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Introduction

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic elod
for electronic engineering and plasma physics.

g#te
source channel drain
gdte
SiO2 layers

[ B



Introduction
0e00
Introduction

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic elod
for electronic engineering and plasma physics.

@ Plasmasare ionized gases: positive, negative and neutral charges dissociate

g#te
source channel drain
gdte
SiO2 layers

[ B



Introduction
0e00
Introduction

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic elod
for electronic engineering and plasma physics.

@ Plasmasare ionized gases: positive, negative and neutral charges dissociate

@ Electronic devicesare physical solid state devices, like semiconductors, which
exploit the electronic properties of semiconductor materials (e. g. sillopn)
manipulating their conductivity via thdoping.

gate
source channel drain
gate
SiO2 layers

Figure: A MetalOxide SemiconductofField Effect Transistor.
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Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopit, leow the
charge carriers move inside the object of study:
of

F(t, x
a+v.vxf+%-vvfzg[f].
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Introduction

Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopit, leow the
charge carriers move inside the object of study:
of

F(t, x
a+v.vxf+%-vvfzg[f].

Force field.

Apart from the free motion, the charge carriers may be driven byftaetef a force
field, usually of three categories:

@ self-consistent Poisson equation, in semiconductors;
@ coupled Schrodinger-Poisson equation, in hanostructures;
@ Lorentz force (Maxwell equations), in plasmas.
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Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopit, leow the
charge carriers move inside the object of study:
of

F(t,x
a+v.vxf+%-vvfzg[f].

Force field.

Apart from the free motion, the charge carriers may be driven byftaetef a force
field, usually of three categories:

@ self-consistent Poisson equation, in semiconductors;
@ coupled Schrodinger-Poisson equation, in hanostructures;
@ Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fatéde or
with phonons (pseudo-particles describing the vibration of the lattice).
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Transport

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnithidefined in the
phase spack, v), (X, p) or (x, k): the choice of the problem may make more suitable
the use of the velocity instead of the impulsiop or the wave vectok.
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Transport

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnithidefined in the
phase spack, v), (X, p) or (x, k): the choice of the problem may make more suitable
the use of the velocity instead of the impulsiop or the wave vectok.

v

Macroscopic models.

The system does not dependyoar p or k; the magnitude describing the evolution
just depends on time and position. Starting from the BTE, hydrodynamics o
diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Esjpam
Energy-Transport or Drift-Diffusion systems.
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PWENO interpolations

Motivation

We need &ointwiseinterpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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PWENO interpolations

Motivation

We need &ointwiseinterpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

PWENO-6,4

i
XigXj—2 Xi-1 % T x|+1 Xis2 X3

. The smoothness of the Lagran

polynomials is measured along
this segment, between the
two central points.

je

=)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, b
on how smooth is each.

as
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points giule dli into

three substencils of four points:

PWENO-6,4

i
XigXj—2 Xi-1 % T x|+1 Xis2 X3

. The smoothness of the Lagran

je
polynomials is measured along
this segment, between the

two central points.

%Q

/)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads

Peweno(X) = wo(X)Po(X) + wi(X)Pr(X) + w2(X)P2(X)-
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno(X) = wo(X)Po(X) + wi(X)P1(X) + wa2(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.
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PWENO interpolations

The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno(X) = wo(X)Po(X) + wi(X)P1(X) + wa2(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.

Smoothness indicators

In order to decide which substencifs are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sumIof-tims of the
Lagrange polynomialp; (x) to measure their regularity close to the reconstructio
pointx. The following smoothness indicators have been proposed by Jiarghand
2 3
+ax|9P + a9
2 dx? 2 3
L L
4% 41) (4 %i41) )

dpr

O = Ax dx

-
cd
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightsi (x) defined this way:
- dr (x)
X) = — L
& (e+6r)?
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightsi (x) defined this way:
- dr (x)
X) = — L
& (e+6r)?

Regular reconstruction
Suppose that all thg are equal; then we have

wr(X) = dr (X).

The optimal order is achieved by Lagrange reconstrugii@jiange(X) in the whole
stencilS, so if we defineal; (x) to be the polynomials such that

PLagrange(X) = do(X)Po(X) + du(X)P1(X) + d2(X)p2(x),

then we have achieved the optimal order becgsgeno(X) = PLagrange(X)- -
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweights, (x) defined this way:
- dr (x)
X) = —~2
“0= Ay

High gradients

Otherwise, suppose for instance tf¥atis high order than the other ones: in this case
So is penalized and most of the reconstruction is carried by the other megalér”
substencils.
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Motivation

In this work, splitting techniques are used at different levels, namely:

o to split the Boltzmann Transport Equation into the solution oftthasport part
and thecollisional partfor separate, i.e. th€&me Splitting :

Qf+v.vxf+F'va = Qff]
ot
splits into
of of
StV VAR =0 = =Qff];
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Motivation

In this work, splitting techniques are used at different levels, namely:

o to split the Boltzmann Transport Equation into the solution oftthasport part
and thecollisional partfor separate, i.e. th€&me Splitting :

6—f+v~vxf +F -V f = Qff]
ot
splits into
of of
a+v~vxf+F~vvf_0, i [f];
9 to split the(x, v)-phase space in a collisionless contdXintensional
Splitting):
of
§+V-fo+F'va =0
splits into
of of -
- . = — 4+ F.Vf=0.
8tJrv Vif =0, 8t+ Vi =0 d
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General framework

The (formal) exact solution of the linear PDE

%:Lf, f(t=0)=f°
is
f(t) = 'f°.
If we can write the linear operatdaras the sum of two linear operators,
L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
% = Laf and % = Lof.
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General framework

The (formal) exact solution of the linear PDE
of

_ __ ¢£0
=L ft=0) =f

f(t) = 'f°.

If we can write the linear operatdaras the sum of two linear operators,

L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
of of

Several schemes are proposed for reconstructing the solution afigieabPDE
from the solution of either blocks; a first order (in time) scheme is giwen b

f(t+ At) = 2218 (1),
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Splitting techniques

General framework

The (formal) exact solution of the linear PDE

%:u, f(t=0)=f°
is
f(t) = 'f°.
If we can write the linear operatdaras the sum of two linear operators,
L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
% = Laf and % = Lof.

Several schemes are proposed for reconstructing the solution afigieabPDE
from the solution of either blocks; a first order (in time) scheme is giwen b

f(t+ At) = 2218 (1),

while a second order (in time) scheme is given by

f(t+ At) = 12 221 3¢ (1),
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Linear advection

We propose two schemes for solving the linear advection

a"‘vafxfo
X1 X X1
1 . tn+l
X(t n ;tn+1 X )
I I } tn
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Linear advection

We propose two schemes for solving the linear advection

Semi-Lagrangian:
Directly integrate backward in the characteristic

tn+l

[ B



Numerical methods
ooe

Linear advection

Linear advection

Flux Balance Method:
Total mass conservation is forced. It is based on the idea of followiokprd the

characteristics, but integral values are taken instead of point values:

Xiciz X i

Xig 0 X1 Xia
; [I’Hl
% j ¢

The averages along the red segments
are the same, because we have followed
the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time £ from a balance of
fluxes at previous time't :
—-.—.-.= the average along the purple segment
- - plus the average along the blue segment
.. minus the average along the green segment
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The system

We solve a Vlasov equation withiven potentiabnd alinear relaxation-time operator
as collision operator by time (linear) splitting to decouple the Vlasov part and th

Boltzmann part, and recursively dimensional splitting to dividextfaelvection from
thev-advection:

of  of d(ﬁ)af 11 ¢
2 v

§+V5(* i 67\/:7— |:;e 2[()7'|;:|7 f(O,X)—fo(X).

We expect the solution to rotate (due to the Vlasov part and the potential) and to

converge to arquilibrium(due to collisions) given by

o massf) exp (_szzr\/Z)

2
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Setting up initial conditions

We perform tests with three initial conditions, more or less close to the equitibriu
the relaxation time is set = 3.5:

o = zlsinz(iz‘)e—#
12 = Zzsinz()fz()sinz(\fz/)e_#
(9 = 23[1+o.ossirf(g)}e—x2?2

Entropies
Theglobalandlocalrelative entropies are defined this way:

_ 2
HIf ) = //'f ffS‘ dvelx
RJR S

2
/ / mdvdxh
R JR fs

H[f:/)l\/lﬂ
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Vlasov-Poisson

Two-stream instability

The problem

We set the problem in a collisionless context. Theee fieldis self-consistently
computed through Roisson equatiarEquations are normalized, periodic boundary
conditions are taken for both the transport and the potential.

of  of 0daf

ot TVox oxav

R
e 1- /Rfdv
f(t = 0,%, V) = fag(V) [1 +001 (COS{M) :2005(3"") n cos(kx)ﬂ .

As initial condition, we perturb the equilibrium-state given by

feq(V) = K(1+ vz)e—é,

K being a normalization factor. -
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Overview

The model

We describe via the Boltzmann Transport Equation the transport/collisian in a
electronic device

of 1 q _

a + ﬁVkE . fo - ﬁE'ka = Q[ﬂ

AP = eﬂ [Plf] —Np], E=-V,@
0

fo(x, k) = No(x)M(K),
where the band structure is given in the parabolic approximation

_ hZ‘k‘Z
T 2m.

e(k)

)

m. being the Silicon effective mass.
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The collision operator

The collision operator takes into account the scattering of the carriersagiinstic
phononsin the elastic approximation, and witiptical phononswith a single
frequencyw. Therefore the operator reads, in the low-density approximation:

Qlf] = /R3 [S(K, K)f (t, %, K') — S(k, K)f(t,x, k)] dk/,

where the scattering rate is given by

SkK) = K[(Ng+1)5(e(K) — e(K) + hw) + ngd(e(K) — e(K) — hw)]
+ Kod(e(K) — ().
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Adimensionalization

The system is reduced to dimensionless magnitudes in order to improwinam
results by making the computer perform calculations on numbers of brdenen
splitting schemes are applied to solve for separate transport and coléision,
dimensional splitting is applied to separatdimension fromk;-dimension.

[ adim. | parameter | 400 nm device | 50 nm device |
k=k'k k= el 4.65974x 10°m™* | 4.65974x 10Pm~*
X =1"x I* = device length | 1 um 250nm
T=tt t* = typicaltime | 1ps=10"s 1ps=10""s
V(X) =V*V(x) | V" =typical Vbias| 1V v
Ex =EE(X |E=i¥ 100000/m~* 400000/m~*
fR)=ee(k) | er =1k 4.1419% — 21 4.1419% — 21
5(R) = p* p(X) - (%)3 *1101178x 107° | 1.01178x 10°
10 =7(x "=k 10 1.6 x 107°
a(x) = u*u(x) U= 10° 250000
N(X) = W*W(x) | W* = (I"/t)? 107 6.25 x 10%°

[
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Collision integraion

The solution of the collisions is achieved when we are able to solve the following
integrals (in dimensionless units):

Yo(K) , ,
ot = e [V (Kuy oot - k2 ks
N
V4 (K)
+ C+7r/ f(k’h 7+(k)—k’§> di'
Vi ®
Mk)f K k) — k2 ) dk’
+ c.m , _(k) — K
X{y_ (>0} /_ 0 (l 7-(K) 1) 1
. hw hw
with 70(K) = (K, 7+ (K) = (k) + ==, 7 (k) = =(K)

Q7 [f] = co2my/ 7o (K)f (K +X{w (k)>0}c+27'r\/’y K)f (k) + c—2m/ v+ (K)f (k)



TS-WENO for a BTE
{eJele] ]
Numerics

Collision integraion

For integrating along thg-,/7, \/7]-segment following a semicircle in the
(kl, VK + k§) -plane, we have adopted as strategy a plain linear interpolation using

the values of the two nearest points along the vertical lines. Other mosticaifed
strategies have not significantly improved the results.

k23

m b ] s,
= \ \
] Ko firl i fibl fis2 | K1

S
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Multifrequency phonons

We present the results relative to a device where phonons are notBeglency:
the structure of the solver allows an easy implementation of such model.
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Setting the problem

Kinetic equation.
Consider the following problem: take th&nsport equation

of.  of. 1/1 [*
5at +V8X 7g (é/;lfgdv_fg)

with (t,x,v) € [0, T] x R x [—1, 1], completed by initial and boundary conditions
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Setting the problem

Kinetic equation.
Consider the following problem: take th&nsport equation

of.  of. 1/1 [*
et TV = - <§[1f6dv—f5)

with (t,x,v) € [0, T] x R x [—1, 1], completed by initial and boundary conditions

Diffusive limit.
Ase — 0, f. relaxes to théneat equation

o0 1%

ot 30

[ B



Intermediate approximations
O@0000

Motivations

Setting the problem

Kinetic equation.
Consider the following problem: take th&nsport equation

of.  of. 1/1 [*
5at +V8X 7g (é/;lfgdv_fg)

with (t,x,v) € [0, T] x R x [—1, 1], completed by initial and boundary conditions

Diffusive limit.
Ase — 0, f. relaxes to théneat equation

o0 1%

ot 30

Drawbacks.
@ The heat equation is netdependent: no microscopic feature.
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Motivations

Setting the problem

Kinetic equation.
Consider the following problem: take th&nsport equation

of.  of. 1/1 [*
5at +V8X 7g (é/;lfgdv_fg)

with (t,x,v) € [0, T] x R x [—1, 1], completed by initial and boundary conditions

Diffusive limit.
Ase — 0, f. relaxes to théneat equation

o0 1%

ot 30

Drawbacks.
@ The heat equation is netdependent: no microscopic feature.

@ The heat equation transport information at infinite velocity, the transport
equation at) (1) velocity.
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Approximations

TheP1-approximation
By truncating the Hilbert expansion inof f.

f.=Fo+eF1+e’Fa+ ...
at first order we obtain thel-approximation:

fe =~ p(t,x) — EV%.
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Approximations

TheP1-approximation
By truncating the Hilbert expansion inof f.

f.=Fo+eF1+e’Fa+ ...
at first order we obtain thel-approximation:

fe =~ p(t,x) — EV%.

Intermediate approximations
[e]e] le]ele]

Drawbacks

o TheP1-approximation is not non-negative.
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Motivations

Approximations

TheP1-approximation
By truncating the Hilbert expansion inof f.

f.=Fo+eF1+e’Fa+ ...
at first order we obtain thel-approximation:

fe =~ p(t,x) — EV%.

Drawbacks

o TheP1-approximation is not non-negative.

@ As well as in heat equation, information is transported at infinite velocity.
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Moment equations

Moments
Define the zeroth, first and second moment by

Pe 1 1 1
J. == v/e | f.dv.
()41 (5)
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Moment equations

Moments
Define the zeroth, first and second moment by

Pe 1 1 1
J. =3 / v/e | f.dv.
P. L\ VP

Moment equations
Integrating the kinetic equation, we obtain the moment equations

Ope | 0

ot + ox 0
20). P
a T x T e

which need somelosure strategy thek-moment equation being dependent on the
(k+ 1)"-moment.

v
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Motivations

Closures

Two closures were proposed, one at zero-th order and one atrfiiest

Zero-th order closure
By truncating the modified Hilbert expansion

f. = exp(ao +cay + 2ap + )
atfirst order and injecting the obtained approximation

(t,x) %
ftxv) =2 % —ev-Srx)

into the zero-th moment equation, we obtain the following system:
op 9 |p %
2 |E o 1|l =0
ot ox LG (6 p ’

@ Z(t,x) is a normalizing factor for the densip(t, x);
@ G(x) = coth(x) — 1.

where

[ B
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Closures

First order closure

The first order closure comes from an Entropy Minimization Principleaititeto the
following system:

9p | &I
ot | ox

28\] 0 ed
<ot ox [W (z)}

and the microscopic approximation is reconstructed by

2xp V6 ()|
FoGY (p(stix))

0

-J

f.(t, % v) = p(t,x)

where
@ F(X) _ sinh(x);

° v(x = & (6().
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Kinetic equation

We propose a splitting scheme for solving the kinetic equation

of. C?f
ot Vox e( / fedv — )

without need of mesh-resolving parametess it tends to zero.
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Asymptotic-preserving schemes

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

of. C?f
ot Vox e( / fedv — )

without need of mesh-resolving parametess it tends to zero.

Decomposition
Splitf. into its mean valuglusfluctuations

fs = psteQ:

1 [t
> '/711‘; dv+ eg-..
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Asymptotic-preserving schemes

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

of. C?f
ot Vox e( / fedv — )

without need of mesh-resolving parametess it tends to zero.

Decomposition
Splitf. into its mean valuglusfluctuations

fs = psteQ:

1 [t
ol '/71f‘;dv+ €le.

Splitting

. Of. 1 V 9pe 00 1 Ope
Step () o = 5 (pe —fo) — 88’; g’t: g (gs+v p)

T e? OX

step (i) Xe v2% _g %9 _g

gg
)
S
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Kinetic equation

We drop the notation of the-dependency and resume the scheme in the following
steps: knowing", g" andp"

Step (i)
@ updateBtep (i)q f:
07 = e E+ (1-e )
@ updateBtep (i)b] g:
@ updateftep (i)d p:
)
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Kinetic equation

Step (ii)
@ updateBtep (ii)a] f:
finj+l — fn+1/2+AIDJgn+l/2
@ updateftep (ii)b] g:
gt = g

@ updateBtep (iii)c] p by a right-rectangluar rule:

Av |
n+1 _ Z fn+l

[ B
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Kinetic equation

Derivatives

The discrete derivatives are defined in alternate direction under thiedipgy

constraint, for the sake of stability (for rescuing the usual three-peimtieced
scheme of the Laplacian):

1 ( —vi(pi—gi1) ify>0
D ! o)
[Dye]; = Ax{ -V (cp.+1—<p.) if v <O

1 [ (- ify>0
il = AX{*V;(%O.f J1) iy <0
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Numerics for the first order closure

We recall the first order closure (droppiaglependency):

dp LA 0J
ot Ox

28\] 0 ed
“ot Tax |’ { w(?)}

0

=J
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Asymptotic-preserving schemes

Numerics for the first order closure

We recall the first order closure (droppiaglependency):

dp LA 0J
ot Ox

28\] 0 ed
“ot Tax |’ { w(?)}

0

=J

Strategy

We introduce a new unknowat, x) and two new parametepsandc; the non-linear
equation for the first moment is now an advection equation and the naritine
only appear at a right hand side:

é? ax ’
0 £X3Z2 4 z L (pp(u) —2)
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Asymptotic-preserving schemes

Numerics for the first order closure

We recall the first order closure (droppiaglependency):

dp LA 0J
ot Ox

28\] 0 ed
“ot Tax |’ { w(?)}

0

=J

Strategy

We introduce a new unknowat, x) and two new parametepsandc; the non-linear
equation for the first moment is now an advection equation and the naritine
only appear at a right hand side:

é’?l ax )
0 £X3Z2 4 z L (pp(u) —2)

withu = f—pJ As a — 0, this system relaxes towards the original system. -~
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Numerics for the first order closure

Diagonalization
We diagonalize it by means of a linear transformation of its unknowns ¢\)

()

1
n2
0
0
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Numerics for the first order closure

Diagonalization
We diagonalize it by means of a linear transformation of its unknowns ¢\)

i1 L f
14 2 2 2 0
J = 0 1 -1 f+ 5
e el
z 0 1 f_
Splitting
then apply splitting technique between theelaxations and the-relaxations:
2 0 0 fo e (w2
0 Garg 0 )= B (v -2
0 0 m-ftx/\F — 7+ 2t (W) - 2)
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Numerics for the first order closure

Stiffness inStep 1.
Step 1lis again stiff ag — O:
ofy  pofy 1 z
e b LR
which means thélt; is relaxed towardg, so we apply the same strategy as beforg
and splitf.. into the following sum:

f —E—i—e
=5 O+

and follow the same calculations as before.
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Numerics for the first order closure

Solving Step 1.

Developping all the computations and rewriting the system in the originalblesa
we get:

P2 =y SN Gy LD () 4 A D (emav<" e
+(1- e‘A‘/sz)M) +D_ (e‘m“z% +(1- e‘A‘/EZ)wn
2 = g AUy e BT (G () B (2)) + 2 [Dy (e AV
+(1- e’A‘/EZ)M) - D_ (e’m/a e 1- e’A‘/Ez)wn
P2 = g4 A (D (€AY L 4 (1 AV 2 )

—HDL( —At/e? (—pd") uJ”) F(1- 7At/52)u’),2(z")>)'
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Numerics for the first order closure

Solving Step 2.

Step 2just involves relaxations, and no more details are given; after recatisiy
the original variables we obtain

21+1 _ e—At/aZn+1/2 + (1 _ e—At/a)an,-l/an-&-l/Z
Jn+1 _ Jn+l/2
Zn+1 _ Zn+l/2.
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Numerics for the first order closure

Derivatives

Discretized derivatives are subjected to upwinding and are taken inatkern
directions, in order to rescue the classical three-points centered s¢bethe
Laplacian of the heat equation in tfe — 0, — 0)-scheme:

(Dy(p), = —%((Wi-s-l—@i)
D@ = = (pi—pim)
(D-(¢)), = ﬁ(wi—w—l)
D-(@) = % (pur—ei).
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Comparison between closures

We plot here thé;ﬁx’v-difference between thie(t, x, v) given by the kinetic scheme
and thef. (t, x, v) reconstructed from heat equation or closure schemes. As initial
datum we choose a symmetficand an asymmetrify:

2 -05<x<05and-075<v<0.25
fo(x,v) = 2 -05<x<05and-05<v<0.5
1 otherwise

for the asymmetric i. d.
for the symmetric i. d.

o1

o1

oo e

error f

error f

ooom E oom |

1e-04 L L 1e-04 L L
0.0 oot £ a1 1 0.0 ool g a1 1

Figure:Left: symmetric initial datum. Right: asymmetric initial datum.

—
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@ The nanoMOSFET
@ The model

[ B



The nanoMOSFET
[¢] lele]e}
The model

The model

We afford now the simulation of a nanoscaled MOSFET.

g#ne
source channel drain
ga{te
SiO2 layers

Hybridity
x-dimension is longer thardimension, therefore we adopt a different description:

@ alongx-dimensiorelectrons behave likearticles their movement being
described by the Boltzmann Transport Equation;

@ alongz-dimensiorelectrons behave likeaves moreover they are supposed to
be at equilibrium, therefore their state is given by the stationary-state
Schrddinger equation.

[ B
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The model

Subband decomposition

Electrons in different energy levels, also calketibands, which corresponding to
eigenvalues of the Schrodinger equatitescribing their state along tzedimension,
have to be considered independent populations, so that we have foiiethem for
separate.

v

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for thataion of
the electrostatic field in the expression of the total density.

v

Coupling between subbands

Subbands are coupled also in the scattering operator, depending thremive allow
inter-band scattering or not.

v

[ B
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The model

BTE
The Boltzmann Transport Equation (one for each band) reads

of 1 1
S T3 Ve Vidp = SV Vi = Qo fo(t = 0,%.K) = fo(x. K).

Schrodinger-Poisson
TheSchrddinger-Poisson blockads

h2d|:1pr

-5 EE] —q(V+Ve)xp = 6EOtXP

2 dz
{xo}, € H3(0, ;) orthonormal basis
—div[erVV] = ;qo (NV] — Nb)
plus boundary conditions

These two equations cannot be decoupled because we need the migen&uto
compute the potential (in the expression of the total density), and we need th
potential to compute the eigenfunctions.

[ B
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The model

The collision operator

For the scope of this work, we are just using a linear relaxation-time isted-b
operator; a more detailed description has not been tested yet:

1 Z pq(t7 X) _ et
prp(t7 X, k) = ; %M(k)e kgTL — fp(t’ X, k) ,
Zr e kT

_ h R2K2 O\ . : .
whereM = srkems ©XP Zgmm: ) 1S the Maxwellian and the relaxation time

comes from the mobility, from formular = %

Band structure

The kinetic contribution to the energy-band function is taken in the parabolic
approximation, therefore it does not depend on the band nor on positiich
makes computations quite easier:

. hzlk‘z
kin _
= ket

[ B




The nanoMOSFET
@000
Numerical methods for the Schrédinger-Poisson block

Outline

@ The nanoMOSFET

@ Numerical methods for the Schrédinger-Poisson block =



The nanoMOSFET
o] lele]
Numerical methods for the Schrédinger-Poisson block

Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio



The nanoMOSFET

Numerical methods for the Schrédinger-Poisson block

Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
The Schrédinger equation
Equation

B2 d [ 1 dyp

S & L’TT*E} = d(V+Ve) Xp = epxp

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

o] lele]
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
The Schrédinger equation
Equation

B2 d [ 1 dyp

S & {EE} = d(V+Ve) Xp = epxp

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve 1D and 2D equation like

iRV + [ A OV = B@).
0

The derivatives are discretized by finite differences in alternate dires;tthe
integral is computed via trapezoid rule and the linear system is solved hysmoéa
LAPACK routine called DGESV.

[ B

<




The nanoMOSFET
[e]o] 6]
Numerical methods for the Schrédinger-Poisson block

Overview

The Newton scheme
We seek to find the minimum of the functiorgV] leading to the Poisson equatio

—div (srVV) + ;qo (N[V] — Np) =0

by means of a Newton scheme
dP(VoId VnaN _ Vold) _ —P[VOId]

After computing the Gateaux-derivative of the density and developg@Etayiations,
we are led to a Poisson-like equation

Iz
~div (crv V) + 4 /0 ANV (2, V()¢

Iz
= —2owv-roy+ L [Cavz v

€0
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Discretization for the transport

Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp
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Discretization for the transport

Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the dhvéma%fjj

andg—f('i and is coupled with the TVD (Total Variation DiminishinRunge-Kutta-3
for the time discretization.
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Discretization for the transport

Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the dhvéma%fjj

andg—f('i and is coupled with the TVD (Total Variation DiminishinRunge-Kutta-3
for the time discretization.

v

Time- & dimensional-splitting

>

The BTE is split into the solution of the transport and the collisions, then ins&le
transport we split dimensions and solve linear advection problems:

Oy | 10N of, 10 Oy

ot Thok ox hoox ok
of
?tp - prp-

[ B
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Border potential

First of all we have to compute the border potential respecting the eldctrica
neutrality, to use it for the border values in 1D-Schrédinger-2D-Paisspiations.

Border potential

potental energy V]

donsiy (3]

=
|y
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Thermodynamical equilibrium

Potential at equilirium

L1 band chi*2 [m(-1)]

21 band chit2 [m(-1)]

The nanoMOSFET

34h band chi**2 [m*(-1)]

VeVl 016 3.5e+08 4e+08
i iy
g i =
i o
8o 56107
x[m] x[m] x[m]
Jr— pe— S —
B
g5 E R E ey jrot]
2425 ~ 2e425 Y bev24 W 2e+23
x[m] x[m] x[m] x[m]

‘Occupations at equiliorium Band potential energy at equilibrium

se+17

45417
sen17
350417
sen17
250417
20017
150417
16417
Serl6

tho [m*=(-2)]

2008

tho [m*=(-2)]

03 T
028
026
024
022

018
016
014
012

o1

o 56-09

1608
x[m]

15008

2008
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Long-time behavior

We propose now some results relative to the long-time behavior of thexsyste

[ B
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