of the XY planes (figure 5.4) and of the YZ planes (figure
5.6), the velocity profiles are variously affected by the strength of the mean velocity gradi-
ent. The influence of the Reynolds number is clearly visible: for a given spatial resolution,
the lower the Reynolds number, the better the agreement with the van Driest law (or more
precisely, the agreement with the Van Driest law occurs at lower y+). This behavior was
predicted using a synthetic particle image study in section 4.4.1 (see table 4.5). It find its
origin in the fact that for a constant interrogation window size in pixels, the higher the
Reynolds number, the larger the interrogation window size in wall units, and therefore
the stronger the effect of the velocity gradient. The differences between the XY plane
and the YZ plane may now be addressed: at a given Reynolds number the agreement
with the van Driest law is noticeably better for the XY plane than for the YZ plane.
This difference may originate from the fact that the out-of-plane motion corresponds to
a velocity component of larger amplitude for the YZ datasets (the streamwise velocity
component). In section 4.4.1, it was explained that the error due to this large out-of-plane
motion could be drastically reduced thanks to the shifting of the two laser sheets by a
distance corresponding to the mean displacement over the field of view. Now, it should
be reminded that this shift cannot be appropriate for the whole field of view because of
the boundary layer velocity gradient in the wall normal direction. It is therefore possible
that the measurements in the buffer region, where the velocity is significantly lower than
in the rest of the boundary layer, were more affected by the out-of-plane motions for YZ
datasets.
In conclusion, the first wall normal positions where the agreement between the PIV veloc-
ity profiles and the van Driest law is observed are compiled in table 5.1. These positions
give the first valid datapoint in the wall normal direction for each dataset. In the rest of the
thesis, only the region above these wall normal positions will be taken into consideration
for the computation of the statistics. It is of interest to note that, for the measurements
at Reθ = 10140 and Reθ = 13420 (with a spatial resolution of 27µm/px), the position of
the first valid mesh point in the wall-normal direction (y+ = 13 and y+ = 15 respectively)
is comparable to the ones of the LTRAC datasets ( y+ = 15).
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plane Reθ 1st valid mesh point

XY 7630 y+ = 24
XY 10140 y+ = 18
XY 10140 y+ = 13
XY 13420 y+ = 15
XY 18950 y+ = 20

ZY 7630 y+ = 34
ZY 10140 y+ = 53
ZY 10140 y+ = 17
ZY 13420 y+ = 27
ZY 18950 y+ = 33

Table 5.1: Position of the 1st valid mesh point in y+ for the LML database

5.2 Reynolds Stresses

5.2.1 Introduction

The Reynolds stresses are the covariances of the velocity fluctuations. In the Reynolds
Averaged equations, they appear as additional terms (as compared to the laminar equa-
tion) that play the role of apparent turbulent stresses. The sum of the normal Reynolds
stresses k′ = 1/2(< u′

iu
′

i >) is the turbulent kinetic energy of the flow. In the turbulent
boundary layer case, the covariances < u′w′ > and < v′w′ > are zero given that the flow
is statistically two-dimensional and invariant under reflection of the spanwise axis. The
shear stress < u′v′ > is of primary importance (see equations (5.1)). Its product by the
mean velocity gradient is responsible for the production of turbulent kinetic energy. In
the following, only the normal stresses < u′

iu
′

i > and the shear stress < u′v′ > will be
presented.
The accuracy of the Reynolds stresses measured with PIV can be affected by spatial av-
eraging of the fluctuations over the IW (which tends to attenuate their magnitude) and
by PIV measurement uncertainties in the instantaneous velocities. As will be seen in
the analysis of the power spectra, the measurement noise ǫi is pre-eminent over spatial
averaging in the high wavenumber domain. Its effect on the Reynolds stresses < u′

iu
′

j >
can be expressed as (assuming that the noise is not correlated with the velocity):

< (u′

i + ǫi)(u
′

j + ǫj) >=< u′

iu
′

j > + < u′

iǫj > + < u′

jǫi > + < ǫiǫj >≈< u′

iu
′

j > + < ǫiǫj >

Hence, the measurement uncertainties induce an error of < ǫiǫj > on the estimation of
< u′

iu
′

j >. For the normal stresses < u′2
i >, this error corresponds to a positive bias equal

to 4∗σ2(ǫi) with a 95% confidence interval. Recall the random error σ2(ǫi) was evaluated
in section 3.4 for each flow configuration using the real PIV images in the overlap region.
Accordingly, error bars extending down to −4 ∗σ2(ǫi) can be used for the normal stresses
profiles. For the shear stresses < u′v′ >, the error < ǫuǫv > is undetermined.
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5.2.2 Reynolds stresses of the LTRAC database

The profiles of Reynolds stresses < u′u′ >, < v′v′ >, < w′w′ >, and < u′v′ > measured
with SPIV are validated against the profiles from a DNS simulation of channel flow at
Reτ = 950 (see Hoyas and Jiménez (2006), DelAlamo et al (2006)). The characteristics
of this DNS are reported in table 5.2.2, and are to be compared with the characteris-
tics of the LTRAC database, compiled in table 3.5. In particular, the Reynolds number
of this DNS is quite close to the Reynolds number of the SPIV dataset at Reθ = 1300
(Reτ = 820).

Reτ Sx Sy Sz ∆x+ ∆z+

950 8Πh 2h 3Πh 11 5.7

Table 5.2: Characteristics of the DNS of channel flow by DelAlamo et al (2006).

The velocity covariances at Reθ = 1300 (Tu = 2.6%) are plotted in figure 5.7 and
at Reθ = 2200 (Tu = 5.4%) in figure 5.8. Only one in every two points is shown to
preserve the clarity of the graphs. On each figure, error bars corresponding to −4 ∗ σ2(ǫi)
as estimated in section 3.4 are reported for the normal stresses. These uncertainties were
computed from the RMS of the differences between the two stereoscopic systems in the
overlap region. Given the measurement configuration, these uncertainties are therefore
global over the wall-normal extent of the velocity fields. Accordingly, there is no specific
wall-normal positioning for the error-bars and their position in the figures is arbitrary.
Also, the level of free-stream turbulence intensity is reported on each figure on the right
hand side axis.

The boundary layer at Reθ = 1300 (Reτ = 820 and Tu = 2.6%) is overall in good
agreement with the DNS data. The normal stresses computed from the SPIV data reach a
minimum at y/δ = 1.3, with isotropic values of < u′u′ >, < v′v′ > and < w′w′ > close to
the free-stream turbulence intensity (the small difference is due to the PIV uncertainty). It
is of interest to note that this level is comparable with the turbulence intensity of the DNS
data on the centerline of the channel (y = δ = h). The streamwise velocity fluctuations
profile < u′u′ > present a good agreement with the DNS data in the near-wall region, but
its level is significantly higher in the outer region (y/δ > 0.15) with an ‘outer plateau’
around y/δ = 0.35. It is unlikely that this plateau is due to measurement uncertainty,
as it would result in an overestimation near the wall rather than away from the wall (see
section 3.4). Moreover the amplitude of the difference between the two profiles is larger
than the SPIV uncertainty on the u component. This higher level of < u′u′ > in the
outer region may be linked to the difference between a boundary layer flow and a channel
flow, and in particular to the very large scale motions commonly observed in that region
(Hutchins and Marusic (2007)). It can be observed in the figures that the minimum
value of the Reynolds stresses is reached at y = h for the channel flow, and at y/δ = 1.3
for the boundary layer flow. The normal stress < v′v′ > displays an excellent collapse
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with the DNS stress over the whole boundary layer thickness. As far as the < w′w′ >
is concerned, it appears in good agreement in the outer region but increasingly over-
estimated with decreasing wall-normal distance. The w component corresponds to the
out-of-plane component and is the most impacted by the measurement noise. This over-
estimation of < w′w′ > in the near-wall region is clearly due to measurement uncertainty.
As far as the shear stress is concerned, it displays an excellent collapse with the data of
Hoyas and Jiménez (2006) over the whole boundary layer thickness. It finds its origin in
the fact that the measurement noise on u is uncorrelated with the measurement noise on
v: < ǫuǫv >= 0.

The Reynolds stresses of the boundary layer at Reθ = 2200 (Reτ = 1390 and Tu =
5.4%) are shown in figure 5.8. Only one in every two points is shown. For the < u′u′ >
and < w′w′ > covariances, their amplitude for the SPIV data is twice as high as for
the DNS data. This is due to the fact that the free-stream turbulence intensity of the
water-tunnel (Tu2+ = 1.5) is much larger than the centerline turbulence intensity of the
channel (Tu2+ = 0.3). On the other hand, the < v′v′ > covariance seems affected by
this large free-stream turbulence intensity for y > 0.3δ only. Closer to the wall, there is
good agreement between the SPIV data and the DNS data. The shear stress < u′v′ >
also displays good agreement with the DNS for y/δ ≤ 0.3. The difference observed in the
outer region may be due to a boundary layer/channel flow difference.

The very near-wall region y+ ≤ 100 is shown in wall units in figure 5.9 for the two
boundary layers (every point is shown). The < v′v′ > and the < u′v′ > of the two
SPIV datasets display an excellent agreement with DNS down to the first measured point
(y+ = 15). < u′u′ > is also in good agreement at Reθ = 1300 (Reτ = 820 and Tu = 2.6%),
but increasingly overestimated with increasing wall-normal distance at Reθ = 2200 (Reτ =
1390 and Tu = 5.4%). For < w′w′ >, the influence of the measurement uncertainty due to
the mean velocity gradient is visible on the Reθ = 1300 profile. This uncertainty becomes
negligible for y+ = 50, which is in good agreement with the synthetic particle image study
undertaken in section 3.4.1. The < w′w′ > profile of the SPIV data at Reθ = 2200 has a
higher amplitude than the DNS profile due to the high free-stream turbulence intensity.
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Figure 5.7: Reynolds stresses of the LTRAC database at Reθ = 1300. The error bar,
computed as described in section 3.4, and the level of the free stream turbulence intensity
(Tu = 2.6%) is reported on the graph.
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Figure 5.8: Reynolds stresses of the LTRAC database at Reθ = 2200. The error bar,
computed as described in section 3.4, and the level of the free stream turbulence intensity
(Tu = 5.4%) is reported on the graph.
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Figure 5.9: Reynolds stresses of the LTRAC database at all Reynolds numbers in the
near-wall region

5.2.3 Reynolds stresses of the LML database

The profiles of Reynolds stresses < u′u′ >, < v′v′ >, < w′w′ >, and < u′v′ > mea-
sured with SPIV are validated against the profiles obtained from hot-wire anemometry
at x = 19.6m (see table 4.2) using X-wires probes (from which the covariances of the
three velocity components can be computed). The velocity covariances computed from
the SPIV measurements at Reθ = 7630 and Reθ = 10140 with a spatial resolution of
67µm/px are plotted in figure 5.10, and the covariances computed from the measurements
at Reθ = 10140, Reθ = 13420 and Reθ = 18950 with a spatial resolution of 27µm/px are
plotted in figure 5.11. At each Reynolds number, the XY profiles are represented using
hollow symbols, and the YZ profiles using filled symbols. For the sake of clarity, only
one in every five points is shown. In this representation, good universality is observed
for each Reynolds stress over the whole range of Reynolds number under investigation
(7630 ≤ Reθ ≤ 18950). Therefore, these profiles are compared to the hot-wire anemom-
etry at Reθ = 10140 only. As was shown in section 4.2, the ratio of the uncertainty over
the friction velocity is constant for a given orientation of the measurement plane and at
given spatial resolution. Accordingly, for each Reynolds stress in each figure, only one
error bar is shown for all Reynolds numbers (for clarity, only the error bar corresponding
to the YZ plane are shown). These error bars are positioned in the overlap region for each
case, ie at y/δ ≈ 0.3 for figure 5.10, and at y/δ ≈ 0.13 for figure 5.11.
Globally, the SPIV Reynolds stresses at the four Reynolds numbers and in both measure-
ment planes are in good agreement with the HWA data, with a noticeably better collapse
for the < v′v′ > and < u′v′ > profiles than for < u′u′ > and < w′w′ > (some discrepancies
are visible in the very near wall region y/δ < 0.05, this region will be studied in greater
details with figure 5.12 in the next paragraph). Among the normal stresses, the better
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agreement of the < v′v′ > component finds its origin in the fact that this quantity is
measured in the same fashion for the XY plane as for the Y Z plane: in both cases, v
is an in-plane velocity component along a direction with optical stretching; hence, the
error on this quantity is comparable for all measurements configurations. In contrast, u
corresponds to the in-plane non-stretched component for the XY plane and to the out-
of-plane component for the Y Z plane, and w corresponds to the out-of-plane component
for the XY plane and to the in-plane non-stretched component for the Y Z plane. Hence,
the slight differences between the two planes visible on the < u′u′ > and on the < w′w′ >
profiles are expected. In particular, the discrepancies for the < u′u′ > profiles in figure
5.11 are coherent with the associated errorbar. A specific comment may be made for the
dataset at Reθ = 7630 (figure 5.10): the < u′u′ > profile of the SPIV appears overes-
timated with respect to the HW profile in the outer region of the flow. This is due to
the fact that the free-stream velocity changed slightly during the acquisition of this SPIV
dataset (on the order of 3%), while the RMS values of u were computed using a single
profile of mean velocity for the whole dataset. Finally, the excellent collapse of the shear
stresses < u′v′ > is explained by the fact that the measurement noise on u is uncorrelated
with the measurement noise on v: < ǫuǫv >= 0.

The Reynolds stresses in the near-wall region (y+ < 100) are plotted in figure 5.12
for all Reynolds numbers and for all measurements planes. Both the stresses and the
wall-normal distance are scaled in wall units. In this plot, every measurement point is
shown. Overall, a good universality is observed in this representation. In particular, the
extrema of < u′u′ >, < v′v′ >, < w′w′ > and < u′v′ > have the expected intensities:
< u′u′ >+

max≈ 9, < v′v′ >+
max≈ 1, < w′w′ >+

max≈ 2 and < u′v′ >+
max≈ −1. As the

lowest measurement point it located at y+ = 13 (for Reθ = 10140 in the XY plane with
a resolution of 27µm/px), only the decreasing side of the peak of < u′u′ > is visible.
On the < u′u′ > and < v′v′ > curves at Reθ = 10140 with the lowest spatial resolution
(67µm/px), a noticeable difference is visible between the XY measurements and the YZ
measurements. As explained in the analysis of the mean velocity profiles, this difference
may be due to the influence of the out-of-plane velocity component in the YZ plane,
associated to the high velocity gradient across the IW for the resolution of 67µm/px. For
the other Reynolds numbers, the < v′v′ > SPIV profiles coincide well and are in good
agreement with the hot-wire profile. The SPIV profiles of shear stress < u′v′ > show an
excellent collapse down to the first measured points. In the region y+ < 30, some small
differences with the HWA profile are visible. It is likely that the SPIV measurements of
the shear stress are indeed more reliable than the HWA ones in this region.
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Figure 5.10: Reynolds stresses of the LML database at Reθ = 7630 and Reθ = 10140 with
a resolution of 67µm/px (XY plane: hollow symbols; YZ plane: filled symbols)
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Figure 5.11: Reynolds stresses of the LML database at Reθ = 10140, Reθ = 13420 and
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5.3 PDF of the fluctuations

5.3.1 Definition

The Probability Density Function PDFX(x) of a variable X is defined by:

PDF (x) = lim∆x−>0
Prob[x ≤ X ≤ x + ∆x]

∆x

It is the probability that a variable X has a value between x and x + ∆x normalized by
the width of the interval ∆x, as ∆x tends to zero, .

The knowledge of the PDF of a variable X allows the retrieval of the statistical mo-
ments of this variable. For instance, the moment of order n is given by:

< xn >=

∫

∞

−∞

xnPDFX(x)dx (5.10)

If the PDF of X is Gaussian:

PDFX

(

x

σX

)

= G

(

x

σX

)

=
1

2π
e
−

1

2

“

x
σX

”2

(5.11)

then the moments of odd order are zero, and the even ones are constant when non-
dimensionalized with the standard deviation.
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For the LTRAC and LML database, the PDF of the normalized velocity fluctuations
u′

i/σ(ui) is evaluated over the domain [−4; +4]. Because the number of realizations avail-
able and the resolution of the measurements are finite, the PDF is estimated using an
interval ∆ui/σ(ui) of finite width. It is chosen such that it is larger than the measurement
uncertainty, but small enough to minimize the bias of the estimation:

∆ui =
8 ∗ σ(ui)

128

5.3.2 Methodology to quantify the effect of peak-locking

The evaluation of flow displacements with PIV can be affected by the peak-locking effect
(Westerweel (1997)) which tends to bias displacements towards integer values in pixels.
This effect is minimized in this study due to good resolution of the particle images (from 2
to 3 pixels per particle image) and the use of a Gaussian peak-fitting algorithm. However,
as will be shown in the next paragraph, this effect is still visible in some of the fluctuations.
It is of interest to quantify the peak-locking effect as well as its impact on the statistical
moments. In the event that the PDF of the velocity is Gaussian (see equation (5.11)),
Carlier (2001) proposed that the peak-locking effect on the PDF can be modelled as:

PDFX

(

x

σX

)

= G

(

x

σX

)(

1 + A cos

(

2π

(

B
x

σX

+ C

)))

(5.12)

where A corresponds to the amplitude of the peak-locking, B to its frequency, and C to
its phase. A fit of equation (5.12) via coefficients A, B and C to the PDF gives a full
characterization of the peak-locking effect. The effect on the moments of the velocity
component can then be derived as:

ǫ(xn) =

∫

∞

−∞

xn

(

PDFX

(

x

σX

)

−G

(

x

σX

))

dx (5.13)

For n = 1 (giving the mean of the variable X) and n = 2 (giving the variance of variable
X) one finds the following analytical expression for the error:

ǫ(x1) = −Aexp(−2π2B2)sin(2πC)(2π)0.5

ǫ(x2) = +Aexp(−2π2B2)cos(2πC)(4π2B2 − 1)
(5.14)

This error has been evaluated for the LTRAC and LML database, in the cases where the
PDF of the velocity fluctuations present some peak-locking.
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5.3.3 PDF for the LTRAC database

The PDF of the normalized velocity fluctuations are computed at y+ = 100 from the two
PIV datasets (Reθ = 1300 and Reθ = 2200). As the same setup was used, (see section
3.2), the PDF of the two datasets should have a similar behavior. In the logarithmic
layer, the intermittency with the wall and the free-stream is negligible, and hence the
fluctuations should have a Gaussian distribution.

The PDF of the normalized streamwise, wall-normal, and spanwise fluctuations are
shown respectively in figures 5.13, 5.14 and 5.15. The PDF of u′/σu and w′/σw display
a Gaussian behavior, free from peak-locking effect (although a very small peak-locking
is visible for u′/σu). Given the measurement configuration, these two components corre-
spond respectively to the in-plane stretched and to the out-of plane velocity component.
Jie (2006) suggested that the peak-locking effect on these two velocity components was
smoothed out during the stereoscopic reconstruction. In contrast, the PDF of v′/σv are
clearly affected by peak-locking.

The methodology detailed in the previous paragraph can be used on v′/σv to char-
acterize this peak-locking and its effect on the statistics. This process is illustrated in
figure 5.16. The PDF of v′/σv is plotted against a ‘peak-locked’ Gaussian (as defined in
equation (5.12)) that has been fitted to the PIV data via coefficients A, B and C. The
values of these coefficients are compiled in table 5.3. The associated bias on v′/σv and
on σv, computed using equations (5.14) are also reported. The amplitude of the peak-
locking (coefficient A) appears smaller for Reθ = 1300 (A = 0.09) than for Reθ = 2200
(A = 0.16). The period, given by coefficient B, is of the order of 0.66 for both datasets.
It can be related to the period in pixels Tpx using the following formulae, where pxobj is
the local spatial resolution in the wall-normal direction at y+ = 100 and ∆t is the time
separation between the two laser cavities (cf table 3.2 in section 3.2):

Tpx =
1/Bσui∆t

pxobj

(5.15)

It was checked that the period is close to 1 pixel, as expected for the peak-locking effect.
The values of ǫ(u1)/σ and ǫ(u2)/σ show that bias on the moments of first and second
order of v is negligible.

config (plane-resolution) Reθ = 1300 Reθ = 2200

A 0.09 0.16
B 0.68 0.64
C 0.78 0.84

ǫ(u1)/σ -2.67E-005 -1.24E-004

ǫ(u2)/σ -1.11E-005 -3.25E-004

Table 5.3: Peak-locking effect on the in-plane non-stretched velocity component for the
LTRAC database
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Figure 5.13: PDF of the streamwise fluctuations for the LTRAC database
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Figure 5.14: PDF of the wall-normal fluctuations for the LTRAC database
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Figure 5.15: PDF of the spanwise fluctuations for the LTRAC database
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Figure 5.16: Modelling of the peak-locking effect for the LTRAC database
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5.3.4 PDF for the LML database

The PDF of the normalized velocity fluctuations are computed at y+ = 100 from the PIV
datasets. At a given orientation of the measurement plane and spatial resolution, it was
found that the behavior of these PDF was essentially the same for all Reynolds numbers.
Hence, only the measurements at Reθ = 10140 are shown. For each measurement plane
orientation (XY or YZ) and spatial resolution (27µm/px and 67µm/px), the PDF com-
puted from PIV velocity fields are compared to those obtained from hot-wire anemometry
measurements at x = 19.6m (see table 4.2).

The PDF of the normalized streamwise fluctuations are shown in figure 5.18 for the
XY plane and in figure 5.19 for the YZ plane. The peak-locking effect appears as small
for the YZ plane, and more significant for the XY plane. The influence of the spatial
resolution is not clearly visible on the amplitude of the peak-locking in the XY plane.

The PDF of the normalized spanwise fluctuations are shown in figure 5.20 for the
XY plane and in figure 5.21 for the YZ plane. For this velocity component, it is the
measurements in the YZ plane that are affected by peak-locking, the measurements in
the XY plane showing a good agreement with hot-wire anemometry. The peak-locking
look slightly stronger for the lower spatial resolution dataset (67µm/px) than for the
higher one (27µm/px).

The PDF of the normalized wall-normal fluctuations are shown in figure 5.22 for both
measurement planes. As can be seen, all PDFs are free from peak-locking effect. The
agreement with hot-wire is quite good, except that the central peak, corresponding to the
probability of having an instantaneous velocity equal to the mean velocity, is higher for
PIV than for HW.

Finally, it can be said that, as already noticed for the LTRAC database, the out-of-
plane velocity component (w for the XY plane, and u for the YZ plane) and the in-plane
stretched velocity component (v for both planes) are globally unaffected by peak-locking.
In contrast, the PDFs of the in-plane non-stretched velocity component (u for the XY
plane, and w for the YZ plane) are affected by peak-locking. The methodology detailed in
the previous paragraph can be used on this component to characterize this peak-locking
and its effect on the statistics. This process is illustrated in figure 5.17. The PDF of u′/σu

in the XY plane with a resolution of 67µm/px is plotted against a Gaussian distribution, to
underline the effect of peak-locking. The model defined in (5.12), which represent a ‘peak-
locked’ Gaussian, has been fitted to the PIV data. This ‘peak-locked’ Gaussian displays
a good agreement with the PIV data. The equation defining the ‘peak-locked’ Gaussian
has also been successfully fitted to the PDF of u in the XY plane with a resolution of
27µm/px and to the PDF of w in the YZ plane for both spatial resolutions. For each
case, the values of the fitted coefficients A, B and C of the closest peak-locked Gaussian
are compiled in table 5.4. The resulting bias on the mean and variance of the velocity
component under interest (computed using (5.14)) are also reported.
The period of this ‘peak-locked’ Gaussian is given by coefficient B. It can be related to the
period in pixels Tpx using equation (5.15). It was checked that the value of B=1, common
to all cases, corresponds to a period of 1 pixel, as expected for the peak-locking effect.
The coefficient A, which represents the amplitude of the peak-locking, is of particular
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Figure 5.17: Modelling of the peak-locking effect for the streamwise component in the
XY plane (LML)

interest. This amplitude is about 0.17 for the XY plane and lower spatial resolution in
the YZ plane, and about 0.1 for the higher spatial resolution in the YZ plane. These
values are comparable to those obtained for the LTRAC database. The fact that this
peak-locking is less important for the highest spatial resolution in the YZ plane only was
not accounted for. In all cases, the bias created by this peak-locking on the mean and
variance of the in-plane non-stretched velocity component is negligible, even more than
for the LTRAC database. The difference can be explained by the fact that, at y+ = 100,
the standard deviation of the wall-normal fluctuations (where the peak-locking occurs for
the LTRAC database) is lower than the standard deviation of the streamwise fluctuations
(where the peak-locking occurs for the LML database). Hence, v′ is coded on a smaller
number of pixels than u′, and its moments are therefore more sensitive to peak-locking,
as shown by Christensen (2004).

config (plane-resolution) XY 27µm/px XY 67µm/px YZ 67µm/px YZ 27µm/px

A 0.18 0.17 0.18 0.10
B 1.11 0.95 0.92 1.01
C 0.68 0.84 0.97 0.99

ǫ(u1)/σ -1.26E-011 -4.38E-008 -4.29E-009 -2.25E-011

ǫ(u2)/σ 1.12E-010 -3.95E-007 -3.29E-007 -8.31E-009

Table 5.4: Peak-locking effect on the in-plane non-stretched velocity component for the
LML database



5.3. PDF of the fluctuations 89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-4 -3 -2 -1  0  1  2  3  4

P
(u

’/σ
u)

u’/σu

SPIV XY 67µm/px
SPIV XY 27µm/px

HW

Figure 5.18: PDF of the streamwise fluctuations for the LML database in the XY plane
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Figure 5.19: PDF of the streamwise fluctuations for the LML database in the YZ plane
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Figure 5.20: PDF of the spanwise fluctuations for the LML database in the XY plane
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Figure 5.21: PDF of the spanwise fluctuations for the LML database in the YZ plane
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Figure 5.22: PDF of the wall-normal fluctuations for the LML database in the XY and
YZ planes

5.4 Power spectra

5.4.1 Definition and estimation of the power spectra

Spectral analysis is a tool of special interest for the analysis of turbulence which is, in
essence, a multi-scale phenomenon. The spectral tensor Φij(k) represents the Reynolds
stress density in the wave number space. Here we consider only the one-dimensional
power spectra Eii(km) of the velocity component i along the homogeneous direction m. It
is equal to twice the Fourier transform of the two-point correlation of velocity component
i along direction m:

Eii(km) =
1

π

∫

∞

−∞

Rii(rm)e−ikmrmdrm (5.16)

Perry et al (1986) derived similarity laws for the longitudinal power spectra (m = x), in
the framework of the attached-eddy hypothesis. For a probe positioned at a height y, they
identified three regions in the wave-number space where E11 can be non-dimensionalized
with an appropriate scaling:

• the ‘outer scaling’ in the low wavenumber range:

g1(k1δ) =
E11(k1δ)

u2
τ

=
E11(k1)

u2
τδ

(5.17)
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• the ‘inner scaling’ in the intermediate wavenumber range:

g2(k1y) =
E11(k1y)

u2
τ

=
E11(k1)

u2
τy

(5.18)

• the ‘Kolmogorov scaling’ in the high wavenumber range:

g3(k1η) =
E11(k1η)

v2
=

E11(k1)

v2η
(5.19)

These regions, and their respective scaling are shown in figure 5.23.
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U2
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= g2(k1y)
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inner scaling
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E11(k1δ)

U2
τ

= g1(k1δ) E11(k1η)

v2 = g3(k1η)

Figure 5.23: Different wavenumber ranges of the E11 spectra, and associated scaling

From the assumption that there exist an overlap between the ”‘outer-flow”’scaling
and the ”‘inner-flow”’ scaling (overlap I), and between the ”‘inner-flow”’ scaling and the
”‘Kolmogorov”’ scaling (overlap II), two power laws can be derived for the spectra. In
inner scaling it reads:

E11(k1y)

U2
τ

=
A1

k1y

E11(k1y)

U2
τ

=
A2

(k1y)5/3

These regions appear as lines of slope -1 and -5/3 on log-log spectra plot in inner scaling.
Region of overlap II is sometimes also called the inertial subrange. Perry et al (1986)
indicate that the same analysis can be carried on the w motions and yields similar results
(existence of 2 regions of overlap). On the other hand, the v motions are not expected
to exhibit an outer-flow scaling law, and as a result only one region of overlap (of slope
-5/3) should exist in the E22(k1) spectra.

The power spectra Eii(km) are computed from the SPIV datasets as the product of the
Fourier transform of velocity component i along direction m with its conjugate, divided
by the extent of the field (in direction m):

Eii(km) =
1

Lm

Fm(ui)Fm(ui) (5.20)
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The Fourier transform are evaluated using a periodization of the velocity field and an
FFT algorithm (Foucaut et al (2004)). The spectra are averaged over the number of
realizations and over the homogeneous directions of the flow field (at the exception of the
direction along which the spectrum was computed).

The effect of the PIV spatial averaging (which tends to attenuate the signal) and
of the measurement noise (which tends to add up to the signal) on the power spectra
has been described in section 2.3.3. In particular a methodology to retrieve the non-
dimensional cut-off wavenumber k̃SNR=1 at a signal-to-noise ratio of 1 has been derived
(see also Herpin et al (2008)). This wavenumber can be related to the size of a structure
that will be resolved with a signal-to-noise ratio of 1 using equation (2.14).

5.4.2 Power spectra of the LTRAC database

The longitudinal power spectra for the u, v and w velocity components at y+ = 100
are shown in figures 5.24, 5.25 and 5.26 respectively, using an inner scaling (cf equation
(5.18)). They are plotted against the power spectra computed from the DNS of channel
flow at Reτ = 950 from DelAlamo et al (2006), already used for the validation of the
Reynolds stresses.
As can be seen on the domain of definition of the SPIV and DNS spectra, the smallest
wavenumber is retrieved with the DNS data, and the highest wavenumber is retrieved
with the SPIV data. This is consistent with the characteristics of the DNS (cf table 5.2.2)
and with the characteristics of the SPIV datasets (cf table 3.5): the streamwise extent of
the DNS domain (non dimensionalized with the half channel height h) is 10 times longer
than the streamwise extent of the SPIV dataset at Reθ = 2200, and 6 times longer than
the streamwise extent of the SPIV dataset at Reθ = 1300 (non-dimensionalized with the
boundary layer thickness δ); on the other hand, the longitudinal spatial resolution is bet-
ter for the SPIV datasets (∆x+ = 4.5) than for the DNS simulation (∆x+ = 11).
The ‘-5/3’ power law, derived by Perry et al (1986) in the framework of the attached
eddy hypothesis, is also plotted for comparison. In the logarithmic representation, all
the SPIV spectra tend to that slope in the inertial subrange, without exhibiting a clear
region of constant slope, probably owing to the moderate Reynolds numbers of the flow
under investigation: Perry et al (1986) showed that the extent of this region decreases
with decreasing Reynolds number.
For each of the three velocity components, the spectra of the two SPIV datasets fall into a
close vicinity, and are in excellent agreement with the DNS spectrum at low and moderate
wavenumber. However, in the high wavenumber domain, the PIV spectra present a spu-
rious lift-up with respect to the DNS spectra. This effect is due to the PIV measurement
noise.
Following the methodology described in section 2.3.3, the cut-off wavenumbers kSNR=1,
and the radius of the smallest resolvable radius r+

SNR=1 (at a signal-to-noise ratio of 1)
are retrieved for the three velocity components and for the two SPIV datasets. As the
values k̃SNR=1 are comparable for the two datasets, only one of them is reported on each
figure. The values of k̃SNR=1 and of r+

SNR=1 are compiled in table 5.5. Comparing the
cut-off wavenumbers of the three velocity components, we find that:

k̃SNR=1(w) ≤ k̃SNR=1(u) ≤ k̃SNR=1(v)
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This ordering is consistent with the level of measurement uncertainty that was found on
the three velocity components (cf table 3.3):

σ(ǫv) ≤ σ(ǫu) ≤ σ(ǫw)

Based on an average between the three velocity components, the smallest resolvable struc-
ture (at a SNR of 1) will have a radius of r+ = 23.5± 2 for the two SPIV datasets.

Reθ = 1300 Reθ = 2200

k̃SNR=1

u 12.8 12.6
v 16.9 15.5
w 12.3 11.7

r+
SNR=1

u 24.5 24.5
v 18.5 20.5
w 25.5 27.0

Table 5.5: Values of k̃SNR=1 and r+
SNR=1 for the 3 velocity components for the LTRAC

database
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Figure 5.24: LTRAC longitudinal power spectra for the u component at y+ = 100, com-
pared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.25: LTRAC longitudinal power spectra for the v component at y+ = 100, com-
pared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.26: LTRAC longitudinal power spectra for the w component at y+ = 100,
compared with the DNS spectrum from DelAlamo et al (2006)

5.4.3 Power spectra of the LML database

The longitudinal power spectra of the SPIV measurements in the LML wind-tunnel can
be compared either with the power spectra of the hot-wire measurements, or with the
power spectra of the DNS by DelAlamo et al (2006). At first, the power spectra from
these two possible references are compared with each other, in order to select the most
appropriate reference for the power spectrum of the flow. These spectra are plotted in
figure 5.27 at y+ = 100 in inner scaling. As can be seen, in spite of the differences
in Reynolds number (from Reτ = 950 for the DNS up to Reτ = 6860 for the highest
Reynolds number of the wind-tunnel), there is a good collapse of the spectra for k̃ ≤ 14.
It is of interest to note that this value of k̃ is inside the range of cut-off values found
for the LTRAC dataset (11.7 ≤ k̃SNR=1 ≤ 16.9). For k̃ ≥ 14, the hot-wire spectra
are affected by measurement uncertainty, especially in the lower Reynolds number range
(Reτ ∈ [2590; 3620]). This is due to the fact that the gain and the offset of the hot-wire
measurements were kept constant over the whole measurement campaign, and therefore
the uncertainty in volts represents a higher percentage of the velocity in the lower Reynolds
number range. Clearly, the hot-wire spectra cannot be used as a reference because of this
measurement uncertainty. In the following, we will use the spectra computed from the
DNS by DelAlamo et al (2006) as reference to retrieve kSNR=1 of the Lille SPIV spectra,
both in the longitudinal and spanwise directions.
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Figure 5.27: Comparison of the HW spectrum with the DNS spectrum from DelAlamo
et al (2006) for the u component, at y+ = 100

The longitudinal power spectra for the u, v and w velocity components in the XY
plane at y+ = 100 are shown in figures 5.28, 5.29 and 5.30 respectively, and the spanwise
power spectra for the u, v and w velocity components in the YZ plane at y+ = 100 are
shown in figures 5.31, 5.32 and 5.33 using an inner scaling (cf equation (5.18)). Looking
at the domain of definition of the spectra, the smallest wavenumber is retrieved with
the DNS data, and the highest wavenumber is retrieved with the SPIV data. This is
consistent with the characteristics of the DNS (cf table 5.2.2) and with the characteristics
of the SPIV datasets (cf table 4.7).

All the SPIV spectra are in good agreement with the DNS spectra at low and inter-
mediate wavenumbers. In the high wavenumber domain, the effect of measurement noise
is clearly visible, with a spurious lift-up of the SPIV spectra. For the measurements in
the XY plane (figures 5.28, 5.29 and 5.30), the larger the interrogation window size (cf
table 4.7), the larger the effect of spatial averaging in the high wavenumber domain (cf
equation (2.12)), and therefore the closest the SPIV spectra appears to be to the DNS
spectrum. This should not be interpreted as a better restitution of the spectrum of the
flow with larger IWs, because in fact both the signal and the noise are averaged over the
interrogation spot. Applying the methodology described in paragraph 2.3.3, the cut-off
wavenumbers k̃SNR=1, and the radius of the smallest resolvable vortex r+

SNR=1 (at a signal-
to-noise ratio of 1) are retrieved for the four Reynolds numbers and in both measurements
planes. These values are compiled in table 5.6 for the XY plane, and in table 5.7 for the
YZ plane. As one can see, the highest cut-off wavenumbers are indeed obtained for the
datasets where the interrogation window was the smallest (that is Reθ = 10140 with a
spatial resolution of 27µm/px).
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On the whole, the cut-off wavenumbers in the x direction (retrieved with the XY
planes) and in the z direction (retrieved using the YZ planes) are comparable, with an
average value around k̃SNR=1 ≈ 14.5. This average cut-off wavenumber leads to a smallest
resolvable vortex (at a SNR=1) with a radius on the order of r+ = 21.7. This size is
slightly better than, but on the same order as, the size obtained for the LTRAC datasets
(r+ = 23.5). Among the three velocity components, no clear trend for the ordering of
k̃SNR=1 exists in the XY plane, however, in the YZ plane, it is the out-of-plane velocity
component u that possess the highest cut-off wavenumbers for all Reynolds numbers. It is
consistent with the ordering of the measurement uncertainties in table 4.4 (although it was
not clear why the u component for the measurement in the YZ plane is less impacted by
measurement noise, since the stereo angle of θ = 45◦ should lead to isotropic measurement
noise).

config.(plane-Rθ) XY − 7630 XY − 10140 XY − 10140 XY − 13420 XY − 18950
67µm/px 27µm/px

k̃SNR=1

u 14.8 12.0 17.9 15.4 12.9
v 14.5 11.3 15.4 14.1 12.1
w 16.1 12.6 16.5 15.0 13.2

r+
SNR=1

u 21.4 26.2 17.6 20.4 24.4
v 21.7 27.8 20.4 22.3 26.0
w 19.5 24.9 19.0 20.9 23.8

Table 5.6: Values of k̃SNR=1 and r+
SNR=1 for the 3 velocity components in the XY plane

for the LML database

config.(plane-Rθ) Y Z − 7630 Y Z − 10140 Y Z − 10140 Y Z − 13420 Y Z − 18950
67µm/px 27µm/px

k̃SNR=1

u 16.0 11.3 20.0 16.2 14.4
v 15.4 11.0 19.1 15.7 13.7
w 14.5 10.8 16.4 13.7 12.7

r+
SNR=1

u 19.7 21.8 15.7 19.4 21.8
v 20.4 28.6 16.6 20.0 22.9
w 21.7 29.1 19.2 22.9 24.7

Table 5.7: Values of k̃SNR=1 and r+
SNR=1 for the 3 velocity components in the YZ plane

for the LML database
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Figure 5.28: LML longitudinal power spectra for the u component in the XY plane at
y+ = 100, compared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.29: LML longitudinal power spectra for the v component in the XY plane at
y+ = 100, compared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.30: LML longitudinal power spectra for the w component in the XY plane at
y+ = 100, compared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.31: LML spanwise power spectra for the u component in the YZ plane at y+ =
100, compared with the DNS spectrum from DelAlamo et al (2006)
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Ẽ
2
2
(k̃

z
)

1e+021e+011e+001e-01

1e+01

1e+00

1e-01

1e-02

1e-03

1e-04

1e-05

Figure 5.32: LML spanwise power spectra for the v component in the YZ plane at y+ =
100, compared with the DNS spectrum from DelAlamo et al (2006)
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Figure 5.33: LML spanwise power spectra for the w component in the YZ plane at
y+ = 100, compared with the DNS spectrum from DelAlamo et al (2006)
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5.5 Dissipation and Kolmogorov scales

5.5.1 Definition

In turbulence, motions exist in a wide range of sizes. However, the size of the small scale
motions admits a lower bound, which is fixed by the viscosity: when the Reynolds number
associated to the small scale structures becomes small enough, then all the kinetic energy
of the structure is dissipated into heat under the action of viscosity. The characteristics
length scale η, velocity scale v, and time scale τ of these smallest motions are called
Kolmogorov scales.
The characteristic time scale τ is built from the mean turbulent dissipation rate ǫ and the
viscosity ν:

ǫ =
ν

τ 2
(5.21)

The characteristics length scale η and velocity scale v are then given by the fact that the
Reynolds number of the smallest motions is unity, and by homogeneity considerations:

vη

ν
= 1 and τ =

η

v
(5.22)

Equations (5.21) and (5.22) finally give the following expressions for the Kolmogorov
scales:

τ =
(ν

ǫ

)1/2

η =

(

ν3

ǫ

)1/4

v = (νǫ)1/4 (5.23)

5.5.2 Computation of the dissipation

The computation of the Kolmogorov scales requires the knowledge of the dissipation rate
ǫ of the turbulent kinetic energy. It will be called hereafter ‘dissipation’. The dissipation
is given by:

ǫ = 2ν < s′ijs
′

ij > (5.24)

with s′ij the symmetric part of the fluctuating velocity gradient tensor: s′ij = 1
2

(

∂u′

i

∂xj
+

∂u′

j

∂xi

)

.

The dissipation is a very hard quantity to measure, as all nine components of the fluctu-
ating velocity gradient tensor must be known with sufficient accuracy. When the flow is
homogeneous and isotropic, equation (5.24) reduces to:

ǫ = 15ν <

(

∂u′

1

∂x1

)2

> (5.25)

In fact, this approximation can be extended to locally isotropic flows, as suggested by
Schlichting and Gersten (2001). Shear flows can be considered as locally isotropic in most
of their domain, at the exception of regions in close proximity to walls.
Sometimes, dissipation is evaluated using another length scale called the Taylor micro
scale λ, defined as:

(

∂u′

1

∂x1

)2

= 2
u′2

1

λ2
1
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This length is representative of the most dissipative motions. It can be retrieved using
the osculating parabola to the two-points correlation coefficient of the streamwise velocity
fluctuation:

R11(∆x1) =
< u′

1(x1)u
′

1(x1 + ∆x1) >

< u′2
1 >

R11(∆x1)|∆x−>0 = 1− ∆x2
1

λ2
1

In the local isotropy approximation, the dissipation ǫ can thus be computed using equation
(5.26), with the Taylor micro scale evaluated using the second derivative of the two-points
correlation coefficient at its origin (see equation (5.27)).

ǫ = 30ν
< u′2

1 >

λ2
1

(5.26)

λ1 =

√

−2
∂R11(∆x1)

∂∆x1
|∆x1=0

(5.27)

5.5.3 Profiles of ǫ and η for the LTRAC database

The dissipation of the LTRAC boundary layer was computed using the SPIV datasets ac-
quired in the XY plane at Reθ = 1300 and Reθ = 2200, using the local isotropy hypothesis
(see equation (5.26)). The Taylor microscale was evaluated at 18 wall-normal positions
in the boundary layer (with a logarithmic distribution) from the longitudinal two-point
correlation of the streamwise velocity fluctuations. A fourth order centred scheme was
employed to compute the second derivative of the correlation function about its origin.
The scheme takes into account the evenness of the streamwise correlation function; the
point at ∆x = 0 is not used in the stencil, as it may be contaminated with measurement
noise (the points at ∆x 6= 0 are assumed to be free from this effect, as the measurement
noise is supposed to be incoherent in space).
The wall-normal evolution of the dissipation in the LTRAC boundary layer is shown in
figure 5.34. It is plotted against the dissipation in a DNS of turbulent channel flow at
Reτ = 950 (DelAlamo et al (2006)), computed using the ‘exact’ formula of the dissipation
(see equation (5.24)). The Reynolds number of this DNS is quite close to that of the
LTRAC dataset at Reθ = 1300⇔ Reτ = 820. It is of interest to note that the dissipation
in the LTRAC dataset at Reθ = 1300 is in very good agreement with that of the turbulent
channel flow, supporting the validity of the local isotropy approximation. The peak of ǫ
at the wall, visible on the DNS dataset, is quite well captured with both datasets.
The Kolmogorov scales are retrieved from the profiles of ǫ using equations (5.23). The
wall-normal evolution of the Kolmogorov length scale is plotted in figure 5.35 for the
LTRAC and DNS datasets using a wall-unit scaling. Again, it can be seen that the agree-
ment is excellent between the LTRAC dataset at Reθ = 1300 and the DNS dataset. All
the profile collapse well near the wall y+ < 300, but some difference between the dataset
at Reθ = 2200 and the two others are visible further away from the wall. This is probably
linked to Reynolds number effects.
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5.5.4 Profiles of ǫ and η for the LML database

The dissipation and Kolmogorov length scale were computed on the datasets acquired in
the XY planes of the LML database, using the same method as for the LTRAC database.
The wall-normal evolution is shown in figure 5.36. It is plotted against the dissipation
in a DNS of turbulent channel flow at Reτ = 2000 (DelAlamo et al (2006)), computed
using the ‘exact’ formula of the dissipation (see equation (5.24)). The Reynolds number
of that simulation is very close to that of the LML dataset at Reθ = 7630. Overall, the
profiles of dissipation for the LML datasets is in good agreement with the DNS. The peak
of ǫ at the wall, visible on the DNS dataset, is quite well captured by all the datasets,
at the exception of the dataset at the highest Reynolds number (Reθ = 18950) and of
the dataset with the lowest spatial resolution (Reθ = 10140 with 67µm/px). These two
datasets underestimate clearly this peak, owing to a lack of spatial resolution. Away
from the wall (y+ >= 200), the level of dissipation in the LML boundary layer is slightly
higher than in the DNS of channel flow. As far as the dataset at Reθ = 7630 is concerned,
this may by due to the fact that the free-stream velocity changed slightly during the
acquisition, which results in artificially higher RMS value of u in the outer region of the
flow (see figure 5.10, and related comments), and thus in a artificially higher value of
dissipation. As for the other datasets, this difference in dissipation levels in the outer
region of the flow may be due to Reynolds number effects. These dissipation profiles can
be compared to the ones obtained by Stanislas et al (2008) for the same boundary layer,
but using hot-wire anemometry. It appears that the dissipation is better estimated using
the present PIV data, especially in the near-wall region.
The Kolmogorov scales are retrieved from the ǫ profiles using equations (5.23). The
wall-normal evolution of the Kolmogorov length scale is plotted in figure 5.35 for the
LML and DNS datasets using a wall-unit scaling. At the exception of the dataset at
Reθ = 10140 with the lowest spatial resolution (67µm/px), the agreement between all
the SPIV datasets and the DNS dataset is quite good in the inner layer (y+ ≤ 300). The
differences further away from the wall are due to a combination of Reynolds number effect
and spatial resolution effect.
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Figure 5.34: Wall-normal evolution of the mean dissipation (LTRAC database), in wall
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Figure 5.36: Wall-normal evolution of the mean dissipation (LML database), in wall units
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Chapter 6

Coherent structures detection

6.1 Detection technique

6.1.1 Overview of the existing methods

The different methods for identifying vortex cores in velocity vectors fields obtained from
PIV or DNS have been reviewed in great details by Jeong and Hussain (1995), Adrian
et al (2000a) and Chakraborty et al (2005).
Some common intuitive criteria, such as vorticity isosurfaces and closed or spiraling
streamlines and pathlines are in fact inadequate to detect vortices in turbulent boundary
layers, as shown by Jeong and Hussain (1995): iso-vorticity surfaces fail to identify vortex
cores in shear flows, whereas closed or spiraling streamlines and pathlines, which are not
Galilean invariant, are unable to detect vortices convected at different speeds.
Local detection techniques based on the 3D velocity gradient tensor Aij = ∂ui

∂xj
(the ∆

criterion Chong and Perry (1990), the Q criterion Hunt et al (1988)), or on the Hessian
of the pressure (the λ2 criterion of Jeong and Hussain (1995)) have been successfully used
in a variety of flows, including turbulent boundary layers. Chakraborty et al (2005) have
shown that all these methods are approximately equivalent.
The ∆ criterion finds its origin in critical point analysis of the 3D velocity gradient tensor
(Chong and Perry (1990)): this tensor has one real eigenvalue λr and a pair of complex
conjugate eigenvalues λcr ± iλci when the discriminant ∆ of its characteristic equation
is positive. When this condition is met, the particle trajectory about the eigenvector
corresponding to λr have a swirling motion (Zhou et al (1999)). The imaginary part of
the complex eigenvalues, λci quantifies the strength of this swirling motion: the period
required for a particle to complete one revolution about its axis is given by 2π/λci. The ∆
criterion (positive discriminant of the characteristic equation) and the swirling strength
criterion (non-zero λci) are equivalent and reliable criteria for vortex identification (Zhou
et al (1999)).
When the data is not volumetric, but only planar, 2D forms of the velocity gradient ten-
sor can be used, as suggested by Adrian et al (2000a). Christensen and Adrian (2001),
Tomkins and Adrian (2003), Hutchins et al (2005) and Stanislas et al (2008) used the 2D
swirling strength to detect vortices in PIV planes of a turbulent boundary layer. Hutchins
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et al (2005) studied the limits of the two-dimensional swirling strength, with respect to
the full 3D form. The ratio λ2D/λ3D was computed for different inclination angle α of a
vortex (modelled with the Biot-Savart law) with respect to the measurement plane. This
confirmed that vortices whose axis are perpendicular to the measurement plane will be
successfully detected with the 2D approximation (λ2D/λ3D = 1 for α = 90◦), whereas the
detection will fail when the vortex axis lies in the measurement plane (λ2D/λ3D = 0 for
α = 0◦). The functional dependence of λ2D/λ3D with α is found to be of cosine type; in
particular, one gets λ2D/λ3D = 0.5 for an angle α = 30◦

Once a vortex has been detected using a detection function (such as the swirling strength,
the Q criterion, etc...), it is of interest to retrieve the characteristics of this vortex (radius,
circulation...). One method consist in fitting the velocity field surrounding the extrema
of the detection function to a model vortex. The characteristics of the vortex are given
by the fitted parameters of the model. This method has been employed by Carlier and
Stanislas (2005) and Stanislas et al (2008) using as a model an Oseen vortex.

6.1.2 Methodology employed

The technique implemented to identify and to characterize vortices in the LML and
LTRAC database consists of:

• the computation of a detection function,

• the localization of the extrema of this detection function and

• a fit of a model vortex to the velocity field surrounding the extrema of the detection
function.

Details on each one of these three steps are now given.

Computation of a detection function

The detection function used to educt vortices in the LML and LTRAC database is a
smoothed and normalized 2D swirling strength. This detection function is based on the
2D swirling strength defined in Adrian et al (2000a), but with a number of adaptations
designed to prevent its contamination with the PIV measurement noise.
At first, the derivative scheme used to compute the 2D swirling strength was chosen with
care. Raffel et al (1998) tested several derivation schemes and recommend a 2nd order
scheme that minimizes the propagation of measurement noise. This scheme is referred to
as the ‘2nd order least square’ scheme. Foucaut and Stanislas (2002) realized a compar-
ative study of the different derivation schemes (centered differences, compact differences,
Richardson extrapolation, and least square) applied to PIV data. They considered the
derivations schemes as filters, and recommended that the upper cut-off wavenumber of
the filter corresponds to the cut-off wavenumber of the PIV data at a signal to noise ratio
of 1. In this manner, the slope of the filter will cancel the noise amplification. The cut-
off wavenumbers of the different derivative schemes, non-dimensionalized with the mesh
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spacing, are given. The cut-off wavenumber of the PIV power spectra at a signal-to-noise
ratio of 1 were computed in section 5.4, and it is therefore possible to determine the best-
suited derivative scheme for our database. The average cut-off wavenumber was found to
be:

k̃ = ky ≈ 14.5 ⇔ k∆x ≈ 0.7

According to the findings of Foucaut and Stanislas (2002), this cut-off wavenumber cor-
responds to the one of the 2nd order least-square derivative scheme. The 2D swirling
strength was therefore computed using this scheme. An example from a map of 2D
swirling strength, computed on a velocity field of the LTRAC database at Reθ = 2200
is shown in figure 6.1. The same velocity field will be used throughout this section to
illustrate the methodology used for the detection. Peaks of swirling strength allow the
visualization of vortex cores. As one can see, the intensity of these peaks decreases with
increasing wall-normal distance, as expected in wall-bounded turbulence (DelAlamo et al
(2006)). Therefore structures at the wall and away from the wall cannot be visualized
using the same surface levels, as already observed by Blackburn et al (1996)
In order to overcome this difficulty, a normalization is then applied to the detection func-
tion. The 2D swirling strength is divided by the wall-normal profile of its RMS value:

λ̄ci(x1/3, x2) =
λci(x1/3, x2)

λci,RMS(x2)

This type of normalization was first used by DelAlamo et al (2006) and Wu and Chris-
tensen (2006). It is illustrated in figure 6.2: the intensity of the detection function is now
independent of wall-normal distance. Finally a 3*3 sliding average is applied to remove
the remaining noise. The smoothed and normalized 2D swirling strength is visible in
figure 6.3.

Localization of the extrema of the detection function

The local maxima of this detection function are then localized using an iterative process. It
is important that one and only one extrema per vortex core is retrieved, as each extrema
will be used as an initial guess for the center of a vortex. For this purpose, only the
maxima whose neighborhood does not intersect with the neighborhood of the previously
detected maxima are retained. This neighborhood is set to a square with sides of 7 mesh
points. It ensures that the maxima will be separated from each other by no less than 6
mesh points. The maxima are retrieved in decreasing order of magnitude. The iterative
process is stopped when the value of the maxima of the detection function becomes lower
than a fixed threshold. In practice, a non-zero threshold of the detection function is often
used, even with data that are free of measurement noise, because zero threshold leads to
confusing results in which all the vortices merge into a few complex objects (Blackburn
et al (1996), DelAlamo et al (2006)). Thanks to the normalization of the detection
function, a uniform threshold can be used for the entire velocity field. Its value is set to
1.5, which means that only extrema where λci(x1/3, x2) > 1.5λci,RMS(x2) are considered.
For comparison, Wu and Christensen (2006) used the same threshold on their PIV data
of turbulent channel flow and turbulent boundary layer.
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Figure 6.1: Example of map of swirling strength, in wall units

Figure 6.2: Example of map of normalized swirling strength

Figure 6.3: Example of map of normalized and smoothed swirling strength

Figure 6.4: Example of map of detected vortices. Prograde vortices (ω0 < 0) are colored
in black, and retrograde vortices (ω0 > 0) are colored in white. The little rectangular box
centered at (x+; y+) ≈ (3370; 680) indicates which vortex is used to illustrate the fit to
an Oseen vortex in the paragraph ‘Fit to a model vortex’
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Fit to a model vortex

The velocity field surrounding each maxima of the detection function is fitted to a model
vortex. This process is undertaken for two reasons:

• it allows to validate if the extrema of the detection function correspond effectively
to vortex cores.

• it enables the retrieval of the characteristics of this vortex (radius, circulation ...)
through the fitted parameters of the model.

The model chosen is an Oseen vortex, convected with a constant velocity (see equation
6.1), and the parameters fitted are the two components of the convection velocity ~uc, the
coordinates of the center, the radius r0, and the circulation Γ.

~u(r, θ) = ~uc +
Γ

2π

1

r

(

1− exp

(

−
(

r

r0

)2
))

~eθ (6.1)

The algorithm implemented for the fit is summarized in an organigram in figure(6.5).
The velocity field domain used for the fit is square centered on the detection peak, and
of constant size: it extends along 7 mesh points on each sides of the detection peak
(that is 15 mesh points of total extent). The extent of 7 mesh points corresponds to a
wall unit extent comprised between 24+ and 45+, depending on the dataset considered.
The parameters of the model are initialized using: the local velocity at the peak as the
convection velocity; the coordinates of the peak as the coordinate of the center; 4 times the
mesh spacing as the radius. The circulation is initialized using the vorticity at the peak.
A first fit of the model to the velocity field inside this domain is realized, using a non-
linear least-square method: the Levenberg-Marquardt method (see numerical recipes in
C for more details). It is iterative, and the tolerance and maximum number of iterations
are fixed in section 6.1.3. This method was adapted to handle two variables depending
on two dimensions. If convergence is reached within the maximum number of iterations,
the correlation coefficient between the fitted model and the velocity field is computed (see
equation 6.2). The structure is retained if it is larger than 0.75.

R(model/PIV) =

(

< (~uPIV − ~uc).(~umodel − ~uc) >
√

< (~uPIV − ~uc)2 >
√

< (~umodel − ~uc)2 >

)1/2

(6.2)

This method has one drawback: the domain used for the fit of all the vortices is of con-
stant size. When a vortex is smaller than this domain, then some part of the outer flow
is fitted as well, which may disturb the fitting procedure. On the other hand, when a
vortex is larger than this domain, then only a portion of the vortex is fitted, which may
induce inaccurate results. In order to overcome this drawback, a second fit is realized.
This time, the size of the domain of the fit is adjusted using the radius found from the
first fit, and the parameters of the model are initialized with the outputs from the first
fit. If the fit converges, the new correlation coefficient is computed, and the structure is
finally accepted as a vortex if the coefficient is superior to 0.75.
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Figure 6.5: Organigram of the fit algorithm
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Finally, the informations retrieved for an accepted vortex are: its radius r, its cir-
culation Γ, its convection velocity ~uc, the coordinates of its center and the vorticity at
its center (defined as ω0 = Γ/(πr2)). For each velocity field, a map of the indicative
function of the detected vortices is constructed. This function is defined as being: 1
within a vortex of positive vorticity; -1 within a vortex of negative vorticity; 0 elsewhere.
A map of this indicative function is shown is figure 6.4. Prograde (ω0 < 0) and ret-
rograde (ω0 > 0) vortices with a wide range of radii were detected. It can be seen that
the position of these vortices coincide with peaks of the detection function (see figure 6.3).
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Figure 6.6: Comparison of a vortex and its closest Oseen model . The convection velocity
(shown in black at the top of the figure) has been subtracted to the PIV velocity field.

An example of accepted vortex is shown in figure 6.6. It is plotted against the closest
Oseen vortex obtained with the fitting procedure (the correlation coefficient is equal to
0.96). It corresponds to the vortex enclosed within a square in figure 6.4. The radius of
this vortex is 26 wall units.

6.1.3 Validation using synthetic data

The detection technique was validated using a synthetic Oseen generator. At first, a syn-
thetic Oseen vortex was generated with the following parameters: r+ = 25, Γ+ = 250
and no convection velocity. The vortex was discretized on a grid with a spacing of
∆x+ = ∆y+ = 4. The grid spacing was chosen to be close to the mean spacing of
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the database. The radius and circulation are close to mean values observed in the lit-
erature (Carlier and Stanislas (2005)). The initial size of the fitting domain was set to
15 mesh points (it corresponds to the size used for the detection on the database). It
was checked that the detection procedure enables the retrieval of the correct radius and
circulation with a correlation coefficient of 1. The influence of the discretization of the
vortex on the performance of the detection technique was then studied. For that purpose,
the radius of the vortices was varied while keeping the mesh spacing (as well as the cir-
culation) constant: in total, 16 Oseen vortices with radius varying linearly from r = 1∆x
up to r = 16∆x were generated. The larger vortex is twice as big as the size of the fitting
domain. All the vortices could be detected with the correct parameters and a correlation
coefficient of 1. This indicates that the spatial discretization of the vortices (correspond-
ing to the mesh spacing of the SPIV dataset) is expected to have none or little influence
on their detection. Finally, it was checked that adding a convection velocity to the vortex,
and having the center of the vortex located in between two grid points have no influence
on the performance of the detection procedure. The tolerance and the maximum number
of iterations of the Levenberg-Marquadt method were adjusted using these synthetic tests.

6.1.4 Effect of the PIV filtering on the detection

The influence of the PIV spatial averaging on the performance of the detection technique
was then assessed. For this purpose, two SPIV datasets at the same Reynolds number, but
with different spatial resolutions, were used. The characteristics of the two datasets are
summarized in table 6.1. The two datasets consist of XY planes of the LML boundary
layer at Reθ = 10140, one with a resolution of 67µm/px, and the other one with a
resolution of 27µm/px. As the PIV interrogation window size was the same in pixels, the
two datasets have different size of interrogation window in wall units: for the dataset at
67µm/px, the averaging area is on the order of 27.8+, while for the dataset at 27µm/px,
it is equal to 11.2+. Note that the mesh spacing in wall units also varies between the
two datasets. However, the discretization is expected to have little influence on the
detection, as shown with the study using a synthetic Oseen generator (provided the radius
is discretized on no less than one mesh spacing).

facility Plane Reθ δ+ Domain extent LIW Mesh step σ(ǫu,i) radius at
(1-2) Reτ S1, S2 ∆i SNR = 1

LML XY 10140 3620 0.18δ, 0.7δ 27.8+ 6.5+ 0.7%U∞ 27+

LML XY 10140 3620 0.08δ, 0.28δ 11.2+ 3.2+ 0.7%U∞ 19.0+

Table 6.1: Characteristics of the 2 datasets at Reθ = 10140 with different spatial resolu-
tions

The influence of the spatial resolution on the wall-normal evolution of the mean radius
and vorticity of the vortices detected in the two datasets is first studied. These profiles
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are shown in figures 6.7 and 6.8, in wall units. Each point of the profiles was obtained by
taking into account eddies contained in a layer of 25+ in height.
As it can be seen, the evolution of the mean radius follows the same trend for the two
datasets: a slow increase with increasing wall-normal distance. However, the values of
these mean radii are fairly different: the vortices detected in the dataset with the lowest
spatial resolution (67µm/px) possess a radius on average 60% bigger than in the dataset
with the highest spatial resolution (27µm/px). This effect of spatial resolution was already
observed by Stanislas et al (2008) between a YZ plane of the LML boundary layer at
Reθ = 7800 and a YZ plane of the LML boundary layer at Reθ = 15000. It is likely that
the small vortices are in fact filtered out in the dataset with the lowest spatial resolution,
resulting in a higher value of the mean radius.
In contrast, the wall-normal evolution of the mean vorticity at the center of the vortices
seems less affected by the PIV spatial resolution: it is in quite good agreement between
the two datasets. This quantity appears slightly underestimated in the dataset with the
lowest spatial resolution (67µm/px): a difference of about 25% is noted with respect to
the dataset with the highest spatial resolution. In fact the vorticity is homogeneous to the
inverse of a time, and hence is more related to the PIV time separation than to the PIV
spatial resolution. While the PIV optical magnification was adjusted ‘only’ three times
during the acquisition of the database (once for the LTRAC, and twice for the LML), the
PIV time separation was continuously adjusted to keep a maximum displacement of 10
pixels for all datasets (see sections 3.2 and 4.2). This may explain why the estimation of
the vorticity is less affected than that of the radius by the PIV parameters employed.

As the mean radius seems to be the quantity that is the most impacted by the spatial
resolution of the datasets, it is of interest to analyze the distribution of the radius of the
detected vortices. For this purpose, the joint density function of the vortex radius and
center wall normal location DF (r, y0) was computed for both datasets. The bin value
used for the radius is equal to 1/6 of its RMS value, and the bin value used for the wall-
normal location is equal to 50+. This density function is normalized so that it represents
the vortex density per wall-unit square and per bin value of the radius. Cuts of DF (r, y0)
at different wall-normal locations were then extracted, and superimposed in figure 6.9.
Within each dataset, it can be seen that the density function of radii shows a weak
dependence on the wall-normal position of the vortex. Although the shape of the DFs is
similar for the two datasets, the smallest radius detected and the most probable radius
detected is noticeably smaller for the dataset with the highest spatial resolution. On the
other hand, the vortices with a large radius are detected with both spatial resolutions.
Therefore, the spatial resolution affects mainly the detection of the small vortices, which
are filtered out by the dataset at 67µm/px due to the spatial averaging.

Another statistical result of interest to study the influence of the PIV filtering on
the vortex radius is the wall-normal evolution of the vortex density per wall-unit square
N+(y+). It is plotted in figure 6.10 for both datasets. The density of detected vortices
appears to be strongly dependent on the spatial resolution, especially in the near wall
region: close to the wall, the density in the dataset at 27µm/px is eight times as high as
the density in the dataset at 67µm/px; away from the wall, the density in the dataset at
27µm/px is twice as high as the density in the dataset at 67µm/px. As already shown in
figure 6.7, the mean radius of the vortices decreases with decreasing wall-normal distance:
this may explain why more vortices are filtered out close to the wall than away from the
wall in the dataset with the lowest spatial resolution.
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Finally, it is of interest to study the influence of the PIV filtering on the vortex radius
using another scaling: the Kolmogorov scaling. The wall-normal evolution of the vortex
mean radius in the two datasets, non dimensionalized using the same Kolmogorov length-
scale profile is shown in figure 6.11. The Kolmogorov lengthscale profile was computed
from hot-wire measurements of the LML boundary layer at Reθ = 10140, and can be
found in Stanislas et al (2008). In this representation, the radius is found to slowly de-
crease with increasing wall-normal distance. The mean vortex radius in the dataset with
the lowest spatial resolution (67µm/px) is found to be on average 60% bigger than in the
dataset with the highest spatial resolution (27µm/px). As expected, this is comparable
to what was obtained with the wall-unit scaling. Now, another methodology is tested
to non-dimensionalize the mean radius. It consist in using, for each PIV dataset, the
Kolmogorov lengthscale profile that was computed from the PIV data itself (see figure
5.37 in section 5.5). When comparing the dissipation and Kolmogorov lengthscale profiles
obtained from HW and PIV, it can be seen that the dissipation profile obtained from HW
is comparable to that of the PIV at 67µm/px in the near-wall region; both underestimate
the dissipation peak at the wall, and consequently overestimate the Kolmogorov length-
scale. In contrast, the PIV dataset with the high spatial resolution (27µm/px) seem to
estimate correctly the dissipation in the near-wall region. The wall-normal evolution of
the mean radius non-dimensionalized using the Kolmogorov lengthscale from the PIV
data is shown in figure 6.12. As it can be seen, the mean radius is now more independent
of the wall normal distance. Besides, the difference in radius between the two datasets is
much smaller: the mean radius in the dataset at a resolution of 67µm/px is now only 30%
bigger than in the dataset at a resolution of 27µm/px. Therefore, non-dimensionalizing
the mean radius of the PIV using the Kolmogorov length scale profile computed from the
same data seems to actually compensate spatial averaging errors.



6.1. Detection technique 117

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

<
r>

+

y+

SPIV xy Reθ=10140 67µm/px
SPIV xy Reθ=10140 27µm/px

Figure 6.7: Effect of spatial resolution on wall-normal evolution of mean radius

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400

<
ω

0>
+

y+

SPIV xy Reθ=10140 67µm/px
SPIV xy Reθ=10140 27µm/px

Figure 6.8: Effect of spatial resolution on wall-normal evolution of mean vorticity at the
center



118 6. Coherent structures detection

 1e-08

 1e-07

 1e-06

 1e-05

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

D
F

(r
+
)

r+

SPIV xy Reθ=10140 27µm/px
SPIV xy Reθ=10140 67µm/px

Figure 6.9: Effect of spatial resolution on PDF of radius in wall units scaling, in the
logarithmic region

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

N
+

y+

SPIV xy Reθ=10140 67µm/px
SPIV xy Reθ=10140 27µm/px

Figure 6.10: Effect of spatial resolution on wall-normal evolution of the density of detected
vortices



6.1. Detection technique 119

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

<
r>

/η

y+

SPIV xy Reθ=10140 67µm/px
SPIV xy Reθ=10140 27µm/px

Figure 6.11: Effect of spatial resolution on wall-normal evolution of mean radius, in
Kolmogorov scaling (using hot-wire profiles of Kolmogorov length scale)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  200  400  600  800  1000  1200  1400  1600  1800  2000  2200  2400  2600

<
r>

/η

y+

SPIV xy Reθ=10140 67µm/px
SPIV xy Reθ=10140 27µm/px

Figure 6.12: Effect of spatial resolution on wall-normal evolution of mean radius, in
Kolmogorov scaling (using PIV profiles of Kolmogorov length scale)



120 6. Coherent structures detection

6.2 Results on the individual vortices

The coherent structure detection was run on the LML and LTRAC databases. The char-
acteristics of these databases are summarized in table 6.2 for convenience. The database
consists of streamwise/wall-normal (XY) and spanwise/wall-normal (YZ) planes of tur-
bulent boundary layers at Reynolds numbers ranging from Reθ = 1300 up to Reθ = 18950
(or conversely from Reτ = δ+ = 820 up to Reτ = 6880). The uncertainty on the velocity
(obtained in section 3.4 and 4.4 using the overlap region of the velocity fields) and the
radius corresponding to a signal to noise ratio of 1 (obtained in section 5.4 using the power
spectra) are also summarized. Uncertainties and cut-off wavenumbers were obtained for
the three velocity components, but here only an average value between the two in-planes
velocity components is given (as the detection is performed using these two components).
The boundary layer at Reθ = 10140 was measured using two spatial resolutions (27µm/px
and 67µm/px), but only the dataset with the highest spatial resolution will be used for
the analysis of the vortices.

DNS data of turbulent channel flow (DelAlamo et al (2006)) were also used. The
characteristics of the full DNS are summarized in table 6.3(a). The detection was run on
streamwise/wall-normal and spanwise/wall-normal planes of this DNS, interpolated on
a regular mesh. The planes were extracted from nine three-dimensional velocity fields,
uncorrelated in time. Successive planes are separated by a distance equal to h+/2 for
the XY planes and to h+ for the YZ planes (where h is the half channel height). The
interpolation was undertaken using two-dimensional bi-cubic spline interpolation. The
regular mesh have a spacing of 4.5+ in all directions. This resolution is close to the native
resolution of the DNS in the spanwise direction, and to that of the LTRAC dataset. It
can be seen that the native mesh spacing of the DNS in the streamwise direction is twice
as large as the spacing used for the interpolation. In contrast, the full DNS was more
highly resolved in the wall-normal direction. The characteristics of the interpolated XY
and YZ planes of the DNS are summarized in table 6.3(b). The total number of points
for the DNS planes (over the two spatial directions and over the number of samples) is
roughly equal the total number of points for the SPIV dataset at Reθ = 2200.

In the following subsections, statistical results on the radius r(y), the vorticity ω(y),
the density N(y), and the convection velocity uc(y) of vortices detected in XY planes and
YZ planes of the flow are presented and analyzed.
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6.2.1 Properties of the radius

The general trend for the vortex radius distribution in the flow is first examined using the
probability density function of the radius at various height in the XY plane (figure 6.13)
and in the YZ plane (figure 6.14 ), with a wall unit scaling. As the same overall behavior
was observed for all Reynolds numbers, only a few Reynolds numbers are represented:
Reτ = 950, Reθ = 2200 and Reθ = 13420 for the XY plane, and Reτ = 950 and Reθ =
13420 for the YZ plane. These PDF were obtained by taking into account eddies contained
in layers of 50+ in height, and using bin values of the radius equal to 1/6 of the RMS
value of the radius. The normalization is such that, for each dataset:

∫

r

∫

yc

PDF (yc, r) = 1

For all Reynolds numbers and in both planes, the value of the most probable vortex as well
as the width of the distribution appear to increase with increasing wall-normal distance.
This increase is steeper near the wall, and then diminishes. For all cases, the radius of the
detected vortices is comprised between 10+ and 70+, with a most probable value of 20+

at y+ ≈ 75. Small differences between the XY plane and the YZ plane can be observed
for Reτ = 950 and for Reθ = 13420 in the near wall region: the distribution of radius is
both wider and lower for the XY plane than for the YZ plane.

The wall-normal evolution of the mean radius for all Reynolds numbers is plotted in
wall units in figure 6.15 for the XY plane (where spanwise vortices are detected), and in
figure 6.16 for the YZ plane (where streamwise vortices are detected). These profiles were
obtained by taking into account eddies contained in layers of 25+ in height.
Within each plane, the overall evolution of the mean radius with wall-normal distance is
identical for all Reynolds numbers. It is of interest to note that, within each measurement
plane, the mean radii in wall units of the datasets at Reτ = 950, Reθ = 1300, Reθ = 2200,
Reθ = 7630, Reθ = 13420 are in good agreement in the near-wall region. This tends to
indicate the universality of the mean radius in wall units scaling in the near-wall region.
These datasets feature similar interrogation window size and mesh spacing. In contrast,
the effect of spatial resolution is clearly visible on the datasets at Reθ = 10140 and
at Reθ = 18950. The former has the highest spatial resolution, and a smaller radius
is retreived, while the latter feature the lowest spatial resolution and a larger radius is
retrieved. More details on the influence of the spatial resolution on the detection procedure
can be found in section 6.1.4. It is of interest to note that the shift in radius (on the order
of 4 wall units) is equal to the corresponding difference in interrogation window size.

The radius of the spanwise vortices (detected in the XY plane) appears to be slowly
increasing with wall normal distance over the whole field for all Reynolds numbers, except
for the dataset at Reθ = 1300 where a steep increase of mean radius is observed for
y+ > 400 ⇔ y/δ > 0.5. This may be due to intermittency with the free stream; as will
be shown in section 6.2.3, the density of vortices for that dataset in the region y/δ > 0.5
is quite low, and therefore this part of the profile may not be really meaningful. The
behavior of the mean radius in the interpolated DNS dataset of turbulent channel flow
appears to be similar to that of the PIV datasets in turbulent boundary layer, and in
particular to that of the LTRAC dataset at Reθ = 2200. Close to the wall (y+ ≈ 50), the
mean radius is about 20+ on the dataset with the highest spatial resolution (Reθ = 10140)
which is comparable to the findings of Carlier and Stanislas (2005) at Reθ = 7500.
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The behavior of the streamwise vortices (detected in the YZ plane) is quite different.
Two regions must be distinguished: the region y+ < 100, where the radius increases
strongly with wall-normal distance, and the region y+ > 100, where the radius increases
slowly with wall-normal distance. This composite behavior in the YZ plane was also
observed in Stanislas et al (2008) at Reθ = 7800 and Reθ = 13420. Close to the wall
(y+ ≈ 50), the radius is as small as 15+ on the dataset with the highest spatial resolution
(Reθ = 10140), which is is excellent agreement with the estimation of Sheng et al (2008)
for the radius of the streamwise vortices in the upper buffer layer.

Therefore the streamwise vortices (detected in the YZ plane) are found to be smaller
than the spanwise vortices (detected in the XY plane) in the near wall region. This may
indicate that, being inclined to the wall, the streamwise vortices are stretched by the
mean velocity gradient. In the region y+ > 100, the mean radius of the streamwise and
spanwise vortices are comparable, slowly increase with increasing wall-normal distance
toward a value of 25+.
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Figure 6.15: Mean radius of the spanwise vortices (detected in the XY plane), in wall
units
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In the XY plane, two types of vortices may be distinguished: the prograde (ω0 < 0)
and retrograde (ω0 > 0) vortices. The profiles of the radius for these two types of vortices
are plotted in figure 6.17 for the highest Reynolds range and in figure 6.18 for the lowest
Reynolds number range, with a wall units scaling. Note that, in order to present the
clarity of the graph for the highest Reynolds number range, not all datasets are shown
on this graph. The radius of the prograde vortices is found to be slightly larger than
that of the retrograde vortices. The difference between prograde and retrograde vortices
increases with decreasing wall-normal distance. It is of interest to note that the behavior
of the retrograde vortices in the region y+ < 150 is actually close to that of the vortices
in the YZ plane. It was checked that the wall-normal evolution of the mean radius in the
YZ plane is identical for the vortices with positive and negative vorticity.

Another possibility to scale the detected vortices is to use Kolmogorov scales. The
Kolmogorov length scale η(y) represents the characteristic size of the smallest turbulent
motions, fixed by viscosity and dissipation. This scaling has been used by Tanahashi et al
(2004) for a DNS of turbulent channel flow, and by Stanislas et al (2008) for YZ planes
of the LML turbulent boundary layer. In this paragraph, all the radii detected within
a layer of given height are scaled with the local Kolmogorov length scale η(y), where y
is the wall normal location at the centerline of the layer. The profiles of η used for the
scaling are plotted in figures 5.35 and 5.37.

The wall-normal evolution of the mean radius scaled with the Kolmogorov length
scale is plotted in figure 6.19 for the XY plane and in figure 6.20 for the YZ plane. The
influence of the spatial resolution is less noticeable in this representation, as already noted
and explained in section 6.1.4.
In the YZ plane of the boundary layer flow (PIV), the mean radius is roughly constant
in Kolmogorov units over the full wall-normal extent of the velocity field, and equal to
8η. Stanislas et al (2008) also found a constant value, but slightly smaller, of the order
of 6η. It was checked that this difference is indeed due to a difference in the Kolmogorov
profile used for the scaling. Stanislas et al (2008) used a profile of dissipation computed
from hot-wire measurements (using a Taylor hypothesis), whereas the present data was
scaled using a dissipation profile computed from the PIV measurements themselves (see
section 5.5 for the PIV dissipation profiles).
In the XY plane of the boundary layer flow (PIV), it is only in the region y+ > 150 that the
radius detected in the PIV datasets have an approximately constant value in Kolmogorov
scaling, comparable to that of the YZ plane. Below that region, the radius in the XY
plane is found to increase with decreasing wall-normal distance. This behavior was also
found by DelAlamo et al (2006), although it was not as obvious as in the present data.
Here again, it is of interest to distinguish the prograde and the retrograde vortices in the
XY plane. The wall normal evolution of mean radius in Kolmogorov scaling are shown in
figure 6.21 for the retrograde vortices, and in figure 6.22 for the prograde vortices. The
dataset at Reθ = 13420 is not shown on these figures, because its behavior is very similar
to that of the dataset at Reθ = 7630. It is found that the radius of the retrograde vortices
in the XY plane is comparable to that of the vortices in the YZ plane. On the contrary,
the radius of the prograde vortices in the region y+ < 150 is not constant in Kolmogorov
units, and increases with decreasing wall-normal distance.
A special comment may be made on the radius of the vortices detected in the DNS dataset.
In both planes, the mean radius is found to decrease slowly with increasing wall-normal
distance, and no constant value of r/η is reached.



6.2. Results on the individual vortices 129

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

<
r>

+

y+

SPIV xy Reθ=7630 ω0>0
SPIV xy Reθ=7630 ω0<0

SPIV xy Reθ=10140 ω0>0
SPIV xy Reθ=10140 ω0<0
SPIV xy Reθ=18950 ω0>0
SPIV xy Reθ=18950 ω0<0

Figure 6.17: Effect of the vorticity sign on the radius of the spanwise vortices (detected
in the XY plane), in the highest Reynolds number range
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Figure 6.18: Effect of the vorticity sign on the radius of the spanwise vortices (detected
in the XY plane), in the lowest Reynolds number range
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Figure 6.19: Mean radius of the spanwise vortices (detected in the XY plane), in Kol-
mogorov units
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Figure 6.20: Mean radius of the streamwise vortices (detected in the YZ plane), in Kol-
mogorov units
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Figure 6.21: Mean radius of the retrograde vortices (ω0 > 0) in the XY plane, in Kol-
mogorov units
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Figure 6.22: Mean radius of the prograde vortices (ω0 < 0) in the XY plane, in Kolmogorov
units
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The Kolmogorov scaling is then applied to the probability density functions PDF (yc, r).
This time, the PDF are normalized so that for each layer in y:

∫

r/η

PDFy

(

r

η

)

= 1

For each plane, the PDF at the different wall-normal location are then superimposed.
Three regions in the flow are distinguished:

• the logarithmic layer (100 < y+ and y/δ < 0.25) that is available in all datasets.
The PDF at the different wall normal location in this domain are plotted in figure
6.23 for the XY plane and in figure 6.24 for the YZ plane.

• the outer region with y/δ ∈ [0.25; 0.6]. This region of the flow is measured with
the PIV dataset at Reθ = 1300, 2000 (in the XY plane only) and in both planes at
Reθ = 7630 and with the DNS dataset at Reτ = 950. The PDF in this domain are
plotted in figure 6.25 for the XY plane and in figure 6.26 for the YZ plane.

• the outer region with y/δ ∈ [0.6; 1]. This region of the flow is only measured with
the PIV dataset at Reθ = 1300,2000 (in the XY plane only) and with the DNS
dataset at Reτ = 950. The PDF in this domain are plotted in figure 6.27 for the
XY plane and in figure 6.28 for the YZ plane.

The regions y/δ ∈ [0.25; 0.6] and y/δ ∈ [0.6; 1] are distinguished because the latter is
expected to be influenced by the intermittency with the free stream, which is not the case
for the former.

The overall agreement of the PDFs over the full range of Reynolds number and
throughout the logarithmic region is quite good for both the XY planes and the YZ
planes (see figures 6.23 and 6.24). Vortices with radius in the range [2η; 30η] are found.
A very good collapse of the PDF for the spanwise (detected in the XY plane) and stream-
wise (detected in the YZ plane) vortices is observed in the lowest range of radius for all
Reynolds numbers, and in both PIV and DNS data. In particular, the most probable
radius is found to be universal for all Reynolds numbers and for both type of vortices, at
a value of 7η. Some scatter is visible for larger radius. A good collapse of the radius PDF
was also observed by Stanislas et al (2008) in YZ planes of turbulent boundary layers at
Reθ = 7800 and Reθ = 15000 in Kolmogorov scaling (in the logarithmic region).

In the region y/δ ∈ [0.25; 0.6] (figures 6.25 and 6.26), the agreement is still reasonable
between the LTRAC datasets, the DNS dataset, and the LML dataset at Reθ = 7630, in
both plane and the values of the most probable radius are conserved. The PDF of the
radius in the DNS dataset has slightly shifted towards smaller radius.

In the region y/δ ∈ [0.6; 1] (figures 6.27 and 6.28), only the LTRAC datasets and
the DNS dataset can be compared, as this region of the flow was not measured for the
LML datasets. The most probable value for the radius in the LTRAC dataset is still
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about 7η, but a distorsion of the PDF for the dataset at Reθ = 1300 in the large radius
range is clearly visible. This explains the increase of the mean radius in the outer region
that was observed in figure 6.15. The PDF of the radius in Kolmogorov scaling of the
DNS dataset in both planes has continued to shift towards smaller radius (with a most
probable value at 5η), and is now quite different to that of the LTRAC dataset. As was
noted in figures 5.35 and 5.34, the dissipation and Kolmogorov profiles of the LTRAC
dataset at Reθ = 1300 is in excellent agreement with that of the DNS. Consequently the
PDF difference in this region cannot be attributed the normalization employed. Instead,
it may be linked to a difference in vortical structure in the outer region of boundary layer
and channel flows.



134 6. Coherent structures detection

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

P
D

F
(r

/η
)

r/η

DNS xy Reτ=950
SPIV xy Reθ=1300
SPIV xy Reθ=2200
SPIV xy Reθ=7630

SPIV xy Reθ=10140
SPIV xy Reθ=13420
SPIV xy Reθ=18950

Figure 6.23: PDF of radius of the spanwise vortices (detected in the XY plane) in the
logarithmic layer (100 < y+ and y/δ < 0.25)
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Figure 6.24: PDF of radius of the streamwise vortices (detected in the YZ plane) in the
logarithmic layer (100 < y+ and y/δ < 0.25)
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Figure 6.25: PDF of radius of the spanwise vortices (detected in the XY plane) for
y/δ ∈ [0.25; 0.6]
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Figure 6.26: PDF of radius of the streamwise vortices (detected in the YZ plane) for
y/δ ∈ [0.25; 0.6]
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Figure 6.27: PDF of radius of the spanwise vortices (detected in the XY plane) for
y/δ ∈ [0.6; 1]
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6.2.2 Properties of the vorticity

The same kind of statistical analysis is now applied to the absolute value of the vorticity
at the center of the vortices. This vorticity is not retrieved directly from the fit to an
Oseen vortex, but is computed from the relationship between the circulation, the radius
and the vorticity at the center of the vortex: Γ = ω0πr2. All the PDF are computed
using the same normalization, bin values for the wall-normal location (layers of 50+ in
height) and for the vorticity (1/6 of the RMS value) as in the previous subsection; the
wall-normal evolution of the mean vorticity is computed by taking into account eddies
contained in layers of 25+ in height.

The general trend for the distribution of the vorticity is first examined using the
probability density function of the vorticity at various height in the XY plane (figure
6.29) and in the YZ plane (figure 6.30 ), with a wall unit scaling. Here again, only a few
Reynolds number are represented: Reτ = 950, Reθ = 2200 and Reθ = 13420 for the XY
plane, and Reτ = 950 and Reθ = 13420 for the YZ plane.
For the XY plane and the YZ plane, the vorticity distribution is such that ω+

0 ∈ [0 : 0.7].
The most probable vorticity value as well as the width of the distribution is found to
decrease with increasing wall-normal distance; this behavior is inversely proportional to
that of the radius. The most probable vorticity value is found to be ω+

0 >≈ 0.2 close
to the wall (y+ ≈ 75) and < ω+

0 >≈ 0.05 away from the wall. The PDF in the region
y+ ∈ [400; 900] appears to be narrower and centered at a lower value in the lowest Reynolds
number range than in the highest Reynolds number range. This is probably because this
region is still within the logarithmic layer for the dataset at Reθ = 13420, while it is in the
outer region for the dataset at Reτ = 950 and Reθ = 1300. No clear difference appears
on these plots between the XY plane and the YZ plane.
Since the vorticity displays a behavior with wall-normal distance that is the inverse of the
radius, it is worth having a look at the mean circulation of the vortices. Its wall-normal
evolution is plotted in figure 6.31 for the XY plane and in figure 6.32 for the YZ plane.
It is found that the circulation of the streamwise vortices (detected in the YZ plane) is
roughly constant everywhere, while for the spanwise vortices (detected in the XY plane),
the circulation is constant in the region y+ > 250 only.

The wall normal evolution of the absolute mean value of vorticity at the center of the
vortices is represented in figure 6.33 for the spanwise vortices (detected in the XY plane)
and in figure 6.34 for the streamwise vortices (detected in the YZ plane), in wall units.
As it can be seen, in both planes, the vorticity decreases exponentially with the wall
normal distance. In the near wall region (y+ < 250) a good collapse of the vorticity in all
datasets and in both planes is observed. At the wall, the profile of vorticity is tangent to
the velocity gradient dU+/dy+ given by the van Driest law. The peak of vorticity at the
wall is slightly higher for the streamwise vortices than for the spanwise vortices. This may
indicate that the streamwise vortices are more intensified by the mean velocity gradient
than the spanwise vortices. In the outer region (visible on the datasets at Reθ = 1300,
Reτ = 950, Reθ = 2000 and Reθ = 7630), a clear Reynolds effect is visible: the lower the
Reynolds number, the lower the vorticity at the center of the vortices.

In the XY plane, the wall-normal evolution of the prograde (w0 < 0) and retrograde
(w0 > 0) spanwise vortices are compared in figure 6.35 for the highest Reynolds number
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range and in figure 6.36 for the lowest Reynolds number range. Note that, in order to
preserve the clarity of the graph for the highest Reynolds number range, the mean vor-
ticity of the dataset at Reθ = 13420 was not represented, because it is very similar to
that of the dataset at Reθ = 7630. For all Reynolds numbers, it can be seen that the
prograde vortices have stronger vorticity at their center than the retrograde vortices; this
difference increases with decreasing wall-normal distance. The peak of vorticity at the
wall is noticeably higher for the prograde vortices than for the retrograde vortices. It was
checked that the behavior of the streamwise vortices is the same for both signs of the
vorticity.
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Figure 6.31: Wall-normal evolution of the mean circulation of spanwise vortices (XY
plane), in wall-units
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Figure 6.32: Wall-normal evolution of the mean circulation of streamwise vortices (YZ
plane), in wall-units
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Figure 6.33: Wall-normal evolution of the vorticity of spanwise vortices (XY plane), in
wall-units
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Figure 6.34: Wall-normal evolution of the vorticity of streamwise vortices (YZ plane), in
wall-units
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Figure 6.35: Wall-normal evolution of the vorticity of spanwise vortices (XY plane) in the
highest Reynolds number range, depending on sign of the vorticity
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Figure 6.36: Wall-normal evolution of the vorticity of spanwise vortices (XY plane) in the
lower Reynolds number range, depending on sign of the vorticity
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The wall-normal evolution of the mean vorticity scaled with the inverse of the Kol-
mogorov time scale is plotted in figure 6.37 for the XY plane and in figure 6.38 for the
YZ plane. The behavior is similar in the two planes. The quantity < w0 > τ appears
to be quite constant in the upper buffer layer and in the logarithmic region of the SPIV
datasets (< w0 > τ ≈ 1.4 ± 0.1), and both in the logarithmic region and outer region
of the DNS dataset (< w0 > τ ≈ 1.6 ± 0.05). In the outer region of the SPIV dataset
at Reθ = 1300, 2200, 7630, it can be observed that the mean vorticity decreases slowly
with increasing wall-normal distance (the outer region is not measured at higher Reynolds
numbers).

The Kolmogorov scaling is then applied to the probability density functions PDF (yc, w0).
This time, the PDF are normalized so that for each layer in y:

∫

w0τ

PDFy(w0τ) = 1

For each plane, the PDF at the different wall-normal locations are then superimposed.
Three regions in the flow are distinguished, as for the radius:

• the logarithmic layer (100 < y+ and y/δ < 0.25) that is available in all datasets.
The PDF at the different wall normal location in this domain are plotted in figure
6.39 for the XY plane and in figure 6.40 for the YZ plane.

• the outer region with y/δ ∈ [0.25; 0.6]. This region of the flow is measured with
the PIV dataset at Reθ = 1300, 2000 (in the XY plane only) and in both planes at
Reθ = 7630 and with the DNS dataset at Reτ = 950. The PDF in this domain are
plotted in figure 6.41 for the XY plane and in figure 6.42 for the YZ plane.

• the outer region with y/δ ∈ [0.6; 1]. This region of the flow is only measured with
the PIV dataset at Reθ = 1300, 2000 (in the XY plane only) and with the DNS
dataset at Reτ = 950. The PDF in this domain are plotted in figure 6.43 for the
XY plane and in figure 6.44 for the YZ plane.

The overall agreement of the PDF over the full range of Reynolds number and through-
out the logarithmic region is good for both the XY planes and the YZ planes (see figures
6.39 and 6.40). The vorticity at the center of the vortices is found to be in the range
[0.25τ−1; 8τ−1]. In both planes, excellent agreement between the various datasets is found
in the small and intermediate vorticity range (w0τ ∈ [0.25; 3]). In particular, the most
probable value of the vorticity at the center of the vortices is w0τ = 0.9. In fact, the
universality of the PDF for the vorticity seems even better than for the radius; this can
be explained by the fact that the vorticity is more sensitive to the PIV time separation
than to the PIV spatial resolution (see section 6.1.4). In the large vorticity range, some
differences are noted; more vortices with large vorticity are detected in the DNS dataset,
which is consistent with the higher value of mean vorticity that was found (see figures
6.37 and 6.38).

In both planes, the PDF of the DNS dataset remains the same in the regions y/δ ∈
[0.25; 0.6] and y/δ ∈ [0.6; 1]. In contrast, a small shift towards smaller vorticity is visible
on the PDF of the SPIV datasets at Reθ ∈ [1300; 7630]. The most probable vorticity of
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these datasets is wτ = 0.8 in the region y/δ ∈ [0.25; 0.6] and wτ = 0.65 in the region
y/δ ∈ [0.6; 1].
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Figure 6.37: Wall-normal evolution of the mean vorticity of spanwise vortices (XY plane),
in Kolmogorov units
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Figure 6.38: Wall-normal evolution of the mean vorticity of streamwise vortices (YZ
plane), in Kolmogorov units
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Figure 6.39: PDF of vorticity of the spanwise vortices (XY plane) in the logarithmic layer
(100 ≤ y+ and y/δ < 0.25)
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Figure 6.40: PDF of vorticity of the streamwise vortices (YZ plane) in the logarithmic
layer (100 ≤ y+ and y/δ < 0.25)
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Figure 6.41: PDF of vorticity of the spanwise vortices (XY plane) for y/δ ∈ [0.25; 0.6]
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Figure 6.42: PDF of vorticity of the streamwise vortices (YZ plane) for y/δ ∈ [0.25; 0.6]
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Figure 6.43: PDF of vorticity of the spanwise vortices (XY plane) for y/δ ∈ [0.6; 1]
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Figure 6.44: PDF of vorticity of the streamwise vortices (YZ plane) for y/δ ∈ [0.6; 1]
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6.2.3 Density of vortices

The general trends for the wall-normal evolution of the vortex densities in the XY plane
and in the YZ plane are first analyzed. The densities were computed for all datasets by
taking into account eddies contained in layers of 25+ in height, and normalized so that
it represents the density of vortices per wall-unit square. It was shown in section 6.1.4
that the spatial resolution influences the absolute level of the vortex density, especially
near the wall. For the Lille turbulent boundary layers, the dataset at Reθ = 10140 is
represented (figure 6.45) because it has the highest spatial resolution, and hence the most
accurate density profile; the dataset at Reθ = 7630 (figure 6.46) is also plotted, because
some part of the wake region (0.25δ < y < 0.6δ) is visible there. It was checked that the
vortex densities at Reθ = 13420 are in very good agreement with those of the dataset at
Reθ = 7630, and that the dataset at Reθ = 18950 shows no different effects other than
spatial-resolution related. For the LTRAC turbulent boundary layer, all datasets are
shown (Reθ = 1300 in figure 6.48 and Reθ = 2200 in figure 6.49), because it is of interest
to check the effect of the free stream turbulence intensity. Finally, the density in the DNS
of channel flow at Reτ = 950 is also represented (figure 6.47). In each figure, the total
density of vortices in the XY plane, the density of prograde vortices (w0 < 0) in the XY
plane, the density of retrograde vortices (w0 > 0) in the XY plane, and the total density
of vortices in the YZ plane are represented. Note that for the LTRAC boundary layers,
only the vortices detected in the XY plane are shown, because no YZ measurements were
carried out in that facility.

In the region y+ < 150, the streamwise oriented vortices (detected in the YZ plane) are
more numerous than the spanwise oriented vortices (detected in the XY plane). The fact
that quasi-streamwise vortices are the major constituent of the near-wall region was also
observed using a λ2 criterion by Jeong et al (1997) in a DNS of channel flow at Reτ = 180
and by Sheng et al (2008) in holographic 3D velocity field of a turbulent boundary layer at
Reτ = 1400. For all datasets, the wall-normal location where the density of the streamwise
vortices reaches a maximum is obtained at y+ ≈ 60 , except for the dataset at Reθ = 18950
where the peak appears further away from the wall (y+ = 90) owing to a lack of spatial
resolution. After this maximum is reached, the density of streamwise vortices decreases
rapidly with increasing wall-normal distance. This behavior of the streamwise vortices
density in the near-wall region is in good agreement with the findings of Stanislas et al
(2008) in SPIV measurements of a turbulent boundary layer at Reθ = 7800. The density
of the spanwise vortices, in contrast, continuously increases from the wall up yo y+ ≈ 150
where a maximum is reached. Among the spanwise vortices, the predominance of the
prograde vortices is overwhelming. Both prograde and retrograde forms increase with
increasing wall-normal distance, but at very different rates: the increase is very fast for
the prograde vortices, and rather slow for the retrograde ones. This suggest that different
mechanism are responsible for their formation.

In the outer region (y+ > 150), the vortex densities behave differently. Firstly, it
is of interest to note that the vortices population is now almost equally constituted of
streamwise and spanwise vortices. The density of both vortices decreases at a medium
rate with increasing wall-normal distance (more slowly than the rate of decrease of the
streamwise vortices in the region 60 < y+ < 150). Again, the prograde and the retrograde
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vortices follow different evolutions: the density of the prograde vortices continuously
decreases with increasing wall-normal distance, while the density of the retrograde vortices
stabilizes until y/δ = 0.5, and then starts to increase again, at a very low rate (this portion
of the flow is visible in the LTRAC datasets at Reθ = 1300 and 2200 and in the DNS
dataset at Reτ = 950). It is worth noting that, in these three datasets, the density of
prograde and retrograde vortices tends to an equal level at the edge of the boundary
layer or on the channel centerline. The prograde and retrograde population densities in
boundary layer flow and turbulent channel flow were studied in great details by Wu and
Christensen (2006) in this region. They found the same wall normal evolution for the
prograde vortices, however some differences are visible in the region y > 0.5δ for the
retrograde vortices. Wu and Christensen (2006) found that, in that region, the density
of the retrograde vortices was increasing for the turbulent channel flow only, but not for
the turbulent boundary layer flows. They suggested that this difference between both
flow was due to the fact that the increase of retrograde vortices at the outer edge of the
channel flow may originate from the interaction with the flow along the opposite wall of
the channel: retrograde vortices in the reference frame of the bottom wall of the channel
are prograde vortices in the reference frame of the upper wall of the channel. The present
results indicate that a large free-stream turbulence intensity can also have the same effects
on turbulent boundary layers. Finally, comparing the two LTRAC datasets, it seems that
the higher free-stream turbulence intensity in the dataset at Reθ = 2200 results in a larger
spanwise vortex density in the outer region.
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Figure 6.45: Density of vortices in the SPIV dataset at Reθ = 10140
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Figure 6.46: Density of vortices in the SPIV dataset at Reθ = 7630
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Figure 6.47: Density of vortices in the DNS dataset at Reτ = 950
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Figure 6.48: Density of vortices in the SPIV dataset at Reθ = 1300
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Figure 6.49: Density of vortices in the SPIV dataset at Reθ = 2200
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Finally, the prograde and retrograde relative density is analyzed into more details
through the wall normal evolution of the fraction of prograde and retrograde vortices,
defined in equation 6.3. They are plotted for all Reynolds numbers, in figures 6.50 for the
highest Reynolds number range, and in figure 6.51 for the lowest Reynolds number range.
Filled symbols refer to prograde vortices, and hollow symbols refer to retrograde vortices.

Φp(y) =
N+

w<0(XY )

N+
w<0(XY ) + N+

w>0(XY )
Φr(y) =

N+
w>0(XY )

N+
w<0(XY ) + N+

w>0(XY )
(6.3)

Note that Φp(y) = 1− Φr(y), so that one fraction can be deduced immediately from the
other, but both of them are represented here for convenience. A value of 0.5 means that
as many prograde as retrograde vortices are detected in the XY plane.
For the LML boundary layers (figure 6.50), the fractions Φp(y) collapse quite well for the
different datasets, and so do the fractions Φr(y): no clear trend with the Reynolds number
or with the spatial resolution can be retrieved. The fraction Φr(y) is zero at the wall,
and increases strongly with increasing wall-normal distance in the near-wall region before
stabilizing at y+ = 600 at a value of 0.4. Good consistency is also observed between the
LTRAC boundary layers and the DNS of channel flow (figure 6.51), but the behavior is
different from that of the LML boundary layers: here the retrograde vortices fraction also
increases strongly in the near-wall region, but never stabilizes and continues to increase
slowly over the whole boundary layer thickness/half channel height. For y/δ ≈ 1, the
prograde and retrograde vortex density tends to be equal, with Φp ≈ Φr ≈ 0.5. Since no
Reynolds number effect is visible in the LML boundary layers, this different behavior may
be attributed to the higher turbulence intensity in the channel centerline for the DNS and
in the free stream of the LTRAC boundary layers.
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Figure 6.50: Fraction of prograde (black symbol) and retrograde (hollow symbol) vortices
in the highest Reynolds number range
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6.2.4 Convection velocity of the vortices

The convection velocity of the vortices detected in the XY plane and in the YZ plane
is analyzed for all the datasets of the database. For each plane orientation, the in-plane
components of the convection velocity are retrieved through a fit of a convected Oseen
vortex to the local in-plane velocity field (see equation 6.1). The out-of-plane component
of the convection velocity could not be retrieved with the methodology employed. How-
ever, the out-of plane component of the velocity at the position of the fitted center of the
vortex is analyzed.

The wall-normal evolution of the mean streamwise convection velocity of the vortices
was computed by taking into account eddies contained in layers of 25+ in height. For
each dataset, it is plotted against the corresponding mean streamwise velocity profile.

The evolution for the spanwise vortices (detected in the XY plane) is plotted in figure
6.52 for the highest Reynolds number range and in figure 6.53 for the lowest Reynolds
number range. The case of the prograde vortices (ω0 < 0) and of the retrograde vortices
(ω0 > 0) are distinguished. Over the whole range of Reynolds numbers, it is found that
the prograde vortices are convected with the mean streamwise velocity over the whole
velocity field. As far as the retrograde vortices are concerned, their mean advection
velocity is slightly larger than the mean streamwise velocity in the region y+ ∈ [40; 100],
and then is in good agreement with the mean streamwise velocity over the rest of the
field. These results are in good agreement with those of Wu and Christensen (2006),
except that they didn’t observe the different behavior of the retrograde vortices in the
region y+ ∈ [40; 100]. Adrian et al (2000a) and Carlier and Stanislas (2005) computed the
mean streamwise convection velocity of the vortices, but without differentiating between
the prograde and retrograde structures; they also found that the structures were advected
with the mean streamwise velocity, although the results of Adrian et al (2000a) in the
region y/δ > 0.3 showed a different trend, probably owing to a lack of convergence of
their results. According to Adrian et al (2000b), the convection velocity of the prograde
hairpin ‘heads’ can be approximated to the first order by the velocity of the surrounding
fluid minus the component due to self-induction, proportional to the circulation of the
vortex core divided by its diameter. Consequently, it seems that in the present data, the
prograde vortices have none or negligible backward-upward self induction. The inverse
reasoning can be applied to the retrograde hairpin ‘heads’: their convection velocity is
expected to be equal to the velocity of the surrounding fluid plus the component due to
self-induction. Therefore, it seems that the retrograde vortices in the present data have
significant forward-downward self induction in the near-wall region.

The wall-normal evolution of the mean streamwise velocity at the center of the stream-
wise vortices (detected in the YZ plane) is represented in figure 6.54 for the highest
Reynolds number range. It matches quite well with the mean velocity profile for all
Reynolds numbers, but is slightly lower in the region y+ < 200. This phenomenon
can also be observed in the results of Carlier and Stanislas (2005) in the YZ plane at
Reθ = 7500.
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Figure 6.52: Wall-normal evolution of the mean streamwise convection velocity of the
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locity profile (solid line) in the highest Reynolds number range
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Figure 6.54: Wall-normal evolution of the mean streamwise convection velocity of the
streamwise vortices detected in YZ plane (points) of the datasets at Reθ ∈ [7630; 18950],
compared to the mean streamwise velocity profile in each of these datasets

The wall-normal evolution of the standard deviation of the three components of the
vortices convection velocity was then analyzed. To our knowledge, this is the first time
such results are presented. These second-order statistics were computed by taking into
account eddies contained in layers of 50+ in height. As was shown in section 5.2, the
standard deviation of the velocities for the LML database, for the LTRAC dataset at
Reθ = 2200 and for the LTRAC dataset at Reθ = 1300 present some differences, because
of the variation of free-stream turbulence intensity. Therefore, the standard deviation of
the vortices convection velocity for these three groups are presented on separate figures.

For the LML database, the wall-normal evolution of the standard deviation of the
two in-plane components of the convection velocity and of the out-of plane component
of the velocity at the center is shown in figure 6.55 for the vortices detected in the XY
plane (spanwise vortices) and in figure 6.56 for the vortices detected in the YZ plane
(streamwise vortices). For both planes, it was shown in section 5.2 that the Reynolds
stresses of this database have a good universality in a mix wall-unit/external scaling, and
therefore only the RMS of the velocity u′+

i at Reθ = 7630 is used for comparison. Overall,
it can be seen that the vortex data follow the velocity data for all Reynolds numbers
and in both measurements planes. Wu and Christensen (2006) plotted the histogram of
the streamwise convection velocity fluctuations of vortices detected in the XY plane of a
channel flow at Reτ = 1760 and of a boundary layer at Reτ = 2350, and found that the
width of these histograms was proportional to the local RMS streamwise velocity. Besides
this overall good agreement between u′+

c,i and u′+
i , some small differences appear in the

present data:
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• in both planes, the standard deviation of the in-plane convection velocity (the u and
v component for the XY plane and the v and w components for the YZ plane) is
found to be lower than the local turbulence level, especially in the near wall region
(y/δ ∈ [0; 0.05]). This may indicate that the vortices are more stable in place than
the surrounding flow;

• in the XY plane, the standard deviation of the spanwise velocity at the center of the
vortices is slightly higher than the local turbulence level, especially in the very near-
wall region (y/δ ∈ [0; 0.05]) where a peak is observed. This component is parallel
to the axis of the vortices, and hence the peak in RMS velocity may be indicative
of some stretching/compression phenomenon;

• in the YZ plane, the standard deviation of the streamwise velocity is in good agree-
ment with the local turbulence level, except that the near-wall peak is not retrieved;

The trends for the vortices detected in the XY plane are confirmed with the datasets in
the lowest Reynolds number range (Reθ = 1300, Reτ = 950 and Reθ = 2200), as can be
seen on figures 6.57 and 6.58. In the XY plane, it was checked that the standard deviation
of the convection velocity of the prograde and retrograde vortices is the same.
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of the convection velocity of the spanwise vortices detected in XY plane (points) of the
datasets at Reθ ∈ [7630; 18950], compared to the standard deviation of the velocity in the
dataset at Reθ = 7360 (solid line)
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Chapter 7

Discussion

As stated by Robinson (1991), the study of streamwise and spanwise vortices ‘lies at the
heart of turbulent boundary layer research [...] because [these vortices] have the potential
to function as a pump that transports mass and momentum across the mean velocity
gradient’. In the present contribution, these two types of vortices were analyzed using
stereo-PIV datasets acquired in a streamwise/wall-normal (XY) and in spanwise/wall-
normal (YZ) sections of turbulent boundary layers in a range of Reynolds number varying
from Reθ = 1300 up to Reθ = 18950. Given the characteristics of the data, the logarithmic
region (40 < y+ and y < 0.2δ) and the upper buffer layer (20 < y+ < 40) is the main
focus of the present study, but the wake region was also partially investigated. In the
previous chapter, each characteristic of the vortices (radius, intensity, circulation, density
and convection velocity) was separately discussed; in the present chapter, we try to relate
these various findings in order to construct a global synthesis on the structure of near-wall
turbulence in the context of the current knowledge in the scientific community.

A short preliminary point may be made on the nature of the data investigated in this
thesis, and on their appropriateness for the study of streamwise and spanwise vortices.
The strength of the present data resides in: the range of Reynolds number covered (6
Reynolds number distributed in the range [1300; 18950]); the good spatial resolution and
low uncertainty of the measurements (that were carefully assessed); the fact that at a
given Reynolds number, any comparison between the streamwise vortices and the spanwise
vortices is expected to be entirely free from measurement effects, since the PIV parameters
in the XY planes and the YZ planes are identical. One difficulty arises from the fact that
the spatial resolution is not constant over the range of Reynolds number explored: the
averaging areas of the datasets at Reθ = 1300, 2200, 7630, 13420 are pretty similar, while
the dataset at Reθ = 10140 is significantly better resolved and the dataset at Reθ = 18950
is significantly lower resolved. This difficulty was minimized thanks to a careful assessment
of the impact of the spatial averaging on the characteristics of the vortices detected, which
makes it possible to distinguish between spatial resolution effects and Reynolds number
effects.
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The first main result of this thesis consist of a detailed characterization of the coherent
structures in the near-wall region, the logarithmic region and the outer region of wall-
bounded turbulent flows.

The near-wall region (20 ≤ y+ ≤ 100), comprised of the upper buffer-layer and in-
nermost part of the logarithmic layer, is predominantly populated with quasi streamwise
vortices, in agreement with the findings of Robinson (1991), Jeong et al (1997), Carlier
and Stanislas (2005) and Sheng et al (2008). The population of streamwise vortices in-
creases very rapidly with wall-normal distance between y+ = 0 and y+ = 60, where a
maximum density is reached (in agreement with Stanislas et al (2008)), and then starts
to decrease, also very rapidly. The spanwise vortices are less numerous in that region;
their density also increases with wall-normal distance, but at a slower rate, and the
maximum density is reached at y+ ≈ 100 approximately. The wall-normal evolution of
the radius and vorticity in wall-units shows that the streamwise vortices are on average
smaller and more intense than the spanwise vortices in this region. The differences in
radius magnitude between the different Reynolds number are consistent with the effect
of the PIV IW size (see 6.1.3), which tends to indicate that the wall-normal evolution of
the radius is in fact universal in wall-units. In particular, the datasets at Reθ = 7630
and Reθ = 13420, which have the same spatial resolution in wall-units, are in excellent
agreement in this representation. On the dataset with the highest spatial resolution, it is
found that at y+ ≈ 50, the radius of the streamwise vortices is about 15+, in agreement
with the estimation of Sheng et al (2008), while that of the spanwise vortices is about
20+, in agreement with Carlier and Stanislas (2005). As far as the vorticity is concerned,
a good universality in wall-units is observed for the streamwise and spanwise vortices,
and the profiles are tangent to the van Driest profile as the wall-normal distance tends to
zero. The vorticity decreases strongly with increasing wall-normal distance. In the near-
wall region, the circulation of the vortices decreases strongly with wall-normal distance
(especially the spanwise vortices). When non-dimensionalized with the local Kolmogorov
scales, the vorticity of all vortices is found to be remarkably constant in both Reynolds
number and wall-normal distance, while the radius is universal for the streamwise vortices
only. Among the spanwise vortices, the retrograde vortices are much less numerous than
the prograde vortices. Their radius is slightly smaller and less intense, with a radius com-
parable to that of the streamwise ‘legs’. The density of the prograde vortices increases
much faster with wall-normal distance than that of the retrogrades.

The logarithmic region (100 ≤ y+ and y ≤ 0.25δ) is found to be equally constituted of
streamwise and spanwise vortices, in good consistency with them being part of the same
‘cane-shaped’ coherent structure (Robinson (1991)). Their density decays at a similar rate
with wall-normal distance, and almost linearly. The characteristics of the streamwise and
spanwise vortices are essentially similar in the logarithmic region. In particular, the radii
of the streamwise and spanwise vortices are similar in wall-units. Again, the differences
in radius within the range of Reynolds number investigated appear to be more a spatial-
resolution effect rather than a Reynolds number effect. The mean radius increases slowly
with wall-normal distance, and at the end of the logarithmic region, it tends to a value
of 25+ in the dataset with the highest spatial resolution. The vorticity of all vortices
decreases with increasing wall-normal distance, but at a diminishing rate. The vorticity
of the streamwise vortices shows excellent universality over the whole logarithmic region;
in contrast that of the spanwise vortices show a good collapse for 100 < y+ < 400
only. The circulation of the streamwise vortices is found to be constant in wall units
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roughly everywhere, while that of the spanwise vortices is approximately constant in the
region y+ > 250 only. The mean radius, non-dimensionalized with the local Kolmogorov
lengthscale, does not depend on wall-normal distance anymore, and a relatively good
universality is observed in Reynolds number around a value of 8η. For the mean vorticity,
the universality in Reynolds number and in wall-normal distance is of even better quality,
around a value of ω0 = 1.5τ−1. The PDF of the radius of the streamwise vortices shows
better universality than for the spanwise vortices, with the most probable value for the
radius being 7η. Finally, the PDF of vorticity of the streamwise and spanwise vortices
show an excellent collapse in Kolmogorov scaling in the logarithmic region, with a most
probable value of 0.9τ−1.

The outer region (0.25δ < y < δ) could be analyzed in the PIV datasets at Reθ = 1300
and partially in the datasets at Reθ = 2200 and Reθ = 7630. The density of streamwise
and spanwise vortices are still comparable, and continue to decrease with increasing wall-
normal distance. It is found that while the density of the retrograde vortices stabilizes,
that of the prograde vortices continues to decrease. It is noticeable that on the dataset
with Reθ = 2200, the density of vortices is almost twice that of the dataset at Reθ = 1300
and that a slow increase of the number of retrograde vortices is visible at the edge of
the boundary layer. This is probably an effect of the higher free-stream intensity for the
dataset at Reθ = 2200. In each dataset, the prograde and retrograde vortex densities tend
to be equal towards the edge of the boundary layer (or towards the channel centerline). In
wall unit scaling, the mean radius of streamwise vortices in the dataset at Reθ = 1300 is
found to increase strongly with wall-normal distance, while the behavior for the dataset at
Reθ = 2200 and Reθ = 7630 is similar to that in the logarithmic region. It probably reveals
a low Reynolds effect on the dataset at Reθ = 1300. However, in Kolmogorov scaling, the
mean radius of the streamwise vortices are found to be constant with wall-normal distance
for all dataset, similar to that in the logarithmic region. Some Reynolds number effects
are clearly visible on the wall-normal evolution of the vorticity in wall-units in the outer
region, but disappear when the vorticity is scaled in Kolmogorov units. Finally the PDF
of vorticity and radius in Kolmogorov scaling are universal both in wall-normal distance
and Reynolds number, comparable to that of the logarithmic region.

Now, it is of interest to discuss the similarities and differences with the structures
detected in the DNS of channel flow at Reτ = 950. First of all, the streamwise and
spanwise vortex densities show the same overall evolution with wall-normal distance across
the three layers considered (near-wall, log, and outer region). In particular, the magnitude
of vortex density is comparable to that of the BL dataset at Reθ = 2200 in the outer region,
and the same increase of the retrograde density is visible towards the channel centerline,
confirming that it is an intermittency effect with the external flow (with the free-stream
turbulence intensity for the BL, and with the BL on the opposite wall for the channel
flow). Wu and Christensen (2006) obtained a similar behavior in their measurements of
the vortex densities in a channel flow. The evolution of the mean radius and vorticity in the
channel flow are comparable to that of the boundary layer flow in wall-units (and especially
to the dataset at Reθ = 2200), but show some differences in Kolmogorov scaling. The
quantity ωτ is found to be independent of wall-normal distance, but at a slightly higher
level than in the boundary layer flow (about 10%), while the radius non dimensionalized
with the Kolmogorov lengthscale is not independent of wall-normal distance and decreases
with increasing wall-normal distance. Since the wall-normal evolution of the dissipation
and Kolmogorov lengthscale in the LTRAC datasets at Reθ = 1300 was found to be in



166 7. Discussion

excellent agreement with that of the DNS, this cannot be attributed to a difference in the
Kolmogorov profiles. This behavior probably reveals a channel flow effect. As far as the
PDF are concerned, they show a good collapse for the vorticity, but for the radius a shift
towards smaller radii with increasing wall-normal distance is visible.

The second main result is the understanding of the generation mechanisms that can be
inferred from the above vortex characterization. The maximum density of the streamwise
and prograde spanwise vortices was observed in the near-wall region which indicates that
they mostly find their origin at the wall. In this region, the density of streamwise vortices
is larger than that of the spanwise vortices, and the density difference increases with de-
creasing wall-normal distance. This result clearly contradicts the generation mechanism
of Hinze (1975), where hairpin structures are generated from an initial spanwise vortex
being deformed into a hairpin loop through the joint action of wall-normal perturbation
and mean shear. In fact it is more consistent with the mechanism proposed by Schoppa
and Hussain (1997), where streamwise vortices are generated first through a streak in-
stability, and spanwise vortices are generated in a second step through the roll up of an
internal shear layer. In the logarithmic region, it appears that one spanwise vortex (of
either sign) is statistically associated with one streamwise vortex. The population of pro-
grades and streamwise vortices decreases with increasing wall-normal distance, probably
because of vortex pairing or viscous destruction. In the region 60 < y+ < 150, the popu-
lation of streamwise vortices decreases faster with wall-normal distance than in the region
y+ > 150. Stanislas et al (2008) showed that most of the vortex interaction occurs below
y+ ≈ 150, and therefore the aforementioned difference in density rate can be attributed
to a more intense streamwise vortex pairing occurring in the region 60 < y+ < 150.
The generation mechanism of retrograde vortices has never been clearly addressed in the
past. In the present results, it was shown that the scaling of their radius and vorticity
is overall comparable to that of prograde vortices. This tends to suggest that they have
a common origin. However, it is unlikely that the retrograde vortices are created at the
wall, because the mean velocity gradient is in strong opposition with their swirling motion
in this region. One possibility is that the retrograde vortices originate from a half turn-
around of some of the prograde vortices, occurring in the logarithmic and outer region.
Then, moving towards the wall, the retrograde vortices have to face an increasingly strong
velocity gradient and are progressively destroyed. On the wall-normal evolution of their
mean density, it can be seen that the destruction of retrograde vortices starts at y+ = 150,
where the mean velocity gradient is about 1% of its maximum value at the wall.

The third set of results of this thesis are related to the scaling laws of the stream-
wise and spanwise vortex radius and vorticity throughout the range of Reynolds number
explored (Reθ ∈ [1300; 18950]) and the three regions investigated (near-wall, log, outer re-
gions). Two different scaling were tested: a wall-units scaling, and a Kolmogorov scaling.
As far as the wall-unit scaling is concerned, it seems appropriate to reach Reynolds num-
ber universality in the near-wall and logarithmic region throughout the range of Reynolds
number investigated (although the PIV spatial resolution did affect the values of radius
retrieved). This result is in good agreement with the findings of Carlier and Stanislas
(2005) in the highest range of Reynolds number. In the outer region, some low-Reynolds
number effect were visible for the radius of the streamwise vortices at Reθ = 1300 (a
steep increase of radius with wall-normal distance) and for the vorticity of the stream-
wise vortices in the dataset Reθ = 1300, Reτ = 950, and Reθ = 2200 (with was found
to decrease with wall-normal distance while that of the dataset at Reθ = 7630 was sta-
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bilized). The use of a Kolmogorov scaling could improve the universality of the radius
and vorticity in two ways: first, it allows the reaching of wall-normal independence in
addition to Reynolds number independence; and second, it is found to apply also in the
outer region. The universality in Kolmogorov scaling was already tested (successfully) by
Stanislas et al (2008), but only for the streamwise vortices over a more restricted range
of Reynolds number (Reθ = 7800 and Reθ = 15000). Finally, the following values were
found for the vortex radius and vorticity in Kolmogorov units: r = 8η and ω0 = 1.5τ−1

in terms on mean values, and r = 7η and ω0 = 0.9τ−1 in terms of most probable values.
The Reynolds number of the vortices based on their mean radius and vorticity is about
(r2ω0)/ν = 82 ∗ 1.5 ∗ η2/τ ≈ 100.

Finally, the last set of results are related to the in-plane convection velocity of the
vortices and to the axial flow velocity at their center. It was found, that on the whole, the
vortices are convected with the mean flow, showing no significant self-induction consis-
tently with the previous results of Carlier and Stanislas (2005) and Wu and Christensen
(2006). The RMS of the in-plane convection velocity was also examined, and their wall-
normal evolution was found to follow that of the surrounding flow, but at a lower level,
indicating that the vortices are on average more stable than their environment. The RMS
of the axial velocity of the vortices at their center was found to be comparable to that of
surrounding flow, except for the spanwise vortices in the near-wall region where a peak
of RMS spanwise velocity was observed.
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Conclusions

The goal of this work was to investigate coherent structures of near-wall turbulence, and
more specifically to obtain statistical results over a large range of Reynolds numbers on
the characteristics of the streamwise and spanwise vortices in order to better assess their
scaling laws and generation mechanisms.

For that purpose, stereo-PIV measurements in streamwise/wall-normal and span-
wise/ wall-normal planes of turbulent boundary layer flow were conducted in the LTRAC
water-tunnel and LML wind-tunnel at six Reynolds numbers comprised between Reθ =
1300 and Reθ = 18950. The measurements feature good spatial resolution and low mea-
surement uncertainty, as required for the study of the fine scale structure of turbulence.

The database was validated through the analysis of single point statistics and power
spectra, that were compared with reference profiles derived from theory, hot-wire data,
and DNS data. Some peak-locking effect on the PDF of the fluctuations was evidenced,
but its effect on the moments of the velocity were shown to be negligible. In particular, the
mean velocity profile and Reynolds stresses were in excellent agreement with the reference
profiles. The SPIV power spectra showed excellent agreement with some DNS spectra in
the low and intermediate wavenumber range, while the impact of measurement noise on
the high wavenumber range was quantified. More specifically, the size of a structure that
would be resolved with a signal-to-noise ratio of 1 was derived.

A coherent structure detection was then undertaken on the SPIV database, as well as
on a DNS dataset at Reτ = 950. The detection is based on a fit of an Oseen vortex to
the velocity field surrounding extrema of 2D swirling strength. For each vortex detected,
this procedure allows the retrieval of circulation, radius, position of the center, convection
velocity and vorticity at the center (defined as ω0 = Γ/(πr2)). The effect of the PIV
filtering over the interrogation window on the estimation of these characteristics was
assessed. Therefore, it was possible to distinguish between spatial resolution effects and
Reynolds number effects when analyzing the results.

The wall-normal evolution of some statistical quantities (mean, RMS, PDF) of the
vortex characteristics were analyzed to obtain a better characterization of coherent struc-
tures in wall-bounded turbulence. It was found that the structures were convected with
the mean velocity and a standard deviation following that of the surrounding flow, but
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at a lower level indicating that the vortices were on average more stable than their envi-
ronment. At all Reynolds numbers, the near-wall region is the most densely populated
region, predominantly with streamwise vortices that are on average smaller and more in-
tense than spanwise vortices. In contrast, the logarithmic region was equally constituted
of streamwise and spanwise vortices having equivalent characteristics, and whose density
was regularly decreasing with wall-normal distance. In the outer region, some differences
between the datasets were observed depending on the scaling employed.

Two different scalings for the vortex radius and vorticity were tested: the wall-units
scaling and the Kolmogorov scaling. In wall-unit scaling, a good universality in Reynolds
numbers was observed in the near-wall and logarithmic region: the vorticity was found
to be maximum at the wall, decreasing first rapidly and then slowly with increasing wall-
normal distance; the radius was found to increase slowly with wall-normal distance in
both regions, except for the streamwise vortices for which a sharp increase in radius was
observed in the near-wall region. The wall-units scaling was found to be deficient in the
outer region, where Reynolds number effects were observed. In contrast, the Kolmogorov
scaling was found to be universal both in Reynolds number and wall-normal distance
across the three regions investigated. Finally, the following values were found for the
vortex radius and vorticity in Kolmogorov units: r = 8η and ω0 = 1.5τ−1 in terms on
mean values, and r = 7η and ω0 = 0.9τ−1 in terms of most probable values.

Finally, the results obtained were interpreted in terms of vortices generation mech-
anisms. It was found that all vortices (streamwise, spanwise prograde, and spanwise
retrograde) had their origin at the wall. The streamwise and spanwise prograde were
found to be directly created there, possibly from a streak instability in good consistency
with the model of Schoppa and Hussain (1997). A new generation mechanism is pro-
posed for the spanwise retrograde vortices: it is suggested that they are created from a
half turnaround of some prograde vortices, occurring preferentially in the log and outer
region where the mean velocity gradient has decreased significantly and is therefore less
unfavorable to them.

Perspectives

The post-processing undertaken in this thesis enabled a characterization of individual
vortical structures. Now, there exist different post-processing tools, such as two-points
correlation analysis (Stanislas et al (1999)), that are appropriate to investigate the spatial
relationships existing between these structures. Thanks to the use of PCO 4000 camera
with a large CCD array, the measurements in the LTRAC water-tunnel could be realized
with a large spatial dynamic range, and hence are suitable for the study of both fine-
scale and large scale structure (Herpin et al (2008)). Hence, a two point correlation
analysis performed on these datasets could bring some interesting insight into the spatial
relationship and large scale organization of individual structures.

Another interesting possibility to extend the results obtained in this thesis would be to
investigate coherent structures at higher Reynolds number. In the present study, the range
of Reynolds number is already spanning more than one decade (Reθ ∈ [1300; 18950]).
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The only other flow facility suitable for high-spatial resolution measurements at higher
Reynolds numbers is the wind-tunnel of Melbourne University in Australia, with a maxi-
mum Reynolds number on the order of Reθ = 50000. On the numerical side, the progress
in Reynolds number is mainly limited by the available computational ressources (Jiménez
(2003)). The DNS dataset at the highest Reynolds number currently available was per-
formed recently by Jiménez group and is at Reτ = 2000. It would be of interest to
perform a coherent structure detection on this dataset, and to compare the results with
those obtained in the DNS dataset at Reτ = 950 and with the SPIV dataset at similar
conditions that is the lowest Reynolds number in the LML wind-tunnel at Reθ = 7630.

The repetition rate of PIV systems was drastically improved over the recent years due
to the technological advent of CMOS digital camera and Nd:YLF lasers. The associated
technique is called high-repetition PIV or time-resolved PIV (Baur and Koengeter (2000)).
Recently Foucaut and Coudert (2008) realized a time-resolved SPIV experiments in a
plane orthogonal to the mean flow in the LML wind-tunnel. The post-processing of
this dataset using the present detection technique could bring some new insight into
the dynamics of coherent structures, and in particular into their generation mechanisms.
Note that, for technological reasons, the application of true time-resolved PIV is in fact
limited in Reynolds numbers (the time-resolved measurement in the LML wind-tunnel
were realized at Reθ = 7800 only), and therefore a complete study involving measurement
over a large range of Reynolds number is not possible today with this technique.

The extension towards volumetric data is highly interesting because it can give access
to the full flow topology via the three dimensional velocity gradient tensor (Chong and
Perry (1990)), and hence to an unambiguous characterization of the coherent structures
in turbulent flows. Nowadays, such data is readily available from DNS. A new refinement
of the PIV technique, Tomographic PIV, can also give access to instantaneous 3D infor-
mation (Elsinga et al (2006)) but this technique is still in development: more specifically,
the spatial resolution and measurement uncertainty of this technique require further as-
sessment (especially in the spectral domain). Besides, the post-processing of 3D data
requires a detection technique generalized to three-dimensions: the algorithm used in the
present thesis works only on planar data and would necessitate some adaptation to be
extended to three dimensions.

Finally, this study was focused on the small-scale structures created at the wall, and
propagating outward from the wall. A number of studies have evidenced the existence
of very large scale structure populating the outer region and having an influence on the
near-wall region (Hutchins and Marusic (2007)). These structure are clearly beyond the
scope of the present study. A recent collaborative experiment (Foucaut et al (2007),
Tutkun et al (2009)), performed in the framework of the WALLTURB European project,
combined simultaneous SPIV and hot-wire measurements in a YZ plane of the turbulent
boundary layer developing in the LML wind-tunnel. It provides a dataset suitable for the
investigation of these very large scale structures.
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Résumé

Ce travail est une étude expérimentale de l’influence du nombre de Reynolds sur les
structures tourbillonnaires longitudinales et transverses de la turbulence de paroi. Une
campagne de mesure par Vélocimétrie par Images de Particules (PIV) stéréoscopique
est réalisée dans des plans longitudinaux/normaux à la paroi (XY), et dans des plans
normaux/transversaux (YZ) des couche limites de la soufflerie du LML et du tunnel à
eau du LTRAC, à six nombre de Reynolds compris entre Reθ = 1300 et Reθ = 18950. Les
mesures ont une bonne résolution spatiale et une faible incertitude. La base de données
est validée au travers de l’analyse de grandeurs statistiques de l’écoulement (moyenne et
RMS de la vitesse, histogramme des fluctuations, spectres de puissance), comparées à
des profils de référence issus de la théorie, de mesures fils-chauds ou de données issues
de la Simulation Numrique Directe (DNS) d’un écoulement turbulent de canal. Une
détection de tourbillon, basée sur l’ajustement d’un modèle de tourbillon autour des
maxima d’intensité tourbillonaire, est ensuite entreprise sur les données de stéréo-PIV ansi
que sur des données DNS à Reτ = 950. L’évolution des caractéristiques des tourbillons
(rayon, vorticité, circulation, vitesse de convection) avec la distance à la paroi ’y’ est
ensuite analysée dans deux représentations adimensionnées: l’une en unités de paroi,
et l’autre en unités de Kolmogorov. Une bonne universalité en nombre de Reynolds est
obtenue en unités de paroi dans la zone tampon et la zone logarithmique, mais pas dans la
zone externe de l’écoulement. Les unités de Kolmogorov permettent d’obtenir une bonne
universalité dans les trois zones étudiées, à la fois en Reynolds et en ’y’. Finalement, les
mécanismes responsables de la génération des tourbillons sont discutés.

Abstract

This work is an experimental study of the influence of the Reynolds number on the
characteristics of the streamwise and spanwise vortical structures in near-wall turbulence.
Stereo-PIV measurements in streamwise/wall-normal (XY) and spanwise/wall-normal
(ZY) planes of turbulent boundary layer flow are conducted in the LTRAC water-tunnel
and LML wind-tunnel at six Reynolds numbers comprised between Reθ = 1300 and
Reθ = 18950. The measurements feature good spatial resolution and low measurement
uncertainty. The database is validated through an analysis of some single-points statistics
(mean and RMS velocity, PDF of the fluctuations) and of the power spectra, compared
with reference profiles from theory, hot-wire measurements and DNS data.
A coherent structure detection is then undertaken on the SPIV database, as well as on a
DNS dataset at Reτ = 950. The detection is based on a fit of an Oseen vortex to the veloc-
ity field surrounding extrema of 2D swirling strength. The wall-normal evolution of some
statistical quantities (mean, RMS, PDF) of the vortex characteristics (radius, vorticity,
circulation, convection velocity...) is analyzed, using two different scalings: the wall-unit
scaling and the Kolmogorov scaling. In wall-unit scaling, a good universality in Reynolds
numbers is observed in the near-wall and logarithmic region, but some Reynolds number
effects are visible in the outer region of the flow. In contrast, the Kolmogorov scaling was
found to be universal both in Reynolds number and wall-normal distance across the three
regions investigated. Finally, the results obtained are interpreted in terms of vortices
generation mechanisms.


