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Chapter 1

Introduction

1.1 Microcontinuum theories

Classical theory of elasticity deals with those materials, in which the material is con-
sidered as a continuum in mathematical sense. In such continuum, we neglect the
molecular structure of the material and its points are regarded as material particles,
i.e., the material particles are simply the geometrical points. In three dimensional
Euclidean space, the continuous distribution of particles is characterized by a scalar
quantity, called density of the material. The deformation of the body is characterized
by the displacement vector and the transmission of loads across a surface element is
uniquely determined by a force, called stress vector. Thus, the deformation of the
body is described in terms of symmetric tensors of stress and strain. Within the elastic
limits, some materials, e.g., steel, aluminium, concrete etc are found to exhibit results
fairly coinciding with those of experimentally observed. However, in some materials,
e.g., fibrous, polymers, asphalts, remarkable discrepancies are observed between the
experimental results and those obtained using classical elasticity. These discrepancies
are mainly because of the dominance of atomic structures of the material neglected
in classical elasticity. These discrepancies are clearly noticed in case of dynamical
problems of elastic vibrations involving high frequencies and short wavelengths, i.e.,
ultrasonic waves. When the wavelength is of the same order of magnitude as the av-
erage dimension of the microelements, the intrinsic motion of the microelements of a
volume element with respect to the center of mass of the volume element, can affect

the response remarkably. The influence of microstructure becomes more important in



the case of vibrations of granular and multimolecular bodies, where new types of waves
appear, not encountered in classical theory of elasticity.

Voigt (1887) was the first who tried to correct these shortcomings of classical elas-
ticity by taking into account the assumption that interaction between the two parts
through an area element inside the body is transmitted not only by a force vector but
also by a moment vector giving rise to a 'couple stress theory’. This assumption led
to the fact that not only the force stresses but also the couple stresses acting on the
faces of an elementary parallelepiped are asymmetric in nature. The complete the-
ory of asymmetric elasticity was developed by Cosserat and Cosserat (1909), which
was non-linear in the beginning. They assumed that each material point of a three
dimensional continuum is associated with a rigid triad’” and during the process of de-
formation, it can rotate independently, in addition to the displacement. This is how,
the concept of rotation of a point was introduced in the continuum. The assumption
of these additional degrees of freedom of rotation at each material point led to the
consequence of the asymmetry of strain and stress tensors. This very idea of Cosserat
brothers provided a good continuum modelization for molecular lattices, in which a
group of particles (atoms, molecules) bounded by important cohesive forces forms a
rigid system subjected to rotational motion.

In spite of novelty of the idea, the Cosserat brothers” work did not catch sufficient
attention of the then researchers and the theory remained dormant during their life-
time. May be because the theory was non-linear in nature and its presentation as a
unified theory incorporating mechanics, optics and electrodynamics. After a gap of
about fifty years, Cosserats theory drew attention of researchers and several Cosserat
- type theories were developed independently, e.g., Gunther (1958), Grioli (1960), Ra-
jagopal (1960), Aero and Kuvshinskii (1960), Mindlin and Tiersten (1962), Toupin
(1962), Eringen (1962), Koiter (1964), Palmov (1964), Nowacki (1974), among several
others. In all these theories, the kinematic variable corresponding to rotation of a point
is taken into account, but not as an independent variable like in Cosserats theory. Of
course, these theories were similar to Cosserats theory, but were called by name, e.g.,
Toupin’s theory was called ’Cosserat theory with constrained motion’, Koiter’s theory
was called 'Couple stress theory’, Eringen’s theory was called 'Indeterminate couple
stress theory’, Nowacki’s theory was called ’Cosserat pseudo-continuum theory’ etc. In

Nowacki’s theory, the micro-rotation vector ¢ is fully described by the displacement
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vector u through the formula ¢ = %V x u. Later, the general Cosserat continuum
theory acquired the name of 'micropolar continuum theory’ following Eringen (1966a),
in which the micro-rotation vector is taken independent of displacement vector. Erin-
gen and Suhubi (1964) and Suhubi and Eringen (1964) developed a non-linear theory
for 'micro-elasticity’, in which intrinsic motions of the microelements were taken into
account. This theory is basically the generalization of 'Indeterminate couple stress
theory” and "Cosserat theory’ in the sense that in this theory the skew-symmetric part
of the stress tensor, the symmetric part of the couple stress tensor and the spin inertia
are fully covered.

A further generalization of the continuum with microstructure leads to micromor-
phic continuum (Eringen 1964b). Micromorphic continuum treats a material body
as a continuous collection of a large number of deformable particles, with each parti-
cle possessing finite size and inner structure. Using assumptions such as infinitesimal
deformation and slow motion, micromorphic theory can be reduced to Mindlin’s mi-
crostructure theory (1964). When the microstructure of the material is considered
rigid, it becomes the Eringen’s micropolar theory (1966a). Assuming a constant mi-
croinertia, Eringen’s micropolar theory is identical to the Cosserats theory (1909).
Eliminating the distinction of macromotion of the particle and the micromotion of its
inner structure, it becomes couple stress theory (Mindlin and Tiersten, 1962; Toupin,
1962). Moreover, when the particle reduces to a mass point, all theories reduce to
classical or ordinary continuum mechanics. The theory developed by other researchers
in that time are found to be in close contact with the theory of 'microelasticity’. The
connections between various theories of microcontinua has been nicely presented by
Eringen (1999). Eringen (1966a, 1990) developed the theories of 'micropolar continua’
and ’microstretch continua’, which are special cases of the theory of 'micromorphic
continua’ earlier developed by Eringen and his coworker (1964). Thus, the Eringen’s
’3M” theories (Micromorphic, Microstretch, Micropolar) are the generalization of the
classical theory of elasticity. As said earlier, in classical continuum, each particle of a
continuum is represented by a geometrical point and can have three degrees of freedom
of translation during the process of deformation. While in micromorphic continuum,
each particle is itself a continuum of small extent, which can further deform during the
process of deformation of the whole continuum. Thus, a micromorphic body or micro-

continuum can be thought of a continuous collection of deformable point particles. At



each point of a micromorphic body, in addition to the translational degrees of freedom,
it has deformable directors giving extra degrees of freedom. Thus, in polar continuum
mechanics, each material point carries its own deformable microstructure. The defor-
mation of a particle in a micromorphic continuum is composed of ’classical macrode-
formation” and 'microdeformation’ (micro-rotation of directors and microstretch of di-
rectors). During the process of deformation of a Microstrech continuum, each point
can undergo micro-rotation and microstretch (breathing micro-motion) without micros-
hearing (breathing micro-rotation). Note that 'breathing micro-motion’ is responsible
for expansion or contraction of the particle, while ’breathing micro-rotation’ is respon-
sible for changing the shape of the particle. Thus in microstretch bodies, there are
seven degrees of freedom given by three of translation, three of micro-rotation and one
of stretch. In microstretch continuum, the directors at a typical point are orthogonal
and they are allowed to breath in their directions, in addition to rotation. Micropolar
continuum is again a special case of microstretch continuum, in which microstretch is
absent and the deformation of a micropolar continuum is characterized by six degrees
of freedom, namely, three of translation and three of micro-rotation. In micropolar
continuum, the directors are orthonormal and rigid, consequently, the micro-motion is
only a rigid body rotation with respect to an axis, in addition to motion at macroscale.
Note that in classical theory of elasticity, there is no concept of directors. The relation
between these continuum can be ascribed through Figure 1.1.

Eringen’s theory of polar elasticity keeps importance because of its applications in
many physical substances, e.g., material particles having rigid directors, chopped fiber
composites, platelet composites, aluminium epoxy, liquid crystal with side chains, a
large class of substances like liquid crystals with rigid molecules, rigid suspensions,
animal blood with rigid cells, foams, porous materials, bones, magnetic fluids, clouds
with dust, concrete with sand and muddy fluids are examples of micropolar materials;
polymers with flexible molecules, animal lungs, bubbly fluids, polluted air, springy
suspension, mixtures with breathing elements, porous media, lattices with base, fish
colonies that live in ground are examples of microstretch materials; animal blood with
deformable cells and turbulent fluids with flexible vortices are best examples of micro-
morphic continua.

Grot (1969) extended Eringen’s theory of micromorphic materials and developed

a theory of thermodynamics of elastic materials with microstructure whose microele-
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MICROMORPHIC THEORY
Deformable directors

(12- degrees of freedom- translation, rotation and affine

deformation of microelement)

MICRO-STRETCH THEORY

Directors with stretch only (no micro-shears)
(7- degrees of freedom- translation, rotation and
scalar microstretch of microelement)

MICROPOLAR THEORY
Rigid directors

(6- degrees of freedom - translation and

rotation of microelement)

CLASSICAL THEORY
No directors

(3- degrees of freedom -

translation only)

Figure 1.1: Sub-classes of Eringen’s Micromorphic continua.

ments, in addition to microdeformations, possess microtemperatures. He applied mod-
ified Clausius-Duhem inequality to include microtemperatures, and the first order mo-
ment of the energy equations are added to the usual balance laws of a micromorphic
continuum. Recently, a linear theory of Eringen’s microstretch elastic materials has
been extended by Iesan (2007) by incorporating microtemperatures at microelements,
but neglected microrotational effects. In Iesan’s theory, the material particles possess
microtemperatures, in addition to classical displacement and temperature fields and
they can stretch and contract independently of their translation. He called his theory
as the theory of microstretch thermoelastic bodies with microtemperatures. Eringen
(2003b) extended his theory of micromorphic continuum to include electromagnetic
phenomena and called it as micromorphic electromagnetic theory and discussed wave
propagation. The theory of microstretch materials has also been extended by Eringen
(2004) himself to include electric and magnetic effects and named it as ’electromagnetic

theory of microstretch elasticity’.



1.1.1 Deformation and microdeformation

Consider a material point P of a continuum B contained in a volume V' bounded by a
surface S in its undeformed state and located at position (X7, Xs, X3) with respect to
a rectangular frame of reference. If the body is allowed to move and deform under some
external loads, it will occupy a region B’ of volume V"’ and having surface S’. Referred
to the same rectangular frame of reference, let the new position of the material point
P be (z1, x2, x3). Under the assumptions of indestructibility and impenetrability of
matter, each material point in the undeformed body B will occupy a unique position
in the deformed body B’. Conversely, each point in B’ can be traced back to a unique
point in B. Thus, the deformation of the body at time ¢ may be described by a one-one

and onto mapping as follows

T = {L‘k(Xl, X27 X3, t), k= 1, 2, 3 (11)
and its inverse motion
XK = XK(.I’l, T2, T3, t), K = 1, 2, 3. (12)

We assume that equation (1.2) is a unique inverse of equation (1.1) for all the points
contained in the body except possibly at some singular surfaces, lines and points. For
this to be valid, the three functions z1(X;, Xs, X3, t) must possess continuous partial

derivatives with respect to X7, Xs, and X3 for all times, and the Jacobian

P 6:1:1/8)(1 8:61/8)(2 8x1/8X3
J = det a;k — | 912/0X, 912/0Xs O12/0Xs |, (1.3)
| s /0X, 915/0Xs Ows)OXs

must not vanish. We define the deformation gradients xj x and X given by the

following partial derivatives
Tk, K Eaxk/aX}(, XK,k EaXK/a]}k, (14)

In the granular and fibrous structured bodies, if the physical phenomenon under
study has a certain characteristic length (such as wavelength), comparable with the size

of grains in the body, then the microstructure of the material becomes important and
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it must be taken into account while studying the problems of deformation. For such
bodies, classical continuum mechanics must be modified by incorporating the effect of
granular structure of the medium. To account the microstructure of the continuum,
we shall consider the material point of the continuum as a continuum of small extent,
which itself undergo deformation under the action of applied forces. We may call this
deformable material point as 'macroelement’. Let this macroelement has volume AV,
density p and enclosed within the surface AS in the undeformed state of the body.
With reference to certain fixed Cartesian system, let the position vector of the center of
mass of the macroelement P having volume AV be denoted by X. Suppose the element
P (i.e, AV + AS) contains N discrete micromaterial elements called 'microelements’,
AV@ L AS@ (o =1, 2,.....,N), each with a mass density p®. As the macroelements
are constructed by microelements, therefore, Zgil p*AV® = pAV. The position

vector of a'® microelement positioned at @@ may be expressed as
X@ =X 4+ 2@, (1.5)

where 2@ is the position vector of o microelement relative to the center of mass
of the macroelement. Upon the deformation of the body, the macroelement P (i.e.,
AV 4+ AS) goes into new macroelement p (i.e., Av + As) with the microelement
displaced with respect to its center of mass. Because of the relative change in the
positions of the microelements, the microelement () goes to a new position ¢ with
respect to center of mass of p (see Figure 1.2).

The final position of the o particle will therefore be
x@ =x+¢@  or x,(f) =15 + g{f“’, (1.6)

where x is the position vector of the center of mass of macroelement p having volume
Av and €% is the relative position vector of the point ¢ in the deformed state. The
motion of the center of the mass of P having volume AV is expressed by equation (1.1)

as

x =x(X,t) or oz =Xk, 1), (1.7)



A
AV
AS
AV Av As
= 4@ Q
P
p é(u) =
X
X X
x@
0 >

Figure 1.2: Deformation of microvolume.

The relative position vector €@, however, depends not only on X and ¢ but also on

=(@)
E@ e,

€9 =X 2@ 1) o gV =6 (X Q. 0), (1.8)

Note that the transformation given by (1.7) is called 'macromotion’ and the transfor-
mation given by (1.8) is called 'micromotion’.

Since the material particles are of infinitesimally small size as compared to macro-
scopic scale of the body, and assuming that £ is analytical function of £, therefore
expanding E(a)(X, E(O‘),t) by means of McLaurin’s series in terms of =¢, =% and =%

(retaining linear terms only for sufficiently small |2¢|) as,
£ = £9(X,0,t)+x, (X, HE +xo(X, HES +x5(X, 1EY, a=1,2,.., N

Since X is taken to be the centroid of particle P, therefore E(O‘) (X,0,t) = 0 and the

above equation can be written as

€ = xx (X, )2 o &Y = (X, HE, (1.9)
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oe®
0=2.

dices. Equation (1.9) defines the homogeneous (or affine) deformation of macroelement

where x (X, t) = { } and summation convention is taken over repeated in-
E9=0

AV. Thus the material points in Av + As undergo a homogeneous deformation about
the center of mass.

A material is called a micromorphic continuum if its motions are characterized by
(1.7) and (1.9). In order to determine these motions, one will need to determine three
scalar functions x(X, t) and three vector functions x (X, t), (equivalently nine scalar

functions xxx). Using (1.9), equation (1.6) can be written in coordinate form as
o™ = (X, ) + (X, D2,k K=1, 2, 3 (1.10)

Thus, the spatial position x,(f) of the a'™ material point, requires 12 functions (three
due to zx(X, t) and nine due to (X, t)).

We assume that the 'macro’ and 'micro’ motions given by (1.7) and (1.9) are continuous
and possess continuous partial derivatives with respect to Xx and t, and they are

invertible uniquely, i.e., the inverse motions are defined by

X:X(X,t) or XK :XK(.%‘k,t), (111)
2@ = S(x, 06" or  EW = Sypla, 1)E, (1.12)

Here, the second order tensors x,x and Sgj are called 'microdeformation’ and ’inverse
microdeformation’ tensors, respectively. These are the deformable directors. Upon
deformation, the three independent directors S goes to three independent directors

X, as follows

A

where Iy and i, are, respectively, the unit base vectors for the material coordinates
Xk and the spatial coordinates z;. Note that the existence of solutions of (1.7) and

(1.9) requires that

. 1
J = det(vp ) = G EK LM Eklm Tk K TLLTm M and j = det(xrx) = G €I LM Eklm Xk K XILXmM



must be positive in some neighborhood of X during the time interval under consid-
eration. Here J represents the macrovolume change with macrodeformation and j
represents the microvolume change with microdeformation. The notations €z, and
exrm are the well known permutation symbols. Inserting (1.9) and (1.12) into (1.5)
and (1.6), the motion and the inverse motion of a material point in a microelement are

expressed by

x@ = x(X, 1) + xx (X D2 or 2™ =2 (X 1) + v (X HEW, (1.14)

X = X(x, 1) + Sp(x )Y or X = Xp(x, 1) + Sxa(x, )EY. (1.15)
Using (1.12) and (1.9), we obtain
(60 — xexSr)&” =0, Okt — Xk k)2 = 0. (1.16)
It follows that the microdeformation tensors satisfy the following relations
Xek Skl =0k, XkxSrLk = OKL, (1.17)

where 0, and dk, are the Kronecker deltas. Moreover, the deformation gradients xj x

and X ; defined earlier also satisfy the following relations
Tk XK1 = Okl Tk XLk = OKL- (1.18)

We see that whenever either set (xg, xrr) or (Xg, Skx) is known, the other set can
be obtained by solving the linear equations in (1.17) and (1.18) for X, and Sgy. On

solving, one may obtain

1
XKk = s=€KLMEKImTLLTm M (1.19)
2J
and
N 1
SKE = 2_j€KLM€klleLXmM- (1'20)

10
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In our study, we assume that the mass of the microelement and mass of the macroele-
ment are conserved. Eringen and Suhubi (1964) and Suhubi and Eringen (1964) have
shown that

(i) during the motion defined by (1.14) under the assumption (1.9), carries the center of

gravity of AV + AS to the center of gravity of Av+ As and a necessary and sufficient
D(pdv)

condition for conservation of mass is = 0, where % is the material derivative
and p is the average mass density of Awv.
(ii) the center of momentum and inertia of Av coincides with its center.
In this thesis, we are concerned with microstretch and micropolar elasticity, which are
particular cases of micromorphic theory. As said earlier, in microstretch theory, in ad-
dition to translation there is microrotation of macroelement with scalar microstretch
while micropolar theory admits only rigid microrotations of the microvolume elements
about the center of mass of the volume element in addition to translation.

Suppose we write xx in matrix form as x, then this matrix can be decomposed as
a product of two matrices, one of which is orthogonal and other is symmetric in nature

[Eringen, 1980, pp-46],
X =ru=vr (1.21)

The matrix r is orthogonal (i.e., | det(r) |=1) and represents the microrotation tensor,

T = and vl = v) in nature and

while the matrices u and v are symmetric (i.e., u
represent the right and left stretch tensors of microdeformation, respectively. Pre-

multiplying and post-multiplying the equation (1.21) by x”, we obtain

x'x = (ru)"(ru) = v’ (r'r)u = u'Tu = uv?

xx' = (vr)(vr)l = v(rr

T) T
When u? = v2 = I, the identity matrix, we see that x7x = xx? = I. Then x! =
x ! = S and hence Ix = xS = L. Besides microstretch tensors u and v, there exist
other microstretch tensors arising from the gradients of x. Taking derivative of (1.21)

with respect to Xx, we have
X x =TKU+TUufg =VEKT+ VI k. (1.22)

It is easy to prove that if u? = v? = I then u = v = I, therefore u = v x = 0 and
from (1.22), we have

X K= r gl =1Ir k.

11



Hence microdeformation gradient is equal to microrotation gradient. From (1.21), we

have
x=r and u’=v’=1L (1.23)

We see that the matrices u and v representing the right and left stretches are constant,
therefore the directors associated at each microelement are fixed, i.e., they are rigid. In
this case, the micromorphic continua is reduced to micropolar continua. Also, it is clear
that for micropolar continua, the matrix x is nothing but represents the microrotation

tensor. We also note that
3% = (det yxx)® = (det x)* = (detr)? = 1, =j=1 (as j>0). (1.24)

So, in micropolar continua, the micromotion is just a rigid body rotation.
A micromorphic continuum is said to be microstretch continuum, if the deformable

directions in the deformed and undeformed states are related as

1
Skr = FERCS (1.25)

Multiplying equation (1.25) with x;x and xx; and using (1.17), we obtain

XeEXIE = J°SKrXik = 720k and XerXkr = §°Skrxer = 520k (1.26)

Similarly, we can obtain

SkrSk; = %25;.31 and SkrSrr = %25;@. (1.27)
Expressions in (1.26) and (1.27) show that the directors are orthogonal in the deformed
and undeformed states of the microelement. Moreover, the quantity j is non-negative,
therefore the micromotion would not contain microshear and the directors can undergo
rotations and stretches. Hence, in microstretch continuum, the deformation contains
only microrotation and microstretch without microshearing, in addition to translation
of classical elasticity. Note that when j = 1 (case of micropolar continua), then from

(1.26) one can obtain
XkEXIK = Oki and XkEXkL = OKL-

We see that the orthogonal directors in micropolar continua becomes orthonormal.

12
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These expressions also indicate that the directors of micropolar continuum are rigid.

1.1.2 Strain and microstrain tensors

The differential line element in the deformed body is calculated through equation (1.14)

by taking total derivative as
dx@ = (x i + X1k EV)AX K + X dZ5, (1.28)

where the suffix followed by a comma denotes partial differentiation as earlier. The

square of the arc length is obtained as (dropping the superscript a on Zx and d=g)

(ds')? = dx(® . dx(®) = (Crp, + 20 kL Zar + Xk, XkN,LEMEN)dX d X,

F2(Vrr, + XerXem,x2m )X kdEL + Xer XerdZ2xd= L, (1.29)

where
Crr(X,t) = xprrern, Vrr(X,t) =xprXer, Drov(Xot) = g gxer,m- (1.30)

The symmetric tensor C, is the classical Green deformation tensor (see Chandrasekhara-
iah and Debnath (1994), pp-188). The appearance of tensors Wy and gy is new
in the microstructure continuum. They are called microdeformation tensors and were
introduced by Eringen and Suhubi (1964) and Suhubi and Eringen (1964).

Introducing the displacement vector u® (see Figure 1.2) as the vector that extends

from X to x(®, we write

[11

U =x-X+E-E=u+€&-E, (1.31)

where u = x — X is the classical displacement vector, the components of which in terms

of Xk and z; are, respectively,

UK EU'iK: ($kik—XKiK) iK :xkékK—XK, (132)

13



where S = Oxp = ip - L. Differentiating partially the equation (1.32) with respect
to X and equation (1.33) with respect to xy, we get

ik = (Onk + UL k)0kL and X = (0 — wr)oki- (1.34)

Analogously, Eringen (1968) introduced the microdisplacement tensors (X, t) and

die(x,t) as follows
Xk = (Opx + Pri)opr  and Sk = (O — du)xk- (1.35)
Using equations (1.9), (1.32), (1.33) and (1.35) into equation (1.31), we have
u'® = Uglg + (&0rx — Zx)Ix = Urlk + (rZ00kx — Zx)1k,

= UKiK + ((Onz + Pni)OkNELlkr — EK)iKa
= UKiK + (ONLORNELOkK + PNLOKNELOKK — EK)iK,
= Ukl + (0LkELokrx + PNLONKEL — EK)iKy

A

= Ukl + (0rxZr + PrrZL — Ex)Ik,

A

= Ul + (Ex + PxrEr — Ex)lk,

Similarly, using equations (1.12), (1.32), (1.33) and (1.35) into equation (1.31), we have
ul® = w4 (G — Exbrr)in = widr + (& — S0k,

= upig + (& — (0 — ¢nl>(5Kn€l(5Kk>ika
= wpig + (& — Ou0kn&0Kk + dridrn&iOrch )i,
= wiip + (& — Oxi&i0scr + Prilidni) ik,

= wgiy, + (& — Oy + Gri&)in,

= (uk + )i (1.37)

14
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On substituting equations (1.34); and (1.35); into equations (1.30), we can easily obtain

CKL:(SKL+UK,L+UL,K+UM,KUM,L, (138)
Vir =0kr +Pxr + Uk + U@z, (1.39)
Ukrve = Prrm + UnkPrnim (1.40)

So far, all these expressions are exact. For a linear theory, one assumes that the product

terms are negligible so that
Crr =~k +Ukrp+ULk, Vi =0k +Pxr+Urk, Tkim=Prrm. (1.41)

In this thesis, we shall deal with the linear theory, so we do not distinguish between
material and spatial representation. Therefore, under linear theory, the material strain

tensor Exr 1s defined as

1
Exrp = =(Ckr — k1) = é(UK,L + UL k), (1.42)

N | —

and the material microstrain tensors €x and I'xras are defined as

exr = Vi —0xr = Prr + ULk, Urkim = Pxrm- (1.43)

Following the same procedure, we introduce the spatial strain tensor, ey, and spatial

microstrain tensors, €5 and Y, as

(Ut + k), € = O+ W Vhim = —Okim- (1.44)

N | —

Ll =

We see that when the above tensors in equation (1.44) are known, we can calculate the
changes in arc length and angles during deformation.

Now, we see that the difference between the squares of arc length in the deformed
and undeformed body follows from equation (1.29) and the use of equation (1.35) and
equations (1.42)-(1.43):

(dsN? — (dSN? = 2(Exp + T Za)dX cd Xy + 2(e g 4+ T Ear)dX gdZ

15



+(5KL+5LK —2EKL)dEKdEL (145)

Note that for classical elasticity, only the first term on the right side involving Fxp,
survives. It can also be seen from equation (1.45) that when Egp, exr, and Tgpy
are zero, then there is no change in the arc length after a deformation. So, in such a

situation, the body is said to undergo a rigid motion.

1.1.3 Micropolar strains and rotations

We now consider a special class of micromorphic materials, called micropolar materials,
in which the state of the microdeformation can be described by a local rigid motion of
the microelements. Mathematically, this specialization under the assumption of linear
theory is obtained by setting that the microdisplacement tensor is skew-symmetric,
that is,

CI)KL = _(PLKa (146)

or in the spatial notation, ¢y, = —¢;. In three-dimensional space, every skew-
symmetric, second order tensor ®x; can be expressed by an axial vector ®x (i.e.,
®) defined by

1
(I)K = §€KLMq)ML- (147)
Equation (1.47) is a compact expression of

D) = D3y, Dy = D3, D3 = Dy.

Multiplying equation (1.47) with ex;n and using the identity expnerxry = 2050, One

can obtain the expression for &, as
P = —€exrm®Pu. (1.48)

Substituting this into equation (1.35);, we obtain

Xek = 00k — €xrm®Pur)Okr = 0rkOrr — €LxmPrronr = Ok — €k @nr. (1.49)

16
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The rotation tensor in the classical theory is given by

1
RKL = §<UK,L — UL,K), (150)

which is skew-symmetric second order tensor, i.e., Rg;, = —Rpk, hence by the same
argument as above, Ry, can be expressed by an axial vector Rg (i.e., R) analogous
to equations (1.47) and (1.48) as

1 1

Ri = §€KLMRML = §€KLMUM,L7 Rgr = —ekrmBRur. (1.51)

From equations (1.42) (1.50) and (1.51)y, we have

1
Exr = §(UK,L + ULk),
1 1
& Exr + Ry = é(UK,L +ULk)+ §(UK,L —ULk),

& Uk = Exr + Rxr = Exr — ek By (1.52)
Substituting equations (1.52) and (1.48) into equation (1.43), we get
exr = —€xm®Py + Erx — €oxm Ry = Exr + expv (R — @) (1.53)
and
Ukimv = —€xin®nm (1.54)

We observe that if Ry = ®py, then ex, = Exyp and 'y = R v, then the micros-
trains are no longer independent of the classical strain and rotations. But, in micropolar
theory, the classical rotation R is different from the microrotations. Thus, in microp-
olar theory, six functions are to be determined; namely, U (X, t) and ®x (X, ).

Now, we shall obtain the spatial position of the o point x(®) through equations
(1.31), (1.36), and (1.48). Substituting (1.48) into (1.36), we have

u = (Ux — exrn®nZr)Ix = Uk + eyrx®uZ) Ik = U+ @ x E

=u—P xXE, as U=x—-X=u

17
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Figure 1.3: Microrotation.

The displacement vector u(® is the difference of X(® to x(®, therefore
0@ = x@ _x@ o @ _ @ x@)
Since X(® = X + E, then from the above expressions, we have
x¥ =X4+E+u-=x . (1.55)
But
x@ =x+¢&=(X+u) +E& (1.56)

Therefore, from (1.55) and (1.56) we obtain

(11
(11

¢ = x ®. (1.57)

The position of a* particle given by x(®) in (1.56) has been expressed so as to make the
meaning of & geometrically clear. Here the vector ® represents the angular rotation
of a microelement about the center of mass of the deformed macrovolume element and
£ is the moment arm from this centroid (see Figure 1.3). Accordingly, the expression
in (1.57) shows that, aside from a rigid body translation, the relative position E of
a material point after deformation is obtained by translating = parallel to itself to

the center of mass x of the deformed macrovolume element and then rotating it in

18
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accordance with E x ®. Similarly, we can also have

E—£+Ex 0, (1.58)

where ¢ ~ ® is the spatial microrotation vector. Complete dual of equations (1.46)-

(1.55) can be easily obtained and are given by

b = %t?klmquu Pkl = —€ktmPm, (1.59)
Skt = 01 + €KimPrm; (1.60)

1 1
Ty = §€klmrmla Tkl = —€kimTm; Ty = §€klmum,l, (1.61)
Ukl = €kl — €klmTm (1.62)
€kl = exl + im(Tm — Om), (1.63)
Vim = €kinPnm, (1.64)
X@ =x4€&—u+téxao (1.65)

From (1.55), we can have

dx® = dX +dE+du—dE x ® — E x dd

:dX—FdE—f-u,KdXK—dEX@—EX(I)’KdXK. (166)
Using equations (1.51) and (1.52), we get

wxdXg = Uy xdXxl, = EpgdXgl, + RpgdX i1, = ExpdXgl, — dX x R. (1.67)
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Similarly, using equation (1.54), we obtain
Ex ® ydXy = exrnZrPundXnlg = —TronErdXnlk. (1.68)
Introducing the following notation (for convenience) 'k = 'k pZr, so that
Ex ® ndXy = —TrudXnlg = —Txand Xl — Tigand Xk, (1.69)

where indices in parentheses(and square brackets) indicate the symmetric (and anti-
symmetric) parts of ['kps. Further introducing new microrotation vector I' as Uigr) =

—exrmlar (where T = ey ar), equation (1.69) can be written as
= X (I)’NdXN = —P(KM)dXMiK + EKLMFMdXMiK. (170)
Substituting (1.67) and (1.69) into equation (1.66), we rearrange it as

dx\®) = dX +dE — (dX x R+ dE x ® +dX x T) + (Exp, + Tixr))dX ks,

= dX +dE — [dX x (R+T) 4+ dE x ®| + (Exp, + Tixr))dX g1, (1.71)

Equation (1.71) reveals that the deformation of the vector dX® = dX + dZ may
be achieved by the following three operations:
I. A rigid translation of dX + dZ from the material centroid X to the spatial centroid
X.
I1. Rigid rotations of dX and d= by the amounts dX x (R 4 TI') and dE x ®, respec-
tively.
I1I. Finally, stretch represented by the strains Ex, and I'(xr) in equation (1.71).

The expressions of ', can be simplified as

1 1 _ 1 _ _
'k = §€KLMFML = §€KLMFMNL:N = —§6KLM€MNPCDP,L:N = _§€KLM€NPM¢’P,L:N,
1 _ 1 _ _
= _5(5KN5LP —0xpOLN)PpLEN = —5(5KN5LP(I>RL:N —dxpirn®pLEN),
1 _ _ 1 _ —
= —5(5KN<DL,L:N —0nPr LEN) = —§(<I>L,L:K — ®x 1),
1 L] —
= 5(_CDL,L:K + P =1), (1.72)
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where the identity €;x€pqr = 0ip0jq — 0ig0;p has been used.

We can also write (1.71) as
d¢ = dx') —dx = dE —dX x T — dE x & — ['(gyd Xl (1.73)

In this form, we see that the difference between the deformation of dX® and that of dX
of which the latter is known to us from the classical theory. This difference, therefore,
is the result of the composition of a minirotation of dX, a microrotation of d=, and
the ministraining of dX characterized by I'(xr). The terminology of a minirotation is
being used for I' and ministraining for I' k). Of course, R is the classical rotation for
which we use the terminology 'macrorotation’.

Following the same procedure, we can have the dual of equation (1.55) is in the

spatial representation as
X@ =x4+€&—u+éxao (1.74)
From this, in the same way as in the case of equation (1.71), we obtain
dX(® = dx + dé + (dx x v+ d€ x ¢ — dx x ) — (exs — Yar) )iy, (1.75)

where r is the spatial macrorotation vector defined by equation (1.61) and ey; is the

spatial macrostrain tensor. The spatial minirotation vector ~ is given by

1 1
Tk = 5 Chim Yml = §(¢l,sz — i) and  Yem = Ve = ndnm- (1.76)

1.1.4 Useful definitions and relations

The velocity vector v and the acceleration vector a of a macroelement material point

are defined as
v=x(X,t) or v, =1x and a=v or ay = V.
Taking temporal derivative of relation (1.9) and using (1.12), we obtain
E=wi(x, )& or & =umd

where vi(x,t) = xx (X, t)Skr(X,t) (or v = XikSkr) and is called gyration vector

(or gyration tensor). We now introduce an axial vector vy as v, = %Eklml/ml and
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Ukl = —€mVm, Which is called microgyration vector. It can be seen that

€ = D& + Uiy = Dk&i + Vil = (X, )&,

where

o(X,1) =Dk + ViV O Qg = Ui + Vi Vink-

The tensor ay is called spin tensor. Taking time derivative of (1.17) one obtains
ek SSLr + XngLk = 0. Also, the material derivatives of xpx and Sy are given by
e = vaxue and Sgr = —vpSg. With the help of (1.49) and (1.60), the gyration

tensor vy can be written as

Vil = — € Pur + e m€kim®n O -

For linear theory of micropolar elasticity, we can write (Eringen 1968 )
Vgl = _eklmém (as Dy = ¢m) = V= ¢k:

Introducing the microinertia tensor iy defined as follows (see Eringen, 1999)

i = / Pabde’ =< &6 > o pinlu =Y pVELEA,
Av o

We also adopt the following decomposition as i, = % JmmOkt — e and Jri = Trm Okt — k-

Here ,,,,, = % Jmm = constant.

1.1.5 Stresses-Force stress and Couple stress

When an elastic body is subjected to external loads, the body is said to be under
deformation if the relative positions of its particles gets altered. The external loads
may be of two kinds: Body loads and Surface loads. A load which acts on the entire
mass of the body is called body load. Gravitational force and magnetic force are the
examples of body load. These forces are non-contact forces. A load which acts across
a surface, is called surface load. Stress force and pressure force are the examples of
surface load. These forces are contact forces. Internal stresses in a deformed body
arises due to the application of external loads. To explain the concept of stresses in
a micropolar body, we consider a small macrovolume, v + s (volume v and surface s),
fully contained in the body. At a point x of s, the effect of the remainder of the body

is equivalent to the surface force per unit area, Ty, called the force stress vector, and
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the couple per unit area, m,), called the couple stress vector. These stresses depend
on the position x, time ¢ and orientation of the surface s at x, which is described by
the exterior normal vector n to s at x. In tensor notations, the force stress and couple
stress tensors are denoted by 7y and my,; respectively, while the body force and body
couple tensors are denoted respectively by fr per unit mass and [ per unit mass.

In a micromorphic body, a third order tensor my,,, replaces my; and a second order
tensor ly; replaces [l given by ( see Eringen and Suhubi, 1964 and Suhubi and Eringen,
1964)

Mitm =< Tigbm >0, lu =< fr& >, (1.77)

Here <>, represents the surface mean and <> denotes the volume average. The
primed quantities refer to the microelement contained in a particle. These quantities
are restricted by 'Principle of Energy Balance’ postulated for the entire body. This
principle states that the time rate of the sum of the kinetic energy (K.) and internal
energy (€) is equal to the work done by all loads acting on the body per unit time, that

is,

d

— pKEdU = / (Tkﬂ)l + MeimVim + qk)dak + / p(fkvk + llekl + h)dv(178)
dt Jy_o oV —o v

Here, K = ¢ + K. and p is the average density. On the right hand side, under the
surface integral, the three terms, respectively, represent the stress energy, the energy
of stress moments, and the heat energy per unit time, and under the volume integral,
the three terms, denote respectively, the energy of the body force, the energy of body
moments, and the heat input per unit time. The volume and surface integrals exclude
the line and surface intersections of the discontinuity surface ¢ which may be sweeping
the body with its own velocity u (see Figure 1.4).
This is denoted by

V—-o=V-Vno 0V-0c=0V-0Vno. (1.79)

Note that the internal energy density € is postulated to exist. The kinetic energy K.,

per unit mass, defined by

Ko==<(x48) (x+€&) > (1.80)

N | —
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Figure 1.4: Discontinuity surface.

turns out to be

1 1
Ke = §V -V + §ilemkal' (181)

We note that the energy balance law (1.78) differs from classical counterpart only in
the terms involving my;,, and ly;. The origin of these terms may be explained by a
physical picture. Consider a macrosurface da (see Figure 1.5) on the surface of the
body with exterior unit normal n. The work per unit time of a stress vector T}, acting
at a microsurface element daj with unit normal n’, upon integration over Aa gives the
energy due to tractions on Aa. For the stress vector, we have, 7, = 7/,i;, where 7, is

the microstress tensor. The energy due to the force 7 is then given by

/ (v + fl)cla;€ = / T vdag, ~|—/ ToVimEmday, = (Trvr + Mg Vim) Dag, (1.82)
Aa Aa Aa

where the stress tensor 1, and stress moment tensor my,, are defined in the limit as

ANa — 0

TNy :/ T day., MmN Ay :/ T&mday,, (1.83)
Aay, Aay,
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Aa

Figure 1.5: Traction at microsurface element.

in accordance with (1.77). The presence of the term involving ;v in (1.78) is similarly

obtained by the volume average
/A O fh (o + E)dv = (pfrvk + plivi) Lo, (1.84)
where [; is defined in the limit as Av — 0
plaLsv = /A Jfi&dv’ (1.85)

For microstretch continua, we decompose my;, into a microstretch vector m; and a
couple stress tensor my,; ; and decomposing l;; into body microstretch force density [

and body couple density [, as

1 1 1 1
Mgim = §mk5lm - §€zmrmkm Iy = glfskl - §€klrlra (1-86>

and using vy = Vg — €ximVm, Where v represents the uniform microstretch (a breathing
motion) and vy represents the rigid microrotation in a microstretch continuum (see
Eringen, 1999), (1.78) takes the form

p(e + Ke)dv = / (Tkﬂ}l + myi; + mgl + Qk)dak

dt V—o oV —co
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+/ p(frvk + v + Ly + h)dv. (1.87)
V—o

For micropolar continua, the energy balance law can be written directly from (1.87)
by substituting v = 0, my = 0 and [ = 0.

Next, we shall show that the force stress and couple stress vectors on opposite sides
of the same surface at a given point in micropolar continua are equal in magnitude and
opposite in sign. For this, we consider a small tetrahedron with three faces s, taken as
the coordinate surfaces and the fourth face s, being a part of the surface of the body
(see Figure 1.6).

The equation of ’balance of momentum’ which states that the time rate of change of
momentum s equal to the sum of all forces acting on a body, applied to the tetrahedron

is given by

% udeU = 75 T(n) - da+ ik(_Tk) - day, + /Upfdv, (1.88)
where p is the mass density, v is the velocity and f is the body force. The force 7y
is the surface traction per unit area acting on the surface s, with an outward directed
normal n and the forces 7, are the surface tractions per unit area acting on the surfaces
s, with an outward directed normals iz. The right hand side of equation (1.88) gives the
vector sum of the surface and body forces. Using the mean value theorem to estimate

the volume and surface integrals, we write

d
E(,O*V*AU) = Tmlha — T 8ay + pf*Av, (1.89)

where the quantities marked with asterisks are the values of those without asterisks at

some points of v+ s. The volume of tetrahedron is denoted by Av and its surface areas

d
by Aag and Aa. Since the mass is conserved, we get %(pdv) = 0 . Now dividing the
equation (1.89) by Aa and letting Aa and Av — 0, we see that Av/Aa — 0 and we

obtain
Tmyda = Trday. (1.90)

Now day, is the projection of vector area da on the coordinate plane x, = 0. Hence

day, = da - i, = da (n- Ik) = ngda. Substituting this into (1.90), we get
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Figure 1.6: A tetrahedron with surface loads.
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Figure 1.7: Stress tensor.
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Figure 1.8: Couple stress tensor.

T(n) = TNk, (1.91)

where 7}, is independent of n. Thus, the stress vector T(y) is a linear function of n. It
is clear from (1.91) that

‘T(_n) = —T(n), (1.92)

which proves that the stress vectors on the opposite sides of the same surface at a given
point are equal in magnitude and opposite in sign.

Similarly, using ’principle of balance of moment of momentum’ which states that the
time rate of change of moment of momentum about a point is equal to the sum of all

couples and the moments of all forces about that point, gives
m(n) = ImMgng, m(_n) = —m(n). (193)

To define the stress tensor 73; and couple stress tensor my;, we decompose the tensors

T and my as
Tk = Tk, my = Mgly. (1-94)

Thus, 7 is the (" components of the stress vector 7, which acts on the surface z;, =
constant and my; is the [** components of the couple stress vector which acts on the

same surface. The positive directions of 75; and those of my; are shown on Figures 1.7
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ms; A~

Figure 1.9: Directions of couple stress.

and 1.8. Equations (1.91), (1.93); and (1.94), it follows that
T(n) = Tkl”kila myq) = mklnkik (1.95)

It is thus clear that the couple stress vectors have a sign convention identical with that
of the stress vectors. The plane of each couple is perpendicular to the couple vector,

and the direction is as described by the right-hand screw rule (see Figure 1.9).

1.1.6 Stress-strain relations in micropolar elasticity

In micropolar continuum, the constitutive dependent variables are stress tensor 7y,
couple stress tensor my,,, heat vector g, Helmholtz free energy 1, and the entropy 7.

Eringen (1968) proposed the following set of constitutive equations given by

Tkl = Fkl(erm Qb'r,s; ‘9)7 mg = Mkl(ers; (br,m 9)7 dr = Gk(ersa (br,su 0);

@ZJ - qj(@’sv ¢r,57 0)7 n= N(6r57 gbr,sa 0) (196)

where €, and ¢, 5 are given by (1.63) and (1.64) respectively and 6 is the temperature.
The above equations are legitimate for linear homogeneous materials, whether isotropic
or not. For nonlinear isotropic materials, they are acceptable in form. However, since
we are employing the infinitesimal strain measures, a nonlinear constitutive theory, in
terms of linear strain measures, would be inconsistent.

The constitutive equations (1.96) must be consistent with second law of thermody-
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namics, as expressed by

Py = —(p/0) (> — n0) + (1/0) 7001k — (1/0)€tmnTmn Vi

+(1/0)muyvry + (1/6*) @b > 0. (1.97)

Thus, on substituting equation (1.96) into equation (1.97), we have

_8(8\116, n ov
0 ey O,

-
i)+ %0 + 1)

+(1/0)Taér + (1/0)mpdrs + (1/6%) @65 > 0. (1.98)

Consistent with the linear theory, we write

D . .
E(ﬁbkz,l) = Okt € ™ ULk — EktmVm. (1.99)

The inequality equation (1.98), is postulated to be valid for all independent processes.
Here, the quantities €, ng,l, 0 and 6 , can be varied independently. Since this inequal-
ity is linear in all these variables, we must set the coefficients of these variables equal

to zero. Hence
Tkl = p@lll/ﬁekl, mpr; = p@l’/@gbhm qr = 0, n = —6\11/80 (1100)

We therefore see that, for a micropolar elastic solid, the stress, couple stress and entropy
density are derivable from a potential, and the heat vector vanishes. Since we did not
consider the temperature gradient, we have no heat conduction. Nevertheless, the free
energy ¥ and, consequently, the material moduli will depend on the temperature 6.
Since all terms in equation (1.98) vanish, we have the entropy production density 7
also vanishing. Thus, the micropolar elastic solid is in thermal equilibrium.

Here we are concerned with the linear theory, we therefore consider a polynomial

for ¥ which is second degree in the strain measures € and ¢y, i.e.,

1 1
pV = Ay + Aper + §Aklmn€kl€mn + Br®r + §Bmmn¢k,l¢m,n + Crtmn€ri®mn(1.101)

where Ay, A, Arimn, B, ... are functions of 6 only. Since ¢y is an axial vector on a

reflection of the spatial axes, the fourth and the last terms change sign while the other
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terms do not. For the function ¥ to be invariant, By, = 0 and Clpnn = 0. We further
note the following symmetry conditions which are clear from various summations in

equation (1.101) (on interchanging k& with m and [ with n)
Aklmn = Amnkh Bklmn = ankl- (1102>

This shows that, for the most general micropolar anisotropic elastic solid, the number
of distinct components for Ay, and B, is 45 each. In addition, we have nine Ay
terms which give rise to an initial stress in the undeformed state of the body.

On substituting equation (1.101) into equations (1.100); and (1.100),, we obtain

Tit = Ari + Akimn€mn Mt = BikemnPmon- (1.103)

These are the linear forms of the stress and couple stress constitutive equations for
anisotropic micropolar elastic solids. when the initial stress is zero, we must also have

Ag; = 0. Thus, for the micropolar solid which is free from initial stress, we have

Tkl = Aklmnermw mgr = Blkzmn¢m,n~ (1104)

Various material symmetry conditions place further restrictions on the constitutive
coeflicients Ay, and Bigmn. These restrictions are found in the same manner as in
classical elasticity. Here, we obtain the case of isotropic solids. If the body is isotropic
with respect to both the stress and couple stress, we call it isotropic. In this case,
the constitutive coefficients must be isotropic tensors. For second and fourth order

isotropic tensors, we have the most general forms

Aklmn = )\5kl(5mn + (,M + K)ékmém —+ uéknélm, (1105)

Bk‘lmn = aéklémn + ﬁ(sk‘nélm + ’yékmélna (1106)

where \, i, K, o, 3 and ~y are elastic moduli, which are functions of € only. In this case,

equations in (1.104) can be written as

Tl = N0t + (0 + K)ep + pegg, My = 0Py O + BPry + YOk (1.107)
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Using (1.63), the alternative form of first relation in (1.107) can be written as
Tkl — )\ewékl -+ (QIU -+ K)ekl -+ Kﬁklm(Tm — ¢m), (1108)

Free energy, in this case is given by

1
,O\If = 5[)\€kkell + (2u + K)eklekl] + K(Tk — ¢k)(rk — ¢k>

+%(O‘¢k,k¢l,l + BOr 1Pk + YOk 1Pk1)- (1.109)

We note the difference between isotropic micropolar elasticity and classical elasticity
by the presence of four extra elastic moduli; namely, K, «, 3 and v. When these are
set equal to zero, equations (107)q, (1.108)-(1.109) revert to Hooke’s law of the linear
isotropic elastic solid.

The stability of materials requires that the stored elastic energy should be nonnegative.
This condition is also essential for the uniqueness of the solutions. This requirement
places certain restrictions on the micropolar elastic moduli. Eringen (1966a) provided
these conditions: The necessary and sufficient conditions for the internal energy to be

nonnegative are

0<3A+2u+ K, 0<2u+K, 0<K, 0<3a+0+v, —7<B<7, 0<7.

1.2 Equations of motion of micropolar elasticity

To derive the equations of small deformation in micropolar elasticity, we use the princi-

ple of balance of momentum and principle of moment of momentum which are expressed

/padv: ]{ T(n)da—l—/ pfdv, (1.110)

/(X X pa+ po)dv = ]{(x X T(n) + My )da —|—/ p(l +x x f)dv, (1.111)

v s v’

respectively as

where [ is the body couple density and other symbols are defined earlier. Here s’ and

v" are the small internal portion v + s of the body. The quantity o is the intrinsic spin
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and it is defined by
poAv = Zp(a)ﬁ x (v x &) Av(@),

Expanding the vector triple product and writing in component form, we have

pAvoy, = Z P(Q)lemfzﬁmLMVLéMAU(a),

= P! (Okrdiar — Srardin) e A = pl (Spréaréar — Gr)vr v,

= Z P S Eprénrvp Av'® — Z P&y A = plrpvrAv,

where the definition, piyAv =" Pl &L AV and the relation jir = Opriniar — ikl
have been used. Thus, we have o, = jyvy. Substituting equations (1.91) and (1.93);
into (1.110) and (1.111), we obtain

/padv = j{Tknkda—F/pfdv, (1.112)

/p(x xa+o)dv= j{(x X T) + mg)ngda + /p(l +x x f)dv. (1.113)

v S v

Employing the following Green - Gauss theorem,

%gknkda = /gk,kdv, (1.114)

into equations (1.112) and (1.113), we get

/[Tk,k + p(f — a)]dv =0, (1.115)

/[mk’k +ip X T — p(l — &)]dv + /X X [Tex + p(f —a)]dv = 0. (1.116)

v v

For these equations to be valid for any arbitrary volume v in the body, the necessary

and sufficient conditions are the vanishing of the integrands, hence we obtain

Tre +p(f —v) =0, (1.117)
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my + i X T+ p(l — &) =0, (1.118)
or in components form, we can write

Ties + p(fx — 0x) = 0, (1.119)

Mkt + €mnTmn + Pk — 01) = 0. (1.120)
Substituting (1.107) into equations (1.119) and (1.120), we get

(A + g + (1 + Ky + Keppm@m + p(fe — ig) = 0, (1.121)

(a+ B)brik + YPru + Kepmumy — 2K ¢ + p(ly, — jér) = 0, (1.122)

where we have taken ji; = jdy; for the microscopic solid. These are the field equations
of linear micropolar elasticity. In the linear theory, the accelerations i and gbk are
calculated by their approximate expressions iy ~ 0%uy,/0t> and ¢y, ~ 0%y, /Ot>. The

vectorial form of these equations can be written as

A+2u+K)VV -u— (u+ K)VxVxu+KVx¢+pf—1i)=0, (1.123)

(+B4+7)VV-p—7VXVxp+EKVxu—2K¢p+pll—jp)=0. (1.124)

The equations of motion and constitutive relations in a linear homogeneous and isotropic
micropolar elastic solid medium can be extended to microstretch medium. In the ab-
sence of body forces and body couple densities, the extended equations of motion are
given by (Eringen (1999), pp: 254-255)

(A +AV(V-u) = (E+AV X (Vxu)+eV o+ V=1,  (1.125)
(E+A)WV(V-¢p) — AV x (VX p)+wiV x u—2wip =0, (1.126)

eV — c2p — 2V -u = 9, (1.127)
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where ¢t = (A+2p)/p, & =p/p, & =K/p, ct=1/pj, &&= (a+0)/pj, wi=
¢3/d, g = 200/pi, ¢ = 2Mi/3pj, G = 2Xo/3pd, Ao = Xo/p; Ao, A1 and g are
microstretch constants and ) is the scalar microstretch.

The extended constitutive relations are given by

Tt = AUy Ot + (g + ) + K(w g — €xirdr) + Ao, (1.128)
My = QPpOp1 + BOri + YPik, (1.129)
mp = 0407707]% (1130)

where my, is the microstretch tensor and other symbols are defined earlier.

1.3 Literature review

The problems of elastic wave propagation and their reflection and transmission from
boundary surfaces/interfaces is of keen interest since long. These problems have been
studied by many researchers by taking different models and have appeared in the open
literature. The basic concepts of classical elasticity, wave propagation in elastic media
and their reflection/ refraction from boundary surfaces can be found in several books,
e.g., Sokolnikoff (1956), Love (1911), Brekhoviskikh (1960), Achenbach (1973), Ewing
et al. (1957), Ben-Menahem and Singh (1981), Bullen and Bolt (1985), Udias (1999),
Pujol (2003), Graff (1991) including several others. There are two types of waves that
can propagate in a homogeneous isotropic elastic medium: One is longitudinal in na-
ture and other is transverse. Longitudinal wave is called P-wave and transverse wave is
called S-wave in seismology. These are body waves and can travel into the deep of the
medium. Besides these body waves, there occurs surface waves, which can travel near
the boundary surface of a medium and goes on diminishing with the distance away from
the boundary surface. There are three types of surface waves: Rayleigh wave, Love
wave and Stoneley wave. The literature related to these waves is available frequently
in several books on the pertinent topic of research. In nature, there exist some con-
tinuum whose microstructure play very important role and it can not be disregarded
during investigation of problems related to wave propagations. Due to their significant
microstructural properties, the results obtained by the application of classical elasticity

are found to disagree with the experimental ones. In this way, the classical theory of
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elasticity is inadequate to explain all phenomena of microstructure of a continuum.
As explained earlier, several non-classical polar theories were developed to explain the
behavior of these microstructural bodies. One of them is the well established theory of
micropolar elasticity due to Eringen. In this section, we shall confine ourselves to the
works of wave propagation in micropolar and microstretch theories.

Parfitt and Eringen (1969) have investigated the possibility of plane wave propa-
gation in an infinite micropolar elastic solid medium and proved that there can exist
four plane waves. These waves are given as follows

i) A longitudinal displacement wave propagating with phase speed

v = V(A +2u+K)/p,

ii) A longitudinal microrotational wave propagating with phase speed

vy =+ B+)/pj +23/K2, (w0 = K/pj),

iii) Two sets of coupled transverse waves (each consists of a transverse displacement

coupled with a transverse microrotational) propagating at phase speeds,
vy = {(1/20)[~b + (b* — 4ac)'/?|}'/2

and
v = {(1/2a)[~b — (b — 4ac)"?]}'/2,

where a = 1-2w2 /w?, b= —[c3+c3(1—2wi /w?)+c3(1—wi/w?)] and ¢ = c2(c3+c2). The
waves propagating with speeds vy and v3 can exist only when the frequency w is greater
than /2wy, otherwise they degenerate into distance decaying sinusoidal vibrations. The
longitudinal displacement wave is similar to the longitudinal wave of classical elasticity
and actually reduces to that in the limiting case. The appearance of longitudinal mi-
crorotational and coupled transverse waves is new and arise due to the microstructure
of the medium. They showed that the longitudinal micro-rotational waves and the two
sets of coupled waves are dispersive in nature. They have also presented the formulae
for amplitude ratios of various reflected waves when these waves are made incident
obliquely at a mechanically stress free plane boundary of a micropolar elastic half-
space. Several limiting cases are also discussed. Ariman (1972) discussed the problem
of reflection of plane longitudinal displacement wave from a fixed flat boundary of a
micropolar elastic half-space. He showed that there exist three reflected waves (a lon-

gitudinal displacement wave and two coupled transverse waves) as compared with the
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two waves of classical elasticity. Smith (1967) investigated the propagation of surfaces
of discontinuity of the derivatives of the macro and micro-displacements. He found
that a surface of discontinuity of the partial derivatives of macro displacement u trav-
els with normal velocity \/m or \/m , while that of microdisplacement
¢ travels with a normal velocity \/(a+ 3 +7)/pj, when V - ¢ = 0 and with velocity
\/W , when V x ¢ = 0. He also discussed the modes of macro and micro-vibrations
of the solid cylinder and solid sphere. McCarthy and Eringen (1969) derived the prop-

agation condition of waves in micropolar viscoelastic solids by defining a wave to be

a propagating surface, across which some kinematical variable suffers discontinuity.
They have also derived the expressions for the speeds of propagation of macro and
micro shock waves of longitudinal and transverse nature. It is found that the possible
speeds of macro shock waves are determined solely by the macro relaxation functions,
while the speeds of micro shock waves are determined solely by the micro relaxation
functions. They also studied the growth of shock waves and the coupling between
the discontinuities in the macroscopic and microscopic fields. Maugin (1974) extended
the work of McCarthy and Eringen (1969) to the propagation of acceleration waves.
He derived the conditions of propagation of acceleration waves in a simple micropolar
media and in a linear micropolar viscoelastic media. Musgrave (1988) derived the field
equations for arbitrary anisotropic micropolar elasticity and discussed the stress wave
propagation in three types of orthorhombic micropolar medium. He found that at high
frequency, the decoupling of equations of motion is possible, which gives two sets of
equations corresponding to quasi-translational and spin wave displacements. Recently,
Singh (2007) studied the propagation of plane waves in orthotropic micropolar elastic
solid and found that the phase speeds of the waves depend on their angle of propagation
similar to the classical anisotropic elastic solids. He also obtained the reflection coeffi-
cients of these waves from a stress free boundary and depicted their behavior against
the angle of propagation. Propagation of acceleration waves in micropolar elastic me-
dia is investigated by Eremeyev (2005). He derived the condition of existence of an
acceleration waves and showed that it is equivalent to the requirement of a strong ellip-
ticity of equilibrium equations likewise in classical elasticity. Parameshwaran and Koh
(1973) investigated the propagation of plane waves in a micro-isotropic, microelastic
solid and found that there exist twelve waves propagating with real phase speeds. Out
of the twelve waves, eleven are dispersive and one is non-dispersive in nature. These
may be classified into two sets: one set of four longitudinal waves and two identical
sets of transverse waves, each consisting of four waves. The non-dispersive wave and

two coupled transverse waves propagate at all frequencies, while the other two coupled
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transverse waves and the remaining seven uncoupled waves propagate only at frequen-
cies higher than certain cut-off frequency. Twiss and Eringen (1971, 1972) derived the
micromorphic and micropolar balance equations and entropy production inequalities
for a mixtures of any number of chemically non-reacting constituents. They discussed
the plane wave propagation in a linear, isotropic, micropolar two constituent mixture
with restricted coupling. They showed that there exist longitudinal and transverse
microrotational waves, in addition to longitudinal and transverse displacement waves
of classical theory. The two displacement waves are found to be dispersive, while the
two transverse waves are complexly coupled.

Tomar and Gogna (1992) discussed the problem of reflection and refraction of a lon-
gitudinal microrotational wave at an interface between two micropolar elastic media
in welded contact and obtained the expressions of reflection and refraction coefficients.
The problems of reflection and refraction of a longitudinal wave and a coupled wave at
an interface between two dissimilar micropolar elastic solids are also discussed in detail
by Tomar and Gogna (1995a, b). These problems of Tomar and Gogna are basically
the extensions of the three specific problems earlier studied by Parfitt and Eringen
(1969), to cover the transmission phenomena through the plane interface. They used
potential method and Snell’s law to derive the amplitude ratios of various reflected and
transmitted waves. They found that these coefficients depend on the angle of incidence,
elastic properties of the half-spaces and frequency of the incident wave. Tomar and Ku-
mar (1995) obtained the reflection and refraction coefficients at the interface between
a homogeneous liquid half space and a micropolar solid half-space, when a longitudinal
displacement wave is impinging obliquely at the interface after propagating through
the micropolar solid half-space. Later, Tomar and Kumar (1999b) discussed the corre-
sponding problem when the longitudinal displacement wave becomes incidence at the
liquid / micropolar half-space after propagating through the liquid half-space. The
reflection and transmission of elastic waves (longitudinal/ coupled wave) at viscous
liquid/ micropolar elastic solid interface was discussed by Kumar and Tomar (2001).
They studied the effect of viscosity on various amplitude ratios. Kumar and Singh
(1997) investigated the problem of reflection and transmission of elastic waves at a
loosely bonded interface between an elastic and a micropolar elastic solids. They com-
puted these coefficients against the angle of incidence at different values of bonding
parameters. Recently, Hsia and Cheng (2006) presented reflection and transmission
phenomena due to an incident longitudinal plane wave at a plane interface between a
uniform elastic medium and a micropolar elastic medium. They presented two sets of

boundary conditions: one set contains a boundary condition of vanishing the micro-
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rotation at the interface, while the other set contains a boundary condition of vanishing
of couple stress at the interface, in addition to the four usual boundary conditions of
classical elasticity corresponding to the continuity of force stresses and displacements.
The solution of these two sets of boundary conditions are discussed in a separate paper
by Hsia et al. (2006), where they presented energy partitioning of various reflected and
transmitted waves and showed that the energy ratios not only depend on the angle of
incidence but also on the micro-inertia of the micropolar half-space, in addition that
there is a remarkable distinction between the two sets of possible boundary conditions.
They discovered that only four material moduli are required for full description of the
wave propagation and presented normalized power densities of the wave fields versus
angle of incidence corresponding to each set of boundary conditions for a particular
model. Later, Hsia et al. (2007) investigated the propagation of transverse wave and
reflection and transmission of incident SV / SH waves from a plane interface between
elastic — micropolar porous solids in perfect contact. Singh and Kumar (1998a, b)
studied a problem of reflection and refraction of micropolar elastic waves at a loosely
bonded interface between a viscoelastic solid and a micropolar elastic solid. They dis-
cussed the effect of looseness of the interface on various transmitted waves. Later,
Singh (2002a) considered the reflection and refraction coefficients of elastic waves at a
loosely bonded interface between two distinct micropolar viscoelastic solid half-spaces.
He showed that the coefficients depend on the bonding parameter of the interface and
studied the effect of viscoelasticity on them. Recently, Singh and Kumar (2007) studied
a problem of reflection and refraction of elastic waves at a welded contact interface be-
tween a viscoelastic solid and a micropolar elastic solid. They considered the incidence
of longitudinal micro-rotational wave propagating through the micropolar medium and
the incidence of SH— wave propagating through the viscoelastic medium. Tomar et
al. (1998) discussed the propagation of plane waves in an infinite micropolar elastic
medium with stretch and studied the reflections of these waves from the free plane
surface of a micropolar elastic half-space with stretch. Kumar and Singh (2000) ex-
tended their problem to the interface between a linear viscoelastic half-space and a
micropolar elastic half-space with stretch, when a plane P/ SV — wave after prop-
agating through the viscoelastic half-space becomes incident at the interface. Singh
(2000b) also covered the case of reflection and transmission of waves at the interface
between liquid half-space and micropolar viscoelastic solid with stretch. Kumar and
Deswal (2000) studied the reflection of micropolar elastic waves from the free sur-
face of a liquid saturated micropolar elastic half-space. They have also derived the

wave-velocity equation of Rayleigh waves in a micropolar liquid-saturated poroelastic
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half-space. Yang and Hsia (1998) discussed the propagation, reflection and transmis-
sion of an incident acoustic plane wave (from the liquid half-space) at the fluid —
micropolar interface and discussed the normalized power densities. Kumar and Barak
(2007) studied a problem of reflection and transmission at an interface between a ho-
mogeneous liquid half space and a micropolar liquid saturated porous half-space, when
longitudinal waves (fast/slow) and coupled transverse waves are made incident at the
interface. They studied the micropolarity and porosity effects on the coefficients cor-
responding to various reflected and transmitted waves.

Reflection of plane elastic waves from the boundary surface of a micropolar gener-
alized thermoelastic solid half-space in the context of Green-Lindsay (G-L) and Lord-
Shulman (L-S) theories was studied by Singh and Kumar (1998d). They obtained the
reflection coefficients of various reflected waves and showed that the effect of thermoe-
lastic coupling coefficient is more in G-L theory as compared to L-S theory. Kumar
(2000) extended the problem of Singh and Kumar (1998d) to the micropolar viscoelas-
tic generalized thermoelastic solid. Singh (2000a) studied the reflection and refraction
of plane sound wave at an interface between a liquid half-space and a micropolar
generalized thermoelastic solid half-space. He also compared the amplitude ratios
obtained in the corresponding problem without thermal effects. Singh (2001b) inves-
tigated the problem of reflection and refraction of micropolar thermoelastic waves at
a thermally conducting liquid half-space and a micropolar generalized thermoelastic
solid half-space. He found that the amplitude ratios for various reflected and trans-
mitted waves in G-L theory are different from those in L-S theory. This is how he
explained the effect of second thermal relaxation time on the amplitude ratios. Singh
(2002d) studied the reflection of thermo-viscoelastic plane waves from the free plane
boundary surface in the presence of magnetic field. Frequency equation of Rayleigh
surface wave propagation in a micropolar thermoelastic medium without energy dis-
sipation has been investigated by Kumar and Deswal (2002b). Song et al. (2006a)
obtained the reflection and transmission coefficients at the interface of two different
magneto-thermoviscoelastic micropolar solids in context of three different theories of
thermoelasticity. Song et al. (2006b) studied the problem of reflection and refraction of
magneto-thermoviscoelastic waves at the interface between two micropolar viscoelastic
media when a uniform magnetic field permeates the media using micropolar generalized
thermoviscoelastic theories. They obtained the expressions of reflection and refraction
coefficients for dilatational and rotational waves and found that these coefficients de-
pend upon the angle of incidence. They also found that the viscosity plays a significant

role, while magnetic field has a salient influence on reflection and refraction coefficients.
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Othman and Song (2007) discussed the reflection and refraction of a plane harmonic
wave at the interface between two micropolar thermoviscoelastic media without energy
dissipation and obtained the amplitude ratios corresponding to the reflected and re-
fracted waves. Kumar and Partap (2007) derived secular equations corresponding to
axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoe-
lastic plate without energy dissipation, when the faces of plate are stress free and when
they are rigidly fixed. They studied the micropolar and thermal effects on the phase
velocity and derived the amplitudes of displacement components, microrotation and
temperature distribution in symmetric and skew symmetric modes.

Singh and Kumar (1998¢) extended their problem (Singh and Kumar, 1998d) to in-
clude stretch. They considered the case of incident longitudinal displacement, incident
coupled waves and incident longitudinal microstretch waves and studied the thermal
and stretch effects on various reflected waves. Singh and Kumar (1998e) discussed wave
propagation in a generalized thermo-microstretch elastic solid and studied the problem
of reflection of incident plane waves from the free surface of a generalized thermo-
microstretch half space. This problem was later extended to liquid/ microstretch in-
terface in the presence of temperature/magnetic fields by Singh (2001a, 2002c). Plane
wave propagation and their reflection from a free surface of a microstretch elastic solid
is investigated by Singh (2002b). He studied the effect of microstretch property on
various reflected waves. Tomar and Garg (2005) investigated the wave propagation
and their reflection and transmission through a plane interface between two different
microstretch elastic solid half-spaces in perfect contact. It is shown that there exist
five waves in a linear homogeneous isotropic microstretch elastic solid, one of them
travel independently, while other waves are two sets of two coupled waves. It is also
shown that these waves travel with different velocities, three of which disappear be-
low a critical frequency. Amplitude ratios and energy ratios of various reflected and
transmitted waves are presented when a set of coupled longitudinal waves and a set
of coupled transverse waves is made incident. Recently, Kumar and Rupinder (2008)
studied the reflection and deformation in magneto-thermo-microstretch elastic solid.

Willson (1972) discussed the fundamental vibrations of a long circular cylinder
made up of micropolar material. He derived the dispersion equation and discovered
that torsional type surface waves may propagate independently of waves of extension.
The dispersion relation of these waves were earlier discovered by Smith (1970), but
in a complicated form. Rao (1988) studied the micropolar effect on the longitudinal
wave propagating in an elastic layer and derived the frequency equation corresponding

to Rayleigh-Lamb wave propagation. He found that the longitudinal wave propagates
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in the layer with an extra velocity, which arises due to micropolarity of the layer. He
observed that even modes are anti-symmetric and odd modes are symmetric unlike in
classical elasticity. The results obtained are compared with the corresponding results
of classical elasticity. Rayleigh type surface waves propagating on the surface in the
azimuthal direction of an elastic circular cylinder of a micropolar elastic material is
studied by Rao and Reddy (1993). Tajuddin (1995) studied the propagation of Stone-
ley waves at an unbonded interface between two micropolar elastic half-spaces. He
derived the condition of propagation when the solids are Poission solids and have the
material properties close to each other. Kumar and Singh (1996) studied the Rayleigh-
Lamb waves and Rayleigh surface waves in a micropolar generalized thermoelastic body
with stretch. Deswal et al. (2000) studied the effect of micropolarity and viscosity on
dispersion curves on the surface waves in cylindrical bore filled with viscous liquid and
hosted in micropolar media. Kumar and Deswal (2002a) obtained the frequency equa-
tion for the propagation of Stoneley type waves along the surface of a cylindrical bore
filled with viscous liquid and embedded in a microstretch elastic medium. Nowacki
and Nowacki (1969) discussed the propagation of monochromatic elastic waves in an
infinite micropolar elastic plate. They obtained the symmetric and anti-symmetric
vibrations by deriving the corresponding characteristic equations and approximated
them for wavelengths small compared to plate thickness. They also showed that Love
waves are possible in a micropolar elastic half-space in addition to the usual Rayleigh
waves. Bera(1973) investigated the propagation of monochromatic waves in an initially
stressed infinite micropolar elastic plate and reduced the result of Nowacki and Nowacki
(1969) by neglecting initial stress. Tomar (2002) investigated the wave propagation in
a micropolar elastic plate bordered with layers of homogeneous inviscid liquid. Tomar
(2005) has also investigated the frequency equation of Rayleigh—Lamb waves in a mi-
cropolar elastic plate with voids. He found that both symmetric and antisymmetric
modes of vibrations are dispersive and attenuated. The presence of voids has neg-
ligible effect on the dispersion curves, however attenuation coefficient is significantly
influenced.

Kumar and Deswal (2006) studied wave propagation in micropolar elastic medium
with voids. They studied three different problems. One is on the propagation of waves
in a micropolar elastic layer with voids immersed in an infinite liquid, second is on
the reflection of longitudinal and coupled waves at the free surface of micropolar elas-
tic half-space with voids and third is on Rayleigh wave propagation. They derived
the frequency equations corresponding to symmetric and anti-symmetric modes in the

micropolar elastic layer with voids and studied the effect of voids and micropolarity
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on dispersion curves. They also computed the reflection coefficients for a particular
model and compared with classical case. Tomar and Singh (2006) discussed the prop-
agation of plane waves in an infinite micropolar porous elastic medium and studied
the problem of reflection of a plane longitudinal displacement wave and coupled waves
from a plane free surface and obtained the expressions of amplitude and energy ratios.
Recently, Singh and Tomar (2007) discussed the plane wave propagation in a linear,
homogeneous, and isotropic micropolar porous elastic solid rotating with a uniform an-
gular velocity. They showed the existence of three longitudinal waves and two sets of
coupled transverse waves. They observed that out of the three longitudinal waves, one
is a longitudinal microrotational wave, the second is a longitudinal displacement wave
and the third is a longitudinal void volume fractional wave carrying a change in the
void volume and showed that the rotation of the body does influence the phase speed,
energy loss, and decay coefficient, in general. Propagation of shear surface wave along
the interface of a liquid half-space and a micropolar solid half-space is investigated
by Yerofeyev and Soldatov (1999) and determined the phase speed and attenuation.
They found that these surface waves are almost non-dispersive unlike the correspond-
ing problem in classical elasticity. Midya (2004) discussed the propagation of SH-type
surface waves in homogeneous isotropic elastic media consisting of a layer of finite
thickness lying over a half-space when either the layer or the half-space or both are
micropolar and observed that a new type of surface wave is arising in all cases due
to the micropolarity of one or both the media. Recently, Midya et al. (2007, 2008)
studied a problem of diffraction of normally incident P and SH-waves by a line crack
in micropolar medium. He obtained stress intensity factor for limitly low and high

frequencies by taking small coupling parameter.

1.4 Plan of thesis

In this thesis, we have investigated some interesting dynamical problems in microstruc-
tural continuum using Eringen’s polar theory. These problems are pertaining to surface
waves in a microstretch plate, Stoneley waves at an interface between two different
microstretch half-spaces, surface waves in a micropolar cylindrical borehole filled with
micropolar fluid, reflection and transmission of elastic waves at a liquid/solid half-space
and reflection of elastic waves from a micropolar mixture porous half-space. There are
six chapters, including a list of references given in the end of this thesis.

Chapter 1 is on Introduction, in which the development of microcontinuum the-

ories, derivations of basic equations and constitutive relations for micropolar elastic
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solid and an exhaustive review on the works done by various researchers in the field of
wave propagation in microcontinuum are presented.

Chapter 2 is on the propagation of Rayleigh—Lamb waves in an infinite plate of
finite thickness and composed of microstretch elastic material. The top and bottom
of the plate are cladded with finite layers of a homogeneous and inviscid liquid (non-
micropolar and non-microstretch). There exist two sets of boundary conditions at
solid/liquid interface and corresponding frequency equations are derived for symmetric
and antisymmetric modes of propagation for Rayleigh Lamb wave propagation. Nu-
merical computations are performed for a specific model to compute the phase velocity
and attenuation coefficient for different values of wavenumber, for both symmetric and
antisymmetric vibrations. Results of some earlier workers have been deduced as special
cases at the end of the chapter.

In Chapter 3, we derived frequency equations for Stoneley wave propagation at un-
bonded and bonded interfaces between two dissimilar microstretch elastic half-spaces.
Numerical treatment to the problem is dealt in detail. The results of earlier workers
have been derived as particular cases of the present problem, and some other interest-
ing particular cases have also been discussed in this chapter.

In Chapter 4, the possibility of plane wave propagation in a micropolar fluid of
infinite extent has been explored. The reflection and transmission of longitudinal elas-
tic waves at a plane interface between a homogeneous micropolar fluid half-space and
a micropolar solid half-space has also been investigated. The expressions of energy
ratios have been obtained in explicit form. Frequency equation for the Stoneley wave
at micropolar solid/fluid interface has also been derived in the form of sixth-order de-
terminantal expression, which is found in full agreement with the corresponding result
of inviscid liquid/elastic solid interface. Numerical computations have been performed
for a specific model. The dispersion curves and attenuation of the existed waves in mi-
cropolar fluid have been computed and depicted graphically. The variations of various
amplitudes and energy ratios are also shown against the angle of incidence. Results
of some earlier workers have been deduced from the present formulation at the end of
this chapter.

In Chapter 5, the micropolar mixture theory of porous media developed by Eringen
(2003a) is employed to explore the possible propagation of waves in this continuum.
A problem of reflection of coupled longitudinal waves from a free boundary surface of
a half-space consisting the mixture of a micropolar elastic solid and Newtonian liquid,
is investigated. The expressions of phase velocity, various amplitude and energy ratios

and surface responses are calculated and computed numerically for a specific model.
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All the numerical results computed are depicted graphically.

In Chapter 6, we derived the dispersion equation for the propagation of surface
waves in a cylindrical borehole filled with a micropolar viscous fluid and hosted in an
infinite micropolar elastic solid medium. The effects of fluid viscosity, micropolarity of
the fluid and radius of the borehole on the dispersion curves are noticed and depicted
graphically.

A list of references mentioned at various places in the entire thesis, has been given
at the end of this thesis.
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Chapter 2

Rayleigh-Lamb waves in a
microstretch elastic plate cladded

with liquid layers!

2.1 Introduction

Lamb (1917) was the first to investigate the problem of wave propagation in an elastic
plate of uniform material. Since then the term ’Lamb wave’ has been used to refer
to an elastic disturbance propagating in a solid plate with free boundaries. When a
plate of finite thickness is bordered with homogeneous liquid half-spaces on both sides
then some part of the Lamb wave energy in the plate radiates into the liquid, while
most of the energy still remains in the solid. The density and viscosity sensing with
Lamb waves is based on the principle that the presence of liquid in contact with a solid
plate changes the velocity and amplitude of the Lamb waves in the plate with free
boundaries. Wu and Zhu (1992) and Zhu and Wu (1995) studied the propagation of
Lamb waves in an elastic plate when both sides of the plate are bordered with liquid
layers. Sharma et al. (2003) analyzed the propagation of thermoelastic waves in a
homogeneous, transversely isotropic, thermally conducting plate bordered with layers
of inviscid liquid or with inviscid liquid half-spaced on both sides, in the context of

coupled theory of thermoelasticity. Sharma and Pathania (2003), Sharma et al. (2004),

LJournal of Sound and Vibration, 302(1-2), 313-331(2007).
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Sharma and Pathania (2004) and Sharma and Pal (2004) discussed various problems
of propagation of thermoelastic waves in a plate bordered with layers of inviscid liquid
in the context of generalized theories of thermoelasticity. Tomar (2002) derived the
frequency equations for wave propagation in a micropolar plate of finite thickness and
bordered with layers of homogeneous inviscid liquid. In this chapter, we have discussed
the propagation of Rayleigh-Lamb waves in a plate of homogeneous and isotropic mi-
crostretch elastic material cladded with layers of homogeneous, inviscid and nonpolar
liquid. The field equations and constitutive relations for microstretch elastic material
developed by Eringen are employed for mathematical analysis. The frequency equa-
tions corresponding to symmetric and antisymmetric modes of vibrations of the plate
are obtained. These frequency equations are discussed for some limiting cases and
some known results of earlier authors have been reduced. Phase velocity and attenua-
tion coefficient are also computed for a specific model and the effect of microstretch is

noticed on them.

2.2 Formulation of problem

We consider a plate of finite thickness '2d’ and composed of microstretch elastic solid

material. The plate is assumed to be of infinite extent in the x — y plane, whose top

7=-(d+h)
h Liquid
z=-d
Solid
2 » X
z=d
T h Liquid
V z=dth
\J
VA

Figure 2.1: Geometry of the problem

and bottom faces are bordered with layers of a homogeneous inviscid liquid of thickness

'h’'. The x — y plane is taken to coincide with the middle plane of the plate and the
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z-axis is taken normal to it along the thickness of the plate. The complete geometry
of the problem is shown in Figure 2.1.

The equations of motion and constitutive relations in a linear homogeneous and
isotropic microstretch elastic solid medium, in the absence of body force and body
couple densities, are given in Chapter-1 through equations (1.125) -(1.130). We shall
discuss a two-dimensional problem in x — z plane, so we take the following components

of displacement vector, microrotation vector and scalar microstretch respectively

u = (u(x72)7 0, U}(I, Z)), ¢ = (07 ¢(ZL’, Z), O>7 ¢:'¢($,Z).

With these considerations and introducing potentials L and M such that

oL oM oL O0M

o "o YT on

u

into equations (1.125) - (1.27), we obtain

0?L

(A +2u+ K)V2L + \gyp = TR (2.1)
0*M
(n+EK)V*M — K¢ = P om0 (2.2)
2 2 ¢

2
600V — 20 V2L — 2\ ¢ = 3pj%—tf. (2.4)

We see that the equations (2.1) and (2.4) are coupled in the potential L and mi-
crostretch 1, while the equations (2.2) and (2.3) are coupled in the potential M and

micro-rotation ¢. To find out the time harmonic solution of these equations, we assume
the form of L, M, ¢ and 9 as follows

{L, M, ¢, Y}z, z,t) ={L, M, ¢, Y} (z,z)exp{—uvt}, (2.5)

49



where w is angular frequency, which is related to the wavenumber ¢ and phase velocity

¢ through the relation w = &c. Substituting (2.5) into equations (2.1)-(2.4), we obtain

(A +2u+ K)V2L + M\t = —puw?L, (2.6)
(n+ K)V*M — K¢ = —pw’M, (2.7)
W2+ KV2M — 2K ¢ = —pjuw’e, (2.8)
60 V21) — 200 V2L — 20190 = —3pjw?i). (2.9)

Again, we can see that the equations (2.6) and (2.9) are coupled in L and ¢, while the
equations (2.7) and (2.8) are coupled in M and ¢. By elimination procedure, it can be

seen that these potentials satisfy the following equations

[VE+6V? + 0] (¥,L) =0, (2.10)

[V* 4 63V2 + 4] (§, M) = 0, (2.11)

where

3pjw? — 2X\ 3appw? + N2 pw?(3pjw? — 2X1)
£1 = + ) ‘62 =

6y 3ap(A+2u+ K) ~ bag(A+2u+ K)’
’ (pjw2 —2K  ypw? + K2) pKw? (pjw2 2)
3= ) 4 = - .
v Y+ K) Y+ K)\ K

The solutions of equations (2.10) and (2.11) for the waves propagating along positive z—
direction can be worked out easily and finally the time harmonic solutions of equations

(2.1)-(2.4) can be written as

L = (Asinh Rz + B cosh Rz + C'sinh Sz 4 D cosh Sz)e¢*=1), (2.12)

Y = a(Asinh Rz 4+ B cosh Rz) 4 b(C'sinh Sz + D cosh Sz)e!&®=%) (2.13)
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M = (Esinh Pz + F cosh Pz + G'sinh Q2 + H cosh Qz)e"¢* %", (2.14)

¢ = ¢/(Esinh Pz 4 F cosh Pz) + d'(G'sinh Qz + H cosh Qz)e!s* ") (2.15)

where the quantities a, b, ¢ and d' are coupling constants and their expressions can

be obtained by substituting equations (2.12)-(2.15) into equations (2.1) and (2.2) as
a=—{(c] + &) (=€ + R +w}/ho, b=—{(c]+)(—€+5%) +w’}/ A,

d={(G+@)(-C+P)+wt/, d={(G+c)(-+Q%) +w}/d,

and the expressions of R, S, P and @) are given by

R2,52:§2—% {zli,/@—ug}, Pz,Q2:§2—% {égi,/gg—m}.

The expressions of R? and P? are taken with ¢ + ¢ sign and expressions of S? and ?
are taken with © — * sign.

The equation of motion in liquid medium is given by

1 0%V
VW = — —, 2.16
2 ot? (2.16)
where U is the displacement potential and ¢, = \/Ar/pr is the velocity of sound in
liquid, Az and py being the bulk modulus and density of the liquid respectively.
Denoting the displacement potential function by ¢, and ¢, in the top and bottom

layers of the liquid respectively, the normal component of displacement wy,, and pressure

p are given by

0.
Wwr; = %7 p= pr2¢Li' (217)

(1 = 1 for the liquid in top layer and ¢ = 2 for the liquid in bottom layer).
The time harmonic solutions of equation (2.16) for the waves propagating along z—

direction in the top and bottom liquid layers are given by (see Wu and Zhu, 1992)

¢p, = Fysin{T[z — (d+ h)]}e &Y for [d <z < (d+ h)], (2.18)
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b1, = Fosin{T[z + (d + h)]}e'&* ) for [—(d+h) <z < —d|, (2.19)

where Fy and F; are unknown, 72 = K? — ¢2 and K = w/cr. To derive the frequency
equation for Rayleigh-Lamb waves in the plate considered, we shall use the following

boundary conditions at the solid-liquid interfaces.

2.3 Boundary conditions

The relevant boundary conditions at the solid/liquid interface will be the continuity
of displacement and stresses. Corresponding to the continuity of normal component
of stress at the interface, the normal stress of the solid must be equal to the pressure
of the liquid layer. However, shear stress of solid should be equal to zero at the
interface as the inviscid liquid can not support shear stress. Also, as one can not
protect the flow of an inviscid liquid over a solid, the continuity condition can not
be put on the displacement component along r— axis, however normal component of
displacement must be continuous at liquid — solid interface. Mathematically, these

boundary conditions can be expressed as
Toz =0, Too = —p and w = wr,. (2.20)

These equations constitute the three boundary conditions. However, to solve a bound-
ary value problem at the interface of interest, we need two more conditions. The balance
of moment of momentum across the interface of two microstretch elastic solids requires
the continuity of normal component of couple stress and continuity of microstretch vec-
tor. In the present instance, we have the interface between a microstretch elastic solid
and an inviscid liquid. Since our liquid neither exhibit micropolarity nor microstretch
property, therefore, at liquid — solid interface couple stress and microstretch tensor

must vanish. These conditions can be written as
m,, =0  and m, = 0. (2.21)

These two equations constitute the remaining two boundary conditions we need.
The boundary conditions on the displacement fields are purely kinematic, so the bound-

ary conditions on microrotation and microstretch cannot be ruled out. We see that
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other set of boundary conditions are also possible for the present case. These are the
vanishing of microrotation and microstretch of the solid at liquid — solid interface as
our liquid can not support both (however, one can consider such a liquid in which both
microrotation and microstretch are non-null). Therefore, one can use the following

boundary conditions in place of those given in (2.21)
»=0 and P = 0. (2.22)

Thus, we see that there are two sets of boundary conditions at the solid-liquid interfaces.
These two sets of boundary conditions to be satisfied at the solid-liquid interfaces

z = *d are given by
Set I: Tow =0, My =0, m,=0, 7.,=-p, w=uwg.

Set II: T =0, ¢=0, v=0, 7,,=-p, w=wp.

Using equations (2.12) - (2.15), (2.17)-(2.19) and relevant quantities from (1.128) -
(1.130) into the boundary conditions given in Set-I, we obtain the following ten homo-
geneous equations in ten unknown, namely A, B, C, D, E, F, G, H, F} and F5,
given by

[—AE% 4+ (A + 21+ K)R? 4+ \oa] (A sinh Rd+ B cosh Rd) + [~ A2 + (A + 2u+ K)S? + Aob]

X (C'sinh Sd 4+ D cosh Sd) — P(2u + K )i§(E cosh Pd + F sinh Pd) — Q(2u + K )€

x (G cosh Qd + H sinh Qd) — prw?Fy sin Th = 0, (2.23)
[=AE2 + (A +2u+ K)R?*+ Moa](— Asinh Rd+ B cosh Rd) + [ A& + (A +2u+ K)S? + \ob]
X (—=C'sinh Sd + D cosh Sd) — P(2u + K)i£(F cosh Pd — F'sinh Pd) — Q(2u + K )i
x (G cosh Qd — H sinh Qd) + prw?Fysin Th = 0, (2.24)
R(2p + K)1[Acosh Rd + Bsinh Rd| + S(2p + K)[C cosh Sd + D sinh Sd]

+[u€? + (u + K)P? — K|(E sinh Pd + F cosh Pd) + [u&? + (p + K)Q* — Kd']
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X (G'sinh Qd + H cosh Qd) = 0, (2.25)

R(2p + K)i§[A cosh Rd — Bsinh Rd] + S(2p + K )i£[C cosh Sd — D sinh Sd|

+[p* + (p + K)P? — K)(—Esinh Pd + F cosh Pd) + [u€* + (p + K)Q* — Kd']

X (=G sinh Qd + H cosh Qd) = 0, (2.26)
P (E cosh Pd + F sinh Pd) + Qd' (G cosh Qd + H sinh Qd) = 0, (2.27)
Pc (E cosh Pd — F sinh Pd) + Qd'(G cosh Qd — H sinh Qd) = 0, (2.28)

R(A cosh Rd + Bsinh Rd) + S(C cosh Sd + D sinh Sd)

—1(FE sinh Pd + F cosh Pd + G sinh Qd + H cosh Qd) — TFycosTh =0, (2.29)

R(A cosh Rd — Bsinh Rd) + S(C cosh Sd — D sinh Sd)

—1£(—E'sinh Pd + F cosh Pd — G sinh Qd + H cosh Qd) — T'FycosTh =0, (2.30)
aR(A cosh Rd + Bsinh Rd) + bS(C cosh Sd + D sinh Sd) = 0, (2.31)

aR(A cosh Rd — Bsinh Rd) + bS(C cosh Sd — D sinh Sd) = 0. (2.32)

For non-trivial solution of these equations, the determinant of their coefficient matrix

2n — 1
should vanish. For T # 0 and Th # %

equation leads to the following frequency equations for symmetric (with index +17)

, (n = 1,2,....), this determinantal

and antisymmetric (with index ’-1’) modes of vibrations respectively

(aRM;(coth Sd)*t — bSM; (coth Rd)*') (P Ny(coth Pd)*! — Qd' Ny (coth Qd)*!)

PLW2

—(b—a)(d — )¢*MiRSPQ(coth Qd coth Pd)** = —RS(b — a) tan Th
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x [€2M5(Qd' (coth Qd)*! — ¢ P(coth Pd)*!)

—(Qd' N (coth Qd)* — ¢ PNy(coth Pd)*!)], (2.33)
where
My = =M+ (A +2u+ K)R* + Moa, My =X+ (A + 21+ K)S? + \ob,

My=Q2u+K), Ni=p&+(p+K)P—Kd, Np=p&+(u+K)Q*—Kd

It can be seen that equation (2.33) exhibit implicit functional relationship between
phase velocity and wavenumber, therefore, the symmetric and antisymmetric modes
of Rayleigh-Lamb waves are dispersive in nature. Moreover, the ’tanh’ and ’coth’
functions are multiple valued functions, therefore there exist infinite number of modes
of propagation.

Similarly, using the boundary conditions given in Set -II, we obtain the following
frequency equations for symmetric (with index '+1°) and antisymmetric (with index

’-1’) modes of propagation of Rayleigh-Lamb waves respectively.
(aMy — bM,)[aNy(coth Sd)** — bN, (coth Rd)*'|[Masd'(tanh Pd)** — M,c (tanh Qd)*!]

= pTLLuQ tan Th([(aS(coth Sd)* — bR(coth Rd)*")
X (Nsd' — Nyc') — 1€ (aNy(coth Sd)*! — bN, (coth Rd)*') (¢ — d')] (2.34)

2.4 Limiting cases

2.4.1 Symmetric vibrations:

(a) For waves long compared with the thickness of the plate, the quantity £d is small
and therefore the quantities Rd, Sd, Pd, and ()d may be assumed small as long as ¢
is finite. In this case, tanhx — 2 and we obtain from equation (2.33) for symmetric

(with index '4+1’) mode

(aR*My — bS*M;)(Nod — Nid') — RES?EMZ (b — a)(d — )
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= R?S%(b—a) tan Th|E?Ms(d' — ) — (Nyd' — Noc)). (2.35)

In the absence of liquid layers, i.e., when p;, = 0, the above equation (2.35) reduces to
(aR?*My — bS*M;)(Nod — Nid') — RES*EMZ (b —a)(d — ') = 0. (2.36)

This is the frequency equation for symmetric modes of vibration in a microstretch
elastic plate with free boundaries in the present case. If we further neglect the mi-
crostretch property from the plate, then we shall be left with the problem of Lamb
wave propagation in a micropolar elastic plate with free boundaries. Thus, by putting

Ao =ap =\ =0and b/a =0, the equation (2.36) reduces to
(21 + K)& — pw?][Nod' — Nid'] = €257 (2u + K)*(¢' — d), (2.37)

where

S e P
A+2u+ K

This equation matches with the frequency equation as obtained by Nowacki and Nowacki
(1969) for the relevant problem apart from notations.
Again, in the absence of micropolarity, i.e., when K = d'/¢’ = 0, we get from equation

(2.37) after some simplification

= 4° (1 — 5—2) (2.38)

where o = (XA + 2u)/p and % = u/p. This equation exactly matches with Lamb
(1917).

(b) For very short waves as compared with the thickness of the plate, the quantity {d
is large, therefore, the quantities Rd, Sd, Pd and (Qd are large as long as c is finite
and tanhx — 1. In this case, equation (2.33) for symmetric mode (with index ’+1’)

reduces to

(aRMs — bSM;) (P Ny — Qd'Ny) — RSPQE*M2(b — a)(d — ¢)

2
— —RS(b—a)?¥

tan Th[E?M3(d'Q — Pc) — (dQN, — P Ny)). (2.39)
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This is the frequency equation for Rayleigh waves in microstretch elastic half space
with liquid layers.

If we neglect the liquid layers, then the problem reduces to Rayleigh waves in mi-
crostretch elastic half space. To obtain the Rayleigh wave equation in microstretch

elastic half-space, we put p;, = 0 into equation (2.39), we have
(aRMjy — bSM,)(Pcd Ny — Qd'Ny) = RSPQE* M3 (b —a)(d — ). (2.40)

Further, if we neglect the microstretch effect, then the problem reduces to Rayleigh
waves in micropolar elastic half-space. Thus by putting A\g = ap = A; = b/a = 0 into

equation (2.40), we get the following Rayleigh wave equation in micropolar half-space
Ms(Pcd Ny — Qd'Ny) = —SPQEMZ(d — (). (2.41)

This equation coincides with the Rayleigh wave frequency equation in a micropolar
elastic half-space earlier obtained by De and Sengupta (1974).
Also, If we again neglect the micropolar effect, we shall obtain Rayleigh wave equation

in a uniform elastic half space. By putting K = d'/¢’ = 0 into equation (2.41), we get

2 1/2 1/2
I N R

which is a well known classical Rayleigh wave frequency equation in an elastic half

space.

2.4.2 Antisymmetric vibrations:

(a) For waves long compared with the thickness of the plate, the quantity £d is small,
3

therefore, the quantities Rd, Sd, Pd and (Qd are small and we have tanhx ~ z — %

Using this into equation (2.33) for antisymmetric mode (with index ’-17), we obtain

the following equation

(aMyYy — M, Y2)(P*d NoZy — Q*d' Ny Zo) — P2Q*¢€* M3 (b — a)(d — &) 2,7,

prLw?
Td

=—(b—a) tan Th|E2 Ms(Q*d' Zy, — P?c' 7)) — (Q*d'N1Zy — P*c NoZy)], (2.43)
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where
Yi=1-(5d)?/3, Yo=1—(Rd)?/3, Z,=1—(Pd)?/3, Zy=1-(Qd)*/3.

If we neglect the liquid layer, then the above equation reduces to (by putting p;, = 0)
(aMyY) — bM Y)(P*d NoZy — Q*d' N\ Zo) = P*Q*¢* M3 (b — a)(d' — )72, Z,. (2.44)

Further, if we neglect the microstretch effect from the plate, then the equation (2.44)
reduces to the following after putting \g = ap = A\; =0 and b/a =0

(Sd)Q C/N2 d/Nl ) 2/ 4 ’
M2(1— . )(@ZZ—PQZI)_gMg(c—d), (2.45)

where My = =2 + (X + 2u + K)S?. This equation is same as obtained by Nowacki
and Nowacki (1969) for the corresponding problem.

If we remove micropolar effect from the plate, then by putting K = 0 and d'/c = 0,
the equation (2.45) reduces to

= %(fd)QﬁQ (1 - &—z) , (2.46)

which coincides with the equation of classical elasticity for the relevant problem as
given in Ewing et al. (1957).

(b) For very short waves compared with the thickness of the plate, the frequency
equation (2.33) for antisymmetric (with index ’-1") modes of vibrations can be reduced

to equation (2.39), in a similar way as done in case of symmetric vibrations.

2.5 Special cases

(i) If we neglect the presence of liquid layers from both sides of the plate, then we
shall be left with the problem of wave propagation in a microstretch plate with free
faces. To do this, we shall put p;, = 0 into equation (2.33). The reduced frequency
equations for symmetric (with index '4+1’) and antisymmeric (with index ’-1’) modes

of vibrations are given by
[aRM,(coth Sd)*! — bSM; (coth Rd)*][Pc Ny(coth Pd)** — Qd' N (coth Qd)*]
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—(b—a)(d — )& MZRSPQ(coth Qd coth Pd)*' = 0, (2.47)

(ii) When microstretch effect is neglected from the plate, we shall be left with the
problem of Lamb wave propagation in micropolar plate bordered with liquid layers. In
this case, we substitute \g = A\; = ap = 0 and b/a = 0 into equation (2.33) to obtain
the following frequency equations for symmetric (with index '4+1’) and antisymmetric

(with index ’-17) modes
(coth Sd)F =A% + (A +2u + K)SH[(u€® + (u+ K)P? — K)d'Q(coth Qd)*!

—(uE+ (u+K)Q*— Kd')d P(coth Pd)*']—£*PQS(2u+K)?*(d' — ') (coth Qd coth Pd)*!

= prw’tan Th (;) (€2 + (u+ K)P? — K)Qd'(coth Qd)*" — ¢ Plp&® + (p + K)Q*

—Kd'|(coth Pd)* — €*(2p + K)[Pc (coth Pd)* — Qd'(coth Qd)*!]] (2.48)

These equations exactly match with the equations (30) and (31) of Tomar (2002) apart
from notations.

Further, if we neglect the presence of liquid layers, we shall be left with the problem of
wave propagation in a micropolar plate with free boundaries. For this, putting pr, = 0

into equation (2.48), we obtain

(coth Sd) = =M\ 20+ K) S [(u€+ (K ) P— K ! )d Q(coth Q)= — (u+ (u+ K ) Q?

—Kd')d P(coth Pd)*'] — €2PQS(2u + K)*(d' — )(coth Qd coth Pd)*' =0, (2.49)

which is the frequency equation corresponding to symmetric (with index *+1’) and an-
tisymmetric (with index ’-1") modes for Lamb wave propagation in a micropolar elastic
plate with free boundaries.

(iii) When h — oo, then tanTh — 2 and the equation (2.33) corresponding to sym-

metric (with index +1) and antisymmetric (with index -1) modes, reduces to

[aRM,(coth Sd)*! — bSM; (coth Rd)*][Pc Ny(coth Pd)** — Qd' N;(coth Qd)*]
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—(b—a)(d — &> MRS PQ(coth Qd coth Pd)**

= —RS(b— a)@pLTw2 (€2 M3 [Qd (coth Q)™

—c P(coth Pd)*'] — [Qd'N,(coth Qd)*™ — ¢ PN, (coth Pd)*!]]. (2.50)

Equation (2.50) is the dispersion equation for symmetric (with index '+1’) and anti-
symmetric (with index ’-1") modes of leaky Lamb waves in a microstretch elastic plate
bordered with identical inviscid liquid half-space on both sides.

(iv) When microstretch and micropolar effects are neglected from the plate, then by
putting K = ag = Ay = A\ = 0 and b/a = 0 and d’'/¢ = 0 into equation (2.33), we
get the frequency equation corresponding to symmetric (with index ’+1’) and anti-
symmetric (with index ’-1’) modes of Lamb wave propagation of classical elastic plate

bordered with liquid layers, as

M, N, (coth Sd tanh Qd)™ — SQE2M?

prw?

= 57

tan Th (tanh Qd) ™" (€2 M5 — N,). (2.51)

These equations are the same as equations (5) and (6) of Wu and Zu (1992) for the
corresponding problem, apart from notations.

(v) If we neglect the presence of liquid layers from the elastic plate of case (iv), we get
the problem of Lamb wave propagation in classical elastic plate. By putting p, = 0 in

the frequency equation of case (iv), we obtain
M, N, (coth Sd tanh Qd)™" — SQE2M2 = 0, (2.52)

which further reduces to the following well known equations corresponding to symmet-

ric and antisymmetric modes, respectively

2\? [tanh Qd\ ™' c? c?
2 - —= =4 1——= 1——= 2.53
e-5) Gs) —(-5)(-3)  ew
where ¢ = (A+2pu)/p and ¢ = 11/ p. These equations exactly match with those obtained
by Lamb (1917) in the classical case.
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It can be verified that if we neglect the micropolar, microstretch and liquid layers from
the problem, then equation (2.34) reduces to equation (2.53) for Lamb waves in elastic

plate given by Lamb (1917).

2.6 Numerical results and discussions

Frequency equations for Rayleigh-Lamb waves are solved numerically for a particular
model using functional iteration method. Following values of relevant elastic parame-

ters have been taken.

Symbol Value

A 7.583 x 10" dyne/cm?

1 6.334 x 10* dyne/cm?

K 0.0149 x 10" dyne/cm?

o 0.773 x 10" dyne/cm?

A1 0.030 x 10" dyne/cm?

o 0.085 x 10 dyne

y 2.89 x 10! dyne
0.000625 cm?

p 1.2 gm/em?

d 1.5 em

oL 1.1 gm/cm?

AL 0.245 x 10 dyne/cm?

h 0.5 cm

We have computed the non-dimensional phase velocity (¢/V), (V = /¢ + ¢3) at dif-
ferent values of non-dimensional wavenumber (£d). The values of velocity ratio (¢/V)
are computed from frequency equation (2.33) obtained by using the boundary condi-
tions given in Set-I and equation (2.34) obtained by using the boundary conditions
given by Set-II for different values of wavenumber 'éd’. For real values of wavenum-
ber, the real values of phase velocity are found for microstretch plate bordered with
liquid layers and micropolar plate bordered with liquid layers. It is found that in the
case of microstretch plate with free boundaries and in case of micropolar plate with
free boundaries, the waves are attenuated. The results obtained for symmetric mode

(s-mode) and antisymmetric mode (a-mode) are depicted graphically through Figures
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Figure 2.2: Comparison of symmetric modes of microstretch plate bordered with liquid
layers for Set-I and for Set-11

2.2-2.18.

In Figure 2.2, we have depicted the dispersion curves corresponding to funda-
mental, first, second, third and fourth symmetric modes of Rayleigh-Lamb wave prop-
agation of microstretch plate bordered with liquid layers obtained by using frequency
equation due to Set-1 and Set-II. It is clear from this figure that the dispersion curves
for symmetric modes do not differ significantly. Thus we conclude that we can choose
any one set of the boundary conditions mentioned earlier.

In Figure 2.3, we have depicted the dispersion curves for first five symmetric modes
of vibrations for microstretch plate bordered with liquid layers and with free bound-
aries. For given real value of the wavenumber, the value of phase velocity is found real
for microstretch plate bordered with liquid layers, while for microstretch plate with
free boundaries, the value of phase velocity is found complex. In this figure, we have
depicted the real part of phase velocity for both the curves. It is clear from the figure
that the phase velocity for microstretch plate with free boundaries is greater than the
phase velocity for microstretch plate bordered with liquid layers. We conclude that
presence of liquid layers results in decrease the phase velocity of Rayleigh-Lamb wave
propagation in the symmmetric modes.

In Figure 2.4, we have depicted the dispersion curves for first five symmetric modes
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Figure 2.3: Comparison of real parts of symmetric modes of microstretch plate bordered
with liquid layers and with free boundaries.
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Figure 2.4: Comparison of real parts of symmetric modes of microstretch plate and
micropolar plate with free boundaries.
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Figure 2.5: Comparison of attenuation in symmetric fundamental mode of microstretch
plate and micropolar plate with free boundaries.
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Figure 2.6: Comparison of attenuation in symmetric first mode of microstretch plate
and micropolar plate with free boundaries.
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Figure 2.7: Comparison of attenuation in symmetric second mode of microstretch plate
and micropolar plate with free boundaries.

of vibrations in microstretch plate and micropolar plate with free boundaries for real
phase velocity. It is clear from the above figure that there is no significant difference
between these two curves. Thus, no considerable effect of microstretch property is
noticed on the symmetric modes of propagation.

Figures 2.5-2.9 depict the variation of attenuation coefficient for fundamental, first,
second, third and fourth symmetric modes of microstretch plate and micropolar plate
with free boundaries respectively. Curves for microstretch plate with free boundaries
are represented by solid lines, while the curves for micropolar plate are represented
by dotted lines. To plot the variation of attenuation coefficient, we have multiplied
the original value by a factor of 10°. It is clear that there is significant effect of
microstretch property on the attenuation of the symmetric modes of propagation on
dispersion curves. The presence of microstretch property results in decrease in atten-
uation of waves for symmetric modes.

Figure 2.10 depicts the dispersion curves from fundamental mode to fourth mode
of antisymmetric modes of Rayleigh-Lamb wave propagation for microstretch plate
bordered with liquid layers obtained by using equations due to Set-I and Set-II. It is

concluded that for these two sets of boundary conditions, the curves are same. We

65



8
N Solid curves- Microstretch plate with free boundaries
Bl Dashed curves- Micropolar plate with free boundaries
_ "
6 — LIRS
| LY
b LY
_ ] \
_ ] \
5 RN
= _
]
g 4 — \
c ]
[} B \
B ! \
< - [ N
- ] \
\
_ [] q
_ ]
2 '
o = -
] 4 S e ]
-
— [ ~ 1
-~
_ ] S o '
- ] S -
]
¢ N9
0 T I T I I I I I I I I I I I I I I I I I
10.0 20.0 30.0 40.0 50.0

Non dimensional Wavenumber

Figure 2.8: Comparison of attenuation in symmetric third mode of microstretch plate
and micropolar plate with free boundaries.
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Figure 2.9: Comparison of Attenuation in Symmetric fourth mode of Microstretch plate
and Micropolar plate with free boundaries.
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Figure 2.10: Comparison of antisymmetric modes of microstretch plate bordered with

liquid layers for Set-I and for Set-II.
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Figure 2.12: Comparison of real parts of antisymmetric modes of microstretch plate and
micropolar plate with free boundaries.

conclude that there is no significant difference in the phase velocity of Lamb waves
propagation for these two sets of boundary conditions in antisymmetric modes.
Figure 2.11, we have depicted the dispersion curves of fundamental to fourth modes
of antisymmetric vibrations in microstretch plate bordered with and without liquid
layers. It is found that non-dimensional phase velocity of microstretch plate with free
boundaries is more than that for microstretch plate bordered with liquid layers in the
antisymmetric modes of propagation.
Figure 2.12 depicts the dispersion curves for fundamental to fourth antisymmetric
modes for microstretch plate and micropolar plate with free boundaries. It is noted
that there is no significant difference between these two curves. Hence, we conclude
that there is no effect of microstretch property on real part of the phase velocity for
microstretch plate with free boundaries in antisymmetric modes.

Figures 2.13-2.17 depict the attenuation part of the phase velocity for fundamental to
fourth antisymmetric modes of Rayleigh-Lamb wave propagation of microstretch plate
and micropolar plate with free boundaries. Here, the solid curves and dotted curves
correspond to microstretch plate and micropolar plate respectively. The attenuation

coefficient is plotted after multiplying the original value of imaginary part of the phase
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Figure 2.15: Comparison of attenuation in antisymmetric second mode of microstretch
plate and micropolar plate with free boundaries.

60

_ Solid curve- Microstretch plate with free boundari
Dashed curve - Micropolar plate with free boundariges

Attenuation

Non dimensional Wavenumber

Figure 2.16: Comparison of attenuation in antisymmetric third mode of microstretch
plate and micropolar plate with free boundaries.
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Figure 2.17: Comparison of attenuation in antisymmetric fourth mode of microstretch
plate and micropolar plate with free boundaries.

velocity by a factor of 10°. It is observed that attenuation is strongly affected by the
presence of microstretch in antisymmmetric modes of propagation. Moreover, the pres-
ence of microstretch property results in increase in attenuation for all these five modes.

Figure 18 depicts the dispersion curves for fundamental symmetric mode at different
thickness of liquid layers. We see that as the thickness of the liquid layers increases,

the phase velocity for fundamental symmetric mode decreases.

2.7 Conclusions

In this Chapter, we have described the effect of microstretch property on the propaga-
tion of Rayleigh-Lamb waves in microstretch plate cladded with inviscid liquid layers.
Two sets of boundary conditions at the interface of plate and liquid layers are possible.
Dispersion equations for symmetric and antisymmetric modes are derived by employ-
ing both these sets of boundary conditions. We conclude that

(a) The choice on the boundary conditions at the interface of plate and liquid layers is
arbitrary. Results obtained from both the sets of boundary conditions give same dis-

persion curves for Rayleigh-Lamb wave propagation in symmetric and antisymmetric
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modes.

(b) It is noted that the presence of cladded liquid layers in microstretch plate decreases
the phase velocity for both symmetric and antisymmetric modes of Rayleigh-Lamb wave
propagation. It is also observed that the frequency equations give real phase velocity for
given real value of wavenumber when the plate is cladded with liquid layers, otherwise
real values of non-dimensional wavenumber gives complex value of non-dimensional
phase velocity. Thus, the waves are non-attenuated when plate is cladded with liquid
layers, while waves are found to be attenuated when both faces of plate are free. This
may be due to small values of microstretch parameters considered here.

(c) We also noticed that there is no significant effect of microstretch property on
symmetric and antisymmetric modes of dispersion curves for real phase velocity on
microstretch plate with free boundaries. The curves for real phase velocity for mi-
crostretch plate with free boundaries are same as the dispersion curves for real phase
velocity of micropolar plate with free boundaries.

(d) The attenuation is found to be highly affected by the presence of microstretch prop-

erty in the plate with free boundaries for both symmetric and antisymmetric modes.
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Chapter 3

Propagation of Stoneley waves at

an interface between two

microstretch elastic half—spaces2

3.1 Introduction

Stoneley (1924) investigated the possible existence of waves, which are similar to sur-
face waves and propagating along the plane interface between two distinct uniform
elastic solid half-spaces in perfect contact and they are universally known by his name.
Stoneley waves can propagate on interfaces between either two solid media or solid
and liquid media. These waves are the harmonic waves and attenuate exponentially
with distance normal to the interface in both the half-spaces, provided the range of the
elastic constants of the two solids lie within some suitable limits. Stoneley obtained
the frequency equation for propagation of these waves and showed that such interfa-
cial waves can exist only if the velocity of distortional waves in the two half-spaces
is approximately same. Since then a number of problems concerning the propagation
of Stoneley waves along the solid — solid and fluid — solid boundary have been dis-
cussed by several researchers, e.g., Murty (1975a, b, 1976), Hsieh et al. (1991), Abbudi
and Barnett (1990), Goda (1992), Tajuddin (1995), Ashour (1999), Abd-Alla (1999),
Abd-Alla and Ahmed (2003) among several others. Murty (1975b) discussed the wave

2Journal of Vibration and Control, 12(9), 995-1009(2006).
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propagation at an unbonded interface between two elastic half-spaces. He derived
the explicit condition for the existence of Stoneley waves when the two half-spaces
are incompressible or Poisson solids whose elastic constants and material densities are
nearly equal. Tajuddin (1995) studied the corresponding problem at unbonded inter-
face between two micropolar elastic solid half-spaces. In the present chapter, we have
investigated the propagation of Stoneley waves at an unbonded/bonded interface be-
tween two microstretch elastic solid half-spaces. Frequency equations for Stoneley wave
propagation are derived. It is found that Stoneley waves are dispersive in microstretch
medium and there is a significant effect of microstretch property on dispersion curve.
The results of some earlier workers have been reduced as particular cases from the

present formulation.

3.2 Formulation of problem

We consider two linear isotropic homogeneous microstretch elastic solid half spaces,
namely, H; and H; with different elastic properties. Introducing the Cartesian axes
such that the upper half-space Hy occupies the region —oco < z < 0 and the lower half
space H; occupies the region 0 < z < oco. The r— axis is taken along the plane of
separation of half-spaces H; and H, and the z-axis is taken perpendicular to the plane
of separation directed vertically downward into the lower half space H.

Now, considering the equations of motion for microstretch elastic medium given
by (1.125) -(1.27) and adopting the procedure followed in Chapter-2 to solve these
equations of motion, we can arrive at equations (2.10) and (2.11). The time harmonic

solutions of these equations for the waves propagating along x— direction, are given by

L = (Aef* 4 Be 1 - Ce™* + De_SZ)el(@_Wt), (3.1)
Y = {a(Ae®* + Be ) + b(Ce™* + De’sz)}e’(éx"”t), (3.2)
M = (Eef” + Fe 1" + Ge?* + He @%)etse—wt), (3.3)
¢ = {c(Eel” + Fe %) + d'(Ge?* + He 9%)}eso—wb), (3.4)
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where the quantities A, B, C, D, E, F, G and H are unknown and the expressions
of the coupling parameters a, b, ¢/, d and R, S, P, () are defined in Chapter-2,
just after equation (2.15). The quantities with subscript 1 correspond to the half-
space H; and the quantities with subscript 2 correspond to the half space H,, i.e., the
constants \;, u;(Lame’s parameters), K;, 7;(micropolar parameters), Ao;, A1, g; (mi-
crostretch parameters), j;(micro-inertia) and p;(densities) denote the material moduli
in H;, (1 =1,2). We will discuss Stoneley mode at bonded and unbonded interface
between H; and H, half spaces.

In order to discuss Stoneley waves at the interface z = 0, we take the following ap-
propriate solutions of equations (2.1)-(2.4). In the lower half space H;, the expressions

of relevant potentials are taken as

Ly = (Be 2 4 De%17)err=et), (3.5)
Yy = {ayBe 1% 4 by De %17 etSeet), (3.6)
M, = (Fe %  He @1%)¢tte=wt) (3.7)
¢ = {, Fe D% 4 @ He @17} etse—wt), (3.8)

and in the upper half-space H,, we shall take the expressions of relevant potentials as

Ly = (Aef2® 4 Ce2%)ere—t) (3.9)
Yy = {ag Aef?* 4 byCe22 }erlEr—wt), (3.10)
M, = (Eel* 4 Ge@27)etsv—wt), (3.11)
¢y = {chEe™* 4 d,GeW?7 6=, (3.12)
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where Re(R;, S;, P;, Q;) > 0. The expressions of the quantities a;, b;, ¢, d;, P;, Q;, R;
and S; can be written from the expressions of quantities a, b, ¢, d', P, Q, R and S
given in Chapter-2. Their expressions can be written easily by inducting the subscript

i appropriately, e.g., a; = —{(\; + 2u; + K;)(—=&% + R?) + p;w?}/\oi, ete.

3.3 Boundary conditions

Followings are the appropriate boundary conditions at unbonded interface and at
bonded interface between the half-space H; and the half-space Hj:

(A) At an unbonded interface, we assume that the interface is frictionless, so that shear
traction is absent and shear displacement is discontinuous at the interface. Thus for
an unbonded interface, there is continuity of normal component of the displacement
vector and stress tensor, couple stress tensor, microrotation, scalar microstretch and
microstretch tensor, while shear components of stress tensor vanish across the interface.
(B) At a bonded interface, we assume that both the half-spaces are in perfect contact.
Thus, for a bonded interface, the components of displacement vector, microrotation
vector, scalar microstretch, stress tensor, couple stress tensor and microstretch tensor
at the interface should be continuous.

Mathematically, these boundary conditions at z = 0 can be expressed as
[Tzz]l = [Tzz]27 [mzy]l = [mzy]27 [mz]l = [mz]27 w1 = Wy, 191 = d)?? ¢1 = ¢2

{ [Tez]1 = 0, [T.2]2 = 0, for an unbonded interface,
and

(Tozlt = [Toxl2, w1 = ug, for a bonded interface.

From (1.128) - (1.130), the requisite components of stresses can be written as (i = 1, 2)

0?L; 0L, 0> M;
[7..)i = M= Tz + (N +2“’+K>02 (2;LZ+K)8 5 + Aoiti,
0*L; 9*M, 0*M;
[Toa]i = (2/'I’Z+K)a 92 L i 522 +(/~Li+Ki)W_Ki¢ia
R
mzyz_/716z7 mzz—QOzaza
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and using (3.5) - (3.12) into the above boundary conditions, one obtains eight ho-
mogeneous equations in eight unknowns, namely, A, B, C, D, FE, F, G and H. For
non-trivial solution of these equations, the determinant of the coefficient matrix should

be equal to zero, that is,

|| = 0. (3.13)
The non-vanishing entries of this determinantal equation are given by
a1 = {2+ (Mo +2p2+ Ko) R+ Ap2a2}, a1z = —{=ME+ (M +2u+ K1) Ri+do1a },

a3 = { =X+ N+ 20+ K2) S5+ Aozba}, a1a = —{= M+ (M 4201+ K1) ST+ Ao1b 1,
ars = —1§(2u2 + Ko) Py, arg = —1§(2u1 + K1) P, arr = —1€(2p2 + K2)Qo,
arg = —1§(2p + K1)Q1, ags = Yoy Pa, a6 = 1€ P, a7 = YadyQa,
Qo8 = 71d/1Q17 azr = Qopaz Ry, azy = agrai Ry, asz = apebaSz, azs = ag1b1 5,
as1 = Ry, a4 = Ry, as3 =052, au =051, g5 =ag7 = —1§, as6 = dyg = 1§,
as) = az, asy = —a1, as3 = by, ass = —by, ags = 0/2, aee = _C/p ae7r = d’z; aes = _d/p

the remaining entries for an unbonded interface are given by
ar = —(2p1 + K1 )i€Ry, ana = —(2p1 + K1)i€S1, arg = {in& + (i + K1) PP — K1)},

ars = {m& + ( + K1)QF — K1dy}, ast = (2p0 + K2)1€Rs,  ass = (2u2 + K2)1ES
ags = {1028 + (p2 + K2) P — Koch}, agy = {126 + (2 + K2) Q3 — Kady},
while those for a bonded interface are given by

an = (2ue+K2)1Re, aro = (2u+K1) Ry, ars = (2pa+K2)1€S2, arg = (2p1+K7)1E5h,

ars = {p€” + (p2 + K2) Py — Kach}, azg = —{m& + (u + K1) P} — K1ci},
arr = {1 + (p2 + K2)Q3 — Kady}, ars = —{un&” + ( + K1)Q7 — K1d}},

agr = agz = 1§, agy = ags = —§, ags = P, agg = P, ag; = Q2, ass = Q1.
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Equation (3.13) represents the period equation for Stoneley wave propagation at un-
bonded /bonded interface between two dissimilar microstretch solid half-spaces. This
equation is an implicit function of phase velocity and wavenumber. Hence, Stone-
ley waves are dispersive in nature. Analytically, no definite conclusion can be drawn
regarding the behavior of phase velocity of Stoneley wave propagation and other charac-
teristics from this equation. However, for very small values of parameters Ay, Ag2, K3
and K5, a definite conclusion regarding phase velocity of Stoneley waves can be ob-
tained. Neglecting the second and higher powers of the quantities g1, Ag2, K7 and
K, one can obtain (see Midya, 2004)

Ri— e 3piJiw? — 2Ay; S = ez piw?
’ 60, o N+ 2u + K

P':\/SQ—M Qi = /€2 — piw?

Vi i + K’
and the entries a;; reduce to

ajn = (2pe +K2)f2 —P2W2> aiz = —{(2m +K1)52 —le2}, ais = (2p9 +K2)f2 —p2w2

ary = —{(2m + K1)& — pw?}, a5 = — (22 + Kol Py, arg = — (21 + K1 )i Py,
ar7 = —(2p2 + K2)1€Qa, a1 = —(2u1 + K1)1€Q1, a5 = 12y Pa, a6 = 1) Py,
az1 = QopazRa, aszy = amai Ry, asy = Ry, aso = Ry, as3 = 52, au = 5,
Qg5 = Qg7 = —1§, Q46 = Qgg = 1§, a5 = A2, G52 = —a1, Qgs = 0/27 (66 = —C1,
along with the following for an unbonded interface

arp = —(2u1 + K1 )€ Ry, ang = —(2p1 + K1 )€ S1, are = (2u + K1)E° — prw?,

ars = (2p + K1)E — p1w?, ast = (2us + K2)i€ R, ass = (2ps + Ko)1ESs,
ass = (2ua + K2)& — paw®,  asr = (2u2 + K1) — pow?,

while those for bonded interface

an = (2ue+K2)1 Ry, aro = (2uu+K1) Ry, ars = (2ua+K2)1€S2, arg = (2p1+K7)1E5h,
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ars = (2p2+ K2)& — pow?, azg = —{ (21 + K1) — piw?}, arr = 2pa+ K2)&* — pow?,
arg = —{(2u + K1)E% — p1w?}, agi = ags = 1€, agg = agy = —1€, ags = P,
age = P1, agy = @2, ags = Q1,

all other entries are zero.
Expanding the determinant in equation (3.13) for unbonded interface, the frequency

equation of Stoneley wave yields

ao2Ro + a1 Ry = 0, (3.14)
Y2l2 + b =0, (3.15)
and
o2 -1/2 2 —1/2
A 1l A I —— =0 3.16
P15 Z1(c) < T + p233 Z5(c) PR , (3.16)
where

Zi(e) = (2+ &)? (1 - C—2>1/2 (1 — C—2>1/2 - (2 +€ — 5)2
' ’ (1+¢)5? a? + ;3 top2)

af = N+ 2m)/pis 07 = wilpi, 6= Kif i,

a; and [3; are the speeds of dilatational and shear waves respectively in medium H;
respectively. Equation (3.14) shows a new wave velocity, which is not observed in mi-
cropolar elasticity and purely depends on microstretch elastic constants. Hence, the
waves related to these modes may be called as microstretch waves and refer to hypo-
thetical medium wherein only microstretch may occur. Similarly, equation (3.15) shows
a new wave velocity, which is not observed in classical elasticity and purely depends
on micropolarity constants. Hence, the waves related to these modes correspond to
micropolar waves and refer to hypothetical medium in which only rotation may occur.

Next, expanding the determinant in equation (3.13) for a bonded interface, the

frequency equation of Stoneley waves between two microstretch elastic media yields
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equations (3.14), (3.15) and

P33 Mo —pBIMy —pafB3(2+ €2)No —p1 7 (2 + )Ny
M M. -1 1

2 ) 2 ’ 2 2 == O,(317)
p235(2+ €)My p1fi(2+ €)Ms —pa33 M> p18i My
~1 1 N, N,

where

M = (2 A 1 ¢ v N, = (1 ¢ i 1.2
= (pram) M (1-aap) N (mmgg) e

The presence of equations (3.14) and (3.15) in both the cases indicates that the modes
corresponding to microstretch and micropolar waves are independent of the bonded or

unbonded nature of the interface.

3.4 Particular cases

(i) Micropolar/Micropolar unbonded interface: If we neglect microstretch effects from
both the half-spaces then we shall be left with the problem of Stoneley waves at an in-
terface between two dissimilar micropolar elastic solid half-spaces. In this limiting case,
when the quantities A\y;, A1; and «ap; approach to zero, we see that equation (3.14) is au-
tomatically satisfied and equations (3.15) and (3.16) represent the frequency equations
for Stoneley waves at micropolar/micropolar unbonded interface. These equations are
the same equations as obtained by Tajuddin (1995) for the relevant problem.

(ii) Micropolar/Micropolar bonded interface: It is easy to see that in the absence of mi-
crostretch parameters, equation (3.14) is automatically satisfied and equations (3.15)
and (3.17) would represent the frequency equation for Stoneley waves at micropo-
lar/micropolar bonded interface.

(iii) Elastic/FElastic unbonded interface: If microstretch and micropolarity effects are
both neglected from both the half spaces then we shall be left with the problem of
Stoneley wave propagation at an unbonded interface between two uniform elastic half-
spaces. For this, making the quantities A\g;, A1;, ap;, K; and 7; equal to zero, into the

frequency equations (3.14)-(3.16), we see that equations (3.14) and (3.15) are automat-
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ically satisfied, while equation (3.16) reduces to

Z(c) =0, (3.18)

where

2 1/2 1/2
Z(@:(Q—;—Z) —4[1—;—2] {1—;—22} , (i=1,2).

Equation (3.18) matches exactly with equation (1) of Murty (1975b) for the relevant
problem.

(iv) Elastic/Elastic bonded interface: Proceeding in a similar way as in case (iii), we
can obtain the frequency equation for Stoneley waves at a bonded interface between

two uniform elastic half-spaces given by

1/2 1/2
s (2 — 262) pr(c?—206}) 2p233 (1—;—;) —2m0; (1—2—9

1/2 1/2
(1-%) (1-%)
2 1

1 1
2002 (1-2)" 2p2 (1- )" #(2-% (2-5
P22 o2 P11 o2 P22 3 P11 3
/2 /2
. N )
2 1

This equation exactly match with equation (23) of Stoneley (1924) for the relevant

problem

(v) Rayleigh waves in a microstretch elastic half-space: If the upper half space is totally
neglected, then we shall be left with the problem of Rayleigh wave propagation at the
free boundary surface of a microstretch elastic solid half space. In this case, the relevant
boundary conditions would be [7,.]1 = [Tu]1 = [msy1 = [m.]1 = 0 at the interface
z = 0. Using the requisite quantities and expressions in these boundary conditions,
we shall obtain four homogeneous equations in four unknowns. The condition for

non-trivial solution of these unknowns would yield

b31(b12b23 - b13b22> - b32(b11b23 - b13b21) = 07 (3]‘9)
where bll = —(2M1 + Kl)fpl, b12 = —(2,ul + K1)§Q17 b13 = [(2,[1/1 + K1)§2 —
prw?](1— %), bor = (2p1+ K1)E% — prw® = bay, bag = —51(2p1 + K1)E(1— 2—1)7 b3 =

NP1, by = ydiQq and Py, Ry, Q1 and S; are those defined in equations (3.5)-(3.8).
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Equation (3.19) represents the frequency equation for Rayleigh wave propagation at
free boundary of a microstretch half-space. This equation is the same equation as given
in Eringen (1999) (see equation (6.6.20) pp: 264 by replacing A; with A;/3 and A\ with
Ao/3, as there is difference in notations)

(vi) Rayleigh waves in a micropolar half-space: If we neglect the microstretch effect in
case (v), we shall be left with the problem of Rayleigh wave propagation at free surface
of a micropolar elastic half-space. Thus, putting A\j; = A1 = ag; = 0, we see that

equation (3.19) reduces to

(P = d1Q)[(2pn + K1)E — pw’]* — PiQ1S1(2m + K1 )€ (¢ — dy) = 0. (3.20)

where now )
w
Sf _ 52 . P1
)\1 + 2/14 + K1

and P; and @) are the same as defined in equations (3.5)-(3.8). Equation (3.20) is

the frequency equation for Rayleigh wave propagation at free surface of a micropolar
half-space. This equation coincides with equation [(5.16.6) pp: 179)] given in Eringen
(1999) for the relevant problem.

3.5 Numerical results and discussions

In order to solve the frequency equations numerically, we have taken a particular model
and Bisection method is employed through FORTRAN program. The following values

of relevant elastic parameters have been taken. In the elastic half-space H;:

Symbol Value

A\ 7.583 x 10" dyne/cm?
f1 6.334 x 10" dyne/cm?
K 0.0149 x 10" dyne/cm?
o1 0.034 x 10 dyne/cm?
A1 0.035 x 10* dyne/cm?
Qo1 0.035 x 10! dyne

Y 0.289 x 10 dyne

i 0.00625 cm?

p1 1.2 gm/cm?
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In the elastic half-space Hs:

Symbol Value

Ao 6.653 x 10 dyne/cm?
fo 5.823 x 10" dyne/cm?
K, 0.0140 x 10* dyne/cm?
o2 0.032 x 10™ dyne/cm?
Ao 0.032 x 10" dyne/cm?
Qo2 0.034 x 10! dyne

Y 0.267 x 10 dyne

72 0.00515 cm?

P2 1.1 gm/em3

We have solved the frequency equation (3.13) for Stoneley waves at an unbonded
interface for different values of non-dimensional wavenumber £d, where d is an entity
having dimension of length. We have also solved the frequency equations (3.19) and
(3.20) to obtain the dispersion curves for Rayleigh waves at the free boundary of a
microstretch solid half-space and at the free boundary of a micropolar solid half-space,
respectively using the above values of relevant elastic parameters given for half-space
H,. It is found that both Stoneley and Rayleigh waves are dispersive in nature for
certain initial range of parameter £d.

Figure 3.1 depicts the variation of non-dimensional phase velocity ¢/V (V = /&3 + ¢2)
versus &£d. The solid curves refer to the dispersion curves for Stoneley waves and
the dotted curves refer to the dispersion curves of Rayleigh waves. It can be no-
ticed from this figure that the phase velocity of Stoneley waves at an unbonded mi-
crostretch /microstretch interface is increasing in the range 0.1 < &d < 2.0, beyond
which it remains almost constant, that is, independent of wavenumber. However, the
phase velocity of Stoneley waves at an unbonded micropolar/micropolar interface first
increases with &d in the range 0 < &d < 0.36 and then decreases with £d in the
range 0.36 < &d < 2.0, thereafter, it also remains almost constant. We also note
that the dispersion curve for Rayleigh waves at free surface of microstretch elastic
half-space behaves like the dispersion curve of Stoneley waves at an unbonded mi-
crostretch /microstretch interface. Similarly, the dispersion curve of Rayleigh waves at

free surface of a micropolar elastic half-space behaves like the dispersion curve of Stone-
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Solid Curve - Stoneley waves at unbonded interface

Dashed Curve - Rayleigh waves at free surface

Micropolar
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Figure 3.1: Dispersion curves for Stoneley and Rayleigh waves.

ley waves at an unbonded micropolar/micropolar interface. Thus, we conclude that
the Stoneley waves are dispersive at an unbonded microstetch/microstretch and at an
unbonded micropolar/micropolar interface only for small values of wavenumber. For
higher values of wavenumber, both Stoneley and Rayleigh waves are almost constant
and hence almost non-dispersive. It can be seen that there is significant difference in the
dispersion curves for Stoneley wave propagation at an unbonded micropolar/micropolar
interface and that of at an unbonded microstretch /microstretch interface in the range
0.1 < &d < 2.0. This difference is due to the microstretch property of the half-spaces,
which is responsible for lowering the phase velocity of Stoneley wave in this range of
&d. A similar conclusion can be inferred about the Rayleigh wave dispersion curve.

Figure 3.2 depicts the effect of the microstretch parameters \y; on the dispersion
curves of Stoneley wave at an unbonded interface between microstretch/microstretch
elastic half-spaces. We observe that as the values of these parameters increase, the
phase velocity of Stoneley wave decreases in a certain initial range of non-dimensional
wavenumber. Curves I to IV indicate the dispersion curves of Stoneley wave propa-
gation at \g; = 0.01, A\g; = 0.25, A\g; = 0.5 and \y; = 0.6 respectively. Clearly, the

microstretch property has significant effect on Stoneley wave propagation.
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Figure 3.2: Effect of microstretch parameter on dispersion curves of Stoneley wave at
unbonded interface between microstretch solid half-spaces (Curve I: A\g; = Ag2 = 0.01,
Curve II: A\g1 = Ag2 = 0.25, Curve III: A\g; = A2 = 0.5, Curve IV: \g; = Ag2 = 0.6).

3.6 Conclusions

A mathematical treatment is made to study the surface wave propagation at free
surface of a microstretch elastic half-space and at an unbonded/bonded interface of
two dissimilar microstretch elastic half-spaces. Eringen’s theory is employed to derive
the frequency equations of Stoneley waves in a linear homogeneous and isotropic mi-
crostretch elastic medium. Closed form of frequency equations are derived for Stoneley
wave propagation at both unbonded and bonded interface between two microstretch
half-spaces when some parameters corresponding to microstretch and micropolarity are
very small. We conclude that

(a) Stoneley waves at an unbonded interface and at a bonded interface between two
microstretch elastic half-spaces are found to be dispersive.

(b) Likewise, the Rayleigh waves at the free surface of a microstretch elastic solid
half-space and also at the free surface of a micropolar elastic solid half-space are found
to be dispersive.

(c) Numerical results reveal that the phase velocity of Stoneley waves at an un-

bonded interface between two micropolar elastic half-spaces is greater than that of
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at an unbonded interface between two microstretch half-spaces for certain initial range
of wavenumber parameter. This shows that there is significant effect of microstretch
property in this range. For higher values of wavenumber parameter, no effect of mi-

crostretch is observed on Stoneley waves or on Rayleigh waves.
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Chapter 4

Longitudinal waves at a micropolar
fluid /solid interface’

4.1 Introduction

The theory of micro-fluids (or micromorphic fluids) was introduced by Eringen (1964a),
which deals with a class of fluids exhibiting certain microscopic effects arising from
the local structure and the micro-motions of the fluid elements. A subclass of these
micro-fluids is ‘'micropolar fluid’, which exhibits the microrotational effects and micro-
rotational inertia (see Eringen, 1966b). Micropolar fluids can support couple stress
and body couples, in addition to asymmetric stress tensor and possess a rotational
field, which is independent of the velocity of the fluids. A large class of fluids such
as anisotropic fluids, liquid crystals with rigid molecules, magnetic fluids, cloud with
dust, muddy fluids, biological fluids, dirty fluids (dusty air, snow) over airfoil can be
modelled more realistically as micropolar fluids. The problems of reflection and re-
fraction of elastic waves at an interface between a liquid half-space and a micropolar
elastic half-space has been investigated by Tomar and Kumar (1995), Tomar and Ku-
mar (1999b) and Kumar and Tomar (2001). But the corresponding problem at the
interface of a micropolar fluid and a micropolar solid has not been considered hith-
erto. In this Chapter, we have investigated the possibility of plane wave propagation

in an infinite micropolar fluid and found that four waves can propagate with differ-

3 International Journal of Solids and Structures 45(1), 225-244(2008).
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ent phase velocities, which are dispersive and attenuated. Reflection and transmission
phenomena of a plane longitudinal displacement wave at a plane interface between a
micropolar solid half-space and a micropolar fluid half-space has been studied in two
cases: (i) when the wave is made incident after propagating through the micropolar
solid half-space, (ii) when the wave is made incident after propagating through the mi-
cropolar fluid half-space. The formulae of amplitude ratios (reflection and transmission
coefficients) and energy ratios of various reflected and transmitted waves are presented
and depicted graphically. The frequency equation for Stoneley waves at an interface
between a micropolar solid half-space and a micropolar fluid half-space has also been

derived.

4.2 Basic equations and problem formulation

The equations of motion in micropolar fluid, in the absence of body force and body

couple densities, are given by (Eringen, 1966b)

(G +GOVIV-0) = (& + )V x (Vxal) + ¢,V x ¢ =i, (4.1)

..f

(i +EV(V-¢) =2V x (Vxd )+ (Vx of =2 ) =¢'  (42)

For micropolar solid medium, the equations of motion are given in Chapter-1 through
equations (1.123) and (1.124). These equations in the absence of body force and body

couple densities, are written as

(3, 4+ 3 )V(V-u®) — (5, +c3,)V x (Vxu®) + 3,V x ¢° = ii’, (4.3)

)

(€l + IVIV - 9") =i,V x (V x ) + ¢5,(V x u* —2¢") = ¢, (4.4)

where ¢f, = (X" +2u")/p", &, = u"/p", ¢ = K)o, G ="/ & =
(a"+0")/p"3", & =c2. /4", p" is the density of the medium, j" is the micro-inertia, u"
and ¢" are respectively the displacement and microrotation vectors for the micropolar
elastic half-spaces. Here, the quantity having superscript r corresponds to the fluid

and solid medium when r = f and r = s respectively. M, u/, K/ are the fluid
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viscosity coefficients and of, 3/ and v/ are the fluid viscosity coefficients responsible
for gyrational dissipation of the micropolar fluid, and the symbols \°, u®, K® o°, (3°
and v*® are defined in Chapter-1 for micropolar elastic solid half-space.

The constitutive relations, for micropolar fluid medium are given by (Eringen 1966b),

= Nl 6 + uf(ug,l + u{k) + K (uf), — eapd?), (4.5)

mgl = O‘%Z,r(skl + 5f¢£,l + ”quszika (4.6)

and those for micropolar solid medium can be stemmed from relations (1.128) and

(1.129) of Chapter-1, which are given by

iy = Ay O + 1 (ugy + upy) + K (ugy — erpdy), (4.7)

my = a°¢; O + B°0r, + Vs (4.8)

where symbols have their usual meanings and are well defined earlier.

Using Helmholtz representation of vector, we can write
u” B"
D'r'

¢T’
where A" and C" are the scalar potentials, while B” and D" are the vector potentials.

r

CT’

B’I‘

o | = 0. (r=1f s), (4.9)

Plugging (4.9) into equations (4.1) and (4.2), we obtain

0,Af =0, 0,¢f =0, (4.10)
(c3; + c3,)V?BS +¢3,V x D/ = B, (4.11)
i VD! + ¢,V x B —2¢3, D/ = D/, (4.12)
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where

0

0 = (&) + &)V - 215

(2 2 \ 2 2
DQ = [(C4f+c5f)v _2C6f_ a]a
It can be seen that the equations in (4.10) are un-coupled in scalar potentials A/ and

C/, while equations in (4.11) and (4.12) are coupled in vector potentials B/ and D/.

4.3 Plane waves in a micropolar fluid

Consider the following form of a plane wave propagating in the positive direction of a

unit vector n as

{A", C", B", D"} ={da", ¢, b", d"}exp{thk(n-r—Vi)}, (4.13)

" b" and d” are constants, r(= zi + yj + zl%) is the position vector, V'

where a”, ¢
is the phase velocity in the direction of n, k(= w/V) is the wavenumber, w being
the angular frequency. Substituting (4.13) into equation (4.10), we obtain two wave

velocities denoted by Vi and V4, given by

—w?(ci; + i)
(w + 2ucg)

2 2 2 2
Vfl = —ZW(le + C3f)7 Vf4 =

Again, Substituting (4.13) into equations (4.11) and (4.12), we obtain two wave veloc-
ities given by

1
Vi s = g0 & VIZ =),

where

a' = w+ 2,

b = wlwdiy + (s + &p) (w + 2ucgy) + 3 pcayl,

¢ = —wci (3 + )

It can be seen that these velocities are complex and dispersive in nature. Using (4.13)
into (4.9), it can be seen that u/ and ¢’ are parallel to n, which means that the waves
associated with the velocities V¢ and Vy4 are longitudinal in nature. It is easy to see

that the waves associated with the velocities Vo and Vy3 are transverse in nature. Note
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that at w = 0, all these four velocities vanish. Since the vector potentials Bf and D/
are coupled to each other, therefore, the waves with velocities Vi, and V}s are coupled
waves similar to the coupled waves encountered in micropolar elastic solid (see Parfitt
and Eringen, 1969). The waves propagating with velocities V1 and V4 respectively are
analogous to the longitudinal displacement wave and the longitudinal micro-rotational
wave encountered in micropolar elastic solid.

Parfitt and Eringen (1969) have already shown that there exist four waves in an
infinite micropolar elastic solid medium propagating with distinct phase velocities.
These are (i) an independent longitudinal displacement wave propagating with velocity
Vi given by V2 = 2, +c2,, (ii) two sets of coupled waves, each consists of a transverse
displacement wave and a transverse microrotational wave perpendicular to each other,

propagating with phase velocities Vs and Vi3 given by

1

2(1 _ 2&)8/&)2) [{C%s + cgs + 04213 - (2033 + Cgs)wg/wz}

2 _
‘/32,53 -

i({cgs + Cgs + Cis - (2035 + Cgs)w?)/w2}2 - 4<1 - QWS/MQ){CiS(Cgs + Cgs)}>1/2]7

where w? = ¢Z, and (iii) an independent longitudinal micro-rotational wave propagating
with velocity Vi given by V2 = (c3, + ¢2,)(1 — 2w /w?)~!. They have also shown that
the waves propagating with velocities Vi and Vi can propagate in a micropolar elastic
solid only if w > /2wy, otherwise they degenerate into distance decaying sinusoidal
vibrations. Note that no such cut-off frequency occur in case of waves propagating

with phase velocities Vo and Viy.

4.4 Reflection and transmission of longitudinal waves

Introducing the Cartesian coordinates x, y and z such that z—y plane (z = 0) lies along
the interface between a micropolar solid half-space (M;) and a micropolar fluid half-
space (Ms). The z— axis is taken perpendicular to the interface and pointing downward
into the medium M;. We shall consider a two-dimensional problem in x — z plane, so
that the followings are the displacement and microrotational vectors in micropolar

elastic solid and in micropolar fluid:
u’ = (uq(a:, z),(),ug(a:, Z))? ¢ = (O,Qﬁg(ﬂf, 2)70>7 (7‘ =/, 3)7 (4'14)
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4.4.1 Case I: Incidence from the solid half-space

Let a plane longitudinal wave with phase velocity Vi, propagating through the microp-
olar solid medium M; be striking at the interface z = 0 and making an angle 6, with
the normal. To satisfy the boundary conditions at the interface, we postulate that the
incident wave will give rise to the following reflected and refracted waves:

(a) a reflected longitudinal displacement wave in medium M; traveling with speed Vi
and making an angle 6; with the normal,

(b) two sets of reflected coupled waves in medium M; traveling with speeds Vi, and
V35 and making angles 65 and 63 with the normal, respectively;

(c) a refracted longitudinal displacement wave in medium M, traveling with speed Vi
and making an angle 6] with the normal;

(d) two sets of refracted coupled waves in medium M, traveling with speeds Vo and
Vs and making angles 6 and 05 with the normal, respectively.

We take the following form of potentials in the two half-spaces.

In the half-space M;:

A® = Apexp{rky (sinOpx — cospz) — wyt}

+ Ay exp{eky(sin ¢ + cos 01 2) — wrt}, (4.15)

By® = Agexp{ika(sin Oox + cosbyz) — wwot}

+ Az expq{eks(sin O3x + cos 032) — wst }, (4.16)

¢o® = Agng exp{iks(sin Oy + cossz) — wwot}

+ Asns exp{tks(sin O3x + cos 032) — wst }, (4.17)
and in the half-space Ms:
Al = Al exp{ok)(sin @)x — cos 0} 2) — wit}, (4.18)

By = Al exp{ukly(sin 6z — cos 0hz) — wit}
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+ A} exp{ikj(sin 05z — cos 052) — wit}, (4.19)

do) = Alnh exp{ukh(sin Ohx — cos 0y2) — wiht}

+ Al exp{eks(sin 0z — cos 052) — wit}, (4.20)

where Ag - amplitude of the incident longitudinal displacement wave, A; - amplitude
of the reflected longitudinal displacement wave at an angle #;, Ay - amplitude of the
reflected coupled wave at an angle 65, A3 - amplitude of the reflected couple wave at
an angle 53, A} - amplitude of the refracted longitudinal displacement wave at an angle
601, A, - amplitude of the refracted couple wave at an angle ¢, and A} - amplitude of

the refracted couple wave at an angle f3. The coupling parameters 7,3 and 75 5 are

given by
2 -1 2 -1
C V, 1C
_ 2 2 6s 2 ) 2,13 6f 2
2,3 = —Cgs Vs2,53 — 25— —Cys y Mo g = sy ; +2 5 T chy
k33 K23 X

The appropriate boundary conditions to be satisfied at the interface z = 0, are the con-
tinuity of force stress, couple stress, displacement and micro-rotation. Mathematically,
these boundary conditions can be written as

T,, = TZZ, Ty, = Tzfx, mj,y = mgy, uj = u{, uy = ug, o5 = qbg, at z=0.(4.21)

Employing the Snell’s law given by

sinfh sinf, sinfp sinf;  sinf)  sinf;, sind

Va  Va Vg Vis Vi Via Vi '

assuming that all frequencies are equal at the interface and making use of (4.5) -
(4.9) and (4.14)-(4.20) into the boundary conditions given in (4.21), we obtain six

homogeneous equations as

Vi .
—K2 [N+ (20° + K*) cos® O] Ag — K2 [N + (21° + K*) cos® O] Ay — (2p° + Ks)kgv2 sin 6y

sl

V2 V. V2
i [1— =225in?0,A, — (2u° + K°)k2 3 6infyy |1 — =2 sin? 6, A
\/ V521 012 (# ) 3‘/;;1 0 ‘/;21 0413
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% 1%
—wk!? [)\f + (2uf + K (1 — —le sin? 9[))} AL+ (2uf + K wk? Vf2 sin g
sl sl

y Vi

sl sl

Vi, Vi3 Vi,
4 [1= sin200A§+(2uf—i—Kf)zwk§2V sin oy [ 1 sin? Gg Ay =0, (4.22)

2
sl

2
(2u° + K*®)ki sin 6y cos Op Ag — (21° + K*)k3 sin O cos g Ay + [k (1 — 2552 sin? 90)

2

V3 V2 V2
+K°k3 (1 - sin® 00> —K°ny] A+ (10 k3 (1 — 2‘;23 sin® 90) +K°k; (1 - ng sin® 90)
sl sl sl

' v, Vi , V2
— K] Az + (2u" + K ok *wsin 6y /1 \/1 L gin? oAy + [ wky (1 — 2 12 in? th)

Valo V3 Vi
/ V2 / V2 /
1K b w(1 — % sin® ) — 1K Twnh) Ay + [if wk(1 — 2 Vf23 sin? 0p) + 1 K7 wk?
sl sl
V2
X <1 — Vf23 sin’ 90) — K wnb) Al =0, (4.23)
sl

1Y* 1ok cos O Ay + 17 N3k cos O3 As + v wnh K, cos 0, Al + T wnkh cos 0 Ay = 0, (4.24)

]{71 sin 00140 + k?l sin 6)1141 - k?Q COS 02142 - k?g COS 83143 — k’i sin QllAl — ]{/’é COS QéAQ

—kj cos05A5 = 0, (4.25)

—ky cos By Ag + ky cos 01 A1 + ko sin Oy Ay + kg sin O3 A3 + ki cos 07 A} — ks sin 6, Al

—kysin05A% = 0, (4.26)

e Az + n3As — Ay — 3 Ay = 0. (4.27)
These six equations (4.22) - (4.27) can be written in matrix form as

PZ=Q, (4.28)
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where P = [aijlg o» Z =121 Zo Zsy Z) Z4 Zi'and Q=[1 -1 0 —1 1 0,

The entries of the matrix P in non-dimensional form are given by

. __E(Zu + K*)sin 6, l_Vism o
[ VS (XS + (2u° + K#) cos? 6]

)

v, (20° + K*)sinfoy /1 — 5%23sin2 o
s = Vg (XS 4+ (2p° + K#) cos? ]

Y

V2 wMN + 2uf + KN — “j. sin? )]

= Vle (A5 + (2p° +KS)COS.2 6o ’
Vi, w(2u! + K )sinfgy /1 — —sm 20y
a5 = — :
1o Via [As + (2u® + K*) cos? 0o)
v w(2u! + K7)sin 6, f3 > sin 20
sl
a = Y
16 Vis (A 4+ (2u® + K¢) cos? 00]
. ‘/521[ (1—2 stm 90)+Ks(1—VS§Sm o) — Kksé”]
2= V2 (25 + K*#) sin 0 cos O ’
% (1 — V2 sin?6y) + K*(1 — VSS sin? fy) — K;g"”]
423 = V2 (25 + K*#) sin 0 cos Oy ’
Vlw(2uf—i—Kf) 1— sm 20,
A9y = 1—— ,
2 Vf1 (2u® + K*) cos 90
KTnl
V2 (1! (1 —2 © sin 200) + K'(1 - V 2 sin? fy) — k;;b]
Ags = W—2
% Vi, (2u% + K#) sin 6y cos by ’
% It
V2 /(1 —2 f23 sin?6y) + Kf (1 — V2 sin? ) — Kké}”]
A26 = W—5
2 VE (2u5 + K*#) sin 0 cos O ’
Ve 2
s Vi 1-— ngl” sin“ 0, B
9 a/34 - Y

az1 =0, azxp =1, a3 = Vs 2 5
12 1— V%ism O
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V2, o Ve
1 — 2 sin% 4, , 1 — L£2sin?6,
1 1

2 2
Qss = zwﬁy M Voo i Qsg = zwﬂyf M Vo i
35 = —W—— , Q36 = —W——— )
% s V2
Ve Vi fq 22 sin® 6, Ve Vis [q vF sin? 6,
sl sl
V2 9 V2 9
1 52 sin” 0 1 23 5in“ 6
. _ ‘/;1 V521 0 ‘/:91 V521 0
g1 = 1, Q42 - : y (43 = — :
Vo sin 6, Vi3 sin 6,
f2 2 f23 2
1— sin” 6 1— sin” 6
. Va vz 0 Vi vz 0
Qg4 = — g5 = — 75— : Q46 - p
’ Vi sin 6, ’ Vis sin 6, ’
a5 — 1, aro — tan 90, as3 — tan 90,
vz o
V., 1— VL{ sin? 6,
S S
(54 = , Gss = as6 = —tanty, as =0, agp =1,
Vi cos 6
f 0
/ /
_ B —0 T T
g3 = —, Qg4 = U, Qg5 = , Qe =
2 T2 T2

and the elements of the matrix Z are given by
Zl = AI/AU7 Z? = AQ/A()a Z3 = A3/A0a Z{ = All/A07 Zé = AIQ/A()? Zé = Ag/AO’

where 71, Zs and Z3 are the amplitude ratios for the reflected longitudinal displacement
wave at an angle 0, reflected coupled wave at an angle 6y and reflected coupled wave
at an angle 5 respectively, Z], Z) and Z} are the amplitude ratios for the refracted
longitudinal displacement wave at an angle 6/, refracted coupled wave at an angle 6,
and refracted coupled wave at an angle 64 respectively. The matrix equation (4.28) is
enable to provide the amplitude ratios of various reflected and refracted waves in the

corresponding problem.

4.4.2 Case II: Incidence from the fluid half-space

A similar treatment can be made when a longitudinal displacement wave with ampli-
tude Aj, propagating with phase velocity V; through the micropolar fluid medium M,
strikes the interface z = 0 making an angle 6, with the normal. We take the following
form of potentials in the two half-spaces:

In the half-space M;:

A® = Ay exp{iky (sin b1z + cos by z) — wwnt}, (4.29)
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By® = Ajexp{uka(sin O + cos baz) — wwot}

+ As exp{eks(sin O3z + cos 032) — wst},

¢o® = Agng exp{ika(sin Oy + cos Os2) — wwot }

+ Asns exp{tks(sin 03z + cos 032) — wst},
and in the half-space Mj:

Al = A} exp{ok] (sin @)z + cos 02) — wt}

+ A exp{ik](sin 0}z — cos b z) — wit},

Byl = Al exp{ak)y(sin 0z — cos 0yz) — wht}

+ Af exp{eki(sin 05z — cos 052) — wit},

do) = Alnh exp{ukh(sin Ohx — cos 02) — wiht}

+ Afn exp{eks(sin 0520 — cos 052) — wyt}.
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(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

Using the same boundary conditions given in equation (4.21) and adopting the same

procedure, one can arrive at a matrix equation similar to (4.28) given by

(4.35)

MR =5,

where M = [a;;]s,, - The non dimensional elements of matrix M, in this case, are given
by

s s s VA ein2 i

—V3 [)\ + (2p° + K7) (1 ~ i sin 0)]
TV OV T 2l Koy
2
2p° 4+ K?)sin b, /1 — Ve sin? 6
a1 = _val( ! ) ° Vi ’

Vo wA + (2uf + KT)cos? 0y
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(2u® + K*)sin 6,

vz
V2 sin? )

—ZVf1
a =
B = Y T T @l £ Kot
V2
—Vn(@2p + K7)sin 0y [1 — 52 sin” 6
f1
= 1 —
ajg =1, as Vi M + (2uf + K1) cos? 0] ’
V(2! + KT sin) Xf; sin? 0
S Ty T @l + Ko Gy
Wi + K, [1 = g sin® 6
(21 = ’

_va21[ (1—2 2 sm 200) + K5(1 — &

(2uf + K1)Viw cos b))

sin? 0))) — L2

V2

Qo2 =

_va21[ (1—2 B sm 200) + K5(1 — %

2
Vi

(2,uf + K7T)wsin 0], cos 6],

V2 sin 9/) R

Q23 =

Qo5 =

1% (2,uf + Kf)wsin ] cos 0},
azy =1,

Vi, Il
VA [ (1 — 2% sin®4f) + K/ (1 — Vj; sin? 4f)) — Kk,;?]
V_fé (2uf + K¥) sin 6 cos 96 ’

VE . It
V3 [ (1 — 2% sin? ) + K7/ (1 — sm 20)) — ’;,3;73]
V_f23 (2uf + Kf)sin 06 cos 96 ’

v .
773‘@2\/1—‘/;2? 204
- a3q4 = 07
1

I

V3 . 9,
M2 Vis3 — V;Qj sin” §;,
V2
~Vaymhwy /1 — %Sm 7 ~ Vv mywy /1 — sm A
i1
a3s = ; , A36 =
M2 Viay® 1— L2 sin® 6] Mo Vigysy /1 — Vs1n9’
2V f2 Vf21 0 2V f3 V2
V2
—Viig /1 — erl sin® o, Vi 53 sm «9’
ag =1, ap = . a3 =
’ V2 sin 0, ’ Vi3 sin 9’
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Viny /1 — Y22 sin2 g1 Viiy[1 — 22 sin? 0!
— — 5 Sl — — =5 SIn
f1 V2 0 f1 V2 0

agg = —1, ags = : Qg6 = p
’ Vg sin 6], ’ Vs sin 0, ’
Vi1 — Y sin2 0!
f1 V2 0
/ /
as; = n , Qz2 = tan @0, as3 — tan 90, asqg = 1,
Vi1 cos 0
/ / n3
sy — —tan@o, 56 = — tan 6)0, g1 = 0, gy — ]_, agsy = —,
2
/ /
T I3
ags = 0, ags = y  Age = )

Uy M2

S=[-1 10 1 1 0]'and the elements of the matrix R are given by

Rl = Al/A6> RQ = AQ/A6> R3 = A3/A67 R/l = AII/A67 RIQ = AIQ/A67 RIS = AZIS/AG

Here R, (i = 1,2,3) are the amplitude ratios corresponding to the refracted longi-
tudinal displacement wave at an angle 0, refracted coupled waves at angles 65 and
05, respectively and R, (i = 1,2,3) are the amplitude ratios for the reflected longitu-
dinal displacement wave at an angle ¢, reflected coupled waves at angles 6, and 6},

respectively.

4.5 Energy partitioning

We shall now consider the partitioning of incident energy between different reflected
and refracted waves at the surface element of unit area. Following Achenbach (1973),
the instantaneous rate of work of surface traction is the scalar product of the surface
traction and the particle velocity. This scalar product is called the power per unit area,
denoted by P*, and represents the rate at which the energy is transmitted per unit
area of the surface, i.e., the energy flux across the surface element. The time average
of P* over a period, denoted by < P* >, represents the average energy transmission
per unit surface area per unit time. For the cases considered above, the rate of energy

transmission at the free surface z = 0 is given by: In the Case I,

P* =) 7Ll A+ T+ m, b, (4.36)

’I‘ZS,f
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where superposed dot represents the temporal derivative. The real part of < P* >
gives the time averaged intensity vector and imaginary part equal to the amplitude
of the reactive intensity. We shall now calculate P* for the incident and each of the
reflected waves using the appropriate potentials and hence obtain the energy ratios
giving the time rate of average energy transmission for the respective wave to that
of the incident wave. The expressions for these energy ratios E;(i = 1,...,6) for the

reflected and refracted waves are given by
E;=<P'>/<F > (1=1,...,6) (4.37)
where

1
< Py >= 5()\5 +2u° + K*®) cos Oow ki AF exp{aky sin Opx},

1
< Pl >= —5()\8 +2u° + K*) cos Oywi ki AT exp{iky sin 0,2},

1
< Py >= —5[@5 + K®) — %(KS + 7°12)] cos Oawo ki A3 exp{iky sin Oy},
2
1
< P} >= —5[(,us + K°) — %(KS + v°13)] cos Ozwsks A3 exp{iks sin O3z},
3
< P} >= —%()\f +2uf + K7 cos 0wk A exp{ak] sin 0z},
/
< Py >= gl 4 KT) = (KT 7o) cos O K AT explikg sin ),
P
/
< P} >= —%[(Mf + K') - %(Kf + b)) cos Qhw ki A exp{akl sin 04}
3

Similarly, for the Case II, using equation (4.36), the expressions for < P > are the

same as given above except the expression of < Fj >, which is given by

< P} >= %(Af + 2u + KPP cos 0 AZ exp{ik] sin 6z}

4.6 Dispersion relation of Stoneley waves

To obtain the dispersion equation for Stoneley waves at the interface between a mi-
cropolar solid half-space and a micropolar fluid half-space, we shall take the following

potentials satisfying the radiation conditions in the two half spaces. In the lower half-
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space My,

L? = Aexp(—S°z) exp{i(kx — wt)}, (4.38)
M?® = {Bexp(—P?z) + Fexp(—Q°z) } exp{u(kx — wt)}, (4.39)
o5 = {c’Bexp(—P°z) + d’E exp(—Q°z) } exp{e(kx — wt)}, (4.40)

and in the upper half-space Ms,

LY = Aexp(S72) exp{o(kz — wt)}, (4.41)
M? = {B'exp(P'2) + E'exp(Q’2)} exp{o(kx — wt)}, (4.42)
¢} = {c! B'exp(P’2) + d' E' exp(Q”2)} exp{u(kx — wt)}, (4.43)

where

Y (- S T S -
A+ 2p° + K8 N +2ul + Kf

P52 QSQ — k‘2 . 1[(p5jsw2 — 2K* P)/spst + KS2
’ 2 o V(e + K¥)

)

j:\/{ psjst _9Ks ’75,08002 + KsQ }2 B psw2(p5jsw2 _ 2K8)]

7’ 7 (e + K) v+ Ko
pr2 Qf2:k.2_l[(zpfjfw_2Kf wlplw+ K
’ 2 v V(! + KJ)
n {zpfjfw—ZKf wylplw + K12 2y plwKf (Z+wpfjf)]
v v (W + KJ) ¥ (W + KJ) K7

¢ ={(p° + K°)(=k* + P?) + p°w?} /K®, d° = {(p° + K°)(—k* + Q%) + p°w’}/K*,

= {(u + KN (k> + P?) v/} /KT, df = {1 + K (= 4+ Q") +1p’w} /K.
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Using Helmholtz decomposition of a vector, the x— and z— components of displace-
ments denoted by u] and uj in the solid and fluid half-spaces are related to the above

potentials, through the following relations

.
Uy

_8L’”+0M’" . OL"  OM" (r=s. f)
- Oz 0z’ 0z or ’ r=sl)

Us

Substituting these values into the boundary conditions for bonded interface given in
(4.21), we obtain six homogeneous equations in six unknowns namely A, B, E, A, B’
and E’. The condition for non-trivial solutions of these equations would give the
dispersion equation for the propagation of Stoneley waves. The required conditions is

that the determinant of the coefficient matrix [b;;] (say) must vanish.

bu b2 b3 ba bis big

ba1 bas bas baa bas bag

k —P® —Q° —k — P/ -Q
' @ ! @, (4.44)

—5° —ik —k =87 1k 1k

0 c® d° 0 —cf —df

0 —y*P°c® —y°Q°d? 0wy Plef wry/Qrd!

where

by = [—k2N + (X + 20° + K*)S%2], by = [kP*(2u® + K®)], bis = [h(2u® +

K*Q®), by = w[—k*N + (N +2uf + KNS, b5 = [wkPT(2u! + K7)], big =
(wWkQ 2p! + K7T)], by = [—1kS*(2u*+ K®)], bag = [p°k*+ (pu*+ K*) P2 — K5¢*], by =
(1R + (s + K5 Q2 — K3d®], boy = —[wkST(2uf + K7)], bos = w[p/ K>+ (pu/ +K7) P2 —
KTl bog = wlpl k2 + (uf + KHQP? — K1 d7].

We note that the frequency equation is an implicit function of the phase velocity and
the wavenumber and involves complex quantities. Therefore, it is expected that the
Stoneley waves are dispersive and attenuated. This equation also depend on the fluid
viscosity coefficients and elastic properties of the solid half-space. The effect of these

parameters on the dispersion curves have been noticed numerically.

4.7 Limiting cases

(I) To discuss the reflection and transmission of longitudinal displacement wave when

propagating through the micropolar solid half-space is made incident at micropolar
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solid/ viscous fluid interface, the formulae for the reflection and transmission coef-
ficients are obtained from equations (4.22)- (4.27) by putting n = p/ and K’ =
(A + 2u5) 2. We see that the equations (4.24) and (4.27) reduce to a single equa-
tion given by

7’]21{32 COS 02142 + 773]433 COS ‘93143 = 07
and the remaining equations reduce to

Vs
—K2 [N+ (20 + K®) cos® 0] Ag — K2 [N + (21° + K*) cos® O] Ay — (2p° + Ks)kgv2

sl

sin 90

V2 V. V2
i [1— =22gin20,A, — (2u° + K° k2258 6in @ [1 — —22 sin2 §, A
\/ V521 012 (# ) 3‘/;1 0 ‘/;21 0413

2 |\ f f Vf21 i 02 / I, 1.2 Vf3 : Vf23 ‘2 /
—wk” [N +2p (1 — sin” 6y | | A7 + 2w’ wks T sinfyy/1 — —5 sin“ Oy A3 = 0,
1

2 2
sl s ‘/;1

V2
2u° + K° k? sin 6 cos Oy Ay — 2u° + K* kE?sinfcosOA; + p,sk’g 1 —2—22gin%4,
1 1 2 V2
sl
2 V2 V2
+ Kk (1 — —2 sin? 0y) — K*ny] Ay + [p°k3 (1 - 2‘/,523 sin? 90) + K°k3 (1 - ng sin? 90)
sl sl

K* fo1.'2 o Vfl Vf21 ) / f o2 Vf23 .2 ’
—K°®n3| As+2p7 ok wsm(%v 1 — —sin“ g AL+ [/ wky” (1 — 2W sin“fy || A3 =0,

2
sl ‘/31 sl

kqsinOpAg + ky sin 0y Ay — kg cos 0y Ay — ks cosO3As — ki sin0y Ay — kj cos 05A5 = 0,
—ky cosOpAg + k1 cos 1 Ay + kosinO3A; + k] cos 01 A7 — kg sin 0545 = 0,

where now V7 = —wci;, Vi = 0 and Vi = —wcs,.

These equations match with those obtained by Kumar and Tomar (2001) for the rele-
vant problem.

(IT) To obtain the reflection and transmission coefficients of longitudinal displacement
wave at micropolar solid/solid interface, we replace the quantities —ww\/ by X, —wpuf
by 1/, —wK’ by K', —w~! by v/, —wa! by o and —wB’ by 4. The six homogeneous
equations (4.22) - (4.27) reduce to

(NS (2p° + K%) cos? O ) k2 Ag+ (N + (2u° + K *) cos® 01 ) k? Ay + (2 + K *) k2 sin 0 cos 05 Ay
+ (2% + K®) k2 sin 03 cos O3 As — (N + (24 + K') cos® 0,) k2 A4 (24’ + K'Y k2 sin 0, cos 05 Al
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+(21 4 K'Yk sin 0 cos 0, Ay = 0,

KS
(2°+K*) sin 0 cos Ook? Ag— (2u°+ K *) sin 0y cos Gok? A1 +[11° cos 20,+ K * cos? 92—7772]%142
2
K? /
411 cos 205 + K* cos® O3 — 7773]1532)/13 — (24 + K')sin 0] cos 0} k2 A}
3
Ky Ky
—[pcos 20 + K cos® 0y — k'ZQ]kQQA/Z — i cos 205 + K’ cos? 0} — k,23]k32Ag =0,
P 3

Yonoko cos O3 Ay + ¥ n3ks cos 03 Az + v'nyky cos 05 Al + v'nsky cos 05 A = 0,

sin Ok Ao + sin 01k A, — Z(k’ cosO;A; + ki cos 0. A) — sin 0 k1 Ay = 0,

2,3
cos Opk; — ki cos 0, Ay — Z(k’ sin6; A; — klsin0.A}) — ki cos 9] A =0,
2,3

naAs + n3As — nh Al — 772),14;3 =0.

These equations are same as Tomar and Gogna (1995b) after converting the angle of
incidence to angle of emergence.

(III) To obtain the dispersion relation of Stoneley waves at the viscous fluid/ elastic
solid interface, we shall neglect the parameters corresponding to micropolarity in both

the half-spaces. Thus, on neglecting the quantities K, o, ", 7" and j", equation (4.44)

becomes
BOu - @) ke i@ —ple) 20 Q!
’Lk —QS _Zk —Qf — U, .
—5° —k _sf ok
where (592 = k2 — L gz = g o e _ g Py
AS 4 2p M+ 2uf” 115

f
2 _ Q_Zpu)

Further, if we neglect the fluid viscosity u/ and taking the bulk modulus in the in-

viscid liquid as M = —w\/ in the above equation, then the above frequency equation
for Stoneley wave matches with the frequency equation of Stoneley wave at inviscid

liquid/elastic solid interface given in Ewing et al. (1957).
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4.8 Numerical results and discussions

For numerical computations, we take the following values of the relevant parameters for
both the half spaces. For micropolar elastic solid-M;( Polyurethane closed cell foam)

[see Hsia and Cheng (2006)]:

Symbol Value
A® 2.09730 x 10" dyne/cm?
e 0.91822 x 10" dyne/cm?
K» 0.22956 x 10'° dyne/cm?
o’ —0.0000291 x 10 dyne

s 0.000045 x 10'° dyne
g y
o 0.0000423 x 10'° dyne
j* 0.037 em?
P 0.0034 gm/cem?

For micropolar viscous fluid medium- Ms:

Symbol Value

M 1.5 x 10 dyne sec/cm?

wd 0.3 x 10'% dyne sec/cm?

K/ 0.00223 x 10" dyne sec/cm?
af 0.00111 x 10'° dyne sec

B 0.0022 x 10'° dyne sec

o 0.000222 x 10'° dyne sec

i 0.0400 cm?

p! 0.8 gm/cm?

and w/wy = 100. The system of equations given in (4.28) and (4.35) are solved by
Gauss elimination method. The values of the amplitude and energy ratios have been
computed at different angles of incidence.

Figure 4.1 shows the variation of the modulus of amplitude ratios of various reflected
and refracted waves with the angle of incidence (), when a plane longitudinal wave
propagating with velocity Vi, is made incident from the micropolar elastic half-space.

It is found that the variation of the modulus of these amplitude ratios is different for
different values of 6. It can be noticed from Figure 4.1 that the reflection coefficient

7y decreases monotonically from the value 1 to the value 0.0066 at 8, = 62° angle of
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Figure 4.1: Incidence of longitudinal wave with velocity Vsi: Variation of reflection and
transmission coefficients
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Figure 4.2: Incidence of longitudinal wave with velocity Vsi: Variation of real part of
energy ratios.
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incidence and then it starts increasing attaining its maximum value of equal to 1 at 90°
angle of incidence. The amplitude ratio Z, increases monotonically from the value 0
at 0° angle of incidence, to the value 0.5760 at 49° angle of incidence and thereafter, it
starts decreasing and decreases to the value zero at 90° angle of incidence. All the other
amplitude ratios namely Zs, 7], Z), and Z§ are found to be very small in magnitude and
hence they have been depicted after multiplying their original values with the factors
107, 10%, 10 and 10? respectively. The reason of the amplitude ratios Z}, Z and Z}
being too small is due to the big contrast in the densities of the fluid and solid half
spaces. It has been found that if we increase the density of the micropolar solid half
space to a certain extent, then amplitude ratios increase significantly at each angle of
incidence. The amplitude ratios Z,, Z3, Z) and Z} have almost similar behavior with
fy. Note that at grazing incidence, no reflected or refracted waves appear, except the
reflected wave corresponding to the amplitude ratio Z;. At normal incidence, only the
reflected and refracted longitudinal displacement waves are found to appear.

When the longitudinal wave with velocity V;; is made incident, the variations of the
real part of the energy ratios of various reflected and refracted waves with respect to
the angle of incidence is depicted through Figure 4.2. We see that at normal incidence,
the value of the energy ration F; is —1. It starts increasing with increase in angle of
incidence and reaches its maximum value zero at 62° angle of incidence, thereafter,
it starts decreasing and goes to the value —1 at 90° angle of incidence. Curve II de-
picts the energy ratio of the reflected coupled wave with velocity Vs, which is zero
at zero degree of incidence and it decreases to the value —1 at 62° angle of incidence,
and after this it starts increasing and increases to the value zero at 90° angle of inci-
dence. Since the values of the amplitude ratios Z3, Z], Z and Zj were found to very
small, therefore, the corresponding energy ratios E3, Ej, A, and A} are also very very
small and these have been shown after multiplying their original values by the factors
10%, 102, 10 and 10? respectively.

Figure 4.3 depicts the variation of imaginary parts of the energy ratios of various
reflected and transmitted waves with the angle of incidence. The imaginary parts of
Es, Ei, E) and E! are drawn after multiplying their original values by the factors
108, 102, 102 and 102 respectively. The sum of these imaginary parts of all the energy
ratios is equal to zero as was predicted in law of conservation of energy [see Ainslie

and Burns (1995)]. In fact, what we have found is that the algebraic sum of the real

107



. \%

0.6 —

0.5 —: I Curve — I: E,
2 — Curve — II: E,
= . Curve — I1I: E3x 10®
‘é 04 — Curve — IV: E| x 107
5 E Curve—V: E/ x 107
g 03 Curve- VI: E/ x 10?
% E \%!
a, 0.2 —
g ]
R= —
%D 0.1 -]
g ]

0.0 -

0.1 —

-0.2 L L L L L L B LB

o

10 20 30 40 50 60 70 80 90
Angle of incidence ( in degrees )

Figure 4.3: Incidence of longitudinal wave with velocity Vy1: Variation of imaginary part
of energy ratios.

parts of energy ratios is equal to unity and the algebraic sum of the imaginary parts
of the energy ratios vanish. Thus, the sum of the energy ratios of all the reflected and
transmitted waves comes out to be unity.

Figure 4.4 depicts the variation of the modulus of the amplitude ratios of various
reflected and refracted waves with the angle of incidence (6;,), when a longitudinal wave
propagating with velocity Vy; is made incident from the micropolar fluid half-space.
The values of the amplitude ratio R; decreases from a certain value 0.6598 at 1° an-
gle of incidence and it decreases with 6 approaches to the value zero as 6, — 90°,
while the values of the amplitude ratio R} has value 0.9979 near normal incidence and
then it decreases with 6, achieving its minimum value equal to 0.8362 at 59° angle
of incidence. Thereafter, it increases to its maximum value equal to 1 at 90° angle of
incidence. All the other amplitude ratios are found to behave alike with 6, but with
differently. Note that at grazing incidence, no reflected or refracted wave was found
to appear, except the reflected longitudinal displacement wave corresponding to the
amplitude ratio R}. The amplitude ratios R3 and R} are found to be very very small
in comparison to the other amplitudes ratios. Hence, they have been shown on the

graph after multiplying their original values by the factors 10® and 10? respectively.
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Figure 4.4: Incidence of longitudinal wave with velocity V};: Variation of reflection and
transmission coefficients.
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Figure 4.6: Incidence of longitudinal wave with velocity V1: Variation of imaginary part
of energy ratios.

Figure 4.5 depicts the variation of the real parts of the energy ratios of various
reflected and transmitted waves with the angle of incidence 6. Since the numerical
values of the energy ratios Fy, F,, E5 and Ef are found to be very small in magnitude,
therefore, we have depicted them after multiplying their original values by the factors
102, 103, 10%, and 102 respectively. Curve IV depicts the energy ratio of reflected longi-
tudinal displacement wave propagating with velocity V. It is seen that its value equal
to —1 at 0° angle of incidence, increases to the value —0.6992 at 59° angle of incidence
and after this, it decreases to the value zero at 90° angle of incidence. Curve V depicts
the variation of real part of energy ratio of reflected coupled wave with velocity Vyo. It
starts from the value zero and decreases to the value —0.3285 at 57° of incidence and
it again increases to the value 1 at 90° of incidence. We see that the energy carried
by the reflected longitudinal displacement wave with velocity V¢ and by the reflected
coupled wave with velocity Vo are dominant.

Figure 4.6 shows the variation of the imaginary parts of energy ratios with the angle
of incidence, when a longitudinal wave with velocity V; is made incident. Since all the
values of imaginary parts of energy ratios are very small in magnitude, therefore, they

have been drawn after multiplying their original values by the factors 102, 10*, 10, 10?, 103
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Figure 4.7: Real part of phase velocities of micropolar fluid versus frequency ratio w/wp.

and 10* respectively. The algebraic sum of the imaginary parts of energy ratios is found
to be equal to zero, while the algebraic sum of the real parts of these energy ratios is
found to be equal to unity in magnitude. This verify the energy balance law at the
interface.

Figures 4.7 and 4.8 depict the variation of the real and imaginary parts of the veloci-
ties of waves in micropolar fluid with respect to the non-dimensional frequency (w/wy).
It is clear from figure 4.7 that the velocity V}; of longitudinal displacement wave is
more than the velocities of remaining waves. We found that Re(Vy) > Re(Vy) >
Re(Viy) > Re(Vys). Figure 4.8 shows that all the imaginary parts of the velocities
decrease with non-dimensional frequency, but differently. It can be concluded that lon-
gitudinal displacement wave is more attenuated than the other waves and the amount
of attenuation increase with increase of the frequency.

For a given real value of non-dimensional wavenumber, the value of non-dimensional
phase velocity of Stoneley waves is computed from the determinantal equation (4.44).
The value of the non-dimensional phase velocity of Stoneley waves is found to be com-
plex, whose imaginary part corresponds to the measures of the attenuation of Stoneley

waves.
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Figure 4.9: Comparison of real part of Stoneley wave velocity.
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Figure 4.10: Comparison of imaginary part of Stoneley wave velocity.

Figure 4.9 depicts the variation of the real part of the phase velocity of Stoneley
waves for different models. Curves I, II and III respectively correspond to the disper-
sion curves at micropolar fluid/micropolar solid, non-polar viscous fluid/elastic solid
and inviscid fluid/elastic solid interface. The effect of micropolarity and viscosity can
be clearly noticed on the dispersion curves. We notice that the viscosity of the fluid is
responsible to enhance the real part of the phase velocity of Stoneley waves. This is
further enhanced due to the micropolar properties of the half-spaces.

Figure 4.10 shows the corresponding variations in the imaginary parts of the phase
velocity of Stoneley waves in the models considered. It can be seen from these fig-
ures that the Stoneley waves at inviscid liquid/elastic solid interface are attenuated
but non-dispersive for the considered model, while at viscous fluid/elastic solid and
micropolar fluid/micropolar solid interfaces, the Stoneley waves are attenuated and

dispersive also.

4.9 Conclusions

In this chapter, the possibility of plane wave propagation in Eringen’s micropolar fluid

of infinite extent has been explored. The reflection and transmission phenomena at a
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plane interface between a micropolar fluid half-space and a micropolar solid half-space
has also been investigated. The frequency equation of surface waves (Stoneley waves)
at micropolar fluid/micropolar solid interface has been derived. It may be concluded
that

(a) Four plane waves can exist in an infinite micropolar fluid propagating at distinct
phase speeds.

(b) All of these waves are found to be dispersive and attenuated in nature.

(c) The reflection and transmission coefficients are found to be the function of the angle
of incidence, elastic properties of the half-spaces and the frequency of the incidence
wave.

(d) The real part of the Stoneley wave velocity propagating along a micropolar fluid/
micropolar solid interface, is found to be greater than that of propagating along non-
polar viscous/nonviscous fluid and an elastic solid interface.

(e) At each angle of incidence, the sum of the real part of the energy ratios of various
reflected and transmitted waves is found to be unity, while the sum of the imaginary
parts of the energy ratios is found to be zero. This verifies the energy balance law at

the interface during transmission phenomena of waves in non-dissipative media.
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Chapter 5

Wave propagation in micropolar

mixture of porous media®

5.1 Introduction

Eringen (2003a) developed a theory of micropolar mixture of porous media (non-
reacting mixture of a micropolar elastic solid and a micropolar viscous fluid at a single
temperature) to include the rotational degrees of freedom. In his theory, material points
of each constituent of porous solid undergoes translation and rotation and hence pos-
sessing six degrees of freedom. Rotational degree of freedom is ignored in classical
porous theories. Many engineering materials, as well as soils, rocks, granular materi-
als, sand and underground water mixture may be modeled more realistically by means
of micropolar continua. In this Chapter, we have explored the possibility of elastic
wave propagation in an unbounded micropolar mixture of porous media. We have also
studied a problem of reflection of coupled longitudinal waves from a free surface of a
micropolar porous half-space. The half-space is taken as a mixture of micropolar elastic
solid and a Newtonian liquid. Amplitude ratios and energy ratios of various reflected
waves have been obtained in closed form. The expressions of displacements and micro-
rotation on the surface of the half-space are also derived. Numerical computations are

performed for a specific model and the results obtained are depicted graphically.

4International Journal of Engineering Science, 44(18-19), 1304-1323(2006).
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5.2 Basic equations and formulation of problem

The equations of motion in an isotropic mixture of micropolar elastic solid and a
micropolar viscous fluid, in the absence of body force density and body couple density,

are given by (Eringen, 2003a)

(C%s + c%S)V(V : us) - (Cgs + Cgs)v X (V X uS) + C%sv X ¢S

s ) 82118
_Cis(u _uf) = Of2 ) (51)

(s + G )V(V- ) = g,V x (V x ¢°) + ,(V x u’ —2¢°)

s . 0%d°

. . - f
(cff + cgf)V(V al) — (cgf + cgf)v x (V xaf) + cgfv X ¢

e o*uf
(2 +E)V(V - ) = 2V x (V x ¢ ) + &,(V x 0 —2¢7)
s o f 0%
(¢ - b =0 (5.4

where
o=\ +2u%)/p°, G, =ptlp", G, =Kp', =&/,
i, ="+ 6°)/0°5°, =70 S, =K°/p°5%, i, =Q/p°5,
dr=WN 2o, =00, &, =K o,y =¢/p,
= (o + 8005, ;=" E=K)p i, =/,

and the SymbOIS )‘87 ,usa Ks, Cks? ﬁs’ 787 1087 jsa >‘f7 ,ufa Kf7 Ckf> ﬁfa P)/fa Pf andjf are
defined in Chapter-4. The quantities £ and €2 are the momentum generation coefficients

due to the velocity difference and due to the difference in gyrations, respectively.
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The constitutive relations in a linear isotropic micropolar mixture are given by

(Eringen, 2003a)

T = AV Wy + w0 (upy +upy) + K (), + cem®y,), (5.5)
my =’V - @0 + B°04  + 7 ks (5.6)
Tlfl = /\fvj;m(ikl + ,uf(v,’;l + vlfk) + Kf(vl]fk + cuemllh), (5.7)
ml, = a!V v, + 6f1/,fvl + ’yfl/l{k, (5.8)
p’ = —p’ = =@ —v/), (5.9)

A S — - f — 1S — f
m m Qo —v'), (5.10)

0 o’

where v/ = 8_ut and v/ = a;i; The second order tensors, 73, and T,fl are respectively

the force stress tensors in micropolar solid and in micropolar fluid, while mj; and mil
are respectively the couple stress tensors in micropolar solid and in micropolar fluid,
p® and m® are respectively, the force and the couple exerted on the solid constituent
from the fluid constituent, p/ and m/ are respectively, the force and couple exerted on
the fluid constituent from the solid constituent.

Introducing the scalar potentials A%, Af, C* and C/, vector potentials B*, Bf, D?

and D/ through Helmholtz representation of vector field, we can write

wW=VA+VxB, V-B°=0;, u/=vA"+VxB/ V.B=0 (511)

P =VC*+VxD* V.-D*'=0; ¢/ =VC/+VxD/, V.D/'=0. (5.12)
Plugging (5.11) and (5.12) into equations (5.1) to (5.4), we obtain

(C%s + Cgs)vas - CZS(AS - Af) = AS? (513)
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(cff + cgf)VQAf + cif(/ls — Af) = A7, (5.14)

(2, 4 2 IV2C® —2E2.C° — 2. (CF — ) = C¥, (5.15)

(3 + cgf)VQCf — 20%@"0 + cgf(C"S —ch =, (5.16)
(¢35 + cgf)VQBf + 3,V x D/ + cif(BS - B/) =B/, (5.17)
2 V?D* + 2.V x B® — 2. D° — ¢2,(D* — DY) = D*, (5.18)
(2, + 2 )VB* + 2.V x D* — &2 (B° — Bf) = B, (5.19)
e, VD! + 2,V x Bl — 2¢, D7 + ¢§,(D* = D/) = D/, (5.20)

We see that the equations (5.13) and (5.14) are coupled in scalar potentials A® and A/,
the equations (5.15) and (5.16) are coupled in scalar potentials C* and C7; while the
equations (5.17) to (5.20) are coupled in vector potentials B¥, B/, D* and D/.

5.3 Wave propagation

To discuss the possibility of plane wave propagation in an infinite medium of mixture of
micropolar solid and viscous micropolar fluid, we shall first solve the equations (5.13) to
(5.20). Consider the following form of plane waves propagating in the positive direction

of a unit vector n
{As, AT s, Oy ={a®, af,¢*, ¢/ Vexp[ik(n-r — V1), (5.21)

where a®, af, ¢® and ¢/ are the constant complex scalar wave amplitudes, 2 = /—1,
r is the position vector, V' is the phase velocity in the direction of vector n, k is the
wavenumber and w(= kV) is angular frequency. Inserting the values of potentials A®

and A/ from equation (5.21) into equations (5.13) and (5.14), we obtain a set of two
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homogeneous equations in two unknown amplitudes, namely ¢* and af. Eliminating

these unknown constants, we get the following equation
V=0, Vid e =0, (5.22)
where
ay = w +1(ci, + cif),
by = (C%s + Cgs)(w + Zcéglf) + (Cff + Cgf)(céglsw - lw2)7
¢ = —w? (e}, + ¢3,)(cFy + c3p).
Similarly, inserting the values of C* and C/ from (5.21) in equation (5.15) and (5.16),
we obtain
aV* — bV 4 ¢y =0, (5.23)
where

ay = [—2E2 (2%, + 165 + w) — 26 (G — w) + WP (icg, + 165y + w)],

by = w?[(c2, + C,) (203 + 163 + w) + (Cy + Cop) (265, + G w — w?)],
cr = () + )

The roots of equations (5.22) and (5.23) are given by

1 1
Vi, = ——[by £ /b2 —4dayci] and V2 , = ——[by + 1/ b3 — 4ascy), (5.24)
’ 2ay ’ 2a9

respectively. Here Vi? and V7 are taken with 'plus’ sign and V7 and V}? are taken
with 'minus’ sign. Insertion of (5.21) into equations (5.11) and (5.12) will show that
the displacement vectors (u®, uf) and microrotation vectors (¢°, ¢') are parallel to
the direction of n. Hence, the waves propagating with phase velocities given by V;
(i=1,2,3,4) are longitudinal in nature. The waves propagating with velocities V; and
V5 may be called coupled longitudinal displacement waves and the waves propagating
with velocities V3 and V4 may be called coupled longitudinal microrotational waves.
These longitudinal waves are analogous to the longitudinal displacement and longitu-

dinal microrotational waves of micropolar elasticity. In the limiting case, when the
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presence of liquid is neglected, the velocities V; and V3 reduce to the velocities of longi-
tudinal displacement wave and longitudinal microrotational wave of micropolar theory

for elastic solids. The other velocities V5 and Vj; become zero in this limiting case. It is

to be noted here that these coupled longitudinal displacement waves are analogous to

the dialatational waves of classical elastic solid and fluid, while there are no classical
analogy to the microrotation waves.

To solve equations (5.17) to (5.20), which are coupled in the vector potentials B*, B, D*, D/,

we take the following form of vector potentials
{B*, B/, D*, D/} = {b*, b/ |d°, d'}exp[tk(n -r — V)], (5.25)

where b, b/, d* and d/ are constant complex vector wave amplitudes and other
symbols are defined earlier.
Plugging (5.25) into equations (5.17)-(5.20), we get four homogeneous vector equations

in four unknowns

A1b* + Asbl + Asn x d* =0, (5.26)
Bin x b® 4+ Byd® + Bsd/ =0, (5.27)
C1b* + Cyb! + Csn x df =0, (5.28)
Din x b? + Dyd® + D3d’ =0, (5.29)

where
Ay = KB, + )+ EVEH Ak, Ay = —ciakV, As=ciak,

By =gk, Bo= —k*ci, —2c3, + caakV + k°V? By = —ciakV,
Cy = —cipkV, Cy =1V (3, + p) + GpkV + K2V?, C3 = kVegy,

Dy = &KV, Dy =—ikVcy;, Ds=cgk®Vi+2GakV + GakV + KV
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Eliminating the vectors b*, b/ ,d* and d/, we obtain
asV* 4+ b3V? +c3 =0, (5.30)
and
NiVE + NoVO + NsV* 4+ NyV2 + Ny = 0, (5.31)
where
az = (1cqy +w)(2e3; + c5p) + ),

by = w?(c3p + ¢3)[1(2c3; + c3f) + w] + 165w (1chp + w) + G pcd w0,
ey = —(chy + C3p)cpw’,
Ny = (w+1c3,)(—2¢2, + s w + w?)(w + zcif)(chgf + zcgf +w)+ cgscgfw(w +c3,)
(w +aciy) + (=267, +acgw + W) (2uc7; + 163y + w) i Chp + Wl ChpcsCay
Nz = w(w +1€3y) (20e7; + 1c5y + w)[— (3, + €65,) (=267, + 105,00 +w?) — cgw(w + achy)
—cry€5,) + wl(w +164,) (=27, +acgw + W)y + 65p) (20cty +ac5y + w)
+Zc(23f(lcif+w>+cgfc§f]_chsciscgfcgf_chscgscifcgf+c§scgf[_(cgs+C§s)(w+zcif)
Fuw(wicy,) (e +c5p)]+ i co (2007 acgp ) Facg (=26, + cgaw+w?)lY,
N3 = w’leg (o, + €3,) (achy + w)(20e7; + 105y +w) — [(63, + 3,) (=267, + cg,w + w?)
+ weg, (w4 163,) + B3] 13 + ) (203, + 16k + w) + 105, (165 + W) + G pc34)
— w{legy(cay + c5p)(w + 1c3, ) (=267, +acgw + w?)
+ZC§SC§]‘<C§S + C%s)<cgf + C?’;f) + Zciscifcgscgf]}]a
Ny = w'(cg (3, + 3,)[0lcay + c3p)(20c + acgy + w) + acgp (aciy + w) + €23 ]

+ca (G + ) [(B, + G,) (=263, + 1w + w?) + g (w +1ci,) + A3,63,]],

N5 = _w7cgscgf(cgs + Cgs)(cgf + C§f>
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The roots of equation (5.30) are given by

1
v; 6= 2—a3[—b3 + /b2 — 4ascs], (5.32)

where V2 is taken with 'plus’ sign and V{ is taken with 'minus’ sign. It can be seen
from the coefficients of equation (5.32) that the velocities Vs depend purely on mi-
cropolar fluid viscosities and they do not depend on the properties of solid constituent.
Moreover, if the constant v/ is put equal to zero then the quantity V2 vanishes. Also,
if the constants K/, ¢ and Q vanish, then the velocity V2 reduces to V2 = \/W ,
which is the velocity of transverse wave in viscous fluid. Equation (5.31) is not simple
to solve analytically and the roots of this equation can be obtained by some numer-
ical procedure. Since equation (5.31) is four degree equation in V?, therefore it can
give four roots, in general. Let these roots be VZ, V@&, V& and V. This means
that equation (5.31) will represent four waves propagating with these velocities. Using
(5.25) into second and fourth equations of (5.11) and (5.12), it becomes apparent that
n-b*=n-bf =n-d*=n-df = 0. Hence, all the four vectors b*, b/, d* and d/ lie
in a common plane whose unit normal is n. This means that the waves propagating
with velocities V;, (7 = 5,6,7,8,9,10) are transverse in nature. It is clear from the
expressions of velocities that they depend on frequency. Hence, all waves propagating
with these velocities are dispersive.

In a limiting case, when the presence of liquid is ignored, we see that the velocities

given by Vs and Vg vanish and equation (5.31) reduces to

aVi+bVi+c=0,

2 2 2
where a =1 — 2% b= —[c3 (1 — 2%) + 2, (1 — %) + &) and ¢ = 2,(c3, + c,).

This equation is the same equation as obtained by Parfitt and Eringen (1969) and gives
the velocities of coupled transverse waves in micropolar elastic solid. In another limiting
case, when micropolarity of both fluid and solid constituents along with the moment
generation coefficients are neglected, then one can verify that the reduced equations
(5.30) and (5.31) yield two velocities given by \/cas and y/—wc3,. These velocities
are the velocities of purely transverse waves in classical elastic solid and viscous fluid,
respectively.

Now, let us look at the behavior of these velocities at low and high frequencies.
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For higher frequency waves, i.e., when w — oo, we see that the velocities of coupled
longitudinal waves reduce to V2 = ¢2,+c2, and V7 — oo, while the velocities of coupled
longitudinal microrotational waves V3%, — co. The velocities of two coupled transverse
waves reduce to V2 = V2 = oo and that of the remaining four coupled transverse waves
reduce to V2 = V@& = co and V& = ¢2,, V3 = 3, + c2,. At low frequency waves, i.e.,

when w — 0, all the velocities vanish except

e 04213 + Cif
5.4 Reflection of coupled longitudinal waves

We shall discuss the reflection phenomena of coupled longitudinal waves impinging
obliquely at the stress free plane surface of a half-space H composed of mixture of
a micropolar elastic solid and an inviscid non-polar simple liquid. Let z — y axes be
horizontal and z—axis be vertically downward. We shall discuss a two-dimensional
problem in x — z plane such that the x— axis is along the free plane boundary of the
half-space. The half-space H occupies the region H = {—o00 < z,y < 00,z > 0}. Since
we are considering simple inviscid liquid, therefore, we shall first find the expressions of
velocities of existing waves in the mixture considered. For this substituting zero values
of the parameters corresponding to micropolarity and viscosity of the fluid constituent,
ie., cb; = 3y = &y = gy = 3, = ¢y = g, = 0 into the expressions of velocities

obtained earlier. From the expression given in (5.22), we obtain

2 _ 1

VP, = 2 0] £/ V7 — daic)], (5.33)
where
ay =wFa(ci, +cip), by = (, + 63,)(1ch; + w) + ¢ jw(cd, —w)
and
dy = -, + cgs)c%wa.

These are the velocities of coupled longitudinal displacement waves in a mixture con-

sisting of micropolar elastic solid constituent and inviscid liquid constituent. From the
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expression of velocity given in (5.23), we obtain

2 71
=l +dl|1-2%] (5.31)

which is the velocity of longitudinal microrotational wave in micropolar solid con-

stituent. From the expressions of velocities given in (5.31), we obtain

1
Voo = G [no & \/n3 — dning], (5.35)
1

where 7y = (w? = 2 ){(w +1¢3,) (W +2c3;) + ciycip}, ns = WPcE (3, + c3,) (iciy + w),
g = w(w + Zcif){(cgs + cgs)(w2 - 26?5) + wc?is(w + 264215) + Cgscgs} + Ciscifcgs"‘ﬂ'

These velocities correspond to the waves arising from solid-liquid interactions. It is
easy to verify that by neglecting the presence of liquid, these velocities reduce to the
same velocities of coupled transverse waves of micropolar elastic solid obtained earlier
by Parfitt and Eringen (1969).

Note that for a two dimensional problem in x — z plane, we shall consider
s _ 50 s I — / 0 / d S — (_hS
u (uh ) U3), u (ulv ) u3) an ¢2 ( ¢ )2‘

5.4.1 Incidence of coupled longitudinal plane wave with ve-

locity V)

Let a plane coupled longitudinal wave propagating through the half-space H be incident
obliquely at the boundary surface z = 0. Let the incident wave with amplitude A,
propagates with velocity V) be striking at the boundary surface making an angle 6
with z-axis. To satisfy the boundary conditions on stresses at the boundary surface,
it is necessary to postulate the existence of reflected wave in four distinct directions.
(i) A set of coupled longitudinal wave of amplitude A; propagating with speed V; and
making an angle #; with the z— axis. (ii) A similar set of coupled longitudinal wave
of amplitude A, propagating with speed V5 and making an angle 6, with the z— axis.
(iii) A set of coupled transverse wave of amplitude Az propagating with speed Vo and
making an angle 03 with the z— axis. (iv) A similar set of coupled transverse wave of

amplitude A, propagating with speed Viy and making an angle 6, with the z— axis.
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The followings are the relevant potentials in the half-space H

A® = Agexp{iky(sinpx — cos 0pz) — wqt}

+ Z A, exp{ik,(sin O,z + cos b,2) — w,t}, (5.36)

p=1, 2

Al = € Ay exp{aki (sin fpz — cos yz) — wwrt}

+ Z &p Ay exp{ik,(sin 0,x + cos 0,2) — wt}, (5.37)
p=1, 2
B = Z A, exp{ik,y(sin 0,z + cos 0,2) — w,t}, (5.38)
q=3, 4
¢5 = Z N Ay exp{ik,(sin 0,z + cos 0,2) — w,t}, (5.39)
q=3, 4

where & 5 are the coupling parameters between the coefficients A% and A/, while 73 4
are the coupling parameters between the coefficients B; and ¢3. The expressions of

these coupling parameters are given by

2 2 2 -1
-1 w12 (cis +c34) — 2 |y 2 _ 9 Crs
51,2 =l=t | =R, 255 % » M3,4 = Crs | V910 — C6s — L2
Cys CisV1,2 9,10

Since the boundary surface of the half-space H is free from mechanical stresses, there-
fore, the boundary conditions at the free surface are the vanishing of force stresses,
couple stresses in micropolar solid constituent and stresses in liquid constituent. Math-

ematically, these boundary conditions can be expressed as
=1l =7,=m,=0 at z=0. (5.40)
The Snell’s law describing the relations between various angles of reflected waves and

that of the incident wave, is given by

sinth _ sinfd _ sinbh _sinfs _ sinfy (5.41)
Vi Vi Va Vo Vio
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Making use of potentials given by equations (5.36)-(5.39), using Snell’s law given by
equation (5.41) and assuming that w; = wy = w3 = wy = w at the boundary surface

z = 0, the boundary conditions (5.40) are satisfied if

Q525 = bz (Z = 17 ...,4), (542)

WE

=1

where

ay; = [N+ (20" + K®) cos® ;]k7, a1y = (2p° + K°)sin6; cos 0;k3, as; = &7,

S

K*n;
L2

J

az = —(2u° + K*)sin0; cos 0;k7, asj = |u’° cos20; + K® cos® 6, — k?-,

azg =mnjcostiky,  an =ap=a3=au=0, =12 j=34,

and by = —ay, by = —ag1, b3 = azi, by = as.
The quantities
A1 A2 A3 d A4
Z1=——, 2= —, 23 = —— an 24 = —
! A07 2 A(), 3 AO 4 AO

are the amplitude ratios for the reflected longitudinal displacement wave due to solid
and propagating with velocity Vi at an angle 6, reflected coupled longitudinal dis-
placement wave due to liquid and propagating with velocity V5 at an angle 65, reflected
coupled transverse displacement wave propagating with velocity Vg at an angle 63, re-
flected coupled transverse microrotational wave propagating with velocity Vjo at angle

04, respectively. Solving the equations in (5.42), we obtain

A
zi=— (1=1,2,3,4), (5.43)
A
where A = —(14022033041 T Q12024033041 + Q13022034041 — G12023034041 + Q14021033042 —

(11024033042 — 013021034042 + 011023034042,

Ay = (a14a33—a13a34)(a42b2—a22b4)+a24(—a33a42b1—I—a13a42b3+a12a33b4)+a23(a34a42b1—
a14Q42b3 — a12a34b4),

Ay = a41(a24a33b1 — Q303401 — G14G33b2 + a13a3402 + a14a23b3 — a13a24b3) + (a14a21a33 -
(11024033 — Q13021034 + a11a23a34)b4,

A?, = —(a12a41—a11a42)(a34b2—a24b3)—|—a22(a34a41b1—a14a41b3—a11a34b4)—1—a21(—a34a42b1—|—

a14G42b3 + a12a34by),
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Ay = (a12a41 —a11a42) (a33D2 —ag3b3) +ase (—as3a41b1 +a13a41b3+a11a33b4) +a91 (a33a49b1 —

a13a42b3 - a12a33b4).

5.4.2 Surface response

The following responses of the solid and liquid constituents at the surface of the half-
space H are calculated.
(i) Solid constituent The expressions for the displacements and microrotation re-

spectively are given by

uy = o[k sin by + ki sin 0121 + ko sinOazo — kg cos 0323 — kg cos 0424] Ao, (5.44)

us = 1[—ky cos by + ky cos 0121 + kg cos baz9 + k3 sinlszs + kysinOy24]Ag,  (5.45)

@5 = [n323 + Naz4] Ao. (5.46)

(ii) Liquid constituent The expressions of the displacements of the liquid constituent

are given by

U{ = Z[£1k1 sin 90 + flkl sin (9121 + fgkg sin 9222]140, (547)

ug = 1[—&1ky cos Oy + &1k cos B121 + Eoks cos Oa25] Ay, (5.48)

where kl sin 6)0 = ]{71 sin 91 = ]{?2 sin 92 = k?g sin 93 = ]{34 sin 94 = ]{?0.
In writing the expressions in (5.44) to (5.48), we have dropped a common factor

exp{e(koxr — wt)}.

5.4.3 Energy partition

We shall now consider the partitioning of incident energy between various reflected
waves at the surface element of unit area. Following Achenbach (1973), the rate of

energy transmission at the free surface z = 0 for the mixture of micropolar solid with
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simple liquid, is given by
Pt = iy + i + L+ 05 (5.49)
Following Achenbach (1973), for any two complex functions of the forms

F = Fyexp{u(wt —m)}, = foexp{u(wt —12)},

Fy and fy being the real-valued functions, the time average of a product of the real

parts of two complex functions F' and f, is given by
< R(F) x R(f) >= R(Ff)/2. (5.50)

To obtain the expressions of energy ratios giving the time rate of average energy trans-
mission for the respective wave to that of the incident wave, we shall now calculate the
< P* > for the incident wave and for each of the reflected waves by using the appro-
priate potentials. The expressions for these energy ratios E;(i = 1, ...4) corresponding

to reflected waves are given by
E,=<P'>/<F;> (i=1,..4), (5.51)
where
< Py >= (N 42 + K — M w €2k cos 0,

< P;>= (N 42 + K — M w2k cos 0,27 (t=1,2)

(v’ + K7)
L2
The quantities Ey, F,, FE5 and FE, represent the energy ratios of reflected coupled

<P >:—(/LS+KS—77m )kfncosﬁmzfn (m = 3,4).

longitudinal wave with velocity V;, reflected coupled longitudinal wave with velocity
V4, reflected coupled transverse wave with velocity Vg and reflected coupled transverse

wave with velocity Vi respectively.
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5.4.4 Incidence of coupled longitudinal plane wave with ve-

locity V5

We now consider a train of coupled longitudinal wave of amplitude A, propagating
with velocity V5 through the half space and striking at the interface making an angle
Oy with the z-axis. In this case, to satisfy the boundary conditions at the free surface
of the half-space H, we shall postulate the existence of same set of reflected waves as
considered above, in the case of incidence of coupled longitudinal wave with velocity
Vi. Therefore, the potentials in the half-space due to various reflected waves will be of
the form

A® = Ay exp{iky(sin Oyz — cos Opz) — wwot }

+ Z Ay, exp{ak,(sin Opz + cos ,2) — wpt}, (5.52)

p=1, 2

Al = & Ay exp{iky(sin Opz — cos yz) — wwat }

+ Z & Ay exp{ik,(sin0,x + cos 0,2) — wyt}. (5.53)

p=1, 2
The expressions of the potentials B and ¢§ will remain same as defined earlier in (5.38)
and (5.39). The expressions of parameters £; » and 73 4 are also defined earlier. Making

use of potentials given above and the modified Snell’s law for the present case given by

sin 6 _ sin 6, _ sin 6 _ sin 03 _ Sin04’ (5.54)
Va Vi Va Vo Vio

into the boundary conditions given in (5.40) and assuming w; = wy = w3 = wy = w at
the boundary surface z = 0, we obtain a system of four non-homogeneous equations as

follows

4
D ayz=bi (i=1,..4), (5.55)
j=1
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where a;; are the same as defined earlier and by = —aj2, by = —ag, b3 = azy and

by = 49, while the quantities
leAl/Ao, ZQIAQ/A(), ZgIAg/AO and 24:A4/A0

are the reflection coefficients of various reflected waves. Solving the system of equations

in (5.55), we obtain
A,
a=5 (i=1234) (5.56)

where A = —a14a20a33041 + 012024033041 + Q13022034041 — 12023034041 + Q14021033042 —
(11024033042 — 13021034042 + A11023034042,

Ay = (a14a33—a13a34) (@a2b2—a20bs) + a4 (—a3304201+ 1304203+ a12a33b4) + a3 (a34042b1 —
a14a4263 - &12(13454),

AZ = 0641(02403361 - a23a3451 - a14a3352 + 061303462 + a14a2353 - a13a2453) + (al4a21a33 -
11024033 — A13021034 + a11a23a34)54,

A:; = —(a12a41—a11a42)(a3452—a2453)+a22(a34a4151—a14a41l33—a11a34l34)+a21(—a34a42l31+
a14a42b3 + (112&3464),

Ay = (a12a41—a11a42)(agggg—(12363)—1—6122(—@33@4151—1—(113@4153—1—@11(13354)+a21(a33a4261—

a13042b3 — (112613354)-

5.4.5 Surface response

Similarly, as computed in the case of incidence of coupled longitudinal wave with
velocity V7, the expressions of surface response for the displacements and microrotations
of solid constituent and displacements of liquid constituent, for the case of incident

coupled longitudinal wave with velocity V5, are given by

uy = t[ko sin by + ki sin 0121 + ko sinfaze — ks cos 323 — ky cos 0,24] Ao, (5.57)
ug = 1|—ko cos b + ki cos 0121 + ko cos Oazo + kg sinf3z3 + kysin,24]Ag,  (5.58)
¢35 = (323 + Naz4) Ao, (5.59)
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and

U{ = 2[52/{72 sin 60 -+ 51/{?1 sin 0121 + fgkg sin 9222]140, (560)

ug = 1[—&aky cos Oy + &1k cos By 21 + Eka cos Oa25] Ay, (5.61)

where ko sinfy = kysinfy = kysinfy = kssinf; = kysin 0y = k.
In writing the expressions in (5.57) to (5.61), we have dropped a common factor

exp{u(kyz — wt).

5.4.6 Energy partition

In the case of incident coupled longitudinal wave propagating with velocity V5, the

expressions for energy ratios E;(i = 1,...4) for various reflected waves are given by
Ei=<P'>/<P> (i=1,..4), (5.62)

where the expressions of < P* > are the same as defined earlier, while the expression

of < P} > is given by

< By >= (N 4+ 20 + K° — )N w2k cos by,

5.5 Limiting case

If we neglect the micropolar effects from solid and fluid constituents of the mixture, then
we shall be left with the mixture of an elastic solid and a liquid. For this, substituting
the parameters corresponding to micropolarity in both solid and fluid constituents
equal to zero, i.e., ¢3, = 3, = g, = ¢G5, = 3, = C3; = Ci; = gy = ¢§; = gy = 0, then

equation (5.24) reduces to

1
Vo =g b £ \/U7 —daicl]  and  Vau=0, (5.63)
1

where ay = w + (¢, + ciy), by =i ey + (61, + clely —aciwlw, & = —iefoipw’
Thus there are only two longitudinal displacement waves and the longitudinal micro-

rotation waves disappear. Also, it can be seen that in the present case, the velocities
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of coupled transverse waves given by equation (5.30) vanish and the velocities given by

equation (5.31) reduce to

1
V92,10 = ﬁ[_blz + \/ b’% — daycy], (5.64)

2

where ay = w +1(cf, + ¢3;), by = —c3,(w +1cff) + wesp(w +ci,), ¢ = —w?c3.c3;.

These two transverse waves are coupled through the coupling parameter given by

Vo 10C2
bS:|: 2 292,104S 2:|bf
k(Vgio — ¢35) +1Vo 1061,

It is to be noted here that the velocities Vi o given in (5.63) are analogous to two
compressional waves of Biot (1956a, b). The velocities V4 19 given in (5.64) correspond
to two coupled transverse waves, not observed in Biot’s theory. When viscosity of fluid
constituent is neglected, i.e., when p/ = 0, then one of the velocities in (5.64) vanishes

and the other velocity becomes Vi3 = p*/p® for high frequency waves.

5.6 Numerical results and discussions

In order to seek the behavior of velocities of the existing waves in micropolar mixture
with frequency parameter, we shall consider a specific model. The various amplitude
and energy ratios at the free boundary of a porous mixture consisting of micropolar
solid and inviscid liquid will be computed subsequently. For the purpose of studying
the dispersion and attenuation phenomena of waves, we take the following values of
relevant elastic parameters. We shall compute the non-dimensional phase velocity at
different values of non-dimensional frequency. The expressions of velocities given in
equations (5.22), (5.23), (5.30) and (5.31) are computed and found that they are com-
plex. The variations of real and imaginary parts of these velocities are obtained and
depicted graphically through Figures 5.1 to 5.5.

Figure 5.1 shows that the real part of the velocity ratio V1(= Vi /c;;) is dispersive
untill a certain value of frequency parameter w/c7s, beyond which, it is independent of
frequency. However, the real part of velocity ratio V2(= V4 /cy) is found to be increas-
ing with increase of frequency parameter w/czs. The real parts of these two velocity
ratios are found to be equal at w.(= w/crs) = 58.41. It is clear from this figure that

Vi/c1s > Va/crs in their real parts untill w/c7s < we, but when w/c7s > we, we found
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Va/c1s > Vi/c1s in their real parts. The imaginary part of the phase velocity Vi /¢y is
found to be non-zero for low values of frequency parameter and it approaches to zero
when w/cq, takes larger and larger values. On the other hand, the imaginary part of

Vs /ey is found to decrease with increase of frequency parameter.

Symbol Value

A 7.59 x 10'° dyne/cm?

TS 1.89 x 10'° dyne/cm?

K 0.0149 x 10 dyne/cm?

a’ 0.029 x 10'° dyne

B° 0.027 x 10'° dyne

8 0.0263 x 10** dyne

jo 0.00196 cm?

0° 2192 gm/cm?

¢ 0.75 gm/cem? sec

Q 0.40 gm/cm sec

M 2.14 x 10'° dyne sec/cm?
w! 0.450 x 10 dyne sec/cm?
K’ 0.0112 x 10 dyne sec/cm?
af 0.0178 x 10%dyne sec

Bf 0.0160 x 10'° dyne sec

o 0.0198 x 10'° dyne sec

i 0.00180 cm?

of 1010.0 gm/cm?

Thus, we conclude that at low frequency, one of the longitudinal wave correspond-
ing to phase velocity V; propagates with complex phase velocity and hence dispersive
and attenuated, while at high frequency, this wave propagates with constant real phase
velocity and remains unattenuated. Thus for high frequency range, this wave is inde-
pendent of frequency. The other longitudinal wave propagating with phase velocity
V5 propagates with complex phase velocity and hence dispersive and attenuated at
all non-zero values of frequency parameter. At zero frequency, it is found that V; is
non-zero. The wave velocity V5 /¢ vanish at w/czs = 0, which increases monotonically
with w/e7s and approaches to infinity as w/c7s — 0.

Figure 5.2 shows that the real part of V5 4/c1s vanish at w/c7s = 0. As frequency pa-
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Figure 5.1: Phase velocities V] and V5 versus frequency ratio w/czs.
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Figure 5.2: Phase velocities V3 and Vj versus frequency ratio w/czs.
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Figure 5.3: Phase velocities V5 and Vg versus frequency ratio w/czs.

rameter increases, the real part of velocity ratio V3/c;s increases to the value 3.1319 at
w/ers = 1.32, thereafter it decreases with further increase of frequency parameter. The
real part of velocity ratio V, /¢, increases with increase of frequency parameter. These
velocity ratios are found to approach to infinity as frequency parameter approaches to
infinity. The variation of imaginary parts of V5 4/c15 with frequency parameter is also
shown in the Figure 5.2. The imaginary part or attenuation of V3/c;5 is maximum in
the low frequency range.

Figure 5.3 depicts the variation of real and imaginary parts (attenuation) of Vs 6/ Vi,
with frequency parameter. We note that both the parts of these velocities vanish at
w/c7s = 0. Thereafter, their real and imaginary parts increase in positively and neg-
atively with increase of frequency parameter. The real part of Vs/ci, is found to be
greater than that of Vs/c15 up to w/c7s = 1.88 and after that the real part of Vg/cs
becomes greater than the real part of V5/c;5. These two velocities approaches to oo
as the frequency parameter tends to oco. It is also noticed that the imaginary parts of
these velocity become more and more negative as w/c7, approaches to oco. It is also
found that in the absence of v/, the velocity Vi disappears and the velocity V5 remains

unchanged. Thus the velocity Vs does not depend on /.
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Figure 5.4: Phase velocities V7 and V3 versus frequency ratio w/czs.

Figure 5.4 shows that the real parts of velocity ratios Vzg/cis are zero at zero fre-
quency. For w/ezs > 0, these velocity ratios increase and the real part of Vg/cy, is
found to be greater than that of Vz/c¢;5. We also observe that there is an uplift in both
the velocity ratios at w/czs = 1.23. The variation of imaginary parts of these velocity
ratios with frequency parameter is similar to that of their real parts, but with negative
sign. Both the parts of these velocity ratios approaches to oo as w/crs — 0.

In Figure 5.5, we see that the real part of the velocity ratio Vgy/cis starts increasing
from zero and goes up to 1.7834 at w/c;s = 1.22, thereafter decreases to 0.0357 at
w/e7s = 1.23 beyond which it starts increasing. The velocity Vi also follows the same
pattern, but decreases as continuous function of frequency. We also observe the same
trend for attenuation coefficient, however the attenuation for V4 tends to —oo, while
the attenuation of Vj( tends to zero as the frequency increases.

Figures 5.6-5.11 represent the variation of amplitude ratios, energy ratios and sur-
face responses when the coupled longitudinal waves with velocities V; and V5 are made
incident at free surface of a porous half space containing mixture of micropolar elas-
tic solid and inviscid non-polar liquid. These are computed at frequency parameter

w/crs = 103, Figure 5.6 shows that the values of reflection coefficients 2o and z3 are
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Figure 5.5: Phase velocities Vy and Vg versus frequency ratio w/cys.
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Figure 5.6: Variation of reflection coefficients (Incidence of longitudinal wave with ve-
locity V4) (Curve - It 21, Curve - II: 25 x 103, Curve - III: 23 x 105, Curve - IV: z4 x 10).
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Figure 5.7: Variation of reflection coefficients (Incidence of longitudinal wave with ve-
locity V2) (Curve - It 21, Curve - II: 2o, Curve - III: 23 x 10°, Curve - IV: 24).

very small at each angle of incidence and they have been depicted after magnifying by
the factors 10® and 10° times respectively to their original values. The variation of z4
is also shown by magnifying its original value with the factor 10. Thus, we conclude
that only reflected wave with amplitude z; is dominant.

Figure 5.7 shows that the amplitude ratio z3 is very small as compared to the ampli-
tudes of other reflected waves. The curve corresponding to z3 is shown after magnifying
10 times its original value. Here, the amplitude ratio 2, is found to be almost indepen-
dent of the angle of incidence, while the amplitude ratios z; and z; behave alike with
the angle of incidence. It is also noticed that at normal and grazing incidences, all
the reflected waves disappear except the wave corresponding to amplitude ratio zs.

Figures 5.8 and 5.9 represent the variation of energy ratios with the angle of in-
cidence when coupled longitudinal wave with velocities V; and V5 are made incident,
respectively. It is noticed from Figure 5.8 that the maximum amount of energy trav-
els along the reflected wave having amplitude z; as was expected. Almost negligible
amount of energy is carried by the reflected waves having amplitudes z3 and zy.

Similarly, from Figure 5.9, we note that the amount of energy carried by reflected

waves having amplitude ratios z3 and z4 is negligible and the only reflected wave hav-
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Figure 5.8: Variation of energy ratios with angle of incidence (Incidence of longitudinal
wave with velocity V7). (Curve - I: Ey, Curve - II: Ey x 103, Curve - III: E3 x 10%°, Curve
-1V: B4 x 1012).

1.00
II

0.80

0.60

Energy ratios

0.40

III

0.20

0.00 THH‘\\H\‘H\\\‘\\H\‘H\\\‘HH\‘H\H‘HH\‘HH\

0 10 20 30 40 50 60 70 80 90
Angle of incidence ( in degrees )

Figure 5.9: Variation of energy ratios with angle of incidence (Incidence of longitudinal
wave with velocity V3). (Curve - I: By x 10, Curve - II: Ey, Curve - III: E3 x 10%!, Curve
-1V: B4 x 1012),
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Figure 5.10: Surface response of incidence of longitudinal wave with velocity V; (Curve
- I: uf, Curve - II: u3, Curve - III: u{ x 1074, Curve - III: u.f,: x 1076, Curve - IV: 5 % 109).

ing amplitude z, carry maximum amount of energy. In both the figures, it has been
verified that the sum of the energies carried with reflected waves is equal to the total
amount of energy given to the incident wave. Thus, there is no dissipation of energy
during reflection, as the medium is considered non-dissipative medium.

Figures 5.10 and 5.11 depict the variation of surface displacement, microrotation in
solid and fluid with the angle of incidence in case of incident coupled longitudinal wave
with velocity V; and V; respectively. The displacement components uj, u3 and u{ , ug
are normalized by a factor of 1k Ag exp(1k,z — wt) and ks Ag exp(1k.x — wt) respec-
tively. The microrotation field for solid ¢3 is normalized by a factor of Agk? exp(1kox —
wt) in the case of incident wave with velocity V; and by a factor Agk3 exp(1kz — wt)
in the case of incident wave with velocity V5. It can be observed from these figures that

the surface response of displacement components in fluid constituent is greater than

that of in solid constituent.
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Figure 5.11: Surface response of incidence of longitudinal wave with velocity V5 (Curve
- I ui, Curve - II: w3, Curve - III: u{ x 10~°, Curve - III: u.f,: x 1076, Curve - IV: @5 X 10°

).
5.7 Conclusions

The possibility of wave propagation and a problem of reflection of plane longitudinal
waves from a free boundary surface of a porous micropolar mixture half-space are in-
vestigated. The equations of motion and constitutive relations for micropolar mixture
theory of porous media developed by Eringen (2003a) has been employed for mathe-
matical treatment. It is concluded that

(a) There can exist two coupled longitudinal displacement waves, two coupled longi-
tudinal microrotational waves and six coupled transverse waves (two of them purely
depend on fluid parameters) in an infinite micropolar mixture of porous media. All the
waves are found to be dispersive and attenuated in nature. It has been verified that
when the presence of fluid is neglected from the mixture, these waves exactly reduce
to the elastic waves of micropolar elastic solid earlier obtained by Parfitt and Eringen
(1969).

(b) It is found that there is a significant effect of presence of fluid in the mixture.
The longitudinal displacement wave corresponding to solid constituent in micropolar

mixture is found to be dispersive at low range of frequency parameter, while it is in-
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dependent of the frequency in micropolar elastic solid.

(c) Phase velocities of all the waves corresponding to the micropolar viscous fluid ap-
proach to infinity as the frequency approach to infinity.

(d) If the viscosity and micropolarity of the liquid constituent are neglected, then there
can exist three longitudinal waves (two corresponding to displacement and one corre-
sponding to microrotational) and two transverse waves (corresponding displacement
and microrotation of solid) in a continuum mixture of micropolar solid with Newto-
nian liquid.

(e) The formulae for reflection coefficients, energy ratios and surface responses have
been derived and computed numerically. It is found that the reflection coefficient and
energy ratio corresponding to those reflected wave which propagates with same velocity
as that of the incident wave, are dominant.

(f) We also concluded that the wave velocity V] is greater than the wave velocity V5,
up to certain value of frequency parameter and after that velocity V5 is found to be
more than the velocity V;. Similarly, the phase velocity Vs is found to be more than
the phase velocity Vg up to certain value of frequency parameter and thereafter the

phase velocity Vg is found to be more than the phase velocity Vs.
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Chapter 6

Waves in a cylindrical borehole

filled with micropolar fluid’

6.1 Introduction

Biot (1952) studied the propagation of elastic waves in a cylindrical bore filled with
and without fluid and embedded in a uniform elastic solid of infinite extent. He studied
two-dimensional problems and obtained dispersion relations for the waves propagating
along the boundary of such a cylindrical borehole. Since then several problems con-
cerning the cylindrical bore have been attempted by several authors. Some of them
are Banerji and Sengupta (1977a, b), Sengupta and Chakrabarti (1980), Sharma and
Gogna (1990), Tomar and Kumar (1999a), Deswal et al. (2000), Kumar and Deswal
(2002a), Bhujanga Rao and Rama Murthy (2002), Vashishth and Khurana (2005) and
Arora and Tomar (2007) including others. Recently, Cheng and Blanch (2008) reviewed
the methods of simulating elastic wave propagation in a borehole by considering two
different approaches, a quasi-analytic approach known as the discrete wavenumber sum-
mation method and a finite difference method. In this Chapter, we have investigated
a problem of propagation of surface waves in a cylindrical borehole of infinite length
embedded in an infinite micropolar elastic solid and filled with a micropolar viscous
fluid. Frequency equation relevant to the propagation of surface waves is derived and

then solved numerically for a particular model. The effect of borehole radius, microp-

>Journal of Applied Physics Vol. 104(1), (2008).
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olarity and viscosity of the contained fluid column is noticed on the dispersion curves.
The present model may be viewed in a situation arising in the field of oil-well explo-
ration. The oil inside the oil-well is generally found in a crude form containing several
impurities and therefore can be best modeled with muddy like/dusty viscous fluid of

micropolar nature. Thus, the present problem may be of great help to oil companies.

6.2 Formulation of the problem and frequency equa-
tion

For micropolar solid and micropolar fluid, we follow the equations of motions and con-
stitutive relations given by equations (4.1)-(4.8) in Chapter-4. We consider a circular
cylindrical bore of radius ’a’ through a micropolar elastic medium of infinite extent.
Taking the cylindrical polar co-ordinates (r, 6, z) such that the z— axis is pointing
vertically upward along the axis of the cylinder. Our aim is to derive the frequency
equation relevant to the propagation of axial symmetric waves, which are harmonic
along the axial direction. To discuss the surface waves at micropolar fluid/micropolar
solid interface, we consider the following forms of the displacement and microrotation

vectors as

us - (uf‘7 07 ui)? ¢s = (O? qbg?O)?
uw = (uf, 0, ul), ¢’ =0, ¢{,0).

Since we are considering axially symmetric waves, therefore, the quantities would re-

main independent of §. With these considerations, the above equations (4.1) and (4.2)

become

1. oel Obd O*uf

(ﬂf+Kf)(v2—ﬁ)u{+(Af+Mf)W—Kfa_; = pf 5 (6.1)
d¢l KT o(reh) O*uf

f o ghw2! f f il 2/ _ Hf z .2
(W + KDV + (N 4 )+ === =2 = o (6.2)

1 : dul  ou! 02
(V2 - =) - 2Kf] ¢y + K <_az -5 > = pl 5! 8t22’ (6.3)
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and equations (4.3) and (4.4) become

o+ KNV = Sz () 20 g0 O (6.4)
(1° + K )V + (A + /ﬁ)%ezs + ]is 8(gf§) =y’ 8;:?’ (6.5)
P(V? — 712) - ZKS} ¢+ K° @f - if) = Sjsa;f, (6.6)
where et = 100) L O gr_ T 10 L T

Introducing the potentials ¢'%, 1/ and T'? as follows

8¢/R 82¢R a¢/R 82 8FR
R _ R _ (o2 R R_ _
= Yoo e \Y Ta2)Y 2T (60

into equations (6.1)-(6.6), we obtain

(g + Br)V? — Ogle™ =0, (6.8)
[(ch + C:%,R)VQ - DRW’R + C%RFR =0, (6.9)
[3pV? — 22, — Ol — 2,V*f =0, (6.10)

where

0} forR=s,
Op =
3t fOI"R:f.

We note that equation (6.8) is uncoupled in the potential ¢'f, while equations (6.9)
and (6.10) are coupled in the potentials ¢/ and I'®. Next, we shall find the solutions
of these equations for time harmonic waves propagating along z— direction. In order

to solve the equation (6.8), we take

¢ = X1 (r) exp{a(kz — wi)},
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where the symbols w, k and ¢(= w/k) represent the angular frequency, the wavenumber

and the phase velocity, respectively. Inserting it into equation (6.8), we obtain

Ot 10X

52 T — M) =0, (6.11)
where )
ARV 2 w_.
( 1) VI%I

The expressions of quantities Vy; and Vy; are given by
Vo +d, VA= —wld+dp.
From equations (6.9) and (6.10), one can obtain
{AV* + BV? + CY (R, TH) =0, (6.12)

where

A=cip(Gr+Ar), B=pcir — Orcip — (Gr + Br) (265 + Or)

and

C = Og(2c5z + Og).

Equation (6.12) can be further written as
{(V* = 0)(V* = a2 (", T) =0, (6.13)

1 1
where 6, = o [~B + VB? — 1AC] and 8, = o—[~B — VB —4AC).

Let us find the solution of equation (6.13) corresponding to 1%, by taking

Y = x5 (r) exp{a(kz — wi)}.
Inserting it into equation (6.13), we obtain

Pxy | 1oxy
or? r Or

- =0 (1=23), (6.14)
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w2

where (Af)? = k? — vz

The expressions of the quantities V; and Vy; are given by

1
VA = 5 b (F — dac)' /)

1
Vis 3= 2—@/[—()’ + (0 — 4a'c)'?],
where
a=1 —201(2]/0)2, b= C§S+C§s+cl2ls - (2C§S+C§s)w(2)/w27
c= C?ls(cgs + Cgs)’ w(Q) = C(QSS’ CL, =w + 2262f’
V = wlwdy; + (G + ) (w + 2ucgy) + e8], = -’ (3 + ).

We note that the equations in (6.11) and (6.14) are the modified Bessel differential
equations of order zero. Their solutions are the modified Bessel functions of first
and second kind, i.e., Io(Afr) and Ko(Afr) (j = 1,2,3). Note that the function Iy is
bounded as r — 0, the function Ky — 0 as |r| — oo and they represent incoming and
outgoing waves in cylindrical coordinates, respectively.

Now, we intend to apply the boundary conditions at the fluid— solid interface.
For the type of waves considered in a fluid-filled cylindrical borehole, there are three
boundary conditions at the surface of the cylindrical borehole:

(i) the motion (i.e., displacement and micro-rotation) must remain finite at the center
of the borehole.

(ii) there are no incoming waves from infinity.

(iii) the displacement, micro-rotation and stresses at the fluid—solid interface should
be continuous.

Thus, condition (i) implies that only the function I, would work in the inner fluid
column, and condition (ii) implies that the function K, alone would work in the outer
formation. Hence, the general solutions of equations (6.8) - (6.10) satisfying the bound-

ary conditions (i) and (ii) (with a common factor exp{u(kz — wt)}) can be written as

{¢", ¢} = {AKo(Xir), A{L(M)}, (6.15)
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{0°, W} = {[A3 Ko (Nr) + ASKo(Nsr)],  [ASLo(Nr) + AL To(Mr)l}, (6.16)

{*, T} = {[A3Ko (W) + AFKo(N3r)], [ATo(Nr) + AT Lo(Ar)T}, (6.17)

where the quantities A3, A, A3 A Al AY A3 A Al and AY are arbitrary con-
stants. Note that the solution of coupled equations corresponding to I'”? can be obtained
by plugging the solution of ¢# from (6.16) into equation (6.9), where the unknown co-

efficients are given by
A=b3A3,  AT=B3A7,  Af=n0Al AT =bAd,

2 2 2
s _ Cst 3|9 w s \2
by o= 23 k2 - ()5,
2,3 2 2 + 2 2,3 ’
CBs 025 C3s

and

w
B = - (A§,3)2] :

3+ 35

In our present problem, the fluid column inside the micropolar solid formation is mi-
cropolar as well as viscous in nature. Since the micropolar viscous fluid can support
couple stresses and shear stresses, therefore, both shear and couple stresses must be
taken into account while formulating the boundary conditions at the surface of cylindri-
cal borehole. Thus, the boundary condition (iii) implies that the radial displacement,
micro-rotation, radial force stress, shear force stress and couple stress across the fluid-
solid interface must be continuous. Mathematically, these boundary conditions can be
expressed as follows.

At the fluid - solid interface, r = a

moy = mfe, uy = uf, ul = ug, o5 = ¢>§ (6.18)

Using (4.5)-(4.8), (6.7) and (6.15) - (6.17) into the above boundary conditions given
in (6.18), we obtain a system of six homogeneous equations in six unknowns namely,

A3, A3, A, Al AL and AY | given by
)\s
{{(X +21° + K°)(X])? = MK Ko(Aa) + (21° + Ks)jKl(Aia)}Ai
+ok(20° + K*)(\)2K, (M) AS + 1k (2u° + K°)(A3)2 K, (Asa) A3
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f
+w{[(M + 20 + KN (M)? = MEIo(Ma) — (20 + Kf)%h(A{ a)}Af
—wk(2p + KN\ I (Ma) A — wk(2p! + K1) (M) Iy (Ma)Af =0, (6.19)

—(2p° + K*) kX K1 (AJa) A + N[(1° + K®)(X3)? + p°k + K°b3] K (Aja) A3
N1+ K5 (03?4 1k + KWK (M\a) A — wk(2p! + KM L (M a) Al

—w (1 + KDY + ik + K76 L (Ma) A

—w (1 + KNY(M)? + pf k2 + Kbl (Ma) A =0, (6.20)
153 | =2 KaNa) 42N | 45 41525 | T K + 4RI 47

f
i MIZ L (M) M (Ma) 4]
f ,
b (1 (Ma) — /NI ()] A7 = (6.21)
N K (Na)AS + kA K (Na) A5 + kA K (M)A + M LM a) AT + kM T (M a)AS
+ikM L (Ma)AY =0, (6.22)
kKo(Aa) AT — (A5)*Ko(Asa) A3 — (X5)° Ko(Mja) Ay — tkIp(Ma) Af

+(M)2Io(Ma)Af + (M) T(Ma) AT =0, (6.23)

DAL (ASa) A3 + BINSKL (M) AS + WA T (M a) AL + b M L (Ma)AY =0, (6.24)

For a nontrivial solution of these equations, the determinant of the coefficient matrix
must vanish. This will provide us the frequency equation for the propagation of surface

waves at the micropolar solid /micropolar fluid interface, given by

D(k,c, F) =0, (6.25)
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where D is the determinant of the coefficient matrix [a,,,|6x6 of the homogeneous linear
system of equations (6.19)-(6.24). Here, the parameter F' involves the geometrical and
material constants. The non-dimensional entries of the matrix a,,, in the equation

(6.25) are given by

an = (ka){[(C AR ) — (k) Ko0a) + (X e (V).
ons = b ([ 22T I g X a0
B R (o))
s = k) (P )G (),
a1 = —(ka) (5 (Mg T (] ga).

Q,MS + K3

Qo1 = —Z(ka)Q(Ai@[ \

]Kl(kia)a

azs = (Na)[(Na) (M55 + (ka)*ks + (ba?) 55K (Ma),

)\s )\S

f 2\ f 2pfw 4+ Kfw ¥

agy = —(Ma)(ka) ()xla)(T)Il(/\la),
fo+ Klw fw Kfw

a2j=—Z(Af_ga)[(Af—sa)Z(MT)ﬂL(/fa)ﬂ&—sﬂbf—sf) T [L(A_sa), as =0,
a5 = (Ba?) (X0 oy K (Xa) + s (X)L (Aa)], ass = 0
i = )N Al Ae) T s @ e Aia)), !

;o oy Be Yw po g
azj = Ubj_307)(Nj_50) |55 11(Xj50) = 55 (Njsa) [1(Aj_5a)],

ag1 = (ka)(Aa)Ki(Aja), ag = 1(ka)(Na)Ki(Aja), agq = (k:a)(/\{a)fl(/\{a),
ay; = z(k;a)()\g_ga)ll(/\ga), as; = 1(ka)?*Ko(Ma), as = —(XNa)*Ko(\a),

asy = —1(ka)*Io(Ma), as; = (A;f_ga)ZJO(A;.”_?,a), agr =0, ag = (ba®)(Noa)K1(Xa),
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agy =0, ag; = (b{_gaz)(/\f_ga)ll()\;_ga) fori=2, 3, and j =5, 6.

It can be noticed from equation (6.25) that for a fixed value of parameter F', it is
an implicit functional relationship between the wavenumber and the phase velocity.
Moreover, some of the coefficients are involving complex quantities, therefore, it is ex-
pected that the relevant surface waves are dispersive and attenuated.

For the waves of very short wavelengths, i.e., for sufficiently large values of ka, the
dispersion equation (6.25) will converge to the dispersion equation of Stoneley-type
surface waves at micropolar solid /micropolar fluid interface. For this to achieve, mak-
ing ka — oo and using the asymptotic expansions of the modified Bessel functions

given by

1

2mu

Ko(u) = Ky(u) = \/%exp(—u), In(u) = L (u) =

exp(u), as u — o0,

The dispersion relation (6.25) reduces to the equation (4.44) in Chapter-4 for the

propagation of Stoneley waves at micropolar solid/micropolar fluid interface.

6.3 Numerical results and discussions

Since some of the entries of the determinantal equation (6.25) are complex, therefore
it is not analytically possible to find the roots of this equation for a given value of
wavenumber. So, for a given value of wavenumber, equation (6.25) is solved numerically
by taking numerical data of the physical parameters. For a specific model, we have
investigated the dispersion relation (6.25) numerically. Since this equation is an implicit
functional relation of wavenumber and phase velocity of Stoneley waves, therefore one
can proceed to find the variation of phase velocity with wavenumber. Once the phase
velocity is computed at different wavenumbers, the corresponding group velocity, V;

can be determined from the formula given by

dc

For numerical computations, we take the following values of the relevant parameters
for micropolar solid (aluminium epoxy) and micropolar fluid. The radius ’a’ of the

cylindrical borehole is taken a = 10 em, whenever not mentioned.
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Symbol Value

A8 7.59 x 10 dyne/cm?

u 1.89 x 10" dyne/cm?
K* 0.0149 x 10'° dyne/cm?
3* 0.0226 x 10 dyne

v® 0.0263 x 10 dyne

J° 0.00196 cm?

0° 2.192 gm/em?

M 1.0 x 10'° dyne sec/cm?
w! 0.5 x 10'Y dyne sec/cm?
K7 0.0110 x 10 dyne sec/cm?
Bf 0.0122 x 10%° dyne sec
o 0.0126 x 10'° dyne sec
g7 0.00140 cm?

i 1.0 gm/em?

Suppose the roots of equation (6.25) lie along a smooth curve C in the phase velocity-
wavenumber domain, then for a particular value of wavenumber £ = ky, 3 some
¢ = ¢g € C such that D(ko,co, F') = 0. The dispersion relation c(k, F') for this mode,
is obtained by tracing the locus of the root in the ¢ domain as k takes values greater
than ko. We require that the dispersion curve c(k, F') € C, should also be a smooth
function of k£ in order to avoid a mix-up with other modes at possible points of degener-
acy where different dispersion curves intersect. This notion of dispersion leads directly
to a numerical method for computing modal dispersion curves practically. Starting
from ¢y, one or two (depending on whether ¢, is an endpoint of C or not) sequences
of sufficiently close phase velocity on C are computed. Using the initial guess, c¢(ko, F')
is determined by finding the zero of D(k,c, F') with the help of MATHEMATICA.
Subsequently, stepping along k away from kg, all the samples of ¢(k, F) are computed
for each k, using the value of ¢ found at the previous wavenumber as initial guess.
Thus the dispersion curve is obtained by this mode tracking procedure. In the present
computation, we have computed non-dimensional phase velocity (¢/Vy;) from equation
(6.25) at different real values of non-dimensional wavenumber, ka using MATHEMAT-
ICA. Tt is found that the phase velocity is complex in nature, which means that the

concerned waves are not only dispersive but possess attenuation too.
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Figure 6.1: Comparison of the real parts of phase velocities and group velocities at
different radii of the borehole.

Figure 6.1 depicts the variations of the real parts of the non-dimensional phase and
group velocities with the real non-dimensional wavenumber corresponding to two dif-
ferent values of the radii of the borehole. The solid curves correspond to the case when
the radius of the borehole is 10 ¢m, while the dotted curves correspond to the case
when the radius of the borehole is 20 ¢m. We observe that for small values of the non-
dimensional wavenumber, there is significant effect of the radius of the borehole. The
increase in radius of the borehole results in decrease in the phase velocity of the surface
waves. As the value of the non-dimensional wavenumber increases and takes higher
and higher values, the non-dimensional phase velocity of the surface waves, for both
the radii, tends to the same value and remains constant, which is equal to 0.588676.
We also notice that the group velocity is less than the phase velocity for small values of
wavenumber for both the radii. However, for higher values of wavenumber, the values
of group and phase velocities also tend to the same value.

Figure 6.2 represents the variation of the imaginary parts of the non-dimensional
phase velocity versus non-dimensional wavenumber at two different radii of the bore-
hole. We see that at a given value of ka, the value of the imaginary part of the

non-dimensional phase velocity corresponding to a = 10 ¢m is greater than that of
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Figure 6.2: Comparison of the imaginary parts of phase velocities at different radii of
the borehole.

corresponding to a = 20 cm. However, corresponding to both the radii considered, the
values of the imaginary parts of the phase velocity increase with increase of wavenum-
ber. Since the imaginary part of the phase velocity is connected with attenuation of
the corresponding waves, therefore, we may conclude that the concerned surface waves
are more attenuated when the borehole radius is relatively small.

Figures 6.3 and 6.4 show the effect of fluid viscosity on the dispersion curves corre-
sponding to the real and imaginary parts of the non-dimensional phase velocity. The
solid curves in Figure 6.3, correspond to low viscosity fluid and the dotted curves corre-
spond to high viscosity fluid. For limitedly high and low viscous fluids, we have taken
the numerical values of the relevant coefficient as u/ = 2.0 x 10'° dyne sec/cm? and
p/ = 0.00001 x 10'° dyne sec/em?, respectively. However, we have kept the density of
the fluid to be fixed for both types of fluids, which may not be the same in general.
These numerical values of the coefficient 1/ are taken for computational purposes only.
We see that the real part of the phase velocity for highly viscous fluid is greater than
that for the low viscous fluid upto certain values of the non-dimensional wavenumber
'ka’. In Figure 6.4, we have depicted the variation of the imaginary part of the phase

velocity with the wavenumber at two different values of u/, the viscosity of the fluid.
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Solid curves: Low viscosity of micropolar fluid
— Dashed curves: High viscosity of micropolar fluid
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Figure 6.3: Comparison of the real parts of phase velocities and their group velocities
at very low and very high viscosity p/ of micropolar fluid.

0.06

High viscosity

Imaginary part of non-dimensional phase velocity
o
S
|

-0.02 L B B B I O BN

0.0 0.2 04 0.6 0.8 1.0
Non-dimensional wavenumber

Figure 6.4: Comparison of the imaginary parts of phase velocities at very low and very
high fluid viscosity u/ of the micropolar fluid.
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Figure 6.5: Variation of real part of phase velocity versus micropolar fluid viscosity (u/).

The solid curve corresponds to highly viscous fluid and dashed curve corresponds to
low viscosity. We see that the imaginary part of non-dimensional phase velocity cor-
responding to highly viscous fluid is greater than that corresponding to low viscous
fluid. Hence, we may conclude that the attenuation of the surface waves decrease with
decrease of the viscosity of the fluid.

Figures 6.5 and 6.6 depict the variation of the real and imaginary parts of the phase
velocity versus viscosity u/, when a = 10 ¢m and ka = 5. we observe that the real
and imaginary parts of the non-dimensional phase velocity increase with the increase
of u/.

Figures 6.7 and 6.8 depict the variation of the real and imaginary parts of the non-
dimensional phase velocity versus micropolarity K, the micropolarity of the fluid. It
is clear from these figures that both the parts of the phase velocity increase very slowly
with K7. Hence, the effect of the micropolar parameter, K/ on the dispersion curve is
not appreciable as compared to the effect of viscous parameter, i/ on the dispersion

curve.
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Figure 6.6: Variation of imaginary part of phase velocity versus micropolar fluid viscosity
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Figure 6.7: Variation of real part of phase velocity versus micropolarity of the fluid K.
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Figure 6.8: Variation of imaginary part of phase velocity versus micropolarity of the
fluid K.

6.4 Conclusions

A problem of propagation of Stoneley type waves at the surface of a cylindrical bore-
hole situated in an infinite micropolar elastic medium is investigated. The cylindrical
borehole is assumed to be vertical and filled with micropolar viscous fluid. Using ap-
propriate boundary conditions, the frequency equation corresponding to the surface
wave propagation is derived and solved numerically for a particular model. From the
present analysis, it can be concluded that

(a) The frequency equation corresponding to the surface wave propagation is found to
be dispersive and attenuated in nature.

(b) The increase in radius of the borehole results in decrease the phase velocity of the
surface waves.

(c) On the real part of the phase velocity of the surface waves, the effect of viscosity
is found to be more dominant as compared to the effect of micropolarity of the fluid
column. It is found that higher is the viscosity of the fluid, slower is the phase velocity
of the surface waves.

(d) The phase and the group velocities are found to be affected only at small values
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of the wavenumber, while at higher values of the wavenumber, both phase and group
velocities are found to be the same and constant. This constant phase velocity corre-
sponds to the wave speed of Stoneley wave at micropolar solid/fluid interface.

(e) For a given value of the wavenumber, the imaginary part of the phase velocity at

a = 10 em is found to be greater than that of at a = 20 cm.
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