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Chapter- 1

Chapter 1

Introduction

1.1 Microcontinuum theories

Classical theory of elasticity deals with those materials, in which the material is con-

sidered as a continuum in mathematical sense. In such continuum, we neglect the

molecular structure of the material and its points are regarded as material particles,

i.e., the material particles are simply the geometrical points. In three dimensional

Euclidean space, the continuous distribution of particles is characterized by a scalar

quantity, called density of the material. The deformation of the body is characterized

by the displacement vector and the transmission of loads across a surface element is

uniquely determined by a force, called stress vector. Thus, the deformation of the

body is described in terms of symmetric tensors of stress and strain. Within the elastic

limits, some materials, e.g., steel, aluminium, concrete etc are found to exhibit results

fairly coinciding with those of experimentally observed. However, in some materials,

e.g., fibrous, polymers, asphalts, remarkable discrepancies are observed between the

experimental results and those obtained using classical elasticity. These discrepancies

are mainly because of the dominance of atomic structures of the material neglected

in classical elasticity. These discrepancies are clearly noticed in case of dynamical

problems of elastic vibrations involving high frequencies and short wavelengths, i.e.,

ultrasonic waves. When the wavelength is of the same order of magnitude as the av-

erage dimension of the microelements, the intrinsic motion of the microelements of a

volume element with respect to the center of mass of the volume element, can affect

the response remarkably. The influence of microstructure becomes more important in
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the case of vibrations of granular and multimolecular bodies, where new types of waves

appear, not encountered in classical theory of elasticity.

Voigt (1887) was the first who tried to correct these shortcomings of classical elas-

ticity by taking into account the assumption that interaction between the two parts

through an area element inside the body is transmitted not only by a force vector but

also by a moment vector giving rise to a ’couple stress theory’. This assumption led

to the fact that not only the force stresses but also the couple stresses acting on the

faces of an elementary parallelepiped are asymmetric in nature. The complete the-

ory of asymmetric elasticity was developed by Cosserat and Cosserat (1909), which

was non-linear in the beginning. They assumed that each material point of a three

dimensional continuum is associated with a ’rigid triad’ and during the process of de-

formation, it can rotate independently, in addition to the displacement. This is how,

the concept of rotation of a point was introduced in the continuum. The assumption

of these additional degrees of freedom of rotation at each material point led to the

consequence of the asymmetry of strain and stress tensors. This very idea of Cosserat

brothers provided a good continuum modelization for molecular lattices, in which a

group of particles (atoms, molecules) bounded by important cohesive forces forms a

rigid system subjected to rotational motion.

In spite of novelty of the idea, the Cosserat brothers’ work did not catch sufficient

attention of the then researchers and the theory remained dormant during their life-

time. May be because the theory was non-linear in nature and its presentation as a

unified theory incorporating mechanics, optics and electrodynamics. After a gap of

about fifty years, Cosserats theory drew attention of researchers and several Cosserat

- type theories were developed independently, e.g., Gunther (1958), Grioli (1960), Ra-

jagopal (1960), Aero and Kuvshinskii (1960), Mindlin and Tiersten (1962), Toupin

(1962), Eringen (1962), Koiter (1964), Palmov (1964), Nowacki (1974), among several

others. In all these theories, the kinematic variable corresponding to rotation of a point

is taken into account, but not as an independent variable like in Cosserats theory. Of

course, these theories were similar to Cosserats theory, but were called by name, e.g.,

Toupin’s theory was called ’Cosserat theory with constrained motion’, Koiter’s theory

was called ’Couple stress theory’, Eringen’s theory was called ’Indeterminate couple

stress theory’, Nowacki’s theory was called ’Cosserat pseudo-continuum theory’ etc. In

Nowacki’s theory, the micro-rotation vector φ is fully described by the displacement

2



Chapter- 1

vector u through the formula φ = 1
2
∇ × u. Later, the general Cosserat continuum

theory acquired the name of ’micropolar continuum theory’ following Eringen (1966a),

in which the micro-rotation vector is taken independent of displacement vector. Erin-

gen and Suhubi (1964) and Suhubi and Eringen (1964) developed a non-linear theory

for ’micro-elasticity’, in which intrinsic motions of the microelements were taken into

account. This theory is basically the generalization of ’Indeterminate couple stress

theory’ and ’Cosserat theory’ in the sense that in this theory the skew-symmetric part

of the stress tensor, the symmetric part of the couple stress tensor and the spin inertia

are fully covered.

A further generalization of the continuum with microstructure leads to micromor-

phic continuum (Eringen 1964b). Micromorphic continuum treats a material body

as a continuous collection of a large number of deformable particles, with each parti-

cle possessing finite size and inner structure. Using assumptions such as infinitesimal

deformation and slow motion, micromorphic theory can be reduced to Mindlin’s mi-

crostructure theory (1964). When the microstructure of the material is considered

rigid, it becomes the Eringen’s micropolar theory (1966a). Assuming a constant mi-

croinertia, Eringen’s micropolar theory is identical to the Cosserats theory (1909).

Eliminating the distinction of macromotion of the particle and the micromotion of its

inner structure, it becomes couple stress theory (Mindlin and Tiersten, 1962; Toupin,

1962). Moreover, when the particle reduces to a mass point, all theories reduce to

classical or ordinary continuum mechanics. The theory developed by other researchers

in that time are found to be in close contact with the theory of ’microelasticity’. The

connections between various theories of microcontinua has been nicely presented by

Eringen (1999). Eringen (1966a, 1990) developed the theories of ’micropolar continua’

and ’microstretch continua’, which are special cases of the theory of ’micromorphic

continua’ earlier developed by Eringen and his coworker (1964). Thus, the Eringen’s

’3M’ theories (Micromorphic, Microstretch, Micropolar) are the generalization of the

classical theory of elasticity. As said earlier, in classical continuum, each particle of a

continuum is represented by a geometrical point and can have three degrees of freedom

of translation during the process of deformation. While in micromorphic continuum,

each particle is itself a continuum of small extent, which can further deform during the

process of deformation of the whole continuum. Thus, a micromorphic body or micro-

continuum can be thought of a continuous collection of deformable point particles. At

3



each point of a micromorphic body, in addition to the translational degrees of freedom,

it has deformable directors giving extra degrees of freedom. Thus, in polar continuum

mechanics, each material point carries its own deformable microstructure. The defor-

mation of a particle in a micromorphic continuum is composed of ’classical macrode-

formation’ and ’microdeformation’ (micro-rotation of directors and microstretch of di-

rectors). During the process of deformation of a Microstrech continuum, each point

can undergo micro-rotation and microstretch (breathing micro-motion) without micros-

hearing (breathing micro-rotation). Note that ’breathing micro-motion’ is responsible

for expansion or contraction of the particle, while ’breathing micro-rotation’ is respon-

sible for changing the shape of the particle. Thus in microstretch bodies, there are

seven degrees of freedom given by three of translation, three of micro-rotation and one

of stretch. In microstretch continuum, the directors at a typical point are orthogonal

and they are allowed to breath in their directions, in addition to rotation. Micropolar

continuum is again a special case of microstretch continuum, in which microstretch is

absent and the deformation of a micropolar continuum is characterized by six degrees

of freedom, namely, three of translation and three of micro-rotation. In micropolar

continuum, the directors are orthonormal and rigid, consequently, the micro-motion is

only a rigid body rotation with respect to an axis, in addition to motion at macroscale.

Note that in classical theory of elasticity, there is no concept of directors. The relation

between these continuum can be ascribed through Figure 1.1.

Eringen’s theory of polar elasticity keeps importance because of its applications in

many physical substances, e.g., material particles having rigid directors, chopped fiber

composites, platelet composites, aluminium epoxy, liquid crystal with side chains, a

large class of substances like liquid crystals with rigid molecules, rigid suspensions,

animal blood with rigid cells, foams, porous materials, bones, magnetic fluids, clouds

with dust, concrete with sand and muddy fluids are examples of micropolar materials;

polymers with flexible molecules, animal lungs, bubbly fluids, polluted air, springy

suspension, mixtures with breathing elements, porous media, lattices with base, fish

colonies that live in ground are examples of microstretch materials; animal blood with

deformable cells and turbulent fluids with flexible vortices are best examples of micro-

morphic continua.

Grot (1969) extended Eringen’s theory of micromorphic materials and developed

a theory of thermodynamics of elastic materials with microstructure whose microele-

4
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Figure 1.1: Sub-classes of Eringen’s Micromorphic continua.

ments, in addition to microdeformations, possess microtemperatures. He applied mod-

ified Clausius-Duhem inequality to include microtemperatures, and the first order mo-

ment of the energy equations are added to the usual balance laws of a micromorphic

continuum. Recently, a linear theory of Eringen’s microstretch elastic materials has

been extended by Iesan (2007) by incorporating microtemperatures at microelements,

but neglected microrotational effects. In Iesan’s theory, the material particles possess

microtemperatures, in addition to classical displacement and temperature fields and

they can stretch and contract independently of their translation. He called his theory

as the theory of microstretch thermoelastic bodies with microtemperatures. Eringen

(2003b) extended his theory of micromorphic continuum to include electromagnetic

phenomena and called it as micromorphic electromagnetic theory and discussed wave

propagation. The theory of microstretch materials has also been extended by Eringen

(2004) himself to include electric and magnetic effects and named it as ’electromagnetic

theory of microstretch elasticity’.
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1.1.1 Deformation and microdeformation

Consider a material point P of a continuum B contained in a volume V bounded by a

surface S in its undeformed state and located at position (X1, X2, X3) with respect to

a rectangular frame of reference. If the body is allowed to move and deform under some

external loads, it will occupy a region B′ of volume V ′ and having surface S ′. Referred

to the same rectangular frame of reference, let the new position of the material point

P be (x1, x2, x3). Under the assumptions of indestructibility and impenetrability of

matter, each material point in the undeformed body B will occupy a unique position

in the deformed body B′. Conversely, each point in B′ can be traced back to a unique

point in B. Thus, the deformation of the body at time t may be described by a one-one

and onto mapping as follows

xk = xk(X1, X2, X3, t), k = 1, 2, 3 (1.1)

and its inverse motion

XK = XK(x1, x2, x3, t), K = 1, 2, 3. (1.2)

We assume that equation (1.2) is a unique inverse of equation (1.1) for all the points

contained in the body except possibly at some singular surfaces, lines and points. For

this to be valid, the three functions xk(X1, X2, X3, t) must possess continuous partial

derivatives with respect to X1, X2, and X3 for all times, and the Jacobian

J ≡ det
∂xk

∂XK

=

∣

∣

∣

∣

∣

∣

∣

∂x1/∂X1 ∂x1/∂X2 ∂x1/∂X3

∂x2/∂X1 ∂x2/∂X2 ∂x2/∂X3

∂x3/∂X1 ∂x3/∂X2 ∂x3/∂X3

∣

∣

∣

∣

∣

∣

∣

, (1.3)

must not vanish. We define the deformation gradients xk,K and XK,k given by the

following partial derivatives

xk,K ≡ ∂xk/∂XK , XK,k ≡ ∂XK/∂xk, (1.4)

In the granular and fibrous structured bodies, if the physical phenomenon under

study has a certain characteristic length (such as wavelength), comparable with the size

of grains in the body, then the microstructure of the material becomes important and
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it must be taken into account while studying the problems of deformation. For such

bodies, classical continuum mechanics must be modified by incorporating the effect of

granular structure of the medium. To account the microstructure of the continuum,

we shall consider the material point of the continuum as a continuum of small extent,

which itself undergo deformation under the action of applied forces. We may call this

deformable material point as ’macroelement’. Let this macroelement has volume △V ,

density ρ and enclosed within the surface △S in the undeformed state of the body.

With reference to certain fixed Cartesian system, let the position vector of the center of

mass of the macroelement P having volume △V be denoted by X. Suppose the element

P (i.e, △V + △S) contains N discrete micromaterial elements called ’microelements’,

△V (α)+△S(α), (α = 1, 2, ....., N), each with a mass density ρα. As the macroelements

are constructed by microelements, therefore,
∑N

α=1 ρα△V (α) = ρ△V. The position

vector of αth microelement positioned at Q may be expressed as

X(α) = X + Ξ(α), (1.5)

where Ξ(α) is the position vector of αth microelement relative to the center of mass

of the macroelement. Upon the deformation of the body, the macroelement P (i.e.,

△V + △S) goes into new macroelement p (i.e., △v + △s) with the microelement

displaced with respect to its center of mass. Because of the relative change in the

positions of the microelements, the microelement Q goes to a new position q with

respect to center of mass of p (see Figure 1.2).

The final position of the αth particle will therefore be

x(α) = x + ξ(α) or x
(α)
k = xk + ξ

(α)
k , (1.6)

where x is the position vector of the center of mass of macroelement p having volume

△v and ξα is the relative position vector of the point q in the deformed state. The

motion of the center of the mass of P having volume △V is expressed by equation (1.1)

as

x = x(X, t) or xk = xk(XK , t), (1.7)

7



Figure 1.2: Deformation of microvolume.

The relative position vector ξ(α), however, depends not only on X and t but also on

Ξ(α), i.e.,

ξ(α) = ξ(α)(X,Ξ(α), t) or ξ
(α)
k = ξ

(α)
k (XK , Ξ

(α)
K , t), (1.8)

Note that the transformation given by (1.7) is called ’macromotion’ and the transfor-

mation given by (1.8) is called ’micromotion’.

Since the material particles are of infinitesimally small size as compared to macro-

scopic scale of the body, and assuming that ξ(α) is analytical function of Ξ(α), therefore

expanding ξ(α)(X,Ξ(α), t) by means of McLaurin’s series in terms of Ξα
1 , Ξα

2 and Ξα
3

(retaining linear terms only for sufficiently small |Ξα|) as,

ξ(α) = ξ(α)(X, 0, t)+χ1(X, t)Ξ
(α)
1 +χ2(X, t)Ξ

(α)
2 +χ3(X, t)Ξ

(α)
3 , α = 1, 2, ..., N

Since X is taken to be the centroid of particle P , therefore ξ(α)(X, 0, t) = 0 and the

above equation can be written as

ξ(α) = χK(X, t)Ξ
(α)
K or ξ

(α)
k = χkK(X, t)Ξ

(α)
K , (1.9)

8
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where χK(X, t) =

[

∂ξα

∂Ξα
K

]

Ξα
K

=0

and summation convention is taken over repeated in-

dices. Equation (1.9) defines the homogeneous (or affine) deformation of macroelement

△V . Thus the material points in △v +△s undergo a homogeneous deformation about

the center of mass.

A material is called a micromorphic continuum if its motions are characterized by

(1.7) and (1.9). In order to determine these motions, one will need to determine three

scalar functions xk(X, t) and three vector functions χK(X, t), (equivalently nine scalar

functions χkK). Using (1.9), equation (1.6) can be written in coordinate form as

x
(α)
k = xk(X, t) + χkK(X, t)Ξ

(α)
K , k, K = 1, 2, 3 (1.10)

Thus, the spatial position x
(α)
k of the αth material point, requires 12 functions (three

due to xk(X, t) and nine due to χkK(X, t)).

We assume that the ’macro’ and ’micro’ motions given by (1.7) and (1.9) are continuous

and possess continuous partial derivatives with respect to XK and t, and they are

invertible uniquely, i.e., the inverse motions are defined by

X = X(x, t) or XK = XK(xk, t), (1.11)

Ξ(α) = ℑk(x, t)ξ
(α)
k or Ξ

(α)
K = ℑKk(xk, t)ξ

(α)
k , (1.12)

Here, the second order tensors χkK and ℑKk are called ’microdeformation’ and ’inverse

microdeformation’ tensors, respectively. These are the deformable directors. Upon

deformation, the three independent directors ℑK goes to three independent directors

χk, as follows

χK = χkK(X, t)̂ik, ℑk = ℑKk(x, t)̂IK , (1.13)

where ÎK and îk are, respectively, the unit base vectors for the material coordinates

XK and the spatial coordinates xk. Note that the existence of solutions of (1.7) and

(1.9) requires that

J = det(xk,K) =
1

6
ǫKLMǫklmxk,Kxl,Lxm,M and j = det(χkK) =

1

6
ǫKLMǫklmχkKχlLχmM

9



must be positive in some neighborhood of X during the time interval under consid-

eration. Here J represents the macrovolume change with macrodeformation and j

represents the microvolume change with microdeformation. The notations ǫklm and

ǫKLM are the well known permutation symbols. Inserting (1.9) and (1.12) into (1.5)

and (1.6), the motion and the inverse motion of a material point in a microelement are

expressed by

x(α) = x(X, t) + χK(X, t)Ξ
(α)
K or x

(α)
k = xk(X, t) + χkK(X, t)Ξ

(α)
K , (1.14)

X(α) = X(x, t) + ℑk(x, t)ξ
(α)
k or X

(α)
K = XK(x, t) + ℑKk(x, t)ξ

(α)
k . (1.15)

Using (1.12) and (1.9), we obtain

(δkl − χkKℑKl)ξ
(α)
l = 0, (δKL − χkKℑLk)Ξ

(α)
K = 0. (1.16)

It follows that the microdeformation tensors satisfy the following relations

χkKℑKl = δkl, χkKℑLk = δKL, (1.17)

where δkl and δKL are the Kronecker deltas. Moreover, the deformation gradients xk,K

and XK,l defined earlier also satisfy the following relations

xk,KXK,l = δkl, xk,KXL,k = δKL. (1.18)

We see that whenever either set (xk, χkK) or (XK , ℑKk) is known, the other set can

be obtained by solving the linear equations in (1.17) and (1.18) for XK,k and ℑKk. On

solving, one may obtain

XK,k =
1

2J
ǫKLMǫklmxl,Lxm,M (1.19)

and

ℑKk =
1

2j
ǫKLMǫklmχlLχmM . (1.20)

10



Chapter- 1

In our study, we assume that the mass of the microelement and mass of the macroele-

ment are conserved. Eringen and Suhubi (1964) and Suhubi and Eringen (1964) have

shown that

(i) during the motion defined by (1.14) under the assumption (1.9), carries the center of

gravity of △V +△S to the center of gravity of △v +△s and a necessary and sufficient

condition for conservation of mass is
D(ρdv)

Dt
= 0, where

D

Dt
is the material derivative

and ρ is the average mass density of △v.

(ii) the center of momentum and inertia of △v coincides with its center.

In this thesis, we are concerned with microstretch and micropolar elasticity, which are

particular cases of micromorphic theory. As said earlier, in microstretch theory, in ad-

dition to translation there is microrotation of macroelement with scalar microstretch

while micropolar theory admits only rigid microrotations of the microvolume elements

about the center of mass of the volume element in addition to translation.

Suppose we write χkK in matrix form as χ, then this matrix can be decomposed as

a product of two matrices, one of which is orthogonal and other is symmetric in nature

[Eringen, 1980, pp-46],

χ = ru = vr (1.21)

The matrix r is orthogonal (i.e., | det(r) |=1) and represents the microrotation tensor,

while the matrices u and v are symmetric (i.e., uT = u and vT = v) in nature and

represent the right and left stretch tensors of microdeformation, respectively. Pre-

multiplying and post-multiplying the equation (1.21) by χT , we obtain

χT χ = (ru)T (ru) = uT (rT r)u = uT Iu = u2,

χχT = (vr)(vr)T = v(rrT )vT = vIvT = v2.

When u2 = v2 = I, the identity matrix, we see that χT χ = χχT = I. Then χT =

χ−1 ≡ ℑ and hence ℑχ = χℑ = I. Besides microstretch tensors u and v, there exist

other microstretch tensors arising from the gradients of χ. Taking derivative of (1.21)

with respect to XK , we have

χ,K = r,Ku + ru,K = v,Kr + vr,K . (1.22)

It is easy to prove that if u2 = v2 = I then u = v = I, therefore u,K = v,K = 0 and

from (1.22), we have

χ,K = r,KI = Ir,K .

11



Hence microdeformation gradient is equal to microrotation gradient. From (1.21), we

have

χ = r and u2 = v2 = I. (1.23)

We see that the matrices u and v representing the right and left stretches are constant,

therefore the directors associated at each microelement are fixed, i.e., they are rigid. In

this case, the micromorphic continua is reduced to micropolar continua. Also, it is clear

that for micropolar continua, the matrix χ is nothing but represents the microrotation

tensor. We also note that

j2 = (det χkK)2 = (det χ)2 = (det r)2 = 1, ⇒ j = 1 (as j > 0). (1.24)

So, in micropolar continua, the micromotion is just a rigid body rotation.

A micromorphic continuum is said to be microstretch continuum, if the deformable

directions in the deformed and undeformed states are related as

ℑKk =
1

j2
χkK . (1.25)

Multiplying equation (1.25) with χlK and χkL and using (1.17), we obtain

χkKχlK = j2ℑKkχlK = j2δkl and χkKχkL = j2ℑKkχkL = j2δKL (1.26)

Similarly, we can obtain

ℑKkℑKl =
1

j2
δkl and ℑKkℑLk =

1

j2
δKL. (1.27)

Expressions in (1.26) and (1.27) show that the directors are orthogonal in the deformed

and undeformed states of the microelement. Moreover, the quantity j is non-negative,

therefore the micromotion would not contain microshear and the directors can undergo

rotations and stretches. Hence, in microstretch continuum, the deformation contains

only microrotation and microstretch without microshearing, in addition to translation

of classical elasticity. Note that when j = 1 (case of micropolar continua), then from

(1.26) one can obtain

χkKχlK = δkl and χkKχkL = δKL.

We see that the orthogonal directors in micropolar continua becomes orthonormal.

12



Chapter- 1

These expressions also indicate that the directors of micropolar continuum are rigid.

1.1.2 Strain and microstrain tensors

The differential line element in the deformed body is calculated through equation (1.14)

by taking total derivative as

dx(α) = (x,K + χL,KΞ
(α)
L )dXK + χKdΞ

(α)
K , (1.28)

where the suffix followed by a comma denotes partial differentiation as earlier. The

square of the arc length is obtained as (dropping the superscript α on ΞK and dΞK)

(ds(α))2 = dx(α) · dx(α) = (CKL + 2ΓKLMΞM + χkM,KχkN,LΞMΞN)dXKdXL

+2(ΨKL + χkLχkM,KΞM)dXKdΞL + χkKχkLdΞKdΞL, (1.29)

where

CKL(X, t) ≡ xk,Kxk,L, ΨKL(X, t) ≡ xk,KχkL, ΓKLM(X, t) ≡ xk,KχkL,M . (1.30)

The symmetric tensor CKL is the classical Green deformation tensor (see Chandrasekhara-

iah and Debnath (1994), pp-188). The appearance of tensors ΨKL and ΓKLM is new

in the microstructure continuum. They are called microdeformation tensors and were

introduced by Eringen and Suhubi (1964) and Suhubi and Eringen (1964).

Introducing the displacement vector u(α) (see Figure 1.2) as the vector that extends

from X(α) to x(α), we write

u(α) = x − X + ξ − Ξ = u + ξ − Ξ, (1.31)

where u = x−X is the classical displacement vector, the components of which in terms

of XK and xk are, respectively,

UK ≡ u · ÎK = (xk̂ik − XK ÎK) · ÎK = xkδkK − XK , (1.32)

uk ≡ u · îk = (xk̂ik − XK ÎK) · îk = xk − XKδKk, (1.33)

13



where δkK ≡ δKk ≡ îk · ÎK . Differentiating partially the equation (1.32) with respect

to XK and equation (1.33) with respect to xk, we get

xk,K = (δLK + UL,K)δkL and XK,k = (δlk − ul,k)δKl. (1.34)

Analogously, Eringen (1968) introduced the microdisplacement tensors ΦLK(X, t) and

φlk(x, t) as follows

χkK = (δLK + ΦLK)δkL and ℑKk = (δlk − φlk)δKl. (1.35)

Using equations (1.9), (1.32), (1.33) and (1.35) into equation (1.31), we have

u(α) = UK ÎK + (ξkδkK − ΞK )̂IK = UK ÎK + (χkLΞLδkK − ΞK )̂IK ,

= UK ÎK + ((δNL + ΦNL)δkNΞLδkK − ΞK )̂IK ,

= UK ÎK + (δNLδkNΞLδkK + ΦNLδkNΞLδkK − ΞK )̂IK ,

= UK ÎK + (δLkΞLδkK + ΦNLδNKΞL − ΞK )̂IK ,

= UK ÎK + (δLKΞL + ΦKLΞL − ΞK )̂IK ,

= UK ÎK + (ΞK + ΦKLΞL − ΞK )̂IK ,

= (UK + ΦKLΞL)IK . (1.36)

Similarly, using equations (1.12), (1.32), (1.33) and (1.35) into equation (1.31), we have

u(α) = uk̂ik + (ξk − ΞKδKk )̂ik = uk̂ik + (ξk −ℑKlξlδKk )̂ik,

= uk̂ik + (ξk − (δnl − φnl)δKnξlδKk )̂ik,

= uk̂ik + (ξk − δnlδKnξlδKk + φnlδKnξlδKk )̂ik,

= uk̂ik + (ξk − δKlξlδKk + φnlξlδnk )̂ik,

= uk̂ik + (ξk − δlkξl + φklξl)̂ik,

= (uk + φklξl)̂ik. (1.37)
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On substituting equations (1.34)1 and (1.35)1 into equations (1.30), we can easily obtain

CKL = δKL + UK,L + UL,K + UM,KUM,L, (1.38)

ΨKL = δKL + ΦKL + UL,K + UM,KΦML, (1.39)

ΓKLM = ΦKL,M + UN,KΦNL,M . (1.40)

So far, all these expressions are exact. For a linear theory, one assumes that the product

terms are negligible so that

CKL ≈ δKL + UK,L + UL,K , ΨKL ≈ δKL + ΦKL + UL,K , ΓKLM ≈ ΦKL,M . (1.41)

In this thesis, we shall deal with the linear theory, so we do not distinguish between

material and spatial representation. Therefore, under linear theory, the material strain

tensor EKL is defined as

EKL ≡ 1

2
(CKL − δKL) =

1

2
(UK,L + UL,K), (1.42)

and the material microstrain tensors εKL and ΓKLM are defined as

εKL ≡ ΨKL − δKL = ΦKL + UL,K , ΓKLM ≡ ΦKL,M . (1.43)

Following the same procedure, we introduce the spatial strain tensor, ekl, and spatial

microstrain tensors, ǫkl and γklm as

ekl ≡
1

2
(uk,l + ul,k), ǫkl ≡ φkl + ul,k, γklm ≡ −φkl,m. (1.44)

We see that when the above tensors in equation (1.44) are known, we can calculate the

changes in arc length and angles during deformation.

Now, we see that the difference between the squares of arc length in the deformed

and undeformed body follows from equation (1.29) and the use of equation (1.35) and

equations (1.42)-(1.43):

(ds(α))2 − (dS(α))2
≈ 2(EKL + ΓKMLΞM)dXKdXL + 2(εKL + ΓLMKΞM)dXKdΞL
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+(εKL + εLK − 2EKL)dΞKdΞL. (1.45)

Note that for classical elasticity, only the first term on the right side involving EKL

survives. It can also be seen from equation (1.45) that when EKL, εKL, and ΓKLM

are zero, then there is no change in the arc length after a deformation. So, in such a

situation, the body is said to undergo a rigid motion.

1.1.3 Micropolar strains and rotations

We now consider a special class of micromorphic materials, called micropolar materials,

in which the state of the microdeformation can be described by a local rigid motion of

the microelements. Mathematically, this specialization under the assumption of linear

theory is obtained by setting that the microdisplacement tensor is skew-symmetric,

that is,

ΦKL = −ΦLK , (1.46)

or in the spatial notation, φkl = −φlk. In three-dimensional space, every skew-

symmetric, second order tensor ΦKL can be expressed by an axial vector ΦK (i.e.,

Φ) defined by

ΦK =
1

2
ǫKLMΦML. (1.47)

Equation (1.47) is a compact expression of

Φ1 = Φ32, Φ2 = Φ13, Φ3 = Φ21.

Multiplying equation (1.47) with ǫKLN and using the identity ǫKLNǫKLM = 2δNM , one

can obtain the expression for ΦKL as

ΦKL = −ǫKLMΦM . (1.48)

Substituting this into equation (1.35)1, we obtain

χkK = (δLK − ǫKLMΦM)δkL = δLKδkL − ǫLKMΦMδkL = δkK − ǫkKMΦM . (1.49)
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The rotation tensor in the classical theory is given by

RKL =
1

2
(UK,L − UL,K), (1.50)

which is skew-symmetric second order tensor, i.e., RKL = −RLK , hence by the same

argument as above, RKL can be expressed by an axial vector RK (i.e., R) analogous

to equations (1.47) and (1.48) as

RK =
1

2
ǫKLMRML =

1

2
ǫKLMUM,L, RKL = −ǫKLMRM . (1.51)

From equations (1.42) (1.50) and (1.51)2, we have

EKL =
1

2
(UK,L + UL,K),

⇔ EKL + RKL =
1

2
(UK,L + UL,K) +

1

2
(UK,L − UL,K),

⇔ UK,L = EKL + RKL = EKL − ǫKLMRM . (1.52)

Substituting equations (1.52) and (1.48) into equation (1.43), we get

εKL = −ǫKLMΦM + ELK − ǫLKMRM = EKL + ǫKLM(RM − ΦM) (1.53)

and

ΓKLM = −ǫKLNΦN,M . (1.54)

We observe that if RM = ΦM , then εKL = EKL and ΓKLM = RKL,M , then the micros-

trains are no longer independent of the classical strain and rotations. But, in micropolar

theory, the classical rotation RK is different from the microrotations. Thus, in microp-

olar theory, six functions are to be determined; namely, UK(X, t) and ΦK(X, t).

Now, we shall obtain the spatial position of the αth point x(α) through equations

(1.31), (1.36), and (1.48). Substituting (1.48) into (1.36), we have

u(α) = (UK − ǫKLMΦMΞL)̂IK = (UK + ǫMLKΦMΞL)̂IK = U + Φ × Ξ

= u − Φ × Ξ, as U = x − X = u.
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Figure 1.3: Microrotation.

The displacement vector u(α) is the difference of X(α) to x(α), therefore

u(α) = x(α) − X(α) ⇒ x(α) = u(α) + X(α).

Since X(α) = X + Ξ, then from the above expressions, we have

x(α) = X + Ξ + u − Ξ × Φ. (1.55)

But

x(α) = x + ξ = (X + u) + ξ. (1.56)

Therefore, from (1.55) and (1.56) we obtain

ξ = Ξ − Ξ × Φ. (1.57)

The position of αth particle given by x(α) in (1.56) has been expressed so as to make the

meaning of ξ geometrically clear. Here the vector Φ represents the angular rotation

of a microelement about the center of mass of the deformed macrovolume element and

ξ is the moment arm from this centroid (see Figure 1.3). Accordingly, the expression

in (1.57) shows that, aside from a rigid body translation, the relative position Ξ of

a material point after deformation is obtained by translating Ξ parallel to itself to

the center of mass x of the deformed macrovolume element and then rotating it in
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accordance with Ξ × Φ. Similarly, we can also have

Ξ = ξ + ξ × φ, (1.58)

where φ ≃ Φ is the spatial microrotation vector. Complete dual of equations (1.46)-

(1.55) can be easily obtained and are given by

φk =
1

2
ǫklmφml, φkl = −ǫklmφm, (1.59)

ℑKl = δKl + ǫKlmφm, (1.60)

rk =
1

2
ǫklmrml, rkl = −ǫklmrm, rk =

1

2
ǫklmum,l, (1.61)

uk,l = ekl − ǫklmrm, (1.62)

ǫkl = ekl + ǫklm(rm − φm), (1.63)

γklm = ǫklnφn,m, (1.64)

X(α) = x + ξ − u + ξ × φ. (1.65)

From (1.55), we can have

dx(α) = dX + dΞ + du − dΞ × Φ − Ξ × dΦ

= dX + dΞ + u,KdXK − dΞ × Φ − Ξ × Φ,KdXK . (1.66)

Using equations (1.51) and (1.52), we get

u,KdXK = UL,KdXK ÎL = ELKdXK ÎL + RLKdXK ÎL = EKLdXK ÎL − dX × R. (1.67)
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Similarly, using equation (1.54), we obtain

Ξ × Φ,NdXN = ǫKLMΞLΦM,NdXN ÎK = −ΓKLNΞLdXN ÎK . (1.68)

Introducing the following notation (for convenience) ΓKM ≡ ΓKLMΞL, so that

Ξ × Φ,NdXN = −ΓKMdXN ÎK = −Γ(KM)dXM ÎK − Γ[KM ]dXM ÎK , (1.69)

where indices in parentheses(and square brackets) indicate the symmetric (and anti-

symmetric) parts of ΓKM . Further introducing new microrotation vector Γ as Γ[KL] =

−ǫKLMΓM (where ΓK ≡ 1
2
ǫKLMΓML), equation (1.69) can be written as

Ξ × Φ,NdXN = −Γ(KM)dXM ÎK + ǫKLMΓMdXM ÎK . (1.70)

Substituting (1.67) and (1.69) into equation (1.66), we rearrange it as

dx(α) = dX + dΞ − (dX × R + dΞ × Φ + dX × Γ) + (EKL + Γ(KL))dXK ÎL,

= dX + dΞ − [dX × (R + Γ) + dΞ × Φ] + (EKL + Γ(KL))dXK ÎL. (1.71)

Equation (1.71) reveals that the deformation of the vector dX(α) ≡ dX + dΞ may

be achieved by the following three operations:

I. A rigid translation of dX + dΞ from the material centroid X to the spatial centroid

x.

II. Rigid rotations of dX and dΞ by the amounts dX × (R + Γ) and dΞ × Φ, respec-

tively.

III. Finally, stretch represented by the strains EKL and Γ(KL) in equation (1.71).

The expressions of ΓK can be simplified as

ΓK =
1

2
ǫKLMΓML =

1

2
ǫKLMΓMNLΞN = −1

2
ǫKLMǫMNP ΦP,LΞN = −1

2
ǫKLMǫNPMΦP,LΞN ,

= −1

2
(δKNδLP − δKP δLN)ΦP,LΞN = −1

2
(δKNδLP ΦP,LΞN − δKP δLNΦP,LΞN),

= −1

2
(δKNΦL,LΞN − δLNΦK,LΞN) = −1

2
(ΦL,LΞK − ΦK,LΞL),

=
1

2
(−ΦL,LΞK + ΦK,LΞL), (1.72)
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where the identity ǫijkǫpqk = δipδjq − δiqδjp has been used.

We can also write (1.71) as

dξ = dx(α) − dx = dΞ − dX × Γ − dΞ × Φ − Γ(KL)dXK ÎL. (1.73)

In this form, we see that the difference between the deformation of dX(α) and that of dX

of which the latter is known to us from the classical theory. This difference, therefore,

is the result of the composition of a minirotation of dX, a microrotation of dΞ, and

the ministraining of dX characterized by Γ(KL). The terminology of a minirotation is

being used for Γ and ministraining for Γ(KL). Of course, R is the classical rotation for

which we use the terminology ’macrorotation’.

Following the same procedure, we can have the dual of equation (1.55) is in the

spatial representation as

X(α) = x + ξ − u + ξ × φ. (1.74)

From this, in the same way as in the case of equation (1.71), we obtain

dX(α) = dx + dξ + (dx × r + dξ × φ − dx × γ) − (ekl − γ(kl))dxk̂il, (1.75)

where r is the spatial macrorotation vector defined by equation (1.61) and ekl is the

spatial macrostrain tensor. The spatial minirotation vector γ is given by

γk =
1

2
ǫklmγml =

1

2
(φl,lξk − φk,lξl) and γkm ≡ γklmξl = ǫklnφn,mξl. (1.76)

1.1.4 Useful definitions and relations

The velocity vector v and the acceleration vector a of a macroelement material point

are defined as

v = ẋ(X, t) or vk = ẋk, and a = v̇ or ak = v̇k.

Taking temporal derivative of relation (1.9) and using (1.12), we obtain

ξ̇ = νk(x, t)ξk or ξ̇k = νklξl.

where νk(x, t) = χ̇K(X, t)ℑKk(x, t) (or νlk = χ̇lKℑKk) and is called gyration vector

(or gyration tensor). We now introduce an axial vector νk as νk = 1
2
ǫklmνml and
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νkl = −ǫklmνm, which is called microgyration vector. It can be seen that

ξ̈ = ν̇kξk + νkξ̇k = ν̇kξk + νkνklξl = αk(x, t)ξk,

where

αk(x, t) = ν̇k + νmνmk or αlk = ν̇lk + νlmνmk.

The tensor αlk is called spin tensor. Taking time derivative of (1.17) one obtains

χ̇kKℑLk + χkKℑ̇Lk = 0. Also, the material derivatives of χkK and ℑKk are given by

χ̇kK = νklχlK and ℑ̇Kk = −νlkℑKl. With the help of (1.49) and (1.60), the gyration

tensor νkl can be written as

νkl = −ǫklM Φ̇M + ǫkKMǫKlmΦ̇Mφm.

For linear theory of micropolar elasticity, we can write (Eringen 1968 )

νkl ≃ −ǫklmφ̇m (as Φ̇M = φ̇m) ⇒ νk = φ̇k.

Introducing the microinertia tensor ikl defined as follows (see Eringen, 1999)

ikl =

∫

△v

ρ′ξkξldv′ =< ξkξl > or ρikl△v =
∑

α

ρ(α)ξkξl△v(α).

We also adopt the following decomposition as ikl = 1
2
jmmδkl− jkl and jkl = immδkl− ikl.

Here imm = 1
2
jmm = constant.

1.1.5 Stresses-Force stress and Couple stress

When an elastic body is subjected to external loads, the body is said to be under

deformation if the relative positions of its particles gets altered. The external loads

may be of two kinds: Body loads and Surface loads. A load which acts on the entire

mass of the body is called body load. Gravitational force and magnetic force are the

examples of body load. These forces are non-contact forces. A load which acts across

a surface, is called surface load. Stress force and pressure force are the examples of

surface load. These forces are contact forces. Internal stresses in a deformed body

arises due to the application of external loads. To explain the concept of stresses in

a micropolar body, we consider a small macrovolume, v + s (volume v and surface s),

fully contained in the body. At a point x of s, the effect of the remainder of the body

is equivalent to the surface force per unit area, τ (n), called the force stress vector, and
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the couple per unit area, m(n), called the couple stress vector. These stresses depend

on the position x, time t and orientation of the surface s at x, which is described by

the exterior normal vector n to s at x. In tensor notations, the force stress and couple

stress tensors are denoted by τkl and mkl respectively, while the body force and body

couple tensors are denoted respectively by fk per unit mass and lk per unit mass.

In a micromorphic body, a third order tensor mklm replaces mkl and a second order

tensor lkl replaces lk given by ( see Eringen and Suhubi, 1964 and Suhubi and Eringen,

1964)

mklm =< τ ′

klξm >2, lkl =< f ′

kξl >, (1.77)

Here <>2 represents the surface mean and <> denotes the volume average. The

primed quantities refer to the microelement contained in a particle. These quantities

are restricted by ’Principle of Energy Balance’ postulated for the entire body. This

principle states that the time rate of the sum of the kinetic energy (Ke) and internal

energy (ǫ) is equal to the work done by all loads acting on the body per unit time, that

is,

d

dt

∫

V −σ

ρKEdv =

∫

∂V −σ

(τklvl + mklmνlm + qk)dak +

∫

V −σ

ρ(fkvk + lklνkl + h)dv.(1.78)

Here, KE = ǫ + Ke and ρ is the average density. On the right hand side, under the

surface integral, the three terms, respectively, represent the stress energy, the energy

of stress moments, and the heat energy per unit time, and under the volume integral,

the three terms, denote respectively, the energy of the body force, the energy of body

moments, and the heat input per unit time. The volume and surface integrals exclude

the line and surface intersections of the discontinuity surface σ which may be sweeping

the body with its own velocity u (see Figure 1.4).

This is denoted by

V − σ ≡ V − V ∩ σ, ∂V − σ ≡ ∂V − ∂V ∩ σ. (1.79)

Note that the internal energy density ǫ is postulated to exist. The kinetic energy Ke,

per unit mass, defined by

Ke ≡
1

2
< (ẋ + ξ̇) · (ẋ + ξ̇) > (1.80)
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Figure 1.4: Discontinuity surface.

turns out to be

Ke =
1

2
v · v +

1

2
iklνmkνml. (1.81)

We note that the energy balance law (1.78) differs from classical counterpart only in

the terms involving mklm and lkl. The origin of these terms may be explained by a

physical picture. Consider a macrosurface δa (see Figure 1.5) on the surface of the

body with exterior unit normal n. The work per unit time of a stress vector τ ′

k acting

at a microsurface element da′

k with unit normal n′, upon integration over △a gives the

energy due to tractions on △a. For the stress vector, we have, τ ′

k = τ ′

kl îl, where τ ′

kl is

the microstress tensor. The energy due to the force τ ′

k is then given by

∫

∆a

τ ′

kl(vl + ξ̇l)da′

k =

∫

∆a

τ ′

klvlda′

k +

∫

∆a

τ ′

klνlmξmda′

k = (τklvl + mklmνlm)△ak, (1.82)

where the stress tensor τkl and stress moment tensor mklm are defined in the limit as

△a → 0

τkl△ak =

∫

△ak

τ ′

klda′

k, mklm△ak =

∫

△ak

τ ′

klξmda′

k, (1.83)
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Figure 1.5: Traction at microsurface element.

in accordance with (1.77). The presence of the term involving lklνkl in (1.78) is similarly

obtained by the volume average

∫

△v

ρ′f ′

k(vk + ξ̇k)dv′ = (ρfkvk + ρlklνkl)△v, (1.84)

where lkl is defined in the limit as △v → 0

ρlkl△v ≡
∫

△v

ρ′f ′

kξldv′. (1.85)

For microstretch continua, we decompose mklm into a microstretch vector mk and a

couple stress tensor mkl ; and decomposing lkl into body microstretch force density l

and body couple density lk as

mklm =
1

3
mkδlm − 1

2
ǫlmrmkr, lkl =

1

3
lδkl −

1

2
ǫklrlr, (1.86)

and using νkl = νδkl−ǫklmνm, where ν represents the uniform microstretch (a breathing

motion) and νk represents the rigid microrotation in a microstretch continuum (see

Eringen, 1999), (1.78) takes the form

d

dt

∫

V −σ

ρ(ǫ + Ke)dv =

∫

∂V −σ

(τklvl + mklνl + mkν + qk)dak
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+

∫

V −σ

ρ(fkvk + lν + lkνk + h)dv. (1.87)

For micropolar continua, the energy balance law can be written directly from (1.87)

by substituting ν = 0, mk = 0 and l = 0.

Next, we shall show that the force stress and couple stress vectors on opposite sides

of the same surface at a given point in micropolar continua are equal in magnitude and

opposite in sign. For this, we consider a small tetrahedron with three faces sk taken as

the coordinate surfaces and the fourth face sn being a part of the surface of the body

(see Figure 1.6).

The equation of ’balance of momentum’ which states that the time rate of change of

momentum is equal to the sum of all forces acting on a body, applied to the tetrahedron

is given by

d

dt

∫

v

ρvdv =

∮

sn

τ (n) · da +

∮

sk

(−τ k) · dak +

∫

v

ρfdv, (1.88)

where ρ is the mass density, v is the velocity and f is the body force. The force τ (n)

is the surface traction per unit area acting on the surface sn with an outward directed

normal n and the forces τ k are the surface tractions per unit area acting on the surfaces

sk with an outward directed normals îk. The right hand side of equation (1.88) gives the

vector sum of the surface and body forces. Using the mean value theorem to estimate

the volume and surface integrals, we write

d

dt
(ρ∗v∗△v) = τ ∗

(n)△a − τ ∗

k△ak + ρf ∗△v, (1.89)

where the quantities marked with asterisks are the values of those without asterisks at

some points of v+s. The volume of tetrahedron is denoted by △v and its surface areas

by △ak and △a. Since the mass is conserved, we get
d

dt
(ρdv) = 0 . Now dividing the

equation (1.89) by △a and letting △a and △v → 0, we see that △v/△a → 0 and we

obtain

τ (n)da = τ kdak. (1.90)

Now dak is the projection of vector area da on the coordinate plane xk = 0. Hence

dak = da · îk = da (n · îk) = nkda. Substituting this into (1.90), we get

26



Chapter- 1

Figure 1.6: A tetrahedron with surface loads.

Figure 1.7: Stress tensor.
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Figure 1.8: Couple stress tensor.

τ (n) = τ knk, (1.91)

where τ k is independent of n. Thus, the stress vector τ (n) is a linear function of n. It

is clear from (1.91) that

τ (−n) = −τ (n), (1.92)

which proves that the stress vectors on the opposite sides of the same surface at a given

point are equal in magnitude and opposite in sign.

Similarly, using ’principle of balance of moment of momentum’ which states that the

time rate of change of moment of momentum about a point is equal to the sum of all

couples and the moments of all forces about that point, gives

m(n) = mknk, m(−n) = −m(n). (1.93)

To define the stress tensor τkl and couple stress tensor mkl, we decompose the tensors

τ k and mk as

τ k = τkl̂il, mk = mkl̂il. (1.94)

Thus, τkl is the lth components of the stress vector τ k which acts on the surface xk =

constant and mkl is the lth components of the couple stress vector which acts on the

same surface. The positive directions of τkl and those of mkl are shown on Figures 1.7

28



Chapter- 1

Figure 1.9: Directions of couple stress.

and 1.8. Equations (1.91), (1.93)1 and (1.94), it follows that

τ (n) = τklnk̂il, m(n) = mklnk̂il. (1.95)

It is thus clear that the couple stress vectors have a sign convention identical with that

of the stress vectors. The plane of each couple is perpendicular to the couple vector,

and the direction is as described by the right-hand screw rule (see Figure 1.9).

1.1.6 Stress-strain relations in micropolar elasticity

In micropolar continuum, the constitutive dependent variables are stress tensor τkl,

couple stress tensor mkl,, heat vector qk, Helmholtz free energy ψ, and the entropy η.

Eringen (1968) proposed the following set of constitutive equations given by

τkl = Fkl(ǫrs, φr,s, θ), mkl = Mkl(ǫrs, φr,s, θ), qk = Gk(ǫrs, φr,s, θ),

ψ = Ψ(ǫrs, φr,s, θ), η = N(ǫrs, φr,s, θ) (1.96)

where ǫrs and φr,s are given by (1.63) and (1.64) respectively and θ is the temperature.

The above equations are legitimate for linear homogeneous materials, whether isotropic

or not. For nonlinear isotropic materials, they are acceptable in form. However, since

we are employing the infinitesimal strain measures, a nonlinear constitutive theory, in

terms of linear strain measures, would be inconsistent.

The constitutive equations (1.96) must be consistent with second law of thermody-
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namics, as expressed by

ργ ≡ −(ρ/θ)(ψ̇ − ηθ̇) + (1/θ)τklυl,k − (1/θ)ǫkmnτmnνk

+(1/θ)mlkνk,l + (1/θ2)qkθ,k ≥ 0. (1.97)

Thus, on substituting equation (1.96) into equation (1.97), we have

−ρ

θ
(
∂Ψ

∂ǫkl

ǫ̇kl +
∂Ψ

∂φk,l

φ̇k,l +
∂Ψ

∂θ
θ̇ + ηθ̇)

+(1/θ)τklǫ̇kl + (1/θ)mklφ̇l,k + (1/θ2)qkθ,k ≥ 0. (1.98)

Consistent with the linear theory, we write

D

Dt
(φk,l) = φ̇k,l, ǫ̇kl ≃ υl,k − ǫklmνm. (1.99)

The inequality equation (1.98), is postulated to be valid for all independent processes.

Here, the quantities ǫ̇kl, φ̇k,l, θ̇ and θ,k can be varied independently. Since this inequal-

ity is linear in all these variables, we must set the coefficients of these variables equal

to zero. Hence

τkl = ρ∂Ψ/∂ǫkl, mkl = ρ∂Ψ/∂φl,k, qk = 0, η = −∂Ψ/∂θ. (1.100)

We therefore see that, for a micropolar elastic solid, the stress, couple stress and entropy

density are derivable from a potential, and the heat vector vanishes. Since we did not

consider the temperature gradient, we have no heat conduction. Nevertheless, the free

energy Ψ and, consequently, the material moduli will depend on the temperature θ.

Since all terms in equation (1.98) vanish, we have the entropy production density γ

also vanishing. Thus, the micropolar elastic solid is in thermal equilibrium.

Here we are concerned with the linear theory, we therefore consider a polynomial

for Ψ which is second degree in the strain measures ǫkl and φk,l, i.e.,

ρΨ = A0 + Aklǫkl +
1

2
Aklmnǫklǫmn + Bklφk,l +

1

2
Bklmnφk,lφm,n + Cklmnǫklφm,n,(1.101)

where A0, Akl, Aklmn, Bkl, ... are functions of θ only. Since φk is an axial vector on a

reflection of the spatial axes, the fourth and the last terms change sign while the other

30



Chapter- 1

terms do not. For the function Ψ to be invariant, Bkl = 0 and Cklmn = 0. We further

note the following symmetry conditions which are clear from various summations in

equation (1.101) (on interchanging k with m and l with n)

Aklmn = Amnkl, Bklmn = Bmnkl. (1.102)

This shows that, for the most general micropolar anisotropic elastic solid, the number

of distinct components for Aklmn and Bmnkl is 45 each. In addition, we have nine Akl

terms which give rise to an initial stress in the undeformed state of the body.

On substituting equation (1.101) into equations (1.100)1 and (1.100)2, we obtain

τkl = Akl + Aklmnǫmn, mkl = Blkmnφm,n. (1.103)

These are the linear forms of the stress and couple stress constitutive equations for

anisotropic micropolar elastic solids. when the initial stress is zero, we must also have

Akl = 0. Thus, for the micropolar solid which is free from initial stress, we have

τkl = Aklmnǫmn, mkl = Blkmnφm,n. (1.104)

Various material symmetry conditions place further restrictions on the constitutive

coefficients Aklmn and Blkmn. These restrictions are found in the same manner as in

classical elasticity. Here, we obtain the case of isotropic solids. If the body is isotropic

with respect to both the stress and couple stress, we call it isotropic. In this case,

the constitutive coefficients must be isotropic tensors. For second and fourth order

isotropic tensors, we have the most general forms

Aklmn = λδklδmn + (µ + K)δkmδln + µδknδlm, (1.105)

Bklmn = αδklδmn + βδknδlm + γδkmδln, (1.106)

where λ, µ,K, α, β and γ are elastic moduli, which are functions of θ only. In this case,

equations in (1.104) can be written as

τkl = λǫrrδkl + (µ + K)ǫkl + µǫlk, mkl = αφr,rδkl + βφk,l + γφl,k. (1.107)
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Using (1.63), the alternative form of first relation in (1.107) can be written as

τkl = λerrδkl + (2µ + K)ekl + Kǫklm(rm − φm), (1.108)

Free energy, in this case is given by

ρΨ =
1

2
[λekkell + (2µ + K)eklekl] + K(rk − φk)(rk − φk)

+
1

2
(αφk,kφl,l + βφk,lφl,k + γφk,lφk,l). (1.109)

We note the difference between isotropic micropolar elasticity and classical elasticity

by the presence of four extra elastic moduli; namely, K, α, β and γ. When these are

set equal to zero, equations (107)2, (1.108)-(1.109) revert to Hooke’s law of the linear

isotropic elastic solid.

The stability of materials requires that the stored elastic energy should be nonnegative.

This condition is also essential for the uniqueness of the solutions. This requirement

places certain restrictions on the micropolar elastic moduli. Eringen (1966a) provided

these conditions: The necessary and sufficient conditions for the internal energy to be

nonnegative are

0 ≤ 3λ + 2µ + K, 0 ≤ 2µ + K, 0 ≤ K, 0 ≤ 3α + β + γ, − γ ≤ β ≤ γ, 0 ≤ γ.

1.2 Equations of motion of micropolar elasticity

To derive the equations of small deformation in micropolar elasticity, we use the princi-

ple of balance of momentum and principle of moment of momentum which are expressed

respectively as

∫

v′

ρadv =

∮

s′
τ (n)da +

∫

v′

ρfdv, (1.110)

∫

v′
(x × ρa + ρσ̇)dv =

∮

s′
(x × τ (n) + m(n))da +

∫

v′

ρ(l + x × f)dv, (1.111)

where l is the body couple density and other symbols are defined earlier. Here s′ and

v′ are the small internal portion v + s of the body. The quantity σ is the intrinsic spin
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and it is defined by

ρσ△v =
∑

α

ρ(α)ξ × (ν × ξ)△v(α).

Expanding the vector triple product and writing in component form, we have

ρ△vσk =
∑

α

ρ(α)ǫklmξlǫmLMνLξM△v(α),

=
∑

α

ρ(α)(δkLδlM − δkMδlL)ξlνLξM△v(α) =
∑

α

ρ(α)(δkLξMξM − ξkξL)νL△v(α),

=
∑

α

ρ(α)δkLξMξMνL△v(α) −
∑

α

ρ(α)ξkξLνL△v(α) = ρjkLνL△v,

where the definition, ρikl△v =
∑

α ρ(α)ξkξl△v(α) and the relation jkL = δkLiMM − ikL

have been used. Thus, we have σl = jklνk. Substituting equations (1.91) and (1.93)1

into (1.110) and (1.111), we obtain

∫

v

ρadv =

∮

s

τ knkda +

∫

v

ρfdv, (1.112)

∫

v

ρ(x × a + σ̇)dv =

∮

s

(x × τ k + mk)nkda +

∫

v

ρ(l + x × f)dv. (1.113)

Employing the following Green - Gauss theorem,

∮

s

gknkda =

∫

v

gk,kdv, (1.114)

into equations (1.112) and (1.113), we get

∫

v

[τ k,k + ρ(f − a)]dv = 0, (1.115)

∫

v

[mk,k + îk × τ k − ρ(l − σ̇)]dv +

∫

v

x × [τ k,k + ρ(f − a)]dv = 0. (1.116)

For these equations to be valid for any arbitrary volume v in the body, the necessary

and sufficient conditions are the vanishing of the integrands, hence we obtain

τ k,k + ρ(f − v̇) = 0, (1.117)
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mk,k + îk × τ k + ρ(l − σ̇) = 0, (1.118)

or in components form, we can write

τlk,l + ρ(fk − v̇k) = 0, (1.119)

mlk,l + ǫkmnτmn + ρ(lk − σ̇k) = 0. (1.120)

Substituting (1.107) into equations (1.119) and (1.120), we get

(λ + µ)ul,lk + (µ + K)uk,ll + Kǫklmφm,l + ρ(fk − ük) = 0, (1.121)

(α + β)φl,lk + γφk,ll + Kǫklmum,l − 2Kφk + ρ(lk − jφ̈k) = 0, (1.122)

where we have taken jkl = jδkl for the microscopic solid. These are the field equations

of linear micropolar elasticity. In the linear theory, the accelerations ük and φ̈k are

calculated by their approximate expressions ük ≃ ∂2uk/∂t2 and φ̈k ≃ ∂2φk/∂t2. The

vectorial form of these equations can be written as

(λ + 2µ + K)∇∇ · u − (µ + K)∇×∇× u + K∇× φ + ρ(f − ü) = 0, (1.123)

(α + β + γ)∇∇ · φ − γ∇×∇× φ + K∇× u − 2Kφ + ρ(l − jφ̈) = 0. (1.124)

The equations of motion and constitutive relations in a linear homogeneous and isotropic

micropolar elastic solid medium can be extended to microstretch medium. In the ab-

sence of body forces and body couple densities, the extended equations of motion are

given by (Eringen (1999), pp: 254-255)

(c2
1 + c2

3)∇(∇ · u) − (c2
2 + c2

3)∇× (∇× u) + c2
3∇× φ + λ̄0∇ψ = ü, (1.125)

(c2
4 + c2

5)∇(∇ · φ) − c2
4∇× (∇× φ) + ω2

0∇× u − 2ω2
0φ = φ̈, (1.126)

c2
6∇2ψ − c2

7ψ − c2
8∇ · u = ψ̈, (1.127)

34



Chapter- 1

where c2
1 = (λ + 2µ)/ρ, c2

2 = µ/ρ, c2
3 = K/ρ, c2

4 = γ/ρj, c2
5 = (α + β)/ρj, ω2

0 =

c2
3/j, c2

6 = 2α0/ρj, c2
7 = 2λ1/3ρj, c2

8 = 2λ0/3ρj, λ̄0 = λ0/ρ; λ0, λ1 and α0 are

microstretch constants and ψ is the scalar microstretch.

The extended constitutive relations are given by

τkl = λur,rδkl + µ(uk,l + ul,k) + K(ul,k − εklrφr) + λ0ψδkl, (1.128)

mkl = αφr,rδkl + βφk,l + γφl,k, (1.129)

mk = α0ψ,k, (1.130)

where mk is the microstretch tensor and other symbols are defined earlier.

1.3 Literature review

The problems of elastic wave propagation and their reflection and transmission from

boundary surfaces/interfaces is of keen interest since long. These problems have been

studied by many researchers by taking different models and have appeared in the open

literature. The basic concepts of classical elasticity, wave propagation in elastic media

and their reflection/ refraction from boundary surfaces can be found in several books,

e.g., Sokolnikoff (1956), Love (1911), Brekhoviskikh (1960), Achenbach (1973), Ewing

et al. (1957), Ben-Menahem and Singh (1981), Bullen and Bolt (1985), Udias (1999),

Pujol (2003), Graff (1991) including several others. There are two types of waves that

can propagate in a homogeneous isotropic elastic medium: One is longitudinal in na-

ture and other is transverse. Longitudinal wave is called P -wave and transverse wave is

called S-wave in seismology. These are body waves and can travel into the deep of the

medium. Besides these body waves, there occurs surface waves, which can travel near

the boundary surface of a medium and goes on diminishing with the distance away from

the boundary surface. There are three types of surface waves: Rayleigh wave, Love

wave and Stoneley wave. The literature related to these waves is available frequently

in several books on the pertinent topic of research. In nature, there exist some con-

tinuum whose microstructure play very important role and it can not be disregarded

during investigation of problems related to wave propagations. Due to their significant

microstructural properties, the results obtained by the application of classical elasticity

are found to disagree with the experimental ones. In this way, the classical theory of
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elasticity is inadequate to explain all phenomena of microstructure of a continuum.

As explained earlier, several non-classical polar theories were developed to explain the

behavior of these microstructural bodies. One of them is the well established theory of

micropolar elasticity due to Eringen. In this section, we shall confine ourselves to the

works of wave propagation in micropolar and microstretch theories.

Parfitt and Eringen (1969) have investigated the possibility of plane wave propa-

gation in an infinite micropolar elastic solid medium and proved that there can exist

four plane waves. These waves are given as follows

i) A longitudinal displacement wave propagating with phase speed

v1 =
√

(λ + 2µ + K)/ρ,

ii) A longitudinal microrotational wave propagating with phase speed

v2 =
√

(α + β + γ)/ρj + 2ω2
0/k

2, (ω0 = K/ρj),

iii) Two sets of coupled transverse waves (each consists of a transverse displacement

coupled with a transverse microrotational) propagating at phase speeds,

v3 = {(1/2a)[−b + (b2 − 4ac)1/2]}1/2

and

v4 = {(1/2a)[−b − (b2 − 4ac)1/2]}1/2,

where a = 1−2ω2
0/ω

2, b = −[c2
4+c2

2(1−2ω2
0/ω

2)+c2
3(1−ω2

0/ω
2)] and c = c2

4(c
2
2+c2

3). The

waves propagating with speeds v2 and v3 can exist only when the frequency ω is greater

than
√

2ω0, otherwise they degenerate into distance decaying sinusoidal vibrations. The

longitudinal displacement wave is similar to the longitudinal wave of classical elasticity

and actually reduces to that in the limiting case. The appearance of longitudinal mi-

crorotational and coupled transverse waves is new and arise due to the microstructure

of the medium. They showed that the longitudinal micro-rotational waves and the two

sets of coupled waves are dispersive in nature. They have also presented the formulae

for amplitude ratios of various reflected waves when these waves are made incident

obliquely at a mechanically stress free plane boundary of a micropolar elastic half-

space. Several limiting cases are also discussed. Ariman (1972) discussed the problem

of reflection of plane longitudinal displacement wave from a fixed flat boundary of a

micropolar elastic half-space. He showed that there exist three reflected waves (a lon-

gitudinal displacement wave and two coupled transverse waves) as compared with the
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two waves of classical elasticity. Smith (1967) investigated the propagation of surfaces

of discontinuity of the derivatives of the macro and micro-displacements. He found

that a surface of discontinuity of the partial derivatives of macro displacement u trav-

els with normal velocity
√

(λ + 2µ)/ρ or
√

(µ + K)/ρ, while that of microdisplacement

φ travels with a normal velocity
√

(α + β + γ)/ρj, when ∇ · φ = 0 and with velocity
√

β/ρj, when ∇×φ = 0. He also discussed the modes of macro and micro-vibrations

of the solid cylinder and solid sphere. McCarthy and Eringen (1969) derived the prop-

agation condition of waves in micropolar viscoelastic solids by defining a wave to be

a propagating surface, across which some kinematical variable suffers discontinuity.

They have also derived the expressions for the speeds of propagation of macro and

micro shock waves of longitudinal and transverse nature. It is found that the possible

speeds of macro shock waves are determined solely by the macro relaxation functions,

while the speeds of micro shock waves are determined solely by the micro relaxation

functions. They also studied the growth of shock waves and the coupling between

the discontinuities in the macroscopic and microscopic fields. Maugin (1974) extended

the work of McCarthy and Eringen (1969) to the propagation of acceleration waves.

He derived the conditions of propagation of acceleration waves in a simple micropolar

media and in a linear micropolar viscoelastic media. Musgrave (1988) derived the field

equations for arbitrary anisotropic micropolar elasticity and discussed the stress wave

propagation in three types of orthorhombic micropolar medium. He found that at high

frequency, the decoupling of equations of motion is possible, which gives two sets of

equations corresponding to quasi-translational and spin wave displacements. Recently,

Singh (2007) studied the propagation of plane waves in orthotropic micropolar elastic

solid and found that the phase speeds of the waves depend on their angle of propagation

similar to the classical anisotropic elastic solids. He also obtained the reflection coeffi-

cients of these waves from a stress free boundary and depicted their behavior against

the angle of propagation. Propagation of acceleration waves in micropolar elastic me-

dia is investigated by Eremeyev (2005). He derived the condition of existence of an

acceleration waves and showed that it is equivalent to the requirement of a strong ellip-

ticity of equilibrium equations likewise in classical elasticity. Parameshwaran and Koh

(1973) investigated the propagation of plane waves in a micro-isotropic, microelastic

solid and found that there exist twelve waves propagating with real phase speeds. Out

of the twelve waves, eleven are dispersive and one is non-dispersive in nature. These

may be classified into two sets: one set of four longitudinal waves and two identical

sets of transverse waves, each consisting of four waves. The non-dispersive wave and

two coupled transverse waves propagate at all frequencies, while the other two coupled
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transverse waves and the remaining seven uncoupled waves propagate only at frequen-

cies higher than certain cut-off frequency. Twiss and Eringen (1971, 1972) derived the

micromorphic and micropolar balance equations and entropy production inequalities

for a mixtures of any number of chemically non-reacting constituents. They discussed

the plane wave propagation in a linear, isotropic, micropolar two constituent mixture

with restricted coupling. They showed that there exist longitudinal and transverse

microrotational waves, in addition to longitudinal and transverse displacement waves

of classical theory. The two displacement waves are found to be dispersive, while the

two transverse waves are complexly coupled.

Tomar and Gogna (1992) discussed the problem of reflection and refraction of a lon-

gitudinal microrotational wave at an interface between two micropolar elastic media

in welded contact and obtained the expressions of reflection and refraction coefficients.

The problems of reflection and refraction of a longitudinal wave and a coupled wave at

an interface between two dissimilar micropolar elastic solids are also discussed in detail

by Tomar and Gogna (1995a, b). These problems of Tomar and Gogna are basically

the extensions of the three specific problems earlier studied by Parfitt and Eringen

(1969), to cover the transmission phenomena through the plane interface. They used

potential method and Snell’s law to derive the amplitude ratios of various reflected and

transmitted waves. They found that these coefficients depend on the angle of incidence,

elastic properties of the half-spaces and frequency of the incident wave. Tomar and Ku-

mar (1995) obtained the reflection and refraction coefficients at the interface between

a homogeneous liquid half space and a micropolar solid half-space, when a longitudinal

displacement wave is impinging obliquely at the interface after propagating through

the micropolar solid half-space. Later, Tomar and Kumar (1999b) discussed the corre-

sponding problem when the longitudinal displacement wave becomes incidence at the

liquid / micropolar half-space after propagating through the liquid half-space. The

reflection and transmission of elastic waves (longitudinal/ coupled wave) at viscous

liquid/ micropolar elastic solid interface was discussed by Kumar and Tomar (2001).

They studied the effect of viscosity on various amplitude ratios. Kumar and Singh

(1997) investigated the problem of reflection and transmission of elastic waves at a

loosely bonded interface between an elastic and a micropolar elastic solids. They com-

puted these coefficients against the angle of incidence at different values of bonding

parameters. Recently, Hsia and Cheng (2006) presented reflection and transmission

phenomena due to an incident longitudinal plane wave at a plane interface between a

uniform elastic medium and a micropolar elastic medium. They presented two sets of

boundary conditions: one set contains a boundary condition of vanishing the micro-
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rotation at the interface, while the other set contains a boundary condition of vanishing

of couple stress at the interface, in addition to the four usual boundary conditions of

classical elasticity corresponding to the continuity of force stresses and displacements.

The solution of these two sets of boundary conditions are discussed in a separate paper

by Hsia et al. (2006), where they presented energy partitioning of various reflected and

transmitted waves and showed that the energy ratios not only depend on the angle of

incidence but also on the micro-inertia of the micropolar half-space, in addition that

there is a remarkable distinction between the two sets of possible boundary conditions.

They discovered that only four material moduli are required for full description of the

wave propagation and presented normalized power densities of the wave fields versus

angle of incidence corresponding to each set of boundary conditions for a particular

model. Later, Hsia et al. (2007) investigated the propagation of transverse wave and

reflection and transmission of incident SV / SH waves from a plane interface between

elastic − micropolar porous solids in perfect contact. Singh and Kumar (1998a, b)

studied a problem of reflection and refraction of micropolar elastic waves at a loosely

bonded interface between a viscoelastic solid and a micropolar elastic solid. They dis-

cussed the effect of looseness of the interface on various transmitted waves. Later,

Singh (2002a) considered the reflection and refraction coefficients of elastic waves at a

loosely bonded interface between two distinct micropolar viscoelastic solid half-spaces.

He showed that the coefficients depend on the bonding parameter of the interface and

studied the effect of viscoelasticity on them. Recently, Singh and Kumar (2007) studied

a problem of reflection and refraction of elastic waves at a welded contact interface be-

tween a viscoelastic solid and a micropolar elastic solid. They considered the incidence

of longitudinal micro-rotational wave propagating through the micropolar medium and

the incidence of SH− wave propagating through the viscoelastic medium. Tomar et

al. (1998) discussed the propagation of plane waves in an infinite micropolar elastic

medium with stretch and studied the reflections of these waves from the free plane

surface of a micropolar elastic half-space with stretch. Kumar and Singh (2000) ex-

tended their problem to the interface between a linear viscoelastic half-space and a

micropolar elastic half-space with stretch, when a plane P/ SV − wave after prop-

agating through the viscoelastic half-space becomes incident at the interface. Singh

(2000b) also covered the case of reflection and transmission of waves at the interface

between liquid half-space and micropolar viscoelastic solid with stretch. Kumar and

Deswal (2000) studied the reflection of micropolar elastic waves from the free sur-

face of a liquid saturated micropolar elastic half-space. They have also derived the

wave-velocity equation of Rayleigh waves in a micropolar liquid-saturated poroelastic
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half-space. Yang and Hsia (1998) discussed the propagation, reflection and transmis-

sion of an incident acoustic plane wave (from the liquid half-space) at the fluid −
micropolar interface and discussed the normalized power densities. Kumar and Barak

(2007) studied a problem of reflection and transmission at an interface between a ho-

mogeneous liquid half space and a micropolar liquid saturated porous half-space, when

longitudinal waves (fast/slow) and coupled transverse waves are made incident at the

interface. They studied the micropolarity and porosity effects on the coefficients cor-

responding to various reflected and transmitted waves.

Reflection of plane elastic waves from the boundary surface of a micropolar gener-

alized thermoelastic solid half-space in the context of Green-Lindsay (G-L) and Lord-

Shulman (L-S) theories was studied by Singh and Kumar (1998d). They obtained the

reflection coefficients of various reflected waves and showed that the effect of thermoe-

lastic coupling coefficient is more in G-L theory as compared to L-S theory. Kumar

(2000) extended the problem of Singh and Kumar (1998d) to the micropolar viscoelas-

tic generalized thermoelastic solid. Singh (2000a) studied the reflection and refraction

of plane sound wave at an interface between a liquid half-space and a micropolar

generalized thermoelastic solid half-space. He also compared the amplitude ratios

obtained in the corresponding problem without thermal effects. Singh (2001b) inves-

tigated the problem of reflection and refraction of micropolar thermoelastic waves at

a thermally conducting liquid half-space and a micropolar generalized thermoelastic

solid half-space. He found that the amplitude ratios for various reflected and trans-

mitted waves in G-L theory are different from those in L-S theory. This is how he

explained the effect of second thermal relaxation time on the amplitude ratios. Singh

(2002d) studied the reflection of thermo-viscoelastic plane waves from the free plane

boundary surface in the presence of magnetic field. Frequency equation of Rayleigh

surface wave propagation in a micropolar thermoelastic medium without energy dis-

sipation has been investigated by Kumar and Deswal (2002b). Song et al. (2006a)

obtained the reflection and transmission coefficients at the interface of two different

magneto-thermoviscoelastic micropolar solids in context of three different theories of

thermoelasticity. Song et al. (2006b) studied the problem of reflection and refraction of

magneto-thermoviscoelastic waves at the interface between two micropolar viscoelastic

media when a uniform magnetic field permeates the media using micropolar generalized

thermoviscoelastic theories. They obtained the expressions of reflection and refraction

coefficients for dilatational and rotational waves and found that these coefficients de-

pend upon the angle of incidence. They also found that the viscosity plays a significant

role, while magnetic field has a salient influence on reflection and refraction coefficients.
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Othman and Song (2007) discussed the reflection and refraction of a plane harmonic

wave at the interface between two micropolar thermoviscoelastic media without energy

dissipation and obtained the amplitude ratios corresponding to the reflected and re-

fracted waves. Kumar and Partap (2007) derived secular equations corresponding to

axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoe-

lastic plate without energy dissipation, when the faces of plate are stress free and when

they are rigidly fixed. They studied the micropolar and thermal effects on the phase

velocity and derived the amplitudes of displacement components, microrotation and

temperature distribution in symmetric and skew symmetric modes.

Singh and Kumar (1998c) extended their problem (Singh and Kumar, 1998d) to in-

clude stretch. They considered the case of incident longitudinal displacement, incident

coupled waves and incident longitudinal microstretch waves and studied the thermal

and stretch effects on various reflected waves. Singh and Kumar (1998e) discussed wave

propagation in a generalized thermo-microstretch elastic solid and studied the problem

of reflection of incident plane waves from the free surface of a generalized thermo-

microstretch half space. This problem was later extended to liquid/ microstretch in-

terface in the presence of temperature/magnetic fields by Singh (2001a, 2002c). Plane

wave propagation and their reflection from a free surface of a microstretch elastic solid

is investigated by Singh (2002b). He studied the effect of microstretch property on

various reflected waves. Tomar and Garg (2005) investigated the wave propagation

and their reflection and transmission through a plane interface between two different

microstretch elastic solid half-spaces in perfect contact. It is shown that there exist

five waves in a linear homogeneous isotropic microstretch elastic solid, one of them

travel independently, while other waves are two sets of two coupled waves. It is also

shown that these waves travel with different velocities, three of which disappear be-

low a critical frequency. Amplitude ratios and energy ratios of various reflected and

transmitted waves are presented when a set of coupled longitudinal waves and a set

of coupled transverse waves is made incident. Recently, Kumar and Rupinder (2008)

studied the reflection and deformation in magneto-thermo-microstretch elastic solid.

Willson (1972) discussed the fundamental vibrations of a long circular cylinder

made up of micropolar material. He derived the dispersion equation and discovered

that torsional type surface waves may propagate independently of waves of extension.

The dispersion relation of these waves were earlier discovered by Smith (1970), but

in a complicated form. Rao (1988) studied the micropolar effect on the longitudinal

wave propagating in an elastic layer and derived the frequency equation corresponding

to Rayleigh-Lamb wave propagation. He found that the longitudinal wave propagates
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in the layer with an extra velocity, which arises due to micropolarity of the layer. He

observed that even modes are anti-symmetric and odd modes are symmetric unlike in

classical elasticity. The results obtained are compared with the corresponding results

of classical elasticity. Rayleigh type surface waves propagating on the surface in the

azimuthal direction of an elastic circular cylinder of a micropolar elastic material is

studied by Rao and Reddy (1993). Tajuddin (1995) studied the propagation of Stone-

ley waves at an unbonded interface between two micropolar elastic half-spaces. He

derived the condition of propagation when the solids are Poission solids and have the

material properties close to each other. Kumar and Singh (1996) studied the Rayleigh-

Lamb waves and Rayleigh surface waves in a micropolar generalized thermoelastic body

with stretch. Deswal et al. (2000) studied the effect of micropolarity and viscosity on

dispersion curves on the surface waves in cylindrical bore filled with viscous liquid and

hosted in micropolar media. Kumar and Deswal (2002a) obtained the frequency equa-

tion for the propagation of Stoneley type waves along the surface of a cylindrical bore

filled with viscous liquid and embedded in a microstretch elastic medium. Nowacki

and Nowacki (1969) discussed the propagation of monochromatic elastic waves in an

infinite micropolar elastic plate. They obtained the symmetric and anti-symmetric

vibrations by deriving the corresponding characteristic equations and approximated

them for wavelengths small compared to plate thickness. They also showed that Love

waves are possible in a micropolar elastic half-space in addition to the usual Rayleigh

waves. Bera(1973) investigated the propagation of monochromatic waves in an initially

stressed infinite micropolar elastic plate and reduced the result of Nowacki and Nowacki

(1969) by neglecting initial stress. Tomar (2002) investigated the wave propagation in

a micropolar elastic plate bordered with layers of homogeneous inviscid liquid. Tomar

(2005) has also investigated the frequency equation of Rayleigh−Lamb waves in a mi-

cropolar elastic plate with voids. He found that both symmetric and antisymmetric

modes of vibrations are dispersive and attenuated. The presence of voids has neg-

ligible effect on the dispersion curves, however attenuation coefficient is significantly

influenced.

Kumar and Deswal (2006) studied wave propagation in micropolar elastic medium

with voids. They studied three different problems. One is on the propagation of waves

in a micropolar elastic layer with voids immersed in an infinite liquid, second is on

the reflection of longitudinal and coupled waves at the free surface of micropolar elas-

tic half-space with voids and third is on Rayleigh wave propagation. They derived

the frequency equations corresponding to symmetric and anti-symmetric modes in the

micropolar elastic layer with voids and studied the effect of voids and micropolarity
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on dispersion curves. They also computed the reflection coefficients for a particular

model and compared with classical case. Tomar and Singh (2006) discussed the prop-

agation of plane waves in an infinite micropolar porous elastic medium and studied

the problem of reflection of a plane longitudinal displacement wave and coupled waves

from a plane free surface and obtained the expressions of amplitude and energy ratios.

Recently, Singh and Tomar (2007) discussed the plane wave propagation in a linear,

homogeneous, and isotropic micropolar porous elastic solid rotating with a uniform an-

gular velocity. They showed the existence of three longitudinal waves and two sets of

coupled transverse waves. They observed that out of the three longitudinal waves, one

is a longitudinal microrotational wave, the second is a longitudinal displacement wave

and the third is a longitudinal void volume fractional wave carrying a change in the

void volume and showed that the rotation of the body does influence the phase speed,

energy loss, and decay coefficient, in general. Propagation of shear surface wave along

the interface of a liquid half-space and a micropolar solid half-space is investigated

by Yerofeyev and Soldatov (1999) and determined the phase speed and attenuation.

They found that these surface waves are almost non-dispersive unlike the correspond-

ing problem in classical elasticity. Midya (2004) discussed the propagation of SH-type

surface waves in homogeneous isotropic elastic media consisting of a layer of finite

thickness lying over a half-space when either the layer or the half-space or both are

micropolar and observed that a new type of surface wave is arising in all cases due

to the micropolarity of one or both the media. Recently, Midya et al. (2007, 2008)

studied a problem of diffraction of normally incident P and SH-waves by a line crack

in micropolar medium. He obtained stress intensity factor for limitly low and high

frequencies by taking small coupling parameter.

1.4 Plan of thesis

In this thesis, we have investigated some interesting dynamical problems in microstruc-

tural continuum using Eringen’s polar theory. These problems are pertaining to surface

waves in a microstretch plate, Stoneley waves at an interface between two different

microstretch half-spaces, surface waves in a micropolar cylindrical borehole filled with

micropolar fluid, reflection and transmission of elastic waves at a liquid/solid half-space

and reflection of elastic waves from a micropolar mixture porous half-space. There are

six chapters, including a list of references given in the end of this thesis.

Chapter 1 is on Introduction, in which the development of microcontinuum the-

ories, derivations of basic equations and constitutive relations for micropolar elastic

43



solid and an exhaustive review on the works done by various researchers in the field of

wave propagation in microcontinuum are presented.

Chapter 2 is on the propagation of Rayleigh−Lamb waves in an infinite plate of

finite thickness and composed of microstretch elastic material. The top and bottom

of the plate are cladded with finite layers of a homogeneous and inviscid liquid (non-

micropolar and non-microstretch). There exist two sets of boundary conditions at

solid/liquid interface and corresponding frequency equations are derived for symmetric

and antisymmetric modes of propagation for Rayleigh Lamb wave propagation. Nu-

merical computations are performed for a specific model to compute the phase velocity

and attenuation coefficient for different values of wavenumber, for both symmetric and

antisymmetric vibrations. Results of some earlier workers have been deduced as special

cases at the end of the chapter.

In Chapter 3, we derived frequency equations for Stoneley wave propagation at un-

bonded and bonded interfaces between two dissimilar microstretch elastic half-spaces.

Numerical treatment to the problem is dealt in detail. The results of earlier workers

have been derived as particular cases of the present problem, and some other interest-

ing particular cases have also been discussed in this chapter.

In Chapter 4, the possibility of plane wave propagation in a micropolar fluid of

infinite extent has been explored. The reflection and transmission of longitudinal elas-

tic waves at a plane interface between a homogeneous micropolar fluid half-space and

a micropolar solid half-space has also been investigated. The expressions of energy

ratios have been obtained in explicit form. Frequency equation for the Stoneley wave

at micropolar solid/fluid interface has also been derived in the form of sixth-order de-

terminantal expression, which is found in full agreement with the corresponding result

of inviscid liquid/elastic solid interface. Numerical computations have been performed

for a specific model. The dispersion curves and attenuation of the existed waves in mi-

cropolar fluid have been computed and depicted graphically. The variations of various

amplitudes and energy ratios are also shown against the angle of incidence. Results

of some earlier workers have been deduced from the present formulation at the end of

this chapter.

In Chapter 5, the micropolar mixture theory of porous media developed by Eringen

(2003a) is employed to explore the possible propagation of waves in this continuum.

A problem of reflection of coupled longitudinal waves from a free boundary surface of

a half-space consisting the mixture of a micropolar elastic solid and Newtonian liquid,

is investigated. The expressions of phase velocity, various amplitude and energy ratios

and surface responses are calculated and computed numerically for a specific model.
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All the numerical results computed are depicted graphically.

In Chapter 6, we derived the dispersion equation for the propagation of surface

waves in a cylindrical borehole filled with a micropolar viscous fluid and hosted in an

infinite micropolar elastic solid medium. The effects of fluid viscosity, micropolarity of

the fluid and radius of the borehole on the dispersion curves are noticed and depicted

graphically.

A list of references mentioned at various places in the entire thesis, has been given

at the end of this thesis.
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Chapter 2

Rayleigh-Lamb waves in a

microstretch elastic plate cladded

with liquid layers1

2.1 Introduction

Lamb (1917) was the first to investigate the problem of wave propagation in an elastic

plate of uniform material. Since then the term ’Lamb wave’ has been used to refer

to an elastic disturbance propagating in a solid plate with free boundaries. When a

plate of finite thickness is bordered with homogeneous liquid half-spaces on both sides

then some part of the Lamb wave energy in the plate radiates into the liquid, while

most of the energy still remains in the solid. The density and viscosity sensing with

Lamb waves is based on the principle that the presence of liquid in contact with a solid

plate changes the velocity and amplitude of the Lamb waves in the plate with free

boundaries. Wu and Zhu (1992) and Zhu and Wu (1995) studied the propagation of

Lamb waves in an elastic plate when both sides of the plate are bordered with liquid

layers. Sharma et al. (2003) analyzed the propagation of thermoelastic waves in a

homogeneous, transversely isotropic, thermally conducting plate bordered with layers

of inviscid liquid or with inviscid liquid half-spaced on both sides, in the context of

coupled theory of thermoelasticity. Sharma and Pathania (2003), Sharma et al. (2004),

1Journal of Sound and Vibration, 302(1-2), 313-331(2007).
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Sharma and Pathania (2004) and Sharma and Pal (2004) discussed various problems

of propagation of thermoelastic waves in a plate bordered with layers of inviscid liquid

in the context of generalized theories of thermoelasticity. Tomar (2002) derived the

frequency equations for wave propagation in a micropolar plate of finite thickness and

bordered with layers of homogeneous inviscid liquid. In this chapter, we have discussed

the propagation of Rayleigh-Lamb waves in a plate of homogeneous and isotropic mi-

crostretch elastic material cladded with layers of homogeneous, inviscid and nonpolar

liquid. The field equations and constitutive relations for microstretch elastic material

developed by Eringen are employed for mathematical analysis. The frequency equa-

tions corresponding to symmetric and antisymmetric modes of vibrations of the plate

are obtained. These frequency equations are discussed for some limiting cases and

some known results of earlier authors have been reduced. Phase velocity and attenua-

tion coefficient are also computed for a specific model and the effect of microstretch is

noticed on them.

2.2 Formulation of problem

We consider a plate of finite thickness ′2d′ and composed of microstretch elastic solid

material. The plate is assumed to be of infinite extent in the x − y plane, whose top

Figure 2.1: Geometry of the problem

and bottom faces are bordered with layers of a homogeneous inviscid liquid of thickness

′h′. The x − y plane is taken to coincide with the middle plane of the plate and the
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z-axis is taken normal to it along the thickness of the plate. The complete geometry

of the problem is shown in Figure 2.1.

The equations of motion and constitutive relations in a linear homogeneous and

isotropic microstretch elastic solid medium, in the absence of body force and body

couple densities, are given in Chapter-1 through equations (1.125) -(1.130). We shall

discuss a two-dimensional problem in x−z plane, so we take the following components

of displacement vector, microrotation vector and scalar microstretch respectively

u = (u(x, z), 0, w(x, z)) , φ = (0, φ(x, z), 0) , ψ = ψ(x, z).

With these considerations and introducing potentials L and M such that

u =
∂L

∂x
+

∂M

∂z
, w =

∂L

∂z
− ∂M

∂x
,

into equations (1.125) - (1.27), we obtain

(λ + 2µ + K)∇2L + λ0ψ = ρ
∂2L

∂t2
, (2.1)

(µ + K)∇2M − Kφ = ρ
∂2M

∂t2
, (2.2)

γ∇2φ + K∇2M − 2Kφ = ρj
∂2φ

∂t2
, (2.3)

6α0∇2ψ − 2λ0∇2L − 2λ1ψ = 3ρj
∂2ψ

∂t2
. (2.4)

We see that the equations (2.1) and (2.4) are coupled in the potential L and mi-

crostretch ψ, while the equations (2.2) and (2.3) are coupled in the potential M and

micro-rotation φ. To find out the time harmonic solution of these equations, we assume

the form of L, M, φ and ψ as follows

{L, M, φ, ψ}(x, z, t) = {L̄, M̄ , φ̄, ψ̄}(x, z) exp{−ıωt}, (2.5)
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where ω is angular frequency, which is related to the wavenumber ξ and phase velocity

c through the relation ω = ξc. Substituting (2.5) into equations (2.1)-(2.4), we obtain

(λ + 2µ + K)∇2L̄ + λ0ψ̄ = −ρω2L̄, (2.6)

(µ + K)∇2M̄ − Kφ̄ = −ρω2M̄, (2.7)

γ∇2φ̄ + K∇2M̄ − 2Kφ̄ = −ρjω2φ̄, (2.8)

6α0∇2ψ̄ − 2λ0∇2L̄ − 2λ1ψ̄ = −3ρjω2ψ̄. (2.9)

Again, we can see that the equations (2.6) and (2.9) are coupled in L̄ and ψ̄, while the

equations (2.7) and (2.8) are coupled in M̄ and φ̄. By elimination procedure, it can be

seen that these potentials satisfy the following equations

[

∇4 + ℓ1∇2 + ℓ2

]

(ψ̄, L̄) = 0, (2.10)

[

∇4 + ℓ3∇2 + ℓ4

]

(φ̄, M̄) = 0, (2.11)

where

ℓ1 =

(

3ρjω2 − 2λ1

6α0

+
3α0ρω2 + λ2

0

3α0(λ + 2µ + K)

)

, ℓ2 =
ρω2(3ρjω2 − 2λ1)

6α0(λ + 2µ + K)
,

ℓ3 =

(

ρjω2 − 2K

γ
+

γρω2 + K2

γ(µ + K)

)

, ℓ4 =
ρKω2

γ(µ + K)

(

ρjω2

K
− 2

)

.

The solutions of equations (2.10) and (2.11) for the waves propagating along positive x−
direction can be worked out easily and finally the time harmonic solutions of equations

(2.1)-(2.4) can be written as

L = (A sinh Rz + B cosh Rz + C sinh Sz + D cosh Sz)eı(ξx−ωt), (2.12)

ψ = a(A sinh Rz + B cosh Rz) + b(C sinh Sz + D cosh Sz)eı(ξx−ωt), (2.13)
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M = (E sinh Pz + F cosh Pz + G sinh Qz + H cosh Qz)eı(ξx−ωt), (2.14)

φ = c′(E sinh Pz + F cosh Pz) + d′(G sinh Qz + H cosh Qz)eı(ξx−ωt), (2.15)

where the quantities a, b, c′ and d′ are coupling constants and their expressions can

be obtained by substituting equations (2.12)-(2.15) into equations (2.1) and (2.2) as

a = −{(c2
1 + c2

3)(−ξ2 + R2) + ω2}/λ̄0, b = −{(c2
1 + c2

3)(−ξ2 + S2) + ω2}/λ̄0,

c′ = {(c2
2 + c2

3)(−ξ2 + P 2) + ω2}/c2
3, d′ = {(c2

2 + c2
3)(−ξ2 + Q2) + ω2}/c2

3,

and the expressions of R, S, P and Q are given by

R2, S2 = ξ2 − 1

2

[

ℓ1 ±
√

ℓ2
1 − 4ℓ2

]

, P 2, Q2 = ξ2 − 1

2

[

ℓ3 ±
√

ℓ2
3 − 4ℓ4

]

.

The expressions of R2 and P 2 are taken with ‘ + ‘ sign and expressions of S2 and Q2

are taken with ‘ − ‘ sign.

The equation of motion in liquid medium is given by

∇2Ψ =
1

c2
L

∂2Ψ

∂t2
, (2.16)

where Ψ is the displacement potential and cL =
√

λL/ρL is the velocity of sound in

liquid, λL and ρL being the bulk modulus and density of the liquid respectively.

Denoting the displacement potential function by φL1
and φL2

in the top and bottom

layers of the liquid respectively, the normal component of displacement wLi
and pressure

p are given by

wLi
=

∂φLi

∂z
, p = ρLω2φLi

. (2.17)

(i = 1 for the liquid in top layer and i = 2 for the liquid in bottom layer).

The time harmonic solutions of equation (2.16) for the waves propagating along x−
direction in the top and bottom liquid layers are given by (see Wu and Zhu, 1992)

φL1
= F1 sin{T [z − (d + h)]}eı(ξx−ωt) for [d ≤ z ≤ (d + h)], (2.18)
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φL2
= F2 sin{T [z + (d + h)]}eı(ξx−ωt) for [−(d + h) ≤ z ≤ −d], (2.19)

where F1 and F2 are unknown, T 2 = K2
L − ξ2 and KL = ω/cL. To derive the frequency

equation for Rayleigh-Lamb waves in the plate considered, we shall use the following

boundary conditions at the solid-liquid interfaces.

2.3 Boundary conditions

The relevant boundary conditions at the solid/liquid interface will be the continuity

of displacement and stresses. Corresponding to the continuity of normal component

of stress at the interface, the normal stress of the solid must be equal to the pressure

of the liquid layer. However, shear stress of solid should be equal to zero at the

interface as the inviscid liquid can not support shear stress. Also, as one can not

protect the flow of an inviscid liquid over a solid, the continuity condition can not

be put on the displacement component along x− axis, however normal component of

displacement must be continuous at liquid − solid interface. Mathematically, these

boundary conditions can be expressed as

τzx = 0, τzz = −p and w = wL. (2.20)

These equations constitute the three boundary conditions. However, to solve a bound-

ary value problem at the interface of interest, we need two more conditions. The balance

of moment of momentum across the interface of two microstretch elastic solids requires

the continuity of normal component of couple stress and continuity of microstretch vec-

tor. In the present instance, we have the interface between a microstretch elastic solid

and an inviscid liquid. Since our liquid neither exhibit micropolarity nor microstretch

property, therefore, at liquid − solid interface couple stress and microstretch tensor

must vanish. These conditions can be written as

mzy = 0 and mz = 0. (2.21)

These two equations constitute the remaining two boundary conditions we need.

The boundary conditions on the displacement fields are purely kinematic, so the bound-

ary conditions on microrotation and microstretch cannot be ruled out. We see that
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other set of boundary conditions are also possible for the present case. These are the

vanishing of microrotation and microstretch of the solid at liquid − solid interface as

our liquid can not support both (however, one can consider such a liquid in which both

microrotation and microstretch are non-null). Therefore, one can use the following

boundary conditions in place of those given in (2.21)

φ = 0 and ψ = 0. (2.22)

Thus, we see that there are two sets of boundary conditions at the solid-liquid interfaces.

These two sets of boundary conditions to be satisfied at the solid-liquid interfaces

z = ±d are given by

Set I: τzx = 0, mzy = 0, mz = 0, τzz = −p, w = wL.

Set II: τzx = 0, φ = 0, ψ = 0, τzz = −p, w = wL.

Using equations (2.12) - (2.15), (2.17)-(2.19) and relevant quantities from (1.128) -

(1.130) into the boundary conditions given in Set-I, we obtain the following ten homo-

geneous equations in ten unknown, namely A, B, C, D, E, F, G, H, F1 and F2,

given by

[−λξ2 +(λ+2µ+K)R2 +λ0a](A sinh Rd+B cosh Rd)+ [−λξ2 +(λ+2µ+K)S2 +λ0b]

×(C sinh Sd + D cosh Sd) − P (2µ + K)ıξ(E cosh Pd + F sinh Pd) − Q(2µ + K)ıξ

×(G cosh Qd + H sinh Qd) − ρLω2F1 sin Th = 0, (2.23)

[−λξ2 +(λ+2µ+K)R2 +λ0a](−A sinh Rd+B cosh Rd)+[−λξ2 +(λ+2µ+K)S2 +λ0b]

×(−C sinh Sd + D cosh Sd) − P (2µ + K)ıξ(E cosh Pd − F sinh Pd) − Q(2µ + K)ıξ

×(G cosh Qd − H sinh Qd) + ρLω2F2 sin Th = 0, (2.24)

R(2µ + K)ıξ[A cosh Rd + B sinh Rd] + S(2µ + K)ıξ[C cosh Sd + D sinh Sd]

+[µξ2 + (µ + K)P 2 − Kc′](E sinh Pd + F cosh Pd) + [µξ2 + (µ + K)Q2 − Kd′]
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×(G sinh Qd + H cosh Qd) = 0, (2.25)

R(2µ + K)ıξ[A cosh Rd − B sinh Rd] + S(2µ + K)ıξ[C cosh Sd − D sinh Sd]

+[µξ2 + (µ + K)P 2 − Kc′](−E sinh Pd + F cosh Pd) + [µξ2 + (µ + K)Q2 − Kd′]

×(−G sinh Qd + H cosh Qd) = 0, (2.26)

Pc′(E cosh Pd + F sinh Pd) + Qd′(G cosh Qd + H sinh Qd) = 0, (2.27)

Pc′(E cosh Pd − F sinh Pd) + Qd′(G cosh Qd − H sinh Qd) = 0, (2.28)

R(A cosh Rd + B sinh Rd) + S(C cosh Sd + D sinh Sd)

−ıξ(E sinh Pd + F cosh Pd + G sinh Qd + H cosh Qd) − TF1 cos Th = 0, (2.29)

R(A cosh Rd − B sinh Rd) + S(C cosh Sd − D sinh Sd)

−ıξ(−E sinh Pd + F cosh Pd − G sinh Qd + H cosh Qd) − TF2 cos Th = 0, (2.30)

aR(A cosh Rd + B sinh Rd) + bS(C cosh Sd + D sinh Sd) = 0, (2.31)

aR(A cosh Rd − B sinh Rd) + bS(C cosh Sd − D sinh Sd) = 0. (2.32)

For non-trivial solution of these equations, the determinant of their coefficient matrix

should vanish. For T 6= 0 and Th 6= (2n − 1)π

2
, (n = 1, 2, ....), this determinantal

equation leads to the following frequency equations for symmetric (with index ’+1’)

and antisymmetric (with index ’-1’) modes of vibrations respectively

(aRM2(coth Sd)±1 − bSM1(coth Rd)±1)(Pc′N2(coth Pd)±1 − Qd′N1(coth Qd)±1)

−(b − a)(d′ − c′)ξ2M2
3 RSPQ(coth Qd coth Pd)±1 = −RS(b − a)

ρLω2

T
tan Th
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×[ξ2M3(Qd′(coth Qd)±1 − c′P (coth Pd)±1)

−(Qd′N1(coth Qd)±1 − c′PN2(coth Pd)±1)], (2.33)

where

M1 = −λξ2 + (λ + 2µ + K)R2 + λ0a, M2 = −λξ2 + (λ + 2µ + K)S2 + λ0b,

M3 = (2µ + K), N1 = µξ2 + (µ + K)P 2 − Kc′, N2 = µξ2 + (µ + K)Q2 − Kd′

It can be seen that equation (2.33) exhibit implicit functional relationship between

phase velocity and wavenumber, therefore, the symmetric and antisymmetric modes

of Rayleigh-Lamb waves are dispersive in nature. Moreover, the ′ tanh′ and ′ coth′

functions are multiple valued functions, therefore there exist infinite number of modes

of propagation.

Similarly, using the boundary conditions given in Set -II, we obtain the following

frequency equations for symmetric (with index ’+1’) and antisymmetric (with index

’-1’) modes of propagation of Rayleigh-Lamb waves respectively.

(aM2 − bM1)[aN2(coth Sd)±1 − bN1(coth Rd)±1][M3d
′(tanh Pd)±1 − M4c

′(tanh Qd)±1]

=
ρL

T
ω2 tan Th[(aS(coth Sd)±1 − bR(coth Rd)±1)

×(N3d
′ − N4c

′) − ıξ(aN2(coth Sd)±1 − bN1(coth Rd)±1)(c′ − d′)] (2.34)

2.4 Limiting cases

2.4.1 Symmetric vibrations:

(a) For waves long compared with the thickness of the plate, the quantity ξd is small

and therefore the quantities Rd, Sd, Pd, and Qd may be assumed small as long as c

is finite. In this case, tanh x → x and we obtain from equation (2.33) for symmetric

(with index ’+1’) mode

(aR2M2 − bS2M1)(N2c
′ − N1d

′) − R2S2ξ2M2
3 (b − a)(d′ − c′)
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= R2S2(b − a)
ρLω2

T
tan Th[ξ2M3(d

′ − c′) − (N1d
′ − N2c

′)]. (2.35)

In the absence of liquid layers, i.e., when ρL = 0, the above equation (2.35) reduces to

(aR2M2 − bS2M1)(N2c
′ − N1d

′) − R2S2ξ2M2
3 (b − a)(d′ − c′) = 0. (2.36)

This is the frequency equation for symmetric modes of vibration in a microstretch

elastic plate with free boundaries in the present case. If we further neglect the mi-

crostretch property from the plate, then we shall be left with the problem of Lamb

wave propagation in a micropolar elastic plate with free boundaries. Thus, by putting

λ0 = α0 = λ1 = 0 and b/a = 0, the equation (2.36) reduces to

[(2µ + K)ξ2 − ρω2][N2c
′ − N1d

′] = ξ2S ′2(2µ + K)2(c′ − d′), (2.37)

where

S ′ =

√

ξ2 − ρω2

λ + 2µ + K
.

This equation matches with the frequency equation as obtained by Nowacki and Nowacki

(1969) for the relevant problem apart from notations.

Again, in the absence of micropolarity, i.e., when K = d′/c′ = 0, we get from equation

(2.37) after some simplification

c2 = 4β2

(

1 − β2

α2

)

(2.38)

where α2 = (λ + 2µ)/ρ and β2 = µ/ρ. This equation exactly matches with Lamb

(1917).

(b) For very short waves as compared with the thickness of the plate, the quantity ξd

is large, therefore, the quantities Rd, Sd, Pd and Qd are large as long as c is finite

and tanh x → 1. In this case, equation (2.33) for symmetric mode (with index ’+1’)

reduces to

(aRM2 − bSM1)(Pc′N2 − Qd′N1) − RSPQξ2M2
3 (b − a)(d′ − c′)

= −RS(b − a)
ρLω2

T
tan Th[ξ2M2

3 (d′Q − Pc′) − (d′QN1 − Pc′N2)]. (2.39)
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This is the frequency equation for Rayleigh waves in microstretch elastic half space

with liquid layers.

If we neglect the liquid layers, then the problem reduces to Rayleigh waves in mi-

crostretch elastic half space. To obtain the Rayleigh wave equation in microstretch

elastic half-space, we put ρL = 0 into equation (2.39), we have

(aRM2 − bSM1)(Pc′N2 − Qd′N1) = RSPQξ2M2
3 (b − a)(d′ − c′). (2.40)

Further, if we neglect the microstretch effect, then the problem reduces to Rayleigh

waves in micropolar elastic half-space. Thus by putting λ0 = α0 = λ1 = b/a = 0 into

equation (2.40), we get the following Rayleigh wave equation in micropolar half-space

M2(Pc′N2 − Qd′N1) = −SPQξ2M2
3 (d′ − c′). (2.41)

This equation coincides with the Rayleigh wave frequency equation in a micropolar

elastic half-space earlier obtained by De and Sengupta (1974).

Also, If we again neglect the micropolar effect, we shall obtain Rayleigh wave equation

in a uniform elastic half space. By putting K = d′/c′ = 0 into equation (2.41), we get

(

2 − c2

β2

)2

= 4

(

1 − c2

α2

)1/2 (

1 − c2

β2

)1/2

, (2.42)

which is a well known classical Rayleigh wave frequency equation in an elastic half

space.

2.4.2 Antisymmetric vibrations:

(a) For waves long compared with the thickness of the plate, the quantity ξd is small,

therefore, the quantities Rd, Sd, Pd and Qd are small and we have tanh x ≃ x − x3

3
.

Using this into equation (2.33) for antisymmetric mode (with index ’-1’), we obtain

the following equation

(aM2Y1 − bM1Y2)(P
2c′N2Z1 − Q2d′N1Z2) − P 2Q2ξ2M2

3 (b − a)(d′ − c′)Z1Z2

= −(b − a)
ρLω2

Td
tan Th[ξ2M3(Q

2d′Z2 − P 2c′Z1) − (Q2d′N1Z2 − P 2c′N2Z1)], (2.43)
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where

Y1 = 1 − (Sd)2/3, Y2 = 1 − (Rd)2/3, Z1 = 1 − (Pd)2/3, Z2 = 1 − (Qd)2/3.

If we neglect the liquid layer, then the above equation reduces to (by putting ρL = 0)

(aM2Y1 − bM1Y2)(P
2c′N2Z1 − Q2d′N1Z2) = P 2Q2ξ2M2

3 (b − a)(d′ − c′)Z1Z2. (2.44)

Further, if we neglect the microstretch effect from the plate, then the equation (2.44)

reduces to the following after putting λ0 = α0 = λ1 = 0 and b/a = 0

M2

(

1 − (Sd)2

3

)(

c′N2

Q2Z2

− d′N1

P 2Z1

)

= ξ2M2
3 (c′ − d′), (2.45)

where M2 = −λξ2 + (λ + 2µ + K)S2. This equation is same as obtained by Nowacki

and Nowacki (1969) for the corresponding problem.

If we remove micropolar effect from the plate, then by putting K = 0 and d′/c′ = 0,

the equation (2.45) reduces to

c2 =
4

3
(ξd)2β2

(

1 − β2

α2

)

, (2.46)

which coincides with the equation of classical elasticity for the relevant problem as

given in Ewing et al. (1957).

(b) For very short waves compared with the thickness of the plate, the frequency

equation (2.33) for antisymmetric (with index ’-1’) modes of vibrations can be reduced

to equation (2.39), in a similar way as done in case of symmetric vibrations.

2.5 Special cases

(i) If we neglect the presence of liquid layers from both sides of the plate, then we

shall be left with the problem of wave propagation in a microstretch plate with free

faces. To do this, we shall put ρL = 0 into equation (2.33). The reduced frequency

equations for symmetric (with index ’+1’) and antisymmeric (with index ’-1’) modes

of vibrations are given by

[aRM2(coth Sd)±1 − bSM1(coth Rd)±1][Pc′N2(coth Pd)±1 − Qd′N1(coth Qd)±1]
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−(b − a)(d′ − c′)ξ2M2
3 RSPQ(coth Qd coth Pd)±1 = 0, (2.47)

(ii) When microstretch effect is neglected from the plate, we shall be left with the

problem of Lamb wave propagation in micropolar plate bordered with liquid layers. In

this case, we substitute λ0 = λ1 = α0 = 0 and b/a = 0 into equation (2.33) to obtain

the following frequency equations for symmetric (with index ’+1’) and antisymmetric

(with index ’-1’) modes

(coth Sd)±1[−λξ2 + (λ + 2µ + K)S2][(µξ2 + (µ + K)P 2 − Kc′)d′Q(coth Qd)±1

−(µξ2+(µ+K)Q2−Kd′)c′P (coth Pd)±1]−ξ2PQS(2µ+K)2(d′−c′)(coth Qd coth Pd)±1

= ρLω2 tan Th

(

S

T

)

[(µξ2 + (µ + K)P 2 − Kc′)Qd′(coth Qd)±1 − c′P [µξ2 + (µ + K)Q2

−Kd′](coth Pd)±1 − ξ2(2µ + K)[Pc′(coth Pd)±1 − Qd′(coth Qd)±1]] (2.48)

These equations exactly match with the equations (30) and (31) of Tomar (2002) apart

from notations.

Further, if we neglect the presence of liquid layers, we shall be left with the problem of

wave propagation in a micropolar plate with free boundaries. For this, putting ρL = 0

into equation (2.48), we obtain

(coth Sd)±1[−λξ2+(λ+2µ+K)S2][(µξ2+(µ+K)P 2−Kc′)d′Q(coth Qd)±1−(µξ2+(µ+K)Q2

−Kd′)c′P (coth Pd)±1] − ξ2PQS(2µ + K)2(d′ − c′)(coth Qd coth Pd)±1 = 0, (2.49)

which is the frequency equation corresponding to symmetric (with index ’+1’) and an-

tisymmetric (with index ’-1’) modes for Lamb wave propagation in a micropolar elastic

plate with free boundaries.

(iii) When h → ∞, then tan Th → ı and the equation (2.33) corresponding to sym-

metric (with index +1) and antisymmetric (with index -1) modes, reduces to

[aRM2(coth Sd)±1 − bSM1(coth Rd)±1][Pc′N2(coth Pd)±1 − Qd′N1(coth Qd)±1]
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−(b − a)(d′ − c′)ξ2M2
3 RSPQ(coth Qd coth Pd)±1

= −RS(b − a)ı
ρLω2

T
[ξ2M3[Qd′(coth Qd)±1

−c′P (coth Pd)±1] − [Qd′N1(coth Qd)±1 − c′PN2(coth Pd)±1]]. (2.50)

Equation (2.50) is the dispersion equation for symmetric (with index ’+1’) and anti-

symmetric (with index ’-1’) modes of leaky Lamb waves in a microstretch elastic plate

bordered with identical inviscid liquid half-space on both sides.

(iv) When microstretch and micropolar effects are neglected from the plate, then by

putting K = α0 = λ1 = λ0 = 0 and b/a = 0 and d′/c′ = 0 into equation (2.33), we

get the frequency equation corresponding to symmetric (with index ’+1’) and anti-

symmetric (with index ’-1’) modes of Lamb wave propagation of classical elastic plate

bordered with liquid layers, as

M2N2 (coth Sd tanh Qd)±1 − SQξ2M2
3

= −S
ρLω2

T
tan Th (tanh Qd)±1 (ξ2M3 − N2). (2.51)

These equations are the same as equations (5) and (6) of Wu and Zu (1992) for the

corresponding problem, apart from notations.

(v) If we neglect the presence of liquid layers from the elastic plate of case (iv), we get

the problem of Lamb wave propagation in classical elastic plate. By putting ρL = 0 in

the frequency equation of case (iv), we obtain

M2N2 (coth Sd tanh Qd)±1 − SQξ2M2
3 = 0, (2.52)

which further reduces to the following well known equations corresponding to symmet-

ric and antisymmetric modes, respectively

(

2 − c2

c2
2

)2 (

tanh Qd

tanh Sd

)±1

= 4

√

(

1 − c2

c2
1

)(

1 − c2

c2
2

)

, (2.53)

where c2
1 = (λ+2µ)/ρ and c2

2 = µ/ρ. These equations exactly match with those obtained

by Lamb (1917) in the classical case.
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It can be verified that if we neglect the micropolar, microstretch and liquid layers from

the problem, then equation (2.34) reduces to equation (2.53) for Lamb waves in elastic

plate given by Lamb (1917).

2.6 Numerical results and discussions

Frequency equations for Rayleigh-Lamb waves are solved numerically for a particular

model using functional iteration method. Following values of relevant elastic parame-

ters have been taken.

Symbol Value

λ 7.583 × 1011 dyne/cm2

µ 6.334 × 1011 dyne/cm2

K 0.0149 × 1011 dyne/cm2

λ0 0.773 × 1011 dyne/cm2

λ1 0.030 × 1011 dyne/cm2

α0 0.085 × 1011 dyne

γ 2.89 × 1011 dyne

j 0.000625 cm2

ρ 1.2 gm/cm3

d 1.5 cm

ρL 1.1 gm/cm3

λL 0.245 × 1011 dyne/cm2

h 0.5 cm

We have computed the non-dimensional phase velocity (c/V ), (V =
√

c2
1 + c2

3) at dif-

ferent values of non-dimensional wavenumber (ξd). The values of velocity ratio (c/V )

are computed from frequency equation (2.33) obtained by using the boundary condi-

tions given in Set-I and equation (2.34) obtained by using the boundary conditions

given by Set-II for different values of wavenumber ′ξd′. For real values of wavenum-

ber, the real values of phase velocity are found for microstretch plate bordered with

liquid layers and micropolar plate bordered with liquid layers. It is found that in the

case of microstretch plate with free boundaries and in case of micropolar plate with

free boundaries, the waves are attenuated. The results obtained for symmetric mode

(s-mode) and antisymmetric mode (a-mode) are depicted graphically through Figures
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Figure 2.2: Comparison of symmetric modes of microstretch plate bordered with liquid
layers for Set-I and for Set-II

2.2-2.18.

In Figure 2.2, we have depicted the dispersion curves corresponding to funda-

mental, first, second, third and fourth symmetric modes of Rayleigh-Lamb wave prop-

agation of microstretch plate bordered with liquid layers obtained by using frequency

equation due to Set-I and Set-II. It is clear from this figure that the dispersion curves

for symmetric modes do not differ significantly. Thus we conclude that we can choose

any one set of the boundary conditions mentioned earlier.

In Figure 2.3, we have depicted the dispersion curves for first five symmetric modes

of vibrations for microstretch plate bordered with liquid layers and with free bound-

aries. For given real value of the wavenumber, the value of phase velocity is found real

for microstretch plate bordered with liquid layers, while for microstretch plate with

free boundaries, the value of phase velocity is found complex. In this figure, we have

depicted the real part of phase velocity for both the curves. It is clear from the figure

that the phase velocity for microstretch plate with free boundaries is greater than the

phase velocity for microstretch plate bordered with liquid layers. We conclude that

presence of liquid layers results in decrease the phase velocity of Rayleigh-Lamb wave

propagation in the symmmetric modes.

In Figure 2.4, we have depicted the dispersion curves for first five symmetric modes
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Figure 2.3: Comparison of real parts of symmetric modes of microstretch plate bordered
with liquid layers and with free boundaries.

Figure 2.4: Comparison of real parts of symmetric modes of microstretch plate and
micropolar plate with free boundaries.
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Figure 2.5: Comparison of attenuation in symmetric fundamental mode of microstretch
plate and micropolar plate with free boundaries.

Figure 2.6: Comparison of attenuation in symmetric first mode of microstretch plate
and micropolar plate with free boundaries.
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Figure 2.7: Comparison of attenuation in symmetric second mode of microstretch plate
and micropolar plate with free boundaries.

of vibrations in microstretch plate and micropolar plate with free boundaries for real

phase velocity. It is clear from the above figure that there is no significant difference

between these two curves. Thus, no considerable effect of microstretch property is

noticed on the symmetric modes of propagation.

Figures 2.5-2.9 depict the variation of attenuation coefficient for fundamental, first,

second, third and fourth symmetric modes of microstretch plate and micropolar plate

with free boundaries respectively. Curves for microstretch plate with free boundaries

are represented by solid lines, while the curves for micropolar plate are represented

by dotted lines. To plot the variation of attenuation coefficient, we have multiplied

the original value by a factor of 106. It is clear that there is significant effect of

microstretch property on the attenuation of the symmetric modes of propagation on

dispersion curves. The presence of microstretch property results in decrease in atten-

uation of waves for symmetric modes.

Figure 2.10 depicts the dispersion curves from fundamental mode to fourth mode

of antisymmetric modes of Rayleigh-Lamb wave propagation for microstretch plate

bordered with liquid layers obtained by using equations due to Set-I and Set-II. It is

concluded that for these two sets of boundary conditions, the curves are same. We
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Figure 2.8: Comparison of attenuation in symmetric third mode of microstretch plate
and micropolar plate with free boundaries.

Figure 2.9: Comparison of Attenuation in Symmetric fourth mode of Microstretch plate
and Micropolar plate with free boundaries.
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Figure 2.10: Comparison of antisymmetric modes of microstretch plate bordered with
liquid layers for Set-I and for Set-II.

Figure 2.11: Comparison of antisymmetric modes of microstretch plate bordered with
liquid layers and with free boundaries.
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Figure 2.12: Comparison of real parts of antisymmetric modes of microstretch plate and
micropolar plate with free boundaries.

conclude that there is no significant difference in the phase velocity of Lamb waves

propagation for these two sets of boundary conditions in antisymmetric modes.

Figure 2.11, we have depicted the dispersion curves of fundamental to fourth modes

of antisymmetric vibrations in microstretch plate bordered with and without liquid

layers. It is found that non-dimensional phase velocity of microstretch plate with free

boundaries is more than that for microstretch plate bordered with liquid layers in the

antisymmetric modes of propagation.

Figure 2.12 depicts the dispersion curves for fundamental to fourth antisymmetric

modes for microstretch plate and micropolar plate with free boundaries. It is noted

that there is no significant difference between these two curves. Hence, we conclude

that there is no effect of microstretch property on real part of the phase velocity for

microstretch plate with free boundaries in antisymmetric modes.

Figures 2.13-2.17 depict the attenuation part of the phase velocity for fundamental to

fourth antisymmetric modes of Rayleigh-Lamb wave propagation of microstretch plate

and micropolar plate with free boundaries. Here, the solid curves and dotted curves

correspond to microstretch plate and micropolar plate respectively. The attenuation

coefficient is plotted after multiplying the original value of imaginary part of the phase

68



Chapter- 2

Figure 2.13: Comparison of attenuation in antisymmetric fundamental mode of mi-
crostretch plate and micropolar plate with free boundaries.

Figure 2.14: Comparison of attenuation in antisymmetric first mode of microstretch
plate and micropolar plate with free boundaries.
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Figure 2.15: Comparison of attenuation in antisymmetric second mode of microstretch
plate and micropolar plate with free boundaries.

Figure 2.16: Comparison of attenuation in antisymmetric third mode of microstretch
plate and micropolar plate with free boundaries.
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Figure 2.17: Comparison of attenuation in antisymmetric fourth mode of microstretch
plate and micropolar plate with free boundaries.

velocity by a factor of 106. It is observed that attenuation is strongly affected by the

presence of microstretch in antisymmmetric modes of propagation. Moreover, the pres-

ence of microstretch property results in increase in attenuation for all these five modes.

Figure 18 depicts the dispersion curves for fundamental symmetric mode at different

thickness of liquid layers. We see that as the thickness of the liquid layers increases,

the phase velocity for fundamental symmetric mode decreases.

2.7 Conclusions

In this Chapter, we have described the effect of microstretch property on the propaga-

tion of Rayleigh-Lamb waves in microstretch plate cladded with inviscid liquid layers.

Two sets of boundary conditions at the interface of plate and liquid layers are possible.

Dispersion equations for symmetric and antisymmetric modes are derived by employ-

ing both these sets of boundary conditions. We conclude that

(a) The choice on the boundary conditions at the interface of plate and liquid layers is

arbitrary. Results obtained from both the sets of boundary conditions give same dis-

persion curves for Rayleigh-Lamb wave propagation in symmetric and antisymmetric
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Figure 2.18: Comparison of Symmetric Fundamental mode at different width of cladded
liquid layers.

modes.

(b) It is noted that the presence of cladded liquid layers in microstretch plate decreases

the phase velocity for both symmetric and antisymmetric modes of Rayleigh-Lamb wave

propagation. It is also observed that the frequency equations give real phase velocity for

given real value of wavenumber when the plate is cladded with liquid layers, otherwise

real values of non-dimensional wavenumber gives complex value of non-dimensional

phase velocity. Thus, the waves are non-attenuated when plate is cladded with liquid

layers, while waves are found to be attenuated when both faces of plate are free. This

may be due to small values of microstretch parameters considered here.

(c) We also noticed that there is no significant effect of microstretch property on

symmetric and antisymmetric modes of dispersion curves for real phase velocity on

microstretch plate with free boundaries. The curves for real phase velocity for mi-

crostretch plate with free boundaries are same as the dispersion curves for real phase

velocity of micropolar plate with free boundaries.

(d) The attenuation is found to be highly affected by the presence of microstretch prop-

erty in the plate with free boundaries for both symmetric and antisymmetric modes.
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Chapter 3

Propagation of Stoneley waves at

an interface between two

microstretch elastic half-spaces2

3.1 Introduction

Stoneley (1924) investigated the possible existence of waves, which are similar to sur-

face waves and propagating along the plane interface between two distinct uniform

elastic solid half-spaces in perfect contact and they are universally known by his name.

Stoneley waves can propagate on interfaces between either two solid media or solid

and liquid media. These waves are the harmonic waves and attenuate exponentially

with distance normal to the interface in both the half-spaces, provided the range of the

elastic constants of the two solids lie within some suitable limits. Stoneley obtained

the frequency equation for propagation of these waves and showed that such interfa-

cial waves can exist only if the velocity of distortional waves in the two half-spaces

is approximately same. Since then a number of problems concerning the propagation

of Stoneley waves along the solid − solid and fluid − solid boundary have been dis-

cussed by several researchers, e.g., Murty (1975a, b, 1976), Hsieh et al. (1991), Abbudi

and Barnett (1990), Goda (1992), Tajuddin (1995), Ashour (1999), Abd-Alla (1999),

Abd-Alla and Ahmed (2003) among several others. Murty (1975b) discussed the wave

2Journal of Vibration and Control, 12(9), 995-1009(2006).

73



propagation at an unbonded interface between two elastic half-spaces. He derived

the explicit condition for the existence of Stoneley waves when the two half-spaces

are incompressible or Poisson solids whose elastic constants and material densities are

nearly equal. Tajuddin (1995) studied the corresponding problem at unbonded inter-

face between two micropolar elastic solid half-spaces. In the present chapter, we have

investigated the propagation of Stoneley waves at an unbonded/bonded interface be-

tween two microstretch elastic solid half-spaces. Frequency equations for Stoneley wave

propagation are derived. It is found that Stoneley waves are dispersive in microstretch

medium and there is a significant effect of microstretch property on dispersion curve.

The results of some earlier workers have been reduced as particular cases from the

present formulation.

3.2 Formulation of problem

We consider two linear isotropic homogeneous microstretch elastic solid half spaces,

namely, H1 and H2 with different elastic properties. Introducing the Cartesian axes

such that the upper half-space H2 occupies the region −∞ < z ≤ 0 and the lower half

space H1 occupies the region 0 ≤ z < ∞. The x− axis is taken along the plane of

separation of half-spaces H1 and H2 and the z-axis is taken perpendicular to the plane

of separation directed vertically downward into the lower half space H1.

Now, considering the equations of motion for microstretch elastic medium given

by (1.125) -(1.27) and adopting the procedure followed in Chapter-2 to solve these

equations of motion, we can arrive at equations (2.10) and (2.11). The time harmonic

solutions of these equations for the waves propagating along x− direction, are given by

L = (AeRz + Be−Rz + CeSz + De−Sz)eı(ξx−ωt), (3.1)

ψ = {a(AeRz + Be−Rz) + b(CeSz + De−Sz)}eı(ξx−ωt), (3.2)

M = (EePz + Fe−Pz + GeQz + He−Qz)eı(ξx−ωt), (3.3)

φ = {c′(EePz + Fe−Pz) + d′(GeQz + He−Qz)}eı(ξx−ωt), (3.4)

74



Chapter- 3

where the quantities A, B, C, D, E, F, G and H are unknown and the expressions

of the coupling parameters a, b, c′, d′ and R, S, P, Q are defined in Chapter-2,

just after equation (2.15). The quantities with subscript 1 correspond to the half-

space H1 and the quantities with subscript 2 correspond to the half space H2, i.e., the

constants λi, µi(Lame’s parameters), Ki, γi(micropolar parameters), λ0i, λ1i, α0i (mi-

crostretch parameters), ji(micro-inertia) and ρi(densities) denote the material moduli

in Hi, (i = 1, 2). We will discuss Stoneley mode at bonded and unbonded interface

between H1 and H2 half spaces.

In order to discuss Stoneley waves at the interface z = 0, we take the following ap-

propriate solutions of equations (2.1)-(2.4). In the lower half space H1, the expressions

of relevant potentials are taken as

L1 = (Be−R1z + De−S1z)eı(ξx−ωt), (3.5)

ψ1 = {a1Be−R1z + b1De−S1z}eı(ξx−ωt), (3.6)

M1 = (Fe−P1z + He−Q1z)eı(ξx−ωt), (3.7)

φ1 = {c′1Fe−P1z + d′

1He−Q1z}eı(ξx−ωt), (3.8)

and in the upper half-space H2, we shall take the expressions of relevant potentials as

L2 = (AeR2z + CeS2z)eı(ξx−ωt), (3.9)

ψ2 = {a2AeR2z + b2CeS2z}eı(ξx−ωt), (3.10)

M2 = (EeP2z + GeQ2z)eı(ξx−ωt), (3.11)

φ2 = {c′2EeP2z + d′

2GeQ2z}eı(ξx−ωt), (3.12)
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where Re(Ri, Si, Pi, Qi) > 0. The expressions of the quantities ai, bi, c′i, d′

i, Pi, Qi, Ri

and Si can be written from the expressions of quantities a, b, c′, d′, P, Q, R and S

given in Chapter-2. Their expressions can be written easily by inducting the subscript

i appropriately, e.g., ai = −{(λi + 2µi + Ki)(−ξ2 + R2
i ) + ρiω

2}/λ0i, etc.

3.3 Boundary conditions

Followings are the appropriate boundary conditions at unbonded interface and at

bonded interface between the half-space H1 and the half-space H2:

(A) At an unbonded interface, we assume that the interface is frictionless, so that shear

traction is absent and shear displacement is discontinuous at the interface. Thus for

an unbonded interface, there is continuity of normal component of the displacement

vector and stress tensor, couple stress tensor, microrotation, scalar microstretch and

microstretch tensor, while shear components of stress tensor vanish across the interface.

(B) At a bonded interface, we assume that both the half-spaces are in perfect contact.

Thus, for a bonded interface, the components of displacement vector, microrotation

vector, scalar microstretch, stress tensor, couple stress tensor and microstretch tensor

at the interface should be continuous.

Mathematically, these boundary conditions at z = 0 can be expressed as

[τzz]1 = [τzz]2, [mzy]1 = [mzy]2, [mz]1 = [mz]2, w1 = w2, ψ1 = ψ2, φ1 = φ2

and

{

[τzx]1 = 0, [τzx]2 = 0, for an unbonded interface,

[τzx]1 = [τzx]2, u1 = u2, for a bonded interface.

From (1.128) - (1.130), the requisite components of stresses can be written as (i = 1, 2)

[τzz]i = λi
∂2Li

∂x2
+ (λi + 2µi + Ki)

∂2Li

∂z2
− (2µi + Ki)

∂2Mi

∂x∂z
+ λ0iψi,

[τzx]i = (2µi + Ki)
∂2Li

∂x∂z
− µi

∂2Mi

∂x2
+ (µi + Ki)

∂2Mi

∂z2
− Kiφi,

[mzy]i = γi
∂φi

∂z
, [mz]i = α0i

∂ψi

∂z
,

76



Chapter- 3

and using (3.5) - (3.12) into the above boundary conditions, one obtains eight ho-

mogeneous equations in eight unknowns, namely, A, B, C, D, E, F, G and H. For

non-trivial solution of these equations, the determinant of the coefficient matrix should

be equal to zero, that is,

|aij| = 0. (3.13)

The non-vanishing entries of this determinantal equation are given by

a11 = {−λ2ξ
2+(λ2+2µ2+K2)R

2
2+λ02a2}, a12 = −{−λ1ξ

2+(λ1+2µ1+K1)R
2
1+λ01a1},

a13 = {−λ2ξ
2+(λ2+2µ2+K2)S

2
2 +λ02b2}, a14 = −{−λ1ξ

2+(λ1+2µ1+K1)S
2
1 +λ01b1},

a15 = −ıξ(2µ2 + K2)P2, a16 = −ıξ(2µ1 + K1)P1, a17 = −ıξ(2µ2 + K2)Q2,

a18 = −ıξ(2µ1 + K1)Q1, a25 = γ2c
′

2P2, a26 = γ1c
′

1P1, a27 = γ2d
′

2Q2,

a28 = γ1d
′

1Q1, a31 = α02a2R2, a32 = α01a1R1, a33 = α02b2S2, a34 = α01b1S1,

a41 = R2, a42 = R1, a43 = S2, a44 = S1, a45 = a47 = −ıξ, a46 = a48 = ıξ,

a51 = a2, a52 = −a1, a53 = b2, a54 = −b1, a65 = c′2, a66 = −c′1, a67 = d′

2, a68 = −d′

1,

the remaining entries for an unbonded interface are given by

a72 = −(2µ1 +K1)ıξR1, a74 = −(2µ1 +K1)ıξS1, a76 = {µ1ξ
2 +(µ1 +K1)P

2
1 −K1c

′

1},

a78 = {µ1ξ
2 + (µ1 + K1)Q

2
1 − K1d

′

1}, a81 = (2µ2 + K2)ıξR2, a83 = (2µ2 + K2)ıξS2

a85 = {µ2ξ
2 + (µ2 + K2)P

2
2 − K2c

′

2}, a87 = {µ2ξ
2 + (µ2 + K2)Q

2
2 − K2d

′

2},

while those for a bonded interface are given by

a71 = (2µ2+K2)ıξR2, a72 = (2µ1+K1)ıξR1, a73 = (2µ2+K2)ıξS2, a74 = (2µ1+K1)ıξS1,

a75 = {µ2ξ
2 + (µ2 + K2)P

2
2 − K2c

′

2}, a76 = −{µ1ξ
2 + (µ1 + K1)P

2
1 − K1c

′

1},

a77 = {µ2ξ
2 + (µ2 + K2)Q

2
2 − K2d

′

2}, a78 = −{µ1ξ
2 + (µ1 + K1)Q

2
1 − K1d

′

1},

a81 = a83 = ıξ, a82 = a84 = −ıξ, a85 = P2, a86 = P1, a87 = Q2, a88 = Q1.
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Equation (3.13) represents the period equation for Stoneley wave propagation at un-

bonded/bonded interface between two dissimilar microstretch solid half-spaces. This

equation is an implicit function of phase velocity and wavenumber. Hence, Stone-

ley waves are dispersive in nature. Analytically, no definite conclusion can be drawn

regarding the behavior of phase velocity of Stoneley wave propagation and other charac-

teristics from this equation. However, for very small values of parameters λ01, λ02, K1

and K2, a definite conclusion regarding phase velocity of Stoneley waves can be ob-

tained. Neglecting the second and higher powers of the quantities λ01, λ02, K1 and

K2, one can obtain (see Midya, 2004)

Ri =

√

ξ2 − 3ρijiω2 − 2λ1i

6α0i

, Si =

√

ξ2 − ρiω2

λi + 2µi + Ki

,

Pi =

√

ξ2 − ρijiω2 − 2Ki

γi

, Qi =

√

ξ2 − ρiω2

µi + Ki

,

and the entries aij reduce to

a11 = (2µ2 +K2)ξ
2 −ρ2ω

2, a12 = −{(2µ1 +K1)ξ
2 −ρ1ω

2}, a13 = (2µ2 +K2)ξ
2 −ρ2ω

2

a14 = −{(2µ1 + K1)ξ
2 − ρ1ω

2}, a15 = −(2µ2 + K2)ıξP2, a16 = −(2µ1 + K1)ıξP1,

a17 = −(2µ2 + K2)ıξQ2, a18 = −(2µ1 + K1)ıξQ1, a25 = γ2c
′

2P2, a26 = γ1c
′

1P1,

a31 = α02a2R2, a32 = α01a1R1, a41 = R2, a42 = R1, a43 = S2, a44 = S1,

a45 = a47 = −ıξ, a46 = a48 = ıξ, a51 = a2, a52 = −a1, a65 = c′2, a66 = −c′1,

along with the following for an unbonded interface

a72 = −(2µ1 + K1)ıξ R1, a74 = −(2µ1 + K1)ıξ S1, a76 = (2µ1 + K1)ξ
2 − ρ1ω

2,

a78 = (2µ1 + K1)ξ
2 − ρ1ω

2, a81 = (2µ2 + K2)ıξR2, a83 = (2µ2 + K2)ıξS2,

a85 = (2µ2 + K2)ξ
2 − ρ2ω

2, a87 = (2µ2 + K2)ξ
2 − ρ2ω

2,

while those for bonded interface

a71 = (2µ2+K2)ıξR2, a72 = (2µ1+K1)ıξR1, a73 = (2µ2+K2)ıξS2, a74 = (2µ1+K1)ıξS1,
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a75 = (2µ2 +K2)ξ
2−ρ2ω

2, a76 = −{(2µ1 +K1)ξ
2−ρ1ω

2}, a77 = (2µ2 +K2)ξ
2−ρ2ω

2,

a78 = −{(2µ1 + K1)ξ
2 − ρ1ω

2}, a81 = a83 = ıξ, a82 = a84 = −ıξ, a85 = P2,

a86 = P1, a87 = Q2, a88 = Q1,

all other entries are zero.

Expanding the determinant in equation (3.13) for unbonded interface, the frequency

equation of Stoneley wave yields

α02R2 + α01R1 = 0, (3.14)

γ2P2 + γ1P1 = 0, (3.15)

and

ρ1β
4
1Z1(c)

(

1 − c2

α2
1 + ǫ1β2

1

)−1/2

+ ρ2β
4
2Z2(c)

(

1 − c2

α2
2 + ǫ2β2

2

)−1/2

= 0, (3.16)

where

Zi(c) = (2 + ǫi)
2

(

1 − c2

(1 + ǫi)β2
i

)1/2 (

1 − c2

α2
i + ǫiβ2

i

)1/2

−
(

2 + ǫi −
c2

β2
i

)2

,

α2
i = (λi + 2µi)/ρi, β2

i = µi/ρi, ǫi = Ki/µi,

αi and βi are the speeds of dilatational and shear waves respectively in medium Hi

respectively. Equation (3.14) shows a new wave velocity, which is not observed in mi-

cropolar elasticity and purely depends on microstretch elastic constants. Hence, the

waves related to these modes may be called as microstretch waves and refer to hypo-

thetical medium wherein only microstretch may occur. Similarly, equation (3.15) shows

a new wave velocity, which is not observed in classical elasticity and purely depends

on micropolarity constants. Hence, the waves related to these modes correspond to

micropolar waves and refer to hypothetical medium in which only rotation may occur.

Next, expanding the determinant in equation (3.13) for a bonded interface, the

frequency equation of Stoneley waves between two microstretch elastic media yields
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equations (3.14), (3.15) and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ2β
2
2M2 −ρ1β

2
1M1 −ρ2β

2
2(2 + ǫ2)N2 −ρ1β

2
1(2 + ǫ1)N1

M4 M3 −1 1

ρ2β
2
2(2 + ǫ2)M4 ρ1β

2
1(2 + ǫ1)M3 −ρ2β

2
2M2 ρ1β

2
1M1

−1 1 N2 N1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,(3.17)

where

Mi =

(

2 + ǫi −
c2

β2
i

)

, Mi+2 =

(

1 − c2

α2
i + ǫiβ2

i

)1/2

, Ni =

(

1 − c2

(1 + ǫi)β2
i

)1/2

, (i = 1, 2).

The presence of equations (3.14) and (3.15) in both the cases indicates that the modes

corresponding to microstretch and micropolar waves are independent of the bonded or

unbonded nature of the interface.

3.4 Particular cases

(i) Micropolar/Micropolar unbonded interface: If we neglect microstretch effects from

both the half-spaces then we shall be left with the problem of Stoneley waves at an in-

terface between two dissimilar micropolar elastic solid half-spaces. In this limiting case,

when the quantities λ0i, λ1i and α0i approach to zero, we see that equation (3.14) is au-

tomatically satisfied and equations (3.15) and (3.16) represent the frequency equations

for Stoneley waves at micropolar/micropolar unbonded interface. These equations are

the same equations as obtained by Tajuddin (1995) for the relevant problem.

(ii) Micropolar/Micropolar bonded interface: It is easy to see that in the absence of mi-

crostretch parameters, equation (3.14) is automatically satisfied and equations (3.15)

and (3.17) would represent the frequency equation for Stoneley waves at micropo-

lar/micropolar bonded interface.

(iii)Elastic/Elastic unbonded interface: If microstretch and micropolarity effects are

both neglected from both the half spaces then we shall be left with the problem of

Stoneley wave propagation at an unbonded interface between two uniform elastic half-

spaces. For this, making the quantities λ0i, λ1i, α0i, Ki and γi equal to zero, into the

frequency equations (3.14)-(3.16), we see that equations (3.14) and (3.15) are automat-
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ically satisfied, while equation (3.16) reduces to

ρ1β
4
1

(

1 − c2

α2
1

)1/2
Z1(c) +

ρ2β
4
2

(

1 − c2

α2
2

)1/2
Z2(c) = 0, (3.18)

where

Zi(c) =

(

2 − c2

β2
i

)2

− 4

[

1 − c2

β2
i

]1/2 [

1 − c2

α2
i

]1/2

, (i = 1, 2).

Equation (3.18) matches exactly with equation (1) of Murty (1975b) for the relevant

problem.

(iv) Elastic/Elastic bonded interface: Proceeding in a similar way as in case (iii), we

can obtain the frequency equation for Stoneley waves at a bonded interface between

two uniform elastic half-spaces given by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−ρ2 (c2 − 2β2
2) ρ1 (c2 − 2β2

1) 2ρ2β
2
2

(

1 − c2

β2

2

)1/2

−2ρ1β
2
1

(

1 − c2

β2

1

)1/2

(

1 − c2

α2

2

)1/2 (

1 − c2

α2

1

)1/2

1 1

2ρ2β
2
2

(

1 − c2

α2

2

)1/2

2ρ1β
2
1

(

1 − c2

α2

1

)1/2

ρ2β
2
2

(

2 − c2

β2

2

)

ρ1β
2
1

(

2 − c2

β2

1

)

−1 1 −
(

1 − c2

β2

2

)1/2 (

1 − c2

β2

1

)1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

This equation exactly match with equation (23) of Stoneley (1924) for the relevant

problem

(v)Rayleigh waves in a microstretch elastic half-space: If the upper half space is totally

neglected, then we shall be left with the problem of Rayleigh wave propagation at the

free boundary surface of a microstretch elastic solid half space. In this case, the relevant

boundary conditions would be [τzz]1 = [τzx]1 = [mzy]1 = [mz]1 = 0 at the interface

z = 0. Using the requisite quantities and expressions in these boundary conditions,

we shall obtain four homogeneous equations in four unknowns. The condition for

non-trivial solution of these unknowns would yield

b31(b12b23 − b13b22) − b32(b11b23 − b13b21) = 0, (3.19)

where b11 = −(2µ1 + K1)ξP1, b12 = −(2µ1 + K1)ξQ1, b13 = [(2µ1 + K1)ξ
2 −

ρ1ω
2](1− b1S1

a1R1

), b21 = (2µ1 +K1)ξ
2−ρ1ω

2 = b22, b23 = −S1(2µ1 +K1)ξ(1− b1
a1

), b31 =

γ1c
′

1P1, b32 = γ1d
′

1Q1 and P1, R1, Q1 and S1 are those defined in equations (3.5)-(3.8).
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Equation (3.19) represents the frequency equation for Rayleigh wave propagation at

free boundary of a microstretch half-space. This equation is the same equation as given

in Eringen (1999) (see equation (6.6.20) pp: 264 by replacing λ1 with λ1/3 and λ0 with

λ0/3, as there is difference in notations)

(vi) Rayleigh waves in a micropolar half-space: If we neglect the microstretch effect in

case (v), we shall be left with the problem of Rayleigh wave propagation at free surface

of a micropolar elastic half-space. Thus, putting λ11 = λ01 = α01 = 0, we see that

equation (3.19) reduces to

(c′1P1 − d′

1Q1)[(2µ1 + K1)ξ
2 − ρ1ω

2]2 − P1Q1S1(2µ1 + K1)
2ξ2(c′1 − d′

1) = 0. (3.20)

where now

S2
1 = ξ2 − ρ1ω

2

λ1 + 2µ1 + K1

and P1 and Q1 are the same as defined in equations (3.5)-(3.8). Equation (3.20) is

the frequency equation for Rayleigh wave propagation at free surface of a micropolar

half-space. This equation coincides with equation [(5.16.6) pp: 179)] given in Eringen

(1999) for the relevant problem.

3.5 Numerical results and discussions

In order to solve the frequency equations numerically, we have taken a particular model

and Bisection method is employed through FORTRAN program. The following values

of relevant elastic parameters have been taken. In the elastic half-space H1:

Symbol Value

λ1 7.583 × 1011dyne/cm2

µ1 6.334 × 1011 dyne/cm2

K1 0.0149 × 1011 dyne/cm2

λ01 0.034 × 1011 dyne/cm2

λ11 0.035 × 1011 dyne/cm2

α01 0.035 × 1011 dyne

γ1 0.289 × 1011 dyne

j1 0.00625 cm2

ρ1 1.2 gm/cm3
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In the elastic half-space H2:

Symbol Value

λ2 6.653 × 1011dyne/cm2

µ2 5.823 × 1011 dyne/cm2

K2 0.0140 × 1011 dyne/cm2

λ02 0.032 × 1011 dyne/cm2

λ12 0.032 × 1011 dyne/cm2

α02 0.034 × 1011 dyne

γ2 0.267 × 1011 dyne

j2 0.00515 cm2

ρ2 1.1 gm/cm3

We have solved the frequency equation (3.13) for Stoneley waves at an unbonded

interface for different values of non-dimensional wavenumber ξd, where d is an entity

having dimension of length. We have also solved the frequency equations (3.19) and

(3.20) to obtain the dispersion curves for Rayleigh waves at the free boundary of a

microstretch solid half-space and at the free boundary of a micropolar solid half-space,

respectively using the above values of relevant elastic parameters given for half-space

H1. It is found that both Stoneley and Rayleigh waves are dispersive in nature for

certain initial range of parameter ξd.

Figure 3.1 depicts the variation of non-dimensional phase velocity c/V (V =
√

c2
1 + c2

3)

versus ξd. The solid curves refer to the dispersion curves for Stoneley waves and

the dotted curves refer to the dispersion curves of Rayleigh waves. It can be no-

ticed from this figure that the phase velocity of Stoneley waves at an unbonded mi-

crostretch/microstretch interface is increasing in the range 0.1 < ξd ≤ 2.0, beyond

which it remains almost constant, that is, independent of wavenumber. However, the

phase velocity of Stoneley waves at an unbonded micropolar/micropolar interface first

increases with ξd in the range 0 < ξd ≤ 0.36 and then decreases with ξd in the

range 0.36 < ξd ≤ 2.0, thereafter, it also remains almost constant. We also note

that the dispersion curve for Rayleigh waves at free surface of microstretch elastic

half-space behaves like the dispersion curve of Stoneley waves at an unbonded mi-

crostretch/microstretch interface. Similarly, the dispersion curve of Rayleigh waves at

free surface of a micropolar elastic half-space behaves like the dispersion curve of Stone-
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Figure 3.1: Dispersion curves for Stoneley and Rayleigh waves.

ley waves at an unbonded micropolar/micropolar interface. Thus, we conclude that

the Stoneley waves are dispersive at an unbonded microstetch/microstretch and at an

unbonded micropolar/micropolar interface only for small values of wavenumber. For

higher values of wavenumber, both Stoneley and Rayleigh waves are almost constant

and hence almost non-dispersive. It can be seen that there is significant difference in the

dispersion curves for Stoneley wave propagation at an unbonded micropolar/micropolar

interface and that of at an unbonded microstretch/microstretch interface in the range

0.1 < ξd ≤ 2.0. This difference is due to the microstretch property of the half-spaces,

which is responsible for lowering the phase velocity of Stoneley wave in this range of

ξd. A similar conclusion can be inferred about the Rayleigh wave dispersion curve.

Figure 3.2 depicts the effect of the microstretch parameters λ0i on the dispersion

curves of Stoneley wave at an unbonded interface between microstretch/microstretch

elastic half-spaces. We observe that as the values of these parameters increase, the

phase velocity of Stoneley wave decreases in a certain initial range of non-dimensional

wavenumber. Curves I to IV indicate the dispersion curves of Stoneley wave propa-

gation at λ0i = 0.01, λ0i = 0.25, λ0i = 0.5 and λ0i = 0.6 respectively. Clearly, the

microstretch property has significant effect on Stoneley wave propagation.
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Figure 3.2: Effect of microstretch parameter on dispersion curves of Stoneley wave at
unbonded interface between microstretch solid half-spaces (Curve I: λ01 = λ02 = 0.01,
Curve II: λ01 = λ02 = 0.25, Curve III: λ01 = λ02 = 0.5, Curve IV: λ01 = λ02 = 0.6).

3.6 Conclusions

A mathematical treatment is made to study the surface wave propagation at free

surface of a microstretch elastic half-space and at an unbonded/bonded interface of

two dissimilar microstretch elastic half-spaces. Eringen’s theory is employed to derive

the frequency equations of Stoneley waves in a linear homogeneous and isotropic mi-

crostretch elastic medium. Closed form of frequency equations are derived for Stoneley

wave propagation at both unbonded and bonded interface between two microstretch

half-spaces when some parameters corresponding to microstretch and micropolarity are

very small. We conclude that

(a) Stoneley waves at an unbonded interface and at a bonded interface between two

microstretch elastic half-spaces are found to be dispersive.

(b) Likewise, the Rayleigh waves at the free surface of a microstretch elastic solid

half-space and also at the free surface of a micropolar elastic solid half-space are found

to be dispersive.

(c) Numerical results reveal that the phase velocity of Stoneley waves at an un-

bonded interface between two micropolar elastic half-spaces is greater than that of
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at an unbonded interface between two microstretch half-spaces for certain initial range

of wavenumber parameter. This shows that there is significant effect of microstretch

property in this range. For higher values of wavenumber parameter, no effect of mi-

crostretch is observed on Stoneley waves or on Rayleigh waves.
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Chapter 4

Longitudinal waves at a micropolar

fluid/solid interface3

4.1 Introduction

The theory of micro-fluids (or micromorphic fluids) was introduced by Eringen (1964a),

which deals with a class of fluids exhibiting certain microscopic effects arising from

the local structure and the micro-motions of the fluid elements. A subclass of these

micro-fluids is ’micropolar fluid’, which exhibits the microrotational effects and micro-

rotational inertia (see Eringen, 1966b). Micropolar fluids can support couple stress

and body couples, in addition to asymmetric stress tensor and possess a rotational

field, which is independent of the velocity of the fluids. A large class of fluids such

as anisotropic fluids, liquid crystals with rigid molecules, magnetic fluids, cloud with

dust, muddy fluids, biological fluids, dirty fluids (dusty air, snow) over airfoil can be

modelled more realistically as micropolar fluids. The problems of reflection and re-

fraction of elastic waves at an interface between a liquid half-space and a micropolar

elastic half-space has been investigated by Tomar and Kumar (1995), Tomar and Ku-

mar (1999b) and Kumar and Tomar (2001). But the corresponding problem at the

interface of a micropolar fluid and a micropolar solid has not been considered hith-

erto. In this Chapter, we have investigated the possibility of plane wave propagation

in an infinite micropolar fluid and found that four waves can propagate with differ-

3International Journal of Solids and Structures 45(1), 225-244(2008).
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ent phase velocities, which are dispersive and attenuated. Reflection and transmission

phenomena of a plane longitudinal displacement wave at a plane interface between a

micropolar solid half-space and a micropolar fluid half-space has been studied in two

cases: (i) when the wave is made incident after propagating through the micropolar

solid half-space, (ii) when the wave is made incident after propagating through the mi-

cropolar fluid half-space. The formulae of amplitude ratios (reflection and transmission

coefficients) and energy ratios of various reflected and transmitted waves are presented

and depicted graphically. The frequency equation for Stoneley waves at an interface

between a micropolar solid half-space and a micropolar fluid half-space has also been

derived.

4.2 Basic equations and problem formulation

The equations of motion in micropolar fluid, in the absence of body force and body

couple densities, are given by (Eringen, 1966b)

(c2
1f + c2

3f )∇(∇ · u̇f ) − (c2
2f + c2

3f )∇× (∇× u̇f ) + c2
3f∇× φ̇

f
= üf , (4.1)

(c2
4f + c2

5f )∇(∇ · φ̇f
) − c2

4f∇× (∇× φ̇
f
) + c2

6f (∇× u̇f − 2φ̇
f
) = φ̈

f
. (4.2)

For micropolar solid medium, the equations of motion are given in Chapter-1 through

equations (1.123) and (1.124). These equations in the absence of body force and body

couple densities, are written as

(c2
1s + c2

3s)∇(∇ · us) − (c2
2s + c2

3s)∇× (∇× us) + c2
3s∇× φs = üs, (4.3)

(c2
4s + c2

5s)∇(∇ · φs) − c2
4s∇× (∇× φs) + c2

6s(∇× us − 2φs) = φ̈
s
, (4.4)

where c2
1r = (λr + 2µr)/ρr, c2

2r = µr/ρr, c2
3r = Kr/ρr, c2

4r = γr/ρrjr, c2
5r =

(αr +βr)/ρrjr, c2
6r = c2

3r/j
r, ρr is the density of the medium, jr is the micro-inertia, ur

and φr are respectively the displacement and microrotation vectors for the micropolar

elastic half-spaces. Here, the quantity having superscript r corresponds to the fluid

and solid medium when r = f and r = s respectively. λf , µf , Kf are the fluid
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viscosity coefficients and αf , βf and γf are the fluid viscosity coefficients responsible

for gyrational dissipation of the micropolar fluid, and the symbols λs, µs, Ks, αs, βs

and γs are defined in Chapter-1 for micropolar elastic solid half-space.

The constitutive relations, for micropolar fluid medium are given by (Eringen 1966b),

τ f
kl = λf u̇f

r,rδkl + µf (u̇f
k,l + u̇f

l,k) + Kf (u̇f
l,k − εklpφ̇

f
p), (4.5)

mf
kl = αf φ̇f

r,rδkl + βf φ̇f
k,l + γf φ̇f

l,k, (4.6)

and those for micropolar solid medium can be stemmed from relations (1.128) and

(1.129) of Chapter-1, which are given by

τ s
kl = λsus

r,rδkl + µs(us
k,l + us

l,k) + Ks(us
l,k − εklpφ

s
p), (4.7)

ms
kl = αsφs

r,rδkl + βsφs
k,l + γsφs

l,k, (4.8)

where symbols have their usual meanings and are well defined earlier.

Using Helmholtz representation of vector, we can write

[

ur

φr

]

= ∇
[

Ar

Cr

]

+ ∇×
[

Br

Dr

]

, ∇ ·
[

Br

Dr

]

= 0. (r = f, s), (4.9)

where Ar and Cr are the scalar potentials, while Br and Dr are the vector potentials.

Plugging (4.9) into equations (4.1) and (4.2), we obtain

✷1A
f = 0, ✷2C

f = 0, (4.10)

(c2
2f + c2

3f )∇2Ḃf + c2
3f∇× Ḋf = B̈f , (4.11)

c2
4f∇2Ḋf + c2

6f∇× Ḃf − 2c2
6fḊ

f = D̈f , (4.12)
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where

✷1 = [(c2
1f + c2

3f )∇2 − ∂

∂t
]
∂

∂t
✷2 = [(c2

4f + c2
5f )∇2 − 2c2

6f −
∂

∂t
]
∂

∂t
.

It can be seen that the equations in (4.10) are un-coupled in scalar potentials Af and

Cf , while equations in (4.11) and (4.12) are coupled in vector potentials Bf and Df .

4.3 Plane waves in a micropolar fluid

Consider the following form of a plane wave propagating in the positive direction of a

unit vector n as

{Ar, Cr, Br, Dr} = {ar, cr, br, dr} exp{ık(n · r − V t)}, (4.13)

where ar, cr, br and dr are constants, r(= xî + yĵ + zk̂) is the position vector, V

is the phase velocity in the direction of n, k(= ω/V ) is the wavenumber, ω being

the angular frequency. Substituting (4.13) into equation (4.10), we obtain two wave

velocities denoted by Vf1 and Vf4, given by

V 2
f1 = −ıω(c2

1f + c2
3f ), V 2

f4 =
−ıω2(c2

4f + c2
5f )

(ω + 2ıc2
6f )

.

Again, Substituting (4.13) into equations (4.11) and (4.12), we obtain two wave veloc-

ities given by

V 2
f2,f3 =

1

2a′
[−b′ ±

√
b′2 − 4a′c′],

where

a′ = ω + 2ıc2
6f ,

b′ = ω[ıωc2
4f + ı(c2

2f + c2
3f )(ω + 2ıc2

6f ) + c2
3fc

2
6f ],

c′ = −ω3c2
4f (c

2
2f + c2

3f ).

It can be seen that these velocities are complex and dispersive in nature. Using (4.13)

into (4.9), it can be seen that uf and φf are parallel to n, which means that the waves

associated with the velocities Vf1 and Vf4 are longitudinal in nature. It is easy to see

that the waves associated with the velocities Vf2 and Vf3 are transverse in nature. Note
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that at ω = 0, all these four velocities vanish. Since the vector potentials Bf and Df

are coupled to each other, therefore, the waves with velocities Vf2 and Vf3 are coupled

waves similar to the coupled waves encountered in micropolar elastic solid (see Parfitt

and Eringen, 1969). The waves propagating with velocities Vf1 and Vf4 respectively are

analogous to the longitudinal displacement wave and the longitudinal micro-rotational

wave encountered in micropolar elastic solid.

Parfitt and Eringen (1969) have already shown that there exist four waves in an

infinite micropolar elastic solid medium propagating with distinct phase velocities.

These are (i) an independent longitudinal displacement wave propagating with velocity

Vs1 given by V 2
s1 = c2

1s + c2
3s, (ii) two sets of coupled waves, each consists of a transverse

displacement wave and a transverse microrotational wave perpendicular to each other,

propagating with phase velocities Vs2 and Vs3 given by

V 2
s2,s3 =

1

2(1 − 2ω2
0/ω

2)
[{c2

2s + c2
3s + c2

4s − (2c2
2s + c2

3s)ω
2
0/ω

2}

±({c2
2s + c2

3s + c2
4s − (2c2

2s + c2
3s)ω

2
0/ω

2}2 − 4(1 − 2ω2
0/ω

2){c2
4s(c

2
2s + c2

3s)})1/2],

where ω2
0 = c2

6s and (iii) an independent longitudinal micro-rotational wave propagating

with velocity Vs4 given by V 2
s4 = (c2

4s + c2
5s)(1− 2ω2

0/ω
2)−1. They have also shown that

the waves propagating with velocities Vs2 and Vs4 can propagate in a micropolar elastic

solid only if ω >
√

2ω0, otherwise they degenerate into distance decaying sinusoidal

vibrations. Note that no such cut-off frequency occur in case of waves propagating

with phase velocities Vf2 and Vf4.

4.4 Reflection and transmission of longitudinal waves

Introducing the Cartesian coordinates x, y and z such that x−y plane (z = 0) lies along

the interface between a micropolar solid half-space (M1) and a micropolar fluid half-

space (M2). The z− axis is taken perpendicular to the interface and pointing downward

into the medium M1. We shall consider a two-dimensional problem in x − z plane, so

that the followings are the displacement and microrotational vectors in micropolar

elastic solid and in micropolar fluid:

ur = (ur
1(x, z), 0, ur

3(x, z)), φr = (0, φr
2(x, z), 0), (r = f, s), (4.14)
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4.4.1 Case I: Incidence from the solid half-space

Let a plane longitudinal wave with phase velocity Vs1 propagating through the microp-

olar solid medium M1 be striking at the interface z = 0 and making an angle θ0 with

the normal. To satisfy the boundary conditions at the interface, we postulate that the

incident wave will give rise to the following reflected and refracted waves:

(a) a reflected longitudinal displacement wave in medium M1 traveling with speed Vs1

and making an angle θ1 with the normal;

(b) two sets of reflected coupled waves in medium M1 traveling with speeds Vs2 and

V3s and making angles θ2 and θ3 with the normal, respectively;

(c) a refracted longitudinal displacement wave in medium M2 traveling with speed Vf1

and making an angle θ′1 with the normal;

(d) two sets of refracted coupled waves in medium M2 traveling with speeds Vf2 and

Vf3 and making angles θ′2 and θ′3 with the normal, respectively.

We take the following form of potentials in the two half-spaces.

In the half-space M1:

As = A0 exp{ık1(sin θ0x − cos θ0z) − ıω1t}

+ A1 exp{ık1(sin θ1x + cos θ1z) − ıω1t}, (4.15)

B2
s = A2 exp{ık2(sin θ2x + cos θ2z) − ıω2t}

+ A3 exp{ık3(sin θ3x + cos θ3z) − ıω3t}, (4.16)

φ2
s = A2η2 exp{ık2(sin θ2x + cos θ2z) − ıω2t}

+ A3η3 exp{ık3(sin θ3x + cos θ3z) − ıω3t}, (4.17)

and in the half-space M2:

Af = A′

1 exp{ık′

1(sin θ′1x − cos θ′1z) − ıω′

1t}, (4.18)

B2
f = A′

2 exp{ık′

2(sin θ′2x − cos θ′2z) − ıω′

2t}
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+ A′

3 exp{ık′

3(sin θ′3x − cos θ′3z) − ıω′

3t}, (4.19)

φ2
f = A′

2η
′

2 exp{ık′

2(sin θ′2x − cos θ′2z) − ıω′

2t}

+ A′

3η
′

3 exp{ık′

3(sin θ′3x − cos θ′3z) − ıω′

3t}, (4.20)

where A0 - amplitude of the incident longitudinal displacement wave, A1 - amplitude

of the reflected longitudinal displacement wave at an angle θ1, A2 - amplitude of the

reflected coupled wave at an angle θ2, A3 - amplitude of the reflected couple wave at

an angle θ3, A′

1 - amplitude of the refracted longitudinal displacement wave at an angle

θ′1, A′

2 - amplitude of the refracted couple wave at an angle θ′2 and A′

3 - amplitude of

the refracted couple wave at an angle θ′3. The coupling parameters η2,3 and η′

2,3 are

given by

η2,3 = −c2
6s

[

V 2
s2,s3 − 2

c2
6s

k2
2,3

− c2
4s

]−1

, η′

2,3 = ıc2
6f

[

Vf2,f3

k′
2,3

+ 2
ıc2

6f

k
′2
2,3

+ ıc2
4f

]−1

.

The appropriate boundary conditions to be satisfied at the interface z = 0, are the con-

tinuity of force stress, couple stress, displacement and micro-rotation. Mathematically,

these boundary conditions can be written as

τ s
zz = τ f

zz, τ s
zx = τ f

zx, ms
zy = mf

zy, us
1 = uf

1 , us
3 = uf

3 , φs
2 = φf

2 , at z = 0. (4.21)

Employing the Snell’s law given by

sin θ0

Vs1

=
sin θ1

Vs1

=
sin θ2

Vs2

=
sin θ3

Vs3

=
sin θ′1
Vf1

=
sin θ′2
Vf2

=
sin θ′3
Vf3

,

assuming that all frequencies are equal at the interface and making use of (4.5) -

(4.9) and (4.14)-(4.20) into the boundary conditions given in (4.21), we obtain six

homogeneous equations as

−k2
1[λ

s + (2µs + Ks) cos2 θ0]A0 − k2
1[λ

s + (2µs + Ks) cos2 θ0]A1 − (2µs + Ks)k2
2

Vs2

Vs1

sin θ0

×
√

1 − V 2
s2

V 2
s1

sin2 θ0A2 − (2µs + Ks)k2
3

Vs3

Vs1

sin θ0

√

1 − V 2
s3

V 2
s1

sin2 θ0A3
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−ıωk′2
1

[

λf + (2µf + Kf )

(

1 −
V 2

f1

V 2
s1

sin2 θ0

)]

A′

1 + (2µf + Kf )ıωk′2
2

Vf2

Vs1

sin θ0

×

√

1 −
V 2

f2

V 2
s1

sin2 θ0A
′

2 + (2µf + Kf )ıωk′2
3

Vf3

Vs1

sin θ0

√

1 −
V 2

f3

V 2
s1

sin2 θ0A
′

3 = 0, (4.22)

(2µs + Ks)k2
1 sin θ0 cos θ0A0 − (2µs + Ks)k2

1 sin θ0 cos θ0A1 + [µsk2
2

(

1 − 2
V 2

s2

V 2
s1

sin2 θ0

)

+Ksk2
2

(

1 − V 2
s2

V 2
s1

sin2 θ0

)

−Ksη2]A2+[µsk2
3

(

1 − 2
V 2

s3

V 2
s1

sin2 θ0

)

+Ksk2
3

(

1 − V 2
s3

V 2
s1

sin2 θ0

)

−Ksη3]A3 + (2µf + Kf )ık
′2
1 ω sin θ0

Vf1

Vs1

√

1 −
V 2

f1

V 2
s1

sin2 θ0A
′

1 + [ıµfωk
′2
2 (1 − 2

V 2
f2

V 2
s1

sin2 θ0)

+ıKfk
′2
2 ω(1 −

V 2
f2

V 2
s1

sin2 θ0) − ıKfωη′

2]A
′

2 + [ıµfωk
′2
3 (1 − 2

V 2
f3

V 2
s1

sin2 θ0) + ıKfωk
′2
3

×
(

1 −
V 2

f3

V 2
s1

sin2 θ0

)

− ıKfωη′

3]A
′

3 = 0, (4.23)

ıγsη2k2 cos θ2A2 + ıγsη3k3 cos θ3A3 + γfωη′

2k
′

2 cos θ′2A
′

2 + γfωη′

3k
′

3 cos θ′3A
′

3 = 0, (4.24)

k1 sin θ0A0 + k1 sin θ1A1 − k2 cos θ2A2 − k3 cos θ3A3 − k′

1 sin θ′1A1 − k′

2 cos θ′2A2

−k′

3 cos θ′3A
′

3 = 0, (4.25)

−k1 cos θ0A0 + k1 cos θ1A1 + k2 sin θ2A2 + k3 sin θ3A3 + k′

1 cos θ′1A
′

1 − k′

2 sin θ′2A
′

2

−k′

3 sin θ′3A
′

3 = 0, (4.26)

η2A2 + η3A3 − η′

2A
′

2 − η′

3A
′

3 = 0. (4.27)

These six equations (4.22) - (4.27) can be written in matrix form as

PZ = Q, (4.28)
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where P = [aij]6×6 , Z = [Z1 Z2 Z3 Z ′

1 Z ′

2 Z ′

3]
t and Q = [1 − 1 0 − 1 1 0]t .

The entries of the matrix P in non-dimensional form are given by

a11 = −1, a12 = −Vs1

Vs2

(2µs + Ks) sin θ0

√

1 − V 2

s2

V 2

s1

sin2 θ0

[λs + (2µs + Ks) cos2 θ0]
,

a13 = −Vs1

Vs3

(2µs + Ks) sin θ0

√

1 − V 2

s3

V 2

s1

sin2 θ0

[λs + (2µs + Ks) cos2 θ0]
,

a14 = −V 2
s1

V 2
f1

ıω[λf + (2µf + Kf )(1 − V 2

f1

V 2

s1

sin2 θ0)]

[λs + (2µs + Ks) cos2 θ0]
,

a15 =
Vs1

Vf2

ıω(2µf + Kf ) sin θ0

√

1 − V 2

f2

V 2

s1

sin2 θ0

[λs + (2µs + Ks) cos2 θ0]
,

a16 =
Vs1

Vf3

ıω(2µf + Kf ) sin θ0

√

1 − V 2

f3

V 2

s1

sin2 θ0

[λs + (2µs + Ks) cos2 θ0]
,

a21 = −1, a22 =
V 2

s1

V 2
s2

[µs(1 − 2
V 2

s2

V 2

s1

sin2 θ0) + Ks(1 − V 2

s2

V 2

s1

sin2 θ0) − Ksη2

k2

2

]

(2µs + Ks) sin θ0 cos θ0

,

a23 =
V 2

s1

V 2
s3

[µs(1 − 2
V 2

s3

V 2

s1

sin2 θ0) + Ks(1 − V 2

s3

V 2

s1

sin2 θ0) − Ksη3

k2

3

]

(2µs + Ks) sin θ0 cos θ0

,

a24 = ı
Vs1

Vf1

ω(2µf + Kf )

√

1 − V 2

f1

V 2

s1

sin2 θ0

(2µs + Ks) cos θ0

,

a25 = ıω
V 2

s1

V 2
f2

[µf (1 − 2
V 2

f2

V 2

s1

sin2 θ0) + Kf (1 − V 2

f2

V 2

s1

sin2 θ0) − Kf η′

2

k
′2

2

]

(2µs + Ks) sin θ0 cos θ0

,

a26 = ıω
V 2

s1

V 2
f3

[µf (1 − 2
V 2

f3

V 2

s1

sin2 θ0) + Kf (1 − V 2

f3

V 2

s1

sin2 θ0) − Kf η′

3

k
′2

3

]

(2µs + Ks) sin θ0 cos θ0

,

a31 = 0, a32 = 1, a33 =
η3

η2

Vs2

Vs3

√

1 − V 2

s3

V 2

s1

sin2 θ0
√

1 − V 2

s2

V 2

s1

sin2 θ0

, a34 = 0,
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a35 = −ıω
γf

γs

η′

2

η2

Vs2

Vf2

√

1 − V 2

f2

V 2

s1

sin2 θ0

√

1 − V 2

s2

V 2

s1

sin2 θ0

, a36 = −ıω
γf

γs

η′

3

η2

Vs2

Vf3

√

1 − V 2

f3

V 2

s1

sin2 θ0

√

1 − V 2

s2

V 2

s1

sin2 θ0

,

a41 = 1, a42 = −Vs1

Vs2

√

1 − V 2

s2

V 2

s1

sin2 θ0

sin θ0

, a43 = −Vs1

Vs3

√

1 − V 2

s3

V 2

s1

sin2 θ0

sin θ0

,

a44 = −1, a45 = −Vs1

Vf2

√

1 − V 2

f2

V 2

s1

sin2 θ0

sin θ0

, a46 = −Vs1

Vf3

√

1 − V 2

f3

V 2

s1

sin2 θ0

sin θ0

,

a51 = 1, a52 = tan θ0, a53 = tan θ0,

a54 =
Vs1

Vf1

√

1 − V 2

f1

V 2

s1

sin2 θ0

cos θ0

, a55 = a56 = − tan θ0, a61 = 0, a62 = 1,

a63 =
η3

η2

, a64 = 0, a65 =
−η′

2

η2

, a66 =
−η′

3

η2

and the elements of the matrix Z are given by

Z1 = A1/A0, Z2 = A2/A0, Z3 = A3/A0, Z ′

1 = A′

1/A0, Z ′

2 = A′

2/A0, Z ′

3 = A′

3/A0,

where Z1, Z2 and Z3 are the amplitude ratios for the reflected longitudinal displacement

wave at an angle θ1, reflected coupled wave at an angle θ2 and reflected coupled wave

at an angle θ3 respectively, Z ′

1, Z
′

2 and Z ′

3 are the amplitude ratios for the refracted

longitudinal displacement wave at an angle θ′1, refracted coupled wave at an angle θ′2

and refracted coupled wave at an angle θ′3 respectively. The matrix equation (4.28) is

enable to provide the amplitude ratios of various reflected and refracted waves in the

corresponding problem.

4.4.2 Case II: Incidence from the fluid half-space

A similar treatment can be made when a longitudinal displacement wave with ampli-

tude A′

0 propagating with phase velocity Vf1 through the micropolar fluid medium M2

strikes the interface z = 0 making an angle θ′0 with the normal. We take the following

form of potentials in the two half-spaces:

In the half-space M1:

As = A1 exp{ık1(sin θ1x + cos θ1z) − ıω1t}, (4.29)
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B2
s = A2 exp{ık2(sin θ2x + cos θ2z) − ıω2t}

+ A3 exp{ık3(sin θ3x + cos θ3z) − ıω3t}, (4.30)

φ2
s = A2η2 exp{ık2(sin θ2x + cos θ2z) − ıω2t}

+ A3η3 exp{ık3(sin θ3x + cos θ3z) − ıω3t}, (4.31)

and in the half-space M2:

Af = A′

0 exp{ık′

1(sin θ′0x + cos θ′0z) − ıω′

1t}

+ A′

1 exp{ık′

1(sin θ′1x − cos θ′1z) − ıω′

1t}, (4.32)

B2
f = A′

2 exp{ık′

2(sin θ′2x − cos θ′2z) − ıω′

2t}

+ A′

3 exp{ık′

3(sin θ′3x − cos θ′3z) − ıω′

3t}, (4.33)

φ2
f = A′

2η
′

2 exp{ık′

2(sin θ′2x − cos θ′2z) − ıω′

2t}

+ A′

3η
′

3 exp{ık′

3(sin θ′3x − cos θ′3z) − ıω′

3t}. (4.34)

Using the same boundary conditions given in equation (4.21) and adopting the same

procedure, one can arrive at a matrix equation similar to (4.28) given by

MR = S, (4.35)

where M = [aij]6×6 . The non dimensional elements of matrix M , in this case, are given

by

a11 =
−ıV 2

f1

V 2
s1

[

λs + (2µs + Ks)
(

1 − V 2

s1

V 2

f1

sin2 θ′0

)]

ω[λf + (2µf + Kf ) cos2 θ′0]
,

a12 =
−ıVf1

Vs2

(2µs + Ks) sin θ′0

√

1 − V 2

s2

V 2

f1

sin2 θ′0

ω[λf + (2µf + Kf ) cos2 θ′0]
,
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a13 =
−ıVf1

Vs3

(2µs + Ks) sin θ′0

√

1 − V 2

s3

V 2

f1

sin2 θ′0

ω[λf + (2µf + Kf ) cos2 θ′0]
,

a14 = 1, a15 =

−Vf1(2µ
f + Kf ) sin θ′0

√

1 − V 2

f2

V 2

f1

sin2 θ′0

Vf2[λf + (2µf + Kf ) cos2 θ′0]
,

a16 =

−Vf1(2µ
f + Kf ) sin θ′0

√

1 − V 2

f3

V 2

f1

sin2 θ′0

Vf3(λf + (2µf + Kf ) cos2 θ′0)
,

a21 =

ıVf1(2µ
s + Ks)

√

1 − V 2

s1

V 2

f1

sin2 θ′0

(2µf + Kf )Vs1ω cos θ′0
,

a22 =
−ıV 2

f1

V 2
s2

[µs(1 − 2
V 2

s2

V 2

f1

sin2 θ′0) + Ks(1 − V 2

s2

V 2

f1

sin2 θ′0) − Ksη2

k2

2

]

(2µf + Kf )ω sin θ′0 cos θ′0
,

a23 =
−ıV 2

f1

V 2
s3

[µs(1 − 2
V 2

s3

V 2

f1

sin2 θ′0) + Ks(1 − V 2

s3

V 2

f1

sin2 θ′0) − Ksη3

k2

3

]

(2µf + Kf )ω sin θ′0 cos θ′0
,

a24 = 1,

a25 =
V 2

f1

V 2
f2

[µf (1 − 2
V 2

f2

V 2

f1

sin2 θ′0) + Kf (1 − V 2

f2

V 2

f1

sin2 θ′0) −
Kf η′

2

k
′2

2

]

(2µf + Kf ) sin θ′0 cos θ′0
,

a26 =
V 2

f1

V 2
f3

[µf (1 − 2
V 2

f3

V 2

f1

sin2 θ′0) + Kf (1 − V 2

f3

V 2

f1

sin2 θ′0) −
Kf η′

3

k
′2

3

]

(2µf + Kf ) sin θ′0 cos θ′0
,

a31 = 0, a32 = 1, a33 =

η3Vs2

√

1 − V 2

s3

V 2

f1

sin2 θ′0

η2Vs3

√

1 − V 2

s2

V 2

f1

sin2 θ′0

, a34 = 0,

a35 =

−Vs2γ
fη′

2ω

√

1 − V 2

f2

V 2

f1

sin2 θ′0

η2Vf2γs

√

1 − V 2

s2

V 2

f1

sin2 θ′0

, a36 =

−Vs2γ
fη′

3ω

√

1 − V 2

f3

V 2

f1

sin2 θ′0

η2Vf3γs

√

1 − V 2

s2

V 2

f1

sin2 θ′0

,

a41 = 1, a42 =

−Vf1

√

1 − V 2

s2

V 2

f1

sin2 θ′0

Vs2 sin θ′0
, a43 =

−Vf1

√

1 − V 2

s3

V 2

f1

sin2 θ′0

Vs3 sin θ′0
,
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a44 = −1, a45 =

−Vf1

√

1 − V 2

f2

V 2

f1

sin2 θ′0

Vf2 sin θ′0
, a46 =

−Vf1

√

1 − V 2

f3

V 2

f1

sin2 θ′0

Vf3 sin θ′0
,

a51 =

Vf1

√

1 − V 2

s1

V 2

f1

sin2 θ′0

Vs1 cos θ′0
, a52 = tan θ′0, a53 = tan θ′0, a54 = 1,

a55 = − tan θ′0, a56 = − tan θ′0, a61 = 0, a62 = 1, a63 =
η3

η2

,

a64 = 0, a65 =
−η′

2

η2

, a66 =
−η′

3

η2

,

S = [−1 1 0 1 1 0]t and the elements of the matrix R are given by

R1 = A1/A
′

0, R2 = A2/A
′

0, R3 = A3/A
′

0, R′

1 = A′

1/A
′

0, R′

2 = A′

2/A
′

0, R′

3 = A′

3/A
′

0.

Here Ri (i = 1, 2, 3) are the amplitude ratios corresponding to the refracted longi-

tudinal displacement wave at an angle θ1, refracted coupled waves at angles θ2 and

θ3, respectively and R′

i (i = 1, 2, 3) are the amplitude ratios for the reflected longitu-

dinal displacement wave at an angle θ′1, reflected coupled waves at angles θ′2 and θ′3,

respectively.

4.5 Energy partitioning

We shall now consider the partitioning of incident energy between different reflected

and refracted waves at the surface element of unit area. Following Achenbach (1973),

the instantaneous rate of work of surface traction is the scalar product of the surface

traction and the particle velocity. This scalar product is called the power per unit area,

denoted by P ∗, and represents the rate at which the energy is transmitted per unit

area of the surface, i.e., the energy flux across the surface element. The time average

of P ∗ over a period, denoted by < P ∗ >, represents the average energy transmission

per unit surface area per unit time. For the cases considered above, the rate of energy

transmission at the free surface z = 0 is given by: In the Case I,

P ∗ =
∑

r=s,f

τ r
zzu̇

r
3 + τ r

zxu̇
r
1 + mr

zyφ̇
r
2, (4.36)
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where superposed dot represents the temporal derivative. The real part of < P ∗ >

gives the time averaged intensity vector and imaginary part equal to the amplitude

of the reactive intensity. We shall now calculate P ∗ for the incident and each of the

reflected waves using the appropriate potentials and hence obtain the energy ratios

giving the time rate of average energy transmission for the respective wave to that

of the incident wave. The expressions for these energy ratios Ei(i = 1, ..., 6) for the

reflected and refracted waves are given by

Ei =< P ∗

i > / < P ∗

0 >, (i = 1, ......, 6) (4.37)

where

< P ∗

0 >=
1

2
(λs + 2µs + Ks) cos θ0ω1k

3
1A

2
0 exp{ık1 sin θ0x},

< P ∗

1 >= −1

2
(λs + 2µs + Ks) cos θ1ω1k

3
1A

2
1 exp{ık1 sin θ1x},

< P ∗

2 >= −1

2
[(µs + Ks) − η2

k2
2

(Ks + γsη2)] cos θ2ω2k
3
2A

2
2 exp{ık2 sin θ2x},

< P ∗

3 >= −1

2
[(µs + Ks) − η3

k2
3

(Ks + γsη3)] cos θ3ω3k
3
3A

2
3 exp{ık3 sin θ3x},

< P ∗

4 >= − ı

2
(λf + 2µf + Kf ) cos θ′1ω

′2
1 k′3

1 A′2
1 exp{ık′

1 sin θ′1x},

< P ∗

5 >= − ı

2
[(µf + Kf ) − η′

2

k′2
2

(Kf + γfη′

2)] cos θ′2ω
′2
2 k′3

2 A′2
2 exp{ık′

2 sin θ′2x},

< P ∗

6 >= − ı

2
[(µf + Kf ) − η′

3

k′2
3

(Kf + γfη′

3)] cos θ′3ω
′2
3 k′3

3 A′2
3 exp{ık′

3 sin θ′3x}.

Similarly, for the Case II, using equation (4.36), the expressions for < P ∗

i > are the

same as given above except the expression of < P ∗

0 >, which is given by

< P ∗

0 >=
ı

2
(λf + 2µf + Kf )ω′2

1 k′3
1 cos θ′0A

′2
0 exp{ık′

1 sin θ′0x}.

4.6 Dispersion relation of Stoneley waves

To obtain the dispersion equation for Stoneley waves at the interface between a mi-

cropolar solid half-space and a micropolar fluid half-space, we shall take the following

potentials satisfying the radiation conditions in the two half spaces. In the lower half-
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space M1,

Ls = A exp(−Ssz) exp{ı(kx − ωt)}, (4.38)

M s = {B exp(−P sz) + E exp(−Qsz)} exp{ı(kx − ωt)}, (4.39)

φs
2 = {csB exp(−P sz) + dsE exp(−Qsz)} exp{ı(kx − ωt)}, (4.40)

and in the upper half-space M2,

Lf = A′ exp(Sfz) exp{ı(kx − ωt)}, (4.41)

M f = {B′ exp(P fz) + E ′ exp(Qfz)} exp{ı(kx − ωt)}, (4.42)

φf
2 = {cfB′ exp(P fz) + dfE ′ exp(Qfz)} exp{ı(kx − ωt)}, (4.43)

where

Ss =

√

k2 − ρsω2

λs + 2µs + Ks
, Sf =

√

k2 − ıρfω

λf + 2µf + Kf
,

P s2, Qs2 = k2 − 1

2
[(

ρsjsω2 − 2Ks

γs
+

γsρsω2 + Ks2

γs(µs + Ks)
)

±
√

{ρsjsω2 − 2Ks

γs
+

γsρsω2 + Ks2

γs(µs + Ks)
}2 − 4

ρsω2(ρsjsω2 − 2Ks)

γs(µs + Ks)
],

P f2, Qf2 = k2 − 1

2
[(

ıρfjfω − 2Kf

γf
+

ıγfρfω + Kf2

γf (µf + Kf )
)

±
√

{ ıρfjfω − 2Kf

γf
+

ıγfρfω + Kf2

γf (µf + Kf )
}2 + 4

ρfωKf

γf (µf + Kf )
(2ı +

ωρfjf

Kf
)],

cs = {(µs + Ks)(−k2 + P s2) + ρsω2}/Ks, ds = {(µs + Ks)(−k2 + Qs2) + ρsω2}/Ks,

cf = {(µf + Kf )(−k2 + P f2) + ıρfω}/Kf , df = {(µf + Kf )(−k2 + Qf2) + ıρfω}/Kf .
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Using Helmholtz decomposition of a vector, the x− and z− components of displace-

ments denoted by ur
1 and ur

3 in the solid and fluid half-spaces are related to the above

potentials, through the following relations

ur
1 =

∂Lr

∂x
+

∂M r

∂z
, ur

3 =
∂Lr

∂z
− ∂M r

∂x
, (r = s, f).

Substituting these values into the boundary conditions for bonded interface given in

(4.21), we obtain six homogeneous equations in six unknowns namely A, B, E, A′, B′

and E ′. The condition for non-trivial solutions of these equations would give the

dispersion equation for the propagation of Stoneley waves. The required conditions is

that the determinant of the coefficient matrix [bij] (say) must vanish.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

ık −P s −Qs −ık −P f −Qf

−Ss −ık −ık − Sf ık ık

0 cs ds 0 −cf −df

0 −γsP scs −γsQsds 0 ıωγfP fcf ıωγfQfdf

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.44)

where

b11 = [−k2λs + (λs + 2µs + Ks)Ss2], b12 = [ıkP s(2µs + Ks)], b13 = [ık(2µs +

Ks)Qs], b14 = ıω[−k2λf + (λf + 2µf + Kf )Sf2], b15 = [ωkP f (2µf + Kf )], b16 =

[ωkQf (2µf +Kf )], b21 = [−ıkSs(2µs+Ks)], b22 = [µsk2+(µs+Ks)P s2−Kscs], b23 =

[µsk2+(µs+Ks)Qs2−Ksds], b24 = −[ωkSf (2µf +Kf )], b25 = ıω[µfk2+(µf +Kf )P f2−
Kfcf ], b26 = ıω[µfk2 + (µf + Kf )Qf2 − Kfdf ].

We note that the frequency equation is an implicit function of the phase velocity and

the wavenumber and involves complex quantities. Therefore, it is expected that the

Stoneley waves are dispersive and attenuated. This equation also depend on the fluid

viscosity coefficients and elastic properties of the solid half-space. The effect of these

parameters on the dispersion curves have been noticed numerically.

4.7 Limiting cases

(I) To discuss the reflection and transmission of longitudinal displacement wave when

propagating through the micropolar solid half-space is made incident at micropolar
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solid/ viscous fluid interface, the formulae for the reflection and transmission coef-

ficients are obtained from equations (4.22)- (4.27) by putting η = µf and K ′ =

(λf + 2
3
µf ) ∂

∂t
. We see that the equations (4.24) and (4.27) reduce to a single equa-

tion given by

η2k2 cos θ2A2 + η3k3 cos θ3A3 = 0,

and the remaining equations reduce to

−k2
1[λ

s + (2µs + Ks) cos2 θ0]A0 − k2
1[λ

s + (2µs + Ks) cos2 θ0]A1 − (2µs + Ks)k2
2

Vs2

Vs1

sin θ0

×
√

1 − V 2
s2

V 2
s1

sin2 θ0A2 − (2µs + Ks)k2
3

Vs3

Vs1

sin θ0

√

1 − V 2
s3

V 2
s1

sin2 θ0A3

−ıωk′2
1

[

λf + 2µf

(

1 −
V 2

f1

V 2
s1

sin2 θ0

)]

A′

1 + 2ıµfωk′2
3

Vf3

Vs1

sin θ0

√

1 −
V 2

f3

V 2
s1

sin2 θ0A
′

3 = 0,

(2µs + Ks)k2
1 sin θ0 cos θ0A0 − (2µs + Ks)k2

1 sin θ cos θA1 + [µsk2
2

(

1 − 2
V 2

s2

V 2
s1

sin2 θ0

)

+Ksk2
2(1−

V 2
s2

V 2
s1

sin2 θ0)−Ksη2]A2 + [µsk2
3

(

1 − 2
V 2

s3

V 2
s1

sin2 θ0

)

+ Ksk2
3

(

1 − V 2
s3

V 2
s1

sin2 θ0

)

−Ksη3]A3+2µf ık
′2
1 ω sin θ0

Vf1

Vs1

√

1 −
V 2

f1

V 2
s1

sin2 θ0A
′

1+

[

ıµfωk
′2
3

(

1 − 2
V 2

f3

V 2
s1

sin2 θ0

)]

A′

3 = 0,

k1 sin θ0A0 + k1 sin θ1A1 − k2 cos θ2A2 − k3 cos θ3A3 − k′

1 sin θ′1A1 − k′

3 cos θ′3A
′

3 = 0,

−k1 cos θ0A0 + k1 cos θ1A1 + k2 sin θ3A3 + k′

1 cos θ′1A
′

1 − k′

3 sin θ′3A
′

3 = 0,

where now V 2
f1 = −ıωc2

1f , Vf2 = 0 and V 2
f3 = −ıωc2

2f .

These equations match with those obtained by Kumar and Tomar (2001) for the rele-

vant problem.

(II) To obtain the reflection and transmission coefficients of longitudinal displacement

wave at micropolar solid/solid interface, we replace the quantities −ıωλf by λ′, −ıωµf

by µ′, −ıωKf by K ′, −ıωγf by γ′, −ıωαf by α′ and −ıωβf by β′. The six homogeneous

equations (4.22) - (4.27) reduce to

(λs+(2µs+Ks) cos2 θ0)k
2
1A0+(λs+(2µs+Ks) cos2 θ1)k

2
1A1+(2µs+Ks)k2

2 sin θ2 cos θ2A2

+(2µs+Ks)k2
3 sin θ3 cos θ3A3−(λ′+(2µ′+K ′) cos2 θ′1)k

′2
1 A′

1+(2µ′+K ′)k
′2
2 sin θ′2 cos θ′2A

′

2
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+(2µ′ + K ′)k
′2
3 sin θ′3 cos θ′3A

′

3 = 0,

(2µs+Ks) sin θ0 cos θ0k
2
1A0−(2µs+Ks) sin θ0 cos θ0k

2
1A1+[µs cos 2θ2+Ks cos2 θ2−

Ksη2

k2
2

]k2
2A2

+[µs cos 2θ3 + Ks cos2 θ3 −
Ksη3

k2
3

]k2
3A3 − (2µ′ + K ′) sin θ′1 cos θ′1k

′2
1 A′

1

−[µ cos 2θ′2 + K cos2 θ′2 −
K ′η′

2

k
′2
2

]k
′2
2 A′

2 − [µ′ cos 2θ′3 + K ′ cos2 θ′3 −
K ′η′

3

k
′2
3

]k
′2
3 A′

3 = 0,

γsη2k2 cos θ2A2 + γsη3k3 cos θ3A3 + γ′η′

2k
′

2 cos θ′2A
′

2 + γ′η′

3k
′

3 cos θ′3A
′

3 = 0,

sin θ0k1A0 + sin θ1k1A1 −
∑

2,3

(ki cos θiAi + k′

i cos θ′iA
′

i) − sin θ′1k
′

1A1 = 0,

cos θ0k1 − k1 cos θ1A1 −
∑

2,3

(ki sin θiAi − k′

i sin θ′iA
′

i) − k′

1 cos θ′1A
′

1 = 0,

η2A2 + η3A3 − η′

2A
′

2 − η′

3A
′

3 = 0.

These equations are same as Tomar and Gogna (1995b) after converting the angle of

incidence to angle of emergence.

(III) To obtain the dispersion relation of Stoneley waves at the viscous fluid/ elastic

solid interface, we shall neglect the parameters corresponding to micropolarity in both

the half-spaces. Thus, on neglecting the quantities Kr, αr, βr, γr and jr, equation (4.44)

becomes

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k2(2µs − ρsc2) 2ıkµsQs ık2c(2kµf − ıρfc) 2ck2µfQf

−2ıkSsµs µs(k2 + Qs2) −2ck2Sfµf ıµfkc(k2 + Qf2)

ık −Qs −ık −Qf

−Ss −ık −Sf ık

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.45)

where (Ss)2 = k2 − ρsω2

λs + 2µs
, (Sf )2 = k2 − ıρfω

λf + 2µf
, (Qs)2 = k2 − ρsω2

µs
and

(Qf )2 = k2 − ıρfω

µf
.

Further, if we neglect the fluid viscosity µf and taking the bulk modulus in the in-

viscid liquid as λ′ = −ıωλf in the above equation, then the above frequency equation

for Stoneley wave matches with the frequency equation of Stoneley wave at inviscid

liquid/elastic solid interface given in Ewing et al. (1957).
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4.8 Numerical results and discussions

For numerical computations, we take the following values of the relevant parameters for

both the half spaces. For micropolar elastic solid-M1( Polyurethane closed cell foam)

[see Hsia and Cheng (2006)]:

Symbol Value

λs 2.09730 × 1010 dyne/cm2

µs 0.91822 × 1010 dyne/cm2

Ks 0.22956 × 1010 dyne/cm2

αs −0.0000291 × 1010 dyne

βs 0.000045 × 1010 dyne

γs 0.0000423 × 1010 dyne

js 0.037 cm2

ρs 0.0034 gm/cm3

For micropolar viscous fluid medium- M2:

Symbol Value

λf 1.5 × 1010 dyne sec/cm2

µf 0.3 × 1010 dyne sec/cm2

Kf 0.00223 × 1010 dyne sec/cm2

αf 0.00111 × 1010 dyne sec

βf 0.0022 × 1010 dyne sec

γf 0.000222 × 1010 dyne sec

jf 0.0400 cm2

ρf 0.8 gm/cm3

and ω/ω0 = 100. The system of equations given in (4.28) and (4.35) are solved by

Gauss elimination method. The values of the amplitude and energy ratios have been

computed at different angles of incidence.

Figure 4.1 shows the variation of the modulus of amplitude ratios of various reflected

and refracted waves with the angle of incidence (θ0), when a plane longitudinal wave

propagating with velocity Vs1 is made incident from the micropolar elastic half-space.

It is found that the variation of the modulus of these amplitude ratios is different for

different values of θ0. It can be noticed from Figure 4.1 that the reflection coefficient

Z1 decreases monotonically from the value 1 to the value 0.0066 at θ0 = 62o angle of
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Figure 4.1: Incidence of longitudinal wave with velocity Vs1: Variation of reflection and
transmission coefficients

Figure 4.2: Incidence of longitudinal wave with velocity Vs1: Variation of real part of
energy ratios.
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incidence and then it starts increasing attaining its maximum value of equal to 1 at 90o

angle of incidence. The amplitude ratio Z2 increases monotonically from the value 0

at 0o angle of incidence, to the value 0.5760 at 49o angle of incidence and thereafter, it

starts decreasing and decreases to the value zero at 90o angle of incidence. All the other

amplitude ratios namely Z3, Z ′

1, Z ′

2 and Z ′

3 are found to be very small in magnitude and

hence they have been depicted after multiplying their original values with the factors

107, 102, 102 and 103 respectively. The reason of the amplitude ratios Z ′

1, Z ′

2 and Z ′

3

being too small is due to the big contrast in the densities of the fluid and solid half

spaces. It has been found that if we increase the density of the micropolar solid half

space to a certain extent, then amplitude ratios increase significantly at each angle of

incidence. The amplitude ratios Z2, Z3, Z ′

2 and Z ′

3 have almost similar behavior with

θ0. Note that at grazing incidence, no reflected or refracted waves appear, except the

reflected wave corresponding to the amplitude ratio Z1. At normal incidence, only the

reflected and refracted longitudinal displacement waves are found to appear.

When the longitudinal wave with velocity Vs1 is made incident, the variations of the

real part of the energy ratios of various reflected and refracted waves with respect to

the angle of incidence is depicted through Figure 4.2. We see that at normal incidence,

the value of the energy ration E1 is −1. It starts increasing with increase in angle of

incidence and reaches its maximum value zero at 62o angle of incidence, thereafter,

it starts decreasing and goes to the value −1 at 90o angle of incidence. Curve II de-

picts the energy ratio of the reflected coupled wave with velocity Vs2, which is zero

at zero degree of incidence and it decreases to the value −1 at 62o angle of incidence,

and after this it starts increasing and increases to the value zero at 90o angle of inci-

dence. Since the values of the amplitude ratios Z3, Z ′

1, Z ′

2 and Z ′

3 were found to very

small, therefore, the corresponding energy ratios E3, E ′

1, A
′

2 and A′

3 are also very very

small and these have been shown after multiplying their original values by the factors

106, 102, 102 and 102 respectively.

Figure 4.3 depicts the variation of imaginary parts of the energy ratios of various

reflected and transmitted waves with the angle of incidence. The imaginary parts of

E3, E ′

1, E ′

2 and E ′

3 are drawn after multiplying their original values by the factors

108, 102, 102 and 102 respectively. The sum of these imaginary parts of all the energy

ratios is equal to zero as was predicted in law of conservation of energy [see Ainslie

and Burns (1995)]. In fact, what we have found is that the algebraic sum of the real
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Figure 4.3: Incidence of longitudinal wave with velocity Vs1: Variation of imaginary part
of energy ratios.

parts of energy ratios is equal to unity and the algebraic sum of the imaginary parts

of the energy ratios vanish. Thus, the sum of the energy ratios of all the reflected and

transmitted waves comes out to be unity.

Figure 4.4 depicts the variation of the modulus of the amplitude ratios of various

reflected and refracted waves with the angle of incidence (θ′0), when a longitudinal wave

propagating with velocity Vf1 is made incident from the micropolar fluid half-space.

The values of the amplitude ratio R1 decreases from a certain value 0.6598 at 10 an-

gle of incidence and it decreases with θ′0 approaches to the value zero as θ′0 → 900,

while the values of the amplitude ratio R′

1 has value 0.9979 near normal incidence and

then it decreases with θ′0, achieving its minimum value equal to 0.8362 at 59o angle

of incidence. Thereafter, it increases to its maximum value equal to 1 at 90o angle of

incidence. All the other amplitude ratios are found to behave alike with θ′0, but with

differently. Note that at grazing incidence, no reflected or refracted wave was found

to appear, except the reflected longitudinal displacement wave corresponding to the

amplitude ratio R′

1. The amplitude ratios R3 and R′

3 are found to be very very small

in comparison to the other amplitudes ratios. Hence, they have been shown on the

graph after multiplying their original values by the factors 108 and 102 respectively.

108



Chapter- 4

Figure 4.4: Incidence of longitudinal wave with velocity Vf1: Variation of reflection and
transmission coefficients.

Figure 4.5: Incidence of longitudinal wave with velocity Vf1: Variation of real part of
energy ratios.
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Figure 4.6: Incidence of longitudinal wave with velocity Vf1: Variation of imaginary part
of energy ratios.

Figure 4.5 depicts the variation of the real parts of the energy ratios of various

reflected and transmitted waves with the angle of incidence θ′0. Since the numerical

values of the energy ratios E1, E2, E3 and E ′

3 are found to be very small in magnitude,

therefore, we have depicted them after multiplying their original values by the factors

102, 103, 109, and 102 respectively. Curve IV depicts the energy ratio of reflected longi-

tudinal displacement wave propagating with velocity Vf1. It is seen that its value equal

to −1 at 0o angle of incidence, increases to the value −0.6992 at 59o angle of incidence

and after this, it decreases to the value zero at 90o angle of incidence. Curve V depicts

the variation of real part of energy ratio of reflected coupled wave with velocity Vf2. It

starts from the value zero and decreases to the value −0.3285 at 57o of incidence and

it again increases to the value 1 at 90o of incidence. We see that the energy carried

by the reflected longitudinal displacement wave with velocity Vf1 and by the reflected

coupled wave with velocity Vf2 are dominant.

Figure 4.6 shows the variation of the imaginary parts of energy ratios with the angle

of incidence, when a longitudinal wave with velocity Vf1 is made incident. Since all the

values of imaginary parts of energy ratios are very small in magnitude, therefore, they

have been drawn after multiplying their original values by the factors 102, 104, 1010, 102, 103
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Figure 4.7: Real part of phase velocities of micropolar fluid versus frequency ratio ω/ω0.

and 104 respectively. The algebraic sum of the imaginary parts of energy ratios is found

to be equal to zero, while the algebraic sum of the real parts of these energy ratios is

found to be equal to unity in magnitude. This verify the energy balance law at the

interface.

Figures 4.7 and 4.8 depict the variation of the real and imaginary parts of the veloci-

ties of waves in micropolar fluid with respect to the non-dimensional frequency (ω/ω0).

It is clear from figure 4.7 that the velocity Vf1 of longitudinal displacement wave is

more than the velocities of remaining waves. We found that Re(Vf1) > Re(Vf2) >

Re(Vf4) > Re(Vf3). Figure 4.8 shows that all the imaginary parts of the velocities

decrease with non-dimensional frequency, but differently. It can be concluded that lon-

gitudinal displacement wave is more attenuated than the other waves and the amount

of attenuation increase with increase of the frequency.

For a given real value of non-dimensional wavenumber, the value of non-dimensional

phase velocity of Stoneley waves is computed from the determinantal equation (4.44).

The value of the non-dimensional phase velocity of Stoneley waves is found to be com-

plex, whose imaginary part corresponds to the measures of the attenuation of Stoneley

waves.
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Figure 4.8: Imaginary part of phase velocities of micropolar fluid versus frequency ratio
ω/ω0.

Figure 4.9: Comparison of real part of Stoneley wave velocity.

112



Chapter- 4

Figure 4.10: Comparison of imaginary part of Stoneley wave velocity.

Figure 4.9 depicts the variation of the real part of the phase velocity of Stoneley

waves for different models. Curves I, II and III respectively correspond to the disper-

sion curves at micropolar fluid/micropolar solid, non-polar viscous fluid/elastic solid

and inviscid fluid/elastic solid interface. The effect of micropolarity and viscosity can

be clearly noticed on the dispersion curves. We notice that the viscosity of the fluid is

responsible to enhance the real part of the phase velocity of Stoneley waves. This is

further enhanced due to the micropolar properties of the half-spaces.

Figure 4.10 shows the corresponding variations in the imaginary parts of the phase

velocity of Stoneley waves in the models considered. It can be seen from these fig-

ures that the Stoneley waves at inviscid liquid/elastic solid interface are attenuated

but non-dispersive for the considered model, while at viscous fluid/elastic solid and

micropolar fluid/micropolar solid interfaces, the Stoneley waves are attenuated and

dispersive also.

4.9 Conclusions

In this chapter, the possibility of plane wave propagation in Eringen’s micropolar fluid

of infinite extent has been explored. The reflection and transmission phenomena at a
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plane interface between a micropolar fluid half-space and a micropolar solid half-space

has also been investigated. The frequency equation of surface waves (Stoneley waves)

at micropolar fluid/micropolar solid interface has been derived. It may be concluded

that

(a) Four plane waves can exist in an infinite micropolar fluid propagating at distinct

phase speeds.

(b) All of these waves are found to be dispersive and attenuated in nature.

(c) The reflection and transmission coefficients are found to be the function of the angle

of incidence, elastic properties of the half-spaces and the frequency of the incidence

wave.

(d) The real part of the Stoneley wave velocity propagating along a micropolar fluid/

micropolar solid interface, is found to be greater than that of propagating along non-

polar viscous/nonviscous fluid and an elastic solid interface.

(e) At each angle of incidence, the sum of the real part of the energy ratios of various

reflected and transmitted waves is found to be unity, while the sum of the imaginary

parts of the energy ratios is found to be zero. This verifies the energy balance law at

the interface during transmission phenomena of waves in non-dissipative media.
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Chapter 5

Wave propagation in micropolar

mixture of porous media4

5.1 Introduction

Eringen (2003a) developed a theory of micropolar mixture of porous media (non-

reacting mixture of a micropolar elastic solid and a micropolar viscous fluid at a single

temperature) to include the rotational degrees of freedom. In his theory, material points

of each constituent of porous solid undergoes translation and rotation and hence pos-

sessing six degrees of freedom. Rotational degree of freedom is ignored in classical

porous theories. Many engineering materials, as well as soils, rocks, granular materi-

als, sand and underground water mixture may be modeled more realistically by means

of micropolar continua. In this Chapter, we have explored the possibility of elastic

wave propagation in an unbounded micropolar mixture of porous media. We have also

studied a problem of reflection of coupled longitudinal waves from a free surface of a

micropolar porous half-space. The half-space is taken as a mixture of micropolar elastic

solid and a Newtonian liquid. Amplitude ratios and energy ratios of various reflected

waves have been obtained in closed form. The expressions of displacements and micro-

rotation on the surface of the half-space are also derived. Numerical computations are

performed for a specific model and the results obtained are depicted graphically.

4International Journal of Engineering Science, 44(18-19), 1304-1323(2006).
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5.2 Basic equations and formulation of problem

The equations of motion in an isotropic mixture of micropolar elastic solid and a

micropolar viscous fluid, in the absence of body force density and body couple density,

are given by (Eringen, 2003a)

(c2
1s + c2

3s)∇(∇ · us) − (c2
2s + c2

3s)∇× (∇× us) + c2
3s∇× φs

−c2
4s(u̇

s − u̇f ) =
∂2us

∂t2
, (5.1)

(c2
5s + c2

6s)∇(∇ · φs) − c2
6s∇× (∇× φs) + c2

7s(∇× us − 2φs)

−c2
8s(φ̇

s − φ̇
f
) =

∂2φs

∂t2
, (5.2)

(c2
1f + c2

3f )∇(∇ · u̇f ) − (c2
2f + c2

3f )∇× (∇× u̇f ) + c2
3f∇× φ̇

f

+c2
4f (u̇

s − u̇f ) =
∂2uf

∂t2
, (5.3)

(c2
5f + c2

6f )∇(∇ · φ̇f
) − c2

6f∇× (∇× φ̇
f
) + c2

7f (∇× u̇f − 2φ̇f )

+c2
8f (φ̇

s − φ̇
f
) =

∂2φf

∂t2
, (5.4)

where

c2
1s = (λs + 2µs)/ρs, c2

2s = µs/ρs, c2
3s = Ks/ρs, c2

4s = ξ/ρs,

c2
5s = (αs + βs)/ρsjs, c2

6s = γs/ρsjs, c2
7s = Ks/ρsjs, c2

8s = Ω/ρsjs,

c2
1f = (λf + 2µf )/ρf , c2

2f = µf/ρf , c2
3f = Kf/ρf , c2

4f = ξ/ρf ,

c2
5f = (αf + βf )/ρfjf , c2

6f = γf/ρfjf , c2
7f = Kf/ρfjf , c2

8f = Ω/ρfjf ,

and the symbols λs, µs, Ks, αs, βs, γs, ρs, js, λf , µf , Kf , αf , βf , γf , ρf and jf are

defined in Chapter-4. The quantities ξ and Ω are the momentum generation coefficients

due to the velocity difference and due to the difference in gyrations, respectively.
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The constitutive relations in a linear isotropic micropolar mixture are given by

(Eringen, 2003a)

τ s
kl = λs∇ · usδkl + µs(us

k,l + us
l,k) + Ks(us

l,k + εlkmφs
m), (5.5)

ms
kl = αs∇ · φsδkl + βsφs

k,l + γsφs
l,k, (5.6)

τ f
kl = λfvf

m,mδkl + µf (vf
k,l + vf

l,k) + Kf (vf
l,k + εlkmνf

m), (5.7)

mf
kl = αf∇ · νfδkl + βfνf

k,l + γfνf
l,k, (5.8)

p̂s = −p̂f = −ξ(u̇s − vf ), (5.9)

m̂s = −m̂f = −Ω(φ̇
s − νf ), (5.10)

where vf =
∂uf

∂t
and νf =

∂φf

∂t
; The second order tensors, τ s

kl and τ f
kl are respectively

the force stress tensors in micropolar solid and in micropolar fluid, while ms
kl and mf

kl

are respectively the couple stress tensors in micropolar solid and in micropolar fluid,

p̂s and m̂s are respectively, the force and the couple exerted on the solid constituent

from the fluid constituent, p̂f and m̂f are respectively, the force and couple exerted on

the fluid constituent from the solid constituent.

Introducing the scalar potentials As, Af , Cs and Cf , vector potentials Bs, Bf , Ds

and Df through Helmholtz representation of vector field, we can write

us = ∇As + ∇× Bs, ∇ · Bs = 0; uf = ∇Af + ∇× Bf , ∇ · Bf = 0, (5.11)

φs = ∇Cs + ∇× Ds, ∇ · Ds = 0; φf = ∇Cf + ∇× Df , ∇ · Df = 0. (5.12)

Plugging (5.11) and (5.12) into equations (5.1) to (5.4), we obtain

(c2
1s + c2

3s)∇2As − c2
4s(Ȧ

s − Ȧf ) = Äs, (5.13)
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(c2
1f + c2

3f )∇2Ȧf + c2
4f (Ȧ

s − Ȧf ) = Äf , (5.14)

(c2
5s + c2

6s)∇2Cs − 2c2
7sC

s − c2
8s(Ċ

s − Ċf ) = C̈s, (5.15)

(c2
5f + c2

6f )∇2Ċf − 2c2
7f Ċ

f + c2
8f (Ċ

s − Ċf ) = C̈f , (5.16)

(c2
2f + c2

3f )∇2Ḃf + c2
3f∇× Ḋf + c2

4f (Ḃ
s − Ḃf ) = B̈f , (5.17)

c2
6s∇2Ds + c2

7s∇× Bs − 2c2
7sD

s − c2
8s(Ḋ

s − Ḋf ) = D̈s, (5.18)

(c2
2s + c2

3s)∇2Bs + c2
3s∇× Ds − c2

4s(Ḃ
s − Ḃf ) = B̈s, (5.19)

c2
6f∇2Ḋf + c2

7f∇× Ḃf − 2c2
7fḊ

f + c2
8f (Ḋ

s − Ḋf ) = D̈f . (5.20)

We see that the equations (5.13) and (5.14) are coupled in scalar potentials As and Af ,

the equations (5.15) and (5.16) are coupled in scalar potentials Cs and Cf ; while the

equations (5.17) to (5.20) are coupled in vector potentials Bs, Bf , Ds and Df .

5.3 Wave propagation

To discuss the possibility of plane wave propagation in an infinite medium of mixture of

micropolar solid and viscous micropolar fluid, we shall first solve the equations (5.13) to

(5.20). Consider the following form of plane waves propagating in the positive direction

of a unit vector n

{As, Af , Cs, Cf} = {as, af , cs, cf} exp [ık(n · r − V t)], (5.21)

where as, af , cs and cf are the constant complex scalar wave amplitudes, ı =
√
−1,

r is the position vector, V is the phase velocity in the direction of vector n, k is the

wavenumber and ω(= kV ) is angular frequency. Inserting the values of potentials As

and Af from equation (5.21) into equations (5.13) and (5.14), we obtain a set of two
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homogeneous equations in two unknown amplitudes, namely as and af . Eliminating

these unknown constants, we get the following equation

a1V
4 − b1V

2 + c1 = 0, (5.22)

where

a1 = ω + ı(c2
4s + c2

4f ),

b1 = (c2
1s + c2

3s)(ω + ıc2
4f ) + (c2

1f + c2
3f )(c

2
4sω − ıω2),

c1 = −ıω2(c2
1s + c2

3s)(c
2
1f + c2

3f ).

Similarly, inserting the values of Cs and Cf from (5.21) in equation (5.15) and (5.16),

we obtain

a2V
4 − b2V

2 + c2 = 0, (5.23)

where

a2 = [−2c2
7s(2ıc

2
7f + ıc2

8f + ω) − 2c2
7fω(c2

8f − ıω) + ω2(ıc2
8s + ıc2

8f + ω)],

b2 = ω2[(c2
5s + c2

6s)(2ıc
2
7f + ıc2

8f + ω) + (c2
5f + c2

6f )(2ıc
2
7s + c2

8sω − ıω2)],

c2 = −ıω4(c2
5s + c2

6s)(c
2
5f + c2

6f ).

The roots of equations (5.22) and (5.23) are given by

V 2
1, 2 =

1

2a1

[b1 ±
√

b2
1 − 4a1c1] and V 2

3, 4 =
1

2a2

[b2 ±
√

b2
2 − 4a2c2], (5.24)

respectively. Here V 2
1 and V 2

3 are taken with ’plus’ sign and V 2
2 and V 2

4 are taken

with ’minus’ sign. Insertion of (5.21) into equations (5.11) and (5.12) will show that

the displacement vectors (us, uf ) and microrotation vectors (φs, φf ) are parallel to

the direction of n. Hence, the waves propagating with phase velocities given by Vi

(i=1,2,3,4) are longitudinal in nature. The waves propagating with velocities V1 and

V2 may be called coupled longitudinal displacement waves and the waves propagating

with velocities V3 and V4 may be called coupled longitudinal microrotational waves.

These longitudinal waves are analogous to the longitudinal displacement and longitu-

dinal microrotational waves of micropolar elasticity. In the limiting case, when the
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presence of liquid is neglected, the velocities V1 and V3 reduce to the velocities of longi-

tudinal displacement wave and longitudinal microrotational wave of micropolar theory

for elastic solids. The other velocities V2 and V4 become zero in this limiting case. It is

to be noted here that these coupled longitudinal displacement waves are analogous to

the dialatational waves of classical elastic solid and fluid, while there are no classical

analogy to the microrotation waves.

To solve equations (5.17) to (5.20), which are coupled in the vector potentials Bs, Bf , Ds, Df ,

we take the following form of vector potentials

{Bs, Bf , Ds,Df} = {bs, bf ,ds, df} exp[ık(n · r − V t)], (5.25)

where bs, bf , ds and df are constant complex vector wave amplitudes and other

symbols are defined earlier.

Plugging (5.25) into equations (5.17)-(5.20), we get four homogeneous vector equations

in four unknowns

A1b
s + A2b

f + A3n × ds = 0, (5.26)

B1n × bs + B2d
s + B3d

f = 0, (5.27)

C1b
s + C2b

f + C3n × df = 0, (5.28)

D1n × bf + D2d
s + D3d

f = 0, (5.29)

where

A1 = −k2(c2
2s + c2

3s) + k2V 2 + c2
4sıkV, A2 = −c2

4sıkV, A3 = c2
3sık,

B1 = c2
7sık, B2 = −k2c2

6s − 2c2
7s + c2

8sıkV + k2V 2, B3 = −c2
8sıkV,

C1 = −c2
4f ıkV, C2 = ık3V (c2

2f + c2
3f ) + c2

4f ıkV + k2V 2, C3 = k2V c2
3f ,

D1 = c2
7fk

2V, D2 = −ıkV c2
8f , D3 = c2

6fk
3V ı + 2c2

7f ıkV + c2
8f ıkV + k2V 2.
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Eliminating the vectors bs, bf ,ds and df , we obtain

a3V
4 + b3V

2 + c3 = 0, (5.30)

and

N1V
8 + N2V

6 + N3V
4 + N4V

2 + N5 = 0, (5.31)

where

a3 = (ıc2
4f + ω)[ı(2c2

7f + c2
8f ) + ω],

b3 = ıω2(c2
2f + c2

3f )[ı(2c
2
7f + c2

8f ) + ω] + ıc2
6fω

2(ıc2
4f + ω) + c2

7fc
2
3fω

2,

c3 = −(c2
2f + c2

3f )c
2
6fω

4,

N1 = (ω + ıc2
4s)(−2c2

7s + ıc2
8sω + ω2)(ω + ıc2

4f )(2ıc
2
7f + ıc2

8f + ω) + c2
8sc

2
8fω(ω + ıc2

4s)

(ω + ıc2
4f ) + (−2c2

7s + ıc2
8sω + ω2)(2ıc2

7f + ıc2
8f + ω)c2

4sc
2
4f + ωc2

4sc
2
4fc

2
8sc

2
8f ,

N2 = ω[(ω + ıc2
4f )(2ıc

2
7f + ıc2

8f + ω)[−(c2
2s + c2

3s)(−2c2
7s + ıc2

8sω + ω2) − c2
6sω(ω + ıc2

4s)

−c2
7sc

2
3s] + ω{(ω + ıc2

4s)(−2c2
7s + ıc2

8sω + ω2)[ı(c2
2f + c2

3f )(2ıc
2
7f + ıc2

8f + ω)

+ıc2
6f (ıc

2
4f +ω)+c2

7fc
2
3f ]−ıc2

7sc
2
4sc

2
8fc

2
3f −ıc2

3sc
2
8sc

2
4fc

2
7f +c2

8sc
2
8f [−(c2

2s+c2
3s)(ω+ıc2

4f )

+ıω(ω+ıc2
4s)(c

2
2f +c2

3f )]+c2
4sc

2
4f [−c2

6s(2ıc
2
7f +ıc2

8f +ω)+ıc2
6f (−2c2

7s+c2
8sıω+ω2)]}],

N3 = ω3[c2
6s(c

2
2s + c2

3s)(ıc
2
4f + ω)(2ıc2

7f + ıc2
8f + ω) − [(c2

2s + c2
3s)(−2c2

7s + ıc2
8sω + ω2)

+ ωc2
6s(ω + ıc2

4s) + c2
7sc

2
3s][ı(c

2
2f + c2

3f )(2ıc
2
7f + ıc2

8f + ω) + ıc2
6f (ıc

2
4f + ω) + c2

7fc
2
3f ]

− ω{[c2
6f (c

2
2f + c2

3f )(ω + ıc2
4s)(−2c2

7s + ıc2
8sω + ω2)

+ıc2
8sc

2
8f (c

2
2s + c2

3s)(c
2
2f + c2

3f ) + ıc2
4sc

2
4fc

2
6sc

2
6f ]}],

N4 = ω4[c2
6s(c

2
2s + c2

3s)[ı(c
2
2f + c2

3f )(2ıc
2
7f + ıc2

8f + ω) + ıc2
6f (ıc

2
4f + ω) + c2

7fc
2
3f ]

+c2
6f (c

2
2f + c2

3f )[(c
2
2s + c2

3s)(−2c2
7s + ıc2

8sω + ω2) + c2
6s(ω + ıc2

4s) + c2
7sc

2
3s]],

N5 = −ω7c2
6sc

2
6f (c

2
2s + c2

3s)(c
2
2f + c2

3f ).
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The roots of equation (5.30) are given by

V 2
5, 6 =

1

2a3

[−b3 ±
√

b2
3 − 4a3c3], (5.32)

where V 2
5 is taken with ’plus’ sign and V 2

6 is taken with ’minus’ sign. It can be seen

from the coefficients of equation (5.32) that the velocities V 2
5,6 depend purely on mi-

cropolar fluid viscosities and they do not depend on the properties of solid constituent.

Moreover, if the constant γf is put equal to zero then the quantity V 2
6 vanishes. Also,

if the constants Kf , ξ and Ω vanish, then the velocity V 2
5 reduces to V 2

5 =
√

−ıωµf/ρf ,

which is the velocity of transverse wave in viscous fluid. Equation (5.31) is not simple

to solve analytically and the roots of this equation can be obtained by some numer-

ical procedure. Since equation (5.31) is four degree equation in V 2, therefore it can

give four roots, in general. Let these roots be V 2
7 , V 2

8 , V 2
9 and V 2

10. This means

that equation (5.31) will represent four waves propagating with these velocities. Using

(5.25) into second and fourth equations of (5.11) and (5.12), it becomes apparent that

n · bs = n · bf = n · ds = n · df = 0. Hence, all the four vectors bs, bf , ds and df lie

in a common plane whose unit normal is n. This means that the waves propagating

with velocities Vj, (j = 5, 6, 7, 8, 9, 10) are transverse in nature. It is clear from the

expressions of velocities that they depend on frequency. Hence, all waves propagating

with these velocities are dispersive.

In a limiting case, when the presence of liquid is ignored, we see that the velocities

given by V5 and V6 vanish and equation (5.31) reduces to

aV 4 + bV 2 + c = 0,

where a = 1 − 2c2
7s

ω2 , b = −[c2
2s(1 − 2c2

7s

ω2 ) + c2
3s(1 − c2

7s

ω2 ) + c2
6s] and c = c2

6s(c
2
2s + c2

3s).

This equation is the same equation as obtained by Parfitt and Eringen (1969) and gives

the velocities of coupled transverse waves in micropolar elastic solid. In another limiting

case, when micropolarity of both fluid and solid constituents along with the moment

generation coefficients are neglected, then one can verify that the reduced equations

(5.30) and (5.31) yield two velocities given by
√

c2s and
√

−ıωc2
2f . These velocities

are the velocities of purely transverse waves in classical elastic solid and viscous fluid,

respectively.

Now, let us look at the behavior of these velocities at low and high frequencies.
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For higher frequency waves, i.e., when ω → ∞, we see that the velocities of coupled

longitudinal waves reduce to V 2
1 = c2

1s+c2
3s and V 2

2 → ∞, while the velocities of coupled

longitudinal microrotational waves V 2
3,4 → ∞. The velocities of two coupled transverse

waves reduce to V 2
5 = V 2

6 = ∞ and that of the remaining four coupled transverse waves

reduce to V 2
7 = V 2

8 = ∞ and V 2
9 = c2

6s, V 2
10 = c2

2s + c2
3s. At low frequency waves, i.e.,

when ω → 0, all the velocities vanish except

V 2
1 =

(c2
1s + c2

3s)c
2
4f

c2
4s + c2

4f

.

5.4 Reflection of coupled longitudinal waves

We shall discuss the reflection phenomena of coupled longitudinal waves impinging

obliquely at the stress free plane surface of a half-space H composed of mixture of

a micropolar elastic solid and an inviscid non-polar simple liquid. Let x − y axes be

horizontal and z−axis be vertically downward. We shall discuss a two-dimensional

problem in x − z plane such that the x− axis is along the free plane boundary of the

half-space. The half-space H occupies the region H = {−∞ < x, y < ∞, z ≥ 0}. Since

we are considering simple inviscid liquid, therefore, we shall first find the expressions of

velocities of existing waves in the mixture considered. For this substituting zero values

of the parameters corresponding to micropolarity and viscosity of the fluid constituent,

i.e., c2
2f = c2

3f = c2
5f = c2

6f = c2
7f = c2

8f = c2
8s = 0 into the expressions of velocities

obtained earlier. From the expression given in (5.22), we obtain

V 2
1,2 =

1

2a′
1

[b′1 ±
√

b′21 − 4a′
1c

′
1], (5.33)

where

a′

1 = ω + ı(c2
4s + c2

4f ), b′1 = (c2
1s + c2

3s)(ıc
2
4f + ω) + c2

1fω(c2
4s − ıω)

and

c′1 = −ı(c2
1s + c2

3s)c
2
1fω

2.

These are the velocities of coupled longitudinal displacement waves in a mixture con-

sisting of micropolar elastic solid constituent and inviscid liquid constituent. From the
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expression of velocity given in (5.23), we obtain

V 2
3 = [c2

5s + c2
6s]

[

1 − 2
c2
7s

ω2

]−1

, (5.34)

which is the velocity of longitudinal microrotational wave in micropolar solid con-

stituent. From the expressions of velocities given in (5.31), we obtain

V 2
9,10 =

1

2n1

[n2 ±
√

n2
2 − 4n1n3], (5.35)

where n1 = (ω2 − 2c2
7s){(ω + ıc2

4s)(ω + ıc2
4f ) + c2

4sc
2
4f}, n3 = ω3c2

6s(c
2
2s + c2

3s)(ıc
2
4f + ω),

n2 = ω(ω + ıc2
4f ){(c2

2s + c2
3s)(ω

2 − 2c2
7s) + ωc2

6s(ω + ıc2
4s) + c2

7sc
2
3s} + c2

4sc
2
4fc

2
6sω

2.

These velocities correspond to the waves arising from solid-liquid interactions. It is

easy to verify that by neglecting the presence of liquid, these velocities reduce to the

same velocities of coupled transverse waves of micropolar elastic solid obtained earlier

by Parfitt and Eringen (1969).

Note that for a two dimensional problem in x − z plane, we shall consider

us = (us
1, 0, us

3), uf = (uf
1 , 0, uf

3) and φs
2 = (−φs)2.

5.4.1 Incidence of coupled longitudinal plane wave with ve-

locity V1

Let a plane coupled longitudinal wave propagating through the half-space H be incident

obliquely at the boundary surface z = 0. Let the incident wave with amplitude A0

propagates with velocity V1 be striking at the boundary surface making an angle θ0

with z-axis. To satisfy the boundary conditions on stresses at the boundary surface,

it is necessary to postulate the existence of reflected wave in four distinct directions.

(i) A set of coupled longitudinal wave of amplitude A1 propagating with speed V1 and

making an angle θ1 with the z− axis. (ii) A similar set of coupled longitudinal wave

of amplitude A2 propagating with speed V2 and making an angle θ2 with the z− axis.

(iii) A set of coupled transverse wave of amplitude A3 propagating with speed V9 and

making an angle θ3 with the z− axis. (iv) A similar set of coupled transverse wave of

amplitude A4 propagating with speed V10 and making an angle θ4 with the z− axis.
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The followings are the relevant potentials in the half-space H

As = A0 exp{ık1(sin θ0x − cos θ0z) − ıω1t}

+
∑

p=1, 2

Ap exp{ıkp(sin θpx + cos θpz) − ıωpt}, (5.36)

Af = ξ1A0 exp{ık1(sin θ0x − cos θ0z) − ıω1t}

+
∑

p=1, 2

ξpAp exp{ıkp(sin θpx + cos θpz) − ıωpt}, (5.37)

Bs
2 =

∑

q=3, 4

Aq exp{ıkq(sin θqx + cos θqz) − ıωqt}, (5.38)

φs
2 =

∑

q=3, 4

ηqAq exp{ıkq(sin θqx + cos θqz) − ıωqt}, (5.39)

where ξ1,2 are the coupling parameters between the coefficients As and Af , while η3,4

are the coupling parameters between the coefficients Bs
2 and φs

2. The expressions of

these coupling parameters are given by

ξ1,2 = 1 − ı

[

ω1,2

c2
4s

− k1, 2
(c2

1s + c2
3s)

c2
4sV1,2

]

, η3,4 = c2
7s

[

V 2
9,10 − c2

6s − 2
c2
7s

k2
9,10

]−1

.

Since the boundary surface of the half-space H is free from mechanical stresses, there-

fore, the boundary conditions at the free surface are the vanishing of force stresses,

couple stresses in micropolar solid constituent and stresses in liquid constituent. Math-

ematically, these boundary conditions can be expressed as

τ s
zz = τ f

zz = τ s
zx = ms

zy = 0 at z = 0. (5.40)

The Snell’s law describing the relations between various angles of reflected waves and

that of the incident wave, is given by

sin θ0

V1

=
sin θ1

V1

=
sin θ2

V2

=
sin θ3

V9

=
sin θ4

V10

. (5.41)
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Making use of potentials given by equations (5.36)-(5.39), using Snell’s law given by

equation (5.41) and assuming that ω1 = ω2 = ω3 = ω4 = ω at the boundary surface

z = 0, the boundary conditions (5.40) are satisfied if

4
∑

j=1

aijzj = bi (i = 1, ..., 4), (5.42)

where

a1i = [λs + (2µs + Ks) cos2 θi]k
2
i , a1j = (2µs + Ks) sin θj cos θjk

2
j , a2j = ξik

2
i ,

a3i = −(2µs +Ks) sin θi cos θik
2
i , a3j =

[

µs cos 2θj + Ks cos2 θj −
Ksηj

k2
j

]

k2
j ,

a4j = ηj cos θjkj, a41 = a42 = a23 = a24 = 0, i = 1, 2, j = 3, 4,

and b1 = −a11, b2 = −a21, b3 = a31, b4 = a41.

The quantities

z1 =
A1

A0

, z2 =
A2

A0

, z3 =
A3

A0

and z4 =
A4

A0

are the amplitude ratios for the reflected longitudinal displacement wave due to solid

and propagating with velocity V1 at an angle θ1, reflected coupled longitudinal dis-

placement wave due to liquid and propagating with velocity V2 at an angle θ2, reflected

coupled transverse displacement wave propagating with velocity V9 at an angle θ3, re-

flected coupled transverse microrotational wave propagating with velocity V10 at angle

θ4, respectively. Solving the equations in (5.42), we obtain

zi =
∆i

∆
(i = 1, 2, 3, 4), (5.43)

where ∆ = −a14a22a33a41 + a12a24a33a41 + a13a22a34a41 − a12a23a34a41 + a14a21a33a42 −
a11a24a33a42 − a13a21a34a42 + a11a23a34a42,

∆1 = (a14a33−a13a34)(a42b2−a22b4)+a24(−a33a42b1+a13a42b3+a12a33b4)+a23(a34a42b1−
a14a42b3 − a12a34b4),

∆2 = a41(a24a33b1 − a23a34b1 − a14a33b2 + a13a34b2 + a14a23b3 − a13a24b3) + (a14a21a33 −
a11a24a33 − a13a21a34 + a11a23a34)b4,

∆3 = −(a12a41−a11a42)(a34b2−a24b3)+a22(a34a41b1−a14a41b3−a11a34b4)+a21(−a34a42b1+

a14a42b3 + a12a34b4),
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∆4 = (a12a41−a11a42)(a33b2−a23b3)+a22(−a33a41b1+a13a41b3+a11a33b4)+a21(a33a42b1−
a13a42b3 − a12a33b4).

5.4.2 Surface response

The following responses of the solid and liquid constituents at the surface of the half-

space H are calculated.

(i) Solid constituent The expressions for the displacements and microrotation re-

spectively are given by

us
1 = ı[k1 sin θ0 + k1 sin θ1z1 + k2 sin θ2z2 − k3 cos θ3z3 − k4 cos θ4z4]A0, (5.44)

us
3 = ı[−k1 cos θ0 + k1 cos θ1z1 + k2 cos θ2z2 + k3 sin θ3z3 + k4 sin θ4z4]A0, (5.45)

φs
2 = [η3z3 + η4z4]A0. (5.46)

(ii) Liquid constituent The expressions of the displacements of the liquid constituent

are given by

uf
1 = ı[ξ1k1 sin θ0 + ξ1k1 sin θ1z1 + ξ2k2 sin θ2z2]A0, (5.47)

uf
3 = ı[−ξ1k1 cos θ0 + ξ1k1 cos θ1z1 + ξ2k2 cos θ2z2]A0, (5.48)

where k1 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4 = k0.

In writing the expressions in (5.44) to (5.48), we have dropped a common factor

exp{ı(k0x − ωt)}.

5.4.3 Energy partition

We shall now consider the partitioning of incident energy between various reflected

waves at the surface element of unit area. Following Achenbach (1973), the rate of

energy transmission at the free surface z = 0 for the mixture of micropolar solid with
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simple liquid, is given by

P ∗ = τ s
zzu̇

s
3 + τ f

zzu̇
f
3 + τ s

zxu̇
s
1 + ms

zyφ̇
s
2. (5.49)

Following Achenbach (1973), for any two complex functions of the forms

F = F0 exp{ı(ωt − γ1)}, f = f0 exp{ı(ωt − γ2)},

F0 and f0 being the real-valued functions, the time average of a product of the real

parts of two complex functions F and f , is given by

< R(F ) × R(f) >= R(F f̄)/2. (5.50)

To obtain the expressions of energy ratios giving the time rate of average energy trans-

mission for the respective wave to that of the incident wave, we shall now calculate the

< P ∗ > for the incident wave and for each of the reflected waves by using the appro-

priate potentials. The expressions for these energy ratios Ei(i = 1, ...4) corresponding

to reflected waves are given by

Ei =< P ∗

i > / < P ∗

0 > (i = 1, ...4), (5.51)

where

< P ∗

0 >= (λs + 2µs + Ks − ıλfω1ξ
2
1)k

3
1 cos θ0,

< P ∗

ℓ >= −(λs + 2µs + Ks − ıλfωℓξ
2
ℓ )k

3
ℓ cos θℓz

2
ℓ (ℓ = 1, 2)

< P ∗

m >= −
(

µs + Ks − ηm
(γsηm + Ks)

k2
m

)

k3
m cos θmz2

m (m = 3, 4).

The quantities E1, E2, E3 and E4 represent the energy ratios of reflected coupled

longitudinal wave with velocity V1, reflected coupled longitudinal wave with velocity

V2, reflected coupled transverse wave with velocity V9 and reflected coupled transverse

wave with velocity V10 respectively.
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5.4.4 Incidence of coupled longitudinal plane wave with ve-

locity V2

We now consider a train of coupled longitudinal wave of amplitude Ā0 propagating

with velocity V2 through the half space and striking at the interface making an angle

θ0 with the z-axis. In this case, to satisfy the boundary conditions at the free surface

of the half-space H, we shall postulate the existence of same set of reflected waves as

considered above, in the case of incidence of coupled longitudinal wave with velocity

V1. Therefore, the potentials in the half-space due to various reflected waves will be of

the form

As = Ā0 exp{ık2(sin θ0x − cos θ0z) − ıω2t}

+
∑

p=1, 2

Ap exp{ıkp(sin θpx + cos θpz) − ıωpt}, (5.52)

Af = ξ2Ā0 exp{ık2(sin θ0x − cos θ0z) − ıω2t}

+
∑

p=1, 2

ξpAp exp{ıkp(sin θpx + cos θpz) − ıωpt}. (5.53)

The expressions of the potentials Bs
2 and φs

2 will remain same as defined earlier in (5.38)

and (5.39). The expressions of parameters ξ1,2 and η3,4 are also defined earlier. Making

use of potentials given above and the modified Snell’s law for the present case given by

sin θ0

V2

=
sin θ1

V1

=
sin θ2

V2

=
sin θ3

V9

=
sin θ4

V10

, (5.54)

into the boundary conditions given in (5.40) and assuming ω1 = ω2 = ω3 = ω4 = ω at

the boundary surface z = 0, we obtain a system of four non-homogeneous equations as

follows

4
∑

j=1

aij z̄j = b̄i (i = 1, ...4), (5.55)
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where aij are the same as defined earlier and b̄1 = −a12, b̄2 = −a22, b̄3 = a32 and

b̄4 = a42, while the quantities

z̄1 = A1/Ā0, z̄2 = A2/Ā0, z̄3 = A3/Ā0 and z̄4 = A4/Ā0

are the reflection coefficients of various reflected waves. Solving the system of equations

in (5.55), we obtain

z̄i =
∆̄i

∆
(i = 1, 2, 3, 4), (5.56)

where ∆ = −a14a22a33a41 + a12a24a33a41 + a13a22a34a41 − a12a23a34a41 + a14a21a33a42 −
a11a24a33a42 − a13a21a34a42 + a11a23a34a42,

∆̄1 = (a14a33−a13a34)(a42b̄2−a22b̄4)+a24(−a33a42b̄1+a13a42b̄3+a12a33b̄4)+a23(a34a42b̄1−
a14a42b̄3 − a12a34b̄4),

∆̄2 = a41(a24a33b̄1 − a23a34b̄1 − a14a33b̄2 + a13a34b̄2 + a14a23b̄3 − a13a24b̄3) + (a14a21a33 −
a11a24a33 − a13a21a34 + a11a23a34)b̄4,

∆̄3 = −(a12a41−a11a42)(a34b̄2−a24b̄3)+a22(a34a41b̄1−a14a41b̄3−a11a34b̄4)+a21(−a34a42b̄1+

a14a42b̄3 + a12a34b̄4),

∆̄4 = (a12a41−a11a42)(a33b̄2−a23b̄3)+a22(−a33a41b̄1+a13a41b̄3+a11a33b̄4)+a21(a33a42b̄1−
a13a42b̄3 − a12a33b̄4).

5.4.5 Surface response

Similarly, as computed in the case of incidence of coupled longitudinal wave with

velocity V1, the expressions of surface response for the displacements and microrotations

of solid constituent and displacements of liquid constituent, for the case of incident

coupled longitudinal wave with velocity V2, are given by

us
1 = ı[k2 sin θ0 + k1 sin θ1z1 + k2 sin θ2z2 − k3 cos θ3z3 − k4 cos θ4z4]A0, (5.57)

us
3 = ı[−k2 cos θ0 + k1 cos θ1z1 + k2 cos θ2z2 + k3 sin θ3z3 + k4 sin θ4z4]A0, (5.58)

φs
2 = [η3z3 + η4z4]A0, (5.59)
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and

uf
1 = ı[ξ2k2 sin θ0 + ξ1k1 sin θ1z1 + ξ2k2 sin θ2z2]A0, (5.60)

uf
3 = ı[−ξ2k2 cos θ0 + ξ1k1 cos θ1z1 + ξ2k2 cos θ2z2]A0, (5.61)

where k2 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4 = k′

0.

In writing the expressions in (5.57) to (5.61), we have dropped a common factor

exp{ı(k′

0x − ωt).

5.4.6 Energy partition

In the case of incident coupled longitudinal wave propagating with velocity V2, the

expressions for energy ratios Ēi(i = 1, ...4) for various reflected waves are given by

Ēi =< P ∗

i > / < P̄ ∗

0 > (i = 1, ...4), (5.62)

where the expressions of < P ∗

i > are the same as defined earlier, while the expression

of < P̄ ∗

0 > is given by

< P̄ ∗

0 >= (λs + 2µs + Ks − ıλfω2ξ
2
2)k

3
2 cos θ0.

5.5 Limiting case

If we neglect the micropolar effects from solid and fluid constituents of the mixture, then

we shall be left with the mixture of an elastic solid and a liquid. For this, substituting

the parameters corresponding to micropolarity in both solid and fluid constituents

equal to zero, i.e., c2
3s = c2

5s = c2
6s = c2

7s = c2
8s = c2

3f = c2
5f = c2

6f = c2
7f = c2

8f = 0, then

equation (5.24) reduces to

V 2
1, 2 =

1

2a′
1

[b′1 ±
√

b′21 − 4a′
1c

′
1] and V3,4 = 0, (5.63)

where a′

1 = ω + ı(c2
4s + c2

4f ), b′1 = ıc2
1sc

2
4f + (c2

1s + c2
4sc

2
1f − ıc2

1fω)ω, c′1 = −ıc2
1sc

2
1fω

2.

Thus there are only two longitudinal displacement waves and the longitudinal micro-

rotation waves disappear. Also, it can be seen that in the present case, the velocities
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of coupled transverse waves given by equation (5.30) vanish and the velocities given by

equation (5.31) reduce to

V 2
9,10 =

1

2a′
2

[−b′2 ±
√

b′22 − 4a′
2c

′
2], (5.64)

where a′

2 = ω + ı(c2
4s + c2

4f ), b′2 = −c2
2s(ω + ıc2

4f ) + ıωc2
2f (ω + ıc2

4s), c′2 = −ıω2c2
2sc

2
2f .

These two transverse waves are coupled through the coupling parameter given by

bs =

[

ıV9,10c
2
4s

k(V 2
9,10 − c2

2s) + ıV9,10c2
4s

]

bf .

It is to be noted here that the velocities V1,2 given in (5.63) are analogous to two

compressional waves of Biot (1956a, b). The velocities V9,10 given in (5.64) correspond

to two coupled transverse waves, not observed in Biot’s theory. When viscosity of fluid

constituent is neglected, i.e., when µf = 0, then one of the velocities in (5.64) vanishes

and the other velocity becomes V 2
10 = µs/ρs for high frequency waves.

5.6 Numerical results and discussions

In order to seek the behavior of velocities of the existing waves in micropolar mixture

with frequency parameter, we shall consider a specific model. The various amplitude

and energy ratios at the free boundary of a porous mixture consisting of micropolar

solid and inviscid liquid will be computed subsequently. For the purpose of studying

the dispersion and attenuation phenomena of waves, we take the following values of

relevant elastic parameters. We shall compute the non-dimensional phase velocity at

different values of non-dimensional frequency. The expressions of velocities given in

equations (5.22), (5.23), (5.30) and (5.31) are computed and found that they are com-

plex. The variations of real and imaginary parts of these velocities are obtained and

depicted graphically through Figures 5.1 to 5.5.

Figure 5.1 shows that the real part of the velocity ratio V 1(= V1/c1s) is dispersive

untill a certain value of frequency parameter ω/c7s, beyond which, it is independent of

frequency. However, the real part of velocity ratio V 2(= V2/c1s) is found to be increas-

ing with increase of frequency parameter ω/c7s. The real parts of these two velocity

ratios are found to be equal at ωe(= ω/c7s) = 58.41. It is clear from this figure that

V1/c1s > V2/c1s in their real parts untill ω/c7s < ωe, but when ω/c7s > ωe, we found
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V2/c1s > V1/c1s in their real parts. The imaginary part of the phase velocity V1/c1s is

found to be non-zero for low values of frequency parameter and it approaches to zero

when ω/c7s takes larger and larger values. On the other hand, the imaginary part of

V2/c1s is found to decrease with increase of frequency parameter.

Symbol Value

λs 7.59 × 1010 dyne/cm2

µs 1.89 × 1010 dyne/cm2

Ks 0.0149 × 1010 dyne/cm2

αs 0.029 × 1010 dyne

βs 0.027 × 1010 dyne

γs 0.0263 × 1014 dyne

js 0.00196 cm2

ρs 2192 gm/cm3

ξ 0.75 gm/cm3 sec

Ω 0.40 gm/cm sec

λf 2.14 × 1010 dyne sec/cm2

µf 0.450 × 1010 dyne sec/cm2

Kf 0.0112 × 1010 dyne sec/cm2

αf 0.0178 × 1010dyne sec

βf 0.0160 × 1010 dyne sec

γf 0.0198 × 1010 dyne sec

jf 0.00180 cm2

ρf 1010.0 gm/cm3

Thus, we conclude that at low frequency, one of the longitudinal wave correspond-

ing to phase velocity V1 propagates with complex phase velocity and hence dispersive

and attenuated, while at high frequency, this wave propagates with constant real phase

velocity and remains unattenuated. Thus for high frequency range, this wave is inde-

pendent of frequency. The other longitudinal wave propagating with phase velocity

V2 propagates with complex phase velocity and hence dispersive and attenuated at

all non-zero values of frequency parameter. At zero frequency, it is found that V1 is

non-zero. The wave velocity V2/c1s vanish at ω/c7s = 0, which increases monotonically

with ω/c7s and approaches to infinity as ω/c7s → ∞.

Figure 5.2 shows that the real part of V3,4/c1s vanish at ω/c7s = 0. As frequency pa-
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Figure 5.1: Phase velocities V1 and V2 versus frequency ratio ω/c7s.

Figure 5.2: Phase velocities V3 and V4 versus frequency ratio ω/c7s.
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Figure 5.3: Phase velocities V5 and V6 versus frequency ratio ω/c7s.

rameter increases, the real part of velocity ratio V3/c1s increases to the value 3.1319 at

ω/c7s = 1.32, thereafter it decreases with further increase of frequency parameter. The

real part of velocity ratio V4/c1s increases with increase of frequency parameter. These

velocity ratios are found to approach to infinity as frequency parameter approaches to

infinity. The variation of imaginary parts of V3,4/c1s with frequency parameter is also

shown in the Figure 5.2. The imaginary part or attenuation of V3/c1s is maximum in

the low frequency range.

Figure 5.3 depicts the variation of real and imaginary parts (attenuation) of V5,6/V1s

with frequency parameter. We note that both the parts of these velocities vanish at

ω/c7s = 0. Thereafter, their real and imaginary parts increase in positively and neg-

atively with increase of frequency parameter. The real part of V5/c1s is found to be

greater than that of V6/c1s up to ω/c7s = 1.88 and after that the real part of V6/c1s

becomes greater than the real part of V5/c1s. These two velocities approaches to ∞
as the frequency parameter tends to ∞. It is also noticed that the imaginary parts of

these velocity become more and more negative as ω/c7s approaches to ∞. It is also

found that in the absence of γf , the velocity V6 disappears and the velocity V5 remains

unchanged. Thus the velocity V5 does not depend on γf .
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Figure 5.4: Phase velocities V7 and V8 versus frequency ratio ω/c7s.

Figure 5.4 shows that the real parts of velocity ratios V7,8/c1s are zero at zero fre-

quency. For ω/c7s > 0, these velocity ratios increase and the real part of V8/c1s is

found to be greater than that of V7/c1s. We also observe that there is an uplift in both

the velocity ratios at ω/c7s = 1.23. The variation of imaginary parts of these velocity

ratios with frequency parameter is similar to that of their real parts, but with negative

sign. Both the parts of these velocity ratios approaches to ∞ as ω/c7s → ∞.

In Figure 5.5, we see that the real part of the velocity ratio V9/c1s starts increasing

from zero and goes up to 1.7834 at ω/c7s = 1.22, thereafter decreases to 0.0357 at

ω/c7s = 1.23 beyond which it starts increasing. The velocity V10 also follows the same

pattern, but decreases as continuous function of frequency. We also observe the same

trend for attenuation coefficient, however the attenuation for V9 tends to −∞, while

the attenuation of V10 tends to zero as the frequency increases.

Figures 5.6-5.11 represent the variation of amplitude ratios, energy ratios and sur-

face responses when the coupled longitudinal waves with velocities V1 and V2 are made

incident at free surface of a porous half space containing mixture of micropolar elas-

tic solid and inviscid non-polar liquid. These are computed at frequency parameter

ω/c7s = 103. Figure 5.6 shows that the values of reflection coefficients z2 and z3 are
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Figure 5.5: Phase velocities V9 and V10 versus frequency ratio ω/c7s.

Figure 5.6: Variation of reflection coefficients (Incidence of longitudinal wave with ve-
locity V1) (Curve - I: z1, Curve - II: z2 × 103, Curve - III: z3 × 106, Curve - IV: z4 × 10).
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Figure 5.7: Variation of reflection coefficients (Incidence of longitudinal wave with ve-
locity V2) (Curve - I: z1, Curve - II: z2, Curve - III: z3 × 105, Curve - IV: z4).

very small at each angle of incidence and they have been depicted after magnifying by

the factors 103 and 106 times respectively to their original values. The variation of z4

is also shown by magnifying its original value with the factor 10. Thus, we conclude

that only reflected wave with amplitude z1 is dominant.

Figure 5.7 shows that the amplitude ratio z3 is very small as compared to the ampli-

tudes of other reflected waves. The curve corresponding to z3 is shown after magnifying

10 times its original value. Here, the amplitude ratio z2 is found to be almost indepen-

dent of the angle of incidence, while the amplitude ratios z1 and z4 behave alike with

the angle of incidence. It is also noticed that at normal and grazing incidences, all

the reflected waves disappear except the wave corresponding to amplitude ratio z2.

Figures 5.8 and 5.9 represent the variation of energy ratios with the angle of in-

cidence when coupled longitudinal wave with velocities V1 and V2 are made incident,

respectively. It is noticed from Figure 5.8 that the maximum amount of energy trav-

els along the reflected wave having amplitude z1 as was expected. Almost negligible

amount of energy is carried by the reflected waves having amplitudes z3 and z4.

Similarly, from Figure 5.9, we note that the amount of energy carried by reflected

waves having amplitude ratios z3 and z4 is negligible and the only reflected wave hav-
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Figure 5.8: Variation of energy ratios with angle of incidence (Incidence of longitudinal
wave with velocity V1). (Curve - I: E1, Curve - II: E2 × 103, Curve - III: E3 × 1020, Curve
- IV: E4 × 1012).

Figure 5.9: Variation of energy ratios with angle of incidence (Incidence of longitudinal
wave with velocity V2). (Curve - I: E1 × 10, Curve - II: E2, Curve - III: E3 × 1021, Curve
- IV: E4 × 1012).
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Figure 5.10: Surface response of incidence of longitudinal wave with velocity V1 (Curve

- I: us
1, Curve - II: us

3, Curve - III: uf
1 ×10−4, Curve - III: uf

3 ×10−6, Curve - IV: φs
2×106).

ing amplitude z2 carry maximum amount of energy. In both the figures, it has been

verified that the sum of the energies carried with reflected waves is equal to the total

amount of energy given to the incident wave. Thus, there is no dissipation of energy

during reflection, as the medium is considered non-dissipative medium.

Figures 5.10 and 5.11 depict the variation of surface displacement, microrotation in

solid and fluid with the angle of incidence in case of incident coupled longitudinal wave

with velocity V1 and V2 respectively. The displacement components us
1, us

3 and uf
1 , uf

3

are normalized by a factor of ık1A0 exp(ıkox − ıωt) and ık2A0 exp(ık′

ox − ıωt) respec-

tively. The microrotation field for solid φs
2 is normalized by a factor of A0k

2
1 exp(ıkox−

ıωt) in the case of incident wave with velocity V1 and by a factor A0k
2
2 exp(ık′

ox− ıωt)

in the case of incident wave with velocity V2. It can be observed from these figures that

the surface response of displacement components in fluid constituent is greater than

that of in solid constituent.
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Figure 5.11: Surface response of incidence of longitudinal wave with velocity V2 (Curve

- I: us
1, Curve - II: us

3, Curve - III: uf
1 × 10−5, Curve - III: uf

3 × 10−6, Curve - IV: φs
2 × 105

).

5.7 Conclusions

The possibility of wave propagation and a problem of reflection of plane longitudinal

waves from a free boundary surface of a porous micropolar mixture half-space are in-

vestigated. The equations of motion and constitutive relations for micropolar mixture

theory of porous media developed by Eringen (2003a) has been employed for mathe-

matical treatment. It is concluded that

(a) There can exist two coupled longitudinal displacement waves, two coupled longi-

tudinal microrotational waves and six coupled transverse waves (two of them purely

depend on fluid parameters) in an infinite micropolar mixture of porous media. All the

waves are found to be dispersive and attenuated in nature. It has been verified that

when the presence of fluid is neglected from the mixture, these waves exactly reduce

to the elastic waves of micropolar elastic solid earlier obtained by Parfitt and Eringen

(1969).

(b) It is found that there is a significant effect of presence of fluid in the mixture.

The longitudinal displacement wave corresponding to solid constituent in micropolar

mixture is found to be dispersive at low range of frequency parameter, while it is in-
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dependent of the frequency in micropolar elastic solid.

(c) Phase velocities of all the waves corresponding to the micropolar viscous fluid ap-

proach to infinity as the frequency approach to infinity.

(d) If the viscosity and micropolarity of the liquid constituent are neglected, then there

can exist three longitudinal waves (two corresponding to displacement and one corre-

sponding to microrotational) and two transverse waves (corresponding displacement

and microrotation of solid) in a continuum mixture of micropolar solid with Newto-

nian liquid.

(e) The formulae for reflection coefficients, energy ratios and surface responses have

been derived and computed numerically. It is found that the reflection coefficient and

energy ratio corresponding to those reflected wave which propagates with same velocity

as that of the incident wave, are dominant.

(f) We also concluded that the wave velocity V1 is greater than the wave velocity V2

up to certain value of frequency parameter and after that velocity V2 is found to be

more than the velocity V1. Similarly, the phase velocity V5 is found to be more than

the phase velocity V6 up to certain value of frequency parameter and thereafter the

phase velocity V6 is found to be more than the phase velocity V5.
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Chapter 6

Waves in a cylindrical borehole

filled with micropolar fluid5

6.1 Introduction

Biot (1952) studied the propagation of elastic waves in a cylindrical bore filled with

and without fluid and embedded in a uniform elastic solid of infinite extent. He studied

two-dimensional problems and obtained dispersion relations for the waves propagating

along the boundary of such a cylindrical borehole. Since then several problems con-

cerning the cylindrical bore have been attempted by several authors. Some of them

are Banerji and Sengupta (1977a, b), Sengupta and Chakrabarti (1980), Sharma and

Gogna (1990), Tomar and Kumar (1999a), Deswal et al. (2000), Kumar and Deswal

(2002a), Bhujanga Rao and Rama Murthy (2002), Vashishth and Khurana (2005) and

Arora and Tomar (2007) including others. Recently, Cheng and Blanch (2008) reviewed

the methods of simulating elastic wave propagation in a borehole by considering two

different approaches, a quasi-analytic approach known as the discrete wavenumber sum-

mation method and a finite difference method. In this Chapter, we have investigated

a problem of propagation of surface waves in a cylindrical borehole of infinite length

embedded in an infinite micropolar elastic solid and filled with a micropolar viscous

fluid. Frequency equation relevant to the propagation of surface waves is derived and

then solved numerically for a particular model. The effect of borehole radius, microp-

5Journal of Applied Physics Vol. 104(1), (2008).
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olarity and viscosity of the contained fluid column is noticed on the dispersion curves.

The present model may be viewed in a situation arising in the field of oil-well explo-

ration. The oil inside the oil-well is generally found in a crude form containing several

impurities and therefore can be best modeled with muddy like/dusty viscous fluid of

micropolar nature. Thus, the present problem may be of great help to oil companies.

6.2 Formulation of the problem and frequency equa-

tion

For micropolar solid and micropolar fluid, we follow the equations of motions and con-

stitutive relations given by equations (4.1)-(4.8) in Chapter-4. We consider a circular

cylindrical bore of radius ’a’ through a micropolar elastic medium of infinite extent.

Taking the cylindrical polar co-ordinates (r, θ, z) such that the z− axis is pointing

vertically upward along the axis of the cylinder. Our aim is to derive the frequency

equation relevant to the propagation of axial symmetric waves, which are harmonic

along the axial direction. To discuss the surface waves at micropolar fluid/micropolar

solid interface, we consider the following forms of the displacement and microrotation

vectors as

us = (us
r, 0, us

z), φs = (0, φs
2, 0),

uf = (uf
r , 0, uf

z ), φf = (0, φf
2 , 0).

Since we are considering axially symmetric waves, therefore, the quantities would re-

main independent of θ. With these considerations, the above equations (4.1) and (4.2)

become

(µf + Kf )(∇2 − 1

r2
)u̇f

r + (λf + µf )
∂ėf

∂r
− Kf ∂φ̇f

2

∂z
= ρf ∂2uf

r

∂t2
, (6.1)

(µf + Kf )∇2u̇f
z + (λf + µf )

∂ėf

∂z
+

Kf

r

∂(rφ̇f
2)

∂r
= ρf ∂2uf

z

∂t2
, (6.2)

[

γf (∇2 − 1

r2
) − 2Kf

]

φ̇f
2 + Kf

(

∂u̇f
r

∂z
− ∂u̇f

z

∂r

)

= ρfjf ∂2φf
2

∂t2
, (6.3)
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and equations (4.3) and (4.4) become

(µs + Ks)(∇2 − 1

r2
)us

r + (λs + µs)
∂es

∂r
− Ks ∂φs

2

∂z
= ρs ∂

2us
r

∂t2
, (6.4)

(µs + Ks)∇2us
z + (λs + µs)

∂es

∂z
+

Ks

r

∂(rφs
2)

∂r
= ρs ∂

2us
z

∂t2
, (6.5)

[

γs(∇2 − 1

r2
) − 2Ks

]

φs
2 + Ks

(

∂us
r

∂z
− ∂us

z

∂r

)

= ρsjs ∂
2φs

2

∂t2
, (6.6)

where eR =
1

r

∂(ruR
r )

∂r
+

∂uR
z

∂z
, ∇2 =

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
.

Introducing the potentials φ′R, ψR and ΓR as follows

uR
r =

∂φ′R

∂r
+

∂2ψR

∂r∂z
, uR

z =
∂φ′R

∂z
−

(

∇2 − ∂2

∂z2

)

ψR, φR
2 = −∂ΓR

∂r
, (6.7)

into equations (6.1)-(6.6), we obtain

[(c2
1R + c2

3R)∇2 − ✷R]φ′R = 0, (6.8)

[(c2
2R + c2

3R)∇2 − ✷R]ψR + c2
3RΓR = 0, (6.9)

[c2
4R∇2 − 2c2

6R − ✷R]ΓR − c2
6R∇2ψR = 0, (6.10)

where

✷R =

{

∂2
t for R = s ,

∂t for R = f .

We note that equation (6.8) is uncoupled in the potential φ′R, while equations (6.9)

and (6.10) are coupled in the potentials ψR and ΓR. Next, we shall find the solutions

of these equations for time harmonic waves propagating along z− direction. In order

to solve the equation (6.8), we take

φ′R = χR
1 (r) exp{ı(kz − ωt)},
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where the symbols ω, k and c(= ω/k) represent the angular frequency, the wavenumber

and the phase velocity, respectively. Inserting it into equation (6.8), we obtain

∂2χR
1

∂r2
+

1

r

∂χR
1

∂r
− (λR

1 )2χR
1 = 0, (6.11)

where

(λR
1 )2 = k2 − ω2

V 2
R1

.

The expressions of quantities Vs1 and Vf1 are given by

V 2
s1 = c2

1s + c2
3s, V 2

f1 = −ıω(c2
1f + c2

3f ).

From equations (6.9) and (6.10), one can obtain

{A∇4 + B∇2 + C}(ψR, ΓR) = 0, (6.12)

where

A = c2
4R(c2

2R + c2
3R), B = c2

3Rc2
6R − ✷Rc2

4R − (c2
2R + c2

3R)(2c2
6R + ✷R)

and

C = ✷R(2c2
6R + ✷R).

Equation (6.12) can be further written as

{(∇2 − δ1)(∇2 − δ2)}(ψR, ΓR) = 0, (6.13)

where δ1 =
1

2A
[−B +

√
B2 − 4AC] and δ2 =

1

2A
[−B −

√
B2 − 4AC].

Let us find the solution of equation (6.13) corresponding to ψR, by taking

ψR = χR
2 (r) exp{ı(kz − ωt)}.

Inserting it into equation (6.13), we obtain

∂2χR
2

∂r2
+

1

r

∂χR
2

∂r
− (λR

i )2χR
2 = 0 (i = 2, 3), (6.14)
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where (λR
i )2 = k2 − ω2

V 2
Ri

.

The expressions of the quantities Vsi and Vfi are given by

V 2
s2, s3 =

1

2a
[b ± (b2 − 4ac)1/2],

V 2
f2, f3 =

1

2a′
[−b′ ± (b′2 − 4a′c′)1/2],

where

a = 1 − 2ω2
0/ω

2, b = c2
2s + c2

3s + c2
4s − (2c2

2s + c2
3s)ω

2
0/ω

2,

c = c2
4s(c

2
2s + c2

3s), ω2
0 = c2

6s, a′ = ω + 2ıc2
6f ,

b′ = ω[ıωc2
4f + ı(c2

2f + c2
3f )(ω + 2ıc2

6f ) + c2
3fc

2
6f ], c′ = −ω3c2

4f (c
2
2f + c2

3f ).

We note that the equations in (6.11) and (6.14) are the modified Bessel differential

equations of order zero. Their solutions are the modified Bessel functions of first

and second kind, i.e., I0(λ
R
j r) and K0(λ

R
j r) (j = 1, 2, 3). Note that the function I0 is

bounded as r → 0, the function K0 → 0 as |r| → ∞ and they represent incoming and

outgoing waves in cylindrical coordinates, respectively.

Now, we intend to apply the boundary conditions at the fluid− solid interface.

For the type of waves considered in a fluid-filled cylindrical borehole, there are three

boundary conditions at the surface of the cylindrical borehole:

(i) the motion (i.e., displacement and micro-rotation) must remain finite at the center

of the borehole.

(ii) there are no incoming waves from infinity.

(iii) the displacement, micro-rotation and stresses at the fluid−solid interface should

be continuous.

Thus, condition (i) implies that only the function I0 would work in the inner fluid

column, and condition (ii) implies that the function K0 alone would work in the outer

formation. Hence, the general solutions of equations (6.8) - (6.10) satisfying the bound-

ary conditions (i) and (ii) (with a common factor exp{ı(kz − ωt)}) can be written as

{φ′s, φ′f} = {As
1K0(λ

s
1r), Af

1I0(λ
f
1r)}, (6.15)
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{ψs, ψf} = {[As
2K0(λ

s
2r) + A′s

2 K0(λ
s
3r)], [Af

2I0(λ
f
2r) + A′f

2 I0(λ
f
3r)]}, (6.16)

{Γs, Γf} = {[As
3K0(λ

s
2r) + A′s

3 K0(λ
s
3r)], [Af

3I0(λ
f
2r) + A′f

3 I0(λ
f
3r)]}, (6.17)

where the quantities As
1, Af

1 , As
2, A

′s
2 , Af

2 , A
′f
2 , As

3, A
′s
3 , Af

3 and A′f
3 are arbitrary con-

stants. Note that the solution of coupled equations corresponding to ΓR can be obtained

by plugging the solution of ψR from (6.16) into equation (6.9), where the unknown co-

efficients are given by

As
3 = bs

2A
s
2, A′s

3 = bs
3A

′s
2 , Af

3 = bf
2A

f
2 , A′f

3 = bf
3A

′f
2 ,

bs
2,3 =

c2
2s + c2

3s

c2
3s

[

k2 − ω2

c2
2s + c2

3s

− (λs
2,3)

2

]

,

and

bf
2,3 =

c2
2f + c2

3f

c2
3f

[

k2 − ıω

c2
2f + c2

3f

− (λf
2,3)

2

]

.

In our present problem, the fluid column inside the micropolar solid formation is mi-

cropolar as well as viscous in nature. Since the micropolar viscous fluid can support

couple stresses and shear stresses, therefore, both shear and couple stresses must be

taken into account while formulating the boundary conditions at the surface of cylindri-

cal borehole. Thus, the boundary condition (iii) implies that the radial displacement,

micro-rotation, radial force stress, shear force stress and couple stress across the fluid-

solid interface must be continuous. Mathematically, these boundary conditions can be

expressed as follows.

At the fluid - solid interface, r = a

τ s
rr = τ f

rr, τ s
rz = τ f

rz, ms
rθ = mf

rθ, us
r = uf

r , us
z = uf

z , φs
2 = φf

2 . (6.18)

Using (4.5)-(4.8), (6.7) and (6.15) - (6.17) into the above boundary conditions given

in (6.18), we obtain a system of six homogeneous equations in six unknowns namely,

As
1, As

2, A
′s
2 , Af

1 , Af
2 and A

′f
2 , given by

{[(λs + 2µs + Ks)(λs
1)

2 − λsk2]K0(λ
s
1a) + (2µs + Ks)

λs
1

a
K1(λ

s
1a)}As

1

+ık(2µs + Ks)(λs
2)

2K
′′

0 (λs
2a)As

2 + ık(2µs + Ks)(λs
3)

2K
′′

0 (λs
3a)A

′s
2
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+ıω{[(λf + 2µf + Kf )(λf
1)

2 − λfk2]I0(λ
f
1a) − (2µf + Kf )

λf
1

a
I1(λ

f
1a)}Af

1

−ωk(2µf + Kf )(λf
2)

2I
′′

0 (λf
2a)Af

2 − ωk(2µf + Kf )(λf
3)

2I
′′

0 (λf
3a)A

′f
2 = 0, (6.19)

−(2µs + Ks)ıkλs
1K1(λ

s
1a)As

1 + λs
2[(µ

s + Ks)(λs
2)

2 + µsk2 + Ksbs
2]K1(λ

s
2a)As

2

+λs
3[(µ

s + Ks)(λs
3)

2 + µsk2 + Ksbs
3]K1(λ

s
3a)A

′s
2 − ωk(2µf + Kf )λf

1I1(λ
f
1a)Af

1

−ıωλf
2 [(µ

f + Kf )(λf
2)

2 + µfk2 + Kfbf
2 ]I1(λ

f
2a)Af

2

−ıωλf
3 [(µ

f + Kf )(λf
3)

2 + µfk2 + Kfbf
3 ]I1(λ

f
3a)A

′f
2 = 0, (6.20)

bs
2λ

s
2

[−βs

a
K1(λ

s
2a) + γsλs

2K
′

1(λ
s
2a)

]

As
2 + bs

3λ
s
3

[−βs

a
K1(λ

s
3a) + γsλs

3K
′

1(λ
s
3a)

]

A
′s
2

+ıωbf
2λ

f
2 [

βf

a
I1(λ

f
2a) − γfλf

2I
′

1(λ
f
2a)]Af

2

+ıωbf
3λ

f
3 [

βf

a
I1(λ

f
3a) − γfλf

3I
′

1(λ
f
3a)]A

′f
2 = 0, (6.21)

λs
1K1(λ

s
1a)As

1 + ıkλs
2K1(λ

s
2a)As

2 + ıkλs
3K1(λ

s
3a)A

′s
2 + λf

1I1(λ
f
1a)Af

1 + ıkλf
2I1(λ

f
2a)Af

2

+ıkλf
3I1(λ

f
3a)A

′f
2 = 0, (6.22)

ıkK0(λ
s
1a)As

1 − (λs
2)

2K0(λ
s
2a)As

2 − (λs
3)

2K0(λ
s
3a)A

′s
2 − ıkI0(λ

f
1a)Af

1

+(λf
2)

2I0(λ
f
2a)Af

2 + (λf
3)

2I0(λ
f
3a)A

′f
2 = 0, (6.23)

bs
2λ

s
2K1(λ

s
2a)As

2 + bs
3λ

s
3K1(λ

s
3a)A

′s
2 + bf

2λ
f
2I1(λ

f
2a)Af

2 + bf
3λ

f
3I1(λ

f
3a)A

′f
2 = 0. (6.24)

For a nontrivial solution of these equations, the determinant of the coefficient matrix

must vanish. This will provide us the frequency equation for the propagation of surface

waves at the micropolar solid/micropolar fluid interface, given by

D(k, c, F ) = 0, (6.25)
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where D is the determinant of the coefficient matrix [amn]6×6 of the homogeneous linear

system of equations (6.19)-(6.24). Here, the parameter F involves the geometrical and

material constants. The non-dimensional entries of the matrix amn in the equation

(6.25) are given by

a11 = (ka){[(λ
s + 2µs + Ks

λs
)(λs

1a)2 − (ka)2]K0(λ
s
1a) + (

2µs + Ks

λs
)(λs

1a)K1(λ
s
1a)},

a14 = ı(ka){[(λ
fω + 2µfω + Kfω

λs
)(λf

1a)2 − λfω

λs
(ka)2]I0(λ

f
1a)

−(
2µfω + Kfω

λs
)(λf

1a)I1(λ
f
1a)},

a1i = ı(ka)(
2µs + Ks

λs
)(λs

ia)2K ′′

0 (λs
ia),

a1j = −(ka)(2µf ω+Kf ω
λs )(λf

j−3a)2I ′′

0 (λf
j−3a),

a21 = −ı(ka)2(λs
1a)[

2µs + Ks

λs
]K1(λ

s
1a),

a2i = (λs
ia)[(λs

ia)2(µs+Ks

λs ) + (ka)2 µs

λs + (bs
ia

2)Ks

λs ]K1(λ
s
ia),

a24 = −(λf
1a)(ka)2(λf

1a)(
2µfω + Kfω

λs
)I1(λ

f
1a),

a2j = −ı(λf
j−3a)[(λf

j−3a)2(
µfω + Kfω

λs
)+ (ka)2µfω

λs
+(bf

j−3a
2)

Kfω

λs
]I1(λ

f
j−3a), a31 = 0,

a3i = (bs
ia

2)(λs
ia)[

−βs

λsa2
K1(λ

s
ia) +

γs

λsa2
(λs

ia)K ′

1(λ
s
ia)], a34 = 0,

a3j = ı(bf
j−3a

2)(λf
j−3a)[

βfω

λsa2
I1(λ

f
j−3a) − γfω

λsa2
(λf

j−3a)I ′

1(λ
f
j−3a)],

a41 = (ka)(λs
1a)K1(λ

s
1a), a4i = ı(ka)(λs

ia)K1(λ
s
ia), a44 = (ka)(λf

1a)I1(λ
f
1a),

a4j = ı(ka)(λf
j−3a)I1(λ

f
2a), a51 = ı(ka)2K0(λ

s
1a), a5i = −(λs

ia)2K0(λ
s
ia),

a54 = −ı(ka)2I0(λ
f
1a), a5j = (λf

j−3a)2I0(λ
f
j−3a), a61 = 0, a6i = (bs

ia
2)(λs

ia)K1(λ
s
ia),
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a64 = 0, a6j = (bf
j−3a

2)(λf
j−3a)I1(λ

f
j−3a) for i = 2, 3, and j = 5, 6.

It can be noticed from equation (6.25) that for a fixed value of parameter F , it is

an implicit functional relationship between the wavenumber and the phase velocity.

Moreover, some of the coefficients are involving complex quantities, therefore, it is ex-

pected that the relevant surface waves are dispersive and attenuated.

For the waves of very short wavelengths, i.e., for sufficiently large values of ka, the

dispersion equation (6.25) will converge to the dispersion equation of Stoneley-type

surface waves at micropolar solid/micropolar fluid interface. For this to achieve, mak-

ing ka → ∞ and using the asymptotic expansions of the modified Bessel functions

given by

K0(u) = K1(u) =

√

π

2u
exp(−u), I0(u) = I1(u) =

1√
2πu

exp(u), as u → ∞,

The dispersion relation (6.25) reduces to the equation (4.44) in Chapter-4 for the

propagation of Stoneley waves at micropolar solid/micropolar fluid interface.

6.3 Numerical results and discussions

Since some of the entries of the determinantal equation (6.25) are complex, therefore

it is not analytically possible to find the roots of this equation for a given value of

wavenumber. So, for a given value of wavenumber, equation (6.25) is solved numerically

by taking numerical data of the physical parameters. For a specific model, we have

investigated the dispersion relation (6.25) numerically. Since this equation is an implicit

functional relation of wavenumber and phase velocity of Stoneley waves, therefore one

can proceed to find the variation of phase velocity with wavenumber. Once the phase

velocity is computed at different wavenumbers, the corresponding group velocity, Vg

can be determined from the formula given by

Vg = c + k
dc

dk
.

For numerical computations, we take the following values of the relevant parameters

for micropolar solid (aluminium epoxy) and micropolar fluid. The radius ’a’ of the

cylindrical borehole is taken a = 10 cm, whenever not mentioned.
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Symbol Value

λs 7.59 × 1010 dyne/cm2

µs 1.89 × 1010 dyne/cm2

Ks 0.0149 × 1010 dyne/cm2

βs 0.0226 × 1010 dyne

γs 0.0263 × 1010 dyne

js 0.00196 cm2

ρs 2.192 gm/cm3

λf 1.0 × 1010 dyne sec/cm2

µf 0.5 × 1010 dyne sec/cm2

Kf 0.0110 × 1010 dyne sec/cm2

βf 0.0122 × 1010 dyne sec

γf 0.0126 × 1010 dyne sec

jf 0.00140 cm2

ρf 1.0 gm/cm3

Suppose the roots of equation (6.25) lie along a smooth curve C in the phase velocity-

wavenumber domain, then for a particular value of wavenumber k = k0, ∃ some

c = c0 ∈ C such that D(k0, c0, F ) = 0. The dispersion relation c(k, F ) for this mode,

is obtained by tracing the locus of the root in the c domain as k takes values greater

than k0. We require that the dispersion curve c(k, F ) ∈ C, should also be a smooth

function of k in order to avoid a mix-up with other modes at possible points of degener-

acy where different dispersion curves intersect. This notion of dispersion leads directly

to a numerical method for computing modal dispersion curves practically. Starting

from c0, one or two (depending on whether c0 is an endpoint of C or not) sequences

of sufficiently close phase velocity on C are computed. Using the initial guess, c(k0, F )

is determined by finding the zero of D(k, c, F ) with the help of MATHEMATICA.

Subsequently, stepping along k away from k0, all the samples of c(k, F ) are computed

for each k, using the value of c found at the previous wavenumber as initial guess.

Thus the dispersion curve is obtained by this mode tracking procedure. In the present

computation, we have computed non-dimensional phase velocity (c/Vs1) from equation

(6.25) at different real values of non-dimensional wavenumber, ka using MATHEMAT-

ICA. It is found that the phase velocity is complex in nature, which means that the

concerned waves are not only dispersive but possess attenuation too.
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Figure 6.1: Comparison of the real parts of phase velocities and group velocities at
different radii of the borehole.

Figure 6.1 depicts the variations of the real parts of the non-dimensional phase and

group velocities with the real non-dimensional wavenumber corresponding to two dif-

ferent values of the radii of the borehole. The solid curves correspond to the case when

the radius of the borehole is 10 cm, while the dotted curves correspond to the case

when the radius of the borehole is 20 cm. We observe that for small values of the non-

dimensional wavenumber, there is significant effect of the radius of the borehole. The

increase in radius of the borehole results in decrease in the phase velocity of the surface

waves. As the value of the non-dimensional wavenumber increases and takes higher

and higher values, the non-dimensional phase velocity of the surface waves, for both

the radii, tends to the same value and remains constant, which is equal to 0.588676.

We also notice that the group velocity is less than the phase velocity for small values of

wavenumber for both the radii. However, for higher values of wavenumber, the values

of group and phase velocities also tend to the same value.

Figure 6.2 represents the variation of the imaginary parts of the non-dimensional

phase velocity versus non-dimensional wavenumber at two different radii of the bore-

hole. We see that at a given value of ka, the value of the imaginary part of the

non-dimensional phase velocity corresponding to a = 10 cm is greater than that of
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Figure 6.2: Comparison of the imaginary parts of phase velocities at different radii of
the borehole.

corresponding to a = 20 cm. However, corresponding to both the radii considered, the

values of the imaginary parts of the phase velocity increase with increase of wavenum-

ber. Since the imaginary part of the phase velocity is connected with attenuation of

the corresponding waves, therefore, we may conclude that the concerned surface waves

are more attenuated when the borehole radius is relatively small.

Figures 6.3 and 6.4 show the effect of fluid viscosity on the dispersion curves corre-

sponding to the real and imaginary parts of the non-dimensional phase velocity. The

solid curves in Figure 6.3, correspond to low viscosity fluid and the dotted curves corre-

spond to high viscosity fluid. For limitedly high and low viscous fluids, we have taken

the numerical values of the relevant coefficient as µf = 2.0 × 1010 dyne sec/cm2 and

µf = 0.00001× 1010 dyne sec/cm2, respectively. However, we have kept the density of

the fluid to be fixed for both types of fluids, which may not be the same in general.

These numerical values of the coefficient µf are taken for computational purposes only.

We see that the real part of the phase velocity for highly viscous fluid is greater than

that for the low viscous fluid upto certain values of the non-dimensional wavenumber

’ka’. In Figure 6.4, we have depicted the variation of the imaginary part of the phase

velocity with the wavenumber at two different values of µf , the viscosity of the fluid.
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Figure 6.3: Comparison of the real parts of phase velocities and their group velocities
at very low and very high viscosity µf of micropolar fluid.

Figure 6.4: Comparison of the imaginary parts of phase velocities at very low and very
high fluid viscosity µf of the micropolar fluid.
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Figure 6.5: Variation of real part of phase velocity versus micropolar fluid viscosity (µf ).

The solid curve corresponds to highly viscous fluid and dashed curve corresponds to

low viscosity. We see that the imaginary part of non-dimensional phase velocity cor-

responding to highly viscous fluid is greater than that corresponding to low viscous

fluid. Hence, we may conclude that the attenuation of the surface waves decrease with

decrease of the viscosity of the fluid.

Figures 6.5 and 6.6 depict the variation of the real and imaginary parts of the phase

velocity versus viscosity µf , when a = 10 cm and ka = 5. we observe that the real

and imaginary parts of the non-dimensional phase velocity increase with the increase

of µf .

Figures 6.7 and 6.8 depict the variation of the real and imaginary parts of the non-

dimensional phase velocity versus micropolarity Kf , the micropolarity of the fluid. It

is clear from these figures that both the parts of the phase velocity increase very slowly

with Kf . Hence, the effect of the micropolar parameter, Kf on the dispersion curve is

not appreciable as compared to the effect of viscous parameter, µf on the dispersion

curve.
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Figure 6.6: Variation of imaginary part of phase velocity versus micropolar fluid viscosity
(µf ).

Figure 6.7: Variation of real part of phase velocity versus micropolarity of the fluid Kf .
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Figure 6.8: Variation of imaginary part of phase velocity versus micropolarity of the
fluid Kf .

6.4 Conclusions

A problem of propagation of Stoneley type waves at the surface of a cylindrical bore-

hole situated in an infinite micropolar elastic medium is investigated. The cylindrical

borehole is assumed to be vertical and filled with micropolar viscous fluid. Using ap-

propriate boundary conditions, the frequency equation corresponding to the surface

wave propagation is derived and solved numerically for a particular model. From the

present analysis, it can be concluded that

(a) The frequency equation corresponding to the surface wave propagation is found to

be dispersive and attenuated in nature.

(b) The increase in radius of the borehole results in decrease the phase velocity of the

surface waves.

(c) On the real part of the phase velocity of the surface waves, the effect of viscosity

is found to be more dominant as compared to the effect of micropolarity of the fluid

column. It is found that higher is the viscosity of the fluid, slower is the phase velocity

of the surface waves.

(d) The phase and the group velocities are found to be affected only at small values
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of the wavenumber, while at higher values of the wavenumber, both phase and group

velocities are found to be the same and constant. This constant phase velocity corre-

sponds to the wave speed of Stoneley wave at micropolar solid/fluid interface.

(e) For a given value of the wavenumber, the imaginary part of the phase velocity at

a = 10 cm is found to be greater than that of at a = 20 cm.

159





References

Abbudi, M. and Barnett, D. M., 1990, On the existence of interfacial (Stoneley) waves

in a bonded piezoelectric half-spaces, Proceedings of Royal Society of London, A 429,

587-611.

Abd-Alla, A. M., 1999, Propagation of Rayleigh waves in an elastic half-space of or-

thotropic material, Applied Mathematics and Computation, 99(1), 61-69.

Abd-Alla, A. M. and Ahmed, S. M., 2003, Stoneley and Rayleigh waves in a non-

homogeneous orthotropic elastic medium under the influence of gravity, Applied Math-

ematics and Computation, 135, 187-200.

Achenbach, J. D., 1973, Wave propagation in elastic solids, North Holland, Amster-

dam.

Aero, E. L. and Kuvshinskii, E. V., 1960, Fundamental equations of the theory of elas-

tic media with rotationally interacting particles, Fizika Tverdogo Tela, 2, 1399-1409.

Ainslie, M. A. and Burns, P. W., 1995, Energy conserving reflection and transmission

coefficients for a solid-solid boundary, Journal of Acoustical Society of America, 98(5),

2836-2840.

Arora, A. and Tomar, S. K., 2007, Elastic waves along a cylindrical borehole in a poroe-

lastic medium saturated by two immiscible fluids, Journal of Earth System Science,

116 (3), 225-234.

Ariman, T., 1972, Wave propagation in a micropolar elastic half-space, Acta Mechan-

ica, 13, 11-20.

Ashour, A. S., 1999, Theoretical investigation of Stoneley wave attenuation and disper-

sion in a fluid filled fracture in transversely isotropic formation, ARI - An International

Journal for Physical and Engineering Sciences, 51, 254-257.

Banerji, D. K. and Sengupta, P. R., 1977a, Micropolar elastic waves in a cylindrical

bore containing a fluid-I, Bulletin de l’Acadmie Polonaise des Sciences. Srie des Sci-

161



ences Techniques, 25, 257-262.

Banerji, D. K. and Sengupta, P. R., 1977b, Micropolar elastic waves in a cylindrical

bore containing a fluid-II, Bulletin de l’Acadmie Polonaise des Sciences. Srie des Sci-

ences Techniques, 25, 263-270.

Ben-Menahem, A. and Singh, S. J., 1981, Seismic Waves and Sources, Springer-Verlag,

New York.

Bera, R. K., 1973, Propagation of monochromatic waves in an initially stressed infinite

micropolar elastic plate, Applications of Mathematics, 18(1), 9-17.

Biot, M. A., 1952, Propagation of elastic waves in a cylindrical bore containing fluid,

Journal of Applied Physics, 223, 997-1005.

Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid saturated porous

solid-I, Low frequency range, Journal of Acoustical society of America, 28, 168-178.

Biot, M. A., 1956b, Theory of propagation of elastic waves in a fluid saturated porous

solid-II, Higher frequency range, Journal of Acoustical society of America, 28, 179-191.

Bhujanga Rao, M. and Rama Murthy, D., 2002, Propagation of elastic waves in an in-

finite micropolar elastic solid with a cylindrical bore, Journal of Indian Academy of

Mathematics, 24 (2), 253-261.

Brekhoviskikh, L. M., 1960, Waves in Layered Media, Academic Press, New York.

Bullen, K. E. and Bolt, B. A., 1985, Introduction to Seismology, Cambridge University

Press.

Chandrasekharaiah, D. S. and Debnath, L., 1994, Continuum mechanics, Academic

Press. India.

Cheng, A. C. H. and Blanch, J. O., 2008, Numerical modeling of elastic wave propa-

gation in a fluid filled borehole, Communications in Computational Physics, 3, 33-51.

Cosserat, E. and Cosserat, F., 1909, Theorie des Corps Deformables, Hermann et Fils,

Paris.

De, S. N. and Sengupta, P. R., 1974, Surface waves in micropolar elastic medium, Bul-

162



letin de l’academie Polonaise des Sciences, serie des Sciences Techniques, 22, 213-222.

Deswal, S., Tomar, S. K. and Kumar, R., 2000, Effect of fluid viscosity on wave prop-

agation in a cylindrical bore in micropolar elastic medium, Sadhana, 25(5), 439-452.

Eremeyev, V. A., 2005, Acceleration waves in micropolar elastic media, Doklady Physics,

50(4), 204-206.

Eringen, A. C., 1962, Nonlinear Theory of Continuous Media, McGraw-Hill, New York.

Eringen, A. C., 1964a, Simple micro-fluids, International Journal of Engineering Sci-

ence, 2, 205-217.

Eringen, A. C., 1964b, Mechanics of micromorphic materials, in Proceedings of 11th

International Congress of Applied Mecahnics (Gortler, H., ed.), Springer-Verlag, New

York.

Eringen, A. C., 1966a, Linear theory of micropolar elasticity, Journal of Mathematics

and Mechanics, 15, 909-924.

Eringen, A. C., 1966b, Theory of micropolar fluids, Journal of Mathematics and Me-

chanics, 16, 1-18.

Eringen, A. C., 1968, Theory of micropolar Elasticity, in fracture, Chapter-7, Vol. II,

(ed. H. Liebowitz), Academic Press, New York.

Eringen, A. C., 1980, Mechanics of Continua, 2nd ed. Krieger, Melbourne, Florida.

Eringen, A. C., 1990, Theory of thermo-microstretch elastic solids, International Jour-

nal of Engineering Science, 28(12), 1291-1301.

Eringen, A. C., 1999, Microcontinuum Field Theories-I, Foundations and Solids, Springer-

Verlag, New York.

Eringen, A. C., 2003a, Micropolar mixture theory of porous media, Journal of Applied

Physics, 94, 4184-4190.

Eringen, A. C., 2003b, Continuum theory of micromorphic electromagnetic thermoe-

lastic solids, International Journal of engineering Science, 41 (7), 653-665.

Eringen, A. C., 2004, Electromagnetic theory of microstretch elasticity and bone mod-

163



eling, International Journal of Engineering Science, 42(3-4), 231-242.

Eringen, A. C. and Suhubi, E. S., 1964, Nonlinear theory of simple microelastic solids-

I, Internatinal Journal of Engineering Science, 2, 189-203.

Ewing, W. M., Zardetzky, W. S. and Press, F., 1957, Elastic Waves in Layered Media,

McGraw-Hill Book Co., New York.

Goda, M. A., 1992, The effect of inhomogeneity and anisotropy on Stoneley waves,

Acta Mechanica, 93, 89-98.

Graff, K. F., 1991, Wave Motion in Elastic Solids, Dover Publications, New York.

Grioli, G., 1960, Elasticita asimmetrica, Annali di Matematica Pura ed Applicata. Se-

ries IV, 50, 389-417.

Grot, R. A., 1969, Thermodynamics of a continuum with microstructure, International

Journal of Engineering Science, 7, 801-814.

Gunther, W., 1958, Zurstatik und kinematik des cosseratschen kontinuums, Abhand-

lungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 10, 195-213.

Hsia, S. Y. and Cheng, J. W., 2006, Longitudinal plane wave propagation in elastic-

micropolar porous media, Japanese Journal of Applied Physics, 45(3A), 1743-1748.

Hsia, S. Y., Chiu, S. M. and Cheng, J. W., 2006, Wave propagation at the human

muscle-compact bone interface, Theoretical and Applied Mechanics, 33 (3), 223-243.

Hsia, S. Y., Chiu, S. M., Su, C. C. and Chen, T. H., 2007, Propagagtion of transverse

waves in elastic micropolar porous semispaces, Japanese Journal of Applied Physics,

46, 7399-7405.

Hsieh, T. M., Lindgren, E. A. and Rosen, M., 1991, Effect of interfacial properties on

Stoneley wave propagation, Ultrasonics, 29, 38-44.

Iesan, D., 2007, Thermoelasticity of bodies with microstructure and microtempratures,

International Journal of Engineering Science, 44 (25-26), 8648-8662.

Koiter, W. T., 1964, Couple-stresses in the linear theory of elasticity, Proceedings Konin

Klije Nederlandse Akademie van Wetenshappen, 67, 17-29, 30-44.

164



Kumar, R., 2000, Wave propagation in micropolar viscoelastic generalized thermoelas-

tic solid, International Journal of Engineering Science, 38, 1377-1395.

Kumar, R. and Barak, M., 2007, Wave propagation in liquid-saturated porous solid

with micropolar elastic skeleton at boundary surface, Applied Mathematics and Me-

chanics, 28(3), 337-349.

Kumar, R. and Deswal, S., 2000, Wave propagation in micropolar liquid-saturated

porous solid, Indian journal of Pure and Applied Mathematics, 31(10), 1317-1337.

Kumar, R. and Deswal, S., 2002a, Wave propagation through a cylindrical bore con-

tained in a microstretch elastic medium, Journal of Sound and Vibration, 250(4),

711-722.

Kumar, R. and Deswal, S., 2002b, Surface wave propagation in a micropolar thermoe-

lastic medium without energy dissipation, Journal of Sound and Vibration, 256(1),

173-178.

Kumar, R. and Deswal, S., 2006, Some problems of wave propagation in a micropolar

elastic medium with voids, Journal of Vibration and control, 12(8), 849-879.

Kumar, R. and Partap, G., 2007, Axisymmetric free vibrations of infinite micropolar

thermoelastic plate, Applied Mathematics and Mechanics, 28(3), 369-383.

Kumar, R. and Rupinder, 2008, Reflection and deformation in magneto-thermo-microstretch

elastic solid, International Journal of Pure and Applied Mathematics, 42(3), 413-420.

Kumar, R. and Singh, B., 1996, Wave propagation in a micropolar generalized ther-

moelastic body with stretch, Proceedings of Indian Academy of Sciences (Math. Sci.)

106(2), 183-199.

Kumar, R. and Singh, B., 1997, Reflection and transmission of elastic waves at a loosely

bonded interface between an elastic and micropolar elastic solid, Indian Journal of Pure

and Applied Mathematics, 28 (8), 1133-1153.

Kumar, R. and Singh, B., 2000, Reflection of plane waves at a planar viscoelastic mi-

cropolar interface, Indian Journal of Pure and Applied Mathematics, 31(3), 287-303.

165



Kumar, R. and Tomar, S. K., 2001, Reflection and transmission of elastic waves at

viscous liquid/ micropolar elastic solid interface, International Journal of Mathematics

and Mathematical Sciences, 26(11), 685-694.

Lamb, H., 1917, On waves in an elastic plate, Proceedings of Royal Society of London,

Ser. A93, 114-128.

Love, A. E. H., 1911, Some Problems in Geodynamics, Cambridge University Press,

London.

Maugin, G. A., 1974, Acceleration waves in simple and linear viscoelastic micropolar

materials, International Journal of Engineering Science, 12, 143-157.

McCarthy, M. and Eringen, A. C., 1969, Micropolar viscoelastic waves, International

Journal of Engineering Science, 7, 447-458.

Midya, G. K., 2004, On Love-type surface waves in homogeneous micropolar elastic

media, International Journal of Engineering Science, 42(11-12), 1275-1288.

Midya, G. K., Layek, G. C. and De, T. K., 2007, On diffraction of normally incident

SH-waves by a line crack in micropolar elastic medium, International Journal of Solids

and structures, 44(11-12), 4092-4109.

Midya, G. K., Layek, G. C. and De, T. K., 2008, A note on diffraction of normally

incident P-wave by a line crack in micro-polar elastic medium, International Journal

of Solids and structures, 45(9), 2706-2722.

Mindlin, R. D., 1964, Micro-structure in linear elasticity, Archive for Rational Mechan-

ics and Analysis, 16, 51-78.

Mindlin, R. D. and Tiersten, H. F., 1962, Effects of couple-stresses in linear elasticity,

Archive for Rational Mechanics and Analysis, 11, 415-448.

Murty, G. S., 1975a, A theoretical model for the attenuation and dispersion of Stoneley

waves at the loosely bonded interface between two elastic half-spaces, Physics of the

Earth and Planetary Interiors, 11, 65-79.

Murty, G. S., 1975b, Wave propagation at an unbonded interface between two elastic

166



half-spaces, Journal of Acoustical Society of America, 58, 1094-1095.

Murty, G. S., 1976, Reflection, transmission and attenuation of elastic waves at a

loosely-bonded interface of two half-spaces, Geophysical Journal of Royal Astronomi-

cal Society, 44, 389-404.

Musgrave, M. J. P., 1988, Stress waves in orthorhombic micropolar media, Proceedings

of the Royal Society of London, Series A. Mathematical, Physical and Engineering Sci-

ences, 415, 163-183.

Nowacki, W., 1974, Micropolar Elasticity, International Center for Mechanical Sciences,

Courses and Lectures No. 151, Udine, Springer-Verlag, Wien-New York.

Nowacki, W. and Nowacki, W. K., 1969, Propagation of monochromatic waves in an

infinite micropolar elastic plate, Bulletin de l’Academie Polonaise des Sciences, Sere

des Sciences Techniques, 17, 45-53.

Othman, M. I. and Song, Y. Q., 2007, Reflection and refraction of thermo-viscoelastic

waves at the interface between two micropolar viscoelastic media without energy dis-

sipation, Canadian Journal of Physics, 85(7), 797-812.

Parameshwaran, S. and Koh, S. L., 1973, Wave propagation in a micro-isotropic, micro-

elastic solid, International Journal of Engineering Science, 11 (11), 95-107.

Palmov, V. A., 1964, Basic equations of the theory of asymmetric elasticity, Priklad-

naya Matematika i Mekhanika, 28, 401-408.

Parfitt, V. R. and Eringen, A. C., 1969, Reflection of plane waves from the flat bound-

ary of a micropolar elastic half-space, Journal of Acoustical Society of America, 45,

1258-1272.

Pujol, J., 2003, Elastic Wave Propagation and Generation in Seismology, Cambridge

University Press.

Rajagopal, E. S., 1960, The existence of interfacial couples in infinitesimal elasticity,

Annalen der Physik, 6, 192-201.

Rao, K. M., 1988, Longitudinal wave propagation in a micropolar wave guide, Inter-

167



national Journal of Engineering Science, 26(2), 135-141.

Rao, K. M. and Reddy, M. P., 1993, Rayleigh-type wave propagation on a micropolar

cylindrical surface, Journal of Applied Mechanics, 60, 857-865.

Sengupta, P. R. and Chakrabarti, J., 1980, Propagation of micropolar thermoelastic

waves in an infinite elastic space containing a cylindrical bore, Journal of Thermal

Stresses, 3, 133-140.

Sharma, M. D. and Gogna, M. L., 1990, Propagation of elastic waves in a cylindrical

bore in a liquid saturated porous solid, Geophysical Journal International, 103, 47-54.

Sharma, J. N. and Pal, M., 2004, Rayleigh-Lamb waves in magneto-thermoelastic ho-

mogeneous isotropic plates, International Journal of Engineering Science, 42, 137-155.

Sharma, J. N. and Pathania, V., 2003, Thermoelastic waves in a plate bordered with

layers of inviscid liquid, Journal of Thermal Stresses, 26, 149-166.

Sharma, J. N. and Pathania, V., 2004, Generalized thermoelastic waves in anisotropic

plate sandwiched between liquid layers, Journal of Sound and vibration, 278, 343-371.

Sharma, J. N., Pathania, V. and Gupta, S. K., 2003, Thermoelastic Lamb waves in a

transversely isotropic plate bordered with layers of inviscid liquid, International Jour-

nal of Engineering Science, 41, 1219-1237.

Sharma, J. N., Pathania, V. and Gupta, S. K., 2004, Circular crested waves in anisotropic

thermoelastic plates bordered with inviscid liquid, International journal of Engineering

Science, 42, 99-121.

Singh, B., 2000a, Reflection of plane sound wave from a micropolar generalized ther-

moelastic solid half space, Journal of Sound and Vibration, 235, 685-696.

Singh, B., 2000b, Reflection and transmission of plane harmonic waves at an interface

between liquid and micropolar viscoelastic solid with stretch, Sadhana, 25(6), 589-600.

Singh, B., 2001a, Reflection and refraction of plane waves at a liquid/thermo-microstretch

elastic solid interface, International Journal of Engineering Science, 39, 583-598.

Singh, B., 2001b, Reflection and refraction of micropolar thermoelastic waves at a

168



liquid-solid interface, Indian Journal of Pure and Applied Mathematics, 32(8), 1229-

1236.

Singh, B., 2002a, Reflection of plane micropolar viscoelastic waves at a loosely bonded

solid-solid interface, Sadhana, 27 (5), 493-506.

Singh, B., 2002b, Reflection of plane waves from free surface of a microstretch elas-

tic solid, Proceedings of Indian Academy of Sciences (Earth and Planetary Sciences),

(Now Journal of earth System Sciences), 111, 29-37.

Singh, B., 2002c, Reflection and refraction of microstretch elastic waves at a liquid-

solid interface in the presence of magnetic field, Proceedings of National Academy of

Sciences, India, 72 (A), 95-108.

Singh, B., 2002d, Reflection of thermo-viscoelastic waves from free surface in the pres-

ence of magnetic field, Proceedings of National Academy of Sciences, India, 72, 109-120.

Singh, B., 2007, Wave propagation in an orthotropic micropolar elastic solid, Interna-

tional Journal of Solids and Structures, 44(11-12), 3638-3645.

Singh, B. and Kumar, R., 1998a, Refection and refraction of micropolar elastic waves

at a loosely bonded interface between viscoelastic solid and micropolar elastic solid,

International Journal of Engineering Science, 36, 101-117.

Singh, B. and Kumar, R., 1998b, Reflection and refraction of plane waves at an in-

terface between micropolar elastic solid and viscoelastic solid, International Journal of

Engineering Science, 36, 119-135.

Singh, B. and Kumar, R., 1998c, Reflection of plane waves from a flat boundary of a

micropolar generalized thermoelastic half space with stretch, Indian Journal of Pure

and Applied Mathematics, 29, 657-669.

Singh, B. and Kumar, R., 1998d, Reflection of plane waves from the flat boundary of a

micropolar generalized thermoelastic half-space, International Journal of Engineering

Science, 36, 865-890.

Singh, B. and Kumar, R., 1998e, Wave propagation in a generalized thermo-microstretch

169



elastic solid, International Journal of Engineering Science, 36, 891-912.

Singh, B. and Kumar, R., 2007, Wave reflection at viscoelastic-micropolar elastic in-

terface, Applied Mathematics and Computation, 185(1), 421-431.

Singh, J. and Tomar, S. K., 2007, Plane waves in a rotating micropolar porous elastic

solid, Journal of Applied Physics, 102, 074906.

Smith, A. C., 1967, Waves in micropolar elastic solids, International Journal of Engi-

neering Science, 5 (10), 741-746.

Smith, A. C., 1970, Torsion and vibrations of cylinders of a micropolar elastic solid,

in Recent Advances in Engineering Science, 5/11 (ed.- A. C. Eringen) Gordan and

Breach, London, 129.

Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, McGraw-Hill Book Com-

pany, Newyork.

Song,Y., Xu, H. and Zhang, Y., 2006a, Reflection and refraction of micropolar magneto-

thermoviscoelastic waves at the interface between two micropolar viscoelastic media,

International Journal of Thermophysics, 27(3), 970-993.

Song, Y. Q., Zhang, Y. C., Xu, H. Y. and Lu, B. H., 2006b, Magneto-thermoviscoelastic

wave propagation at the interface between two micropolar viscoelastic media, Applied

Mathematics and Computation, 176, 785-802.

Stoneley, R., 1924, Elastic waves at the surface of separation of two solids, Proceedings

of Royal Society of London, 106, 416-428.

Suhubi, E. S. and Eringen, A. C., 1964, Nonlinear theory of simple microelastic solids-

II, Internatinal Journal of Engineering Science, 2, 389-404.

Tajuddin, M., 1995, Existence of Stoneley waves at an unbonded interface between two

micropolar elastic half-spaces, Journal of Applied Mechanics, 62, 255-257.

Tomar, S. K., 2002, Wave propagation in a micropolar elastic layer, Proceedings of

National Academy of Sciences, India, 72(A) IV, 339-350.

Tomar, S. K., 2005, Wave propagation in a micropolar plate with voids, Journal of

170



Vibration and Control, 11, 849-863.

Tomar, S. K. and Garg, M., 2005, Reflection and transmission of waves from a plane

interface between two microstretch solid half-spaces, International Journal of Engi-

neering Science, 43(1-2), 139-169 [Errata, ibid, 44(3-4), (2006), 285-287].

Tomar, S. K. and Gogna, M. L., 1992, Reflection and Refraction of a longitudinal

microrotational wave at an interface between two micropolar elastic solids in welded

contact, International Journal of Engineering Science, 30 (11), 1637-1646.

Tomar, S. K. and Gogna, M. L., 1995a, Reflection and refraction of coupled transverse

and micro-rotational waves at an interface between two different micropolar elastic me-

dia in welded contact, International Journal of Engineering Science, 33 (4), 485-496.

Tomar, S. K. and Gogna, M. L., 1995b, Reflection and refraction of longitudinal wave

at an interface between two micropolar elastic solids in welded contact, Journal of

Acoustical Society of America, 97(2), 822-830 [Erratum, ibid, 102(4), (1997), 2452].

Tomar, S. K. and Kumar, R., 1995, Reflection and refraction of longitudinal displace-

ment wave at a liquid-micropolar solid interface, International Journal of Engineering

Science, 33(10), 1507-1515.

Tomar, S. K. and Kumar, R., 1999a, Elastic wave propagation in a cylindrical bore

situated in a micropolar elastic medium with stretch, Proceedings of Indian Academy

of Sciences (Math. Sci.), 109, 425-433.

Tomar, S. K. and Kumar, R., 1999b, Wave propagation at liquid/ micropolar elastic

solid interface, Journal of Sound and Vibration, 222(5), 858-869.

Tomar, S. K., Kumar, R. and Kaushik, V. P., 1998, Wave propagation of micropolar

elastic medium with stretch, International Journal of Engineering Science, 36(5-6),

683-698.

Tomar, S. K. and Singh, J., 2006, Plane waves in micropolar porous elastic solid, In-

ternational Journal of Applied Mathematics and Mechanics, 2(3), 52-70.

Toupin, R. A., 1962, Elastic materials with couple stresses, Archive for Rational Me-

171



chanics and Analysis, 11, 385-414.

Twiss, R. J. and Eringen, A. C., 1971, Theory of mixtures for micromorphic materials-

I. Balance laws, International Journal of Engineering Science, 9(10), 1019-1044.

Twiss, R. J. and Eringen, A. C., 1972, Theory of mixtures for micromorphic materials-

II. Elastic constitutive equations, International Journal of Engineering Science, 10 (5),

437-465.

Udias, A., 1999, Principles of Seismology, Cambridge University Press, UK.

Vashishth, A. K. and Khurana, P., 2005, Wave propagation along a cylindrical borehole

in an anisotropic poroelastic solid, Geophysical Journal International, 161(2), 295-302.

Voigt, W., 1887, Theoritiscke studien uber die elastizitats verhaltnisse der krystalle,

Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 34, 3-51.

Willson, A. J., 1972, The micropolar elastic vibrations of a circular cylinder, Interna-

tional Journal of Engineering Science, 10, 17-22.

Wu., J. and Zhu, Z., 1992, The propagation of Lamb waves in a plate bordered with

layers of a liquid, Journal of Acoustical Society of America, 91, 861-867.

Yang, S. K. and Hsia, S. Y., 1998, Acoustic wave propagation at a fluid-micropolar

boundary, Japanese Journal of Applied Physics, 37, 247-252.

Yerofeyev, V. I. and Soldatov, I. N., 1999, A shear surface wave at the interface of an

elastic body and a micropolar liquid, Journal of Applied Mathematics and Mechanics,

63(2), 277-281.

Zhu, Z. and Wu, J., 1995, The propagation of lamb waves in a plate bordered with a

viscous liquid, Journal of Acoustical Society of America, 98, 1057-1067.

172


